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term given for calculating the reference statistic when F(t,t+St) is 

zero. It is possible that this discontinuity could cause the behaviour 

shown in figure 4.6. 
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Abstract 

The possibility of enhancing the effectiveness of an 

operating system by the introduction of appropriate 

feedback controls is explored by examining some 

resource allocation problems. The allocation of 

core, CPU and I/O processors_in a multiprogramrni~g 

demand paging environment is studied in terms of 

feedback control. 

A major part of this study is devoted to the applicatLn 

of feedback control concepts to core allocation to 

prevent thrashing and develon algorithms of practical 

value. To aid this study a simulator is developed 

which uses probability distributions to represen t 

program behaviour. Successful algorithms are developed 

employing a two stage page replacement function ':lhich 

selects a process from which a page is then chosen to 

be replaced. Improving the performance of these 

algorithms by using a 'drain nrocess' to aid the 

dynamic determination of the current locality of a 

process is also discussed. 

The complexity of the overall resource allocation 

problem is dealt with by employing a hierarchy of 

individual resource allocation policies. These 

control scheduling, core allocation and dispatching. 



By considering the levels of the hierarchy as separate 

feedback control systems the restrictions which must 

be placed upon the individual levels are derived. The 

extension of these results to further levels is also 

dis cussed. 
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CHAPTER 1 

Introduction 

1.1 Feedback in Onerating Systems 

Feedback effects manifest themselves in various aspects of 

operating sys tems . Deci sions at computer managerren '-. leve 1 

and the detailed strategies of the operating system r:13Y 

equally well cause or be affected by feedback effects. 

A number of examnles have been described in the literature. 

For example, Lynch (1967) discussed the effects of 

in troducing fas t response output devices upon the \,"01 ume 

of printed output, and the tendency of queue sizes to 

stabilise in certain situations. Coffman and Kleinrock 

(1968) and Lynch (1972) described the response of users to 

changes in resource allocation policies. ~'hlkes (1971) 

analysed an algorithm designed to control the number of 

users logged into a terminal system, and Bun t and Hume 

(1971) examined self-regulating operating systems. 

The frequency with which such effects occur and the 

magnitude of the disturbances they can cause points to 

a need for a study of such phenomena in operating systems. 

Further, one is prompted to enquire into the possibility 

of enhancing the working of an operating system by 

controlling and exploiting the existing feedback effects 

and by in troducing further appropriate feedback con trols. 
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1.2 The Area of Study 

In view of the wide range of aspects of operating systems 

in which feedback occurs or is applicable it has been 

necessary to restrict the scope of this investigation. 

The allocation of core, central processor time anc ir.nut/ 

output processors are problems crucial to the eff.ec t.i 'v"2:1eSS 

of an operating system and are topics of general int.E:l""'3t. 

Furthermore various attempts have been made to a9ply 

feedback control to this area. This has been done both 

explicitly, (Shils, 1968; 'i"lulf, 1969), or implicitly, as 

a consequence of design (Denning, 1968b; Wharton, 1971). 

These attemots provide a basis for further study. ",ve 

shall therefore confinB our studies to these resource 

allocation problems. However, it is hoped that the 

insight gained by studies in this restricted field will 

be of value in other asnects of resource allocation. 

The problems of resource allocation arise principally as 

a consequence of multiprograrnnung. This is because of the 

concurrent use of system resources by two or more processes 

which are in partial states of completion. The problem 

can arise in uniprogramming as in the case of a process 

being too large to reside entirely in core so requiring 

overlay techniques to be employed. However, the problems 

are more diverse, complex and of wider interest in the 

case of multiprogramming operating systems and solutions 

should be more widely applicable. It is just such systems 

with which we shall concern ourselves. 
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1. 2.1 Core Allocation 

The form of addressing scheme used will be of basic 

importance in the design of the memory allocation 

algorithm of an operating system. There are four major 

possibilities for the addressing scheme from the 

allocation point of view and these form two class?s. 

In the first the whole program and data of a proc2ss 

must be moved in and out of core, in which case 

relocation mayor may not be possible. In the second 

the program and data may be divided into many pie::es 

which may be of equal si ze (paging) or of variops 

sizes (segmentation). These pages or segments are 

used as the uni ts of allocation of core. 

Segments provide a logical division of the memory space 

based upon the form of the process using that space. 

The Burroughs B5000 and B6500 systems provide a direct 

implementation of a segmented memory. Paging nrovides 

an arbitrary division of the memory space \Vi th the aim 

of easing core allocation problems. 

We will consider segmentation only where it is the 

basis of core allocation. When we subsequently refer 

to segments we mean those as in the B5000 and B6500 

implementations and not those of the IBM 360/67 O~ the 

GE645 where the segments are paged. 
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Demand-type dynamic storage allocation, where pages or 

segments not currently in core are fetched in response 

to an attempt to access them, are particularly 

vulnerable to loss of effectiveness due to mismanagement 

of core·. (Denning, 196 8a; Brawn and Gustavson, 1968). 

One would hope that by suitable allocation schemes 

appreciable improvement would be obtained. Furth-=.nnore 

paged and segmented addressing organisations seem to 

offer opportunities for more varied feedback control 

schemes since allocation decisions can be made in terms 

of smaller units than is possible with other addressing 

organisations. 

Paging is simpler to consider and we shall concentrate 

on demand paging. However it is our belief that much 

we have learned carries over more or less directly to 

segmentation. We will therefore talk in terms of 

demand paging but we also have in mind such systems 

as the B5000. 
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1. 2.2 CPU and Input/Output Processor Allocation 

The allocation schemes for CPU and I/O processors are 

not dependent upon the addressing hardware. There fore 

the methods we develop should be generally applicable. 

However, the work of Denning (1968b) and Randell 6.f'd 

Kuehner (1968) points out the necessity of develc1::-,ing 

an in tegrated strategy for resource allocation. Due 

to the intimate relationship between the progre3.3 of 

the computations a process performs and the pages of 

program and data which must be in core, memory 

management and the allocation of other resources 

should be closely related activities. Thev should 

not be treated independently, rather a decision to 

allocate some resource should be made with regard to 

allocation decisions made for oL~er resources. 

Therefore, there should be an interdeoendence of 

the various allocation strategies. 
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1.3 Imposing a Structure 

In order to deal with the complexity of the resource 

allocation problem it would be helpful if we could 

define some framework within which allocation of an 

individual resource can be made without explicit 

reference to the allocation of other resources. The 

necess ary restrictions which should be placed upc 

such allocations due to the overall int.erdepender: cj_es 

must then occur as a consequence of the structuring. 

A promising structure from the point of view of 

formulating and understanding such interrelations is 

a hierarchy. We have chosen to structure our decision 

process as a hierarchy of individual resource allocation 

policies. Furthermore the interest which has been 

generated in such structuring by the work on program 

correctness, particularly its use in the design of the 

THE operating system by Dijkst.ra (1968), enhances the 

potential value of a study involving a h~erarchy. 

Our hierarchy has three distinct levels with which we 

shall concern ourselves. We shall refer to these a3 

scheduling, core allocation and dispatching. The 

function of the scheduler is to define a priority 

ordering upon the various processes which require 

system resources. The priority order may reflect 

managen~nt policies to favour certain kinds of processes 
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and to provide certain levels of turnaround to batch 

users and response to terminal users. It may also 

incorporate deadlock avoidance strategies. This is 

the most general level. We shall refer to it as the 

highest, all others being subordinate. It is not 

concerned with the allocation of resources but wi tn 

specifying which processes should be allocated resources. 

The second level is core allocation. The allocation 

is performed on the basis of the priority ordering 

placed upon the processes by the scheduler. 

The lowest level of our hierarchy is dispatching. The 

dispatcher is responsible for the allocation of the CPU 

and I/O processors to those processes which have been 

allocated core by the core allocation strategy. The 

dispatcher will not necessarily use or be constrained 

by the priority order imposed by the scheduler. It may 

if desired apply its own priorities to the set of 

processes allocated core by the core allocation algori thm. 
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1.4 Aims of the Thesis 

A hierarchy, and our hierarchy in particular, will not 

necessarily be a satisfactory structuring for resource 

allocation, and we will be concerned wi~~ examining its 

suitability. It is our intention to consider our 

hierarchy in terms of feedback concepts showing ho" 

feedback control might be annlied to govern or irTnwe 

existing feedback effects which occur in resource 

allocation. We shall discuss core allocation first 

since this is the algorithm of nrime importance in a 

demand paging onerating system. 

A major nart of the thesis will be devoted to the study 

of core allocation and we will trv to develon algorithms 

of practical value. To this end \"e ".,ill develon a 

simulator whose narameters are dra\"n from the Ii terature 

and which are renresentative of systems such as the 

Michigan Terminal System. HOT,,,ever, our analyses of these 

algori thms will be concerned ':1i th their quali tati '.2, 

rather than quanti tati ve, performance. T,ve shall be 

particularly concerned ,,,i th their dvnamic behaviour under 

overload conditions. 

We shall then examine in terms of feedback concents the 

relationshins between the levels of our hierarchy. The 

interactions of the scheduler and core allocation, and 

core allocation and the dispatcher will be studied in an 

attempt to derive conditions which are necessary in such 

a structure if it is to be successful. 
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1.5 Structure of the Thesis 

In Chapter 2 various well-established notions of feedback 

control systems are introduced and their importance 

explained by relating them to topics in onerating systems. 

In particular, the elements of a feedback control 3ystem 

and the important concepts of stability and settling time 

are described. A classification of such systems i5 

introduced. The analysis of feedback control and the 

difficulties of applying the analyses to operatipg 

systems is discussed. An example in which some ~leaSL;re 

of success has been achieved is reviewed. 

In Chapter 3 we introduce the concepts we require to 

discuss core allocation. The phenomenon of thrashing 

is discussed and.a structuring of core allocation 

algorithms to ease design problems is introduced. The 

simulation model which we use in our investigations 1S 

then described. 

Chapter 4 reviews applications of feedback to core 

allocation preceding our main study. Four algori t'::UtlS 

are discussed and analysed both in feedback terms and 

by use of the simulator. 

Taking the lessons of Chapter 4 as a basis we develop a 

number of core allocation algorithms in Chapter 5. The 
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main themes of this chapter are the control of 

multiprogramming level and the estimation of the 

core required by each process. The concept of a 

'drain' process is introduced as an aid to the 

estimation of the core required by a process. 

In Chapter 6 we discuss the in teractions between 

the levels of our hierarchy of allocation stratesi2~. 

We analyse the in teractions of the scheduling and 

dispatching strategies with the core allocation 

policy and derive the conditions necessary for 

effective operation to be maintained. 

The application of these results to other areas of 

resource allocation in operating systems is discussed 

and concluding remarks are presented in Chapter 7. 
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CHAPTER 2 

Feedback Control Systems and their 

~ication to One rating Systems 

2.1 Introduction 

The purnose of this chanter is to relate the concents 

of feedback control (Goode and Machol, 1957; Grabbe 

et aI, 1958) to onerating systems and to define the 

terms used in later chapters. Examnles from operating 

systems will be used to illustrate the application of 

the concepts to this field. We will then discuss a 

classification of feedback control systems and examine 

the general properties of each class. Finally the 

analysis of feedback control systems in operating 

systems will be discussed. 

- 11 -



2.2 

2.2. 1 

Types of Control Systems 

Open-Loon Control 

The simplest type of control system is the ooen-loon 

control. Parameters of the control are set and each 

specific setting of the parameters determines a fixed 

level of performance for the controlled svstem. 

A particular example is the original APL'360 system 

(Breed and Lathwell, 1968), the resource allocatio:1 of 

which is greatly simnlified by a number of features. 

Each user has an input/output device of his own, a 

teletype or communications terminal, and is unable to 

command the use of other input or output devices. All 

users are c:onstrained to work within a fixed amount of 

core, their \V'orkspace, which is the same size for all 

users. Simolification also results from all users 

programming in the same language, the internreter of 

which is wholly resident in core. This enables very 

simple resource allocation strategies to be emnloyed. 

The number of workspaces \vhich may be resident in core 

and the maximum CPU time any user rna" obtain before some 

other user receives servi ce are gi ven set values. These 

se ttings Ivere experimented wi th un ti 1 a s atis factory 

level of onerating was observed and then fixed. The 

control is of the open-loop form with the level of 
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performance being determined by the setting of the 

parameters. 

In order to achieve precise control with an open-loop 

system it is necessary to have accurate knowledge of 

the relationships between a number of variables. 

Furthermore, an open-loop system cannot deal wi t~l 

disturbing factors other than those specifically 

incl uded in its design. Experimenting wi th the 

settings as in the APL system is one way of obt3inlng 

knowledge of the relationships. However, the p.cr:_":: 1 5 i cn 

of the knowledge will be determined bv the number of 

settings it is viable to trv. In fact the APL sys~em 

experiences fluctuating performance due to disturbances 

caused by variation in the workload not catered for in 

the control design. The overall result however is 

satis factory. 
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2.2.2 Closed - Looo Control 
I 

This type of control is also called feedback control. 

A closed-loop system can in general deal with all 

disturbing factors without an accurate knowledop 0f 

the relationships between the values of the vari0~ls 

factors and the control action to be taken. The :::,c::or 

which is causing the disturbance need not be kno,·,';). 

It is enough to monitor variations in the oerfol,c,r.:e 

of the system and take action known to cause opp ~'3ir:g 

variations. 

In general purpose operating systems the factors which 

influence the usage of any particular resource are 

extremely complex and subject to many disturbances. 

In such operating systems the use of feedback control 

systems in resource allocation seems to be a natural 

choice. ThiS is not to say that onen-loop control is to 

be discarded. Such control has been successfully used 

in situations in ,.,hich the relationshins are sirl''",lified 

for some reason. However, feedback has a ',Tider 

application in this field. 
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2.3 The Elements of a Feedback Control System 

A feedback control system is a control system which tends 

to maintain a prescribed relationship of one system 

variable to another. This is achieved by comparlng 

functions of the variables and using the result t 

acti vate a corrective mechanism as required. A ft=::edback 

con troller is s upplied with an ideal value for t~,,-: veri ab Ie 

to be controlled. This ideal is called the command '.T3.1 ue. 

The actual speed of a car is an example of a controlled 

variable whose command value is the desired speed.;,:; le::ted 

by the driver. The controlled variable and its command 

value, which may also vary, are the system variables whose 

relationshin is of interest. As a result of a comparison 

of the command value and the measured value of the 

controlled variable the feedback controller manipulates 

the controlled system in order to maintain the required 

relationship. In the car the driver varies his pressure 

on the accelerator so as to match the observed speed to 

the desired speed, the prescribed relationship being 

equality of these values. 

This kind of control is used in those situations in WhlCh 

the system exPeriences stimuli affecting the value of the 

controlled variable. Stimuli may take the form of a 

change of the command value or a disturbance of the 

controlled system due to some external agencv. Both the 
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actual and desired speeds of a car will vary according 

to road conditions which may be thought of as external 

stimuli. 

A typical feedback control system, figure 2.1, ic:ludes 

an outnut measuring device feeding back to an er~-c r 

measuring device which activates a mechanism to '::1)~ly 

corrective action. 
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2.4 Properties of a Feedback Control System 

2.4.1 Stability 

The stability of a feedback control system is a 

consideration of nrime importance. There is in general 

some discrepancy between the value of the controj 1·?C1 

variable and its command value. This is because of 

errors in measuring or because of delay between 

measuring and comparing values. The introduction of 

the feedback loop creates the nossibility that sUF:uL 

may occur at times relative to the lagging feedb2ck 

such that the two are out of phase. Heasuring error 

may also cause the relationship to be incorrectly 

evaluated. The supposed corrective action may therefore 

augment the original error so that it becomes even 

larger. Thus the possibility of instability can be 

in troduced. 

A system is stable if the response to an inout always 

reaches and maintains some useful value within a 

reasonable period of time. An unstable system v;i ll. 

on the other hand produce persistent oscillations cf 

the response and may even drive it to some excessive 

value. 

Ideally a system would maintain zero error despite 

disturbances, respond instantly to any change of command 

- 18 -



value and be entirely stable. In practice comnromises 

are necessary. Increasing the accuracy of a system 

may be accomplished by making the controller more 

sensitive so that it orovides the same increment of 

correction for smaller incremen ts of error. HO\ole':er, 

stability will be adversely affected if the contr:::ller 

is made very sensitive. A corrective action may be 

initiated which is large enough to cause a resoonse 

resulting in a greater error than that initiating the 

correction. This may continue until limited by the 

physical properties of the system. Thus a control 

system must be a compromise between stability and .l0'.1 

error with fast resoonse to stimuli. 

The systems whose stability is of particular interest 

to us are those which allocate core in multiprogramming 

operating systems. Consider a demand paging system in 

which there is no attemot to limit the multiprogramming 

level. Typically there will be an instant at which all 

of the processes currently sharing core will be waiting 

for I/O, either for a missing page or a data transfer. 

The reaction of the dispatcher to the system becoming 

idle will be to introduce a further process to utilise 

the CPU. This however increases core contention so 

increasing the probabili ty that at some time all processes 

will again be waiting for I/O. This leads to the 

introduction of further orocesses. We note that ~~is 
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will be a oersistent rather than a transitory effect. 

Thus when there is sufficient core to satisfy the 

requirements of all processes, the system is stable. 

However, vlhen this condi tion is not met the system 

is uns tab Ie. 

The phenomenon just described is that of 'thrashing'. 

This is a common cause of degraded performance in 

demand paging systems. We will discuss thrashing in 

detail later. 

In a case in which instability can occur it may be 

simpler not to redesign the" primary level of control 

but to add a further level which in effect reduces the 

physical limits of the system. This constrains the 

effects of the instability. These extra controls 

have been termed safety devices. A fixed limit u~on 

the multiprogramming level of an onerating system 

might be such a safety device. Safety devices are 

inefficient in that they permit a oersistent deviation 

from the desired operating level. However, they may 

allow achievement of a level of operation which is on 

average greater than could have been obtained with 

the primary control alone. 
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2.4.2 Resoonse and Settling Time 

The sneed of response of a control system to a 

stimulus is also of fundamental imnortance since 

the control system must comolete its reaction to 

a stimulus within a reasonable time. If this 

settling time is greater than the interval 

between stimuli then the system may never catch 

up. The demands will not be met even if the 

required accuracy and stability are attainable. 
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2.4. 3 The Operating Region 

A control system may be stable under one set of 

operating conditions whilst it is unstable for others. 

The set of operating conditions for which the system 

is stable is called the onerating region. Having 

designed a control system with as large an onerating 

region as nossible there are two ~vays of nreven ting 

degradation of the controlled system when the 

conditions prevailing are outside the operating reginn. 

The algorithms which renresent the controls may be 

altered to ones more suited to the new conditions. 

Alternatively, the conditions themselves may be altered 

to maintain them within the operating region of the 

control system. 

These techniques are discussed by Bunt and Hume (1971) 

and they describe a number of onerating system strategies, 

such as those of Rolfson and Kleinrock, which employ the 

techniques. Rolfson (1968) proposed a strategy to 

regulate the load nresented to a simnle nrocess-at-a-time 

environment emploving roll-in/roll-out, in such a way 

as to give fast turnaround to those nrocesses requiring 

the least execution time. This was achieved by varying 

a limit used to classify such short nrocesses, the limit 

being decreased as system load increased. 

- 22 -



Kleinrock (1970) proposed a narametric scheduling 

,algorithm whose two parameters mav be chosen in such 

a '!tlay as to bias the system against certain types of 

process. It is proposed that on entry to the system 

a process ioins a waiting queue wiL' zero priority. 

The priori ty is increased linearly wi th rate 0. un ti 1 

the process joins those being serviced when its 

priority is increased at rate B. Bv setting 0. and 

B appropriately the strategy may be made to discriminate 

against processes requiring extended execution. Bunt 

and Hurne discuss the manner in which 0. and B may be 

varied dynamically so as to alter the ooerating region 

thereby adapting the system to its changing load. 

A rather more ambitious scheme to regulate the load and 

maintain it within the operating region of a multi

programming system is described bv Wulf (1969). This 

in vol ves moni toring the resource us age characteris':.l cs 

of all processes and the utilisations of the resources. 

Individual resource utilisations in excess of nreset 

values cause orocesses Hhich use the resource heavi ly 

to be suspended. Specific processes may be reactivated 

to use underutilised resources. A decision tree is 

used to implement the control mechanism. 

- 23 -



2.5 A Classification of Feedback Control Systems 

Consideration of the ways in which feedback controls 

may be designed has led us to a classi fication \·.'hi ch 

we have found useful, and vlhich has also been nut 

forward by Wi"lkes (1973). There are three basic 

design types. These may be described as inherenLf 

superim~osed and model driven feedback control 

systems. 
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2.5.1 Inherent Control 

Inheren t or implici t feedback is a nroperty of "L'1e 

system which is being controlled. The svstem controls 

itself in that no explicit measurements are made of 

the controlled variables and the command values are 

set by implication and cannot be changed. An eX2,~~'Dle 

of such a control system is seen in the tendancy of 

queue lengths to stabilise. (Section 2. 7). Such 

behaviour is a property of the system itself, no 

explicit measurement or control being imnosed. It 

is difficult to design stable controls of this form 

since the number of choices for control variables 

is often limited and so design possibilities mav be 

constrained. Thus if such a control system should 

prove unstable the only choice open may be to design 

again completely. 
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2.5.2 Sunerimposed control 

Superimposed feedback control as the name suggests is 

separate from the system being controlled. The 

superimposed controller acts as a monitoring process 

which takes measurements of the variables to be 

controlled. On the basis of comparisons of these 

measured values with previously set command valt.~(--)s, 

actions are taken which directly affect the controlled 

system. Subsequent measurements are taken which assess 

the success of the control actions and these gener clte 

further corrective actions. 

It is a feature of such controllers that they are 

activated by actual errors, and they assess the success, 

or otherwise, of the control actions in terms of the 

errors those actions cause in the actual system. 

Obviously in control systems which rely upon err(jrs 

to activate them, precise control at all times is not 

possible. A further property of superimposed controllers, 

which is important when considering stability, is that 

the information upon which the control is based 

introduces a time lag into the control. Essentially 

a cDntrol decision is taken and no further control is 

performed until the outcome of the control action 

produces an error. 
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A good example of such a system is the OS-3 operating 

system used at Oregon State University (~eeker et aI, 

1969). CPU time is allocated by oroviding service on 

a round-robin basis. Superimposed upon this simple base 

is a hierarchy of feedback control loops each designed 

to alleviate problems caused by its nredecessor. At 

the first level is a control which cYcles a 'higl, 

priority' pointer in a round-robin of the dispatc~e~ 

queue. The core allocation algorithm is biased to give 

the 'high priority' process priviliged core usage. This 

pointer cycles at a rate proportional to real elapsed 

time and the high priority user's demand for core. 

In an attemot to limit the number of active orocesses 

with high core demand, a further control is superimposed. 

This suspends processes whose core demands exceed a 

given value in the period taken by the high priority 

pointer to pass from one process to the next. Processes 

are suspended when page traffic is heavy as defined by 

a further monitoring loop. 

Suspended processes may be reactivated orovided ~age 

traffic is light, which is defined by yet another control 

loop. Each loop may also alter the oarameters of each 

of the other control looos. 
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The 08-3 system provides an excellent example of 

superimnosed feedback con trol. However I ".·lhether 

it is effective feedback control is difficult to 

say since analysis of a system of such comnlexi tv 

would be difficult indeed. 
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2.5. 3 Model Driven control 

The third design type is the model driven control system. 

These control systems have found wide anplication in very 

complex situations such as the control of chemical 

manufacturing plants (Smith, 1970). As with the 

superimposed control systems the controller is se',a'-ate 

from the system to be controlled and receives inf,r,ation 

concerning the controlled variables by monitoring t~e 

controlled system. The basis of the model driven systems 

is a model, either mathematical or simulation, of the 

system to be controlled. Pronosed corrective actiC'!ls are 

first applied to the model and the eventual control action 

taken is based upon the success predicted bv the model. 

Contrast this with the superimposed systems in which 

control actions are in effect tested only unon the actual 

system. 

The model driven feedback control system may be thought 

of as a synthesis of open-loop and closed-loop controls. 

The model forms the open-loop component, accepting 

parameters and by a deterministic nrocess l1redicting 

the values of the control variables which will provide 

the required performance in the situation snecifiedby 

the parameters. The inadequacies of the model are 

mitigated by the feedback of information provided by 

the closed-loon component. 
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These systems provide far greater scone for the 

elimination of instability due to the flexibility 

of the model which allows very detailed examination 

of a situation and the inclusion of special treatment 

of exceptional cases known to cause problems. Hmo/ever, 

the performance of the controlled system depends 

heavily upon the design of the model and accurac' 

of the information supplied to the model by the 

feedback component. 

These controllers are a relatively recent develonlilent 

being associated with the introduction of computer::: 

into the control mechanism. The comnuter provides the 

speed and flexibility necessary to implement the control 

model. 

Application of this technique in operating systems has 

so far been limited. Wulf (1969) utilised this f~rm of 

control in a comprehensive resource allocation scheduling 

strategy in an operating system. It has also been used 

in those core allocation nolicies related to the ~'lorking 

Set Model of program behaviour. Denning (1968b) ~ro~osed 

a scheme using the Working Set ~10del and it has also been 
,. ,. 

applied in the I.R.I.A. ESOPE system (Betourne et aI, 

1970, 1971). Discussion of these schemes is deferred 

to Chapter 4. 
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2.6 Discrete Control 

The use of computers to implement control of systems 

which are essentially continuous implies the need to 

incorporate analogue to digital conversion. This has 

led to the development of sampled control systems. 

Here the values of the con trolled variables are S 3..:':'<Led 

at equally spaced instan ts. The sampled data is th-:::n 

smoothed so as to simulate the continuous naturE: ,jf :;:': 

original variables. The smoothing operation imnii?s 

the use of previous values and these provide the fee, J.ck. 

Techniques for handling sampled information are of course 

applicable to the problem of controlling a computer system. 

A notable example of such an anplication is the page 

replacement strategy employed in the HTS system on the 

IBM 360/67 at Newcastle-Upon-Tyne University until recently. 

The strategy depends upon special hardware functicr-;hich 

sets the 'reference bit' of a page whenever that page is 

accessed. The reference bits of all pages in core are 

examined at appropriate intervals and information concerning 

the usage of the pages is compiled in the form of :eference 

statistics, one for each page. At these times the reference 

bits are reset. When a page replacement is required that 

page in core ~"hich has the lowest valued reference statistic 

is selected to be replaced. 
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A combination of discrete control and modelled control 

is well suited to a control system involving a computer. 

In particular such techniques can be emoloyed in the 

design of an operating system for a computer. The work 

of Wulf (1969) is a striking examole of their use. Ive 

will discuss the application of these and other 

techniques when we examine the resource allocati::'n 

problems in detail. 
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2.7 Positive and Negative Feedback Effects 

Two distinct naturally occurring forms of feedback effect 

may be distinguished. These are negative feedback, which 

tends to reduce the measured deviation of the control 

variable from the command value, and Dositive feedback 

which tends to amnlify this deviation. We are :i~terssted 

ir. these naturally occurring effects since we mC" "-';h to 

induce them in the controlled system. Alternatively ' ... 'e 

may be able to use the feedback effects which aL-'?c'idv 

occur in the system to form part of the control itself. 

An example of negative feedback occurring in an oper:3.ting 

system is that concerned with the stabilising of queue 

sizes. Service rate may rise as the queue for service 

increases due to the economies of scale. This increase 

in queue size can be balanced by the reduction of the 

arrival rate due to suppression of the generating 

subsystem. This means that queue lengths are stabilised. 

{Lynch, 1967). 

An examole of positive feedback is the effect of ~mDroving 

turnaround time upon the output/compute ratio. As the 

turnaround time decreases the user tends to replace mass 

reporting techniques with sequential reporting, as has 

happened with the introduction of on-line terminals. A 

drop in the volume of output should reduce turnaround 
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further, and so we have a self-reinforcing effect. 

(Lynch, 1967). The magnitude of a positive feedback 

effect is eventually limited by physical properties 

of the system. 
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2.8 The Mathematical Analysis of Control Systems 

Much effort has been made to produce mathematical 

analyses of control systems. Control systems belong 

to the domain of the engineer and for this reason the 

analyses are concerned with ootimising the r:>erforl~ance 

of the system under control. The closely rela t, d :- crJi·:: 

of maintaining stable operation has also received .-:mch 

attention. Of interest in this context is how t.< 

control system will react to various stimuli, stL'c:ies 

of accuracy, stability and se ttling time being [;.':L1:· ',,'f, '~n 

the command value is varied in some regular manner. 

The problems to which the engineers have aOPlied 

feedback control have been the control of systems which 

are essentially continuous in nature. Great success has 

been achieved in the control of motors and feedback is 

an essential element in a wide range of electronic 

equipment. This background has led mat~ematicians to 

search for general models of continuous feedback systems 

which are mathematically tractable. 

A range of powerful techniques are now available to 

study such systems and many criteria exist for determining 

their stability. Typically such techniques require that 

the 'equations of motion' of the system be written down. 

An equation of motion represents the dynamic manner in 
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which a controlled ~ariable is affected by the control 

actions. It is represented as a differential equation 

in the controlled variable. The command value is then 

represented by various functions, the two of most 

general interest being a step function, which is useful 

in determining settling time, and a sine functici, '.':1.-, ich 

is used to study stability and accuracy. 

The Laplace transform is an important tool in th~se 

analyses and by using its discrete analogue, the~-t~ansforrn, 

much of the work can be carried over to systems ir. ',..;:-11 cn 

the variables take on discrete values. These results 

can be applied to sampled systems. 

Goode and Machol (1957) and Grabbe et al (1958) discuss 

the topics we have mentioned in some detail. 
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2.8. 1 Difficultv of Aoplication to Onerating Systems 

A common feature of the control systems analysed in 

the literature is that the equations of motion of the 

systems are express able in a convenient mathematical 

form. The study of the natural phenomena typically 

controlled by such control svstems is well founc-~·2c. :md 

the basic relationships of the variables well est:.;):!. '!.s~ed. 

Thus provided one is sometimes prepared to accept 

computational solutions rather than closed form solutions, 

the stability and settling tirre of the control ;::an }/~ 

examined. This, however, is seldom the case with operating 

systems. 

Essentially, we must be able to exnress mathematically 

the way in which the error correcting mechanism of the 

control affects the value of the controlled variables. The 

most frequent con trol action used in operating systems 

involves altering a variable related to the controlled 

variable rather than the controlled variable itself. For 

example, contention for core is usually altered by varying 

the multiprogramming level of the operating system. Such 

a controlled variable as core contention here is said to be 

indirectly controlled. 

Very little is known about the ways in which the various 

elements of an operating system interact and the relationshios 
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which hold between the basic variables. ;'le are certain::'y 

not able in general to 'I7ri te dOvffi a mathematically 

tractable function representing the changes caused in 

system variable by altering a related variable. Our 

general inability to.produce the required equations of 

motion prevents us from taking advantage of the 

mathematical analyses available. 
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2.8.2 Analysis of an Automatic Load Adjustment Algorithm 

One instance in which a feedback control anolied to 

resource allocation was successfully analysed is 

described by Wilkes (1971). He deals with the 

adjustment of a number of console users on a 

time-sharing system. The control comprises two 

algori thms. The first makes a periodic predi ctiO:l 

of the number of processes which could be allowed 

to enter the system without causing overloading. 

The second adjusts the number of users able to enter 

processes so that the average number of nrocesses 

actually entered is as close as possible to the 

target number predicted by the first algorithm. 

It is possible to write down a recurrence relation 

for the number of orocesses in the system at a given 

time in terms of the previous values of that quantity, 

the target number which is a weighted mean of previous 

values of the number of orocesses in the system, and the 

number of processes leaving the system. Initially Wilkes 

considered the case. in which a decision to increase or 

decrease the number of users is put into effect without 

delay. It is possible to solve the resulting linear 

difference equation and study the behaviour of the roots 

of the equation. This allows one to examine the stability 

of the control. 

- 39 -



Wilkes extends the analysis to cases in which the user 

is given a warning that he is to be logged out of the 

system and is given a period of grace to tidy up his 

work. The sampling time of the control was taken to 

be a multiple of the warning time. Again it is possible 

to derive the resulting linear difference equation and 

examine its roots. Wilkes was able to show that 

instability will be introduced whenever an attempt to 

estimate ahead over an interval greater than the interval 

used for calculating the running mean unon which the estimate 

of the number of processes entered into the system is based. 

Wilkes was able to carry the analysis through because he 

was ab'le to l?roduce the equation of motion in each case. 

These equations could be derived because of the simole form 

of the control action which was to directly alter the 

controlled variable, this being the number of processes 

in the system. In such a situation one needs no knowledge 

of any special relationships between system variables for 

one to express the effects of the control action upon the 

controlled variable. 

In general we will be unable to analyse the system we are 

controlling. Indeed itis in just such situations that 

closed-loop control is invaluable. It shields us from our 

ignorance of basic relationships, which if known could be 

used for open-loop control. 
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CHAPTER 3 

Process Behaviour, Thrashing and a 

Core Contention Simulator 

3.1 Relevant Topics Concerning Program Behaviour 

Thrashing provides such an outstanding example of a 

feedback instability in operating systems that it is 

surprising it has not been studied from this point of 

vievl. In this chapter and the next two vIe will discuss 

the problem of thrashing and examine a number of core 

allocation algorithms which employ feedback control. As 

a basis for this discussion we will briefly review 

relevant tODics concerning nrocess behaviour. 

A number of studies of ~rocess behaviour in a demand 

paging environment have been carried out. (E.g. Fine et 

al, 1966; Coffman and Varian, 1967; Brawn and Gustavson, 

1968; Jose1)h, 1970). Each of these studies shmved a 

distinct relationship bet'veen page fault rate. and the 

amount of core storage that a nrocess is constrained to 

use. The page fault rate remains at a reasonable level, 

increasing slowly as the number of pages of core available 

to the process is decreased, until a critical number of 

pages is reached. At this point the nage fault rate rises 

very rapidlv indeed. The cri tical number came to be knovm 

as the 'parachor' of the nrocess (Randell and Kuehner, 1968). 

This phenomenon can be explained in terms of 'locality of 

reference'. The process concentrates its references to its 
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address snace in subsets of its total number of pages 

during intervals of time which may be significant fractions 

of its total running time. We refer to the subset of the 

address space which is being referenced during some 

interval as the 'locality of reference' of the process 

during that interval. 

A process can run without any great hindrance fro:-:l l),'.ge 

faults in an amount of core smaller than the total address 

s~ace, nrovided it has sufficient core for its current 

locality of reference. However, if the number of pages 

of core available to the nrocess is less than the number 

of ~ages in a subset, some frequently referenced nages will 

need to beheld on backing store and a higher nage fault 

rate will be incurred. 

We are assuming in this argument that there is an algorithm 

capable of maintaining in core the current locality of any 

individual nrocess, when sufficient core has been allotted 

to that process. Such an algorithm does exist. It is the 

Least Recently Used (LRU) page deletion algorithm. 

(Belady, 1966). 

The locality of reference may change graduallv with the 

progress of the nrocess. This may occur through the same 

section of thecom~utation accessing different data pages 

or by the progression of the nrocess through its various 

stages. Sudden changes of locality may occur due to 
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complete switches of action as may occur in the nhase 

changes of a comniler. 

Denning formalised the concept of locality of reference 

by his working set model of process behaviour. (Denning, 

1968a). The working set of a process at time t is defined 

to be the set of pages referenced by the process during L~e 

interval (t-T, t), where T is a fixed period of tLT·o. The 

working set mode 1. is an a ttemnt to nroduce a rna the'rlati cal 

representation of the notion of locality and a number of 

interesting results have been derived from it. h01vever, 

we have found that in examining core allocation algorithms 

we do not require to discuss locality of reference as 

formally as t~e \'lOrking set model allows. We have found 

the concept of parachor easier to deal ,vi th and sufficient 

for our needs. 

Somewhat confusingly parachor is but one of the several 

meanings which has been associated with t1-J.e term working 

set. It is important to recognise t.hat these meanings 

relate to distinct concepts. Denning's definition of 

working set implies observing L1-J.e localitv of reference 

during intervalsof.equal duration. The working sets are 

thus the observed localities during these intervals. The 

parachor is the number of pages of core required by the 

process in order for it to run without undue interuntion 

by page faults. Thus it is a rather less nrecise quantity 
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than that of Denning. We observe that the narachor is in 

effect an average of the sizes of the localities of 

reference through which the process nrogresses, where 

each size is weighted by the number of page faults 

occurring while the program is in that locality of 

reference. 

The term working set has also been associated wit~ a 

style of organising core allocation. We shall discuss 

this in 4.3. 
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3.2 The Phenomenon of Thrashing 

The high expectations of demand paging systems were 

rudely dashed by the appearance of the ohenomenon of 

thrashing. Thrashing is recognised L~rough its symntoms, 

namely poor CPU utilisation, high page traffic be'~"leen 

core and backing store and degraded response. So 

deleterious is the effect of thras~ing upon the 

efficiency of an operating system that the utility 

of paging systems has been seriously questioned. 

Fine et al, 1966; Varian and Coffman, 1967). 

(E. g. 

Denning (1968a) traces the cause of thrashing to the 

relatively long time needed to transfer a required but 

absent page from backing store to core. Core may be 

required to fetch an absent page. It will be obtained 

by retiring a page which is resident in core onto backing 

store. However, the retired page may have been an active 

page of the process requesting the absent oage or of some 

other nrocess, so resulting in a nossible chain reaction 

of page re~lacements. This chain reaction can occur 

more rapidly than a ~age can be transferred from backing 

store. Thus further active pages of a nrocess can be 

removed from core before the absent page is available 

and so thrashing is observed. 

We see then that the problem of allocating core so as to 

avoid thrashing is first one of ensuring that each orocess 
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which is allowed to obtain core has sufficient core 

to accommodate the pages in its current locality of 

reference. We must then ensure that these ~ages of 

core are occupied by the pages of the current 

localities of reference of the processes. The latter 

is not a difficult nroblem. In avoiding thrashin0 it 

is the manner in which the core is nartitioned amongst 

the processes which is of imnortance. 

Core may be shared amongst the processes com~eting for 

it in a number of ways. These may be characterised 

by what proportion of its current locality each process 

has resident in core. It has been demonstrated that a 

process requires a certain set of pages (which 

unfortunately is in general not nredictable) to be 

in core in order that it may nrogress during some interval 

without undue interruption caused by the need to obtain 

further information from backing store. 

The ideal nartitioning of core is that in which all 

processes allowed to compete for core have all of their 

current localities in core. In t~is situation each ~rocess 

will progress at a favourable rate \.;hen it obtains the CPU. 

The CPU utilisation will be comprised of mainly user 

initiated activity with little overhead caused by page 

faults. In addition page traffic will be low. It should 

be noted that we wish to utilise core with the current 

- 46 -



localities of as many processes as possible. The larger 

the number of nrocesses available. for dispatching the 

greater is the likelihood that there will be a process 

able to use the CPU when other processes are waiting for 

completion of I/O operations. CPU utilisation is thus 

improved. 

The other general situation is that in which not all 

processes, and possibly none, have their current localities 

in core. Here if uncontrolled contention for system 

resources is allowed then thrashing is sure to occur. If 

processes compete on an equal basis then fair sharing:lill 

result in no process obtaining sufficient core. 

It is possible to construct special.cases of the over

partitioned state which are not unfavourable. Consider the 

case in which a priority ordering exists for usage of the 

CPU. Suppo~e the highest nriority processes have their 

current localities in core and are sufficiently active to 

cause high utilisation of the CPU. The lower priority 

processes seldom obtain the CPU and so cause little naging. 

Thus although core mBy be said to be overpartitioned, 

thrashing might not be observed. However, if no further 

control is imposed this special situation is unstable 

because during their infrequent periods of CPU utilisation 

the lower priority processes will cause the higher priority 

processes to lose parts of their current localities from 
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core. This will in turn affect the CPU utilisation 

of the higher priority processes, allowing the lower 

ones more frequent periods of CPU usage. The core. 

allocations of the higher ~riority processes will be 

eroded and thrashing will eventually occur. 

Due to the unpredictability .of. current locality and 

our desire to optimise the underpartitioned state, our 

attempts at optimisation could cause.overnartitioning 

to occur. In the overpartitioned state we require that 

some of the processes have the whole of their current 

localities in core and thatthe.progress of these 

processes is not adversely affected by contention for 

core with the remaining processes. For this reason it 

is necessary that overpartioning is rigidly controlled. 

Thus we require to design control. systems which,dll 

ensure that core is underpartitioned or is ove~artitioned 

in a controlled manner. 
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3~3 Structuring the Core Allocation Algorithm 

The existence of the kind of process behaviour we have 

described leads to the develonment of nage reolacement 

strategies which will 'learn' the localitv of reference 

of a process and ensure that this set of oages renains 

core-resident. Belady (1966) concluded as a result of 

studies of single processes that the ideal algorith~ 

should include some accumulation of data on the oast 

references of the process. In other words that one 

should use some form of feedback in the core allrlCation 

policy. 

The most basic attemnts to_apply feedback control to 

core allocation occur as apnlications of nrocess 

behaviour studies which involved single orocesses. 

Belady analysed a number of strategies which use the 

setting of certain bits associated with each !Jage of 

the process to orovide feedback. The relative merits of 

the strategies were_discussed and certain nolicies were 

shown to be very effective. Hovlever, the generalis ation 

of these strategies applied globally over a set of 

processes have not had the hoped for success. Thrashing 

has been a common feature of ooerating systems employing 

such strategies. 

The problem is that these globally anplied algorithms 

take no account of the ownership of any page. Thus ,-lhen 
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core is overnartitioned pages may be reolaced 

indiscriminately from those processes which do and 

those which do not have their current localities in 

core. Essentially the amount of core which any process 

may obtain is dependent unon the memory demand 

characteristics of the other processes comoeting for 

core. Thus it is not possible to guarantee that any 

process will be able to retain its current locality in 

core. Such an algorithm must admit the possibility of 

thrashing which once it occurs is a nersistent effect. 

Allowing the amount of core storage which a orocess may 

obtain to be governed by the memory demands of other 

processes in an uncontrolJed manner is therefore not a 

sound principle. The page fault rate of a orocess should 

be bounded by a function of its own demand for core and 

should not be unboundedly inflated by nage renlacements 

caused by other processes. Otherwise the possibility of 

thrashing occurs. This implies that the measure of core 

demand should deoend.only upon the nrooerties of the 

process. Therefore there is a case for structuring the 

core allocation strategy so as to minimise the interaction 

between the core demands of individual nrocesses. 

In a demand paging operating system the basic allocation 

problem is the choice of which page to retire. If a page 

which does not belong to a current locality is removed 
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then a good choice has been made. The difficulty with 

page replacement is that the fact that a nage is no 

longer needed is signalled by a non-event. After some 

point in time the page will cease to be referenced for 

a period which is long when compared to the times between 

references to pages being currently used by the process. 

In contrast a page fetch is triggered bv a dem~~d from 

the process. 

The problem of deciding which pages of a nrocess may be 

chosen for replacement has been widely studied. T~e work 

of Belady (1966) points to a number of suitable strategies. 

We could apply any of these strategies to a single process 

chosen by a control at a higher level of the core allocation 

algorithm. It is the problem of this level of the allocation 

algorithm to minimise the interaction of conflicting demands 

and ensure that core is.partitioned in a controlled and 

effective manner. 

The core allocation algorithm might therefore be structured 

as a two-level hierarchy. The principal algorithm selects 

on the basis of core partitioning a nrocess from which a 

page is to be deleted. The subordinate algorithm selects 

a particular page for replacement from amongst the pages of 

the chosen process. Such a structuring allows t~e relatively 

well understood problem of page replacement to be disentangled 

from the problem of controlling core partitioning to nrevent 
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thrashing. That is we separate the problems of allocating 

sufficient core for the current locality from those of 

ensuring that the pages of the current locality occuoy 

the allocated pages. 

In our studies we have tended to disregard the page 

replacement algorithm, assuming that a suitable candidate 

exists, and have concentrated unon develooing the nartitioning 

algorithm. We justify this by observing that Belady's studies 

show that the performance of good and bad replacement policies 

may differ by a factor of. two. The performance of a system 

may well be degraded one thousand times by thrashing! 
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3.4 Difficulties of Designing Feedback Control Systems 

The design of effective core allocation strategies which 

employ feedback control is not a simple matter. The 

synthesis of a feedback control system is an exercise 

for which there are few theoretical aids. Having completed 

a design adequate methods, both mathematical and simulation 

(if the problem proves mathematically intractable) are 

available to assess stability and effectiveness. In 

contrast, the synthesis is primarily a matter of engineering 

judgement. Although various criteria have been a5va:tced 

(Grabbe et al, 1958; Goode and Machol, 1957), the complex 

and diverse factors which influence design are not amenable 

to simple mathematical representation. 

Since judgement is a product of experience the course taken 

in this thesis was to design various core allocation 

algorithms, predict their performance and then use simulation 

to confirm or disprove our assertions. To this end a 

simulation model was constructed. This model is outlined 

sufficiently in the follmving sections to allow interpretation 

of the results produced. 
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3.5 

3.5.1 

Introduction to the System Simulator 

Design Objectives of the Simulator 

The primary r2quirement of the simulator was that it 

should be caoable of displaying contention for core 

among a number of simulated ~rocesses under a variety 

of core allocation and scheduling ~olicies. We furth'2r 

required that the level to which any element of t~e 

system was simulated could be varied. This was to allm.., 

detail to be added at any noint at which it was found 

necessary or useful. This led to a highly modular design 

where the various modules renresenting the algorithms and 

hardware interfaced simoly with the basic timing loop of 

the simulator. 

The second major consideration was the need to minimise 

the execution time required since we wished to perform 

large numbers of simulations. The basic timing 1000 of 

the simulator is therefore event driven. It recogni ses 

two basic event tyoes. These events are the 'internal 

interru~t', indicating that a nrocess is requesting 

service (other than CPU), and the 'external in terruot I 

signalling completion of the requested service. End-of

time-slice is also imnlemented in the basic timing cycle. 

To further minimise execution time it was decided to 

simulate the characteristics of the nrocesses rather 
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than to employ the more realistic but more e~ensive 

traces of real process (e.g. Conti et aI, 1968). The 

notion of generating process characteristics is 

extended to the simulation of paging behaviour. Here 

CPU time used between demands for pages is also 

modelled by the use of a probability distribution. 

Since the simulator was required to allm'l comparison of 

behaviour of the system under different onerating 

condi tions and resource allocation algori thms, 

repeatability of the simulated nrocesses was of 

importance. Much effort was put into ensuring that 

process generation was reneatable and that each process 

behaved reneatably in its demands for I/O and CPU 

service. This was achieved by supplying each process 

with its own seeds for the random number generators. 

Thus a process always generates the same sequence of 

service requests. 

Experiments with the simulator were aimed at giving 

qualitative insight into the operation of the algorithms 

used. Therefore nrecision in the modelling of hardware 

was not of great concern. The I/O. devices \'Iere simulated 

only to the level of a nrobabili ty distribution of tirre 

taken to comnlete a requested operation. The distribution 

used was the negative e~onential cut off at five standard 

deviations above the mean, (as in all cases in which we 
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employed e~onential distributions), with a mean of 30 

milliseconds. The individual pages of core were not 

modelled. However, the paging drum, which has a 

profound effect upon the working of a oaging system, 

was carefully modelled. This model included sector 

queuing and carefully accounted for latency considerations. 
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3.5.2 The Simulated System 

The system that has been simulated consists of a central 

processor, core storage and a paging drum. Each process 

is modelled as an alternating sequence of intervals of 

CPU usage p1.lllctuated by page faults and T-laiting for I/O. 

In our model we regard paging to be concerned vJi th tj)e 

drum and waiting to be conr.erned wi th dis c I/O. :"le do 

not model contention for I/O devices nor do ''Ie reouire 

that any pages of a process be regarded as I/O buffers 

which are required to be in core during I/O acti vi tv. 

The simulation allows various drum organisations to be 

modelled. The scheme employed in the simulations which 

we shall describe is a sector-queued organisation with 

priori ty ordering of the sector queues. We simulate the 

drum as being able to revolve every 17.5 milliseconds and 

capable of holding 4.5 pages !?er. nhysical track. ~Vl th 

each physical track divided into nine sectors it lS 

possible to arrange that one page may be read in 2/9 of 

a 'physical' drum revolution (1/9 of a 'logical' drum 

revolution). This scheme is used in the Michigan Terminal 

System (MTS) at the University of Ne"lcastle-upon-Tyne 

where an Im1 2301 drum is used. 

A queue of requests is maintained for each sector. The 

maintenance of these queues is idealised in our model. 
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We assume the supervisor to be capable of maintaining the 

queues instantaneously. Thus reordering of a sector queue 

may take place up to the instant at which the drum read 

is to be performed for that sector. That is to say the 

time to set up channel programs for the drum is not 

modelled. We make the further assumntion that the system 

is aware of the completion of the oage transfer from the 

instant at which the transfer is completed ~hysically. In 

a real system this 'oosting' might not occur until t~e end 

of the logical drum revolution, or some other convenient 

time. 

The sector queue which a oarticular oage request will 

join is selected randomly with each sector queue having 

an equal probability of being chosen. 
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3. 5. 3 The Process Model 

Each simulation experiment can involve one or more 

di fferent classes of process ~ Each process is 

represented by a process profile indicating the 

si ze of the parachor and the amount of. CPU and I/O 

time required. The oarameters of indi vidual 

processes are obtained by using the parameters 

of the profiles as the mean values of aonronriate 

probability distributions. The size of the parachor, 

PCS, is sampled from the uniform distribution 

U(X - %X, X + %X), where X is the nrofile's narachor 

size. The amounts of CPU time, CP UTI ME , and I/O time 

required are selected in a similar manner. 

Initially one process corresponding to each profile is 

activated. The processes of each profile have a 

regeneration period specified. A process corresponding 

to each profile will be entered into the mix at an 

interval after the previous process from the orofile 

was generated. The interval is samoled from the uniform 

distribution U(X - %X, X + %X), where X is the regeneration 

period for the profile. Regeneration continues until 

a preset number of processes have been generated. 

The choice of the number of ~rocesses to be generated 

governs the simulation time, the simulation being completed 
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when the last process completes •. We have set this 

parameter at 50 ~rocesses. This choice coupled 

with the process profiles described in 3.5.6 

gives a simulated time of between 500 and 1200 

seconds depending upon the resource allocation 

algorithms being simulated. 
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3.5.4 The Paging Model 

Most paging simulators keep track of.each individual 

page. They areeither.capab1e.ofactua11y executing 

programs or are driven byaddress.traces previously 

gathered from the execution.of.prograrns. Such 

simulators are extremely laborious even for modelling 

the behaviour of a sing1e.process •. Our model keeps 

track only of the number.of pages which each process 

has core-resident and uses appropriate probability 

distributions to simulate the status of those ~ages. 

The drawback of this method.is that it is very difficult 

to produce an adequate model of an algorithm which uses 

the properties of individua1.pages. The extent of the 

difficulty may be judged from the simulation of the LRO 

derivative described in 4.4. 

The amount of processing which a process will achieve 

before it suffers a page fault is calculated from a 

probability function which has as parameters the number 

of pages of the process currently in core and the 

parachor of that process. 

The form of the probability distribution of the time to 

next page fault is based on published data, most notably 

that gathered on the M44/44X system, (Brawn and Gustavson, 
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1968). It attempts to model two distinct aspects of 

the behaviour of processes running in a naging 

environment. The first of these concerns the 

relationship that has been observed to hold between 

page fault rate and the amount of core that a process 

is allowed to use. The second aspect of process 

behaviour that is modelled is the gradual 'drift' of 

membership of the current locality. 

The observed relationship between page fault and 

available core has been modelled in a perhaps over-

simplified fashion by taking the probability that a 

given instruction causes a page fault to be 

-16 
2 

RCP 
pcs 

where Rep is the number of pages which the nrocess 

has in core, and PCS is the parachor of the ~rocess. 

Even more arbitrarily we have assumed that the gradual 

drift of locality is steady and involves the process 

completely changing its current locality of reference 

three times during the course of its execution. The 

appropriate probability is 

3*PCS 
CPUTIME* 1000 

where CPUTIME is the total CPU time, in milliseconds, 

required by the process. The factor 1000 converts this 

to instructions. 
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From the combination of these two factors we obtain that 

the expected length of processing time that a process 

will achieve before page fault is given by 

m = 

where 

k = 

l-k 
k*lOOO 

R~ 
-16 PCS 

2 

1 

milliseconds 

+ 3*PCS 
~UTIME*lOOO 

+ 3*PCS 
~UTIME*lOOO 

is the per instruction probability of a page fault being 

caused by a given instruction. We use m as the mean of 

a negative exponential distribution. This probability 

distribution was chosen for its 'lack of memory' property, 

which allows us to recompute the time to next page fault 

each pass through the basic timing 1000.. PCS and CPUTIME 

have the values described in 3.5.3. 

It may be argued that the parameters of our naging function 

are difficult to justify. We accent this but we feel that 

there is no need to attempt to refine the function. We 

have simulated our algorithms using two further paging 

functions which are described iri section 5.7. We see 

from comparisons of the simulations with these three 

functions, figure 5.18, that although the results differ 

quantitatively, the same qualitative behaviour is observed 
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for the algorithms studied. Since our interest is in 

the behaviour of the algorithms, this insensitivity 

to the exact form of the paging function diminishes 

the importance of providing a truely realistic ~aging 

function. 
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3.5.5 Simulator Outnut 

Output from the simulator is in three forms. These are 

summaries of CPU and I/O usage and average queue lengths, 

the 'core map', and log information at the start and end 

of each process. 

From the summaries over specified intervals and the 

whole simulation we can observe the gross effects of 

varying the parameters of the system. An example of a 

summary is shown in figure 3.1. Typically we plot this 

information giving graphs such as CPU utilisation agoinst 

core size. An example is given in figure 3.2. These 

graphs have proved useful in indicating the susceptibility 

or otherwise, of an algorithm to thrashing. 

The core man is an aid to insight in to the detailed 

behaviour of the various algorithms simulated. An example 

is shown in figure 3.3. The core map gives a pictorial 

representation of the way in which the core is partitioned 

amonst the processes in the mix. A simi lar devi ce was 

employed by Belady when working on the IBM M44/44X at the 

IBM T J Watson Research Centre, Yorktown Heights, New York. 

Each character of the core map represen ts a page of core, 

the code being the process number modulo ten. Thus 5 

represents a page belonging to the 5th, 15th, 25th, etc., 

process introduced into the mix. 
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Since codes are laid out according to the numerical 

order of the processes we can readily deduce from the 

other contextual information provided by the simulator 

the ownership of any page. Each page of core is 

represented by the code of the process occU9ying it, 

or by an '*' if it is unoccupied, or by an 'L' if it 

is a page into which a read-in from drum is taking ~lace. 

(Such a page is not credited to a process until the 

read has been completed since the page must not be 

available for replacement until the read-in is complete. 

'L' represents 'locked in core'). 

The contents of core may be dis~layed at any preset 

interval. A trace showing core contents every simulated 

second has been found adequate. Such core mans have been 

our major tool in confirming our predictions or under

standing the behaviour of the core allocation algorithms. 

They have led on several occasions to the development of 

new a~gorithms. 

The process log information provides a valuable complement 

to the core map. It aids the identification of the 

codes in the map. It also records the parameters of 

the processes. In addition it is useful when examining 

the service provided_to the various classes_of process. 

The ratio of the time a process spends in the system to 

its CPU usage is of importance here. This 'stretch factor' 

is a useful guide to the ability of the system to provide 

effective service. An extract from a nrocess log is given 

in figure 3.4. 
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3.5.6 The Simulated Mix 

The simulation model described above has been used to 

conduct a series of experiments determining the behaviour 

of various resource allocation strategies. The \vorkload 

simulated in the majority of these experimen ts ' . .,ras an 

attempt to model a mix representative of that occuring 

on MTS at Newcastle. The model workload is comoosed of 

three cornoonents each 'tlith their own orofile. 

a) Small processes with a parachor of 5-15 pages and 

of the order of 1 second of CPU time and 3 se -:-c)nds 

of I/O time. These were intended to represent 

interactive work such as editing. This type of 

work was estimated to demand 10% of the available 

CPU time. 

b) Medium processes with a parachor of 15-45 pages 

and of the order of 20 seconds CPU time and 20 

seconds I/O time. These were intended to represent 

the comoilations and runs of simole nrograms which 

are the bulk of the work presented to MTS. These 

were estimated to demand 40% of the available CPU 

time. 

c) Large processes requiring 25-75 pages and of the 

order of 100 seconds of CPU time and 33 seconds of 

I/O time. These were intended to renresent the 

CPU bound component of the workload which accrues 
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from the research work of the university. These 

were estimated to demand 25% of available CPU 

time. 

No attempt was made to model really large processes 

since these were unlikely to be run during a normal t1TS 

session. 

Overall the simulated mix demands 75% of CPU time. This 

was arranged by careful choice of the regeneration !Jeriod 

for each profile. In our simulations using this I 3ta~dard 

mix' the maximum CPU utilisation obtained even when there 

is no contention for core has been 70%. This can be 

shown to be the maximum obtainable by considering the 

number of pages which each process will demand due to 

initially loading and because of change of locality which 

is modelled in the page fault probability function. This 

number of page faults is independent of the number of pages 

of core available. The idle time involved in accessing 

these pages depresses the maximum obtainable CPU 

utilisation from 75% to 70%. 

We now have reason to believe L~at this 'standard workload' 

is more severe than the actual MTS mix. However this 

severity has been useful because the simulator has shown 

us how the various core allocation algorithms have reacted 

to the wide variety of circumstances which this load causes. 
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Since our interest has been in the qualitative analysis 

of resource allocation algorithms we have not atteID9ted 

to improve the agreement of the actual and modelled 

workloads. In fact where we have wished to illustrate 

a particular feature of some algorithm we have employed 

very unrealistic workloads consisting entirely of 

identical processes. 
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3.5. 7 Performance against Design Objectives 

The modular structure of the simulator has oroved very 

successful in allowing the modelling of various algori~~ms. 

The inclusion of new algorithms nroved to be a sinnle . -
matter. The structure was also useful in the initial 

implementation of the simulator. The first simple 

implementation provided results from which we could 

deduce the necessity for more precision in certain areas 

such as the drum model. This orecision was easi ly added. 

The event driven structure counled with the specification 

of process characteristics and naging behaviour by 

probability distributions proved to be a mo~t convenient 

level of simulation. It was nossible to carry out many 

simulations inexpensively. Typically we were able to 

simulate 1000 seconds of operation in 200 seconds of CPU 

time on the IBM 360/67. In simulations involving traces 

of processes the CPU time used can greatly exceed L~e 

simulated CPU time. We also lost little scope in ~~e type 

of algori thms that could be mode lIed and we were able to 

exhibit contention for core. 

With regard to obtaining accuracy in the results, well 

tested random number generators were used. These were the 

IBM GPSS package random number generator, used to generate 

the process characteristics and seeds, and a multiplicative 
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generator (Marsaglia and Bray, 1968) uSed to generate the 

vari'ous tines between eve'nts. 

Taking all of those simulated CPU utilisations for 

Multiprogramming Limit equal to one and core size of 70 

pages, where the core allocation algorit~m would 

theoretically give the sane CPU utilisation as uni

programming (twelve values), the Student t-distribution 

gives a deviation of approximately 0.2% at the 99.9% 

confidence level. Taking all of those simulated CPU 

utilisations for 'free' Multiprogramming Limit and 70 

pages of core, where the core allocation algori thm ~'lould 

theoretically give the maximum obtainable CPU utilisation 

(eighteen values), the Student t-distribution gives a 

deviation of 0.1% at the 99.9 % confidence level. Thus 

our comparisons of the core allocation algorithms using 

the simulator may reasonably be made. 
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CHAPTER 4 

Previous Apnlications of Feedback to Core Allocation 

4.1 Introduction 

In this chapter we analyse four apolications of feedback 

control to core allocation, using the system simulator 

described in 3.5, vlhich preceded our own T.York. They are 

Wharton's algorithm (Wharton, 1971), Denning's algorithm 

(Denning, 1968b) a 'global' algorithm and the Load-leveller 

(Shils, 1968). They are reoresentative of imoortant 

classes of core allocation algorithms employing feedback 

control. Each of them orovides insights into the nroblem 

of thrashing and vlays of overcoming thrashing. These 

algori thms and their analyses provide the basis of our 

own work. 

Wharton' s algorithm employs inherent feedback control. 

The measurement of current localities of reference is 

implicit in the allocation strategy. As we shall see 

the control is stable even though the measurement of 

current locality is crude. 

Denning's algorithm explicitly attempts to observe the 

current locality of each process and base allocation on 

these observations. The algori~~m is interesting in 

that it uses model-driven feedback control. 

- 76 -



Both Wharton's and Denning's algorithms have a 

hierarchy of control as we discussed in 3.3. The 

control is divided into a policy to select a nrocess 

to lose a page and a subordinate policy to select a 

particular page from thatnrocess. The algorithms 

described in fact form the process selection part of 

the control. They may have any page renlacement 

algorithm which is local to each process incornorated 

into them. 

The Global algorithm is of interest because there is 

no separation of control as discussed above. Thrashing 

is frequently observed in systems employing these 'global' 

algorithms, so it is instructive to analyse such a 

strategy in order to understand the reasons for this. 

The Load-Leveller provides an outer level of control 

in 'global' algorithms. This outer control is not 

involved with choosing pages to be replaced. Furthermore 

no modification of the existing core allocation policy 

is required to implement this extra level of control. 

This is an interesting approach which deserves 

consideration. 
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4.2 Wharton's Algorithm 

This strategy was prooosed by R M Wharton (1971) as an 

extension of the work of Belady and Kuehner (1969) on 

biased page replacement algorithms. The algorithm is 

as follows. 

On occurence ofa ~age fault any free nage frame is 

allocated if there is such a nage frame. When all free 

core has been allocated the lowest priority proces~ 

which has pages in core and vlhich is of priori tv less 

than or equal to the ?rocess causing the nage fault 

is chosen to have a nage renlaced. The oriority order 

is fixed externally to the core allocation algori thm. If 

no such nrocess exists then the nage request is denied 

and the requesting process cannot nroceed until a higher 

prioroity process frees core. 

This latter situation may arise if one assumes that all 

pages are loaded on demand. A process Hhich has no pages 

in core may be dispatched but will page fault immediately. 

Such a process may then be unable to make a page 

replacement because of its priority and so be suspended. 

The ?hilosophy behind Wharton's algori~hm is to give the 

ton priority process the service it Hould obtain if it 

were running by itself in the svstem. Further orocesses 

are then dispatched as background '-lork utilising any 
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core not re~uired by the highest nriority ~rocess. The 

scheme is a logical extranolation of Belady and Kuehner 

biased replacement_strategy where over some period one 

process is treatednreferentially in the allocation of 

core, the others being treated equally. (Be lady and 

Kuehner, 1969). Here that system of nreferences ~s 

visualised as being extended to all processes wi t~. t~e 

bias referring to CPU as well as core allocation. 

By this scheme the worst utilisation that '·lill occur is 

the utilisation obtained by running the nrocesses serially 

through the system. _ We acknovlledge that if 'tie were i:1. 

fact ~roducing a uni-nrogramming system we would introduce 

o~timisations and also that we are ignoring the interference 

caused by the su~ervisor dealing with the interrupts of 

lower rJriori tv processes. However, these should not cause 

large discrepancies and the observation is true to the 

precision of our simulation model. 

The control unon the level of multiprogramming is obtained 

by the allocation_of core. If a process has 

no core then it cannot_affect the effective level of 

multiprogramming of_the system. Since a process may only 

obtain more core by replacing ~ages of equal or lower 

priority the lowest_nriority nrocesses may only obtain 

free pages of core. _ Also as the processes of higher 

priori ty acquire more pages the lovler nriori ty processes 
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will be deleted from core. This is because their ~ages 

will be replaced by those of higher nrioritv processes. 

They will be unable to. obtain core and so will be 

suspended until.a nrocess of higher nriority frees 

some core. 

We can observe the manner in which this occurs bv 

studying the core map. in figure 4.1. The core rnd" is 

that for a simulation of Wharton I s algorithm when all 

processes in the mix are identical, each having a 20 !Jage 

parachor. The priority order employed, as in all of our 

simulations, wasfirst-come-first-served. A core size 

of 80 pages was. used. We see that after time 2 seconds 

the core allocations. of processes I, 2 and 3 increase at 

the exoense of nrocess4 until that nroceS5 is deleted 

from core. Thus the effective multiprogramming level 

has been reduced.. After this time we see that the core 

allocations of processes 1 and 2 increase at the eX?ense 

of process 3. 

It is interesting to examine the number of pages occupied 

by processes 1,.2 and. 3 at the time that process 4 is 

deleted. They have 29, 26 and 25 pages respectively. 

Each has in excess. of. its parachor. We see that the 

highest priority processes accumulate ~ages in core 

which no longer belong to their current localities and 

unless a orocess becomes the lowest priority orocess 
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which has core, there.is no mechanism bv which these pages 

can be removed until. the. process terminates. Thus, whilst 

we are ensuring that contention for core does not depress 

the CPU utilisation.of.those processes which have their 

current localities in core, we may make poor use of our 

limiting resource. 

The feedback control in this strategy is inherent i~ 

the strategy itself •. It is essentially a positive feedback 

effect which will tend to decrease the multi~rogramming 

level by deleting lower priority processes from cc e to 

meet the demands of. higher. T)riori ty process. As Tie have 

seen this may cause the core to be underutilised in the 

sense that pages which no longer belong to the current 

localities of the high priority processes can remain in 

core. 

Let us now consider.the graph of CPU utilisation against 

Multiprogramming Limit for the same simulated system and 

workload as above,figure4.2. (The Multiprogramming Limit 

is highest number of processes which will be allowed by the 

simulator to compete.for system resources. It may be that 

a particular scheduler or core allocation algorithm will 

establish its own.effectivelevel of multiprogramming. 

However, the Multiprogramming Limit which is an initial 

parameter for each simulation will never be! exceeded). We 

see that as Multiprogramming Limit increases from l, CPU 
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utilisation increases.to some maximum which it then 

maintains with only.slight variations. The interpretation 

of this behaviour is that. for a given workload Wharton's 

algorithm implicitly sets a level of which it will multi

program. When the preset limit, Multiprogramming Limit, is 

less than the level at which the algorithm is capahle of 

working the CPU utilisation will be belovl the maXlr:-\um 

attainable. As the nreset limit increases the CPt: 

utilisa tion improves. to the maximum. Subsequent in '~re ases 

in Multiprogramming Limit have no effect since further 

processes will be prevented from obtaining core. 

The Multiprogramming Limit marked as FREE in figure 4.2. 

represents a setting in excess of the number of nrocesses 

to be simulated. Thus the effective level of multiprogramming 

observed will be that determined by the simulated system. 

The results labelled SINGLE-PROGRAMMED are the utilisations 

obtained by running. the proces3es serially through t~e system 

and may be used as a basis for comnarison of the various 

algorithms we shall simulate. 

Simulation results for Wharton's algorithm where ~~e 

standard workload was used are given in figure 4.3 9 CPU 

utilisation.against.coresize, and 4.49 CPU utilisation 

against Multinrogramming Limit. In figure 4.3 the core 

size of 5000 pages may be thought of as an 'infinite' core, 

since ''I7i th the standard workload no nage replacements are 

required with this amount of core available. 
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size allows the maximum CPU utilisation obtainable for 

the load presented. to be established since there is no 

delay caused by contention for core. These figures 

show the same behaviour as described above. 

We see then that Wharton's algorithm guar~~tees that 

thrashing cannot occur and therefore gives a firm basi~ 

upon which to design further core allocation policies. 

However, Wharton's algorithm makes poor utilisation of 

core and we would hope to improve substantially unon its 

performance. 
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4.3 Denning's Algorithm 

A basis for a promising group of strategies is the 

Working Set model of_process behaviour (Denning, 1968b). 

The working set ofa.process at time t is the set of 

pages which the process accesses during the interval 

(t-T,t), where T is a fixed time interval. Denning nas 

claimed the working set to.be a good estimator of the 

set of pages which a process will access during the 

interval (t,t+T). Denning proposed the following strategy 

based upon the Working Set model. 

The working set size of each process - the number of Dages 

in the working set~ is estimated in the manner described 

below. Processes are allowed to compete for core on the 

basis of the sum.of their estimated working set sizes. 

A set of ~rocessesis chosen by some means such that the 

sum of their estimated working set sizes does not exceed 

the size of core. 

When a page fault occurs core is allocated for the required 

page provided the estimated working set size of the 

requesting process exceeds the number of pages which the 

process has in core. When these two quantities are equal, 

core is allocated and. the estimator increased by 1. (It 

is originally set_tol).However, this will only 'occur 

if the new sum of the estimators does not exceed core. 

If the latter does occur the orocess of 10'vest priority 
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is removed from core,. its estimator being set equal to 

the number of nagesit had.in core at that time. 

Allocation continues on the basis of the reduced set 

of processes. 

Further processes may be added to the set competing 

for core provided the sum of estimated working set 

sizes does not exceed core. 

Denning's algorithm is a model driven feedback control 

system. A model - the Working Set model - is assumed 

for the behaviour of each process. The parameters of 

the model are the working set sizes. These are estimated 

from measurements of the paging activity. (We may think 

of observing the occurrence of nage faults as measuring). 

The model of the controlled system is a 'core' into which 

'processes' whose memory requirements are assumed equal 

to their estimated working set sizes, may be inserted. 

Decisions unon the controls to be aunlied to the actual 

controlled system are.based upon whether the proposed 

action if applied to the model would cause the modelled 

core to be overpartitioned. 

The controlled variable of this feedback control is the 

estimated sum of working set sizes. The command value of 

this variable is implicitly set to the size of available 

core. This denotes that ideally we would wish to utilise 
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the whole of core. The further requirement is made that 

the command valueshould.never be exceeded. This expresses 

the wish that core should never be overpartitioned. 

However, it is difficult to ensure that the sum of the 

working set sizes is less than the core size. Therefore, 

the weaker condition involving the sum of the estimated 

working set sizes is used. If the estimates are good this 

will ensure that overpartitioning of core will be rare. 

In order to define a steady state condition free core is 

allocated on a strict priority basis. Core is allocated, 

starting with the highest priority process, until the next 

process in priority order has an estimated working set size 

in excess of free core. Allocation is not made to this 

process and no attempt is made to allocate to lower oriority 

processes. By choosing this first fit ~olicy the possibly 

endless disturbances involved in a best fit policy, intended 

to utilise as much core as possible, are avoided. It also 

prevents orocesses with large working sets from being 

deferred indefinitely. 

The success of a model driven feedback control system 

depends upon the accuracy of the model and its parameters. 

Unfortunately, the.parameter estimation of Denning's 

algorithm is not.very.effective, although the basic 

strategy will most. frequently err by overestimating 

working set size. However, it can underestimate by the 
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policy of settingthe.estimate equal to the number of pages 

which the process.hasin core at the time it is susoended 

by the system ... Such. a. val ue is dependent upon the memory 

demands of other processes. 

Let us now consider the simulation results for the Denning 

algorithm using the standard workload. In figure 4.5 Vie 

present a graph of CPU utilisation against Multi~rograrnming 

Limit for a fixed core size of 70 pages. We see from this 

graph that Denning's algorithm has the very desirable property 

that its performance improves monotonically with nul tiprograrnming 

Limit. This confirms that it is effective in limiting the 

effective multiprogramming level of the system so as to avoid 

the occurence of thrashing. As with Wharton's algorithm this 

strategy sets a level. at which it Hill multiorogram. Increases 

of Multiprogramming Limit in excess of this have no effect 

upon CPU utilisation. 

A strategy very similar to that of Denning has been implemented 

in the ESOPE ooerating system. (B~tourn~ et aI, 1971). The 

algorithm is a generalisation of Denning's in that the 

estimated working set size is incremented by n pages rather 

than one. The estimate is formed in the same way as in 

Denning's strategy y differing only in that it resets the 

estimate to the number of pages which the process has in 

core at the end of each time slice and does not reset the 

estimate when a process is suspended. This avoids the 
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dependence of the estimate upon the memory demands 0: 

other processes.which occurs in L~e Denning algorithm. 

Because of this the ESOPE algorithm probablv produces 

a better estimate.than t~e Denning algorith~. The 

ESOPE algorithm.was.simulated but due to the use of 

a different scheduler, used at the request of the 

ESOPE system designers,. the comnarison '.-lith t~e 

results for Denning's algorithm Has inconclusive. 
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4.4 

4.4.1 

The Global Algorithm 

Description of the Algorithm 

In section 3.3 we discussed the global application of 

algorithms derived from the study of the paging behaviour 

of single processes. Such algorithms have achieved 

popularity, in particular the Least Recently Used (LRU) 

alg9rithm (Belady, 1966). However they are susceptible 

to thrashing. It is instructive to analyse such a 

strategy to understand the reasons for this. 

Ideally we would study the LRU algorithm. However since 

our simulation model takes no account of individual pages 

this is not possible. We have therefore derived a global 

algorithm taking the LRU algorithm as our starting point 

so as to retain the structure though not necessarily the 

properties of that algorithm. 

The LRU page replacement policy is stated simply as 

replacing, at the time a page replacement is required, 

that page from amongst those in core which was referenced 

least recently. 

The popularity of this algorithm may be because intuitively 

one would expect that the probability of reference to the 

least recently used page in the near future is lower than 

that of pages more recently accessed. Consequently it is 
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more likely that this page does not belong to the 

current locality of any process. Therefore the page 

is a good candidate for replacement. In accordance 

with this the LRU policy is shown to be very effective 

in Belady's studies based upon the traces of single 

processes. 

Due to uncertainty as to whether the least recently 

used page is the best candidate for replacement, there 

seems to be no great danger of loss of effectiveness in 

employing an algorithm which forms an approximation as 

to which page was least recently accessed. If we assume 

that as on the IBM 360/67 a hardware facility is available 

which sets the reference bit of a page whenever the page 

is accessed (2.6) then we can implement the following 

approximate LRU strategy. 

The strategy is to examine the reference bits of all 

pages in core after some appropriate interval, a review 

interval, and to compile this information concerning the 

accessing of pages in the form of reference statistics, one 

for each page currently in core. The method of obtaining 

a reference statistic is to interrogate the value of the 

reference bit at time t+St, r(t+St), resetting it, and 

produce the reference statistic 

= (I-a.) . r (t+St) 

where St is the review interval. We now have an exponential 
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decay of the reference information with a half life of 

a where a may be thought of as a smoothing factor. 

The reference statistic for each in-core page is 

obtained when the reference bits are sampled at the 

end of the review interval. When a page fault occurs 

that page in core which has the least value of the 

reference statistic is selected to be replaced. 

We have in the LRU algorithm, the basic functions of 

producing a reference statistic for each page an~ then 

making a global choice based upon these reference 

statistics. The problem we have is to replace the 

value of the reference bits of individual pages, a 

property our simulator could not model, with a property 

it could model. We must use a property of each process 

since individual pages are not modelled. Thus we would 

produce a reference statistic for each process and 

choose globally amongst the processes. 

Let us consider the algorithm using the following 

reference statistic based upon the rates at which the 

processes use the CPU and cause page faults. The number 

of page faults caused by a process during the interval 

(t,t+St), F(t,t+St), and the CPU time used, C(t,t+St), 

are monitored. At the end of the interval, a usage 

statistic 
R(t+St) = (I-a) .C(t,t+St) . F(t,t+St) + a.R(t) 

St 

- 96 -



is defined for each process contending for core. During 

the interval (t,T+St) any page replacements required are 

made by replacing pages of the process with the least 

valued usage statistic. 

If we denote the amount of CPU time which a process 

obtains by the term 'local time', then the local time of 

a process represents the passage of time from the point of 

view of the process. A high page fault rate in local time 

implies that a process does not have its current locality 

of reference entirely core-resident. Also we note that 

the rate at which a process references its pages l~ 

dependent upon the rate at which its local time progresses 

relative to the real time of the CPU. A process which 

obtains little central processor time is as likely to 

have pages unreferenced for long periods as a process 

which obtains a great deal of CPU and page faults rarely 

suggesting that it has at least its current locality in 

core. The term 

C(t,t+St) 
St 

F(t,t+St) 

is an attempt to express these ideas mathematically. 

This algorithm attempts to order the processes contending 

for core such that the more likely a process is to have 

pages which have been unreferenced for long periods, the 

more likely the pages of that process are to be replaced. 
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The algorithm described above we shall call the Global 

algorithm. As with the LRU algorithm it makes global 

decisions about which process shall have a page 

replaced. However, we do not claim that it has the 

properties of the LRU algorithm. 
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4.4.2 Mathematical Analysis 

To model the Global algorithm mathematically let us 

suppose that there are M pages of core available and 

that we are multiprogramming two processes, a and b, 

with parachors da and db respectively. We will assume 

that a page fault is serviced in S milliseconds and 

that this service time is constant. 

We further assume that the probability of a process 

causing a page fault at each instruction executio~ 

is p(r) = 2 ** (-16r/d) where d is the parachor and 

r is the number of pages of core which the process is 

occupying immediately prior to the instruction execution. 

This is similar to the probability function used in the 

simulator. Thus the expected CPU time used before the 

process causes a page fault is 

m(r) = 1 - p (r) 
p(r) 

x 1 
1000 

milliseconds 

where we assume a CPU capable of executing one million 

instructions per second. m(r) takes this form since if 

a page fault occurs at the k-th instruction execution 

only k-l time units have elapsed since the last page fault. 

The usage statistic for process x, R (t.), is updated at x l 

times t. where t. = t + i.St. The process with the 
l l 0 

lowest value of the usage statistic after time ti is that 
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from which page replacements are to be made during the 

In order to find values for the number of page faults 

caused by each process during a period of length St i we 

must make two further simplifying assumptions. T,le first 

is that there is no statistical variation in the tiDe 

between page faults. The second is that each proce~s 

obtains the CPU whenever it requires. This can only be 

guaranteed by providing multiple CPU's and so we shall 

assume that each process has its own CPU. The latter 

assumption is not too unrealistic, for when core con_ention 

occurs CPU utilisation will be low and contention for CPU 

will seldom be experienced. 

Suppose that process b has the lowest value of the 

reference statistic at time t., and that process a has 
1 

pa pages at that time. Process b has pb = M - pa pages 

since we are only interested in the cases in which there 

is contention for memory. Then during the interval 

(.t , t. -) process a will cause 
1 1+1 ~ 

fa = ~ St 
pa+fa 

L (m (i) + S) 

page faults 

i=pa 

where L , 
denotes 'the greatest integer less than. 

see this consider the diagram below. 
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m (pa) s m (pa+l) s --------
I 

s ~m (pa+fa+l)----7 
I 

If fa < pb then process b will lose fa pages during the 

interval, otherwise it will lose pb pages and be deleted 

from core. The number of page faults caused by process b 

is rather more complicated since the amount of core occupied 

by it is dependent upon the activity of process a. 

At the end of the interval marked as m(pa) in the aiagram 

process b will have lost a page and will have oni: pb-l pages. 

Its page fault characteristics will change therefore. Thus 

the number of page faults caused by process b is given by 

repeating a calculation similar to that for program a with 

St replaced successively by the values m(pa) + S, o •• , 

m(pa+fa) + S. The final interval must be treated separately 

pa+fa 
with St being replaced by St - L (m(i) + S). 

i=pa 

When process b has i pages the appropriate term is 

m(M-i) + S 
m(i) + S 

These terms occur because process b replaces only its own 

pages. Thus, 

= L
m(M-i) + S 

m (i) + S 
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pa~fa 

L 
i=pa 

m(i) + S) 

m(pb-fa) + S 



Since we have assumed multiple processors we have that 

the CPU time used by process x is 

St - fx.S milliseconds. 

Thus by a number of simplifying assumptions we are able 

to calculate the usage statistics. 

Although we have achieved a mathematical model cf t;1~S 

algorithm it has required many unrealistic simplifying 

assumptions about the system. Many features which will 

be of importance in a practical situation have had to be 

excluded from the model in the interests of mathematical 

tractability. In order that we may study features which 

are not amenable to mathematical analysis we have also 

simulated the algorithm. 
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4.4.3 Discussions of Mathematical and Simulation Results 

As we discussed in section 3.3 a global algorithm 

essentially allows all processes to compete for core 

on an equal basis. This strategy should lead to an 

equal sharing of core in some sense. Therefore, we 

would expect that thrashing would occur in a syste~ 

using the algorithm. 

The feedback component of the algorithm is in the form 

of a superimposed monitor which provides inform?_ion on 

the past access characteristics of each in-core ~age. 

The access characteristics are quantified by a process 

of discretisation as described in section 2.6. Thus 

the algorithm does not conform to the structuring which 

we proposed for a core allocation policy in section 3.3. 

Let us first consider the results of the mathematical 

model. Figure 4.6 shows the way in which core is divided 

between two processes a and b with parachors da and db. 

The number of pages of core occupie~ by process a is 

plotted against time. Process b occupies the remainder 

of core. The time scale is in units of St, with St 

chosen to be milliseconds. The core size was 70 pages, 

a = 0.1 and the time to service a page fault was 17 

milliseconds. 
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We can observe from these graphs that the algorithm tends 

to equalise the paging rates of the two processes. Using 

the page fault probability of the mathematical model, we 

require for equal paging rates that 

2 ** (-16.pa/da) 2 ** (-16.pb/db)· 

That is ~ E£ = da db 

but pb M-pa 

so that pa = M . da . . . . (1) 
da+db 

Given below are the values of da, db, the value of pa given 

by (1), and the value of pa about which oscillations occur 

in the graphs of figure 4.6. The initial value of pa in 

those graphs is also given. 

Parachors pa from (1) Average pa Initial 

da db Equal Paging Rates from figure 4 pa 

50 50 35 35 35 

60 40 42 44 35 

50 30 44 44 60 

50 30 44 44 10 

The value of pa about which the oscillations settle is not 

affected by the initial value although the settling time is. 

We see also that there is a good agreement between the values 
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of pa about which oscillation occurs and the values 

obtained by assuming that the paging rates of the 

processes are equalised. Therefore it seems likely 

that the ability of processes to compete on an equal 

basis will cause core to be partitioned in proportion 

to parachor. Such sharing of core will of course cause 

thrashing whenever core is overpartitioned. 

We see from the mathematical model of the algoritI"cIT 

that there is a tendancy for the paging rates of ea:::::h 

process competing for core to be equalised. In figure 

4.7 we present a section of the core map of a slmL13~ion 

of the algorithm using the standard workload with a core 

size of 70 pages and Multiprogramming Limit of 2. 

From time 359 to 412 seconds the core is occupied by 

process 28 with a parachor of 38 pages and process 34 with 

a parachor of 44 pages. The core is overpartitioned since 

the sum of the parachors is 82 pages. We observe that 

the division of core oscillates about a mean of 32 pages 

(from the left of the core map). This i~dicates that the 

core is being divided in proportion to parachor, that is 

that the paging rates of the processes are being equalised. 

Let us now consider the core map of a simulation where 

processes were introduced into the mix in a controlled 

manner, figure 4.8. A core size of 70 pages initially 

occupied by 2 identical processes of parachor 30 pages, 
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'. 'Global algorithm - core map for identical processes 

'Fiqure '4. 8 
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where each required 50% CPU time and 50% I/O time, was 

simulated. At 10 second intervals further identical 

processes were initiated. 

We see from the core map that each process gains an 

amount of core as soon as it is initiated even th2ugh 

the core may be heavily overpartitioned. Since tne 

scheduler has no load shedding or load limiting 

component incorporated into it, a new process Will 

commence computation when the CPU is not fully utillsed 

by the already initiated process. (Note that t~e 

Multiprogramming Limit was set to be in excess ot ~ '-e 

number of processes to be introduced into the mix in 

this simulation). Load shedding would occur due to 

this Global strategy only if the higher priority 

processes were fully utilising the CPU. (We used a 

first-come-first-served priority for CPU allocation). 

In such circumstances low priority processes would not 

reference their pages and so those pages would be 

removed from core under the algorithm. 

However, if at any time the CPU became idle the scheduler 

would allow one of the lower priority processes to 

proceed and thus to compete for core. As competition 

for core increased the likelihood of the CPU becoming 

idle would increase due to replacement of pages belong~ng 

to current localities of reference. Further processes 
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would be allowed to compete. Thus a positive feedback 

effect occurs which leads to increasing overpartitioning 

of core and eventually to thrashing. 

The study of this Global algorithm is instructive when 

considering the design of a core allocation or scheduling 

policy. It suggests that the raising of the multi

programming level to cover I/O processing is only 

effective whilst core contention is not being expeLlenced. 

It further suggests the necessity of employing some form 

of load shedding dependent upon the level of conLention 

for core, and that it is unrealistic to base load shedding 

or load increase upon CPU utilisation alone. It also 

raises doubts about the wisdom of allowing processes to 

compete for system resources on an equal basis. Equal 

sharing as we have seen may well reach to overload 

conditions. Such situations can be avoided by applying 

priorities which govern the availability of each s~'stem 

resource. 
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4.5 The Load-Leveller 

The Load-Leveller (Shils, 1968) was implemented on the 

IBM M44/44X, an experimental machine built at the 

T J Watson Research Centre, Yorktown Heights to assess 

the feasibility of paging. The Load-Leveller was a 

special process which periodically assessed the degree 

of partitioning of core and dynamically adjusted the 

multiprogramming level. Decisions were taken deper:d1.ng 

upon the values of the percentage of idle CPU and the 

page fault rate during intervals of duration St. The 

state of the system was defined by comparing these values 

with maximum acceptable values. If idle CPU time was 

less than the maximum acceptable then the system was 'OK'. 

Otherwise if the page fault rate was too high the system 

was 'overloaded', if low it was 'underloaded', as shown 

in figure 4.9. 

If the system was overloaded at the end of an interval 

then a process was suspendedo That is the multiprogramming 

level' was lowered. If the system wa';3 underloaded or OK 

then the multiprogramming level was increased. The Load

Leveller was thus a deliberate attempt to apply feedback 

control to the problem of thrashing by the dynamic 

adjustment of multiprogramming level. 

The strategy comprises a feedback control of the 

superimposed type. Depending upon comparisons of the 
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measured values of the two controlled variables, the 

percentage idle CPU and the page fault rate, with their 

command values, the maximum acceptable idle time and 

page fault rate, the multiprogramming level was either 

increased or decreased. Such actions act as stimuli 

to the controlled system and subsequent measurements 

inform of the success or otherwise of the actions. 

Essentially with this form of the control the error 

condition, unacceptable paging rate or idle time, must 

persist before the need for corrective action can be 

recognised. Thus the system performance may often be 

unacceptable. To reduce the time during which 

performance is poor it is necessary to make frequent 

measurements. However, this increases the sensitivity 

of the controller to random fluctuations in CPU usage 

and brief intervals of high paging activity. 

There may well be a tendency for overcompensation to 

occur when the system is overloaded. In the period 

immediately following the deletion of some process 

there may still be high paging activity while the 

competing processes obtain the missing pages of their 

current localities which were removed as a result of 

overpartitioning. This may lead to a process being 

deleted unnecessarily. This tendency to overcompensate 

will increase as the sampling rate is increased. However 

- 113 -



increasing the intervals between measurements leads to 

a greater proportion of unacceptable performance. Thus 

we have a classic example of the conflict between 

stability, speed of response and accuracy. 

The Load-Leveller is designed to modify the load on the 

system when the situation has degenerated to an unacceptable 

degree. This mode of operation is unlikely to provide the 

best attainable performance. 
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4.6 Summary 

The core allocation algorithms we have discussed have 

the use of feedback control as a common feature. However, 

there is a great diversity in the success of its application 

as we see from figures 4.10 and 4.11 which are graphs of 

CPU against core size and CPU against Multiprogramming Limit 

respectively for three of the algorithms. (The Load

Leveller was not simulated because the work of Shils 

provided all the necessary information). The Global 

algorithm was susceptible to thrashing and the Load-Leveller 

could not prevent thrashing although it could limit the 

effect. From these two algorithms we can isolate features 

to avoid. Both the Denning and Wharton algorithms were 

effective in avoiding thrashing. However, both of these 

have shortcomings which we must overcome if we are to 

produce practicable algorithms. 

The Global algorithm which we simulated was inferior to 

both the Denning and Wharton algorithms and was susceptible 

to thrashing. We would have expected this in view of the 

discussion of 3.3. The amount of core which any process 

may obtain is dependent upon the memory demands of the 

other processes competing for core. We have seen that 

the particular form of aependency in this algorithm leads 

to 'fair sharing' of core depending upon the demands of the 

processes. The slightest overloading of core will therefore 
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cause thrashing. Overloading is particularly likely in 

view of the load-shedding component. Load-shedding would 

only occur when CPU utilisation was high. Unfortunately, 

the probability of high CPU utilisation decreases as 

paging activity increases. Thus it is not realistic to 

base load manipulation on CPU utilisation. 

We would expect to improve the performance of the Gl~Dal 

algorithm if we could introduce a load-manipulating 

component based on a more suitable property of the 

processes. This is the purpose of the Load-Leveller. 

This process, which can be superimposed upon core 

allocation algorithms, uses CPU and paging disc utilisation 

to make load manipulation decisions. Shils showed it to 

be effective in limiting the incidence and duration of 

thrashing. However, he also found the CPU utilisation 

was frequently depressed below that of the uncontrolled 

algorithm. We discussed in 4.5 that this could be due 

to the insensitivity of the error measuring component 

of the control. We also noted the dangers of attempting 

to increase sensitivity. However, even with increased 

sensitivity the Load-Leveller could not overcome the 

dependency of memory allocations upon memory demands of 

other programs in the Global algorithm. This requires 

some priority mechanism and as we have seen from Wharton's 

algorithm rather more simple and effective load 

manipulation is then possible. 
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Wharton's algorithm successfully avoids thrashing by 

applying a strict priority ordering upon the processes 

competing for core. The priority order provides a very 

simple mechanism for load manipulation and also greatly 

diminishes the interdependencies of the allocations of 

core to the processes. Consequently, Wharton's algorithm 

shows better performance than the Global algorithm. 

Denning's algorithm which shows simi-lar performance to 

Wharton's algorithm, is also successful in preventing 

thrashing. This is achieved by measurement of the core 

requirements of each active process and ensuring that the 

sum of those requirements never exceeds the availanle 

core. However both of these algorithms are inadequate 

in their utilisation of core. The Wharton algorithm allows 

high priority processes to accumulate pages in core which 

no longer belong to their current localities. Denning's 

algorithm is also prone to overestimate the size of the 

current locality, leading to poor utilisation of core. 

From our analysis of these four algorithms we are able to 

draw certain conclusions about the manner inwhich core 

allocation may be successfully performed. Both the Denning 

and Wharton algorithms show that feedback of information 

concerning the memory demand of processes can be effectively 

employed to avoid thrashing and so is a technique worthy 

of consideration. The priority o~dering of Wharton 

providing a lower bound upon the size of current locality 
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and the more direct measuring of Denning suggest two 

possible methods of applying this feedback of information. 

The Global algorithm demonstrates the dangers of 

uncontrolled competition for core and the need for 

effective control of the load presented to the system. 

It is encouraging to note that the successful algorithms 

employ a structuring which divides page replacement from 

the selection of a process from which to replace a page, 

whilst the Global algorithm does not. We suggested (3.3) 

that such a structuring would be a sound basis for a core 

allocation algorithm. 

The success of the Denning and Wharton algorithms shows 

the utility of feedback control in core allocation. 

However, their short-comings in the utilisation of core 

suggest that they are capable of improvement, and we are 

therefore encouraged to seek ways in which the technique 

they use. may be further developed. 
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CHAPTER 5 

Core Allocation Using Feedback Control 

5.1 Introduction 

The analyses of the previous chapter highlight the 

importance of the control of multiprogramming level a~d 

the estimation of current locality in core allocation. 

Failure to do either of these can lead to thrashing. 

The extent to which these problems are successfully 

solved can considerably affect system performance. 

Thus the control of multiprogramming level and the 

estimation of current locality will be the main themes 

of this chapter. In particular we will introduce the 

concept of drain processes as a way of estimating current 

locality. 

We found the Wharton and Denning algorithms were both 

effective in avoiding thrashing by the use of stable 

feedback control. However, both have shortcomings in 

core utilisation which need to be overco~e. We will take 

these two algorithms as our starting point and consider 

ways of optimising their use of core. 

First, we will take Wharton's algorithm as a basis and 

discuss our attempts to improve core utilisation by different 

priority schemes in the Horning and Randell algorithms. 

These modifications maintain the inherent nature of the 
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control. We will then introduce a form of drain process 

where the control is superimposed upon Wharton's algorithm. 

This is the Lynch algorithm. A further optimisation, the 

Lynch-Alderson algorithm, will then be introduced. 

Next we will discuss the application of another form of 

drain process to the Denning algorithm. This will lead to 

a comparison of drain processes which we have discussed. 

Finally, we will discuss an algorithm due to Hoare where 

settling time can be varied by the setting of a parameter. 

This algorithm will be of particular interest when we 

examine the importance of settling time in our control 

hierarchy. 
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5.2 Horning's Algorithm 

We have observed in the discussion of Wharton's algorithm 

that the higher priority processes retain pages which 

are superfluous to their progress. This algorithm, 

proposed by J J Horning, was derived from Wharton's 

algorithm and attempted to include a mechanism whLch 

would free this unproductive core. 

As in Wharton's algorithm the allocation of system 

resources is b'iased by imposing a priority ordering 

upon the processes for access to both CPU and drur. 

On occurrence of a page fault any free core is allocated 

if it is available. When all free core has been 

allocated, a process is chosen at random from amongst 

those which have pages in core. The probability of a 

process being chosen is proportional to the number of 

in-core pages which it has. A page is replaced from 

amongst the process's pages according to some appropriate 

scheme. 

The reasoning that led to Horning's algorithm was as 

follows. If we superimpose graphs of paging drum reads 

versus multiprogramming level and CPU utilisation versus 

multiprogramming level we would expect to obtain a figure 

Similar to figure 5.1. Obviously that level of multi

programming which gives the maximum CPU utilisation is 
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the level at which we would wish to run the system. 

However, this level is dependent upon the workload at 

any time. We are therefore interested in a mechanism 

which will vary the effective level of multiprogramming 

so that we may obtain this optimum. The form of control 

will be the introduction of processes into, or the 

removal of processes from core. Thus when the syste~ 

is in area A of figure 5.1 we would like there to be a 

net drift of pages from high to low priority processes, 

increasing the multiprogramming level, and from low to 

high priority processes when in area B, decreasing the 

level. 

Due to the random page replacement policy the strategy 

is biased towards 'stealing' pages from the processes 

with the most pages, which are probably the highest 

priority processes. When page demand is low, area A, 

the queues for drum service will be short and high and 

low priority processes will obtain essentially equal 

service. A net drift of pages from high to low priority 

processes will result. When page demand is high, area B, 

the lower priority processes will be blocked from obtaining 

drum service due to the rapid requeueing of the service 

requests of the higher priority processes. The priority 

ordering of the drum queues will therefore bias the gain 

of pages to high priority processes. Low priority processes 

will eventually be deleted from core. As paging activity 

subsides the service requests of the low priority processes 
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will become unblocked and these processes will once 

more be able to obtain core. 

Let us now consider the core map, figure 5.2, which was 

obtained for Horning's algorithm with the Multiprogramming 

Limit set at 10 and all processes identical, each having 

a 20 page parachor, as in the simulation of Whartcn's 

algorithm. We observe that, in contradiction to our 

above reasoning, all of the processes quickly obtain pages 

in core and no process has its parachor. Also, the 

higher priority processes obtain no greater share of core 

than do those of lower priority. For instance at time 

6 seconds, process 1 has 6 pages whilst process 10, the 

lowest priority process has 11 pages. We can explain 

the failure of this algorithm as follows. 

The premise upon which the algorithm is based is that when 

drum queues are short the core is not overpartitioned. 

This implies that the effective level of multiprogramming 

may be increased. A simple example is sufficient to 

display that this need not be true. Suppose that the 

three highest priority processes have a combined parachor 

greater than the number of pages of core, so that thrashing 

would occur if avoiding action were not taken. The longest 

possible queue for drum service would contain just three 

elements which would be insufficient to block the service 

of the third process. (Even if this were sufficient the 
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request of the third process would be unblocked as soon 

as the higher priority processes obtain their parachors. 

Thus the higher priority processes would have their 

parachors for very short periods only). However, with 

a sector-queued drum organisation, which we are 

modelling, this queue length would be of very low 

probability. Thus we see that the problem is ca~sed 

because lightly loaded priority queues act like FIFO 

queues. This results in the competing processes getting 

almost equal service from the drum. This, couple~1 with 

the random page replacement policy, causes the cere to 

become equally divided amongst the competing processl-'s. 

We see also that the other blocking mechanism, the biased 

allocation of the CPU, is similarly ineffective. In a 

thrashing situation the CPU is grossly under-utilised and 

so all processes will obtain all of the CPU they demand 

which is very little. Thus the other method of blocking 

low priority processes, not dispatching them, is undermined. 

We see then that once thrashing has begun this algorithm 

will cause further degradation. Similar~y we see that 

if the CPU is not fully utilised, the common situation 

in all operating systems, the reaction of this algorithm 

is to introduce further processes to utilise it. Such 

a policy must eventually lead to thrashing. 

Let us now consider the graph of CPU utilisation against 

Multiprogramming Limit, figure 5.3, obtained using the 
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same workload- composed of. identical processes as for 

Wharton's algorithm. 

We see that the CPU utilisation increases up to some 

maximum ·before decreasing-, as Multiprogramming Limit 

increases. The maxima for those workloads where the 

parachor is at least 50 pages occur at a Multiprogramming 

Limit of 1. It is sufficient to multiply the common 

parachor by the Multiprogramming level at which the 

maximum occurs to explain this. We observe that the 

maximum occurs at the Multiprogramming Limit for which 

the product is closest to the core size but does not 

exceed it, that is at the highest level at which core 

is not overpartitioned. A continual degradation of CPU 

utilisation is then observed as each further process is 

allowed to contend causing greater overpartitioning of 

core. 

Comparable results were obtained when the algorithm was 

simulated using our standard workload. In figure 5.4, 

a graph of CPU utilisation against core size, we see that 

thrashing has occured when only a limited core was 

available. These results for Horning's algorithm also 

demonstrate that given enough core even the most ill

conceived algorithms can be made to perform satisfactorily! 

The graph of CPU utilisation against Multiprogramming Limit 

from Horning's algorithm, figure 5.5, again displays the 
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affinity for thrashing shown by the algorithm. Here we 

see that it is unable to support even a Multiprogramming 

Limit of 2 with the standard workload. 

The attempt here was to design an inherent feedback 

control system to control the multiprogramming level of 

a demand paging operating system in such a way as to avoid 

thrashing. The control is a negative feedback formed by 

superimposing two opposing positive feedback effects upon 

each other. The first positive feedback effect, which 

tends to increase the multiprogramming level of the system, 

is inherent in the random page replacement policy. The 

opposing positive feedback effect should tend to decrease 

the multiprogramming level and this was to be inherent 

in the biasing of allocation of the other system resources. 

Unfortunately, the biasing of the use of CPU and I/O 

facilities will seldom result in the complete blocking 

from service of a low priority process. Furthermore, the 

probability of such blocking occuring decreases rapidly 

when core becomes overpartitioned. Thus rather than 

this second positive feedback becoming more assertive 

as the system deviates from the desired operation it 

becomes weaker. The tendancy to increase multiprogramming 

level therefore dominates and so the system will quickly 

deteriorate into a thrashing situation whenever core 

becomes overpartitioned. 
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Horning's algorithm was also simulated with the sector

queued drum organisation replaced by a single queue for 

drum service. This should increase the probability of 

low priority processes being blocked since the average 

drum queue length will be greater than with sector-queuing. 

The results obtained however showed precisely the same 

defects in Horning's algorithm as when sector-queuing was 

used. 

An important by-product of the work on this algorithm 

was to increase at the outset our already keen awareness 

of the ease with which one can fall into the trap of 

developing an algorithm whose behaviour cannot in practice 

be successfully predicted. The reasoning used to justify 

the Horning algorithm found ready acceptance amongst a 

number of interested parties until experiment showed 

. how inadequate this reasoning was. Yet the typical 

operating system contains many algorithms whose behaviour 

is far more impenetrable than this comparatively simple 

core allocation algorithm! 
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5.3 Randell's Algorithm 

We have seen in Wharton's algorithm that the biasing 

of allocation of system resources is a powerful tool 

in avoiding the problems of excessive demand for a 

resource. This is also shown by the following algorithm 

proposed by B Randell. Here, by addition of a simple 

priority rule to Horning's algorithm a synthesis of 

Wharton's and Horning's algorithms is created which 

achieves an improvement upon Wharton's algorithm '·,here 

Horning's algorithm failed. 

The algorithm is as stated for the Horning algorithm 

with the following modification to the page replacement 

strategy. When a page replacement is required a page 

is chosen from the process requiring a free page of 

core or from a process of lower priority. The process 

is chosen at random from amongst this set, each process 

having a probability of being chosen proportional to the 

number of pages of core it occupies. 

Two points may be noted about this algorithm which 

ensure its stability. First, the top priority process 

never decreases the amount of core it occupies, that 

number either staying the same or increasing when that 

process requests a page replacement. Secondly, the 

number of pages of core occupied by the n highest priority 
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processes does not decrease unless one of these processes 

terminates execution. Thus high memory demands by low 

priority processe~ cannot affect the progress of higher 

priority processes. This means that high memory demands 

by high priority processes will eventually be met at the 

expense of lower priority processes but not as rapidly 

as by Wharton's algorithm. 

The priority constraints placed upon the random fage 

replacement policy slows the rate at which high priority 

processes increase their memory allocations. In .. harton' s 

algorithm the highest priority process has probabillty 1 

of increasing its core allocation each time it causes a 

page demand. In Randell's algorithm if that process 

occupies x pages of core then the probability that it 

will increase its core allocation is (C-x)/C, where C 

is the core size. 

We would expect then that Randell's algorithm would give 

improved performance over Wharton's algorithm since the 

rate at which pages no longer belonging to processes' 

current localities will accumulate in core is reduced. 

This expectation is confirmed by simulations of the 

algorithms. Figures 5.6 and 5.7, which are graphs of CPU 

utilisation against core size and Multiprogramming Lirni t obtained 

using the standard mix, both show the expected improvement. 
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However, as we have pointed out Randell's algorithm 

achieves this improvement by slowing the rate at 

which unrequired pages accumulate in core. This 

basic problem of the Wharton algorithm remains to 

be solved. 
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5.4 Lynch's Algorithm 

The algorithm of Wharton (section 4.2) may be said to 

avoid thrashing by erring grossly on the side of 

safety when estimating a process's locality of reference. 

It does this by assuming that every in-core page 

belonging to that process belongs to the current 

locality of reference. This is wasteful of core whic~ 

we are assuming to be a scarce resource. 

A simple way to improve Wharton's algorithm would be 

to periodically rotate the priorities of the process, 

for as we have noted the only situation in which a process 

can have pages replaced is if it becomes the lowest 

priority process. Such a solution is not totally 

acceptable for the mechanism by which core is wasted 

remains, only the scale of the wastage has been reduced 

as it was by Randell's algorithm. This solution also 

raises problems of stability of the feedback control of 

the operating system. However, this topic is more properly 

discussed in the context of scheduling and will be reviewed 

in Chapter 6. 

What is required is a modification of Wharton's algorithm 

which is able to estimate whether or not a process has 

more than its current locality of reference in core. 

Wharton's algorithm employs memory demand as its control 
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variable when estimating whether a process has sufficient 

core for its current locality or not. It would be 

natural therefore to attempt to employ the same control 

variable when deciding if a process occupied a greater 

amount of core than required by its parachor. A 

successful modification of this form was proposed ',,' 

W C Lynch. 

The proposal is to couple a 'drain' with the Wharton 

algorithm. The 'drain' is an autonomous process 

activated periodically. This process marks as ?'"ai.Jable 

for replacement one page of core, chosen by some suitable 

strategy, from the process which was occupying the CPU at 

the time the drain was activated (if such a process exists). 

The drain has the useful practical advantage of providing 

an inventory of free pages. This reduces the number of 

times the page replacement strategy (Wharton's part of 

the algorithm) must be invoked to force a page out of 

core. This means that the writing of copies of the 

'drained' pages to the drum is not L'Tger)+: and can be 

scheduled when convenient. 

The reasoning behind Lynch's modification is that if a 

process has core in excess of its parachor then the drain 

will gain pages from the process. If it were to drain a 

page which belonged to the current locality of the process 
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which had been utilising the CPU, that process would upon 

resumption demand the page. In particular if the process 

was of the highest priority then we would expect that 

the page would be re-acquired in half of a logical drum 

revolution on average. Thus if we were to consistently 

drain from the current locality of the highest priority 

process we would impair that process's performance by 

a maximum of P%, where P = ~ x period of a log~cal "rum 

revolution x lOO/drain period. We would hope to recoup 

this loss by improved performance of lower priority 

processes. We would also expect that the processt.::s nicst 

likely to be utilising the CPU would be those WI,~C . tad 

at least their parachor. Thus there should be a high 

probability that pages are being drained from the correct 

set of processes. 

Lynch's algorithm has essentially the same feedback 

controller structure as Horning's algorithm, in that it 

is composed of two opposing positive feedback effects. 

One, that attributable to the Wharton algorithm, tends 

to decrease multiprogramming level. The other, caused 

by the Lynch drain, tends to increase the multlprogramming 

level by removing from core pages not in the current 

locality of any process, thus making core available to 

further processes. These two opposing effects set up a 

dynamic equilibrium with each other. The position of 

balance depends upon the rate at which the draining 

process acts and also upon the memory demands of the 
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processes contending for core. 

This dynamic equilibrium is reinforced further since the 

Lynch drain tends to increase memory demand by allowing 

further processes to contend and by restricting the 

core which each process can obtain. On the other hand 

the Wharton component tends to decrease memory demand by 

assigning more core to each process in response tu ~ts 

demands. 

We see then that each component of this algoritL~n 

endeavours to create a situation which weakens its own 

effect whilst intensifying the effect of the opposing 

component. This leads to a very strong negative feedback 

control upon multiprogramming level and this is in the 

form of an inherent feedback control. 

The property which we require most of this control is 

that it should be stable. That is under conditions of 

heavy load,thrashing should not be allowed to occur. To 

observe that Lynch's algorithm has ~hlS property we need 

only observe that under conditions of high memory demand 

Wharton's component dominates. We have already established 

that Wharton'a algorithm avoids thrashing and so the Lynch 

algorithm must be stable. 

Having established that we have an anti-thrashing control 

we are interested in how quickly it will settle to its 
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position of equilibrium. The settling time of the 

algorithm is to some extent dependent upon the rate 

at which pages can be loaded, by demand paging, from 

the drum. Consider the core initially empty and a 

number of processes loading into it by demand paging. 

The allocation will stabilise when as many of the high 

priority processes as possible have loaded their current 

localities of reference. These are essentially leR.:ed 

in parallel and so settling time would be the tirce to 

load the largest of these. 

The settling time in response to a disturbance such as 

a sudden change of locality by a process will be equal 

to the time taken by the drain to remove the old locality. 

One would expect settling to occur rather more slowly in 

this case since it is a feature of the strategy that 

pages may be added on demand more quickly than they may 

be removed by the drain. 

Let us now consider part of a core map from a simulation 

of Lynch's algorithm, figure 5.8. The standard workload 

was used and the drain process was activated every 70 

milliseconds which is equal to two logical drum 

revolutions in the simulation model. The two processes 

represented in the core map are process 42, code 2, with 

a parachor of 15, and process 49, code 9, with a parachor 

of 20. We see that Lynch's algorithm limits both processes 

to enough core to contain the current localities. 
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In figure 5.9 we have a graph of CPU utilisation versus 

core size for Lynch's algorithm. The results of interest 

are those labelled LYNCH. The striking feature of the 

graph is that even with a core of 5000 pages Lynch's 

algorithm does not attain the maximum possible CPU 

utilisation. As we predicted, when core is a limiting 

resource the performance of Lynch's algorithm is a 

significant improvement upon Wharton's and Randell's. 

However, this is not so when core is abundant. 

The reason for this becomes plain upon considering the 

Core map, figure 5.8, once more. Here we have very low 

demand for core, a situation to which the Lynch algorithm 

responds by draining pages from core. However it is 

obviously wasteful to drain pages from processes when 

free core is availableo There is no advantage to be 

gained since no further processes require core and 

unnecessary page faults are generated. It is this 

situ~tion which is responsible for the depression of 

CPU utilisation with a core size of 5000 pages. 

The graph of CPU utilisation against Multiprogramming 

Limit, figure 5.10, shows as we would expect that the 

Lynch algorithm has the desirable property that CPU 

utilisation increases monotonically with Multiprogramming 

Limit. Again we see that the Lynch modification gives 

a substantial performance improvement over the basic 

Wharton algorithm. 
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It is interesting to note that a feature can be 

incorporated into an operating system using Lynch's 

algorithm that will give further increases in 

effectiveness than shown in the simulations (where 

this feature is not modelled). This is the 'page 

reclaim' function which is often included in page 

handling software. This function makes use of ti_~ 

fact that a page will not be overwritten for some 

time after the decision to remove it. The time may 

be especially extended in the Lynch algorithm since 

the page may remain in the inventory of free pages 

for some time before it is required to be OVerwrlt~~n. 

If the page has been taken away from a process 'logically' 

but has not been scheduled to be overwritten, then the 

operating system can 'reclaim' the page. That is it 

can logically restore it to the process if demanded, 

thereby saving a page transfer and the associated idle 

time for the process. 
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5.5 The Lynch-Alderson Algorithm 

The comments concerning the unnecessary draining of 

pages in low memory demand situations suggest a further 

refinement of Lynch's algorithm. As we have seen the 

Lynch drain provides an inventory of pages which are 

available for replacement. Free pages of course ~~c 

included in this inventory. The next step is to plc.c2 

some limit upon the size of this inventory. 

This may be achieved by setting a 'threshold' size for 

the inventory. The draining process takes action only 

if the current inventory size is less than the threshold 

value. This addition to the Lynch algorithm we have 

called the Lynch-Alderson algorithm. 

The setting of a threshold value causing the drain to 

be switched on and off allows the draining rate to alter 

with memory demand. When memory demand is low the drain 

switches off since there is no need to utilise memory 

efficiently in such a situation. When memory demand 

increases the drain switches on removing pages not in 

the current localities of contending processes in an 

attempt to satisfy the increased demand. (Again however, 

there is a maximum extent to which any processes may be 

retarded by the drain). If the increased memory availability 

provided by the drain proves insufficient the Wharton 

component will ensure memory demand is reduced by removing 
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low priority processes from core. 

Again we can show the stability of the algorithm even 

though both memory demand and draining rate may vary. 

This is possible because stability is only a prohlem 

when overload conditions exist. Where such high 

memory demand occurs the algorithm essentially re"erts 

to the Lynch algorithm the stability of which we f.:..re 

already discussed. 

The settling time of the Lynch-Alderson algorithm in 

response to a stimulus, such as a sudden surge in 

memory demand caused by the introduction of a further 

process into the mix, is similar to that of Lynch's 

algorithm since under such conditions the Lynch-Alderson 

reverts to the Lynch algorithm. It is possible that 

the settling time could be slightly greater than that 

for Lynch's algorithm. This is because there may have 

been an accumulation of pages not belonging to any 

current localities of reference which may need to be 

deleted by the drain. However, on~ ~~L12 expect a 

substantially higher drain rate to be tolerable (and, 

perhaps, even appropriate) in Lynch-Alderson than in 

Lynch, since the inventory threshold tends to limit 

overdraining. The higher rate would reduce settling 

time considerably. 
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Let us now consider, figure 5.11, which is a core map 

from a simulation of the Lynch-Alderson algorithm using 

the standard workload and the threshold set at 1. From 

time 451 seconds to time 474 seconds we again have 

processes 42 and 49 in contention for core, as in figure 

5.8, the core map for Lynch's algorithm. We see that 

the two processes are no longer restricted to thelr 

parachors as they were by Lynch's algorithm. We aiS,) 

note that the algorithm is maintaining a single page 

inventory as indicated by the '*' which frequently 

appears in the final column. 

The graphs of CPU utilisation against core size and 

Multiprogramming Limit, figures 5.12 and 5.13 

respectively, show as we would expect that the 

Lynch-Alderson algorithm gives an improvement upon 

Lynch's algorithm. In particular we note that with 

the 5000 page core the Lynch-Alderson algorithm obtains 

the maximum attainable CPU utilisation. 
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5.6 Denning's Algorithm with the Predictive Drain 

When we discussed Denning's algorithm (4.3) we noted 

that the working set size estimation procedure could 

frequently overestimate leading to core utilisation 

lower than need be. The success of the Lynch drain in 

overcoming a similar problem in Wharton' s algorit~-.;.-. 

prompts the use of a drain process here. 

The drain we coupled with the Denning algorithm is 

distinctly different from that of Lynch's in that jt 

is integrated into the dispatching algorithm of the 

system. The draining algorithm is as follows. 

If any process exceeds a preset threshold of CPU time 

used since it last caused a page fault, a page is 

deleted from amongst those it has resident in core 

and its estimated working set size is reduced by one. 

This strategy we call the predictive drain or delete. 

The predictive delete approximates tr. th p removal of 

a page from the working set if it has not been accessed 

in the previous interval, As with the Lynch drain this 

strategy is a superimposed feedback control. This 

control has the property that it does not affect the 

stability of the Denning algorithm. If any process has 

insufficient core then the periods between page faults 

for that process will reduce below the threshold and 
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the drain will cease to have effect for that process. 

Thus if core contention is high the drain ceases to 

be effective and the algorithm reverts to the basic 

Denning algorithm. 

Let us now consider the simulation results for Dennjng's 

algorithm with and without the predictive delete. 

Figure 5.14 shows the variation of CPU utilisation 

with core size for the standard mix. The results are 

marked DENNING and DENNING (70) . These represent 

Denning's algorithm with no predictive drain and 

Denning's algorithm with the predictive delete th~eshold 

set at 70 milliseconds respectively. Comparison of these 

shows that the Denning(70) algorithm gives a consistent 

improvement over the Denning algorithm. We note also 

that the improvement increases as the amount of core 

available increases (until core availability ceases to 

be a constraint on the system). This occurs because as 

the system becomes less core constricted more processes 

run for CPU intervals in excess of the threshold without 

a page fault occurring and so the pre~ic~lve delete 

strategy becomes increasingly effective. 

In figure 5.15 we present a graph of CPU utilisation 

against Multiprogramming Limit for a core size of 70 pages. 

Again we see that employing the predictive delete allows 

the Denning (70) algorithm to utilise core more effectively 
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and so to give better CPU utilisation. This improved 

core utilisation is a result of the improvement in 

the working set size estimate provided by the predictive 

delete, which allows a higher effective multiprogramming 

level to be maintained. These simulation results show 

that we were correct in our assessment that the basic 

Denning algorithm would overestimate working set size. 

We see from the difference in results obtained by using 

the predictive delete that there is room for improvement 

in the basic Denning algorithm. The addition of tl,e 

predictive delete also shows the dependence of the model 

upon the estimation of its parameters in a model driven 

feedback control. 
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5.7 Drain Processes 

As we have seen from the Lynch and Lynch-Alderson 

algorithms, the concept of a drain process appears to 

be successful in promoting the effective use of core 

allocation. The Denning algorithm also benefits ~rom 

a drain process which appeared in the form of the 

predictive delete strategy. In the light of this the\" 

seem deserving of further consideration. In particular 

we shall compare the Lynch drain and the predictive 

delete which provide an interesting contrast. 

To recapitulate, the Lynch drain involves periodically 

marking as available for replacement a page of the 

process currently allocated the CPU. The predictive 

delete involves marking as available for replacement 

a page from each process which uses in excess of a 

preset limit of CPU time without generating a page 

demand. The basic difference between these schemes 

is that the predictive drain is applied separately to 

each process whereas Lynch's is applied to the set of 

processes contending for the CPU. From this view point 

it would appear that the predictive drain has a number 

of advantages. 

First, the predictive delete conforms with our desire 

that the core allocated to any process should have a 
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lower bound determined only by the properties of that 

process. With the Lynch strategy the core allocation 

of a process can depend upon the extent to which 

other processes utilise the CPU and this may depend 

upon their memory demand. The reason that this does 

not have a disastrous effect is that there is a 

built in limit to the extent to which Lynch's dr~i'l 

can affect the progress of a process as we discuss0G 

previously. 

The second advantage of the predictive drain is t~~t 

since it applies in parallel to all processes we0"ld 

expect it to be more effective than the Lynch drain 

in restricting all processes to their parachors. However, 

with both schemes a process must obtain CPU time before 

it can lose pages due to the drain. Where we employ a 

priority scheme, as we have done consistently, the 

priority bias will decrease the parallelism of the 

predictive drain. Therefore it is unlikely that the 

parallel capability of the predictive strategy bestows 

as great an advantage over the Lynch ~ratn as would at 

first appear. However, the predictive delete does suffer 

a very real disadvantage. 

The predictive delete requires that a limit be set upon 

the CPU time which a process may obtain without generating 

a page demand before the drain is invoked. As with the 

Lynch strategy it is wise to set the limit such that if 
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pages belonging to the current locality of a process 

are consistently deleted the effect upon the progress 

of the process is not unacceptable. However, any 

process which changes members of its current locality 

at intervals which are on average shorter than t~is 

limit will seldom be affected by the predictive drain 

even when occupying core in excess of its paracho~. 

Thus the predictive drain may not have the desired 

effect upon all processes. In particular, we wou1~ 

expect that the settling time of the predictive drain 

in response to closely spaced multiple stimuli, s'; 1, 

as sudden changes of locality by a number of prOCe3SE'S 

would be inferior to that of the Lynch drain. This is 

because a sudden switch of locality is signalled by a 

flurry of page faults and so would not be detected by 

the predictive drain. 

In order to obtain an indication of the importance 

of these factors a series of simulation experiments 

was undertaken to compare the two drain processes. The 

Wharton algorithm provides an ideal t2St bed for t~ese 

two drain processes due to its simplicity and its 

antithrashing properties. We have previously discussed 

the combination of Wharton's algorithm with the Lynch 

drain which we called Lynch's a1gorithm- The combination 

of Wharton's algorithm with the predictive delete we will 

call the Wharton-D algorithm. 
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Figures 5.16 and 5.17 show graphs of CPU utilisation 

against core size and CPU utilisation against Multi

programming Limit respectively for the Lynch-Alderson 

and Wharton-D algorithms in which the inventory 

threshold was set at two pages, the drain processes 

parameter was set at two logical revolutions of t~e 

drum, and the standard workload was used. The re= eVo.i1t 

results are those marked LYNCH.-ALDERSON and WHART(~'·-r'). 

Results for the Wharton-D algorithm without the 

inventory threshold (not shown), are very similar to 

those for Lynch's algorithm. 

To observe the way in which the two drain processes 

deal with sudden change of locality of reference the 

normal page fault probability function, which we term 

the DRIFTING function, was replaced by a 'PEAKING' 

function. The PEAKING function causes the locality 

of reference of a process to suddenly change completely 

three times. These sudden changes occur at times 

spaced equally throughout the execution of the process. 

Each change is modelled by assuming that during the 

change both the old and new localities are required, 

that is the size of the current locality doubles for 

this period. The change of locality is deemed to be 

complete when a number of page faults equal to t~e 3ize 

of the locality have been incurred by the process. 

Thus to obtain the PEAKING function we replace k of 

3.5.4 by 
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-16 RCP 
k = 2 PCS usually, 

but by 

-16 RCP 
k = 2 2xPCS 

at the three equally spaced times and until PCS p2~e 

faults have been incurred by the process. The results 

of these simulations are shown in figure 5.18. (N. ~. 

The results in this figure, are joined by lines on]~ to 

aid identification - they are not intended to represe~t 

the graph of any function). 

The results of these simulations were all rather 

inconclusive. Those cases which would be of interest 

were difficult to simulate for suitably long periods 

without compromising the validity of the results by 

biasing the simulations through choice of unusual 

parameter settings. To avoid this a third page fault 

probability function was used in the simulations which 

should highlight any inadequacies in the core allocation 

algorithm. 

The function is such that the probability of page 

fault of a process which has less than its parachor is 

inversely proportional to the amount of core it occupies. 

This is equivalent to the process accessing the pages of 

its current locality at random. The probability of a 

page fault occuring when the process has at least its 
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parachor is constant. Thus we replace k of 3.5.4 by 

-16 3 x PCS 
k = 2 + CPU TIME x 1000 for RCP > PCS 

1 + 3 x PCS 
CPU TIME x 1000 

and 

C 
2-16 + 

3 x PCS }, k = 1 - CPU TIME x 1000 
~p 

1 + 3 x PCS i', ~.,'~ 
CPU TIME x 1000 

when RCP < PCS. 

Thus performance will degrade swiftly if a core allocation 

algorithm provides a process with less than its parachor. 

There is no decrease at all in the page fault probability 

if the parachor is overestimated but there is with both 

the DRIFTING and PEAKING functions. We call this function 

the RANDOM function. Algorithms which utilise core at 

all ineffectively should be highlighted by simulations 

using this paging function. 

The results obtained for a number of algorithms including the 

Lynch-Alderson and Wharton-D algorithms are shown In 

figure 5.18. We see that for the PEAKING and DRIFTING 

functions there is little difference in the results. 

However, there is a difference when the RANDOM function 

is employed. This suggests that avoidance of the 

predictive drain by certain processes does occur to 
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some extent but that in our simulations it is not an 

important factor. It is only noticable when the effect 

is amplified by the RANDOM function. (N.B. It is not 

valid to compare the results of any algorithm for the 

three paging functions. Under the same conditions 

similar memory demand behaviour will not occur with 

the various paging functions). 

To sum up we have seen from our studies that drain 

processes are a very useful tool in promoting the 

effectiveness of a core allocation algorithm whict 

avoids thrashing. Care must be taken that the 

draining process can have only a limited effect so 

that it does not precipitate thrashing. However, ~c 

have shown that this need not be difficult to arrange 

and that a very simple approach can be very successful. 

The two drain processes which we have examined here 

both have disadvantages and it may well be that further 

study will provide rewarding development. However, the 

important point displayed by these strategies is that 

it is possible to design an initial core allocation 

algorithm in which the accent is solely upon avoiding 

thrashing and still to leave a degree of freedom, in 

the form of a drain process, which can be utilised to 

improve performance without affecting stability. 
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5.8 Hoare's Algorithm 

The core allocation algorithm described here was evolved 

over a period of time by CAR Hoare. The orig:~ol 

proposal has been modi fied by Hoare as a conseq U2r: ,-.. r~ 

of intuitive arguments by himself. These \-lere e[::.t""_~, 

or prompted by simulations using the sys tern siron, ~ =t i ::: ~. 

The algor~thm is of interest in that it shows a L t ".'ler 

successful way in which a drain process may be iT,p lvro.'nted. 

It is also of in terest in that its settling time i ~ "lC' 11 

defined and can be altered by a parameter change 

Evel;:y logical drum revolution a number of t)ages of c')re 

are scanned bv a pointer which moves cYclically round the 

core. Any that have remained un used since they we Le los t 

scanned are 'victims'. If a victim has a valid bacl~ir.g 

store copy then it is immediately added to the free list, 

a$suming it is not already on t..l-J.e list, othenlise ~ L .: S 

placed on the drum queue and is freed after the tr . .;-:::: fer 

takes place. No oage replacements can be forced r..,·;' a 

page demand and so processes may CD.LY :..:i;-._::_-J man cere 

by obtaining pages from the free list. Hoare C2 -'- ~~: 'Ii s 

drain process 'second-chance' page replacement (Hoare ~~d 

McKeag, 1972). 

Thus if core demand is light the free chain builds un 

until it is large enough to justify the loadinq of a 
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further process. If demand is heavy no victims \'1lll be 

found and the free list will be diminished. When the 

free list diminishes to zero all processes could be 

halted due to core contention, a si tuation equi valen t 

to thrashing. The proposed load shedding cornpor.~~:, 

which is necessary to deal with such cases, is tra~ 

when a number of nrocesses are waiting for a free :'<1(jt"', 

the highest priori ty process ahlays gets nreferenc-:·, 

However, without further refinement this allocatir~ 

strategy will be uns atis factory. While the free li', ~ 

is non-empty the mechanism intended to block low r,d c ~j ty 

processes from obtaining core in cases of high memory 

demand relies upon the occurrence of events, nage 

demands, which are stochastic in nature. As \-Ie ha"e 

seen with Horning's algorithm such blocking mechanisms 

a,re not sufficiently effective. Furthermore, when the 

free list is empty processes may be halted and ur:a"le 

to access thei.r in ..... core pages and so blocks of :,;- (; '-:.ge 

may be released by the scanning mechanism. This wi 11 

completely destroy any e ffecti vene~ s ',,!~::. c:- the b lr)CJ< ing 

mechanism may have had. 

To overcome this a process is not allowed to acquire 

a page from the free list unless the number of free 

pages exceeds twice, its own priority number. Thus 

each process leaves a float of two nages for the ~enefit 
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of each higher priority process. The number of free 

pages thus places a limit upon the number of processes 

allowed to comnete for core. A process hal ted in this 

way may onlv continue if the free list size exceeds 

three times the process' priority nlus six. Th..;::> t;1e 

effecti ve multiprogramming level is controlled by :he 

size of the free lis t. 

Suppose a group of processes increase their memorv' 

demand suddenly. Eventually the lowest priority "Clocess 

will be halted from obtaining core. This should !:,",t:l 

immediately reduce demand and eventually increase 

supply since that process' s pages will becorre victi :-:-,"0,. 

However, if this is insufficient furt.'1e r processe~ ':Ii 11 

be suspended until supply and demand are e1ual. If 

supply increases then a process will be reactivated. 

This increases demand and reduces sunply so that the 

incrt:~ase of the free list is retarded. P':.>",.;ever I 1.f 

this is insufficient further processes will be rea._t.:...vated 

until a balance is reached. 

Further thought led to the suggestion that it may "~'=

advisable to impose a delay upon the rate at which 

processes are suspended or reactivated. For example, 

when a process has been suspended the drain should removo;:: 

all of that process's pages (one cycle of the scanning 

pointer) before suspending any further process. Again 
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when a process is activated or reactivated it should be 

allowed to obtain its parachor (if possible) before any 

further nrocess is allowed to do so. 

This form of suspension/activation hysteresis by t~:ning 

can be synchronised to the scanning pOinter of the irain 

process and is very easy to implement. It is betr.e-:: fr.an 

using the size of the free list alone for control ~'Ul.-~-Joses 

since the free list fluctuates too randomly to be:'! good 

parameter for controlling hysteresis. In particular the 

free list will suddenly increase in size when a nrocess 

terminates execution. Without the timing hysteresis ~ 

number of processes would be allowed to co~ete for core 

without any regard for the total memory demand. This will 

lead to rapid depletion of the free list which may well 

cause processes to wait for the drain to free pages. 

This is a si tuation to be avoided. 

Unfortunately, we are unable to simulate algorithms which 

take account of the individual pages of a orocess. The 

account of the attempted simulation of d£J =".RU deri ~'-3.ti ve 

(section 4.4) shows the extent of our problem. Be"lever 

it is possible to simulate FIFO page replacement, and since 

the second-chance algorithm approximates to FIFO under 

overload conditions, it was thought that it would be a 

fair test to use it in the simulations. The algorithm 

simulated was Hoare's algorithm with the scanning pointer 
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moving two pages every second logical revolution of the 

paging drum, a simulated time of 70 milliseconds. The 

standard workload was used. 

Let us consider the graph of CPU utilisation against 

Multiprogramming Limit in figure 5.19. We see t!-13t ::~e 

Hoare algorithm avoids thrashing, the graph showb G tl:e 

characteristic non-decreasing function of Multipr::;~ L<rrnr~g 

Limit. Of special interest is the result for Multi~H'~grarruning 

Limit of 1 in which CPU utilisation is depressed L""l'.:M that 

obtainable by simple single-programming. This may ~)e 

explained by the action of the drain process in t;.is 

algorithm which, as with Lynch's algorithm, continues tG 

drain pages when there is no core contention. This LEads 

to unnecessary page faults which depress CPU utilisation. 

Let us now consider the core maps for Hoare's algorithm 

with 70 pages of core, using the standard workload. An 

example of the loadshedding mechanism in operation is 

shown by lines 566-574 of figure 5.20. At line 5615 

s uffi cient free core is available t.o 6.11:",1 tbe i:, t r,~,duction 

of a new process. Process' 5' is admi tted but qui ":: ly uses 

up the core available to it and is suspended. Thus in 

lines 568-570 we see that process's pages are being 

drained from core. Process '5' remains suspended until 

the higher priority process '4' terminates executi0~ 

enabling process '5' to be reactivated. 
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Lines 581-590 display the manner in which the time 

hysteresis prevents a sudden influx of processes l~tO 

core when process '4' terminates execution. ~ve can 

plainly see processes being introduced at ~~e rate of 

about one each 2.5 seconds, the time taken by tr>2 

scanning pointer to complete a cycle of core. 

In figure 5.21 lines 480-522 Shovl a situation in VJ'-,L.:h 

processes' 8' and '4' have a combined parachor in 

excess of core size. Process '4' is activated, Excaeds 

available core and is suspended at regular inter'.':;.~s 

which are synchronised to the scanning Dointer. ~l .1 i ;.J 

is an unfortunate situation in that some process with a 

smaller parachor than process '4' could have utilised 

the core available more effectively. 

To gain some feel for the imnrovement to be expec~ed by 

replacing the FIFO page replacement by second-chance 

replacement the results in fJgure 5.19 marked HOARE 

(70,2) - SC were obtained. Here we assumed 

that there was a r.onstant nrobabili':.-y.:;f ';.5 that a 1).3.ge 

belonging to an activated process had been used s if' "13 the 

last scan. We make no attempt to justify this gross 

oversimplification other than to say that one would 

expect the drain rate of second-chance to be far less 

than that of FIFO, this '\vas a simple way to obtain t:-d::; 

desired effect. As would be expected there is a 

significant improvement in the results obtained. 
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The simulations suggest that the performance of L~is 

algorithm might still be increased by further 

refinements. However, it would be difficult to assess 

further refinements due to our inability to slmulate 

the second-chance aspect. 

Our principal interest in this strategy deri ves ~ _:.:~) 

studying its settling time. The settling time ir. 

respect of any single stimulus, such as a sudden c;loncTe 

of locality or process termination, is equal to tht 

time taken for one cycle of the scanning pointer. This 

is the reason for synchronising suspension and act:;. vat :i ,~n 

of processes to that cycle. Thus Hoare's algorithm has 

the interesting property that its settling time may be 

changed by altering the presettable scanning rate. 

This has been of great value in our study of scheduling 

described in the next chapter. 
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It was the intention of this chanter to exolore the 
~ -

manner in which feedback control could be applied tc 

the design and understanding of core allocation. \:e 

were particularly interested in the avoidance of 

thrashing which as we have earlier discussed is C~1US,,=,:' 

by feedback instability in core allocation. 

Starting with two stable but not very effective ccr':? 

allocation policies we have evolved a series of 

strategies. In figure 5.22 we nresent a cOID9arisor. 

of these algorithms by superimposing their graphs 0f 

CPU uti lis ation against Multiprogramming Limit. T;lE se 

algorithms have been analysed and improved, sometimes, 

by appealing to arguments based upon feedback control 

notions. This process leads us to believe that th~ 

application of feedback control in this way is a us", lul 

and effective method of developlng core allocation 

policies to avoid thrashing. 

The process of development itself has provided sox~ 

useful insights into the manner in which core allocc~~on 

algorithms can be structured so as to simplify their 

design. Instances of useful structuring are provided 

by the concept of drain processes which may be super

imposed unon an existing algorithm to improve effectiveness. 
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Another example is the separation of page replacement 

from the choice of process from which a page is to be 

replaced. In figure 5.23 we present a comoarison of . -

the 'draining' algorithms by superimposing their graphs 

of CPU uti lis ation against Multiprogramming Limi t. 

The simplification of the constituent parts of thp 

strategy which may be obtained in these ways is oj 

the utmost importance. The appalling ease with w:, i c:t 

we accepted the justification of Homing's algori thm 

emphasises the need to understand the dynamics 01' '~~lr 

algorithms. The numerous subtleties which come to 

light in the analysis of the deceptivelv straightfoD~ard 

Lynch algorithm emphasise the necessity of sirnolicitv 

if we are ever to predict the consequences of the 

mechanisms which we design. We cannot justify using 

an algorithm whose behaviour we are unable to predict. 

The effectiveness of the anti-thrashing algorithms 

derived from Wharton's algorithm leads us to believe 

that any further gains obtained by im!Jro' :...ng the core 

allocation strategy will be small. It now seems clear 

that if further increases in system utilisation are to 

be achieved the problems of the 'mix' of processes whicn 

is presented to the system must be considered. In our 

simulations so far the composition of the mix has been 

totally determined by the initial external priority 
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assignment imposed on all nrocesses. These priority 

assignments are naive causing undesirable mixes to 

be presented to the system at times. 

The situation often arose in which a low priority 

process was able to obtain insufficient core to 

contain its current locality and so made little 

progress. In many cases the amount of core avail.3.r~lc 

to this process was sufficient to contain the narac~)r 

of some lower priority process currently barred fr"'or:\ 

competing for core. Altering the relative priolit~~s 

of these processes would lead to an increase in S\'S ;.:0;:\ 

utilisation. Observations such as these lead us to 

explore the ways in which system utilisation could 

be enhanced by dynamic priority assignment schemes; 

we shall discuss this tonic in the next chapter. 
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CHAPTER 6 

Scheduling and Dispatching 

6.1 Introduction 

We have treated core.allocationas the major problem 

in designing an.efficient operating system. WheL~ cere 

is a scarce resource, .asit commonly is, the occure r .c'2' 

of thrashing will overshadow all other performanc~ 

problems. However, having countered thrashing by 

employing a suitable core.allocation algorithm, the 

allocation of the CPU and I/O processors becomes 

increasingly important. 

We have indicated. two levels at which the allocation 

decisions might be made with regard to these resources. 

These levels are scheduling and dispatching. The 

intention here is to examine the manner in which t>e 

scheduling and dispatching levels of our hierarchy 

affect the performance of an operating system. In 

particular we shall. discuss. the inter3.cU.ons of 

scheduling and dispatching with core allocation ~nd 

the constraints which must be imposed unon the various 

levels if effective operation is to be maintained. Once 

more we shall appeal to notions of feedback to aid analysis. 
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6.2 Scheduling 

The function of the scheduler in our hierarchy is to 

define a priority ordering upon the various processes 

which require system resources. Typically the priority 

order will reflect management policies to favour,-9rtain 

kinds of process and to provide certain levels of service 

to batch, interactive and real time processes. It r'~\' 

also reflect system decisions aimed at deadlock aV0idance. 

These requirements must be combined wi th astra te;v to 

ensure that the demands made upon the system do not C,t'Jse 

overloads of individual resources resulting in dL:'j nished 

effectiveness. To. implement such a strategy will require 

monitoring of the system so that the characteristics of 

the various processes utilising the system may be 

determined. (It is well.known that external agencies 

such as the programmer are a, very unreliable source of 

such data). Thus some form of feedback of informClti'Jn 

is required. 

The two problems which arise are:-

a) What information will be required to determir:e tl:e 

process characteristics so that the nriority order 

may be modified,appronriately, and how might that 

information be collected? 

b) What effect will the priori ty reordering have unon 

system performance? 
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Answers to the first problem will depend to a great 

extent upon the role which the system is intended to 

fulfill, therefore we shall not discuss them. However, 

it is possible to discuss the effect of changing 

priorities in a general way within the context of 

our hierarchy. 
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6.2.1 The Effect of Dynamic Priority Reordering 

upon System Effectiveness·-

We have defined our hierarchy so that core is allocated 

to contending processes with respect to a priori tv order 

imposed by the scheduler. We have shown that it is 

possible to design core allocation strategies \~hh-,! Wl.ll 

allocate core amongst the contending processes so .:,5 to 

give a stable division of the resource. Now if '''2 alter 

the priority order which dictates the manner in which 

core is divided then the allocation.will change accordingly 

and, with an appropriate allocation strategy, will settle 

once more to a stable division. 

Ideally, we wish the system to operate in stable mode so 

that the paging overheads will be minimised. HOT-leVer, each 

time the process priorities are reordered a period of 

operation is incurred during which the core allocati·)n :s 

stablilising and higher overheads occur. Thus we ~U3t 

arrange that nriori ty reordering occurs at a rate ·"hich 

is such that the time spent in the lJr:settled state does 

not represent a significant proportion of processi.-lg time. 

Of course, process completion and.submission also cause 

reordering which is unplanned. If the rate of occurrence 

of these events is high we may have to curtail our planned 

reordering or reorder only when these events occur. 
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If our only requirement was to minimise paging overheads 

then we would choose to reorder.priorities as infrequently 

as possible. However, thereare.advantages to be gained 

from rearranging priorities •. In.particular, ordering with 

respect to the characteristics of.theprocesses can imnrove 

the parallel use of the CPU and I/O.devices. SirC8 L~ese 

characteristics change with time we may require to ~2ke 

frequent observations of process characteristics and make 

related priority alterations. To. this end we may b~ 

prepared to accept an amount. of . overhead which He would 

hope to offset by improved system utilisation. 

Wulf (1969) has described a scheme of ~rocess monitoring 

and priority reordering implemented within the Chip~ewa 

operating system on a CDC 6600. Here an attempt was made 

to order the processes with respect to their observed 

characteristics and the observed performance of the system. 

Processes which make heavy use ofa resource in hig~ demand 

may be suspended, thereby decreasing contention. Suspended 

processes which have been observed to use currently 

underutilised resources may be activated, increasing the 

parallel utilisation of resources .. Wulf reported greatly 

improved system utilisation in spite of the added overhead 

of the increased swopping of processes between core and 

backing store, and the overhead of the monitoring and 

process selection algorithms. 
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However, there is an upper limit to.the rate at which 

priori ty changes can be made. I f we alter priori ties at 

intervals which are shorter than the settling time of the 

core allocation policy then a stable core division will 

never be obtained and overheads.will increase rapidly. 

In fact rapid priority changes will tend to negate any 

anti-thrashing properti:e.s ,,,,hich the core allocaLon 

algorithm may have. 
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6.2.2 Time-slicing as a Simnle Examole of 

Priority Reordering 

To demonstrate these ideas let us consider a very COIlliT.on 

requirement of multiprogramming systems, that of oroviding 

rapid processing of small interactive processes '.';'" i 1 s t 

providing acceptable background service to more ("('17:" lex 

processes. 

If one is to ensure that processes will complete within 

an acceptable time then processes of any parti c:..: 1.:,:r tyne 

must not be blocked for inordinately long periods hy 

other processes. It must.be ensured that processes 

requiring a great deal of computation neither monopolise 

the CPU nor are nrevented from completing because of the 

precedence being given to short comnutations. A simple 

way to avoid such problems is to allot each process a 

quantum of CPU time - a time slice. If the process does 

not complete within an allotedtime slice then it is 

gi ven further time sli ces as required bl-'.t its priority 

to obtain the CPU is reduced. 

For example, in a system in which the CPU is allotted on 

a round-robin basis, allocating. the CPU to the next process 

in the cycle is equi valen t to demoting a nrocess to lowest 

priority when ithas used its time slice. The time slice 

is used here as a simple feedback of information to the 
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scheduler upon which decisions to reorder priorities may 

be made. 

Since time-slicing was easy to implement in the simulation 

model it was possible to carry out a number of siwDle 

experiments which demonstrate. the effect of prior':: ty 

ordering upon system effectiveness. In these e}o.."Derirl1ents 

we chose to utilise the feedback of information sc as to 

improve the response of the system to short computations. 

To this end we demote any process which utilises all of 

its time slice to the end of the scheduler queue. New 

processes enter the scheduler queue in first-come-first-

served order. 

To assess the effectiveness of the scheme a figure of merit 

was computed for each simulated system, (Hellerman, 1969). 

This fi'gure of meri t is larger the more success fu] the system 

is in providing better service to short comoutations relative 

to long computations ina mix containing both. Hellerman's 

figure of merit is defined as: 

n 

L 
i=l 

n 

(e./x.) 
~ ~ 

where n is the number of processes submitted to the system, 
.th 

x. is the processor time (I/O and CPU) required by the ~ 
~ 

process and e. is the elapsed time to completion of the i
th 

1 

process. The term e./x. will weight the figure of merit 
~ ~ 
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more significantly if it refers to a short process t~an 

to a long one. The figure has a maximum value of one 

when e. 
1. Xi' i = 1,2,3, ... n,.that is when each 

process experiences no contention for any resource 

which it requires. 

Before discussing the results obtained we make on,,, 

further observation. Consideration of. response ti'1i.:' 

requiremen ts for short processes. imolies that the ~~?S t 

value for the time slice is that which is just l('n.'J 

enough to allow short interactions to comolete " .. :it'1in 

one time slice. If the time slice is shorter than this 

value short computations will exoerience delays due to 

being requeued at time slice end. If the time slice 

exceeds this value then the CPU will pass more slowly 

from process to process and short computations entering 

the system will incur a greater queuing time to first 

service than with the shorter time slice. In the 

simulation experiments using the standard mix the 

apparently optimal time slice value is one second. 

The algorithms simulated were Hoare's algorithm scanning 

two pages every 70 milliseconds, Hoare's algorithm 

scanning two pages every 140 milliseconds and Wharton's 

algori thm. The simulations \.,ere of a 70 page core. 

The settling times of the core allocation policies are 

approximate ly : 
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Hoare (2 pages, 70 milliseconds) 

Hoare (2 ~ages, 140 milliseconds) 

Wharton 

2.45 seconds 

4.9 seconds 

0.6 seconds 

The settling time for Wharton's algorithm depends upon the 

number of pages which the process being demoted il,C,C. in core 

at time slice end. The value of 0.6 seconds is (llt ::ined by 

assuming that half of the available nages (35) b[ L~)ng to 

the demoted process. 

Let us now consider the simulation results obtair-.ec:. 

Considerations of the mix presented to the system in t:1e 

simulations leads one to expect maximum resnonse for short 

processes when the time slice is in the region of one 

second. Ho~",ever, as the graph of Hellerman's figure of 

merit against time slice (figure 6.1) disolays, only 

Wharton IS algori thm wi th a settling time of less than one 

second shows this. Both of the Hoare algori thrns ''Il t!1 

settling times exceeding one second attain maximum 

response with time slice values in excess of one second. 

Combining the results shown in figure 6.1 with those of 

figure 6.2, the graph of CPU utilisation against time 

slice, we see that once a high level of response to short 

processes has been attained decreasing the time slice 

value only causes depleted service to background orocesses 

and increased paging overheads. In all cases the value of 
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time slice which maximises service to background ~rocesses 

having maximised res~onse to short nrocesses occurs close 

to the settling time of the core allocation algorithm 

or one second whichever is the greater. These results 

correspond with the theoretical prediction that the 

scheduler should not reorder process oriorities at 

intervals which are shorter than the settling ti~e of 

the core allocation algorithm since this can only >oc,d 

to increased overheads due to paging. 

When discussing Wharton's algorithm (4.2) we noted t'1a:' 

introducing time-slicing might improve core utilisation 

and consequently im~rove CPU utilisation. We see from 

figures 6.2 and 4.3 that this is in fact the case. The 

results obtained with time-slicing show a slight 

improvement over those without. vie note a similar 

effect with the Hoare algorithm scanning 2 pages eVery 

70 milliseconds. However, we see that the maximum CPU 

utilisation achieved is for a time slice VIell in excess 

of the settling time of the algorithm. \'le vlould expect 

this for although we expect to maximise short process 

response by making the time slice small we noted that 

the system should operate most effectively when in the 

settled state, that is for time slice values greater 

than the settling time of the core allocation algori thr.,. 

As the time slice value decreases the unsettled state 

becomes increasingly dominant. Interaction between the 
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core allocation and scheduling components increases and 

paging overheads rise rapidly as the prooortion of time 

during \vhich the core allocation algorithm is settl.ed 

becomes less significant. Again these results agree 

with the theoretical predictions. 

Thus as predicted by considering the core allocation 

algorithm as a feedback controller experiencing e: .. tE' l~!"'al 

stimuli in the form of priori ty reordering caused :-,y 

the scheduling component, system efficiencv is sensitive 

to the rate of interaction between system comryone~ts. 

The results display the importance of being avlare of 

the interactions and the limits they place unon t~e 

values of the parameters of the various system 

components. 
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6.2.3 Bias in Scheduling Algorithms 

Frequently decisions about the role of the system imply 

the necessity of biassing the scheduling algorithm 

towards a certain type of process. For example when 

optimising response to short processes it is natural 

to build in a bias to those processes. The benerlclal 

effect of such biassing is demonstrated in this c~se 

by the results discussed above. However, introducing 

bias into an operating system may have undesirable 

consequences. 

Let us consider the example of a.system designed to 

support interactive processes and a background batch 

stream. By giving nrecedence to interactive nrocesses 

it may be possible to exhaust the supnlv of such 

processes leaving only the background stream. Due to 

bias the mix is modified. Since the system is net 

designed to cone with a nure batch stream its algorithms 

may be less effective. 

Care must also be taken that the scheduling algorithm 

does not inadvertently cause biasing towards certain 

types of process. Again this will lead to backlogs of 

other processes, the execution of which may require the 

system to work outside its operating region or in other 

ways cause excessive delays to certain nrocess types. 
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An example of such biasing is given by Lehman and 

Rosenfeld (1968). Here processes req'-liring large 

amounts of memory were delayed excessively tmtil t!1ey 

dominated the mix at ,.,hich time the backlog was ra?idly 

depleted and the cycle begun again. 
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6.3 Disoatching 

In our hierarqhy dispatching is concerned with the 

allocation of CPU and I/O processors. It should be 

th~ aim of a dispatcher to optimise the parallel usage 

of these resources in order to increase throughput. 

The most important component of a dispatching strategy 

is the algorithm which governs the utilisation of t~e 

CPU since all processes must obtain the CPU to some 

extent if they are to progress •. The relative demands 

for the CPU made by various processes may vary widelv 

and it has long been recognised that for some nrocesses 

the limiting factor upon their rate of progress is CPU 

availability whilst others may be limited by I/O 

availability. 

Sherman (1972) has confirmed by experiment that the 

parallel usage of CPU and I/O processors in a multi

programming environment is optimised by giving the CPU 

to the process which will compute for the shortest period 

before issuing an I/O request. Advantage has often been 

taken of this by giving I/O bound processes priority over 

CPU bound processes since on average. I/O bound nrocesses 

will compute for shorter periods between requests for I/O. 

However the relative demands made by a particular nrocess 

for CPU and I/O can vary dynamically wi~h the progress of 
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the computation and the ~rocess may switch between being 

CPU bOund and I/O bound. Therefore, it is necessary to 

. be flexible in the assignment of priority to use these 

resources. A strategy of monitoring the demands of the 

process coupled with a dynamic selection of the next 

process to utilise the CPU and I/O devices may be 

fruitful. 
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6.3.1 Frequency of Choice of Process to Dispatch 

An important consideration to be made before examining 

possible dispatching algorithms is the frequency with 

which there will be a choice of nrocesses to dispatch. 

If the number of processes contending for any reS0urce 

seldom exceeds one then there is no gain to be made 

over the simplest possible dispatching algorithm. T:1e 

overhead incurl'ed bv mo\!'e sophisticated methods could 

not be balanced by imorovement in performance. 

With the probable exception of the line printer i!1di'ridual 

I/O devices are certain to experience less contention 

than there will be for the CPU. Queues for the printer 

are not uncommon but they are often dealt with by a 

spooling system due to the great disparity in speed 

between the CPU and the line printer. It will seldom 

be necessary to make a choice between processes comDeting 

for an I/O device other than the line nrinter. Also the 

use of the CPU and I/O processors hy a nrocess is 

distinctly di fferen t. I/O operatioLs are requested 

singly with each request being nreceded by many CPU 

operations. These differing usage characteristics imnly 

that the conditions necessary for a dispatching decision 

are di fferen t in the two cases. CPU and I/O de vi ces may 

only be reassigned when the current oneration has 

completed. However, it is possible that the CPU will 
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still be required by the current.urocess at the end 

of the present operation vlhereas this will be unli~~E ly 

for an I/O device. 

It is possible then to make a choice for CPU aSSi-;rl!.2'.t 

whenever another t)rocess other than that curren t 1,-, 

assigned the CPU becomes able to use it. That i~, 

decision mav be made whenever the number of pr,)C2:- .,.,:; 

requiring the CPU is at least two. With I/O ho,:'\'cr, 

where the process currently receiving service i~o verv 

unlikely to demand further service immediately ' ... ','.n 

termination of the current ot)eration, two further 

processes must require service from that I/O device 

before a choice can be made. With the exception of 

the paging drum this will be a rare situation and may 

therefore prove inefficient to cater for. 

The paging drum is somewhat excentiol1al since in:'. r(~:::t,,/ 

all processes require serVlce from it because of ',.1': 

structure of the system. It is possibl"" by emnl'sH, J 

sector queuing techniques nveing~:..:t.en, 1 '.;::; 6 i P~'.n ~n c; , 

1967; Coffman, 1969), for the disnatching algc,ri L:r, to 

ini tiate a chain of I/O commands to the drUJrl 't-lhic'1 

satisfy the needs of many processes in one I/O oneraL on. 

Results obtained by the system simulator using the 

standard workload for the 9 sector drum organisation 
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employed by MTS give average sector queue sizes of 

less than 0.1 for Lynch's algorithm. These results 

show that it would be infeasible_touse_~~e simulator 

to study the effects of applying a disnatching clgorithm 

to requests for transfers from the paging drum. 

Measurements of MTS also showed short sector q'~. 'x; 

wi th the drum never loaded to more than 30% of j t~' 

capacity even when thrashing was being exnerienc!c:. 

Since the dispatcher for the paging drum, which ,,-' 11l:.' CY-.' j 

a very sophisticated algorithm was using between i~% .~nd 

15% of available CPU time it was considered that ," ~o i:n;;le 

first-come- first-served algorithm would provide an 

equally effective dispatcher for greatly reduced o'Ir::,r~hadc;. 

Thus we would expect to obtain the most benefit by 

providing simple dispatching algori thms for I/O processors 

and confining our attention to the disnatching of nLocesses 

contending for the CPU. Average CPU queue lengths for 

Lynch's algorithm obtained from simulations rose f)-(~m 

nearly one with 70 :oages of core to armr::>ximatelv t'1re~ 

with 130 pages, suggesting that a choice o:Jf nroceS"'E5 

would occur sufficiently often to 0 warrent the apn 1.i_ation 

of a sophisticated dispatcher for the CPU. 
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6.3.2 Application of Feedback to CPU Dispatching 

It would not be appropriate to attempt to catalogue the 

ways in which one might estimate the process most likely 

to compute for the shortest period be fore issuin j an I/O 

request. Sherman (1972) has already made a stud\ -:f _. 

number of iffil:)ortant theoretical and practical ..... i.':::Ul .... ;.: .• :.3 

by simulation. In particular the study include':: ~ );;1.' 

predictive dispatchers. 

The basic technique is to nredict the CPU time :I·!~i! ·d 

by a process be fore its next I/O request, based .~:, ,-",'~ 

past behaviour of the process. The CPU is given t J '_~e 

process with the least predicted value. Two diff-2cP!1t 

methods were tested by Sherman. The first developed an 

exponential 

the (n_l)st 

the (n_l)st 

smoothing predictor as follows. 

CPU service 

prediction 

A 

X = n 

time 

then 

+ 

for a process 

the prediction 

" (I-a) x 1 n-

If x n-l is 

and 
1\ 

x n-l is 

of '{ _L -3 
n 

where 0 So a s. 1. The larger the value of a the more 

heavily weighted is the most recent nast. T:1e S-?c-,;,d 

method used the 'complete history' , nredicting the ",2.1'. t 

CPU service time to be the mean of all past service times 

for that process, the formula being 

= (n-l))/n 
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These 'feedback' dispatchers were shown to be successful 

when compared against the theoretical best in which the 

correct process is always chosen. They chose correctly 

in up to 75% of cases. 

The environmen t in which the feedback dispatchers ' .... e.LC 

studied by Sherman did not include the external .3 ~.in·_1 ~ i 

to the dispatcher from the core allocation comno':.:o n c 'oJ:, i ch 

would be found in a paging system. Hrn-lever, when T. iT.? 

slicing was introduced creating a source of external 

stimuli a performance improvement was observed. ';';,? 

time slice values were of the same order of magnitclde 

as the se ttling times of Wharton's and Lynch's algor i t.hros 

and therefore we might expect these algorithms to perform 

equally well in a paging environment. However, dispatching 

algorithms in which processes are ordered according to some 

calculated statistic require a linear search of a l~st for 

each dispatching decision made and so entail a certain 

amount of overhead. 

The dispatching algori thm of HTS overcor.:".;: s the necessity 

for this linear search. Here the nrocess which re'i'.1ested 

I/O most recently is predicted to be the orocess which 

will request the least CPU service before issuing a 

further I/O request. Thus whenever a orocess completes 

I/O service it is placed at the front of the dispatcher 

queue, thus ordering it correctly with respect to 
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its predicted value of CPU service requirement. The 

algorithm is also preemptive and so the process obtains 

the CPU immediately. The notion behind this scheme 

is that processes which make frequent demands will 

predominantly occupy the leading positions in t!-'.-

dispatcher queue. CPU bound processes will be derr.::'-~'~ 

to the lower positions. 

The queue need never be scanned either to insert ~ 

process in priori ty order or to select the next r,·c:)ces c,. 

The algorithm does however have one distinct di -0','.;'1 w. t qe. 

Under the algorithms described by Sherman the predi "~:>~l 

length of next CPU request for a nrocess can be retained 

during suspension of the process by the core allocation 

algorithm. This is not possible under the MTS scheme. 

Thus the 'exnlicit' predictor methods have an advantage 

when considering settling characteristics of the al(jC,rithms. 

Since dispatching occurs at the lowest level of O.H 

hierarchy it is necessary that the algorithm be economical 

of CPU time for otherwise it would ;l-:<'e ~;. significant 

effect unon its own settling time. The settling Time of 

the dispatching algorithm must of course be signifi~ctD~ly 

less than that of the core allocation algorithms if - ... -:.. L .. ~ 

system is to be in a settled state for a sufficient 

proportion of the time. Thus the disnatching algori~~m 

cannot be complex. The. feedback dispatchers described by 

Sherman display that simple but successful algorithms can 

be constructed. 
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6.4 The Implications of the Control Hierarchy 

In this and the previous chapters we have discussed L~e 

feasibility of the hierarchy of control which we 

proposed in 1. 3. By des cribing the hierarchy 1;-, 

feedback terms we have shown that for an operati ~ ;:: 

system of this design to function effectively ce:totin 

constraints must be imposed upon the interactio~ -f 

the various levels. The levels themselves can b2 

claimed to perform logically seoarate functions ano 

the function of a particular level is one rt/hich ~:~n 

logically be delegated by the immediately higher ~~'.'!.. 

However, we have seen that this is not sufficien t f·n 

the whole to work as an effective unit. 

Dijkstra in designing the THE operating system (Dijkstra, 

1968) created levels logically, building each level from 

the building bricks of lower levels. Each level of ~he 

THE operating system can be seen as delegating 1:':' j U\',21 

levels tasks which need not be dealt with in de~ail at 

the current level. The structure c;:cj:;l:::C: Jijkstra to 

infer the correctness of the implementation of t~e 

design and allowed simplification of the interfaces 

between levels. However, the THE system is liable LO 

suffer gross performance degradation due to thras~ing, 

and the operators have the res!?onsibili ty of monl tori h 3 

the system's behaviour, and of deciding whether one or 

more jobs should be postponed. 
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Dijkstra has said that on reflection one of t..:"e ,-i tal 

characteristics of the structuring of the THE system was 

that each level of abstraction concerned events that 

occurred at appropriately different 'time grains'. The 

lowest level concerned process switching (50 sec); t~e 

second virtual memory management (40 msec. dru;-;', :-'?\01ution 

time); the third level operator messages (1-2 52 :'), ~-:1E. 

next peripheral assignments (a minute or so) an': tv",,,) 

level t)rocess submission (many minutes). He belL,-·..>] ':~:at 

this sort of relationship was essential if a le'iel s~ 

abstraction was to be able, to safely ignore vlho?:. ' .. :€.S ,: ')ing 

on at lower levels. If it were otherwise each le"~l \-l,)uld 

be required to involve itself with all sorts of co:nplh-ated 

in teractions. 

This is sound reasoning and has t)layed an important part 

in our own choice of, control hierarchy. However, cur 

studies have shown that the dlvision of tasks t,;.")'Jr; 'h.c 

basis of time grain is not a sufficient condition fer 

avoiding the gross, performance degradat.:l ,_n which G~'curc 

due to the uncontrolled interactio:-:. L f t::.:: v~riol:s le'~e 1s 

of control. Not only must these time grains be 8'.:it:ililv 

separate under normal conditions, but their sel?arc . .f::i.;, 

mus t be maintained under varying condi tions . As H,E: +-ime 

grains of two adjacent levels of control aooroach each 

other, increasingly complex interactions occur unti ~ the 

controls provided are no longer adequate and performance 
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degradation res ul ts. One must ensure that t..l1e algorithm 

used at each level is stable and settles to that stable 

level sufficiently rapidly. 

If we take care to design an operating system iI", ~~1'2 .,fay 

described above a further possibility arises besi-:"c: 

important ones of having confidence in its corr::o C::'1-'C;' and 

avoiding gross performance degradation. It may '" 1')" ')e 

possible to analyse our design. 

Simon and Ando (1961) studied a technique of vari '1.~1~' 

aggregation and the concept of nearly completely ri':oc'J'l";')sable 

systems apl?lied to the theory of Econometrics. Variabl~ 

aggregation is based on the recognition that in CO"!;; Le '-: 

systems represented by a large number of state variables, 

the state variables can be classified into grouns S\..Crl that 

interactions within groups can be studied as if interactions 

amongst groups did not exist, and interactions ;'r,:rl"c;;t ::roups 

can be analysed without re ference to interactions '>I::" t>.in 

groups. This is trivially true 11 variables \'Tit~l;'. each 

group deT)end only upon variables 1,:lthln the saC,'2 rrrOllT). 

Such a system is said to be completely decomnosable. Simon 

and Ando showed that. the technique still yields goer:'. 

approximations when the interactions between groups arc 

weak in comparison to interactions within groups. Such a 

system is said to be nearly comT)letelv decornnosable. The 

theory of nearly completely decomposable syste~s also shows 
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that it may be possible. to. derive confidence limits upon 

the predictions of a model produced by this technique. 

Courtois (1971) has studied the anplication of thi~ 

work to the modelling of multiprogramming operatirs 

systems and the method. should. be applicable to tr.E. 

hierarchically structured. system we have been 01;: C.!':: ~ i",g. 

Here the variables for.each level of control wou~c:' be 

aggrega ted senarately. With the variables aggre:rc: ~ ed i r, 

this way, our hierarchic structure in which the se'-,3.ra ::ion 

of time grains between levels is maintained by ~t -!J :_'C: 

controls at each level, ensures. that the system is r,C' arly 

completely decomposable. 

Provided the algori thms of each level of the hierar :':IY 

were able to maintain the separation of the various time 

grains then the decomposition would be valid. Each level 

of the hierarchy could be analysed separately an::l :: :-,sn ty 

combination of these analyses a model of the comple te c,'ystem 

might be achieved. We note t.~at in cases in which Ule 

algori thrns used are. not stab Ie the c:vs c:.rcm ','ould not be 

nearly completely decomposable in all circumstances ::.:nd 

the results of an analysis by this technique would ret be 

valid in all conditions. 
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CHAPTER 7 

Conclusions 

The in ten tion of this thesis has been to apply ~l1e 

concepts of feedback control theory to the design and 

analysis of resource allocation algorithms in '--

prograrruning operating systems. In particular '.-Ie -.J. ,. 

tried to emphasise the way in which feedback arises 

naturally within the resource allocation compon€n~:~f 

an operating sys tern. This led us to explore the i ,t I~' 

in which the notions of feedback control could b·~ 

exploited in resource allocation, either to stabllis·· 

these naturally occuring feedback loops or to 

introduce further feedback effects, so as to improve 

performance. We have done this by examining reso'J"r.ce 

allocation algorithms and their interrelationships 

wi thin the framework of a simple con troJ. hierarcl<-,-

A hierarchic control structure was chosen beca~se it 

is possiblE~ to reduce the complexi ty of r-.1~e reSODr:--e 

allocation problem by dealing indi vidua.ll.Y wi ~ ~je 

various resources and then with the in teractions lj(: -~.-.Jeen 

the allocation algorithms. Furthermore, the interest 

which has been generated in hierarchic structuring by 

the work on program correctness, particularly its use 

in the design of the THE system by Dijkstra, enhances 

the possible value of the study. By studying ~~is 
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control structure we were able to display the 

importance of the rates at which the resource 

allocation algorithms allowed events to occur at 

the various levels of the hierarchy. This show9d 

by means of the concepts of feedback control 

theory the necessity for strict control of the~e 

rates. 

We were also able to indicate that the constructi ,'rl 

of a resource allocation strategy in this hierar::'hiC' 

manner using stable algorithms would enable us to 

fulfill conditions required by the method of Courtc:..s. 

This method might enable analysis of the strategy. 

Detailed study of core allocation algorithms in a 

paging environment enabled us to demonstrate L'Lat 

stable algorithms could be designed and furthermore 

were capable of development to provide effective 

utilisation of core. The study of the anti-thrasDl['g 

algorithms also provided us with useful insights into 

the ways in which thrashing can be pre':::.:: i t..ate(~. 

Our studies have been confined to three areas -

scheduling, dispatching and allocation of core in a 

demand paging environment. However, although our 

studies have been restricted the results obtained eDU 

the algorithms developed should be of wider application 
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and should be of value when adding further levels 

to the resource allocation hierarchy. 

The most obvious further application of the resu~ts 

is of the core allocation algorithms to a segmer ted 

memory space. Basically we need only replace 'f:kge' 

by 'segment' in the des cription of the algori th;13. 

However, since segments vary in si ze, the fe tch 0 f ,1 

single segment may require multiple deletions. hi.:; 

would necessitate modification of the algorithm. 

A further problem arises in the appli ca tion of t1.? 

drain or delete policies. Because of the varying 

segment sizes it is more difficult to predict the 

effect of the draining rate upon the processes. 

These problems however should be soluble. 

Another possible application of the results arises 

where it has been found that the paging drum may r,-: t 

be able to hold the virtual memory of all the prcu:sses 

active in the system. This might __ ,:c:)r,·.~~: tl-;.e inc,)~oJ::"'a+:ion 

of a further level of storage hierarchy, so tha~ ; ..... ;t:O' 

virtual memory of certain processes is held on disc. 

Access from disc is of course much slower than from the 

paging drum and so there is much to be gained in ensurlrg 

that pages of the highest priority processes occupy t..; e 

paging drum. This problem is very similar to that of 
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deciding which pages should be held in core and 

which on drum. Here, however, the time grain is :T'.Clre 

coarse. Similar solutions to those used in the 

allocation of core may be useful in the allocation 

of paging drum space. In view of the slower access 

rates it may be more effective to transfer segmenrs 

rather than pages and we have already seen how 8':::' 

algorithms might be constructed. We should remerner 

that adding this level of resource allocation me·, 

require adjustments in the time grain of the 

scheduling algorithm. 

The necessity of ensuring that the time grains of the 

levels of the con trol hierarchy stay sufficiently 

separated applies to hierarchies other than that .. .,hich 

we have described. We have sho,.,n how the values of 

the time grain are determined by the algorithms employed 

in the allocation process. Consequently we have S;'O'ITn 

the necessity of employing algorithms which have t:.e 

property of maintaining their time grai~ within 

acceptab le limi ts and whose time g~ d::.n cY'd setting 

time we are able to estimate. We can only achie '/2 tt-lS 

however if we understand the algorithms concerned. 

One by-product of our work has been to increase our 

awareness of the ease with which one can fall into t;;e 

trap of developing an algorithm whose behaviour cannot 

- 217 -



in practice be successfully predicted. The richness 

of variety and depth of subtlety of the action of t>.e 

simple feedback control algorithms we studied s~ands 

as a warning that even slight complications may 

destroy our ability to comprehend the resul tin~ 

algorithm. Yet the typical operating system cc,;, r tL~:: 

many algorithms whose behaviour is far more 

impenetrable than these comparatively simple 

algori thms ! 
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