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Abstract 

The relational data model uses set theory to provide a formal background, thus 

ensuring a rigorous mathematical data model with support for manipulation. Newer 

generation database models are based on the object-oriented paradigm, and so fall 

short of having such a formal background, especially in some of the more complex 

data manipulation areas. We use category theory to provide a formalism for object 

databases, in particular the object-relational model. Our model is known as the 

Product Model. 

This thesis will describe our formal model for the key aspects of object databases. In 

particular, we will examine how the Product Model deals with three of the most 

important problems inherent in object databases, those of queries, closure and views. 

As well as this, we investigate the more common database concepts, such as keys, 

relationships and aggregation. We will illustrate the feasibility of this model, by 

producing a prototype implementation using PIFDM. PIFDM is a semantic data model 

database system based on the functional model of Shipman, with object-oriented 

extensions. 
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1. Introduction 

1.1 Overview 

The most successful data model developed to date in commercial terms is undoubtedly 

the relational model [cod70], which was first outlined by Codd in 1970, and is today 

the most widely used. 

One of the main reasons for the success of the relational model is its underlying formal 

basis, with a model based directly on set theory [dat95]. This has ensured a clear 

structure for storage of data and a formal manner for manipulating that stored data, 

namely the relational algebra based on algebraic manipulation of sets, and the relational 

calculus, which incorporates predicate logic for manipulating the sets. Out of the 

relational calculus has arisen the standard query language SQL [dat95] first designed 

by IBM, which has been incorporated in many of the commercial and academic 

relational database systems that have been produced over the last twenty years or so. 

One of the greatest advancements in computing lately has been the introduction of the 

object-oriented paradigm, initially as the Smalltalk language [goI83], but much more 

readily accepted with the development of the C++ language [str9I], as well as object

oriented analysis and design methodologies such as Booch [bo094], Coad-Yourdon 

[coa91J, Rumbaugh [rurn9l], Unified Modelling Language (UML) [rat98] and 

Brathwaite [bra93], and recently in the development of object-oriented databases. The 

main effects of the object-oriented paradigm have been to provide abstractions in a 

more natural way compared to previous paradigms, that is objects and their 

associations more naturally model real world structures and the relationships between 

them. Some of these abstractions are ideal for modelling complex database structures, 

as we discuss in a later chapter. 
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Object models, meanwhile, were developed directly as a result of object-oriented 

programming techniques and the object-oriented paradigm However, many of the 

earlier systems have simply been extensions to object-oriented languages, in particular 

C++, and therefore they strongly lack a rigorous formal basis. This has led to a natural 

structure for storage of complex data structures, but problems in querying and other 

forms of manipulation, such as relational joins, products and closure, which were 

handled successfully in the relational model. 

ODMG-93 - the Object Database Standard [cat94], has been devised by some of the 

major players currently involved in 00 databases. It is strongly based on C++ but can 

be mapped to other object-oriented systems. ODMG however suffers the same 

drawback as other object-oriented systems in that it lacks a clear formal basis, and thus 

is not as good as relational databases in terms of having a theoretical basis and 

therefore in providing features that arise from a model with a strong underlying basis. 

Their OQL [cat94] language however is defined as a superset of SQL and thus 

alleviates the query problems mentioned above, but it is not clear which 

implementations support it in full at the moment. 

Another offspring of object models, and perhaps more successful is the object

relational model [st094]. This takes the same idea as extended relational models such 

as the nested relational model [rot88] and RMff [cod79], but applies object-oriented 

concepts to its basic structures, in an attempt to provide a model which is the best of 

both worlds. It introduces the necessary concepts of the object-oriented paradigm to 

enable the database systems to model the more complex structures that are used in 

areas such as graphics and audio in multimedia, but at the same time it ensures some 

form of 'backwards compatibility' so that relational users have a clear path into object 

databases. In addition, the rigour and formality of relational models is maintained, an 

aspect which is lacking in pure object-oriented databases. 

Some object models have been formalised using set theory, as in relational models, but 

set theory is not really powerful enough to model naturally the multi-level complex 
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architecture and abstractions of object databases. We see later that the multi-level 

architecture of category theory and its rich collection of tools seems much more 

natural for more complex systems. 

This thesis is an attempt to produce a formal model for the object databases, in 

particular the object-relational model, using category theory [bar90]. 

1.2 Rest of the thesis 

The subsequent chapters of this thesis will be structured in the following manner. 

In chapter two, there will be a detailed discussion of the data models in existence, 

highlighting, with examples, their advantages and disadvantages. This will look mainly 

at the relational and object-based models, but also the functional data model [sib77] 

which is a relatively natural data model for manipulation, being based on function 

composition, and which some object models have tried to incorporate in their systems. 

Then, in chapter three we will continue with a more detailed review of object-relational 

databases, in particular looking at the Postgres [st086a] system, which was developed 

as a research project at Berkeley, and has been further developed into the commercial 

system Montage [0Is94]. We will then finish the review of existing database models by 

comparing the main features of the models presented in this and the last chapter with a 

table, illustrating why object-relational appears to be the most promising of the newer 

generation models, and giving our views on future issues in database models. 

Chapter four will introduce the concepts of category theory that are used in defming 

our categorical model, and explain our motivations for using category theory as the 

formal model. 
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In chapter five, we will describe in detail the Product Model, our categorical formalism 

for object models, in detail. We will do this by building on the categorical concepts 

introduced in chapter four. 

Chapter six will look at the implementation, concentrating on two points. Firstly a 

review of our implementation base PIFDM is given. Secondly we will show how the 

database concepts we modelled in chapter four were represented in the prototype, in 

particular showing any changes that were required to the model to allow it to be 

effectively implemented. 

Chapter seven will then discuss the results obtained from prototyping the model with a 

collection of small test applications. 

Finally, in chapter eight we will conclude the work by examining the potential 

contributions of the Product Model to the current new generation data models, and 

highlighting how it fits in with the object-relational model. We will also outline the 

possibilities for future work in this area. 
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2. Data Model Survey 

2.1 Introduction 

In this chapter we will look in detail at the main data models currently in existence, 

from a historical perspective, highlighting the major advantages and disadvantages of 

each one. The difficulties found in some respect with every model illustrate the need 

for further models such as the categorical model introduced in chapter five. 

2.2 Overview of Data Models 

There are three main facilities which any data model must provide in order for it to be 

usable with real world data: 

1. structure, expressed as a schema in terms of projection of attributes, domains, inter

object and intra-object associations, in the form of a data definition language; 

2. rules, which are any restrictions on that schema definition, most notably the 

normalisation and integrity constraints in relational databases; 

3. manipulation, where searching and updating of the database is performed by a query 

langll;age. 

Currently, the most widely used data model is the relational model [cod70, dat95], but 

this model is based on tables (relations) which are an unnatural concept when applied 

to real world problems. The newer generation databases such as the object-oriented 

model [atk90], the nested relational model [cod79, rot88] and the functional model 

[ker76, shi81] have attempted to alleviate the problems of atomicity by adding more 

natural association abstractions. The most recent data model, the object-oriented 

model, provides probably the best data structure for representing and manipulating real 

world data, but the object-oriented model introduces problems of its own, namely that 
12 



it lacks a universal formal basis [kim90], a manipulation language as rich as the 

relational algebra, and a view mechanism The OQL language [cat94], if successfully 

implemented, will alleviate some of these problems. 

For each model we will provide a description of its major concepts, then look further 

at structure, rules and operations defmed in the model. Then we will look at areas 

covered in the context of the types of application appropriate for each model. Finally 

the strengths and weaknesses of each model will be summarised in a table in the 

following chapter. 

2.2.1 Definitions 

Throughout the next two chapters, we introduce terms (or concepts) applicable to the 

various data models, and give a table showing which of these concepts each model 

supports. Here, we define all of those terms': 

• tree - the structure used in the hierarchical data model [elrn94], where data 

structures are represented as a hierarchical tree of information, a hierarchy 

representing a number of related records (by some sort of classification scheme, for 

example employer employs employees, student is a person) . 

• network - the network model [elm94] (also known as the CODASYL DBTG 

model) is similar to the hierarchical model. However, the structures are no longer 

restricted to being trees, but in fact represent records as set-types (one-to-many 

relationships), that is the nodes are records and the links represent links as set 

membership operations to other records. 

I We take most of the definitions for our terms from Date [dat95] and Elmasri and 

Navathe [elm94]. 
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• relation - this is a term defmed by Codd [cod70) which is the backbone of the 

relational data model. A relation represents a collection of information about some 

entity, with data independence, that is it is possible to add new types of stored 

information typically to represent new types of entity without having to change the 

application [dat95). A relation in the relational model is a table, or can be thought 

of as being equivalent to a set of Pascal records (but with the restriction that none 

of the elements of the record are pointer elements). 

• referential and entity integrity - the referential integrity constraint ensures that 

relations between two tuples (that is rows in a table in relational databases) must be 

consistent [elrn94), that is the relevant tuples in each table must actually exist, and 

there must be no unmatched foreign key values [dat95), that is there must be no 

foreign key values where there does not exist a matching primary key value in the 

relevant target relation. A foreign key is a collection of attributes in one table 

which provide the join to the primary key in another table. The entity integrity 

constraint ensures that no tables have tuples with a null component in the primary 

key, the collection of properties which uniquely defines a tuple in a table. 

• normalisation - this is a concept which was defmed for the relational model as a 

series of tests to certify whether a relational schema (a group of relations which 

represent an overall relational database) conforms to certain rules (normal forms) 

about structure of the properties within relations [elrn94). The various normal 

forms are well defined in books about the relational database model such as Date 

and Elmasri and Navathe [dat95, e1rn94], so we do not define them here. These 

rules have been found to be very important in ensuring data schemas are highly 

consistent (especially in terms of ensuring that no information is lost when other 

information is deleted for example). 

• first normal form (lNF) - the first normal form, which states that all values must 

be atomic, that is a particular tuple must only have one value for each attribute, and 

not a group of attributes. 
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• algebra/calculus - the relational algebra and calculus are the two main formal 

definitions for query and manipulation languages in the relational model. The 

algebra is based on mathematical algebraic operations and the calculus is based on 

predicate calculus operations. The relational calculus is the most widely used, both 

SQL and QUEL are examples of extensions to the relational calculus (see later). 

• closure - a term norrnally applied to queries where the result of a query (in a 

relational database) is another relation [dat95], which can then be queried further as 

a first class object. There is no notable difference in the manner in which the new 

relation and the original relations that exist in the database are defmed. 

• views - a virtual table (in a relational database) which does not actually exist but 

appears to the user as if it does [dat95]. They are defmed in terms of existing tables 

to give specialist representations of the database for a particular application. 

• joins - these are the operations associated with relational models where tables are 

linked together by their common attributes to show the relation (or association) 

between those relations. 

• aggregation - this is an abstraction concept for building composite objects from 

their component objects [elm94], using relationships between the aggregate object 

and their component objects such as is-part-oJ, for example the collection of parts 

which go together to make an engine. 

• domain - a pool of values from which an attribute can take its value. For example, 

the domain for a supplier number attribute would be all legal supplier numbers. All 

values within a domain are of the same type. 

• rich types - all models define properties of entities, which give a type for that 

entity. Newer models such as the object-oriented model allow us to extend the 
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collection of basic types offered, using these new types as if they were basic types 

of the system. 

• nested semantics - this is the ability to nest structures within structures, that is to 

defme types which contain other types. 

• abstract data types (ADTs) - a data type which contains not only the data but also 

the collection of functions (or methods in object-oriented terms) which can be 

applied to that object. Encapsulation is a term used where the data is hidden 

inside the abstract data type with a collection of methods supplied for manipulating 

(that is viewing, updating) the data. 

• inheritance - this is a term applied predominantly to object-oriented models, which 

is a method of providing type hierarchies (similar to the hierarchical data model), by 

creating subtypes of some supertype which includes all the properties of its 

supertype and also adds extra properties to classify stronger entities which have that 

subtype as its type, for example the student is a person example given in the 

hierarchical definition where a student type would inherit all of the properties of the 

person type (for example name, age) as well as extra properties such as the course 

they are on and their student identification number. The SUbtype is a specialisation 

of the supertype and the supertype is a generalisation of the subtype. 

• methods - the implementation of an operation on the particular information in the 

database [dat95]. This is a well used term in object-oriented systems, where 

methods are functions encapsulated within an object, that is a function which 

operates on that object. 

• extensibility - a definition which, in the database sense, implies that a database 

schema is developed modularly so that the schema can be extended easily without 

having to unload and reload the entire database. Extensible types are types which 

can be extended easily. 
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• declarative - declarative programming is a style of programming language as used 

in Prolog and in functional programming languages. In database languages a 

declarative language would specify what data is to be retrieved rather than how to 

retrieve the data [elm94]. 

2.3 The Relational Model 

The relational model is based on the concept of relations, which are derived from set 

theory. The relational model was ftrst devised by Codd [cod70]. The basic concept is 

the relation (table) which is equivalent to a set in set theory. However, it should be 

noted that SQL does allow bags to be created as the result of manipulation. Being 

basically based on set theory, the relational model is formal, and thus data deftnition 

and manipulation follow readily as set theoretic constructions. 

2.3.1 Structure 

As previously stated, the main concept is the relation, this can be described as a table 

where columns (attributes) in the table specify a particular piece of information about a 

certain entity (a row). Rows are not held in any particular order, but sorting on keys 

and indexing operations allow tables to appear ordered. The most recent relational 

systems allow abstract data types, where the information can be more complex 

(equivalent to the nested relational model, see later, with functionality encapsulated 

within the ADT). 

Complex views of the data can be visualised through views, where the user has the 

capability of restructuring information in the database to a more tailored view to match 

the needs of the application, as well as allowing the representation of the data to be 

customised to suit the needs of each user. 
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2.3.2 Rules 

There are many rules possible in relational models, due to their strict formal basis, and 

many tools which have been developed over the years. These rules are: 

• Normalisation - a tool to ensure tables are consistent, particularly with respect to 

update operations. For example, the second normal form rule ensures that any table 

has atomic values (first normal form) and every nonkey attribute is fully functionally 

dependent on the primary key. Therefore a table containing the attributes student 

number, student name, module number and exam mark, with student number and 

module number as the primary key would not be in second normal form if student 

name depended solely on student number. 

• Model level constraints, such as, for example, checks on primary key/foreign key 

matches (referential integrity) and on completeness of key values (entity integrity). 

An example of a referential integrity rule would be a check that every student in the 

above table did appear in a base table containing a list of students. 

• User level constraints, which are expressed as set theory operations, basically they 

are defined as mathematical constraints. An example would be defining an SQL 

query with a GROUP BY [dat95] operation to check that each student takes 

exactly twelve modules. 

2.3.3 Manipulation 

Manipulation of sets is well defined in the relational model, with both the relational 

algebra and calculus providing formal notions for operations on relations. From the 

relational algebra query languages such as the Peterlee Relational Test Vehicle [tod76, 

elm89] have grown, and from relational calculus, SQL and QUEL have been 

developed. SQL has an ANSI standard (version two is the current one and version 
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three is under development [ans94], with features from the object models added). As 

well as manipulation languages, a large set of tools such as Query By Example (QBE) 

[zI075] and Query By Forms (QBF), have been devised, many providing graphical or 

form based interfaces to the originally text-based relational database systems. One of 

the strengths of manipulation in relational languages is that closure in queries is easily 

attainable because relational query languages always return tables as their result, and 

thus the results of queries can be queried further still to allow complex queries to be 

built using a building block approach. 

2.3.4 Strengths 

The relational model is widely used having built up a large user base with many 

suppliers since the 1970s. The highly structured and formal basis provides a clear 

simple approach to modelling data for real world applications. SQL and the other 

manipulation systems provide a common basis between competing systems (for 

example Ingres, Oracle), and the entity-relationship tool maps automatically into 

relational databases. Finally, the basic model facilities have been extended by the large 

amount of support tools that are available. 

2.3.5 Weaknesses 

The relational model is set based, so complex data representation is difficult. Joins 

between data are not difficult to express in the model, but they can not be simply 

visualised as they are defined by primary-key foreign-key matches between two 

apparently independent tables. Also the original relational model of Codd is not 

functionally complete (that is it can not perform all the operations required for it to be 

classified as a Turing machine). Newer systems add so much functionality to the 

original model, such as abstract data types which are similar to objects in newer object 

models, that the usability of systems has declined as these systems have got larger in 

size. 
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2.3.6 Extensions to the Relational Model 

We will look at two widely known extended relational systems, namely the nested 

relational model [rot88] and RM!T [cod79]. 

2.3.6.1 Nested Relational Model 

Nested relational models aim to remove the restriction of INF (first normal-form. that 

is attributes are no longer atomic), but this introduces problems of how to perform 

joins on non-atomic values, that is do we join when all members of a non-atomic set 

match some other set, or when only some match. 

The main structure of a database is a hierarchy, and domains can be nested as 

powersets, which are very similar to true mathematical relations. 

To solve the join problem, two further operations have been added to the relational 

algebra, nest and un-nest, as well as a new normal form (partitioned normal form) for 

ensuring consistency in the data. 

2.3.6.2 RM!T 

Codd's 'extended-relational model' removes the distinction between entities and 

relations. There are two main types of relation, E-relations, which model the fact that 

certain entities exist, and P-relations which model the properties of those particular 

entities. 

Entities can then be split into three further categories, kernel entities which define 

concepts such as suppliers and parts, characteristic entities, which model the fact that 
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an entity may describe the properties of some other entities. and associative entities, 

which model many-to-many relationships. 

As well as these different formal entities. the benefits are that there are a powerful set 

of integrity rules for ensuring consistency. 

One final concept is that sUb-types and super-types are easily modelled, in a similar 

fashion to complex object hierarchies. 

2.3.6.3 Object modelling 

The entity-relationship model [che76, lay88] can be thought of as a simple database 

model in itself, although there is no support for manipulation. However. it is a very 

natural tool for designing relational database applications because its main concepts are 

the entities, which are equivalent to relations in the relational model, and relationships 

between these entities, which can show the primary-foreign key matches in the 

database. Rules can be defined on the functionality and membership class of entities in 

relationships. The entity-relationship model is actually a form of object structure 

model but we include it here as it is the main tool used for designing relational 

databases. 

2.4 Functional Models 

The functional model was first proposed by Kerschberg and Pacheco [ker76], but the 

best known example is DAPLEX by Shipman [shi81], so this is the one we concentrate 

on. As the relational model is based on relations, the functional model is based on 

functions, giving, as Shipman claims, a more conceptually natural model, that is the 

function models activity and dependencies as well as the structure of the database. 
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2.4.1 DAPLEX 

'The DAPLEX language is an attempt to provide a database system interface which 

allows the user to more directly model the way he thinks about the problems he is 

trying to solve' [shi81]. 

DAPLEX is a data definition and manipulation language for database systems based on 

the functional data model. It claims to be a 'conceptually natural' database interface 

language, being based on two main concepts, the entity and the function. 

Entities provide the type defmition of an object within the database, for example a 

Student entity is a Person, where a Person is an ENTITY, an entity being the base type 

within the system. Within an entity, functions represent values and associations to 

other entities, where a function can return a single valued set, represented by a single 

headed arrow ->, or a multi-valued set, represented by -». For example: 

DECLARE name(Student) -> STRING 

defines a function on a Student which returns his or her name as a character string, 

whereas: 

DECLARE courses_completed (Student) -» Section 

represents a relationship of a Student entity to the 'many' Section entities which a 

particular student has completed. 

Functions can be of two main sorts, there are the data definition functions represented 

by the declare statement, and derived data functions, which are used for defming 

inverses of existing functions, views on the database and aggregation operations, on 

existing values. For example: 

DEFINE gradePointAverage(Student) -> 
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AVERAGE (grade (Student, Section) 

OVER courses_completed(Student» 

defines a new derived function for a Student which returns that student's average 

grade for all courses which he or she has completed. 

The derived data also provides a constraint and trigger facility, for instance: 

DEFINE student(Class) -> INVERSE OF class(Student) 

DEFINE TRIGGER overbooked (Class) -> COUNT(student(Class»>45 

SEND MESSAGE(head(dept(Class», 'OVerbooked:', 

title (Class» 

This uses the INVERSE OF operator to define a function to return the name of a 

Student within a particular Class, and then defines a trigger which operates whenever 

the number of students in that class is greater than 45, sending a message to the head 

of the department for that class. 

Probably the most notable use of derived functions is that they can provide separate 

user views of a database. Using derived functions, the view of the database can be 

altered to suit the taste of the user. Derived functions control the extent of access to 

the database that the user requires, both for convenience and security. The new user 

view is defined in a different name space (intension) from the old one, so that access is 

only given to the new view. The PERFORM .. USING construct is used to defme 

how to perform any updates to derived data, and what that update actually means in 

terms of the original database, for example the code below would ensure that a query 

which included an instance of the PERFORM section would include an existing Course 

entity for that student rather than defining a new Course entity with that Title name. 

PERFORM 

INCLUDE CourseName(StudentName AS STRING) Title 

USING 

INCLUDE Course(THE Student(StudentName» 
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THE Course(Title) 

The final section of the DAPLEX system is its manipulation, which is carried out by 

the means of function composition, for example 

FOR EACH Student 

SUCH THAT dnarne(minor(Student» 

PRINT narne(Student) 

'Maths' 

The manipulation system provides the means for querying, and for update and deletion 

operations. For example, to change some of the data for the student 'Mary' we could 

have: 

FOR THE Student SUCH THAT name(Student) 

BEGIN 

'Mary' 

END 

LET minor(Student) = THE Department 

SUCH THAT name(Department) = 'Mathematics' 

EXCLUDE courses_completed (Student) = THE Section 

SUCH THAT sec_no = 1 

INCLUDE courses_completed (Student) 

THE Section SUCH THAT sec_no 2, 

THE Section SUCH THAT sec_no 4 

DAPLEX is a navigational language, all operations are carried out by functions, 

compared to the subsetting approach of the relational model. 

The declaration of the database entities and functions are done at the intensional level 

of the database, and the values of functions comprise the extensional level of the 

database. But the intension level is more complex than just described, as a metadata 

view of the database is provided, whereby the intension of the database can be queried, 

using the normal manipulation commands. This gives a two level database 

architecture, represented by the metadata and the data levels. 

24 



There has been much research into functional database models in Britain. Kulkarni and 

Atkinson [kuI86, 87] have developed EFDM, the Extended Functional Data Model, 

which is an extension of DAPLEX including concepts such as a better view facility and 

graphical navigation and querying, using the language PS-Algol [atk83], which is a 

variant of the Algol language with persistent extensions. Gray and Paton [gra88] have 

been looking at the development of the DAPLEX system using Prolog, and have lately 

extended their work to look at the role of this system for object-oriented databases 

[gra92]. Poulovassilis and King [pou90] investigated computationally complete 

functional database models by using lambda calculus expressions to allow more 

complex persistent functions and data types to be defined. Poulovassilis and Small 

have recently extended their functional database programming language PFL [sma91] 

to integrate event condition active rules with a deductive database [pou96]. 

2.4.2 Structure 

There are two main concepts, the entity and the function. Entities represent a unit of 

information, and are in fact a collection of functions from one entity to a (possibly 

singleton) set of entities. This simple but well founded structure can lead to an ability 

to model quite complex data structures. 

2.4.3 Rules 

Constraints on the types of arrows (that is functions mapping from one set of entities 

to another set of entities) ensures a very rigid set of normalisation rules, although the 

data is not necessarily restricted to first normal form (1 NF) where every value must be 

atomic. A function between two value sets A and B (f : A -> B) ensures that A 

determines B, which is one requirement of second normal form (2NF) if A is a key to 

B. However, as other aspects of 2NF and 3NF are not enforced, the normalisation 
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level may be said to only approach -,lNF [jae82], that is where frrst normal fonn is 

bypassed but other normalisation rules can still apply. 

2.4.4 Manipulation 

The model is based entirely on functions, so operations in the functional model are 

basically function compositions. This ensures that manipulation in the model is 

navigational, where we navigate through entities by following functions to find the 

required result. Derived functions ensure that we have an equivalent capability to 

object oriented models of seamlessly allowing complex manipulation operations based 

on computationally complete operations rather than just simple relations. 

2.4.5 Strengths 

Because queries in the functional model produce new entities containing new functions 

which act as the source of further functions, we have closure equivalent to that in the 

relational model with the power of a navigational method of querying the data, which 

is however much less easy to use than relational query languages. 

2.4.6 Weaknesses 

Functional models have an overt mathematical basis which may inhibit commercial 

prospects. Also queries are more difficult to construct and are harder to optimise than 

in relational systems and there is a shortage of third party tools. Work on recent 

implementations (see for instance [gra92, pou93, pou96]) has shown the long-tenn 

promise of this approach. 
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2.4.7 PIFDM 

PIFDM is an extension to the DAPLEX system developed by the Object Database 

Group in the University of Aberdeen [gra92]. Basically, it is a semantic data model 

database that adds object-oriented extensions to DAPLEX, but by being based on 

Prolog it ensures a complete query language. We discuss PIFDM in chapter six, as it is 

the implementation base for our Product Model. 

2.5 Object-Oriented Models 

In this section we discuss the main concepts of object data models, concentrating on 

object-oriented models. In the next chapter we review in detail the object-relational 

model. 

A simple way to view object-oriented databases is as an extension of the object

oriented programming paradigm to handle persistency. They are an attempt to more 

closely model the real world by using their structures which can easily model most of 

the complexities in the real world. Rather than having relations, we now have objects, 

with direct references (usually by pointers) between them, rather than joins where there 

is no direct reference and the reference can only be detected by closely examining 

primary-foreign key matches between tables. 

The constructs of object-oriented models are objects (approximating extensions in 

relational terms), classes (intensions), and types (domains) but some object-oriented 

systems collapse classes and types into a single concept (unfortunately also known as 

the class), indeed some people see OODBMS solely as persistent type systems. 
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2.5.1 Structure 

The basic structures are classes, objects, and pointers. Pointers provide the 

relationship or association abstraction, which can be singular or set based, and can be 

bi-directional. A number of powerful abstractions including generalisation and 

aggregation [smi77] provide support for a natural representation of complex data 

structures and tools for manipulating them Objects are powerful structures, they 

support the concepts of aggregation, subtyping, encapsulation, association and 

inheritance (single and multiple) [mey88]. Objects are very close to real world 

objects, that is they contain both structure and their associated operations. Classes 

ensure that all objects are typed, and these types can be more complex than the 

standard set based types allowable in set theory. These objects can be arranged in a 

hierarchy, which is an important property in modelling real-world structures and 

defining complex types. 

2.5.2 Rules 

Most rules in an object-oriented system are defined through typing operations, that is a 

value must conform to a particular type or class definition. The object-oriented 

programming language Eiffel [mey88, mey92] extends the rules concept with post and 

preconditions which allow users to restrict the values of the supplied objects to a 

function and the result of a function to particular subsets of its class definition. On the 

other hand, the programming language C++ [str91] is 'weakly' typed, but rules can be 

added by restricting types through creation methods. 

Object-oriented databases are in principle very strongly typed. Pointers give sets 

(which can be unary) of objects for relationships between objects, and these are 

restricted in type. This is similar to functions in the functional data model. 
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The hierarchical structure of type classes and the ability to specify particular properties 

of types give integrity close to that which can be defmed through normalisation. In 

particular, a model for object databases has been defmed called the ODMG model 

[cat94] which defmes a clear model for object databases and a type hierarchy for 

values. 

2.5.3 Manipulation 

Many object-oriented databases are implemented as collections of facilities from either 

C++, Smalltalk, or similar, libraries. Therefore query languages are based on user 

implementations using methods, with only a sparse collection of manipulation 

operations pre-supplied by the system. This enables very powerful operations but 

requires higher levels of programming skills by the users concerned. A number of 

object models are trying to incorporate functional query languages, to add the 

formalism that most of them lack. One such language is discussed in the next chapter. 

By considering the relationship between entities and functions in the functional model 

to classes (and objects) and methods in object models, one can see a close similarity 

between the two models. 

The ODMG group have devised a standard for object databases (ODMG-93), but 

there is no mathematical formalism and the standard is still heavily based on C++ 

concepts. For example the CORBA Interface Definition Language was influenced by 

C++ [cat94, pg. 50] and the ODMG object structures map closely to C++ structures. 

However they have also implemented the object structures in Smalltalk. Some of the 

major commercial developers are beginning to make their systems conform to some of 

the ODMG definitions, which is a definite step in the right direction. For future 

versions to be successful though, it appears that something more formal than the 

current ODMG model is required to give it the rigour of relational systems. 
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2.5.4 Strengths 

Object-oriented databases have many advantages over relational models. They have a 

very natural structure, enabling the representation of complex objects, encapsulation, 

hierarchical structures, inheritance and the other abstractions of object models which 

we have discussed. They are also very powerful because they have a very close link to 

the programming languages in which they are implemented, which also means that 

queries can be very quick. Being very close to object-oriented programming languages 

also means that there is a huge and ever growing collection of tools that are readily 

available and simply adaptable to database systems. 

2.5.5 Weaknesses 

Their advantage of being closely coupled with programming languages also gives them 

some disadvantages. There are no inherent query languages which makes it difficult 

for the current relational user base to transfer their skills to object oriented models, 

although this situation is improving with the OQL query language and SQL3 [ans94], 

although it is unclear as to what implementations exist and how well developed any 

implementations are. Interoperable systems are difficult to achieve because object 

models have no formal basis upon which an interface can be developed to other 

models. 

2.5.6 Object-Oriented Systems 

The number of object-oriented database systems is currently growing. Here we 

provide a short description of some of the more popular systems: 

• O2 [ban92] is a commercial system produced as part of the Altair project, which 

started in 1986. It is a complete system, developed to try to match the defmition in 
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the Object-Oriented Database System Manifesto [atk90), implemented in C, and 

programmable in C (C02) and Basic amongst others. 

• Iris [fis89) is closer to a semantic data model, but its characteristics of objects with 

specialisation and its schema definitions make it a good candidate to be described as 

an object oriented database [ber93). 

• Orion [kim90) is a system developed by the Advanced Computer Technology 

Program at MCC, Texas. It aims to address the problems of dynamic schema 

evolution, query model, automatic query optimisation, secondary indexing, 

concurrency control, authorisation, multimedia data management, versions, 

composite objects and notions of private and shared databases. Kim claims it is the 

first project to deliver foundational papers on many of these topics. 

• ObjectStore [lam91) is the most commercially successful object-oriented system. It 

is based extensively on C++ class libraries, but tools are beginning to be produced 

for tasks such as schema manipulation. 

• POET - a shareware database system, also based entirely on C++ class libraries. 

Users must be competent C++ programmers however because there are no third 

party tools for this system. It is however very popular due to it being in the public 

domain. 

• Gemstone is based on the Smalltalk programming system, with a programmatic 

interface called OPAL [kim90) which extends Smalltalk with data definition and 

data manipulation capabilities. 
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2.6 Discussion 

The relational model has undoubtedly been the most successful model for the past 

twenty or so years, taking over from the hierarchical and network data models which 

came from the CODASYL era. Relational systems are the most used at the moment, 

although they sometimes lack power for modelling the complex data requirements for 

aspects such as multimedia. The main reason for their success has been their simple 

mathematical basis, with gains in provability and rigour, and their basic support which 

has grown during their existence. Oracle is now much more than a database system, it 

is a whole business environment. 

From the relational model came extended relational systems such as the nested

relational and RMfT, but these never picked up in popularity compared to the standard 

relational systems. The functional models has also been around for the past fifteen 

years, but again has never experienced the type of success that the relational model has 

encountered. It is now being seen as a very powerful model particularly in adding a 

query language to object-based and semantic data models. 

The biggest change over the past few years has been the introduction of the object

oriented paradigm into the database community. Object-oriented databases have 

proved ideal for handling the types of complex data that relational models find difficult 

to represent naturally. They have had particular success in CAD and CAE systems, 

and are also beginning to find their niche in multimedia applications, where complex 

attributes such as video footage can be simply stored as an object. They are a natural 

model for representing complex structures and association abstractions, such as 

inheritance, in the real world. 

Their major shortcomings are that they are not easily used by non-expert computer 

users, and although their data representation is natural, their ability to manipulate this 

data is still highly dependent on a programming .language rather than a data 

manipulation language. There are also problems in representing atomicity and 
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functionality in a natural manner as is desirable for instance in object -oriented analysis. 

Brathwaite [bra93] illustrated the difficulty of mapping methods into a functional 

analysis technique such as data flow diagrams. In object models functionality can be 

distributed among a number of objects and aggregation is needed to assemble the 

activity into a coherent task. Perhaps most importantly, object-oriented databases lack 

the mathematical formality traditionally associated with database approaches. 

The problems with object-oriented models led to the development of the object

relational model which is discussed in detail in the following chapter. This is a new 

type of extended-relational model, using the concepts of object-oriented models that 

are required for representing the new complex data, such as encapsulation and 

inheritance. The object-relational model maintains the sound basis and formalism of 

relational models as well as ensuring that data manipulation is provided by close 

relatives to relational algebra and calculus, such as PostQUEL in Postgres and the up 

and coming SQL3 standard. 

2.7 Summary and Conclusions 

In this chapter we have looked at data models in general, and have discussed their 

strengths and weaknesses. The relational model is strong mathematically but lacks the 

ability to model well the abstractions of the real world, such as inheritance and 

complex objects. On the other hand, the object-oriented model is strong in 

representing the· abstractions of the real world but is much weaker from a formal point 

of view. The functional model has a mathematical basis as strong as the relational 

model, can represent complex objects, and recent extensions show its long term 

promise. However it has not enjoyed the success of relational and object-oriented 

systems, perhaps because of problems with its image and usability. 

Therefore, models which incorporate object-oriented and relational approaches seem 

to be a promising route, so in the next chapter we look in detail at the object-relational 
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model as an indication of the full range of facilities required in future database systems. 

We do, however, also acknowledge the fundamental appeal of the functional data 

model and indeed eventually employ this as the basis for our implementation. 
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3. Object-Relational Models 

3.1 Introduction 

Object-relational database systems have evolved as a practical solution to the 

numerous problems that have been associated with the new generation object-oriented 

database systems. Aspects such as closure, views and query languages have led to 

developers returning to relational ideas, which encompass these features in a natural 

and formal manner, but also incorporating features that have grown out of object

oriented database systems, such as inheritance, aggregation and better handling of 

complex objects. 

This chapter will look in particular at the object-relational database system Postgres 

[row87], a research development from Berkeley which has added object-oriented 

features to the relational model, while still maintaining the look and feel of an Ingres 

type database. After discussing Postgres, we will then briefly describe the features of 

other object-relational systems, such as Montage [0Is94], which is a conunercial 

development of the Postgres system, Matisse [mat94], UniSQL [kim94] and 

OpenODB [hew94]. 

3.2 The Postgres Database System 

3.2.1 Introduction and Aims 

The Postgres system is a research development from Berkeley, and is intended to 

supersede the Ingres [ing94] relational database management system. The intention is 
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to integrate object-oriented features into a database system, while still maintaining its 

relational database background. 

The main design goals of Postgres are to [st086a]: 

1. provide better support for complex objects; 

2. provide user extendibility for data types, operators and access methods; 

3. provide facilities for active databases (that is alerters and triggers) and inferencing 

including forward- and backward-chaining; 

4. simplify the DBMS code for crash recovery; 

5. produce a design that can take advantage of optical disks, workstations composed 

of multiple tightly-coupled processors, and custom designed VLSI chips; 

6. make as few changes as possible (preferably none) to the relational model. 

Postgres is still relation ally based, but has the added ability to store complex objects. 

Complex objects are supported by the ability to define abstract types, and to use these 

as the type for a column of a reiation. Querying is provided via a new query language, 

known as PostQUEL [rhe90a,b]. This is heavily based on the QUEL [ing94] relational 

calculus, but with extensions to deal with the object-oriented concepts integrated into 

Postgres. 

We will continue by describing the main concepts of the Postgres data model, and then 

examine data manipulation, describing both the PostQUEL and C forms of querying. 

3.2.2 The Data Model 

The Postgres data model is based heavily on the relational data model, with the 

additional inclusion of classes, inheritance, types and functions [row87]. Whereas in 

the relational model, the fundamental notion is the relation, or table, in Postgres it is 

the class: a named collection of instances of objects [rhe90a], used for defining 

complex types. Tables in Postgres are handled in the same manner as in a relational 
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database. Classes represent abstract data types (ADTs) in Postgres, a feature which 

has been incorporated to some extent in more recent relational systems, with varying 

degrees of success. By treating ADTs as a principle concept, Postgres handles them in 

a more natural manner, incorporating such concepts as inheritance and user-defined 

operators and procedures. 

The Postgres model allows an ADT class to define the type, or intension [ull88], of a 

column in a relational table, thereby allowing complex data to be stored in a field of a 

table. Allowing ADTs to be incorporated in tables provides a method of simulating 

features from object-oriented and semantic database models, such as aggregation, 

generalisation, complex objects with shared subobjects, and attributes that can 

reference tuples in other relations [row87]. In this way, attributes in a table can be 

user defined types, operators, and programming language functions, or procedures. 

A column in a table can be of type procedure, which means that a value in a tuple can 

be determined by some operation on other values in the tuple, relation or database. 

Functions in Postgres are very much similar to derived functions in functional 

databases [shi81], or virtual fields in CODASYL databases. 

There are two kinds of type in Postgres, atomic and structured [row87]. Atomic types 

are those defined as ADTs, whereas structured types defme complex data, such as 

arrays and procedures. Arrays in Postgres can be of undefined size, but they can only 

store elements of the same type. 

Tables can have a key, which may be a composition of attributes. The attributes of the 

key may include an ADT, so long as a comparison operator is defined for that ADT. 

Tables also have an unique system identifier, or object identifier (oid), which uniquely 

references a particular tuple in the database. These object identifiers can be queried by 

the user, but may not be updated manually. 
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When defining a new type in Postgres, it is usually the case that its internal size needs 

to be defined for optimal storage and access. For large objects, or BLOBS, this 

internal size is not known, but Postgres does support these, by allowing its size to be 

defmed as variable. Large objects can be supported either by using the UNIX fIle 

system, to store a large object as a file, or the Inversion file system This breaks up a 

large object into smaller chunks, using a B-tree for access, which guarantees crash 

recovery through protected transactions and provides better performance for accessing 

objects. 

Postgres supports inheritance of tables. By allowing table inheritance, the known 

problem of relational databases in handling rules such as the 'student is a person' 

concept in table defmitions can be handled naturally, that is in a more object-oriented 

manner. When inheriting tables, the key is also inherited. Multiple inheritance is also 

supported, but if two tables share common attributes, multiple inheritance from these 

tables is not permitted. 

In [row87], the major aim of Postgres as a contribution to database development is 

that inheritance can 'easily' be added to a relational database; easily implying that as 

few changes as possible are made to the underlying relational model. This can be 

modelled naturally through the class, or ADT, method. They claim that this shows that 

the major concepts in an object-oriented database can be cleanly and efficiently 

supported in an extensible relational DBMS. 

Another concept which is a feature found in temporal databases [tan93], but causes 

implementation problems in relational and object-oriented databases is a feature known 

as time travel. This is where all past revisions to the database are stored, so a user can 

see the state that the database was in at a certain time in the past, or even query on 

attributes between two dates, that is 'list all the students who were taking computing 

between 1 September 1984 and 31 October 1992'. This means that a database can 

support versioning and snapshots for multi-user use. 
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3.2.3 Data Manipulation in Postgres 

Postgres data manipulation is provided through its own query language PostQUEL. 

This is an extension to the QUEL [ing94] relational calculus provided with Ingres, and 

has been extended to deal with the new features of Postgres such as abstract data types 

and inheritance. There is also a facility whereby Postgres tables can be manipulated 

from within C, known as LibPQ, which provides the full functionality of PostQUEL to 

an external program. Abstract data types, or classes, can also be defined in C, as well 

as complex procedures, in cases where the PostQUEL language does not provide 

enough functionality for the task of the procedure. 

To allow the Postgres system to be used from within C code, and eventually other 

programming languages, a feature known as portals [st086a] is provided. These are 

like cursors, in the way that they allow a programming language to retrieve data from 

the database, but it also allows, through the LibPQ system, the whole functionality of 

the PostQUEL calculus to be used externally. 

In principle, PostQUEL supports all of the constructs provided in QUEL, although 

with some variations in syntax. In addition, the query language should provide the 

ability to use the new concepts [rhe90a] which have been added to the Postgres 

system, such as: 

• user defined types (or ADTs) , which is done by supplying input and output 

procedures for that ADT; 

• query language and programming language functions, so that the query can use 

derived data; 

• user defined operators, which are useful for providing operations such as for testing 

equality of a user defined type; 

• fixed and variable length arrays, whereby it would be useful to look for a particular 

element in an array, and return all tuples which satisfy the query; 

• functions of an instance, where we want the query to apply to all tables which 

inherit from the table being queried; 
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• a rules system, so that alerters and triggers can be supported. 

In practice, the version of Postgres that we used had some limitations. In particular, 

concepts such as those given below are not fully implemented in the version 4.1 

[rhe90a), which we were using: 

• adding attributes to an existing class; 

• keys in classes; 

• snapshots; 

• exceptions; 

• merging of two classes; 

• removing functions from a class; 

• asynchronous portals. 

PostQUEL functions can also handle iterative queries as a system supplied function, 

where the result of the function can be transitively closed. This means, for example, 

that a query to return a child's ancestors will not only return the parents, but will also 

return the grandparents, great grandparents and so on, presuming the information can 

be derived from the table. This allows recursive, or iterative, querying - something 

that the relational and object-oriented models do not support very well. In a relational 

system this would need to be implemented within a loop in a host language, and would 

need to be implemented by the user as a method in an object-oriented database. 

The PostQUEL language also supports the notion of 'time travel' in queries. This 

provides a means of historical queries, as mentioned previously. By allowing time 

varying data, versions and snapshots of data can be stored and queried, although 

updates to versions are not carried through to the underlying table. Any changes to 

the underlying table will result in changes to the version, unless that version was 

initially created from a snapshot of the underlying table. 

Because inheritance of tables is supported, the PostQUEL system must be able to 

handle the inherited procedures as well. A table which has inherited a procedure from 
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some parent table must be able to use that procedure on itself, resolving any problems 

with attributes in the new table, that is an attribute may have changed its type, or may 

have been overridden. Multiple inheritance must also be supported, for the case where 

a table inherits two procedures with the same name from two different parents. This 

is handled by a structure called an IPL (inheritance procedure list), which keeps a 

hierarchical list of procedure instances, so a query can decide which instance of a 

procedure should be used for a particular query. 

Queries can also explicitly follow an inheritance hierarchy. This is different to 

procedure inheritance, here the need is for a query to be able to explicitly apply itself to 

all tables which directly or indirectly inherit from the table that is being queried. For 

example, for a list of all people, the user could explicitly defme the query so that it 

looked at all students as well. This is something which is not directly supported in 

relational databases, where if there was to be a student table, then the query would 

have to be used twice, once for the person table, and then again for the student table. 

Rules can also be incorporated into the data manipulation, so that alerters and triggers 

[st086a] can be supported. An alerter is the result of a rule applied to a retrieve query, 

whereas a trigger is the result of a rule applied to an update. There are actually two 

rules systems, instance level and query rewrite. An instance level rule is one that will 

only ever apply to a few instances in the table, whereas a query rewrite rule is one that 

usually applies to most instances. It is best to always define the type of rule for 

performance measures. 

Finally, transaction management is provided, simply by the ability to enclose a range of 

queries within a begin ... end construct. This ensures that in the case of a crash, then 

any changes that were made to the state of the database within the transaction will be 

aborted, otherwise the transaction commits. 
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3.3 Comparison with other models 

The Postgres system. and other object-relational type database systems, attempt to 

amalgamate the functionality of th~ current models; relational, object-oriented and in 

some sense, functional. The model is very relational based, but adds the best features 

of the object-oriented models, such as inheritance and support for complex objects. 

The main additions to the relational model are support for non-atomic values, and table 

inheritance. 

By incorporating procedures into the query language, the object-relational model can 

claim to be very close to the functional model. The object-relational model adds a 

feature which semantic and functional models cannot handle very well. This is the 

ability to represent data with uncertain structure, for example in a graph some of the 

nodes may be missing. The object-relational model can aggregate complex data of 

uncertain structure through standard outer join operations. 

Object-oriented models cannot easily deal with objects which have a variety of shared 

sub-objects, such as overlapping subclasses [emb95]. Postgres claims to be better at 

this, again objects can be left standalone and can be integrated at run-time through the 

use of outer join operations. Postgres also claims a performance improvement in 

representing object-oriented pointer chains as standard relations. 

3.4 Experience with Postgres 

Postgres has been used in a number of student projects in the Department of 

Computing Science at Newcastle University. Kim, Nelson and Rossiter [kim94] 

investigated the use of Postgres for a student administration system. Derived data, 

such as overall student performance, was an important feature of the work. While the 

delivered system did meet the user requirement, it was thought that the implementation 

time was excessive compared to say that for a SQL system because of the diverse 
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facilities and their complex interaction. Further projects by Holford [hoI94] on spatial 

data and Smith [smi94] on triggers showed that while the apparent capability of the 

system was high, productivity was low again because of conflicts between different 

parts of the system. 

3.5 Other Object-Relational Database Systems 

As previously mentioned, Postgres is a research-based object-relational database 

system, developed at Berkeley. Other object-relational and object-based database 

systems have recently evolved, a selection of which we will now briefly discuss. 

3.5.1 Montage 

Montage2 [0Is94] is the commercial version of Postgres. The main differences to 

Postgres are that it now uses SQL rather than PostQUEL, provides a more object

oriented view for class definitions and the provision of Data Blades, which provide sets 

of defined data types and functions. 

Firstly, Montage now uses SQL for its query language, but claims to add the following 

concepts to SQL: [st094] 

1. unique identifiers; 

2. user defined types; 

3. user defined operators; 

4. user defined access methods; 

5. complex objects; 

6. user defined functions; 

7. overloading; 

2 Note that Montage is now known as Illustra. 
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8. dynamic extendibility; 

9. inheritance of data and functions; 

10. arrays. 

The Montage system claims to improve Postgres by adding [01s94] an improved library 

interface (via data blades), better user defmed function support, more security, better 

support for inheritance, simpler rules by removing the need for an instance level rule 

system, backup in the case of media crashes, browsers, and a performance speed up of 

between two and 100 times compared to Postgres. Also, most of the features 

mentioned in the initial Postgres papers, but which were never implemented because of 

research constraints, have now been developed. 

Montage now provides a more object-oriented support for objects, encapsulating types 

and functions in a class, so that attributes are now stored in a class, making it look less 

'table like'. Composite types are supported, these are like structs in C and C++, and 

the constructed types sets, arrays and pointers (refs) are also supported. 

Probably the biggest improvement is the provision of Data Blades, which are libraries 

of defined data types, with their associated functions, providing bolt-on units to the 

Montage system. The four current data blades are the foundation data blade, which 

provides the traditional data types, now numbering over forty; the text data blade, for 

handling variable length text; the image data blade, for handling rasterised graphic 

data; and the spatial data blade, for the handling of spatial data. 

3.5.2 Matisse 

Matisse [mat94] provides an object based approach for application development while 

trying to incorporate some relational features, such as referential integrity, versioning, 

triggers and rules. It is very object-oriented based, and was developed to model highly 

complex business applications. There is support for binary large objects, and C 

function calls to the API, ensuring that any language can use the API. The most 
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notable aspect is that it supports automatic inverse relationships, and achieves a high 

level of schema consistency. 

3.5.3 UniSQUX 

The UniSQL [kim94] system, as its name implies, is based on the SQL language. 

Although a few object-oriented database systems make this claim. the UniSQUX 

database can boast that its SQL language is an extension of the full ANSI SQL 

language, and not a chopped down version. 

The extensions that the UniSQL data model provide over relational databases are 

[kim94] nested relations, where a column in a relation can be another relation; 

encapsulation; an inheritance hierarchy on relations, in a directed acyclic graph format; 

and provision of sets as attributes of columns, where a set of values can even be of 

more than one arbitrary data type. The UniSQL system also supports the core object 

model defined by the OMG [cat94]. UniSQL also handles persistency of objects. This 

is different to other object-oriented systems, such as ObjectS tore [lam91] where a class 

has to be defined as either persistent or memory resident, and it is difficult to 

interchange between the two. 

The main extensions that the UniSQUX language provide over ANSI SQL are for 

path queries. This means that queries can be over nested classes, can include methods, 

can return nested objects and can handle sets. 

The UniSQUM system provides for a multi-database level, that is a federation of 

multiple, distributed, heterogeneous databases. It provides the full functionality of 

UniSQUX, and is fully distributed. Databases in UniSQUM are in fact views of 

relational UniSQUX databases. 

45 



3.5.4 OpenODB 

OpenODB [hew94] is an object-based database system from Hewlett Packard. 

Whereas most database systems are developed from scratch, OpenODB is actually 

built on top of a relational database syste1l\ Allbase/SQL. This means that the data 

and code is stored internally in a relational database, and OpenODB keeps all the 

functionality, consistency and security of the relational database. On top of this, all the 

required object-oriented features are developed, such as inheritance and complex 

objects, although this is then all mapped down to relational storage. 

The definition and manipulation language of OpenODB is known as OSQL. and is J 

functionally extended semantic superset of SQL. The OSQL language can be both 

interpreted and provided as an interface in any language that can make C function 

calls. Some of the features in the OSQL query language are being adopted in the new 

SQL3 [ans94] standard which is currently being produced. 

3.6 Tabular Comparison of Data Models 

We rekr the reader back to section 2.2.1 for definitions of the concepts used in the 

table below. 

Structure Rules l\ lanipulation Ad\'anced 

Concepts 

I\lodl'l I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

Relational V' " " " " SNF V' " V' " V' V' V' " " 
Nesteo V' V' " " " -.INF V' " V' V' V' V' V' " " 
Relational 

RMIT V' " " V' V' SNF V' " V' " V' V V " " 
Object V' v " v V' -.tNF V' v v v v v v v v 

Rei;ltillllal I 
! 

Hierarchical " V' " " " -.tNF V' " " v )( )( 1)( )( )( 
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Network X V' V' X X X V' X X V' X X X X 

()hjcct X V' V' V' V' X V V X V' V' X X V 

oriented 

Functional X V' V' V X --.l:"1F v X X V' V' X X V 

(DAPLEX) 

Extended X V' V' V' X --.lNF V' X X V' V' X V i V 

functional 

(P/FDM) 

1 . Relations 7. Referential Integrity 13. Views 

2. Trees 8. Rich types 14. Methods 

:1. Networks 9. Algebra/Calculus 15. ADTs 

4. Inheritance 10. Nested semantics 

5. Aggregation 11. Declarative Queries 

6. Normalisation level 12. Closure 

Figure 3-1 - Comparison of Data !\lodeIs 

The table in figure :1-1 attempts to summanse the concepts that the main database 

models provide, in terms of the differing types of structure, rules, manipulation and 

advanced facilities that have been required by database systems. A'V' symbol means 

that the model supports the particular concept defined, whereas a 'X' symbol implies 

that the model does not support the concept. 

The table shows the promise of object-relational systems in advancing database 

model1ing. The model has strong support for al1 of the structures defined in other 

models apart from networks (although pointers provide this in some basic sense). It 

supports referential integrity, normalisation rules (apart from the over strict first

normal form rule), and rich types. It has excel1ent support for manipulation, with only 

ils complete support for methods open to question, and it contains the advanced 

l'lll1L"l'pls of encapsulation and abstract data Iypes. No other model in the list supports 

~() many database concepts. 
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3.7 Problems with Object-Relational Systems 

The object-relational systems as developed today may offer virtually all the 

functionality currently required. The problem is that in doing so they have become 

very large and cumbersome systems, as shown with Postgres, and this affects their 

usability. The very simple set-theoretic relational model has been extended in complex 

ways beyond its natural scope and without a comprehensive theoretical basis. 

Complex objects and abstractions such as inheritance are more naturally represented by 

graphs than as sets [lev91, pou94]. This will affect the usability of the systems and 

may make further extensions to handle future user demands more difficult. It is 

desirable to investigate whether the current object-relational functionality can be 

achieved in a more fundamentally sound way, by providing a rigorous mathematical 

basis, from which extensions can in future more readily be made. 

In this thesis, as discussed in the next chapter, we look at the use of category theory 

for providing a sounder basis for advanced modelling, with its emphasis on the arrow 

and on multi-level constructions. 

3.8 Summary 

This chapter has confirmed the promise of object-relational systems in advancing 

database modelling. On a comparison of capabilities, the object-relational model 

outperforms all other approaches. However, there are problems with their usability 

and with their future extendibility, because the object-relational models are still based 

on set theory due to their relational framework. This framework is not ideal for the 

representation of complex objects and their associated mappings and abstractions. To 

this end, newer formalisms such as category theory may be needed. Multi-level 

mathematical architectures appear ideal for the complexity required for modelling 

48 



L 

object database structures and applications. We discuss this further in the next 

chapter. 
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4. Category Theory 

4.1 Introduction 

In the previous chapter it was shown that the object-relational database model had a 

number of advantages over other advanced models with respect to its handling of 

complex data· structures while retaining the beneficial properties from relational and 

functional models. However, there is no generally accepted formal basis for the model. 

The sophisticated modelling requirements may be better satisfied with higher-order 

logic [bee92], an example of which is category theory. 

In this chapter we outline our main motivations for choosing category theory as the 

formal basis for our object-relational database model, and then we will provide a 

simple introduction to category theory, explaining some of the concepts which we use 

in the Product Model, which is introduced in the next chapter. 

4.2 Category Theory 

In this section we provide an introduction to the main concepts of category theory that 

are used in our formal definition of the model in the next chapter. Rather than 

providing a general introduction to category theory, we refer to either Barr and Wells 

[bar90] or Simmonds [sim90] for an in-depth treatment of the subject. 

4.2.1 Categories 

The fundamental construction in category theory is the arrow, or morphism. An arrow 

can be thought of as a function in set theoretic terms, providing a mapping from a 
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source to a target entity, where the source and target entities appear in some domain 

and codomain respectively. 

As in sets, arrows can have an inverse, be an identity arrow, and are composable. We 

define the basic categorical axioms in detail: 

1. The identity arrow lA identifies an object A. That is, 

2. Arrows are composable if the codomain of the one forms the domain of the other. 

3. Identity arrows may be composed with other arrows: 

4. Composition of arrows is associative. Arrows may be composed so that the 

codomain of one arrow may become the domain of another. Standard category 

theory requires composition to be associative. For the arrows: 

i ° (hgf) = (ih) O(gf) = (ihg) Of 

The category is a collection of arrows between named entities, or objects. For 

example, the category) C has two arrowsfand g, where: 

f:A~B g:C~D 

3 Categories are denoted in bold throughout this thesis. 
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An object in a category where there is precisely one arrow from it to every other object 

is termed an initial object. Dually, the terminal object is where there is only one arrow 

to it from every other object in the category. 

We use diagrams for displaying arrow composition within categories. Commuting 

diagrams within categories exist where there are two distinct paths between two 

objects, for example 

f 

\/ 
c 

Figure 4-1 - Commuting Triangle 

Thus, the diagram in Figure 4-1 is said to commute when the equation g 0 f = h holds, 

that is the two paths from object A to object C give the same result. 

4.2.2 Subcategories 

A subcategory E of a category D is one where all of the objects and arrows of E can 

be found in D, the sources and targets of arrows in E are the same as those in D, the 

identity arrows in E are as in D, and composition rules for arrows in E are as in D, that 

is 

objE !;;;;; objD A HomE(p,q) !;;;;; HomD(p,q) (p,q E objD) 
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where, objD is the set of objects in the category D, objE is the set of objects in the 

category E, HomD(p, q) is the collection of arrows in the category D between objects 

p and q, and HornE(p, q) is the collection of arrows in category E between objects p 

andq. 

There are two special cases of subcategories. When E contains all the arrows of D, 

then it is termed afull subcategory of D, and if E has all the objects of D, then it is a 

wide subcategory. Any category is a full wide subcategory of itself. 

4.2.3 Functors 

Functors are arrows providing a mapping between categories, in effect they are arrows 

between categorical objects. For example, the functor F : C ~ D assigns arrows in 

category C to arrows in category D, and preserves compositions that are in the source 

category within the target category. 

If the shape of the source and target category is the same, the target category is said to 

have the shape of the functor, that is there is a homomorphism between the source and 

target categories. A functor which loses information, for example one mapping entities 

and arrows in the source category to just entities in the target category is termed a 

forgetful functor. Otherwise, a functor which maps all the structure of a source 

category onto a target category, where the target category may have additional 

structure itself, is termed a free functor. 

4.2.4 Typing 

Elements a in a set A can be represented categorically by a : 1 ~ A, where 1 is the 

single category of one discrete object. This is represented in set theory as a E A 

Typing is added by indicating the category from where the item is taken, so the arrow 

a : Ie ~ A makes the element a in set A of type C. Typing can also be based on 
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arrows, where, for example, monic arrows (that is an arrow which is a monomorphism 

[bar90], which is equivalent to an injective arrow in set theory) in a category or object 

could be considered of type M, where M is a category representing the universe of 

monics (that is the universe of monic arrows). 

4.2.5 Product Cones 

We introduce the two main types of product cone defmed in category theory, the 

product and projection, with their specialised versions pullbacks and pushouts. 

4.2.5.1 Product and Projection 

The product and projection operations of relational algebra can be represented 

categorically by cones [bar90]. The cone in Figure 4-2 shows the product A x C, with 

7r[ and trr projection arrows. 

A 

_x_ 
l \ 

c 

Figure 4·2 • Product Cone 

Figure 4-3 below shows an alternative representation, where the diagram now 

commutes. For any object V and arrows q I : V ~ A and q2 : V ~ C, there is a product 

U with projections A and C such that the diagram commutes for the two equations TCt 0 

q = q I and trr 0 q = q2. 
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Figure 4-3 - Commuting Product Cone 

4.2.5.2 Coproduct and Inclusion 

The coproduct is the dual of the product where the coproduct is the disjoint union A + 

C, and it and ir are inclusion arrows. In a dual the direction of all arrows is reversed. 

1\ 
A C 

Figure 4-4 - Coproduct Cone 

Note that both product and coproduct need not be binary. The concept can quite 

simply be extended to n-ary or finite products. 
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4.2.5.3 Pullbacks 

A pullback is a product restricted over some object. For example, the subproduct A XB 

C over an object B is: 

Figure 4-5 - Pullback 

wheref(a) = gee), andf(a), gee) E B, a E A, e E C. If this diagram commutes thenfO 

7r/ = g ° 7r,. Pullbacks correspond to relations in set theory, with A XB C being thought 

of as the relationship of A and C in the context of B (for example the relationship of 

suppliers and parts in the context of orders). 

4.2.5.4 Pushouts 

The pushout is the dual of the pullback, and is a restricted coproduct. For the diagram 

in Figure 4-6 below, S is the disjoint union of A and C, restricted over the object B. 
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B~~S 
C 

Figure 4-6 - Pushout 

4.2.6 Limits 

A limit in its simplest terms can be thought of as a supremum or infimum. An example 

of a limit is a terminal object of a family of cones [bar90], the limit being the infimum 

for all product cones, where the limit precedes each commuting cone, and only exists if 

every cone in the family of product cones commutes. 

The dual of a limit is the colimit, which can be considered the initial object of a family 

of coproduct cones. 

4.2.7 Natural Transformations 

The natural transformation is a (isomorphic) mapping between functors. It is an arrow 

between functorial objects. That is, if we have a functor F : A ~ B and a functor G : 

C ~ D, then a natural transformation (J would map from the functor F to G: 
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A ______________ +,B 

c , D 

Figure 4-7 - Natural Transfonnation 

For the mapping to be meaningful, F and G must be of the same type as there is no 

advantage to be gained from comparing the mapping between functors, with either 

categorical domains A and C or codomains Band D, based on different type systems. 

In terms of a commuting target square a natural transformation could be represented as 

given in the diagram below, that is four commuting functors where F and G are the 

original functors and Sand T are the new functors which ensure that the source and 

target categories of the functors are correctly mapped. 

F 

s '1 
c ____________ -+, D 

G 

Figure 4-8 - Natural Transformation as a Commuting Product Cone 

The diagram explains why natural transformations are isomorphic, that is the mapping 

(J maps between two functors which have the same shape. 
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4.3 Why Category Theory 

Our motivations for using category theory can be defined as follows: 

• The multi-level architecture of category theory reduces the complexity of modelling 

multi-level database schema and mappings, in that natural transformations and 

functors provide a much clearer method of mapping complex structures, compared 

to the method required to model multi-level structures in set theory where all 

mappings are basically at one level. Natural transformations can not easily be 

modelled in set theory. The clarity of these mappings facilitates integration of 

heterogeneous systems because we have the capability for mapping between 

complex structures. 

• The arrows give natural modelling of dynamic (such as methods, queries) as well as 

static (such as attributes, objects, relationships) aspects of the database, with the 

added benefit that dynamic and static arrows have no distinction in a category 

(similar to derived functions in the functional data model), that is it is only the type 

and definition of the arrow that determines what it actually represents, while in set 

theory, two basic concepts of the element and function are involved, in category 

theory only one concept - the arrow - is employed. 

• The diagrammatical tools (that is diagram chasing) and consistency tests are vital 

additions to any data model in ensuring that the database is consistent. We can 

employ diagram chasing for enforcing constraints such as the normalisation and 

integrity tests in relational databases, which are both powerful tools in their area. 

• Category theory is used increasingly for expressing programming semantics. In 

particular, categorical type systems are becoming more frequent in functional 

programming languages, for example the use of monads as advanced type structures 

with state, in particular for 110 systems [gor95, pey93]. 
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4.4 Previous Work 

Previous research into category theory has highlighted its relevance in many areas of 

computer science: 

Goguen [gog89] has produced a categorical manifesto which demonstrated the 

relevance of category theory in all aspects of computing science, where he highlighted 

uses of the major five concepts: categories, functors, natural transformations, adjoints, 

and co-limits. He shows their relevance in computer science, giving guidelines on how 

the various concepts could be applied. His claims are that category theory would 

interest computer scientists because of being able to formulate defmitions and theories, 

carrying out proofs, discovering and exploiting relations with other fields, formulating 

conjectures and research directions, and dealing with abstractions and representation 

independence. 

Cadish and Diskin [cad96, dis93] have already illustrated the effectiveness of using 

category theory for modelling relational databases. They used the categorical concept 

of sketches, a form of semantic diagrams; for example the entity-relationship model 

can be regarded as a sketch. They believe that category theory has many advantages 

for modelling databases, such as: 

• its graph based nature giving a form of evidence, 

• the algebraic nature providing ease of manipulation, 

• rigour from its mathematical background, 

• universality from its polymorphic nature, 

• the capability to model dynamic structures and concurrency. 

They claim that the database field needs a unified data definition/manipulation language 

with the advantages given above, summarised as an algebraic graph-oriented formal 

language for specifying structure and dynamics of the world. 
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Rydeheard [ryd88, den93] developed categorical data types in the functional language 

ML. Early work by Rydeheard looked at adding categorical types to standard ML, 

whereas later work with Dennis-Jones looked in more detail at producing a categorical 

ML language, where the general structures of ML have been replaced by specific 

categorical structures (categories, functors, natural transformation and adjunctions). 

One point they make is that the polymorphic type system of ML even with modules is 

too restrictive to express categorical concepts in their full generality. Poigne [poi92] 

confirms the difficulty of expressing categorical constructs in a functional 

programming language but does cite one possible way forward of a categorical 

abstract machine as described by Cosineau et al [cos87]. 

Duponcheel [dup94] has also investigated categorical types in a functional language, 

Gofer. Gofer is a simplified version of Haskell, one of the main differences is that it 

does not use the module system. It is more advanced that ML in that one of its main 

concepts is classes, where data types and operations can be encapsulated, and can be 

defined to handle polymorphic types. Note that both of these systems appear to be 

restricted to cartesian closed categories, a type of category which may be powerful 

enough for most areas of computing, but we believe is too restrictive for representing 

objects in a database, where the categories are of a general POSET shape (that is the 

arrows in the category form a partially ordered set). A category is cartesian closed if it 

has a terminal object, finite products, and for each pair of objects A and B an 

exponential A B representing all the arrows from B to A (equivalent to currying in 

functional programming). 

Ghelli [ghe90] looked at modelling features of object-oriented languages in second 

order functional languages with sUbtypes. By using second order calculus (which 

extends on the kind of polymorphism found in languages such as ML) in the functional 

language Fun [car85], they show how higher order models are appropriate for 

modelling object-oriented models, in particular they expand on Cardelli's work on 

multiple inheritance [car84]. He states that object-oriented languages lack a formal 

foundation. but by embedding the basic mechanisms (object identity and state, late 
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binding, class encapsulation, inheritance) in a strongly typed functional language then 

the mechanisms have a mathematical semantics and a set of strong type rules. They 

show that existential types are not powerful enough, particularly in using su~typing 

for inheritance, to model object hierarchies, because types are bound at run-time. 

Wolfengangen [woI95] produced a review of categorical methods for object-oriented 

databases, but no implementation exists. Ehrich [ehr87] investigated a means of 

introducing coproducts for representing aggregation. Cartmell [car85b] formalised the 

network and hierarchical data models in one of the frrst applications of categorical 

logic to databases. Vickers [vic91] explored the relationship, expressed in 

observational logic, between the data definition and data values in database concepts. 

Lehalli and Spyratos [leh91, 92] used the graph form of category theory for complex 

object structures, relational model, functional dependencies and some features from 

object-oriented systems. They show the potential for consistent categorical modelling 

in terms of functional dependencies by employing limits, but their formalisms are based 

more on graph structures rather than more complex categorical concepts, and they 

have not looked into more detailed object-oriented concepts such as normal forms, the 

association abstraction and querying and views [ros95]. Also, at the time of writing, 

no implementation exists. 

There are also categorical algebraic specification languages: OBJ is a general 

programmable type system from Oxford [gog92] which can be used for expressing 

fype systems, and is executable [wo088]. OBJ is frrst order, although OBB includes 

the concepts of objects, of theories which defme properties of some object which may 

be satisfied by some other object, and of views which bind entities declared in some 

theory to entities in another module. Theories are found in no other implemented 

language, although standard ML has been influenced by this approach. OBJ has been 

used at Oxford to implement a combined object-oriented and functional language 

FOOPS [gog86]. 
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Clear is a specification language used for program correctness proofs, using theories 

and sorts for proving algebraic constructions. Burstall [bur80] has defmed semantics 

for Clear based on category theory, using the principles of category, functors, co-limits 

and pushouts. 

4.5 Conclusions 

The published work on representing databases in category theory is still at an immature 

stage. In particular, approaches have tended to be piecemeal with only particular 

facets being supported, and implementations have been virtually non-existent. 

Therefore, in the present work we intend to produce a much more complete database 

model, taking the facilities of the object-relational database model as the target. This 

f~rmalism should underpin the object-relational model in a more satisfactory way than 

if set theory only were used. 

The other major stage of the work is to make a preliminary investigation of the 

feasibility of implementing a categorical representation. An important aim here would 

be to investigate the varying merits and drawbacks of different programming 

paradigms in representing categorical concepts. 

Over the following chapters we will define this formalism for our model, looking in 

particular at representing entities and relationships in a natural manner and using the 

multi-level formalisms for providing querying and closure in a closely coupled manner. 

We then develop a prototype implementation of this model to demonstrate the 

feasibility of implementing categorical representations and perform some initial tests. 
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5. The Product Model 

5.1 Introduction 

In the previous chapter we provided an introduction to the constructs of category 

theory which we now use in this chapter to defme our formalism for object-relational 

databases. In particular, we will look at the representation of all the abstractions that 

we have discussed as being part of the object-relational model, and we will show how 

these can be modelled in category theory 

A table at the end of this chapter summarises all of the concepts and symbols that are 

used throughout this chapter. 

5.2 Objectives 

Using standard textbook categorical constructions, we now construct the product data 

model to capture the semantics of object-relational databases. The minimum 

objectives for our data model are: 

• A clear separation between intension (class) and extension (object) structures with a 

rigorous mapping defined between them. 

• Object encapsulation. 

• A single unified definition language for functions within a class to include both 

functional dependencies and methods, the narning and typing of all functions and 

attributes within each class. 
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• Constraints on class structures as represented by the concept of primary and 

candidate keys, normal forms such as BCNF (Boyce-Codd Normal Fonn) and 

cardinality and membership class (that is whether the participation of an attribute in 

the relationship is mandatory or optional) in object (E-R) models. 

• The standard information system abstractions fonnulated in the1970s [smi77] and 

which are prime targets of current object-oriented databases [atk90] and object

relational systems [st086b, st094]. These abstractions include inheritance 

(generalisation and specialisation); composition such as aggregation; classification 

and association. 

• Message passing facilities between methods located in any part of the system. 

• A query language which can provide results with closure: the output from a query 

can be held in a class-object structure which ranks equally with other such 

structures already existing in the database. 

• A multilevel architecture like that in the ANSI/SP ARC standard [tsi78] with 

definitions of views, global schemata and their internal structures and the mapping 

between them. 

5.3 Classes 

5.3.1 Basic Structures 

The class construction represents the intension of a database. Each class is represented 

by a category (CLSI I 1 ~ i ~ c) where c is the number of classes in the database. The 

class name is the name of the category. Category theory keeps distinct intensional and 
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extensional forms of a data dictionary. For example, lCLS (that is the identity arrow of 

the category CLS) types a database entity in general, lCLSl types the database entity 

suppliers and lCLSz types the database entity parts. Then CLS1 is the class of 

suppliers and CLSz is the class of parts. 

Each category CLSi is a collection of arrows where an arrow may represent an action 

(transformation) or an association. The former represent methods and the latter 

dependencies (for example functional, inclusive, transitive). Arrow names are the 

names of methods and dependencies. 

Each arrow has a domain and a codomain. Within the universal category SET, 

domains and codomains are sets but in general they can be of arbitrary complexity. 

Domain and codomain names are the names of variables defined within the class. In 

the next section, we describe the identification of one or more domains as candidate 

keys and the selection of one of these as the primary key. The types of arrows, 

domains and codomains are defmed by naming the categories upon which their data 

types are based. All arrow constructions as regards composition and association must 

conform to the four axioms of category theory as given earlier [bar90). 

Formally, each category CLS. is a collection of k arrows or morphisms F = {fj I 1 ~j 

~ k} where h has domain dom(fj) and codomain cod(fj). The domain and codomain 

names are not necessarily distinct. (dom(fj) u cod(fj) I 1 ~ j ~ k} is the set of variables 

in the class which we call V with cardinality q. In order to permit complex actions and 

dependencies, domains may be structured, that is contain more than one variable. For 

database applications, codomains are normally considered to comprise a single variable 

although category theory itself need not be restricted to minimal covers [fre90) but can 

cope well with open covers [mac91]. Minimal covers are where the right hand sides of 

functional dependencies are restricted to single attributes, whereas in open covers this 

restriction does not apply. Variables may be either persistent variables given by a set 

A = {aj I 1 ~ j ~ n} comprising the persistent component of the class, or memory 
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variables given by a set U = {Uj I 0 ~j ~n'} comprising the transient component of the 

class. Note that A and U are both subobjects of V and n + n' = q. 

Using an alternative notation given in the previous chapter, V corresponds to objCLSi 

and F to HOIIlcLSi( v, v') for all v, v' E V. 

Arrows are typed, for example the collection of arrows D = {di I 0 ~ i ~ r'} represents 

arrows occurring in the universe of functional dependencies and M = {mi I 0 ~ i ~ s } 

represents arrows occurring in the universe of methods. Note that D and M are both 

subobjects of F and r' + s = k. 

Functional dependencies involve only persistent variables as their domains and 

codomains. Minimal covers are assumed: domains may be composite involving more 

than one persistent variable while codomains are restricted to being single persistent 

variables. Therefore for each functional dependency, we have di : x ~ fyI, XE pA, y 

E A, that is, x is a member of the powerset of A. Although y is a singleton variable, 

this does not mean that its structure is simple. y could represent structures such as 

multi-valued sets, lists or arrays. We deduce the set of persistent variables E that 

participate in functional dependencies, as domain or codomain, by (dom(di ) u cod(di ) I 

o ~ i ~ r'} . Note that E = A only in the special case when all domains in D are single 

attributes and every attribute in A is involved in a dependency. 

Functional dependencies can be composed. Thus the composition of d1: {a} ~ {b} 

and d2 : {b} ~ {c} gives d2 0 d1 : {a} ~ {c}. Such compositions are represented 

without difficulty in the partially-ordered structures that we introduce later as a natural 

consequence of the transitivity rule (if {a) ~ {b} and {b} ~ {c}, then {a} ~ {c}). 

However, in some circumstances, partial composition occurs, giving rise to a collection 

of pseudo transitivity arrows [u1l88] P = {Pi: x ~ fyj} (x EpA, YEA, 0 ~ i ~ r''). 
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The set of variables E' that participate in pseudotransitivities is given by (dom(pi) U 

cod(Pi) lOS is I'"}. 

For each arrow that is a method, mi: x ~ y (0 SiS s), then x E f.J V, Y E V, that is 

the domain may be any subobject of the persistent and memory variables and the 

codomain is a singleton persistent or memory variable. If required, memory variables 

can be considered as derived [shi81] or virtual variables which can be manipulated by 

database operations. 

The typing is indicated by a collection of mappings {h : hyp ~ H} where H 

represents the name of either an arrow in F or an object in V, h is an instance of Hand 

TYP is the category upon which the type of H is based. 

5.3.2 Identifiers 

As we shall see later, we need a way of deriving identifiers for use in our relationship 

representations. Identifiers can be natural (primary keys) or system assigned (object 

identifiers). Both the forms of identifiers are initial objects in categories as there is an 

arrow from the identifier to every other object in the category. Initial objects are 

normally denoted by 0 in category theory - hence we adopt Ko as the notation for the 

key. The key Ko is derived as shown below for each class category CLS [ros93] 

following a lattice approach [dem92] rather than an algorithmic one [u1188]. However, 

the work in [ros93] has been extended to deal with pseudotransitivity arrows (see 

point 4 below) as illustrated below. The lattice formalism lends itself more to a 

categorical approach with its emphasis on poset constructions. We employ the 

identifiers and dependencies to test whether our class structures correspond to BCNF 

(Boyce-Codd Normal Form). This normal form is adopted because it is more powerful 

than 3NF and can easily be deduced from functional dependencies making it ideally 

suited to a lattice approach. The procedure is as follows: 
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I. Generate, from the collection of persistent variables A, the poset category (that is 

the category is of a partial ordered shape) PRJ with elements p,q E pA and 

projected orderings (p x q ~ 1CJ(p x q); p x q ~ 7ir(P x q» as the arrows, that is to 

take the projections by applying the free functor G : A -7 PRJ. 

2. Generate, from the collection of persistent variables in the functional dependencies 

I:', the poset category DEP with elements p, q E E and arrows {d; I 0 ~ i ~ r'} as the 

orderings, that is to apply the free functor G' : E -7 DEP. 

3, Generate, from the collection of persistent variables in the functional dependencies 

E, the poset category PSU with elements p,q E E' and arrows {Pi I 0 ~ i ~ r"j that 

is to apply the free functor G" : E' -7 PSU. 

4. Take DEP and PSU representing respectively the non-trivial functional dependency 

arrows declared in the previous section and the pseudotransitivity arrows 

(dependencies inferred from the postulated functional dependencies and their 

combinations [uIl88]) between p,q EpA. Inject these into PRJ, that is add the 

arrows of DEP and PSU to those already in PRJ as shown in the diagram below: 

DEP ~ PRJ 

/ 
PSU 

Figure 5-1 - Injection of Trivial and Non-trivial Functional 

Dependencies into PRJ 

69 



5. Test that PRJ is still a poset by checking for anti-symmetry (if p S q and p ~ q, then 

p = q). Cycles in the ordering would give a preset' (pre-ordered set) which would 

need to be partitioned by applying a suitable quotient functor to produce a number 

of posets which can then be handled collectively. Each PRJ as a poset E:+ 

corresponds to the defmition of r by Ullman [u1l88], the closure of the set of 

functional dependencies E for the set of attributes A. Each class (record-type) has 

its own E+. 

6. The infimum or meet of the elements of A in PRJ (AA) is the primary key PK. If 

there is no infnnum, the set of maximal lower bounds is the set of candidate keys 

CK. 

7. The class is in BCNF if each source of a functional dependency arrow is PK or is a 

member of CK. 

8. The identifier Ko is either PK or a user-selection from CK. When it is necessary to 

distinguish the keys for each class, consider KOi as the identifier for the i'h class 

CLS j • 

9. Other persistent attributes may be labelled Kl ... Kr where r = n - c with c as the 

number of attributes in the key. In the simplest situations, r = I, where 1 is the 

cardinality of the set of dependencies D but in many cases such as classes with no 

dependencies or with multiple candidate keys or with classes that are not in BCNF, 

this will not be true. 

Alternatively, an object identifier can be defmed as the identity functor on a category, 

for example: lCLSj : CLSj ---+ CLSj. 

Our final task is to transfer our results from PRJ into the class category CLS. This is 

necessary as, particularly if the key is composite, Ko is not guaranteed to be a variable 

in the class CLS. We apply an injective functor from a view of the po set PRJ into 

4 A radical alternative approach that we are working on, at the moment, is to allow the 

starting relation to be a preset and to map it automatically into a family of po sets 

satisfying BCNF 
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CLS. The category that we inject into C is the exponential construction pRJKO (that is 

all of the arrows of PRJ with Ko as source). CLS now includes the key Ko and the 

arrows from Ko to each of Kt ... Kr• If therefore Ko was not already in PRJ, the 

injection increases the number of persistent variables n in CLS by one and the number 

of arrows k by r, that is n ~ n+ 1 and k ~ k+r. 

5.4 Relationships 

The association abstraction between classes is represented in object models by notation 

based on the Entity-Relationship [che76] (E-R) approach. In categorical terms, the E

R model is represented by pullbacks. 

Our pullback is on class identifiers KOi as initial objects in categories representing 

classes. To give an example, consider the pullback of Kot and K02 over 0 shown in 

Figure 5-2, where Kot and K02 are initial objects in the categories for the entity-types 

supplier (CLS t ) and parts (CLS2) respectively and 0 is a relationship orders between 

suppliers and parts. 

Figure 5-2 - Diagram of Pullback of Ko 1 and Ko 2 over 0 

The collection of relationships in a database intension is represented by a family of 

pullback categories (ASS; I 0 ~ i ~ p) where p is the number of relationships. We next 
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include information to cover aspects such as cardinality and membership class. First let 

us consider the nature of each object and arrow in the category: 

• KOI is the identifier for the supplier class CLS I . 

• K02 is the identifier for the parts class CLS2• 

• 0 is the relationship orders representing all instances of this type of association 

between suppliers and parts. Instances for 0 are of the form {<k{/,k.(/,o> I f(ko l ) 

=g(ko2
), kol 

E KOI, ko2 
E K02, 0 E PO} where 0 is information such as quantities 

and dates of orders and is an element in the powerset of 0 (or is a subset of 0 

representing that set of orders for a part from a particular supplier). 0 can be 

considered as a simple structure including j properties for orders {OJ I 1 ~ i ~ j}. 

Alternatively, where there is considerable complexity in the structure and operations 

of 0, it would be desirable to create a category, say CLS3, to handle as a class the 

internal complexity of the orders and to include in the pullback structure the 

identifier for this class K03 defmed as pairs of values <kol,ko2> as a surrogate for the 

orders category. 

• KOI XO K02 is the subproduct of KOI and K02 over 0: it represents the subset of the 

universal product KOI XK02 that actually occurs for the relationship O. In set 

theoretic terms, it is the relationship between suppliers and parts over orders. 

By considering the nature of the arrows we can now provide more information 

concerning the relationship 0: 

• The arrow f maps from identifier Ko I to the relationship O. It represents associations 

between suppliers and orders. 

• The arrow g maps from identifier K02 to the relationship O. It represents 

associations between parts and orders. 
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• Whenf(ko l
) = g(ko2

), we have an intersection between the two associations, that is a 

supplier and a part both point at the same order: a set of such orders is associated 

with a particular supplier-part pair. 

• The arrow 1ti is a projection of the subproduct KOI Xo K02 over KOI representing all 

suppliers. 

• If this projection arrow is o.nto (epimorphic or epic in categorical terms) 

then every supplier appears at least once in the subproduct. Thus every 

supplier participates in the relationship and the membership class of KOI is 

indicated as mandatory. If, however, 1ti is not epic, then not every supplier 

participates in the relationship and the membership class of KOI is indicated 

as optional. 

• If this projection arrow is one-to-one (monomorphic or monic in categorical 

terms) then each supplier appears just once in the subproduct. If, however, 

1ti is not monic, then a supplier may participate more than once in the 

relationship. 

• If 1ti is both monic and epic, the projection is said to be isomorphic with 

each supplier appearing once in the subproduct and Ko I having mandatory 

participation in the relationship. 

Analogous reasoning can be applied to the arrow 1l;-. 

It should be emphasised that the handling of the entity-relationship modelling here is 

very much stronger than in conventional data processing where the functionality and 

membership classes are represented by labels. In the categorical model, the 

functionality and membership class are achieved through typing of the arrows so that 

the constraints cannot be violated. Categorical structures are universal rather than 

73 



conventional. There is an underlying functor from a categorical E-R model to a 

conventional one with structure loss through typing constraints being represented as 

labels. 

5.4.1 Enhancements 

So far we have considered binary relations (relationships between two entity-types) 

and have neglected n-ary and involuted relationships (a relationship between two 

entities of the same entity-type, for example an entity-type part is connected to many 

other parts), multiple relationships between the same classes and the abstractions of 

inheritance and composition. These are readily handled by standard categorical 

constructions. n-ary relationships are represented by fmite subproducts [ros92]. 

Involuted relationships are handled directly: for example Kot XB Kot is the subproduct 

of Kot with itself over the relationship with the object B. Multiple relationships between 

the same classes are handled by a series of pullbacks over the same two initial objects, 

for example Kot xBKo2 and Kot XDK02 represent pullbacks of Kot and K02 over Band D 

respectively. Inheritance and composition are described below. 

5.4.2 Pullback Identifiers 

The values for a subproduct in a pullback will always be unique so generally this 

component of the diagram can be used as an identifier. Therefore in Figure 5-2 the 

identifier is Ko t Xo Ko 2• Note that, as in the class diagram, the identifier is the infimum 

of the diagram. 

5.4.3 Inheritance 

Inheritance in object-oriented terms is the assumption by classes of properties and 

methods defined in other classes. It is an intensional concept affecting the manner in 
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which classes are created. In categorical terms, this is achieved by the coproduct 

construction shown in Figure 5-3 which yields a disjoint union of two or more objects. 

Consider: 

• a category CLS3 (employers) with the set of arrows HOJ:IlCI..83 p,q between objects 

p,q and set of domains and codomains objcLS3; and 

• a category CLS4 (managers) with the set of arrows HOIIlcLS4 p,q and the set of 

domains and codomains objcLS4. 

The coproduct CLS3 + CLS4 is the disjoint union of the arrows (HOfficLS3 p,q + 

HomcLS4P,q) and the domains and codomains (objcLS3 + objCLS4). 

CLS3·------+~ CLS4 

Figure 5-3 - Coproduct Cone for Objects CLS3 and CLS4 

In this example, CLS3 and CLS4 contain the specific properties and methods for 

employers and managers respectively and CLS3 + CLS4 is the amalgamation of these 

objects and arrows into a new category which is in effect the specialisation of CLS3 

over CLS4 • The arrow s (meaning subclass) shows the direction of the specialisation: 

s : CLS3 ---+ CLS4 (employee has subclass manager). In general, the superclass 

category will be identified by one or more properties in the data and the subclass 

category (being a weak entity) by an identity functor to give an object identifier. In 
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more concrete terms, s can therefore be considered as the mapping between the key of 

the superclass category CLS3 and the identity functor 1 ClS4 of the subclass category: 

s : Ko3 ~ lClS4 

Since a coproduct can, in turn, be the base of another cone, it is a simple matter to 

construct inheritance hierarchies [neI94]. The ancestry of each class in the hierarchy is 

preserved in the construction of pushouts. Note though that, with our scheme at 

present, multiple inheritance is not permitted as the disjoint union would not include 

properties or arrows that appeared in both categories at the base of the cone, although 

we are currently investigating the use of pushouts [bar90] for multiple inheritance. At 

present therefore, our model provides inheritance through the arrangement of 

categories in a partial order restricted to hierarchical constructions rather than the 

more general poset of Cardelli [car84]. 

For convenience, we consider the additional g class categories (CLS j : c+ I ~ i ~ c+g), 

such as CLS3 + CLS4 above, created as coproducts to comprise the family of 

categories UNI. 

Polymorphism at its simplest level is achieved by the coproduct construction. Methods 

defined for CLS3 as arrows in the set (HOrncLS3P,q) are also available automatically in 

the set (HomCLS3P,q + HomcLS4P,q). 

5.4.4 Composition 

Composition including aggregation is the creation of new classes from a collection of 

other classes. The method of composition is flexible varying from standard 

mathematical operations such as products or unions on classes [kup93] to qualified 

operations such as relational joins. The basic ways of representing these compositions 

have already been introduced such as universal product, disjoint union, qualified 
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product and amalgamated sum Our technique follows closely that of Ehrich [ehr87] 

mentioned in the previous chapter. 

5.5 Typing 

Arrows and attributes are typed, as described earlier, by specifying the categories from 

which their values will be drawn. These categories may be other classes, basic pools of 

values such as integer and string, or domains of arbitrary complexity such as complex 

objects, arrows, lists, graphs and sets. 

5.6 Objects 

Objects represent the extensional database holding values which must be consistent 

with the intension (the class structures). 

There is a mapping: 

from each class CLSi to the instances for each object-type OBJi. This ensures that the 

constraints specified in the intension hold in the extension. The mapping is a functor as 

it is between categories. The functor Vi takes each arrow f in CLS i to a set of arrow 

instances Vi(f) in OBJi. each domain dom(f) in CLS i to a set of instances V;(dom(f)) in 

OBJi, each codomain cod(f) in CLSi to a set of instances V;(cod(f)) in OBJi, the key 

Ko to a set of instances Vi(Ko) , each non-key attribute (Kj I I ~ j ~ r) to a set of 

instances V;(Kj ) and each functional dependence (dj I I ~ j ~ r) to a set of arrow 

instances Vi(dj ). All assignments by the functor Vi are of values for arrows, domains 

and codomains. 
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ITA 

Figure 5·4 . Cone for extension II A in the category OBJ 

For each class CLSj, the functor Vi should preserve limits with respect to the 

functional dependencies, that is the diagram in Figure 5-4 should commute for every 

cone where ITA is the product of (Vi(Ko) x Vi(K1) ••• x Vi(Kr)) , the projection co-

ordinate from ITA is (lG I 0 ~j ~ r), and {Vi(dj ) : Vj(Ko) ~ Vj(Kj) I I ~j~ r} are the 

postulated functional dependencies. The commuting requirement is for aU Vj(Kj) where 

(l ~j ~ r) it is true that Vj(dj ) 0 1lO = lG. 

InformaUy, the diagram in figure 5-4 shows that there is a coUection of commuting 

triangles, each with common nodes of the product of the attributes in the intension ITA 

and the set of instances of the key Vi(Ko). The variable node in each case is the set of 

values for a non-key attribute VlKl There are two paths to each set of values for a 

non-key attribute - one directly from the intension and the other indirectly via the key 

values. These paths should return the same results if non-key values are indeed 

determined by the key values. Therefore for each non-key attribute in turn we 

compare the equations Vj(dj ) = lG. If this equations is satisfied in every case then the 

extension is consistent with respect to the constraints in the intension. 

We are checking that the limit is preserved when real-world data is examined: that is, 

all cones in our family of cones commute and therefore an infimum can be constructed 

for the family of cones, in this case ITA. 
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In object-oriented terms, objects contain values consistent with their class definitions 

(including typing) and perform operations according to the methods defmed in their 

classes. The classes are the intension, the objects the extension. This can be 

represented generically by the diagram in Figure 5-5 where CLS represents a family of 

class categories, OBJ a family of object categories and TYP a family of type 

categories. 

E, P and I are functors representing the mappings from object to class, from class to 

type and from object to type respectively. E (the dual of V) maps extension to 

intension. I is an inclusion functor so that OBJ is a subcategory of TYP. P indicates 

the typing constraints applied to classes and is a collection of arrows comprising: 

• {Vi: lTYPI ~ V,}, representing the constraint that each instance Vi of an object V, (l 

~ i~ q) is found in the category TYPi . 

• {.fi: hVPI ~ F,}, representing the constraint that each instance.li of an arrow Fi (1 

~ i~ k) is found in the category TYPi . 

TYP 

/\ 
CLS4 OBJ 

E 

Figure 5-5 - Commuting Diagram for Consistency of Objects with 

Classes and Types 
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In relational database terminology, each category TYP is a domain and each V is an 

attribute name. The database is consistent when the diagram commutes, that is pOE = 
I, representing the situation that our objects in the extension conform both to the class 

definition in the intension and to the typing constraints. 

In a similar way, another functor R takes each pullback category ASS at the intension 

level to its extension LNK. This functor also preserves limits so that the constraints, 

such as for monic, epic and multiple relationships must apply in every case to the 

arrows between the actual data values. Diagram chasing ensures that type declarations 

are obeyed. Note how the model is not simply labelling constraints in the intension, it is 

enforcing them as limit or commuting requirements in the actual data values held in the 

extension. 

5.7 Encapsulation 

The mapping between intension and extension naturally provides an encapsulation of 

attributes and methods for a class. Operations are only permitted on the extension if 

they are defmed in the intension and are performed so as to enable the functor from 

intension to extension to preserve consistency. 

5.S Physical Storage Structures 

In a similar way to the mapping between classes and objects, it is straight-forward to 

define mappings as functors between categories for objects and categories representing 

disk structures, say, hash tables or indexes. In earlier work Rossiter and Heather 

[l'os92] considered the various approaches to hashing in categorical terms. 
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5.9 Families of Categories 

Shortly, we tum our attention to manipulation of our categories. For this purpose, it is 

convenient to introduce the concept of families of categories. In effect, we make the 

following groups: 

• The category INT representing the intension as a family of c classes CLS, p 

association definitions ASS and g coproducts UNI representing inheritance. 

• The category EXT representing the extension as a family of c objects OBJ and p 

association instances LNK. 

• The functor D mapping from category INT to category EXT. This functor is called 

D (for database) because this is effectively the purpose of a database management 

system. 

Between any two intension categories INTi and INTj (not necessarily distinct), m 

message passing routes (see later) can be defmed using arrows of the form 7J described 

earlier between the corresponding arrow categories [bar90] INTi ~ and INTj ~ 

respectively. An arrow category is one where, for example, the objects of the category 

~ 
INTi are the arrows of the category INTi' 

5.10 Manipulation 

A fundamental difficulty in current object-based systems is that of closure. It is not 

easy to obtain an output from a database that can be held as objects with associated 

class defmitions such that the new structures rank equally with those in the existing 

database. Another difficulty with some object systems is that the output is a subset of 

variables in an object without any consideration of the arrows (functions) which are an 
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equally important part of the data. This latter difficulty is readily handled in a formal 

manner by subcategories [bar90] which provide a means of selecting some of the 

objects and arrows in a category and hence give in a natural manner the basis for a 

query mechanism. We remind ourselves that category INTj is a subcategory of 

category INTi if: 

Query operations can be defmed at two levels: intra-object and inter-object. In 

categorical terms, in the general sense, there is no difference between the two as both 

are handled by arrows. The query language that we have developed is therefore based 

on arrows as in a functional data model database such as DAPLEX [shi8l], but our 

arrows are higher-order mappings from one category to another. Our arrows are in 

fact functors between the input structure and the output structure. The input for each 

operation is a category and the output is another category or a subcategory. 

A functor arrow will return a category. It is therefore the norm that the output of a 

query on a category will be another category complete with arrows and objects which 

can be held in the database in the same way as other categories. The output or target 

category could contain structured values not present in the source category and 

assigned by another functor. It is therefore possible to create complex categories 

through manipulating values from a number of database categories. Alternatively, a 

forgetful functor applied to a category forgets some of the structure and this could be 

used, if the user desires, to forget the arrows and return simple tables of values as is 

the normal practice in network and some object-oriented databases. 

An example of a query is given in the next section. 
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5.10.1 Query Example 

We take the supplier-parts example given earlier, augmenting it with an inheritance 

structure where electrical parts are a specialisation of parts in general. The following 

categories are defmed: 

• INTI for the class CLSI for suppliers: identifier Klo (supplier number) 

arrows: 

/1: Klo ~ sname 

/3 : KI 0 ~ no. shares 

/4 : KI 0 ~ share.price 

/s: (no. shares x share.price) ~ capitalization 

where sname, saddress, no.shares, share.price E A; capitalization E U; 

/1> ... .!4 E D;fs E M. A, U,F,M are defined in section on Classes. 

More detailed typing is not shown here . 

• INT2 for the class CLS2 for parts: identifier K2
0 (part number) 

arrows: 

where pname, size, weight E A;f6, ... .!8 E D. 
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• for the pullback ASS1 of suppliers and parts over orders as in Figure 5-2: identifier 

KOI Xo Koz (subproduct of supplier and part numbers over orders) 

arrows: 

• KOI is the identifier for the supplier class CLS 1• 

• Ko Z is the identifier for the parts class CLSz. 

• 0 is the powerset of orders. 

• Instances for 0 are of the form (<k(/,koz,o> If(ko l
) = g(koz), ko l 

E KOI, koz 
E 

Koz, 0 E pO}. 

• INT4 for the class CLS3 for electrical parts - a specialisation of parts with object 

identifier 1 INT4 as the identity functor on INT 4 

arrows: 

f9 : IlNT4 ~ voltage 

flO : hNT4 ~ capacity 

where voltage, capacity E A;!9,f1O E D . 

• INT5 for the union (coproduct) UNI1 = INTz + INT4: identifier KZo 

arrows: 
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/6, ... , /8 from INTz 

/9, /10 from INT 4 

s. : KZo ~ IINT4 

The natural language query is 'What are the names and identifiers 0/ suppliers with 

capitalization greater than one million pounds who supply an electrical part with 

voltage rating 0/90 volts?'. 

The series of functorial operations is given below. As is usual in database systems, 

these operations are defmed in intensional terms but later, in order to introduce the 

closure concept, we look in more depth at what is actually involved in a query in terms 

of deriving an intension-extension mapping. 

I. X. : INT6 ~ INT5 

(Hom-set in INT6 = /9,S.; subobjects in INT6 = (Koz, I1NT4, voltage I voltage = 90»; 

2. Xz: INT7 ~ INT3 

(Hom-set in INT7 = 1ti; subobjects in INT7 = (Ko• xoKoz,Ko· I Koz E INT6»; 

3. X3: INTs ~ INT7 

(Hom-set in INTs = {}; subobject in INTs = Ko·); 

4. ~: INT9 ~ INT. 

(Hom-set in INT9 = /IJ3J4J5; subobjects in INT9 = (Ko·, sname, no. shares, 

share.price, capitalization I capitalization> 1000000»; 

5. Xs: INTIO ~ INT9 
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(Hom-set in INTIO = II; subobjects in INTIO = (KOI, sname IKol E objlNTs»; 

The ftrst functor XI derives the subcategory INT6 from INTs by taking the 

composition of the arrows SI : K20 ---7 IINT4 and /9: IINT4 ---7 voltage to determine 

which part identifters K20 are associated with a voltage of 90. 

The second functor X2 derives the subcategory INT 7 from INT 3 by restrictions on 

INT3 to the arrow 1,ti and on the source of 1lj to cases where the part is in the subobject 

K2
0 derived by XI. 

The third functor X3 takes the output INT7 from X2 and restricts it further to produce 

the subcategory INT S with no arrows and subobject Ko I. This subobject represents 

suppliers who supply parts rated at 90 volts. 

The fourth functor ~ produces subcategory INT9 from INTI with the arrows/lJ3J4Js 

and subobjects, including (KOI, sname), for which the application of/3J4Js to KOI gives 

a capitalization of more than a million pounds. 

The ftnal functor Xs produces the required answer in a new subcategory INT 10 which 

is a subcategory of INT9 with arrow II and subobjects (KOI, sname) such that the 

values for Ko I are found in the category INT 8, effectively giving an intersection 

between INTs and INT9 overKol. 

Note that the strategy involves a selection of both arrows and objects rather than just 

objects as in the relational approach. The selection of arrows is achieved through 

defining hom-sets and the selection of objects through deftning subobjects. Further, 

subobject specifications can involve predicates of arbitrary complexity to facilitate 

sophisticated searching techniques. All operations produce new subcategories. Results 

can also be injected into other categories so that new categories of arbitrary 

complexity can be constructed through free functors. 
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5.10.2 Closure in Queries 

INT. • EXT. 
D. 

1"' D9 
INT9 • EXT9 

Figure 5-6 - The Query 0'4 as a Natural Transformation with source D, and 

target D9 

Figure 5-7 - The query 0'4 as a Commuting Target Square with Covariant 

Natural Transformation 0'4 from functor D, to functor D9 

So far we have seen how intensional subcategories can be defined as results for 

searches. But can we store the results obtained in our example queries back in the 

database in their current form to be used in exactly the same way as existing classes? 
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The answer is that we have defmed a series of subcategories INT6 ... INTIO in 

intensional terms but have omitted to defme the corresponding extensional 

subcategories. The relationship between each intension INTi and extension EXTi is 

given by the mapping D i : INTi ~ EXTi. Therefore for a query earlier, say no.4, we 

can write in more detail: 

D9: INT9 ~EXT9 

as functors for the query representing intension and extension mapping respectively. 

Each query therefore involves a mapping between an intension-extension pair as source 

and an intension-extension pair as target. We can represent this structure as shown in 

Figure 5-6 with the query now represented by the natural transformation 0'4. 

To be a natural transformation, the square in figure 5-7 for our current query 0'4 should 

commute for every arrow Ii: dom(fj) ~ cod(fj) in the source category INTi (1 ~ j ~ 

k, 1 ~i~(i:+p+g)). 

This means that for all Ii in INTi then 0'4b 
0 Dl (fj) = D9(fj) 0 0'4a, that is our two paths 

from the values for domains of arrows in the source category D 1( dom(fj)) to the 

values for the codomains of arrows in the target category D9( cod(fj)) should be equal. 

One path A involving 0'4a navigates from domain values in the source category via 

domain values in the target category to codomain values in the target category; the 

other B involving 0'4b has the same starting and fmishing points but navigates via 

codomain values in the source category. 

In path A, the arrow 0'4a creates a subobject of the domains for arrows Ii in EXT 1 to be 

assigned to the extension category EXT9. In path B, the arrow 0'4b creates a sub object 
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of the codomains for arrows!; in EXT I to be assigned to the extension category EXT 9. 

Referring back to the syntax used in our query examples, the hom-set of the target 

category is defmed as the set of!; assigned by D9 and the subobjects in the target 

category are defined as the union of dom(fj) and cod(fj) for arrows!; assigned by D9• 

The output from 0"4 is clearly a structure which can be held in our database, ranking 

equally with other classes and objects in the system. Typing constraints will continue to 

be enforced in the output structure. So the typing for objects and arrows in INT 9 will 

be based on that in INT I with the additional constraint that capitalizations must be 

greater than one million pounds. In computing terms, we are expressing the constraint 

that no object can exist in our database which is not fully described by a class 

definition. 

In categorical terms, we are expressing a query as a natural transformation. Each 

functor can be considered as a continuous function (infimum preserving) between two 

po sets with limits: each structure Di : INTi ~ EXT; is then viewed as a closed 

cartesian category where D; is a continuous function preserving the infimum (as key) 

within the poset INT; in EXT;. Closed cartesian categories have been used in other 

areas of computing science, in formalisms such as Scott domains, as they are 

equivalent in theoretical power to the typed lambda calculus [bar90). 

5.10.3 Views on Classes 

The mechanism required for views is similar to that for queries. In fact a snapshot view 

will be identical to a query. However, there are two other aspects of views that need 

further consideration: 

1. The need to retain the definition within the database and produce views of the 

current data on demand by the user. 
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2. The problems of updating the database by users who have limited views of the data 

structures. 

The fIrst involves creating a mapping in intensional terms only as we did with the 

queries which were originally defmed as XI ... X5• Thus the functors in the family X 

defIned earlier can all be construed as defmed views. When a view is realised, the 

corresponding natural transformation is activated to deduce the extension. 

The second involves the defInition of another functor, say T, to relate the result from 

the query back to the main database values. Thus if we defme a view as shown in 

Figure 5-8 , we can achieve updateable views on a class. 

A well-known special case of a view is that taken of the complete database. In this case 

for every Di : INTi ~ EXTi in the database, the application of OJ returns an identical 

Di : INTi ~ EXTi in the view. The application of 'li to each D i : INTi ~ EXTi in 

the view should then faithfully return our initial database. If this is so, there is a natural 

isomorphism between a and T and our database is consistent. 

5.10.4 Message Passing 

We consider message passing to be a function from one arrow to another arrow, where 

the arrows may be within the same category (intra-class) or in different categories 

(inter-class). This function is best viewed in category theory as a morphism in the 

arrow category [bar90] which is written C -+ to view the arrows of C as objects in 

-+ C . For example, suppose the arrow 1Jj takes a value from an arrow for the method 

mk in the class CLSi to an arrow for the method mn in the class CLSj where CLSi and 

CLSj are not necessarily distinct. This is viewed in the arrow category as a morphism 

-+ -+ 
between objects in CLSi and CLSj as shown below: 
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We can show that message passing is perfonned in a consistent manner if the diagram 

in Figure 5-9 commutes, that is mn °11Ja = 11Jb ° mI<. 

Figure 5-9 is the natural transformation target square and shows that the message 

passing function is a natural transformation between objects in the category of arrows 

[sim90]. A simple way to realise that inter-arrow morphisms are natural 

transformations is to consider that the mapping between CLS and CLS ~ is a functor; 

hence a mapping between CLS - CLS ~ pairs is a natural transformation. 

The constructions above provide a sound framework for investigating aspects of 

message passing such as control of types of initiators/receivers and a formal basis for 

reflective systems. We also note that updates can be simply performed as a result of a 

particular message. 

INT] • EXT! 
D] 

1 G, 

D9 
i 

INT9 • EXT, 

Figure 5-8 - The View 0"4 as a Natural Transformation with Updates through 14 
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1)J' dom(mn) 
.-----~-------+ 

cod(mn ) 

Figure 5-9 - Commuting Square for Message 1]j between mk and mn in Arrow 

Categories CLS i ~ and CLSj ~ respectively 

5.11 Summary 

In this chapter we have developed a formal definition for a new data model which is 

capable of representing the standard abstractions of the object-relational model in 

category theory. Some of these aspects have been modelled better than others. 

Further work is required for modelling some of the more advanced concepts such as 

multiple inheritance and families of categories. However, the Product Model produced 

does provide a coherent integrated representation of the basic abstractions employed in 

current information systems. In the future the model could be refined and extended 

using constructions such as topoi and adjoints [bar90]. 

In the not chapter we discuss in depth the development of the prototype using the 

semantic data model database system PIFDM [emb95]. 
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Level symbol instance range i concept 

Category ASS ASSj l .. p association intension 

CLS CLSj 1 .. c class 

CLS~ CLSj~ 1 .. c class with arrows considered 

as arrow-objects 

DEP DEPj 1 .. c dependencies (in poset) 

EXT EXTj 1 .. c + P database extension 

INT INTj 1 .. c+p+g database intension 

INT'" INTi'" 1 .. c+p+g intension with arrows considered 

as arrow-objects 

LNK LNKj 1 .. p association extension 

08J 08Jj 1 .. c database object 

PRJ PRJj 1 .. c persistent variables (in powerset 

ordered by projection) 

PSU PSUj 1 .. c pseudotransitivities (in poset) 

TYP TYPj ~I types 

UNI UNIj 1 .. g coproduct (inheritance) 

Arrow D di 0 .. r 
, 

dependencies 

F J, 0., k all arrows within a class 

M nI, O .. s methods 

p Pi 0 .. r " pseudotransitivity 

S Si O .. g supertype-subtype 

( )hjL'CI A II, 1 .. /1 persistcnt variables 

E ei 0 .. r 
, 

persistent variables in arrows D 

E' 
, 

O .. r " persistent variables in arrows P e i 

Ko' ko' I .. c initial object (key) in CLSj 

1\,' (15 j 5 r) Ii' I I .. c non-key attributes in CLSj 

U II, 0 .. 11 
, memory variables 

\' I', I .. q all variables 

FUllctor D Di I .. c+p map intension to extension 

E Ei I .. c map object to class 

G Gi I .. c map variables A to PRJ 

G' G~ I .. c map \'ariables E to DEP 

G" G" , I .. c map variables E'to PSU 

I I, I .. c map object to type 



P P; 1 " c map class to type 

R R; I .. p map association intension to 

extension 

V V, I .. c map class to object 

X X, ~O query mapping intension to intension 

Natural a a; ~O query/view deriving one INT : ENT 

transformation pair as a 'subset' of another 

l' 1', ~O dual of query/view a 

1) 1); O .. m message from arrow-object in INTi .... 

to arrow-object in INTj -+ 

Figure 5-10 - Symbols Employed for Representing Database Concepts 
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6. Implementation 

In this chapter we will discuss the topic of implementing the prototype. We consider 

the suitability of the semantic database system PIFDM, based on the DAPLEX 

functional data manipulation language, for the implementation. The techniques 

involved in obtaining a correct implementation are described. Then finally, we will 

briefly discuss any improvements that, with foresight, could have been made to the 

implementation. We will also illustrate any alterations to and omissions from the 

formal model given in chapter five. 

6.1 DAPLEX 

DAPLEX is the best known functional database model, developed by Shipman [shi81]. 

It is based on the concepts of entities and mappings, where entities represent the basic 

objects in the system, as types in the database, and the arrows (mappings) are functions 

from one entity, or a group of entities, to a (possibly single valued) set of entities, 

thereby representing attributes in an object. 

DAPLEX is not really a programming language but is a database query language, 

based on functions and function composition. The entity type can be readily visualised 

as a category, and function handling in DAPLEX should be equivalent to that which is 

needed for a categorical database. 

The original DAPLEX, as devised by Shipman, has been extended, initially by Kulkarni 

and Atkinson, and is now known as EFDM [kuI86], Extended Functional Data Model. 

A noticeable weakness of DAPLEX was its inability to attach a 'general computation' 

function to one of the arrows, that is arrows could not be used for purposes other than 

expressing relationships. Therefore no general purpose computation other than those 
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supported by the DBMS could be made. EFDM added limited facilities for supporting 

general purpose computations, including PS-Algol [kuI87] features in their self

contained EFDM system [kuI86], as well as facilities for specifying integrity 

constraints and for handling named views of databases. Later extensions, by Dayal 

[day89] and by Gray [gra88], to the DAPLEX language, added more general functions 

to the language. Dayal devised OODAPLEX, an extension of DAPLEX, which also 

incorporated some object-oriented concepts, but the technique with which functions 

could be utilised relied too much on object oriented methodology rather than on a 

functional one. 

Gray added object-oriented concepts as well as general purpose functions into EFDM 

in a much more natural manner than was already supported, so that, for example, a 

method could act on two different entity types. For instance (grade(Student, Course» 

is in essence a join of the two entities Student and Course, something which 

OODAPLEX could not do. This is a very useful concept for a categorical system to 

have, as it is equivalent to the arrow concept in category theory. Their system is 

known as PIFDM, and we discuss in detail this system in the following section. The 

PIFDM system is embedded in SICStus Prolog [sic93], with very close integration into 

Prolog, so that a database can be defmed in both Prolog and DAPLEX terms, 

providing a computationally complete query system. 

Another useful concept of DAPLEX is that queries can be closed. A FOR EACH 

statement allows four possible modes for the returning of results. The result can be 

either: 

1. printed to-the screen, 

2. nested within another query, 

3. an UPDATE statement, as defined in the language syntax [gra88, shi8l], 

4. a general purpose language statement in a language in which DAPLEX is 

embedded. 
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For example, the following sample of code would, for each student who is in their third 

year, produce a new entity which stored the name of their individual project. 

FOR EACH s in Student 

SUCH THAT year(s) = 3 

FOR A NEW P IN Project 

BEGIN 

LET student(p) = s 

LET title(p) = individual-project(s) 

END 

The UPDATE option means that as the result of a query, new entities can be defmed, 

or entities already in the database can be updated. 

Finally, DAPLEX supports the concept of defining an inverse, so that a new function 

can be defined which is the inverse of an existing function, or of a composition of 

functions. This concept would give us a solution for deriving such categorical 

concepts as duals and adjoints. 

Possible difficulties arise in DAPLEX's handling of dynamic types. Declaration of 

some basic objects to be used in the database categories could be based on the 

following definitions: 

declare Attribute() =» ENTITY 

declare IntensionAttribute() =» Attribute 

declare name(IntensionAttribute) => STRING 

declare value(IntensionAttribute) => STRING 

declare ExtensionAttribute() => Attribute 

declare name(ExtensionAttribute) => STRING 

declare value(ExtensionAttribute) => Object 

The last line of the above definitions would allow the definition of an attribute where 

its type is to be defined at run-time as some sub-class of a predefined object entity. 
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DAPLEX does not allow dynamic binding, so this may cause problems, as it is trying 

to override the type checking system of DAPLEX, where we have in effect defined a 

function with an undefmed type. Use of metadata in PIFDM [emb92], which can be 

accessed uniformly in a DAPLEX query (that is there is no apparent difference 

between metadata and application data in a query) should allow some form of type 

manipulation to be added for simulating dynamic typing. 

6.2 An Extended Review of PIFDM 

PIFDM, developed by the Object Database Group at the University of Aberdeen, is a 

semantic data model database system, based primarily on the functional data model 

database defmition and manipulation language DAPLEX, developed by Shipman in 

1981. DAPLEX claims to be a conceptually natural database interface language 

[shi81]. It is based on functions and function composition, that is navigation in the 

language is based on functions operating on entities, and composition of those 

functions to perform quite complex operations. 

The original functional data model of Kerschberg and Pachecho [ker76] was developed 

to address the lack of naturality in previous data models. They noticed the similarity in 

previous models in how they treated relationships and navigation, so they defmed the 

functional model in an attempt to add a theoretical basis to bridge between the models 

with a more natural query system than SQL. 

DAPLEX was developed in 1981, at the same time as the Semantic Data Model 

(SDM) by Hammer and McLeod [ham81]. DAPLEX was more successful than SDM, 

even though Shipman never actually produced an implementation, because DAPLEX 

had a much clearer and simpler model. Actual implementations of DAPLEX came 

later, frrstly as ADAPLEX, which embedded a subset of DAPLEX in Ada and was 

developed at Computer Corporation of America [srni81], and secondly as PIFDM, 

which is the system we use. Other implementations of the DAPLEX language came 
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from Dayal who devised OODAPLEX [day89], an attempt to produce an object 

oriented version of DAPLEX, and EFDM, which was an early implementation using 

the language PS-Algol and developed by Atkinson [atk83]. 

PIFDM can be classified as a semantic data model, that is strongly based on DAPLEX. 

It has a DAPLEX interface, as well as the ability to perform the same functions as 

defmed in the DAPLEX lan~uage directly in Prolog code. It has the capability of 

object-oriented databases and could be termed object-functional. 

The two main concepts of DAPLEX are the entity and the function, where functions 

are equivalent to arrows in our model (although later we explain a different method for 

representing arrows), and categories can be thought of as similar to DAPLEX entities. 

The concepts of DAPLEX are therefore very similar to those in a categorical database, 

with constructions based on arrows, as we have previously discussed. An obvious 

problem is that DAPLEX is essentially flat (that is the arrows are basically represented 

at only one level as with set theory), so we still have the problem of representing a 

multi-level formalism on top of this. We do not see this as a problem though because 

it is one we would have in most other programming languages. 

The architecture of the PIFDM system is as represented in the diagram below. 

Figure 6-1- Diagram of Architecture ofPIFDM System 
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From this diagram, we can see how the system is constructed in layers. The main 

development environment is based on Quintus or SICStus Prolog [sic93], SICStus 

being the system which we use. A hash ftle manager is incorporated, where gdbm, 

which is a GNU version of ndbm hash ftle manager, is used. PIFDM is then built on 

top of these to produce the PIFDM Prolog interface, and on top of this is provided a 

DAPLEX interpreter. The user has access to either DAPLEX or Prolog, and features 

defmed in one can be used in the other in a reasonably straight-forward manner. 

The schema is written in DAPLEX, Prolog is mainly used when the functionality of the 

DAPLEX language is inadequate for a particular method, for example, when we need 

to include some general purpose computation, or to override the DAPLEX type 

system. The latter occurs quite often in our system, mainly because the type of an 

attribute may not be known when we parse the schema but will be known later at run

time. 

The advantages that the DAPLEX system gives us over other implementation bases 

were discussed in the previous section, but the availability of DAPLEX is just one of 

the reasons why PIFDM seems a suitable vehicle for developing the prototype. We 

now detail further the advantages that PIFDM gives us: 

• The whole of the functionality of the DAPLEX language is provided in the Prolog 

interface of PIFDM, and there is also the ability to use standard Prolog to enhance 

DAPLEX queries. So, in Prolog we have the facility for writing quite complex 

queries and updates to the database and metadata (see below). Note that any 

methods defmed in DAPLEX have a version in Prolog as well, and vice versa, to 

avoid the problem of not being able to use DAPLEX methods in Prolog. 

• The whole of the functionality of the DAPLEX language is also provided in 

PIFDM's DAPLEX interface, with a few extensions and changes, notably to make it 

more 'object-oriented'; to update the metadata layer and constraints system; and to 

improve the print command to make it compatible with a declarative style. 

Shipman's original definition of the model was developed on the basis that it would 
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be embedded in an imperative language such as Pascal and thus he relied heavily on 

existing language features. 

• The physical database implementation in PIFDM is provided by using the gdbm 

hashing interface, incorporated into Prolog. This means that we do not have to 

worry about implementing our own physical layer, a cumbersome task which is not 

an important part of our work. 

• The Prolog basis ensures that there are limited typing restrictions compared to other 

languages such as Pascal or C, but also results in the absence of dynamic types. 

Because PIFDM is based on Prolog, we do not have to worry about any type 

restrictions, in particular Prolog allows heterogeneous collections of values, but we 

have to carry out our own type checking for example in displaying objects where 

we. do not always know the true type of the object (we only know that it is a 

subtype of the general attribute type). A difficulty is that PIFDM adds its own type 

system to that of basic Prolog which can be too strict for our needs, especially when 

querying in DAPLEX, but it does have SUbtype support, so we can effortlessly store 

heterogeneous lists inside DAPLEX structures and use our own type checking 

routines to resolve ambiguities when processing these structures. 

• The latest release of PIFDM contains constraints [emb94] which we could use for 

type checking and subtyping in a future version. It is based on, for example, being 

able to add restrictions to the types of an entity in the schema defmition (similar to 

pre- and post-conditions in Eiffel), but we had to write type checking functions 

because its constraint facility was not available at the time we developed our 

prototype. 

• DAPLEX has some similarity to category theory in that entities = categories and 

functions = arrows, although as with most set based systems, these features can not 

be simply extended to provide multi-level mappings. 

• PIFDM has closure at the entity level. We can use PIFDM closure for easy 

development of categorical queries, where new structures need to be created as the 

result of a query. But the closure we eventually want is at the functor level. 
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• PIFDM has automatic inverses. If new structures are created with a link from the 

old structures, a link is retained to the old structure as well. This could be used as a 

method for creating the categorical concept of duals. 

• The metadata level of PIFDM is very well defmed, and the interface to the rnetadata 

level is completely transient, so it could be used for checking types. 

• One of the attractive features of PIFDM is the uniform use of DAPLEX and Prolog, 

so we can use the complete functionality of Prolog to overcome inadequacies in 

DAPLEX. This is especially useful for our overriding of the PIFDM type checking 

6.3 Implementation 

In this section we will explain in detail our implementation of the Product Model, 

following the defmition of this formal model given in chapter five. We will show any 

alterations to the formal model which were required for a feasible implementation. 

suggesting the reason why something was implemented in a particular way, and 

highlighting the main problems that occurred and how a solution was found. 

The implementation is based on PIFDM, for reasons which were discussed in the 

previous section. The architecture, involving the insertion of the Product Model into 

figure 7-1, is shown in figure 7-2. 
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Figure 6·2 . Diagram of Architecture of Product Model 

Figure 7-2 shows that the categorical database system conveniently sits on top of the 

DAPLEX and PIFDM (Prolog interface) layers, ensuring a seamless integration of the 

Product Model into the PIFDM system (that is a user notices no difference apart from 

the introduction of categorical types). The interface is a collection of DAPLEX (and 

Prolog) functions which can be used consistently in both the PIFDM DAPLEX and 

Prolog interfaces. This is because the categorical system is implemented basically as a 

database schema defmed in the DAPLEX language. This saves us having to write a 

database modelling and manipulation language, all the Product Model functionality and 

data are defined in standard PIFDM terms. It also means that the database is 

interoperable in terms of integration with non-categorical DAPLEX databases. 

6.3.1 Introduction 

We now look at each property of the Product Model as defined in the Product Model 

chapter, highlighting the technique we used for implementation in PIFDM. Fragments 

of PIFDM code including schema and functions are given throughout. 

103 



6.3.2 Classes 

The basic structure is defmed in section 5.3.1. Attributes are defined as sUbtypes (for 

example integer, string) of a type attribute, and we then define value and display 

functions for each subtype. These are then stored inside an object set, so that we can 

store more complex values, that is non-atomic and heterogeneous values, as a group. 

Attribute positions within the object sets are indexed so that the functors can correctly 

map between attributes in object sets. Arrows are then defmed as an entity containing 

two object sets, a source and a target, as described in the previous section. A special 

type of arrow is defined for storing identity arrows, in case an attribute cannot be 

stored in the category as a source or target of some other arrow. This is so that 

categories then just contain arrows and any objects which do not participate in an 

arrow mapping can be stored as identity arrows. An example of such a structure 

would be an object that is 'all-key', that is all of its attributes are part of the key. The 

code is implemented as a single module [emb95] in PIFDM, called produccmodel. 

This is shown in the definition of derived functions such as display below, where the 

function name is qualified as being in the module produccmodel. 

Attributes are the base entities in the system. They have an identity integer (equivalent 

to the method of identifying objects in an object-oriented database) which provides an 

unique identifier for each attribute, a type name stored as a string and a type identifier, 

where all types in the system also have an unique identifier. aUr _type stores the type 

of the attribute (i for intension, e for extension). An objeccset is then just a collection 

of attributes, and there is a function oSJJosition which uniquely identifies the position 

of any attribute in any object set. The SUbtype c_int is shown as the class of all 

attributes of type integer, with the function display defined for displaying integers. 

declare attribute -» entity 

declare id(attribute) -> integer 

declare type_name (attribute) -> string 
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declare type_id(attribute) -> integer 

declare attr_type(attribute) -> string 

key_of attribute is id 

declare object_set -» entity 

declare id(object_set) -> integer 

declare elements(object_set) -» attribute 

key_of object_set is id 

declare os-position(object_set, integer) -> attribute 

declare c_int -» attribute 

declare value(c_int) -> integer 

define display(c in c_int) -> integer in product_model 

value(c) ; 

Arrows are defined using the cacarrowentity, which is basically a structure containing 

a source object set, a target object set and an unique name for the arrow. Then, 

categories are defined as containing a set of these cat arrows, with a group of objects 

which is calculated as all object sets of all the arrows in the category. 

declare cat_arrow -» entity 

declare name(cat_arrow) -> string 

declare source (cat_arrow) -> object_set 

declare target(cat_arrow) -> object_set 

key_of cat_arrow is name 

declare category -» entity 

declare name(category) -> string 

declare arrows(category) -» cat_arrow 

declare objects(category) -» object_set 

key_of category is name 

Currently the only type of arrows we store within our categories are static (of type D 

in section 5.3.1), that is they are just relations between attributes. But it is not a 

difficult task to incorporate dynamic arrows, they are just a special case of a static 

arrow. We simply redefine the target of an arrow to be a defined method, as illustrated 
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in the second example in the following chapter. In fact, in the next chapter we show 

how to define a dynamic arrow for the number of shares arrows in the electrical parts 

example, although we do not actually execute it due to the amount of effort involved in 

establishing the environment. 

For determination of keys, rather than store the whole poset as described in section 

5.1.2, our class implementation simply holds the collection of functional dependencies, 

as mappings from the primary key (initial object) to all attributes within the object. 

We have a simplified method to determine the primary key from this information and 

to test whether the object conforms to BCNF, which is the level of normalisation 

required, except that the atomicity rule (1NF) has been relaxed. 

The normalisation technique of section 5.3.2 has not yet been incorporated into the 

prototype. Currently it exists as a Prolog program, so could be integrated into the 

PIFDM system in the future. The method works by recursively subtracting 

permutations of the non-trivial functional dependencies from the maximal element in 

the partially ordered set of the attributes, until the greatest lower bounds or infimum 

have been found. An example of this is given in [neI95]. This algorithm is also 

capable of determining whether a given set of functional dependencies conforms to 

BCNF because it produces the complete set of candidate keys. Our algorithm is 

perhaps not as efficient as previous algorithms [osb79] but gives us the advantage of 

also determining the key. 

6.3.3 Relationships 

We have looked at the two principal types of relationship defmed in the Product 

Model: binary relationships and inheritance. 
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6.3.3.1 Pullback relationships 

We have pullbacks for intension and extension as defined in section 5.4, with a functor 

mapping between them. Our pullbacks are defmed as relationships between limits and 

initial objects, with consistency checks to determine the cardinality and membership 

class of a pullback, in terms of epimorphisms and monomorphisms. The pullbacks are 

defined as a group of limits with initial objects mapping into categories. Some of the 

code for pullbacks, and the functions for testing their type is given below. The code 

includes an initial object entity, which maps from an identity object set to the category 

which that object set references. Then, pCarrow as well as/_arrow and c03q_arrow 

are defined as collections of initial objects and limits. Finally a pullback is defmed as a 

collection of the above types of arrow. 

declare init_object -» entity 

declare element(init_object) -> object_set 

declare refs(init_object) -> category 

key_of init_object is key_of(element) 

declare limit -» entity 

declare left(limit) -> init_object 

declare right(limit) -> init_object 

key_of limit is key_of (left) , key_of (right) 

declare pi_arrow -» entity 

declare source (pi_arrow) -> limit 

declare target (pi_arrow) -> init_object 

key_of pi_arrow is key_of (source) , key_of (target) 

declare f_arrow -» entity 

declare source (f_arrow) -> init_object 

declare target (f_arrow) -> init_object 

key_of f_arrow is key_of (source) , key_of (target) 

declare co_e~arrow -» entity 

declare source(co_e~arrow) -> limit 
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declare target(co_e~arrow) -> init_object 

key_of co_e~arrow is key_of(source), key_of (target) 

declare pullback -» entity 

declare name(pullback) -> string 

declare pi_I_arrows (pullback) -> pi_arrow 

declare pi_r_arrows(pullback) -> pi_arrow 

declare f_arrows(pullback) -> f_arrow 

declare g_arrows(pullback) -> f_arrow 

declare co_e~arrows(pullback) -> co_e~arrow 

declare left_category (pullback) -> string 

declare right_category (pullback) -> string 

declare over_category (pullback) -> string 

key_of pullback is name 

define pi_l_monic(p in pullback) -> boolean in product_model 

if some 0 in target(pi_l_arrows(p)) has 

count(a in target(pi_l_arrows(p)) such that a 

then false else true; 

define pi_l_epic(p in pullback) -> boolean in product_model 

if some 0 in init_object has 

count(a in target(pi_l_arrows(p)) such that a 

and name(refs(o)) = left_category(p)) 

then false else true; 

0) > 1 

0) o 

The function prinCarrow_types below examines properties of the pullback, in 

particular the projection arrows, to test if the pullback is monic and epic to give the 

cardinality and membership class of the relationship, as discussed in section 5.4. 

define print_arrow_types(p in pullback) in product_model 

print ('pi_l is 

true then 'monic (1)' else 'not monic 

(N)' , 

'and' 

true then 'epic (mand)' else 'not epic 

(opt)') , 

print ('pi_r is 

if pi_r_monic(p) true then 'monic (1)' else 'not monic 

(N)' , 
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'and' 

true then 'epic (mand) , else 'not epic 

(opt)') , 

print{'Relationship is', if pi_r_monic{p) = true then '1' else 

'N', 

':', if pi_l~onic{p) = true then '1' else 'N'); 

We do not as yet have a facility for n-ary relationships, but it could be done relatively 

simply by pasting together binary pullbacks, and ensuring that our limits are n-ary 

rather than just binary. 

6.3.3.2 Inheritance 

In the Product Model, we have a simple co-product structure as in section 5.4.3 that 

automatically creates a new intension category holding the sum of the attributes in the 

specialisation and generalisation. For implementation purposes we encountered the 

classical inheritance problem [car84, mey88] of how to handle the extension: if a sub

class is created, do we store the parent information in that sub-class also, or use the 

parent class as well? Our method stores both the supertype and the new attributes for 

the new type as two separate categories, and we have a method for producing the co

product of these two as a new category. The code for this is shown below. This can 

introduce storage anomalies because of redundancy. Any future system would have to 

be able to cope with this problem. Again, we ignore multiple inheritance; previous 

work [car85, bra93] has shown that it is a difficult problem to solve philosophically. 

The code below shows the defmition of a co-product as a collection of injection 

arrows and strings identifying which categories are being summed. Then, the function 

make_sub_class makes a new co-product category as a union of the two categories in 

the co-product, ensuring that the key dependency is preserved by creating a new arrow 

between the initial objects of the two categories, as discussed in section 5.4.3. 

declare co_limit -» limit 
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declare inj_arrow -» entity 

declare source (inj_arrow) -> init_object 

declare target(inj_arrow) -> co_limit 

key_of inj_arrow is key_of (source) , key_of (target) 

declare co-product -» entity 

declare name(co-product) -> string 

declare left_inj(co-product) -> inj_arrow 

declare right_inj (co-product) -> inj_arrow 

declare left_category (co-product) -> string 

declare right_category (co-product) -> string 

key_of co-product is name 

declare co-prod_category -» category 

declare union(co-prod_category) -> co-product 

define do_left(c in co-prod_category) in product_model 

for each a in arrows (refs (source (left_inj (union(c))))) 

include {a} into arrows(c); 

define preserve_key(c in co-prod_category) in product_model 

make_arrow (name (c) , 

element(source(left_inj(union(c)))), 

element (source (right_inj (union(c))))), 

include {the a in cat_arrow such that name(a) narne(c)} into 

arrows (c) ; 

define make_sub_class(p in co-product) in product_model 

create a new c in co-prod_category with key = (narne(p)), 

let union(c) p, 

do_left (c) , 

do_right (c) , 

preserve_key(c); 

6.3.4 Typing 

We have implemented a simple type system, in two major components. First of all we 

have a type category as defined in section 5.6, which stores all information about a 
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particular type - a relationship to a particular type information object and a set of 

attributes which conform to that type both intensionally and extensionally. 

declare sub_type -» entity 

declare id(sub_type) -> integer 

declare parent(sub_type) -> string 

key_of (sub_type) is id, parent 

declare integer_range -» sub_type 

declare lower_limit(integer_range) -> integer 

declare upper_limit(integer_range) -> integer 

declare type_category -» entity 

declare type_defn(type_category) -> sub_type 

declare int_attr_set(type_category) -» attribute 

de'clare ext_attr_set (type_category) -» attribute 

key_of type_category is key_of (type_defn) 

In addition, we have type entities, which store for a particular type its description, 

including, name of the super type (that is integer, string), with a lower and upper limit 

on any acceptable value of that type (which mayor may not be defined so that we can 

represent ranges), as well as other concepts which could define a sub-type, such as the 

maximum or minimum length for string values. 

We have developed a collection of routines which test if an attribute is of a particular 

type, look at attributes and see which type they belong to. The code for the function 

type_check which performs the major task of ensuring that a particular attribute is of a 

particular type is shown below. The types that have been implemented in our system 

are basic scalar types where methods are available for defining new types as ranges 

(sub-range and super-range inclusively). It was quite a complex task to do anything 

more than this with the version of PIFDM we were using because of the need to define 

the actual type representation as discussed in section 6.2. Note though that this is an 

easier task in newer versions ofPIFDM where constraints can be defined [emb94]. 
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define attr_type_check(i in attribute, e in attribute) -> boolean in 

product_model 

if type_check(e, the s in sub_type such that 

id(s) = type_id(i» = true 

then true else false; 

type_check([attribute, sub_type], [Attribute, SubType], 

BooleanResult) 

4) 

getfnval(parent, [SubType], ShouldType), 

getfnval(type_name, [Attribute], IsType) , 

ShouldType == ISType, 

instance_type (Attribute, AttrlnsType), 

getentity(AttrlnsType, Attribute, _, [Hll_]), 

getfnval(value, [Hl], Value), 

getfnval(id, [SubType], Typeld), 

(Typeld 1 Typeld 2 Typeld 

) ; 

instance_type (SubType, SublnsType), 

getentity(SublnsType, SubType, _, [H21_]), 

3 

getfnval(lower_limit, [H2], Lower), 

getfnval(upper_limit, [H2], Upper), 

TestType is 1 

) ; 

I !, 

) , 

BooleanResult 'true' 

TestType = 1, 

Lower =< Value, 

Value =< Upper 
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); BooleanResul t 'false' . 

6.3.5 ()bj~ts 

In our Product Model, obj~ts are the extension categories in the database, although 

there is still difference of opinion among object-oriented workers whether an obj~t is 

both intension and extension or just the extension. However, in our Product Model, 

we have taken the decision to consider objects as extension categories. So, we have 

an extension category which stores all instances of values as defined by an intension, 

and a functor between them which stores the mapping from object names (and types) 

in the intension to object values in the extension. The functor is simply a relation, it 

can check that an instance does conform to the intensional definition, and that it is of 

the correct type, which is done through use of the type triangle shown in figure 5-5. In 

our system, the type triangle is checked by simple tests of extensional values to see if 

these values conform to the type specified by the intension. The code for this is shown 

below. We therefore have no need of the third type category TYP, although our tests 

ensure that we have the consistency defmed by that type category. 

define attr_type_check(i in attribute, e in attribute) -> boolean in 

product_model 

if type_check(e the s in sub_type such that 

id(s) = type_id(i» = true 

then true else false; 

define compare_arrow_types(i in cat_arrow, e in cat_arrow) -> boolean 

in product_model 

if some j in {l to count(elements(source(i»)} has 

attr_type_check (os-position (source (i) , j), 

os-position(source(e) , j» 

= false 

or some k in {l to count(elements(target(i»)} has 

attr_type_check (os-position (target (i) , k), 

os-position(target(e) , k» 

= false 

then false else true; 

113 



define compare_functor_types(f in pm_functor) -> boolean in 

productJllode1 

if some i in arrow_mappings(f) has 

compare_arrow_types(source(i) , target(i» 

then false else true; 

false 

Another constraint which we could enforce, but currently do not, is that the functional 

dependencies hold in the data. This is quite a difficult test, more than just checking 

that the instance arrows are the same as the extension. We could however compare 

arrows because our model allows us, through use of the objeccset construction, to 

map down to the attribute level within any object within a category. 

6.3.6 Encapsulation 

As detailed in section 5.7, categories enclose all their attributes and operations as a 

collection of arrows within the category itself. All properties of a category can be 

referenced by manipulating the initial object of the category, an object which can 

directly or indirectly map onto every other property within the category. 

6.3.7 Physical Storage Structures 

We do not have to worry about how our database is stored physically, as by defining 

our categorical database as a DAPLEX schema and functions, our data is stored using 

the standard PIFDM hashing system. This ensures that although our system is only a 

prototype, accessing of the data in its physical stored form should have performance 

directly related to that of PIFDM, without any major overheads, apart from those 

arising in the Prolog code that may have been required as extensions to the DAPLEX 

schema. 
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6.3.8 Families of Categories 

Topoi [bar90] could be used as a way of grouping categories into families, so that our 

database system could then be represented formally by a single topos. This aspect is 

still under consideration at the theoretical level and no implementation of topoi has 

been attempted. 

6.3.9 Functors 

We have defined two types of functor with code given below. pm_functor 

provides the simple mapping between intension and extension, and 

pullback_functor maps between intension pullback and extension pullback. 

Because we can not expect lists in PIFDM to be order preserving, attributes are always 

stored in object sets in an indexed order, so when we link two object sets we know 

that PIFDM has not affected the ordering of attributes. Again, the majority of our 

functors are defmed as relations between categories, rather than anything more 

dynamic, although in our natural transformations we do compute functorial 

relationships. 

declare arrow_mapping -» entity 

declare source (arrow_mapping) -» cat_arrow 

declare target (arrow_mapping) -» cat_arrow 

key_of arrow_mapping is key_of (source) , key_of (target) 

declare p~functor -» entity 

declare name(pm_functor) -> string 

declare source (pm_functor) -> category 

declare target (pm_functor) -> category 

declare arrow_mappings(pm_functor) -» arrow_mapping 

key_of p~functor is name 

declare pullback_mapping -» entity 

declare id(pullback_mapping) -> integer 

declare pi_l_source(pullback_mapping) -> pi_arrow 
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declare pi_l_target(pullback_rnapping) -> pi_arrow 

declare pi_r_source(pullback_rnapping) -> pi_arrow 

declare pi_r_target(pullback_mapping) -> pi_arrow 

declare f_source(pullback_rnapping) -> f_arrow 

declare f _target (pullback_rnapping) -> f_arrow 

declare g_source(pullback_rnapping) -> f _arrow 

declare g_target(pullback_mapping) -> f _arrow 

declare co_e~source(pullback_mapping) -> co_e~arrow 

declare co_e~target(pullback_rnapping) -> co_e~arrow 

key_of pullback_mapping is id 

declare pullback_functor -» entity 

declare name (pullback_functor) -> string 

declare source (pullback_functor) -> pullback 

declare target (pullback_functor) -> pullback 

declare pullback_mappings(pullback_functor) -» 

pUllback_mapping 

key_of pullback_functor is name 

6.3.10 Manipulation 

Natural transformations provide the basis for manipulation. Although in the formal 

model in figure 5-8 a natural transformation is defined as a mapping between functors, 

they are implemented as a commuting target square of four functors, as shown in 

figure 5-7. This is because it is easier for the user to understand and is therefore 

simpler to implement in PIFDM because a new level of mappings is then not required. 

The morphism (functor) D exists already (it is the database functor or mapping from 

intension to extension), (J is defined as mapping the intension types to their new types 

(defined by the new category 1'), and then the two new functors D' and 'l' are 

automatically created as the result of the natural transformation, to produce the new 

category E'. 
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D 

D' 
I' E' 

Figure 6-3 - Natural Transformation in PIFDM 

The four functors ensure we have the equivalent of a natural transformation by 

ensuring that all arrows in the source and the target categories are consistently mapped 

and thus the diagram above commutes for any query. The code for natural 

transformations is given below, showing that a natural transformation is basically a 

collection of four functors (which are discussed in section 6.3.9): 

declare nat_trans -» entity 

declare name (nat_trans) -> string 

declare source (nat_trans) -> pm_functor 

declare target (nat_trans) -> pm_functor 

declare left_functor (nat_trans) -> pm_functor 

declare right_functor (nat_trans) -> pm_functor 

key_of nat trans is name 

define new_functor(n in string, i in category, e in category) in 

product_model 

create a new p in pm_functor with key (n), 

let source(p) i, 

let target(p) e; 

define add_arrow_map(a in cat_arrow, b in cat_arrow, f in pm_functor) 

in product_model 

create a new m in arrow_mapping with key 

key_of (b) ) , 

include {m} into arrow_mappings(f); 
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The function perform_closedJUlCtrans as shown below completes a natural 

transformation by creating the category E' as well as the functors 'f and D' (known as 

rightJunctor and target respectively in the implementation). The natural 

transformation expects the functors source and leftJunctor to exist already. source is 

the intension to extension functor in the existing database, leftJunctor is a mapping 

from the original intension to the new intension category (which is also defmed by the 

user) and shows which arrows are to be kept in the query result and also ensures that 

the type conversions between old intension and new intension attributes are defined. 

The method used ensures that we can also roll back a natural transformation to the 

state it was before the query was produced, a very simple form of transaction. This is 

done simply be removing the 'f and D' functors and removing the category E'. 

define closed_nat_trans-pt3(n in nat_trans, a in arrow~apping, s in 

arrow_mapping, c in category) in product_model 

for the e in cat_arrow such that name (e) 

string_concat(name(target(a)), '_-'I 

include {e} into arrows (c) , 

add_arrow_map(target(s), e, target(n)), 

add_arrow_map(target(a) , e, right_functor(n)); 

define closed_nat_trans-pt2(n in nat_trans, c in category) in 

product_model 

for each a in arrow_mappings(source(n)) 

for the s in arrow_mappings(left_functor(n)) such that 

source (a) = source(s) and 

compare_arrow_types(target(s), target(a)) = true 

make-prime_arrow2(target(s), target(a)), 

closed_nat_trans-pt3(n, a, s, c); 

define perform_closed_nat_trans(n in nat_trans) in product_model 

create a new c in category with key = 
(string_concat(name(target(source(n))), '_-'I), 

new_functor(string_concat(name(source(n)), '_-'I, 

target(left_functor(n)), c), 

new_functor(string_concat(name(left_functor(n)), '_ext'), 

target(source(n)), c), 
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let target(n) = the f in pm_functor such that name (f) = 
string_concat(name(source(n», '_-'), 

let right_functor(n) = the 9 in pm_functor such that name (g) 

string_concat(name(left_functor(n», '_ext'), 

closed-pat_trans-pt2(n, c); 

At the moment we do not have natural transformations which are capable of mapping 

between pullback functors, although this should be feasible in the future. A decision is 

needed to determine whether the natural transformation should be capable of mapping 

pullbacks to standard categories, enabling our natural transformations to produce sub

sets of the arrows within a pullback, or just of the objects within the pullback, that is 

the pullback is treated as a category in the mapping, which would mean that rather 

than implementing a new type of natural transformation, a simple conversion utility for 

converting pullbacks to basic categories would be needed. 

6.3.10.1 Closure 

Through the natural transformation a query produces a new category (E') and new 

functors (D' and -r) which provide a consistent mapping between the old and the new 

representation of the data. That is the diagram in figure 7-3 commutes. These 

categories and the functor D' are frrst-class data in the same way as the original 

categories in the system, which means that they can be referenced in further queries 

without any change in syntax or method. Our queries therefore satisfy the closure 

requirements as detailed in section 5.10.2. 

6.3.10.2 Queries 

To perform queries, each natural transformation will be more than just a relation. It 

will need to actually perform operations, in particular in mapping between related 

types, such as restricting the set of integers to those within a particular range. This is 

done by using typing in a very tight manner, where we decide which attributes satisfy 
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the constraints of the query by defming type mappings. That is we map a type in the 

source intension to a new subtype in the target intension and thus the mappings 

between values in the source extension and new target extension also hold the same 

typing constraints. 

The user supplies a new intension, with types defmed, and a functor from this new 

intension to the old intension, showing the actual type mappings which should take 

place. The new extension is then created using the code shown in section 6.3.10 

above, and the commuting square is completed, by creating the functors T and D~ Our 

new categories can then be used within the database for further querying, allowing us 

to perform complex query transformations, and also ensuring we have closure in our 

system. 

It should be emphasised that we do not automatically create the whole of the natural 

transformation. It is much simpler to manually defme the new intension and its relation 

to the old intension by defining the functor cr ensuring that we have defined the 

required type mappings to map between source and target extensions. Then, the task 

our system has to perform to complete the natural transformation is to create the 

functors as explained above, and returning the category E' as the result. However, this 

is still preferable to the current solution in some object oriented systems which restrict 

queries to single objects [ber93 p 87/88] and thus restrict nested queries. 

6.3.10.3 Views 

Views have not been implemented in the present study. Read-only views could be 

constructed very simply in the same manner as queries as shown in section 6.3.10. 

Views with update facilities could be constructed by adding a natural transformation in 

the dual direction to a query. One method could be simply to use DAPLEX inverses, 

but this does not give what is needed because DAPLEX inverses work only at the 

lowest function level whereas our requirements are multi-level. However, managing 
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multi-level inverses could prove difficult and costly to maintain, so it is much easier to 

reverse the source and target of an arrow mapping, and then when we update an 

instance, we could check the arrow maps to see if a parent, or a view needs updated, 

ensuring that all typing constraints still hold. 

6.4 Conclusions 

Categories representing classes, objects, binary relationships, inheritance and type 

systems were defmed. Functors were developed to relate classes, at the intensional 

level, to objects, at the extensional level. Natural transformations, as expected, were 

more difficult to develop and may need further thought in subsequent implementations. 

We succeeded in constructing natural transformations with query closure in specific 

circumstances but more universal mapping capabilities are desirable in the long run to 

handle general categories as objects including pullbacks. We did not implement views, 

but their implementation is relatively straightforward given more time. 

No interface other than through DAPLEX has been provided. Because category 

theory naturally uses the arrow as its major concept at various levels, and diagram 

chasing for proofs, then it seems that a graphical interface would be the ideal interface 

to a categorical database system, especially one which closely matches an entity

relationship model. Graphical interfaces are discussed further in Nelson [neI93] and 

Kappel [kap92] which investigates the features for which the current object-oriented 

database management systems provide an interface. 

In the next chapter we illustrate use of the prototype by producing two small sample 

applications. The first is a very basic example, whereas the second is closely based on 

the example given in chapter five. 
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7. Results 

7.1 Introduction 

In this chapter we will illustrate use of the prototype with two sample applications. 

The first test suite is a simple application involving a basic collection of classes and a 

simple relationship, the type of application which could be handled easily by the 

relational model. A simple query on one of the tables is illustrated. The second 
r> 

example is taken from chapter four, where we produce part of the solution to the 

electrical parts query. We do not perform the complete query here because the 

method of setting up a query in the prototype system is very time consuming, and 

usability to the level required would involve further work which is beyond the scope of 

this thesis. In particular, as noted in section 6.3.10, we have not as yet implemented a 

system for producing natural transformations between pullback functors - the method 

is similar to that for natural transformations between normal categories, and could be 

achieved by extensions to that work. 

7.2 Testing Method 

The method we use both for defining the schema (in terms of a DAPLEX schema 

definition, DAPLEX and Prolog functions) and for defining the sample database 

applications, is the bulk load facility described in the PIFDM user manual [emb95], 

which allows us to specify all the data values for the entities and the relationships 

between entities. It eliminates the need for producing complex DAPLEX entity 

definition commands, although by looking at the size of the bulk-load files even for a 

simple database, it is still quite a complex task. 
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7.3 Manipulation Technique 

In our Product Model there are two methods for manipulating the database, we can 

produce results with output or first-class data structures, or perform the query without 

closure. We are also able to completely unroll a closed query, that is we can remove 

from the system the functors, the resulting category, and the other structures that are 

created during execution of the query. Basically, we run DAPLEX queries as follows: 

for the n in nat_trans such that name(n) 

perform_nat_trans(n); 

This produces the non-closed version of the natural transformation, displaying the 

results of the query, but not storing the new extension category produced. To execute 

the query with closure, we defme the following DAPLEX query (which runs the 

function shown in section 6.3.10): 

for the n in nat_trans such that name(n) 

perform_closed_nat_trans(n); 

which will run the identical query, this time giving no output to the screen, but storing 

the results of the query. We can unroll the query as follows: 

for the n in nat_trans such that name(n) 

unroll_close~nat_trans(n); 

7.3.1 Other Manipulation Functionality 

To display the actual information stored within the database, we have facilities to 

display categories, functors, pullbacks and pullback functors, as well as the type 

information and the list of arrows. 
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To print the categories, we can either use the Prolog function show_categories or 

perform the DAPLEX query: 

for each c in category print_category(c)j 

To print a pullback p we can use either the DAPLEX functions 

print-pullback_info (p) or print-pullback (p). The fIrst prints complete details 

of the pullback including the results of the type tests on the arrows, giving the 

cardinality and membership class of the relationship. The second only prints the co

equaliser arrows and again the type tests on the pullback. 

Co-products in our system work at the intensional level only. We use the DAPLEX 

function make_sub_class (p) for some defined co-product p, which makes a new 

category containing the union of two predefmed categories (the sUbtype and the 

supertype). 

To display functors, we can use print_functor (f) for a functor f in the same way 

as above, which prints all functors, ·including those stored within natural 

transformations. We have two functions for printing functors between pullbacks, 

print-pullback_functor_info (f) and print-pullback_functor (f), the fIrst 

printing full detail (all the arrow mappings), the second printing the minimal detail 

(only the co-equaliser arrow mappings) between the source and target pullbacks. 

Finally, to print all type information, which will test all simple attributes in the database 

with all relevant types, we have the Prolog function show_types. To show all 

arrows including those in the lowest level structure where objects are represented by 

identity arrows, we have the Prolog function show_hom_sets. 
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7.4 Simple Test - Supplier Parts Example 

In this example, we produce a very simple database consisting of the following: 

• supplier category (intensional and extensional), containing the arrow: 

• supp_no -> supp_name (intension) 

• parts category (intensional and extensional), containing the arrow: 

• parcno -> part_name (intension) 

• an orders category, containing values for order numbers for each supplier part 

relationship in the pullback, represented as identity arrows. 

• a pullback representing a relationship between the supplier and parts categories, 

over the set of orders represented by the orders category 

• a simple intensional defmition of inheritance represented by a co-product, extending 

the supplier category. We also convert this to an extensional sub-type by applying a 

PIFDM function to the database 

• a functor mapping each intension to each extension 

• a pullback functor for the supplier parts relationship 

• a typed natural transformation on the supplier category representing the query 'find 

the supplier with supplier number 1'. 

This simple example shows that it is possible to defme natural transformations of the 

type specified in the formal Product Model defined earlier in chapter five, but that it 

takes considerable effort to define all the constructs required for such a simple query. 

A further prototype could ease this work by providing a user interface which would 

automatically define most of the properties required, but this is not part of this thesis. 

Sample output from the system is shown below in a number of stages 

1. First of all, we print the categories that exist, supplier and part are the intension 

categories, orders_category is the orders intension, which is used in the pullback. 
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suppliers_ext, parts_ext, orders_ext are the respective extension definitions for the 

above categories. In addition subs_cat is the extra arrow defined for the co

product and new JUPP _int defmes the new intension category for the query of the 

suppliers category with the type of supp _no changed to be the set of integers equal 

to one. The code below prints the categories in the system. listing the arrows 

within each category. Each attribute is qualified by its type name, and a number in 

brackets, which is the actual type identifier of the type name, where 1 is the set of 

all integers, 3 is the set of all strings, and in category new_supp_int, 100 is the new 

integer type explained above which is restricted to be the set including the sole 

integer 1. 

I: for each c in category print_category(c); 

Correctly formed imperative. 

Category supplier 

fd2 :: supp_no:integer(l) -> supp_name:string(3) 

Category part 

fd4 :: part_no: integer (1) -> part_narne:string(3) 

Category orders_category 

order_arrow:: orders: string (3) -> orders:string(3) 

Category supplier_ext 

fd2ext_l .. l:integer(l) -> Smith: string (3) 

fd2ext_2 .. 2:integer(1) -> Jones:string(3) 

Category part_ext 
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fd4ext_1 .. 1: integer (1) -> brick:string(3) 

fd4ext_2 .. 2:integer(1) -> p1ank:string(3) 

Category orders_ext 

order_ext_arrow1 .. order1:string(3) -> order1:string(3) 

order2:string(3) -> order2:string(3) 

Category subs_cat 

subs_arrow .. subs:string(3) -> saddr:string(3) 

supp_no:integer(lOO) -> supp_name:string(3) 

2. Three functors are defined. The first two are the functors between the supplier 

intension and extension and the part intension and extension respectively. The third 

functor then defines the intension functor from the original supplier intension to the 

new supplier intension for the natural transformation. 

I: for each f in pm_functor print_functor(f); 

Correctly formed imperative. 

Functor supplier_funct from Category supplier to Category 

supplier_ext 

[ fd2 :: supp_no:integer(l) -> supp_name:string(3) 1 ==> [ 

fd2ext_1 :: l:integer(l) -> Smith:string(3) 

[ fd2 :: supp_no:integer(l) -> supp_name:string(3) 1 ==> [ 

fd2ext_2 :: 2:integer(1) -> Jones:string(3) 

Functor part_funct from Category part to Category part_ext 
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[ fd4 :: part_no:integer(l) -> part_name:string(3) 1 ==> [ 

fd4ext_1 :: l:integer(l) -> brick:string(3) 

[ fd4 :: part_no: integer (l) -> part_name:string(3) 1 ==> [ 

fd4ext_2 :: 2:integer(l) -> plank:string(3) 

Functor intension_functor from Category supplier to Category 

new_supp_int 

[ fd2 :: supp_no: integer (l) -> supp_name:string(3) 1 ==> [ 

parts_l_arrow :: supp_no:integer(lOO) -> supp_name:string(3) 

3. Next, we print the pullbacks. Again, there are two, one for the intension pullback 

and one for the extension. The intension is correctly identified as having a one-to

one relationship (as defmed in the entity-relationship model), and the extension 

pullback is identified as a one-to-many relationship. 

I: for each p in pullback print-pullback(p); 

Correctly formed imperative. 

Relationship supplier and part over orders_category 

«supp_no:integer(l) refs supplier} x {part_no: integer (1) refs 

part}> -> {orders: string (3) refs orders_category} 

pi_l is monic (1) and epic (mand) 

pi_r is monic (1) and epic (mand) 

Relationship is 1 : 1 

Relationship supplier_ext and part_ext over orders_ext 

«l:integer(l) refs supplier_ext} x (l:integer(l) refs 

part_ext}> -> (order1:string(3) refs orders_ext} 

«l:integer(l) refs supplier_ext} x (2:integer(l) refs 

part_ext}> -> (order2:string(3) refs orders_ext} 

pi_l is not monic (N) and not epic (opt) 

pi_r is monic (1) and epic (mand) 

Relationship is 1 : N 
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4. We then print the pullback functor, which maps between the intension and the 

extension pullbacks. For each of the two intension to extension ,we display the 1C, 

arrow, 1Cr arrow, f arrow, g arrow and co-equaliser arrow. 

I: for each p in pullback_functor print-pullback_functor_info(p); 

Correctly formed imperative. 

Functor sp_functor from Pullback sp-pullback to Pullback sp_ext 

«supp_no:integer(l) refs supplier} x (part_no:integer(l) refs 

part}> ->(supp_no:integer(l) refs supplier} 

«l:integer(l) refs supplier_ext} x (l:integer(l) refs 

part_ext}> -> (l:integer(l) refs supplier_ext} 

«supp_no:integer(l) refs supplier} x (part_no:integer(l) refs 

part}> ->(part_no:integer(l) refs part} 

«l:integer(l) refs supplier_ext} x (l:integer(l) refs 

part_ext}> -> (l:integer(l) refs part_ext} 

(supp_no:integer(l) refs supplier} -> {orders: string (3) refs 

orders_category} 

(l:integer(l) refs supplier_ext} -> (orderl:string(3) refs 

orders_ext} 

{part_no: integer (1) refs part} -> {orders: string (3) refs 

orders_category} 

{l:integer(l) refs part_ext} -> (order1:string(3) refs 

orders_ext} 

< {supp_no: integer (1) refs supplier} x {part_no: integer (1) refs 

part}> -> (orders:string(3) refs orders_category} 

«l:integer(l) refs supplier_ext} x (l:integer(l) refs 

part_ext}> -> (orderl:string(3) refs orders_ext} 

«supp_no:integer(l) refs supplier} x (part_no:integer(l) refs 

part}> ->(supp_no:integer(l) refs supplier} 
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<{l:integer(l) refs supplier_ext} x {2:integer(1) refs 

part_ext}> -> {l:integer(l) refs supplier_ext} 

< {supp_no: integer (1) refs supplier} x {part_no: integer (1) refs 

part}> ->{part_no: integer (1) refs part} 

<{l:integer(l) refs supplier_ext} x {2:integer(1) refs 

part_ext}> -> {2:integer(1) refs part_ext} 

{supp_no:integer(l) refs supplier} -> {orders: string (3) refs 

orders_category} 

{1: integer (1) refs supplier_ext} -> {order2:string(3) refs 

orders_ext} 

{part_no: integer (1) refs part} -> {orders: string (3) refs 

orders_category} 

{2:integer(1) refs part_ext} -> {order2:string(3) refs 

orders_ext} 

<{supp_no:integer(l) refs supplier} x {part_no: integer (1) refs 

part}> ->{orders:string(3) refs orders_category} 

<{l:integer(l) refs supplier_ext} x {2:integer(1) refs 

part_ext}> -> {order2:string(3) refs orders_ext} 

I: I: 

5. Our co-product display simply involves making a new intension category, merging 

the previous supplier category with the subs category, and ensuring that the arrow 

which provides the mapping between the two is also created. Our co-products are 

intensional concepts. Future work will look at the production of a corresponding 

extension. It is debatable whether the implementation of the extension would be on 

the newly created co-product as an abstraction, or the individual component 

categories summed together. Again, for our display of the categories, we have 

removed extraneous information. 

I: for each c in co-product make_sub_class(c); 

Correctly formed imperative. 
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I: I: for each c in category print_category(c}; 

Correctly formed imperative. 

Category subs_cat 

subs_arrow:: subs:string(3} -> saddr:string(3} 

Category subs-product 

fd2 :: supp~o:integer(l} -> supp_narne:string(3} 

subs_arrow:: subs:string(3} -> saddr:string(3} 

subs-product :: supp_no:integer(l} -> subs:string(3} 

I: I: 

6. Finally, we display the natural transformation for the previously defmed query. 

That is we select all suppliers with supplier number 1, by restricting the intension 

attribute supp_no to have the restricted type of all integers between (in this case) 1 

and 1, i.e. 1. 

The output shows the type tests which are performed. Note that the test X = 2 fails 

because it is out of the range defmed. The only supp_no objects that are allowed in 

the extension are those with the value 1. The code given below shows three type 

tests, which basically test the two types in the original category to see which ones 

match the query. Testing arrow 1 -> Smith succeeds for both source and target of 

the arrow, therefore this instance is reproduced in the result of the query - shown by 

the tests X=l : integer I 1 <= X <= 1 and X = Smith I base type = string. For the 

arrow 2 -> Jones, the test X = 2 fails because 2 is not in the range 1 <= X <= 1, 

therefore we do not need to test Jones, and this arrow is not reproduced in the 

resulting category. 
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When mapping between arrows in the source and target intension categories, a 

corresponding mapping is performed on the extension. The appropriate values for 

attributes for the instances, where the constraint supp_no = 1 applies, are stored in 

the new target extension with a mapping to them from the source extension. 

Instances which do not match this constraint are, of course, not held in the target 

extension. 

Finally, to display the natural transformation, we re-display all of the functors (we 

have removed the functor partJunct from the output because it plays no part in the 

query). The four functors displayed, shown in the commuting square in figure 7-3, 

make up the natural transformation (the two previously defmed to create the natural 

transformation, and the two which have been created as the result of the query). 

We do not display the new category as the information about the arrows that this 

category contains are shown in the targets of the two new functors. However the 

new target extension could be displayed to show the resulting instances that the 

query has produced. 

Correctly formed imperative. 

Testing type integer in type range integer 

Base types match 

Testing X = 1 : integer I 1 <= X <= 1 

Testing type string in type range string 

Base types match 

X = Smith I base type = string 

Testing type integer in type range integer 

Base types match 

Testing X = 2 integer I 1 <= X <= 1 

I: I: 
I: for each f in p~functor print_functor(f); 

Correctly formed imperative. 

132 



Functor supplier_funct from Category supplier to Category 

supplier_ext 

[ fd2 :: supp_no:integer(l) -> supp_name:string(3) 1 ==> [ 

fd2ext_l :: l:integer(l) -> Smith:string(3) 

[ fd2 :: supp_no: integer (1) -> supp_name:string(3) 1 ==> [ 

fd2ext_2 :: 2:integer(1) -> Jones:string(3) 

Functor intension_functor from Category supplier to Category 

new_supp_int 

[ fd2 :: supp_no:integer(l) -> supp_name:string(3) 1 ==> [ 

parts_I_arrow:: supp_no:integer(lOO) -> supp_name:string(3) 

Functor supplier_funct_- from Category new_supp_int to Category 

supplier_ext_-

parts_I_arrow supp_no:integer(lOO) -> supp_name:string(3) 

==> fd2ext_l_-:: l:integer(lOO) -> Smith:string(3) 

Functor intension_functor_ext from Category supplier_ext to Category 

supplier_ext_-

[ fd2ext_l :: l:integer(l) -> Smith: string (3) 1 ==> [ fd2ext_l_

l:integer(lOO) -> Smith:string(3) 

I: I: 

7.5 More Complex Test - Product Model Example 

Our second example is the example given in section 5-10, where we illustrate a more 

complex query based on a sequence of natural transformations. The query in natural 

language is 'What are the names and identifiers of suppliers with capitalization 

greater than one million pounds who supply an electrical part with voltage rating of 

90 volts?' 

133 



To illustrate this example in detail we will compare how the query would be performed 

u~ing SQL, PIFDM and our categorical system. 

7.5.1 Query in SQL 

The tables we would construct in a relational system would be as follows ... 

Suppliers 

Parts 

pno pname size weight 
PI Gas fire regular 10,000 

P2 Guardian dai!y 300 

P3 Light bulb bright 15 

P4 Light bulb standard 13 

P5 Transformer small 2,000,000 

Orders 

sno pno order 
SI PI :2 

S' . - PI 6 
S2 PI 7 
S2 PI 8 

S3 P3 4 

S3 P3 5 
S4 P3 9 
S5 P5 12 

S5 P4 9 

Electricals 



:~ I 90 I 2,000,~ 
150 I 

416,000 

The SQL for the query would be ... 

SELECT Suppliers.sno, Suppliers.sname 

~OM Suppliers, Orders, INT5 

WHERE 

Suppliers.sno = Orders.sno AND 

Electricals.pno = Orders.pno AND 

Electricals.voltage = 90 AND 

Suppliers.capitalization > 1000000 

The result would be ... 

sno sname 
S5 Westinghouse 

7.5.2 Query in PIFDM 

We now show the DAPLEX schema that would be defined for this example ... 

declare suppliers -» entity 

declare sno(suppliers) -> string 

declare sname(suppliers) -> string 

declare saddress(suppliers) -> string 

declare no_shares (suppliers) -> integer 

declare price(suppliers) -> integer 

declare parts -» entity 

declare pno(parts) -> string 

declare pname(parts) -> string 

declare size(parts) -> integer 

declare weight(parts) -> integer 

declare orders (suppliers, parts) -» integer 
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declare elec-parts -» parts 

declare voltage(elec-parts) -> integer 

declare capitalization(elec-parts) -> integer; 

define capitalization(s in suppliers) -> integer in example2 

share-price(s) * no_shares(s); 

And our query would be constructed as follows ... 

for each s in suppliers 

such that capitalization(s) > 1000000 

and for each 0 in orders(s, p) such that 

voltage(p as elec-parts) = 90 

print(sno(s}, snarne(s»; 

with the result being a display of the row shown in the SQL example. 

7.5.3 Query in the Product Model 

The query in the Product Model requires considerable initial work. There are five 

functors which need to be defmed, one of which operates over a pullback - which we 

do not have the capability to do properly at the moment. A method for doing this 

could be implemented by converting the original pullbacks to categories and then using 

the existing natural transformation code, although this would mean the result would 

always be a simple category and not a pullback. We will therefore produce one of the 

natural transformations, but as well as this we hope to demonstrate that dynamic 

arrows are possible in the model. 

The natural transformation we choose is equivalent to the composition of parts X4 and 

X5 in the example given in section 5.10.1, where we basically return the arrow is with 

its new types. We also have to alter the query to ensure that satisfactory output is 

created. If the query was kept as it is, then the natural transformation would in fact 

succeed for every instance in the extension. We also note a problem with the 
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implementation of the model here: if we returned more than one set of arrows for each 

instance in the extension, then the instances returned may not be compatible, that is the 

arrows returned for each instance would depend on whether the tests succeeded for 

each arrow, and not if all tests succeed for all arrows. This is a problem with the 

defmition that we use for extension categories. We store all values for all instances in 

one category, rather than storing one instance per category, that is all instances within 

the database for any intension category are stored within one extension category. 

Therefore a query could incidentally return arrows which should not be returned. A 

solution to the problem is described in section 8.3. 

Sample output is shown below: 

1. Again, first of all we display all of the categories. Note, the category INT5 is not 

shown as it is not relevant in this query. (Note however, we do produce the 

pullback in the example). 

I ?- daplex. 

I: for each c in category print_category(c); 

Correctly formed imperative. 

Category inti 

f1 · . sno:string(3) -> sname:string(3) 

f2 · . sno:string(3) -> saddress:string(3) 

f3 · . sno:string(3) -> no_shares:integer(l) 

f4 · . sno:string(3) -> price: float (2) 

fS no_shares: integer (1) price: float (2) -> · . 
capitalization:integer(l) 

Category int2 

f6 :: pno:string(3) -> pname:string(3) 
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f7 .. pno:string(3) -> size:string(3) 

f8 .. pno:string(3) -> weight: integer (1) 

Category int4 

f9 :: oid:integer(l) -> voltage:integer(l) 

flO:: oid:integer(l) -> eapaeity:integer(l) 

Category ord1 

01 .. order: integer (1) -> order: integer (1) 

Category Suppliers 

f1a · . Sl:string(3) -> WH Smith:string(3) 

flb · . S2:string(3) -> British Gas:string(3) 

f1e · . S3:string(3) -> Philips: string (3) 

f1d · . S4:string(3) -> Osram:string(3) 

f1e · . S5:string(3) -> Westinghouse: string (3) 

f2a · . Sl:string(3) -> Newcastle: string (3) 

f2b · . S2:string(3) -> London: string (3) 

f2e · . S3:string(3) -> Eindhoven: string (3) 

f2d · . S4:string(3) -> Birmingham: string (3) 

f2e S5:string(3) -> Pennsylvania: string (3) 

f3a · . Sl:string(3) -> 150000000:integer{l) 

f3b · . S2:string(3) -> 800000000:integer{l) 

f3e · . S3:string(3) -> 125000000:integer{l) 

f3d · . S4:string(3) -> 42000000:integer{l) 

f3e · . S5:string(3) -> 56000000:integer{l) 

f4a · . Sl:string(3) -> 6.64:float(2) 

f4b S2:string(3) -> 5.6:float(2) 

f4e · . S3:string(3) -> 5.25:float(2) 

f4d · . S4:string(3) -> 3.3:float(2) 

f4e · . S5:string(3) -> 16.25:float(2) 

f5a · . 150000000:integer{l) 6.64:float(2) -> 996000000:integer{l) 

f5b · . 800000000: integer (1) 5.6:float(2) -> 4480000000:integer{l) 

f5e · . 125000000:integer{l) 5.25:float(2) -> 656250000:integer{l) 

f5d · . 42000000:integer{l) 3.3:float(2) -> 138600000:integer{l) 

f5e · . 56000000:integer{l) 16.25:float(2) -> 910000000:integer{l) 

Category Parts 
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f6a · . Pl:string(3) -> Gas fire:string(3) 

f6b P2:string(3) -> Guardian:string(3) 

f6e P3:string(3) -> Light bulb:string(3) 

f6d · . P4:string(3) -> Light bulb:string(3) 

f6e · . P5:string(3) -> Transformer: string (3) 

f7a · . Pl:string(3) -> regular: string (3) 

f7b · . P2:string(3) -> daily:string(3) 

f7e · . P3:string(3) -> bright:string(3) 

f7d · . P4:string(3) -> standard: string (3) 

f7e P5:string(3) -> small:string(3) 

f8a · . Pl:string(3) -> 10000:integer(1) 

f8b · . P2:string(3) -> 300:integer(1) 

f8e P3:string(3) -> l5:integer(1) 

f8d · . P4:string(3) -> l3:integer(1) 

f8e P5:string(3) -> 2000000: integer (1) 

Category Orders 

ola · . 2:integer(1) -> 2:integer(1) 

olb .. 6:integer(1) 7:integer(1) 8:integer(1) -> 6:integer(1) 

7:integer(1) 8:integer(1) 

ole · . 4:integer(1) 5:integer(1) -> 4:integer(1) 

old · . 9:integer(1) -> 9:integer(1) 

ole · . l2:integer(1) -> 12: integer (1) 

olf · . 9:integer(1) -> 9:integer(1) 

Category Int4ext 

f9a l:integer(l) -> 100: integer (1) 

f9b · . 2:integer(1) -> 90:integer(1) 

fge · . 3:integer(1) -> 2000000:integer(1) 

flOa l:integer(l) -> 230: integer (1) 

flOb .. 2:integer(1) -> l50:integer(1) 

flOc .. 3:integer(1) -> 416000: integer (1) 

Category INTlp 

f5p :: no_shares:integer(l) priee:float(2) -> 

eapitalization:integer(5) 

I: I: 
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2. Next, we display the functors between intension and extensions, and also the 

intensionJunctorl functor, which again provides the defmition of the natural 

transformation we are going to produce. 

I: for each f in pm_functor print_functor(f); 

Correctly formed imperative. 

Functor suppliers_funct from Category intI to Category Suppliers 

[ fl :: sno:string(3) -> sname:string(3) ==> [ fla :: 

Sl:string(3) -> WH Smith: string (3) 

[ fl :: sno:string(3) -> sname:string(3) 1 ==> [ fIb .. 

S2:string(3) -> British Gas:string(3) 

[ fl :: sno:string(3) -> sname:string(3) 1 ==> [ flc .. 

S3:string(3) -> Philips:string(3) 

[ fl :: sno:string(3) -> sname:string(3) 1 ==> [ fld 

S4:string(3) -> Osram:string(3) 

[ fl :: sno:string(3) -> sname:string(3) 1 ==> [ fIe 

S5:string(3) -> Westinghouse: string (3) 

[ f2 :: sno:string(3) -> saddress:string(3) 1 ==> [ f2a .. 

Sl:string(3) -> Newcastle:string(3) 

[ f2 :: sno:string(3) -> saddress:string(3) 1 ==> [ f2b 

S2:string(3) -> London: string (3) 

[ f2 :: sno:string(3) -> saddress:string(3) 1 ==> [ f2c 

S3:string(3) -> Eindhoven: string (3) 

[ f2 :: sno:string(3) -> saddress:string(3) 1 ==> [ f2d .. 

S4:string(3) -> Birmingham: string (3) 

[ f2 :: sno:string(3) -> saddress:string(3) 1 ==> [ f2e .. 

S5:string(3) -> Pennsylvania: string (3) 

[ f3 :: sno:string(3) -> no_shares:integer(l) 1 ==> [ f3a .. 

Sl:string(3) ->150000000:integer(1) 

[ f3 :: sno:string(3) -> no_shares:integer(l) 1 ==> [ f3b .. 

S2:string(3) ->800000000: integer (1) 

[ f3 :: sno:string(3) -> no_shares: integer (1) 1 ==> [ f3c .. 

S3:string(3) ->125000000:integer(1) 
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[ f3 :: sno:string(3) -> no_shares: integer (1) ] ==> ( f3d .. 

S4:string(3) ->42000000: integer (1) 

[ f3 :: sno:string(3) -> no_shares:integer(l) ] ==> [ f3e .. 

S5:string(3) ->56000000:integer(1) 

[ f4 :: sno:string(3) -> price:float(2) 

Sl:string(3) -> 6.64:float(2) 

[ f4 :: sno:string~3) -> price:float(2) 

S2:string(3) -> S.6:float(2) 

[ f4 :: sno:string(3) -> price:float(2) 

S3:string(3) -> 5.2S:float(2) 

[ f4 :: sno:string(3) -> price:float(2) 

S4:string(3) -> 3.3:float(2) 

[ f4 :: sno:string(3) -> price:float(2) 

S5:string(3) -> 16.25:float(2) 

1 

] 

] 

1 

] 

==> [ 

==> [ 

==> [ 

==> [ 

==> [ 

f4a · . 

f4b · . 

f4c · . 

f4d · . 

f4e · . 

[ f5 :: no_shares:integer(l) price: float (2) -> 

capitalization:integer(l) 1 ==> [ fSa .. 150000000:integer(1) 

6.64:float(2) -> 996000000:integer(1) 

[ f5 :: no_shares:integer(l) price: float (2) -> 

capitalization:integer(l) 1 ==> [ f5b .. 800000000:integer(1) 

5.6:float(2) -> 4480000000:integer(1) 

[ f5 :: ~o_shares:integer(l) price:float(2) -> 

capitalization:integer(l) 1 ==> [ fSc .. 12S000000:integer(1) 

5.25:float(2) -> 6S6250000:integer(1) 

[ fS :: no_shares:integer(l) price:float(2) -> 

capitalization: integer (1) 1 ==> [ fSd :: 42000000:integer(1) 

3.3:float(2) -> 138600000:integer(1) 

[ f5 :: no_shares:integer(l) price:float(2) -> 

capitalization:integer(l) 1 ==> [ f5e .. 56000000:integer(1) 

16.25:float(2) -> 910000000:integer(1) 

Functor parts_funct from Category int2 to Category Parts 

[ f6 :: pno:string(3) -> pname:string(3) 1 ==> [ f6a :: 

P1:string(3) -> Gas fire:string(3) 

[ f6 :: pno:string(3) -> pname:string(3) ] ==> [ f6b 

P2:string(3) -> Guardian:string(3) 

[ f6 :: pno:string(3) -> pname:string(3) 1 ==> [ f6c 

P3:string(3) -> Light bulb:string(3) 

[ f6 :: pno:string(3) -> pname:string(3) ] ==> [ f6d 

P4:string(3) -> Light bulb:string(3) 

[ f6 :: pno:string(3) -> pname:string(3) ] ==> [ f6e .. 

P5:string(3) -> Transformer:string(3) 
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[ f7 :: pno:string(3) -> size:string(3) 1 ==> [ f7a .. 

Pl:string(3) -> regular: string (3) 

[ f7 :: pno:string(3) -> size:string(3) 1 ==> [ f7b 

P2:string(3) -> daily: string (3) 

[ f7 :: pno:string(3) -> size:string(3) 1 ==> [ f7c .. 

P3:string(3) -> bright:string(3) 

[ f7 :: pno:string(3) -> size:string(3) 1 ==> [ f7d .. 

P4:string(3) -> standard: string (3) 

[ f7 :: pno:string(3) -> size:string(3) 

P5:string(3) -> small:string(3) 

==> [ f7e .. 

[ fS :: pno:string(3) -> weight:integer(l) 1 ==> [ fSa .. 

Pl:string(3) -> lOOOO:integer(l) 

[ fS :: pno:string(3) -> weight:integer(l) 1 ==> [ fSb 

P2:string(3) -> 300:integer(l) 

[ fS :: pno:string(3) -> weight:integer(l) 1 ==> [ fSc .. 

P3:string(3) -> 15:integer(1) 

[ fS :: pno:string(3) -> weight:integer(l) 1 ==> [ fSd .. 

P4:string(3) -> 13:integer(l) 

[ fS :: pno:string(3) -> weight:integer(l) 1 ==> [ fSe .. 

P5:string(3) -> 2000000:integer(l) 

Functor intension_functorl from Category intl to Category INTlp 

[ f5 :: no_shares:integer(l) price: float (2) -> 

capitalization:integer(l) 1 ==> [ f5p :: no_shares:integer(l) 

price:float(2) -> capitalization: integer (5) 

I: I: 

3. Now, we display the intension and extension pullback. Note that the extension 

pullback has been identified as many-to-many. 

I: for each p in pullback print-pullback(p); 

Correctly formed imperative. 

Relationship supplier and part over order 

<{sno:string(3) refs intl) x {pno:string(3) refs int2» -> 

{order:integer(l) refs ordl) 
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pi_l is monic (1) and epic (mand) 

pi_r is monic (1) and epic (mand) 

Relationship is 1 : 1 

Relationship Suppliers and Parts over Orders 

<{Sl:string(3) refs Suppliers} x {P2:string(3) refs Parts}> _> 

{2:integer(1) refs Orders} 

<{S2:string(3) refs Suppliers} x {P1:string(3) refs Parts}> _> 

{6:integer(1) 7:integer(1) 8:integer(1) refs Orders} 

<{S3:string(3) refs Suppliers} x {P3:string(3) refs Parts}> _> 

{4: integer (1) 5:integer(1) refs Orders} 

<{S4:string(3) refs Suppliers} x {P3:string(3) refs Parts}> -> 
{9: integer (1) refs Orders} 

<{S5:string(3) refs Suppliers} x {P5:string(3) refs Parts}> -> 
{12:integer(1) refs Orders} 

<{S5:string(3) refs Suppliers} x {P4:string(3) refs Parts}> -> 

{9:integer(1) refs Orders} 

pi_ 1 is not monic (N) and epic (mand) 

pi_ r is not monic (N) and epic (mand) 

Relationship is N : N 

I: I: 

4. Now we display the pullback functor. This time we display it in simplified form, 

that is we only show the co-equaliser arrows. 

I: for each p in pullback_functor print-pullback_functor(p); 

Correctly formed imperative. 

Functor ordpb_funct from Pullback ass1 to Pullback Int3ext 

<{sno:string(3) refs int1} x {pno:string(3) refs int2}> -> 

{order: integer (1) refs ord1} 

==> 

<{Sl:string(3) refs Suppliers} x {P2:string(3) refs Parts}> -> 

{2:integer(1) refs Orders} 
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«sno:string(3) refs int1) x (pno:string(3) refs int2» _> 

{order: integer (1) refs ord1) 

==> 
«S2:string(3) refs Suppliers) x (P1:string(3) refs Parts» 

(6:integer(1) 7: integer (1) 8:integer(1) refs Orders) 

«sno:string(3) refs int1) x (pno:string(3) refs int2» _> 

(order:integer(l) refs ord1) 

==> 

-> 

«S3:string(3) refs Suppliers) x (P3:string(3) refs Parts» _> 

(4:integer(1) 5:integer(1) refs Orders) 

«sno:string(3) refs int1) x (pno:string(3) refs int2» _> 

(order:integer(l) refs ord1) 

==> 
«S4:string(3) refs Suppliers) x (P3:string(3) refs Parts» _> 

(9:integer 

(1) refs Orders) 

«sno:string(3) refs int1) x (pno:string(3) refs int2» -> 

(order:integer(l) refs ord1) 

==> 
«S5:string(3) refs Suppliers) x (P5:string(3) refs Parts» -> 

(12:integer(1) refs Orders) 

«sno:string(3) refs int1) x (pno:string(3) refs int2» -> 

(order:integer(l) refs ord1) 

==> 
«S5:string(3) refs Suppliers) x (P4:string(3) refs Parts» -> 

(9:integer(l) refs Orders) 

I: I: 

5. Finally, we show our chosen part of the query. We choose to return the suppliers 

with a capitalization greater than one billion (in the complete query the value is one 

million, but this actually returns all tuples). Again, we have removed the parts 

functor from the output because it is irrelevant for the query. The result of the 

query can be found as the target category of either the suppliersJuncC - or the 

intensionJunctor I_ext functors given at the end of the output given below: 
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correctly formed imperative. 

Testing type integer in type range integer 

Base types match 

X = 150000000 I base type = integer 

Testing type integer in type range integer 

Base types match 

Testing X = 996000000 integer I X >= 1000000000 

Testing type integer in type range integer 

Base types match 

X = 800000000 I base type = integer 

Testing type integer in type range integer 

Base types match 

Testing X = 4480000000 : integer I X >= 1000000000 

Testing type float in type range float 

Base types match 

X = 5.6 I base type = float 

Testing type integer in type range integer 

Base types match 

Testing X = 4480000000 : integer I X >= 1000000000 

Testing type integer in type range integer 

Base types match 

X = 125000000 I base type = integer 

Testing type integer in type range integer 

Base types match 

Testing X = 656250000 integer I X >= 1000000000 

Testing type integer in type range integer 

Base types match 

X = 42000000 I base type = integer 

Testing type integer in type range integer 

Base types match 

Testing X = 138600000 integer I X >= 1000000000 

Testing type integer in type range integer 

Base types match 

X = 56000000 I base type = integer 

Testing type integer in type range integer 
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Base types match 

Testing X = 910000000 integer 1 X >= 1000000000 

I: I: 
I: for each f in pm_functor print_functor(f}; 

correctly formed imperative. 

Functor suppliers_funct from Category int1 to Category Suppliers 

[ f1 :: sno:string(3} -> snarne:string(3} ==> [ f1a :: 

Sl:string(3} -> WH Smith:string(3} 

[ f1 :: sno:string(3} -> snarne:string(3} 1 ==> [ f1b .. 

S2:string(3} -> British Gas:string(3} 

[ f1 :: sno:string(3} -> sname:string(3} 1 ==> [ f1c .. 

S3:string(3} -> Philips:string(3} 

[ f1 :: sno:string(3} -> sname:string(3} 1 ==> [ f1d .. 

S4:string(3} -> Osram:string(3} 

[ f1 :: sno:string(3} -> sname:string(3} 1 ==> [ f1e .. 

S5:string(3) -> Westinghouse:string(3} 

[ f2 :: sno:string(3} -> saddress:string(3} 1 ==> [ f2a .. 

Sl:string(3} -> Newcastle:string(3} 

[ f2 :: sno:string(3} -> saddress:string(3} 1 ==> [ f2b .. 

S2:string(3} -> London:string(3} 

[ f2 :: sno:string(3} -> saddress:string(3} 1 ==> [ f2c 

S3:string(3} -> Eindhoven:string(3} 

[ f2 :: sno:string(3} -> saddress:string(3} 1 ==> [ f2d 

S4:string(3} -> Birmingham:string(3} 

[ f2 :: sno:string(3} -> saddress:string(3} 1 ==> [ f2e .. 

S5:string(3} -> Pennsylvania:string(3} 

[ f3 :: sno:string(3} -> no_shares:integer(l} 1 ==> [ f3a 

Sl:string(3} ->150000000:integer(l} 

[ f3 :: sno:string(3} -> no_shares:integer(l} 1 ==> [ f3b .. 

S2:string(3} ->800000000:integer(l} 

[ f3 :: sno:string(3} -> no_shares:integer(l} 1 ==> [ f3c .. 

S3:string(3) ->125000000:integer(l) 

[ f3 :: sno:string(3) -> no_shares:integer(l) 1 ==> [ f3d 

S4:string(3) ->42000000:integer(l} 

[ f3 :: sno:string(3} -> no_shares:integer(l} 1 ==> [ f3e .. 

S5:string(3) ->56000000:integer(l} 

146 



[ f4 :: sno:string(3) -> price: float (2) I ==> [ f4a 

Sl:string(3) -> 6.64:float(2) 

[ f4 :: sno:string(3) -> price:float(2) I ==> [ f4b .. 

S2:string(3) -> 5.6:float(2) 

[ f4 :: sno:string(3) .-> price:float(2) I ==> [ f4c .. 

S3:string(3) -> 5.25:float(2) 

[ f4 :: sno:string(3) -> price:float(2) I ==> [ f4d .. 

S4:string(3) -> 3.3:float(2) 

[ f4 :: sno:string(3) -> price:float(2) I ==> [ f4e .. 

S5:string(3) -> l6.25:float(2) 

[ f5 :: no_shares:integer(l) price: float (2) -> 

capitalization: integer (l) I ==> [ f5a :: l50000000:integer(l) 

6.64:float(2) -> 996000000:integer(l) 

[ f5 :: no_shares:integer(l) price:float(2) -> 

capitalization:integer(l) I ==> [ f5b :: 800000000: integer (l) 

S.6:float(2) -> 4480000000:integer(l) 

[ fS :: no_shares: integer (l) price:float(2) -> 

capitalization:integer(l) I ==> [ fSc :: l2S000000:integer(l) 

S.2S:float(2) -> 6S62S0000:integer(l) 

[ fS :: no_shares:integer(l) price:float(2) -> 

capitalization:integer(l) I ==> [ fSd :: 42000000:integer(l) 

3.3:float(2) -> l38600000:integer(l) 

[ fS :: no_shares: integer (l) price: float (2) -> 

capitalization:integer(l) I ==> [ fSe .. S6000000:integer(l) 

l6.2S:float(2) -> 9l0000000:integer(l) 

Functor intension_functorl from Category intl to Category INTlp 

[ fS :: no_shares:integer(l) price: float (2) -> 

capitalization:integer(l) I ==> [ f5p :: no_shares:integer(l) 

price:float(2) -> capitalization:integer(S) 

Functor suppliers_funct_- from Category INTlp to Category Suppliers_

[ fSp :: no_shares:integer(l) price: float (2) -> 

capitalization:integer(S) I ==> [ f5b_- :: 800000000:integer(1) 

S.6:float(2) -> 4480000000:integer(S) 

Functor intension_functorl_ext from Category Suppliers to Category 

Suppliers_-
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[ f5b :: 800000000: integer (1) 5.6:float(2) -> 4480000000:integer(1) 

==> [ f5b_- :: 800000000: integer (1) 5.6:float(2) -> 

4480000000:integer(5) 

I: I: 

yes 

7.6 Conclusions 

The sample queries show that the implementation provides satisfactory: 

• representation of complex data; 

• data defmition facilities with categorical constructions; 

• sound control of typing; 

• representation of intension-extension functors in a natural manner; 

• inheritance facilities at the intension level 

• construction of a natural transformation; 

• presentation and verification of data. 

A number of problems have also arisen: 

• the user interface is cumbersome for the purposes of data defmition, data addition 

and query definition. In particular the creation of concepts such as the oS"'position 

entities could be automated, and input could be improved if some of the indirection 

in representation of the entities was removed. A graphical interface shall be the 

eventual aim for query construction, as previously discussed in section 6.4. Queries 

are constructed by arrow composition, and categories and their mappings are best 

viewed diagrammatically, so a graphical interface would allow the building of 

queries by composition of arrows and categories, which relates directly to 

categorical methods of diagram chasing for composing arrows. However, 

operations such as aggregation would be difficult to implement graphically, so some 

compromise would be needed; 
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• inheritance, while represented perfectly adequately in the intension, is not effective 

for extensional purposes; 

• extensional values are not held quite as simply as the Product Model suggests, the 

identification of a collection of values for a particular instance requires further 

thought. 

Our sample queries show that there is considerable scope for further work into a 

simple method of defming queries, but as this thesis concentrates on a prototype of the 

formal basis, we believe any further work is outside the scope of this thesis, and is 

something which we could consider more closely at a later date. 
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8. Discussion and Conclusions 

The objective of this thesis was to develop a fonnal model in terms of category theory 

for the functionality of current object-relational databases, and to demonstrate the 

functionality of such a model by implementing a prototype. 

We have demonstrated that it is possible to develop a feasible fonnal model for object

relational features, using the formal notation of category theory. This model has been 

able to represent in an universal manner the constructs required for object based 

database models. We have also demonstrated that it is possible to implement such a 

model, although we have highlighted a number of difficulties in such an 

implementation. 

In particular, we believe that the main achievements of our work are: 

1. representing, with category theory, in a universal formal manner, object-relational 

abstractions and intension-extension concepts; 

2. implementing, with the functional data model database system PIFDM, categorical 

constructions. 

We will now discuss these in more detail. 

8.1 Modelling Aspects 

We have shown that category theory is a very powerful tool for representing the 

important constructs of object based databases, and has significant advantages over set 

theoretical models for multi-level formalisms. In particular, we stress the ease with 

which the arrow can be used to model static and dynamic behaviour of constructs, how 

categories can model arrows, both intensionally and extensionally, and how functors 

provide a natural manner of producing a consistent database. Products are an excellent 
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way of defining relationships. Single inheritance at the intension level has been 

achieved with co-products. Finally, natural transformations are a powerful construct 

for modelling queries and views. A real practical use for category theory in the area of 

databases has been demonstrated in that queries with closure and views can only be 

effected with intension-extension natural transformations or constructions of 

equivalent power. 

We have closure in a natural and consistent manner. We believe this has been 

implemented more clearly in the form of natural transformations than in functional 

models, as our closure applies to both the intensional and extensional levels. This form 

of closure has been difficult to achieve in standard object-oriented databases because it 

involves automatically redefining class definitions [cha94]. Our closure gives two 

important benefits, that of being able to perform queries and being able to provide 

views, where the resulting structures can be manipulated further as if they were part of 

the original database. 

We have produced a formal model of an object-based database using the constructs of 

category theory, incorporating what we believe to be the best features of object

relational and functional database models to produce a database model that can cope 

with the demands of the future. In fact, it is interesting to note the similarity of our 

model with early extended relational systems, such as the nested-relational model 

[rot88], and in particular RMff [cod79]. RMff is based on entities which model both 

properties and relationships, which can be thought of as similar to our use of 

categories and products (where products are just advanced kinds of categories, that is 

they contain arrows as their primary structure). We believe this comparison gives an 

excellent backbone for object-relational databases, which may otherwise have had 

difficulties in coping with object concepts in an otherwise set-theoretic model. 
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8.2 Implementation Areas 

The system that has been developed is a prototype, that is it is in no way complete or 

perfect. For instance its input and output system requires much improvement, the 

representation of inheritance needs more work, extensional categories need to be more 

clearly defmed in the model, and the system does not cope completely with dynamic 

structures, for example methods. However, hopefully the prototype has provided 

enough insight into how a full categorical system could be implemented in the future. 

In particular, the previous chapter on testing has highlighted many difficulties with the 

prototype in how data is input to the system, how queries are defined and how results 

are displayed. Construction of a full system would require extensive work on a data 

definition and manipulation language, and we believe that success would be best 

achieved by basing it on DAPLEX. Our prototype was successful due to many of the 

benefits of PIFDM, which shows the strength of functional and semantic data models. 

The tests also lead us to believe that graphical user interfaces would be an excellent 

method of representing categorical database. One of the most powerful tools of 

category theory is diagram chasing for making proofs, and many of our tests are based 

on diagram chasing and testing arrows, something which graphical applications can do 

excellently. 

We also believe that we have produced a practical new formalism for object models, 

not just another implementation of functional models. Although our system uses a 

functional database model for the implementation base, this does not necessarily imply 

that our system is just a functional database, our model has only used functional 

databases as the physical database storage structure. We have suggested that the 

object-relational model is an excellent attempt at modelling the functionality required 

for future database needs, however current systems are cumbersome and lacking in a 

strong theoretical basis. We therefore believe that our work improves on this situation 

by using a more natural theoretical basis for these future needs. 
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We also believe that the implementation has been largely successful. The prototype 

demonstrated many of the problems that would arise in the development of a complete 

system, but our prototype has managed to model natural transformations with closure, 

one of the main aims of this thesis. The performance of our model should be 

comparable to that of any database developed in PIFDM. All of our concepts map 

down to PIFDM structures which ensure therefore that we use its hashing system 

However some of the consistency tests would probably have poor performance due to 

the formality of the arrow tests. Therefore it is better to ensure, as we did in the 

prototype, that all objects added to the system conform to the strict typing constraints. 

We believe that having a successful implementation that very closely follows the model 

is also beneficial in the design of object-relational database systems, and the prototype 

shows the scope for use of object-based database systems. 

8.3 Problem Areas and Future Thoughts 

. As already stated, we believe the implementation in this thesis and the tests show that 

there is great scope for future development of categorical database systems, and future 

research into using category theory for modelling database systems, in particular 

keeping up with the changes in newer generation object models, and in extending our 

work to handle heterogeneous systems. 

The model could be brought to a higher level of abstraction using the categorical 

concepts of adjoints, allegories, topoi, and pushouts, which appear to be appropriate 

constructions for more complex data modelling. However, implementation of these is 

likely to be even more difficult than the categorical concepts which have been 

implemented in this model. 

Specific problems of the model were: 

• co-products can not adequately model multiple inheritance, pushouts seem to be a 

better choice in any future model. The co-product structure discussed in section 
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5.4.3 is only able to handle single inheritance. A pushout is a co-product restricted 

over some further object. In figure 8-1 below, the object C would be the new 

properties of the specialisation, A and B would be the two objects that are being 

inherited from, and the disjoint union A + c B would be the new specialised object. 

It is easy to see that these structures can again be composed to form inheritance 

hierarchies. 

c 

Figure 8-1 : Use of pushouts to model multiple inheritance 

A pushout can be regarded as a sum in the context of other information while a 

coproduct is an unrestricted sum. The pushout is the more general concept as, if 

the object C is replaced by the universal object {*}, the pushout becomes in effect a 

coproduct; 

• The mapping between intensional and extensional categories to represent the 

abstraction of inheritance needs further thought. Inheritance has been represented 

in our model within the intension category INT as a collection of coproduct 

categories UNI. The functor D relates the coproduct categories to a collection of 

extensional categories held within the category EXT. Further work needs to be 

performed on exactly how D will relate the intensional coproduct and extensional 

categories. For instance will only the leaf-nodes, that is the terminal specialisations, 

in the inheritance hierarchy actually hold data? Or will every node in the inheritance 

hierarchy hold data? 

154 



Such further work should commence with a detailed investigation of all the types of 

inheritance from a semantic viewpoint. Various categorical constructions, 

representing the different types at the intensional level, could then be developed. 

The fmal stage would involve a study of the mappings required, between the 

intensional and extensional constructions, to provide effective storage and 

manipulation; 

• the model needs to be revised to deal properly with extensional objects. The 

essential problem is that our model treats the extension as a single category instance 

whereas it is in fact a collection of category instances, with an initial object to link 

the instances. Referring back to section 5.6, the mapping V between classes and 

objects could be represented by the construction: 

~ OBJ;' 

CLS j 0) OBJ;" 

~ OBJ;'" 

Thus associated with each class category will be a collection of object categories. 

CLS j is the initial object in the construction as there is an arrow from it to every 

object instance. Such a structure can be viewed as a topos, in the form of a 

pullback: 

where OID is the object identifier associated with each class/object pair. 
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Specific problems of the implementation included: 

• the representation of extensional objects needs more careful examination; 

• natural transformations need to be defined in a manner which makes them more 

universal, currently they do not cope with pullback categories; 

• the implementation can currently only handle static concepts, the implementation of 

arrows could be revised to handle dynamic concepts such as methods; 

• the interface needs improvement, both in terms of defming and entering data and in 

terms of querying, which may be best handled with some sort of graphical interface; 

• the use of pullbacks needs to be extended to deal with n-ary relationships rather 

than just binary as currently supported; 

• a more sophisticated type system with associated type tests is needed; the 

implementation can currently only handle simplistic type tests such as number 

ranges and lexicographic ordering of strings 

• the current implementation does not allow views and update facilities, again the 

treatment of natural transformations may need revised; 

• the representation of the internal properties in a category needs revised to match the 

definition in the model, rather than just storing a set of arrows. 

However, we still believe that PIFDM was an excellent choice as an implementation 

base, although for development of a production system there may be other choices. 

The algebraic specification languages are appealing, but perhaps again they would not 

be ideal for developing a practical system. Changing the model so that categories 

made more extensive use of fmite products would then ensure that the model could be 

implemented in functional languages. Categories would then be cartesian closed, 

which, while sufficient in theoretic terms, may be unduly restrictive for practical 

purposes such as modelling some complex objects with uncertain structures. 

This thesis has demonstrated a comprehensive formal model which provides a practical 

definition of object-based database systems. The prototype shows the scope for 
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improving the appeal of object-based database systems, In particular the object

relational model. 

157 



9. References 

[abr92] 

[ans94] 

[atk83] 

[atk90] 

[bann] 

[bar84] 

[bar90] 

[been] 

[ber93] 

[bo094] 

[bra93] 

[bra90] 

[bur80] 

S. Abrarnsky, D. [Dov] Gabbay, T. S. E. Maibaum. Handbook of 

Logic and Computer Science, Background: Mathematical Structures. 

Clarendon Press, Oxford, 1991. 

ISO-ANSI SQL 3 Working Draft. Digital Equipment Corporation, 

Massachusetts, March 1994. 

M. Atkinson et al. An Approach to Persistent Programming. The 

Computer Journal, 26(4), 1983. 

M. Atkinson et al. The Object-Oriented Database System :-"1anifesto. 

In [ban92]. 

F. Banci1hon et al. The Story of Oc : Implementing an Object

Oriented Database System, Morgan Kaufmann, 1992. 

H. Barendregt. The Lambda Calculus, Its SYntax and Semantics. 

North Holland, 1984. 

M. Barr, C. Wells. Category Theon for Computing Science. 

Prentice-Hall International Series in Computer Science, 1990. 

C. Beeri. New Data Models and Languages: The Challenge. 

Proceedings of the J til ACM Symposium on Principles of Database 

Svstems (PODS), 1-15, 1992. 

E. Bertino, L. Martino. Object-Oriented Database Systems: Concepts 

and Architectures. Addison-Wesley, 1993. 

G. Booch. Object-Oriented AnalYsis and Design with Applications, 

2/1d Edition. Benjamin Cummings, 1994. 

K. S. Brathwaite. Object-Oriented Database Design: Concepts and 

Applications. Academic Press, 1993. 

I. Bratko. PROLOG Programming for Artificial Intelligence, 1,j 

Edition. Addison-Wesley. 1990. 

R. 1\1. Burstall. 1. A. Goguen. The Semantics of Clear: A 

158 



[cad96] 

[car84] 

[car85] 

[car85b] 

[cat94] 

[cha94] 

[che76] 

[coa91] 

[cod70] 

[cod79] 

[cos87] 

[dat95] 

Specification Language. Lecture Notes in Computer Science, 86:292-

332, 1980. 

B. Cadish, Z. Diskin. Algebraic Graph-Oriented = Category Theory 

Based: Manifesto of Categorizing Database Theory. Frame Infonn 

System, Database Design Laboratory, Latvija, update of DBDL 

Research Report FISIDBDL-94-02, December 1996. 

L. Cardelli. A Semantics of Multiple Inheritance. LNCS, 173:51-67, 

1984. 

L. Cardelli, P. Wegner. On Understanding Types, Data Abstraction 

and Polymorphism. ACM Computing Surveys, 17(4), December 1985. 

J. Cartmell. Formalising the Network and Hierarchical Data Models: 

An Application of Categorical Logic. Lecture Notes in Computer 

Science, 240:466-492, 1985. 

R. G. G. Cattell. The Object Database Standard: ODMG-93, Release 

1.1. Morgan Kaufmann, 1994. 

D. K. C. Chan, P. W. Trindler, R. C. Welland. Evaluating Object

Oriented Query Languages. The Computer Journal, 37( 10):858-872, 

October 1994. 

P. P. Chen. The Entity-Relationship Model: Toward a Unified View 

of Data. ACM TODS. 1(1):9-36, March 1976. 

P. Coad, E Yourdon. Object-Oriented Analysis. 2nd Edition. 

Y ourdon Press, 1991. 

E. F. Codd. A Relational Model of Data for Large Shared Data 

Banks. Communications of the ACM 13(6):377-387, June 1970. 

E. F. Codd. Extending the Database Relational Model to Capture 

More Meaning. ACM Transactions on Database Systems. 4(4), 

December 1979. 

G. Cosineau, P. L. Curien, M. Mauny. The Categorical Abstract 

Machine. Science of Computer Programming. 203-211, 1987. 

C. J. Date. An Introduction to Database Systems. Sixth Edition. 

Addison-Wesley, 1995. 

159 



[day89] 

[dem92] 

[den93] 

[dis93] 

[dup94] 

[ehr87] 

[elm94] 

[emb92] 

[emb94] 

[emb95] 

[fis89] 

[fre90] 

U. Dayal. Queries and Views in an Object-Oriented Data Model. 

Second International Workshop on Database Programming 

Languages, 1989. 

J. Demetrovics, L. Libkin, and I. B. Muchnik. Functional 

Dependencies in Relational Databases: A Lattice Point of View. 

Discrete Applied Mathematics, 40(2):155-185, 1992. 

E. Dennis-Jones, D. E. Rydeheard. Categorical ML - Category 

Theoretic Modular Programming. Formal Aspects of Computing, 

5(4):337-366, 1993. 

z. Diskin. Abstract Queries, Schema Transformations and Algebraic 

Theories: An Application of Categorical Algebra to Database Theory. 

Frame Inform System, Database Design Laboratory, Latvija, DBDL 

Research Report FISIDBDL-93-02, November 1993. 

L. Duponcheel. Gofer Experimental Prelude. Alcatel, Belgium, 

1994. 

H. D. Ehrich, A. Semadas, C. Semadas. Objects, Object Types and 

Object Identification. In: Categorical Methods in Computer Science, 

ed. GEhrig, H. Herrlich, H. J. Kreowski, Preu~, Lecture Notes in 

Computer Science, 393:142-156,1987. 

R. Elmasri, S. B. Navathe. Fundamentals of Database Systems. 

Addison-Wesley World Student Series, 1994. 

S. M. Embury, J. Jiao, P. M. D. Gray. Using Prolog to Provide 

Access to Metadata in an Object-Oriented Database. International 

Conference on the Practical Application of Prolog, April 1992. 

S. M. Embury. Constraint-Based Updates in a Functional Data 

Model Database. University of Aberdeen, PhD Thesis, April 1994 .. 

S. M. Embury, et al. User Manual for PIFDM Version 9.0. 

University of Aberdeen, Technical Report AUCSffR9501, January 

1995. 

D. Fishman, et al. Overview ofthe Iris DBMS. In [kim89J. . 

P. J. Freyd, A. Scedrov. Categories. Allegories. North-Holland 

160 



[ghe90] 

[gog86] 

[gog89] 

[gog92] 

[goI83] 

[gor95] 

[gra88] 

[gra92] 

[ham81] 

[han91 a] 

[han91 b] 

[hewl)-l] 

Mathematical Library 39, 1990. 

G. Ghelli. Modelling Features of Object-Oriented Languages in 

Second Order Functional Languages with SUbtypes. FIDE Technical 

Report Series FIDE/90/3, Basic Research Action 3070, 1990. 

J. A. Goguen. Unifying Functional, Object-Oriented and Relational 

Programming with Logical Semantics. ACM SIGPLAN Notices, 

21(10):153-162, October 1986. 

J. A. Goguen. A Categorical Manifesto. SRI International, Computer 

Science Laboratory, SRI-CSL-89-08, July 1989. 

J. A. Goguen et al. Introducing OBJ. SRI International, Computer 

Science Laboratory, SRI-CLS-92-03, March 1992. 

A. Goldberg, D. Robson. Smalltalk-80: The Language and its 

Implementation. Addison-Wesley, 1983. 

A. D. Gordon, K. Hammond. Monadic I/O in Haskell 1.3. 

Proceedings of the Haskell Workshop, La Jolla, California, 50-68, 

June 1995. Also, Yale University Research Report YALEll/DCS/RR-

1075, 1995. 

P. M. D. Gray, D. S. Moffat, N. W. Paton. A Prolog Interface to a 

Functional Data Model Database. Lecture Notes in Computer 

Sciencc, 1988. 

P. M. D. Gray, K. G. Kulkarni, N. W. Paton. Objcct-Oriellfed 

D{/tabases: A Semantic Data Model Approach. Prentice-Hall 

International Series in Computer Science, 1992. 

M. Hammer, D. McLeod. Database Description with SDM : A 

Semantic Database Model. ACM Transactions on Database Systems. 

6(3):351-386, September 1981. 

C. Hanson, et al. MIT Scheme User's Milllual. Draft Edition 0.9. 

Massachusetts Institute of Technology, January 1991. 

C. Hanson, et al. MIT Scheme Reference Manual. Edition 1.1. 

Massachusetts Institute of Technology, November 1991. 

Hewlett Packard. 

161 



[hoI87] 

[hoI94] 

[hud92] 

[ing94] 

[jae82] 

[jon94] 

[kap92] 

[ker76] 

[kim89] 

[kim90] 

[kim94] 

[k iml)-l-b] 

http://www.hp.com!sesdl3rd.party.1I0bject.database.htrnl. 1994. 

B. J. Holmes. Pascal Programming. D. P. Publications, Ltd., 1987. 

S. D. Holford. Object-Based Data Models as a Platfonn for Spatial 

Data Definition and Query Processing. University of Newcastle upon 

Tyne, MSc Dissertation D605, 1994. 

P. Hudak, H. J. Fasel. A Gentle Introduction to Haskell. SIGPIAS 

Notices, 27(5), 1992. 

Ingres Reference Manual. Relational Technology Inc., 1994. 

G. Jaeschke, H. Schek. Remarks on the Algebra of Non First Normal 

Form Relations. Proceedings of the ADM SIGACT-SIGMO,V 

Symposium on Principles of Database Systems. Los Angeles, 

California, March 1982. 

P. Jones. An Introduction to Gofer, Draft Report. Yale University, 

July 1994. 

G. Kappel, A. Min Tjoa. State of Art and Open Issues on Graphical 

Interfaces for Object-Oriented Database Systems. Infomwtion and 

Software Technology, 34( 1 I), November 1992. 

L. Kerschberg, J. E. S. Pacheco. A Functional Data Base ,\lildel. 

Monographs in Computer Science and Computer Applications, No. 

2/76, Pontificia Universidade Catolico do Rio de Janeiro, February 

1976. 

W. Kim, F. Lochovsky. Object-Oriented Concepts, Databases and 

Applications. Addison-Wesley, 1989. 

W. Kim. Introduction of Object-Oriented Database SYStems. "lIT 

Press, 1990. 

W. Kim. On Object-Oriented Database Technology. ADB Inc., 

1994. 

M. J. Kim, D. A. Nelson, B. N. Rossiter. Emluation of the Object-

Relational DBMS Postgres I. Administrath'e Data. University of 

Newcastle Upon Tyne, Technical Report Series. no. 500, :\o\'ember 

1994. 

162 



[ku186] 

[kuI87] 

[kup93] 

[lam91] 

[lay88] 

[leh91] 

[leh92] 

[lev91 ] 

[lip90] 

[mac9l] 

[mat94] 

[mey88] 

[mey92] 

[neI93] 

[neI94] 

K. G. Kulkarni, M. P. Atkinson. EFDM: Extended Functional Data 

Model. The Computer Journal, 29(1), 1986. 

K. G. Kulkarni, M. P. Atkinson. Implementing an Extended 

Functional Data Model using PS_Algol. Software Practice and 

Experience, 17(3):171-185,1987. 

K. M. Kuper, M. Y. Vardi. The Logical Data Model. AD! TODS, 

18(3):379-413, 1993. 

C. Lamb et al. The ObjectS tore Database System. Communications 

of the ACM, 34(10), October 1991. 

P. Layzell, P. Loucopoulos. Systems Analysis and Det'elopment, 

Third Edition. Chartwell-Bratt Studentlitteratur, 1988. 

S. K. Lehalli, N. Spyratos. Towards a Categorical Model Supporting 

Structured Objects and Inheritance. 

FIDE/91/8, 1991. 

FIDE Technical Report, 

S. K. Lehalli, N. Spyratos. Categorical Modelling of Database 

Concepts. FIDE Technical Report FIDE/91/8, 1992. 

M. Levene, A. Poulovassilis. An Object-Oriented Data Model 

Formalised Through Hypergraphs. Data and Knowledge Engineering, 

6:205-224, 1991. 

S. B. Lippman. C-+:+ Primer. Addison Wesley, March 1990. 

S. MacLane, I. Moerdijk. Shem'cs in Geometry and Logic. A First 

Introduction to Topos Thcon'. Springer-Verlag, 1991. 

Matisse Sales Literature, Matisse, 1994. 

B. Meyer. Object-Oriented Software Construction. Prentice-Hall 

International Series in Computer Science, 1988. 

B. Meyer. Eiffel: The Language. Prentice-Hall International Series in 

Computer Science, 1992. 

D. A. Nelson. To Fonnalise and Implement a Categorical Object

Oriented DBMS: A Graphical Perspectit'e. Uni\'ersity of Newcastle 

upon Tyne, PhD Thesis proposal, August 1993. 

D. A. Nelson, B. N. Rossiter, T\1. A. Heather. The Functorial Data 

163 



[neI95] 

[0Is94] 

[osb79] 

[pey93] 

[poi92] 

[pou90] 

[pou93] 

[pou94] 

[pou96] 

[rat98] 

[rhe90a] 

Model: An Extension to Functional Databases. University of 

Newcastle upon Tyne, Technical Report Series, No. 488, 1994. 

D. A. Nelson, B. N. Rossiter. Prototyping a Categorical Database in 

PIFDM. Proceedings of the Second International Workshop on 

Advances in Databases and Information Systems (ADBIS'95), 

Moscow, June 1995. 

M. A. Olson. A Comparison of University Postgres and Montage. 

Montage Software Inc., 1994. 

S. L. Osborn. Testing for Existence of a Covering Boyce-Code 

Normal Form. Information Processing Letters, 8(1):11-14, January 

1979. 

S. L. Peyton-Jones, P. Wadler. Imperative Functional Programming. 

ACM Symposium on Principles of Programming Languages (POPL), 

71-84, Charleston, January 1993. 

A. Poigne. Basic Category Theory. In [abr92J. 

A. Poulovassilis, P. King. Extending the Functional Data Model to 

Computational Completeness. Lecture Notes in Computer Science, 

416:75-91, 1990. 

A. Poulovassilis, C. Small. A Domain-Theoretic Approach to 

Integrating Functional and Logic Database Languages. Proceedings 

of 19th International Conference on Very Large Databases (VWB 

93),416-428, Dublin, August 1993. 

A. Poulovassilis, M. Levene. A Nested Graph Model for the 

Representation and Manipulation of Complex Objects. ACM 

Transactions on Information Systems, 12:35-68, 1994. 

A. Poulovassilis, S. Reddi, C. Small. A Formal Semantics for an 

Active Functional DBPL. Journal of Intelligent Information Systems, 

7: 151-172, 1996. 

Rational Software Corporation. Http://www.rational.com 

J. Rhein et al. The Postgres Reference Manual. University of 

California, Berkeley, 1990. 

164 



[rhe90b] 

[ros92] 

[ros93] 

[ros95] 

[rot88] 

[row87] 

[rum91] 

[ryd88] 

[sha92] 

[shi81] 

[sib77] 

[sic93] 

J. Rhein et al. The Postgres User Manual. University of California, 

Berkeley, 1990. 

B. N. Rossiter, M. A. Heather. Applying Category Theory to 

Databases. Presented to 8
th 

British Colloquium for Theoretical 

Computing Science in March 1992, published as University of 

Newcastle upon Tyne, Technical Report Series, No. 407. 

B. N. Rossiter, M. A. Heather. Database Architecture and 

Functional Dependencies Expressed with Formal Categories and 

Functors. University of Newcastle upon Tyne, Technical Report 

Series, No. 432, 1993. 

B. N. Rossiter, D. A. Nelson, M. A. Heather. The Categorical 

Product Data Model as a Formalism for Object-Relational 

Databases. University of Newcastle upon Tyne, Technical Report 

Series, No. 505, February 1995. 

M. A. Roth, H. F. Korth, A. Silberschatz. Extended Algebra and 

Calculus for Nested Relational Databases. ACM Transactions on 

Database Systems, 13(4), December 1988. 

L. A. Rowe, M. R. Stonebraker. The Postgres Data Model. VLDB, 

1988. 

1. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson. 

Object-Oriented Modelling and Design. Prentice Hall, 1991. 

D. E. Rydeheard, R. M. Burstall. Computational Category Theory. 

Prentice-Hall International Series in Computer Science, 1988. 

S. C. Shapiro. Common LISP: An Interactive Approach. Computer 

Science Press, 1992. 

D. W. Shipman. The Functional Data Model and the Data Language 

DAPLEX. ACM TODS, 6(1):140-173, March 1981. 

E. H. Sibley, L. Kershberg. Data Architecture and Data Model 

Considerations. Proceedings of the AFIPS National Computer 

Conference, Dallas, Texas, 85-96, June 1977. 

SICStus Prolog User's Manual, Edition 2.1, Patch #7. Swedish 

165 



[sim90] 

[srna91] 

[smi77] 

[smi81] 

[smi94] 

[st086a] 

[st086b] 

[st094] 

[str91] 

[sut92] 

[tan93] 

[tod76] 

[tsi78] 

Institute of Computer Science, January 1993. 

H. Simmonds. Lecture Notes for SERC School On Logic for 

Information Technology. University of Leeds, 1990. 

C. Small, A. Poulovassilis. An Overview of PFL. Proceedings of the 

Third International Workshop on Database Programming Languages, 

N auplion, Greece, 96-110, 1991. 

J. Smith, D. Smith. Data Abstraction, Aggregation and 

Generalisation. ACM TODS, 2(2):105-133, 1977. 

J. M. Smith, S. Fox, T. Landers. Reference Manual for ADAPLEX. 

Computer Corporation of America, 1981. 

N. S. Smith. Evaluation of Triggers in an Object-Relational 

Database System. University of Newcastle upon Tyne, MSc 

Dissertation D601, 1994. 

M. Stonebraker. Document Processing in a Relational Database 

System. The INGRES Papers, Addison Wesley 357-375, 1986. 

M. Stonebraker, L. A. Rowe. The Design of Postgres. In 

Proceedings ACM SIGMOD Conference, pp. 340-355, 1986. 

M. Stonebraker. Object-Relational Database Systems. Montage 

Software Inc., 1994. 

B. Stroustrup. The C++ Programming Language, 2nd Edition. 

Addison-Wesley, 1991. 

D. R. Sutton, P. J. H. King. Integration of Modal Logic and the 

Functional Database Model. Lecture Notes in Computer Science, 618, 

1992. 

A. Tansel, et al. (eds). Temporal Databases: Theory, Design and 

Implementation. Benjamin Cummings, 1993. 

S. Todd. The Peterlee Relational Test Vehicle: A System Overview. 

IBM Systems Journal, 15(4), December 1976. 

D. Tsichritzis. ANSIIX3/SPARC DBMS Framework, Report of the 

Study Group on Database Management Systems. Information 

Systems, 3(3): 173-192, 1978. 

166 



[u1188] 

[vic91] 

[wag85a] 

[wag85b] 

[wag89] 

[weI88] 

[wik87] 

[win89] 

[woI95] 

[woo88] 

[zlo75] 

J. D. Ullman. Principles of Database and Knowledge-Base Systems 1. 

Computer Science Press, 1988. 

S. Vickers. Geometric Theories and Databases. In: Applications of 

Categories in Computer Science, ed. M. P. Fourman, P. T. Johnstone, 

A. M. Pitts, London Mathematical Society Lecture Note Series, 288-

314, 1991. 

E. G. Wagner. Algebraic Theories, Data Types, and Control 

Constructs. IBM Research Report, RC 11343, August 1985. 

E. G. Wagner. Categorical Semantics, or Extending Data Types to 

Include Memory. IBM Research Report, RC 11456, October 1985. 

E. G. Wagner. Categories, Data Types, and Imperative Languages. 

Lecture Notes in Computer Science, 240, 1989. 

J. Welsh, J. Elder. Introduction to Pascal, 3rt! Edition. Prentice-Hall, 

1988. 

A. Wikstrom. Functional Programming using Standard ML 

Prentice-Hall International Series in Computer Science, 1987. 

H. Winston, B. K. P. Horn. Lisp, 3rd Edition. Addison-Wesley, 1989. 

J. E. Wolfengangen. Object-Oriented Solutions. Proceedings of the 

Second International Workshop on Advances in Databases and 

Information Systems (ADBIS'95), Moscow, June 27-30, 1995. 

J. Woodcock, M. Loomes. Software Engineering Mathematics. 

Pitman, 1988. 

M. M. Zloof. Query By Example. Proceedings NCC 44, Anaheim. 

California, AFIPS Press 1975. 

167 


	285734_0001
	285734_0002
	285734_0003
	285734_0004
	285734_0005
	285734_0006
	285734_0007
	285734_0008
	285734_0009
	285734_0010
	285734_0011
	285734_0012
	285734_0013
	285734_0014
	285734_0015
	285734_0016
	285734_0017
	285734_0018
	285734_0019
	285734_0020
	285734_0021
	285734_0022
	285734_0023
	285734_0024
	285734_0025
	285734_0026
	285734_0027
	285734_0028
	285734_0029
	285734_0030
	285734_0031
	285734_0032
	285734_0033
	285734_0034
	285734_0035
	285734_0036
	285734_0037
	285734_0038
	285734_0039
	285734_0040
	285734_0041
	285734_0042
	285734_0043
	285734_0044
	285734_0045
	285734_0046
	285734_0047
	285734_0048
	285734_0049
	285734_0050
	285734_0051
	285734_0052
	285734_0053
	285734_0054
	285734_0055
	285734_0056
	285734_0057
	285734_0058
	285734_0059
	285734_0060
	285734_0061
	285734_0062
	285734_0063
	285734_0064
	285734_0065
	285734_0066
	285734_0067
	285734_0068
	285734_0069
	285734_0070
	285734_0071
	285734_0072
	285734_0073
	285734_0074
	285734_0075
	285734_0076
	285734_0077
	285734_0078
	285734_0079
	285734_0080
	285734_0081
	285734_0082
	285734_0083
	285734_0084
	285734_0085
	285734_0086
	285734_0087
	285734_0088
	285734_0089
	285734_0090
	285734_0091
	285734_0092
	285734_0093
	285734_0094
	285734_0095
	285734_0096
	285734_0097
	285734_0098
	285734_0099
	285734_0100
	285734_0101
	285734_0102
	285734_0103
	285734_0104
	285734_0105
	285734_0106
	285734_0107
	285734_0108
	285734_0109
	285734_0110
	285734_0111
	285734_0112
	285734_0113
	285734_0114
	285734_0115
	285734_0116
	285734_0117
	285734_0118
	285734_0119
	285734_0120
	285734_0121
	285734_0122
	285734_0123
	285734_0124
	285734_0125
	285734_0126
	285734_0127
	285734_0128
	285734_0129
	285734_0130
	285734_0131
	285734_0132
	285734_0133
	285734_0134
	285734_0135
	285734_0136
	285734_0137
	285734_0138
	285734_0139
	285734_0140
	285734_0141
	285734_0142
	285734_0143
	285734_0144
	285734_0145
	285734_0146
	285734_0147
	285734_0148
	285734_0149
	285734_0150
	285734_0151
	285734_0152
	285734_0153
	285734_0154
	285734_0155
	285734_0156
	285734_0157
	285734_0158
	285734_0159
	285734_0160
	285734_0161
	285734_0162
	285734_0163
	285734_0164
	285734_0165
	285734_0166
	285734_0167
	285734_0168

