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Abstract

The Possibility of enhancing the effectiveness of an
operating system bv the introduction of anpronriate
feedback controls is explored by examining some
resource allocation problems. The allocation of
core, CPU and I/O processors.in a multiprogramming
demand vmaging environment is studied in terms of

feedback control.

A major part of this study is devoted to the apnlicatiun
of feedback control concepts to core allocation to
prevent thrashing and develon algorithms of practical
value. To aid this study a simulator is developed
which uses probability distributions to represent
program behaviour. Successful algorithms are developed
employing a two stage page replacement function which
selects a process from which a page is then chosen to
be replaced. Improving the performance of these
algorithms by using a 'drain process' to aid the
dynamic determination of the current locality of a

process is also discussed.

The complexity of the overall resource allocation
problem is dealt with by employing a hierarchy of
individual resource allocation volicies. These

control scheduling, core allocation and dispatching.



By considering the levels of the hierarchy as separate
feedback control systems the restrictions which must
be placed upon the individual levels are derived. The
extension of these results to further levels is also

discussed.
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CHAPTER 1

Introduction

Feedback in Onerating Systems

Feedback effects manifest themselves in various aspects of
operating systems. Decisions at computer managemen* level
and the detailed strategies of the operating system may
equally well cause or be affected by feedback efiects.

A number of examples have been described in the literature.
For example, Lynch (1967) discussed the effects of
introducing fast response output devices upon the volume
of printed output, and the tendency of queue sizes to
stabilise in certain situations. Coffman and Kleinrock
(1968) and Lynch (1972) described the response of users to
changes in resource allocation policies. Wilkes (1971)
analysed an algorithm designed to control the number of
users logged into a terminal system, and Bunt and Hume

(1971) examined self-regulating operating systems.

The frequency with which such effects occur and the
magnitude of the disturbances they can cause points to

a need for a study of such phenomena in operating systems.
Further, one is prompted to enquire into the possibility
of enhancing the working of an operating system by
controlling and exploiting the existing feedback effects

and by introducing further appropriate feedback controls.



The Area of Study

In view of the wide range of aspects of operating systems
in which feedback occurs or is apvplicable it has been
necessary to restrict the scope of this investigation.

The allocation of core, central processor time and innut/
output processors are problems crucial to the effectivaness
of an operating system and are topics of general intsr=st,
Furthermore various attempts have been made to abply
feedback control to this area. This has been done both
explicitly, (Shils, 1968; Wulf, 1969), or implicitly, as
a consequence of design (Denning, 1968b; Wharton, 1271).
These attemots provide a basis for further study. We
shall therefore confine our studies to these resource
allocation problems. However, it is hoped that the
insight gained by studies in this restricted field will

be of value in other asmects of resource allocation.

The problems of resource allocation arise principally as

a consequence of multiprogramming. This is because of the
concurrent use of system resources by two or more processes
which are in partial states of completion. The problem
can arise in uniprogramming as in the case of a process
being too large to reside entirely in core so requiring
overlay techniques to be employed. However, the problems
are more diverse, complex and of wider interest in the
case of multiprogramming operating systems and solutions
should be more widely applicable. It is just such systems
with which we shall concern ourselves.

- 2 -



1.

2.

Core Allocation

The form of addressing scheme used will be of basic
importance in the design of the memory allocation
algorithm of an operating system. There are four major
possibilities for the addressing scheme from the
allocation point of view and these form two class2=.
In the first the whole program and data of a proc=zss
must be moved in and out of core, in which case
relocation may or may not be possible. In the second
the program and data may be divided into many pie:zes
which may be of equal size (paging) or of wvarious
sizes (segmentation). These nages or segments are

used as the units of allocation of core.

Segments provide a logical division of the memory space
based upon the form of the process using that space.
The Burroughs B5000 and B6500 systems provide a direct
implementation of a segmented memory. Paging provides
an arbitrary division of the memory space with the aim

of easing core allocation problems.

We will consider segmentation only where it is the
basis of core allocation. When we subsequently refer
to segments we mean those as in the B5000 and B6500
implementations and not those of the IBM 360/67 oir the

GE645 where the segments are paged.



Demand-type dynamic storage allocation, where pages or
segments not currently in core are fetched in response
to an attempt to. access them, are particularly
vulnerable to loss of effectiveness. due to mismanagement
of cora. (Denning, 1968a; Brawn and Gustavson, 1968).
One would hope that by suitable allocation schemes
appreciable improvement would be obtained. Furtherumore
paged and segmented addressing organisations seem to
offer opportunities for more varied feedback control
schemes since allocation decisions can be made in terms
of smaller units than is possible with other addressing

organisations.

Paging is simpler to consider and we shall concentrate
on demand paging. However it is our belief that much
we have learned carries over more or less directly to
segmentation. We will therefore talk in terms of
demand éaging but we also have in mind such systems

as the B5000.



CPU and Innut/Output Processor Allocation

The allocation schemes for CPU and I/0 processors are
not dependent upon the addressing hardware. Therefore
the methods we develop should be generally applicable.
However, the work of Denning (1968b) and Randell ard
Kuehner (1968) points out the necessity of develcwing
an integrated strategy for resource allocation. [ue
to the intimate relationship between the progress: of
the computations a process performs and the pages of
program and data which must be in core, memory
management and the allocation of other resources
should be closely related activities. They should
not be treated independently, rather a decision to
allocate some resource should be made with regard to
allocation decisions made for other resources.
Therefore, there should be an interdevendence of

the various allocation strategies.



Imposing a Structure

In order to deal with the complexity of the resource
allocation problem it would be helpful if we could
define some framework within which allocation of an
individual resource can be made without explicit
reference to the allocation of other resources. The
necessary restrictions which should be placed upc-
such allocations due to the overall interdepender cies

must then occur as a consequence of the structuring.,

A promising structure from the point of view of
formulating and understanding such interrelations is

a hierarchy. We have chosen to structure our decision
process as a hierarchy of individual resource allocation
policies. Furthermore the interest which has been
generated in such structuring by the work on program
correctness, particularly its use in the design of the
THE operating system by Dijkstra (1968), enhances the

potential value of a study involving a hlerarchy.

Our hierarchy has three distinct levels with which we
shall concern ourselves. We shall refer to these asz
scheduling, core allocation and dispatching. The
function of the scheduler is to define a priority
ordering upon the various processes which require

system resources. The priority order may reflect

management policies to favour certain kinds of processes



and to provide certain levels of turnaround to batch
users and response to terminal users. It may also
incorporate deadlock avoidance strategies. This is
the most general level. We shall refer to it as the
highest, all others being subordinate. It is not
concerned with the allocation of resources but wiin

specifying which processes should be allocated resources.

The second level is core allocation. The allocation
is performed on the basis of the priority ordering

placed upon the processes by the scheduler.

The lowest level of our hierarchy is dispatching. The
dispatcher is responsible for the allocation of the CPU
and I/0 processors to those processes which have been
allocated core by the core allocation strategy. The
dispatcher will not necessarily use or be constrained
by the priority order imposed by the scheduler. It may
if desired apply its own priorities to the set of

processes allocated core by the core allocation algorithm.



Aims of the Thesis

A hierarchy, and our hierarchy in varticular, will not
necessarily be a satisfactory structuring for resource
allocation, and we will be concerned with examining its
suitability. It is our intention to consider our
hierarchy in terms of feedback concents showing ho'r
feedback control might be amnlied to govern or irrrove
existing feedback effects which occur in resource
allocation. We shall discuss core allocation first
since this is the algorithm of nrime importance in a

demand pmaging omerating system.

A major mart of the thesis will be devoted to the study
of core allocation and we will trv to develon algorithms
of practical value. To this end we will develon a
simulator whose narameters are drawn from the literature
and which are renresentative of systems such as the
Michigan Terminal System. However, our analvses of these
algorithms will be concerned with their qualitativz,
rather than quantitative, merformance. We shall be
particularly concerned with their dvnamic behavicur under

overload conditions.

We shall then examine in terms of feedback concents the
relationshins between the levels of our hierarchv. The
interactions of the scheduler and core allocation, and

core allocation and the dispatcher will be studied in an
attempt to derive conditions which are necessary in such

a structure if it is to be successful.

_8_



Structure of the Thesis

In Chapter 2 various well-established notions of feedback
control systems are introduced and their importance
explained by relating them to topics in omerating systems.
In particular, the elements of a feedback control zystem
and the important concepts of stability and settling time
are described. A classification of such systems is
introduced. The analysis of feedback control and the
difficulties of applying the analyses to operating
systems is discussed. An example in which some rmeasure

of success has been achieved is reviewed.

In Chapter 3 we introduce the concepts we require to
discuss core allocation. The phenomenon of thrashing
is discussed and a structuring of core allocation
algorithms to ease design problems is introduced. The
simulation model which we use in our investigations 1s

then described.

Chapter 4 reviews applications of feedback to core
allocation preceding our main study. Four algorithms
are discussed and analysed both in feedback terms and

by use of the simulator.

Taking the lessons of Chapter 4 as a basis we develop a

number of core allocation algorithms in Chapter 5. The



main themes of this chapter are the control of
multiprogramming level and the estimation of the
core required by each process. The concept of a
'drain' process is introduced as an aid to the

estimation of the core required by a process.

In Chapter 6 we discuss the interactions between

the levels of our hierarchy of allocation stratecizs.
We analyse the interactions of the scheduling and
dispatching strategies with the core allocation
policy and derive the conditions necessary for

effective operation to be maintained.

The application of these results to other areas of
resource allocation in operating systems is discussed

and concluding remarks are presented in Chapter 7.



CHAPTER 2

Feedback Control Systems and their

Application to Opberating Systems

Introduction

The purvose of this chapter is to relate the concents
of feedback control (Goode and Machol, 1957; Grabbe

et al, 1958) to onerating systems and to define the
terms used in later chapters. Examnles from operating
systems will be used to illustrate the application of
the concepts to this field. We will then discuss a
classification of feedback control systems and examine
the general properties of each class. Finally the
analysis of feedback control systems in operating

systems will be discussed.



Types of Control Systems

Open-Loonp Control

The simplest typme of control system is the oven-lcoo
control. Parameters of the control are set and each
specific setting of the parameters determines a fixed

level of performance for the controlled svstem.

A particular example is the original APIN360 system
(Breed and Lathwell, 1968), the resource allocation of
which is greatly simnlified by a number of features.
Each user has an input/output device of his own, a
teletype or communications terminal, and is unable to
command the use of other input or output devices. All
users are constrained to work within a fixed amount of
core, their workspace, which is the same size for all
users. Simolification also results from all users
programming in the same language, the internreter of
which is wholly resident in core. This enables very

simple resource allocation strategies to be emmloyed.

The number of workspaces which may be resident in core
and the maximum CPU time any user mav obtain before some
other user receives service are given set values. These
settings were experimented with until a satisfactory
level of onmerating was observed and then fixed. The

control is of the open-loop form with the level of

...12_



performance being determined by the setting of the

bparameters.

In order to achieve precise control with an omen-looo
system it is necessary to have accurate knowledge of
the relationships between a number of variables.
Furthermore, an open-loop system cannot deal with
disturbing factors other than those svecifically
included in its design. Experimenting with the
settings as in the APL system is one way of obtaining
knowledge of the relationships. However, the preoisicn
0of the knowledge will be determined by the number of
settings it is viable to trv. 1In fact the APL system
experiences fluctuating performance due to disturbances
caused by variation in the workload not catered for in
the control design. The overall result however is

satisfactory.



Closed - Loop Control

This type of control is also called feedback control.

A closed-loop system can in general deal with all
disturbing factors without an accurate knowledae nf

the relationships between the values of the variocus
factors and the control action to be taken. The fauctor
which is causing the disturbance need not be knoun.

It is enough to monitor variations in the perfoir nce
of the system and take action known to cause opr:<ing

variations.

In general purpose onerating systems the factors which
influence the usage of any particular resource are
extremely complex and subject to many disturbances.

In such operating systems the use of feedback control
systems in resource allocation seems to be a natural
choice. This is not to say that onmen-loop control is to
be discarded. Such control has been successfully used
in situations in which the relationshios are sim~lified
for some reason. However, feedback has a wider

application in this field.



The Elements of a Feedback Control System

A feedback control system is a control system which tends
to maintain a prescribed relationship of one system
variable to another. This is achieved by comparing
functions of the variables and using the result t-
activate a corrective mechanism as required. A feedback
controller is supplied with an ideal value for the vi.riable
to be controlled. This ideal is called the command wvalue.
The actual speed of a car is an example of a controlled
variable whose command value is the desired speed sclected
by the driver. The controlled variable and its command
value, which may also vary, are the system variables whose
relationshin is of interest. As a result of a comparison
of the command value and the measured value of the
controlled variable the feedback controller manipulates
the controlled system in order to maintain the required
relationship. In the car the driver varies his pressure
on the accelerator so as to match the observed speed to
the desired speed, the prescribed relationship being

equality of these values.

This kind of control is used in those situations in which
the system experiences stimuli affecting the value of the
controlled variable. Stimuli may take the form of a
change of the command value or a disturbance of the

controlled system due to some external agencv. Both the

_]_5...
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actual and desired speeds of a car will vary according
to road conditions which may be thought of as external

stimuli.

A typical feedback control system, figure 2.1, ir.zludes
an outnut measuring device feeding back to an errcr
measuring device which activates a mechanism to annly

corrective action.



Properties of a Feedback Control System

Stability

The stability of a feedback control system is a
consideration of nrime importance. There is in general
some discrepancy between the value of the controilac
variable and its command value. This is because oZ
errors in measuring or because of delay between
measuring and comparing values. The introduction of
the feedback loop creates the nossibility that stimuli
may occur at times relative to the lagging feedback
such that the two are out of phase. Measuring error
may also cause the relationship to be incorrectly
evaluated. The supposed corrective action may therefore
augment the original error so .that it becomes even
larger. Thus the possibility of instability can be

introduced.

A system is stable if the response to an input always
reaches and maintains some useful value within a
reasonable period of time. An unstable system will
on the other hand produce persistent oscillations cof
the response and may even drive it to some excessive

value.

Ideally a system would maintain zero error despite

disturbances, respond instantly to any change of command

_.18_



value and be entirely stable. In practice comoromises
are necessary. Increasing the accuracy of a system
may be accomplished by making the controller more
sensitive so that it vrovides the same increment of
correction for smaller increments of error. However,
stability will be adversely affected if the contr:ller
is made very sensitive. A corrective action may be
initiated which is large enough to cause a response
resulting in a greater error than that initiating the
correction. This may continue until limited by the
physical properties of the system. Thus a control
system must be a compromise between stability and low

error with fast resvmonse to stimuli.

The systems whose stability is of particular interest
to us are those which allocate core in multiprogramming
operating systems. Consider a demand paging system in
which there is no attempt to limit the multinrogramming
level. Typically there will be an instant at which all
of the processes currently sharing core will be waiting
for I/0, either for a missing page or a data transfer.
The reaction of the dispatcher to the system becoming
idle will be to introduce a further process to utilise
the CPU. This however increases core contention so
increasing the probability that at some time all processes
will again be waiting for I/O. This leads to the

introduction of further orocesses. We note that this

_19_



will be a versistent rather than a transitory effect.
Thus when there is sufficient core to satisfy the
requirements of all processes, the system is stable.
However, when this condition is not met the system

is unstable.

The phenomenon just described is that of 'thrashing’'.
This is a common cause of degraded performance in
demand paging systems. We will discuss thrashing in

detail later.

In a case in which instability can occur it may be
simpler not to redesign the primary level of control
but to add a further level which in effect reduces the
physical limits of the system. This constrains the
effects of the instability. These extra controls
have been termed safety devices. A fixed limit uoon
the multiprogramming level of an onerating system
might be such a safety device. Safety devices are
inefficient in that they permit a persistent deviation
from the desired operating level. However, they may
allow achievement of a level of operation which is on
average greater than could have been obtained with

the primary control alone.

_20_



Response and Settling Time

The sneed of resnonse of a control system to a
stimulus is also of fundamental importance since
the control system must comolete its reaction to
a stimulus within a reasonable time. TIf this
settling time is greater than the interval
between stimuli then the system may never catch
up. The demands will not be met even if the

required accuracy and stability are attainable.



The Operating Region

A control system may be stable under one set of
operating conditions whilst it is unstable for others.
The set of operating conditions for which the system
is stable is called the onerating region. Having
designed a control system with as large an overating
region as nossible there are two ways of nreventing
degradation of the controlled system when the
conditions prevailing are outside the overating region.
The algorithms which represent the controls may be
altered to ones more suited to the new conditions.
Alternatively, the conditions themselves may be altered
to maintain them within the overating region of the

control system.

These techniques are discussed by Bunt and Hume (1971)
and they describe a number of onerating system strategies,
such as those of Rolfson and Kleinrock, which employ the
techniques. Rolfson (1968) nroposed a strategy to
regulate the load nresented to a simmle nrocess-at-a-time
environment emploving roll-in/roll-out, in such a way

as to give fast turnaround to those processes requiring
the least execution time. This was achieved by varying
a limit used to classify such short processes, the limit

being decreased as system load increased.



Kleinrock (1970) proposed a marametric scheduling
algorithm whose two parameters mav be chosen in such

a way as to bias the system against certain types of
process. It is proposed that on entry to the system

a process joins a waiting queue with zero briority.
The priority is increased linearly with rate a until
the process joins those being serviced when its
priority is increased at rate B. By setting o and

B anpropriately the strategy may be made to discriminate
against processes requiring extended execution. Bunt
and Hume discuss the manner in which o and B may be
varied dynamically so as to alter the omerating region

thereby adapting the system to its changing load.

A rather more ambitious scheme to regulate the load and
maintain it within the operating region of a multi-
programming system is described bv Wulf (1969). This
involves monitoring the resource usage characteris-ics
of all processes and the utilisations of the resources.
Individual resource utilisations in excess of nreset
values cause processes which use the resource heavily
to be suspended. Specific processes may be reactivated
to use underutilised resources. A decision tree is

used to implement the control mechanism.



A Classification of Feedback Control Systems

Consideration of the ways in which feedback controls
may be designed has led us to a classification which
we have found useful, and which has also been nut
forward by Wilkes (1973). There are three basic
design types. These may be described as inherenct,
superimposed and model driven feedback control

systems.

_24_



Inherent Control

Inherent or implicit feedback is a nroverty of the
system which is being controlled. The svstem controls
itself in that no explicit measurements are made of
the controlled variables and the command values are
set by implication and cannot be changed. An exavnle
of such a control system is seen in the tendancy of
queue lengths to stabilise. (Section 2.7). Such
behaviour is a property of the system itself, no
explicit measurement or control being imposed. It

is difficult to design stable controls of this form
since the number of choices for control variables

is often limited and so design possibilities mav be
constrained. Thus if such a control system should
prove unstable the only choice open may be to design

again completely.



Superimposed Control

Superimposed feedback control as the name suggests is
separate from the system being controlled. The
superimposed controller acts as a monitoring nrocess
which takes measurements of the variables to be
controlled. On the basis of comparisons of these
measured values with previously set command values,
actions are taken which directly affect the controlled
system. Subsequent measurements are taken which assess
the success of the control actions and these generazate

further corrective actions.

It is a feature of such controllers that they are
activated by actual errors, and they assess the success,
or otherwise, of the control actions in terms of the
errors those actions cause in the actual system.
Obviously in control systems which rely upon errcrs

to activate them, precise control at all times is not

possible. A further property of superimposed controllers,

which is important when considering stability, is that
the information upon which the control is based
introduces a time lag into the control. Essentially

a control decision is taken and no further control is
performed until the outcome of the control action

produces an error.



A good example of such a system is the 0S-3 operating
system used at Oregon State Universitv (Meeker et al,
1969). CPU time is allocated by providing service on

a round-robin basis. Superimposed upon this simple base
is a hierarchy of feedback control loops each designed
to alleviate problems . caused by its nredecessor. At

the first level is a control which cycles a 'high
priority' pointer in a round-robin of the dispatcher
queue. The core allocation algorithm is biased to give
the 'high priority' process priviliged core usage. This
pointer cycles at a rate proportional to real elapsed

time and the high priority user's demand for core.

In an attempt to limit the number of active processes
with high core demand, a further control is superimposed.
This suspends processes whose core demands exceed a
given value in the veriod taken by the high priority
pointer to pass from one process to the next. Processes
are suspended when page traffic is heavy as defined by

a further monitoring loop.

Suspended processes may be reactivated orovided page
traffic is light, which is defined by yet another control
loop. Each loop may also alter the parameters of each

of the other control looovs.
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The 0S-3 system provides an excellent examole of
superimnosed feedback control. However, whether
it is effective feedback control is difficult to
say since analysis of a system of such complexitv

would be difficult indeed.



.5.3

Model Driven Control

The third design type is the model driven control system.
These control systems have found wide anplication in very
complex situations such as the control of chemical
manufacturing plants (Smith, 1970). As with the
superimposed control systems the controller is serarate
from the system to be controlled and receives inforration
concerning the controlled variables by monitoring the
controlled system. The basis of the model drivern systems
is a model, either mathematical or simulation, of the
system to be controlled. Pronosed corrective acticns are
first applied to the model and the eventual control action
taken is based uvon the success predicted bv the model.
Contrast this with the superimposed systems in which
control actions are in effect tested only upon the actual

system.

The model driven feedback control system may be thought
of as a synthesis of open-loop and closed-loop controls.
The model forms the onen-loop component, accepting
parameters and by a deterministic process nredicting
the values of the control variables which will provide
the required performance in the situation swecified by
the parameters. The inadequacies of the model are
mitigated by the feedback of information provided by

the closed-loon component.



These systems provide far greater scooe for the
eliminatibn of instability due to the flexibility

of the model which allows very detailed examination

of a situation and the inclusion of svecial treatment
of exceptional cases known to cause problems. However,
the performance of the controlled system devends
heavily upon the design of the model and accurac-

of the information supplied to the model by the

feedback component.

These controllers are a relatively recent develornment
being associated with the introduction of computers=z

into the control mechanism. The commuter provides the
speed and flexibility necessary to implement the control

model.

Application of this technique in operating systems has

so far been limited. Wulf (1969) utilised this form of
control in a comprehensive resource allocation scheduling
strategy in an operating system. It has also been used
in those core allocation policies related to the Working
Set Model of program.behaviour. Denning (1968b) rronosed
a/scheme using the Working Set Model and it has also been
applied in the I.R.I.A. ESOPE system (Bétourné et al,

1970, 1971). Discussion of these schemes is deferred

to Chapter 4.



Discrete Control

The use of computers to implement control of systems
which are essentially continuous implies the need to
incorporate analogue to digital conversion. This has

led to the development of sampled control systems.

Here the values of the controlled variables are sar~led
at equally spaced instants. The sampled data is thsn
smoothed so as to simulate the continuous nature of -z
original variables. The smoothing overation imnlies

the use of previous values and these provide the fee . ack.
Techniques for handling sampled information are of course
applicable to the problem of controlling a computer system.
A notable example of such an anpnlication is the nage
replacement strategy employed in the MTS system on the

IBM 360/67 at Newcastle-Upon-Tyne University until recently.

The strategy depends upon special hardware functicr which
sets the 'reference bit' of a page whenever that page is
accessed. The reference bits of all pages in core are
examined at appropriate intervals and information concerning
the usage of the pages is compiled in the form cf reference
statistics, one for each page. At these times the re=ference
bits are reset. When a page replacement is required that
page in core which has the lowest valued reference statistic

is selected to be revlaced.



A combination of discrete control and modelled control
is well suited to a control system involving a computer.
In particular such techniques can be employed in the
design of an operating system for a computer. The work
of Wulf (1969) is a striking example of their use. We
will discuss the application of these and other
techniques when we examine the resource allocation

problems in detail.



Positive and Negative Feedback Effects

Two distinct naturally occurring forms of feedback effect
may be distinguished. These are negative feedback, which
tends to reduce the measured deviation of the control
variable from the command value, and vpositive feedback
which tends to ammlify this deviation. We are irterasted
ir these naturally occurring effects since we me- 'ish to
induce them in the controlled system. Alternatively we
may be able to use the feedback effects which al:r=ady

occur in the system to form part of the control itself.

An example of negative feedback occurring in an operating
system is that concerned with the stabilising of gueue
sizes. Service rate may rise as the queue for service
increases due to the economies of scale. This increase
in queue size can be balanced by the reduction of the
arrival rate due to suppression of the generating
subsystem. This means that queue lengths are stabilised.

(Lynch, 1967).

An example of positive feedback is the effect of _mproving
turnaround time upon the output/compute ratio. As the
turnaround time decreases the user tends to replace mass
reporting techniques with sequential reporting, as has
happened with the introduction of on-line terminals. A

drop in the volume of output should reduce turnaround
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further, and so we have a self-reinforcing effect.
(Lynch, 1967). The magnitude of a positive feedback
effect is eventually limited by physical properties

of the system.



The Mathematical Analysis of Control Systems

Much effort has been made to produce mathematical
analyses of control systems. Control systems belong

to the domain of the engineer and for this reason the
analyses are concerned with ootimising the nerforitance
of the system under control. The closely related tcwic
of maintaining stable operation has also received nuch
attention. Of interest in this context is how ti:
control system will react to various stimuli, studies
of accuracy, stability and settling time being nads when

the command value is varied in some regular manner.

The problems to which the engineers have applied
feedback control have been the control of systems which
are essentially continuous in nature. Great success has
been achieved in the control of motors and feedback is
an essential element in a wide range of electronic
equipment. This background has led mathematicians to
search for general models of continuous feedback systems

which are mathematically tractable.

A range of powerful techniques are now available to

study such systems and many criteria exist for determining
their stability. Typically such techniques require that
the 'equations of motion' of the system be written down.

An equation of motion represents the dynamic manner in
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which a controlled variable is affected by the control
actions. It is represented as a differential equation
in the controlled variable. The command value is then
represented by various functions, the two of most
general interest being a step function, which is useful
in determining settling time, and a sine functicr, w-ich

is used to study stability and accuracy.

The Laplace transform is an important tool in th:se

analyses and by using its discrete analogue, the --transform,
much of the work can be carried over to systems in which

the variables take on discrete values. These results

can be applied to sampled systems.

Goode and Machol (1957) and Grabbe et al (1958) discuss

the topics we have mentioned in some detail.



.1

Difficulty of Application to Onmerating Systems.

A common feature of the control systems analysed in

the literature is that the equations of motion of the
systems are expressable in a convenient mathematical

form. The study of the natural phenomena typically
controlled by such control svstems is well found=c and

the basic relationships of the variables well estanlished.
Thus provided one is sometimes prepared to accept
computational solutions rather than closed form solutions,
the stability and settling time of the control can L=
examined. This, however, is seldom the case with operating

systems.

Essentially, we must be able to exnress mathematically

the way in which the error correcting mechanism of the
control affects the value of the controlled variables. The
most frequent control action used in operating systems
involves altering a variable related to the controlled
variable rather than the controlled variable itself. For
example, contention for core is usually altered by varying
the multiprogramming level of the operating system. Such

a controlled variable as core contention here is said to be

indirectly controlled.

Very little is known about the ways in which the various

elements of an operating system interact and the relationshiops
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which hold between the basic variables. e are certainly
not able in general to write down a mathematically
tractable function representing the changes caused in
system variable by altering a related variable. Our
general inability to produce the required equations of
motion prevents us from taking advantage of the

mathematical analyses available.



2.8.2

Analysis of an Automatic Load Adjustment Algorithm

One instance in which a feedback control amnlied to
resource allocation was successfully analysed is
described by Wilkes (1971). He deals with the
adjustment of a number of console users on a
time-sharing system. The control comprises two
algorithms. The first makes a veriodic predicticn
of the number of processes which could be allowed
to enter the system without causing overloading.
The second adjusts the number of users able to enter
processes so that the average number of nrocesses
actually entered is as close as nossible to the

target number predicted by the first algorithm.

It is possible to write down a recurrence relation

for the number of processes in the system at a given

time in terms of the previous values of that quantity,
the target number which is a weighted mean of previous
values of the number of processes in the system, and the
number of processes leaving the system. Initially Wilkes
considered the case.in which a decision to increase or
decrease the number of users is put into effect without
delay. It is possible.to solve the resulting linear
difference equation and study the behaviour of the roots
of the equation. .This allows one to examine the stability

of the control.



Wilkes extends the analysis to cases in which the user

is given a warning that he is to be logged out of the

system and is given a period of grace to tidy up his

work. The sampling time of the control was taken to

be a multiple of the warning time. Again it is possible

to derive the resulting linear difference equation and
examine its roots. Wilkes was able to show that

instability will be introduced whenever an attempt to
estimate ahead over an interval greater than the interval
used for calculating the running mean uvon which the estimate

of the number of processes entered into the system is based.

Wilkes was able to carry the analysis through because he
was able to oroduce the equation of motion in each case.
These equations could be derived because of the simple form
of the control action which was to directly alter the
controlled variable, this being the number of processes

in the system. In suéh a situation one needs no knowledge
of any special relationships between system variables for
one to express the effects of the control action upon the

controlled variable.

In general we will be unable to analyse the system we are
controlling. Indeed it.is in just such situations that
closed-loop control is invaluable. It shields us from our
ignorance of basic relationships, which if known could be

used for open-loop control.
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3.1

CHAPTER 3

Process Behaviour, Thrashing and a

Core Contention Simulator

Relevant Topics Concerning Program Behaviour

Thrashing provides such an outstanding example of a
feedback instability in omerating systems that it is
surprising it has not been studied from this noint of
view. In this chapter and the next two we will discuss
the nroblem of thrashing and examine a number of core
allocation algorithms which employ feedback control. As
a basis for this discussion we will briefly review

relevant tomics concerning nrocess behaviour.

A number of studies of nrocess behaviour in a demand
raging environment have been .carried out. (E.g. Fine et
al, 1966; Coffman and Varian, 1967; Brawn and Gustavson,
1968; Josenh, 1970). Each of these studies showed a
distinct relationship between page fault rate and the
amount of core storage that a process is constrained to
use. The page fault rate remains at a reasonable level,
increasing slowly as the number of pages of core available
to the process is decreased, until a critical number of
pages is reached. At this point the page fault rate rises

very rapidlv indeed. The critical number came to be known

as the 'parachor' of the nrocess (Randell and Kuehner, 1968).

This phenomenon can be explained in terms of 'locality of

reference'. The process concentrates its references to 1its
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address spmace in subsets of its total number of pages
during intervals of time which may be significant fractions
of its total running time. We refer to the subset of the
address space which.is being referenced during some
interval as the 'locality of reference' of the process

during that interval.

A process can run without any great hindrance fror n:ge
faults in an amount of core smaller than the total address
snace, nrovided it has sufficient core for its current
locality of reference. However, if the number of vages

of core available to the process is less than the number
of mages in a subset, some frequently referenced nages will
need to be held on backing store and a higher nage fault

rate will be incurred.

We are assuming in this argument that there is an algorithm
capable of maintaining in core the current locality of any
individual process, when sufficient core has been allotted
to that process.. Such an algorithm does exist. It is the
Least Recently Used (LRU) page deletion algorithm.

(Belady, 1966).

The locality of reference may change gradually with the
progress of the process. This may occur through the same
section of the . computation accessing different data pages
or by the progression of the nrocess through its various

stages. Sudden changes of locality may occur due to

- 42 -



complete switches of action as may occur in the nhase

changes of a comniler.

Denning formalised the concept of locality of reference

by his working set model of process behaviour. (Denning,
1968a). The working set of a pnrocess at time t is defined
to be the set of pages referenced by the process during the
interval (t-T,t), where T is a fixed weriod of timz. The
working set model. is an attemnt to nroduce a mathematical
representation of the notion of locality and a number of
interesting results have been derived from it. Hhowever,
we have found that in examining core allocation algorithms
we do not require to discuss locality of reference as
formally as . the working set model allows. We have found
the concept of parachor easier to deal with and sufficient

for our needs.

Somewhat confusingly parachor is but one of the several
meanings which has been associated with the term working
set. It is important to recognise that these meanings
relate to distinct concepts. Denning's definition of
working set implies observing the localitv of reference
during intervals . of.equal duration. The working sets are
thus the observed localities during these intervals. The
parachor is the number of vages of core required by the
process in order for it to run without undue interuntion

by page faults. Thus it is a rather less nrecise quantity
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than that of Denning. We observe that the marachor is in
effect an average of the sizes of the localities of
reference through which the process progresses, where
each size is weighted by the number of page faults
occurring while the program is in that locality of

reference.

The term working set has also been associated with a
style of organising core allocation. We shall discuss

this in 4. 3.



3.2

The Phenomenon of Thrashing

The high expectations of demand paging systems were
rudely dashed by the appearance of the vhenomenon of
thrashing. Thrashing is recognised through its symotoms,
namely poor CPU utilisation, high rmage traffic be‘ween
core and backing store and degraded resvmonse. So
deleterious is the effect of thrashing upon the
efficiency of an operating system that the utility

of paging systems has been seriously questioned. (E.qg.

Fine et al, 1966; Varian and Coffman, 1967).

Denning (1968a) traces . the cause of thrashing to the
relatively long time needed to transfer a required but
absent page from backing store to core. Core may be
required to fetch an absent page. It will be obtained
by retiring a page which is resident in core onto backing
store. However, the retired page may have been an active
page of the process requesting the absent page or of some
other nrocess, so resulting in a nossible chain reaction
of page renlacements. This chain reaction can occur
more rapidly than a nage can be transferred from backing
store. Thus further active pages of a nrocess can be
removed from core before the absent .page is available

and so thrashing is observed.

We see then that the problem of allocating core so as to

avoid thrashing is first one of ensuring that each process
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which is allowed to obtain core has sufficient core

to accommodate the pages in its current locality of
reference. We must then ensure that these pages of
core are occupied by the pages of the current
localities of reference of the processes. The latter
is not a difficult nroblem. In avoiding thrashina it
is the manner in which the core is nartitioned amongst

the processes which is of immortance.

Core may be shared amongst the processes commeting for

it in a number of ways. These may be characterised

by what proportion of its current locality each process
has resident in core. It has been demonstrated that a
process requires a certain set of pages (which
unfortunately is in general not nredictable) to be

in core in order that it may nrogress during some interval
without undue interruption caused by the need to obtain

further information from backing store.

The ideal martitioning of core is that in which all
processes allowed to compete for core have all of their
current localities in core. 1In this situation each oprocess
will progress at a favourable rate when it obtains the CPU.
The CPU utilisation will be comprised of mainly user
initiated activity with little overhead caused by page
faults. In addition page traffic will be low. It should

be noted that we wish to utilise core with the current
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localities of as many processes as possible. The larger
the number of nrocesses available.for dispatching the
greater is the likelihood that there will be a orocess
able to use the CPU when other processes are waiting for
completion of I/0 operations. CPU utilisation is thus

improved.

The other general situation is that in which not all
processes, and possibly none, have their current localities
in core. Here if uncontrolled contention for system
resources is allowed then.thrashing is sure to occur. If
processes compbete on an equal basis then fair sharing will

result in no process obtaining sufficient core.

It is possible to construct special. cases of the over-
partitioned state which are not unfavourable. Consider the
case in which a priority ordering exists for usage of the
CPU. Suppose the highest pnriority processes have their
current localities in core and are sufficiently active to
cause high utilisation of the CPU. The lower oriority
processes seldom obtain the CPU and so cause little naging.
Thus although core may be said to be overpartitioned,
thrashing might not be observed. However, if no further
control is imposed this special situation is unstable
because during their infrequent veriods of CPU utilisation
the lower priority processes will cause the higher priority

processes to lose parts of their current localities from
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core. This will in turn affect the CPU utilisation
of the higher priority processes, allowing the lower
ones more frequent periods of.CPU usage. The core.
allocations of the higher nriority processes will be

eroded and thrashing will eventually occur.

Due to the unpredictability .of current locality and

our desire to optimise the underpartitioned state, our
attempts at optimisation could cause .overmartitioning
to occur. In the overpartitioned state we require that
some of the processes have the whole of their current
localities in core and that the .progress of these
processes is not adversely affected by contention for
core with the remaining processes. . For this reason it
is necessary that overpartioning is rigidly controlled.
Thus we require to design . control.systems which will
ensure that core is underpartitioned or is overmartitioned

in a controlled manner.



3.3

Structuring the Core Allocation Algorithm

The existence of the kind of process behaviour we have
described leads to the develomnment of nage remlacement
strategies which will 'learn' the localitv of reference
of a process and ensure that this set of pages rerains
core-resident. Belady (1966) concluded as a result of
studies of single processes . that the ideal algorithm
should include some accumulation of data on the vast
references of the process. In other words that one
should use some form of feedback in the core allocation

policy.

The most basic attemnts to.apply feedback control to
core allocation occur as apnlications of process
behaviour studies which involved single processes.
Belady analysed a number of strategies which use the
setting of certain bits associated with each nage of

the process to provide feedback. The relative merits of
the strategies were discussed and certain .nolicies were
shown to be very effective. However, the generalisation
of these strategies applied globally over a set of
processes have not had the hoped for success. Thrashing
has been a common feature of operating systems employing

such strategies.

The problem is that these globally anplied algorithms

take no account of the ownership of any page. Thus when

_49_



core is overpartitioned pages mavy be revlaced
indiscriminately from those processes which do and
those which do not have their current localities in
core. Essentially the amount of core which any obrocess
may obtain is demendent upmon the memory demand
characteristics of the other processes comweting for
core. Thus it is not nossible to guarantee that anv
process will be able to retain its current locality in
core. Such an algorithm must admit the possibility of

thrashing which once it occurs is a nersistent effect.

Allowing the amount of core storage which a bprocess may
obtain to be governed by the memory demands of other
processes in an uncontrolded manner is therefore not a
sound principle. The page fault rate of a process should
be bounded by a function of its own demand for core and
should not be unboundedly inflated by nage remlacements
caused by other processes. Otherwise the possibility of
thrashing occurs. This implies that the measure of core
demand should devend.only upon the nroverties of the
process. Therefore there is a case for structuring the
core allocation strategy so as to minimise the interaction

between the core demands of individual nrocesses.

In a demand paging operating system the basic allocation
problem is the choice of which page to retire. If a page

which does not belong to a current locality is removed
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then a good choice has been made. The difficulty with
page replacement is that the fact that a nage is no
longer needed is signalled by a non-event. After some
point in time the page will cease to be referenced. for

a period which is long when compared to the times between
references to pages.being currently used by the process.
In contrast a pnage fetch is triggered bv a demand from

the process.

The problem of deciding which pages of a nrocess may be
chosen for replacement has been widely studied. The work

of Belady (1966) points to a number of suitable strategies.
We could apply any of these strategies to a single process
chosen by a control at a higher level of the core allocation
algorithm. It is the problem of this level of the allocation
algorithm to minimise. the interaction of conflicting demands
and ensure that core is partitioned in a controlled and

effective manner.

The core allocation algorithm might therefore be structured

as a two-level hierarchy. The nrincipal algorithm selects

on the basis of core partitioning a orocess from which a

page is to be deleted. The subordinate algorithm selects

a particular page for replacement from amongst the pages of
the chosen process. Such a structuring allows thre relatively
well understood problem of mage replacement to be disentangled

from the problem of controlling core partitioning to orevent
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thrashing. That is we separate the problems of allocating
sufficient core for the current locality from those of
ensuring that the pages of the current locality occuoy

the allocated pages.

In our studies we have tended to disregard the vage
replacement algorithm, assuming that a suitable candidate
exists, and have concentrated unon develovning the wnartitioning
algorithm. We justify this by observing that Belady's studies
show that the performance of good and bad replacement policies
may differ by a factor . of two. The performance of a system

may well be degraded one thousand times by thrashing!
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Difficulties of Designing Feedback Control Systems

The design of effective.core allocation strategies which
employ feedback control is not a simple matter. The
synthesis of a feedback control system is an exercise

for which there are few theoretical aids. Having completed
a design adequate methods, both mathematical and simulation
(if the problem proves mathematically intractable) are
available to assess stability and effectiveness. In
contrast, the synthesis is vnrimarily a matter of engineering
judgement. Although various criteria have been a:ivanced
(Grabbe et al, 1958; Goode and Machol, 1957), the complex
and diverse factors which influence design are not amenable

to simple mathematical repmresentation.

Since judgement is a product of experience the course taken

in this thesis was to design various core allocation
algorithms, predict their performance and then use simulation
to confirm or disprove our assertions. To this end a
simulation model was constructed. This model is outlined
sufficiently in the following sections to allow interpretation

of the results produced.



3.5

Introduction to the System Simulator

Design Objectives of the Simulator

The primary r=quirement of the simulator was that it
should be capable of displaying contention for core

among a number of simulated processes under a variety

of core allocation and scheduling nolicies. We furtheoer
required that the level to which any element of the
system was simulated could be varied. This was to allow
detail to be added at any noint at which it was found
necessary or useful. This led to a highly modular design
where the various modules renresenting the algorithms and
hardware interfaced simply with the basic timing loop of

the simulator.

The second major consideration was the need to minimise
the execution time required since we wished to perform
large numbers of simulations. The basic timing looo of
the simulator is therefore event driven. It recognises
two basic event tyves. These events are the 'internal
interrupt', indicating that a nrocess is requesting
service (other than CPU), and the 'external interruot'’
signalling completion of the requested service. End-of-

time-slice is also imnlemented in the basic timing cvcle.

To further minimise execution time it was decided to

simulate the characteristics of the nrocesses rather
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than to employ the more realistic but more exvensive
traces of real process (e.g. Conti et al, 1968). The
notion of generating process characteristics is
extended to the simulation of paging behaviour. Here
CPU time used between demands for pages is also

modelled by the use of a probability distribution.

Since the simulator was required to allow comparison of
behaviour of the system under different omerating
conditions and resource allocation algorithms,
repeatability of the simulated processes was of
importance. Much effort was put into ensuring that
process generation was reneatable and that each process
behaved remeatably in its demands for I/O and CPU
service. This was achieved by supplvying each nrocess
with its own seeds for the random number generators.
Thus a process always generates the same sequence of

service requests.

Experiments with the simulator were aimed at giving
qﬁalitative insight into the overation of the algorithms
used. Therefore precision in the modelling of hardware
was not of great concern. The I/O devices were simulated
only to the level of a probability distribution of time
taken to complete a requested overation. The distribution
used was the negative exnonential cut off at five standard

deviations above the mean, (as in all cases in which we
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employed exnonential distributions), with a mean of 30
milliseconds. The individual nages of core were not
modelled. However, the paging drum, which has a
profound effect upon the working of a vaging system,
was carefully modelled. This model included sector

queuing and carefully accounted for latency considerations.



3.

5.2

The Simulated System

The system that has been simulated consists of a central
processor, core storage and a paging drum. Each process
is modelled as an alternating sequence of intervals of
CPU usage punctuated by page faults and waiting for I/0.
In our model we regard paging to be concerned with the
drum and waiting to be concerned with disc I/O0. We do
not model contention for I/O devices nor do we reauire
that any pages of a process be regarded as I/0 buffers

which are required to be in core during I/0 activitv.

The simulation allows various drum organisations to be
modelled. The scheme employed in the simulations which
we shall describe is a sector—-queued organisation with
priority ordering of the sector queues. We simulate the
drum as being able to revolve every 17.5 milliseconds and
capable of holding 4.5 pages ner .nhysical track. With
each physical track divided into nine sectors it 1is
possible to arrange that one page may be read in 2/9 of

a 'physical' drum revolution (1/9 of a 'logical' drum
revolution). This scheme is used in the Michigan Terminal
System (MTS) at the University of Newcastle-unon-Tyne

where an IBM 2301 drum is used.

A queue of requests is maintained for each sector. The

maintenance of these queues is idealised in our model.
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We assume the supervisor to be capable of maintaining the
queues instantaneously. Thus reordering of a sector gqueue
may take place up to the instant at which the drum read

is to be performed for that sector. That is to say the
time to set up channel programs for. the drum is not
modelled. We make the further assummtion that the system
is aware of the completion of the page transfer from the
instant at which the transfer.is. completed ovhysicaliy. In
a real system this 'vnosting' might not occur until the end
of the logical drum revolution, or some other convenient

time.

The sector queue which a particular nage request will
join is selected randomly with each sector queue having

an equal probability of being chosen.



3.5.3

The Process Model

Each simulation experiment can involve one or more
different classes of process. Each process is
represented by a process profile indicating the

size of the parachor and the amount of CPU and I1/0
time required. The varameters of individual
processes are obtained by using the parameters

of the profiles as the mean values of aonronriate
probability distributions. The size of the varachor,
PCS, is sampled from the uniform.distribution

U(X - %X, X + %X), where X is the nrofile's mnarachor
size. The amounts of CPU time, CPUTIME, and I/0 time

required are selected in a similar manner.

Initially one process corresponding to each profile is
activated. The processes of each profile have a
regeneration period specified. A process corresponding

to each profile will be entered into the mix at an

interval after the nrevious process from the profile

was generated. The interval is sampled from the uniform
distribution U(X - %X, X + %X), where X is the regeneration
period for the profile. Regeneration continues until

a preset number of processes have been generated.

The choice of the number of processes to be generated

governs the simulation time, the simulation being completed

_59_



when the last process comnletes.. We have set this
parameter at 50 nrocesses. This.choice counled
with the process profiles described in 3.5.6

gives a simulated time of between. 500 and 1200
seconds depending upon the resource.allocation

algorithms being simulated.



3.5.4

The Pafging Model

Most paging simulators keep.track of each individual
page. They are either.capable.of actually executing
programs or are driven by . address. traces previously
gathered from the execution.of programs. Such
simulators are extremely . laborious even for modelling
the behaviour of a single process. .Our model keeps
track only of the number.of pages which each process
has core-resident and uses appropriate probability

distributions to simulate the status of those vnages.

The drawback of this method is that it is very difficult
to produce an adequate model.of an algorithm which uses
the properties of individual.pages. The extent of the
difficulty may be judged from the simulation of the LRU

derivative described in 4.4.

The amount of processing which a process will achieve
before it suffers a page fault is calculated from a
probability function which has as parameters the number
of pages of the process currently in core and the

parachor of that process.

The form of the probability distribution of the time to
next page fault is based on published data, most notably

that gathered on the M44/44X system, (Brawn and Gustavson,
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1968). It attempts to model two distinct aspects of
the behaviour of processes running in a naging
environment. The first of these concerns the
relationship that has been observed to hold between
page fault rate and the amount of core that a process
is allowed to use. The second aspect of process
behaviour that is modelled is the gradual 'drift' of

membership of the current locality.

The observed relationship between page fault and
available core has been modelled in a perhaps over-
simplified fashion by taking the probability that a
given instruction causes a page fault to be

RCP
2 -16  $cs

where RCP is the number of pages which the nrocess

has in core, and PCS is the parachor of the process.
Even more arbitrarily we have assumed that the gradual
drift of locality is steady and involves the process
completely changing its current locality of reference
three times during the course of its execution. The

appropriate probability is

3*PCS
CPUTIME* 1000

where CPUTIME is the total CPU time, in milliseconds,

required by the process. The factor 1000 converts this

to instructions.



From the combination of these two factors we obtain that
the expected length of processing time that a process

will achieve before page fault is given by

1-k . ]
*1000 milliseconds

i

m =

where

RCP
) 16 5¢s . 3*PCS
CPUTIME* 1000
k =
1 + 3*PCS
CPUTIME* 1000

is the per instruction probability of a page fault being
caused by a given instruction. We use m as the mean of

a negative exponential distribution. This probability
distribution was chosen. for its 'lack of memory' property,
which allows us to recompute the time to next page fault
each pass through the basic timing loop. PCS and CPUTIME

have the values described in 3.5.3.

It may be argued that the parameters of our waging function
are difficult to justify. We accent this but we feel that
there is no need to attempt to refine the function. We
have simulated our algorithms using two further paging
functions which are described in section 5.7. We see

from comparisons of the simulations with these three
functions, figure 5.18, that although the results differ

quantitatively, the same qualitative behaviour is observed
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for the algorithms studied. Since our interest is in
the behaviour of the algorithms, this insensitivity
to the exact form of the paging function diminishes
the importance of providing a truely realistic vpaging

function.



3.5.5

Simulator Outnut

Output from the simulator is in three forms. These are
summaries of CPU and I/O usage and average queue lengths,
the 'core map', and log information at the start and end

of each process.

From the summaries over specified intervals and the

whole simulation we can observe the gross effects cf
varying the parameters of the system. An example of a
summary is shown in figure 3.1. Typically we plot this
information giving graphs such as CPU utilisation against
core size. An example is given in figure 3.2. These
graphs have proved useful in indicating the susceptibility

or otherwise, of an algorithm to thrashing.

The core map is an aid to insight into the detailed
behaviour of the various algorithms simulated. An example
is shown in figure 3.3. The core map gives a pictorial
representation of the way in which the core is partitioned
amonst the processes in the mix. A similar device was
employed by Belady when working on the IBM M44/44X at the
IBM T J Watson Research Centre, Yorktown Heights, New York.
Each character of the core map represents a page of core,
the code being the process number modulo ten. Thus 5
represents a page belonging to the 5th, 15th, 25th, etc.,

process introduced into the mix.
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Since codes are laid out according to the numerical
order of the processes we can readily deduce from the.
other contextual information provided by the simulator
the ownership of any page. Each page of core is
represented by the code of the process occuoying it,

or by an '*' if it is unoccupied, or by an 'L' if it

is a page into which a read-in from drum is taking place.
(Such a page is not credited to a process until the

read has been completed since the page must not be
available for replacement until the read-in is complete.

'L' represents 'locked in core').

The contents of core may be displayed at any preset
interval. A trace showing core contents every simulated
second has been found adequate. Such core mans have been
our major tool in confirming our predictions or under-
standing the behaviour of the core allocation algorithms.
They have led on several occasions to the development of

new algorithms.

The process log information provides a valuable complement
to the core map. It aids the identification of the

codes in the map. It also records the parameters. of

the processes. In addition it is useful when examining
the service provided to the various classes.of process.

The ratio of the time a process spends in the system to
its CPU usage is of importance here. This 'stretch factor'
is a useful guide to the ability of the system to provide
effective service. An extract from a process log is given

in figure 3.4.
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3.5.6

The Simulated Mix

The simulation model described above has been used to

conduct a series of experiments determining the behaviour

of various resource allocation strategies. The workload

simulated in the majority of these experiments was an

attempt to model a mix representative of that occuring

on MTS at Newcastle. The model workload is comvosed of

three components each with their own nrofile.

a)

b)

c)

Small processes with a parachor of 5-15 pages and
of the order of 1 second of CPU time and 3 se<cnds
of I/0 time. These were intended to represent
interactive work such as editing. This type of
work was estimated to demand 10% of the available

CPU time.

Medium processes with a parachor of 15-45 pages

and of the order of 20 seconds CPU time and 20
seconds I/0 time. These were intended to represent
the compilations and runs of simple nrograms which
are the bulk of the work presented to MTS. These
were estimated to demand 40% of the available CPU

time.

Large processes requiring 25-75 pages and of the
order of 100 seconds of CPU time and 33 seconds of
I/O time. These were intended to renresent the

CPU bound component of the workload which accrues
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from the research work of the university. These
were estimated to demand 25% of available CPU

time.

No attempt was made to model really large brocesses
since these were unlikely to be run during a normal MTS

session.

Overall the simulated mix demands 75% of CPU time. This
was arranged by careful choice of the regeneration neriod

for each profile. 1In our simulations using this 'standard
mix' the maximum CPU utilisation obtained even when there
is no contention for core has been 70%. This can be

shown to be the maximum obtainable by considering the
number of pages . which each process will demand due to
initially loading and because of change of locality which
is modelled in the page fault probability function. This
number of page faults is independent of the number of pages
of core available. The idle time involved in accessing

these pages depresses the maximum obtainable CPU

utilisation from 75% to 70%.

We now have reason to believe that this 'standard workload'
is more severe than the actual MTS mix. However this
severity has been useful because the simulator has shown
us how the various core allocation algorithms have reacted

to the wide variety of circumstances which this load causes.
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Since our interest has been in the qualitative analysis
of resource allocation algorithms we have not attemoted
to improve the agreement of the actual and modelled
workloads. In fact where we have wished to illustrate
a particular feature of some algorithm we have employed
very unrealistic workloads consisting entirely of

identical processes.



3.5.7 Performance against Design Objectives

The modular structure of the simulator has nroved very
successful in allowing the modelling of various algorithms.
The inclusion of new algorithms nroved to be a simnle
matter. The structure was also useful in the initial
implementation of the simulator. The first simple
implementation provided results from which we could

deduce the necessity for more precision in certain areas

such as the drum model. This precision was easily added.

The event driven structure counled with the specification
of process characteristics and naging behaviour by
probability distributions proved to be a most convenient
level of simulation. It was vossible to carry out many
simulations inexpensively. Typically we were able to
simulate 1000 seconds of operation in 200 seconds of CPU
time on the IBM 360/67. In simulations involving traces
of processes the CPU time used can greatly exceed the
simulated CPU time. We also lost little scove in the type
of algorithms that could be modelled and we were able to

exhibit contention for core.

With regard to obtaining accuracy in the results, well
tested random number generators were used. These were the
IBM GPSS package random number generator, used to generate

the process characteristics and seeds, and a multiplicative
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generator (Marsaglia and Bray, 1968) used to generate the

various times betWween events.

Taking all of those simulated CPU utilisations for
Multiprogramming Limit equal to one and core size of 70
pages, where the core allocation algorithm would
theoretically give the same CPU utilisation as uni-
programming (twelve values), the Student t-distribution
gives a deviation of approximately 0.2% at the 99.9%
confidence level. Taking all of those simulated CPU
utilisations for 'free' Multiprogramming Limit and 70
pages of core, where the core allocation algorithm would
theoreticallyv give the maximum obtainable CPU utilisation
(eighteen values), the Student t-distribution gives a
deviation of 0.1% at the 99.9% confidence level. Thus
our comparisons of the core allocation algorithms using

the simulator may reasonably be made.



CHAPTER 4

Previous Apwlications of Feedback to Core Allocation

Introduction

In this chapter we analyse four applications of feedback
control to core allocation, using the system simulator
described in 3.5 which preceded our own work. They are
Wharton's algorithm (Wharton, 1971), Denning's algorithm
(Denning, 1968b) a 'global' algorithm and the Load-leveller
(Shils, 1968). They are remresentative of immortant
classes of core allocation algorithms employing feedback
control. Each of them provides insights into the nroblem
of thrashing and ways of overcoming thrashing. These
algorithms and their analyses provide the basis of our

own work.

Wharton's algorithm employs inherent feedback control.
The measurement of current localities of reference is
implicit in the allocation strategy. As we shall see
the control is stable . even though the measurement of

current locality is crude.

Denning's algorithm explicitly attempts to observe the
current locality of each process and base allocation on
these observations. The algorithm is interesting in

that it uses model-driven feedback control.
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Both Wharton's and Denning's algorithms have a
hierarchy of. control as we discussed in 3.3. The
control is divided into a nolicy to select a process
to lose a page and a subordinate pbolicy to select a
particular page from that process. The algorithms
described in fact form the process selection part of
the control. They may have any page renlacement
algorithm which is local to each process incormorated

into them.

The Global algorithm is of interest because there is

no separation of control as discussed above. Thrashing
is frequently observed in systems employing these 'global'’
algorithms, so it is instructive to analyse such a

strategy in order to understand the reasons for this.

The Load-Leveller provides an outer level of control

in 'global' algorithms. This outer control is not
involved with choosing pages to be replaced. Furthermore
no modification.of the existing core allocation policy

is required to implement this extra level of control.
This is an interesting approach which deserves

consideration.



4.2

Wharton's Algorithm

This strategy was provnosed by R M Wharton (1971) as an
extension of the work of Belady and Kuehner (1969) on
biased page replacement algorithms. The algorithm is

as follows.

On occurence of. a vage fault any free nage frame is
allocated if there is such a nage frame. When all free
core has been allocated the lowest priority process

which has pages in core and which is of priority less
than or equal to the nrocess causing the nage fault

is chosen to have a nage remlaced. The priority order

is fixed externally to the core allocation algorithm. If
no such nrocess exists then the page request is denied
and the requesting process cannot proceed until a higher

priority process frees core.

This latter situation may arise if one assumes that all

pages are loaded on demand. A process which has no pages
in core may be dispatched but will page fault immediately.
Such a process may then be unable to make a page

renlacement because of its vnriority and so be suspended.

The nhilosoohy behind Wharton's algorithm is to give the
ton priority process the service it would obtain if it
were running by itself in the svstem. Further obrocesses

are then dispatched as background work utilising any
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core not required by the highest nriority nrocess. The
scheme is a logical extranolation of Belady and Kuehner
biased replacement.strategy where over some veriod one
process is treated nreferentially in the allocation of
core, the others being treated equally. (Belady and
Kuehner, 1969). Here that system of preferences :s
visualised as being extended to all processes wit- the

bias referring to CPU as well as core allocation.

By this scheme the worst utilisation that will occur is

the utilisation obtained by running the orocesses serially
through the system.. We acknowledge that if we were in

fact nroducing a uni-nrogramming system we would introduce
ontimisations and also that we are ignoring the interference
caused by the sunervisor dealing with the interrupts of
lower wriority processes. However, these should not cause
large discrepancies and the observation is true to the

precision of our simulation model.

The control uoon the level of multiprogramming is obtained
by the allocation.of core. If a process has

no core then it.cannot.affect the effective level of
multiprogramming of. the system. Since a process may only
obtain more core by revlacing pages of equal or lower
oriority the lowest.nriority mrocesses may only obtain
free pages of core.. Also as the processes of higher

priority acquire more pages the lower nriority processes
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will be deleted from.core. This is because their vages
will be revlaced by those of higher nriority processes.
They will be unable to obtain core and so will be
suspended until.a process of higher nriority frees

some core.

We can observe the manner in which this occurs bv
studying the core map.in figqure 4.1. The core ma is
that for a simulation of Wharton's algorithm when all
processes in the mix are identical, each having a 20 nage
parachor. The priority order employed, as in all of our
simulations, wasAfirst—come—first—served. A core sirze
of 80 pages was.used. .We see that after time 2 seconds
the core allocations.of processes 1, 2 and 3 increase at
the expense of process 4 until that process is deleted
from core. Thus.the effective multiprogramming level
has been reduced.. After this time we see that the core
allocations of processes 1 and 2 increase at the exnense

of process 3.

It is interesting to examine the number of pages occupied
by processes 1, 2 and.3 at the time that process 4 is
deleted. They have 29, 26 and 25 pages respectively.
Each has in excess of. its parachor. We see that the
highest priority processes accumulate nages in core

which no longer belong.to their current localities and
unless a process becomes the lowest priority orocess
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which has core, there.is no mechanism bv which these vages
can be removed until . the process terminates. Thus, whilst
we are ensuring that contention for core does not depress
the CPU utilisation.of. those processes which have their
current localities.in . core, we may make poor use of our

limiting resource.

The feedback control in this strategy is inherent ir

the strategy itself.. It is essentially a positive rfeedback
effect which will tend to decrease the multibprogramming
level by deleting lower priority nrocesses from cc e to
meet the demands of higher nriority nrocess. As we have
seen this may cause.the core to be underutilised in the
sense that pages which no longer belong to the current
localities of the high nriority processes can remain in

COre.

Let us now consider the graoh of CPU utilisation against
Multiprogramming Limit for the same simulated system and
workload as above, figure 4.2. (The Multiprogramming Limit
is highest number of processes which will be allowed by the
simulator to compete.for system resources. It may be that
a particular scheduler or core . allocation algorithm will
establish its own effective level of multipnrogramming.
However, the Multiprogramming Limit which is an initial
parameter for each simulation will never be exceeded). We

see that as Multiprogramming Limit increases from 1, CpPU
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utilisation increases to some maximum which it then
maintains with only slight variations. The interpretation
of this behaviour is that for a given workload Wharton's
algorithm implicitly sets a level of which it will multi-
program. When the preset limit, Multiprogrgmming Limit, is
less than the level.at which the algorithm is capahle of
working the CPU utilisation will be below the maxinum
attainable. As the nreset limit increases the CPU
utilisation improves.to.the maximum. Subsequent increases
in Multiprogramming Limit have no effect since further

processes will be prevented from obtaining core.

The Multiprogramming Limit marked as FREE in figure 4.2.
represents a setting in excess of the number of nrocesses

to be simulated. Thus the effective level of multiprogramming
observed will be that determined by the simulated system.

The results labelled SINGLE-PROGRAMMED are the utilisations
obtained by running.the processes serially through the system
and may be used as a basis for comnarison of the various

algorithms we shall simulate.

Simulation results for Wharton's algorithm where the
standard workload was used are given in figure 4.3, CPU
utilisation.against.core size, and 4.4, CPU utilisation
against Multiprogramming Limit. In figure 4.3 the core
size of 5000 pages may be thought of as an 'infinite' core,
since with the standard workload no page revlacements are

required with this amount of core available. This core
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size allows the maximum CPU utilisation obtainable for
the load presented.to . be established since there is no
delay caused by contention for core. These figures

show the same behaviour as described above.

We see then that Wharton's algorithm guarantees that
thrashing cannot occur and therefore gives a firm basis
upon which to design further core allocation volicies.
However, Wharton's algorithm makes poor utilisation of
core and we would hope to improve substantially unon its

performance.



Denning's Algorithm

A basis for a promising group of strategies is the
Working Set model. of process behaviour (Denning, 1968b).
The working set of a. process at time t is the set of
pages which the process accesses during the interval
(t-T,t), where T is a fixed time interval. Denning nas
claimed the working set to be a good estimator of the

set of pages which a process will access during the
interval (t,t+T).  Denning proposed the following strategy

based upon the Working Set model.

The working set size of each process - the number of nages
in the working set - is estimated in the manner described
below. Processes are allowed to compete for core on the
basis of the sum.of their estimated working set sizes.

A set of nrocesses . is chosen by some means such that the
sum of their estimated working set sizes does not exceed

the size of core.

When a page fault occurs core is allocated for the required
page provided the estimated working set size of the
requesting process exceeds the number of pages which the
process has in core. When these two gquantities are equal,
core is allocated and.the estimator increased. by 1. (It

is originally set.to.l).  However, this will only occur

if the new sum of the estimators does not exceed core.

If the latter does occur the nrocess of lowest priority
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is removed from core, its estimator being set equal to
the number of pages it had.in core at that time.
Allocation continues.on the basis of the reduced set

of processes.

Further processes may be added to the set competing
for core provided the sum of estimated working set

sizes does not exceed core.

Denning's algorithm is a model driven feedback control
system. A model - the Working Set model - is assumed

for the behaviour of each process. The parameters of

the model are the working set sizes. These are estimated
from measurements of the paging activity. (We may think
of observing the occurrence of mage faults as measuring).
The model of the controlled system is a 'core' into which
'processes' whose memory requirements are assumed equal
to their estimated working set sizes, may be inserted.
Decisions upon the controls to be aonlied to the actual
controlled system. are.based upon whether the pronosed
action if applied to the model would cause the modelled

core to be overpartitioned.

The controlled variable of this feedback control is the
estimated sum of working set sizes. The command value of
this variable is implicitly set to the size of available

core. This denotes that ideally we would wish to utilise
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the whole of core. .The.further requirement is made that
the command value. should never be exceeded. This expresses
the wish that core should never be overpartitioned.
However, it is difficult to ensure that the sum of the
working set sizes is less than the core size. Therefore,
the weaker condition involving the sum of the estimated
working set sizes is used. If the estimates are good this

will ensure that overpartitioning of core will be rare.

In order to define a steady state condition free core is
allocated on a strict priority basis. Core is allocated,
starting with the highest priority process, until the next
process in priority order has an estimated working set size
in excess of free core. Allocation is not made to this
process and no attempt is made to allocate to lower oriority
processes. By choosing this first fit policy the possibly
endless disturbances involved in a best fit policy, intended
to utilise as much core as . possible, are avoided. It also
prevents processes with. large working sets from being

deferred indefinitely.

The success of a model. driven feedback control system
depends upon the accuracy of the model and its parameters.
Unfortunately, the parameter estimation of Denning's
algorithm is not.very.effective, although the basic
strategy will most.frequently err by overestimating

working set size. However, it can underestimate by the
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policy of setting the . estimate equal to the number of vages
which the process has in core at the time it is suspended

by the system.. Such.a value is dependent upon the memory

demands of other processes.

Let us now consider the simulation results for the Denning
algorithm using the standard workload. In figure 4.5 we
present a graph of CPU utilisation against Multinrogramming
Limit for a fixed core size of 70 pages. We see from this
graph that Denning's algorithm has the very desirable property
that its performance improves monotonically with Multiprogramming
Limit. This confirms that it is effective in limiting the
effective multiprogramming level of the system so as to avoid
the occurence of . thrashing. As with Wharton's algorithm this
strategy sets a level at which it will multiprogram. Increases
of Multiprogramming Limit in excess of this have no effect

upon CPU utilisation.

A strategy very similar to that of Denning has been implemented
in the ESOPE operating system. (BEtourné et al, 1971). The
algorithm is a generalisation of Denning's in that the
estimated working set size is incremented by n pages rather
than one. The estimate.is formed in the same way as in
Denning's strategy, differing only in that it resets the
estimate to the number of pages which the process has in

core at the end.of each time slice and does not reset the

estimate when a process is suspended. This avoids the
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dependence of the estimate upon the memory demands of
other processes .which occurs in the Denning algorithm.
Because of this the ESOPE algorithm nrobablv produces
a better estimate.than the Denning algorithm. The
ESOPE algorithm.was.simulated but due to the use of

a different scheduler, used at the request of the
ESOPE system designers,.the commarison with the

results for Denning's algorithm was inconclusive.



.4.1

The Global Algorithm

Description of the Algorithm

In section 3.3 we discussed the global application of
algorithms derived from the study of the paging behaviour
of single processes. Such algorithms have achieved
popularity, in particular the Least Recently Used (LRU)
alggrithm (Belady, 1966). However they are susceptible
to thrashing. It is instructive to analyse such a

strategy to understand the reasons for this.

Ideally we would study the LRU algorithm. However since
our simulation model takes no account of individual pages
this is not possible. We have therefore derived a global
algorithm taking the LRU algorithm as our starting point
so as to retain the structure though not necessarily the

properties of that algorithm.

The LRU page replacement policy is stated simply as
replacing, at the time a page replacement is required,
that page from amongst those in core which was referenced

least recently.

The popularity of this algorithm may be because intuitively

one would expect that the probability of reference to the
least recently used page in the near future is lower than
that of pages more recently accessed. Consequently it is

_94_



more likely that this page does not belong to the
current locality of any process. Therefore the page
is a good candidate for replacement. In accordance
with this the LRU policy is shown to be very effective
in Belady's studies based upon the traces of single

processes.

Due to uncertainty as to whether the least recently

used page 1is the best candidate for replacement, there
seems to be no great danger of loss of effectiveness in
employing an algorithm which forms an approximation as

to which page was least recently accessed. If we assume
that as on the IBM 360/67 a hardware facility is available
which sets the reference bit of a page whenever the page
is accessed (2.6) then we can implement the following

approximate LRU strategy.

The strategy is to examine the reference bits of all

pages in core after some appropriate interval, a review
interval, and to compile this information concerning the
accessing of pages in the form of reference statistics, one
for each page currently in core. The method of obtaining

a reference statistic is to interrogate the value of the
reference bit at time t+St, r(t+St), resetting it, and

produce the reference statistic

= (I-a).r(t+St) + a.R, , O0< a< 1

Ritst t

where St is the review interval. We now have an exponential
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decay of the reference information with a half life of

o where o may be thought of as a smoothing factor.

The reference statistic for each in-core page is
obtained when the reference bits are sampled at the
end of the review interval. When a page fault occurs
that page in core which has the least value of the

reference statistic is selected to be replaced.

We have in the LRU algorithm, the basic functions of
producing a reference statistic for each page ani then
making a global choice based upon these reference
statistics. The problem we have is to replace the
value of the reference bits of individual pages, a
property our simulator could not model, with a property
it could model., We must use a property of each process
since individual pages are not modelled. Thus we would
produce a reference statistic for each process and

choose globally amongst the processes.

Let us consider the algorithm using the following
reference statistic based upon the rates at which the
processes use the CPU and cause page faults. The number
of page faults caused by a process during the interval
(t,t+St), F(t,t+St), and the CPU time used, C(t,t+St),
are monitored. At the end of the interval, a usage
statistic

R(t+St) = (I-a).C(t,t+St) . F(t,t+St) + a.R(t)

St
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is defined for each process contending for core. During
the interval (t,T+St) any page replacements required are
made by replacing pages of the process with the least

valued usage statistic.

If we denote the amount of CPU time which a process
obtains by the term 'local time', then the local time of

a process represents the passage of time from the point of
view of the process. A high page fault rate in local time
implies that a process does not have its current locality
of reference entirely core-resident. Also we note that
the rate at which a process references its pages .¢
dependent upon the rate at which its local time progresses
relative to the real time of the CPU. A process which
obtains little central processor time is as likely to
have pages unreferenced for long periods as a process
which obtains a great deal of CPU and page faults rarely
suggesting that it has at least its current locality in
core. The term

C(t,t+St) . F(t,t+5t)
St

is an attempt to express these ideas mathematically.

This algorithm attempts to order the processes contending
for core such that the more likely a process is to have
pages which have been unreferenced for long periods, the

more likely the pages of that process are to be replaced.
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The algorithm described above we shall call the Global
algorithm. As with the LRU algorithm it makes global
decisions about which process shall have a page
replaced. However, we do not claim that it has the

properties of the LRU algorithm.



.4.

Mathematical Analysis

To model the Global algorithm mathematically let us
suppose that there are M pages of core available and
that we are multiprogramming two processes, a and b,
with parachors da and db respectively. We will assume
that a page fault is serviced in S milliseconds and

that this service time is constant.

We further assume that the probability of a process
causing a page fault at each instruction execution

is p(r) = 2 ** (-1l6r/d) where d is the parachor and

r is the number of pages of core which the process is
occupying immediately prior to the instruction execution.
This is similar to the probability function used in the
simulator. Thus the expected CPU time used before the

process causes a page fault is

m(r) = 1 - p(r) X 1 milliseconds
p(r) 1000
where we assume a CPU capable of executing one million

instructions per second. m(r) takes this form since if

a page fault occurs at the k-th instruction execution

only k-1 time units have elapsed since the last page fault.

The usage statistic for process X, Rx(ti)’ is updated at
times ti where t, = to + i,St. The process with the

lowest value of the usage statistic after time ty is that
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from which page replacements are to be made cduring the

) -]

interval (ti’ ti+l
In order to find values for the number of page faults
caused by each process during a period of length St, we
must make two further simplifying assumptions. T.e first
is that there is no statistical variation in the time
between page faults. The second is that each procecss
obtains the CPU whenever it requires. This can only be
guaranteed by providing multiple CPU's and so we shall
assume that each process has its own CPU. The latter
assumption is not too unrealistic, for when core con:ention
occurs CPU utilisation will be low and contention for CPU

will seldom be experienced.

Suppose that process b has the lowest value of the
reference statistic at time ti’ and that process a has
pa pages at that time. Process b has pb = M - pa pages
since we are only interested in the cases in which there

is contention for memory. Then during the interval

: . will cause
(tl, t, ;) process a wi cau
fa = St page faults
pa+fa
(m(i) + S)
i=pa

'
where L_ denotes 'the greatest integer less than. To

see this consider the diagram below.
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m(pa) s m(pa+l) s S e—m(patfa+l)—
L 4 L [ 1 i

£
i B4l

If fa < pb then process b will lose fa pages during the
interval, otherwise it will lose pb pages and be deleted
from core. The number of page faults caused by process b

is rather more complicated since the amount of core occupied

by it is dependent upon the activity of process a.

At the end of the interval marked as m(pa) in the diagram
process b will have lost a page and will have oni pb-1 pages.
Its page fault characteristics will change therefore. Thus
the number of page faults caused by process b is given by
repeating a calculation similar to that for program a with
St replaced successively by the values m(pa) + S, ...,
m(pat+fa) + S. The final interval must be treated separately
. . pat+tfa
with St being replaced by St - z m(i) + S).
i=pa
When process b has i pages the appropriate term is
m(M-i) + S
m(i) + S
These terms occur because process b replaces only its own

pages. Thus,

pb pa+fa
pb! = E m(M-i) + S  + (st - , m(i) + 5)
i=pb-fa m(i) + S i=pa
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Since we have assumed multiple processors we have that

the CPU time used by process x is

St - £x.S milliseconds.

Thus by a number of simplifying assumptions we are able

to calculate the usage statistics.

Although we have achieved a mathematical model cf tiis
algorithm it has required many unrealistic simplifying
assumptions about the system. Many features which will
be of importance in a practical situation have had to be
excluded from the model in the interests of mathematical
tractability. In order that we may study features which
are not amenable to mathematical analysis we have also

simulated the algorithm.
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4.

4.3

Discussions of Mathematical and Simulation Results

As we discussed in section 3.3 a global algorithm

essentially allows all processes to compete for core
on an equal basis. This strategy should lead to an
equal sharing of core in some sense. Therefore, we
would expect that thrashing would occur in a system

using the algorithm,

The feedback component of the algorithm is in the form
of a superimposed monitor which provides informzuion on
the past access characteristics of each in-core rage.
The access characteristics are quantified by a process
of discretisation as described in section 2.6. Thus
the algorithm does not conform to the structuring which

we proposed for a core allocation policy in section 3.3.

Let us first consider the results of the mathematical

model. Figure 4.6 shows the way in which core is divided

between two processes a and b with parachors da and db.
The number of pages of core occupied by process a is
plotted against time. Process b occupies the remainder
of core. The time scale is in units of St, with St
chosen to be milliseconds. The core size was 70 pages,
o = 0.1 and the time to service a page fault was 17

milliseconds.
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We can observe from these graphs that the algorithm tends
to equalise the paging rates of the two processes. Using
the page fault probability of the mathematical model, we

require for equal paging rates that

2 ** (-l6.pa/da) = 2 ** (-16.pb/db) .
That is pa _ pb
da db !
but pb = M-pa ’
so that pa = M . da e v e (1)
da+db

Given below are the values of da, db, the value of pa given
by (1), and the value of pa about which oscillations occur
in the graphs of figure 4.6. The initial value of pa in

those graphs is also given.

Parachors pa from (1) Average pa Initial
da db Equal Paging Rates |from figure 4 pa
50 50 35 35 35
60 40 42 44 35
50 30 44 44 60
50 30 44 44 10

The value of pa about which the oscillations settle is not
affected by the initial value although the settling time is.

We see also that there is a good agreement between the values
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of pa about which oscillation occurs and the values
obtained by assuming that the paging rates of the
processes are equalised. Therefore it seems likely
that the ability of processes to compete on an equal
basis will cause core to be partitioned in proportion
to parachor. Such sharing of core will of course cause

thrashing whenever core is overpartitioned.

We see from the mathematical model of the algoritnm

that there is a tendancy for the paging rates of each
process competing for core to be equalised. In figure
4.7 we present a section of the core map of a simulation
of the algorithm using the standard workload with a core

size of 70 pages and Multiprogramming Limit of 2.

From time 359 to 412 seconds the core is occupied by
process 28 with a parachor of 38 pages and process 34 with
a parachor of 44 pages. The core is overpartitioned since
the sum of the parachors is 82 pages. We observe that

the division of core oscillates about a mean of 32 pages
(from the left of the core map). This indicates that the
core is being divided in proportion to parachor, that is

that the paging rates of the processes are being equalised.

Let us now consider the core map of a simulation where
processes were introduced into the mix in a controlled
manner, figure 4.8. A core size of 70 pages initially

occupied by 2 identical processes of parachor 30 pages,
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where each required 50% CPU time and 50% I/0 time, was
simulated. At 10 second intervals further identical

processes were initiated.

We see from the core map that each process gains an
amount of core as soon as it is initiated even thcugh
the core may be heavily overpartitioned. Since the
scheduler has no load shedding or load limiting
component incorporated into it, a new process wiil
commence computation when the CPU is not fully utilised
by the already initiated process. (Note that the
Multiprogramming Limit was set to be in excess of . -e
number of processes to be introduced into the mix in
this simulation). Load shedding would occur due to
this Global strategy only if the higher priority
processes were fully utilising the CPU. (We used a
first-come-first-served priority for CPU allocation).
In such circumstances low priority processes would not
reference their pages and so those pages would be

removed from core under the algorithm.

However, if at any time the CPU became idle the scheduler
would allow one of the lower priority processes to
proceed and thus to compete for core. As competition

for core increased the likelihood of the CPU becoming
idle would increase due to replacement of pages belong:ng

to current localities of reference. Further processes
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would be allowed to compete. Thus a positive feedback
effect occurs which leads to increasing overpartitioning

of core and eventually to thrashing.

The study of this Global algorithm is instructive when
considering the design of a core allocation or screduling
policy. It suggests that the raising of the multi-
programming level to cover I/O processing is onlv
effective whilst core contention is not being expe:ienced.
It further suggests the necessity of employing some form
of load shedding dependent upon the level of contention
for core, and that it is unrealistic to base load shedding
or load increase upon CPU utilisation alone. It also
raises doubts about the wisdom of allowing processes to
compete for system resources on an equal basis. Equal
sharing as we have seen may well reach to overload
conditions. Such situations can be avoided by applying
priorities which govern the availability of each system

resource.
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The Load-Leveller

The Load-Leveller (Shils, 1968) was implemented on the
IBM M44/44X, an experimental machine built at the

T J Watson Research Centre, Yorktown Heights to assess
the feasibility of paging. The Load-Leveller was a
special process which periodically assessed the degree

of partitioning of core and dynamically adjusted the
multiprogramming level. Decisions were taken deperding
upon the values of the percentage of idle CPU and the
page fault rate during intervals of duration St. The
state of the system was defined by comparing these values
with maximum acceptable values. If idle CPU time was
less thah the maximum acceptable then the system was 'OK'.
Otherwise if the page fault rate was too high the system
was 'overloaded', if low it was 'underloaded', as shown

in figure 4.9.

If the system was overloaded at the end of an interval

then a process was suspended. That is the multiprogramming
level was lowered. If the system was underloaded or OK
then the multiprogramming level was increased. The Load-
Leveller was thus a deliberate attempt to apply feedback
control to the problem of thrashing by the dynamic

adjustment of multiprogramming level.

The strategy comprises a feedback control of the

superimposed type. Depending upon comparisons of the
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measured values of the two controlled variables, the
percentage idle CPU and the page fault rate, with their
command values, the maximum acceptable idle time and
page fault rate, the multiprogramming level was either
increased or decreased. Such actions act as stimuli
to the controlled system and subsequent measurements

inform of the success or otherwise of the actions.

Essentially with this form of the control the error
condition, unacceptable paging rate or idle time, must
persist before the need for corrective action can be
recognised. Thus the system performance may often be
unacceptable. To reduce the time during which
performance is poor it is necessary to make frequent
measurements. However, this increases the sensitivity
of the controller to random fluctuations in CPU usage

and brief intervals of high paging activity.

There may well be a tendency for overcompensation to
occur when the system is overloaded. In the period
immediately following the deletion of some process
there may still be high paging activity while the
competing processes obtain the missing pages of their
current localities which were removed as a result of
overpartitioning. This may lead to a process being
deleted unnecessarily. This tendency to overcompensate

will increase as the sampling rate is increased. However
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increasing the intervals between measurements leads to
a greater proportion of unacceptable performance. Thus
we have a classic example of the conflict between

stability, speed of response and accuracy.

The Load-Leveller is designed to modify the load on the
system when the situation has degenerated to an unacceptable
degree. This mode of operation is unlikely to provide the

best attainable performance.
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4.

6

Summarx

The core allocation algorithms we have discussed have

the use of feedback control as a common feature. However,
there is a great diversity in the success of its application
as we see from figures 4.10 and 4.11 which are graphs of

CPU against core size and CPU against Multiprogramming Limit
respectively for three of the algorithms. (The Loacd-
Leveller was not simulated because the work of Shils
provided all the necessary information). The Global
algorithm was susceptible to thrashing and the Load-lLeveller
could not prevent thrashing although it could limit the
effect. From these two algorithms we can isolate features
to avoid. Both the Denning and Wharton algorithms were
effective in avoiding thrashing. However, both of these
have shortcomings which we must overcome if we are to

produce practicable algorithms.

The Global algorithm which we simulated was inferior to
both the Denning and Wharton algorithms and was susceptible
to thrashing. We would have expected this in view of the

discussion of 3.3. The amount of core which any process

" may obtain is dependent upon the memory demands of the

other processes competing for core. We have seen that

the particular form of uependency in this algorithm leads

to 'fair sharing' of core depending upon the demands of the
processes. The slightest overloading of core will therefore
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cause thrashing. Overloading is particularly likely in
view of the load-shedding component. Load-shedding would
only occur when CPU utilisation was high. Unfortunately,
the probability of high CPU utilisation decreases as
paging activity increases. Thus it is not realistic to

base load manipulation on CPU utilisation.

We would expect to improve the performance of the Glcbal
algorithm if we could introduce a load-manipulating
component based on a more suitable property of the
processes. This is the purpose of the Load-Leveller.

This process, which can be superimposed upon core
allocation algorithms, uses CPU and paging disc utilisation
to make load manipulation decisions. Shils showed it to
be effective in limiting the incidence and duration of
thrashing. However, he also found the CPU utilisation

was frequently depressed below that of the uncontrolled
algorithm. We discussed in 4.5 that this could be due

to the insensitivity of the error measuring component

of the control. We also noted the dangers of attempting
to increase sensitivity. However, even with increased
sensitivity the Load-Leveller could not overcome the
dependency of memory allocations upon memory demands of
other programs in the Global algorithm. This requires
some priority mechanism and as we have seen from Wharton's
algorithm rather more simple and effective load

manipulation is then possible.
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Wharton's algorithm successfully avoids thrashing by
applying a strict priority ordering upon the processes
competing for core. The priority order provides a very
simple mechanism for load manipulation and also greatly
diminishes the interdependencies of the allocations of
core to the processes. Consequently, Wharton's algorithm
shows better performance than the Global algorithm.
Denning's algorithm which shows simi'lar performance %o
Wharton's algorithm, is also successful in preventing
thrashing. This is achieved by measurement of the core
requirements of each active process and ensuring that the
sum of those requirements never exceeds the availaple
core. However both of these algorithms are inadequate

in their utilisation of core. The Wharton algorithm allows
high priority processes to accumulate pages in core which
no longer belong to their current localities. Denning's
algorithm is also prone to overestimate the size of the

current locality, leading to poor utilisation of core.

From our analysis of these four algorithms we are able to
draw certain conclusions about the manner in which core
allocation may be successfully performed. Both the Denning
and Wharton algorithms show that feedback of information
concerning the memory demand of processes can be effectively
employed to avoid thrashing and so is a technique worthy

of consideration. The priority ordering of Wharton

providing a lower bound upon the size of current locality
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and the more direct measuring of Denning suggest two
possible methods of applying this feedback of information.
The Global algorithm demonstrates the dangers of
uncontrolled competition for core and the need for
effective control of the load presented to the system.

It is encouraging to note that the successful algcrithms
employ a structuring which divides page replacement from
the selection of a process from which to replace a page,
whilst the Global algorithm does not. We suggested (3.3)
that such a structuring would be a sound basis for a core

allocation algorithm.

The success of the Denning and Wharton algorithms shows
the utility of feedback control in core allocation.
However, their short-comings in the utilisation of core
suggest that they are capable of improvement, and we are
therefore encouraged to seek ways in which the technique

they use, may be further developed.
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5.

1

CHAPTER 5

Core Allocation Using Feedback Control

Introduction

The analyses of the previous chapter highlight the
importance of the control of multiprogramming level and
the estimation of current locality in core allocation.
Failure to do either of these can lead to thrashing.

The extent to which these problems are successfully
solved can considerably affect system performance.

Thus the control of multiprogramming level and the
estimation of current locality will be the main themes

of this chapter. 1In particular we will introduce the
concept of drain processes as a way of estimating current

locality.

We found the Wharton and Denning algorithms were both
effective in avoiding thrashing by the use of stable
feedback control. However, both have shortcomings in
core utilisation which need to be overcome. We will take
these two algorithms as our starting point and consider

ways of optimising their use of core.

First, we will take Wharton's algorithm as a basis and

discuss our attempts to improve core utilisation by different

priority schemes in the Horning and Randell algorithms.

These modifications maintain the inherent nature of the
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control. We will then introduce a form of drain process
where the control is superimposed upon Wharton's algorithm.
This is the Lynch algorithm. A further optimisation, the

Lynch-Alderson algorithm, will then be introduced.

Next we will discuss the application of another form of
drain process to the Denning algorithm. This will lead to

a comparison of drain processes which we have discussed.

Finally, we will discuss an algorithm due to Hoare where
settling time can be varied by the setting of a parameter.
This algorithm will be of particular interest when we
examine the importance of settling time in our control

hierarchy.
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Horning's Algorithm

We have observed in the discussion of Wharton's algorithm
that the higher priority processes retain pages which

are superfluous to their progress. This algorithm,
proposed by J J Horning, was derived from Wharton's
algorithm and attempted to include a mechanism which

would free this unproductive core.

As in Wharton's algorithm the allocation of system
resources is biased by imposing a priority ordering

upon the processes for access to both CPU and drur.

On occurrence of a page fault any free core is allocated
if it is available. When all free core has been
allocated, a process is chosen at random from amongst
those which have pages in core. The probability of a
process being chosen is proportional to the number of
in-core pages which it has. A page is replaced from
amongst the process's pages according to some appropriate

scheme.

The reasoning that led to Horning's algorithm was as
follows. If we superimpose graphs of paging drum reads
versus multiprogramming level and CPU utilisation versus
multiprogramming level we would expect to obtain a figure
similar to figure 5.1. Obviously that level of multi-

programming which gives the maximum CPU utilisation is
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the level at which we would wish to run the system.
However, this level is dependent upon the workload at
any time. We are therefore interested in a mechanism
which will vary -the effective level of multiprogramming
so that we may obtain this optimum. The form of control
will be the introduction of processes into, or the
removal of processes from core. Thus when the system
is in area A of figure 5.1 we would like there to be a
net drift of pages from high to low priority processes,
increasing the multiprogramming level, and from low to
high priority processes when in area B, decreasing the

level.

Due to the random page replacement policy the strategy

is biased towards 'stealing' pages from the processes

with the most pages, which are probably the highest
priority processes. When page demand is low, area A,

the queues for drum service will be short and high and

low priority processes will obtain essentially equal
service. A net drift of pages from high to low priority
processes will result. When page demand is high, area B,
the lower priority processes will be blocked from obtaining
drum service due to the rapid requeueing of the service
requests of the higher priority processes. The priority
ordering of the drum queues will therefore bias the gain

of pages to high priority processes. Low priority processes
will eventually be deleted from core. As paging activity

subsides the service requests of the low priority processes
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will become unblocked and these processes will once

more be able to obtain core.

Let us now consider the core map, figure 5.2, which was
obtained for Horning's algorithm with the Multiprogramming
Limit set at 10 and all processes identical, each having

a 20 page parachor, as in the simulation of Whartcn's
algorithm. We observe that, in contradiction to our

above reasoning, all of the processes quickly obtain pages
in core and no process has its parachor. Also, the

higher priority processes obtain no greater share of core
than do those of lower priority. For instance at time

6 seconds, process 1 has 6 pages whilst process 10, the
lowest priority process has 11 pages. We can explain

the failure of this algorithm as follows.

The premise upon which the algorithm is based is that when
drum queues are short the core is not overpartitioned.

This implies that the effective level of multiprogramming
may be increased. A simple example is sufficient to
display that this need not be true. Suppose that the

three highest priority processes have a combined parachor
greater than the number of pages of core, so that thrashing
would occur if avoiding action were not taken. The longest
possible queue for drum service would contain just three
elements which would be insufficient to block the service
of the third process. (Even if this were sufficient the
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request of the third process would be unblocked as soon
as the higher priority processes obtain their parachors.
Thus the higher priority processes would have their
parachors for very short periods only). However, with
a sector-queued drum organisation, which we are
modelling, this queue length would be of very low
Probability. Thus we see that the problem is caused
because lightly loaded priority queues act like FIFO
queues. This results in the competing processes getting
almost equal service from the drum. This, coupled with
the random page replacement policy, causes the ccre to

become equally divided amongst the competing process:s.

We see also that the other blocking mechanism, the biased
allocation of the CPU, is similarly ineffective. 1In a
thrashing situation the CPU is grossly under-utilised and
so all processes will obtain all of the CPU they demand
which is very little. Thus the other method of blocking
low priority processes, not dispatching them, is undermined.
We see then that once thrashing has begun this algorithm
will cause further degradation. Similar.y we see that

if the CPU is not fully utilised, the common situation

in all operating systems, the reaction of this algorithm
is to introduce further processes to utilise it. Such

a policy must eventually lead to thrashing.

Let us now consider the graph of CPU utilisation against

Multiprogramming Limit, figure 5.3, obtained using the

- 129 -



% CPU UTILISATION

70 1

4

X

!i + HORKING .
j X SINGLE-PROGRAMMED
|

70 100 130 5000

CORE SIZE IN PAGES

Horning's algorithm - CPU utilisation against core

size for the standard mix

Figure 5.4

a0 =



same workload: composed of. identical processes as for

Wharton's algorithm.

We see that the CPU utilisation increases up to some
maximum before decreasing, as Multiprogramming Limit
increases. The maxima for those worklocads where the
parachor is at least 50 pages occur at a Multiprogramming
Limit of 1. It is sufficient to multiply the common
parachor by the Multiprogramming level at which the
maximum occurs to explain this. We observe that the
maximum occurs at the Multiprogramming Limit for which
the product is closest to the core size but does not
exceed it, that is at the highest level at which core
is not overpartitioned. A continual degradation of CPU
utilisation is then observed as each further process is
allowed to contend causing greater overpartitioning of

COre.

Comparable results were obtained when the algorithm was
simulated using our standard workload. In figure 5.4,

a graph of CPU utilisation against core size, we see that
thrashing has occured when only a limited core was
available. These results for Horning's algorithm also
demonstrate that given enough core even the most ill-
conceived algorithms can be made to perform satisfactorily!
The graph of CPU utilisation against Multiprogramming Limit

from Horning's algorithm, figure 5.5, again displays the
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affinity for thrashing shown by the algorithm. Here we
see that it is unable to support even a Multiprogramming

Limit of 2 with the standard workload.

The attempt here was to design an inherent feedback
control system to control the multiprogramming level of

a demand paging operating system in such a way as to avoid
thrashing. The control is a negative feedback formed by
superimposing two opposing positive feedback effects upon
each other. The first positive feedback effect, which
tends to increase the multiprogramming level of the system,
is inherent in the random page replacement policy. The
opposing positive feedback effect should tend to decrease
the multiprogramming level and this was to be inherent

in the biasing of allocation of the other system resources.

Unfortunately, the biasing of the use of CPU and I/0
facilities will seldom result in the complete blocking
from service of a low priority process. Furthermore, the
probability of such blocking occuring decreases rapidly
when core becomes overpartitioned. Thus rather than

this second positive feedback becoming more assertive

as the system deviates from the desired operation it
becomes weaker. The tendancy to increase multiprogramming
level therefore dominates and so the system will quickly
deteriorate into a thrashing situation whenever core
becomes overpartitioned.
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Horning's algorithm was also simulated with the sector-
queued drum organisation replaced by a single queue for
drum service. This should increase the probability of

low priority processes being blocked since the average
drum queue length will be greater than with sector-queuing.
The results obtained however showed precisely the same
defects in Horning's algorithm as when sector-queuing was

used.

An important by-product of the work on this algorithm

was to increase at the outset our already keen awareness
of the ease with which one can fall into the trap of
developing an algorithm whose behaviour cannot in practice
be successfully predicted. The reasoning used to justify
the Horning algorithm found ready acceptance amongst a
number of interested parties until experiment showed

. how inadequate this reasoning was. Yet the typical
operating system contains many algorithms whose behaviour
is far more impenetrable than this comparatively simple

core allocation algorithm!

- 134 -



5.3

Randell's Algorithm

We have seen in Wharton's algorithm that the biasing

of allocation of system resources is a powerful tool

in avoiding the problems of excessive demand for a
resource. This is also shown by the following algorithm
proposed by B Randell. Here, by addition of a simple
priority rule to Horning's algorithm a synthesis of
Wharton's and Horning's algorithms is created which
achieves an improvement upon Wharton's algorithm where

Horning's algorithm failed.

The algorithm is as stated for the Horning algorithm
with the following modification to the page replacement
strategy. When a page replacement is required a page

is chosen from the process requiring a free page of

core or from a process of lower priority . The process
is chosen at random from amongst this set, each process
having a probability of being chosen proportional to the

number of pages of core it occupies.

Two points may be noted about this algorithm which
ensure its stability. First, the top priority process
never decreases the amount of core it occupies, that
number either staying the same or increasing when that

process requests a page replacement. Secondly, the

number of pages of core occupied by the n highest priority
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processes does not decrease unless one of these processes
terminates execution. Thus high memory demands by low
priority processes cannot affect the progress of higher
priority processes. This means that high memory demands
by high priority processes will eventually be met at the
expense of lower priority processes but not as rapidly

as by Wharton's algorithm.

The priority constraints placed upon the random page
replacement policy slows the rate at which high priority
processes increase their memory allocations. In .harton's
algorithm the highest priority process has probability 1
of increasing its core allocation each time it causes a
page demand. In Randell's algorithm if that process
occupies x pages of core then the probability that it
will increase its core allocation is (C-x)/C, where C

is the core size.

We would expect then that Randell's algorithm would give
improved performance over Wharton's algorithm since the
rate at which pages no longer belonging to processes '
current localities will accumulate in core is reduced.
This expectation is confirmed by simulations of the
algorithms. Figures 5.6 and 5.7, which are graphs of CPU
utilisation against core size and Multiprogramming Limit obtained

using the standard mix, both show the expected improvement.
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However, as we have pointed out Randell's algorithm
achieves this improvement by slowing the rate at
which unrequired pages accumulate in core. This
basic problem of the Wharton algorithm remains to

be solved.
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.4

Lynch's Algorithm

The algorithm of Wharton (section 4.2) may be said to
avoid thrashing by erring grossly on the side of

safety when estimating a process's locality of reference.
It does this by assuming that every in-core page
belonging to that process belongs to the current
locality of reference. This is wasteful of core which

we are assuming to be a scarce resource.

A simple way to improve Wharton's algorithm would be

to periodically rotate the priorities of the process,

for as we have noted the only situation in which a process
can have pages replaced is if it becomes the lowest
priority process. Such a solution is not totally
acceptable for the mechanism by which core is wasted
remains, only the scale of the wastage has been reduced

as it was by Randell's algorithm. This solution also
raises problems of stability of the feedback control of

the operating system. However, this topic is more properly
discussed in the context of scheduling and will be reviewed

in Chapter 6.

What is required is a modification of Wharton's algorithm
which is able to estimate whether or not a process has
more than its current locality of reference in core.

Wharton's algorithm employs memory demand as its control
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variable when estimating whether a process has sufficient
core for its current locality or not. It would be
natural therefore to attempt to employ the same control
variable when deciding if a process occupied a greater
amount of core than required by its parachor. A
successful modification of this form was proposed v

W C Lynch.

The proposal is to couple a 'drain' with the Wharton
algorithm. The 'drain' is an autonomous process
activated periodically. This process marks as ~ailable
for replacement one page of core, chosen by some suitable
strategy, from the process which was occupying the CPU at

the time the drain was activated (if such a process exists).

The drain has the useful practical advantage of providing
an inventory of free pages. This reduces the number of
times the page replacement strategy (Wharton's part of
the algorithm) must be invoked to force a page out of
core. This means that the writing of copies of the
'drained' pages to the drum is not urgen* and can be

scheduled when convenient.

The reasoning behind Lynch's modification is that if a
process has core in excess of its parachor then the drain
will gain pages from the process. If it were to drain a

page which belonged to the current locality of the process
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which had been utilising the CPU, that process would upon
resumption demand the page. 1In particular if the process
was of the highest priority then we would expect that

the page would be re-acquired in half of a logical drum
revolution on average. Thus if we were to consistently
drain from the current locality of the highest priority
process we would impair that process's performance by

a maximum of P%, where P = % x period of a logical .rum
revolution x 100/drain period. We would hope to recoup
this loss by improved performance of lower priority
processes. We would also expect that the processes nicst
likely to be utilising the CPU would be those wii.c: had
at least their parachor. Thus there should be a high
probability that pages are being drained from the correct

set of processes.

Lynch's algorithm has essentially the same feedback
controller structure as Horning's algorithm, in that it
is composed of two opposing positive feedback effects.
One, that attributable to the Wharton algorithm, tends
to decrease multiprogramming level. The other, caused
by the Lynch drain, tends to increase the multiprogramming
- level by removing from core pages not in the current
locality of any process, thus making core available to
further processes. These two opposing effects set up a
dynamic equilibrium with each other. The position of
balance depends upon the rate at which the draining

process acts and also upon the memory demands of the
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processes contending for core.

This dynamic equilibrium is reinforced further since the
Lynch drain tends to increase memory demand by allowing
further processes to contend and by restricting the

core which each process can obtain. On the other hand

the Wharton component tends to decrease memory demand by
assigning more core to each process in response tc¢ its

demands.

We see then that each component of this algorithm
endeavours to create a situation which weakens its own
effect whilst intensifying the effect of the opposing
component. This leads to a very strong negative feedback
control upon multiprogramming level and this is in the

form of an inherent feedback control.

The property which we require most of this control 1is

that it should be stable. That is under conditions of
heavy load,thrashing should not be allowed to occur. To
observe that Lynch's algorithm has this property we need
only observe that under conditions of high memory demand
Wharton's component dominates. We have already established
that Wharton'a algorithm avoids thrashing and so the Lynch

algorithm must be stable.

Having established that we have an anti-thrashing control

we are interested in how quickly it will settle to its
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position of equilibrium. The settling time of the
algorithm is to some extent dependent upon the rate

at which pages can be loaded, by demand paging, from
the drum. Consider the core initially empty and a
number of processes loading into it by demand paging.
The allocation will stabilise when as many of the high
priority processes as possible have loaded their current
localities of reference. These are essentially lcaued
in parallel and so settling time would be the tire to

load the largest of these.

The settling time in response to a disturbance such as

a sudden change of locality by a process will be equal

to the time taken by the drain to remove the old locality.
One would expect settling to occur rather more slowly in
this case since it is a feature of the strategy that
pages may be added on demand more quickly than they may

be removed by the drain.

Let us now consider part of a core map from a simulation

of Lynch's algorithm, figure 5.8. The standard workload
was used and the drain process was activated every 70
milliseconds which is equal to two logical drum
revolutions in the simulation model. The two processes
represented in the core map are process 42, code 2, with

a parachor of 15, and process 49, code 9, with a parachor
of 20. We see that Lynch's algorithm limits both processes

to enough core to contain the current localities.

- 144 -




- S¥T

§7¢ oanbia

XTul pIrpuels a3yl .

IoJ deu 9I00 - wy3 TI0bTe S,Youlq

4EQ
4e.1
4¢.2
463
464
4¢.7
46
467
Lo L
4¢.9
4770
471
472
473
474
4'[ I
47¢
477
478

2222222222227 7
207

22222222222222]

22222222222222:?
222222?22227”’2
22222222222222

2222222222222¢ A
222222222222?"“5”C9999 99999999%99?h
2222222222222979999959993939933 33 3G+
22222222222222¢Y
222222222222227
222222222 2227£’2

;5666639555 ren

2222222 ’7273’12“227900090997 GQQ;VaQQ”‘°*** veses
7399990999 399999IQqp

N9 35G6299Q99:3Q0Q930Q 0 Gttt Mgt et

22222222222



% CPU UTILISATION

50 -
40 { i 4 LYNCH
\ X  SINGLE~PROGRAMMED
| © VEHARTON
70 100 130 5000

CORE SIZE IN PAGES

Lynch's algorithm - CPU utilisation against core size

for the standard mix

Figure 5.9

=46 =



In figure 5.9 we have a graph of CPU utilisation versus
core size for Lynch's algorithm. The results of interest
are those labelled LYNCH. The striking feature of the
graph is that even with a core of 5000 pages Lynch's
algorithm does not attain the maximum possible CPU
utilisation. As we predicted, when core is a limiting
resource the performance of Lynch's algorithm is a
significant improvement upon Wharton's and Randell's.

However, this is not so when core is abundant.

The reason for this becomes plain upon considering the
Core map, figure 5.8, once more. Here we have very low
demand for core, a situation to which the Lynch algorithm
responds by draining pages from core. However it is
obviously wasteful to drain pages from processes when
free core is available. There is no advantage to be
gained since no further processes require core and
unnecessary page faults are generated. It is this
situation which is responsible for the depression of

CPU utilisation with a core size of 5000 pages.

The graph of CPU utilisation against Multiprogramming
Limit, figure 5.10, shows as we would expect that the
Lynch algorithm has the desirable property that CPU
utilisation increases monotonically with Multiprogramming
Limit. Again we see that the Lynch modification gives

a substantial performance improvement over the basic
Wharton algorithm.
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It is interesting to note that a feature can be
incorporated into an operating system using Lynch's
algorithm that will give further increases in
effectiveness than shown in the simulations (where
this feature is not modelled). This is the 'page
reclaim' function which is often included in page
handling software. This function makes use of ti.e
fact that a page will not be overwritten for some

time after the decision to remove it. The time may

be especially extended in the Lynch algorithm since
the page may remain in the inventory of free pages

for some time before it is required to be overwritten.
If the page has been taken away from a process 'logically'
but has not been scheduled to be overwritten, then the
operating system can 'reclaim' the page. That is it
can logically restore it to the process if demanded,
thereby saving a page transfer and the associated idle

time for the process.
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The Lynch-Alderson Algorithm

The comments concerning the unnecessary draining of
pages in low memory demand situations suggest a further
refinement of Lynch's algorithm. As we have seen the
Lynch drain provides an inventory of pages which are
available for replacement. Free pages of course a.c
included in this inventory. The next step is to pluce

some limit upon the size of this inventory.

This may be achieved by setting a 'threshold' size for
the inventory. The draining process takes action cnly
if the current inventory size is less than the threshold
value. This addition to the Lynch algorithm we have

called the Lynch-Alderson algorithm,

The setting of a threshold value causing the drain to

be switched on and off allows the draining rate to alter
with memory demand. When memory demand is low the drain
switches off since there is no need to utilise memory
efficiently in such a situation. When memory demand
increases the drain switches on removing pages not in

the current localities of contending processes in an
attempt to satisfy the increased demand. (Again however,
there is a maximum extent to which any processes may be
retarded by the drain). If the increased memory availability
provided by the drain proves insufficient the Wharton
component will ensure memory demand is reduced by removing
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low priority processes from core.

Again we can show the stability of the algorithm even
though both memory demand and draining rate may vary.
This is possible because stability is only a problem
when overload conditions exist. Where such high
memory demand occurs the algorithm essentially rererts
to the Lynch algorithm the stability of which we rzve

already discussed.

The settling time of the Lynch-Alderson algorithm in
response to a stimulus, such as a sudden surge in
memory demand caused by the introduction of a further
process into the mix, is similar to that of Lynch's
algorithm since under such conditions the Lynch-Alderson
reverts to the Lynch algorithm. It is possible that
the settling time could be slightly greater than that
for Lynch's algorithm. This is because there may have
been an accumulation of pages not belonging to any
current localities of reference which may need to be
deleted by the drain. However, cne would expect a
substantially higher drain rate to be tolerable (and,
perhaps, even appropriate) in Lynch-Alderson than in
Lynch, since the inventory threshold tends to limit

overdraining. The higher rate would reduce settling

time considerably.
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Let us now consider, figure 5.11, which is a core map
from a simulation of the Lynch-Alderson algorithm using
the standard workload and the threshold set at 1. From
time 451 seconds to time 474 seconds we again have
processes 42 and 49 in contention for core, as in figure
5.8, the core map for Lynch's algorithm. We see that
the two processes are no longer restricted to thexir
parachors as they were by Lynch's algorithm. We aiso
note that the algorithm is maintaining a single page
inventory as indicated by the '*' which frequently

appears in the final column.

The graphs of CPU utilisation against core size and
Multiprogramming Limit, figures 5.12 and 5.13
respectively, show as we would expect that the
Lynch-Alderson algorithm gives an improvement upon
Lynch's algorithm. In particular we note that with
the 5000 page core the Lynch-Alderson algorithm obtains

the maximum attainable CPU utilisation.
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Denning's Algorithm with the Predictive Drain

When we discussed Denning's algorithm (4.3) we noted
that the working set size estimation procedure could
frequently overestimate leading to core utilisation
lower than need be. The success of the Lynch drain in
overcoming a similar problem in Wharton's algorith:m

prompts the use of a drain process here.

The drain we coupled with the Denning algorithm is
distinctly different from that of Lynch's in that it
is integrated into the dispatching algorithm of the

system. The draining algorithm is as follows.

If any process exceeds a preset threshold of CPU time
used since it last caused a page fault, a page is
deleted from amongst those it has resident in core
and its estimated working set size is reduced by one.

This strategy we call the predictive drain or delete.

The predictive delete approximates tc th~ removal of

a page from the working set if it has not been accessed
in the previous interval. As with the Lynch drain this
strategy is a superimposed feedback control. This
control has the property that it does not affect the
stability of the Denning algorithm. If any process has
insufficient core then the periods between page faults
for that process will reduce below the threshold and
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the drain will cease to have effect for that process.
Thus if core contention is high the drain ceases to
be effective and the algorithm reverts to the basic

Denning algorithm,

Let us now consider the simulation results for Denning's
algorithm with and without the predictive delete.

Figure 5.14 shows the variation of CPU utilisaticn

with core size for the standard mix. The results are
marked DENNING and DENNING(70). These represent
Denning's algorithm with no predictive drain and
Denning's algorithm with the predictive delete thieshold
set at 70 milliseconds respectively. Comparison of these
shows that the Denning(70) algorithm gives a consistent
improvement over the Denning algorithm. We note also
that the improvement increases as the amount of core
available increases (until core availability ceases to
be a constraint on the system). This occurs because as
the system becomes less core constricted more processes
run for CPU intervals in excess of the threshold without
a page fault occurring and so the predic:-ive delete

strateqgy becomes increasingly effective.

In figure 5.15 we present a graph of CPU utilisation
against Multiprogramming Limit for a core size of 70 pages.
Again we see that employing the predictive delete allows
the Denning(70) algorithm to utilise core more effectively
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and so to give better CPU utilisation. This improved
core utilisation is a result of the improvement in

the working set size estimate provided by the predictive
delete, which allows a higher effective multiprogramming
level to be maintained. These simulation results show
that we were correct in our assessment that the basic

Denning algorithm would overestimate working set size.

We see from the difference in results obtained by using
the predictive delete that there is room for improvement
in the basic Denning algorithm. The addition of tre
predictive delete also shows the dependence of the model
upon the estimation of its parameters in a model driven

feedback control.
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5.

7

Drain Processes

As we have seen from the Lynch and Lynch-Alderson
algorithms, the concept of a drain process appears to
be successful in promoting the effective use of core
allocation. The Denning algorithm also benefits from

a drain process which appeared in the form of the
predictive delete strategy. In the light of this thev
seem deserving of further consideration. In particular
we shall compare the Lynch drain and the predictive

delete which provide an interesting contrast.

To recapitulate, the Lynch drain involves periodically
marking as available for replacement a page of the
process currently allocated the CPU. The predictive
delete involves marking as available for replacement

a page from each process which uses in excess of a
Preset limit of CPU time without generating a page
demand. The basic difference between these schemes

is that the predictive drain is applied separately to
each process whereas Lynch's is applied to the set of
processes contending for the CPU. From this view point
it would appear that the predictive drain has a number

of advantages.

First, the predictive delete conforms with our desire
that the core allocated to any process should have a
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lower bound determined only by the properties of that
process. With the Lynch strategy the core allocation
of a process can depend upon the extent to which
other processes utilise the CPU and this may depend
upon their memory demand. The reason that this does
not have a disastrous effect is that there is a

built in limit to the extent to which Lynch's drain
can affect the progress of a process as we discussed

previously.

The second advantage of the predictive drain is th-t
since it applies in parallel to all processes we 0n1d
expect it to be more effective than the Lynch drain

in restricting all processes to their parachors. However,
with both schemes a process must obtain CPU time before
it can lose pages due to the drain. Where we employ a
priority scheme, as we have done consistently, the
priority bias will decrease the parallelism of the
Predictive drain. Therefore it is unlikely that the
parallel capability of the predictive strategy bestows

as great an advantage over the Lynch drain as would at
first appear. However, the predictive delete does suffer

a very real disadvantage.

The predictive delete requires that a limit be set upon
the CPU time which a process may obtain without generating
a page demand before the drain is invoked. As with the

Lynch strategy it is wise to set the limit such that if
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pages belonging to the current locality of a process
are consistently deleted the effect upon the progress
of the process is not unacceptable. However, any
process which changes members of its current locality
at intervals which are on average shorter than this
limit will seldom be affected by the predictive drain
even when occupying core in excess of its parachor.
Thus the predictive drain may not have the desired
effect upon all processes. In particular, we would
expect that the settling time of the predictive drain
in response to closely spaced muitiple stimuli, su ™
as sudden changes of locality by a number of processes
would be inferior to that of the Lynch drain. This is
because a sudden switch of locality is signalled by a

flurry of page faults and so would not be detected by

the predictive drain.

In order to obtain an indication of the importance

of these factors a series of simulation experiments

was undertaken to compare the two drain processes. The
Wharton algorithm provides an ideal test ked for these
two drain processes due to its simplicity and its
antithrashing properties. We have previously discussed
the combination of Wharton's algorithm with the Lynch
drain which we called Lynch's algorithm. The combination
of Wharton's algorithm with the predictive delete we will
call the Wharton-D algorithm.
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Figures 5.16 and 5.17 show graphs of CPU utilisation
against core size and CPU utilisation against Multi-
programming Limit respectively for the Lynch-Alderson
and Wharton-D algorithms in which the inventory
threshold was set at two pages, the drain processes
parameter was set at two logical revolutions of the
drum, and the standard worklocad was used. The relevant
results are those marked LYNCH-ALDERSON and WHARTOM-D,
Results for the Wharton-D algorithm without the
inventory threshold (not shown), are very similar to

those for Lynch's algorithm.

To observe the way in which the two drain processes
deal with sudden change of locality of reference the
normal page fault probability function, which we term
the DRIFTING function, was replaced by a 'PEAKING'
function. The PEAKING function causes the locality

of reference of a process to suddenly change completely
three times. These sudden changes occur at times
spaced equally throughout the execution of the process.
Each change is modelled by assuming that during the
change both the old and new localities are required,
that is the size of the current locality doubles for
this period. The change of locality is deemed to be
complete when a number of page faults equal to the size
of the locality have been incurred by the process.

Thus to obtain the PEAKING function we replace k of
3.5.4 by
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x = 2710 B¢s usually,
but by
RCP
k = 2 16 2xPCS

at the three equally spaced times and until PCS page
faults have been incurred by the process. The results
of these simulations are shown in figure 5.18. (N.™,
The results in this figure are joined by lines on!' to
aid identification - they are not intended to represent

the graph of any function).

The results of these simulations were all rather
inconclusive. Those cases which would be of interest
were difficult to simulate for suitably long periods
without compromising the validity of the results by
biasing the simulations through choice of unusual
parameter settings. To avoid this a third page fault
probability function was used in the simulations which
should highlight any inadequacies in the core allocation

algorithm.

The function is such that the probability of page
fault of a process which has less than its parachor is
inversely proportional to the amount of core it occupies.
This is equivalent to the process accessing the pages of
its current locality at random. The probability of a
page fault occuring when the process has at least its
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parachor is constant. Thus we replace k of 3.5.4 by

-16 3 x PCS
k = 2 + CPU TIME x 1060 for RCP > PCS
1 + 3 x PCS
CPU TIME x 1000
and
“16 3 x PCS
k =1 - 1 -2 + CPU TIME x 1000
o oTP
1 + 3 X PCS :“\‘\,D.

CPU TIME x 1000
when RCP < PCS.

Thus performance will degrade swiftly if a core allocation
algorithm provides a process with less than its parachor.
There is no decrease at all in the page fault probability
if the parachor is overestimated but there is with both
the DRIFTING and PEAKING functions. We call this function
the RANDOM function. Algorithms which utilise core at

all ineffectively should be highlighted by simulations

using this paging function.

The results obtained for a number of algorithms including the
Lynch-Alderson and Wharton-D algorithms are shown in

figure 5.18. We see that for the PEAKING and DRIFTING
functions there is little difference in the results.
However, there is a difference when the RANDOM function

is employed. This suggests that avoidance of the

predictive drain by certain processes does occur to
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some extent but that in our simulations it is not an
important factor. It is only noticable when the effect
is amplified by the RANDOM function. (N.B. It is not
valid to compare the results of any algorithm for the
three paging functions. Under the same conditions
similar memory demand behaviour will not occur with

the various paging functions).

To sum up we have seen from our studies that drain
processes are a very useful tool in promoting the
effectiveness of a core allocation algorithm which
avoids thrashing. 'Care must be taken that the
draining process can have only a limited effect so
that it does not precipitate thrashing. However, ve
have shown that this need not be difficult to arrange

and that a very simple approach can be very successful.

The two drain processes which we have examined here
both have disadvantages and it may well be that further
study will provide rewarding development. However, the
important point displayed by these strategies is that
it is possible to design an initial core allocation
algorithm in which the accent is solely upon avoiding
thrashing and still to leave a degree of freedom, in
the form of a drain process, which can be utilised to

improve performance without affecting stability.
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Hoare's Algorithm

The core allocation algorithm described here was evolved
over a period of time by C A R Hoare. The orig:nel
pronosal has been modified by Hoare as a consequ:ncs

of intuitive arguments by himself. These were er - rse d
or prompted by simulations using the system simuiator.
The algorithm is of interest in that it shows a fir+ner
successful way in which a drain process may be irplemented.

It is also of interest in that its settling time s weli

defined and can be altered by a parameter chance

Every logical drum revolution a number of vages cf <ore
are scanned by a pointer which moves cyclically round the
core. Any that have remained unused since they were last
scanned are 'victims'. If a victim has a valid baclking
store copy then it is immediately added to the free list,
assuming it is not already on the list, octherwise .t Is
placed on the drum queue and is freed after the trun:fer
takes place. No nage renlacements can be fcrced Ly a
page demand and sO processes may Ch., CiL2.r MOre core
by obtaining pages from the free list. Hoare cz.
drain process 'second-chance' nage replacement (Hoare and

McKeag, 1972).

Thus if core demand is light the free chain builds up
until it is large enough to justify the loading of a
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further process. If demand is heavy no victims will be
found and the free list will be diminished. When the
free list diminishes to zero all processes could be
halted due to core contention, a situation equivalent
to thrashing. The provosed load shedding compor:rr:,
which is necessary to deal with such cases, is that*
when a number of processes are waiting for a free ~aae,

the highest priority process always gets oreferenc:.

However, without further refinement this allocaticn
strategy will be unsatisfactory. While the free 1li=zt
is non~empty the mechanism intended to block low rrirc ity
processes from obtaining core in cases of high memcry
demand relies upon the occurrence of events, mnage
demands, which are stochastic in nature. As we have
seen with Horning's algorithm such blocking mechanisms
are not sufficiently effective. Furthermore, when the
free list is empty processes may be halted and ura.le
to access their in-~core pages and so blocks of s-c¢ 3ge
may be released by the scanning mechanism. This will
completely destroy any effectiveness which the blocxing

mechanism may have had.

To overcome this a process is not allowed to acquire
a page from the free list unless the number of free
pages exceeds twice, its own priority number. Thus
each process leaves a float of two pages for the cenefit
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of each higher priority process. The number of free
pages thus places a limit upon the number of orocesses.
allowed to compete for core. A process halted in this
way may onlv continue if the free list size exceeds
three times the process' priority plus six. Th.s the
effective multiprogramming level is controlled by -he

size of the free list.

Suppose a group of processes increase their memorv
demand suddenly. Eventually the lowest priority riocess
will be halted from obtaining core. This should %-.th
immediately reduce demand and eventually increasc

supply since that process's pages will become victirm:s.
However, if this is insufficient further processes will
be suspended until supply and demand are equal. If
supply increases then a process will be reactivated.
This increases demand and reduces sunply so that the
increase of the free list is retarded. However, :if
this is insufficient further processes will be rea.tivated

until a balance is reached.

Further thought led to the suggestion that it may "=
advisable to impose a delay upon the rate at which
processes are suspended or reactivated. For example,
when a process has been suspended the drain should remove
all of that process's pages (one cycle of the scanning

pointer) before suspending any further process. Again
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when a process is activated or reactivated it should be
allowed to obtain its parachor (if possible) before any
further process is allowed to do so.

This form of susvension/activation hysteresis by timing
can be synchronised to the scanning pointer of the A4rain
process and is very easy to implement. It is betrer than
using the size of the free list alone for controi ~urmoses
since the free list fluctuates too randomly to be a good
parameter for controlling hysteresis. In particular the
free list will suddenly increase in size when a nrocess
terminates execution. Without the timing hysteresis a
number of processes would be allowed to comwete for core
without any regard for the total memory demand. This will
lead to rapid depletion of the free list which may well
cause processes to wait for the drain to free pages.

This is a situation to be avoided.

Unfortunately, we are unable to simulate algorithms which
take account of the individual nages of a orocess. The
account of the attempted simulation of an LRU derivative
(section 4.4) shows the extent of our problem. Hcwever

it is possible to simulate FIFO page replacement, and since
the second-chance algorithm approximates to FIFO under
overload conditions, it was thought that it would be a
fair test to use it in the simulations. The algorithm
simulated was Hoare's algorithm with the scanning pointer
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moving two pages every second logical revolution of the
paging drum, a simulated time of 70 milliseconds. The

standard workload was used.

Let us consider the graph of CPU utilisation against
Multiprogramming Limit in figure 5.19. We see that “re

Hoare algorithm avoids thrashing, the graph showina tle
characteristic non-decreasing function of Multiprscr=rming
Limit. Of special interest is the result for Multior-gramming
Limit of 1 in which CPU utilisation is depressed L=1ow that
obtainable by simple single-programming. This may he
explained by the action of the drain process in tl.is
algorithm which, as with Lynch's algorithm, continues tc

drain pages when there is no core contention. This leads

to unnecessary page faults which depress CPU utilisation.

Let us now consider the core maos for Hoare's algorithm
with 70 pages of core, using the standard workload. An
example of the loadshedding mechanism in operation is

shown by lines 566-574 of figure 5.20. At line 569
sufficient free core is available to allow the introduction
of a new process. Process '5' is admitted but qui~xly uses
up the core available to it and is suspended. Thus in
lines 568-570 we see that process's pages are being
drained from core. Process '5' remains suspended until

the higher priority process '4' terminates executicn

enabling process '5' to be reactivated.
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Lines 581-590 display the manner in which the time
hysteresis prevents a sudden influx of processes into
core when process '4' terminates execution. We can
plainly see processes being introduced at the rate of
about one each 2.5 seconds, the time taken by th=

scanning pointer to complete a cycle of core.

In figure 5.21 lines 480-522 show a situation in whi:ch
processes '8' and '4' have a combined parachor in
excess of core size. Process '4' is activated, c¢xczeds
available core and is suspended at regular intervaz's
which are synchronised to the scanning pointer. T:iico
is an unfortunate situation in that some process with a
smaller parachor than process '4' could have utilised

the core available more effectively.

To gain some feel for the imwrovement to be expected by
replacing the FIFO page replacement by second-chance
replacement the results in figure 5.19 marked HOARE
(70,2) - SC were obtained. Here we assumed

that there was a constant orokabilitiy =f 7.5 that a page
belonging to an activated process had been used sin~ce the
last scan. We make no attempt to justify this gross
oversimplification other than to say that one would
expect the drain rate of second-chance to be far less
than that of FIFO, this was a simple way to obtair the
desired effect. As would be expected there is a

significant improvement in the results obtained.
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The simulations suggest that the performance of this
algorithm might still be increased by further
refinements. However, it would be difficult to assess
further refinements due to our inability to simulate

the second-chance aspect.

Our principal interest in this strategy derives £ :oa
studying its settling time. The settling time irn

respect of any single stimulus, such as a sudden change
of locality or process termination, is equal to the

time taken for one cycle of the scanning pointer. This
1s the reason for synchronising suspension and act:iwvaticn
of processes to that cycle. Thus Hoare's algorithm has
the interesting property that its settling time may be
changed by altering the presettable scanning rate.

This has been of great value in our study of scheduling

described in the next chapter.
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Summary

It was the intention of this chapter to explcre the
manner in which feedback control could be applied tc
the design and understanding of core allocation. e
were particularly interested in the avoidance of

thrashing which as we have earlier discussed is cause?

by feedback instability in core allocation.

Starting with two stable but not very effective ccre
allocation policies we have evolved a series of
strategies. In figure 5.22 we present a comparison

of these algorithms by superimposing their graphs of
CPU utilisation against Multiprogramming Limit. These
algorithms have been analysed and improved, sometimes,
by appealing to arguments based upcn feedback control
notions. This process leads us to believe that the
application of feedback control in this way is a uscful
and effective method of developing core allocation

policies to avoid thrashing.

The process of development itself has provided som:
useful insights into the manner in which core allocation
algorithms can be structured so as to simplify their
design. 1Instances of useful structuring are provided
by the concept of drain processes which may be super-

imposed upon an existing algorithm to improve effectiveness.
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Another example is the separation of page replacement
from the choice of process. from which a vage is to be
replaced. In figure 5.23 we present a comparison of
the 'draining' algorithms by superimposing their graphs

of CPU utilisation against Multiprogramming Limir.

The simplification of the constituent parts of the
strategy which may be obtained in these ways is orf

the utmost importance. The appalling ease with which

we accepted the justification of Horning's algorithm
emphasises the need to understand the dynamics o: —ur
algorithms. The numerous subtleties which come to

light in the analysis of the deceptivelv straightforward
Lynch algorithm emphasise the necessity of simplicity

if we are ever to predict the consequences of the
mechanisms which we design. We cannot justify using

an algorithm whose behaviour we are unable to predict.

The effectiveness of the anti-thrashing algorithms
derived from Wharton's algorithm leads us tc believe
that any further gains obtained by improv.ng the core
allocation strategy will be small. It now seems clear
that if further increases in system utilisation are to
be achieved the problems of the 'mix' of processes which
is presented to the system must be considered. In our
simulations so far the composition of the mix has been

totally determined by the initial external priority
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assignment imposed on all processes. These priority
assignments are naive causing undesirable mixes to

be presented to the system at times.

The situation often arose in which a low prioritv
process was able to obtain insufficient core to
contain its current locality and so made little
progress. In many cases the amount of core availanle
to this process was sufficient to contain the varachor
of some lower priority process currently barred fr-m
competing for core. Altering the relative prio:rities
of these processes would lead to an increase in syscem
utilisation. Observations such as these lead us to
explore the ways in which system utilisation could

be enhanced by dynamic priority assignment schemes;

we shall discuss this topic in the next chapter.
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CHAPTER 6

Scheduling and Dispatching

Introduction

We have treated core allocation .as the major probiem
in designing an .efficient operating system. Wheir: core
is a scarce resource, as it commonly is, the occurer.ce
of thrashing will overshadow all other performance
problems. However, having countered.thrashing by
employing a suitable core.allocation algorithm, the
allocation of the CPU and I/0 processors becomes

increasingly important.

We have indicated two levels at which the allocation
decisions might be made with regard to these resources.
These levels are scheduling and dispatching. The
intention here is to examine the manner in which tle
scheduling and dispatching levels of our hierarchy
affect the performance of an operating system. In
particular we shall discuss.the interactions of
scheduling and dispatching with core allocation and

the constraints which must be imposed uoon the various
levels if effective operation is to be maintained. Once

more we shall appeal to notions of feedback to aid analysis.
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6.2

Scheduling

The function of the scheduler in our hierarchy is to
define a priority ordering upon the various processes
which require system resources. Typically the priority
order will reflect management nolicies to favour - ertain
kinds of pnrocess and to provide certain levels of sarvice

to batch, interactive. and real time processes. It

8
oA

also reflect system decisions aimed at deadlock av.idance.
These requirements must be combined with a strategv to
ensure that the demands made upon the system do not c.iuse
overloads of individual resources resulting in diirinished
effectiveness. To. implement such a strategy will require
monitoring of the system so that the characteristics of
the various processes utilising the system may be
determined. (It is well known that external agencies
such as the programmer are a.very unreliable source of
such daté). Thus some form of feedback of information

is required.

The two problems which arise are:-

a) What information will be required to determire the
process characteristics so that the priority order
may be modified. approonriately, and how might that

information be collected?

b) What effect will the priority reordering have uoon
system performance?
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Answers to the first problem will depend to a greatc
extent upon the role which the system is intended to
fulfill, therefore we shall not discuss them. However,
it is possible to discuss the effect of changing
priorities in a general way within the context of

our hierarchy.
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6.2.1

The Effect of Dynamic Priority Reordering

upon System Effectiveness--

We have defined our hierarchy so that core is allocated

to contending processes with resvect to a prioritv order
imposed by the scheduler. We have shown that it is
possible to design core allocation strategies whico will
allocate core amongst the contending processes so s to
give a stable division of the resource. Now if "2 alter
the priority order which dictates the manner in which

core is divided then the allocation .will change accordingly
and, with an appropriate allocation strategy, will settle

once more to a stable division.

Ideally, we wish the system to operate in stable mode so
that the paging overheads will be minimised. However, each
time the process priorities are reordered a meriod of
operation is incurred during which the core allocation is
stablilising and higher overheads occur. Thus we must
arrange that oriority reordering occurs at a rate which

is such that the time spent in the unsettled state does
not represent a significant proportion of processisig time.
Of course, process completion and . submission also cause
reordering which is unplanned. If the rate of occurrence
of these events is high we may have to curtail our planned

reordering or reorder only when these events occur.
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If our only requirement was to minimise paging overheads
then we would choose to reorder priorities as infrequently
as possible. However, there are.advantages to be gained
from rearranging priorities.. In.particular, ordering with
respect to the characteristics of.the processes can imnrove
the parallel use of the CPU and I/O.devices. Sirce these
characteristics change with time we may require to reke
frequent observations of process . characteristics and make
related priority alterations. To.this end we may b=
prepared to accept an amount.of.overhead which we would

hope to offset by improved system utilisation.

Wulf (1969) has described a scheme of nrocess monitoring
and priority reordering implemented within the Chipnewa
operating system on a CDC 6600. Here an attempt was made
to order the processes with respect to their observed
characteristics and the observed performance of the system.
Processes which make heavy use of a resource in high demand
may be suspended, thereby decreasing contention. Suspended
processes which have been observed to use currently
underutilised resources may be activated, increasing the
parallel utilisation of resources.. Wulf reported greatly
improved system utilisation in spite of the added overhead
of the increased swopping of processes.between core and
backing store, and the overhead of the monitoring and

process selection algorithms.
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However, there is an upper limit to.the rate at which
priority changes can be made. If we alter priorities at
intervals which are shorter than the settling time of the
core allocation policy then a. stable core division will
never be obtained and overheads.will increase rapidly.

In fact ramid priority changes will tend to negate any
anti-thrashing properties which the core allocat.ci

algorithm may have.
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6.2.2

Time-slicing as a Simpole Example of

Priority Reordering

To demonstrate these ideas let us consider a very comron
requirement of multiprogramming systems, that of oroviding
rapid processing of small interactive processes t+ilst
providing accentable background service to more comnlex

processes.

If one is to ensure that processes will complete within
an acceptable time then processes of any particulzr tyne
must not be blocked for inordinately long periods by
other processes. It must.be ensured that processes
requiring a great deal of computation neither mononolise
the CPU nor are vrevented from completing because of the
precedence being given to short comnutations. A simple
way to avoid such problems is to allot each process a
quantum of CPU time - a time slice. 1If the process does
not complete within an alloted time slice then it is
given further time slices as required but its priority

to obtain the CPU is reduced.

For example, in a system in which the CPU is allotted on
a round-robin basis, allocating.the CPU to the next process
in the cycle is equivalent to demoting a process to lcwest
priority when ithas used its time slice. The time slice

is used here as a simple feedback of information to the
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scheduler upon which decisions to reorder priorities may

be made.

Since time-slicing was easy to implement in the simulation
model it was possible to carry out a number of simple
experiments which demonstrate.the effect of orioricv
ordering upon system effectiveness. In these experiments
we chose to utilise the feedback of information sc as to
improve the response of the system to short computations.
To this end we demote any process which utilises all of
its time slice to the end of the . scheduler queue. New
processes enter the scheduler queue in first-come-first-

served order.

To assess the effectiveness of the scheme a figure of merit
was computed for each simulated system, (Hellerman, 1969).
This figure of merit is larger the more successful the system
is in providing better service to short computations relative
to long computations.in a mix containing both. Hellerman's
figure of merit is defined as:

i
(e./x.)
= B
where n is the number of processes submitted to the system,
. th
X; is the processor time (I/0.and CPU) required by the 1
th

process and e, is the elapsed time to completion of the i

process. The term ei/xi will weight the figure of merit
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more significantly if it refers to a short process than
to a long one. The figure has a maximum value of one
when e, = Xi’ i=1,2,3, ... n,.that is when each

process experiences no contention for any resource

which it requires.

Before discussing the results obtained we make on:
further observation. Consideration of response tim>
requirements for short processes implies that the heost
value for the time slice is that which is just lcrg
enough to allow short interactions to comolete within
one time slice. If the time slice is shorter than this
value short computations will exmerience delays due to
being requeued at time slice end. If the time slice
exceeds this value then the CPU will pass more slowly
from process to process and short computations entering
the system will incur a greater gqueuing time to first
service than with the shorter time slice. In the
simulation experiments using the standard mix the

apparently optimal time slice value is one second.

The algorithms simulated were Hoare's algorithm scanning
two pages every 70 milliseconds, Hoare's algorithm
scanning two pages every 140 milliseconds and Wharton's

algorithm. The simulations were of a 70 page core.

The settling times of the core allocation policies are

approximately:
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Hoare (2 pages, 70 milliseconds) - 2.45 seconds
Hoare (2 nages, 140 milliseconds) - 4.9 seconds

Wharton -~ 0.6 seconds

The settling time for Wharton's algorithm depends upon the
number of pages which the process being demoted n:c in core
at time slice end. The value of 0.6 seconds is c¢htsined by
assuming that half of the available nages (35) hci.ng to

the demoted process.

Let us now consider the simulation results obtaired.
Considerations of the mix presented to the system in the
simulations leads one to expect maximum resnonse for short
processes when the time slice is in the region of one
second. However, as the graph of Hellerman's figure of
merit against time slice (figure 6.1) disvlays, only
Wharton's algorithm with a settling time of less than one
second shows this. Both of the Hoare algorithms with
settling times exceeding one second attain maximum

response with time slice values in excess of one second.

Combining the results shown in figure 6.1 with those of
figure 6.2, the graph of CPU utilisation against time
slice, we see that once a high level of response to short
processes has been attained decreasing the time slice
value only causes depleted service to background orocesses
and increased paging overheads. In all cases the value of

- 195 -



*

Hellerman's figure of merit against time slice size

Figure 6.1
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time slice which maximises service to background orocesses
having maximised response to short nrocesses occurs close
to the settling time of the core allocation algorithm

or one second whichever is the greater. These results
correspond with the theoretical prediction that the
scheduler should not reorder process oriorities at
intervals which are shorter than the settling tire of

the core allocation algorithm since this can only l=ad

to increased overheads due to paging.

When discussing Wharton's algorithm (4.2) we noted that
introducing time-slicing might improve core utilisation
and consequently improve CPU utilisation. We see from
figures 6.2 and 4.3 that this is in fact the case. The
results obtained with time-slicing show a slight
improvement over those without. We note a similar
effect with the Hoare algorithm scanning 2 pages every
70 milliseconds. However, we see that the maximum CPU
utilisation achieved is for a time slice well in excess
of the settling time of the algorithm. We would expect
this for although we expect to maximise short process
response by making the time slice small we noted that
the system should operate most effectively when in the
settled state, that is for time slice values greater
than the settling time of the core allocation algorithr.
As the time slice value decreases the unsettled state

becomes increasingly dominant. Interaction between the
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core allocation and scheduling components increases and
paging overheads rise rapidly as the prooortion of time
during which the core allocation algorithm is sett'ed
becomes less significant. Again these results agree

with the theoretical nredictions.

Thus as predicted by considering the core allocation
algorithm as a feedback controller experiencing erte mal
stimuli in the form of priority reordering caused v

the scheduling component, system efficiency is sensitive
to the rate of interaction between system comnonenrts,
The results display the importance of being aware of

the interactions and the limits they place unon the
values of the parameters of the various system

components.
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6.203

Bias in Scheduling Algorithms

Frequently decisions about the role of the system imply
the necessity of biassing the scheduling algorithm
towards a certain type of process. For example when
optimising response to short processes it is natural
to build in a bias to those processes. The beneficial
effect of such biassing is demonstrated in this cace

by the results discussed above. However, introducing
bias into an operating system may have undesirable

consequences.

Let us consider the example of a.system designed to
support interactive processes and a background batch
stream. By giving nrecedence to interactive nrocesses
it may be possible to exhaust the supnlvy of such
processes leaving only the background stream. Due to
bias the mix is modified. Since.the system is nct
designed to come with a pure batch stream its algorithms

may be less effective.

Care must also be taken that the scheduling algorithm
does not inadvertently cause biasing towards certain
types of process. Again this will lead to backlogs of
other processes, the execution of which may require the
system to work outside its operating region or in other
ways cause excessive delays to certain process tyoes.
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An example of such biasing is given by Lehman and
Rosenfeld (1968). Here processes requiring large
amounts of memory were delayed excessively until thev
dominated the mix at which time the backlog was rapidly

depleted and the cycle begun again.
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Dispvatching

In our hierarchy dispatching is concerned with the
allocation of CPU and I/0 processors. It should be
the aim of a dispatcher to optimise. the parallel us age
of these resources in order to increase throughput.
The most important component of a dispatching strategv
is the algorithm which governs the utilisation of the
CPU since all processes must obtain the CPU to some
extent if they are to progress.. The relative demands
for the CPU made by various processes may vary widelv
and it has long been recognised that for some nrocesses
the limiting factor upon their rate of pnrogress is CPU
availability whilst others may be limited by I/O

availability.

Sherman (1972) has confirmed by experiment that the
parallel usage of CPU and I/O processors in a multi-
programming environment is optimised by giving the CPU

to the process which will compute for the shortest period
before issuing an I/O request. Advantage has often been
taken of this by giving I/O bound processes priority over
CPU bound processes since on average I/0 bound nrocesses

will compute for shorter neriods between requests for I1/0.

However the relative demands made by a particular nrocess

for CPU and I/O can vary dynamically with the vrogress of
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the computation and the nrocess may switch between being
CPU bdund and I/O bound. Therefore, it is necessary to
-be flexible in the assignment of priority to use these
resources. A strategy of monitoring the demands of the
process coupled with a dynamic selection of the next
process to utilise the CPU and I/O devices may be

fruitful.
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6.3.1

Freqguency of Choice of Process to Dispatch

An important consideration to be made before examining
possible dispatching algorithms is the frequency with
which there will be a choice of nrocesses to dispatch.
If the number of processes. contending for any resource
seldom exceeds one then there is no gain to be made
over the simplest possible dispatching algorithm. The
overhead incurred bv more sonhisticated methods could

not be balanced by improvement in verformance.

With the probable exception of the line printer individual
I/0 devices are certain to experience less contention
than there will be for. the CPU. Queues for the printer
are not uncommon but they are often dealt with by a
spooling system due to the great disparity in speed
between the CPU and the line printer. It will seldom

be necessary to make a choice between nrocesses comneting
for an I/0 device other than the line nrinter. Also the
use of the CPU and I/O processors by a nrocess is
distinctly different. I/0 operaticrs are requested
singly with each request being preceded by many CPU
operations. These differing usage characteristics imoly
that the conditions necessary for a dispatching decision
are different in the two cases. CPU and I/0 devices may
only be reassigned when the current overation has

completed. However, it is possible that the CPU will
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still be required by the current.process at the end
of the present operation whereas this will be unlikely

for an I/0 device.

It is possible then to make a choice for CPU assignnz.t
whenever another process . other than that current’«
assigned the CPU becomes able to use it. That ic,
decision mav be made whenever the number of proczc s
requiring the CPU is at least two. With I/O how.:tver,
where the process currently receiving service ic verv
unlikely to demand further service immediately un'n
termination of the current oneration, two further
processes must require service from that I/0 device
before a choice can be made. With the exception of
the paging drum this will be a rare situation and may

therefore prove inefficient to cater for.

‘The paging drum is somewhat excentional since inc:rect:iy
all processes require service from it because of 1.2
structure of the system. It is possible, by empl ving
sector queuing techniques (Weing-:ten, '%46; Nernning,
1967; Coffman, 1969), for the dismatching algoritim to
initiate a chain of I/0 commands to the drum which

satisfy the needs of many processes in one I/0 onerat.on.

Results obtained by the system simulator using the

standard workload for the 9 sector drum organisation

- 205 -



employed by MTS give average sector queue sizes of

less than 0.1 for Lynch's algorithm. These results

show that it would be infeasible . to use.the simulator

to study the effects of applying a dismatching zlgorithm
to requests for transfers from the paging drum.
Measurements of MTS also showed short sector gui-ic:

with the drum never loaded to more than 30% of its
capacity even when thrashing was being exmerienc:c.
Since the dispatcher for the paging drum, which cw’cy=d
a very sophisticated algorithm was using between #% and
15% of available CPU time it was considered that &~ =inmle

first-come-first-served algorithm would provide an

equally effective dispatcher for greatly reduced overhoads.

Thus we would expect to obtain the most benefit by
providing simple dispatching algorithms for I/0 processors
and confining our attention to the dismatching of niocesses
contending for the CPU. Average CPU gueue . lengths for
Lynch's algorithm obtained from simulations rose from
nearly one with 70 pages of core to anproximatelv tnare=
with 130 pages, suggesting that a choice of proces=zes
would occur sufficiently often to warrent the apwnli_ation

of a sophisticated dispatcher for the CPU.
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6.3.2

Application of Feedback to CPU Dispatching

It would not be appropriate to attempt to catalogue the
ways in which one might estimate the process most likely
to compute for the shortest period before issuiny an I/0
request. Sherman (1972) has already made a studw -=f
number of immortant theoretical and oractical cigur.i.i3
by simulation. In particular the study included s>»>

predictive dispatchers.

The basic technique is to nredict the CPU time :¢ :iir-d
by a process before its next I/O request, based . th=:
past behaviour of the process. The CPU is given t. t:¢
process with the least predicted value. Two diffsvent

methods were tested by Sherman. The first developed an

exponential smoothing predictor as follows. If Xi-1 is
the (n-l)St CPU service time for a orocess and gh-l is
the (n-l)St prediction then the prediction of < i3

§n = dX,_y + (l—oc);;n_l

where 0 < o < 1.The larger the value of o the mcre
heavily weighted is the most recent past. The cocnnd
method used the 'complete history', nredicting the ~ext
CPU service time to be the mean of all past service times

for that process, the formula being

% = (x _, + %X_; (@1))/n



These 'feedback' dispatchers were shown to be successful
when compared against the theoretical best in which the
correct process is always chosen. They chose correctly

in up to 75% of cases.

The environment in which the feedback dispatchers wei:
studied by Sherman did not include the external z+«imuli

to the dispatcher from the core allocation comnorn:znc waich
would be found in a paging system. However, when rtirz
slicing was introduced creating a source of external
stimuli a performance improvement was observed. 2

time slice values were of the same order of magnituade

as the settling times of Wharton's and Lynch's algorithms
and therefore we might expect these algorithms to perform
equally well in a paging environment. However, dispatching
algorithms in which processes are ordered according to some
calculated statistic require a linear search of a list for
each disvatching decision made and so entail a certain

amount of overhead.

The dispatching algorithm of MTS overcoi=s the necessity
for this linear search. Here the process which rejuested
I/0 most recently is predicted to be the process which
will request the least CPU service before issuing a
further I/0 request. Thus whenever a Drocess completes
I/0 service it is placed at the front of the disvatcher

queue, thus ordering it correctly with respect to
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its predicted value of CPU service requirement. The
algorithm is also preemptive.and so the process obtains
the CPU immediately.. The notion behind this scheme

is that processes which make frequent demands will
predominantly occupy the leading positions in th.-
dispatcher queue. CPU bound processes will be der-+a-!

to the lower positions.

The queue need never be scanned either to insert =
process in priority order or to select the next rrocess.
The algorithm does however have one distinct di=advartige.
Under the algorithms described by Sherman the pradi-t=221
length of next CPU request for a pbrocess can be retained
during suspension of the process by the core allocation
algorithm. This is not possible under the MTS scheme.
Thus the 'explicit' predictor methods have an advantage

when considering settling characteristics of the alqgocrithms.

Since dispatching occurs at the lowest level of our
hierarchy it is necessary that the algorithm be economical
of CPU time for otherwise it would huaie z significant
effect upon its own settling time. The settling rime of

the dispatching algorithm must of course be signifi cantly

&
[y

less than that of the core.allocation algorithms if
system is to be in a settled state for a sufficient
proportion of the time. Thus the dispatching algorithm

cannot be complex. The.feedback dispatchers described by
Sherman display that simple but successful algorithms can

be constructed.
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6.4

The Implications of the Control Hierarchy

In this and the previous chapters we have discussed the
feasibility of the hierarchy of control which we
proposed in 1.3. By describing the hierarchy i:
feedback terms we have shown that for an operati-:
system of this design to function effectively ce:tain
constraints must be imposed upon the interaction -t

the various levels. The levels themselves can bz
claimed to perform logically separate functions anad
the function of a particular level is one which can
logically be delegated by the immediately higher !-:veo:,
However, we have seen that this is not sufficient foiu

the whole to work as an effective unit.

Dijkstra in designing the THE operating system (Dijkstra,
1968) created levels logically, building each level from
the building bricks of lower levels. Each level of the
THE operating system can be seen as delegating to iower
levels tasks which need not be dealt with in decail at
the current level. The structure cracicd Dijkstra to
infer the correctness.of the implementation of toe
design and allowed simplification of the interfaces
between levels. However,.the THE system is liable to
suffer gross verformance degradation due to thrashing,
and the operators have. the responsibility of monitor:irng
the system's behaviour, and of deciding whether one or
more jobs should be postponed.
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Dijkstra has said that on reflection one of the vital
characteristics of the structuring of the THE system was
that each level of abstraction concerned events that
occurred at appropriately different 'time grains'. The
lowest level concerned process switching (50 sec}); the
second virtual memory management (40 msec. drur rzv2lution
time); the third level operator messages (1-2 se:>), rae
next peripheral assignments (a minute or so) an- ta- e
level process submission (many minutes). He beli.v»>d 1hat
this sort of relationship was essential if a level of
abstraction was to be able.to safely ignore whe: wis “oing
on at lower levels. If it were otherwise each le >l would

be required to involve itself with all sorts of compliicated

interactions.

This is sound reasoning and has mnlayed an important part
in our own choice of control hierarchy. However, cur
studies have shown that the division of tasks u=orn "he
basis of time grain is not a sufficient condition fcr
avoiding the gross performance degradat:.n which cocurs
due to the uncontrolled interaction c¢f thiz variouvs levels
of control. Not only must these time grains be sguvitablv
separate under normal conditions, but their sevarati-n
must be maintained under varying conditions. As tre time
grains of two adjacent levels of control aporoach each
other, increasingly complex interactions occur unti. the

controls provided are no longer adequate and performance
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degradation results. One must ensure that the algorithm
used at each level is stable and settles to that stable

level sufficiently rapidly.

If we take care to design an operating system in ths vay
described above a further possibility arises besi < +ie
important ones of having confidence in its corrsc:m-s- and
avoiding gross performance degradation. It may >l3c »e

possible to analyse our design.

Simon and Ando (1961) studied a technique of variarlc
aggregation and the concept of nearly completely -iz2c-,mmusable
systems applied to the theory of Econometrics. Variable
aggregation is based on.the recognition that in comniex
systems represented by a large number of state variables,

the state variables can be classified into groums sucn that
interactions within groups can be studied as if interactions
amongst groups did not exist, and interactions =zr:nast roups
can be analysed without reference to interactions w:thin
groups. This is trivially true 1f variables within each
group demend only upon variables within the sam2 aroun.

Such a system is said to be completely decomnosabile. Simon
and Ando showed that. the technique still yields gco<
approximations when the interactions between groups arc

weak in comparison to.interactions within groups. Such a
system is said to be nearly completely decomnosable. The

theory of nearly completely decomposable systems also shows
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that it may be possible. to.derive confidence limits umon

the predictions of a model produced by this technigue.

Courtois (1971) has studied the avplication of this

work to the modelling of multiprogramming operatiry
systems and the method should be applicable to tre
hierarchically structured system we have been aiscus=ing.
Here the variables for each level of control woul< ke
aggregated sevarately. With the variables aggrezated in
this way, our hierarchic structure in which the sewaration
of time grains between levels is maintained by st-b.=
controls at each level, ensures. that the system is rnecarly

completely decomposable.

Provided the algorithms of each level of the hierar:ny

were able to maintain the separation of the various time
grains then the decomposition would be valid. Each level

of the hierarchy could be analysed separately and :tzen Ly
combination of these analyses a model of the comnlete cystem
might be achieved. We note that in cases in which tLhe
algorithms used are not stable the sysrtem would nect ke
nearly completely decomposable in all circumstances =nd

the results of an analysis by this technique would rct be

valid in all conditions.
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CHAPTER 7

Conclusions

The intention of this thesis has been to apply the
concepts of feedback control theory to the design and
analysis of resource allocation algorithms in ™ '-¢ -
programming operating systems. In particular we ~a <
tried to emphasise the way in which feedback arises
naturally within the resource allocation componen: of
an operating system. This led us to explore the ./
in which the notions of feedback control could b=
exploited in resource allocation, either to stabilis-
these naturally occuring feedback loops or to
introduce further feedback effects, so as to improve
verformance. We have done this by examining resource
allocation algorithms and their interrelationships

within the framework of a simple control hierarchr.

A hierarchic control structure was chosen because it

is possible to reduce the complexity of rhe resocurce
allocation problem by dealing individuaiiy wits the
various resources and then with the interactions i <ween
the allocation algorithms. Furthermore, the interest
which has been generated in hierarchic structuring by
the work on program correctness, particularly its use

in the design of the THE system by Dijkstra, enhances

the possible value of the study. By studying this
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control structure we were able to display the
importance of the rates at which the resource
allocation algorithms allowed events to occur at
the various levels of the hierarchy. This showzd
by means of the concepts of feedback control
theory the necessity for strict control of thecse

rates.

We were also able to indicate that the constructi-n
of a resource allocation strategy in this hierarchic
manner using stable algorithms would enable us to
fulfill conditions required by the method of Courtc:is.

This method might enable analysis of the strategy.

Detailed study of core allocation algorithms in a
paging environment enabled us to demonstrate that
stable algorithms could be designed and furthermore
were capable of development to provide effective
utilisation of core. The study of the anti-thraspirg
algorithms also provided us with useful insights into

the ways in which thrashing can b= precicitatec,

Our studies have been confined to three areas -
scheduling, dispatching and allocation of core in a
demand paging environment. However, although our
studies have been restricted the results obtained and

the algorithms developed should be of wider application
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and should be of value when adding further levels

to the resource allocation hierarchy.

The most obvious further application of the results
is of the core allocation algorithms to a segmer tad
memory space. Basically we need only replace 'puge'’
by 'segment' in the description of the algorithnms.

However, since segments vary in size, the fetch of
single segment may require multiple deletions. Ixi:

would necessitate modification of the algorithm.

A further problem arises in the application of ti=
drain or delete policies. Because of the varying
segment sizes it is more difficult to predict the
effect of the draining rate upon the processes.

These problems however should be soluble.

Another possible application of the results arises

where it has been found that the paging drum may r=t

be able to hold the virtual memory of all the prccesses
active in the system. This might Lromst the incoroeration
of a further level of storage hierarchy, so that i.ue
virtual memory of certain processes is held on disc.
Access from disc is of course much slower than from the
paging drum and so there is much to be gained in ensurirg
that pages of the highest priority processes OCCURY e

paging drum. This problem is very similar to that of
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deciding which pages should be held in core and
which on drum. Here, however, the time grain is more
coarse. Similar solutions to those used in the
allocation of core may be useful in the allocation

of paging drum space. In view of the slower access
rates it may be more effective to transfer segmenrs
rather than pages and we have already seen how su-h
algorithms might be constructed. We should remerber
that adding this level of resource allocation mc-
require adjustments in the time grain of the

scheduling algorithm.

The necessity of ensuring that the time grains of the
levels of the control hierarchy stay sufficiently
separated applies to hierarchies other than that which
we have described. We have shown how the values of

the time grain are determined by the algorithms employed
in the allocation process. Consequently we have s:iown
the necessity of employing algorithms which have tie
property of maintaining their time grair within
acceptable limits and whose time grain é¢rd setting

time we are able to estimate. We can only achieve this

however if we understand the algorithms concerned.

One by-product of our work has been to increase our
awareness of the ease with which one can fall into tne

trap of developing an algorithm whose behaviour cannot
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in practice be successfully predicted. The richness
of variety and depth of subtlety of the action of tne
simple feedback control algorithms we studied stands
as a warning that even slight complications may
destroy our ability to comprehend the resultinc
algorithm. Yet the typical operating system currt iing
many algorithms whose behaviour is far more
impenetrable than these comparatively simple

algorithms!
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