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Abstract

Temporal logic programming is a paradigm for specification and verification of concurrent pro-
grams in which a program can be written, and the properties of the program can be described
and verified in a same notation. However, there are many aspects of programming in temporal
logics that are not well-understood. One such an aspect is concurrent programming, another is
framing and the third is synchronous communication for parallel processes.

This thesis extends the original Interval Temporal Logic (ITL) to include infinite models,
past operators, and a new projection operator for dealing with concurrent computation, syn-
chronous communication, and framing in the context of temporal logic programming,.

The thesis generalizes the original ITL to include past operators such as previous and past
chop, and extends the model to include infinite intervals. A considerable collection of logic laws
regarding both propositional and first order logics is formalized and proved within model theory.

After that, a subset of the extended ITL is formalized as a programming language, called
extended Tempura. These extensions, as in their logic basis, include infinite models, the previous
operator, projection and framing constructs. A normal form for programs within the extended
Tempura is demonstrated.

Next, a new projection operator is introduced. In the new construct, the sub-processes are
autonomous; each process has the right to specify its own interval over which it is executed.

The thesis presents a framing technique for temporal logic programming, which includes the
definitions of new assignments, the assignment flag and the framing operator, the formalization
of algebraic properties of the framing operator, the minimal model semantics of framed programs,
as well as an executable framed interpreter.

The synchronous communication operator await is based directly on the proposed framing
technique. It enables us to deal with concurrent computation. Based on EITL and await
operator, a framed concurrent temporal logic programming language, FTLL, is formally defined
within EITL.

Finally, the thesis describes a framed interpreter for the extended Tempura which has been
developed in SICSTUS prolog. In the new interpreter, the implementation of new assignments,
the frame operator, the await operator, and the new projection operator are all included.
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Chapter 1

Introduction

This thesis extends the Interval Temporal Logic (ITL){61] to include infinite models, past op-
erators, a new projection operator for dealing with concurrent computation, synchronous com-
munication, and framing in the context of temporal logic programming.

1.1 Temporal logic programming

Temporal logic has been proposed for the purpose of verifying properties of programs. However,
the verification of programs has suffered from the convention that different languages (and thus
different semantic domains) have been used for writing programs, writing about their properties,
and writing about whether and how a program satisfies a given property [53]. One way to simplify
this is to use the same language in each case, as far as possible.

It has therefore been suggested that a subset of a temporal logic be used as the foundational
basis for a programming language e.g. [79, 81, 61]. This has led to the definition of a number
of programming languages based on temporal logics [82, 61, 32, 3, 35, 87].

One of the earliest temporal logic programming languages, XYZ/E [82], is based on linear
time temporal logic proposed by Manna and Pnueli [63]. Moreover, XYZ system consists of a
temporal logic programming language XYZ/E as its basis, and a group of CASE tools to support
various kinds of methodologies [83].

Another temporal logic programming language, Tempura [61], which we are particularly
interested in, is based on a subset of interval temporal logic whose formulas can be interpreted
as a traditional imperative program. In logic terms, executing a Tempura formula (program)
amounts to building a model for the formula.

Gabbay developed the language USF [35], which follows an imperative future approach. The
METATEM language [9, 29] is a development of USF consisting of a larger range of operators, a
better defined execution mechanism [31] and a more practical normal form [30]. A METATEM
program for controlling a process is presented as a collection of temporal rules. The rules apply
universally in time and determine how the process progresses.

TOKIO [32] is a logic programming language based on the extension of Prolog with ITL
formulas. It provides a useful system in which a range of applications can be implemented
and verified. TOKIO supports an extended subset of ITL incorporating the non-deterministic
operators ‘O’ and ‘V’.

The temporal logic programming languages [3, 87] are based on the logic programming
paradigm and view an execution of a program as a refutation proof. Many other temporal logic
programming languages can be found in [36, 14, 80, 48, 55, 70, 71).
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An interpreter written in C for Tempura was developed by Hale [39]. He also investigated
how to use Tempura in programming. Many samples illustrating how to model the structure
and behaviour of hardware and software systems in a unified way can be found in [61] and [39).

However, there are many aspects of programming in temporal logics that are not well un-
derstood (at least in Tempura). One such an aspect is concurrent programming, another is the
problem of framing, and the third is synchronous communication for parallel processes.

In a temporal logic programming language such as Tempura, the conjunction and parallel
composition (see Chapter 4) are basic operators for concurrent programming. However, the
conjunction seems appropriate for dealing with fine-grained parallel operations that proceed in
lock step; while the parallel composition, on the other hand, permits the combined processes
to specify their own intervals. Thus it is better suited to the coarse-grained concurrency of a
typical multiprocessor, where each process proceeds at its own speed. However, processes com-
bined through the parallel composition operator share all the states and may interfere with one
another. It is therefore necessary for us to investigate other possible ways to handle concurrent
programming,.

Framing techniques have been employed by conventional imperative languages for many
years. However, framing in conventional languages has often been taken for granted. Never-
theless, we have to consider this option carefully in temporal logic programming. Framing is
concerned with how the value of a variable from one state can be carried to the next. Temporal
logic offers no solution in this respect; no value from a previous state is assumed to be carried.
Therefore, if we want the value of a variable to be inherited, we have to repeatedly assign the
value to the variable from state to state. This is not only tedious but also may decrease the
efficiency of the program. Moreover, synchronous communication can not be handled without
framing in temporal logic programming (see below).

Another problem that must be dealt with in temporal logic programming is that of commu-
nication between concurrent processes. Some models of concurrency involve shared (program-
ming) variables, some involve synchronous message passing, and some involve asynchronous
channels e.g. CCS [58, 59], CSP [44, 45]. In temporal logic programming languages such as
XYZ/E [82, 83] and Tempura [61], communication between parallel components is based on
shared variables.

To synchronize communication between parallel processes in a concurrent program (e.g.
solving the mutual exclusion problem) with the shared variables model, a synchronization con-
struct, awatt(c) or some equivalent is required, as in many concurrent programming languages
[66]. The meaning of await(c) is simple: it changes no variables, but waits until the condition
¢ becomes true, at which point it terminates.

Modelling an awasit(c) in a temporal logic requires a kind of indefinite stability, since it
cannot be known at the point of use how long the wait will be; but it must also allow variables
to change, so that an external process can modify the boolean parameter and it can eventually
become true. Solving this problem also requires some kind of framing operation.

1.2 Description of Thesis

To deal with framing, synchronization and communication, and concurrent programming, an
extend interval temporal logic (EITL) is formalised. The main extensions are made in two
aspects: one is that the past operators such as previous and past chop (the counterpart of chop
in the future) operators can be used; the other is that infinite models are permitted. (Of course,
projection is an extension to ITL but it is treated as another topic). The reason for introducing

2



past operators is that a framed program may involve immediate assignments which require the
previous operator for reducing the program in an operational manner. The infinite intervals
are needed because we are concerned with reactive systems. The extensions are not trivial. In
some sense, we generalise ITL from an interval-based notation to a point-based notation since
we refer to no explicit subintervals but points over a fixed interval. The extended logic systems
are divided into two parts: propositional and first order logics.

Chapter 2 introduces the extended propositional interval temporal logic (EPITL). First,
the syntax and semantics of the underlying logic are presented, then the fundmental logic laws
concerning the temporal operators, both future and past, are formalized and proved. These
logic laws also provide a basis for the first order EITL.

Chapter 3 presents the first order extended interval temporal logic (EITL). The logic laws
regarding variables, functions, predicates, equality, and quantifications, in addition to its syntax
and semantics are presented. These logic laws, as a foundation, allow us to prove some useful
properties of programs, to capture the temporal semantics of a framed program.

Chapter 4 formalizes a programming language which is an executable subset of the extended
logic system and an extension of Tempura. Within this language, a variable can refer to its
previous value, as well as its next value as in the original Tempura. The computation trace of
a program can also be infinite. These extensions enable us to handle a concurrent computation
for a reactive system.

1 t
A program p with the extended language has the normal form, V peiAemptyV V p;; AQpy;,
=1 i=1

where p.; and p.; are state formulas consisting of equalities; whereas py; is an internal program.
This conclusion is proved by induction on the structure of programs. It facilitates capturing
temporal semantics and further reducing programs.

Chapter 5 introduces a new projection operator, (p1, ..., $m) prj ¢, which can be thought of
as a combination of the parallel (||) and the original projection (p proj ¢) operators in Tempura.
The motivation for introducing the new projection construct is that we intend to give a more
flexible parallel operator in temporal logic programming.

Intuitively, (p1,...,Pm) prj ¢ means that ¢ is executed in parallel with p;...; p,, over an in-
terval obtained by taking the endpoints (rendezvous points) of the intervals over which py, ..., pm
are executed. The new projection construct permits the processes, py, ..., Pm,q, to be autonom-
ous, each process having the right to specify the interval over which it is executed. In particular,
the sequence of processes pq,...,pm and ¢ may terminate at different time points. Although
the communication between processes is still based on shared variables, the communication and
synchronization take place only at the rendezvous points (global states), otherwise they are
executed independently.

In the chapter, a considerable set of logic laws regarding the projection construct are form-
alized and proved. The normal form of the projection construct is also proved. These logic laws
and the normal form allow us to reduce the projection statement in temporal logic programming.
Finally, an example is given to illustrate how to reduce a projection statement.

Chapter 6 discusses the framing issue. Framing is difficult to handle within a logic system.
It is well known that the first order logic is monotonic. That is, adding a formula to a theory
has the effect of strictly increasing the set of formulas that can be inferred. However, the
framing issue is intrinsically non-monotonic. Indeed, adding a new positive fact, i.e. an explicit
assignment, to a set of positive facts with the framing operator has a ‘side effect’: the negation
of the fact cannot be inferred from the previous set.



To work out an executable framed temporal logic programming language such as framed
Tempura with mixed framed and non-framed variables is not straightforward. First, we find
assignment operators within Tempura are inadequate to deal with framing and thus new as-
signment operators must be defined. Second, the non-monotonicity makes a framed program
radically shift in its semantics with respect to the one without framing. Framed programs are
no longer well interpreted within the normal logic model we use. Therefore, some new models
are required.

In the chapter therefore a new assignment operator (<= ) and an assignment flag (af)
are defined within the extended logic framework. Armed with the assignment flag, a framing
operator frame(z) is formalized. These new constructs are interpreted within a minimal model
semantics.

This allows us to specify framing status of variables throughout an interval in a flexible
manner. However, introducing the framing operator destroys the monotonicity, and leads to
a default logic [76, 56, 57). Therefore, negation by default has to be used to manipulate the
framing operator.

To illustrate framing techniques, a number of examples are given within different program
constructs including the sequential, conjunction, parallel, projection and the mixed cases. These
examples show us the framing operator can be used in a flexible manner to facilitate framing in
different program constructs.

Chapter 7 introduces minimal model semantics to interpret framed programs. As mentioned
earlier, when a framing technique is introduced to temporal logic programming, the semantics of
a program may be changed. So, one issue we have to face is how to interpret a framed program.
That is, how to capture the intended meaning of a program. In logic programming languages
such as Prolog, negation by failure has been used in programs, and a program is interpreted by
the minimal model or fixed point semantics [13]. This leads us to introduce a similar idea in
temporal logic programming. To interpret framed programs, the minimal model is developed
in detail. As a result, the existence of a minimal model of a framed program is proved under
the assumption that the program has at least one finite model or has finitely many models.
Two important logic laws concerning substitution are formalized and proved. A normal form
for framed programs is also presented.

The framing operator enjoys some nice algebraic properties such as equivalency, distributiv-
ity, absorptivity, and idempotency etc. These algebraic laws are very useful for the reduction
of a framed program. Many reduction rules of the interpreter developed by me recently employ
these laws. In this chapter, some of algebraic properties of framing operators are characterized
and proved.

Finally, an example is given to show how to use the logic laws and the minimal model to
reduce a framed program.

Chapter 8 discusses synchronous communication in temporal logic programming. With the
framing operator, the synchronous communication construct, await(c), can easily be defined.
Therefore, real concurrent programs can be managed within our system. In the thesis, we present
a general framed concurrent temporal logic programming language FTLL which is similar to the
language presented in [66] except that the concurrent computation model is true concurrency
[49, 12] for ours but interleaving for theirs. The important difference is that our language is
formally defined within the logic framework whereas their language is semi-formal. Of course, the
language FTLL is a non-deterministic programming language. To deal with non-determinacy,
we adopt Dijkstra’s guarded language. As an illustration, two examples of programs within
FTLL are given: one is the program solving the well known producer-consumer problem, and
the other is the program filling an even order magic square problem.
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Chapter 9 briefly introduces the new interpreter for the extended Tempura. To implement

the previous operator, projection, await and framing constructs, a new framed interpreter has
been developed in SICSTUS Prolog. However, we do not intend to present the interpreter in
detail; only a brief explanation about implementation is provided, and some relative reduction
algorithms are described.

Chapter 10 draws some conclusions.

In short, the main contribution of this thesis is in the following six respects:

1. The extended interval temporal logics, both propositional and first order, are new. The
thesis generalizes the original ITL [61] by adding past operators such as previous (Q),

and past chop (;), and by extending the model to an infinite case. The extension changes
the logic, in some sense, from an interval-based temporal logic to a point-based one. A
considerable collection of logic laws regarding both propositional and first order logics is
formalized and proved in detail within model theory.

. A subset of the extended ITL is formalized as a programming language, called extended
Tempura. These extensions, as in EITL, include infinite models and the previous operator.
The normal form for the programs within the extended Tempura is firstly proved in a
formal way based on the logic laws we give.

. A new projection operator, (pi,...,Pm)prj ¢, is generalised from Moszkowski'’s projection
p proj g, but the semantics is different. The construct p proj ¢ requires that process p
be repeatedly executed over an interval and ¢ be executed at endpoints of each subinter-
val on which p is executed, but the termination is controlled by q. The new construct,
(P15+++sPm) PrJ g, is treated as a combination of parallel and projection computations.
The processes py, ..., Pm, ¢, are autonomous, each process has the right to specify its own
interval over which it is executed. Although the process q is executed in a parallel way
with the process py;...; pm, the communication between them is only at rendezvous states,
and the processes may terminate at different time points.

. The framing technique presented in the thesis is entirely our own work. It is a new method-
ology for temporal logic programming, which includes the definitions of new assignments
(<=,:=%,0=1,<"1), the assignment flag (af), and the framing operator (frame), the
formalization of algebraic properties of the framing operator, the minimal model semantics
of framed programs, as well as an executable framed interpreter.

. The synchronous communication operator await is a natural consequence of our framing
technique. It enables us to deal with the real concurrent computation such as one solving
producer-consumer. Based on EITL and await operator, a framed concurrent temporal
logic programming language, FTLL, is formally defined within EITL. The programs in
FTLL, of course, have to be interpreted with the minimal model.

. The framed interpreter for the extended Tempura has been developed in SICSTUS prolog.
In the new interpreter, the implementation of new assignments, the frame operator, the
await operator, and the new projection operator are all included. It is not complete but
workable. The development of the framed interpreter is also our own work.



Chapter 2

Propositional Temporal Logic

Summary: An extended propositional interval temporal logic (EPITL) is formal-
ized. The syntax and semantics of EPITL as well as some derived formulas are
presented. Furthermore, a collection of logic laws is investigated in the underlying
logic.

Temporal logic, like the classical first order logic, is formalized in two parts: propositional and
first order. We first present an extended propositional ITL (EPITL). This later provides a basis
for the first order extended ITL (EITL). The extension is made in two respects: a model can be
an infinite interval and a temporal operator can be a past operator in the underlying logic.

This chapter is organized as follows: Section 2.1 presents the syntax of EPITL. Section
2.2 presents the semantics of EPITL. To this end, first, states and intervals are defined. Then
interpretations of terms and formulas are given in detail. Section 2.3 defines satisfaction and
validity of formulas in EPITL. In Section 2.4, some useful derived formulas are given. Section
2.5 gives the precedence rules of operators. Section 2.6 defines strong and weak equivalence
relations as well as strong and weak implication relations. In Section 2.7, a number of logic laws
are formalized and proved.

2.1 Syntax

The extended propositional ITL basically consists of propositional logic with modal constructs
to reason about intervals of time. The modal constructs include both future and past operators.
Let Z denote all integers, N all positive integers, and Ng all non-negative integers.

1. Alphabet

1) A denumerable set Prop of atomic propositions.
2) The symbols =,A, O,<,;,0,9, 5, +.
2. Inductive Definition of Formulas

1) Every proposition p€ Prop is a formula.

2) If p, q are formulas, so are the constructs

=p.pAg, Op, ©p, p; ¢, Op, Op,p3 ¢, p*.



O (read next), © (read sometimes), and ; (read chop) are the basic future (temporal)

operators whereas () (read previous), © (read sometimes in the past), and ; (read
chop in the past) are the basic past (temporal) operators. The chop plus (+) operator
is introduced for the purpose of easily constructing while-loop (Chapter 4).

Here are some sample formulas:

p, -9, pAg, O(p; 2), p; Og, OOp.

2.2 Semantics

1. States

Following the definition of Kripke’s structure [50], we define a state s over Prop to be a
mapping from Prop to B = {true, false}:

s:Prop— B

We will use s[p] to denote the valuation of p at the state s.
2. Intervals

An interval o is a non-empty sequence of states, which can be finite or infinite. The length,
lo|, of ¢ is w if o is infinite, and the number of states minus 1 if o is finite. To have a
uniform notation for both finite and infinite intervals, we will use extended integers as
indices. That is, we consider the set Ny of non-negative integers and w,

Nw = N()U{w}

and extend the comparison operators, =, <, <, to N, by considering w = w, and for all
i € Ng, 1 < w. Moreover, we define < as < —{(w,w)}. To simplify definitions, we will
denote o as < g, ..., S| >, Where s, is undefined if o is infinite. With such a notation,
0¢.j) (0 < i X j < |o]) denotes the sub-interval < s;,...,s; > and a®) (0 <k < |o|)
denotes < sk, ..., 85| >-

3. Interpretations

An interpretation is a quadruple T = (o,¢,k, j), where o is an interval, 4, k integers, and j
an integer or w such that i<k=j < |o|. We use the notation (o,1,k, j) = p to mean that
some formula p is interpreted and satisfied over the subinterval < s, ..., s; > of o with the
current state being sg.

The satisfaction relation (j=) is inductively defined as follows:
I—-prop I E piff sg[p]=true, for any given proposition p.
I E -piff T fp.
I-and I = pAqiff TEp and Tq.
I E Qpiffk<jand(o,i,k+1,75)=p.

I —not

I — next



I—-som I E
I~ chop T E

I—prev I E
I-somp I E

I—-chopp I E

I — plus T E

Op iff there exists r such that k<r=<j and (o,1i,r,j)=p.

(p; q) iff there exists r such that k<r<j and (o,i,k,r)E=p and
(0,77, )kq.

Opiff i < k and (0,i,k ~ 1,7)f=p.
©p iff there exists ! such that i<I<k and (o,1,1, j)=p.

(p;q) iff there exists ! such that i<I<k and (o,i,1,l)l=p and
(0,1,k,7)k=q.

p* iff there are finitely many ro, ...,7, € N, (n>1) such that
k=r9<r1L...&rp—1 21, = j and (o,%,70,71) E p and, for all
1< 1< n,(0,71-1,71-1,71)[EP; of j = w and there are infinitely

many integers k = rp < 71 < 73 < ... such that lim r; = w and
1—+00

(o,4,70,71)FEp and, for all I > 1, (0,711, 71-1,71)EP-

Note that, in the interpretation of p*, the case with infinitely many partition points over a
finite interval is not permitted because this would imply infinitely many partitions at one
state. Therefore, only two cases in the interpretation of p* are permitted: one in which
there are finitely many partition points over a finite or infinite subinterval o(; ;); and the
other case in which there are infinitely many partition points over an infinite subinterval
0(i.;)- With the latter, we require that the integer sequence in the correspondence with
partition points be unbounded.

Example 2.1 Let A denote (O(O(pAg);(-p)));(Og). We claim that (0,0,0, |o|)=A, where
o is given in Fig. 2.1. Note that each state is associated with a set of propositions and/or
negations of propositions to mean that a proposition p is true at the state if p is in the set, and

is false if -p is in the set.

{r,q} A{-p»q}

Fig.

Proof

{-p,q} {-pq} ...

2.1 An interval

(0,0,0,]0)EQ(O(pAQ); (-p)); (Og) if and only if there exists r,0<r=|o| such that (2,0,0,r)E
O(©(pAg);(~p)) and (o,r,7,|0])EOG. Let r = 2. Then (0,2,2,|0])=Cq is obvious because
sk[g]=true for all k > 2. So we need only to prove (,0,0,2) E O(O(p A ¢);(-p)).

(,0,0,2)EQ(O(pAg9); (-p))

= (9,0,1,2)EO(pA9); (-p)
<= there exists /,0<I<1 such that (¢,0,l,1)EQ(pAq) and (o,1,1,2)=(-p)-

Let I = 1. We have



(2,0,1,1)FO(pAg)
< (0,0,0,1)f=p and (0,0,0,1)Fq
<=3 $o[p] =true and so[g] =true
< true
and

(09171’2)’:(—']’) g ‘91[—'1’] = true
<= 3[p] = false
<= true.

Therefore

(2,0,0,10)=O(O(pAP) 5 ); 4.

2.3 Satisfaction and Validity

A model is an interval which can be finite or infinite.
1. Satisfaction and Validity

A formula p is satisfied by an interval o, denoted by of=p, if (0,0,0, |0))Ep. A formula p
is called satisfiable if o = p for some 0. A formula p is valid, denoted by |=p, if of=p for
all o.

2. Special Model

In some cases, we need to define a set R of models satisfying some properties. A formula
p is called R-satisfiable, if there exists a model o€ R such that o}=p. A formula p is said
to be R-valid if for all intervals ¢ in R, o |= p. In this case, the satisfaction relation g
will be used instead of |=.

Example 2.2 Let A denote (O@p)«—p (see Section 2.4 for the definition of «). A is satisfiable
but not valid because < sp >} A. However, A is R-valid with R = {¢ | |o| > 0}.

-(©0p — OOp) is not satisfiable because OQp — OOp is valid. ]

2.4 Abbreviations

The abbreviations true, false, V,— and « are defined as usual. In particular, true def pV-p

and false ef pA-p for any formula p. Hence, for any interpretation Z, Z |= true and Z |~ false.
Furthermore, we use the following abbreviations:

1. Derived future operators
1) empty

Informally, empty, read as empty in the future, means that the current state is the
final state of an interval. Its formal semantics is defined by

(U»i,kaf)|= empty iff k=j

9



2)

3)

4)

5)

With this semantics, empty can be expressed in terms of the nezt and true, as follows:
(Abb —¢€) empty def ~Qtrue

Note that the consistency (this means all derived formulas are valid equivalences)
between the semantics and syntax definitions can be proved. This claim is true for
all abbreviations in this section.

more

Informally, more, read as more in the future, means that the current state is a non-
final state of an interval. Its semantics is defined by

(0,1, k, 7)) more iff k< j
more can be expressed as the negation of empty:
(Abb — m) more % -empty (or O true)
weak nezxt

If p is a formula, so is Op (© read as weak next). Its semantics is defined by

(U,i,k,j)FQP iff (Uai,k,j)f:OP or k=j.

It can be expressed in terms of the nezt and the negation (see the definition of empty)
operators to satisfy the semantics:

(Abb — wnezt) (Dpdz-e-f empty V Op
n** next (n > 0)

If p is a formula, so is Q"p (O™ read as the n** next). The operator Q" is an
extension of the nezt operator. Its semantics is defined, as follows:

(0,4, k,§)=Q"p iff (k+n)=j and (0,i,(k+n),j)Fp

The nt* next operator can be inductively defined in terms of the nezt operator.

(Abb — nnext) Q% d=°fp
def n—
O"p= O(0™'p) (neN)
length of an interval

The future length of a finite interval (from the current point to the end) can be
specified by the operator len. Its semantics is given by

(0,i,k,5)E=len(n) iff j #wand (j—k)=n(n20).

The len construct can be defined in terms of the n** next operator.

(Abb — len) len(n) &f Q"empty (n€No)
(Abb — skip) skip 4 len(1)

skip specifies one unit of time over an interval.

10



6)

7)

always in the future

If p is a temporal formula, so is Op (read always in the future). The semantics of the
always operator can be defined, as follows:

(o,%,k,7)=0p iff for all k<r=j, (0,i,7,7)Ep
The always operator can be defined as a dual of the sometimes operator.

(Abb — alw) Op ¥ ~0-p

chop star

If p is a temporal formula, so is p* (read chop star). The semantics of the chop-star
construct can be defined, as follows:

(U,’i,k,j)l:p* iff (0’, 1, k’j)'=P+ ork=j

The chop-star operator can be defined by the chop-plus operator, as follows:

(Chop — star) p* def pt V empty

2. Derived past operators

1) first

2)

3)

The first, read as the first state, means that the current state is the left end state
of an interval. Its semantics is defined by

(0,4,k, ))Efirstiff k=1

The first construct can be defined in terms of the previous operator.
(Abb— f) first ef -QOtrue

elaps

The elaps, read as elaps, means that the current state is a non-left end state of an
interval. Its semantics is defined by

(o,i,k,j)=elaps iff k > 1
The elaps construct can be defined by the negation of the first construct.

(Abb — el) elaps def = first (or QOtrue)

weak previous

If p is a temporal formula, so is ©p (read weak previous). Its semantics is defined by

(U’i,kvj)F@p iff (U,i,k,j)lzep or i=k

The weak previous operator can be defined using the previous operator.

(Abb — wprev) (;)pdéf firstvOp

11



4) nt* previous

If p is a temporal formula, so is ©™p (read n** previous). The operator ©" is an
extension of the previous operator. Its semantics is defined by

(0,4,k,5) F O"p iff i<(k — n) and (o, i, (k — n),7)=p.

The nt* previous operator can be inductively defined in terms of the previous oper-
ator.
(Abb — nprev) 0%,

0" EO(0™ ) (neN)
5) past length

The length of an interval in the past (from the current state to the first state) can be

specified by operator len. Its semantics is defined, as follows:
(0,4, k, j)Elen(n) iff k — i = n.
The construct len can be defined in terms of the ntt previous and the first.

(Abb — lenp) len(n) & O first  (neNo)
(Abb — skipp) skip® len(1)

skip specifies one unit of time in the past from the current state over an interval.

6) always in the past

If p is a temporal formula, so is Op (O read as always in the past). Its semantics is
defined by

(0,4, k,5)=8p iff for all 1, i<I<F, (0,1, /)kp

The always in the past operator can be defined as a dual of the sometimes in the
past.

(Abb — alwp) ap % ~o-p

2.5 Precedence Rules

In order to avoid an excessive number of parentheses, the following precedence rules are used:

0,0,0,0,0,0,9,8,+,*
AV

—, &

Cv W W N

.
13

where 1=highest and 5=lowest.
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2.6 Equivalence Relations

A formula is called a state formula if it does not contain any temporal operator; otherwise it
is called a temporal formula. A formula is called a non-past (non-future) formula if it does not
contain any past (future) temporal operators.

Sometimes, we denote p < ¢ by p~q and |F0O(p—q) by p = q. The former is called ‘weak
equivalence’ and the latter is called ‘strong equivalence’. Similarly, we denote =p — g by p — ¢,
calling it ‘weak implication’, and F0O(p — ¢) by p D ¢, calling it ‘strong implication’. In fact,
p =~ ¢ means that p and g have the same truth value in the first state of every model while p = ¢
means that p and g have the same truth value in all states of every model. Similar explanations
can be given for the weak and the strong implication relations. It is obvious that the strong
equivalence (implication) implies the weak equivalence (implication) but the inverse does not
hold. For instance, first =~ true but first # true. However, within the future formulas, p ~ ¢
if and only if p = ¢ ( it follows from Definition 2.2 (page 22) and Theorem A.l proved in the
Appendix).

Note that the relations, ~ and =, are reflexive, symmetric, and transitive. They are therefore
equivalence relations over L.piy (see below).

In practice, we frequently use the strong equivalence relation for reduction of programs.
This will be discussed in Chapter 4.

2.7 Logic Laws

In this section, we present a collection of logic laws, i.e. some valid formulas in the logic system.
First, we discuss tautological validity.

Let L, denote the language of classical propositional logic, i.e. the set of all well-formed
formulas, and Lepiy denote the language of the extended propositional ITL.

Definition 2.1 A formula of Lepiy is called tautologically valid if it results from a tautology P
of L, by consistently replacing the atomic formulas of P by formulas of Lepiy. (]

For instance, ~(PVQ)~-PA-Q is a tautology in L,. By taking P to be OA and Q to be
OB, we have the tautologically valid formula: ~(QAVOB) & ~(QAA-OB in Lepiy-

Theorem 2.1 If p is a tautologically valid formula then |= Op.

Proof

The proof is similar to the one presented in [51]. Let A* result from a formula A of L, by
replacing the atomic formulas py, ..., p, of A respectively by formulas gi, .., gn Of Lepirs and let o
be an interval and k (0 < k < |o]) an integer. Define a classical valuation E of atomic formulas
of L, by E(p;) = true iff (,0,k,|o|) | g; for j = 1,...,n (and with arbitrary values for other
atomic propositions). We claim that:

E(A) = true iff (0,0,k,|0]) = A*
which proves the theorem, since E(A) =true if A is a tautology.

The proof of the claim runs by induction on (the syntax of) A:

13



(1) Ais p;: then A* is g;, hence E(4) = E(p;) =true iff (0,0,k, |o]) = g; iff (0,0,k, |o|) E A*.

(2) A is ~B: then A* is ~B* in correspondence with the meaning of the ‘operator’ x on B.
Hence, using the hypothesis

E(A)= true <= E(B)= false
< (0,0,k,|0]) £ B*
<> (0,0,k,|0))E -B*
<= (0,0,k,|0]) F A*

(3) Ais B1AB;: we have again A* being BjABj and with the induction hypothesis, we get:

E(A)= true <= E(By)= true and E(B;) = true
< (0,0,k,|0|) = Bf and (0,0,k,|0}) = B}
<= (0,0,k,|0]|) | B{AB}
<= (0,0,k,|0|) | A*
O

Theorem 2.1 allows us to use a class of valid formulas without proving them as long as they are
tautologically valid. The validity and satisfaction are ‘dual’ notions in the following sense:

Theorem 2.2 pis valid iff -p is not satisfiable.
Proof

Ep ockEp for all o

==(o E p) for all o
=(o ¥ p) for all o
-(o E -p) for all o
(o E -p for some o)

11t

O

Theorem 2.2 provides us with a means to prove the validity of a formula. When direct proof
of the validity of a formula is difficult, we frequently prove the fact that the negation of the
formula is not satisfiable.

Theorem 2.3 Let Z be an interpretation. If Tkp and ZEp—q then T|=q.

Proof
Suppose Z=p and Tk=p—q. The latter amounts to Z = —p or 7 |= q. Hence Z|=pAq leading to
IkEgq.

a

Theorem 2.3 states that modus ponensis a ‘valid rule of inference’.

Theorem 2.4 Let 7 be an interpretation. If Z}=q implies Zf=p, then T |= ¢—p

14



Proof

KT}t q— p, then I | ~(g — p) leading to T |= gA-p. It thus follows that 7 = ~p and 7 = g,
a contradiction.

0

So far we have looked at the logic laws in EPITL coming from the ‘classical logic’. Let us now
turn our attention to proper temporal logic laws concerning the temporal operators. In what
follows, we prove, first of all, the monotonicity laws stated in Theorem 2.5 which are a basis for
proving the substitution law given in Theorem 2.7. Subsequently, we give an extensive list of
formulas all of which we claim to be valid without proving these facts except for a few examples.

Theorem 2.5 If p1,p2, ¢1, g2 are formulas, then

FMO0 If (p1 D p2) and (g1 — g¢2) then ((p1;¢1) D (p2; @2))
PMO If (p1 D p2) and (g1 D g2) then ((p15q1) D (P25 42))

Proof
The proof of FM0O

Let o be an interval and k an integer, 0 < k < |o|. Suppose (0,0,k,|o]) E p1;q1. Thus,
(0,0,k,7) = p1 and (o,7,7,|0|) = g1 for some 7,k < r < |o].

Since p1 D p2, we have (9(g..1),0,k,7) E p1 = p2. By Theorem A.1 (Appendix) (0,0, k,7) =
p1 — pz. By Theorem 2.3, (0,0,k,7) |= pa.

Moreover, by g1 > g2, we obtain o(,_j,|) = ¢1 — ¢2. By Theorem Al (o, lol)E @ — 2.
Hence (o,7,7,|0|) E g2. It then follows that (o,0,k,|o]) = p2; g2-

The proof of PMO

Let o be an interval and k an integer, 0 < k < |o|. Suppose (0,0,k,|0]) E p1;qi. Thus,
(¢,0,1,1) = p1 and (0,1, k,|o|) = q1 for some 1,0 <1< k.

Since py D p2, we have (0(0.4),0,1,1) E pr — p2. By Theorem A.1, (6,0,,1) E 1 — p2-
Hence (0,0,1,1) E p2.

Similarly, since g1 D go, we have (0(.j0), 0,k — L,|o| = 1) E @1 — q2. By Theorem A.1,
(0,1,k,|0|) & q1 — g2. By Theorem 2.3, it follows that (o,l,k,|0]) F 2.

Hence, (0,0, k, |0]) = p2’g2. We obtain (p15¢1) D (p2542)-

o
As an immediate consequence of Theorem 2.5, we obtain the following
Corollary 2.6
FM1 If p; D ps then (p1;9) D (p2;q) PM1 I py D po then (p159) D (p239)
FM2 1f p < py then (g;p1) D (g;p2) PM2 I p1 D pa then (¢p1) D (45 p2)
FM3 If py = p; and ¢; = ¢ then PM3 If py = p; and g1 = ¢ then
(P13 @1) = (P2; 32) (p15@) = (23 92)
m}
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Theorem 2.7 If F is a formula in EPITL involving a subformula g, and f is a formula such

that f=g, then

F=F([f/g]

where F(f/g] denotes the formula given by replacing some occurrences of g in F by f.

Proof

We need to show that, for all f,g,h in EPITL, if f=g then

© =3 Ot W

11

fAR = gAh
—|f = g
Of = Og
Of = <Og
hif = hyg
fih = g;h

2
4
6
8
10

12

RAf = hAg
=4t
Of = Og
of = ©¢
hif = hig
fih = gih

Each of 1,2,3,4,5,6,7 and 8 is an immediate consequence of the definitions; and 9, 10, 11 and 12
follow from Corollary2.6 (FM3), (PM3).

(W]

A simple check can be made to see that Theorem 2.5 and Corollary 2.6 still hold if we use
the weak equivalence and implication to replace the strong equivalence and implication.

Theorem 2.8 If py,p2,q1,q2 are formulas, then
1. FMO' If ((p1 — p2) and (q1 = 2)) then ((p1; @) = (P2i @2))

2. PMU If ((p1 = p2) and (@1 = q2)) then (P15 1) — (P23 @2))

Corollary 2.9

FMY  If py — p; then (p15¢) <= (p2;9) PMYV

FM2' If py — p; then (¢;p1) — (¢;p2) PM?2
PMY

FM3 If py = p; and ¢; = ¢z then
(P1iq1) = (P2 @2)

i py — p; then (p13;9) — (p239)

If p1 — p then (¢;p;) — (¢5p2)
If p, = p; and ¢; = ¢2 then

(i) = (P23 @2)
o

In general, Theorem 2.7 is not valid under the weak equivalence. A counterexample is given

below:

first = true but Q first # Qtrue.

In the following, we give some logic laws concerning the temporal operators. First, we prove

an auxiliary lemma.

Lemma 2.10

1. moreD (~Qp«e O-p)
2. more A~ p=moreAQp
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Proof

(1) Let o be an interval, and k an integer, 0 < k < |o|. If k = |o|, then (0,0,k,|0]) | (more
= (O p < O-p)) is trivially true. I k < |o|, we have (0,0, k, |0}) |z more and

(aa07ka|a|)|=—'op — (G,O,k,ldl)% Op
<= (0,0,k+1,|0])¥Dp

Aad (G,O,k+1,|0’|)'= -p

=

(0,0,k,l0]) F O-p
Therefore, more D (- QO p <« O-p).

(2) A proof can be given in a similar way to the proof of 1. However, 2 can be derived from 1.
Since (A — (B & C)) « (AAB < ANAC) is a tautology in first order logic, (more — (-Qp «
QO-p)) « (more A~ QO p « more A O-p) is tautologically valid. Hence, by Theorem 2.1,
(more = (~ QO p < O-p) = (more A~ O p « more O ~p). Moreover, from (1), | O(more —
(= Op < O-p), so by Theorem 2.7, we have = O(more A ~ O p — more A O-p). That is,
more A~ O p = more A Q-p.

a

Theorem 2.11 Duality Laws

FDU1 -Qp=Q-p PDUl -QOp=@-p
FDU2 -Qp=Q-p PDU2 -@p=0O-p
FDU3 -Op=0-p PDU3 -Op=o-p
FDU4 -0Op=C-p PDU4 -@p=0Q-p

FDU5 -more=empty PDUS5 -elaps=first

Proof

The proof of FDUS5 is straightforward; the proofs of FDU2 and FDU4 are similar to the proofs
of FDU1 and FDU3. The proofs of PDU1 - PDU5 are analogous to FDU1 - FDU5. We prove
only FDU1 and FDU3.

The proof of FDU1

Op = emptyvQp Abb-wnext

AQp = ~(emptyvQOp) theorem 2.7
= —emptyA-Qp theorem 2.1
=  moreA-Qp Abb-m
=  moreAQp lemma 2.10 (2)
=  QOtrueAQ-p Abb-e, Abb-m
=  OftrueA-p) FD3 (theorem 2.17)
= QO-p theorem 2.1

Note that FD3 can be used in the above proof before its proof in Theorem 2.17 since the proof
of FD3 does not depend on FDU1.

The proof of FDUS3

-~Ong=0g¢q Abb-alw
-~Op=0-p let p be ¢, theorems 2.1, 2.7
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Theorem 2.12 Reflexivity Laws

FR1 OpD>p PR1 Op>Dp
FR2 p><p PR2 pOeop

Proof Straightforward.

Theorem 2.13 Laws about the ‘strength’ of the operators

FS51
F52
FS3
FS4
FS5

FSe6
FS7
FS8
FS59
FS10

Proof

OpD QOp PS1
Op D> Op P52
Opr>Cp PS3
Op D more PS4
<Oop D 00p PS5
(79) D> Cg PS6
(1M g2) D P PS7

(s @1Ag2) D P @2 PS8
O(p—g)A(w; p) D (w; q) P59
OpA(w; q) D (w; pAg) PS10

Bp D ©p
Bp D <p
Op>Dop

©Op D elaps
©Gp D> B¢

(r;q) D Op

(mAP239) D13
(11AP239) D P23
B(p—q)A(p;w) D (¢;w)
BpA(g5w) D (pPAg; w)

We prove only F.55 and PS8. Let o be an interval and k an integer, 0 < k < |o|.

The proof of FS5

IR

The proof of PS8

I

(0,0,k;|o|) = OOp

(07 0,r, |0|) = Op for some 7,k < 7 < |o]

(0,0,71,l0|) = p for some r and for all r{,k <7 <7 < |o|
(0,0, h,|o|) E p for all h and for some hy,k < h < hy £ |o|
(0,0,h,|0]) |z Op for all h, k < h < |o]

(,0,k,|0) = OOp

(0, Oa k’ |0’|) |= P A P2?‘I

(0,0,1,1) E p1 A p2 and (0,1, k,|0|) |= ¢ for some [,0 < I < k
(0,0,1,1) = p2 and (0,1, k,|o|) = ¢ for some [,0< I < k

(‘7’ 0,k, |U|) l= P2?q

Theorem 2.14 Laws about weak and strong operators

FW1 Qp=0OpAmore PW1 QOp=@pAelaps
Fw2 Qp=QpVempty PW2 Q@p=0QpVfirst
FW3 QOpdQOp PW3 ©OpdQ©p
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Proof

FW2 and PW2 follow directly from definitions; FW3 and PW3 follow from FW1 and PW1; the
proof of PW1 is similar to the proof of FW1. So we prove only FW1.

OpAmore = (QOpVempty) Amore  theorem 2.7, FW2
= (OpAmore theorem 2.1, more A empty = false
= QOpAQtrue Abb-e, theorem 2.7
= QO(pAtrue) FD3
= Op theorem 2.7
u}
Theorem 2.15 Idempotency Laws
FI1 DOOp=0p PI1 GBRp=Ep
FI12 O0p=<p P12 ©O0p=Cp
FI3 emptyAempty=empty PI3 firstAfirst=first
FI4 moreAmore=more PI4 elapshelaps=elaps
Proof Straightforward.
[m]

Theorem 2.16 Commutativity Laws

FC1 [Ems D(0OQOp « OOp)
FC2 Ermg 0(C0p « OCp)

FC3 OQ@p=0O0p PC3 BOp=@0p
FC4 OQp—0OOp PC4 OQ@p-0O%p
where Inf = {0 | |o| = w}.

Proof
We prove only FC1 and FC3. Let o be an interval and k an integer, 0 < k X lo|.
The proof of FC1:

Since |o| = w, we have

(0,0,k,w) E DO p
(0,0,k+rw)EQpforal n,0<r<w
(6,0,k+r+lw)yEpforall r,0<r<w
(0,0,k+1,w) = 0Op

(0,0, k,w) = ODp

IR

The proof of FCS:
Ifk = o], (0,0,k,|o]) E OQ@p « O Op is trivially true; in the case of k < |o|, we have

(,0,k,]0]) = OOp
< (0,0, k,lo|) E OCp
< (0,0,k+1,|0])=0p
= (0,0,k+r+1,|a|)}=pfora.llr,Ogra.ndr+k+1j|a|
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Theorem 2.17 Distributivity Laws

FD1 0O(pAq) = OpaDg
FD2 O(pvg) = Opvog
FD3 QO(png) = OpAQOq
FD4 QO(pvg) = OpvOgq
FD5 QO(p—q) = Op—-0g
FD6 QO(pAg) = OpAOg
FDT O(pvg) = OpvQOg
FD8 QO(p—q9) = Op—0Og
FD9 (wipvg) = (w;p)V(w;q)
FD10 (pVg;w) = (pw)V(gw)

Proof

(0,0,k+ r,|o]) E Op for that r
(0,0,k+r,|o]) E Op for that r
and (0,0,k + r1,|0]) | empty for ry = |o| — k (if |o] # w)
(0,0,k+r,|ol)EOpforall 7,0< r and k+ 1 < |o|

(0,0,k,|0)FOOP

PD1 O(pAq)
PD2 o(pvy)
PD3  O(pAg)
PD4  O(pve)
PD5  O(p—q)
PD6  O(pAg)
PD7T  O(pVe)
PD8  O(p—9)
PD9 (w;pVg)
PD10 (pvq;w)

OpAQgq
OpVoq
OpPAOq
OrvO9q
©r—0gq
OrAOg
OrvOe
Or—-0g
(wip)V(w;q)
(p;w)V(g;w)

We prove FD2 - FD6, FD9, and PD10. In the proofs, we use some interpretation rules, ab-
breviations, and proved logic laws without declaration. Let ¢ be an interval, and & an integer,

0<k=x|o|

The proof of FD2

The proof of FD3

(!

The proof of FD4

111

The proof of FD5

(0,0, k, |o])=OPVOq

I

(¢,0,1,|0|)=q for some i, k<i<|o|

11

(0,0,7,|0|)EpVy for some 7, k<r=|o|
(0,0,k, |o])=O(pVe)

(U,O,IC, |U|)}=OP/\O<I
(0,0,k+1,|0|)=p and (0,0,k + 1,|0{)l=q and & < |o]

(U, 0,k+1, |0‘|)|=p/\

q

(0,0,k,lo])EO(pAg)

(9,0, |0|)=OpvOq
((0,0,k + 1,|0|)E=p or (,0,k + 1,]0])l=g) and k < o]

(0,0,k +1,0|)F=pV

q

(,0,k,|a))EO(pVe)

O(p—9)

O(-pVve)
O-pvOg
-OpvOgq
Or—0g¢

ne e nem

theorem 2.1, theorem 2.7

FD4
FDU2
theorem 2.1
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(0,0, lol)l=p for some j, k<j < |o| or



The proof of FD6
014107’

emptyVOPA QO ¢
emptyV((pAqg)
O(pAg)

The proof of FD9

(emptyVOp)A(emptyvOq)
(emptyAempty)V(emptyAQp) V (emptyAQg)V(OpAQq)  theorem 2.1

(0,0,k,|o|)Fw; pVg

—
—

or

Abb-wnext

F13, empty A Op = false
FD3
Abb-wnext

(0,0,k,7)Fw and ((o,7,7,|0]) |E p or (o,7,7,|0|) | ¢) for some 7, k < r < |o|.
(0,0,k,7)=w and (o,7,7,|0]) = p for some r, k < 7 < |o].

(0,0,k,7) = w and (o,7,7,|0|) = ¢ for some r, k < r < |o|.
<> (0,0,k,|o|)=(w; p)V(w; q)

The proof of PD10

(9,0,k,|o|)EpVe;w
< ((0,0,l,l)kpor (0,0,1,1) = q) and (0,1, k,|o]) E w for some [,0 < I < k.
< (0,0,,)l=p and (o,l,k,|o|) & p for some I, 0 <! <k.

or

(6,0,,1) = q and (o,!,k,|0|) E w for some [, 0 < I < k.
= (0,0,k|o])E(p; w)V(g; w)

Theorem 2.18 Weak Distributivity Laws

FWD1 O(p—gq)>(Op—0q) PWDI1
FWD2 DpvDOgD>O(pVq) PW D2
FWD3 (Op—0g)20(p—q) PWD3
FWD4 O(pAg)oOpAdg PWD4

Proof

We prove only FWD4. Let o be an interval, and k an integer, 0 < kx|o]|.

I

(0,0,k, |al) = X(p A )

(0,0,7,l0]) E p A g for some r,k < r < o]
(0,0,7,|0|) E p and (0,0,7,|0]) = ¢ for that r
(0,0,k,|0|) E Op and (0,0,k,|0|) E Og

(,0,k,|0]) = Op A Og

Theorem 2.19 Expansion Laws

FE1 Op=pv(Q<p
FE2 Op=pA(GUOp
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a
B(p—¢)2(Fp—Hgq)
EpvBEgDE(pVy)
(©p—<q) D (p—9q)
S(pAg)DOPpALY

O

PE1 ©p=pvQop
PE2 Qp=pA@©Ep



These laws are very useful for both theorem proving and the reduction of programs.

Proof

FE1 and PEl follow directly from the definitions. The proof of PE2 is similar to the proof of
FE2. We prove only FE2.

Op ‘10-1]) Abb-alw
~(-pv(OO-p) FEl, theorem 2.7
ap A O-O-p FDU2, theorems 2.1, 2.7

pAO0Op Abb-alw, theorems 2.1, 2.7

0

To formulate further chop laws and end point laws, some definitions such as left end closed
and right end closed formulas are required.

Definition 2.2 A formula p is called left end closed (lec-formula) if (0,k,k,j) F p <
(0,1, k,7) = p for any interpretation (o, 1, k, j).

A formula p is called right end closed (rec-formula) if (o,4,k,k) E p <> (0,i,k,j) = p for
any interpretation (g,%,k, 7). a

Intuitively, a formula p being left end closed means that if p holds over a subinterval oy;_;
resulting from o(; ;) by chopping (;) it at the state sx, then p does not refer to any left state
beyond the state si, while a formula p being right end closed means that if p holds over a
subinterval o(; x) obtained by chopping ) 0(i.j) at the state si, then p does not refer to (or
depend on) any right state beyond the state s;. For instance, O(more — Q(p < ©Og)) is a
lec-formula; whereas O(elaps — O(p < (g)) is a rec-formula (p and ¢ are state formulas). In
particular, empty is a lec-formula and first is a rec-formula.

The importance of the set of the left end closed formulas lies in guaranteeing empty;p = p
and g Aempty;p = pAq (p is a lec-formula and ¢ is a rec-formula), which are the basic laws for
reduction of chop and while statements in a program.

We first prove a useful lemma given below:

Lemma 2.20 A non-past formula is a lec-formula, and a non-future formula is a rec-formula.
Proof

We prove only a non-past formula is a lec-formula. The proof runs by induction on the structure
of p. Since p is a non-past formula, the past operators need not to be considered.

Let (o,¢,k,j) be an interpretation. Then

1. If p is a proposition q.

(0,%,k,5) = q iff skfq] = true
<= (o,k,kj)Eq

2. If pis ~q.

(o,i,k,5)E P
(a’ivkhj)': g
(a’i,k,j)% q
(Uik)k)j) % q
(U7k7kaj)l= q
(0. k, k,5) = p

BB
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3.Upis g1 Aqa.

(0,1, k,5)E p

(avi1k1j)'=ql Agq

(U,i,k,j)h qQ and (O',i,k,]')*: q2
(U,k,k,j) I= aQ and (U,k,k,j) t: 92
(Uak,k,j”:éh/\‘h

(o,k,k,5)E P

1311

4. Ifpis Og.

(o,5,k, ) Ep

(a,i7k7j) h Oq
(o,6,k+1,/)=qand k < j
(0,k+1,k+1,5)Eq
(U’k’k+1’j)}=q
(o,k,k,5) = Og
(a,k’k’j)#p

IBRRR

5 If pis g1 o

(U,i,kuj)':p

(d,i,k,j)|=q1;q2

(0’,’[:,]0,7’) # qa and (U,"',"',j) |= 92 for some k <r j]
(0,k,k,7) E q1 and (o, 7,7,7) |- go for some k < 1 X j
(U,k,k,]'”:m;(h

(a,k,k,j)l:p

IR

6. Ifpis ¢g7.

(0,%,k,5) = ¢* iff there are finitely many ro,71,...,7n € N, (n > 1) such that k = ro < <

w £ty X1 = j and (o,4,7,71) E g and for all 1 < I < n, (0,7-1,71-1,71) k= ¢; or

J = w and there are infinitely many integers k = ro < r; < ro < ... such that lim r; = w, and
11— 00

(0,3,70,71) = q and, for all { > 1, (o, 11,711, 71) E ¢.

By hypothesis, the above means that, (o, 1, k, j) | g7 iff there are finitely many rg, 71, ..., €
No(n>1)suchthat k=rg <7 < ... €< 1p1 X7 =jand (0,k,7,71) Egandforall 1 <1<
n, (0,71-1,71-1,71) E ¢; or j = w and there are infinitely many integers k = ro < r; < ry < ...
such that lim r; = w, and (o,k,70,71) = ¢ and, for all I > 1, (o,71-1,71-1,71) |= ¢. This is

100
equivalent to (o, k, k,|o|) = ¢F.
o

Theorem 2.21 Further Chop Laws

Let w be a rec-formula. Then

FCH1 Opie=0 (pq) PCH1 p;0¢=0(r39)
FCH2 wA(p;q)=(wAp;q) PCH2 wA(p;q)=(wAp;q)

Proof
We prove only FCH1 and FCH2. Let o be a model and k an integer &£,0 < k < |o|.

23



The proof of FCH1

(0,0,k,|0))=Op;
< (0,0,k,m)EQp and (0,7,r,|0])l=g for some r, k<r=<|o|
< (0,0,k+1,r)=pand k < r and (a,r,r,|o|)}=q for some r, k<rx|a|.
= (0,0,k+1,|0])piq
<= (0,0, |o))EO(p;q)

The proof of FCH2

(0,0,k, IUI)':’LU A (P; q)

(9,0,k,|o])Fw and (0,0, k, |ol)=p; ¢

(‘7’ 0,k, |6|)}=w and (0,0, k, ) p and (a,7,7, IUI);:q for some 7, k<rx|o]
(¢,0,k,7)l=w and (0,0,k,7) |= p and (o,r,7,|0|)|=q for some r, k<r<|o| (lemma 2.20)
(0,0,k,m)w A p and (o, r, 7, |0])=g for some r, k<r<|o|

(0,0,k,l0])Fw A p;q

greee

0

Example 2.3 The condition of w being a rec-formula for FCH2 cannot be left out. For instance,
len(3) A (len(1); len(2)) is satisfiable, but len(3) A len(1); len(2) is not. O

Theorem 2.22 Non-End Point Laws

NFE ~firsth~empty D (OOp~00p)
NF =first 5 (QpOp)
NE =empty > (Qp-QOp)

Proof Straightforward.

a

Theorem 2.23 End Point Laws
FEPl empty;p~p PEP1 pjfirst =~ pif pis a rec-formula
FEP2 empty;p=pif pis a lec-formula PEP2 p;first = pif pis a rec-formula

FEP3 (pAempty;q) =~ pAq if p is a rec-formula PEP3 (p;qAfirst) = pAq if p is a rec-formula
FEP4 (pAempty;q) D q if ¢ is a lec-formula PEP4 (p;qAfirst) D qif q is a lec-formula
FEP5 (pAempty;q) = pAqif pis a rec-formula PEP5 (p;gAfirst) = pAqif pis a rec-formula

and ¢ a lec-formula. and q a lec-formula.
FEP6 p;empty = p A Oempty PEP6 first;p=p
FEPT |=y; O(p;empty < p) PEPT (pAfirstiq)Dgq
FEP8 (p;qhempty) = pAO(empty — q), PEP8 (pAfirst;q) = pAg,
if ¢ is a lec-formula. if p is a rec-formula.

where fi = {o] |o| < w}.

Note that PEP2 simply implies PEP1. PEP1 is added here only for symmetry.
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Proof
Let o be an interval and k an integer, 0 < k < |o|.
The proofs of FEP1 and FEP2

(0,0, k, |o]) = empty; p
< (0,0,k,7) |= empty and (o, r,r,|0]) | p for some r,k < r < ||
< k=rand (o,n,no))Ep
= (ok ko) P

If p is a lec-formula, then (o,0,k, |o]) | empty;p <= (0,0,k,|0|) = p.

Let k = 0 in the proof, it is obvious that (0,0,0,|0|) | empty; p iff (0,0,0,|0|) = p. Hence,
empty; p ~ p.

The proofs of FEP3, FEP4 and FEP5

(0,0,k,|0|) = p A empty; ¢
< (0,0,k,7) = pAempty and (o,r,1,|0|) | g for some 7,k < r < |o]
< (0,0,k,r)Epand r =k and (o,7,7,|0|) E ¢
= (0,0,k,K) e p and (o,k,k, |o]) = ¢

If ¢ is a lec-formula, then (0,0, k,|o|) E pAempty; g = (0,k,k,|o]) E ¢ < (0,0,k,|0]) q.
Hence, p A empty; q D q.

Furthermore, if p is a rec-formula, then (0,0, %, |o|) E pAempty; ¢ < (0,0,k,|o]) E pAg.

In the proof, let k¥ = 0 and p be a rec-formula. We obtain (0,0,0,|0|) E p A empty; q iff

(0,0,0,0) F pand (0,0,0,|0])  ¢iff (0,0,0,]0]) = pand (0,0,0,|0])  ¢iff (4,0,0,]0]) = pAg.
That is, pAempty;g~pAgq.

The proof of FEP6

(0,0,k,|o]) = p A Cempty

(9,0,k,|0]) = p and (0,0, k, |o]) | Cempty

(0,0,k,|c|) E p and (0,0, 7,|0|) = empty for some r,k < r < |o|
(0,0,k,|o|) E p and (0,0,7,|0]) E emptyand k< r = |o| < w
(0,0,k,7) = p and (o,7,7,|0|) = emptyand k < r = |o| < w
(0,0,k,|o]) = p; empty.

fge0e

The proof of FEP7
(Uv 0,k, lal) |= p; empty
< (0,0,k,7) = pand (o,r,1,|0|) |E empty for some 7,k < r < |o|
< (0,0,k,r)Epandr=|o|<w
< (0,0,k,|o|)Epand |o] < w.

The proof of FEP8 will be given in Chapter 4.

The proof of PEP2
(0,0,k,|o]) = p; first
< (0,0,1,1) = p and (o,l,k,|o|) | first for some [,0 <1< k
<= (o,0,,)pandi=k
<= (0,0,k,k)E D

25



If p is a rec-formula, then (0,0, k, |0]) | p; first < (0,0,k,|0))E p
The proofs of PEP8, PEP{ and PEP5

(0,0,k, lo]) = P;q A first
< (0,0,,))[= p and (0,l,k,|0]) = q A first for some 1,0 << k
< I=kand (0,0,l,l)=pand (o,l,k|o])=q

If ¢ is a lec-formula, then (0,0, k, |o]) |= p;g A first = (0, k,k,|o]) E ¢ <= (0,0,k,|0|) [ q.
Hence, p;q A first D g. Furthermore, if p is a rec-formula, then (0,0,k,|0]) E pigA first <=
(0,0,k,lo|)FE pAg. Hence piq A first=pAgq.

In the proof, let ¥ = 0 and p be a rec-formula. We obtain (0,0,0,|0]) = p;q A first iff
(,0,0,0) = pand (0,0,0,|0]) | ¢iff (¢,0,0,|0|) = pand (0,0,0,|0]) k= ¢iff (0,0,0,|0]) | pAq.
That is, p;q A first x pAg.

The proof of PEP6

(0,0,k,|o]) = firstip
<= (0,0,1,]) = first and (o,l,k,|o|) = p for some 1,0< I < k
< I=0and (o,,kJo))Ep
<= (0,0,k,|o))Ep

The proofs of PEP7 and PEPS§

(0,0,k,|o|) E pA firstiq

(6,0,,1) E pA first and (0,0, k,|o|) | q for some [,L0< [ <k
l=0and (0,0,!,!) = p and (o,l,k,|o]) E ¢

(,0,0,0) E p and (0,0,k,|o|) = ¢

(0,0,k,l0]) = ¢

1310

Let k = 0 and p be a rec-formula in the proof. We have (0,0,0, |0]) = pA first; qiff (0,0,0,0)
p and (0,0,0, |0'|) F ¢ iff (¢,0,0,|0|) = p and (0,0,0, lo}) = ¢ iff (0,0,0,|0]) = pAg. That is,
pA first;gxpAg. m]

Theorem 2.24 Laws about Termination and Absorption

TER p=(p;empty)V pAOmore ABS p=(p;empty)Vp
Proof
The proof of absorption law is straightforward. We prove the termination law only.
The proof of TER
p A (Oempty V ~Oempty)

p A Cempty V p A OQmore Abb-alw
(p; empty) V p A Omore FEP6
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Theorem 2.25 Laws about Chop-Plus

FPS1 pt=pv(p;ph) FPS2 pAapt=p
FPS3 pvp* =pt FPS4 pt;p>p;pt
FPS5 p;p* > pt;pt FPS6 pt;pt D pt
FPS§7 ptt =pt

Proof

The proofs of FPS4, FPS5, FPS6, and FPS7 are given in the Appendix. We prove only FPS1,
FPS2 and FPS3.

The proof of FPS1

Let o be an interval and k an integer, 0 < k < |o].

Suppose (0,0, k,|o]) = p*. Thus, there are finitely many ro,...,7, € N, (n > 1) such that
k=r0<r <..2r, = 0| and (0,0,70,71) E pand for all 1 <! < n (0,71_1,71_1,7) |= p; or
|o| = w and there are infinitely many integers k = 7y < r; < r, < ... such that nh'_r& r; = w, and
(6,0,70,71) = p and, for all { > 1, (o,7i_1,7-1,71)  P.

In the former case, if n = 1, then (0,0,70,71) | p, i.e. (0,0,k,|0]) E p; if n > 2 then
(6,0,70,71) | pand for all 1 < I < n (0,7-1,71-1,71) | p. That is, (0,0,70,71) = p and
(0,71,71,]0]) = p*. We have (0,0, k,|0]) = p; p*.

In the latter case, (0,0,k,|0]) = p* amounts to (0,0,79,71) = p and, for all I > 1,
(0'7 7_;-1—1’7'1—11 7'1) "= p. That is, (0’, 0, ro, 7'1) l= p and (0, 1,71, |0'|) |= P+- We obtain (U’O’k’ |Ul) F
np.

Conversely, suppose (0,0, %, |o|) E pV (p;p%). If (0,0,k,|o|) & p then (0,0,k,|0|) E pt is
trivially true since we can simply choose n = 1, rg = k and ry = |o| ignoring o being finite or
infinite.

If (4,0,k,|0|) = p;pT, then there is an integer r; such that k < r; < |o| and (0,0,k,m) E p
and (o,71,71,|0|) E pt. The latter tells us that either there are finitely many r1,73,...,7n € N,
(n > 1)such that r4 < 73 € ... £ Py 2 1y = |o| and (o, 7y~1,7-1,71) F plorall! > 1; or
|o| = w and there are infinitely many integers r; < rp < ... such that lim r; = w, and, for all

1— 00
1> 1, (o,71-1,71-1,7) | p. Thus, in the former case, we obtain finitely many rg,74,...,7, € N,

(n>1)such that k =7p < 1y < ... < rpy X 7, = |o] and (0,0,k,7m) £ p and, for all { > 1,

(ay71-1,71-1,71) |E p; whereas in the latter case, we obtain infinitely many integers k = rp <

r1 £ 72 € ... such that lim r; = w, and (0,0,k,71) |& p and, for all | > 1, (o, ri—1,71-1,71) F P.
1—00

Hence, in both cases, we obtain (0,0, k,|0) | p*.

The proof of FPS2

pA(pV(p;p"))
pAPV DA (pipt)
pVpA(pipt)

P

pApt

The proof of FPS8

pV(pV(pipt))
pV(p;p")

p+

pVpt
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The relationship expressed by the equivalence p* = pVv(p; p*) could also be discussed within
a model supporting fixpoint semantics of logic formulas [8]. However, a detailed evaluation of
the problem lies outside the scope of the thesis and is left for future research.

We now further investigate some logic laws regarding the chop star operator. These laws
are useful for the reduction of the while statement.

Theorem 2.26 Laws about Chop-Star

FST1 p*=emptyV (p;p*)V p A Omore FST2 p*;p=~pV(pt;p)
FST3 p*pD (empty;p)Vp* FST4 p*;pD pt if pis alec-formula.
FST5 p;p*Dp* FST6 p*;p*=~p*
FST7 p*;p* = p* if pis a lec-formula. FST8 p** =p* if pis a lec-formula.
Proof
The proof of FST1
p* = emptyVp* Abb-star
= emptyV (pV (p;p*)) FPS1
= empty V ((p;empty) Vp A OmoreV (p;p*)) TER
= empty V (p; (empty V p*)) V p A Omore FD9
= emptyV (p;p*)V p A Omore Abb-star
The proof of FSTS
p;p = (emptyVpt)p Abb-star
= (empty;p)V (p*;p) FD9
D (empty;p)Vp* FPS4
The proof of FST4
pp = (emptyVpt)p
= (empty;p)V (ptip) FDY
= pV(pt;p) FEP2, p is a lec-formula
> pt FPS4
The proof of FST2
pip = (emptyVpt)p
= (empty;p)V (p*ip) FD9
~ pV(pt;p) FEP1
The proof of FST5
pip* = p;(emptyVpt) Abb-star
= (p;empty)V (p;p*) FD9
D> (pt;empty)Vp* p O pt, FPS4
= pt ABS
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The proofs of FST6 and FST7

B~
4

2

p

(empty V pt); (empty v p*)
(empty; empty) V (p*; empty) V (empty; p*) v (p*;p*)  FD9
empty V (p*; empty) V (empty; p*) V (pt; pt)
empty V (pt;empty) vV pt v (pt;p*)

empty V (pt;empty) V pt v (pt;pt)

empty V p* v (p*; p*)
empty V pt

E ]

The proof of FST8 is given in the Appendix.

Theorem 2.27 Associativity Laws

FAl (p;(g;w)) = ((p;9);w)

Proof

Abb-star

EMP1

FEP2 and p is a lec-formula.
FEP1)

ABS

FPS4

Abb-star

PAL (p;(¢5w)) = ((piq);w)

We prove only FAl. Let ¢ be an interval and & an integer, 0 < k < |o|.

The proof of FA1
(0,0,k

f1ee

(0,0,k

o) E (p; (g5 w))
(6,0,k,7) = p and (o,7,7,|0|) E ¢;w for some k < 7 < |o|.

(0,0,k,r) = p and (o,7,r,7') |E ¢ and (o,7',7',|0|) E w for some r,7',k < r < 7' < |o].
(6,0,k,r") |= p;q and (o,7',7",]0}) E w for some ',k < 7' < |o}.

o) B (pig)iw

Finally, we discuss some laws about the negation of the chop construct [24].

Theorem 2.28 Laws about negation of chop construct

FCHN1
FCHN2

FCHN3
FCHN4

Proof

(Pr) A =(pir) D (pig A7)
(@) A-(r;9) D (PA T3 q)
(len(n); p) D =(len(n); —p)
(p;len(n)) D —(-p; len(n))

PCHN1
PCHN2

PCHN3
PCHN4

(Pig) A-(pir) D (Pig A )
(i) A-(r59) D(pA-T3q)
(len(n)p) D ~(len(n)7-p)
(pilen(n)) O ~(~pilen(n))

We prove only FCHN1 and FCHN3. Let o be an interval and k an integer, 0 < k < |o].
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The proof of FCHN1

(9,0,k, o)) = (p;q) A ~(p; 7)

(0,0,k, lo]) = (7 g) and (0,0,k, Ial) E -(p; r)

(0,0,k,k) = p and (0, h, h,|o|) = q for some k < h < ||, and
(0,0,k,h') [ p or (o, 1,1, |o|) £ 7 for all k < b < o]

(0'1 0,k,h) '= p and (0, h,h, 'Ul) Fq

(0,0,k,h) = p and (o, h, h,|o|) £  for some k < h < lo]
(0,0,k,h) = p and (0, h,h,|o|) |= g A ~r for some k < h < |o]
(07 0,k, |U|) "—‘ PigA-r

I

The proof of FCHN3

(0,0, k,|ol) = (len(n); p)

(0,0,k,h) |= len(n) and (o, h, b, |o|) |5 p for some k < h < |o]
n=h—k and (o,h,h,|o|) = p for some k < h < o]
(a,n+k,n+k,|a|) Ep

111

Since (0,0,k,|o|) £ —(len(n); -p) is equivalent to (0,0, k, |o|) = len(n); ~p which, by the
above, is equivalent to (o,n+ k,n+ k, [0|) = —p, we obtain a contradiction. Therefore, FCHN3
holds.

]

Theorem 2.29 Laws about always and negation of chop construct

FCHAN1 1If Opis valid then O(—(—p;q)) is valid.
FCHAN2 If Opis valid then O(~(g; —p)) is valid.

Proof
We prove only FCHANI. Let o be an interval and k an integer, 0 < k < |o].

Suppose Op is valid. Thus, for every model o, o = Op. That is, by Theorem A.8, for every
interpretation 7, Z | p.

If O(~(—p; q)) is not valid, then there is a o and integer k such that (0,0, k,|o]) & ~(-p; q).
This is equivalent to (o,0,%,|o|) E -p;q. By I-chop, there exists a r, k < r < |o| such that
(0,0,k,7) |E -p and (o,r,1,|0|) k= ¢ leading to (0,0,k,7) |= ~p. This is a contradiction.

m}

In this chapter, we have investigated logic laws which will provide a basis of the underlying
logic. In particular, these logic laws allow us to establish a model theory for the first order
extended ITL (see Chapter 3) and to reduce (framed) programs built from the extended Tempura
(see Chapters 4, 6,7). However, we have not established an axiom system as this is beyond the
scope of this thesis.
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Chapter 3

First Order Temporal Logic

Summary: An extended first order interval temporal logic is formalized by adding
past operators and infinite models to ITL. The syntax and semantics of the extended
logic are presented. The logic laws regarding variables, the equality, and quantifica-
tions are formulated and proved.

Temporal logic can be developed from its propositional basis to a first order predicate logic
in a way analogous to the way in which this is done in the classical case. In this chapter, we
present an extended ITL (EITL) which combines linear time temporal logic [66, 51] with chop
[78, 42, 11}, and is an extension of the interval temporal logic [61].

This chapter is organized as follows: Section 3.1 presents the syntax of EITL. Section 3.2
presents the semantics of EITL. To this end, first, states and intervals are defined. Then inter-
pretations of terms and formulas are given in detail. Section 3.3 defines satisfaction and validity
of formulas in EITL. In Section 3.4, a considerable collection of logic laws concerning variables,
the equality and quantifications are formalized and proved. The proofs of a number of useful
theorems exploited later in the thesis are based on these laws.

3.1 Syntax

1. Terms

Let Prop be a countable set of propositions, and V a countable set of typed variables.
We assume the variables are partitioned into static and dynamic ones. B = {true, false}
represents the boolean domain, D denotes all data needed by us including integers, lists,
sets etc. Z denotes all integers, N denotes positive integers, No stands for non-negative
integers, and N, = No U {w}. Terms are inductively constructed as follows:

1) Individual typed static variables: a,b,¢,u,v, ... possibly with subscripts.

2) Individual typed dynamic (or state) variables: z,y,2,X,Y,Z, ... possibly with sub-
scripts.

3) Functions: if f is a function of arity m (m>0) and ey, ..., em are terms over V of types
compatible with the types of arguments of f, then f(ey,...,er) is a term over V with
the type defined by f. In particular, when m = 0, f is a constant term.

4) If e is a term, then Qe, Qe, beg(e) and end(e) are terms with definite types.
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2. Atomic Formulas

1) Every proposition p€ Prop is an atomic formula.

2) If P is a primitive predicate of arity m (m > 0) and ey, ..., e,, are terms over V of
types compatible with the types of arguments of P, then P(ey,...,e,) is an atomic
formula over V.

3) If e1, ez are terms of the same type, then e; = e is an atomic formula.
3. Basic Formulas

1) Every atomic formula is a basic formula.

2) If p and ¢ are basic formulas, so are the following constructs:

—p, PAg, 3z : D, Op’ OP, »q, Opa Qp, P?q, p+-

where O, © and ; are the basic future operators whereas ), ¢ and ; are the basic
past operators.

Note that, in the following, the types of terms will not be considered in detail, and all terms
are assumed to be ‘well-formed’.

The constants, functions, and predicates are concrete individual elements, concrete func-
tions, and concrete predicates over their respective domains [66]. Similarly as in [66], we have
constants true, false over B; -1, -2, 0, 1, 2,... over Z; € (the empty list) over lists; and ¢ (the
empty set) over sets. We have the function symbols +, - over Z; . (the concatenation of two
lists), o (the fusion of two lists), hd (taking the head of a nonempty list), ¢/ (taking the tail of a
nonempty list), I/t (taking the last element of a nonempty list) over lists (see Chapter 4 for the
details); and U, N over sets. We also have predicates >, < over Z; and C, € over sets.

3.2 Semantics

1. States

We define a state s over VUProp to be a pair (1, I)) of state interpretations I, and I. I,
assigns each variable €V a value in D or nil (undefined) and the total domain is denoted
by D' = DU{nil}, whereas I, assigns each proposition p€ Prop a truth value in B. s[v]
denotes the value of v at state s.

2. Intervals

Basically, the notation for intervals is the same as that defined in Chapter 2. Some
notations will also be used without declaration under the assumption that they are the
same as defined in Chapter 2. It is assumed that a static variable remains the same over
an interval whereas a dynamic variable can have different values at different states. To
evaluate the existential quantification, an equivalence relation is required and given below.
We use I"f and I,’f to denote the state interpretations at state s.

Definition 8.1 Two intervals, o and ¢’, are z-equivalent, denoted by o’Za, if |o| = |0],
I,',‘[y] = I,',"[y] for all yeV — {z}, and I,’,‘[p] = Ip"[p] for all pe Prop (0<hX|o]). (]
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Note that, (1) = is an equivalence relation over the set of all intervals; that is, = is
reflexive, symmetric, and transitive; (2) = relation is extensible; that is, if < s;,...,s >
Z2< 4.8 >and < 8,..,8 > %< 8,8 > then < 8;,...,8; > £ < of,...,8 >
(1<1<£7)(3) Z relation is partitionable; that is, if < 8iy.ey 85 > L < 8.y 85 >, then
< 8iyery 8> = < 8!y, 8)>and < 8,...,8 > = < 885> forall l,i <1Xj.

. Interpretations

An interpretation, as for EPITL, is a quadruple Z = (o,1,k,j), where o is an interval,
i,k € Np and j € N, and 0 < i<k=<j < |o]. We use notation (o,%,k,7) to mean that a
formula or term is interpreted over a subinterval < s;,...,s; > of o with the current state
being si.

For every term e, the evaluation of e relative to interpretation 7 = (o, 1, k, j), denoted by
ZI[e], is defined by induction on terms in the following way:

I - varu Z[a] = sifa] = I¥[a] = Ii[a] if a is a static variable.

I - varz I[z] = si[z] = IF[z]if z is a dynamic variable.

I— fun I[f(e1, rem)] = { nil  if Z[ep] = nil, for some he{l,...,m}

f(Z[e1), ---»Z[em]) otherwise

_ _ (0,5, k+1,5)e] ifk<j
I—enext  Z[Qe] - { nil otherwise
_ _ (G,i,k—l,j)[e] lf1<k
I-eprev  I[O¢] - { nil otherwise
I - beg T[beg(e)] = (0,%,%,5)l€]
_ ] (o,i,5,5)e] fj<w
I —end Z[end(e)] - { nil otherwise

The meaning of formulas is given by the satisfaction relation, |=, which is inductively
defined as follows:

I—prop I E piff I},‘[p] = true, for any given proposition p.

I - pred I E P(e,...,em) iff P is a primitive predicate other than = and, for
all h, 0<h<m,Z[es]) # nil and P(Z[eq], ..., Z[em]) = true.

I—equal I | e =e;iff e and e, are terms and Z[e1] = Z[ea].

I —neg I E -piffT fp.

I—-and I | pAqiff Ikp and If=q.

I —next I E Qpiffk<jand (o,i,k+1,5)FEp

I - som I E Opiff there exists r such that k<r=j and (0,3, r, 1) EPp.

I — chop I E (p;q)iff there exists r such that k < r=j and (0,4, k, r)=p and
(0,77, 5)F-
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I - prev F Opiff i< kand (0,i,k - 1,5)=p.

I
I — somp I [ ©piff there exists | such that i<I<k and (g, 1,1, j)k=p.
I—chopp I | (pjq)iff there exists I such that i<I<k and (o,i,l,l)}=p and
(0,1, k,j)Eq.

I - plus I k p* iff there are finitely many ro,...,m, € N, (n>1) such that
k = ro<r1<...<rn—1 21, = j and (0,4,70,71) |= p and, for all
1 <1< n,(0,r-1,m1-1,71)p; or j = w and there are infinitely

many integers k = ro < ry < 73 < ... such that lim r; = w and
1—00

(0,4,70,71)=p and, for all I > 1, (0,711, T1-1, 7)) [ED.

I —exists I |k 3z :piff there exists an interval o’ such that Uf.'..j)é”(i..j) and
(o,i,k,5)Ep.

4. Abbreviations

The abbreviations for true, false, #, V, — and < are defined as usual. We also define
chop-star:

(Abb — star) p* df  empty v pt

The semantics of the chop star construct is the same as in EPITL. The universal quantifier
is defined as usual:

(Abb — all) Vz:p¥-3z:p
Its semantics is given by
(0,1, k,j)EYz : piff (6,4, k, j)Ep for every o', a’(l.“j)éa(,-"j).

The usual convention of abbreviating multiple quantifiers of the same kind, e.g. Vz : Vy: p
to Vzy : p is also used. Furthermore, we use the abbreviations introduced in Chapter 2.

5. Precedence Rules
In order to avoid an excessive number of parentheses, the following precedence rules are

used:
-

O’o’ 07 D, O’@?O’ Q’ +’*
3,V

A,V
—),(—)

N DR WY -

11y

where 1=highest and 7=lowest.

A formula (or term) is called a state formula (or term) if it does not contain any temporal
operators; otherwise it is a temporal formula (or term).
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3.3 Satisfaction and Validity

A model is an interval which can be finite or infinite.

1. Satisfaction and Validity

A formula p is satisfied by an interval o, denoted by ok=p, if (0,0,0,l0])Ep. A formula p
is called satisfiable if o |= p for some 0. A formula p is valid, denoted by |=p, if o}=p for

all o.

2. Special Models

In some cases, we need to define a set R of models satisfying some properties. A formula
p is called R-satisfiable, if there exists a model o€ R such that oj=p. A formula p is said
to be R-valid if for all intervals ¢ in R, o |= p. In this case, the satisfaction relation g

will be used instead of |=.

Like Kripke’s structure for EPITL, in a model of EITL, I* can be given by a set of pairs in
the form z; : e;, where z; € V, e; € D'. The pair z; : e; means that I*[z;] = ¢;. In the examples,
when the value of a variable z; is irrelevant, the pair z; : e; may not be shown. Thus, a empty

set ¢ of such pairs means that all variables are irrelevant.

Example 3.1 Evaluate the formula p: z = 1AQz = z 4+ 1;O(y = 3 * Oz) according to the
interval given in Fig.3.1,i.e. 0 =< (I, ID),... >, Ip = {z: 1,y: 2}, [; = {z : 2,y : 4},... . We

do not need to specify I;; in this example.

(0,0,0,]0])=p < (0,0,0,7)Ez = 1AQz =z + 1 and (o, r,7,|0])EO(y = 3 * Oz) for some

Fig.3.1 An interval

r,0<r=|o|

Let » = 1. We have

fggeoe gooo0d

(6,0,0,)Fz =1AQz =z + 1
(0,0,0,1)kz = 1 and (0,0,0,1)FQz =z +1

(¢,0,0,1)[z] = (0,0,0,1)[1] and (s,0,0,1)[Oz] = (0,0,0, 1)[z] + (¢,0,0,1)[1]

solz] = 1 and (0,0,1,1)[z] = so[z] + 1
I%z] = 1 and I}[z] = I0[z] + 1
l=1land2=1+1

true

(0‘, 1,1, |U|)'=O(y =3* @m)
(0,1,2,j0]) Fy =3Oz

(0,1,2, lo])[y] = 3 (0, 1,2, IUD[@:E]
Sg[y] =3* (0‘, 1,1, |U|)[I]

Ly = 3+ (2]

6=3%2

true

Therefore of=p.
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3.4 Logic Laws

The logic laws provided in Chapter 2 for EPITL are all available in the first order temporal

logic EITL. In this chapter, we present some new logic laws concerning variables, the equality
and quantifications.

3.4.1 Basic Theorems

First, we claim that Theorems (Corollary) 2.1 - 2.7 still hold for EITL. Their proofs are similar
as in the preceding chapter but quantifications, predicates and the equality in the proofs have
to be considered. We refer to them as Theorems (Corollary) 3.1 - 3.7, respectively. Note that
the additional proof for Theorem 3.7 is given in the Appendix.

Theorem 3.1 If p is a tautologically valid formula, then | Op. n|
Theorem 3.2 pis valid iff -p is not satisfiable. a
Theorem 3.3 Let Z be an interpretation. If Z|=p and ZTk=p—¢ then I}=q. o
Theorem 3.4 Let Z be an interpretation. If Z|=q implies Z|=p, then T | g—p. a

Theorem 3.5 If py,p2,q1, g2 are formulas, then

FMO0 I (py D p2) and (g1 — g¢2) then ((p1; q1) D (P23 42))
PMO If (p1 D p;) and (1 D ¢z)) then ((p13q1) D (P2342))

[m]
Corollary 3.6
FM1 If p; D py then (p13¢) D (p2iq) PM1 I py D pa then (p15g) D (p2349)
FM2 If py — p; then (¢;m) D (¢;p2) PM2 If py D ps then (¢5p1) D (¢5p2)
FM3 If py = p; and ¢4 = ¢z then PM3 If py = p; and ¢; = ¢2 then
(P15 q1) = (P2; 02) (mia1) = (p23q2)
w}

Theorem 3.7 If F is a formula in EITL involving the subformula g, and f is a formula such
that f=g, then

F=F(f/g]

where F[f/g] denotes the formula given by replacing some occurrences of gin F by f. o
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3.4.2 Quantifications and Temporal Operators

Let us first introduce the notion of variable binding [51]. An occurrence of a variable z in some
formula p is called bound if it occurs in a sub-formula 3z : ¢ (or Vz : ¢) of p. Otherwise it is
called free. If t is a term then p[t/z] denotes the result of a simultaneous substitution of ¢ for
every free occurrence of z in p. When writing p{t/z] we always assume implicitly that ¢ does
not contain a variable which occurs bound in p ( this can be achieved by replacing the bound
variables of p by fresh variables).

Theorem 3.8 states some logic laws concerning quantifications and future temporal operators.

Theorem 3.8 The following formulas hold:

FQT1 QFz:p) = 32:0p FQT5 O3z:p = J2:0p
FQT2 OQ(MVz:p) = Ve:Op FQT6 OVr:p = Vz:Op
FQT3 O@z:p) = 3z:Qp FQT7 3z:0p D 0O3z:p
FQT4 O(MVz:p) = Vz:QOp FQT8 <Vz:p D Vz:Op

Proof

The proofs of FQT2, FQT4, FQT6 and FQTS are similar to FQT1, FQT3, FQT5 and FQT7,
respectively. So, we prove only FQT1, FQT3, FQT5 and FQT7. Let o be a model and k an
integer, 0 < k < |o|.

The proof of FQT1:

We need to prove (o,0, k, |0|)EQ(3z : p)~3z : Op. If k = |o], the conclusion is vacuously true.
If k < |o|, we have,

(0,0,k,|0|)FO(3z : p)

< (0,0,k+1,|o))3z:p I-next
< (¢',0,k+1,|0’|)|=p for some o’Z0 I-exists
= (¢',0,k,|0|)=Qp for some o'=c I-next
<> (0,0,k,|o))=3z:Op I-exists

The proof of FQTS3:
We need to prove (0,0, k,|o])EQ3z : p—3z : Op.
(0,0,k,|o))FO3c : p

(0,0,k,|o|)EemptyvQ3z : p Abb-wnext
(0,0, K |o])=O3z : p or k = o]
(0,0,k,lof)=3z : Op or k = || theorem 3.8 (1)

(¢',0,k,|0|)=Qp or k = |o| for some 0’20 L-exists
(¢',0,k,|0'))EQp V empty for some o'=0
(¢',0,k,|o|)=Qp for some o'Z0

(0,0,k,|o|)E3z : Op I-exists

ggongey
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The proof of FQTS:
(0,0,k, IUI)FO(BI :p)

< (0,0,r,|0])F3z : p for some r, k<r<|o| I-som
< (0’,0,7,|d|)=p for some r, k < r < |o|, and for some 0’,0’Z0  I-exists
& (0,0,k,||)=COp for some 020’ I-som
< (o0,0,7,|0)E3z:Op I-exists
The proof of FQT7:
(0,0,k, |o])l=3z : Op

& (d,0,k,|0’|)=0p for some o’,0'Zc L-exists

<= (0’,0,r,|0|)=p for some 0’20, for all 7,k<r<|o’|  Abb-alw

= (0,0,r,|op)E3z : pfor all r,k<r=<|o| L-exists

<= (0,0,k,|0))=03z:p Abb-alw

[m]

Example 3.2 shows that the always operator (O) does not distribute over the existential
quantification.

Example 3.2 Relative to the interval given in Fig 3.2, the formula O3z : (more—z > 0A 2% +
QOz? = y?) holds but 3z : O(more—z > 0 A 2% + Qz? = y?) is false. The justification is as
follows:

ol=03z : (more—z > 0Az? + Qz? = 3?)
<= (0,0,0,|0))=03z : (more—z > 0 A 22 + Oz = 3?)
< (0,0,r,|0))=3z : (more—z > 0 A 22 + Qz? = y?) for all integer r,0<r=|o|

Since |o| = 2, r = 0,1,2. When r = 2, the formula is ‘vacuously’ true. So, we need only to
consider the cases r = 0 and r = 1.

Case l: 7 =0

(0,0,0,2)=3z : (more—z > 0A 2?2 + Q22 = y?)
< (¢',0,0,2)=more—z > 0Az? + Qz? = y? for some o', 0’20

We can construct such a o’ given in Fig 3.3. We have

(¢',0,0,2)=more

and
(0',0,0,2)z > 0 A 2% + Oz = ¢?
<= (¢,0,0,2)f=sp[z] > 0 and (sp[2])? + (si[z])? = (sg[u])”
<= (0',0,0,2)E=3 > 0 and 32 + 42 = 52
< (0',0,0,2)true
Therefore,

(¢,0,0,2)3z : (more—z > 0 A 2?2 + Qz? = ¢?)

Case 2: r =1
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(0,0,1,2)=3z : (more—z > 0 A 2% + Oz = y?)
&> (07,0,1,2)Fmore—z > 0 A 22 + Oz? = y? for some o”, 0"Z0.

We can construct such a o” given in Fig 3.4. We have
(¢",0,1,2)Emore
and
(0”,0,1,2)Fz > 0A 22 + Qz? = ¢?
<= (0”,0,1,2)F=sf[z] > 0 and (s[z])* + (s5[2])* = (s{[y])?
& (0”,0,1,2)E5 > 0 and 52 + 122 = 132
& (07,0,1,2)=true
Therefore,
(0,0,1,2)F3z : (more—z > 0 A 2% + Oz? = y?)
By cases 1,2, we have
o=03z : (more—z > 0A 22 4+ Q2% = 3?)
However,
o 3z : O(more—z > 0 A z? + Qa? = y?)
because we cannot construct one model o such that (sh[z])? + (s[z])? = (sh{y])? and (s}[z])? +

sh[2])? = (84[y])? and sh[z] > 0 and s}[z] > 0 and s4[z] > 0 and 0’20 since there is no positive
2 1 0 1 2 p
integer solution for the equation system: a? + b% = 25 and b2 + ¢% = 169.

x=1 2 1
y=5 13
Fig 3.2
| --mmem |----- |
x=3 4 5
y=5 13 5
Fig 3.3
| -=-em |--=--- |
x=3 5 12
y=5 13 5
Fig 3.4
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Example 3.3 We now show that the sometimes operator does not distribute over the universal
quantification, that is, in general,

O(Vz:p)=Vz:Op
does not hold. Consider the two formulas, O(Vu : p) and Vu : Op, in the case that p stands for
z # u and where variable u is static, and variable z is dynamic.
Consider the interval relative to Fig 3.5. It is easy to show that o=Vu : O(z # u). To see
this, we have to show that, for any o’,0’20, i.e. o =< (I,%, L9),... > for I' = {z : i,u : a},

. . vodp
and an arbitrary I, for all ¢,0<i=|o’|, and for every possible value of a, o’ satisfies O(z # u).

We consider two cases:

(1)if a = 0 then (¢',0,1,|0'|)Ez # uas z = 1,u =0 at s} of ¢’
(2)if a # 0 then (0/,0,0,|¢'| )=z # vasz =0,u=a #0 at s) of o'
On the other hand, the state formula Yz : ¢ # u is false at any state of o, since we can

always take u = z at that state. It follows that o £ OVu : (z # u), which shows that the
formulas are not equivalent.

e R |--
x= 1 2 ...
u=10 10 i0 ...

Fig 3.5

Theorem 3.9 concerns the past operators, its proof is similar to Theorem 3.8.

Theorem 3.9 The following formulas are valid:
PRT1T ©O@z:p)=3z:0p PRTS Q3Jz:p=3z:0p
PQT2 OQ(Mz:p)=Vz:0Qp PQT6 QVz:p=Vz:Op
PQRT3 O(Fz:p)=3z:0Qp PQT7 3Jz:BpD>0B3z:p
PQT4 Oz :p)=Vz:Qp PQT8 OVz:pDOVz:Qp

Theorem 3.11 is devoted to developing the laws which are relevant to the chop operator.
First, we prove an auxiliary Lemma.

Lemma 3.10 If a(‘-‘_j)éafi._j), 0<i<k=j<]o|,and g is a formula without free occurrences
of the (dynamic or static) variable v, then (a,,k,7) | ¢ iff (¢/,4,k,7) = q.

Proof

We need to prove that, any bound occurrence of v in the form of Jv : w contained in the formula
q is evaluated to the same truth value over any interpretations (o, 1, k1,71) and (o', %1, k1,71)
. . . . . v v
(i 2 4, j1 < j). Since 05 =0(; 55 F(i..i1) =iy )"
If ¢ contains 3v : w as a subformula, then
(o,t1, k1, 1) F v w
N . v

< (0",i1,k1,51) E w for some 0", ”ﬁl--jl)fa("l--il) .

= (a",fl,kl,?'l) k= w for some o”, a(".l“jl)zai‘.l'_jl) (‘7(.'1..1',):‘7(1'1-.1'1))

— (0', 1, kl»]l) '= Ju:w
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Theorem 3.11 Let p,q be formulas. The following hold:

FQC1 (Fz:p;q) = 3Jz:(p;q) z does not occur freely in ¢
FQC2 (p;3z:q) = 3Jz:(p;9) z does not occur freely in p
FQC3 (Vz:p;q) D Vz:(p;q) z does not occur freely in ¢
FQC4 (p;Vz:q9) D Vz:(p;q) z does not occur freely in p

Proof

The proofs of FQC2 and FQC4 are similar to FQC1 and FQC3. So, we prove only FQC1 and
FQC3. Let o be a model, and k an integer, 0 < k£ < |o].

The proof of FQC1:
(0,0,k,|0))=(3z : p; q)
< (0,0,k,r)=32z : p and (o,7,7,|0|)E=q for some r, k<r=<|d]. I-chop
< (0¢',0,k,7)Ep and (o,7,7,|0|)k=q for some 7, k < r < |o| and for some
a, a’(o_‘r)éa(o__,). I-exists
<= (0',0,k,7)l=p and (o', r,7,|0'|)l=q for some r, k < r < |o| and for some
o', o'Zo. lemma 3.10
< (0',0,k,|))Ep; ¢ for some o/, o'Z0. I-chop
< (0,0,k,|o))E3z : (p;9) lemma 3.10
The proof of FQCS3:

(0,0,k,|o|)EVz : p; q.

& (0,0,k,7)EVz : p and (o, 7,7, |0|)l=g for some integer r, k<r<|o|
Aand (0,7 0, k‘,T)|=p and (Ua T, IUD':q for some Ty k<r=< |0’|, and for every 0", 0’(0_.,-);0(0..1')'
= (0/,0,k,7)E=p and (¢, r,r,|0|)=q for every o', 0'=0 and some r, k < r < |o| (lemma 3.10).
<> (0',0,k,|0'|)f=p; g for every o, o'Z0.
= (0,0,k[0])EVe : (p;9).
w]
Example 3.4 According to Theorem 3.11, the following formula holds:
3z : Oz = 7); O(y = 8) = 3z : (O(z = 7); O(y = 8))
m}

Example 3.5 and Example 3.6 show that the universal quantifier does not distribute over
the chop operator.

Example 3.5 Relative to the interval given in Fig 3.5, the formula Yu : (O(z = uAu > 0); true)
holds, but the formula Vu : Oz = u A u > 0; true is false, where u is a static variable. We prove
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this as follows

oEVu: (O(z = u Au > 0);true)

(0,0,0,{0))EVe : (O(z = u A u > 0); true)

(0/,0,0,[)EO(z = u A u > 0);true for every o', o'20.

(0,0,0,76')=O(z = u Au > 0) and (0/, 74/, 7ov, |0 )=true for every o', 0’20, and
some Tg relevant to the o/,0<rg/<|do’|.

(0/,0,0,75)=C(z = u A u > 0) for every o', 0’25 and some rq.

(0',0,i,70')F=z = u A u > 0 for every o', 0’20, and some r,,7,0<i < rgr.
(0',0,4,ro7)=8[z] = si[u] = sp[u] > 0 for every 0’20, and some r41,i,0 < i < |o|.

i1ty 1100

For each given u, 0’=c, we can choose an 74/ to satisfy the above condition. In fact, let
ro = 8p[u] and i = rgv, then si{z] = i = rgv = sg[u] = si[u]. However, we cannot construct one
interval 0’20 for all u to satisfy the above condition.

oYU : O(z = uAu > 0);true

< (0,0,0,]0))EVu: O(x =uAu>0);true

< (0,0,0,7)EVu:O(z = uAu >0)and (o,r,r,|o])Etrue, for some r,0<r=<|o|.

<= (0,0,0,r)EVu:O(z =uAu>0)forsomer,0<r<|o|

< (0/,0,0,7)E0(z = uAu > 0) for some 7,0 < 7 < |g], and every ¢, a’(onr)%a(o__,).

< (0/,0,i,r)Fx =uAu >0 for some 7,0 < r < |o], for every a’,a(o._r)éa(o,_,), and for
some ,0<i<r < |o|.

< slz] = si[u] > 0 for some 7,0 < 7 < |o], for every o, a(o__r)éa(o__,), and some
,0<i<r=<|ol

< &i[z] = sp[u] > 0 for some 1,0 < r < |o], for every o, Ufo,,,)g"(o..r), and some
,0<i<r <ol

< 1= sp[u] > 0 for some r,0 < r < |0, for every o, a(o__r)go(o_,,), and some
$,0<i<r=|o

Since 0<i<r, when sp[u] > r, the above condition cannot be satisfied. ]

Example 3.6 As proved in Theorem 3.11 (FQC4), p;V¥z : ¢ D Vz : (p;q), ¢ is not free in p;
but the reverse does not hold. The justification is simple: if Yz : (p; ¢} D p;Vz : ¢ held, then by
taking p to be true, we would have

Ve : (true;q) D (true;Vz: q)
If ¢ and Vz : q are lec-formulas, then we can rewrite this as
Yz : O¢g D OVz : ¢

Thus, taking = to be a static variable u, and ¢ to be z # u, the above contradicts Example 3.3.
O

Theorem 3.12 is similar to Theorem 3.11 but is concerned with chop in the past operator.

Theorem 3.12 Let p, ¢ be formulas. The following formulas are valid:

PQC1 (3z:p5q) = 3z:(p5q) z does not occur freely in q.
PQC2 (p3;3z:q) = 3z:(p5q) z does not occur freely in p.
PQC3 (Vz:p5q) D Vz:(piq) z does not occur freely in q.
PQC4 (p;Vz:q) D Vz:(piq) z does not occur freely in p.
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3.4.3 Values of Terms

In this section, we present some logic laws concerning the values of variables at the previous,
next, first and last states over an interval. First, we introduce some notations used in the sequel.

Definition 3.2
1. keep(p) ™ O(<empty — p)
2. remain(p) def O(~first — p)
3. inner(p) def O(~first A ~empty — p)
a

keep(p) holds over an interval as long as p holds at all states ignoring the last one, while
remain(p) holds over an interval as long as p holds at all states ignoring the first one, and
inner(p) holds over an interval if p holds at all states ignoring the first and last ones.

Theorem 3.13 Let ey, e2 be terms. Then

EQ1 [ keep(Qer = Qez « Oler = €2))
EQ2 k= remain(Qe; = Qez & O(e1 = €3))
EQ3 k inner(QQe = ©OQe)

Proof

We prove only EQ1 here. To this end, we need to prove (o,0,r,|o])more — (Qe1 =
Qez+Q(er = €3)) for every o and 7, 0 < r < |o|. I 7 = |o|, the conclusion is trivially
true. If r < ||, then (0,0, 7,|0|) | more. Hence,

(0’07"" |<7|)|=Of31 = Qez
A (U,O,’I’, |0|)[O€1] = (0’,0,7‘, |0|)[O€2]
= (0,0,r+1,|0|)[es] = (0,0,7 + 1, |a])[e2]
&= (0,0,7+ 1,|0|)=e1 = e;
< (0,0,r, |U|)|=O(el = 62)

Lemma 3.14 Let e be a term and f a function of arity one. Then

Funl [ O(f(Qe) = Of(e))
Fun2 | O(f(Qe) = ©Of(e))

Proof

We prove only Funl. Let o be an interval and r an integer, 0 < r < |o|. If r = |a}, (0,0, T, le]) E
f(Qe) = nil = Qf(e). If r < |o|, then we have

(0,0,7,|o)E(f(Oe) = O f(e))

(9,0, 7, |a))[f(Qe)] = (a0, 7,|0)[Of(e))]
£((e,0,7,|oD[Oe)) = (2,0,7 + 1,]0)[f(e)]
f((a,0,7+ 1, o])le]) = f((2,0,7 + 1, o])[e])]

true

1111

43



Corollary 3.15 Let eq,..., e, be terms and f a function of arity m (m > 0). Then

Fund | O(f(Qey,-..,Oem) = Of(er,---r €m))
Fun4 '= D(f(Oel, seey Oem) = @f(ela eeey CM))

u]

Notice that although we consider only the name and arity of a function, a function (called
function-ezpreasion) can be defined compositionally in a complicated way. For example, +,
., *, | are functions of arity two over Z, a composite function f of arity two over Z can be
defined as f(z,y) def (z 4+ y) *((z — y)/(z * y)). Therefore, in what follows, whenever a proof
involves a function, it is sufficient to take only its name and arity into account. Note also
that, in the definition of a composite function, the parameters of the function are only the free
variables; whereas in the invocation of such a function, the parameters are replaced by terms
(arguments). In a similar way, we can define a term-ezpression and formula-ezpression with
only free variables as their parameters. In the applications of term-expressions and formula-
expressions, the parameters can be replaced only by terms (arguments). Certainly, a term-
expression (formula-expression) is also a term (formula).

Lemma 3.16 Let u be a static variable and z a dynamic or static variable. Let f be a function

of arity two. Then
Fun5 [ O(f(,02) = Of(,z))
Fun6 E O(f(v,Oz) = O f(u,z))

Proof

We prove only Fun5. Let o be an interval and r an integer, 0 < r <X |o|. If r = |o], (0,0, 7, lo]) E
f(u,Oz) = nil = Qf(u,z). If 7 < |o|, then we have

(U’ 0,r, |0|)|=(f(u’ O"E) = Of(u’ x))

Aand (0’, 0,r, lol)[f(u, Ox)] = (Uv 0,r, IUD[Of(u’ :c))]
had f((aa 0,r, |0|)[u], (0‘, o,r, IUI)[OZ)]) = (U’ 0,7+1, IUI)[f(uv z)]
A f((da 0,7+1, IUI)[U], (U, 0,7+1, |a|)[m]) = f((d, 0,7r+1, |¢r|)[u], (0,0,7+1, |0‘|)[.’C])
<~ true
(m}
Lemma 3.17 If u is a static variable, then
VarS1 [ keep(u = Qu)
Var§2 k remain(u = Qu)
Proof Straightforward.
]

Lemma 8.18 Let u be a static variable and z a static or dynamic variable. Let e(u, z) denote
a state term-expression which can be a constant or a variable u or z or a function-expression

f(u), or f(z) or f(u,z), then

TerS1 [ keep(e(u,Oz) = Qe(u,z))
TerS2 [ remain(e(u,Oz) = Oe(u,z))
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Proof

We prove only TerS1. The proof proceeds by case analysis of the term e(u, z).

1. If e(u,z) is a constant ¢, then the conclusion is obvious.
2. If e(u,2) is a static variable u, then by Lemma 3.17, the conclusion holds.
3. If e(u,z) is a dynamic variable z, then the conclusion trivially holds.

4. If e(u,z) contains u and z, then e(u,z) is a function-expression f(z), f(u) or f(u,z) then
by Lemma 3.14, 3.16 and 3.17, the conclusion holds.

0

Theorem 3.19 Let u be a static variable and z a static or dynamic variable. Let (u, ) denote
a state formula-expression that contains free variables u or = or both as its only variables. Then

ForS1 [k keep(¢(u, Oz) « Q¢(u,z)))
ForS2 E remain(p(u,Oz) < Q¢(y,z)))

Proof

We prove only ForS1. Let o be an interval and r an integer, 0 < r < |o]. If r = |g], the
conclusion is obvious. We assume |o| > r. The proof proceeds by induction on the structure of
state formulas. Since o(u,z) contains free variables #, or z or both as its only variables, it is

impossible for ¢(u,z) to contain quantifiers. Also, it does not contain any temporal operators.
Thus,

1. ¢(u,z) is a primitive predicate p(u, z).
The proofs for the cases of p(u) and p(z) are similar.

(0,0,7,0) = ¢(u,Oz)
< (0,0,7,|0]) E p(u,Ox)
<= p((0,0,7,|0})[u],(,0,7,]0])[Oz)]) = true
< p((o,0,n,]0))u],(0,0,7 +1,|o|)[z]) = true

<= p((0,0,7+ 1,]0))[u],(0,0,7 + 1,|0])[z]) = true u is static
< (0,0,7+1,|0]) E p(u,z) I-pred
< (0,0,7,|0]) E Op(u,z) I-next

= (0,0,m,0]) £ Op(u,2)
2. p(u, ) is ey (u,z) = ez(u, )

(9,0,m,l0]) [= ¢(u, Oz)
= (U’O’Ta IUD |= e1(u, O:I:) = 82("'7 Oz)
<= (0,0,7|0]) E Oe1(u,z) = Qea(u, z) lemma 3.18
<= (0,0,1,]0]) E Oler(u, z) = ez(u,)) theorem 3.13

3. @(u,z) is ~9(u,2)

(0,0,7,]0]) E ¢(u, Oz)
~ (0’0, Ty Ial) |= “¢(UaO~T)
g (U» 0,7',|0'|) l= _‘O"b(u,x) hypothesis
= (0‘, 0, T,|0’|) '= O“d’(u,x) r>0
= (0‘,0,7‘,|0|) |= O‘P(u»m)
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4. p(u,z) is $1(u, 2)Ay(u, 2)

(9,0,7,]0]) F ¢(u,Oz)
< (0,0,7,]9]) £ ¥1(u, Oz)A¢y(u, Oz)
~ (0,0,7‘, IUI) '= O¢l(uvz)AO¢2(u,x) hYPOtheSiS
L (‘7’077" |(7|) t= O(¢l(u’z)A¢2(uaz)) FD3
< (0,0,7,l0]) E Op(u, )

(m]

Theorem 3.20 Let u,, ..., u,, be static variables and z4,...,z, be static or dynamic variables.
Let ©(%1, ..s Um, T1, ..., Tn) denote a state formula-expression that contains free variables u; (1<
i<m)or zj (1 <j<mn)orall of them as its only variables. Then

For§3 | keep((u1, -y imy 21, 10y ) € O@(tt, ooy s 1, v 21))
For§4 | remain(p(u1, ..., Umy, OZ1y ..., OZn) & O@(¥1, .y Um, T1, ey Tn))

Proof

Similar to the proof of Theorem 3.19 which can easily be generalised. o

3.4.4 Replacement of Variables

Definition 3.3 A formula (or term) is called static if it does not refer to any dynamic variable.
o

Definition 3.4 Let 7 be a formula or term. If ¢ is a term and z a variable used in 7, then
7[t/z] denotes the result of simultaneous replacement of all free occurrences of z by ¢ in 7. The
replacement is called compatible if either z and ¢ are static or z is dynamic. o

In the following, we write 7(z) to imply that 7 has one or more occurrences of variable =
and that there is no quantification over z.

Definition 3.5 The replacement 7(t/z] is called admissible for 7(z) if it is compatible and none
of the variables appearing in ¢ is quantified in 7. We also say that ¢ is admissible for z in 7(z)
and write 7(t) to denote T{t/z]. o

Example 3.7 Let z be a dynamic variable and u a static variable, then the substitution of z
for u in 3z : (z # u) is not admissible. O

Theorem 3.21 (replacement of equals by equals in terms)

For a state term-expression e(z) and terms, t;, t2, that are admissible for z in e(z), we have
STerl t; =t2 De(t1) = e(ta)

Proof

The proof proceeds by induction on the structure of e(z). Obviously, we do not need to consider
constant terms. Let T = (0,0, k,|o|) be an interpretation.
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1. e(z) is a variable.

IEt=t
I[e(t1)] = Zle(t2)]
I != e(tl) = e(t2)

2. e(z) is a (possibly composite) function f(z).

IEt=t
I[t1] = Z[ts]
fZt]) = f(Z[tz))
I[f(t1)] = Z[£(t2)]
Ik f(t)= f(t2)

111

IR

o

Corollary 3.22 For state term-expressions e;(z), e2(z) and terms ty,;, that are admissible for
z in e1(z), ez(z), we have

STer2 t, = tz/\el(tl) = ez(tl) ») el(t2) = 62(t2)
Proof

Let o be an interval and r an integer, 0 < r < |o|. Suppose (0,0,7,l0])Et: = taAei(f)) =
es(t1),0<r=|o|. By Theorem 3.21, we have

(,0,7, lo)er(t1) = ex(tz) and (o, 0,r, o) =ea(tr) = ex(ta)
Since (,0,7, |o]) = ex(t1) = ea(ts), we obtain
(0,0,7,|0])=e1(t2) = ex(t2)
o

Note that the condition, e(x) being a state term, is necessary for Theorem 3.21. For example,
taking e(z) to be Oz, and t;,t; to be z,y , respectively, £ = y does not imply Oz = Qy.
However, if ¢; = t; holds throughout an interval, then the conclusion can be changed.

Theorem 38.23 If e(z) is a term-expression, and t;,t; are terms that are admissible for z in
e(z), then
STerd if ': D(tl = tz) then |= D(e(tl) = C(ig))

Proof
The proof is by induction on the structure of term e. Let o be an interval and % an integer
0<k < |o|. Then, (,0,k,|o|)Et = t2.

1. If e(z) is a state term, by Theorem 3.21, the conclusion holds.

2. If e(z) is Qei(z), we need to prove (0,0,k,|o|)=Qei(t1) = Qei(tz). If & = |o], then
the conclusion is obvious. Suppose k < |o|. Then (0,0,k,|0)EQei(t1) = Qei(tz) iff
(6,0,k + 1,|0|)l=e1(t1) = e1(t2). By the induction hypothesis, (¢,0,k + 1,|o])=e1(t1) =
el(tg).
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3. If e(z) is ©ei(z), a similar proof as that for Qe; can be made.
4, If e(z) is beg(ei(z)). We need to prove (0,0, k, |o])=beg(e1(t1)) = beg(es(2)).
(0,0,k,|0}) = beg(e(t1)) = beg(e(t2))
> (0,0,k,|0l)[beg(es(t1))] = (0,0, k, |o])[beg(es(t2))]
= (,0,0,]0])er(t1)] = (,0,0, |o])[es(22)]
— (‘7’0,0, IUI) i= el(tl) = Cl(tz)

By the induction hypothesis, (0,0,k,|0]) = e1(t1) = es(t;) for all k, 0 < k < |o|. So,
(9,0,0,0]) = ex(t1) = ex(t2).

5. If e(z) is end(e1(z)), a similar proof as that for beg(e;(z)) can be made.

6. If e(z) is a function f(z), then it is already discussed in 1.

Theorem 3.24 (replacement of equals by equals in formulas)

If p(z) is a state formula-expression and t;,t; are terms which are admissible for p(z), then
SForl t; =t D (p(t1)~p(t2))

Proof

Let o be a model and r an integer, 0 < r < |o|. The proof proceeds by induction on the structure
of state formula p.

Suppose (4,0, o))l = ta. We need to prove (4,0, 7, [o])l=p(t2) (70,7, [o])l=p(ta).
(1) p(z) is a primitive predicate ¢(z).

Since (0,0, 7,|0]) = t1 = t2, then
(U,Oa 7y |O‘|) |= p(tl)
<> (0,0,1,|0) = q(t1)
< q((0,0,r,|0|)[t1]) = true
<= ¢((0,0,7,|0])[t2]) = true
—

(‘770)7', |0’|) |= q(t2)
< (0,0,1,|0]) F p(t2)

(2) p(z) is e(z) = c and c is a constant in D. Then,

(Ua Oa Ty |G‘|) |= p(tl)
< (0,0,7,|0]) Ee(ti)=c
<= (0,0,7,]|0]) Ee(tz)=e€(t1)=c theorem 3.21
A (0',0, Ty |0|) |: p(t2)

(3) p(z) is e;(z) = ea(z). Then,
(0’0’7" |UI) |= p(tl)
<= (0,0,1,|0]) = e1(t1) = e2(t1)
= (0,0,7,|0]) = e1(t2) = e2(t2) corollary 3.22
(4) p(z) is ~g(z). Then,
(0‘, 0’ T, Ial) |= p(tl)
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~ (‘7’ 0,r, Ial) |= _'Q(tl)
&> (0,0,7,]0l) = q(t2) hypothesis, theorem 3.7
=4 (U, 0, T, Ial) "—‘ p(tZ)

(5) p(2) is q1(z)Aga(z). Then,

(0’, 0,r, |0’|) '= p(tl)
= (‘7’017'1 I"l) ’= ql(tl)/\%(tl)
< (0,0,7,|01) F q1(t2)Aga(22) hypothesis, theorem 3.7
< (0,0,7,]|0) = p(t2)

(6) p(z) is 3y : g(z). Then,

(U’O’ Ty |‘7|) |= p(tl)

(0,0,r,|0l) E3y:q(t)

(¢’,0,7,]0]) E g(t1) for some ote

(¢',0,7,|0]) = g(t2) for some o’Lo hypothesis
(0‘,0,7‘, Ial) E3dy: ‘I(t2)

(0,0,r, lol) = p(t2)

g1ttt

0

In the above proof, it is important that y is not used by ¢; and ¢; since this allows us to
have (¢/,0,7,|0]) = t1 = t2, so induction hypothesis can be applied.

We will show that the two restrictions required by the theorem are essential for its validity.
Consider first the case p(z) is not a state formula. We may then take p(z) to be O(z = 10) and
t1,1; to be y, 2, respectively, and obtain

FO(y = z—=(O(y = 10)=0(z = 10)))
To see the above is not valid, it is sufficient to consider the sequence

o =< (IS,IS),(I%,I;) > and I® = {y:10,2: 10}, I} = {y : 10, z : 20}

We observe that o satisfies y = z and O(y = 10) but not O(z = 10) at state so.

Next consider the case that formula p(z) quantifies over some of the variables of ¢;,13. For
example, take p(z) to be Iy : (y > z), and #;,%; to be y, 2, respectively, then

FO(y = 2—(3y:y>yoIy:y > 2)

Clearly, 3y : y > y is always false, while if z and y range over the integers, Jy : y > z is always
true.

We can obtain a stronger notion of substitutivity by requiring that e; = e, holds not only
at a single position, but throughout the interval.

Theorem 3.25 Let p(z) be a formula with a free variable z and let #,%; be terms that are
admissible for p(z). Then the following holds:

SFor2 if z0(t; = t2) then p(t1) = p(t2)

Proof Similar to the proof of Theorem 3.24.
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Theorem 3.26 For a stateformula p(z1, ...,2m), a formula g(z,, ..., z.,), a state term e(z,, ..., Tpm),
and terms 21, ..., 2y, €1, ..., €m, that are admissible for z,, ..., z,, in p(z1, ..., 2m) and e(Z1, .00y Ty),
the following hold:

STerd (th = e1A..Atm, = €) D (e(t1, ey tm) = e(er,...,em))
STer5 (t1 = e1A. Aty =ep) D (p(t1, s tm)oplen, ..r€m))

SFor6 if FO(t; = e1A...Atm = €y,) then (g(t1, ..., tm) = gq(es, ey €m))

Proof Similar to the proof in the case m = 1.

3.4.5 Quantifications

The logic laws presented in this section are concerned with the universal quantification.

Theorem 3.27 For a (static or dynamic) variable v, a formula p(v), and a state term ¢ that is
admissible for v in p(v) we have

UQgol Vv :p(v)D p(t)
Proof

Let 0 be a model and k an integer, 0 < k < |o].

(0,0,k,lol) k= Vo :p(v)

(¢',0,k,|0']) E p(v) for any o', o'Z0. Abb-all
(¢/,0,k,|0')) E p(v) for some o' with (¢',0,k, |0'])[v] = (0,0, k, |o|)[t].
(¢/,0,k,|0")) E p(v)iff (¢,0,k,|e|) E p(t) for this o’

(0,0,k,|0) E p(t)

11D

0

It is easy to come up with counterexamples for cases in which the required restrictions are
violated.

Example 3.8 For a static variable v and a variable z, Yv3z : (z # v) is valid.

Taking ¢ to be z which is not admissible for 3z : (z # v), we obtain for p(t) the contradictory
formula 3z : (z # z). =

Example 3.9 Let v be a static variable and z a dynamic variable. The formula
Yo :O(z #v)

is satisfiable (see Example 3.3). If we take ¢ to be z which is not admissible for v, we obtain an
invalid formula p(z) : Oz # z. Therefore, the condition of the term t being admissible for v in
p(v) in Theorem 3.27 is necessary.

w}
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Theorem 3.27 can be strengthened. In fact, a static variable, say u, can be replaced by a
dynamic state term as long as the replacement of u does not create new occurrences of dynamic
variable in the scope of temporal operators. We discuss this in the following.

Example 3.10

Vu:(u=2—>u=Qz)D (y=z-y=z)
holds, where u is a static variable and y is a dynamic variable. u]
Definition 3.6 A state term ¢ with the property that its substitution for a static variable u

in a formula p does not create new occurrences of dynamic variables in the scope of temporal
operators and none of the variables in ¢ is bound in p is called substitutable for u in p. o

Theorem 3.28 Let ¢ be substitutable for u in p. Then
UQgo2 Vu:p(u) D p[t/u]

_ Proof Similar ro the proof of Theorem 3.27.
a

In Theorem 3.28, the condition for ¢ to be substitutable for u in p is necessary. A counter-
example is given in Example 3.11.

Example 3.11 Consider the case that pis v = z—(u = z), taking ¢ to be a dynamic variable
¥, and o to be such that

(0,0,0, |a})[z] = (2,0,0,|0])[y] = (2,0,1,]0])[z] # (,0,1, 0])[3]
then(o,0,0, |0 )=V : (u = 2—=Q(u = z)) since (,0,0,|0])[z] = (¢,0,1, |0])[z], and (4,0,0, |o] )=y =
z and (0,0,1,|0]) £y = .
Thus, we obtain
(0,0,0,0]) EVu: (u=2-0(u=1z))—(y =2—-0(y = 2))
o

Theorem 3.29 Let u be a variable which is not quantified in p(u), and e be a state term which
is admissible for u in p(u). Then

EQadd p(e) D Ju: p(u)
Proof

Let ¢ be an interval and r an integer, 0 < r < |o|. Suppose (0,0, ,|o])=p(e) and (0,0,1", lo]) ¥
Ju: p(u). Then

(,0,1,]0]) FE ~3u : p(u)
< (0,0,r,|0|) E Yu: -p(u) Abb-all
= (0,0,7,|0]) = -p(e) theorem 3.27

This is a contradiction.

51



Theorem 3.30 Let v be a variable and p and ¢(v) be formulas such that v has no free occur-
rences in p. Then
UQadd pDg(v) = pDVv:g(v)

Proof

Let o be an interval and r an integer, 0 < r < |o|. Suppose p D ¢q(v), and (0,0,7,]0])l=p. We
need to prove that (¢,0,7,|0])EVv : ¢(v).

Consider any o/, 0’=0. Since v has no free occurrences in p, by Lemma 3.10, we have
(¢,0,7,|d’|)Ep. Since p D g(v), (¢/,0,7,|0']) |= p — g(v). Hence, (¢’,0,r,|’|)l=q(v). Therefore

(¢,0,7,|o])EVv : q(v)

a
Theorem 3.31 Let v be a variable, and p(v) be a formula.
1 = O(p(v)—¢)—0(3v : p(v)—q), if v has no free occurrences in g.
2 [ B(p(v)—g(v))—O(Vv : p(v)-Vv : q(v))
Proof
We prove only (2). Let o be a model, and 7 an integer, 0 < 7 < |o|.
(0,0,7,|0]) E p(v)—q(v)
< (0,0,7,]|0}) E Yv:p(v)—p(v) and (0,0,7,|0|) = p(v) — ¢(v)  theorem 3.27
= (0,0,7,|0])  Yv: p(v)—q(v) theorem 3.3 (MP)
= (0,0,7,|0]) E Yv:p(v)-Vv:q(v) theorem 3.30
a

The law ChV1 in Theorem 3.32 is useful for proving the substitution law given in Theorem
3.7. ChV1 is proved using only the rule I-exists.

Theorem 3.32 If variables z,y both are either static or dynamic, and neither does z appear
in p(y) nor does y appear in p(z), then the following hold:

ChV1 3z :p(z)=3y:p(y)
ChV2 Vz:p(z)=Vy:p(y)
AddQl p(z)=gq(z) = Iz :p(z)=3z:q(x)
AddQ2 p(z)=gq(z) = Vz:p(z)=Vz:q(x)

Proof
We prove only ChV1 and AddQ1. Let o be an interval and k an integer, 0 < k < |o].

The proof of ChV1
(0,0,k,|o|) |E 3z : p(z)
= (0',0,k,|0'|) E p(z) for some o'Z0

We can construct an interval o” by |¢”| = |o| and (¢”,0,k,|¢"))[y] = (¢’,0,k,|d’|)[z] and
(6",0,k,|0")[z) = (0,0, k, |o|)[z]for all z € V—{y}. Then, it is obvious that (¢”,0, k,|o"|)  p(y),
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and a”éa, Hence, (0, 0, k7 |(7|) ’= ay -p(y)

The proof of AddQ1
(9,0,k, o) = 3z : p(z)
<= (0',0,k,|0']) E p(z), for some 0’25  I-exists
< (0,0, |0') = g(z), for some 0’20 p(z) = ¢(z)
<= (0,0,k,|o]) F 3z : g(2) I-exists

o

Theorem 3.33 can be proved by Theorem 3.32. It is useful for substitution for a dynamic
(or static) variable in a bound formula.

Theorem 3.33 If the variables z and y both are either dynamic or static, and y does not
appear in p(z), then
UQgo3 Vz:p(z) D p(y)

Proof

Let o be an interval and k an integer, 0 < k < |o].

(0,0,k,l0]) | Vz : p(z)

<= (0,0,k o)) = Vy: p(y) Chv2
< (d',0,k,|0') | p(y) for every 0’2o Abb-all
= (0,0,k,l0]) E p(y) oZa

0

In this chapter, we presented a collection of logic laws regarding variables, equality, and
quantifications. They are useful for theorem proving and reduction of programs. However, we
have not worked out a deductive system for EITL as such a system is beyond the scope of this
thesis.
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Chapter 4
Programming Language

Summary: An extended Tempura language, which is a basis for us to develop a
framing technique for temporal logic programming, is formalized; the svntax and
semantics of the extended Tempura are presented; a normal form of programs is
described and proved.

Tempura language was introduced in [61] as an executable subset of ITL. The principal restric-
tion is that Tempura programs must be deterministic and the intervals over which the programs
are executed must be finite. Therefore, the following constructs are not allowed in basic Tem-
pura.

1. Disjunction.
The disjunction is non-deterministic, so, in general, it is not permitted in Tempura. For
instance,
is not a well-formed program in Tempura.
2. Negation.
Basically, the negation is non-deterministic, for example,
askip = empty Vo len(2)Vien(3) v ..

(2 :=2Ay:=3) = ~(z :=2)V(y :=3)

Therefore, the negation of a program is not syntactically permitted. However, negation is
indispensable for boolean expressions which may appear in conditional and iterative state-
ments. For instance, =(z = 2) and =(z > 3Ay < 5) are well-formed boolean expressions.

3. State formulas.

A state formula such as £ = 2 is not a program in Tempura because no definite interval
has been specified.

1. Universal quantification.

It is impossible to execute a program with universal quantification but a restricted form
of universal quantification can be defined (see [61]).
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Tempura will be extended in several respects in this thesis:
1. Infinite intervals.

The reactive systems, such as operating systems and control software of safety critical
systems, etc. require non-terminating executions of software. To make Tempura more
useful in practice, we extend Tempura to permit a program to be executed over an infinite
interval.

2. Previous operator.

A variable can refer to its previous value but we do not permit the previous operator to
appear freely in programs because this is very expensive in practice.

3. Projection.

A construct (pi,...,Pm) PrJ g, called projection, is used in the extended language and will
be discussed in Chapter 5.

4. Framing.
A framing technique is introduced and discussed in Chapters 6,7,8 in detail.
5. Await.

After the framing technique is introduced, a communication and synchronization operator,
await, is defined. It is discussed in Chapter 8.

This chapter is organized as follows: Section 4.1 presents the syntax of the extended Tem-
pura, derived structs and data structures. Section 4.2 presents the semantics of the extended
Tempura. Section 4.3 defines P-models corresponding to a program P. In Section 4.4, the
normal form of programs is formalised and proved.

4.1 Syntax

This section is devoted to presenting the syntax of the extended Tempura language. First, the
grammar of statements is given, then expressions are defined.

4.1.1 Programs

The programming language we use is a subset of the underlying logic. As mentioned earlier, we
augment Tempura with framing, parallel, projection and await operators [20, 22]. In addition,
the variables within a program can refer to their previous values.

A program can be terminable or non-terminable. A program is terminable if it has a finite
model. A program is non-terminable if it has no finite model. If a program is terminable
(non-terminable) then it can be executed over a finite (infinite) interval. The language provides
some statements to specify the interval over which a program is executed. In fact, the primitive
statement empty and the derived statements len(k) and halt{c) are used for this purpose.

The extended language also intends to be as close to a deterministic language as possible.
Being deterministic means that a program has only one model from the point of view of se-
mantics; whereas, from the point of view of syntax, being deterministic requires that, roughly
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speaking, the disjunction be generally unavailable. The negation of a temporal formula, being
fundamentally non-deterministic, is not a primitive operator of the language. Instead, the con-
ditional statement (see below) and empty, both defined in terms of the negation, are taken as
primitives. This implies that some of the derived operators of ITL cannot be defined at all in
Tempura. For instance, universal quantification and an arbitrary choice cannot be defined in
full generality although a restricted form of the universal quantification can be defined and a
mutually exclusive disjunction can be used in a program. Moreover, since the execution of a pro-
gram proceeds over a series of states, a deterministic program also requires that only one choice,
more or empty, be derived at each state so that the execution of the program can determine
whether to continue or terminate.

The previous operator facilitates referring to the previous values of variables which is useful
in a framed environment. But using the previous operator is very expensive in practice because
extra memory and computation time are required. Therefore, the previous operator is permitted
only within expressions.

In this chapter, it is sufficient to introduce the basic constructs of Tempura. Later, once the
framing technique has been formalized, an await statement is defined in Chapter 8. A projection
construct is discussed in Chapter 5. At the end of the thesis, as a comparison, a more powerful
framed concurrent temporal logic programming language (FTLL) is briefly presented in Chapter
8.

Programs are constructed inductively from the operators shown below, together with a
suitable choice of expressions which may involve the previous operator.

There are ten elementary statements, six of them are basic constructs directly taken from
EITL, i.e. the equality (=), conjunction (A), always (O) (since < is not permitted), existential
quantification (3z : p), next () and chop (;); the other four, conditional statement, while
statement, parallel and empty are derived constructs in EITL. From the point of view of the
programming language, the ten statements are all primitives since the negation (), sometimes
(©), disjunction {V) and chop-plus (+) are absent in the definition of the extended Tempura.
This also implies that some operators cannot be derived in the way in which they were derived
before. Note that in an induction proof of a property of programs, the assignment and empty
statements can be thought of as basic statements and the others can be treated as composite
statements. As usual, in the following, z denotes a variable, e stands for an arbitrary arithmetic
expression, b stands for a boolean expression, and p and g stand for programs.

S — ass Assignment (Unification): z=e

S — and Conjunction statement : pAg

S—if Conditional statement : if b then p else q def (b-p)A(-b—q)
S~ loc Existential quantification : dz:p

S —nezt  Next statement : Op

S - alw Always statement : Op

S — seq Sequential statement : piq
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S — while  While statement : while b do p def (pAb)*AD(empty — -b)

S — par Parallel statement : p"c]d:ef PA(g; true)VgA(p; true)

S —-end Termination : empty

where b is a boolean state expression consisting of propositions, variables, and boolean connect-
ives.
The meaning of these statements can be captured by the interpretations within the logic.

The assignment z = e is a special case of equality and means that the value of the variable
z is equal to the value of the expression e. Since it is an equality, its interpretation is subject
to I-equal. Whenever an assignment z = e is encountered, we evaluate z and e by Z[z] and Z[e]
to see whether or not Z[z] = Z[e]. Therefore, if e is evaluated to a constant in D and z has not
been specified (or has been specified as the same value as €) before, then we say e is assigned to
z. In this case, the equality z = e is satisfied otherwise it is false. It is really that z is unified
with e as in Prolog.

Note that the equality in Tempura has two functions: assignment and comparison. The
former is a statement in a program while the latter is in a condition, boolean expression, asso-
ciated with the conditional statements or iterative statements. An assignment is true as long as
it is satisfiable whereas a condition is true if all the variables w.r.t. the condition are specified
and the condition is evaluated to true.

The conditional statement if b then p else g, as in the conventional programming language,
means that if the condition b is evaluated to true then the process (i.e. sub-program) p is
executed otherwise the process ¢ is executed.

As in the logic, the next statement (Qp means that p holds at the next state while Op means
that p holds in all states from now. The terminal statement empty simply means that the
current state has reached the final state of the interval over which a program is executed.

The sequential statement p; ¢ means that p holds from now until some point in time in the
future and from that time point ¢ holds. Intuitively, the program p is executed from the current
state until its termination, then the program ¢ is executed.

The conjunction statement p A ¢ is executed in a parallel manner. The processes p and ¢
start at the same state but may terminate at different states. They share all the states and
variables during the mutual execution.

The statement while b do p allows process p to be repeatedly executed a finite (or an infinite)
number of times over a finite (or an infinite) interval as long as condition b holds at the beginning
of each execution. If condition b becomes false, then the while statement terminates, otherwise,
p is executed. For instance, while true do p allows p over an infinite interval to be executed a
finite or an infinite number of times, each time on a finite subinterval, or an infinite subinterval
for the last execution. However, this statement is obviously false within any finite interval
if the execution of p requires a non-singleton interval. Another extreme case is the statement
while b do empty. One can show that it is simply equivalent to ~bAempty (see Theorem 4.7).

The parallel computation presented here proceeds synchronously, and may be modelled
by true concurrency. It is weaker than the asynchronous parallel computation modelled by
interleaving. In fact, the parallel operator presented here is very close to the conjunction. The
basic difference between p||g and pAgq is that the former allows both processes p and g to be able
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to specify their own intervals while the latter does not. For instance, len(2)||len(3) holds but
len(2)Nen(3) is obviously false.

The existential quantification statement 3z : p intends to hide the variable z within the
process p. It may permit a process p to use a local variable z. This idea can be realized in an
operational semantics. However, within temporal semantics, the concept of a local variable is
not effective (see Chapter 7 for details).

Although the language given here rules out the disjunction and the negation as well as the
universal quantification constructs as basic statements, the language does not guarantee that
programs built from it are deterministic. The problem is that an immediate assignment, say
z = e, is non-deterministic since z = e = z = e A empty V& = e A more, so are OQ(z = e),
O(z = e) etc. If a unit assignment 2 := e rather than an immediate assignment were used as a
primitive statement, the language would be deterministic. However, an immediate assignment
has its advantages, e.g. it can easily be used to initialise variables and it corresponds to the
equality taken directly from the underlying logic. So, it is necessary to keep the immediate
assignment as a primitive. Therefore, to build a deterministic program in the language, len(k)
(k > 0) or halt(b) (b is a boolean expression) (see below) or Omore (only for a non-terminably
deterministic program) construct must be provided to specify a definite interval for the program.

Hereafter, we will use the term ‘programs’ to mean programs belonging to the extended
Tempura. Most of them are deterministic and terminable programs which may involve the
previous operator only in expressions. However, some results are discussed in a broader scope in
which non-deterministic programs and/or infinite intervals are considered. To avoid ambiguity,
whenever only a deterministic program or only an finite interval is involved, we clarify it in an
explicit manner.

Example 4.1 Here is a simple program: z = 0 Awhile (z < 3) do (O(z = Oz + 1) AQempty).
O

4.1.2 Derived Constructs

The following constructs can be built from the basic statements and used in programs.

1. Termination and the final state

The formula halt(p) is true over an interval if and only if p is true at the final state. In
other words, the computation terminates as soon as the formula p becomes true. The
other relevant operators are fin and keep. The formula fin(p) is true as long as p is true
at the final state while keep(p) is true if p is true at every state ignoring the final one.

S — halt halt(p) = O(empty—p)

§—fin fin(p) = O(empty—p)

S — keep keep(p) - O(—~empty—p)
2. Assignment Operators

Based on the equality, several assignment operators can be defined. In the following, let =
be a variable, u a static variable, and e an expression.
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1) Temporal assignment
S —tem—ass z—eIu:u= eAO(empty—z = u)

Such an assignment has the meaning: the value of z at the end of an interval equals
the value of e at the current state.
2) Next assignment
S —next —ass z o= ed=°fO:c=e

This assignment has the meaning: the value of z at the next state equals the value
of e at the current state. Note that the next assignment does not specify the length
of the interval although it takes one unit of time.

3) Unit assignment
S —unit—ass z := edéfskipr o=e

The unit assignment asserts that the value of z at the next state equals the value of e
at the current state the same as the next assignment does and it specifies the length
of the interval is one unit of time.

4) Multiple assignments
S — mult — ass (1,...,25) op (€1, ...,€2) def z10pe A...Az, 0pey,
where op i= 0= | := || =
3. Iterative Statements
1) For-loops

A particularly simple form of loop is for n times do p which just denotes n iteration
of p, i.e. p;...;p (n times). It is inductively defined as follows:
. def
for 0 times do p = emply
for n+1 times dop def (for n times do p);p

where n€Ng. Loops with control variables can also be defined.
fori<0dop def empty

fori<n+1ldop ef (for i < n do p); p[n/i]

where n€Ng and 4 is a static variable, and 7 is substitutable for i in p as defined in
Chapter 3.

2) Repeat-loops
Finally, a repeat-loop is defined in terms of the while-loop in the usual way.

repeat p until b def p; while ~b do p

Other loops could be defined in a similar way. For example, in the loop for vel dop
the control variable v takes successive value from the list [.
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4.1.3 Expressions

The choice of permissible expressions is wider but only constants, variables, array elements,
strings, and list expressions, as well as restricted temporal expressions are used in this thesis.

1. Constants.
Constants include integers and boolean constants.
2. Variables.

In the underlying programming language, variables are, as in EITL, partitioned into two
parts: static variables and dynamic variables. From the point of view of data structure,
variables are divided into simple variables (say z) and structured variables (say z[1]). The
values of a variable at the previous and next states can be referred to over an interval.

3. Arithmetic expressions.

Arithmetic operators are: +, -, *, /, mod. Arithmetic expressions are built from integers,
variables and arithmetic operators.

e An integer is an arithmetic expression.

o If ¢; and ey are expressions, so are the following operations:
e; + €2, €1 — €9, €] * €2, 81/62, €1 mod €2
o If e is an expressions, so is the Qe at a state different from the final one.
o If e is an expressions, so is the e at a state different from the first one.
4. Boolean expressions.

Boolean expressions include relational expressions. Relational expressions are built from
arithmetic expressions and relational operators: >,<,=,<,# etc. Boolean expressions
are built from relational expressions and boolean connectives such as A,V, -, —.

o If e; and ey are arithmetic expressions, then the following constructs are relational
expressions:
€1 > €3, €1 > €, €1 < ez, €1 J €, € = €3 €1 F €2

A relational expression is a boolean expression.

e Boolean constants ‘true’ and ‘false’ are boolean expressions.

Temporal constructs more and empty are boolean expressions.

If b; and b, are boolean expressions, so are the following constructs:

=by, by Aba, by V ba, by — b2, by & by

4.1.4 Data Structures

In addition to constants and simple variables, we also use lists, strings, and arrays.

60



1. Lists.

Lists are sequences of elements separated by commas and enclosed in angle brackets, such
as < 2,4,6,8 >. The length of a list !, denoted by |!|, is the number of the elements in {
minus 1; the i** element is denoted by [[7], the sublist from element i to element j by I(i..j).
The smallest subscript of a list is 0, and the empty list is denoted by €. To manipulate
lists, we use the following operators: concatenation (-), fusion (o), head (hd), tail (&) and
last (It). Let [ be a non-empty list. hd(l) obtains the first element of I, ti(I) obtains the
sublist [(1..|l]), i.e. the list ! without its first element; l#(I) obtains the last element of I;
the concatenation of two lists /; and l5, denoted by [; -I5, is the list whose elements are the
elements of [; followed by the elements of I;; the fusion of two lists I; and I, denoted by
ly 0 Iy, is the list I1 - I2(1..|l2|), we assume that the last element of /; and the first element
of I are the same and overlap in the resulting list. An empty list € concatenated or fused
with any list [ gives /. Formally, we introduce the following definitions.

Let [ =< 8¢, 81, ... > be a list, we define

1) Length of a list

| = { n if.l .=< 3.0,...,.9,l >
w [ is infinite
le| = =1. If |{| = 0, then [ is called a singleton list.
2) Head of a list
o hd(l) =< 8>
o hd(e)=¢
3) Tail of a list
o ti(l) =< s81,... >
o tl(e)=¢
4) Last element of a list
o lt(l) =< sy > if | <w.
o lt{e) =€
If |I| = w then [t() is undefined.
5) Fusion (o)

11 if|11|=wor12=e
1101 _ 12 if ll =€ ]
27 ) < sgyeeny i > if I =< Sgy.eny 8i > and Iz =< 84,0 > and i € Ng
undefined otherwise

6) Concatenation (-)

Iy if|hj=worly=c¢
L o= 12 if 11 =€
1702 = < 80y veey Siy Sig1g e > if l] =< $0y.+49 8 > and Iy =< Si41,-.- >
and i € Ny

2. Strings.

Strings are surrounded by the double quotation marks, like "string”. They may be indexed
and manipulated in the same way as lists.
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3. Arrays.

Arrays are sets of indexed elements of the same type. Arrays can be of one, two or three
dimensions. An array can be expressed in terms of lists with row-first in an implementation.

4.1.5 Omitting Parentheses Precedence Rules

In order to avoid an excessive number of parentheses, the following precedence rules are used:

1 -

2 0,6,9,0,0,0
3 =,0=,:=,«

4 AV

5 =,

6 ;

where 1=highest and 6=lowest.

There is an important fact we need to point out here. Since an expression refers neither
to the previous value at the beginning state nor to the next value at the ending state over an
interval, and the past operators, in general, are forbidden in a program, the statements of the
extended Tempura language are lec-formulas in the sense of the logic language. However, during
the reduction of a program, a sub-part of the program can refer to a previous state as long as
the previous state does not go beyond the first state of the interval.

4.2 Semantics of Programs

An expression e can be treated as a term and a program P can be viewed as a formula in EITL.
Therefore, the evaluation of e and the interpretation of P can be done as in EITL. However,
since the programming language is a subset of the underlying logic, a program may have its own
characteristics and may be interpreted in a simple and manageable way. In particular, when
a framing technique is introduced, some easily manageable models are required. We will use a
minimal model (see Chapter 7) which is based on canonical models given below.

In order to interpret framed temporal logic programs, we assume that a program P contains
a finite set S of variables and a finite set ® of propositions. We interpret propositions over B and
variables over D’. For a program P, there are three ways to interpret propositions contained in
P, namely canonical, complete, and partial interpretations as defined for the semantics of logic
programming language [13]. Here, we use the canonical interpretation only on propositions.
That is, in a model ¢ =< (I2,19),... >, I¥ is used as in the logic but If is changed to the
canonical interpretation.

A canonical interpretation on propositions is a subset I,C®. Implicitly, propositions not in
Iy are false. Note that Ix’f in the interpretation of the logic framework is an assignment of a truth
value in B to each proposition p€ Prop at state si; whereas in a canonical interpretation, I,’,‘ is a
set of propositions, each of them has truth value true in B at si. Clearly, the two definitions are
equivalent except that they refer to different sets of variables and propositions. Using canonical
interpretation is useful for easy manipulation of minimal models. Let o =< (IZ,19),... > be a
model. We denote the sequence of interpretation on propositions of o by o, =< If, >, Op s
said to be canonical if each I3(i>0) is a canonical interpretation on propositions.
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If there exists a model o with o, being a canonical interpretation sequence on propositions
and o= P as in the logic, then program P is said to be satisfiable under the canonical interpreta-
tion on propositions, denoted by ol=_P; and oy, is said to be a canonical interpretation sequence
(on propositions) of program P. If for all 0 with o, being a canonical interpretation sequence,
o P, then program P is said to be valid under the canonical interpretation on propositions,
denoted by = P.

Note that the definition of the canonical interpretation of program P is independent of its
gyntax in the sense that the definition does not refer to the structure of the program. So the
definition can be extended so that it can be applied to non-deterministic programs and temporal
formulas.

Example 4.2 For the propositional formula, P;: -“A~ (B, which can be treated as a non-
deterministic program, we have & = {4, B}, and P, has the following canonical interpretation
sequences of length 2, < 4, {B} >, < ¢,{4, B} >, < {B},{B} >,< {B},{4,B} >, < {4},¢>
,< {A},{A} >,< {4, B},¢ >, and < {4, B}, {4} >.

P, is satisfiable but not valid under the canonical interpretation on propositions because a
canonical interpretation sequence, < ¢, ¢ >, does not satisfy it. m]

Note that a program P can be satisfied by several different canonical models on propositions
so program P has, possibly, different meanings under different models. Therefore, it is important
to choose a model which satisfies the intended meaning of a program P, and this is the topic of
Chapter 7.

Since the canonical model is basically equivalent to the basic model except that the latter
acts on the fixed set V of variables and the fixed set of propositions, whereas the former acts
on the set of variables and the set of propositions within a concrete program. Hence, in what
follows, we do not distinguish between the relation = and |=.. Whenever I, is used to interpret
a program P, it is treated as a subset of propositions @, while whenever I, is used to interpret
a formula g, it is treated as a function (or set) over Prop.

4.3 Models Corresponding to Programs

A model of program P is a particular sequence of states that obey certain constraints imposed
by P. Each model of program P is a finite (or infinite) sequence of states over S and 9, the
set of variables and the set of propositions associated with P, respectively. Let V' be the set of
variables and Prop the set of propositions specified as in Chapter 3. V contains S and Prop
contains ®. Consider a model

g =< 8g,y... >
over V and Prop. We say that model ¢ is a P-model [66] if there is a model of P over S and @,
o' =< 84, >

such that |o| = |o’| and each state s; is identical to s, when restricted to the sets 5 and &; that
is, for all 0 < j < |o|, s;[p] = &}[p], for all p € &, and s;[z] = s}[z] for all z € S.

Note that while a model of P interprets only the variables in § and propositions in @, a
P-model may give interpretation to additional variables and propositions.
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Deflnition 4.1 Let p be a temporal formula, V, the set of the variables appearing in p, and
o, the set of the propositions appearing in p. Let M(V, Prop, P) be the set of all P-models
over V and Prop, where V = V,US and Prop = ®,U®. p is satisfiable over P, denoted by
OEM(V,Prop.P)P> if there exists a model 0€ M(V, Prop, P) and ol=p. p is valid (also described as
being P-valid) over program P, denoted by |= M(V,Prop,p)P if for every model o€ M(V, Prop, P),
ofp.

o

It is not difficult to see that the above definition implies that every model in M (V, Prop, P)
satisfies p for all V, Prop that contain V,US and ®,U®, respectively.

Clearly, every valid formula is also a P-valid formula, but since M(V, Prop, P) is only a
subset of the universe of all possible models, there are formulas that are P-valid but not valid
in general. Consider, for example, P given by z = 0AD(more—~Qz = z + 1)Alen(2). Clearly,
the formula z = 0 is P-valid, since it holds in the first state (i.e. s¢) of every model of P. On
the other hand, z = 0 is obviously not a valid formula, as there are many models whose first
state does not satisfy z = 0.

In the sequel, we need to employ, besides the canonical model, also the minimal model (see
Chapter 7). To distinguish between them, we use M,,(V, Prop, P) to denote the set of P-models
in which program P is interpreted by the minimal model. If V = S and Prop = ®, we refer to
M(V, Prop, P) and My, (V, Prop, P) simply as M(P), and M, (P), respectively.

We capture the relationship between the P-models and models of the program P in Theorem
4.1.

Theorem 4.1 Let P be a program, and ¢ a P-model. If c€ M(P), then of=P.
Proof

Let S be the set of variables and ® be the set of propositions contained in program P. Let V be
the set of variables and Prop be the set of propositions associated with the P-model o. Since
0€M(P), by the definition of P-model, there exists a ¢’ such that ¢'=P and |o| = |¢’|, and for
al 0 < j <o, s5[p] = [p] for all p € @, and s;[z] = s}[z] for all z € §; by the definition of
notation M(P), V = S and Prop = ®. Hence, 0 = 0'=P.

(m]

44 Normal Form of Programs

In this section, we define a kind of normal form for programs and prove any program in the
extended Tempura can be reduced to the normal form. We first prove Lemma 4.2, and then
Theorems 4.3, 4.4, 4.5. They are useful for the reduction of the while statement. After that, we
prove some conclusions regarding the while statement. Finally, we prove that a program built
in extended Tempura can be reduced to the normal form.

Lemma 4.2 Let p be a formula.

EMP1 empty;emply = emply
EMP2 pAempty;empty = p A empty
EMP3 emptyV (p;empty) = empty V (p A more; empty)
EMP4A pAempty;qAempty =pAqAemply
if ¢ is a lec-formula
EMP5 pt Aempty = p A empty
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Proof
The proofs of EMP1 and EMP5 are straightforward.

The proof of EMP?
pAempty;empty = pAempty A Cempty FEP6
= pA(empty; empty) FEP6
= pAempty EMP1
The proof of EMPS
empty V (p;empty) = empty V ((p A empty V p A more); empty) tautology
= empty V (p A empty; empty) V (p A more; empty) FD9
= empty V pAempty V (p A more; empty) EMP2
= empty V (p A more; empty) tautology

The proof of EMP4
Let ¢ be a model and & an integer, 0 < k < |g].

(0,0,k,|0|) = p A empty; g A empty

(0,0,k,7) = p A empty and (o,7,7,|0|) |= g A empty for some r,k < r < |o|
(0,0,k,7) = pand r =k and (o,7,7,|0|) = g and r = ||

(0,0,k,k) = p and (o, k,k, k) = q and k = |o|

(0,0,k,k) = p and (0,0,k,k) |E g and k = |o| ¢ is a lec-formula

(0,0,k, k) EpAgand k= |0

(0,0,k,|0]) = p A g A empty

gregng

Theorem 4.3 Let p be a lec-formula. Then
FPS7 p* =pV (pAmore;p*)
Proof

pV(pAmore;pt) D p* is obvious. We prove p* O pV (p A more; pt) only. Let o be an interval
and k an integer, 0 < k < |o|.

Suppose (0,0, k, |o|) = pt. Thus, either there are finitely many ro, ...,7n € N, (n > 1) such
thatk =19 <y < ... X rp = |o| and (0,0,79,m1) Epandforall 1 <! < n(o,7-1,71-1,71) F
or || = w and there are infinitely many integers k¥ = ro < rq,... such that r}l;lvlloo r; = w, and
(0,0,70,7) |= p and for all I > 1, (0,711, 71-1,71) £ P-

In the former case, if n = 1, then (o,0,k,|o|) F p* amounts to (0,0,70,71) k= p, i.e.
(0,0,k,|o|) = p; if n > 2 with k = |o]| then (0,0,k,|0|) | p* is equivalent to (0,0,70,7m1) =
pAempty and ro = k = 1y = |o| (EMP5) leading to (0,0,k,|o]|) E p. H n > 2 with k < |o],
there is the least integer h such that o = 1y = ... = rpuy < 1h < ... < 7. H h =1, then
(0,0,k,71) |= more A p. That is, (5,0,k,71) = p A more and (o,71,71,|0]) E p*. We have
(0,0,k,|0]) E p A more;pt. If b > 1, then (0,0,70,7) |E pAempty and for all 1 < I <
h(6,71-1,71-1,7) = p A empty and (0,7h-1,7h—1,74) = p A more. That is, (0,0,k,71)
P A empty;...;p A empty; p A more and (0,7, 71, |o]) E pt. By EMP4 and FEP4, we obtain
(0,0, k, |o]) = p A more; p*.
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In the latter case, (0,0,k,|o]) = p* amounts to (0,0,70,7) |= p and for all { > 1
(g,r[_l,ﬂ_l,"'{) E p. Since i]irgo r; = w, there exists the least integer h such that Th-1 < Th.

Thus, a similar argument as in the former case can be given to prove (0,0, k, |0|) = pAmore; p*.

a
Corollary 4.4 Let p be lec-formula. Then
1 p;p*t D pV (p A more; pt)
2 pAempty;pr DpV(pA more; pt)
3 pt Amore=pAmorev (p A more; pt)
Proof Straightforward.
a
Theorem 4.5 Let p be a lec-formula. Then
FST9 p* = emptyV (p A more; p*) V p A Omore
Proof
Let p be a lec-formula. Then
P = emptyVpt Abb-star
= emptyV (pV (p A more; pt)) theorem 4.3
= empty V (p;empty) V p A Omore V (p A more; pt) TER
= empty V ((p A empty V p A more); empty) V (p A more; p*) V p A Omore tautology
= empty V (p A empty; empty) V (p A more; empty) V (p A more;pt) V p AOmore FD9
= empty V pAemptyV (p A more;empty) V (p A more; p*) V p A Omore EMP2
= empty V (p A more; empty) V (p A more; pt) V p A Omore tautology
= empty V (p A more; (empty V pt) V p A Omore FD9
= empty V (p A more;p*) V p A Omore Abb-star
[m]

We now prove some theorems regarding the while statement. The while statement can be
expressed in a more operational way by means of an inductive description which is equivalent
to its original definition. We show this in Theorem 4.7. Before proving it, we first prove lemma
4.6.

Lemma 4.8 If s is a state formula, then fin(s)A(p; q) = (p; fin(s)Aq)
Proof

Let ¢ be an interval and k an integer, 0 < k < |o|. Suppose (0,0,k,|o|)Efin(s)A(p; q).
Then (,0,k,|o|)l=fin(s) and (o,0,k,|o|)=p;q. The latter amounts to (o,0,k,r) =p and
(o,7,7,|0|)l=q for some r,k<r<|o|, whereas the former means (o,0,k,|o|)ED(empty — s).
That is, (0,0, h, |o])l=empty — s for every h,k < h=<|o|. This implies that (o, 0, ky, |o])[=empty
— 8 for every ky,r < k1<|o|. Moreover, since s is a state formula, empty — s is an lec-
formula. (o, 0, k1, |o]) |z empty — siff (0, k1, k1, |o|)Fempty — s for every ky, 7<k;=|o|. Hence,
(0,0,k,7)l=p and (o, ,r,|0])l= O(empty — s)Aq. It follows that (o, 0, k, |o])E=p; fin(s)Aq.
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Conversely, suppose (a0, K, [o])k=p; fin(s)Ag. Then, (0,0, k,r)fep and (a7, |of) k= fin(s)
and (77,01 k=g for some r, k < r<|o]. It turns out that (a,0, k, o])piq and (@, . b, o[ e
empty — 8 for every h,r < h<|o|. Since empty — s is an lec-formula, (o, r,h, |o|)=empty — s
iff (7,0, h,|0]) Fempty — s for every h,r<h=|g]|. It is easy to check that (0,0,h,|o|)zempty —
sfor every h,0<h < r because the formula is vacuously true in this case. Thus, (0,0, k, |o])lzempty
— & for every k,0<k=X[o|. That is, ol=0(empty — s). Therefore, ol=fin(s)A(p; q).

m}
Theorem 4.7
(1) (whilebdop) = ((~bAempty)V(bAp;while b do )
Vb A p A Omore
(2) (whilebdop) = ((~bAempty)V(bApAmore; while b do P)
Vb A p A Omore
if p is a lec-formula.
Proof
we prove only (2).
while bdop = (bAp)*A fin(-b) S-while
= (emptyV(bApAmore; (bAp)*))Afin(=b) V b A p A Omore A fin(-b) theorem 4.5
= emptyADO(empty — —b)V(bApAmore; (bAp)*)A fin(=b) V b A p A Omore (Qmeore) A fin(-b)
= Omore
= emptyA(empty — -b)V(bApAmore; (bAp)*)A fin(~b) V b A p A Dmore FE2
= (emptyA-b)V(bApAmore; fin(—b)A(bAP)*)) V b A p A Omore lemma 4.6
= (emptyA-b)V(bApAmore; while b do p) V b A p A Omore S-while
(m]

The statement of Theorem 4.7 can be expressed in a simplified form in terms of the if —
then — else construct if p always terminates, since then b A p A Omore is false:
while bdo p (emptyA-b)V(bApAmore; while b do p)
(emptyA-b)VbA(pAmore; while b do p)
if bthen (pAmore; while b do p) else empty
if p is a lec-formula.

Similarly, if p is a terminable program ignoring whether or not P is a lec-formula, we have

while b do p (emptyA-b)V(bAp; while b do p)
(emptyA-b)VbA(p; while b do p)

if b then (p; while b do p) else empty

To reduce a program with existential quantification, we use a renaming method. Given a
formula 3z : p(z) with a bound variable z, we can remove the existential quantification (3=z)
from 3z : p(z) to obtain a formula p(y) (or p[y/z]) with a free variable y by renaming z as y. To
do s, we require that y not occur (free or bound) in 3z : p(z), y and z both be either dynamic
or static, and y be substituted for z only within the bound scope of z in 3z : p(z). In this case,
we call p(y) a renamed formula of 3z : p(z). Now we discuss some facts concerning renamed
formulas.
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Lemma 4.8 Let p(y) be a renamed formula of 3z : p(z). Then, 3z : p(z) is satisfiable if and
only if p(y) is satisfiable. Furthermore, any model of p(y) is a model of 3z : p(z).

Proof
By l-exists, given a model o, the following is true:
o3y : p(y) iff there exists o', 0£0’, and o’ |=p(y)

Thus, if of=3y : p(y) then there is a o', o’'|=p(y). Conversely, for a model o, if o}=p(y), then
o3y : p(y) because o is trivially y-equivalent to itself. Thus, Jy : p(y) is satisfiable iff 2(y)
is satisfiable; and any model of p(y) is a model of 3y : p(y). Moreover, by Theorem 3.32,
3y : p(y) = 3z : p(z). Hence, Lemma 4.8 is true.

O

The importance of Lemma 4.8 is that it guarantees the soundness of the renaming method
for reducing programs involving existential quantifications. From Lemma 4.8, it is clear that
3z : p(z) and p(y) are equivalent in satisfiability. To check whether or not 3z : p(z) is satisfiable
amounts to checking whether or not p(y) is satisfiable. Once we find a model for p(y), this model
is also a model for 3z : p(z). Therefore, to reduce 3z : p(z), it is sufficient to reduce p(y).

One may object to the renaming method by saying that it offends the original spirit by
using local variables in a program. However, we are investigating the temporal semantics of a
program under the logic model theory. To interpret a formula with an existential quantification,
the only interpretation law we can use is I-exists which does not seem to distinguish between
local and global variables at all.

We now define the normal form of a program, as follows

Definition 4.2 A program ¢ is in normal form if

d f
= V Gei A empty V V g A Ouy; (4.1)
i=1 j=1

where0<I!<1,t>0,and [+t > 1.

For 1 < j < t, Ogy; are lec-formulas and gy; are internal programs; whereas g.; (i = 1) and
¢e; (1 < j < t) are either equal to true, or are state formulas of the form:

(z1=€e)A . A (zm = €m)

where e, € D (1 < k < m). o

Note that, in the above definition, (1) V p; = false; (2) a program is an internal program

if the variables involved in the program ma,y refer to the previous state but not beyond the first
state over the current interval. To ensure this condition, two adjacent previous operators are not
permitted to be applied to a variable within a program. For instance, O©@z is not permitted
but OO O Oz can be used in a program.

Note also that the normal form we provide is a semantics driven reduction for program
rather than syntax determined normal form. Hence, in the proof of the normal form in the
sequel, the logic laws presented in the thesis can be used and the evaluation of the expressions
(including boolean expressions) can be involved.
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If a program is deterministic then the normal form of the program has a simpler form with
[4+t=1. Thatis,

ge:Aempty or g. A Qgy

This means that if ¢ terminates at the current state it is reduced to g, A empty otherwise it
is reduced to ¢. A Ogy.

Theorem 4.7, Lemma 4.8 and logic laws presented in Chapters 2 and 3 provide a basis for
proving the existence of the normal form of a program. The normal form is closely related to
the reduction of programs. A program p is reduced to ¢ means that there are programs py, ..., ps
suchthat p=p1=...=pr=gq.

Theorem 4.9 Let P be a program. Then there is a normal form ¢ as defined in (4.1) such that
P=yq
Proof

To simplify the proof, we assume that the expressions involved in a program are all well eval-
uated at every state during a reduction. The proof proceeds by induction on the structure of
statements. The atomic statements are the immediate assignment ¢ = e and empty; whereas
the compositional statements are Op, Op, pAq, p; ¢, if b then p else g, while b do p, p||g and
3z : p(2). In the proof, we use implicitly Theorem 3.7.

1) If P is an assignment statement, z = e, then we have

z=e z = e A (empty V more)

z=eAemptyVz=-eAQtrue

As seen, an immediate assignment is a non-deterministic program. It needs other constructs
to specify a definite interval. If an empty interval is specified, it is reduced to z = e A empty;
otherwise, it is reduced to z = e A Otrue.

2) If P is the terminal statement empty, the conclusion is trivially true.
3)If P is a statement in the form (g, it is already in its normal form.

4) If P is the always statement Og, then

P = ¢AODOg FE2
1 t
= (V ge; AemptyV V g A Qggi)A(empty v OOqg)  hypothesis, FW2
j=1 =1
] t
= -V1 gej A empty V _Vl(‘Ici Nerrel= FDU5
J= 1=
1 t
= ~V1 gej A empty V ‘Vl gsi A O(gsiAOq) FD3
i= =

5)If P is the conjunction statement pAg, then, from the hypothesis, p and ¢ have the normal

form
15 t1

p=\ pexhempty vV \/ pei A Opyi
k=1 1=1
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I (7]

g= \ gnnempty Vv \/ ¢; A Ogy;
h=1 j=1

Thus, we can rewrite P as

P

PAg
Iy t1 Iy t2

(kV1 PekAempty V 4Vl Pei A OPfi)/\(hVI genAempty V V gc; A Ogy;)
- 1= = 7=1

i ty 173
kVI PekAGek A empty V (,V1 Pei AOpri)N 'V1 gc; A Opy;)
= 1= =

]
V PekAger AemptyVv Pei A 4cj A O(psi A g55)
k=1 18igh 1<i<t

6)f Pisa sequential statement p; g, then, by hypothesis, we have

151 t1
p=V pexrempty vV \/ pci A Opyi

k=1 i=1
I 123

g=\/ genrempty Vv \/ ¢;; A Ogy;
h=1 7=1

Thus, we can rewrite P, as follows

pq

h t Iz t2
(kV1 PexAempty V -V1 pei A Opyri); (hVl genNempty V ~V1 ac; A Odgy;)
—3 1= = =

51 la

(kV1 Pek Aempty; th ger A empty)
ty la

V(,V1 Pei A Opyis hVI gen A empty)
= =

I

t2
V(kV1 Pex Nempty; ‘Vl gc; A Ogy;)
= =

t1 t2
V(_V1 Peilh O pyi; 'V1 gc; A Ogy;)
1= ]:
1§
kVI PekAgek A empty
4
v -V1 Pei A O(Pyi; g1 A empty)
=

t2
v 'V1 Pe1 A ge; A Ody;j
]=

t1 t2
v _V1 Peih O (psis -V1 g:; A O4y;5)
3= =
1
kVI Pek ek N empty

t

v 'V1 Pei A O(Pyi; g1 A empty)
=
13

2
v -V1 Pe1 A gej A Ody;
J=

V.V pah O (psis e A Odyi)
1<1<t1,1<3<t
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Py

7) If P is the parallel statement p||g, then, by hypothesis, we have

Iy 1
p=\/ pexrempty v \/ pci A Opy:

k=1 i=1
[ 12

g=\/ gerhempty Vv \/ g¢;; A Ogy;
h=1 i=1

We first prove the following conclusion:

Iz t2
(g;true) = (hV1 gen A empty V 'V1 qc; A Qgy;); true hypothesis
= J=
123 t2
= (hV1 gen A empty;true) V ( ,vl gei A Ogy;); true FD10
= J=
12 t2
= hV1 gen A (empty;true) V V go; A O(gyjitrue) FCH1, 2
= =1
Iz t2 7
= hVI den A lrue V 'V1 ¢e; A O(gyj; true) empty; true = true
- J=
12 t2
= V gen AemptyV g AQtrueV V q; A O(gyj;true)  tautology
h=1 =1
Iy ta+1 ’
= hVI ger A empty V 'V1 gcj A O(gyj;true)
—3 J=
where get,+1 = ge1 and ggy,+1 = true. Thus,
11 t1
PA(gitrue) = (V pex AemptyV V pei AOpsi)
_12 ‘_tz+1 .
A(hV1 gen, A empty V 'V1 gci A Olgyj; true)) hypothesis
—J J=
! i1
= kV Pek A gek A empty V (_V1 pei A Opyi)
e =
A -V1 ge; A O(gys5; true) FDU5
J=
!
= kV Pek A ek A empty
=1
v V.  pei NG AO(psi A (gy5itrue))
1<i<h 1<i<ta+]
In the same way, we can prove
!
gA(pitrue) =V ek A per A empty V ( Vg6 Ape AO(g5i Apyss true))
k=1 1<i<t1 +1,1<5<t2
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Hence,

P = p;\(q; true)VaA(p; true) definition
kVI Pek A ger A empty V ( Pei A gcj A Q(psi A (gyj; true))

1<i<t;,1<j<ta+1

l
v k\—/l Gek A ek A empty V ( i A pej A O(g5i A (pgjs true))

1<i<t; +1,1<5<t,
i

k A\ Qe A emply V i Ngci A i N(gyss;t
k\=/1pe Qe pty (1565t1,15j5t2+1pa 4ci A O(pyi A (gy5; true))

v( V @i Apej AOAgyi A (psjs true))
1<i<t1 +1,1<j<t2

8) If P is the conditional statement if b then p else g, then, by hypothesis, we have

I 1
p= \/ PexNempty V \/ Pei A Opyi

k=1 i=1
I t2

q=\/ genhempty vV \/ qc; A Ogy;
h=1 i=1

Thus,
if bthen pelseq
bApv-bAg

- p ifb
- g otherwise

Therefore, if b is true according to a context in which P is executed then the construct is reduced
to

11 t

p=\/ perhempiy vV \/ pei A Opyi

k=1 i=1
Otherwise, it is reduced to
12 t2
g=\ genemptyV \/ a; A Ogy;
h=1 j=1

9) If P is the while statement while b do p, then, by hypothesis, we have
11 t1
p=\/ perhempty V \/ pei A Opyi
k=1 =1

By Theorem 4.7, we have
while bdo p = -bAemptyV(bApAmore; while b do p) V p A b A Omore

Therefore, if b is false at the current state according to a context in which P is executed,
then the while statement is reduced to empty. Otherwise, it is reduced to the chop construct
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phAmore; while b do pV p A Omore. This is immediately re-reduced, as follows

p A more; while bdop V p AOmore

= pA(QOtrue; while b do p V more A O Omore) FE2
= pA(QO(true;while b do p ) v OOmore) FW1, FCH1
= pAQ((true; while b do p ) V Omore) FD4
I t1
= (k\/1 PexNempty V ’yl Pei A Qpyi) A O((true; while b do p ) V Omore)  hypothesis
o =
= (\_/l pei A Opyi) A O((true; while b do p ) V Omore) hypothesis
i=
=V s AO(psi A ((true; while b do p ) v Omore)) FD3, FD9
i=1

10) If P is the statement 3z : p(z), then we first use the renaming method to reduce this to
p(y) as stated in Lemma 4.8. Then, we re-reduce p(y). By induction hypothesis, p(y) can be
reduced to its normal form, so is the construct 3z : p(z). u]

The following expansion laws regarding fin, keep and halt are useful for reduction of pro-
grams.

Theorem 4.10 The following formulas are valid.
FEF fin(p) = pAemptyV Qfin(p)

FEK keep(p) = emptyVpA Qkeep(p)
FEH hdli(p) = pAemptyV-pA Qhalt(p)

Proof
The proof of FEF
fin(p) = O(empty — p) definition
= (empty — p) A ©DO(empty — p) FE2
= (moreV p) A (empty VvV O fin(p)) theorem 3.1, definition
= pAemptyVpAQfin(p)V Qfin(p) A more tautology
= pAemptyVpAQfin(p)V Qfin(p) FS4
= pAemptyV Ofin(p) theorem 3.1, theorem 3.7
The proof of FEK
keep(p) = DO(-empty — p) definition
= (nempty — p) A ©OO(~empty — p) FE2
= (emptyV p) A (empty V Qkeep(p)) theorem 3.1, definition
= emptyV p A empty V p A Qkeep(p) tautology
= empty V p A Qkeep(p) theorem 3.1, theorem 3.7
The proof of FEH
halt(p) = O(empty < p) definition
= (empty < p) A ©QO(empty < p) FE2
= (~empty A ~pV empty A p) A (empty V Qhalt(p)) tautology
= pAemptyV (~p A more) A Qhalt(p) theorem 3.1, definition
= pAemptyV -~pA Qhalt(p) theorem 3.1, theorem 3.7

0
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As seen, halt(p), in general, is not a deterministic program because it refers to the negation
of p. However, we can take p to be a boolean condition b which may involve the negation
operator. In practice, we frequently use halt(b) to specify an interval for a program.

To execute a program q is really to find an interval to satisfy the program q. Based on
the Tableau method [88], the execution of a program ¢ consists of a series of reductions over
a sequence of states, i.e. an interval. At each internal state s;, the program is reduced to the
normal form defined in Definition 4.2 with the index i:

. A Od}
while at the final state s;, the program is reduced to:
gl Nempty

Furthermore, the reduction at each state is composed of a series of reduction steps supported
by logic laws. In this way, if a program is eventually reduced to true, then an interval which
satisfies the program is obtained. With this method, the strong equivalence relation for each
step in the reduction of a program over a subinterval is required since variables may refer to
their previous values; whereas, at a chop point for a reduction, p; g say, the weak equivalence
relation is enough since the variables within p are not permitted to refer to g and the variables
within ¢ are not permitted to refer to p as specified in the definition of semantics (see I-chop,
page 33).

As seen, some logic laws such as empty; p &~ p and g Aempty; p = pAgq (g is a state formula)
hold without requiring that p be a lec-formula and are useful for the reduction at a chop point.
Therefore, a program could involve some past operators and the reduction of this kind of program
can be handled in the underlying logic. However, to simplify the matter, we confine ourself to
the set of lec-formulas since all programs are lec-formulas as stated earlier.

Example 4.3 Let P denote the program z = 0 A while £ < 3 do z := z + 1. The following is
the process of the reduction of P.

P = z2=0Awhilez<3doz:=2+1
= z=0Aif 2 <3 then (z:=z+ 1A more;while x < 3doz:=2+1) else empty
= z=0A(0<3A(Qz=0+1Askip;whilez <3doz:=z+1) V-(0<3)Aempty)
= z=0A(Qz = 1A skip;whilez <3 doz:=z+1)
= z=0AQ(z =1 Aempty;whilez <3 doz:=2+1)
Thus,

PP=z=0
P0=gz =1Aempty;whilez <3doz:=z+1

P? z=1Aempty;whilez <3dozx:=z+1

z=1Awhilez <3doz:=2+1

z=1Aif x <3 then (z::x+lAmore;whilex<3dox:=x+1)elseempty
e=1A(1<3A(Qz =1+ 1A skip;whilez <3doz:=z+1) V (1 < 3) A empty)
gz =0A(Qzr = 1A skip;whilez <3 doz:=z+1)

z=1AQ(z = 2Aempty;whilez <3 doz:=z+1)

eae e meome

Thus,
Pl=z=1

[
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P}Ez:ZAempty;whilez<3doz:=::+1

I°3
@®
-

z=2Aempty;whilez <3doz:=z+1

z=2Awhilex <3doz:=z+1

z=2Aif 2 <3then (z:=z + 1A more;while £ < 3 do 7 :=z 4 1) else empty
e=2A(2<3A(0Oz =2+ 1Askip;whilez <3doz:=z+1) V (2 < 3) A empty)
2 =0A(Oz = 1Askip;whilez < 3doz:=z +1)

z=2AQ(z =3 Aempty;whilez <3 doz :=z +1)

mom mom W

We obtain
Pl=gz=2
szE:c=3Aempty;while:c<3do:c:=z+1
Finally,
Pf z=3Aempty;whilez <3dozx:=z+1

z=3Awhilez <3doz:=z+1

z=3Aif z <3 then (z:=z 4+ 1A more;while z < 3 do z := z + 1) else empty
e=3A(3<3A(z:=z+1Amore;whilez <3 doz:=z+1) V-(3<3)Aempty)
z =3 ANempty

We obtain
P, = z=3Aempty

0

In this chapter, an extended Tempura language has been presented and a normal form of
a program has been proved under the assumption that the past operators are not used within
statements but can be used within expressions. This provides us a way to execute programs.
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Chapter 5

Projection in Temporal Logic
Programming

Summary: A new projection operator is defined as a primitive in the Temporal
logic. Its syntax and semantics are presented and illustrated with examples. Some
logic laws concerning the projection operator are provided. In the framework of the
temporal logic programming, the normal form of the projection construct is proved.

In a temporal logic programming language, such as Tempura [61], the next. always and chop
are useful operators for sequential programs, while conjunction and parallel composition (|}, sce
Chapter 4), are basic operators for concurrent programming. As discussed earlier, conjunction
construct seems appropriate for dealing with fine-grained parallel operations that proceed in lock-
step while the parallel composition operator is better suited to the coarse-grained concurrency.
where cach process proceeds at its own speed. Moreover, processes combined through the parallel
composition operator share all the states and may interfere with one another.

In this chapter we introduce a projection operator, (py,...,pm) prj ¢, which can be thought
of as a combination of the parallel and the projection operators presented in [61]. Intuitively.
it means that ¢ is exccuted in parallel with py;...; pm over an interval obtained by taking the
endpoints (rendezvous points) of the intervals over which py, ..., p, are executed. The projection
construct permits the processes py,. .., pm,q to be autonomous, each process having the right to
specify the interval over which it is executed. In particular, the sequence of processes py,....pm
and process ¢ may terminate at different time points. Although the communication between
processes is still based on shared variables, the communication and synchronization only take
place at the rendezvous points (global states), otherwise they are executed independently.

This chapter is organized as follows: Section 5.1 presents the new projection operator; the
logic laws about the projection operator are proved in Section 5.2; in Section 5.3. the normal
form of the projection construct. as a program statement, is proved, and an example of reduction
of the projection construct is presented; Section 5.4 provides further examples for the application
of the projection. Section 5.5 draws conclusions.

5.1 Syntax and Semantics

The projection construct is defined as

(Pl»- --1Pm) PT] q
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where p1,...,Pm and ¢ are formulas (m > 1). To ensure smooth synchronization between
PryererPm and g, the previous operator is not allowed within g. However, it can be used in
the pr's. To define the semantics of the projection operator we need an auxiliary operator for
intervals.

Let 0 =< 8¢,81,...8,) > be an interval and ry,...,r, be integers (h > 1) such that
0<r €12 <... <14 X |o|. The projection of o onto ry,...,7; is the interval

01(’[‘1,...,7‘},) =< 8t19855. 44984 >

where ty,...,% is obtained from ry,...,7, by deleting all duplicates. That is, t1,...,4 is the
longest strictly increasing subsequence of ry,...,7,. For example,

< 80,81, 82,383,384 >1«(0’0721 27 2a3) =< 80,582,833 > .

The semantics of the projection operator is defined, as before, relative to an interpretation
I =(o,%,k,j). Formally,
(I-prjl) TE(p1,-.sPm)Prig
if o|(k) E g and T |= p1;...;Pm, or there are integers r1,74,...,74 (1 £ h £ m) such that
k<rn<rp<...<ry %7 and the following hold:
¢ (0,3,k,71) = p1, and for 1 < I < b, (0,721, 71-1,7) E P1-
o If h < m then Ul(k9rlv .. '7Th) |= q and (U,’I‘h,’l‘h,j) |: Phy15+ -+ Pm-

o If h = m then ol(k,71,...,Th)O(ru41.5) F ¢

Basically, the above definition of the projection is the same as in [22]. For ease of the proofs
in the sequel, we define a notation, {pi, ..., pm](71, .., *m), for formulas p,, ..., p, and integers
Ty Tm—1 and 7, € Ny, (71 € ... € Py X 7)), to mean that the formulas py,...,py, are
executed sequentially over a subinterval and 7,...,7,,—1 are the partition points and r,, is the
right end point of the subinterval. Formally, let Z = (g,,k, j) be an interpretation, then

(U, i, k’]) l= [pl’ ---,pm](rly reny rm)
iff (o,i,k,7) E p1 and for all 1 < h < m,(0,Th_1,Th=1,Tr) E Ph

We need also to generalize the notation of o[(7r1,...,7m) to allow 7; to be w. For an interval
0=< 80,81y, 8}g > and 0 < 7y <7y £ ... <7 < of (i € Ny), we define

al()=¢

ol(r1y ey Thyw) = (1, 0eey Th)
and, for integers ry, ..., 74, dl(r1,...,71) is defined as before.

Thus, the meaning of the projection construct can be expressed in terms of [p1, ..., Pm](T1, ---s Tm)
as follows

(I - p‘rj2) (Ua Z,k,]) t= (Pl,---aPm) prj q

iff there exist integers ry, ..., 7m—1 and ry, € N, and ro = k such that (4,4, k,3) = [P1, -, Pm](T15 - ™)
and

® rm=jand o | (ro,...,74) = ¢ for some 0 < h < mor
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orm < J and o ! (7'01 reey rm)-a(rm-i-l..j) |= q.

One can show that the semantics given by I-prjl and I-prj2 are equivalent. We use I-prj2
only in a long proof.

In programming language terms, the interpretation of (p,...,pm) prj g is that we need two
sequences of clocks (states) running on different time scales: one is a local state sequence, over
which pi1,...,Pm are executed, the other is a global state sequence over which g is executed.
Process ¢ is executed in a parallel manner with the sequence of processes p,...,p,. The
execution proceeds as follows (see Figure 5.1): First, ¢ and p; start at the first global state and
py i8 executed over a sequence of local states until its termination. Then (the remaining part of)
g and p; are executed at the second global state. Subsequently, p, is continuously executed over
a sequence of local states until its termination, and so on. Although g and p; start at the same
time, p1,. . ., Pm and g may terminate at different time points. If q terminates before some Pht1,

then, subsequently, pp41,...,Pm are executed sequentially. If py,...,p,, are finished before q,
then the execution of ¢ is continued until its termination.

t0 t1 t2 3 t4 t6 t6 t7 t8

J====|====|-===|=-=== === | === | === | ~===]
|<===p1-=>|<==-p2-->|<-=-p3-->[<-~-pd-->|

(a): q terminates before p4

t0 t1 t2 t3 t4 t& t6 t7 t8

B B Ly B B P EE
[¢===p1=~>|<==-p2-->|<==-p3-=>|<---p4-->|

(b): p4 terminates before q

0 t1 t2 t3 t4 t5 t6 t7 t8

R L B L e B B B
|¢===p1-->|<-=-p2-->|<---p3-->|<--~p4-->|

(c): q and p4 terminate at the same point

Figure 5.1: Possible executions of (pl,p2,p3,p4) prj q

Note that the projection construct can be executed over an infinite interval. In this case, if
Pm terminates before g, then ¢ is continuously executed over the remaining infinite subinterval;
whereas if q terminates before some p; (1 < ! < m), then pi; ...; pm is sequentially executed over
the remaining infinite subinterval. This implies p., is executed over an infinite subinterval.
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Projection can be thought of as a special parallel computation which is executed on different
time scales.

Example 5.1 Consider the following formulas:
n & len(2) A keep(i o=i + 2)
pr len(4) A keep(i 0=i + 3)

p3 = len(6) A keep(i o=i+ 4)

g = len(4) A (i=2) A (j=0) A keep(j o=3 +i).
Then executing (p1,p2, p3) prj ¢ yields the following result:

t0 t2 t6 t12 t13
|--emm== fomoommmeemomae- [==mmmmmm e I---1
frmmmmmmm oo ittt >
t0 t1 t2 t3 t4 tb t6 t7 t8 t9 t10 ti1l t12
e B e R R e R R Ee B P By
I¢==p1->|K====~ p2------ >|=mmmme e p3~=----n-- >

i=2 4 6 9 12 15 18 22 26 30 34 38 42

j=0 2 8 26 68

Figure 6.2: Projection computation
O

The original projection operator defined in [61], p proj ¢, and the new projection operator
defined above are not directly comparable. In the former, the formula p is executed repeatedly
over a series of consecutive subintervals whose endpoints form the interval over which ¢ is
executed. This may result in repeating the same global state in the execution of ¢ several times
if some of the copies of p are executed over subintervals of zero length (in contrast, our definition
rules this out). Moreover, in p proj ¢, the series of p’s and the ¢ always terminate at the same
state. We feel that although p proj ¢ and (p1,...,Pm) prj ¢ do share some important properties,
they still possess sufficiently distinct features to be treated independently as complementary
constructs useful in the programming environment in which different time scales need to be
considered.

5.2 Properties of Projection Operator

Projection operator enjoys a number of interesting properties. The theorems below are intended
to formalize some of them. First, let us introduce some fundamental notions and auxiliary
lemmas which are needed for proving the properties.

Definition 5.1

1 A formula p is called a terminal formula if p = pAempty.
2 A formula p is called a local formula if p is a state formula or a terminal formula.
3 A formula p is called non-local if for all o, o |= p implies |o| > 1.
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A local formula can be satisfied by a singleton interval, but a non-local formula can not be
satisfied by a singleton interval. Also, a terminal formula can be satisfied by a singleton interval.
We formalize this fact in Lemma 5.1.

Lemma 5.1 A formula p is a terminal formula iff for all intervals o, of=p implies lo| = 0.

Proof

Suppose p is a terminal formula. By definition 5.1, p = pAempty. Let o be an interval. If okp,
then of=pAempty. So ok=empty, and |o| = 0.

Conversely, for all o, if ol=p implies |o| = 0, then of=empty. Hence ol=pAempty.

O
We also claim that the following conclusions hold:
Lemma 5.2 Let o be an interval and rq,...,7, € N, .
1) 0 L(T1yeerTiy e Tiy Pigdseees Th) = O L (T1yueey Tis Tig1y ooy Th)
2) 0 | (P1yeeey Tty Teg1y ey Th) = 0 (T1y.sT) 00 | (T4, 7415 -y Th)
Proof Straightforward.
o

We now turn our attention to the logic laws about the projection formalized in Theorem 5.3
- Theorem 5.9. To prove them, we sometimes use I-prjl and sometimes use I-prj2. Whenever
I-prj2 is used, we claim it explicitly. In what follows, whenever the construct (py,...,pm) P7j ¢
is encountered, the formula ¢ is thought of as a non-past formula, of course, a lec-formula (see
Lemma 2.20).

Theorem 5.3 Let py, ..., pm, ¢ be formulas.
PRJemptyl (empty prjq)=q
PRJempty2 (qprj empty) =q
PRJempty3 ((p1,--.,0m) pri empty) = (p1;..-;Pm)

PRJempty4d (p1,.., Pty €MPLY, Pei1s -y Pm) PTJ 4 = (P1y --Pts Pt415 -2 Pm) PTT G
PRJempty5 p1 A empty; (p2,...,Pm) PrJ @ O (P1,P2, -2 Pm) PTI ¢

Proof
Let ¢ be an interval and k an integer, 0 < k < |o|.
The proof of PRJemptyl:

Suppose (a,0,k, |o|) = empty prj ¢. If ol(k) E ¢ and (0,0,k,|o]) | empty then k = |o| and
hence (,0,k, |o|) = g. Otherwise, there is r, k < r <X |o|, such that (o,0,k,r) |F empty and
al(k,r)'o'(r+1._|,|) k= . The former yields r = k. Hence (0,0, &, lo]) E ¢

Conversely, if (0,0,k,|o|) |= g then, by taking r; = k, one can show that (o,0,k,|o]) E
empty prj q.

The proof of PRJempty2:
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Suppose (0,0,k,|0]) = g prj empty. If al(k) = empty and (0,0,k,|o|) |= ¢ then we are done.
Otherwise, there is r, k < r < |o|, such that (0,0,k,7) I= ¢ and ai(k,r)-a(ﬂ_l_.lal) = empty.
The latter means that r = |o| = k. Hence (0,0, %,|0]) |- g.

Conversely, if (0,0, k,|o|) = ¢ then, since o|(k) = empty, (9,0,k,|0]) = g pri empty.
The proof of PRJempty$:

Suppose (0,0,k,|0]) = (p1,...,Pm) prj empty. If o|(k) |= empty and (0,0,k,|0]) = p1;...; Pm
then cleatly (4,0, k,|0]) |= p1;- - -; Pm. Otherwise, there are integers ry,...,75 (1 < h < m) such
that k < ry < ... < 7 < |o| and the following hold:

¢ (0,0,k,71) E p1,and for 1 <l < A, (oy71-1,71-1,m) E P
o If h < m then o|(k,r1,...,74) = empty and (0,74, 7h,|0|) = Ph;. . .; Pm.
o If h = m then ol(k,r1,...,Th)O(r,41.|0}) F empty.

Ifh < mthen ry = -« = 7, = k and hence (0,0,k,|0|) E p1;...;Pm- ¥ h = m then
|U| =1 = =1y =k, yielding (U’O’kv |0’|) |= Pi15-.-3Pm-

Conversely, if (¢,0,k, |o|) = p1;...;Pm then, by taking A = 1 and r; = k, one can show that
(0,0,k,0)) = (P15 ., Pm) prj empty.

The proof of PRJempty4:
We prove this using I-prj2.

(07071"" |0’|) |= (Pl, Ry ) empt’!hptﬂ, --wpm) P"j q
<= there exist integers 71, ..., 74, Te, Tt41, --:s Tm—1 and 7y, € N, and o = k such that
(0’ 07 k9 IO’l) |= [I’l, e Pty emptyvpt+17 ---,Pm](Tl, vy Tty Tey Ttg1y ooy 7‘m)
and
rm = |o| and o|(ro,...,7s) = q for some 0 < h < mor h=eor
Tm < [o] and o(T0y ey Tty Tes Pta1s ooy ") O (rm41.4ol) E €

Since

(U’ 0,k, |U|) |: [Pl, oy Pty €MPLY, ey, ---,Pm]("'l, vees Tty Tes Tt415 -+ Tm)
< (0,0,k,m) FE p1 and
(oymi—1,m—1, ) Epforall l,1 <1<t and
(0,74, 7, 7e) = empty and
(0, Tes Tes Te41) | Pr41 and
(oyri—1,mi-n, ) Epforall i+ 1<1I<m
(U, 0) karl) I= 451 and
(o,71-1,71-1, ) E p forall ,1 <1 < m (re = 14)
(0’, 0, k, IO‘l) |= [pl, oy Pty P41y ...,pm](’l‘l, ey Tty T4l ooy Tm)

I

i

Moreover
Ol(10y ey Tty Te) = OL(T0y oy 7e) (T2 = Te)
and
OU(T0y oy Tty Tes Tt 1y ooy Th) = TU(T0y -0y Tty Te41, vy Tm) (e =T¢)

Therefore

(0,0,k,|0]) £ (P1y +es Pts €MPLY, Pet1s e Pm) PTG ¢ = (P1s-e0s Pt Pta1s -, Pm) PTG G
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The proof of PRJempty5:
We prove this using I-prj2.

(0,0,k,|0l) = p1 A empty; (3, ..., pm) PTi q
Sl (0’0’ k,T]) '= P1 A empty and (0’, T1,T1, |6|) |= (p27 ---’pm) prj q for some r,0< 1 < |a|
&> (0,0,k,r1) Fp1 and 7y = k and
there exist integers r,,...r,,_1 and r,, € N, such that
(09 71,71, lal) I= [p29 "-’Pm](r% ey Tm)a'nd
Tm = |o| and ol(ry,...,74) = q for some 1 < h < m or
Tm < |o| and ol(r1, ..., ) O(rny1.40)) E @
=> there exist integers ry,...7,,—1 and r,, € N, and r¢ = k such that
(0,0,k, o)) [E [P1y os Pm)(T15 o0y )
and
*m = |o| and o)(ro,71,...,74) £ ¢ for some 0 < A < m or
rm < |o| and o{(ro, ..., Tm)-O(rn41..40)) = €
Aand (‘770’ k’ lal) |= (ph ---,Pm) p"'j q

a
Theorem 5.4
PRJskipl (skipprjq)=gq, if ¢ is non-local.
PRJskip2 (qprj skip) D gq, if ¢ is non-local.
PRJskip3 ((p,q) prj skip) D (p;q), if p or q is non-local.
Proof

Let ¢ be an interval and & an integer, 0 < k < |o|.
The proof of PRJskip1:

Suppose (0,0,k,|0|) |E skip prj q. We first observe that o|(k) ¢ and (0,0, k,|o|) | skip is
impossible since ¢ is non-local. Hence there is 7, k < r < |o|, such that (a,0,k,r) |= skip and
ol(k,7)0(r41.}e|) = ¢- The former implies = k + 1 and hence (0,0, k,|o|) = ¢.

Suppose (o,0,k,|o|) = g. Then, since ¢ is non-local, |o| > k + 1. Hence (0,0,k,|o|)
skip prj ¢ can be shown by taking r; = k + 1.

The proof of PRJskip2:

Suppose (0,0, k,|o|) |= g prj skip. We first observe that o|(k) |= skip and (0,0,k,|0]) = g is
impossible. Hence there is r, k < r < |o|, such that (¢,0,k,7) | ¢ and ol(k,)-0(r41.j0)) F skip.
The former implies » > k + 1 (since ¢ is non-local). This and the latter mean that r = |o].
Hence (0,0, , o]) = g-

The proof of PRJskip3:

Suppose (o,0,k,|0|) = (p,q) prj skip. We first observe that (k) = skip and o | p;g is
impossible. Thus one of the following must hold:

. There is r k -<- r '5 Ial, such that (U,O,k,"‘) l: P, a‘l(k,"') F skzp and (a,rvrvlal) l: q.
Hence (0,0,k,|o|) = p; g
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o There are integers 71,7, such that k < ry < r; < o], (0,0,k,7) E p, (o, rL,TL,T2) E g
and ol(k, 1, 7'2)"7(r3+1..|a|) [= skip. Since at least one of p and ¢ is non-local, we must have
r1 2 k+1orry > 7+ 1. Thus, from ol(k,71,72)-0(,41. o)) k= skip it follows that |o] = r,.
Hence (0,0,k,|0|) = p; g.

a

Theorem 5.5 Let p,q,p1,...,pn be formulas.

PRJorl (Pl,---,(PiVPf),---,Pm)PTj‘I

= (P1y - sPise -1 Pm) PrIqV (P1y- -y Fiye .y Pm) PTI @
PRJor2 (p1,...,Pm) pri(pVq)

=(p1y.--Pm) PTI PV (P1s-- > Pm) PTJ 4.

Proof

The proof of PRJor! and PRJor2 follow directly from the definition of the semantics of the
projection operator and FD9

@5 GV il = (a5 55 8) V(@15 54545 65)-

0]
Theorem 5.6 Let p, ¢ be formulas.
PRJpar p| g=pA((q,true) prj empty) V q A ((p,true) prj empty)
Proof
The proof of PRJpar follows from PRJempty3.
0

Theorem 5.7 Let py, ..., pm be lec-formulas.

PRJnextl ppri Ogq
PRJnext2 p; A more; (pa,...,Pm) PTi ¢
PRJnextd (p1,....pm) pri O4q

PRJneztd (Qppri Q9)
PRJnexts5 (Op1y.spm) prj O4q

(p A more; q) V (p A empty; Og)
(Pl»Pz» "',p‘m) p1‘] O q

p1 A more; (pa2, -, Pm) PTJ 4

Vp1 A empty; (p2, .-, Pm) Pri O ¢
O(r;9)

O(p1; (p2y -1 Pm) PTT q)

n v

Proof

We prove this theorem using I-prj2. Let o be an interval and k an integer, 0 < k < |o] and
m> 2.

The proof of PRJnext1

(0,0,k,|a])Eppri Og¢
<= (0,0,k0]) E [p)(m) (ie. (0,0,k,71) | P)
and
r1 = |o| and al(k,m1) F Og or
71 < |o| and ol(k,71)0(r,41.00) F OF
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In the case of r; = |of, if || = w or r; = k then o |(k,r)) = 0| (k) £ Og. Hence
k< = lo| <w. al(k,m1) = Qg implies (0,0, |0}, |o]) = g. Moreover, (0,0, k,|o|) = p A more,
hence (0,0, k, |o]) E p A more; q.

In the case of 7y < |0}, if r; = k then a(k,71)-0(r,41.Jo) = o¥) |E Og. This amounts to
(g,k,k, IO’I) ’= Oq- Since (0, 0,k, 7'1) = (0, 0,k, k) t: pAempty, (0, 0,%, |0|) EpA empty; Oq. If
rn> k, Ul(ky Tl)-a(r1+l..|a|) = o) I= Og iff olr1) I= q iff (U, 1‘1,1'1,|(7|) |= g. Since (0,0, k, V=
p/\ more, (0,01k7 IUI) '= P A more; g.

Conversely, suppose (0,0, k,|o]) = (p A empty; Og) V (p A more; q). If (0,0,k,|o]) = pA
empty; Og then there exists r, k < 7 < |o| such that (0,0,k,7) = p A empty and (o,r,7,|0|)
Qg It is obvious that r < |o| otherwise (o,7,7,|0]) ¥ Og. Thus, (0,0,k,|0|) [p](r) and
r=Fkand (‘7, r,1lol) = al(ka'r)'a(r+1..|o|) E Og. Hence (0,0, k, lol) & p pri Og.

If (0,0,k,|0]) = p A more; g, then there is 7, k < r < |o| such that (0,0,k,7) = p A more
aad (0,71, 0]) = g. Thus, (2,0,k,|0]) = [p)(r) and & < r = |o] and oL (k,) F Og (since
<8 >=< 8 >F q). Orr < lo| and o | (k,7)O(rs1.10)) =< Sks8r > o) =< g 5, >
oo™ | Og (since o) |= g).

Therefore, (0,0,k,|ol) = p prj Og.

The proof of PRJInezt2

If (0,0, k,|o|) | p1 A more; (s, ..., Pm) PTJ g, then there exists an integer r1,k < 1 < |o] such
that (0,0,k,71) | p1 A more and (o,71,71,|0|) = (P2,-..,Pm) Prj ¢. By the former, we know
that (¢,0,k,71) = p1 and k < r;. By the latter, we obtain

(0‘, 1,71, |0'|) l= [P2, ""pm](r% reey Tm) for T S T2 S S Tm-1 j Tm S |0’|
and
rm = |o| and o|(71,...,74) | ¢ for some 1 < h < m or

rm < |o| and a(ry, ..., "'m)'a(rm+1..|a|) Eq
Therefore,

(0,0,k,|0)) & [P1) s Pml(T1s oy Tm) TOr k < 71 < . S Py X7 < o]

and

*m = |o| and ol(k, 71, ...,ms) = ol(k,71) 0 0}(71, ..., T8) = Og for some 1 < h < m or
rm < |o| and ol(k, 71, o0 Tm) O (rmt1.jol) = OUE, 1) 0 OUT1s ooy Tm)O(rmt14ol) E O

Therefore’ (a’o,k’|a‘|)h (pl""’pm) prj Oq'
The proof of PRJnext8
Suppose (0,0, k,|o|) E (P1)..sPm) Pri O g. We have

(0,0,k,|0l) = [P1se0s P)(T15 oy T) for k=19 <711 < e < Tm-1 2 m <o
and

rm = |o| and a}(ro, 71, ...,7h) E Og for some 0 < h < m or

*m < |o] and o|(r0, ... 'm) O (rm+1.4op) E OF

Thus, two cases need considering:

1) Tl = k_
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In this case, o | (k,71,...,74) = o|(r1,...,71) (Lemma 5.2). Hence, the following hold:
(0,0,k, 1) E p1 and (0,71, 715 0]) | [P2s oy Pm(72, ooy Tm) fOr 1y < 72 < < 1y < Tm < |o|
and
rm = |o} and ol(ro, 1, ..., 7h) = 0)(71, ..., ) = Og for some 0 < b < m or
rm < |o| and ol(70, ..., "m) O (rpmt1.4op) = OU(T1, s Tm) Ormt1.fop) E Og
Thus, (0,0, k, r) pAempty and (o,71,71,|0]) = (2, -, Pm) PTj Q¢ leading to (0,0, k, lo]) =
pAempty; (P2, s Pm) Pri O 4.

k<.

In this case, 0 | (K,71,...;Th) =< 8k,8r, > 00|(ry,...,7s) (Lemma 5.2). Hence, the following
hold:

(0,0,k,m1) = p1 A more and (0,71,71,|0]) | [P2, .o Prm)(T2, vy Tm)

fork=ro<m .. < 1 X7y < |of

and

tm = |o| and o|(ro, 71, ..., Th) =< 8k, 8, > 00)(r1, ..., ) E Qg leading to (o{(r1,...,7m) E ¢

or

m < |o| and (7o, ..., Tm) O (rmt1.fol) =< Sk 8ry > 00 l(T1, o Tm) O (rme1. o)) E OF

leading to 01(7'17 ey rm)'a(rm+1..|o|) I': q

Thus, we obtain (0,0,k,71) = p1 A more and (o,71,71,]0]) E (P2,.-,Pm) prj ¢. Hence,
(0,0,k,]0]) = p1 A more; (pa, ..., Pm) DTS q.

Conversely, suppose (7,0, k, |o|) = (p1Amore; (pa; ...; pm) Prj q)V(P1Aempty; (P2, -y Pm) pr5 O
q). By PRJempty5 and PRJnext2, (o,0,k,|o|) = (p1,-..,om) Pri O g.

The proof of PRJnezt:
Opprri Og = OpAmore;q  PRInext3
= Opig FS4
= Oma) FCH1
The proof of PRJnext5:

Op1 A more; (p2, .., Pm) prj ¢  PRJInext3
Op1; (p2; s Pm) PTI 4 FS4
O(P; (p2y s Pm) PT7 9) FCH1

(Op1y-pm) pri O4q

From Theorem 5.7, a useful conclusion can be derived. We formalize it in Corollary 5.8.

Corollary 5.8 Let p,..., p,, be lec-formulas and ¢ a non-past formula.

PRJnext6 (p1y--pm) pri O4
(11 A more; (p2, ..., Pm) PTJ €)

m—-2 .
V V ((p1 A ... A pt) A empty; pey1 A more; (D42, -, Pm) PTS 9)
t=1

V((p1 A ... A Pm—1) A empty; pm A more; q)
V((p1 A ... A pm) A empty; Og)

85



Proof

(prs--Pm) Pri Ogq

(p1 A more; (P2, ..., Pm) PTJ q)

V(p1 A empty; (p2,...,Pm) Pri O q) PRJnext3

(p1 A more; (p, ..., Pm) PTJ q)

V(p1 A empty; pz A more; (p3, ..., Pm) Pri q)

V(p1 A empty; p2 A empty; (p3, ..., pm) pri O q) PRJnext3

(;1 A more; (pz, ..., Pm) Prj @)

V(p1 A empty; p; A more; (ps, ..., Pm) Prj q)

V((p1 A p2) A empty; p3 A more; (py, ..., Pm) PTj q)

V((p1 A p2) A empty; p3 A empty; (pa, ...,pm) pri O q) EMP4, PRJnext3

n

o

1 Amore; (P2, ..., Pm) PTj q
Vp1 A empty; p2 A more; (ps, ..., pm) PTI q
V(p1 A p2) A empty; ps A more; (py, ..., Pm) PTi q

V...
V(p1 A ... A Pm—1) A empty; pm A more; g
V(p1 A . A Pm—1) A empty; pm A empty; Og EMP4, PRJnext1, PRJInext3

(p1 A more; (p2, ..., Pm) PTF q)
V((P1 A ... A pm—1) A empty; pm A more; q)

m—-2
t\_/l ((p1 A ... A pe) A empty; pega A more; (Pesas -y Pm) PTI Q)
V((p1 A - A ) A empty; Oq)

PRJnext6 can be written in a more concise form, as follows:

PRJnezt6 (1 -sm) Pri Ogq
m~1
= t\—/O ((po A ... A pe) A empty; pe1 A more; (Peg2y -r Pma1) PTI )

V((po A .. A Pm); Og)
where pg = prp41 = empty.

Since the disjunction in the above formula is mutually exclusive, PRInext6 can also be written
in another form shown below:
PRJnezt6 (P1yspm) prj O4¢
= H:0<t<m—=1A((poA ... Ap) A empty; pey1 A more; (Pes2, -y Pmi1) PTI q)
V((po A .. A pm); Og)

These concise forms of PRJnext6 are frequently used in the reduction of programs.

Theorem 5.9 Let py, ..., pm, ¢ be formulas.
PRJandl pprjg=pAgq
if p or ¢ is a state formula.
PRJand2 (wAp1,...,Pm) Prj 4= WA (P1,..,Pm) PTI ¢
if w is a state formula.

PRJand3 (p1,....,Pm) Pri (wAq)=wA(p, wsPm) PTI @
if w is a state formula.
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Proof
Let o be an interval and k an integer, 0 < k < |o|.

The proof of PRJand1:

Suppose (0,0, %, |o]) = p prj g.  ol(k) |= ¢ and (0,0,k,|0]) |= p then (,0,k,]o]) = pA g
Otherwise, there is 7, k¥ < r < |o], such that (0,0,k,7) |= p and Uk, )0 (r41 1o = Oh o)) = q.
If p is a state formula, then (0,0, k,7) |= p iff (0,0,k,|0|) = p. Hence (0.0, k.,.|a|) R 1() AI:II) .

Conversely, if (0,0,,|o]) £ p A g then (0,0,k,[0]) = p and (0,0,k,|0|) k= g. Further-
more, if p is a state formula, by taking r; = k, one can show that (o, 0,k,71) | p and
01(0,7'1)"7(n+1-.|al) = g¢. Hence, (U,O,k,lﬂl) E pprj q. If q is a state formula, one can
show that o(k) [= ¢. Hence (0,0,%,|0]) = p prj q.

The proof of PRJand3:

We prove this using I-prj2. Since w is a state formula, ol(k,r1,...,11) | w iff (0,0, k, lo]) E w.
Thus
(0,0,k,|o() = (P1, .., Pm) pri (w A q)
= (0,0,k |0} [P1) s Pr)(T1, s tm) for k=190 < 71 € oo < Py < 7 <lo|
and
rm = |o| and al(ro, 71, ...,m4) E w A ¢ for some 0 < h < m or
™m < |o| and o}(0, ..., "m)-O(rms1.4o]) E WA G
= (0,0,k,l0]) = [p1,.es Pm) (P15 s Tm) fOT k=10 < 7y € oo € Py < T < lo|
and
rm = |o| and (0,0,k,|0]) E w and o|(ro, 1, ..sTh) = q for some 0 < h < m or
™m < |o| and (0,0, %, |o|) = w and al(ro, ---7Tm)'a(rm+1..|a[) Fq
< (0,0,k,|0|) E w and
(0,0,k, o)) = [P1y oo P (715 ey Tm) for k=10 £ 71 € oo. K Ppy < 7y < g
and
Tm = |o| and o|(rg, 71, ...,71) |& ¢ for some 0 < h < m or
Tm < |o| and al(r0, ..., "m) O(rpt1.iop) E ¢
< (0,0,k,|0])F wand
(070’k’ lal) '= (pl’ --',pm) prig
= (0,0,k o)) = wA((P1)-sPm) PTT q)

The proof of PRJand2 is similar to PRJand3.

5.3 Normal Form of Projection Construct

The projection is a new construct for EITL. It can be also a statement for programming language
as long as py, ..., pm, ¢ are all programs (of course, lec-formulas). In this section, we prove that
a program involving the projection construct can also be reduced to the normal form given in
Chapter 4.

Theorem 5.10 Ifpy, ..., pm, g are programs, and g is a non-past formula, then there is a program
Pasin (4.1) (Definition 4.2) such that

P=(P1yePm) PTI @
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Proof

d h dr
Suppose ¢ = r\=/l er A empty V .'\=/1 2i AQgysi and, forall 1 <1 < m, p = \_/1 Pler A empty V

k
-V1 piej A Opigje
,=

(Pry s Pm) PTi @ = (P1y-esPm) Pri ( V Ger A empty V V 4 AQgysi)  hypothesis
(pl, o+ Pm) PTj (‘Iel A empty)

v ‘VI(PI, vees Pm) PTF (gei A Ouyi) PRJor2
=
Further,
(P, .orPm) P75 (ge1 A empty) = gey A(P1,...,Pm) prj empty  PRJand3
= g A(P15 5 Pm) PRJempty3

By Theorem 4.9, (p1;..;Pm) can be reduced to a normal form and so can ge; A (py;...; Pm)-
Hence, there is a program p such that the following holds

d n
ge1 A (P13 .3 Pm) Vl Per NemptyV \ pe; AQpysi (1)
r= j=1

On the other hand,

(P1s ey Pm) P75 (€ei A Ogyi)
i A (P15, Pm) PTF O 45i) PRJand3
i A (1 A P2 A ... A P A empty; Ogyi)

m~-1
Vgei A t\_/o (Bo A ... A py A empty; pryr A more; (Pe2, -y Pmt1) PTJ q5i)  PRInext6
A (Pre1 A oo A Pmer A empty; Ogy:)

m—1
Vgei A V (Poe1 A Pre1 A D2e1 A ... A Prer A empty;

ke .
V Pe+ici A OPptt1fi A more; (Pes2, - Pms1) PTI 4fi) Poe1 = empty

hypothesis

Qe A plel A <A Pme1 A (empty; Oqf)
t41 .
Vi A V (pOel A P1e1 A ... A Piex A empty; V Pr+1ci A OPes1ss; (Pea2s s Pme1) PTI 45i)

FCH2, FS4
E i Apa A APmer A Oqft
\ 1< V (‘Icu Apigi A Oplfj) (p2, ,Pm) prj in)
<<
v V (@ei A D1e1 A - A Pte1 A Petici A OPta1fss (Pea2s s Pmt1) PTI qsi)
1<t<m—1,1<j<ke g1
FD9, FEP5
S GiApraa Ao APma A Oqf:
V1<\/<k gei A Prc; A O(prg53 (P2, -0 Pm) PTJ G5i)
I8k .
v \) (gei A Pre1 A e A Poer A Peici A Q(Peasis (Pea2s s Pmt1) PTI €5i)
1<t<m—1,1<j<ke s CH1
F

88



Therefore,

\'} (P15 -sPm) Pr3 (gei A Ogyi)

=1
h
= V&iAPiaA...Apmea AQgsi

i=1
qm/\plc'/\() pl ‘; p2’ -",pm T. 1

< <

GiAPra ... A A i A i3 | i
IS‘SM-IJSiSk¢+1,1$i5h( anre Peer A Petrci A O(Pesrsss (Peazs oo Pmya) P13 g5:)

From (1), (2), it follows that (py,...,pm) prj ¢ is reduced to its normal form. u]

Note that, if (p1, ..., Pm) Prj ¢ is a deterministic program, then its normal form is of a simpler
form. That is, in an internal state, it is reduced to:

(P1y s Pm) P75 4 = pc A Opy

and at the final state, it is reduced to:

(P1 ., Pm) PTJ ¢ = pe A empty

where p,, p. and py are defined as in (4.1) (Definition 4.2).

Example 5.2 Programs p;, ps, p3 and ¢ are defined as follows:

p L len(2) A keep(i o=i+2)

p, ¥ len(4) A keep(i o=i + 3)

def

p3 len(6) A keep(i o=i + 4)

def

q len(4) A (i=2) A (=0) A keep(j =3 + 7).

We reduce (p1, p2, p3) prj q- Note that, in the reduction, we use Theorem 3.7 for substitution
without declaration.

Since

q len(4)Ai=2Aj=0A0O(more = (Qj =7 +1)) definition
Olen(3)Ai=2Aj=0Amore > (Qf =j+1) AOQO(more = (Qj =j+1i)) FE2
Olen(3)Ai=2A7=0A0Qj=2+0AQ0(more - (Qj =7 +1)) FS4, FW1

i=2A7=0AQ( =2Alen(3) AQ(more - (O = j +1))) FD3

mwomomon

and

len(2) A O(more — (Qi =i+ 2)) definition
Qlen(1) A (more = Qi =i+ 2) A@O(more —» (Qi =i+2)) FE2
Olen(1) A Qi =2+ 2A QB(more — (Qi =i +2)) FS4, FW1
O(i = 4 Alen(1) A O(more — (O = i + 2))) FD3
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Thus, (P1, P2, P3) PrJ q can be reduced as follows:

(P1,P2,P3) PTi ¢
= (O(i = 4 Alen(1) A O(more — (Oi = i + 2))), p2,p3) prj
(i=2A3=0A03U =2Alen(3) AO(more = Qj = j + 1))) definition
= i=2A7=0A (O3 =4Alen(1) AO(more — (Qi = i + 2))), p2, p3) prj
(OG = 2 Alen(3) A D(more — Oj = j + 1)) PRJand3
= i=2Aj=0AQ(E =4Alen(1) AO(more — (Ot = i + 2)); (p2, p3) prj
(7 =2 A len(3) A O(more — Qj = j +1))) PRJnext5
Hence,
PO = i=2Aj=0
P} = i=4Alen(1)AO(more — (Oi = i + 2)); (p2,p3) prj

( =2Alen(3) AO(more — Qj = j +1))

Now we turn our attention to reducing the chop construct. Since

W m

i=4Alen(l) A O(more = (Qi =i+ 2))

i=4AQempty Amore — (Qi =i+ 2)AQO(more » (Qi =i+ 2))
i=4AQempty AQi=4+2A0O0(more = (Qi =i+ 2))
i=4AQ(empty Ai=6AD0(more — (Oi =1+ 2)))

By Theorem 5.10, it follows that

P!
1
Py

We achieve

1=4

empty Ai = 6 A O(more - (Qi =i+ 2));

(p2,p3) pri ( =2 Alen(3) AO(more — Qjf = j +1))

empty Ai = 6;

(p2,p3) prj (i = 2 Alen(3) A O(more — Oj =j + 1))

i=6A(p2,p3) pri (j = 2Alen(3) AO(more - Qj = j +1))

i =6 A (len(4) AO(more — Qi =i + 3), p3) prj

(j =2AQlen(2) Amore » Oj = j+ i AQDO(more = OF = j + 1))
i=6Aj=2A(Qlen(3)A Qi =6+ 3AQ0(more — Qi =i+ 3),p3) prj
(Olen(2) AQj =2+ 6 AQD(more - QF = j +1))
i=6A7=2A(QUen(8)Ai=9A0(more — Qi =1i+3)),p3) prJ
O(len(2) A j = 8 AO(more — Qjf = j + 1))
i=6Aj=2AQ(en(3)Ai=9AD0(more » Qi =1i+3);p3 prj
(len(2) A j =8 A O(more » Qj =7 + 1))

P2

- 1=6Aj=2
2
Pf

len(3) Ai =9 AO(more — Qi =1+ 3);(p3 prj
(len(2) A j = 8 AO(more — QF = j +1)))

In a similar way, we can eventually obtain the following:

PP = i=9
P} = len(2)Ai=12A O(more — Qi =i+ 3);p3 prj
(len(2) A j = 8 AT(more — Qj = j +1))
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X%

1=15

i=12
len(1)Ai = 15 A0(more — Qi =i+ 3);p3 prj
(len(2)A 7 =8 A O(more —» QF = j +1))

empty A i = 18 A O(more — Qi = i + 3); p3 prj

(len(2) A j = 8 AO(more — Qf = j + i)

i =18 A (len(6) A O(more — Qi =i+ 4) prj

(len(2)A j =8 AO(more » QjF = j +1)))

i=18A 7 =8A(Olen(5)Ai=22A0(more — Qi =i +4) prj

(Olen(1)A j = 26 AO(more — Qj = j +1)))

i=18Aj=8AQ(len(5)Ai=22A0(more > Qi =i +4);

(len(1) A j = 26 A O(more — Qj = j +1)))

P¢
6
Py

P7
7
Py

P8
8
P

i
Py

PIO
o

i =238

i=18Aj =8

len(5) A1 =22 A O(more — Qi = i + 4);
(len(1)A 7 =26 A O(more » Qj =j +1))
1=22

len(4) Ai =26 A O(more —» Qi =i+ 4);
(len(1)A j = 26 A O(more — Qj = j+ 1))

i =26

len(3) Ai = 30 A O(more — Qi = i + 4);
(len(1)A j = 26 A O(more — OQf = j + 1))
i=30

len(2) At =34 AO(more » Qi =1+ 4);
(len(1)A j = 26 A O(more — Oj = j + 1))
i=34

len(1) A =38 AO(more — Ot = i + 4);
(len(1)A j = 26 A O(more — Qj = j +1))

empty A i = 42 A O(more — Qi = ¢ + 4);
(len(1) A j = 26 AD(more = Qj = j + 1))
i =42A (len(1)A j =26 AO(more - Qj = j +1))

i=42Aj=26A(Qempty AQj = 42+ 26 A OQO(more = Q) =j +1))
i=42A5=26AQ(empty Aj=68AD(more —» Qj =j+1))

i=d42M7=26
empty/\] = 68AD(’ITLOTE—> O] =]+Z)

j = 68 A empty A (more = Qj = j+ i) AQO(more = Oj = j +1)

j =68 Aempty

| = 68 A emply
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5.4 Examples

We now present two simple applications of the projection construct. The first is a pulse generator
for variable z which can assume two values: 0 (low) and 1 (high). We first define two types
of processes: The first one is hold(i) (i > 1) which is executed over an interval of length i and
ensures that the value of z remains constant in all but the final state:

hold(i) & len(i) A O(Omore — (Oz = z)).

The other is switch(j) which ensures that the value of z is first set to 0 and then changed at
every subsequent state:

switch(j)d=°f(z = 0) Alen(j) A O(more — (Oz = 1 — z)).

Having defined hold(¢) and switch(j) we can define pulse generators with varying number and
length of low and high intervals for z,

pulse(iy,..., i) o (hold(iy), . . ., hold(ix)) prj switch(k).

The second example is that of special parallel computation. Consider the formula ((len(i;), len(i2),
...,len(ik)) prj ¢) Ap. This allows processes p and g to be executed in a special parallel manner
in which p is executed over a series of subintervals, and ¢ is executed at their endpoints:

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 ti1 t12

B R R R R e R e R R EEEI Bt |
Figure 5.3: Special parallel computation
The projection operator (p1,-..,Pm) Prj q presented in this thesis can be used to specify
computations on different time scales. Another possible application area is that of the real time

systems. In this case, we could treat py, ..., pm as formulas over a series of dense or real intervals
and ¢ as a formula over a projected discrete interval.
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Chapter 6

Framing

Summary: Problems and principles about framing are discussed and a solution for
framing based on a default logic is presented. With this solution, a new assignment
operator (<), an assignment flag (af(z)), and a framing operator (frame(z)) are
defined in EITL. Finally, some basic framing techniques in temporal logic program-
ming are illustrated with examples.

In a conventional programming language such as C or Pascal, if a variable has not been assigned
a new value within a program, the current value of the variable remains the same as its old
value, and all variables have this inertial property. This framing technique is simple and often
taken for granted. However, in a temporal logic programming language such as Tempura, the
situation is different, since a program is executed over a sequence of states (time stamps) and
the values of variables are not inherited automatically. Thus, some interesting questions arise:
1. Is it necessary for a variable to inherit its value automatically? 2. How is the value of a
variable inherited while a program is executed? 3. Do all variables behave similarly? This
chapter intends to answer these questions and to formalize a framing technique in which framed
and non-framed variables can be mixed.

This chapter is organized as follows: Section 6.1 discusses why we need framing techniques.
Section 6.2 looks at some fundamental aspects of framing issue. In Section 6.3, a solution based
on a default logic for framing is introduced. In Section 6.4, some basic techniques for temporal
logic programming are discussed. Finally, conclusions are drawn in Section 6.5.

6.1 Why Framing ?

The introduction of a framing technique to temporal logic programming is motivated by both
practical and theoretical considerations: improving the efficiency of a program and synchronizing
communication for parallel processes. Let us begin with an example in Tempura:

c=1Ay:=2;y:=2+7y) (1)

The program only tells us that z equals 1 at state sg, and y equals 2 at state sy. One may expect
that y equals 3 (the sum of the values of = and y) at state s;. Unfortunately, the program does
not satisfy this requirement. The reason is that z is unspecified at s; and s3. So y is unspecified
at 83 (y is also unspecified at sg). There are several ways to correct it. An ad hoc fix to the
problem is to make stability explicit; the above example can be rewritten as
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z = IAO(more=(Qz =z))AN(y :=2;y :=z + y) (2)

As seen, however, z has to be assigned its current value at the next state repeatedly from one
gtate to another so that its value could be inherited. These additional assignments are tedious
and may also decrease the efficiency of the program. For a small program, the repeated assign-
ments may be tolerable; however, in some cases, repeated assignments may be unacceptable.
For instance, to maintain a large array while changing a few its elements at different times over
an interval, using repeated assignments would be a disaster. Furthermore, the verification and
the transformation of programs may also suffer from these excessive assignments. To eliminate
them in an implementation, it seems that the best choice is to introduce a framing technique.

As discussed in Chapter 1, in a sequential program, an await statement is useless, since if ¢
is currently false it will remain so forever. In a process within a concurrent program, however,
this statement makes sense, since another process, acting in parallel, may cause ¢ to become
true.

How can await(c) be defined in temporal logic programming like Tempura? It would be
difficult without framing. Within Tempura, the statement halt(c) (see Chapter 4) may play a
role similar to that of the await(c) statement; however, halt(c) requires that ¢ become true only
at the end of an interval. Thus, ¢ must be false until the time at which c is true. However, halt(c)
does not prevent the variables from being changed. Thus, a problem arises whether we adopt
repeated or unrepeated assignments, when we attempt to synchronize parallel components by
halt(c). For instance, within a finite specified interval, the program

& = OAhalt(z = 1)Alen(2)

is satisfied by an interval, < z : 0,z : _,z : 1 >, (here we are only concerned with variable z; _
denotes any value in the domain). It forces z = 1 at the final state of the interval. On the other
hand, if we use the repeated assignment approach to inherit the value of z, the program

z = 0AD(more—Qz = z)Ahalt(z = 1)Alen(2)
is obviously false. For an unspecified interval, the program
z = O0Ahalt(z = 1)

is also satisfiable on an interval such as < z : 0,...,z : 1 >. It terminates at some indefinite
state where z = 1 because z is only defined at the initial state. On the other hand, if we use
the repeated assignment approach to carry forward the value of z, the program

z = 0AO(more—Qz = z)Ahalt(z = 1)

satisfies the busy waiting (i.e. waiting for # = 1 to become true), but it waits forever. No
process, acting in parallel, can change z to 1, since such an assignment conflicts with z = 0.
The problem is caused by the fact that, unlike conventional programming languages, the
values of variables are not inherited automatically from one state to another and the assignments
are not destructive in temporal logic programming languages.
Modelling an await(c) in a temporal logic requires a kind of indefinite stability, since it
cannot be known at the point of use how long the waiting will be; but it must also allow
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variables to change, so that an external process can modify the boolean parameter and it can
eventually become true. Solving this problem also requires some kind of framing operation.

Framing is concerned with how the value of a variable from one state can be carried to
the next one. Temporal logic offers no solution in this respect; no value from a previous state
is assumed to be carried along. Framing techniques have been used in the programming with
conventional imperative languages for many years without consideration. However, we have to
consider this option carefully in temporal logic programming.

Considerable attention has been given to framing in recent years [68, 40, 53, 83, 39]; however,
no consensus has emerged as to the best underlying semantics. Moreover, some of papers deal
with framing in a simplified manner, e.g. assuming the values of variables are automatically
inherited. This thesis is concerned with investigating the behaviour of concurrent programs
under a particular mode of framing in which framed and non-framed variables are mixed.

To deal with framing, a new assignment operator (< ) and an assignment flag (af) will
be defined within EITL. Armed with the assignment flag, a framing operator frame(z) will be
formalized. These new constructs will be interpreted within minimal model semantics.

This will allow us to specify the framing status of variables throughout an interval in a
flexible manner, and to verify the properties of a reactive system in a manageable way. However,
introducing the framing operator destroys the monotonicity and leads to a default logic [76, 56,
57). Therefore, negation by default has to be used to manipulate the framing operator.

When a framing technique is introduced to temporal logic programming, the semantics of
a program may be changed. Therefore, one issue we have to face is how to interpret a framed
program; that is, how to capture its intended meaning. This will be discussed in Chapter 7.

With the framing operator, the synchronous communication construct, await(c), can easily
be defined. Therefore, real concurrent programs can be managed within our system. We discuss
this issue in Chapter 8.

An interpreter {20], written in SICSTUS Prolog, has been developed using the framing
technique presented in this thesis. It will be presented in Chapter 9.

6.2 Problems and Principles

As mentioned earlier, framing is concerned with the persistence of the values of variables from
one state to another. There are at least two realistic ways to go about framing. One way is
directly associated with the definition of the assignment operator as [40] does in an algebraic
programming language. There the assignment is defined as follows:

z:=e= 1z =eAyl = yi (1<i<m)

where z is a variable, and z’ represents the new value of z. ¥1, ..., Ym Which are different from z
are all the other variables within a program. Intuitively, this means that whenever a variable z
is assigned a value, the other variables remain stable. However, this method can only manage
framing in a limited case in which all variables are framed, and the conjunction of assignments
is forbidden since z := e; Ay := e3 is obviously false if e; (or e; ) does not equal the current value
of z (or y). In Tempura, however, the definition of parallel composition is based on conjunction
(see Chapter 4); this implies that parallel assignments would be forbidden if we adopted the
same strategy for framing. The other way in which the values of variables could persist is by
means of an explicit operator. This method may enable us to establish a framed environment
in a flexible manner in which framed and non-framed variables can be mixed and the framing
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operator can be used in a sequential, conjunctive, or parallel manner. Intuitively, the meaning
of the framing operator, denoted by frame, can be stated as follows:

frame(z) means that variable  always keeps its old value
over an interval if no assignment to ¢ is encountered. &)

The crux of the above technique is how to perceive the assignments of values to variables. To
identify an occurrence of an assignment to a variable, say z, we make use of a flag called the
assignment flag, denoted by a predicate af(z); it is true whenever an assignment of a value to z
is encountered, and false otherwise (Note that af(z) is not allowed to use freely in a program but
only connected with an assignment (see Condition 1) and a framing operator (see Definitions
6.3, 6.4)). af(z) is easy to understand but difficult to formalize in a logic framework. The
problem is that a program provides only positive information, that is, some explicit assignments
from which we know those variables assigned explicitly within the program. However, what we
need is negative information, i.e. those variables which do not encounter assignments at the
current state. It is possible to search for the positive information syntactically and to obtain
the negative information by complement. But it is very hard to define the negative information
in a logic framework.

Let P be a program and R = M(P). M(P) denotes the set of all P-models in which framing
operators are used. In fact, here M(P) equals M,,(P) which is based on the minimal model
given in the sequel. We use P-models below because the conditions given below involve formu-
las which not all are programs but relevant to a program P. The framing technique using an
assignment flag should satisfy some necessary conditions, as follows:

Condition 1: [=p0(af(z)o3b: 22b A b # nil)

where £ is an assignment operator associated with af(z). As a predicate, the assignment flag
(af(z)) must be defined in a way in which it is associated with some assignment operator and
can be used to assert whether or not such an assignment has taken place to = in the execution
of a program. Whenever such an assignment is encountered, af(z) should be true. Conversely,
when af(z) is true, such an assignment should have been perceived in the execution of the
program P. Therefore, whichever way an assignment and assignment flag may be defined, Con-
dition 1 should hold. The b # nil means that nil is not allowed to be assigned to a variable by

the assignment operator i

Condition 2: =p0(af(z)—z€X)

where X is the set of assigned variables associated with the assignment operator L. Xis
determined syntactically (see Chapter 7). Condition 2 requires that the assignment of a value
to z semantically should be equivalent to the assignment of a value to z syntactically. This
amounts to requiring that the set of variables assigned semantically within a program should
equal the set of variables intended to be assigned by the program at every state.

Condition 3: =g remain(-af(z) A Oz # nil-(z = Oz)) or
Er keep(QO-af(z) Az # nil—(Oz = z))

Condition 3 is merely an informal description of the intuitive meaning in (*). It indicates the
conditions under which the values of variables are inherited. The first formula is denoted by
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1bf(z), and the second by Iff(z) (the formal definitions are given later). It implies causality,
i.e. when an explicit assignment has not been encountered, an inherited assignment takes place
instead; it also implies simultaneity, that is, the disappearance of an assignment using 1 and
the appearance of an inherited assignment using = take place simultaneously. Note that nil is
pot allowed to be inherited. So the condition requires Oz # nil with Ibf(z), and z # nil with
Iff(z). 1t is easy to show the following fact:

Fact 6.1 L and = are different.

The above can be justified as follows. Let P be a program and z a framed variable in
P. By Condition 3, for any interval o,0€ M(P), and any integer 4,0 < i < |0}, (,0,1,|0])E
-af(z) A Oz # nil-(z = Oz). Suppose (0,0,i,|o])=-af(z). That is, no assignment which
is associated with af(z) is encountered to z at the current state s;. Thus, (0,0,i,|o])z =
Oz # nil. If L were =, then (o, 0,4,|0]) E 220z A Oz # nil. By Theorem 3.32, we have
(0,0,3,|ol) = 3b: zLb A z # nil. This implies, by Condition 1, (0,0,1, |o])l=af(z). This yields
a contradiction.
a

Fact 6.1 tells us that the assignment operator associated with a f and the assignment operator
(=) inheriting the value of a variable must be different, otherwise a conflict arises. Hence, the
existing assignment operators in ITL are not enough to manage framing. In fact, it is impossible
to choose < from the existing assignment operators: =, o=, := and « in ITL. By the simultaneity
of Condition 3, L cannot be o=, := and «; by Fact 6.1, L cannot be =. Therefore, L has to

be defined as a new assignment operator (it is definable in ITL). We will define L to be a new
assignment operator (<) and use the equality (=) as the inheritance assignment operator in
this thesis.

An important fact we claim is that adding framing operators to ITL makes the underlying
semantics a radical shift from monotonicity to non-monotonicity.

Let us recall that the first order logic has the following properties [34]:

(1) reflexivity: {wy, ..., wp, w}w.
(2) monotonicity: if {wy, ..., wn}Fw then {wy, ..., wn, u}Fw.
(3) transitivity: if {wy, ..., wa}Fu and {wy, ..., wn, u}tw, then {wy, ..., wq, }rw.

In the expressions above, wy, ..., Wy, u, w represent formulas of logical language. From above (2),
the first order logic is monotonic. That is, adding a formula to a theory has the effect of strictly
increasing the set of formulas that can be inferred. We conclude it in Fact 6.2.

Fact 6.2 (non-monotonicity)

A logic involving framing operators is non-monotonic. That is, given formulas, wy, ..., Wy, %, W,
it may happen that wy A ... A w, — w holds, but wy A ... A wy, A u — w does not.

For example, we should have, according to the derived properties of framing,

z=1Alen(1)A frame(z) D Oz =1
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z=1Alen(1)A frame(z)AQ(z < 2)D Oz =2

From the above discussion about the framing technique using assignment flag (af) and
framing operator, we know the following facts: 1. the assignment flag af must be defined
based on an assignment operator; 2. the framing technique must use two different assignment
operators: one is the assignment operator associated with the definition of af, and the other is
the assignment operator used to inherit the value of a variable when the variable is framed and
an explicit assignment to it is absent; 3. the syntactic definition and the semantic interpretation
of af must be consistent; 4. a logic involving framing operator is non-monotonic. Therefore,
we have to provide a way to perceive the absence of the explicit assignment associated with the
assignment flag to a variable so that an inheriting assignment to the variable can take place if
the variable is framed.

6.3 Solutions

In this section, we first define some new assignments which are required by framing as dis-
cussed earlier; then we define framing operators; and finally, we present a minimal model-based
approach for framing.

6.3.1 New Assignments and Framing Operators

Let Sp = {21, ..., 22 }(SpCV') be a set of state variables within a program p and @, = {pz,, s Dzn}
be the set of propositions associated with state variables. Note that variables bound by quanti-
fiers can always be given distinct names by renaming them as necessary. We also assume that
a program p does not involve propositions other than ®,.

Definition 8.1 (new assignments)
1)z « e¥ s = eAps; (1<iLn)
(2) z; <t e 30: (a = eAO(empty—zi<=a))
(3) z; o=te = 30 : (a = eAQ(zi<a))
(4) z;:=t e 2 o=" eAskip
(5) (21, ...xn) 0P (€1, ...y €n) def (z1 op e1)A...A(zr 0p €n)
where @ is a static variable, e an expression, p;, an atomic proposition associated with state

variable z; (1<i<n). p,, cannot be used for other purposes. In (5), op ::= o=t |:=t |«
a

In the above definition, (1) defines a positive immediate assignment operator; (2)-(5) specify
derived assignment operators. The meaning of these assignment operators is similar to those
presented in Chapter 4, but they set some proposition(s) to be true besides assigning some
value(s) to variable(s) at the same time. These operators are called (in the order of their
definitions) positive temporal, next, unit, and multiple assignment operators, respectively. It is
now time to define the assignment flag.
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Definition 6.2 (assignment flag)

af(z:) € ps,

where proposition p;; associated with variable z; is the same as in Definition 6.1, and cannot
be used for any other purpose. As expected, whenever z;<=b is encountered, p,, is set to true,
hence af(z;) is true. Whereas, if no assignment to z; takes place, p., is unspecified. In this
case, we will use a minimal model to force it to be false. o

Armed with the assignment flag, we can define state framing and interval framing operators.
Intuitively, when a variable is framed at a state, its value remains unchanged if no assignment
is encountered at that state. A variable is framed over an interval if it is framed at every state
over the interval. We formalize this idea in Definition 6.3 and Definition 6.4. The former invokes
the previous operator to look back to the previous state, (1) specifies z; to be framed at the
current sate, and (2) defines z) to be framed over an interval; while the latter employs the next
operator to look forward to the next state, (1) specifies the state framing and (2) defines the
interval framing. In fact, the two definitions are equivalent (see Theorem 7.11).

Definition 8.3 (looking back framing)
Let b be a static variable, and 21, ...,z, dynamic (state) variables.

(1) bf(zk) & ~af(zr)—3b : (Ozk = bAzg = b)
(2) frame(zk) déflZl(more—»()lbf(:r:k))
(8) frame(z1,...,Zn) def frame(z1)A.. .Aframe(z,)

a
Definition 6.4 (looking forward framing)
Let b be a static variable, and zy,...,z, dynamic (state) variables.
Q) 1f f(zx)  Omaf(zk)—Tb : (zk = bAQzk = b)
(2) frame'(zy) def O(more—!f f(zx))
(3) framé'(zy,...,z5) def frame'(z1)A...Aframe'(z,)
a

Note that the above definitions are on domain D rather than D'. So, nil is not needed in
contrast with Condition 3.

A dynamic variable z is said to be framed in a program p if frame(z) or Ibf(z)or If f(z)
is contained in p. A program p is said to be framed if p contains at least one framed variable.
In general, a framed program is non-deterministic under the canonical model. Consequently, a
framed program can inductively be defined, as follows

¢ For any variable z € V and any well-formed expression e, T = e, T < e, and empty are
framed programs.

o Iff(z),Ibf(z), and frame(z) are framed programs.
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e If p,¢,P1, ..., Pm are framed programs, then so are the followings:

Op, Op, pA g, p; g, if b then p else q, while b do p, pllg, (p1, wsPm) PTj q, and 3z : p.

Fact 6.3
EQFR =z;=c¢;

LBF  Ibf(z;)

Pr; ANz = eVp,, Az; = e
Pz V pg A2y = Quz;

Proof
EQFR is obviously true. We prove only LBF.

Ibf(z;) mafe; > I:Qz;=bAz;=b

Wy = W:QOz; =bAz; =b

WPr; > OTi=aAzT;=a lemma 4.8
WPz = T = Qz; (# nil)

Pz V Pz Az = Oz

(0]

By EQFR and LBF, when we reduce a framed program p, whenever z; = ¢; occurs in D, it
is replaced by py; A ; = €; V ~p;; A z; = e;; whereas whenever b f(z;) occurs in p, it is replaced
by pz; V <Pz; A i = Oz;. Then we can reduce p under the canonical model as usual.

Example 6.1

frame(z) Az < 1A Oz = 2) Alen(1)

O(more — Qlbf(z)) Az < 1 A Q(z = 2) A O(empty)

(more = Qlbf(z)) A ©@B(more —» Qibf(z)) Az < 1A Oz = 2) A more A O(empty)
Olbf(z) A OO(more — Qlbf(z)) Az < 1A Q(z = 2) A Q(empty)

¢ < 1AQO(bf(z) ADO(more — Qlbf(z)) Az = 2 A empty)

z=1Ap: AQUbf(z) Az =2 A empty)

Thus,
p(c) =z=1Ap:

Ibf(z) Az =2 Aempty

(e V- Pz Az =0z)A(Ppzs AT =2V ~p; Az =2)Aempty
PeAT=2AemplyV-p,Az=1Az=2Aemply

Pz ANz =2Aempty

0

This example shows us that although no explicit assignments using < at a state, a potential
Positive assignment can occur in the state since £ = e can be treated as z = eAp, Vz = e A p;.

6.3.2 Minimal Models

A framed program p also has its normal form which is similar to the normal form for a non-framed
Program but the propositions in @, have to be involved.
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Definition 6.5 A program ¢ is in normal form if

k h
def
q9= V gei N empty V V qci A Oij (6.1)

=1 j=1
where k,h 2 0 (k+ h > 1) and

o for all 1 < j < h, Ogy; are lec-formulas and gy; are all internal programs.

o g (j < h) and g.; (i < k) are true or all state formulas of the form:
(z1=e)A A (Z1=€)APzy A ee. APy,
where ¢; € D (1 < i <) and p, denotes p, or ~p; and/ >0and m>0and I+ m > 1.
m]

A similar proof as for Theorem 4.9 can be given to obtain the following conclusion.

Theorem 8.4 If p is a framed program, then there is a program g as defined in (6.1) such that

P=q
a
Proof Similar to the proof of Theorem 4.9.
a
Example 6.2
frame(z) Az =1Alen(1)
= O(more — Qlbf(z)) Az = 1A O(empty)
= (more —» Qlbf(z)) A ©O(more > Qlbf(z)) Az = 1 A more A O(empty)
= Qlbf(z) A QO(more — Qlbf(z)) Az =1 A O(empty)
= (pz Az =1V-p; Az =1)AQ(bf(z) A empty)
Thus,
R=pAz=1V-pAz=1
p} = Ibf(z)Aempty
= (pzVpz Az =1)Aempty
= py;AempltyV -p; Az =1Aempty
Hence, four models given below can satisfy the program.
o =< ({pm},{z : 1})7({1’1‘}’ ¢) >
a3 =< ({p=} {2z 1 1}), (8 {2 : 1}) >
03 =< (¢v {z : 1})s({p:l:}v ¢) >
04 =< (¢v{x : 1})7(¢) {17 : 1}) >
a
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As seen, a proposition p, can appear alone without an equality z = e at a state. Also, a
framed program can have a number of canonical models. Thus, a problem we have to face is how
to choose a model to satisfy the intended meaning of a program. We interpret framed programs
using minimal models.

Definition 6.6 Let p be a framed program, and X, = {o|o |z, p}. Let 07,0, € T,. We define
o 01, C ogp iff I{p C I{;p and |oy| = |o3| for all 4,0 < i < |oy|
s 1 Coyiff 01, Cooyp
seogy=0iff oy C oz and 03 C o0y

s01Coyiff oy E oz and o2 I 0y

o
Example 6.3
< ({ps},9) >3< (¢, {z:1}) >
<({p:},¢)>0< (¢, {z:1}) >
< (¢ {z:1})>=< (¢, {z:2}) >
<(¢,{z:1})>=<(¢,{z:1}) >
a

Definition 6.7 Let p be a framed program. Then

. [a]é ={d'lo’ = 0,0 |=¢ p}.
¢ 5, = {[o]zlo . p}
o 3, = f(£,), where f: & — L, is any function such that f([o].) € [0]-
Note that (1) [o]. is an equivalence class, i.e. the set of models which are equivalent to &

under =; (2) £, consists of |£,| elements. Each element belongs to a different equivalence
class in E )3 is needed in the proof of Theorem 7.1.

0

Let p be a program, and ¢ =< sg, ...5|o| > be an interval over §, and ®,, where s; = (3, I,‘,)
Ii is defined as in Chapter 4 and I' is canonical interpretation deﬁned as in Section 4.2 of
Cha.pter 4.

Definition 6.8 (the minimal satisfaction relation)
Let p be a program, and (0,1, k, j) be an interpretation. Then the minimal satisfaction relation

Fm is defined as
(0,i,k,5) l=m p iff (0,1, k, ) |=c p and there is no o’ such that o/ C o and (o', 1,%,j) . p-
m]
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A program p is satisfied by a model o under relation |=,,, denoted by ok,.p,if(9,0,0,]0]) Em
p. A model o is a minimal model of program p if o |5 p.

The relations =,, and ~,, can be defined similarly to the relations = and ~. p =, ¢
iff for all o, all 0 < k < |o], ('U,O,k, lo]) Em P ¢ (0,0,k,]0l) Em ¢. p ~m qiff for all o,
cEmpPp®O FEm g¢. The relations =,, and ~,, are also equivalence relations over the set of
programs. That is, they are reflexive, symmetric and transitive.

The strong implication relation under the minimal model, D, can also be defined similarly
to . That is, p Dy, ¢ iff for all o, and for all 0 < k < le)), (0,0, k, o)) Em p = (0,0,k,|0]) Em
q

Note that the definition of the minimal model of a program p is also independent of its

syntax in the sense that the definition does not refer to the structure of the program, and can
be applied to temporal formulas.

Example 6.4 The program p in Example 6.2 has only one minimal model o5 = (< ¢,{z :
1}), (¢ {z : 1}) >. The formula P; in Example 4.2 has only two minimal models, namely,
< $,{B} > and < {4},4 >. o

The intended meaning of a program p is captured by its minimal model. For instance, if
pis z1<1A frame(z1)Alen(1) then under the minimal model, z; = 1 defined at both state so
and 81, this is the intended meaning of p. However, within only the canonical model, p;, is
unspecified at state s;, so it could be true at s;. This causes =, to be unspecified at state s;.
Therefore, z; could be any value from its domain. Using the framing technique, the program
(1) in the introduction can be amended as follows

frame(z)N(z = 1Ay 1= 2;y:=z + y) 3)

As seen, this program has the same meaning as, but is more concise than, the program (2) in
the introduction. Furthermore, the implementation of program (3) is simpler than program (2)
(see Chapter 9). Therefore, program (3) is more efficient than program (2).

6.4 Basic Framing Techniques

In this section, we show how the framing techniques can be used in temporal logic program-
ming; and some basic techniques in various types of programs including sequential, conjunctive,
parallel, or mixed computations are illustrated with examples. Each example indicates a useful
property.

We consider first a simple computation: given a positive integer n, to compute the sum
of all integers in the sequence 1,...,n; and the sum of the sums of integers in every prefix of
the sequence 1,...,n,i.e. 14+ (1 +2)+ ..+ (1 + ..+ n). In the following, let n be a static
variable, z,y, s dynamic variables. z denotes an integer, y denotes 1 + ... + 7, and s denotes
14+(142)+ ...+ (1 + ...+ n). The programs are designed in different manners for the purpose
of showing the different applications of framing techniques.

1. Sequential computation

The following program computes y and s in a sequential way:
frame(z,y, s)A(z,y,s) = (0,0,0) Afor n times do (z :=* z+ L;y =t y+z;5:=% s+y).
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The computation of the program is depicted in Fig 6.1 with n = 4. The correctness of the
program is obvious. In each iteration, z is incremented by 1, y by z, and s by y. After n
time iterations, the computation sequences are 1,..,n for z,0,1,14+ 2,...,1+ ... 4+ n for y,

and 0,0,1,14+ (1+2),...,1+ (1 +2)+ ...+ (1+ 2+ ... + n) for s. Hence, the values of y
and s at the final state are correct results.

8 8 s3 84 85 86 87 88 89 810 s11 =12
|====] === |==mm | =mmm | mmm fommm [ mmm o mmm 2o fomme oo oo |
x=0 1 1 b 2 2 2 3 3 3 4 4 4
y=0 0 1 1 1 3 3 3 6 6 6 i0 10
8=0 0 0 1 1 1 4 4 4 10 10 10 20

Fig. 6.1 A Sequential Computation
2. Conjunctive Computation

The following program also computes y and s but in a conjunctive way.

frame(z,y,3)A(z,y,8) = (0,0,0)
Afor ntimes doz:=% z +1
Afor (n+1) timesdoy =t y+z
Afor (n+2) times do s:=%* s+y

The computation is pictorialized in Fig.6.2 with n = 4.

s0 sl 82 83 s4 85 s6

e R |----- R R e
x=0 i 2 3 4 4 4
y=0 0 1 3 6 10 10
8=0 0 0 i 4 10 20

Fig. 6.2 A Conjunctive Computation
3. Parallel Computation
The following program also computes y and s but in a parallel manner.
frame(z,y,s)\(z,y,s) = (0,0,0)
|| for n times do z :=* z + 1
|| (skip; for n times do y 1= y + z)
|| (len(2); for n times do s :=* s +y)

The computation proceeds similarly to the conjunctive computation (see Fig. 6.3).
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80 sl 82 83 s4 sb 86
|-==-- |-=--- |==-- -—--- [--e-- |----- |
=0 1 2 3 4 4 4

y=0 0 1 3 6 10 10

8=0 (o] 0] 1 4 10 20

Fig. 6.3 A Parallel Computation

4. A Mixed Case of Sequential and Conjunctive Computations

The following program also computes ¥ and s but in a mixed manner.

frame(xv %3)/\(:" yis) = (01 0, 0)/\(:6 =tz 4 1; (:C, y) =+ (z+ 1,9+ 1');
for n—2times do (z,y,8) =" (z+ 1, y+2,5+9);(¥,8, ) :=* (y+z,5+y);s:=t s+y)

The computation proceeds in a similar way as Fig.6.2 shows. However, at state s;, 3, the
computations proceed sequentially, at state s3,s4, conjunctively by for iteration, and at
state 83, 3g, again sequentially.

5. A Mixed Case of Conjunctive and Parallel Computations

The following program also computes y and s but in a mixed way.

frame(z,y,8)\(z,y,3) = (0,0,0) Afor n times doz :=* z +1
A((skip; for n times do y :=" y + z)||(len(2); for n times do s :=* s + y))

The computation proceeds basically in the same way as in Fig. 6.3.

6. A Mixed Case of Sequential and Parallel Computations

The following program (algorithm borrowed from [66]) computes binomial coefficient ( } ) =

k = 2An = 3Ay; = nAy2 = 1Az = 1A frame(z, y1, y2)A

(
while(y, > (n — k)) do
(=t zxypipi=ty-1)
I

while(y,<k)do
(halt(y1 + y2<n);
z:=% z/yg;
v2:="y2 +1
)

)

In the program, k,n are static variables, (0<k<n), and z,y1,y2 are framed variables.
The output of the program is stored in the variable z. The computation is illustrated
in Fig 6.4. The program is justified as follows: the first while statement comp}ltes the
product n.(n — 1).....(n — k + 1). These factors are successively computed in variable y;.
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The second while statement responsible for the denominator, successively divides z by
the factors, 1,2, ...,k, using the integer-division operator /. That z is divisible by y, is
guaranteed by the general property by which a product of m consecutive integers is evenly
divisible by m!. Thus, z should be divided by y;, which completes the stage of dividing =
by ¥z, only when at least y, factors have already been multiplied into z by the first while
statement. Since it multiplies z by n,(n — 1), etc. and y; holds the value of the next
factor to be multiplied, the number of factors that have been multiplied into z as soon as
y2<n — y1, or equivalently, y; + y2<n. This is the condition for the halt statement.

80 sl 82 83 2% 85
|--mem [ =-m- Rl aated RS
yi=3 3 2 2 1 1
y2=1 1 1 2 2 2
x=1 3 3 6 3 3

Fig. 6.4 Sequential and Parallel Computations
. A Mixed Case of Framed and Non-framed Variables

To Compute 8y =14+3+5+ ...+ (2n—1), and s =2+ 4 + 6 + ... + 2n, we have the
following program:

frame(sy, 82)A(z, 31, 82) = (1,0,0) Alen(2 * n — 1)AD(z o= z + 1)
AO(if(z mod 2 = 1) then sj0=13; + z else sy0="3; + z)

where n is a static variable, z is an non-framed variable, and s;, s, are framed variables.
The computation is illustrated in Fig.6.5.

80 si 82 83 s4 85 s6 s7 s8
|----- |----- |----- |-=--= |----- |----- |----- |----- |
x=1 2 3 4 5 6 7 8 9

81=0 i 1 4 4 9 9 16 16

82=0 0 2 2 6 6 12 12 20

Fig. 6.5 A Computation with Framed and Non-framed Variables
. Initialization

We do not require that variables must be initialized. The following program computes the
greatest common divisor (GCD)

a = 6Ab = 4Ay, = aAys = bAframe(yr, ¥2)
while y; # yp do if 11 > Y then y1 :=1 y1 — y2 else yo ==t y2 — y1;
9 =%

The program is based on Euclid’s well known algorithm [1]. The computation is depicted
in Fig 6.6. In the program, a,b are static variables, y1,y2 are framed dynamic variables,
and ¢ is non-framed dynamic variable not initialized at so, even is not defined at sy, sz,
only assigned at the final state s3. The question mark (?) in Fig 6.6 means that we do
not know the value of g at the marked state (the same meaning for below).
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80 sl 82 83
R Rt EERY
yi= 2 2 2
y2= 4 2 2
g=? ? ? 2

Fig. 6.6 Initialization

9. The framing operator can be used in different parallel components and different subinter-

10.

11,

vals

The following program computes y and s again as in 1. The computation is pictorialized
in Fig. 6.7 with n = 4,

halt(z = 4)Az = OAO(more—z := z + 1)
|l(skip; frame(y)Ay = OAD(more—y :=* y + z)Alen(4)
[|(len(2); frame(s)As = OAD(more—s :=* s + y)Alen(4)

80 sl 82 83 84 85 86

|----- |----- f--m-- [----- |----- |----- |
x=0 1 2 3 4 4 4
y=7 0] 1 3 6 10 10
s=? ? 0 1 4 10 20

Fig. 6.7 Frame operators in Different Processes

The computation is similar to 3 but frame(y) and frame(s) are used in different parallel
processes, and start at different states. Note that y is unspecified at state sp, and s is
unspecified at states s and s;.

A variable can be framed on one subinterval and non-framed on another subinterval

The following program is satisfiable.
frame(z)Az = 1Alen(5); O(z o=tz + 1)Alen(5); frame(z)Nlen(5).
The framing operator can handle the immediate assignment
The following example is satisfiable within our notation.
frame(z)A(z = 1Alen(3);z2<5Az ;=T ¢ + 1)
The framing operator can be used in programs executed over either a local interval or a

projected interval, or local intervals and projected intervals. The examples given below
are intended to illustrate these respects.
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12. The framing operator with a local interval in the projection construct

This example shows how the framing operator can be used in programs executed over a
local interval.

(len(2) AO(more — i :="* i + 2), frame(i) A len(4)) prj

(i=2Aj=0Alen(2) AD(more — j :=% j +1))

80 si 82 83 s4 85 86

R B R R EEER
i=2 4 6 6 6 6 (]

R Jom o m oo |
j=0 2 8

Fig. 6.8 Framing operator with a local interval

13. The framing operator being in conjunction with the projection construct

This example shows how the framing operator can be used in conjunction with the pro-
jection comstruct in a program.

((len(2) A O(more — i :=% i + 2),len(4)) prj

(i=2Aj=0Alen(2) AO(more — j :=" j +i))) A frame(i)

s0 sl s2 s3 s4 s5 s6

|----- |----- |--==n |----- |----- |----- |
i=2 4 6 6 6 6 6

e R e e |
j=0 2 8

Fig. 6.9 Framing operator with a local interval

Basically, this program proceeds in a similar way to the program shown in Fig. 6.8. That
is, the framing operator affects every state over the local interval.

14. The framing operator with a projected interval in the projection construct

This example shows how the framing operator can be used in programs executed over a
projected interval.

(len(2) A O(more — i :=" i + 2),len(4) A O(more — i =% i+1))prj

(i=2Aj=0A frame(j) Alen(3)Aj:=* j +1)
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80 81 82 83 84 85 86 87
R L e B P Py
i= 4 6 7 8 9 10
|=mmmmmmme e |=mmmm e I----=1
j= 2 2 2

Fig. 6.10 Framing operator with a projected interval

15. The framing operator with projected and local intervals in the projection construct

This example shows how the framing operator can be used in programs executed over
projected and local intervals.

(len(2) A O(more — i :=7 i + 2),len(4) A frame(s)) prj
(i=2Aj=0A frame(j)Alen(3)Aj:=* j +1)

80 sl 82 83 s4 85 86 87
|-==en | ~omme Rl el EECP S EERESY
i=2 4 6 6 6 6 6
e | =mmmm e m oo oo ===
j=0 2 2 2

Fig. 6.11 Framing operator with both local and projected intervals

However, in the case in which framing operators are used both in local and projected
intervals for one variable, one has to be careful because an error may be hidden. For
instance, the following program is false because it causes i = 6 A i = 2 at state sg. Note
that ¢ equals 6 rather than 2 at state s, because an assignment is encountered at that
state with the local state. It is a programmer’s responsibility to make a program correct
when the program involves framing operators with the projection construct. To avoid the
problem, in practice, we suggest using the framing operator for a variable only once either
with a local interval or with a projected interval.

(len(2) A O(more — i :=" i + 2),len(4) A frame(i)) prj
(i=2AjF=0A frame(i)Alen(3)Aj:=T j +1)

s0 sl s2 s3 s4 s5 s6 s7
e R |----- ----- |----- |----- !
i=2 4 6 6 6 6 ?
R R e e I-----1
j=0 2 ? ?

Fig. 6.12 A wrong use of the framing operator

This chapter developed the framing technique by using the minimal model. However, we
have not investigated the logic laws relevant to the minimal model. These will be discussed in
the next chapter.
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Chapter 7

Minimal Model Semantics of
Framed Programs

Summary: In order to capture semantics of framed temporal logic programs, a
minimal model theory is developed. Algebraic properties of framing operators are
formalized. An example is given to illustrate how to use the theory for reducing a
framed program.

Semantics of a program in imperative languages can be captured in an operational or denota-
tional or axiomatic manner. In temporal logic programming. these semantics of a program can
also be investigated. Since a temporal logic programming language, e.g. Tempura, is a subset
of the corresponding logic, and the logic has its model theory and its axiomatic system, the
semantics of a program can be captured naturally by the model theory and axiomatic theory
respectively. Of course, when executed, a program can also be interpreted in a more operational
way. Actually, the model theory, in some sense, plays a similar role in temporal logic program-
ming languages as the denotational semantics theory in imperative programming languages.

To capture the temporal semantics of non-framed programs in Tempura. the canonical model
has been introduced to interpret programs. Within this model, the semantics of a non-framed
program is well captured. However, since introducing a framing operator destroys monotonicity.,
a canonical model may no longer capture the intended meaning of a program. A program,
therefore, can have different meanings under different models. To interpret a framed program
faithfully, minimal models will be employed in this thesis.

This chapter is devoted to the development of the minimal model in detail. Some conclusions
regarding the minimal model are presented in Section 7.1. Furthermore. algebraic properties of
the framing operators are formalized in Section 7.2. Finally. in Section 7.3, an example is given
to illustrate how to use the theory for reducing a framed program. Conclusions are drawn in
Section 7.4,

7.1 Minimal Model Semantics

In this section, we prove, first, the existence of a minimal model for a given program. Then, we
discuss the substitution law under the minimal model. Subsequently. we consider the normal
form of a framed program in the extended Tempura.
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Theorem 7.1 Let p be a satisfiable framed program (which may be non-terminating, and/or
gon-deterministic). If, (1) p has at least one finite model or (2) p has finitely many models, then
p has at least one minimal model on propositions.

Proof

Let E, be defined as in Definition 6.7. Since p is satisfiable under the canonical interpretation
on propositions, 2 # ¢ Furthermore, if program p has at least one finite model o, then we
claim that T = {a,,l o' € 3, and |0'| = |0} is finite. This is immediately obvious since the
proposition set @, is finite. Thus let 09€T be an arbitrary canonical interpretation sequence on
propositions. If o) is not a mlmma.l 1nterpretatron sequence on propositions, then there exists a

’eI‘ such that o3 3 01/\0 # o} Ana,logously, if o} is not a minimal 1nterpreta.t10n sequence
on propositions, then there exrsts a oZ€T such that al J oA} # 02, ..., and so on. In this
way, we obtain a sequence:

o) Joydo2 .. (7.1)

Since T is finite, so is sequence (7.1). Therefore, there exists a 3' (m > 0), i.e. the last one in
sequence (7.1), such that o7’ is a minimal interpretation sequence.

If p has finitely many models then £, is finite. Let T = £,. Thus, a similar argument to
the above can be given to produce the sequence (7.1). o

Theorem 7.1 asserts the existence of a minimal model for a given (possibly non-deterministic
or non-terminable) program as long as the program has finitely many models or at least one
finite model. For a program which has infinitely many infinite models and has no finite model,
the sequence (7.1) above can be infinite and each a:, in it is also an infinite sequence; but,
in this case, sequence (7.1) has a limit because the sequence is monotonically decreasing with
the lower bound < 0,0, ... >. Unfortunately, we cannot know whether the limit is a canonical
interpretation of program p.

Introducing the framing operator into programs destroys the well known monotonic law.
This implies that some logic laws related to the monotonic law such as substitution law are also
no longer valid within framed programs.

Theorem 7.2 Let p,p/,p1, ..., Pm, and ¢ be framed programs. Then

1 Kp=, p and q=,, ¢ then pA g =, p' A ¢ may not hold.
2 Ifp=,p and q=,, ¢ then p;q =, p'; ¢ may not hold.
3 Ifp=, p and ¢ =,, ¢ then p|j¢ =m p'||¢’ may not hold.
4 Ifp=,, p then pt =, p'* may not hold.
5 Hpi=np(l1<i<m)and ¢=p ¢ then (p1,.... Pis-Pm) Pri ¢ =m (P1s-es Py --r i) PP ¢
may not hold.
Proof

We prove only 1 and 2.

The proof of 1

Let pbe y = 1A O(~af(y) » ¥ = Oy), ¥/ be y = 1A O(y = Oy), g be y = 1 A O(-af(y) ~
¥=Qy)A O (y<=9), and ¢ be y = 1 A O(y<9). We have
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P=mp and g=p ¢
However, pA g =n, g but P A ¢ =,,, false.

The proof of 2

Letpbey = 1AO(~af(y) = y = Oy) Alen(l), P be y = 1A Oy = Oy) A len(1), g be
(naf(y) = ¥ = Oy)Ay<=9 A empty, and ¢’ be y<9 A empty. Thus,

P=Emp and ¢=p ¢

However, there is a ¢ such that (¢,0,0,|0|) |E» p;q but for any o, (0,0,0,|0|) f¢m 7'; ¢’ since
y = 9 conflicts with y = 1 at the final state of the interval.

0

Even if the conditions in Theorem 7.2 are strengthened, the conclusions can still be invalid.
Theorem 7.3 is a stronger version of Theorem 7.2. Its proof is easier than Theorem 7.2, and is
therefore omitted here.

Theorem 7.3 Let p,p,p1, ..., Pm, and q be framed programs. Then

If p=,, p' then pA g =,, p A ¢ may not hold.

If p=, p’ then ¢ A p =, ¢ A p’ may not hold.

If p=,, p’ then p; ¢ =,, p’; ¢ may not hold.

If p=,, ¢’ then ¢;p =, ¢;p' may not hold.

If p = p’ then pllg = p’||/¢ may not hold.

If p=p, p then ¢||p =, ¢||p’ may not hold.

I p; =m p} then (p1, ..., i, --Pm) PrJ ¢ =m (P1, .-, Ply -, Pm) PTJ g may not hold.
If g =m ¢ then (p1, ..., Pis --Pm) PTJ ¢ =m (P1y -1 Pis - Pm) PTJ ¢’ may not hold.

QO ~3 D O W =

0

It is clear that Theorem 7.2 and Theorem 7.3 destroy the substitution law presented in
Theorem 3.7 within framed programs under the minimal model. Therefore, although we have
proved a collection of logic laws under the basic and canonical models in the preceding chapters,
these laws need to be re-examined for framed programs under the minimal model. As a matter
of fact, all logic laws with the equivalence are valid under the minimal model. We discuss this
in the following.

As seen in Theorem 7.2 and Theorem 7.3, the problems arise in the case when a minimal
model takes effect on a sub-program, that is, a proposition p, associated with the dynamic
variable z is evaluated to false under the minimal model in the context within the sub-program,
and another sub-program in conjunction with this sub-program contains a positive immediate
assignment which conflicts with -p,. In fact, this violates the principle of the minimal model
because the minimal model requires that whole program, i.e. all the conjuncts at the current
state be taken into account before a ‘default effect’ functions. However, when reducing composite
programs such as p A ¢, p; g, pllg, and (p1,...,Pm) Prj ¢, we have to reduce sub-programs one
by one and the components contained in a sub-program one part by one part. Therefore, to
ensure a reduction process without ‘default conflicts’, whenever a ‘default effect’ is invoked by
the minimal model, we have to make sure that it is impossible to come up with a positive
immediate assignment in the later reduction which conflicts with the current ‘default effect’.

In the following, two simple but useful theorems regarding the substitution laws are formal-
ised. For our purpose, these laws and the laws provided in the preceding chapters are sufficient
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to reduce a framed program under the minimal model. Before proving them, we first prove
Theorem 7.4 and Lemma 7.5.

Theorem 7.4 Let p and ¢ be framed programs.
MIN -EQ Ifp=gqthenp=,q
Proof

Let o be a model and k an integer, 0 < k < |o|. Suppose (0,0, k,|o|) |z p. Then, (0,0,k,]0)) =
p. Since p = ¢, we have (0,0,k,|o|) = ¢. If (0,0, k,{o|) Fm g, then there is a o' such that
(¢',0,k,|o]) F g and o' C 0. By p = ¢, we have (¢’,0,k,|o|) = p and o’ C 0. This contradicts
(0,0,k,|0]) Em p. Hence (0,0,k,|0) Fm g
Conversely, if (4,0, k, |o]) |=/ ¢ then, in the same way, we can prove (0,0, k,|0|) =, p.
]
Theorem 7.4 is useful since it shows that the strong equivalence relation under the basic
(canonical) model can be inherited under the minimal model. For example, (pV ¢) A 1 =,
pArVgArsince (pVg)AT=pATVgAT.

Lemma 7.5 Let o be a model, r an integer, 0 < 7 < |o]|, and p, ¢ framed programs.

MIN -OR 1If (0,0,7,l0]) Em PV g then (0,0,7,|0|) Em p or (0,0,7,]0]) Em ¢
Proof

Suppose (0,0,7,|0|) Em pVg. We have (o,0,r,|0|) E p or (0,0, r,|0|) E g. Without loss of gen-

erality, let (0,0, 7,|0|) E p. If (0,0,7,|0|) FEm P, then there exists a o’ such that (¢/,0,r,|0’|) E p

and o' C o leading to (0',0,7,|0'|) E pV ¢ and o’ C 0. This contradicts (o,0,r,|0|) Em pV q.
=}

We now prove two useful theorems concerning substitution under the minimal model.

k h
Theorem 7.8 Let g = \/ qe; AemptyV V gc; A Ogy; be normal form of a framed program g.
. o1

=1

If p is not contained in g (1 <4 < k) and g;; (1 < j < h), then
q=m Pz AQ
Proof

g = pzAgVpAg ,
k
V Pz A gei A empty V ‘le:c/\chAOQ,fj
J:

=1

k h
V V —pz Agei Aempty V V —pz A gc; A Ogy;
v

1 =1
k h
“prAg = V Pz Agei NemptyV NV -z Age; AOgy;
=1 =1

Let o be a model and r an integer, 0 < r < |o|. Suppose (0,0,7,]0|) Em Pz :A g- Then,
(@0,r,|0]) E -ps and (0,0,r,|0]) E ¢ If (6,0,7,]0]) Fm g, then there is o such that
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(,0,7,|0") = g and o’ C 0. From (0,0, [0]) = ~p; and o’ C 0, it follows that (0’,0,r,|o")) =
~ps. Hence, (¢,0,7,|0"l) k= —pz A g. So, (9,0,7,]0]) Em ~P: A g could not hold. Thus, we
obtain a contradiction.

Conversely, suppose (0,0,7,|0]) Fm ¢- We claim (0,0,r,|0|) Em —~p; A g.

k
H (0,0, T,lU!) lz‘m Pr A q, then by Lemma, 75, (0, 01 T, IUI) '=m V Pz A Qes A empty or
i=1

h k
(@0,mlo) Fm V PeAdej AOdss: H(0:0,7,[0]) Fm V pzAgei Aempty, then we can construct
= =

a o' from o by a single change (note that 7 = |o| in this case), namely,

Ll = 17— {p;}

k
Since p, is not contained in g; (1 < i < k), (¢/,0,7,|0) E V —pz Agei Aempty. So, 0’ C o
i=1
and (¢',0,7,|0’]) = g. This contradicts (a,0,7,|0]) Fm ¢.

h
If (6,0,7,]0]) Em V Pz A ge; A Ogy; then we can construct a ¢’ from o by a single change,
Jj=1

namely, ,
Ipr = I; - {pz‘}'

Since p; is not contained in g.; (1 < j < h), and for all 1 < j < h, Qgy; are lec-formulas
and gy; are internal programs, gr; do not refer to p, at the current state. Thus, (¢',0,r,|0'|) E

h
V =pz Age; A Ogyj. So, o’ C o and (¢’,0,r,|0'|) | g. This contradicts (0,0,r,|o]) Fm ¢

j=1
Therefore, if (¢,0,7,|0|) Em ¢, then, by Lemma 7.5, it must be (¢,0,7,|0|) Em ~pz A q.
=]

k h
Corollary 7.7 Let ¢ = V gei AemptyV V ¢;; AOgqy; be the normal form of a framed program
i=1 1=1

. If p, and z = ¢/, where ¢’ # e (¢/,e € D), are not contained in g,; (1 < i < k) and ¢
(1< < h), then
T=eANg=y, prAT=€Ag

Proof

Since z = ¢’ (¢/ # €) is not contained in g¢; (1 < i< k)and ¢j (1< j<h),z=eAqZ (Enm
)false if g # (#m)false. Moreover, for all 1 < j < h, gs; are internal programs and Ogy; are
lec-formulas. z = e being in conjunction with ¢ does not affect the evaluation of Ogy;-

Since p, is not contained in go; (1 < 4 < k) and ¢;; (1 £ j < h), pr is not contained in
iAz=e(l<i<k)andg;Az=c¢ (1<j < h). Thus, taking z =eAg to be the ¢ in the
Theorem 7.6, we obtain

zT=eNq=q pcAT=€Ag

0

=1 .
¢ If p, and z = ¢/, where ¢ # e (¢/,e € D), are not contained in ge; (1 <7 < k) and ¢;
(1< < h), then

k h
Theorem 7.8 Let ¢ = \ gei AemptyV V gc; O g5; be the normal form of a framed program
=1

(PsV P AT =€)Aq=m P AT =€NG
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Proof

(pzV-p-Az=¢€)Agq
Px/\qV'ﬂpz/\z_eAq

V1 Pz A gei ANempty V V PrAgs A OQIJ
i=

v Vl-p,,/\z—e/\qe,AemptyV V Pz Az =eAg;AQgs;
1=

E
“p,Az=eNg = ’Vl—np,Ax=eAq,,-AemptyV .Vl—up,Az=ech_,-AOqﬁ
1= j=

Let o be a model and r an integer, 0 < r < |o|. Suppose (0,0,7,[0]) Em “p- AT =€Aq.
Then, (4,0,7,|0|) E =Pz, (0,0,7,]0|) |E 2 = e and (0,0,7,|0]) E g. We claim (0,0,7,|0|) Em
(p:V-Pz AT = e)Ag.

If (0,0,7,]|0]) Fm (Pz V Pz AT = €) A g, then there is o’ such that (o/,0,r,|0'|) £ (p: AqV
~p;Az =eAq)and o’ C o. Thus, (¢/,0,7,|0'|) E pzAgor (0',0,r,|0|) = “pAz = eAq. Since
(0,0,7,|0]) Em Pz AT = eAg, it follows that (¢’,0,r,|0"|) £ “pzAz = eAgqand o’ C 0. Hence,
(¢,0,1,|0'| £ pz A g leading to (¢’,0,7,|0’|) = p;. However, o' C o and (0,0, r,]0]) = ~p;. So,
(¢,0,7,|0']) E —pz. This is a contradiction. Hence, (0,0,7,|0|) Em (pz V-p: Az =€) Agq.

Conversely, suppose (0,0,7,|0|) Em (pz V -pz Az = €) A g. By MIN-EQ, (0,0, r,|0]) Em
p:AqV - pz Az =eAq. Then, we claim (0,0,7,|0]) Em Pz Az =€Aq.

k
Suppose (7,0, 7,|0|) Em pzAg. By MIN-EQ and MIN-OR, (0,0,7,|¢]) Em V pzAgeiAempty
i=1
k
or (0,0, 7, |0]) Em .\_/1 Pz A gcj A Ods;-

k
If (6,0,7,|0]) Em V Pz Agei A empty, then we can construct a ¢’ from o by a single change
=1
(r = |o|), namely, , ,
I lol = I"’| —{p;} and IVl[z] = ¢
Since p, and z = €’ # e are not contained in g.; (1 < i < k), (¢',0,7,]0]) V Aapr Az =

€A gei A empty leading to (¢/,0,7,|0'|) E “pz Az = eAgq. So, 0’ C o and (a 0 o)) E
(pz V=pz A z = €) A ¢. This contradicts (o,0,7,|0|) |=m (pzV-p:Az=€)Agq.

h
On the other hand, if (¢,0,7,|9]) Em V Pz A gej A Qgy; then we can construct a o’ from o
i=1

by a single change, namely, , )
I = I} — {p;} and Il [z]=e

Since p, and z = €’ # e are not contained in g.; (1 < j < h), and for all 1 < j < A, Ouy;
are lec-formulas and gy; are internal programs, gs; do not refer to p, at the current state, and

I [z] = e does not affect the evaluation of gs;. Thus, (¢’,0,7,|0'|) V “pz Az = eAge; AQgs;

leading to (¢’,0,r,|0"]) £ ~ps Az = eAgq. So, 0’ C o and (d',0, r,|a'|) }: (p:V-p:AzT =€)Agq.
This contradicts (4,0,7,|0]) Em (P: VP Az =€) Ag.
Therefore, by Lemma 7.5, (¢,0,7,|0]) Fm “Pz Az =€Agq.
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We have proved several useful logic laws concerned with the substitution law within framed

programs under the minimal model. Actually, there are some very simple heuristics to follow in

the reduction of a framed program under the minimal model using the Tableau method. These
are as follows:

1. use the relation = as far as possible during a reduction;

9. do not use the minimal model to obtain a -p, for a dynamic variable z until the last stage
of a reduction, and make sure that z has really not been assigned a value by < within all
the conjuncts at the current state.

A framed program p also has its normal form under the minimal model, which is similar to
the normal form defined in (6.1).

Theorem 7.9 If p is a framed program, then there is a program q as defined in Definition 6.5
with [ = m such that

P=Em Qg

Proof

By Theorem 6.4 and Theorem 7.4, we need to prove only ! = m in the Definition 6.5. That is,
in g;; (i < k) and g; (j < h), the number of the equalities and the number of propositions are
equal. We justify this fact as follows:

Since g.; and g.; are state formulas, three types of assignments, z; < e;, z; = ¢; and Ibf(z;)
need to be considered. z; < e; is simply reduced to z; = e; A p,; under the minimal model.
=€ = 2; = € APy, Vi = e; N pg, is reduced to z; = e; A -p;; under the minimal model
(Theorem 7.6). Ibf(s) = (pz; V s Azi = Oz;) is reduced to ~p;; Az; = ¢; under the minimal
model ( Theorem 7.8 and with the assumption Oz; = e;). Thus, we can see z; = ¢; and p, (or
-pz; ) always occur together in ¢g.; and g.;.

a

If a program is deterministic under the minimal model, its normal form has a simpler form,
as follows:

P =m pe Aempty or p. A Ops
where p., p. and py are defined as in (6.1) of Definition 6.5.

By Theorem 7.9, if a framed deterministic program p terminates, it can be reduced to a
sequence of state formulas, p?, ..., p?, where p. corresponds to state s;. Thus, we can define a
calculus var to select assigned variables as follows:

Algorithm AX (selecting the set of assigned variables)

¢ var(true) = ¢

s var(z = e) = ¢,

¢ var(-py;) = @,

¢ var(ps;) = {z:},

¢ var(wyAwy) = var(w;)Uvar(w;)
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where e is a state term, and w; and w; are state formulas. Then X* = ”a"(l’i ) is called a set of
positively assigned variables of program p at state s;.

Let 0z =< X°,...,> be a sequence of the sets of the positively assigned variables of program
p as defined in the above. Let of =< P?,...,> be the sequence of the sets of the assigned
propositions with respect to the sequence o3, i.e. p {P=:|2:€X?} for every i,i>0. These
notations will be used henceforth.

Finally, we claim that Definitions 6.1, 6.2, 6.3, 6.4 and 6.8 satisfy Conditions 1, 2 and 3
under the minimal model on propositions. Condition 1 is simply satisfied by Definition 6.2; and
Condition 2 and Condition 3 are satisfied by these definitions, as stated in Theorem 7.10.

Theorem 7.10 Let Y be a variable denoting the set of positively assigned variables within
program p at each state over a model of p, and R = M,,(p). Then

(1) EgO(af(zi)~zi€Y)
(2) Epframe(z;)-0(x; £Y A~ first—3b: Qz; = bAz; = b)

Proof

First, we claim that, if o € M, (p) then o |5 p. This fact can be proved in a way similar to the
proof of Theorem 4.1. Let 0 =< (I2,ID), ..., (I}, I}), ... > € Mn(p), and k an integer 0 < k < |o].
Since c€ER = M. (p), o=, p.

The proof of (1)

Suppose (0,0, k, |0|) =R ©:€Y, i.e. 7,€X* at state sx. Since o =y, p, according to the algorithm
AX given in Section 7.1, there exists e such that z; < e at state s;. That is, (¢,0,k,l0]) Er
z; < e. This leads to (0,0,k,|o|) ERr af(2;).

Conversely, suppose (0,0,k,|o|) Er af(z;). That is, by Definition 6.2, (¢,0,k, |o|)EgPz,.
Hence, p,,.EI,’,c at state s; according to the interpretation. Thus, there is an assignment z; <
e (e € D) at state sy (Theorem 7.9). Hence, p,, €PF at state s , and ;€Y at state si leading
to (0,0,k,|o|) ER zi€Y.

The proof of (2)
(0,0,k,|0|) ER frame(z;)
< (0,0,k,|o|) Er O(~first — lbf(z)) corollary 7.18
<= (0,0,k,|o|) =R O(~first — (-af(z;) = Ib: OQzi =bAz; =b)) definition 6.3
= (0,0,k,|o|) Er O(=af(z;) A~ first > 3b: Oz; =bAzi = b) theorem 3.7
= (0,0,k,|o|)ERO(z; €Y Afirst > 3b: Qz; = bA z; = b) theorem 7.10 (1)

0

So far different models have been introduced to capture semantics of logic formulas and
programs under different assumptions. In the logic (EITL), the basic model and the satisfaction
relation (k=) are used to interpret terms and formulas. Within the extended Tempura, the
canonical model and the satisfaction relation (j=.) are employed to interpret expressions and
programs. To capture the intended meaning of a framed program in the extended Tempura,
the minimal model and the satisfaction relation (j=y,) are introduced. This model enables us to
catch those variables which are framed, but not assigned new values by the positive immediate
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assignments so that their values can be inherited. The minimal model takes effect by means of
perceiving the defaults of positive immediate assignments.

In addition to the above models, the P-model relevant to a program P is needed to express
some conditions relative to the program P since the conditions can be expressed by means of
formulas of EITL rather than in the extended Tempura. A P-model can also be connected with
» minimal model in addition to with a canonical model.

Theorems 7.1 - 7.10 show us that the temporal semantics of a framed program can be well
captured by the minimal model. For easy manipulation, we need further to investigate the
properties of framing operators.

7.2 Algebraic Properties of Framing Operators

The framing operators enjoy some interesting properties such as equivalent, distributive, ab-
sorptive, and idempotent laws etc. They are formalized in Theorems (Corollaries) 7.11 - 7.18.
Note that these theorems are established on the basic model and are independent of concrete
programs.

Theorem 7.11 frame(z) = frame'(z)

Proof
frame(z)
O(more—Qlbf(z)) definition 6.3
O(more—Q(—af(z)—(3b: Oz = bAz = b))) definition 6.3
O(more—(Q-af(z)— O (3b: Oz = bAz = b))) FD5
O(more—(O-af(z)—3b: O(Oz = bAz = b))) theorem 3.8 1

O(more—(QO-af(z)—3b: O(Oz = b)AQ (z = b))) FD3
O(more—(O-af(z)—3b: (OQOz = Ob)A(QOz = Ob)))  theorem 3.13

O(more—(O-af(z)—3b:z =bAQz = b)) lemma 3.17, theorem 3.13
O(more A O-af(z)—3b:z=bAQ 2z =)
O(more A Q-af(z)—3b:z=bAQz =1b) FW1
O(more—(Q-af(z)—3b:z =bA Oz =b))
frame'(z) definition 6.4

m]

Theorem 7.11 asserts that two operators, frame and frame', are equivalent. Hence, in
what follows, we do not distinguish between them.

Theorem 7.12 The following formulas hold

(1) frame(z)Aframe(z) = frame(z)

(2) frame(z)Amore = QUbf(z)Aframe(z))
(3) frame(z)Amore = Iff(z)AQ frame(z)
(4) frame(z)Aempty = emply
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Proof

We prove only (2).

frame(z) A more

= O(more—Qlbf(z))Amore definition 6.3
= (more—Qlbf(z))AQO(more—lbf(z))Amore  FE2

= Qlbf(z)AmoreAQO(more—~lbf(z)) FW1

= Qlbf(z)AmoreAQ frame(z) definition 6.3
= Qbf(z)Aframe(z))Amore FD3

= Qbf(z)Aframe(z)) FS4

o

In Theorem 7.12, (1) describes the idempotent law; (2) and (3) describe the properties of the
framing operator at non-terminating states over an interval; whereas, (4) describes the property
of the framing operator at a terminating state.

Theorem 7.13 The following formulas hold

(1) frame(z)A(frame(z)ApVq) = frame(z)A(pVq)
(2) frame(z)A(pV frame(z)Aq) = frame(z)A(pVy)
(3) frame(z)A(frame(z)ApV frame(z)Aq) = frame(z)A(pVg)
(4) (frame(z)ApV frame(z)Aq) = frame(z)A(pVq)

This set of laws is concerned with disjunction. The first three are absorptive laws, the fourth
is the distributive law.

Proof

We prove only (4); and the others can be easily proved by (4) and Theorem 7.12 (1). Let &
be an interval, and k an integer, 0 < k < |o|. First, by abbreviation of pVvg, the following fact
is obvious.

(0,0,k,|0|)EpVg <= (0,0,k,|o|)=p or (a,0,k, |o|)=q (7.1)
Thus,

(0,0, k,|o|)Eframe(z)A(pVye)

< (0,0,k,|0|)=frame(z) and (0,0,k,|o|)E=pVe I-and
< (0,0,k,|o|)=frame(z) and ((¢,0,k, |o|)Ep or (0,0,k,|o)=g)  (7.1)
= (0.0,k,|o])=frame(a) and (0,0, k, o]}

or (0,0,k, |a|)|=frame(x) and (0,0, k, lol)=g
< (0,0,k,|o|)=frame(z)Ap or (0,0,k,|0)=frame(z)Ag I-and
< (0,0,k,|o|)=frame(z)ApV frame(z)Aq (7.1)

o

Theorem 7.15 is concerned with chop(;) operator. (1), (2) and (3) state the absorptive law;
(4) states distributive law; and (5) states idempotent law. To prove them, we need first to prove
Lemma, 7.14.

Lemma 7.14 Let o be an interval, and k, r integers, 0 < k < r=<|o|. Then

(0,0, k,|o|)=frame(z)==(0,0, k,r)=frame(z)
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Proof

Let (0,0,k,lo]) | frame(z). Suppose (0,0,k,7) /= frame(z) for some r,k<r=|o|. Then we
have

(,0,k,7)=~frame(z) I-not
& (0,0,k,7)=O~(more—1ff(z)) definition 6.3
< (0,0,k,7)EO-(emptyVO-af(z)—3b(z = bAQz = b))) definition 6.3
& (0,0,k,7)EO(moreAQ-af(z)A=(Ib(z = bAQz = b))
— ((7, 0’11 7')|=m0reAOﬂaf(z)/\—1(3b(z = bAOZ = b)) for some l,kSl <r abb-som
& (0,0,1,7)=more and

(07 0,1, 7')|=O—|af(z) and

(0,0,1,7)=~(3bz = bBAQz = b) for some I,r, k <1< r < |g] I-and

Note that the following facts are obvious.

(0,0,1,7)Emore=>(0,0,1, |o|)=more (7.2)
(U,O’lv T)FO"af(l')=>(0, 0,1, |UI)'=O_'a’f(x) (73)
(0,0,1,7)F~(3bz = bAQz = b)==(0,0,1,7)[=s)[z] # s141(z] (7.4)

On the other hand, we have

(0,0,k,|o|)=frame(z) premise
<= (0,0,k,|o|)ED(more—1f f(z)) definition 6.3
< (0,0,h,|0|)=Emore—1f f(z) for every h,k<h=<|o| abb-alw
= (0,0,l,|0|)Emore—Iff(z)let h =1 (7.5)
= (0,0,1,|0])Elff(z) (7.2), (7.5)
< (0,0,1,]0))EQaf(z)—3b(z = bAQz = b) (7.6) definition 6.3
= (0,0,1,|0))E3(z = bAQz = b) (7.3), (7.6)
= (0,0,,|0)=si[z] = s141[2] (7.7)
= (0,0,l,|0))Efalse (7.4), (7.7)

Thus, we achieve,

(0,0,k,7)Eframe(z)
a

In general, (o,0,k,|c|)=Op does not imply (¢,0,k,7)EOp (k < r < |o}). For instance,
given an infinite interval o, (0,0, k, |o|)E0more but (¢,0,k,7) J=0Omore if r < |o|. Even for a
finite interval o, (0,0, k, |o|)l=0(empty—z = 10) can hold, but (0,0, k,r)EO(empty—z = 10)
may not hold at all because = can be 10 at the final state but may never be 10 at any internal
state over the interval.

Theorem 7.15 The following formulas hold

frame(z)A(piq)
frame(z)\(p; q)
frame(z)A(p; q)
frame(z)A(p; q)
frame(z)

(1) frame(z)A(frame(z)Ap;q)

(2) frame(z)A(p; frame(z)Aq)

(3) frame(z)A(frame(z)Ap; frame(z)Aq)
(4) (frame(z)Ap; frame(z)Aq)

(5) frame(z); frame(z)

Proof
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We prove only (1); and the others can be proved in the similar way. Let o be a model, and &
an integer, 0 < k < |o|.

(0,0,k,|o])=frame(z)A( frame(z)Ap; q)

< (0,0,k,|o|)Eframe(z) and
(0,0,k,|o))=(frame(z)Ap; q) I-and
< (0,0,k,|o))=frame(z) and

(0,0,k,7)=frame(z)Ap and

(e,7,7,|0])=q for some 7,k < r<|o| I-chop
< (0,0,k,|o])=frame(z) and

(0,0,k,r)E=frame(z) and

(0,0, k, 1)=p and

(o,7,7,]0])=q for some k < r < |o] I-and
< (0,0,k,|o])=frame(z) and

(¢,0,k,7)=frame(z) and

(0,0,k,|0))E=p; ¢ I-chop
< (0,0,k,|o])=frame(z) and

(0,0,k,|o)=p; ¢ lemma 7.14
g (‘7, 0,k, |o[)}=frame(z)/\(p; q) I-and

o

Theorem 7.16 states some similar laws as Theorem 7.10 with respect to the parallel operator.

Theorem 7.18 The following formulas hold

(1) frame()A(frame(z)plla)

(2) frame(e)A(pllframe(z)Aq)

(8) frame(z)A(frame(z)Ap||frame(z)Ag)
(4) (frame(z)Apl|frame(z)Aq)

(5) frame(z)||frame(z)

frame(z)A(pllg)
frame(z)A(pllq)
frame(z)A(pllg)

frame()A(pllg)
frame(z)

Proof

We prove only (1); and the others can be proved analogously. Let o be an interval, and k an
integer, 0 < k < |o|.

(0,0, k, |o])l=frame(z)A(frame(z)Apllq)

& (0,0,k,|o])=frame(z)A((frame(z)Ap; true)Aq)V frame(z)ApA(g; true))  definition
< (0,0,k,|o|)=frame(z)AgA(frame(z)Ap; true)V frame(z)ApA(g; true)) th 7.13(4), 7.12(1)
& (0,0,k,|o])=frame(z)AgA(p; true)V frame(z)ApA(g; true)) th7.15 (1)
& (0,0,k,|o|)=frame(z)A(gA(p; true)VpA(g; true)) th7.1‘3_(4)
= (0,0,k,|0|)=frame(z)A(pllq) definition
O

Theorem 7.17 is concerned with Ibf and Iff. Its proof is straightforward.

Theorem 7.17 Let o be an interval, |o| > 0, then

(1) o= frame(z) <= (0,0,i,|0])Elbf(z) for all 0 < ix|o|
(2) o= frame(z) <= (0,0,4,]0|)Elff(z) forall 0<i < |of
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By Theorem 7.17, the frame operator can be expressed by the previous operator as follows.

Corollary 7.18
1 frame(z) = O(~first—Ibf(z))
2 frame(z) = O(~first—QOlf f(z))

a
Theorems (or Corollaries) 7.11 - 7.18 play an important role in temporal logic programming

within our system. They enable us to reduce a program in a convenient way. Many reduction
rules of the interpreter developed by us recently are based on these theorems.

7.3 Example

In this section, an example is given to show how to apply the algebraic properties together with
the minimal model to interpret a framed program. The example also illustrates how to reduce
a program in a way in which Theorem 7.9 operates. By such means, we hope that the reader
will agree that the temporal semantics of a framed program is well captured. The program
considered is as follows

p = frame(z))A(z1 = 1Azg = 2Alen(2); 21<9AZ2 = 3A frame(zz)Az =" 2, + Oz2)

The following is a complete reduction process of program p.

p = frame(z1)A(z1 = 1Azg = 2Alen(2); 21<9Az; = 3Aframe(z2)Az; :=* 21 + Oz2)
= frame(z1)Az1 = 1Az = 2Alen(2); frame(z))Az1<9A
z9 = 3Aframe(z)Azy :=1 21 + Oz, theorem 7.15
= 1, = 1Az = 2A frame(z1)AQlen(l); frame(z1)Az1<9AZ2 = 3A frame(z2)
Azy =% 21+ QOz; Abb-len
= 21 = 1Az, = 2Aframe(z)AmoreAQlen(1); frame(z1)Az;<=9AzZ, = 3A frame(z2)
Azq =tz + Oz, FS4
= 1y, = 1Az = 2AQ(Ibf(z1)A frame(z))AQlen(1); frame(z1)Az1<9AZz = 2
Aframe(zz)Azy =% z1 + Q2 theorem 7.12 2
= 21 = 1Azy = 2AQ(Ibf(z1)A frame(zy)Alen(1)); frame(z1)Az1<=9Az2 = 3
Aframe(zz)Azy =" 21 + Q22 FD3
= 2y = 1Az = 2AQ(Ibf(z1)A frame(zy)Alen(1); frame(z1)Az1<=9Az2 = 3
Aframe(zg)Azy =1 21 + Oz2) FCH1

(Poy ATy = 1V Py A1 = 1)A(Ps, AT2 =2V 7P AT =2)A
O(Ibf(z1)A frame(zy)Alen(1); frame(z1)Az1 <922 = 3Aframe(z2)Az1 :=% 21 + Oz2)
Spm Py AT1=1ADP, AT = 2AO(Ibf(z1)A frame(z1)Alen(1); frame(z1)AT1<=9INT2 = 3
Aframe(z2)Azy i=t 21 + Oz2) corollary 7.7

The last formula shows that p is in a well-reduced (i.e. normal) form p2A O p§ at state so.
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is continuously re-reduced as follows:

z1 = 1AZ3 = 2 A py, A P,
Ibf(z1)A frame(z1)Alen(1); frame(21)AT1<9IAZ2 = 3A frame(z2)Azy :=+ 2, + Oz,
(maf(z1)—3b: Oz1 = bAzy = b)A frame(z;)Alen(1); frame(z1)Az;<9Az, = 3

Aframe(zz)Azy ;=% z1 + Oz, theorem 6.3
(Pzy V 7Pz, A z1 = Oz1)Aframe(z,)Alen(l); frame(z1)Az1<9Az, = 3
Aframe(za)Azy :=* 21 + Oz, theorem 6.3

(P2, V Pz; A2y = 1)Aframe(z,)Alen(1); frame(z1)AT1 <9z, = 3
-pz, A 21 = 1A frame(zy)Alen(l); frame(z1)Az1<9Az, = 3

Aframe(zz)Azy =1 z1 + Oz, theorem 7.8
“pz, A Ty = 1A frame(z1)AmoreAQ(empty); frame(z1)Az1<9Az; = 3A frame(z;)

Azy =t 21 + Qz2 FS4
oz, A 1 = INQ(Ibf(z1)A frame(z1))AO(empty); frame(z1)Az1<9Az, = 3A frame(z;)
Azy =t 21 + Q22 theorem 7.12 2
—pzy A 21 = IANQ(Ibf(z1)A frame(z,)Aempty); frame(z1)Az1<9Az; = 3A frame(z;)
Azy =t 21 + Qz2 FD3
Pz, A 21 = INQ(bf(z1)A frame(z1)Aempty; frame(z,)Az1<9Az, = 3A frame(zs)

Azy =T 21 + Qz2) FCH1

At this point of time, p$ is reduced to the normal form p;AQp}, and p} is continuously
re-reduced as follows:

Pz ATy = 1
Ibf(z1)A frame(z1)Aempty; frame(z1)Az1<9Az; = 3Aframe(z2)Azy :=T 21 + Oz2
Ibf(z1)Nempty; frame(zi)Az1<9Az, = 3Aframe(zz)Azy :=t 21 + Oz,  theorem 7.12 4
(maf(z1)—z1 = 1)Aempty; frame(z,)Az1<9Az; = 3A frame(zz)Az; =% 12, + Qz2
def 6.3

(maf(z1)—21 = 1)Aframe(z))Az1<9AT2 = 3A frame(zz)Azy :=* 21 + O2 FEP5
frame(z1)Az1 = IApz, Azy = 3A frame(z2)Az10="9 + Oz2Askip
T, = 9ApPg, Azy = 3A frame(zq)A frame(z2)AO(z149 + z2)AQempty

def 6.1, theorem 3.13, lemma3.17

1 = 9Apz, ATy = 3A frame(z1)A frame(zz)AmoreAQ(z149 + 22)AQempty FS4
21 = 9Apy Az = 3AQ(bf(z1)A frame(z1))ANO(Ib f(z2)A frame(z2))ANO(219 + z2)
AQempty theorem 7.12 2

€1 = 9APz, Azz = SAQ(Ibf(z1)Nbf(z2)A frame(z1)A frame(z2)Az1 <9 + zaAempty)
FD3
Ty = INPg, A(mPzy ANT2 =3V P, AZ2 = HAOUbf(z1)NIbf(z2)A
frame(z,)A frame(z2)Az1<9 + zaAempty)
T1 = APy APy A T2 = 3AQIbf(z1)AIbf(z2)Aframe(zi)A frame(z2)Az14=9 + zoAempty)
corollary 7.7
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At state 82, p} is reduced to the normal form pﬁAOp?f. Then p'} is re-reduced again.

z1 = 9A 22 = 3Apz, Apy,

Ibf(z1)AIbf(z2)A frame(z1)A frame(z2)Az1<9 + z3Aempty

Ibf(z1)AIbf(22)AZ14=9 + z2Aempty theorem 7.12 4
(maf(z1)—21 = O21)A(-af(22)>22 = O22)A21 = 9+ 2oAp;, Aempty  def 6.2, 6.3
(Pz; V Pz, A3 = 3) A2y = 94 22Ap,, Aempty

WPz, A2 =3 A1 =9+ 23Ap;, Aempty theorem 7.8
Pz, A T2 = 3AZ1 = 9+ 22Ap,, Aempty

T1 = 94 3APz APg, A 22 = 3Aemply

z1 = 12Apg, Apz, A 22 = 3Aempty

won o Mmoo oww

Finally, p? is reduced to the form p, = p2Aempty, which indicates that the reduction process
of p is successfully completed. Where

P} = z;=12ApiAz;=3 A Pzy A Pz,
P} = empty
) t (%) i3
i | | |
» P P’ e
af(z1) f f t t
af(zs) f f f f
X é ¢ {z1} {z1}
I ¢ ¢ {ps,} {pz,}
I, {z1:,20:2} {z1:1,29: .} {21:9,22:8)} {z1:12,2,:3}

Fig. 7.1 The reduction record of program P

In the above example, variable z; is framed throughout the overall interval, while variable
23 is framed only over the subinterval < s,s3 >. Note that z, is unspecified at state s;, so z,
is unavailable (i.e. unaccessible) at that state.

7.4 Discussion

In this chapter, the temporal semantics of framed programs is captured using the minimal model.
This model allows us to treat variables which are framed and not assigned new values by the
positive immediate assignments in such a way that their values are inherited. The minimal
model does it by means of perceiving the defaults of positive immediate assignments.

It should be emphasised that by using the minimal model, the underlying logic is changed
from being monotonic to non-monotonic. In particular, the minimal model semantics has im-
posed a kind of default logic in which a special set of propositions within a program is considered

as a domain in which the default technique is applied. This results in revisable reasoning in
EITL.
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Chapter 8

Communication and
Synchronization

Summary: Using the framing operator, a synchronization operator, await(c), is
defined within EITL. Furthermore, a framed concurrent temporal logic programming
language (FTLL) is presented. To illustrate how to use both the language, the await
operator, and framing technique, some examples are given. In particular, a mutual
exclusion problem, producer - consumer, is solved using FTLL.

Introducing the framing operator enables us not only to write concise programs but also to define
await construct within the underlying logic. Hence, the synchronized communication can be
handled in framed Tempura. Furthermore, with the help of the await operator, a more powerful
framed concurrent programming language, FTLL, can be designed under the EITL framework.
This allows us to specify reactive systems at a higher level.

The chapter is organized as follows: Section 8.1 formalizes the await construct; Section
8.2 describes the framed concurrent programming language, FTLL; Section 8.3 provides two
examples of programs, the first, constructing magic square, is concerned with framed arrays and
non-deterministic programs; the second, modeling producer - consumer scheme, is devoted to
solving the mutual exclusion problem. Finally, conclusions are drawn in Section 8.4.

8.1 Await Construct

A number of temporal logic programming languages, e.g. XYZ/E [81, 83], Tempura [61], TLA
(53], employ logic conjunction (A) as a basic parallel operator for concurrent computations.
The communication between processes is based on shared variables. However, the conjunction
construct seems appropriate for dealing with fine-grained parallel operations that proceed in
lock-step since processes combined through the conjunction operator share all the states and
may interfere with one another. The projection operator, (p1,...,Pm) Prj g, introduces a new
computational model in which the process g is executed in parallel with py;...; pm over an inter-
val obtained by taking the endpoints (rendezvous points) of the intervals over which p1,...,pm
are executed. Although the communication between processes is still based on shared variables,
the communication and synchronization only take place at the rendezvous points (global states),
otherwise they are executed independently.

However, with both the conjunction and the projection constructs, a problem that must
be dealt with in temporal logic programming is that of synchronized communication between

concurrent processes.
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As discussed earlier, to synchronize communication between parallel processes in a concur-
rent program (e.g. when solving the mutual exclusion problem) with the shared variable model,
a synchronization construct, await(c) or some equivalent is required, similarly as in many con-
current programming languages [66]. The await(c) does not change any variable, but waits until
the condition ¢ becomes true, at which point it terminates.

One may think await(c) could be defined as

await(c) def (¢ — empty) A (e — Qawait(c))

which amounts to def
await(c) € (c A empty) V (¢ A Qawait(c))

This is exactly the definition of halt(c) (see Theorem 4.9 in Chapter 4). However, halt(c) is
capable of changing variables contained in c at the final state over an interval but await(c) is not
although they both wait for ¢ to become true and terminate the interval over which they act.
The key difference between await(c) and halt(c) is that the former can only wait until another
process acting in parallel changes c to true, while the latter can change c itself at the final state
without the help of other processes acting in parallel.

Therefore, halt(c), in general, is not suitable as a synchronization construct for concurrent
computations. However, if the variables contained in ¢ all are framed, and no positive assign-
ments appear in ¢ (this condition is usually satisfied because we consider c as a condition, i.e.
a boolean expression), halt(c) is equivalent to await(c). This is clear since the variables in ¢
are framed and only positive assignments are able to change framed variables. For instance,
frame(z)Ahalt(z = 1) is similar to await(z = 1).

Defining await(c) is difficult without some kind of framing construct since the values of
variables are not inherited automatically from one state to another. But one requires some kind
of indefinite stability, since it cannot be known at the point of use how long the waiting will
last. At the same time one must also allow variables to change, so that an external process can
modify the boolean parameter and it can eventually become true.

To define await construct, we make the following assumption:

Let V, = {z1,...,z5} be the set of dynamic variables contained in ¢. Then

Definition 8.1

frame(Ve) def frame(zy, ..., Th)

frame(zy, ..., %h) e frame(z1) A ... A frame(zs)

m]
With the help of the framing operator, we can define await construct as follows:
Definition 8.2 (await statement)
await(c) & frame(V.)Ahalt(c)
where V, represents all dynamic variables contained in c.
0
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Since frame(z) and halt(c) both are executable within the extended Tempura, await(c) is
also an executable construct in the extended Tempura. Therefore, synchronized communication
for concurrent computations can be implemented in the extended Tempura. For instance, the
following program synchronizes variables z and y in a paralle] computation (see Figure 8.1).

Example 8.1 A synchronized computation.

frame(z) A frame(y) Az =0Ay = 0A
((while (z < 5) do (

z:=Yz+1;

await(y > z)

)

Il

(while (y < 5) do (
await(y < z);
y=ty+1

)

80 sl s2 83 s4 85 86 87 88 89 s10
|------ | ------ |------ |------ --mnee | ------ |-memee | --mmo |------ | ------ |
x=0 1 wait 1 2 wait 2 3 wait 3 4 wait 4 6 wait 5
|-==e- |------ |------ |----- --mm- |---n-- |-mmnee |--=--- |------ | -mmm-- |
y=0 wait O 1 wait 1 2 wait 2 3 wait 3 4 wait 4 5

Fig. 8.1 A Synchronized Computation

8.2 Framed Programming Language

The introduction of the framing operator and the minimal model semantics enable us to define
owait statement within the underlying logic. It is therefore interesting to point out that all
statements of the concurrent programming language defined semi-formally in [66] can easily
be defined formally within the extended logic framework except that the parallel computation
is modeled, in the notation of [66], by interleaving as claimed, while in our notation, by true
concurrency [49, 12] (see Example 8.1). In addition, our language contains the projection con-
struct. Thus, a more powerful concurrent temporal logic programming language can be designed
without obstacles. The following is a brief presentation of the language called Framed Temporal
Logic programming Language (FTLL). We repeat all constructs from Chapter 4 and Chapter 5

and use the terminologies from [66].

¢ Empty statement

The empty is a trivial do-nothing statement. It is defined as
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empty e O true

Note that the empty statement has the same meaning as skip statement in [66]. We use
empty rather than skip because skip has already been employed in the underlying logic
with different meaning.

Assignment statement

:= € ig an assignment statement defined as follows

—def
e (=T e )A...A(pn =" &)

-l

where ¥ = (¥1,. .., ¥n) is a list of variables and € = (ey, .. .,e,) is a list of expressions. :=*
is the positive unit assignment operator. The types of e; and y; are compatible.

Await statement

The await(c) statement is defined by

await(c) & frame(V.) A halt(c)

where ¢ is a boolean expression, and V, denotes all the dynamic variables occurring in c.
Conditional statement

If 51,8, are statements and c is a boolean expression, then the conditional statement is
defined by

if c then sy else sg e (¢ = 81) A(—e— s2)

Sequential statement

For statements sy, 3, the sequential statement can be expressed by projection operator
directly.

81; 82 def (81, 82) prj empty

When statement

With sequential statement and await, we can define when statement

when ¢ do s &' await(c); s

Selection statement

For statements sy, Sp, the selection statement can be defined directly by disjunction.
81 OT 82 déf 81V 82

A multiple selection statement is defined as

OR}_, sk def o or s or ...0T 8
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¢ Conditional selection statement
The guarded command in the language proposed by Dijkstra [17] of the form
ifer — 810¢; — 8,0...0¢, — 8,fi

can be represented by a multiple selection statement formed out of several when state-
ments:

OR}_,(when ci do s;)
o While statement
While statement is defined as that in Chapter 4.
while ¢ do pdg(c AD)* A fin(~c)
¢ Repeat statement
Repeat statement is defined as
repeat p until cd_—'iip ; while (-¢) do p
¢ Conjunction statement
81 and s, def 31 A s
¢ Parallel Composition
Parallel composition statement is defined as:
81|82 o A (s25true) V sy A (sq;true) V O(more A 81 A s3)
¢ Projection statement
Projection statement is a primitive statement from the logic framework:
(81500 8m) Prj 8
where sq, ..., 8y, 8 are statements.
¢ Block statement

A block statement is of the form
local ¢ : 3% dz : s where z is a variable.

Comparing the framed Tempura and FTLL, we can see that most of the statements are the
same except the disjunction construct and its derivativities such as choice statement. FTLL,
therefore, is a non-deterministic programming language, and the normal form of a program in
FTLL has to involve disjunctions. A program, in general, has its normal form as formalized in
Theorem 8.1.
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Theorem 8.1 If p is a framed program, then there is a program q as defined in (6.1) such that

P=mq

Proof Similar to the proof of Theorem 4.9.

]
Here we claim that the semantics of programs in FTLL can be captured by the minimal
model under the model theory within EITL.

8.3 Programming in FTLL

In this section, two examples are given to illustrate how FTLL can be used.

8.3.1 Framed Arrays

Like variables, arrays (or lists ) can also be framed. An array being framed means that all of its
elements are framed. In temporal logic programming, a framed array is a useful construct. It
leads to cleaner, more readable and efficient programs. To illustrate the framing technique for
arrays, an algorithm for the construction of an even order magic square will be implemented.
The example also shows how a non-deterministic program can operate.

Filling a magic square is an old mathematical puzzle. It requires one to fill in the consecutive
positive integers 1,...,nZ to an n X n array in such a way that the sums of the elements contained
in each row, each column, and the two diagonals all are equal. For an odd number =, to fill a
n X n magic square is simple. However, for an even n one requires a more subtle algorithm. The
following algorithm presented in [19] can be used to construct a 4m X 4m magic square.

Algorithm (constructing 4m X 4m magic squares)
Let A be a 4m X 4m array, and m be a positive integer.

1. Chop the sequence 1,...,16m? into 4m subsequences of equal length, keeping the original
order;

2. Insert the it* subsequence into the i** row of A according to the following rules:

e when ¢ is an odd number
if 1 <i<2m— 1, we fill in the numbers from the left to the right; if 2m +1 < <

4m — 1, we fill in the numbers from the right to the left;

o when i is an even number
if 2 < i < 2m, we fill in the numbers from the right to the left; if 2m + 2 <1 < 4m,

we fill in the numbers from the left to the right;

3. For each i,1 < i < 2m, swap 2m pairs consisting of the ith and the (4m — i + 1)*h row
elements residing in the same column but not in the diagonal lines of A;

The above algorithm can be implemented by the following program with a framed array:
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(5,7) = (1,1) and frame(i, ) and frame(A) and

while i < 4% m do {inserting 1,...,16m? into array A}
while j < 4xm do

(
if i mod 2 =1 then
(3f1<i<2+xm—1then Ali,j]:=* (t-1)+4sm+j
1 elseif2+m+1<i<4*xm—1then A[i,j]:=+i*4*m_j+1)
else
(if2<i<2+mthen Ali,j]:=  ixdxm—j+1
elseif 2xm+2 < i< 4*+mthen Afi,j]:=+ (t—1)+x4xm+ j);
j=ti+1
)i
ii=ti+1
)i

(4,5) = (1,1) and frame(i, j,c, temp) and
while t < 2% m do {swapping 2m pairs of the elements of A}

c:=*0; {c is a counter}
while j < 4*xm do

if (i#jand (i+j)<4+mandc<2+m)then {the condition for swapping}

temp :=* A[i, 5]; {swap}
Ali,j]:=* A[d+xm —i+1,7];
Aldxm —i+1,5]:=t temp;
ci=te+1
)i
j=ti+1

ii=ti4+1
)
)

Fig. 8.2 A program for constructing a 4m X 4m magic square

In the program, the first two nested while statements insert 1,...,16m? into a 4m X 4m array, as
specified in the algorithm. The second two nested while statements swap 2m pairs of elements
which do not reside on the diagonal lines. Each element A[4,] in the diagonal line from upper
left to down right satisfies ¢ = j, whereas each element A[i, j] on the other diagonal from down
left to upper right satisfies ¢ + j > 4m; moreover, we only swap 2m pairs of elements for each
1,1 <1 < 2m. Hence, the condition for swapping is i j A (i + j) < 4m A ¢ < 2m. Note that ¢
is used as a counter to record the number of swapped pairs.

Example 8.2 Constructing a 4 x 4 magic square.
According to the above program (m = 1) the construction produces a square shown in Fig 8.3.
It is easy to check its correctness, the sum is 34 for each row, column and diagonal line.
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1 (2314 1 |14( 154 1 [14(15(4
fill in 8 |76 (5] swap 8 |76 15 swap 12171619
12,...,16 |12 {11/ 10[9 | (214) "T12 1 11[10[0 | (8.12)
: (3.15) (59) 198
13 | 14| 15| 16 1312 (3 (16 13 (2 {3 |16
Fig. 8.3 Constructing a 4x4 magic square
u]
initialization
lin 1,...,64

100 4 G 600 8
1615 14 13 121110 9

1718 19 20 212223 24
3231 30 29 28 2726 25

swap

2, 58
3, 59

e

4039 38 37 36 3534 33

4142 43 44 454647 48
56 55 54 53 52 5150 49
5758

60(6) 626D 64

swap

050 & 8)

W(

158 59 60 61 6 8
1615 14 13 1211 10 9
1718 19 20 2122 23 24
323130 29 282726 25

4039 38 37 36 3534 33

4142 43 44 454647 48
56 55 54 53 52 5150 49

572 3 4 5 6263 64

(5, 61
(7, 63

wa,pf3, 59;

)

A

158 59 4 61

1503 13 12@1 10@
1718 19 20 212223 24
3231 30 29 28 2726 25

4039 38 37 36 3534 33
4142 43 44 454647 48

5553 53 52() 50

2 360 5627

(4, 60)
1) (6, 62)

12596061627 8
161514 13 12 1110 9
1718 19 20 212223 24
3231 30 29 282726 25
4039 38 37 36 3534 33
4142 43 44 454647 48
56 55 54 53 52 5150 49
5758 3 4 5 6 63 64

|

Fig. 8.4 Constructing 8x 8 magic squares
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In the above example, the program is deterministic. However, according to the algorithm,
step 3 requires 2m elements not residing at the diagonal lines in the i** row be swapped with
the corresponding elements in the (4m — i + 1)** row. Hence, each row has 4m — 2 elements
which are entitled to be chosen for swapping; but only 2m elements are needed to be swapped.
fm=1,ie. for a4 x4 square, then 4m — 2 = 2m; thus, all of elements entitled for swapping
must be swapped. If m > 2 then 4m — 2 — 2m = 2m — 2 > 2; 50 there are different choices of
elements for swapping, leading to different squares.

The swapping part of the program can be rewritten as a non-deterministic program, as
shown below:

I={1,...,m};
while c < 2% m do
(ORT.,when (j € J and i # j and i+ j < 4+ m)
do(Ali, 7] =% A[d*m — i+ 1,j]
and A[4xm —i+1,5]:=" A[i, 4]
andc:=tc+1
and J .=t J - {j}
)
)

Using the non-deterministic program, the constructing process of a 8 x 8 magic squares is
shown in Fig 8.4. Note that, in the non-deterministic program, J can be implemented by a list,
and j € J can be implemented by a while statement.

8.3.2 Mutual Exclusion Problem

The mutual exclusion problem is one of the most important problems in concurrent program-
ming. One solution to the problem is the Dekker’s algorithm [6]. Below we show how it can be
implemented in FTLL.

frame(cy, ca,turn) and ¢; = 1 and ¢ = 1 and
turn = 1 and

(

repeat ( {Process P, }
Non - eritical — section;
€1 =t 0;

while not (cz = 1)do

if turn = 2 then

(eq :=*1;
await (turn = 1);
¢y :=%0;

)i
)
Critical — section — 1;
(9] :=+ 1;
turn =% 2;

)
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until empty

repeat( {Process P, }
Non — critical — section;
e :=10;

while not (c; = 1)do

if turn = lthen

(eq:=*1;
await (turn = 2);
ey :=10;

)i
);
Critical — section — 2;
cg =t 1;
turn :=* 1;
)

until empty

)
Fig. 8.5 A program implementing Dekker’s algorithm

In the above program, the individual variables in each process will ensure mutual exclusion, but
upon detecting contention, a process, say Pj, will consult an additional global variable turn to
see if it is its turn to insist upon entering its critical section. If not, it will reset ¢; and defer the
choice to P;, waiting on turn. When the P, completes its critical section, it will change turn to
1, freeing Py. Even if P, immediately made other requests to enter the critical section, it will
be blocked by turn once P; re-issued its request.

The program is correct [6]. It satisfies the mutual exclusion property, it does not deadlock,
neither process can be starved and in the absence of contention a process can enter its critical
section immediately.

8.3.3 Producer and Consumer

Using the Dekker’s algorithm with the await operator, the producer - consumer problem can be
solved by the program shown in Fig 8.6.

frame(ey, c3, turn, z,s,ne,nf,buf) and ¢c; = 1L and ¢; = 1 and
turn =1 and ne = n and nf = 0 and buf = nil and

(

while true do {Process P, }

(

=tz +1;

if ne > 0 then ¢; ;=1 0;
while (c; = 0) do

if turn = 2 then
(er:=%1;

await (turn = 1);
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)i
);
buf :=%* buf-z; {Critical section}
C1 =% 1;
turn ;=" 2;
)
I
while true do {Process P, }

if nf > 0then cp:=%0;
while (¢1 = 0) do
(

if turn = 1 then

(c2:=11;
await (turn = 2);
cy:=10;
)i
);
(v, buf) :=* (hd(buf),tl(buf)); {Critical section}
—t 1.
Cy = 1,
turn =1 1;

)
)

Fig. 8.6 Producer-consumer

In the program, buf is an one-dimension array (or list) used as a buffer; ne,nf are dynamic
variables denoting the number of free slots and the number of the items in the buffer respectively;
and z,y,s are dynamic variables. c¢j,c; and turn are the variables serving for the mutually
exclusive accesses to the buffer, the same as in Fig. 8.5.

The program presented in Fig.8.6 models a producer-consumer scheme. The producer com-
putes a value and stores it in z; after successfully appending = to buf, it cycles back to complete
the next value of z. The consumer, acting in parallel, removes an element from the head of
the buffer buf and deposits it in y. After successfully obtaining such an element from buf, it
proceeds to use the value for computations.

The buffer is represented by a list bu f, whose initial value is the empty list, i.e. each element
is nil. Adding an element to the end of buf is accomplished by the appending operation buf-z.
The head element of the buf is retrieved by the list function hd(buf), and removal of this element
from the buffer is accomplished by replacing buf with its tail t/(buf). It is assumed that the
maximal capacity of the buffer is n > 0.

In order to ensure correct synchronization between the processes, which also guarantees that
the buffer neither overflows, nor overexhausts, we use three variables.

¢ The variables ¢;,c; and turn ensure that access to the buffer is protected and provide
mutual exclusion between the two critical sections, in which buf is accessed and modified.
Whenever one of the processes starts accessing and updating buf, the other process cannot
access until the previous access is completed.
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o The variable ne contains the number of free available slots in the buffi
buf against overflowing. e buffer buf. It protects

o The variable nf contains the number of items currently in the buffer buf. It protects buf
against overexhausting when the buffer is empty.

8.4 Conclusion

In this chapter, we discussed synchronization and communication for concurrent computations
in the framed programming language FTLL. The major synchronization operator is await.

The language FTLL contains the extended Tempura as an executable subset. The hierarch
of the consistent three level languages: an extended logic language (EITL), a non-deterministi)c’
framed concurrent programming language (FTLL), and an extended Tempura, could facilitate
specifying, verifying and developing reactive systems in a more efficient and uniform way. In
practice, we feel that the framing operators and minimal model semantics may enable us to
narrow the gap between temporal logics and programming languages in a realistic way.
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Chapter 9

A Framed Interpreter for Extended
Tempura

Summary: An outline of the implementation of the framed interpreter including
implementation strategy, data structures, program structure and some relevant re-
duction rules for the projection, parallel and framing operators are presented.

Tempura has several executable interpreters written in different languages including Moszkowski’s
Lisp version and Hale’s C version [39]. All of them interpret statements from the basic Tempura
presented in [61]. In order to use the framing technique and the projection operator in program-
ming, a new interpreter for the extended Tempura has been developed using SICSTUS Prolog.
The framed interpreter is intended to interpret the extended Tempura including the previous
operator, the parallel and projection operators, as well as the framing and await operators. Since
the extended Tempura is interpreted by the minimal model semantics under the model theory of
a default logic, there is a radical change in the semantics of the underlying language in contrast
with the other interpreters for Tempura. Moreover, the framed interpreter is written in Prolog,
it is therefore closer to logic programming.

The interpreter accepts a well-formed program in the extended Tempura as its input, and
interprets the program through a sequence of states. At each state the values of variables of the
program are evaluated and output. Thus, if a program is eventually reduced to true then it is
satisfiable and a model is found; otherwise the program has no model. In the latter case, the
error message is indicated and the execution stops. During the reduction of a program, syntax is
checked and errors are indicated by the interpreter. During the execution, any problems related
to the semantics of the executed program are found and indicated in a dynamic manner.

This chapter is intended to discuss implementation techniques for the extended Tempura.
Section 9.1 introduces implementation strategies; Section 9.2 introduces data structures; Section
9.3 introduces the program structure; Section 9.4 presents some relevant reduction rules for the
projection, parallel, await and framing operators; and conclusions are given in Section 9.5.

9.1 Implementation Strategy

Basically, the implementation strategy for the framed interpreter is based on the Tableau method
[88]. That is, to execute a program is to transform it to a logically equivalent conjunction of
two formulas Present and Remains:

PresentA Remains
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where the formula Present consists of assignments (by = or «) to program variables, output
of program variables, true and more or empty. The roles of more and emply are to indicate
whether or not the interval over which a program is executed terminates. Formally,

m
Present = /\ present;

=1
present; := z =e¢ | z < e | true | more | empty

The formula Remains is what is executed in the subsequent state if the interval does indeed
continue. The Remains is said to be in a reduced form if either it is true or it consists of
conjuncts leading with only the next operators. Formally,

n
Remains = /\ Quw;
i=1
where w; is a Tempura formula.
When the execution of the next state is prepared, a function, nezt_w, is used to remove these
next operators from the conjuncts contained in Remains. What is really executed at the next
state is the formula Nezt

n
Nezt = /\ w;
i=1

w; = next-w(Qw;)

Since only deterministic programs are considered within the interpreter, the Remains part
has a simple form. Compared with the normal form presented in Theorem 7.9, it is different
from the one used for reduction. The differences are twofold: one is that the reduced form is
AQw; rather than a single Qw for the Remains part. It is obvious that the two formulas are
equivalent in the sense w = A w;. The reason why we use the former for reduction is merely for
convenient operation. The other is that the Present part may contain more, empty and true
while in the normal form they are absent. Again, the reason for using them is merely for easy
manipulation in reduction.

9.2 Data Structures

9.2.1 Variables

As mentioned earlier, there are different types of variables in the framed Tempura. Variables can
be static or dynamic. A static variable keeps stable over an interval while a dynamic variable
may change from state to state.

Variables can also be global or local. If a variable is introduced by the existential quanti-
fication it is local otherwise it is global. A local variable is accessed only within the program
bound by the existential quantification, whereas a global variable is accessed everywhere within
& program.

As discussed earlier, variables are also divided into framed and non-framed ones. The value
of a framed variable is carried along to the next state if no assignment is encountered at the
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gext state whereas the value of a non-framed variable is always cleared after the execution of a
state. Hence, in the framed interpreter, a variable is stored in the form:

val(z, v, status, frmark)

where, z is the name of the variable, v is the value of the variable at the current state or next
state indicated by the status which has value state, next or static, and the frmark can be f
(framed) or nf (non-framed) to identify whether or not z is framed.

9.2.2 Constants

Constants consist of integers, boolean constants, lists and strings. They are defined as in Chapter
4.

9.2.3 Flags

The framed interpreter makes use of several flags to handle the reduction of a program. One
of the important flags, done, indicates whether or not an interval terminates. At the beginning
of execution at each state, done is set to nil. During the execution at a state, the interpreter
places either false or true in the done according to more or empty being encountered. If a
programmer fails to specify the interval for his program, the interpreter cannot set the done
flag, and it remains nél. In such a case, an error will be detected and indicated.

The assigned flag af is the second important flag in the framed interpreter. The functions
of af are twofold: one which indicates whether or not a variable will be changed at the current
state; the other is to identify if a variable is accessible at the current state. If the af(z) is
true, then z will be assigned a new value at the current state and it is not accessible before the
assignment is completed. af(z) is set to true prior to the current state by using syntax check.

The third flag is side flag concerning side effects. When this flag is set to off, the interpreter
is in the ordinary mode, whereas when the flag is set to on, it prevents side effects. For instance,
more sets the done flag to false and empty sets the done flag to true as mentioned earlier, but
in the case of the side flag being true, they do nothing. The side flag is set to true whenever a
tail recursion is involved in the reduction of a program.

9.3 Program Structure

The execution of a program consists of a series of state reductions. The last state contains the
conjunct empty. A state reduction is composed of the reductions of multiple passes. After the
last pass, the executed program is reduced to the form:

PresentA Remains

In fact, the Present part has been dissolved during the reduction. Its effects are reflected in
updating variables, displaying the values of some variables, and setting the done flag etc. What
is left at the last pass of the reduction is the Remains which will be executed at the next state
if the interval over which the program is executed does not end. Therefore, the execution ofa
program can be treated as a series of reductions or rewritings.
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9.3.1 One Pass Reduction
Algorithm 1: One-pass-reduction
In SICSTUS Prolog, the algorithm can be written in the following form:

1) retract(w(P)),
2) ru(P,Q),

3) simple(Q, R),
4) assert(w(R)).

where w(P) is a compound term, a structured data in Prolog; w is its principal functor; and P is
a variable. Retract(w(P)) enables P to obtain a program which will be executed. The rw(P,Q)
is the most important reduction procedure which rewrites P to @ corresponding to reduction
rules at different passes and different states. The simple(Q, R) is intended to erase conjunct
true contained in @ and the result is placed in the variable R. The assert(w(R)) stores the R
into w again.

9.3.2 Reduction at One State
Algorithm 2: One-state-reduction
The algorithm proceeds as follows:

1) clear-done-flag,

2) show-time,

3) one-pass-reduction,

4) ready? if no go to 3) else 5),

5) checking done flag and preparing assigned flags,
6) preparing the next state.

At the beginning of the execution of each state, the interpreter clears done flag, i.e. sets it
to nil. The ‘show-time’ displays the current state number and increases the number by one in
the preparation for the next state. The initial number is 0. The one-pass-reduction, as discussed
above, reduces a program in one pass. At the end of the process, a check is required to test
whether or not the program is ready in a reduced form. This is the task of ready. If the program
is not in a reduced form, then another reduction pass resumes. If the program is already reduced
to a reduced form, an auxiliary check is required to ensure that done has been set to true or
false. Otherwise an error ‘done-not-set’ is issued and the reduction interrupts immediately.

The ‘preparing the next state’ process does the following: if the current state is not the

last one, then this process initializes two storages for each variable according to the information
of framing and assignments, and releases the old storages. The process also erases the leading
operator () from the conjuncts of the program held in w.

The ‘prepare-assigned-flag’ process is important for framing. After the ready procedure,
it is the exact time for checking whether or not the interval is empty and there is therefore a
chance to do the syntax check so that assigned flags for some variables involved in temporal
assignments, fin, and halt etc. can be set prior to the next state.
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9.3.3 Reduction of One Program
Algorithm 3: One-program-reduction

To execute a program is to call one-state-reduction repeatedly.

1) one-state-reduction,
2) empty? if no go to 1) else clear all variables.

9.3.4 Execution of Tempura
Algorithm 4: Executing tempura
This is the main algorithm employed in the framed interpreter.

1) show Tempura version,

2) initialization,

3) show Tempura number,

4) input(P), (user’s task)

5) read(w(P)),

6) P=exit, quit, stop? if yes clear all then stop else 7),
7) one-program-reduction,

8) prepare-next-formula and then go to 3).

The interpreter can successively execute many programs. When a program is finished, the
interpreter is waiting for the next input unless one intends to quit and issue an exit command.

9.4 Implementing New Operators

The most important reduction procedure is rw(P, Q). It is relevant to all reduction rules for
all constructs. For the most of general Tempura formulas, Moszkowski has described how to
execute them in {61]. In this section, we discuss only how the new operators, projection, parallel,
await and framing, can be implemented in the interpreter. The reduction rules are presented
briefly.

9.4.1 Implementation of Projection Operator

The projection construct (pi,...,pm) prj ¢ is implemented as follows: it is processed by first
allocating a done flag initialized to nil to serve as a done flag for projected interval over which
the statement q is executed and then transforming the statement to the internal construct IC,

project((p2, ..., Pm), P1, ¢, done(nil)) ifm > 1
IC =
project(empty, p1, q, done(nil)) ifm=1

which is immediately re-reduced. The construct project(R, P, @, done(D1)) is executed by first
saving the current done flag to OLD and setting the done flag to done(D1). The statement @
is then reduced in the context to a new statement Q. Afterwards, the current done flag is saved
to D2, the old done flag, done(OLD), is restored, and the statement P is then reduced in the
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context to a new statement P'. f P’ or Q' is not fully reduced, the overall project statement is
rewritten as
project(R, P',Q/, done(D2)).

This is returned as the result of the reduction. On the other hand, if P’ and @’ are both fully
reduced, then, with the notation

D = nezxt_w(P’)

E = next-w(Q")
choose(R1,(R2)) = (R1;choose((R2)))
choose(R1) = Rl

the overall project statement is transformed as in Fig 9.1. This tests the done flag indexed
by done(D2). I it is true, the interval over which @ was reduced is finished and therefore the
nezt.w(P’) is executed followed by the remaining formulas (R1, (R2)), chosen by the procedure
choose, if they were not empty. On the other hand, if done(D2) = done( false) the interval over
which Q was executed is not yet finished. Therefore, the formula D is executed followed by the
resumption of the projection statement.

if done(D2) = done(true)
then
if R = (R1,(R2))
then O (Dj;choose(R1,(R2)))
else
ifR=R1
then O (D; R1)
else
if R = empty
then O D
else
if done(D2) = done( false)
then
if R = (R1,(R2))
then O (D;project((R2), R1, E,done(nil)))

else
if R =Rl
then O (D;project(empty, R1, E, done(nil)))
else

if R = empty
then O (D;project(,empty,empty, E, done(nil)))

Fig 9.1 Rewriting project statement

9.4.2 Implementing Parallel Operator

The interpreter handles a statement of the form A|lB by transforming the statement to the

internal construct
parallel(A, B, done(nil))
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This is immediately re-reduced. Here done(nil) is a flag initialized to nil. It serves as a local
done flag for the interval over which the statement A is executed.

We execute the parallel( A, B, done(D1)) construct by first saving the value of the old done
flag to OLD and setting it to D1. The statement A is then reduced in the context to a new
statement A’. Afterwards the current done flag is saved to D2, and the old done flag value,
OLD, is restored. The statement B is then reduced in the context to a new statement B’. If
A’ or B’ is not fully reduced, then we simplify A’ to Al and B’ to Bl and the overall parallel
statement is rewritten as

parallel( Al, B1,done(D2))

This is returned as the result of the reduction. On the other hand, if A’ and B’ are both fully
reduced, then the overall parallell is transformed to the following conditional statement and
then immediately re-reduced:

if done(OLD) = done(true) then (Al,done(D2))
else if (done(D2) = done(true) then Bl
else Oparallel(Al, B1, done(nil))

Here Al = next_w(A’) and Bl = nezt_w(B’), and (A1, done(D2)) means to set done flag to D2
and then to reduce Al in the context.

This first tests B’s done flag indexed by OLD. If it is true, the interval in which B was
reduced is finished and therefore the overall parallel construct reduced to (Al, done(D2)). On
the other hand, it tests A’s done flag indexed by D2; if it is true, the interval over which A was
reduced is finished and the overall parallel construct is reduced to Bl. Otherwise, the reduction
procedure advances to the next state.

9.4.3 Implementing await(c)

A statement of the form await(c) is rewritten as a logically equivalent formula

halt(c) A frame(Vc)

and then it is immediately re-reduced, where V, stands for all dynamic variables contained in c.

The condition in halt cannot cause side effects unless empty. Hence, the halt(c) can be
reduced using the following rules:

1. halt(c) A empty — ¢
2. halt(c) A more — ~c A Qhalt(c)
3. halt(true) — empty
4. halt(false) — more A Qhalt(c)

The frame(V,) can be reduced according to the rules given in the next subsection.
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9.4.4 Implementation of Framing Operators

Toimplement the framing operators, we first consider programs containing no positive immediate
assignments. Afterwards, we discuss the general situation.

(1) Implementing Framing in Programs without Positive Immediate Assignments

In the case in which no positive immediate assignments are contained in programs, the basic
assignment relevant to framing is the positive next assignment. There are two ways to go about
it: one way is by means of the look forward framing operator; the other way is to make use of
the look backward framing operator. In the following, we consider the former. The latter can
be handled by the case (2) in the sequel.

With the look forward framing operator, to reduce a program, we associate each variable
with a mark in its storage to identify its framing status in addition to its value and state mark.
So a variable is stored in the form, (Vam, Val, St, Fr). The parameter Nam and V al are simply
the name and the value of the variable; St can be either ¢ (current) or nz (next) or st (static);
Fris f (framed) or nf (non-framed). As a program is reduced, a variable, say z, within the
program takes two storages at every state. Ome is a current storage initialized to the form,
(z,nil,c,nil), at the beginning of the initial state so. The other is a next storage initialized
to the form, (z,Val,nz, Ass), with Val and Ass being nil at the beginning of every reduction
state. As the reduction proceeds, these parameters will be updated at various states. The detail
of the algorithm for changing these parameters is omitted here.

When frame(z) occurs within the context of the program, we invoke the look forward
framing operator. By FE2, the framing operator can be written as

frame(z) = (more—!f f(z))AQ frame(z)

Thus, it is reduced to true if the final state is reached. Otherwise, we simply set a mark f in the
current storage of . This framing mark along with the status of the next assignment provides
us with sufficient information to determine if the value of = is carried along to the next state,
when the reduction is accomplished at the current state. When advancing to the next state, we
check the two storages of each variable whose framing mark is f in its current storage. Three
cases need considering:

1. if the value in the next storage is nil, then we copy its value from the current storage to
the next one;

2. if the value in the next storage is the same as in the current storage, we do nothing;

3. if the value in the next storage differs from the value in the current storage but the mark
Ass = + in the next storage, we do nothing;

Afterwards, we release all of the current storages, and change the next storages to be the new
current storages at the next state. This can be done by changing nz to c, setting Fr to nil,
and keeping all of the other parameters. The new next storage is initialized to (z,nil, nz,nil)
for the variable z.

A framed program is more efficient than a program without framing. For example, comparing
program (2) with program (3) in Chapter 6, for the former, without framing, we have to reduce
O(more—=z = z) from state to state; while for the latter, with framing, we need to reduce
frame(z) with the whole reduction process. To reduce O(more—Qz = z), first, we reduce
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it to a form (more—Qz = z)AQO(more—~Qz = z). Subsequently, if the final state is not
reached, more—~(z = z is, in turn, reduced to Oz = z otherwise to true. Afterwards, if the
final state is still not reached, we reduce Qz = z by accessing to the value of z, and re,ducing
it to O(z = ¢) for some constant ¢ in D. Finally, the whole formula js reduced to the normal
form, O(z = cAD(more—(z = z)). The reduction process needs at least four reduction runs.
Whereas, to reduce frame(z), a mark f is placed in the current storage of z in one reduction
run. An assignment z :=* e is reduced by taking almost the same amount of work as z := e
except that we need to set Ass to + in the next storage of z. However, this does not increase
the number of reduction runs. The extra work connected with frame(z) is to check the storages
of z for inheriting its value. This is fast because only one copy of the value of z in the current
storage is required if z is framed and next value is nil. The following is a brief reduction of
program (3) in Chapter 6:

s : frame(z)A(z = 1Ay :=* 2;y:=t 2 4 y)

(z,nil, c,nil) (z,1,¢,f)
(y,nil, c,nil) (y,nil, e, nil)
(z,nil,nz,nil) —  (z,nil, nz, nil)
(y,nil, nz, nil) (y,2,nz,+)
i3
8 : frame(z)Ay:=t z+y
(z,1,¢c,mil) (z,1,¢,f)
(9,2, ¢,nil) (¥,2,¢,nil)
(z,nil,nz,nil) —  (z,nil,nz,nil)
(y, nil, nz, nil) (y,3,nz,+)
4
81 frame(z)Aempty
(2,1,¢,nil)

(y,3,¢,nil)
(z,nz, nil, nil)
(y, nz,nil, nil)

where — represents the reduction relation within one state, while | represents the relation
between two states. Thus, it is clear that program (3) is more efficient than program (2) in
Chapter 6.

The restriction for ruling out the positive immediate assignments in programs is not a
problem since this does not reduce the expressive power of the language but makes more concise
and constructive programs. Moreover, for most imperative programming languages, assignment
statements take a unit of time, so the restriction makes the transformation between framed
Tempura (or FTLL) and imperative languages easier.

However, the positive immediate assignment is a key formula in the framed Tempura, there-
fore it should be permitted within a specification. If a program involves positive immediate
assignments, the reduction of the program is somewhat complicated.

(2) Implementing Framing in Programs with Positive Immediate Assignments

In general, a program may involve any kind of assignments presented in Chapter 4 and Chapter
6 including the positive immediate assignment. In this case, the basic assignment relevant to
framing is the positive immediate assignment. To reduce a program, we also need two storages
for a variable at every state except the initial one. However, a previous storage rather than the
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pext storage is required besides the current storage. As the reduction proceeds, these parameters
are updated from state to state according to an algorithm which is omitted here.

When frame(z) occurs within the context of the program, we invoke the look back framing
operator. By FE2, the framing operator can be written as

frame(z) = (more—Qlbf(z))AQ frame(z)

Thus, it is reduced to true if the current state is the final state. Otherwise, we simply set a mark
f in the current storage of z. This framing mark and the assignment status of z at the next
state provide us with useful information to determine if the value of z is carried along when the
reduction advances to the next state. After progressing to the next state, we release the past
storages, and change the current storages to be new past storages at the next state.

However, since a program may involve the positive immediate assignments, from an op-
erational point of view, we can not foresee the assignment status of a variable by the current
knowledge at the present state because a positive immediate assignment may appear after a chop
operator. For instance, to reduce the program frame(z)Az = 1 A skip;z < 2Ay:=* z 4 3,
we can obtain a framing mark f in the current storage of z but cannot perceive the existence
of 2¢=2 after the chop operator in an operational manner. To solve this problem, some syntax
check algorithms are required. We omit the detail here.

9.5 Conclusions

The framing technique for variables can easily be generalized to arrays (or lists). In such a
case, all elements of an array are treated as a single unit, so frame(A) means that all elements
of array A are framed. For implementation of frame(A), only one framing mark is needed to
associate with the array name A. Hence checking the framing mark for inheriting the value of
A is very quick. In contrast with the repeated assignment approach to an array, the framing
approach is clearly more efficient.

A reduction may not involve any syntax checking if we rule out the positive immediate
assignments within programs. Therefore, when we allow a program to invoke the positive im-
mediate assignment, the reduction of the program is somewhat complicated. In practice, as a
convention, positive immediate assignments could be ruled out in a program but can be used to
specify high level executable specification. For most programs, this is not a problem. Finally,
we conclude that framed programs are more concise, simpler, and easier to understand. In the
case without positive immediate assignments, the implementation of a framed program is also
more efficient than a program without framing.

A question one can ask is why we need to introduce the previous operator in this thesis since
frame(z) = frame'(z) as Theorem 7.1 tells us. The answer is not obvious. Although, from a
theoretical point of view (temporal semantical view), the framing operators involving nezt and
previous operators are equivalent, the implementations (operational view) of them are different.
Therefore, in addition to the well known reasons for introducing past operators to the temporal
logic [54], there is also a particular reason for us to do so. That is, the reduction of the positive
immediate assignment can be implemented in a manageable way. It is clear that the reduction
of a program containing positive immediate assignments would be difficult without the previous
operator. In such a case, we can only obtain a set of next assigned variables at the current state.
However, a positive immediate assignment possibly occurs after a chop operator. It may destroy
the current view of the assignment status of a variable for the next state. Thus, a difficulty
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arises when we determine if a value of a framed variable is carried along to the next state as the
reduction advances. This indicates the fact that the previous operator is really needed for the
framing.

The reduction rules used in the framed interpreter are based on the logic laws and the min-
imal model provided in the preceding chapters. The consistency between the framed interpreter
and the minimal model semantics could also be discussed. However, a detailed justification of
the problem lies outside the scope of the thesis and is left for futhure research.
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Chapter 10

Conclusion

An extended propositional ITL, an extended first order ITL, a projection construct, an extended
Tempura, a framing technique and a synchronous communication construct have been investig-
ated in detail; a framed interpreter for the extended Tempura has also been briefly introduced.
However, some issues need to be discussed further. This chapter is devoted to discussing them.

10.1 Extended Propositional ITL

¢ Although the extended propositional ITL is based on the original ITL, the semantics of
EPITL is much different from PITL. First, the extension to include past operators destroys
the logic law, empty; p = p. That is, in general, empty; p = p no longer holds. Second,
the extension to use infinite models destroys the logic law, p; empty = p. In other words,
in general, p; empty = p is not valid in EPITL. However, p; empty; ¢ = p; ¢ holds and the
association law, (p; q); 7 = p; (g; 1), is still valid.

¢ The negation of the chop construct, =(p;q), is hard to express in EITL. Instead, we use
some weak laws (see Theorem 2.28) relevant to the negation of the chop construct rather
than using yield operator [78, 60).

o The next operator refers to one state forward but not beyond the final state within an
interval while the previous operator refers to one state backward but not beyond the first

state within an interval. In fact, the chop operator (;) and the past chop ( ;) operator make
the borders of sub-intervals over which the next and previous operators act. Barringer[11)
pointed out the possibility for extending choppy logic to use the previous operator in this
manner.

¢ We claim a number of times in the thesis that we extend ITL, in some sense, from an
interval-based notation to a point-based notation. As seen, terms and formulas are inter-
preted w.r.t. an interpretation (o,,k,j) rather than an interval as in the original ITL.
Unlike the original ITL, o is fixed in the notation (o,1,k, j) while a formula p is interpreted
over o. To interpret p, we start with (c,0,0, |g]) ; subsequently, as the interpretation pro-
ceeds, we interpret subformulas of p over some subintervals introduced by the partitions of
o obtained through the chop operators. The notation (7,1, k, 7) provides us with the ne-
cessary information: the first parameter o is the whole interval over which the full formula
p is interpreted. That is, o represents the computation trace of formula p, whereas the
other three parameters i,k and j specify a subinterval o(;_;) of o with the current state
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being s over which a subformula of p is interpreted. When the interpretation proceeds,
two situations may take place. In the first, the current position may swing forward or
backward between s; and s; because the subformula may involve both the next and the
previous operators in an arbitrary order. So parameters i and j serve as delimiters, while
the parameter k is used as an indicator of the current position so that the move of the
position can be consistent with the interpretation. Since the chop operator can be used
recursively, another situation may occur in which a chop operator is involved in the sub-
formula of p; it gives rise to the partition of the subinterval o(;_ ;) into two new subintervals
0(i..») and o(x_j) with the delimiters i, s and h, j respectively. The current position for the
former is k while for the latter it is h in the future chop case. For the past chop case, the
current position for the former is h while for the latter it is k. The change of the current
state and the partition of intervals are all handled by means of increments or decrements
in the values of the parameters i, %, j. In a sense, we generalize I'TL from an interval-based
notation to a point-based notation since we refer to no explicit subintervals but to points
i,k,j, over a fixed interval. This could allow us to compare the extended logic system
with a point-based linear temporal logic such as [66, 51] in an easy way and to formalize
a proof system possibly by adding axioms concerning the chop operators to these existing
systems.

o In this thesis, EPITL has been studied within the model theory. A proof theory could be
formulated. However, a lot of work is needed and this is beyond the scope of this thesis.

10.2 Extended First Order ITL

EITL has been developed based on EPITL. EITL is much different from the first order ITL.

e A problem we need to point out is the use of nil. In most point-based temporal logics
[51, 66, 53], a model is an infinite sequence of states. However, within EITL (and in the
original ITL), the chop operators force us to use finite intervals as models in addition to
infinite models. Thus, problems arise when we define the value of Oz at a final state and
the value of Oz at a starting state. In this thesis, they are treated as undefined (denoted
by nil). Introducing nil to the logic poses another problem: should we have nil = nil or
nil # nil when we interpret the equality (=)? If we adopt the convention, ntl = nil, then
Oer = Qez = O(er = e2) does not hold at the final state and Oer = Qe = Oeg = e2)
does not hold at the first state over an interval. This destroys some intuitions. On the other
hand, however, if we make the convention, nil # nil, then it poses more problems since
different equalities are needed to interpret terms and the equality (=) in the semantics,
and some very useful laws such as replacement of equal term by equal term in a term does
not hold. Within this thesis, for our purpose, we adopt nil = nil as a convention.

o Another issue is a proof system for EITL. A lot of work is needed to develop a deductive
system for EITL, and this is left for future research.

10.3 Projection

o The projection operator subsumes the chop operator as stated in Theorem 5.3. However,
the projection operator is only defined as a future operator in this thesis. It is possible
to define a projection over a subinterval o;_j) with the current state being s so that the
previous operator can be used. However, further research is required.

149




o The projection construct has a potential use in real time systems, especially, in hybrid
systems [41, 4] consisting of continuous activities and discrete events. Intuitively, con-
tinuous activities can be interpreted over a series of local but continuous intervals, while
discrete events can be interpreted over a projected interval (discrete interval). Thus, the
continuous activities and the discrete events can be mixed in a uniform way. Therefore,
the projection construct is useful to handle hybrid systems. However, further research is
needed to investigate the technical aspects in detail.

10.4 Extended Tempura

o In the thesis, we extended Tempura in several ways. However, the input, output state-
ments, data types declaration statements and pointers are excluded. It seems that there is
no straightforward way to include these statements in Tempura under the EITL notation.
Further research is required to solve these problems.

o In the dissertation, the temporal semantics of programs within the extended Tempura is
investigated under the model theory. Operational and axiomatic semantics of programs
are still waiting for further research.

o Another very active research field is the real time programming. At the moment, the
extended Tempura is concerned with a sequence of states without absolute time. We
could find a way to extend Tempura to use time explicitly so that real time systems can
be handled by Tempura.

o The extended Tempura is not a deterministic language. A subset of deterministic programs
in the extended Tempura can be defined. However, in this thesis, a formal definition of
deterministic programs has not been given.

10.5 Framing

o Framing is managed in a default logic within this thesis. This inevitably leads to revisable
reasoning [84] for framed programs. However, we have not investigated the revisable
reasoning within EPITL and EITL.

o Moreover, the narrative reasoning [67] may also be done with framed Tempura. Therefore,
framed Tempura could be a useful tool in Al field.

10.6 Synchronous Communication

In the thesis, the await operator is defined with the help of framing, and a useful language FTLL
is defined in EITL.

¢ The language FTLL contains the extended Tempura as a sub-language. The hierarchy
of the consistent three level languages: an extended logic language, a non-deterministic
framed concurrent programming language (FTLL), and an extended Tempura, could facil-
itate specifying, verifying and developing reactive systems in a more efficient and uniform
way. From our experience, we believe that the framing operator and the minimal model
semantics may enable us to narrow the gap between temporal logic programming languages
and conventional programming languages in a realistic way.

150



o For synchronous communication, we have not found a way to handle the group statement
which is useful to define P-V operation which is the traditional approach for solving the
mutual exclusion problem.

10.7 Interpreter

Although the previous operator, the projection operator, the framing operator, and the await
operator have all been implemented, and the framed interpreter is workable, the current version
of the interpreter is not complete. The domain includes only integers, and there is no library of
functions etc. A compiler for the extended Tempura is also required.

10.8 Comparison with other works

The formalism presented in this thesis refers to Kroger’s temporal logic [51], Manna and Pnueli’s
temporal logic [66], Lamport’s TLA [53], Moszkowski’s ITL [61] and others (e.g., [11, 24]).

EITL is close to the original ITL. They share several common operators, such as the next
(O) and chop (;). However, ITL is a linear temporal logic based on intervals of states. Its basic
temporal operators are future operators, the next () and chop (;). A model of ITL is a finite
interval of states. In contrast with ITL, EITL uses both future temporal operators, the next and

chop, as well as past temporal operators, the previous (©) and past chop (;). A model of EITL
can be a finite or infinite interval of states. Furthermore, the semantics of EITL is different
from ITL. The interpretations of terms and formulas in ITL are by means of intervals, whereas
within EITL, they are interpreted over a fixed interval with changing current end points. Hence,
EITL is a point-based linear temporal logic in this sense. Many constructs in EITL have the
same names as in ITL. However, their meaning can be different. For instance, empty means a
singleton interval in ITL, but it means that the right end of the current interval is reached in
EITL. For projection constructs, p prj ¢ in ITL and (p1,...,Pm) prj q in EITL, their meaning
is different, as discussed in Chapter 5.

ITL has a simple proof system [62]. However, the model theory in ITL has not been explored.
EITL provides model theories for both the propositional and first order logics. However, a proof
system for EITL has not been formalised.

Kroéger’s temporal logic is one of the earliest versions of temporal logic, and it is a main
reference here. This logic includes future operators such as O, ©, atnezt and until, as the basic
operators. A model of the logic is an infinite sequence of states. The logic has a substantial
model theory and a proof system. Within the propositional logic, the completeness of the logic
has been proved. However, no executable sub-set of the underlying logic has been formalised.
This logic cannot handle the chop and projection constructs. Conversely, EITL cannot handle
the atnezt operator.

Manna and Pnueli’s temporal logic [66] includes both future operators, such as O, © and
U (until), and past operators, such as ©, © and § (since). A model of this logic is an infinite
sequence of states. The definition of a state is similar to EITL. It also has a proof system.
However, the model theory of this temporal logic has not been investigated in detail. It does
not handle the chop and projection constructs. To verify programs, Manna and Pnueli define
separately a programming language in the normal programming context rather than a sub-set
of the underlying logic. It seems that EITL cannot handle until and since constructs.
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Lamport’s TLA (53] is a simple temporal logic of actions. This logic includes the always
operator O as the basic future temporal operator. An important point we need to make is that
Lamport [52] objects to the use of the next operator in a specification language, claiming that
it enables the expression of distinctions between programs that should be considered equivalent.
He consistently uses reflexive operators instead of the next operator. In this logic, fairness is
investigated in detail. This logic has an executable sub-set and also a proof system. It cannot
handle the chop and projection constructs, as well as the until and atnezt constructs. In contrast
with TLA, EITL does not deal with the fairness.

The extended Tempura is close to the original Tempura and Hale’s work [39]. Many state-
ments of the extended Tempura are similar to the constructs of the original Tempura. However,
the semantics of the language is given in EITL model theory. Moreover, the extended Tempura
has a new projection statement (pi,...,pm) prj ¢ and a communication and synchronization
statement await(c) as well as the framing operator. These allow us to handle concurrent com-
plex computations.

Another temporal logic programming language, Tokio [32], is also based on ITL. This lan-
guage combines temporal operators with Prolog. The extended Tempura does not refer to this
language. .

The XYZ/E [79, 82] is one of the earliest temporal logic programming languages. This
language is based on Manna and Pnueli’s temporal logic [63]. Moreover, XYZ system consists
of a temporal logic programming language XYZ/E as its basis, and a group of CASE tools
to support various kinds of methodologies [83]. However, XYZ/E cannot handle the chop and
projection constructs.

The predominant approach to the extension of the logic programming paradigm to temporal
logic is TEMPLOG [3]. In TEMPLOG, Temporal Horn Clauses, which can be categorised as
cither initial clauses (effectively if they contain start) or globale clauses, are restricted still
further using the following constraints.

1. The ‘®’ operator cannot occur in the head of a clause.

2. The ‘O’ operator can only occur in the head of what are termed, initial definite permanent
clauses, which can be characterised as

Oe « d,start,c.

Gabbay developed the language USF [35), which follows an imperative future approach. The
METATEM language [9, 29] is a development of USF consisting of a larger range of operators, a
better defined execution mechanism [31] and a more practical normal form [30]. A METATEM
program for controlling a process is presented as a collection of temporal rules. The rules apply
universally in time and determine how the process progresses from one moment to the next. A
temporal rule is given in the following clausal form

past time antecedent implies present and future consequent

These languages are significantly different from the extended Tempura.

As this thesis was not intended to provide a survey of executable temporal logics, merely
a comparison with some of the basic mechanisms, there are obviously languages utilising this
paradigm that we have not mentioned. The other temporal programming languages can be
found in (87, 36, 14, 80, 48, 55, 70].
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The framing technique presented in this thesis is concerned with framing in a particular
manner in which framed and non-framed variables are mixed. This framing technique makes use
of a framing operator frame(z), an assignment flag a f(z) and a positive immediate assignment
ree.

The minimal model for framed Tempura is based on the minimal model (or fixed point)
semantics [13] for logic programming languages and default logics [76, 56, 57]). However, within
Jogic programming, the minimal model is based on Herbrand model which applied to both
variables and propositions. Within the extended Tempura, the minimal model is only applied
to propositions.

Considerable attention has been given to framing in recent years [68, 40, 53, 83, 39]; however,
no intensive study has been done.

Ness [68] claims that a framing technique has been used within L.0 but no formal definition
is presented. Hehner [40], Lamport [53], and Manna and Pnueli [66] define their programming
languages implicitly using framing technique. As mentioned in Chapter 6, the assignment is
defined as follows:

z:=e= 2’ = eAyl = y; (1<i<m)

where z is a variable, and z’ represents the new value of z. y, ..., ¥ which are different from z
are all the other variables within a program. Intuitively, this means that whenever a variable z
is assigned a value, the other variables remain stable. However, this method can only manage
the case in which all variables are framed, and the conjunction of assignments is forbidden.

Hale [39] first introduced explicitly, as far as we know, a framing technique based on inertial
idea into the temporal logic programming area. However, no formal theory is presented to
convince us that the technique works well. As he said in his thesis: ¢ ... but it has to be
admitted that the definition is rather tricky, and has not yet been proved to work in all such
programs’.

Many other researchers deal with framing in a simplified manner, e.g. assuming the values
of variables are automatically inherited [83].

The framed interpreter developed using SICSTUS Prolog is the first version including the
framing, projection and await constructs. Hence, it is different from the interpreter written in
C for Tempura developed by Hale [39].

10.9 Future Work

In this section, we outline three main areas for our future research.

10.9.1 A Proof System for EITL

In this thesis, a collection of logic laws for both the extended propositional ITL and the extended
first order ITL have been formalised and proved. However, we have not worked out proof systems
for EPITL and EITL. Therefore, we intend to formalise a deductive system for EPITL and EITL.
This could be attempted by adding new axioms and inference rules to the existing proof systems
such as those of Manna and Pnueli [66], Kroger [51] and Moszkowski [62].
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10.9.2 Axiomatic Semantics of the Extended Tempura

In the thesis, we have investigated the temporal semantics of programs in the extended Tem-
pura within the model theory. In particular, we have introduced the minimal model to capture
temporal semantics of framed programs in the extended Tempura. As for conventional imperat-
ive programming languages, we envisage that the semantics of programs and framed programs
in the extended Tempura can be captured by an axiomatic system based on the proof system
for EPITL. For framed programs, such a system would contain a default rule to capture the
meaning of the minimal model semantics.

10.9.3 Operational Semantics of the Extended Tempura

The semantics of (framed) programs in the extended Tempura can be expressed in an operational
style. To achieve this, we plan to formalise an inference rule system by following the approach
advocated by Plotkin [74]. We expect that such an inference rule system would be close to the
existing interpreter for Tempura programs. Moreover, we intend to investigate the consistency
between the temporal, axiomatic and operational semantics of programs within the extended
Tempura.

Finally, we conclude that the thesis has successfully extended ITL to include infinite mod-
els, past operators and new projection operator. The resulting extended Tempura is still a
non-deterministic language, but we expect that a sufficiently general deterministic subset of the
extended Tempura can be defined syntactically. The work on minimal model based temporal
semantics of framed programs can provide a new direction for research in temporal logic pro-
gramming. Although the substitution laws presented in Chapter 7 are sufficient for the purpose
of the reduction of framed programs, additional substitution laws concerning the general case
under the minimal model are required to carry out substitutions within the model in a more
flexible manner.
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Appendix

Definition A.1 Two interpretations Z; = (01,11, k1,51) and I = (03, 42, k2, j2) are equivalent,
denoted by Iy ~ I, if for every term e, 7;[e] = I;[e], and for every formula p, Z; = piff Z, |= p.
Let o be an interval, ¢, k, 11, k; integers, and 7, j; integers or w such that 0 < i; < i < k<j=j;,
then we can show (0,4, k, ) ~ (0(;,. j),% — i1,k — 41,5 — %) (see Theorem A.1).
Intuitively, the two interpretations use the same segment of o, i.e. the sub-interval, <

8i,.-,8; >, and refer to the same state s; as the current state. To prove the conclusion formally,
some details regarding terms and formulas need considering.

Theorem A.1 Let T = (o,i,k,5) and I’ = (o(;1.jr),4 — ',k — i, j — ') be interpretations with
0<i!<i<k=<j=<j. ThenI~T.

Proof

Let e be a term, and p a formula. The proof proceeds by induction on the structure of terms
and formulas. We first prove Z[e] = Z'[e].

o Ife=ce D', then Z[e] = ¢ = I'[e].

o If e =z €V, then ZI[e] = sx[z] = 8}_,[z] = T'[e], where sg, 37, ... are the states of o(yr_jr).

Suppose Z[e] = Z'[e] for any interval o and for all i, k, 5, #', ', such that 0 < i' < i < k<j=j"<|a].
Thus,

o For a term of the form: Qe, if k < j, by the interpretation I-next, then Z[Qe] = (o, i,k +
1,5)(e] and Z'[Qe€] = (oir..jny, i — ik — ' + 1,5 = i")e]. By hypothesis, (a,i,k + 1,j)[e] =
(o(@r.jnsi— ',k —i'+ 1,5 —')[e]. Hence, Z[Qe€] = T'[O¢).

If k = j, then Z[Qe€] = nil = Z'[Qe].
e For a term of the form: Qe, if k > i, by the interpretation I-pre, then Z[Oe€]} = (0,4, k-

1,j)[e] and T'[Qe€] = (o(ir.jy, i — &,k - = 1,5 - i')[e]. By hypothesis, (o,i,k - 1,j5)[e] =
(U(.'I__jl),’l: - i,, k—i — 1,] - 2,)[8] Hence, I[@e] = II[OC]

If k = i, then i — i’ = k — i’ So, Z[Qe] = nil = I'[Oe].

o For a term of the form: beg(e), Z[beg(e)] = (o,i,4,5)[e] = (0. 1)t — ¥',i = i, j—1i)e]=
T'[beg(e)].

o For a term of the form: end(e), if j < w, then Z[end(e)] = (a,i,j,j)[e] and I,,[efld(ﬁ)] =
(0., — 1,5 = i',j — i")[e]. By hypothesis, (0,1, 7, 5)le] = (o gy, i — 157 — i, 5 —i')e].
Hence, Z[end(e)] = I'[end(e)].

If j = w, then j — i’ = w. Thus, Z[end(e)] = nil = I'[end(e)].
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o For a term in the form of a function f(e, ..., e,,), notice that, by hypothesis, 7 [en] = nil
iff Z'[ex] = nil for all h,1 < h < m. Thus, if Z[es] = T’[es] = nil for some h,1< h < m
then Z(f(e1, -.-rem)] = f(Zle), .. Zlem]) = nil = f(Z'ler], .., Tlem)) = T'[f(er, mem)]. |
On the other hand, if for all 4,1 < h < m, I[es] # nil, then, by hypothesis, Ilen] = T'[es].
Thus, Z[f(e1, ..., em)] = f(Z[e1); ..., Ilem]) = f(Z'[er); -, Tem]) = T'[f(e1, ooy €m)].

We now prove I |= piff 7’ |= p. Note that, in the proof, we will frequently use the conclusion
I[¢] = T'[¢] without clarification.
o For a proposition p, Z |= p iff I¥[p] = true iff I;k—i’[p] = true iff 7[p] |= p.

o For a predicate P(e1, ..., €,), since Z{ep] = I'[ep], for all h,1 < h < n, if there exists a k1<
k < n,Z[ex] = nil, then P(Zle1),...,Z[es]) = P(Z'[e1), ..., T'len]) = false; otherwise, I |=
P(e1, ..., en) iff P(Z[e1), ..., Z[en]) = true iff P(Z'[e1], ...,T[en]) = true iff ' |= P(ey, ..., n).

o For an equality e; = ez, since Z{ex] = I'[ep] for h = 1,2, T = €1 = e; iff I[es] = I[e,] iff
I’[CI] = I’[ez] iff 7/ |= €1 = €3.

Suppose Z |= p iff 7' |= p for any interval o and for all 4,k,7,4,5’, such that 0 < ' < i <
k=j=j'<|o|. Thus,

o For the formula —p, we have, Z = ~pif Z  piffi I’ [ piff T/ = -p.
o For the formulapAq,Z = pAqiff T pand Ik qif T’ Epand I’ = qiff I' EpAg.

¢ For aformula in the form: Qp,Z = Qpiff i < k < j and (0,%,k+1, j) E p. By hypothesis,
(0,4,k+1,5) = piff (o), =1, k=4 +1,j— ') | p. Moreover, (o(;_jr,i— ¢, k~1'+
1,j-1)E piff I’ = Op. Therefore, I E Qp iff I' E Op.

» For a formula in the form: Op, Z = p iff ¢ < kXj and (a,4,k — 1,5) = p. By hypothesis,
(U,i,k‘ - 1,]) t: Y4 iff (0’(,'1”]'/),1:— i,,k - = l,j - ’L,) f= D Further, (U("l“jl),i - i’,k -1 -
1,j—1)E piff ' E ©p. Therefore, T = Opiff I' = Op.

¢ For a formula in the form p;q, we have Z | p;q iff for some r, such that k < r<j
(o,i,k,r) |= p and (0’ T ’I‘,j) i‘: q.

I' = p;q iff for some h, such that k — i’ < h<j — ¢ (0@ j),i — ¢,k —i,h) F pand
(0.7, By hyj — ') £ ¢. That is, for some r, such that k < r<j (r=h+1) (o jnyi-
i k=i, r—i"Epand (0@ jy,r—i,r-j- NEq.

Since0 < <i<k<r=<jand0<i <r<r=j=j hold, by hypothesis, we obtain

(0,i,k,7) = p iff (o(ir, jy,i— &' k= i,r=i)Ep
(o,7,7,3) E qiff (o jn, 7 — ir—-i,j-i)Eq
Therefore, T |= p; ¢ iff I’ = pi q.

e For a formula in the form p; g, a similar proof can be given.
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¢ For a formula in the form 3z : p, since < s{-,,...,s;., >(i-it.j—in=< 8},..,8} > and <
8ity ey 8jt S(iit. j—ity=< 8iy...,8; >, and, by hypothesis, (¢’,i,k,j) | p iff (a(., i —
i',k—1i,j— ) I p, we have 7
; . V] ! . . . .
ITk3z:p fﬁ. for some a’, (al,z,k,J‘) = p with a(,-_.j)_i.a('."j), ie. < sj,..,8> =<4, e 8§ >
iff for some o’, (o i i— i,k ~ 1,5 —4) = pwith < s},..,8. > 2 < s;,...,5; >
. ) oot ., g . .
iff for some o', (a(i,“j,),z - k—i,j—4) £ p with < s, e 8 Dimit jmity =

< 8y 50y 85 >("_"l"]'_"l)
if T’E3z:p.

¢ For a formula in the form (p1, ..., pm) prj q, we have,

(U7i,k,j) "_' (Pl, "-apm) PTj q

iff there exist integers ro,71,...,7m-1 and 7,, € N, such that ro = k and (o,i,k,j) E
(P15 Pm](71, oy Trn) and

-~ rm=jand o | (r0,...,74) |F q for some h,0 < h < m or

- ™m < J and o l (7'07 -",Tm)'a(rm-}-l..j) I: q.

That is, iff there exist integers r¢,71,...,7m-1 and r, € N, such that r¢ = k and
(o,4,70,71) F p1 and for all 1 < I < m, (0,71-1,71-1,71) | p1 and

- rm=jand o | (ro,...,7s) |= ¢ for some h, 0 < h < mor
- ™ < .7 and o l (TO’ ""Tm)'a(rm+l..j) # q.

By induction hypothesis, we have,

(0,4,70,71) = p1 iff (01 1y, 2 — ¥ k= i',r = i) Ep,
(o,ric1,mi-1, 1) E piff (0 gy mic — 8 men =i =) Epforall ,1 <1< m,
ol(ro, ..y i) E ¢ iff o jnl(ro — s s =) E g,
ol(T0y vy Tm)-O(rms1..5) E @ iff 0(ir jnyl(r0 — Vet = )0 (rpm—itt1.j—it) F €
Thus, we obtain,

((T,i,k,j) ': (pla --'apm) priq

iff there exist integers 1y = ro — 4,7y = 71—, ..y M 1=Tmo1—t andr, =Tm—1 EN,

such that r§ = k — ¢’ and (0. jr),i — ¥, 7p, ™)k p1 and (01 j) Ty =1 TD) E pi for all
l,1<l<mand

- o) 4o, - Th) | ¢ for some h, 0 < h<mor

— 0(ir. ) UThs s T) O (et 41.5-i7) E -

iff there exist integers rh,7},...,7y_y and r4, € N, such that ro = k — i and T’ |
[Pl’ --'apm](ris "'arz'n) and
= 031 i) 410 s TH) k= ¢ for some h, 0 < h <mor

- 0’({1_‘1':)1(1‘6, ...,’l‘:n).o'(,.:"+1"j_|") t: q.
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iff I’ = (p1,--., Pm) PTJ Q.

o For a formula in the form p*, we have,

I=p* ii'f there are finitely many ro,...,7, € N, (n>1) such that k¥ = ro<ri<...<rn,_;
<r, = j and (0,i,70,71) = p and, for all 1 < I < n,(0,71-1,71-1,7)f=p; or j = w and
there are infinitely many integers k = ro < 71 < r; < ... such that lim r; = w and
(U,i,ro,ﬁ)l:P and, foralli>1, (0',7'1—1,7'1—1,7'1)|=P-

By induction hypothesis, we have,

1—+00

(0,3,r0,m)ED Iff (0,8 — ', 70—, 7 = ) E p,
(0,71-1,71-1, 7= ff (0(0r jy, 111 — dyinea—id,n—-i{)EpforallI>1
Thus, we obtain,
Ik=p* iff there are finitely many integers vy = 7o — #',...,7;, = 7o — ' € N,, (n>1) such
that k — ' = rf<ri<..<rl,_y 2rj, = j— i and (o1 — ¥, 79, 71)FEP and, for all I,
1< 1< n,(03.4),T1-1:T1-1: TFP;

or j = w and there are infinitely many integers k — ' = rf=ro - <rj=r -9 <, ..,
such that 11_1'1210 i = w, and (0,i — ', 7, 71)Ep, and for all I > 1, (o, 7]_;,7]_q, T1)EP-

iff I’ E pt
(m]
¥ i=4 and j = j/ in Theorem A.l, then we obtain,
Corollary A.2 (a,i,k,5) ~ (0(.j),0,k — 1,5 —1).
)

The proof of Theorem 3.7 (continued)

Let formulas p; = p} (1 < i < m) and ¢ = ¢’. We need to prove the following in addition to the
proofs given in Theorem 2.7.

l.3z:q=3z:4

2. (P1yeres Pm) PTJ 4 = (By s Pra) PTI @

Let o be a model and k an integer, 0 < k <X |o].

The proof of 1:

(0,0,k,Jo]) = 3z :q¢ <= there exists o',0'2c ,and (¢',0,k,|0'|) F ¢
<= there exists o',0'%c , and (d',0,k,|o'|) ¢

<= (0,0,k o) ¢

The proof of 2:
Let T = (0,0,k,5),5 = |ol.

A |= (Plv---»Pm)P"‘j q
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iff there exist integers ry,...,7,—y and r,,, € N, such that ro = k and (0,4, k,5) E [P,

" ...,pm](rly"'v r"l)

o 7 = j and ol(ro,...,73) | ¢ for some h,0 < h < m or
oy <j and O'l(‘l‘o, veey Tm)'a(rm+l..j) ": q.
Since p; = p; and ¢ = ¢, by hypothesis, we have

IE(p1y---2Pm)priq

iff there exist integers 71,..., 71 and 7, € N, such that ro = k and (0, 4, k, j) (1, - Pl (1,

ves T
and )

o 7, = j and of(r0,...,71) |E ¢ for some h,0 < h < m or
e T <J and Ul(’l‘o, .. -,Tm)'a(rm+1..j) ": ql-
it Z = (phye.spm)pri ¢

o

We now turn our attention to the laws regarding the chop plus and chop star. We first
introduce two auxiliary definitions.

Definition A.2
def

1. p° = empty
def
2. pl d=ef p
" = pp! (n>1)

The semantics of p™ can be given as follows:

(0,4, k,j)E=p™ iff there are extended finitely many integers rg,...,7n = j € N, (n>1) such
that k = ro<r1L...<rpn—1 21y and (0,1, 79, 71)fEp and, for all 1 < < n, (0, r—1, 111, 7)EP.

Definition A.3
We define an auxiliary formula p*. Its semantics is given as follows:

(0,i,k,j) | p*> iff § = w and there are infinitely many integers k = ro < r1 < ... such that
}_1&10 r; = w and (o, 1,79, 71)EP, and for all I > 1, (o, 71-1,T1-1, 1) EP.

Thus, following conclusions are obviously true.
Theorem A.8 Let Z = (o,i,k,j) be any interpretation. Then,

1. ZEptiff I p*Vp™ for somen > 1
2. ITEpifZEptVp™ forsomen >0

The following ‘negative’ conclusions regarding p' and p* are also obviously true.

Theorem A.4

NPW1. p®;q = false
NPW2. (p>)® = false .
NPW3. p** = p't® = p' does not hold
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The logic laws regarding p* are given in Theorem A.5.

Theorem A.5 o o
PWL. php? = pt (4,521)
PW2. (Y = p¥ (4521)
PW3. phip® = p® (i21)
PW4. (p)® = p* (i21)
Proof

We prove only 4. Let o be an interval and k an integer, 0 < k < |o|.
(0,0,k,lol) = (p)® iff |o| = w and there are infinitely many integers k = rp < r; < ... such
that ,1220 r; = w and (0,0,70,71) E p* and (0,711, 71-1, 7)) E P for all I > 1.

(0,0,70,71) £ p' iff there are finitely many integers r3,79,...,7%_; and a r{ = r; such
thatoro = 1'8 OS);? .., <27 =1 and (0,0,73,79) E pand forall ¢, 1 < t < i,
(0y75—1s -1+ T p-

(o,71-1,T1-1,T1) = p* iff there are finitely many integers r"l,r"l,...,rt} and a rl™! = p
suchthatr_y =5t < it <. <7l <l = pandforallt, 1 < t < i, (o, ri"}, vz, it E

.
Thus, let 774y = r forz 2 0 and 0 <y < i— 1. We have,
(0,0,k,|o]) & (p')® iff |o| = w and there are infinitely many integers rro,rry,... such
that rro = k and 77, < rrpyq for all b > 0 and lim rr; = w and (0,0,779,771) & p and
1—+00

(o,771-1,7r1—1,77) E pforall I > 1.
iff (0,0,k,|o|) E p*°.

O
Theorem A.6
1. (") opt
2. (pt)°opt
Proof
The proof of 1

Let o be an interval, k an integer, 0 < k =< |o|, and T = (0,0,k,|o]). The proof proceeds by
induction on n. Thus,

1. When n = 1 the conclusion is obviously true.

2. Suppose when n = m > 1 the conclusion holds. That is, (pt)™ D pt.
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3. When n = m + 1, we have,

IE @+

T E pt;(p*)™ definition A.2

T = pt;p* induction hypothesis, theorem 3.5

(0,0,k,7) = p* and (o,r,7,|0|) | p* for some r,k < r < |o]

I

(0,0,k,7) = p' V p™ for some j > 1 and (o,r,r,|0|) = p' V p* for some I > 1,

and for some 7,k < r < |o|, theorem A.3

(0,0,k,|o]) = (p7 V p®); (p' v p) for some j > 1 and for some I > 1

I

I E ;0 v (859" V (p7;p°) V (p®; p) for some j > 1 and for some | > 1,
FD9,10

IE pitt v p*™ for some j > 1 and for some I > 1, theorems A.4, A.5

IEp' Vp>® forsomei=j+1>2

T |= ph v p™ for some b > 1

I

T = p* theorem A.3

The proof of 2
Let o be an interval and & an integer, 0 < k < |o].
(9,0, |0} k= (p7)> iff (0,0,k,|0) = (p V p=)* for some j > 1.

iff |o| = w and there are infinitely many integers k = ro < 71 < ... such that lim ry = w and

(0,0,70,71) = (¢’ V p*°) and (0,711, 11-1,71) = (p’ v p>) forall I > 1.
Since (,0,70,71) I p™ and (0,711, Ti-1,71) | p* for all [ > 1, we obtain,

(0,017‘0, Tl) i= p] and (O', 7‘1—1,7'1—1)”) F P] for all I > 1.

This implies (0,0, k, |o|) | (p7)*°. By Theorem A.5 PW4, (0,0,k,|0]) E p*.
Therefore (pt)> D p*.

Theorem A.7 If pis a lec-formula, then

1. (p)">p*
2. (p)*°2pt
Proof
The proof of 1
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Let o be an interval, k an integer, 0 < k X |o|, and T = (0,0, k,|o]). The proof proceeds by
induction on n. Thus,

1. When n =1 the conclusion is obviously true.

2. Suppose when n = m > 1 the conclusion holds. That is, (p*)™ D p*.

3. When n = m + 1, we have,

[ |

i1

<~

—

The proof of 2

Ik (p)mH

Z E p*;(p*)™ definition A.2

T k= p*; p* induction hypothesis, theorem 3.5

(0,0,k,7) = p* and (o, 7,7, lo]) = p* for some r,k < r < I

(0,0,k,7) = empty Vv p? V p* for some j > 1 and (o,7,7,|0]) E empty v p' v p>

for some ! > 1, and for some r,k < r < |o|, theorem A.3

I k= (empty V p? V p®); (empty V p' v p>) for some j > 1 and for some [ > 1

T = (empty; empty) V (p'; empty) V (p°°; empty) V (empty; p') V (p%; p') V (p; ')
V(empty; p>) V (p; p®) V (p™; p*) for some j > 1 and for some I > 1, FD9,10

I |= empty V (p’; empty) V p' V p’+ v p> for some j > 1 and for some I > 1,
EMP1, FEP2, theorems A.4, A.5

I |= empty V (p'; empty) V (p' A Omore) V p' V p?*! v p® for some ji>1

and for some [ > 1

I = emptyV p' v p' v p'* v p™ for some j > 1, and for some I > 1, TER

Z = empty V p* v p™ for some h > 1

7 |= p* theorem A.3

Let o be an interval and k an integer, 0 < k < |o].
(,0,k,|o]) k= (") iff (0,0, o) |= (empty v p*)>.
iff |o| = w and there are infinitely many integers k = ro < r; < ... such that lim r; = w and

(0,0,79,71) = (empty V p*) and (o, 7-1,71-1,71) = (empty V pt) for all { > 1.
We now use the following algorithm to rule out some integers from the sequence of rq, 7y, ....

1—+00

L. if (4,0,70,71) £ empty but (0,0,70,71) £ pT, then we delete ro;

2. for all I > 1, if (0, 7—1,T1-1,71) = empty but (o, 71—y, 11_1,71) £ pt, then we delete r;_;;
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(Note that, in the above algorithm, 1. whenever a rg or r1 1 is deleted, an identical mteger
ry or 7 is reserved; 2. whenever (0,0,70,71) |= empty A p* or (0,0,r0,7y) |= more A p*, and
(0,71-1,71-1,71) |= empty A pt or (0,71_1,71_1,71) |2 more A p*, we do nothing.)

Then, we obtain a sequence of integers rg, i, ... from rg, 7y, ... by deletmg some duplica.tes
Thus, 5,71, ... i8 an infinite sequence of integers, and hm ri=wand rg=k and rj, < 1}, for

all A > 0. Furthermore, (0,0,7),7;) = p* and, for all l > 1 (o,7)_ 1”'(-11"1) Ept
This implies (0,0, ,]o]) = (p*)*°. By Theorem A.6 2, (0,0,k,]o|) E p*.
Therefore (p*)® D p*. o

The proof of Theorem 2.25 (continued)

The proof of p*;p D p;pt (FPS4)

Let o be an interval and % an integer, 0 < k < |o].

(0,0,k,|o]) = p*sp

(0,0,k,7) = p* and (o,r,7,|0|) = p for some r,k < r < |o]

(0,0,k,7) = (p* V p>) for some i > 1 and (o,r,1,|0|) E p, theorem A.3
(0,0,k,|0)) E (5 V p); p for some i > 1

(0,0,k,|0]) E (#';p) V (p; p) for some i > 1, FD10

(0,0,k,|0|) = pt! for some i > 1, theorems A.4, A.5

(0,0,k,|o]) = p;p' for some i > 1, theorem A.5

TR D A

(0,0,k,|0)) E p;pt  p' D p*, theorem 3.5

The proof of p;pt D p*;p* (FPS5)

Since pt = pV (p;pt), so p D p*. By Theorem 3.5, we obtain p;pt D p*ipt.
The proof of p*;p*t D pt (FPS6)

This is an immediate consequence of Theorem A.6 (1).

The proof of ptt = p* (FPS7)

Let o be an interval and k an integer, 0 < k < |o|. Since pt* =ptV (pt;ptt), so pt D p**
Conversely,

(0,0,k,|0]) | p**
<« (0,0,k,|o]) k= (p7) V (p*)™ for some j 21
— (0,0,k,|o]) = p* Vpt theorem A.6
= (0,0,k,|0])Fp*

Therefore, pt+ = p*.

The proof of Theorem 2.26 (continued)
The proof of p** = p* (FST8)
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Let o be an interval and k an integer, 0 < k < |o|.

P = emptyV(p*)*
= empty Vp*V (p*;(p")*)

So p* D p**. Conversely,

(0,0,k, o) = p*

(0,0, k,|0]) |z empty v (p*)*

(0,0,k,|0]) = empty v (p*) V (p*)™ for some j > 1
(0,0,k,|0]) = empty V p* v p*  theorem A.7
(0,0,k,|0l) E p*

IR

Therefore, p** = p*.
m}

In a previous paper [22], we introduced a kind of validity of formulas as follows, if T E p,
for every interpretation Z, then p is valid. This is equivalent to say that Op is valid in the sense
of the validity defined within this thesis. We justify the claim in Theorem A.8.

Theorem A.8 Let p be a formula of EITL. Then the following are equivalent:

1. T | p for every interpretation I.

2. ¢ = Qp for every model o.

Proof

Suppose for every interpretation Z, Z |= p. If there is a model o such that ¢ £ Op, then
(0,0,k,|o|) £ p for some k, 0 < k < |o|. Thus, a contradiction arises.

Conversely, suppose for every model ¢, ¢ = Op. That is, (,0,k,|o]) | p for every o and
all integers k, 0 < k < |o|. If there is an interpretation Z, T £ p, then, there are a,i,k,j
and (o,%,k,j) £ p. Thus, by Theorem A.1, we have (0(;_;),0,k,|0(.jI) ¢ p- This causes a
contradiction.

a
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