
University of Newcastle upon Tyne

Department of Computing Science

NEWCASTLE UNIVERSITY LIBRARY

098 06639 2

---rh.tz si s L <c, 2 <0 -=t

Towards Quality Programming in the Automated

Testing of Distributed Applications

PhD Thesis

By

Huey-Der Chu

October 1998

~_ _!Siiiii&:."

Abstract

Software testing is a very time-consuming and tedious activity and accounts for over 25% of

the cost of software development. In addition to its high cost, manual testing is unpopular and

often inconsistently executed. Software Testing Environments (STEs) overcome the deficiencies

of manual testing through automating the test process and integrating testing tools to support a

wide range of test capabilities.

Most prior work on testing is in single-thread applications. This thesis is a contribution to testing

of distributed applications, which has not been well explored. To address two crucial issues in

testing, when to stop testing and how good the software is after testing, a statistics-based

integrated test environment which is an extension of the testing concept in Quality Programming

for distributed applications is presented. It provides automatic support for test execution by the

Test Driver, test development by the SMAD Tree Editor and the Test Data Generator, test failure

analysis by the Test Results Validator and the Test Paths Tracer, test measurement by the Quality

Analyst, test management by the Test Manager and test planning by the Modeller. These tools

are integrated around a public, shared data model describing the data entities and relationships

which are manipulable by these tools. It enables early entry of the test process into the life cycle

due to the definition of the quality planning and message-flow routings in the modelling. After

well-prepared modelling and requirements specification are undertaken, the test process and the

software design and implementation can proceed concurrently.

A simple banking application written using Java Remote Method Invocation (RMI) and Java

DataBase Connectivity (JDBC) shows the testing process of fitting it into the integrated test

environment. The concept of the automated test execution through mobile agents across multiple

platforms is also illustrated on this 3-tier client/server application.

Acknowledgements

First and foremost, I would like to thank my supervisor Professor John Dobson for his constant

support and constructive advice. I am grateful to Professor Dobson for his comments and

criticisms on the preliminary drafts of the work. Special thanks is extended to Professor Santosh

Shrivastava and Dr Paul Watson, member of the thesis committee, for their useful suggestions,

specially in the first year.

I would like also to thank several of my colleagues and staffs members of the Centre for Software

Reliability for their prompt help and technical support on my occasions. These include Professor

Tom Anderson, Joan Atkinson, Peter Barrett, Dr Oliver Biberstein, Dr Rogerio de Lemos, Dr

John Fitzgerald, Claire Hall, Kevin Hollingworth, Andrej Pietschker, Dr Steve Riddle, Dr Amer

Saeed, Alison Sheavills and Dr Ros Strens. Also, many thanks to Shirley Craig for her patience

and efficient help in searching out many relevant references for this thesis.

The support and encouragement offered by my wife and my children during studies are also

greatly acknowledged.

The work reported in this thesis was financially supported by grants from the National Science

Council in Taiwan and the Ministry of National Defense in Taiwan.

Table of Contents

Overview of the Thesis

..

Chapter 1

Introduction

1.1 Statement of the Problem

1.1 . 1 Software Testing Techniques

1.1.2 Software Testing Tools

1.2 The Research Hypothesis

1.2.1 A Graph Model Suited for Testing Purpose

1.2.2 A Tool for Specifying All Possible Delivered Messages

1.2.3 A Framework for Testing Distributed Software

1.2.4 An Integrated Test Environment for Testing Distributed Software

1.2.5 Automated Test Execution through Mobile Agents

1.3 Validation

1.4 Outline of the Thesis .. .

Chapter 2

Survey of Software Testing Technology

2.1 Introduction

2.2 A Framework For Surveying Software Testing Techniques

2.J An Evaluation Scheme for Testing Techniques

2.J.l A Classification of Software Testing Techniques

2.J.2 Tcst Data Selection

2.J.J Adequ<lev Criterion

2.JA Exit Criterion .. .

2.J.5 Test Quali!\' Measurement

2A Software Testing Tools

1

4

4

5

6

7

7

8

8

8

10

10

11

13

13

15

18

18

21

25

28

29

32

2.4.1 Why Automated Software Testing. 32

2.4.2 Taxonomy of Software Testing Tools 33

2.4.3 Test Data Generators 35

2.4.4 Testing Tools with Capture/Playback Paradigm 37

2.5 Software Testing Strategy 39

2.5.1 Comparison of Software Testing Techniques. 39

2.5.2 Proposal Of Strategy. 41

2.6 Statistical Software Testing 43

2.6.1 The Problem of Statistical Testing . 43

2.6.2 FAST: A Framework for Automating Statistics-based Testing. . 45

2.7 Testing Of Distributed Software Systems 46

2.7.1 The problems of Testing Distributed Software Systems 46

2.7.2 Needs to be Tested 48

2.7.3 An Approach for Testing Distributed Software Systems. 50

2.8 Conclusion

Chapter 3

An Integrated Test Environment for Distributed Applications

3.1 Introduction

3.2 A Basic Architecture of Automated Software Testing

3.2.1 Requirements Specification

3.2.2 Test Data Generator

3.2.3 Test Execution

3.2.4 Test Results Validator

3.3 My Approach .. .

3.3.1 The Concept of The SIAD/SOAD Tree

3.3.2 The SMAD Tree

3.4 SITE: A Statistics-based Integrated Test Environment

3.4.1 Test Manager .. .

3.4.2 Modeller

3.4.3 SMAD nee Editor

3.4.4 Test Driver .. .

3.4.5 Quality Analyst .. .

3.4.6 Test Data Generator

ii

52

53

53

53

54

56

57

57

58

58

63

64

66

67

68

69

70

71

3.4.7 Test Path Tracer. 71

3.4.8 Test Results Validator 72

3.5 An Operational Environment for Testing Distributed Software. 72

3.5.1 Overview. 72

3.5.2 The Java Development Kit . 74

3.6 Comparison With Other Test Environments. 84

3.6.1 Canonical Function Partition 85

3.6.2 SAAM Structure .. 87

3.6.3 SITE SAAM Description and Functional Allocation 88

3.6.4 PROTest II SAAM Description and Functional Allocation 89

3.6.5 TAOS SAAM description and functional allocation 90

3.6.6 CITE SAAM description and functional allocation 92

3.6.7 STE Comparison . 93

3.6 Conclusion ... 95

Chapter 4

A Statistics - based Framework For Testing Distributed Software

4.1 Introduction

4.2 Statistical Software Testing

4.2.1 Quality Programming

96

96

96

96

4.2.2 FAST: a Framework for Automating Statistics-based Testing. . . 98

4.3 Modelling Distributed Software . 102

4.3.1 A Graph Model for Modelling Distributed Software. 102

4.3.2 The causality relation. 104

4.4 The SMAD Tree . 106

4.5 A Framework For Testing Distributed Software. 110

4.5.1 Statistical Analysis. 111

4.5.2 Quality Analysis. 113

4.5.3 Test Data Generator of Messages 115

4.5.3 The Construction of the Causality Relation 116

4.5.4 Test Results Validator

4.h Conclusion

1Il

.~----."

116

120

Chapter 5

The Design And Implementation of SITE For A Simple Banking
Application

..

5.1 Introduction

5.2 What The Tool Look Like

5.3 The Simple Banking Application

5.4 Modelling

5.4.1 Manufacturing Process

5.4.2 Type of Raw Materials

121

121

122

124

125

125

127

5.4.3 Characteristics of The Raw Materials. 127

5.4.4 Rules for Using the Raw Materials

5.4.5 Definition of Product Unit

5.4.6 Definition of Production Unit Defectiveness

5.4.7 Data Modelling .. .

128

128

128

128

5.5 The Requirements Specification 129

5.5.1 Software Design Requirements 129

5.5.2 Test Requirements. 131

5.6 The design of the Banking Application. 133

5.6.1 The Password Checker 134

5.6.2 The Banking Data Manager. 134

5.6.3 The Banking Activity Executor 135

5.7 The Design of the Integrated Test Environment. 135

5.7.1 Test Manager. 136

5.7.2 Test Driver ... 137

5.8 Concurrent Implementation of Software Design and Test Design ... 140

5.8.1 The Implementation of the Simple Banking Application. 140

5.8.2 The Implementation of SITE for SBA ... 143

5.9 Testing and Integration 149

5.10 Experimental Results and Discussion 149

5.10.1 Automatic Testing on One Client Site 150

5.10.2 Manual Testing on Two Client Sites 153

5.10.3 Comment , 156

5.11 Conclusion .. 158

1\'

Chapter 6

Automated Test Execution Through Mobile Agents and Multicast

..

6.1 Introduction

6.2 An agent-based architecture of VISITOR

6.2.1 Mobile Agents

6.2.2 The Architecture of VISITOR

6.2.3 A General Structure of Agents

6.2.4 Structure of the Receiving Agents

6.2.5 Communication between Agents

6.3 Automated Test Execution Through VISITOR

6.4 Automated Test Execution Through The Multicast System

6.4.1 The Chat System

6.4.2 The Multicast System

6.4.3 Automated Test Execution Through the Multicast System

6.5 A Blackboard-based Dynamic Test Plan for Test Automation

6.5.1 Blackboard Architecture

6.5.2 Illustration of the Framework

6.6 Conclusion .. .

Chapter 7

Summary and Conclusions

7.1 The Problem

7.2 Contribution of Current Understanding

7.2 Future Research .. .

REFERENCE LIST

159

159

160

160

162

164

165

167

170

173

174

174

175

177

177

178

179

181

181

182

186

190

Overview of the Thesis

Chapter one begins with a general problem definition statement of the problems concerned with

software testing. In this section the concept of the problems on software testing techniques and

tools are addressed. In the folJowing section I state what my hypothesis is and how I propose to

prove it. The structure of this thesis is presented in the final section.

Chapter two presents a framework (Chu, 1997) for the classification of testing techniques, the

evaluation of testing techniques, the currently available testing tools and testing strategies. I start

the chapter by pointing out the idea that there is no "silver bulJet" testing approach and that no

single technique alone is satisfactory which has been pointed out by many leading researchers

such as (Hamlet, 1988; Musa & Ackerman, 1989; Parnas, Schouwen & Kwan, 1988). In the

folJowing section a framework for surveying software testing techniques is briefly given.

According to this framework, a classification scheme for software testing techniques is presented

in the next section. In the folJowing section I survey the currently available tools for supporting

these techniques, particularly test data generators and testing tools with capture/playback

paradigm. In the final sections I show how my work fits into the framework, choosing a position

which is not occupied already by anything in the literature.

I start Chapter three with a brief discussion and overview of software testing environments. In

the following section a basic architecture of automated software testing is introduced. In addition,

an overview of my approach is shown at the end of this section. In the folIowing section the

architecture of SITE (Chu & Dobson, 1997) is described. In consists of control components (Test

Manager, Test Driver), computational components (ModelJer, SMAD Tree Editor, Quality

Analyst, Test Data Generator, Test Paths Tracer, Test Results Validator) and an integrated

database. SITE provides automated support for test execution, test development, test failure

analysis, test measurement, test management and test planning. An operational environment for

testing distlibuted applications based on the Java software is described in the next section. An

essential component for developing quality software is SITE in this operational environment. A

comparison of STEs (Eickelman & Richardson, 1996) using the SAAM structure (Kazman, Bass,

Abowd & Webb, 1994) is discussed in the final section.

Chapter four begins with a problem statement in testing distributed applications (Ferguson, 1993;

Shatz & Wang, 1987). For a proper understanding of a distributed application and its execution,

it is important to determine the causal and the temporal relationship (Berry, 1995; Lamport, 1978)

between the events that occur in its computation. In the following section a graph model is

introduced to represent the behaviour amongst events in distributed applications. In the next

section I extend the concept of the SIAD/SOAD tree from FAST (Chu, Dobson & Liu, 1997) to

SMAD tree making it a more powerful technique for test data generation and test result inspection

in distributed applications. In the following section, based on the SMAD tree, I develop a

framework which not only can generate the input messages and a sequence of intermediate

message pairs with casual relationship, but can inspect the test results, both with respect to their

syntactic structure and the causal message ordering under repeated executions.

In chapter five, a simple banking application written using Java Remote Method Invocation

(RMI) and Java DataBase Connectivity (JDBC) shows how the testing process fits into SITE.

After the behaviour of this application is modelled by a DMFG and messages amongst events are

defined by the SMAD tree, the concurrent design and implementation of this application and

SITE are processed. How the test of the application is conducted and comments on the results

obtained are described in the final section. All source codes for this implementation can be

downloaded at http://www.casq.orglsiteibankingl which is under the web site for Chinese

Association for Software Quality (CASQ) constructed and maintained by Huey-Der Chu 1998.

In the first section of Chapter six, I address some problems of current testing tools with the

capture/playback paradigm. The agent-based architecture of VISITOR (Chen, Greenwood &

Chu, 1998), which can support flexible communication and co--operation between mobile agents

and local agents which provide some services through the agent broker, is described in the next

section. In the following section, I illustrate the application of VISITOR to the client/server test

2

execution. In the following section, the concept of a multicast system is introduced. In addition,

I illustrate the multicast framework for client/server test execution. A dynamic test plan based

on the blackboard model is proposed for automated test execution in the final section. The

application of VISITOR to software testing, Mobile Testing Agent (Chu, Dobson, Chen &

Greenwood, 1998), has been implemented and can be seen at the MObile Software Testing

(MOST) web site (http://www.casq.org/most/) constructed and maintained by Huey-Der Chu

1998.

In the first section of Chapter 7, I summarise my results and shows that my initial hypothesis has

been validated by my work; it concludes by discussing what and how constraints could be relaxed

in order to take the approach further.

3

1.1 Statement of the Problem

Chapter 1

Introduction

It transformed the automotive industry in the 1970's and the semiconductor industry in the

1980's, and now, the demand for quality is transforming the software industry. In today's

competitive market, the production of high-quality software systems is an important issue for

the near future. Software quality is the degree to which a customer or user perceives the software

as meeting his or her composite expectations (Deutsch & Willis, 1988). To achieve reliable and

high quality software, it is essential to prevent errors from occurring and to test the software

sufficiently before the product is delivered. This is not only a developmental activity for

discovering product defects but also an independent assessment of software execution in an

operating environment. It is a very time-consuming and tedious activity and accounts for over

25% of the cost of software development (Beizer, 1990; Myers, 1978; Norman, 1993). Manual

test efforts tend to find the majority of defects at the end of the release effort or during beta testing,

where the errors are more expensive to fix. In addition to its high cost, manual testing is unpopular

and often inconsistently executed. If the testing process could be automated, the cost of

developing software could be significantly reduced (Ince, 1987).

Distributed applications are traditional applications re-cast for a new environment of multiple

interlinked computers and have been designed as systems whose data and processing capabilities

reside on multiple platforms, each performing an assigned function within a known and

controlled framework contained in the enterprise. Applications can now be broken into pieces

that are common to more than one application and therefore stored, maintained and executed in

a central location (a server), with the results sent back to the requesting client. The complexity

of the client/server makes testing more difficult and poses new challenges to the development

organization. Because each component can not always be tested as a single unit, integration

4

testing becomes the lowest meaningful level testing. Defining all test conditions for a set of

integrated functions is difficult enough with structured programs and procedures, let alone those

that have been distributed across client and server platforms.

Software testing is characterized by the existence of many methods, techniques and tools, that

must fit the test situation, including technical properties, goals and restrictions. In practice, the

software development methodologies typically employ a combination of several software testing

methods, techniques and tools. There is no single ideal software testing technique for assessing

software quality. Therefore, we must ensure that the testing strategy is chosen by a combination

of testing techniques and tools at the right time on the right world. The problems of testing

techniques and tools are addressed the following sections.

1.1.1 Software Testing Techniques

It is a well known fact in the software industry that software of any complexity cannot be

exhaustively tested and that a sample of the possible inputs must be relied on for the testing

performed. The conventional testing techniques based on the deterministic method (Marre,

Thevenod-Fosse, Waeselynck, Gall & Crouzet, 1995) ask the tester to select particular inputs to

test peculiar cases by means of test criteria. It may discover many errors but may not provide

much improvement in the product's quality, because their intention is to provoke failure

behaviour (Vliet, 1996). It is also accepted that errors can have significantly different effects on

the failure rate of software and that a greater payoff comes from discovering and removing the

errors with high failure rates during testing. However, the use of a system is interested in the

probability of failure-free behaviour. Statistically based testing with random sampling driven

from input probability distributions is uniquely effective at finding errors with high failure rates.

The major advantages of using the statistical method for software testing are as follows (Curritt,

Dyer & Mills, 1986; Whittaker & Tomason, 1994): Firstly, testing can be performed based on

the user's actual utilization of the software; secondly, it allows the use of statistical inference

techniques to compute probabilistic aspects of the testing process; and thirdly, in many

applications, testing can be completely automated, from the generation of test data to the analysis

of test results.

5

Current statistical testing techniques involve exercising a piece of software by supplying it with

test data that are randomly drawn according to a single, unconditional probability distribution

on the software's input domain (Curritt, Dyer & Mills, 1988; Dyer, 1992; TMvenod-Fosse,

Waeselynck & Crouzet, 1995). This distribution represents the best estimate of the operational

frequency for the use for each input. This model is not sufficiently effective for many types of

software, because the probability of applying an input can change as the software is executed

(Whittaker & Tomason, 1994).

Quality Programming introduced by Cho (1988) specifies the input domain of a software by

means of a "Symbolic Input Attribute Decomposition" (SIAD) tree, which is a syntactic structure

describing the characteristics of all possible input data. The SIAD tree is a way to achieve clarity,

conciseness, completeness and measurability in the specification of input requirements. It

enforces the development of well-defined requirements and imposes disciplines in both design

and implementation. Based on the SIAD tree, a test plan can be designed and implemented

concurrently with the software development. The quality control comes from the imposed

disciplines as well as from the systematic application of statistical sampling techniques using the

SIAD tree. From a fault forecasting point of view, a comparative analysis (Thevenod-Fosse &

Waeselynck, 1991) concluded that the best evaluation is provided by Cho's approach, particularly

when few failures are observed during a test experiment. It can automatically generate data for

testing, based on the SIAD tree. However, it lacks a clear framework with which to tell us how

to achieve automated testing. Therefore, a statistics-based framework which extends the testing

concept in Quality Programming could be presented to achieve automated testing.

1.1.2 Software Testing Tools

To create an automated test in a distributed environment, a test harness (which provides the

infrastructure in which the tests run) and one or more test scripts are needed (Quinn & Sitaram,

1996). Current automated testing tools are an elaboration and more modem implementation of

the capture/playback paradigm. There are indeed many tools that allow test scripts to be recorded

and then played back, using screen captures for verification. However, there are some inherent

6

problems with these capture/playback testing tools (Zallar, 1997; Pettichord, 1996): Firstly, test

automation is only applied at the final stage of testing when it is most expensive to go back and

correct the problem. Secondly, the testers do not get an opportunity to create test scripts until the

application is finished and turned over and thirdly, the problem that sometimes crops up is that

application modifications are made, invalidating the screen captures and then the interface

controls change, making playback fail.

Moreover, for client/server applications, there are some limitations with the capture/playback

paradigm (Mooney & Chadwick, 1998; Quinn & Sitaram, 1996): Firstly, the communication

mechanism between clients and servers uses technology like an RPC protocol that current

capture/playback tools cannot effectively capture from a software company's experience in

(Quinn & Sitaram, 1996). Secondly, these client testing products may not provide a way to test

the effect of multiple users of the software and thirdly, there are non-deterministic behaviours

in a client/server application. Repeated executions of a sequential deterministic software with the

same test script always exercise the same path in the software and thus always produce the same

behaviour. However, a client/server application may not have this capability owing to their use

of nondeterminism. As a result of indeterminacy, repeated execution of a client/server application

with the same test script may execute different paths and produce different results. This is called

the non-reproducible problem. Therefore, some mechanisms are required in order to exercise

these test scripts and examine the test ordering.

1.2 The Research Hypothesis

To address the problems mentioned in the previous section, the hypothesis presented is that of

automated testing of distributed applications to achieve high quality software can be assisted by

means of a statistics-based framework which is an extension of the testing concept in Quality

Programming and a statistics-based integrated test environment. In particular I assert the

following:

7

1.2.1 A Graph Model Suited for Testing Purpose

The execution behaviour of a distributed computation is non-deterministic. As a result of

indeterminacy, it is difficult to know the possible execution behaviours of distributed software,

to identify exactly the execution behaviour to be tested and to control the software execution for

testing a specific execution behaviour. Based on the analysis of execution behaviour of

distributed software, a conventional graph model is not suited for modeling the execution

behaviour of distributed software. Therefore, a Distributed Message Flow Graph (DMFG) is

proposed in my research for modeling the execution behaviour of distributed software.

1.2.2 A Tool for Specifying All Possible Delivered Messages

Quality Programming introduced by Cho can automatically generate data for testing, based on

a so-called' SIAD tree' which is used to represent the hierarchical and syntactic relation between

input elements and also incorporates rules into the tree for using the inputs. In my research, I

extend the concept of SIAD tree to the 'Symbolic Message Attribute Decomposition' (SMAD)

tree which specifies all possible delivered messages between events. The SMAD tree can be used

to define test cases, which consist of an input message plus a sequence of intermediate messages

corresponding to messages in a distributed application, to resolve any non-deterrninistic choices

that are possible during software execution, e.g., exchange of messages between processes. In

other words, there will be two uses of the SMAD tree: one to describe abstract syntax of test data

(including temporal aspects); the other one is that the SMAD tree will be instantiated for each test,

to hold data occurring during the test.

1.2.3 A Framework for Testing Distributed Software

Based on the SMAD tree, it is possible to develop a framework which is based on a statistical

approach. It can automatically generate the test data with an iterative sampling process which

determines the sample size and the software quality can be estimated with the inspection of test

results, both with respect to their syntactic structure and the causal message ordering under

repeated execution. Software quality here means the degree of the analysis of test results for

conformance to the requirements specification of software. The outcome of the analysis is a

classification of the software output into defective and non-defective product units which, in

turn, leads to acceptance or rejection of the software.

8

1.2.4 An Integrated Test Environment for Testing Distributed Software

Based on the framework, it is possible to build a Statistics-based Integrated Test Environment

(SITE) which can provide automated support for the testing process, to address two main issues,

deciding when to stop testing and determining how good the software is after testing. It consists

of computational components, control components and an integrated database. The

computational components will include the Modeller for modelling the applications as well as

the quality plan, the SMAD Tree Editor for specifying input and output messages, the Quality

Analyst which includes the statistical analysis for determining the sample size for the statistical

testing and the test coverage analysis for evaluating the test data adequacy, the Test Data

Generator for generating test data, the Test Tracer for recording testing behaviours on the sen'er

side and the Test Results Validator for inspecting the test results as well as examining the

"happened before" relationship. The architecture of SITE is as shown in Figure 1.1.

(Modeller) (SMAD tree
_ Editor

Specification

~~~:::-=:.:::::::- -- -----
...... 

" ( \ 
\ Testin o Testin / 
" ~ ~. / 

'-----------~~ 1~~~----------

An Integrated Database 
Test Manager 

D Control Component Control flow 

o Computational Component Data flow 

Figure 1.1: The architecture of SITE 

9 



There are two control components, the Test Manager and the Test Driver. The Test Manager 

receives commands from the tester and corresponds with the functional module to execute the 

action and achieve the test requirements. It executes two main tasks: data management and 

control management. In data management, the Test Manager maintains an integrated database 

which consists of static data files and dynamic data files which are created, manipulated and 

accessed during the test process. The static files include a SMAD tree file, a random number seed 

file and a quality requirement file. The dynamic files include an input unit file, a product unit file, 

a test ordering file, a defect rate file, a file for the defect rate range and a sample size file. 

In control management, the Test Manager controls three main functional modules: the Modeller, 

the SMAD Tree Editor and the Test Driver. The Modeller is used for receiving the test plan such 

as test requirements and test methods from the users, creating test plan documentation and saving 

some values for the testing database. The documentation produced by the Modeller provides 

support for test planning to the Test Driver as well as the SMAD Tree Editor for specifying 

messages among events. The SMAD Tree Editor is used to create the SMAD tree file that can 

be used to describe the abstract syntax of the test cases as well as to trace data occurring during 

the test. The SMAD tree file provides the structure to the Test Data Generator for generating input 

unit and the Quality Analyst to inspect the product unit. The Test Driver executes the main task 

of testing which includes the Test Data Generator, the Test Execution, the Test Results Validator 

and the Sampling Processor. 

1.2.5 Automated Test Execution through Mobile Agents 

To run the test on the multi-client sites and the server site, it is possible to apply the concept of 

mobile agents to the automated testing of client/server testing. A mobile agent is a computer 

object that can move through a computer network under its own control, migrating from host to 

host and interacting with other agents and resources in order to satisfy requests made by its 

clients. In an extension to my work, the test driver could be launched by a mobile agent to remote 

client sites to run the tests and the tracing file on the server site could also be brought back to the 

user for inspecting. 

10 



1.3 Validation of the SITE 

The implementation of a simple banking application which incorporates the framework will be 

taken for the validation of this thesis. A simple banking application is an embedded software 

system which is commonly seen inside or outside banks to drive the machine hardware and to 

communicate with the bank's central banking database. This application accepts customers 

requests and produces cash, account information, database updates and so on. In our research, 

a Simple Banking Application (SBA) will be designed as a 3-tier client/server application. The 

validation of the hypothesis against this implementation will employ the following components: 

• A Distributed Message Flow Graph will be developed for modeling this simple banking 

application. The behaviour of this application could be shown in this graphic model. 

• The definition of the input domain, of the product unit and of product unit defectiveness for 

this simple application will be specified by SMAD tree. 

• This simple banking application written using Java Remote Invocation (RMI) and Java 

DataBase Connectivity (JDBC) will show the testing process offitting it into a statistics-based 

integrated test environment. 

• The concept of the automated test execution through mobile agents across multiple platforms 

will be implemented on this simple banking application. 

1.4 Outline of the Thesis 

The ultimate purpose of this study is to address the concept that high quality software can be 

achieved and the cost of software testing can be reduced, therefore, the testing process for Quality 

Programming (Cho, 1988) should be improved for automated testing of distributed applications. 

The following chapters set out the various aspects of the study: 

• Chapter 1 outlines the research problem I am addressing, explains why it is an important 

problem and states what the research hypothesis that I am trying to establish in this thesis is 

and how I propose to prove it. The structure of this thesis is presented in the final section. 

• Chapter 2 reviews the relevant literature on testing, automated testing techniques and test data 

generators and comments on them from my own particular viewpoint. It provides a framework 

in which to position current tools and methods and shows how my work fits into the 

11 



framework, choosing a position which is not occupied already by anything in the literature. 

The final chapter shows that my approach is not only capable of solving problems not 

elsewhere addressed, but is capable of doing so efficiently. 

• Chapter 3 describes the environment on which I have chosen to base my testbed (Java 

Development Kit). It describes what the options were, why I chose that particular one, the 

features that it offers and the use made of them. It describes the architecture of my testbed, 

showing how the main components relate to each other and to the base environment. 

• Chapter 4 describes my approach in more detail and relates the testing process to the 

architecture given in the previous chapter. It explains how to construct the input and output 

tree structures, how these are used to generate test data, how the application output is captured 

and how comparisons between expected and actual output are performed. I introduce some 

statistics to show how much test data is required to be generated in order to gain a certain 

confidence in the correctness of the application under test and discuss issues of evaluating the 

completeness of the test coverage. 

• Chapter 5 describes the design of the integrated test environment and how to implement it. 

It describes the application, a simple banking application written using Java Remote Method 

Invocation (RMI) and Java DataBase Connectivity (JDBC), in some detail and with an 

explanation of the process of fitting this application into the integrated test environment. 

• Chapter 6 presents a novel paradigm for software testing, which applies mobile agents to 

software testing in order to test applications on remote sites. The paradigm proposed shows 

a way to address problems in automated testing in a networked environment that fits more 

naturally into the real world. 

• Chapter 7 summarises my results and shows that my initial hypothesis has been validated by 

my work; it concludes by discussing what and how constraints could be relaxed in order to 

take the approach further. 

12 



Chapter 2 

Survey of Software Testing Technology 

2.1 Introduction 

The history of software testing is as long as the history of software development itself. It is an 

integral part of the software life-cycle and must be structured according to the type of product, 

environment and language used. In the absence offeasible and cost-effective theoretical methods 

for verifying the correctness of software designs and implementations, software testing plays a 

vital role in validating both. The goal of software testing is firstly, to reveal the hidden number 

of defects which are created during the specification, design and coding stages of development, 

secondly, to provide confidence that failures do not occur and thirdly, to reduce the cost of 

software failure over the life of a product (Smith & Wood, 1989; Chaar, Halliday, Bhandari & 

Chillarege, 1993). 

Software testing has progressed through five major paradigms (Gelperin & Hetzel, 1988): the 

debugging, demonstration, destruction, evaluation and prevention periods, as outlined by a 

number of authors. During its development, software testing has focused on two separate issues, 

verification (static testing) and validation (dynamic testing). 

Verification, as defined by IEEE/ANSI (1983), is the process of evaluating a system or 

component to determine whether the products of a given development phase satisfy the 

conditions imposed at the start of that phase. It is the process of evaluating, reviewing, inspecting, 

and doing desk checks of work products such as requirement specifications, design specifications 

and code. In this case code means the static analysis of the code - a code review - not the dynamic 

execution of the code. Verification thus tries to answer the question: Have we built the system 

right? 

13 



Validation, as defined by IEEFl ANSI (1983), is the process of evaluating a system or component 

during or at the end of the development process to determine whether it satisfies specified 

requirements. It normally involves the execution of actual software on a computer and usually 

exposes any defects. Validation then boils down to the question: Have we built the right system? 

Verification and validation are complementary (Kit, 1995). The effectiveness of defect detection 

suffers if one or the other is not done. Each of them provides filters that are designed to expose 

different kinds of problems in the product. Historically testing has been, and continues to be, 

largely validation-orientated in the sense that it is mainly concerned with dynamic execution in 

comparison with specified (expected) results, although static testing (discussed later) can be seen 

as part of verification .. It is not that we should stop doing validation, but we want to be much 

cleverer about how we do it, and how we do it in combination with verification. We must also 

ensure that we do each of them at the right time on the right work products. 

In practice, the software development methodologies typically employ a combination of several 

software testing methods, techniques and tools. That there is no "silver bullet" testing approach 

and that no single technique alone is satisfactory has been pointed out by many leading 

researchers such as (Hamlet, 1988; Musa & Ackerman, 1989; Parnas, Schouwen & K wan, 1988). 

The need to combine testing techniques is further visible when we consider the primary 

characteristics of each approach and find that each testing strategy addresses only a narrow set 

of concerns. 

From this viewpoint, a framework is presented in this chapter for the classification of testing 

techniques. It is applied to the evaluation of testing techniques, the currently available testing 

tools and testing strategies. The framework for surveying software testing techniques is briefly 

given in Section 2.2. According to this framework, a classification scheme of software testing 

techniques is presented in Section 2.3. Section 2.4 surveys the currently available tools for 

supporting these techniques, particularly in test data generators. Software testing strategies are 

discussed in Section 2.5. Based on this framework, statistical testing techniques will be discussed 

14 



in Section 2.6. This done, in Section 2.7 I propose an approach that fits into the above framework 

for testing distributed software systems. Concluding remarks are made in Section 2.8. This 

organization is shown in Figure 2.1. 

S.2 
A Framework for Technique 
Surveying software t-----'~ 
Testing Techniques 

Fault 

S.3 f Report 0 
Evaluati 

Classification 
on 
~ 

Scheme 

" ,~ 

finding SUPisrt 
Tools Too s 

S.4 
Software 
Testing 

Tools 

S.5 

Key: 

Software 
Testing 

Strategy 

S.2 refers Section 2.2 
S.3 refers Section 2.3 
S.4 refers Section 2.4 
S.5 refers Section 2.5 

Figure 2.1: The organization of Surveying of Software Testing Technology 

2.2 A Framework For Surveying Software Testing Techniques 

An agreed standard for classifying testing techniques would allow testers to compare and 

evaluate testing techniques more easily when attempting to choose the testing strategy for the 

software development. The software testing techniques that have been developed can be 

classified according to the following viewpoints: 

• Does the technique require us to execute the software? If so, the technique is dynamic testing; 

if not, the technique is static testing. 

• Does the technique require examining the source code in dynamic testing? If so, the technique 

is white-box testing; if not, the technique is black-box testing. 

• Does the technique require examining the syntax of the source in static testing? If so, the 

technique is syntactic testing; if not, the technique is semantic testing. 

• How does the technique select the test data? Test data is selected depending on whether the 

technique refers to the function or the structure of the software, leading respectively to 

functional testing and structural testing, whereas test data is randomly selected according to 

the operational distribution for the software with respect to random testing. 

15 



• What type of test data does the technique generate? In deterministic testing, test data are 

predetermined by a selecti ve choice according to certain criteria. In contrast to this, in random 

testing, test data are generated according to a defined probability distribution on the input 

domain. 

With reference to this classification, work on the evaluation of software testing techniques can 

be done in correspondence with two major testing issues as shown: 

• When should testing stop? The exit criterion can be based on a reliability measure in the case 

when the test data have been selected by random testing, whereas a test data adequacy criterion 

for determining whether or not a test set is sufficient for deterministic testing. 

• How good is the software after testing? The definition of software reliability measures with 

a failure rate can be applied to test software with discrete or continuous test data (DeMilIo, 

McCracken, Martin & Passafiume, 1987). Test data adequacy criteria are measures of the 

quality of testing. From this viewpoint, the classification of test adequate criteria can be 

divided into fault-based testing and error-based testing (Zhu, Hall & May, 1994). Fault-based 

testing focuses on the detection of faults in the software, whereas error based testing requires 

test cases to check the program on certain error-prone points identified by the empirical 

knowledge about software errors. However, as this is the most important aspect of test quality, 

there are many experimental works to measure it including reliability metrics, mutation 

analysis and the expected number of failures detected. 

A framework for surveying software testing techniques based on the above classification and 

evaluation is shown in Figure 2.2. 

16 

> 

l' 
I 
I 
I 

I 

I 
I 



No 

How does the technique select 
the test data? 

What the type of the test data 
does the technique generate? 

Yes 

-_C.~~s!f!~a.~o.n ____ -__ -__________ t ----------------------t ------------
Evaluation 

When should testing stop? 

How good the software 
is after testing? 

Exit Criterion 
(reliability model) 

Test Quality Measurement 

Adequacy Criterion 
(control flow, data flow, ... ) 

Figure 2.2: A framework for surveying software testing techniques 

17 



2.3 A Classification Scheme for Testing Techniques 

According to the framework for surveying software testing techniques, we present a 

classification scheme of software testing techniques. The purpose of this classification scheme 

is to allow us to identify the strengths and weaknesses of current software testing techniques. This 

will provide the information for selecting the testing strategy in the development of applications. 

In addressing the two major testing issues, that is when should testing stop and how good is the 

software after testing, a Data Flow Diagram (DFD) depicting the classification scheme is shown 

in Figure 2.3; the circles in the diagram correspond to the tasks that will be identified in the 

following sub-sections. 

Techniques 
under 

Evaluation 

Qyn;unic 
Testing 

1-------. 
Deterministic 
Testing 

Figure 2.3: A classification scheme for software testing techniques 

2.3.1 The Classification of Software Testing Techniques 

Software 
Testing 
Strategy 

Historically there have emerged different classifications of testing techniques. Existing software 

testing techniques are divided into two categories: static and dynamic testing (QuId & Unwin, 

1986; Roper, 1994). Static techniques were those that examined the software without executing 

it and encompassed activities such as inspection, symbolic execution and verification. Dynamic 

techniques are those that examined the software with a view to generating test data for execution 

by the software. 

Static testing 

Static testing techniques are concerned with the analysis and checking of system representations 

such as the requirements documents, design diagrams and the program source code without 

18 



actually executing the code (Sommerville, 1996). During static testing, specifications are 

compared with each other to verify that errors have not been introduced during the process. In 

comparison to dynamic testing, static testing does not require input distributions, since they do 

not require that the software be executed. This is convenient when the input distributions are not 

known. However, since input distributions are not known to the techniques, static testing 

techniques cannot take advantage of this knowledge. Static testing techniques can be classed 

according to whether or not the technique requires examination of the syntax of the source code. 

If so, the technique is syntactic testing; if not, the technique is semantic testing. 

Syntactic testing may include reviews and walk-throughs (Vliet, 1994) held by a design team 

to check that the refinements of accepted requirements are proceeding as desired through each 

transformation stage. However, the informal nature of such reviews and walk-throughs leaves 

some doubts about their overall effectiveness and their repeatability (Humphrey, 1989). 

Unlike informal reviews and walk-throughs, a software inspection is a formal evaluation of the 

work items of a software product. The technique was originally devised by Fagan at IDM (Fagan, 

1976) and has proved to be an effective technique for the design, code and test phases. A software 

inspection is led by an independent moderator with the intended purposes of effectively and 

efficiently finding defects early in the development process, recording these defects as a basis 

for analysis and history and initiating re-work to correct such defects. Re-worked items are 

subsequently re-inspected to ensure their quality. Software developers can literally remove a part 

from the development line, re-work it at the most appropriate time in the process and replace it 

in the development line. Therefore, inspections ensure that a high level of quality is delivered to 

the testers and ultimately to the users of a software product. 

Semantic testing includes formal methods such as proof of correctness. Proof of correctness 

(DeMilIo, Lipton & Perlis, 1979; Vliet, 1994) is a mathematical method of verifying the logic 

or function of a program or program segment. In order to be able to do so, the specification must 

be expressed formally as well. We achieve this by expressing the specification in terms of two 

19 



sets of assertions which come before and after the program's execution, respectively. Next, we 

prove that the software transfonns one set of assertions, the pre--conditions, into the other, the 

post-conditions. As it is the most labour-intensive validation and verification method, it offers 

a consistent and reputable approach. Refined specification or design can sometimes be proven 

correct and probably defect-free against higher level specification or design. 

Dynamic testing 

Dynamic testing techniques are generally divided into two categories - black-box and 

white-box testing (Beizer, 1995; Sommerville, 1996), which correspond with two different 

starting points for software testing: the internal structure of the software and the requirements 

specification. They involve the execution of a piece of software with test data and a comparison 

of the results with the expected output which must satisfy the users' requirements. The process 

of dynamic testing is shown in Figure 2.4. 

Specification ....;----. 
(Black-box) 
.----. 
instrumentation 

(White-box) 

Test Data 
Generation 

generate -. 

...------' 

input 

Specification Expected Result ....;----. '-----. 
Generation 

I generate 
'------. 

Figure 2.4: The process of dynamic testing 

Compare 
and 

Analyze 

IL....---. 
SuccesslFailure 

Black-box testing uses a 'toaster mentality': You plug it in, it is supposed to work. Created input 

data is designed to generate variations of outputs without regard to how the logic actually 

functions. The results are predicted and compared to the actual results to determine the success 

20 



of the test. In contrast to this, white-box testing opens up the 'box' and looks at the specific logic 

of the application to verify how it works. Tests use logic specifications to generate variations of 

processing and to predict the resulting outputs. Intermediate and final output results can be 

predicted and validated using white-box testing. Other terms have been introduced over the years 

and now the black-box testing method is sometimes called "functional" or 

"specification-based" while white-box testing method may be referred to as "structural" or 

"code-based" or even "glass-box" (Roper, 1994). 

It is important to examine why this distinction appeared. Black-box testing is frequently a vague 

formalization of good testing practice. Its drawback is that without examining the code in some 

way you do not know how much of it is being tested. Black-box testing is typically used to check 

if the product conforms to its specification. But what if there is something in the product that does 

not meet the specification? What if the software performs some undesirable task that the 

black-box inputs have not detected? This is where the white-box techniques come in. They allow 

you to examine the code in detail and be confident that at least you have achieved a level of test 

coverage, for example, the execution of every statement. White-box testing is in itself 

insufficient since the software under examination may not perform one of its desired tasks the 

function to do this may even be missing and the examination of the code is unlikely to reveal this. 

The objective perspective of black-box testing is needed to be able to spot such missing 

functionality. 

2.3.2 Test Data Selection 

Dynamic testing involves selecting input test data, executing the software on that data and 

comparing the results to some test oracle, which determines whether the results are correct or 

erroneous. To be sure of the certainty of the validity of software through dynamic testing, ideally 

we should try the software on the entire input domain. In fact, due to the intrinsically 

discontinuous nature of software, given an observation on any point of the input domain, we 

cannot infer any property for other points in the input domain. However, excluding trivial cases, 

the input domain is usually too large for exhaustive testing to be practical. Instead, the usual 

procedure is to select a relatively small subset termed a "subdomain", which is in some sense 

21 



representative of the entire input domain. From this limited number of test runs, we then infer 

the behaviour of software for the entire input domain. Therefore, dynamic testing corresponds 

to sampling a certain number of executions of a program from amongst all its possible executions, 

by sampling a number of input data within the input domain. Ideally, the test data should be 

chosen so that executing the software on these samples will uncover all errors, thus guaranteeing 

that any software which produces correct results for the test data will produce correct results for 

any data in the input domain. However, discovering such an ideal set of test data is in general an 

impossible task (Rapps & Weyuker, 1985; Bertolino, 1991). The identification of a suitable 

sampling strategy is known as the test data selection problem. The model of test data selection 

is shown in Figure 2.5. 

Input Domain .. - - - - - - Functional Specification 

~-----.. 
sampling 

I--~""=""-

~strate 

r-----.. 

Test Data 

Selection 

: instrumentation input 

...-------' 
Structural Output Domain 

output 

Figure 2.5: The basic model of test data selection 

In general, however, the samples formed may not be all disjoint, and hence they are not true 

partitions in the fonnal mathematical sense. Figure 2.5 also shows a software system as a mapping 

of an input to an output set. The software responds to the inputs by producing an output or a set 

of outputs. Some of the inputs (shown in the shaded circle in Figure 2.5) cause system failures 

where erroneous outputs are generated by the software. 



There are three basic strategies for selecting test data which are used to make the distinctions in 

Figure 2.2 (Bertolino, 1991): 

(1) Functional testing: essentially, test data is selected according to the reference functional 

specification. 

(2) Random testing: essentially, test data is selected according to the way in which the software 

is operated. (In fact, the input domain is generally partitioned according to the expected use of 

software). 

(3) Structural testing: essentially, test data is selected according to the reference structural 

specification. 

The first two strategies are both referred to as black-box testing and the third as white-box 

testing. A variety of testing techniques fall within each of the above basic strategies. When the 

focus of dynamic testing is fault removal, that is, fault-finding rather than reliability assessment, 

the tester is faced with the problem of selecting a subset of the input domain that is suitable for 

revealing the actual but unknown faults. The methods for generating test inputs then proceed 

according to one of two principles: either deterministic or probabilistic (Laprie, 1995; 

Thevenod-Fosse & Waeselynck, 1991). 

Deterministic testing 

Deterministic methods for generating test inputs usually take advantage of information on the 

target software in order to provide guides for selecting test cases, the information being depicted 

by means of test criteria (Thevenod-Fosse, Waeselynck & Crouzet, 1995) that relate either to a 

model of the program structure or a model of its functionally. In both cases, any criterion specifies 

a set of elements to be exercised during testing. For example, for procedural programs, the 

program control flow graph is a well-known structural model and branch testing is a classical 

example of a test criterion associated with this model (Th6venod-Fosse & Waeselynck, 1996). 

Both functional and structural testing strategies use systematic means to determine subdomains. 

23 



They often use specific inputs to test peculiar cases. Given a criterion, the type of test input 

generation is detenninistic: input test sets are built by selecting one element from each subdomain 

involved in the set proper to the adopted criterion. This approach to the selection of test data is 

commonly referred to as partition testing (Duran & Ntafos, 1984; Hamlet & Taylor, 1990; 

Weyuker & Jeng, 1991). In fact, most of the testing strategies subdivide the input domain into 

overlapping subdomains and thus do not form a true partition of the input domain, so the term 

subdomain-based testing or simply subdomain testing was suggested by a number of authors 

(Frankl & Weyuker, 1993; Chen &Yu, 1996). However, their intention is to provoke failure 

behaviour, and success hinges on the assumption that we can identify failuresubdomains with 

a high probability. Though this is a good strategy for fault detection, it does not necessarily inspire 

confidence (Vliet, 1996). 

Random testing 

Random testing strategy is the conventional probabilistic method for generating test inputs. In 

contrast to the systematic approach of detenninistic testing, random testing simply requires test 

cases to be randomly selected from the entire input domain. This is a probability distribution 

describing the frequency with which different elements of the input domain are selected when 

the software is in actual use. Test data generators for random testing function in a simplest way: 

they pick random data from the input domain, according to a chosen distribution. Very often, the 

operational distribution is assumed: very simply, the more frequently used input data are tried 

more frequently. An advantage of using random testing is that quantitative estimates of the 

software's operational reliability may be inferred. From another viewpoint, random testing can 

be viewed as a degenerate form of subdomain testing in the sense that there is only one 

"subdomain," the entire input domain. Thus, random testing does not bear the overheads of 

subdividing the input domain and of keeping track of which subdomains have been tested or not 

(Chen & Yu, 1994). 

Statistical testing is based on an unusual definition of random testing (Thevenod-Fosse, 

Waeselynck & Crouzet, 1995): it aims to provide a "balanced" coverage of a model of the target 

software, no part of the model being seldom or never exercised during testing. With this approach, 

24 



the method for generating statistical test patterns combines information provided by a model of 

the target software, that is, by a test criterion with a practical way of producing large sets of 

patterns, that is, a random generation. The set of statistical test patterns are then defined by two 

parameters, which have to be detennined according to the test criterion used. These are as 

follows: 

• The test profile or input distribution, from which the patterns are randomly drawn. 

• The test size or equivalently the number of input patterns that are generated. 

The major advantages of using the statistical method for software testing are (Curritt, Dyer & 

Mills, 1986; Whittaker & Tomason, 1994): Firstly, testing can be perfonned based on the user's 

actual utilization of the software, secondly, it allows the use of statistical inference techniques 

to compute probabilistic aspects of the testing process and thirdly, in many applications, testing 

can be completely automated from the generation of test data to analysis of test results. 

2.3.3 Adequacy Criterion 

We call a criterion used to detennine whether testing may tenninate, an adequacy criterion. Such 

a criterion represents minimal standards for testing a program and as such measures how well the 

testing process has been perfonned. The criterion should relate a test set to the program, the 

specification or both. In addition, it could also relate the test set to the program's intended 

environment or operational profile. We consider in this sub-section only dynamic testing. This 

means that the program is run on one or more input test data and the outputs produced are 

assessed. There are other ways of validating a software which do not involve running the software 

on test cases including static analysis and fonnal verification, but our concern in this sub-section 

is only with ways of assessing the adequacy of dynamic testing. (Beizer, 1990; Weyuker, 1986) 

An example of an adequacy criterion is branch adequacy. If a program P is represented by a 

flowchart, then a branch in an edge of flowchart. Test set T is branch adequate for P, provided 

for every branch b of P, there is some t in T which causes b to be traversed. This is an example 

of an adequacy criterion which is entirely program-based in the sense that it is independent of 

the specification (except, of course, for comparing the results produced by the program for a 

25 



given input with the intended results as defined in the specification). 

Test data adequacy criteria are standards that can be applied to decide whether or not enough 

testing has been performed (Weyuker, 1986; Parrish & Zweben, 1991); if the test data is 

inadequate then more tests are added to the test set and the entire process is repeated, otherwise, 

the software is released. A model of test data adequacy is shown in Figure 2.6. 

Generate test ..- sample size 
data by deter-

Add test data 
under criterion 

ministic testin 

..-------' 

output 
L..-_...!...---' 

Compare files 
--. and check .-----. adequacy 

Figure 2.6: A model of the test data adequacy 

constrain 
~-.-. --

I 

Release 
Software 

Test 
Criterion 

Since Goodenough and Gerhart's pioneering work (Goodenough & Gerhart, 1975), which 

pointed out the central problem of software testing is "what is a test data adequacy criterion," 

various adequacy criteria have been proposed, investigated and used in practice (Frankl & Weiss, 

1994; Zhu, 1996), including control flow adequacy criteria, data flow adequacy criteria, program 

tnt-based critcria and mutation adequacy criteria. Examples of such "test data adequacy 

criteria" might be 'to ensure coverage of all branches in the software,' 'to execute each path 

betwccn a definition and the use of a variable,' 'to ensure coverage of all equivalence classes in 

thc input domain' or 'to test each feature at its extreme points and at some intermediate point' 

(Panish & Zwcbcn, 1991; Spillner, 1995). 

26 



In the testing process, a test data adequacy criterion is only invoked when the tests no longer 

expose faults. Even though no faults are exposed by the test set, the software may not be correct. 

Here is an example of a program which has an error, the pass mark being incorrectly coded as 

70 instead of the correct 60: 

Display "Did you pass your English test?" 

Input score 

If score> 70 

Display "Pass" 

Else 

Display "Failure" 

Support one test set consists of two test cases: 80 and 50. We get the right answers! Furthermore, 

we have achieved 100% statement coverage, branch coverage and 100% true path coverage. 

Since we have just tested this program more throughly than any real-life module is ever tested 

and have exercised every path, we should be able to feel extremely confident. However, the 

answer is that our software actually does not work at all well and gi ves the wrong answer for every 

score which is between 60 and 70 because all such scores should pass the test which is 60. 

Therefore, one measure of the worth of an adequacy criterion is the confidence that we can 

justifiably have in the correctness of the software, given that no faults were exposed by a test set 

satisfying the criterion. 

We should say that a program has been exhausti vely tested if it has been tested on all representable 

points of the specification's domain. Such a test set, called an exhaustive test set, should be 

adequate no matter what criterion is used. But, of course, an important point of testing is to be 

able select a subset of the domain which in some sense stands in for the entire domain. Programs 

intended to fulfill specifications with very small domains, however, might well require 

27 



exhaustive testing using any reasonable criterion. In fact one only needs to be able to do 

non-exhaustive testing when the domain is large. Thus, although a criterion may well require 

exhaustive testing in some cases, one which always requires exhaustive testing is unacceptable. 

Therefore, an adequacy criterion tells us whether or not it is reasonable to tenninate testing with 

a non-exhaustive test set. However, it is hard to get the adequacy criterion. For example, the 

branch adequacy, if a program has un-executable branches then no amount of testing can cause 

every branch to be exercised. Therefore, when we find out that a given test set exercised 80 

percent of the branches, we do not know whether we should continue trying to find test cases to 

exercise the remaining 20 percent of the branches or stop testing because 100 percent of the 

executable branches have been exercised. 

2.3.4 Exit Criterion 

Random testing is a software testing process in which the objective is to measure the reliability 

of the software rather than to discover software faults. The user of a system is interested in the 

probability of failure-free behaviour. Following this line of thought, random testing which has 

a high fault-revealing power provides a method for detennining test data sets, in spite of a 

doubtful link between the adopted criterion and the actual faults (Vliet, 1994; Marre, 

Thevenod-Fosse, Waeselynck, Gall & Crouzet, 1995). Exercising each subdomain defined from 

an imperfect criterion only once is far from being enough to provide an efficient test set. An 

obvious improvement consists in exercising each subdomain several times. In the other words, 

the execution of a large number of test cases that represent typical usage scenarios is required. 

The exit criterion which is defined as an adequacy criterion for statistical testing in this thesis 

shown in Figure 2.7 can be based on a reliability measure when the test set has been selected 

randomly from an appropriate probability distribution over the input domain. 

28 



Generate 
test data by 

random testin 

sample size 
~------~------~ Increase 11 by 

reliability mode 

No 

Compare 
and 

Analyze 

Figure 2.7: A model of the test data adequacy 

The basic procedure shown is 

Release 
Software 

Repair 
Activity 

• to determine the size 11 of the test set and select test cases from an input distribution, 

• to execute the software under test, 

• to record the amount of execution time between failure (Musa & Ackerman, 1989) or estimate 

the defective rate of the output population (Cho, 1988), 

• to continue testing until the selected model shows that the required failure-intensity level has 

been met to the desired level of confidence like "we can accept the testing to say with 9S0( 

confidence that the probability of 1,000 CPU hours of failure-free operation in a 

probabilistieally defined environment is at least 0.995." 

2.3.5 Test Quality Measurement 

Software reliability measures 

A number of software reliability measures have been defined and used in software reliability 

analysis (DeMilio, McCracken. MUltin & Passafiume, 1987). Testing a piece of software is 

equivalent to finding the failure rate of the product unit population generated by the software. 

29 



The failure rate is defined as the ratio of the number of product units that are defective to the total 

number of product units that the software has generated. The total number of product units. 

denoted by N, of any non-trivial piece of software ranges from extremely large to infinite. but 

can still be treated as an object of statistical interest. Although impossible in practice. it can be 

conceptually assumed that all N units have been produced and analyzed. Each of them can be 

classified as defective or non-defective. If there are D units that are defective. then the product 

unit population failure rate. denoted bye, is e = DIN. Since it is impossible to obtain all N units. 

the best approach is to estimate by means of statistical sampling. This definition is applicable 

to conventional batch processing environments and real-time systems dealing with discrete 

operations. For real-time systems dealing with continuous streams of data, a more realistic index 

is mean time between failures (MTBF) or mean time to failure (MTTF). It is expressed as MTBF 

= tlF where t is the predetermined total running time and F is the total number of failures in the 

interval [O,t]. The failure rate is then J..I. = lIMTBF. In software systems. components do not wear 

out and after a single failure usually remain operational. Therefore. MTBF or MTTF are only 

useful in software reliability assessment when the system is stable and no changes are being made 

to it. In this case, it provides an indication of how long the software will remain operational before 

a failure occurs. 

Test data adequacy criteria as continuous measures 

Test data adequacy criteria are measures of the quality of testing. that is, they measure the ability 

of a test set to reveal a particular feature of software. Hence. a degree of adequacy is associated 

with each test set. Indeed. the coverage of code as a percentage is often used as an adequacy 

measure. Therefore. test sets are not simply classified as good or bad. Thus. an adequacy criterion 

C can be formally defined to be a function C from a program p. a specification s and a test set 

t to a real number, the degree of adequacy (Zhu. Hall & May. 1994). The greater the real number 

is the more adequate the testing. 

Test adequacy criteria is divided into fault-based testing and error-based testing by the 

underlying testing approach. Testing is fault-based when it seeks to demonstrate that prescribed 

faults are not in a software and focuses on the detection of faults in the software. An adequacy 

30 



criterion of this approach is some measure of the ability of test sets to detect the faults in the 

software. Error-based testing requires test cases to check the program on certain error-prone 

points identified by the testers' previous empirical knowledge about software errors. This 

classification is not always easy to make, however, for example mutation testing. 

Experimental works 

Basili and Selby (Basili & Selby, 1987) looked at code reading by stepwise abstraction (static 

testing), functional testing using equivalence partitioning and boundary value analysis 

(black-box testing) and statement testing (white-box testing) in three aspects of software 

testing-fault detection effectiveness, fault detection cost and classes of faults detected. They 

found that, among the professional programmers, code reading detected more faults and had a 

higher fault detection rate than both functional and statement testing. Functional testing 

discovered more faults than statement testing, but the detection rate was the same. Among the 

less-experienced programmers, in one group statement testing was outperformed by the other 

techniques, and in the other group no difference was found. Code reading detected more interface 

faults and functional testing detected more control faults. 

The efficiency of deterministic and random testing methods has been exemplified by 

experimental work performed on a program which is a piece of a software from the nuclear field 

using mutation analysis (Marre, Thevenod-Fosse, Waeselynck, Gall & Crouzet, 1995). Mutation 

analysis (DeMilIo, Lipton & Perlis, 1979) is a technique for the measurement of test data 

adequacy. In practice, a tester interacts with an automated mutation system to determine the 

adequacy of the current set of test data and to improve that test data. This forces the tester to test 

for specific types of faults. These faults are represented by a set of simple syntactic changes to 

the test program. These changed programs are mutants of the original and a mutant is killed by 

distinguishing the output of the mutant from that of the original program. High mutation scores 

were observed in this work. In fact, deterministic test sets left alive only two of the entire set of 

1345 mutants and random test sets killed all of them. 

Although the detection of more failures does not always help us identify more faults, in practice 

31 



it is often desirable to reveal as many failures as possible. Intuitively, the more failures the testing 

reveals, the more information we are likely to get about the faults and the higher the chance of 

detecting more faults. From this point of view, a best or most effective testing strategy is one 

which results in a test suit that can discover as many failures in the program execution as possible. 

However, we believe that there is probabl y no single "best" measure. Whichever one is the most 

appropriate to use depends very much on the purpose of the testing. Different measures based 

on different intuitions should complement each other to provide a more comprehensive 

understanding of deterministic and random testing. 

2.4 Software Testing Tools 

Software testing is inherently an extremely difficult task. Exhaustive testing entails two 

elements' repetition and tedium, which can discourage human operators and make them prone 

to mistakes. Testing techniques lead to methods that cannot be implemented manually except by 

consuming labour hours. The labour hours now given to software testing represent the single 

most important target for improving productivity and reducing cost. Automated test tools 

improve productivity by reducing cost through speed and accuracy. 

2.4.1 Why Automated Software Testing 

Software testing is a very time--consuming and tedious activity and therefore a very expensive 

process. This accounts for over 30% of the cost of software system development (Myers, 1979; 

Norman, 1993), because software testing requires numerous test data to demonstrate correctness 

with a high probability. In addition to its high cost, manual testing is unpopular and often 

inconsistently executed. If the testing process could be automated (Ince, 1987; Febguson & 

Korel, 1996), the cost of developing software could be reduced significantly. Some of the key 

benefits of automated testing are (Nair, Gulledge & Lingevitch, 1996): 

• To save time: One of the main benefits of automating software testing is the time it saves. 

Manual testing is an error prone, labour-intensive process that takes the same amount of time 

with each iteration. Automated tests may take longer to create, but, once created, can be run 

without human intervention. Hierarchical test suites allow modularized tests that can be 

32 



adapted to different environments. Automated tests also makes regression testing a lot easier, 

thereby preventing unintentional feature defects caused by fixing existing defects. 

• To save money: Most products require multiple iterations of a test suite. For that reason, 

automated testing can lead to significant cost savings. In fact, a company typically passes the 

break-even point in labour costs after two or three iterations of an automated test suite. 

Because automated testing has low labour costs, companies can afford to test more frequently, 

resulting in improved software qUality. In addition, automated tests can run at night on 

machines used for development during the day, thus helping to reduce hardware costs as well 

as labour costs. 

• To produce results faster: Automated tests also produce results faster than manual tests 

because: Firstly, in general, computers work faster than humans, secondly, fatigue is not a 

factor, computers can run 24 hours and thirdly, developers can divide a test suite among 

multiple computers and run them in parallel. As a result a complex test suite may take one or 

two days instead of three to four weeks to run. 

• To eliminate human error: Finally, automated testing helps eliminate human error. A human 

tester may inadvertentl y skip items or may not notice that the result of an action differs in some 

way from the expected result. An automated test does not make such errors - it runs exactly 

the same every time. However, this does not apply to distributed software, as a result of the 

existence of non-deterministic behaviour. 

2.4.2 Taxonomy of Software Testing Tools 

One reason for the current interest in software testing is the support from CAST (Computer Aided 

Software Testing) tools that has been developing rapidly in the past few years (Graham & 

Herzlich, 1993). One of the difficulties which faces anyone trying to understand CAST is the lack 

of a standard terminology and taxonomy of products. A number of tool classification schemes 

have been presented (Ramamoorthy & Ho, 1975; DeMilIo, McCracken, Martin & Passafiume, 

1987; Graham & Herzlich, 1993), but not have been entirely successful (Norman, 1993) because 

there is no clear distinction between tools that actually test and tools that support the test effort. 

What one ends up with is a shallow non-hierarchy (one tool may belong to several categories) 

33 



with many classes on the top level, without clear and intuitively satisfying distinctions between 

them. As a result of this view, Norman (Nonnan, 1993) presents just the top two levels of a 

taxonomy for CAST, with a sketch of how a third level may be developed for the dynamic testing 

tools. There are four basic types of CAST tools: static, dynamic, test management and utilities. 

These are grouped into two categories: firstly the fault finding tools and secondly the support 

tools. These types are as shown in Figure 2.8 and are defined as follows: 

Support tools 

Figure 2.8: Taxonomy of CAST tools 

• Static tools analyze the source code of the program. Typical output from static tools include 

complexity measurement, redundant code analysis, structured design analysis and flow 

graphs, automatic fault finding and automatic test case generation. 

• Dynamic tools achieve their results by actually running the Application Under Test (AUT). 

Dynamic tools inspect real output from the AUT; for example, screens, reports, database 

records or 110 activity. Typical output from dynamic tools includes: difference reports, 

perfonnance reports and test run log file. 

• Test management tools assist in the management of the test process. Typical output from test 

management tools include: quality and reliability statistics, defect tracking, 

time-to-completion estimates, new test plans and new test data and test cycle reports. 

• "Other utilities" is a catch-all category for software which does not perfonn or manage testing 

but which in some way aids the test process. For example, perfonnance coverage analysers 

provide the tester with data showing how thoroughly a test cycle has exercised the AUT and 

also suggest ways of improving the test plan. 

34 



2.4.3 Test Data Generators 

Of the problems involved in testing software, one is of particular relevance here: the problem of 

developing test data. Test data generation in software testing is the process of identifying 

program input data which satisfy selected testing criterion. A test data generator is a tool which 

assists a user in the generation of test data for a software. There are several types of test data 

generators (Roper, 1994; Ferguson & Korel, 1996): path wise, specification~riented and random 

test data generators. 

Path wise test data generators 

The basic idea of the pathwise test data generator is to select input data from the input domain 

associated with program paths in order to satisfy a selected testing criterion such as statement 

coverage or branch coverage. Its basic operation consists of four main steps (DeMilio, 

McCracken, Martin & Passafiume, 1987; Ferguson, 1993): 

(1) Program digraph construction. The source program is pre-processed to create a digraph 

representation of the control flow in the program. This digraph is a flow graph which consists 

of nodes representing decisions and edges showing flow of control. 

(2) Path selection. Path selection is concerned with selecting program paths (automatically or by 

the user) that satisfy a testing criterion such as total path coverage, statement coverage and branch 

coverage. In these criteria, either every feasible path, every statement or every branch statement 

must be executed at least once. 

(3) Symbolic execution. Once a path is selected, symbolic execution ( Ramamoorthy, Ho & 

Chen, 1976) is used to generate path constraints which consist of a set of equalities and 

inequalities on the program's input variables such that input data satisfying these constraints will 

result in the execution of that path. 

(4) Test data generation. This step involves selecting test data that will cause the execution of 

selected paths. Most systems use linear programming algorithms to find a numerical solution to 

35 



the inequalities of path constraints. 

The primary differences among these types of systems are in the techniques of test path selection 

and in early detection of infeasible test paths. Other differences include the breadth of their 

symbolic execution capability and capacity for the symbolic simplification of algebraic 

expressions. The weakness associated with the pathwise test data generator is the significant 

computational effort wasted in analyzing infeasible paths, loop and array reference problems in 

symbolic execution. 

Specification-oriented test data generators 

These systems generate test data from a data specification language describing the input data. The 

user (tester) writes a description of the input data of the software under test and then quantities 

of test data conforming to this description are generated. 

One example of this approach (Roper, 1994) is systems that take as their input grammatical 

descriptions of a language and generate programs from this description in order to test compilers. 

Another example (Lyons, 1977) is the automatic data generating program (ADG).1t is a compiler 

which translates the ADG code, an English-like language, describing the characteristics of a data 

file into a PLll program which will generate the specified data file. 

GENTEXTS (DeMillo, McCracken, Martin & Passafiume, 1987) is another system with a 

similar basic operation. It is designed to prepare test programs for compiler testing. Its data 

specification language is in the form of command grammars describing the desired test programs. 

The system processes the grammar to generate SIMULA programs which are then compiled and 

executed to generate the actual test programs. 

Less sophisticated systems are those that generate test data from descriptions of input files. One 

drawback of using such an approach in isolation is that large quantities of test data might be 

generated which only exercise a small percentage of the code. 

36 



Random test data generators 

Test data for each input to the program are generated randomly according to different profiles. 

One approach is to distribute the data over the different path domains in the program, another is 

to distribute data according to a user profile (if it is available), thus simulating the likely usage 

of the software (Roper, 1994). 

There are a number of advantages associated with random testing (Ince, 1987; Duran & Ntafos, 

1984). Firstly, large sets of test patterns can be generated cheaply, that is, without requiring any 

preliminary analysis of the software. It only requires a random number generator and a small 

amount of support software. Secondly, it is straightforward to derive estimates of the operational 

reliability from random testing results. Thirdly, the use of random numbers is more stressing to 

software than manual test cases. For this reason it is very useful to employ random test data during 

the stress testing component of system and acceptance testing. 

There are also disadvantages. Firstly, there is no assurance that full coverage can be attained. For 

example, random inputs may never exercise large sections of the program code which require 

equality between variables to be stable. Secondly, it can be expensive in terms of human 

resources. It may mean examining the output from thousands of tests. 

2.4.4 Testing Tools with Capture/Playback Paradigm 

Test execution is a process of feeding test input data to the application and collecting information 

to determine the correctness of the test run. It is natural to assume that automating test execution 

must involve the use of a test execution tool which requires an environment to run it, to accept 

inputs and to produce outputs (Fewster & Graham, 1998). Some tools require additional 

special-purpose hardware as part of their environment; some require the presence of a software 

development language environment. 

For a sequential software, this process can be accomplished without difficulty. Many testers do 

not have strong programming skills. This combined with the repetitive nature of much testing, 

leads people to use capture/playback techniques and tools. Beizer (1997) illustrates the essence 

37 



with his first capture/playback tool, a teletype with a paper tape reader and punch, as follows. 

1. The capture phase: When we key-in a test case with the punch turned on, the teletype captures 

all incoming and outgoing characters and puts them on the tape. 

2. The playback phase: Then we place the tape into the reader (it is clever enough to distinguish 

incoming from outgoing characters) and set it to output the appropriate characters: the punch is 

also turned on for this phase. 

3. The compare phase: We then hold the two tapes to the light and see which, if any, holes differ. 

If they all match, the test has been passed. If not, there is a discrepancy to be explained. 

All capture/playback tools are an elaboration and more modern implementation of these simple 

ideas. Although simplistic, the importance and impact of capture/playback should not be 

under-estimated. These tools are often the first test tool a tester may see and are also the primary 

means by which the test process is migrated from a purely manual process to a mostly automated 

process. 

Indeed there are many tools that allow test scripts to be recorded and then played back, using 

screen captures for verification. However, there are some inherent problems with the 

capture/playback paradigm (Zallar, 1997; Pettichord, 1996): Firstly, test automation is only 

applied at the final stage of testing when it is most expensive to go back and correct the problem. 

Secondly, the testers do not get an opportunity to create test scripts until the application is finished 

and turned over and thirdly, the problem that always crops up is that application modifications 

are made, invalidating the screen captures and then the interface controls change, making 

playback fail. Moreover, for distributed applications, some test scripts can be very hard to 

capture/playback automatically (Quinn and Sitaram, 1996): Firstly, the communication 

mechanism between clients and servers uses technology like an RPC protocol that current 

capture/playback tools cannot effectively capture. Secondly, simulation and thirdly, there are 

38 



non-detenninistic behaviours in a distributed application. Repeated executions of a distributed 

application with the same test script may execute different paths and produce different results. 

This is called the non-reproducible problem. Therefore, some mechanisms are required in order 

to exercise these test scripts. 

2.S Software Testing Strategy 

2.5.1 Comparison of Software Testing Techniques 

Static versus dynamic 

Experimental evaluation of code inspections and code walkthroughs has found these static testing 

techniques to be very effective in finding 30% to 70% of logic design and coding errors in a 

typical software (Demilio, McCracken, Martin & Passafiume, 1987; Fagan, 1986). Mills et al. 

(Mills, Dyer & Linger, 1987) suggest that a more formal approach, using mathematical 

verification, can detect more than 90% of the errors in a program. Gilb and Graham (1993) also 

found that static testing was more effective and less expensive than dynamic testing in 

discovering software faults. 

Lauterbach and Randall (1989) compared branch testing, functional testing, random testing and 

some static analysis techniques including code reviews. On average, code reviews were found 

to be the most effective, but in many instances were out-performed by branch testing. Of the 

testing techniques, the highest coverage level was achieved by branch coverage. 

Proof of correctness (DeMillo, Lipton & Pedis, 1979), a static-semantic testing (Chu, 1997) and 

the most complete static technique (Vliet, 1994), is a mathematical method of verifying the logic 

or function of a program or program segment. The use of formal specifications allows detection 

of errors and inconsistencies early during the software development process, however, the 

program will be executed on a hardware that may fail, will use an operating system that no one 

expects to be expects to be error free and will be compiled using a compiler that has been 

39 



developed traditionally (HOrcher & Peleska, 1995). Therefore, the dynamic testing will still be 

needed. 

Black-box versus white-box 

Poston (1996) applied both white-box and black-box testing to the famous Myers Triangle 

Problem (Myers, 1979) to show how each kind of testing operates and the results that each 

produces. The Myers Triangle problem is the testing of the following program: 

The program reads three integer values from a card. The three values are interpreted as 

representing the lengths of the sides of triangle. The program prints a message that states whether 

the triangle is scalene, isosceles, or equilateral. 

There were two reasons for them to select this problem: Firstly although it is small and simple 

to understand but it is rich in testing complexity; secondly the lessons learned from testing the 

sample Myers Triangle software can be generalized and scaled up. 

They first performed both kinds of testing manually and then performed black-box testing using 

tools. For both kinds of testing they manually evaluated test quality (TQ), which has three 

determinants: requirement coverage (RC), defect coverage (DC) and code coverage (CC). 

Experimental results from Poston (poston, 1996) were: 

1. The white-box testing approach produced test cases that exercised or covered 100 percent of 

the statements, branches and control flow paths in the code. Therefore TQ in terms of code 

coverage was high. However, those test cases did not find four defects in the code, so TQ in terms 

of defect or failure detection was low. In addition, the example showed that white-box testing 

did not address the requirements, so TQ in terms of the requirements coverage was unknown. 

2. The black-box testing approach produced test cases that exercised 100 percent of the 

requirements and probed large samplings of the input domain and output range. TQ relative to 

requirements coverage was high. When the black-box test cases were exercised, they caused the 

40 



execution of 100 percent of the statements, branches and control flow paths in the code. 

Therefore, TQ relative to code coverage was high. In addition, the black-box test cases found 

defects that were missed by the white-box test cases. TQ pertaining to defect detection was higher 

with black-box testing than with white-box testing. 

Deterministic versus random 

Some empirical work on the comparison of deterministic and statistical (random) testing with 

respect to the percentages of revealed faults was presented by Thevenod-Fosse and Waeselynck 

(Thevenocl-Fosse & Waeselynck, 1991). For purposes of comparison, program faults were 

divided into two classes, 'regular' faults and 'marginal' faults. More generally, regular faults are 

those which lead to failure due to the incorrect behaviour of the software in respect of anyone 

test criterion used to select test inputs, while the remainder are marginal. In the case of regular 

faults, selected deterministic input data are appropriate for ensuring that they are uncovered while 

random data provide only a high, but always less than 1, probability of revealing them. Hence, 

it can reasonably be expected that statistical testing reveals a lower percentage of regular faults. 

On the other hand, in the case of marginal faults, no data specifically aimed at revealing these 

faults has been purposely included in the set of deterministic patterns. The probability of 

revealing these faults is then an increasing function of the number of executions. Therefore, 

statistical testing should reveal a higher percentage of marginal faults. Since a real limitation of 

current test criteria is their lack of connection with the actual faults, most of the faults are likely 

to be marginal. Hence, the fault revealing power of statistical testing should not be ignored. 

2.5.2 Proposal Of Strategy 

As shown in the previous Section (2.4.1) there are two points of view about the relative merits 

of static versus dynamic testing. Some researchers have suggested that static testing techniques 

should completely replace dynamic testing techniques in the verification and validation process 

and that dynamic testing is unnecessary (Sommerville, 1996). However, static testing can only 

check the correspondence between a program and its specification but it cannot demonstrate that 

the software is operationally useful. Although static testing techniques are becoming more widely 

used, dynamic testing is necessary for reliability assessment, performance analysis, user interface 

validation and to check that the software requirements are what the user really wants. Today, if 

41 



we want to prevent all the faults that we can and expose those that we cannot prevent, we must 

review, inspect, read, do walkthroughs and then test, that is, use static testing first and dynamic 

testing later. 

In current dynamic testing the strategies used are deterministic test data, random test data or both. 

In practice, the choice of strategy is most often related to various factors such as available testing 

tools, time limit, allocated budget, cultural background and usage. Since random testing makes 

minimal use of the available knowledge about the software, one might expect it to be very 

ineffective when compared with deterministic testing techniques. However, a number of 

practitioners still propose the use of random testing, especially for the final testing of software. 

The dynamic testing strategy advocated here combines deterministic and random testing. The 

way to mix the two testing techniques is deduced from their complementary features, that is, to 

use the deterministic testing techniques first for removing the more easily discovered faults and 

to use the random testing techniques later for assessing the reliability of the reSUlting software. 

The strategy proposal for software testing (Chu, 1997) is shown in Figure 2.9. 

Improvement feedback 
~- ----------------------------------. ----------------------

A A A 
I I I 

_So_ft_wa;::. .--------, ~~f~~S __ J ! 
Static analysis 

,-. ,--_fO_f _err_o_f_s_....J 

Static 

requirements t 
Static testing 

techniques and tools 

Faults: 

Error-free 
software ----. 

Dynamic analysis 

for faults 1----' '--------' 
- .. - .. 

Error- and 
fault-free 
software 

I 

Failures : 

Adequacy 

cfiterion t ----. Dynamic analysis - - - ~ 

1----' l..-_
ti
_
O

_
f 

_faI_·I_ur_es_ ...... 

t 
Deterministic testing 

techniques and tools 

Confidence level Reliable 
software 

Random testing 

techniques and tools 

Figure 2.9: The strategy proposal for software testing 

42 



An error is a mental mistake by a programmer or designer. It may result in textual problem with 

the code called afault. Afailure occurs when a program computes an incorrect output for an input 

in the domain of the specification. For example, a programmer may take an error in analysing 

an algorithm. This may result in writing a code fault, say a reference to an incorrect variable. 

When the program is executed it may fail for some inputs. 

2.6 Statistical Software Testing 

With a non-statistical approach, the determination of how much testing and in what order, is a 

subjective decision based on the tester's experience and project schedules. However, it cannot 

provide the user with a precise index in order to explain the quality of software. All one can do 

is to ask when to stop testing a piece of software and how good the software is after testing. 

Statistical software testing involves exercising a piece of software by supplying it with test data 

that are randomly drawn according to a defined probability distribution on its input domain. It 

provides a scientific basis for making inferences, from testing, about operational environment. 

Therefore, if test data are randomly drawn from an input distribution representative of some 

particular user profile, statistical testing becomes an experimental way to determine whether or 

not a product meets its dependability requirements (Thevenod-Fosse & Waeselynck, 1991). 

2.6.1 The Problem of Statistical Testing 

Current statistical testing techniques involve exercising a piece of software by supplying it with 

test data that are randomly drawn according to a single, unconditional probability distribution 

on the software's input domain (Curritt, Dyer & Mills, 1986; Dyer, 1992; Thevenod-Fosse & 

Waeselynck, 1991). This distribution represents the best estimate of the operational frequency 

of use for each input. The main benefit of statistical testing is that it allows the use of statistical 

inference to compute probabilistic aspects of the results of the testing process, such as reliability, 

mean time to failure (MTTF) and mean time between failures (MTBF). However, these 

techniques are insufficient for many types of software, because the probability of applying an 

input can change when the software is executed (Deck, 1996; Whittaker & Tomason, 1994). 

43 



This had earlier been recognised by Cho (1988) presents the inverse concept. Each execution of 

the software is considered equivalent to 'sampling' an output from the output population. The 

goal of software testing is to find certain characteristics of the population such as the ratio of the 

number of defective outputs in the population to the total number of outputs in the population. 

It uses the number of executions of the software to assess the software reliability, which is 

different from above mentioned measures which use the execution time. Gathering the data for 

the error history of a piece of software requires a long period of time, and even then, the reliability 

measure is often difficult to quantify. However, a piece of software is not subject to deterioration 

such as wear, tear or burn, that is, the reliability of a piece of software is independent of time but 

dependent on the frequency and nature of software usage. Cho (1988) gives the following 

definition;: 

Software reliability is 1 - e, the probability that the software perfonns successfully, according 

to software requirements, independent of time. 

where e is the defective rate of the software output population. This definition is a natural 

consequence of following the principles of software engineering with statistical quality control. 

From this point of view, detennining the defective or non-defective outputs from software 

requires corresponding input data. The input domain is the source from which input data are 

constructed for the software. If the input domain is not well defined, the input data will not be 

properly constructed and will be of a poor quality. 

Cho (1988) specifies the input domain of a software by means of a "Symbolic Input Attribute 

Decomposition" (SIAD) tree, which is a syntatic structure representing the input domain of a 

piece of software in a fonn that facilitates construction of random test data for producing random 

output for quality inspection. The SIAD tree is a way to achieve clarity, conciseness, 

completeness and measurability in the specification of input requirements. It enforces the 

development of well-defined requirements, and imposes disciplines in both design and 

implementation. Further details of the SIAD tree which is an important starting point for any 

44 



work are provided in Section 3.3. 

From a fault forecasting point of view, a comparative analysis (Thevenod-Fosse & Waeselynck, 

1991) concluded that the best evaluation is provided by Cho's approach, particularly when few 

failures are observed during a test experiment. 

2.6.2 FAST: A Framework for Automating Statistics-based Testing 

In quality programming as introduced by Cho, the generation of test data can be automatically 

achieved based on the SIAD tree, but it lacks a clear framework to tell us how to achieve 

automated testing. To address this problem, we (Chu & Dobson, 1996; Chu, Dobson & Liu, 1997) 

propose a Framework for Automating Statistics-based Testing (FAST), which is an extension 

of the testing concept in quality programming to achieve automated testing. In FAST, we present 

a "Symbolic Output Attribute Decomposition" (SOAD) tree, which is similar to the structure of 

the SIAD tree, to represent the syntactic structure of product unit and product unit defectiveness. 

Based on this tool, inspection of the product unit can be achieved automatically. 

FAST, which is based on a statistical approach (random testing), has been proposed to help 

develop good quality and cost effective software. It addresses the two major software testing 

issues: when to stop testing and how good the software is after testing. FAST can automatically 

generate test data with an iterative sampling process which determines the sample size n (exit 

criterion); the software quality can be estimated with the inspection of test results which can be 

automatically achieved and the product unit of population defect rate e which can be estimated 

from the sample defect rate eO (test quality). The basis of this framework is the definitions of input 

domain, of product unit and of product unit defectiveness by the SIAD/SOAD tree (forinspecting 

product unit by static testing). 

The major advantages of FAST are: firstly, testing can be completely automated, from the 

generation of test data based on the SIAD tree to the inspection oftest results based on the SOAD 

tree; secondly, changing distributions over the same input domain do not need to be 

acknowledged since the SIAD tree is represented explicitly; thirdly, the software quality can be 

45 



assessed using statistical techniques (such as sampling or inference); fourthly, the test data do not 

need to be stored for regression testing, because it only requires a small space to keep the random 

number seeds; fifth, after the specification of requirements is developed, the generation of test 

data is independent from the software design and implementation and finally, testing can be 

performed based on the user's actual execution of the software. 

2.7 Testing Of Distributed Software Systems 

A distributed software is a set of sequential software units called tasks, modules or processes. 

Since the processes of a distributed software must cooperate to achieve a common goal, processes 

on different processors can execute in parallel and communicate with each other whether within 

the same process or across processors (Singhal & Casavant, 1991; Umar, 1993). The status ofthis 

interprocess communication provides an alternati ve, high-level view of the state of a distributed 

software. The correctness of such interprocess communication depends on the contents and 

sequence of messages transmitted between processes. 

In recent years, considerable research efforts have been devoted to various aspects of distributed 

software. These efforts have concentrated on the analysis, design, implementation and debugging 

of distributed software. The area of testing distributed software, however, has received little 

attention (Chow, 1980; Ferguson, 1993; Schwarz & Mattern, 1994; Shatz & Wang, 1987). 

2.7.1 The problems of Testing Distributed Software Systems 

Reproducible testing 

The major problem in dynamic testing of distributed software (Shatz & Wang, 1988) is 

reproducible software execution. To test software, we should prepare test cases to execute this 

software. Reproducible testing capability is necessary for effective testing. If there is an error in 

the execution, we need to replay the erroneous condition for locating the error. Repeated 

executions of sequential deterministic software with the same input always exercise the same 

path in the software and thus always produce the same behaviour. Unfortunately, distributed 

software may not have this capability owing to the phenomenon of non-determinism. Because 

of indeterminacy, repeated execution of distributed software with the same input may produce 

46 



different behaviours. In distributed software, the different behaviours may be caused by variable 

processor speeds, random delays in message deli very or any other system dependent reasons that 

affect the execution of software. When distributed software exhibits non~eterminism, its 

execution may be dependent on arbitrary delays in the execution environment. Therefore, this 

non-cleterministic behaviour makes distributed software more difficult to test than sequential 

software. 

Testing coverage 

In the testing process, we need some rules, referred to as test coverage criteria, for measuring the 

thoroughness of the tests of software. An ideal test coverage criterion is to select test cases which 

are able to uncover all errors in the software. But, because it is generally impossible to know 

where errors exist in software, the required coverage may be very large. An ideal criterion is 

inapplicable in practice. 

Various test coverage criteria have been defined for sequential software testing. One class of test 

coverage criteria, called software based coverage criteria, is based on the information obtained 

from the software structure such as control flow criteria and message flow criteria. These 

software based coverage criteria, defined for sequential software testing, can also be used in 

distributed software testing for measuring test coverage of each individual process since an 

individual process can be regarded as an item of sequential software, having its own control flow 

and message flow. However, these criteria have some weaknesses when one tries to use them in 

measuring the test coverage of message exchanges between separate processes of distributed 

software. The main weakness is that it is possible that there may be some synchronisation 

dependent behaviours which have not been covered when the conventional coverage criteria have 

been defined in testing distributed software. Therefore, some new coverage criteria need to be 

defined for measuring the test coverage of different aspects of the synchronisation behaviour of 

distributed software. 

47 



2.7.2 Needs to be Tested 

The definition of test case 

Asynchronous execution implies that the order in which two processes send a message to a third 

process may not be deterministic. In other words, during one test run with given input values 

process A may send its message first, while on another test run - with the same input values -

process B may send its message first. If the receiving process accepts messages in FIFO order, 

independent of the sources of the messages, the two test runs may result in different software 

behaviours. Consequently, using input values as a test case in testing distributed software, we 

would not know what execution behaviour has been tested after an execution with the test case 

and it becomes difficult to analyse the correctness of the test case when different execution 

outputs are produced in different executions. Moreover, when one execution is correct but 

another is incorrect (failure) we may be forced to say that a test case is both correct and incorrect 

in that test execution. Such inconsistency may complicate the test analysis. 

Therefore, to get reproducible execution for distributed software, it seems that the definition of 

a test case must be altered. Assuming that we want a test run to be reproducible, we must define 

a test case as a set of input values plus a sequence of events that can be used to externally resolve 

any nondeterministic choices that are possible during the test execution of distributed software. 

In other words, if we can record a test case as the triple (input data, the sequence of 

non-deterministic choices, output) for each test, then based on this triple the tester can always 

make the software run in such a way that it can be determined whether execution follows the same 

sequence choices and produces the same outputs. 

The casual message ordering 

Because of the existence of non-deterministic behaviour, it is generally impossible to test all 

distinct execution behaviours of distributed software by proper selection of test cases and 

reproduce previous test results by repeating execution with the same input. Based on the analysis 

of execution behaviour of distributed software, a conventional graph model is not suited for 

modeling the execution behaviour of distributed software. Therefore, a Distributed Message 

Flow Graph (DMFG) is proposed in our research. 

48 



A message flow graph (MFG) of a software S is a directed graph which shows how input messages 

are transformed to output messages through a sequence of functional transformations (events) 

in a sequential software. A Distributed message flow graph (DMFG) of a distributed software 

DS consists of a set of MFGs and a set of communication edges showing message flow amongst 

processers in distributed software. This is a useful and intuitive way of describing execution 

behaviour in a distributed software and this is understandable without special training. It is suited 

for modeling distributed software as basis for creating the SMAD tree in my work. 

An EventlMessage Path (EMP )(Jorgensen & Erickson, 1994) is a sequence of event executions 

and the messages issued by each event. An Atomic System Function (ASF) is an input message, 

followed by a set of EMPs, and terminated by an output message. An EMP starts with an event 

and ends when it reaches an event which does not issue any messages of its own. An ASF is an 

elemental function visible at the system level. As such, ASFs constitute the point at which 

integration and system testing meet, which results in a more seamless flow between these two 

forms of testing. A Distributed Event/Message Path (DEMP) is a sequence of event executions 

communicating by messages in the same process or between different processes. An Distributed 

Atomic System Function (DASF) is an input message, followed by a set of DEMPs, and 

terminated by an output message. Based on DASF, the causality relation between messages can 

be built as follows. 

The causality relation between messages is a fundamentally new approach to the analysis and 

control of execution behaviour of distributed software. The definition of causality relation is 

actually identical to the "happened before" relation defined by Lamport in (Lamport, 1978). We 

would like to use the term "causality" rather than "happened before" because the definition of 

causality relation is causal rather than temporal. In other words, if mj -> mj, mj should be 

"happened before" mj in causality relationships. However, if mj and mj are pseudosimultaneous, 

mj mayor may not be "happened before" mj in temporal relationships. Ifwe are given an accurate 

representation of the message orderings, we can see all causal relationships and derive all possible 

temporal ordered interIeavings. As a result, the technique greatly reduces the number of tests 

49 



required. It is never necessary to perform the same computation more than once to see whether 

different message orderings (interleavings) are possible. However, we need to test the causal 

message ordering to guarantee that order of delivery of messages does not violate causality in 

systems of communicating processes. 

One of the major problems in testing of distributed software is reproducible software execution. 

Distributed software often makes non-deterministic selections of interleaving events. Repeated 

executions of distributed software with the same test data may result in the execution of different 

DEMPs. Therefore, we can examine repeated executions of different software paths which derive 

from the same input message to test the causal message ordering. 

2.7.3 An Approach for Testing Distributed Software Systems 

In our approach to distributed software testing we present a dynamic testing method which 

combines black- and white-box testing. According to the requirements, we specify all possible 

messages between events by means of a" Symbolic Message Attribute Decomposition" (SMAD) 

tree. Based on the SMAD tree, test data are derived from specifications and test results can be 

inspected to see if they conform to the requirements and expected traces by black-box testing. 

The path analysis approach is a kind of white-box testing whose objective is to exercise every 

independent execution path through the component. There is an infinite number of path 

combinations in a distributed software, so it is practically impossible for testing to be exhaustive. 

However, we propose a graph model which applies the path analysis approach to test the 

asynchronous relationship between processes in a distributed software system by white-box 

testing. Figure 2.10 shows how my approach will fit into the framework as shown in Figure 2.2. 

50 



How does the technique select 
the test data? -> 

What the type of the test data _> 
does the technique generate? 

.. c.~~s!f!~D:.~o.n .................. t ...................... t ........... . 
Evaluation 

When should testing stop? 

How good is the 
software after testing? 

-
Test Quality Measurement 

Figure 2.10: My approach fitted in the framework as shown in Figure 2.2 

51 



2.8 Conclusion 

To achieve software quality, software testing is an essential component in all software 

development. Software testing is characterized by the existence of many methods, techniques and 

tools, that must fit the test situation, including technical properties, goals and restrictions 

(Liggesmeyer, 1996). There is no single ideal software testing technique for assessing software 

quality. Therefore, we must ensure that the testing strategy is chosen by a combination of testing 

techniques at the right time on the right work products. From this viewpoint, this chapter has 

briefly surveyed the software testing techniques based firstly on classification and evaluation. 

Next, in addressing the two major software testing issues, that is when should testing stop and 

how good the software is after testing, I presented a scheme using a data flow diagram for 

evaluating software testing techniques. Following this diagram step by step, all the activities 

involved and the relative techniques were described. A strategy proposal for software testing in 

the development of distributed applications was then advocated later. Based on this framework, 

I presented the framework of automating statistics-based testing (FAST), discussed how to 

extend it to testing distributed software systems and showed how this approach fitted into the 

framework for surveying software testing techniques. 

52 



Chapter 3 

An Integrated Test Environment for Distributed 
Applications 

3.1 Introduction 

The Statistics-based Integration Test Environment (SITE) provides a test environment based on 

statistical testing which secures automated support for the testing process, including modeling, 

specification, statistical analysis, test data generation, test results inspection and test path tracing. 

Testing of a distributed application is very complex because such a system is inherently 

concurrent and non-deterministic. It adds another degree of difficulty to the analysis of the test 

results. Therefore, a systematic and effecti ve test environment for the distributed applications is 

highly desirable. To address these problems, the SITE is developed on the Java Development Kit 

(10K) which provides Java Application Programming Interface (API) and Java tools for 

developing distributed client/server applications. 

In Section 3.2 of this chapter, a basic architecture of automated software testing is introduced. 

An overview of my approach is shown in the end of this section. In Section 3.3, the architecture 

of SITE is described and the relation of the main components is also shown. An operational 

environment for testing distributed software is presented in Section 3.4. A comparison of STEs 

using the SAAM structure is discussed in Section 3.5. Section 3.6 summarizes my research work. 

3.2 A Basic Architecture of Automated Software Testing 

In this section, wc describe a process of automated testing for distributed applications. Testing 

is a method to validate that the behaviour of an object is conforming to its requirements 

specification. Therefore, before testing, the requirements specification activity should be to 

specify thc detai I input data, expected results and non-deterministic or deterministic behaviour 

of a distributed application. Formal or semi-formal specification techniques may be appropriate 



for expressing such a specification which can act as a basis for test data generation, test execution 

and test result validation. The basic architecture of automated testing is shown as in Figure 3.1. 

Test Data 
Generator 

Test Data 

Specification • + Specification 

Test Bed with Specification 

(SMAD Tree or Z specifications) 

Test Results 
Validator 

t S 'fi . + pecl lcation 

Figure 3.1: The basic architecture of automated testing 

3.2.1 Requirements Specification 

A specification is defined broadly to mean any description of expected behaviour and 

characteristics of a software product (Poston, 1996). Not only do testers need 

specified-behaviour information in order to detect whether or not the test results satisfy their 

requirements but other software developers must have that information, too. Designers must 

know how software is expected to behave when they need to change or repair designs; 

programmers must understand what programs are supposed to do and then they can write code 

that performs as expected. Therefore, in order to achieve high quality, we must specify what we 

mean by high quality and then implement that specification. 

A specification presented to a tester could be as informal as a set of notes scribbled during a 

meeting or as formal as a document written in a specification language. 

Informal specification 

Requirements information can be captured informally without rules. In workplaces where people 

use text editors or word processors to write specifications, requirements usually are recorded in 

a natural language such as English. The only rules applied to the writing are the syntactic or 

grammar-and-punctuation rules of the natural language; semantic rules that restrict meanings 

and use of meanings are not applied. Therefore, we say the natural language used in the 

54 



specification as well as the specification itself are informal because neither adheres to semantic 

rules. Informal specifications may appeal to developers and end users who are not familiar with 

formal languages. If the natural language of developers and users is English, they will need no 

training to read an informal specification written in English. On the other hand, these people may 

have difficulty reading a formal-language specification without training. 

Unfortunately, the benefit of easy-ta-read informal specifications is outweighed by a major 

disadvantage. An informal specification does not incorporate semantic rules, yet automated 

versifiers as well as tools such as design, code and test data generators depend on semantic rules 

to parse and verify information. The information in an informal specification, therefore, cannot 

be checked by tools for correctness. Neither can that information be processed automatically for 

output to other tools. Informal specifications condemn us to manual verification, testing and 

development. 

Formal specification 

The formal specification of a system occurs ideally after requirements have been achieved and 

analysis have been undertaken. In this ideal situation, the requirements are accepted uncritically. 

In practice, it is possible that a lack of precision or inconsistencies in the requirements are 

uncovered during the process of specifying the system. This is not surprising given the attention 

to detail that is necessary in order to produce a formal specification and it can be argued that this 

is one of benefits of producing a formal specification. 

One natural model of a specification for a single operation is to regard it as a pre- and a 

post-condition. Technically, the pre-condition can be viewed as a truth-valued function of states: 

those states which satisfy the pre-condition are to be handled by the implementation. The second 

part of the specification is a post-condition which is a truth-valued function of two states: for 

states which satisfy the pre-condition, an implementation must create a final state and that final 

state must, when paired with the initial state, satisfy the post-condition. One advantage of this 

view of specifications is that it handles partial and non-deterministic software. Software rarely 

works for all possible inputs and, indeed, it would often be uneconomic to attempt to make it do 

55 



so. It is therefore reasonable that, for much software, a pre--condition documents exactly those 

assumptions under which the software should work. Non-determinism may not be an eventual 

part of the implementation of software, but during the design process a non-deterministic 

specification can often be used as a way of deferring a design decision. It is clear that testing 

non-deterministic software which runs in an environment which interferes with and can thus 

change its execution path makes the testing process extremely unreliable. Therefore, it is 

important that post-conditions give non-deterministic specifications. 

To overcome the problem in informal specification, we need not reject the methods used in 

informal specification. We can use these tools successfully for capturing specifications in 

English, if we apply a few semantic rules to our writing. By applying semantic rules to 

specification writing, the specification languages are created. Whereas syntactic rules concern 

the form and structure of a language, semantic rules bear on the meanings a language conveys. 

For software developers and testers, a formal language provides an interface for completely 

specifying the behavioural and characteristic information of applications. Formal languages 

such as Z, VDM, LOTOS, etc. (Poston, 1996) have been promoted strongly by the academic 

community in recent years although their take up in industry has been patchy. They are 

particularly well suited for specification-based testing. 

3.2.2 Test Data Generator 

Test data generation is a process of selecting execution path/input data for testing. Most of the 

approaches dealing with automatic test data generation are based on the implementation code, 

using either stochastical methods for generation or symbolic execution. This seems quiet natural, 

since in a traditional software development process this usually is the only "specification" that 

has formal semantics allowing detailed, automatic analysis. Using formal specifications these 

tasks can now be carried out based on along the specification. Other work with formal 

specification has been done as well, describing either manual or automatic test data generation 

(Hlircher & Peleska, 1995). 

56 



A test data generator is a tool which assists a tester in the generation of test data for software. It 

takes fonnally recorded specification infonnation, treats it as though it were a database and 

applies test design rules to this base to automatically create test data. If a requirement changes 

in the database, new test data can be designed, generated, documented and traced. 

3.2.3 Test Execution 

Test execution is a process of feeding test data to the software and collecting infonnation to 

detennine the correctness of the test run. For sequential software, this process can be 

accomplished without difficulty. However, for distributed applications, some test cases can be 

very hard to execute because by having more than one process executing concurrently in a 

system, there are non-deterministic behaviours. Repeated executions of a distributed software 

with the same input may execute different paths in the distributed software and produce different 

results. This is called the non-reproducible problem. Therefore, some mechanism is required in 

order to exercise these test cases. Non-determinism has two effects in testing. Firstly, some test 

cases might be very hard to exercise, because the behaviour of a distributed application depends 

not only on the input data but also on the ordering of the messages and events transmitted between 

processes. Secondly, the interference of the testing mechanism might alter the behaviour of a 

distributed application. Because the execution speed affects the timing of events, the testing 

mechanisms, such as breakpoints, code segments to output event historys, assertions, etc., will 

alter the event orderings which in tum affect the behaviour of the system. Therefore, a test 

execution environment, which can manage the non-determinism and interference, is required for 

the testing of distributed applications. 

3.2.4 Test Results Validator 

Validation of test results is a process of analyzing the correctness of the test run. For sequential 

software, the correctness of an execution can be observed by comparing the output the software 

generated with the correct output of the software. However, for distributed applications, again 

because of non-detenninism, there are more than one, possible infinite, possible outputs for one 

execution. Validation of test results of such systems is much more difficult than that of the 

sequential case. 

57 



The behaviour of a distributed application can be represented by sequences of communication 

events. Each such sequence represents a possible interaction of communication events. 

Generally, the event sequence is long and the number of all possible sequences is usually 

extremely large. Because of the non-determinism of distributed applications, using breakpoints 

to validate the execution result is not acceptable. To reduce the interference of testing to the 

system, it is required that the sequence of events transmitted during the execution be recorded 

in a so-called execution history file for an off-line analysis. However, it is error-prone and 

tedious work if this analysis is done by a human. Thus, an automated analysis tool is required. 

3.3 My Approach 

The following sections describe a novel approach to statistical testing which, it is claimed, 

overcome some of these difficulties in testing distributed applications. 

3.3.1 The Concept of The SIAD/SOAD Tree 

Input is constructed from data of different characteristics that are called input attributes. 

Associated with each input attribute is a syntax structure. The structure can be decomposed into 

a lower level substructure and so on, until further decomposition is not possible. The lowest level 

substructure is called a basic element. If the basic element is numerical then the lower bound and 

the upper bound of the element are given under the element. The overall structure is a tree. The 

tree can be arranged as a linear list with the structure preserved by a set of symbols called the tree 

symbols. The list is called a "Symbolic Input Attributed Decomposition" (SIAD) tree which is 

a syntactic structure describing the characteristics of all possible input messages. It is used to 

represent the hierarchical and "network" relation between input elements and incorporate rules 

into the tree for using the inputs. 

58 



The SIAD tree consists of the following components: the tree structure and the rules. The tree 

structure describes the relationship amongst elements. An example of the structure of the SlAD 

tree is shown in figure 3.2. 

X1,2,1 X1,2,2 

index symbol element rule 

1 
2 
3 
4 
5 

Xl 
X1,1 
X1,2 
X1,2,1 
X1,2,2 

(a) 

A 
B 1 
C 1 

D, K1 bytes 2 
E, K1 bytes 2 

rule index rule description subrule index 

1 Excluding characters 
0123456789 

2 K1 1,2 

(b) 

subrule index subrule description remark 

1 1 ~ K1 ~ 7 length of D, E 
2 K1 is integer 

(c) 

Figure 3.2: The structure of the SIAD Tree 

The symbols A, B, .. , E are called the tree elements. The tree itself is shown in Figure 3.2 (a). 

A tree symbol in Figure 3.2 (a) shows the relationship of an element to other elements. For 

example, the symbol Xl ,2, 1 indicates that element D is subordinate to element C (whose symbol 

is Xl,2), which, in turn, is subordinate to element A (whose symbol is Xl). 

The rules governing the use of input elements in a process are those that define the order and, in 

many cases, the timing with which the elements must be input into stages of the process. In Figure 

3.2 (b), rules for using the inputs are incorporated into the tree. In order to use a rule in Figure 

3.2 (b), a number of subrules must be applied. A subrule is listed in Figure 3.2 (c) for rule 2 in 

Figure 3.2 (b). 

59 



According to the different types of software applications. we can use a number of different types 

of SIAD trees (a detailed description of these trees is given in Cho). For example. in Liu et al. 

(1992). we apply the weighted and ruled SIAD trees for the Command File Interpreter (CFI) 

software. the regular SIAD tree for interface software in a relational database system and the 

regular SIAD tree for a LEX generator. 

The following example is a demonstration of a SIAD tree representing an input test data for a 

transaction in a grade report database system. 

An example: a database system for a grade report 

Consider a Grade Report database system that has three relations is shown in Figure 3.3. 

COURSE 
STUDENT course id course name 

student id 
student name 

first name surname 
CS2010 DataBase 

945216775 Huey-Der Chu 
GRADE 

student id course id score 

945216775 CS2010 85 

Figure 3.3: A database system for grade report 

Query: Given a student id and several course id to get the grade report of figure 3.4. 

60 



A Grade Report for Huey-Der Chu 

Course id Course name Grade 

CS2010 Data Base 85 
CS2015 Algorithm 80 

Figure 3.4: A Grade Report 

According to this query, the input test data can be decomposed into student id and course id. A 

course id can be decomposed into course type and then course number. The results can be 

arranged in a tree, as shown in Figure 3.5. 

Input test data (X I) 

(XI,I) (XI,2) 

(X1,2,2) 

(XI,2,1,1) 

Figure 3.5: A tree structure of an input test data 

The tree may be represented in a SIAD tree, as in Figure 3.6 (a). The tree has four columns: the 

index, the symbol, the element and the rule index. The indices are for sampling use. The symbols 

preserve the tree structure of the tree elements in Figure 3.5. A tree element is a node in Figure 

3.5 with some explanation of the node. A rule index points to a rule that governs the use of the 

tree element in constructing an input unit. 

61 



index 

I 
2 
3 
4 
5 
6 

rule index 

I 
2 
3 
4 
5 

6 

sxmbol element rule index 
Xl input test data 
XI,I student id, KI bytes 1,6 
Xl,2 course id, K2 bytes 2 
XI,2,1 course type, K3 bytes 3 
X,I,2,1,! course number, K4 bytes 4,5 
XI,2,2 course type, K3 bytes 

(a) 

rule description 

KI 
K2=K3+K4 
K3 
K4 
Only including characters 
0,1,2,3,4,5,6,7,8,9 

Excluding characters 

3 

subrule index 

I 
2,3 

2 
3 

+* jlll<>$&#@;:)(!?=][ %£ 

(b) 

subrule index subrule description remark 

I 
2 
3 

I ~ KI ~ 9 length of student id 
"CS", "AM", "ST" type of course 

I ~ K4 ~ 4 length of course number 

(c) 

Figure 3.6: The SIAD tree of a grade report database system 

The rules governing the use of tree elements in a SIAD tree can be listed as shown in Figure 3.6 

(b). A rule index is used to identify the rule to be used. The rule description is the rule of interest. 

The sub-rule index indicates a sub-rule to supplement the use of the rule, as shown in Figure 3.6 

(c). The symbol Xl ,2,2 is designed for constructing invalid or incomplete test data to test whether 

this software can detect input data error or not. For example, the rule index for symbol of Xl.2.2 

is 3 which is governed by subrule index 2. According to subrule index 2, the course type can be 

"CS", "AM" or "ST". 

We extend this concept to the "Symbolic Output Attribute Decomposition" (SOAD) tree which 

describes the characteristics of the product unit that its usability for the user. A product unit of 

a grade report in Figure 3.4 can be specified by the following SOAD tree as shown in Figure 3.7: 

62 



index s~mbol element rule index 
I XI expected result 
2 XI,I student name, KI bytes I 
3 XI,I,I first name, K2 bytes 2,9,10 
4 X,I,!,I,I surname, K3 bytes 3,9,10 
5 XI,2 grade report, K4 bytes 4 
6 XI,2,! course id, K5 bytes 5,10 
7 XI,2,2 course name, K6 bytes 6,9,10 
8 Xl,2,3 score, K7 bytes 7,8 

(a) 

rule index rule descri:Qtion subrule index 
1 Kl =K2+K3 1,2 
2 K2 I 
3 K3 2 
4 K4 = K5+K6+K7 3,4,5 
5 K5 3 
6 K6 4 
7 K7 5 
8 integer 
9 Excluding characters 

0,1,2,3,4,5,6,7,8,9 
10 Excluding characters 

+* /'II<>$&#@;:)(!?=][ %£ 

(b) 

subrule index subrule descri:Qtion remark 

1 
2 
3 
4 
5 

2~K2~20 
I~K3~1O 
I~K5~1O 
1 ~ K6 ~ 20 
1 <K7 <4 

(c) 

length of first name 
length of surname 
length of course id 

length of course name 
length of score value 

Figure 3.7: The SOAD tree of a grade report database system 

3.3.2 The SMAD Tree 

In addition, for a distributed computation, the tool, the "Symbolic Message Attribute 

Decomposition" (SMAD) tree which lies between formal and informal specification, is presented 

(Chu & Dobson, 1997). The processes which will be considered in a distributed system are 

message-dri ven. An input message could be a request from another process to perform a service 

or a report that an event has occurred. As a response to an input, the process will become active 

and an output message will be produced as a result. An intermediate message will be used to 

63 



denote a sequence of input/ (expected) output pairs, which drive the message routing from its 

input message to its output message. An output message could be a command to another process 

or null. After the output message has been produced, the process either terminates itself or waits 

for further input. Extending the concept of the SIAD/SOAD tree in FAST (Chu, Dobson & Liu, 

1997), we attempt to specify all possible delivered messages between events by means of the 

SMAD tree. It combines with the classification and syntactic structure to specify all delivered 

messages. In the upper level of the SMAD tree, we classify all delivered messages into three types 

of message: input message, intermediate message and output message. Each type of message has 

a syntactic sub-tree describing the characteristics of messages with a happens-before 

relationship so that it can be determined whether messages were delivered in an order consistent 

with the potential causal dependencies between messages. 

The SMAD tree is used to define the test case, which consists of an input message plus a sequence 

of intermediate messages, to resolve any non-deterministic choices that are possible during 

software execution, e.g., the exchange of messages between processes. In other words, the 

SMAD tree can be used in two ways. Firstly it describes the abstract syntax of the test data 

(including temporal aspects) and secondly it holds data occurring during the test. A test data 

input message can be generated based on the input message part of the SMAD tree and rules for 

setting up the ordering of messages which are incorporated into the tree (initial event) .The 

intermediate message part of the SMAD tree can trace the test path and record the temporal 

ordered relationship during the lifetime of the computation. The test results also can be inspected 

based on the output message part of the SMAD tree (final event), both with respect to their 

syntactic structure and the causal message ordering under repeated executions. How these tree 

data structures are used together in testing is described in the next section. 

3.4 SITE: A Statistics-based Integrated Test Environment 

The objective of SITE is to build a fully automated testing environment which includes with the 

statistical analysis. The architecture of SITE suggested in Figure 3.8 consists of computational 

components, control components and an integrated database. The computational components 

include the modeller, the SMAD tree editor, the quality analyst, the test data generator, the test 

64 



paths tracer, the simulator and the test results validator. There are two control components, the 

test manager and the test driver. 

Specification 

C Modeller ) 

A­
t 

An Integrated Database 

D Control Component 

o Computational Component 

Figure 3.8: The architecture of SITE 

Test Manager 

Control flow 

Data flow 

According to the following test requirements, SITE is designed for distributed applications. 

• To set up test requirements, including the functional requirements and quality requirements, 

• To execute automated testing until it has been sufficiently tested (when to stop testing), 

• To re-execute the input units which have been tested (regression testing), 

• To execute the component-testing first and the interaction testing later. 

• To test all "interface" paths among processes which should be traversed at least once, 

• To enhance testing in areas that are more critical, 

• To produce the test execution report, the test failure report and the test quality report. 

65 



For a distributed application, the test environment will model the executing behaviour, edit 

'messages' specification into SMAD tree file, automatically generate test data based-on 

statistical testing, receive some test software, run the software with the generated test data, trace 

the test paths recording in the path records file for re-tests, inspect the test results and finally 

generate a test report to the tester. 

3.4.1 Test Manager 

Software testing is an extremely complicated process consisting of many activities and dealing 

with many files created during testing. The test manager includes two main tasks: control 

management and data management. 

The task of control management provides an application programmatic interface (API) between 

tester and SITE. This API receives the command from the tester and corresponds with the 

functional module to execute the action and achieve the test requirements. It will trigger the test 

driver to start test and get the status report of test execution back which will be saved in the test 

report repository. 

The task of data management provides the support for creating, manipulating and accessing data 

files as well as the relations among these data files which are maintained in a persistent database 

in the test process. This database consists of static and dynamic data files. The static data files 

include a message-flow paths file, a SMAD tree file, a random number seeds file and a quality 

requirement file. The dynamic data files include an input unit file, a product unit file, a test paths 

recording file, a defect rate file, a file for the range of defect rate and a sample size file. 

A conceptual data model for this database is shown in Figure 3.9. These data files will be 

described more fully through this chapter as they arise. SITE supports relationships between test 

data files and analysis data files. Through interaction with other software tools, the test manager 

in the SITE supports interaction with development activities; test data files can be related to 

synthesis and/or analysis data files from which they are derived or for which there are to test. 

66 



Generatelnput ProvldeSeed 

InspectPAthl InspectOutput 

Figure 3.9: A conceptual data model for SITE 

3.4.2 Modeller 

A model is a representation of an existing or a conceptual object, an abstraction of a real world 

phenomenon that will be the basis for development of a piece of software. It is constructed for 

a specific purpose and the design of the model will consequently reflect that purpose. There are 

two main viewpoints about a model (Bottaci & Jones, 1995): firstly, a model is not necessarily 

a poor substitute for the real thing. For example, a model railway is specifically designed so that 

children can watch a train moving along a track and be able to stop and start it and control its 

journey at will. Secondly, a model is often used to communicate ideas. For example, an architect 

may use a model to describe a proposed building and hopefully impress a client who will pay for 

it. 

The modelling activity includes (Cho, 1988): modelling of inputs and outputs as well as 

modelling of the software. Inputs are modelled in terms of types of input data, rules for 

constructing inputs and sources of inputs. The modelling of output includes the crucial 

67 



definitions of product unit and product unit defectiveness on which the design and testing of the 

software must be based. The software itself, as distinct from its output, is modelled in terms of 

the description of the process being automated, rules for using inputs, methods for producing 

outputs, data flows, process control and methods for developing the software system. 

A distributed application is a system seen as a set of communicating processes, where each 

process holds its own local data and the processes communicate by message passing. In SITE, 

the modelling component describes a set of asynchronous processes in a distributed application 

to be tested with message-flow routings to gather information about an application's desired 

behaviour from which all tests are then automatically derived. 

This model is used as the basis of a specification in the SMAD tree that can be used to describe 

the abstract syntax of the test cases as well as to the trace data occurring during the test. The 

message-flow routings will provide an elemental function visible at the system level and 

constitute the point at which integration and system testing meet, which results in a more seamless 

flow between these two forms of testing. This information provides support for test planning (a 

component testing and an interaction testing) to the test driver as well as the SMAD tree editor 

for specifying messages between events. 

The modelling of output also includes output quality planning, in which sampling methods and 

parameters for software testing and the acceptance procedure are determined. These parameters 

include firstly a definition of the defectiveness of the product unit so that the quality of a product 

unit can be evaluated and secondly an identification of the tolerance limits in defining the 

defectiveness of a product unit. This information provides support for test planning and test 

measurement to the statistical analyst. 

3.4.3 SMAD Tree Editor 

Requirements specification is the activity of identifying all of the requirements necessary to 

develop the software and fulfil the user's needs. It covers all input, processing and output 

requirements. In particular, the input/output domain of the software, that is, the types of 

68 



input/output, rules for using the input or examining the output and constraints on using the 

input/output, are identified from the modelling process and refined. Here, the SMAD tree is a 

powerful tool to represent the input/output domain in a convenient form for the crucial part of 

requirements specification. 

The SMAD tree editor is a graphical editor that supports the editing and browsing of the SMAD 

tree. The SMAD tree and the model will be built at the same time. The modeller will trigger the 

SMAD tree editor when each message links two events during the modelling process. The result 

of editing will be saved in a SMAD tree file which allows the test data generator to generate test 

data by a random method and the test results validator to inspect the product unit. 

3.4.4 Test Driver 

The test driver calls the software being tested and keep track of how it performs. More 

specifically, it should 

• Set up the environment needed to call the software being tested. This may involve 

setting up and perhaps opening some files. 

• Make a series of calls. The arguments for these calls could be read from a file or 

embedded in the code of the driver. If arguments are read from a file, they should be 

checked for appropriateness, if possible. 

There are some different activities between component testing and interaction testing. Therefore, 

the test driver invokes different computational components/sub-components in testing at the 

different levels. During component testing, the test driver triggers the test data generator to 

generate input according to the requirements determined by the statistical analysis of the quality 

analyst, makes a series of calls to execute the application and produces the product unit to the test 

results validator for evaluation of the tests and software. After component testing, the test driver 

performs the interaction testing. It starts by calling the call test data generator to generate an input 

message plus a sequence of intermediate messages which are selected to correspond to the 

message-flow paths file and sets up the ordering of messages using 'happened before' 

relationships which are incorporated into the SMAD tree. When the test runs, the test driver 

69 



invokes the test paths tracer to trace the test path and record the temporal ordered relationship 

into the path recordings file during the lifetime of the computation. The test results also can be 

saved into the product unit file to the test results validator for inspecting the product unit, both 

with respect to their syntactic structure and the causal message ordering under repeated 

executions using the path recordings file. 

3.4.5 Quality Analyst 

Statistical analysis for component testing 

Testing a piece of software is likely to find the defect rate of the product unit population generated 

by the software. Therefore, each execution of the software in SITE is considered equivalent to 

'sampling' an output from the output population. The goal of statistics-based testing is to find 

certain characteristics of the population such as the ratio of the number of defective outputs in 

the population to the total number of outputs in the population. Clearly a mass inspection of the 

population to find the rate is prohibitive. An efficient method is through statistical random 

sampling. A sample of n units is taken randomly from the population. If it contains d defective 

units, then the sample defect rate, denoted by 9°, is 9° = din. If n is large enough, then the rate 

eO can be used to estimate the product unit population defective rate 9. Addressing the two major 

testing issues, when to stop testing and how good the software is after testing, the statistical 

analyst provides an iterative sampling process that determines the sample size n.1l also provides 

a mechanism to estimate the mean, denoted by Il. of the product unit population. Once the value 

of Il is estimated, the product unit population defect rate 9 can be computed by Il = n9. If the value 

of e is acceptable, then the product unit population is acceptable. The piece of software is 

acceptable only when the product unit population is acceptable. Therefore, the estimated product 

unit population defect rate 9 can be viewed as the software quality index. 

The statistical analyst receives quality statements from a quality requirement file. The quality 

statement defines software quality that is equivalent to p% of the output population being 

non-<iefective (the acceptance level). The result of the iterating sampling process, sample n, will 

be dynamically saved into a sample size file for providing information to the test data generator. 

70 



The values of the confidence interval also is computed and will be saved into a file for the range 

of defect rate for supporting the evaluation of software quality by the test results validator. 

Test coverage analysis for interaction testing 

The objective of interaction testing is to to verify the message exchanges among processes. One 

reasonable cover would be to require that all "interface" messages between a pair of process 

should be exercised at least once. The "interface" message is the message sent out and received 

from different processes. In SITE, we can use the path recordings file in comparison with the 

message-flow paths to examine whether or not there are "interface" messages which have not 

been verified. If so, more tests are added until the test set is sufficient for the quality level 

required. 

3.4.6 Test Data Generator 

After the sample size is determined, the SMAD tree file is used for automatically generating input 

test data through random sampling with a random number seed. The input test data will be 

temporarily saved in the input unit file for re-executing according to the test requirements. For 

interaction testing, the test generator addresses how to select the input test data plus event 

sequences from the SMAD tree with the "happened before" relationship. Due to the 

unpredictable progress of distributed processes and the use of non-deterministic statements, 

multiple executions of an application with the same input may exercise different message-flow 

paths. Therefore, the input test data plus event sequences are generated with reference to the 

message-flow paths file. 

3.4.7 Test Path Tracer 

The reproducibility of tests is important, particular in testing distributed applications. Therefore, 

we need a mechanism for tracing and recording the test path during the test. The tracer consists 

of correlated views that allow the testers to compare different information about a path routing 

in the software execution. The path tracer records events from currently executing tasks into a 

path records file, where the trace is played in "real time". Once a path record file has been created, 

the tester can replay the trace for re-tests. 

71 



3.4.8 Test Results Validator 

A test results validator in SITE is like a compiler. Much as a compiler reads and analyses source 

code, the test results validator reads and analyses the test results with the SMAD tree 

(specification information). It introduces the static testing method to inspect the test results 

during dynamic testing. The main advantage of using the SMAD tree here is that we do not need 

a test oracle to compute expected results, because the SMAD tree can be used directly for 

automatic inspection whether or not the results produced by the software are correct with respect 

to the specification. In the interaction testing, the test results validator examines the execution 

of different test paths which drive from different test data or from the same test data (repeated 

execution) to test the causal message ordering with the "happened before" relationships in the 

SMAD tree. 

The test results validator receives the test results during test execution. After inspecting the test 

results, it will compute the defect rate and store it in the defect rate file thus providing data to the 

quality analyst dynamically. According to test requirements, the test failure report is produced 

by the test results validator. 

3.5 An Operational Environment for Testing Distributed Software 

3.5.1 Overview 

Distributed applications have traditionally been designed as systems whose data and processing 

capabilities reside on multiple platforms, each performing an assigned function within a known 

and controlled framework contained in the enterprise. Even if the testing tools were capable of 

debugging all types of software components, most do not provide a single monitoring view that 

can span multiple platforms. Therefore, developers must jump between several 

testing/monitoring sessions across the distributed platforms and interpret the cross-platform gap 

as best they can. That is, of course, assuming that comparable monitoring tools exist for all the 

required platforms in the first place. This is particularly difficult when one server platform is the 

mainframe as generally the more sophisticated mainframe testing tools do not have comparable 

PC- or Unix-based counterparts. Therefore, testing distributed applications is exponentially 

more difficult than testing standalone applications. 

72 



To overcome this problem, we present an operational environment for testing distributed 

applications based on the Java software as shown in Figure 3.10, allowing testers to track the flow 

of messages and data across and within the disparate platforms. 

Java 
Abstract 

Windowing 
Toolkit 
(AWT) 

menus) 

Test Data 

Generator 

B 
Remote Method Invocation (RMI) 

Test Results Quality 

Validator Analyst 

SMADTree Test 
Editor Driver 

Java Network Programming 

Java Development Kit (JDK) 1.1.3 

Solaris OS 

Sun SPARC stations 

Test Path 

Tracer 

Test 
Manager 

Figure 3.10: An operational environment for testing distributed applications 

The primary goal of this operational environment is an attempt to provide a coherent, seamless 

environment that can serve as a single platform for testing distributed applications. The hardware 

platform of the testbed at the lowest level in Figure 3.10, is a network of SUN workstations 

running the Solaris 2.x operating system which often plays a part in distributed and client-server 

system. The widespread use of PCs has also prompted an ongoing effort to port the environment 

to the PC/Windows platform. On the top of the hardware platform is Java Development Kit 

(10K). 

It consists of the Java programming language core functionality, the Java Application 

Programming Interface (API) with multiple package sets and the essential tools such as Remote 

73 



Method Invocations (RMI), Java DataBase Conncetivity (JDBC) and Beans for creating Java 

applications. On top of this platform is the SITE which provides automated support for the testing 

process, including modeling, specification, statistical analysis, test data generation, test results 

inspection and test path tracing. At the top of this environment are the distributed applications. 

These can use or bypass any of the facilities and services in this operational environment. This 

environment receives commands from the users (testers) and produces the test reports back. 

The picture gi ven in Figure 3.10 is not completely accurate, but an approximate idea of how the 

various parts of the operational environment fit together. It gives an indication of the gross 

structure, so henceforth we will use it as our model. 

I am going to build a 3-tier client/server application with Java RMI and JDBC and set up an 

integrated test environment under the Java Development Kit in the Chapter 5, therefore, an 

introduction to the Java Development Kit is described in the following section. 

3.5.2 The Java Development Kit 

Why}ava? 

Java is a new high-level programming languages that provides simple, object-oriented, 

distributed, interpreted, robust, secure, architecture neutral, portable, high-performance, 

multithreaded and dynamic features to make interactive applications with classes and methods 

(Niemeyer & Peck, 1997). Java is both a compiled (a stand-alone application) and an interpreted 

(an applet) language. Java source code is turned into simple binary instructions called bytecode, 

much like ordinary microprocessor machine code. However, whereas C++ source is refined to 

native instructions for a particular model of processor, Java source is complied into a universal 

format - instructions for a virtual machine. It means that Java code is portable. The same Java 

application can run on any platform that provides a Java run-time environment as shown in 

Figure 3.11. 

74 



Java Source 
Programs 

t 
JDKl.l.l 

Java compiler 
Java API 
Java tools 

t 

Bytecode 

• • • 8] 
I I 

PC Sun SPARC Macintosh 

Figure 3.11: Java virtual machine environment 

In addition to the platform-specific runtime system, Java has approximately 22 fundamental 

classes that contain architecture-dependent methods. These native methods serve as Java's 

gateway to the real world. These methods are implemented in a native language on the host 

platform. They provide access to resources such as the network, the windowing system and the 

host file system. The rest of Java is written entirely in Java and is therefore portable. This include 

fundamental Java utilities like the Java compiler which is also a Java application and is therefore 

immediately available on all Java platforms. 

lava network programming 

The network is the soul of Java (Hughes, Hughes, Shoffner & Winslow, 1997; Niemeyer & Peck, 

1997). Most of what is new and exciting about Java centres around the potential for new kinds 

of dynamic, networked applications. The core API comes with a standard set of classes, Java's 

sockets interface and URL (Uniform or Universal Resource Locators) classes, which provide 

uniform access to networking protocols across all of the platforms to which the Java Virtual 

Machine has been ported. Basic network access is provided through classes from the java. net 

75 



package. These are complemented by classes from the java.io package that provide a uniform 

streams-based interface to communications channels. These classes can be extended to provide 

sophisticated high level functionality to serve custom communication needs. 

(1) Java's Socket API: 

Java offers socket-based communication that enables applications to view networking as if it 

were file 110 - a program can read from a socket or write to a socket as simply as reading from 

a file or writing to a file. There are two types of sockets, stream sockets and datagram sockets. 

With stream sockets a process establishes a connection to another process. While the connection 

is in place, data flows between the processes in one continuous stream. Stream sockets are said 

to provide a connection-oriented service. The protocol ensures that no data is lost and that it 

always arrives in order. The protocol used for transmission is the popular Transmission Control 

Protocol (TCP). With datagram sockets, individual packets of information are transmitted. This 

is not the right protocol for everyday users because unlike TCP, the protocol used, the User 

Datagram Protocol (UDP), is a connectionless service. Applications can send short messages to 

each other, but no attempt is made to keep the connection open between messages, to keep the 

messages in order or even to guarantee that they arrive. Therefore, with UDP, significant extra 

programming is required on the user's part to deal with these problems. Stream sockets and the 

rep protocol will be the most desirable for the vast majority of Java programmers. 

When writing network applications, it is common to talk about clients and servers. The client 

requests that some action be performed and the server performs the action returning the result 

(if any) to the client. The client first attempts to establish a connection to the server. The server 

can accept or deny the connection. If the connection is accepted, then the client and server 

communicate through sockets in much the same manner as if they were doing file 110. 

Figure 3.12 shows the typical scenario that takes place for a Java connection-oriented service. 

An application acting as a server creates a ServerSocket object and waits, blocked in a call to its 

Accept() method until a connection arrives from a client which creates a socket and intiates the 

76 



Client} 

Server 
(connection-oriented service) 

I ListenO I 

Clientz 

~ .. __ ----------~ .. ~ 1 ~ .. __ ----------~ .. ~ 
connection , connection 

communication 
(request/reply data) 

establishment establishment 

communication 
(request/reply data) 

Figure 3.12: A client/server relationship for Java connection-oriented service 

communication. When it does, the Accept() method creates a Socket object the server uses to 

communicate with the client. A server carries on multiple conversations at once; there is only a 

single ServerSocket, but one active Socket object for each client. 

(2) Manipulating URLs: 

The Internet offers many protocols. The HyperText Transfer Protocol (HTTP) that forms the 

basis of the World Wide Web uses URLs to locate data on the Internet. The Java URL classes 

provide an API for accessing well-defined networked resource, like documents and applications 

on servers. The classes use an extensible set of prefabricated protocol and content handlers to 

perform the necessary communication and data conversion for accessing URL resources. With 

URLs, an application can fetch a complete file or database record from a server on the network 

withjust a few lines of code. Applications like Web browsers, which deal with networked content, 

use the URL class to simplify the task of network programming. They also take advantage of the 

dynamic nature of Java which allows handlers for new types of URLs to be added on the fly. As 

new types of servers and new formats for content evolve, additional URL handlers can be 

supplied to retrieve and interpret the data without modifying the original application. 

77 



Remote Method Invocation (RMI) 

The Java Remote Method Invocation (RMI) system (Hughes, Hughes, Shoffner & Winslow, 

1997) provides all the underlying layers necessary for Java objects to communicate with each 

other using normal method calls, even if the objects are running in virtual machines on opposite 

sides of the world. It enables the programmer to create distributed Java-tcrJava applications, in 

which the methods of remote Java objects can make a call on a remote object once it obtains a 

reference to the remote object, either by looking up the remote object in the bootstrap naming 

service provided by RMI or by receiving the reference as an argument or a return value. A client 

can call a remote object in a server, and that server can also be a client of other remote objects. 

As long as the runtime systems can communicate via Internet, client/server applications can be 

developed without streams and sockets. This allows the programmer to avoid complex 

communication protocols between applications and instead adopt a higher level method-based 

protocol. RMI is an alternative to the more low level streams/socket communication and the 

specific implementation is hidden from programmers. 

(1) The RMI Architecture: 

The purpose of Java remote method invocation implementation is to provide a framework for 

Java objects to communicate via their methods, regardless of their location. It like a Remote 

Procedure Call (RPC) mechanism in other languages. One object makes a method call into an 

object on another machine and gets a result back. To create a class that will be remotely accessible, 

remote methods are defined by remote interfaces. That is, a remote interface defines a set of 

methods that can be called remotely. The class must implement this interface, plus any other 

interfaces and methods it needs for its own local use. A stub and skeleton are then generated 

automatically using rmic, a tool available in the Java RMI distribution. The stub which runs on 

the client side is a class that automatically translates remote method calls into network 

communication set-up and parameter passing. The skeleton which runs on the server side is a 

corresponding class that resides on the same virtual machine as the remote object, and which 

accepts these network connections and translates them into actual method calls on the object. 

Figure 3.13 shows the relationship between a client, a server, a stub and a skeleton. 

78 



Client-side 

Object 

methodO 

~-------- .. , 

I 

" __ )_n!~rfl!c_e __ ~ 
I Server-side 

__ 1' '., methodO," ~, , 

~: - - - -~~t~~~i~; , , '" Remote Object 

Skeleton 

Figure 3.13: The RMI architecture 

When a client wishes to make calls to a remote object, it must first look up the object in the naming 

service. This returns a remote reference to the object which automatically informs the object that 

it has a remote client. RMI provides a simple name lookup object that allows a client to get a stub 

for a particular server based on the server's name. The naming service that comes with the RMI 

system is fairly simplistic but is useful for most cases. How a client uses the naming service to 

find a server is shown in Figure 3.14. 

client-side 

Object 

methodO 

:2 lookup 

5 

connection 

(her~l_ . 
r-__ N_,,_m_i_n..:..g_--i"-' 

rmi:llserver/name 
3 

Server-side 

Remote Object 

\------. methodO 
_4 - '-----T""--

remote 
reference 

1 bindl 
rebind 

,....---..!..----, 

Naming Registry 

--------~ name 

Figure 3.14: The naming service 

The steps of the naming service is as follows: 

I. Remote objects register themselves using the bind or rebind method, which uses a URL-based 

naming scheme, 

2. Clients using the lookup method to look up the remote objects in the naming service. 

3. The naming service requests the name of remote object via Network, 

79 



4. The naming service obtains remote reference back. 

S. Remote clients will connect to the registry and locate the object based on this name. 

(2) The Procedure To Write An Application 

The procedure to build an application using RMI is shown in Figure 3.15. 

Define a 
Remote Interface 

(server-side and 
client-side) 

Write an 
Implementation 

Class 

(server-side) Write a Client 
that Uses the 

Remote ob"ect 

(client-side) 
Generate the 

stub and skeleton 

Compile Phase (stub: client-side, 
skeleton server-side) 

.. -------------------------------. ----------------------------
Execute Phase 

~ Start the 
Server -

Run the 
Client 

(client-side) 

(server-side) 

Start the 
Registry 

(server-side) 

Figure 3.15: The procedure to build an application 

• Define a remote interface: An interface must be written for the remote object defining 

all methods that should be public. This interface must extendjava.rmi.Remote , an API 

interface which identifiers that a reference is to a remote object. 

• Write an implementation class: To write a remote object, a class will be written to 

implement one or more remote interfaces. The implementation class needs: firstly. to 

specify the remote interface(s) being implemented, secondly, to define the constructor 

for the remote object, thirdly, to provide implementations for the methods that can be 

invoked remotely, fourthly, to create and install a security manager, fifthly, to create one 

80 



or more instances of a remote object and finally, to register at least one of the remote 

objects with the RMI remote object registry for bootstrapping purposes. 

• Write a Client that uses the remote object: The client is very simple; it looks up the 

remote object in the naming service, collects a reference to it, makes a call to its remote 

method, prints the result and then quits. 

• Generate the stub and skeleton: To generate the stub and skeleton, programmers compile 

the implementation class first and then use the rmic command with this implementation 

class. Two class files will be generated, one for the stub which will be used by the client 

machine and one for the skeleton which will be used by the server machine. 

• Start the registry: The RMI registry is a simple server-side bootstrap name server that 

allows remote clients to get a reference to a remote object. To start the registry on the 

server, execute the rmiregistry command. 

• Start the server: When starting the server, thejava.rmi.server:codebase property must 

be specified so that references to the remote objects created by the server can be include 

the URL from which the stub class can be dynamically downloaded to the client. 

• Run the client: Once the registry and server are running, the client can be run. 

Java DataBase Conncetivity (JDBC) 

Java Database Connectivity (JDBC) is a Java API for executing SQL statements. It consists of 

a set of classes and interfaces written in the Java programming language. JDBC provides a 

standard API for tool/database developers and makes it possible to write database applications 

using a pure Java API. Using JDBC, it is easy to send SQL statements to virtually any relational 

database. In other words, with the JDBC API, it is not necessary to write one program to access 

a Sybase database, another one program to access an Oracle database, another program to access 

an Informix database and so on. One can write a single program using the JDBC API and the 

program will be able to send SQL statements to the appropriate database. The combination of 

Java and JDBC lets a programmer write it once and run it anywhere. 

81 



\1icrosoft's ODBC (Open DataBase Connectivity) API is probably the most widely used 

programming interface for accessing relational databases. It offers the ability to connect to almost 

all databases on almost all platforms. However, ODBC is a C interface to DBMSs and thus is not 

readily convertible to Java. Therefore, The JDBC retains the basic design features of ODBC and 

its interfaces are based on the XlOpen SQL Call Level Interface (CLI) with a Java interface that 

is consistent with the rest of the Java system. 

Figure 3.16 shows the JDBC communication layer alternatives. The application/applet and the 

JDBC layers communicate in the client system and the driver takes care of interacting with the 

database over the network. 

let 

JDBC Driver Mana 

I JDBC-ODBC Bridge ~ 
I ~ , 

,-----------, 

let 

JDBC~Net Driver 

Database!HTTP 
Listener Process/ 

RPC/ Jeeves Servlet 

Database Server 

Figure 3.16: JDBC communication layer alternatives 

The JOBC classes are in thejava.sql package and all Java programs use the objects and methods 

in the j(/\·u.sql package to read from and write to data sources. A program using the JDBC \\ill 

82 



need a driver for the data source with which it wants to interface. This driver can be a native 

module (like the JDBCODBC.DLL for the Windows JDBC-ODBC Brifge developed by 

Sun/Intersolv) or Jeeves Servlet or an HTTP talker-listener protocol. 

JDBC defines a set of API objects and methods to interact with the underlying database. A Java 

application first opens a connection to a database, makes a statement object, passes SQL 

statements to the underlying DBMS through the statement object and retrieves the results as well 

as information about the results sets. 

Typically, the JDBC class files and the Java appletlapplication reside in the client. They could 

be downloaded from the network also. To minimize the latency during execution, it is better to 

have the JDBC classes in the client. The Database Management System and the data source are 

typically located in a remote server. 

The Java GUI component 

Graphical User Interface (GUl) programs provide more features than the structured navigation 

and data entry in non-GUl applications. The user can select a variety of functions from each 

screen. GUls are characterized by (Sommerville, 1996): firstly, multiple windows allows 

different information to be displayed simultaneously on the user's screen; secondly, icons 

represent files or processes; thirdly, command selection via menus rather than a command 

language; fourthly, a pointing device such as a mouse for selecting choices from a menu or 

indicating items of interest in a window and finally, support for graphical as well as textual 

information display. 

The Abstract Windowing Toolkit (A WT) provides a large collection of classes for building a GUl 

in Java. It is divided into two large chunks: a user-interface chunk that provides the buttons, check 

boxs. menu bars and other user-interface components; and a graphics chunk that handles drawing 

and image rendering. Figure 3.17 demonstrates the user-interface of SITE by the pull-down 

menu. 

83 



SITE "".In "".nu 

T .. t.M ...... r 

You •• lect.ed 

Figure 3.17: The GUI of SITE by Java AWT 

The Java AWT uses three concepts to implement common functionality/platform-unique look 

and feel: abstract objects, toolkits and peers. Every GUI element supported by the A WT will have 

a class. Objects of that class can be instantiated. For example, a Button object can be instantiated 

from the Button class even though there is no physical display of a button. There is no physical 

display of a button because the Button class in the AWT does not represent a special look and feel. 

The specific look and feel would be a "Solaris button" ,a "MS Windows button" or a "Macintosh 

button". To achieve platform independence, A WT uses interchangeable toolkits that call the host 

windowing system to create user-interface components, thus shielding the application code from 

the details of the environment it is running in. When building a user interface for an application, 

programmers will be working with prefabricated components. It is easy to assemble a collection 

of user-interface components (buttons, text areas, etc.) and arrange them inside containers to 

build complex layouts. Programmers can also use simple components such as building blocks for 

making entirely new kinds of interface gadgets that are completely portable and reusable. 

3.6 Comparison With Other Test Environments 

In the work from (Eickelmann & Richardson, 1996), a comparison and analysis of three STEs, 

PROTest II (Prolog Test Environment, Version II) (Belli & Jack, 1993), TAOS (Testing with 

AnalYSis and Oracle Support) (Richardson, 1994) and CITE (CONVEX Integrated Test 

Environment) (Vogel, 1993), was made by the Software Architecture Analysis Method (SAAM) 

(Kazman, Bass, Abowd & Webb, 1994) which provides an established method for describing and 

analyzing software architectures. To accomplish this work, the SAAM method takes three 

84 



perspectives: a canonical functional partition of the domain, system structure and allocation of 

functionality to system structure. Each is first described as originally diagramed and discussed 

by the authors and then recast in the graphical notation used by SAAM along with an allocation 

of the canonical function partition. According to this work, the three architectural analysis 

perspectives used by SAAM are described in this section. 

3.6.1 Canonical Function Partition 

The test process evolution and canonical functional partition resulting from the STE domain 

analysis provide the foundation for the Software Test Environment Pyramid (STEP) model 

(Eickelmann & Richardson, 1996). The STEP model, shown in Figure 3.18, stratifies test 

functionalities from the apex of the pyramid to its base in a corresponding progression of test 

process evolution in (Gelperin & Hetzel, 1988) - the debugging, demonstration, destruction, 

evaluation and prevention periods. 

Canonical 
Functional 
Partitions 

Test 
Process 
Evolution 

Test 
Measurement 

Test 
Management 

Test 
Planning 

Debugging 

Demonstration 

Destruction 

Evaluation 

Preventio, 

~----------------------------------~-------

Figure 3.18: STEP Model, adapted from (Eickelmann & Richardson, 1996) 

• Test execution includes the execution of the source code and recording of execution traces. 

Test artifacts recorded include test output results, test execution traces and test status. It is 

85 



clearly required by any test process. The test process focus of the debugging-oriented period 

was solely on test execution. 

• Test development includes the specification and implementation of a test configuration. It 

played a more significant role in the overall test process during the demonstration-oriented 

and destruction-oriented periods due to the manual intensive nature of test development at that 

time. Test development methods have not significantly changed, although they have improved 

in reliability and reproducibility with automation. Thus, their role in the test process has 

diminished in significance as the test process evolution has moved ahead. 

• Test failure analysis includes behaviour verification and documentation and analysis of test 

execution pass/fail statistics. It was less important when performed manually, as interactive 

checking by humans added little benefit for test behaviour verification. The methods applied 

to test failure analysis have increased in their level of sophistication, making test failure 

analysis more significant to the overall test process. 

• Test Measurement includes test coverage measurement and analysis. It is required to support 

the evaluation-oriented period, which represents the point of departure from a phase approach 

to a life cycle approach. A significant change in the test process focus is that testing is applied 

in parallel to development, not merely at the end of development. Test measurement also 

enables evaluating and improving the test process. 

• Test Management includes support for test artifact persistence, artifact relations persistence 

and test execution state preservation. It is essential to the evaluative test process due to the 

sheer volume of information that is created and must be stored, retrieved and re-used. Test 

management is critical for test process reproducibility. 

• Test planning includes the development of a master test plan, the features of the system to be 

tested and detailed test plans. Included in this function are risk management (e.g. what tests 

not to do, when to stop testing), organizational training needs, required and available 

resources, comprehensive test strategy, resource and staffing requirements, roles and 

responsibility allocations and overall schedule. It is the essential component of the 

prevention-oriented period. Test planning introduces the test process before requirements, so 

86 



that rather than being an after-thought, testing is pre-planned and occurs concurrently with 

development. 

3.6.2 SAAM Structure 

A system's software structure reveals how it is constructed from smaller connected pieces and 

represents the decomposition of the system components and their inter--<:onnections. The 

graphical notation used by SAAM is a concise and simple lexicon (Kazman, Bass, Abowd & 

Webb, 1994), which is shown in Figure 3.19. 

Components Connections 

D Process .- Uni-/ 

0 Computational .--. Bi-directional 
Component 

Data Flow 

D Passive Data • Uni-/ Repository 

• • Bi-directional 

0 Active Data 
Repository Control Flow 

Figure 3.19: SAAM architectural notations 

In the notation used by SAAM there are four types of components: a process (unit with an 

independent thread of control); a computational component (a procedure or module); a passive 

repository (a file); and an active repository (database). There are two types of connectors, control 

flow and data flow, either of which may be uni or bi-directional. 

SAAM's goal is to provide a uniform representation by which to evaluate architectural qualities. 

The simplicity of the notation is achieved by abstracting away all but a necessary level of detail 

for a system level comparison. The field of software architecture, not unlike hardware design, 

recognizes a number of distinct design levels, each with its own notations, models, components 

and analysis techniques. 

87 



3.6.3 SITE SAAM Description and Functional Allocation 

The allocation of domain functionality to the software structure of an STE completes the 

graphical representation of the STE. The allocation provides the mapping of a system's intended 

functionality to the concrete interpretation in the implementation. SAAM focuses most closely 

on allocation as the primary differentiating factor amongst architectures of a given domain. In 

this and the following subsections SAAM is used to characterise SITE and compare it with three 

other STEs that have been described in the literature. 

: Test Planning 
'.-------. 

: Tes~:~~;in ....... __ --t( MOdelling) : 

, Test Quality 
Report 

, 

i ................................ ... -. 

'Test Failure Analysis: , , 

Test Failure 
Report 

,- --------t --! 

._-----------. , 
, Test Execution 

, Test Executio 
Report 

Test 
Driver 

: J , r: -, : : .. _ -' --... ' , , ,--t-, : :-, , , -, , , ,,... __ _ .,.. ___ _ .... __ ~ ___ ....-~S-..Ioftw--L.are 
, under Test 
, Test Management 

Object Management System Test 
Manager 

, 
, ..... _-- ... _-------------- ... ------------------_ ...... -----_. 

Figure 3.20: The SITE system structure and functional allocation through SAAM 

The SAAM graphical depiction of SITE is shown in Figure 3.20. SITE supports statistics-based 

testing on the top of specification-based testing with two main issues in software testing. when 

to stop testing and how good the software is after testing. It provides automatic support for test 

execution by the test driver, test development by the SMAD tree editor and the test data generator, 

test failure analysis by the test results validator, test measurement by the quality analyst. test 

88 



management by the test manager and test planning by the modeller. These tools are integrated 

around an object management system which includes a public, shared data model describing the 

data entities and relationships which are manipulable by these tools. SITE enables early entry of 

the test process into the life cycle due to the definition of the quality planning and message-flow 

routings in the modelling. After well-prepared modelling and requirements specification are 

undertaken, the test process and the software design and implementation can proceed 

concurrently. 

3.6.4 PROTest II SAAM Description and Functional Allocation 

The objective of PROTest II is build a fully automated test environment for a Prolog program 

(Belli & Jack, 1993). It is a prototype system which performs a declarative (structure) check by 

the structure checker, automatically generates test inputs by the test input generator for structural 

coverage provided by the test coverage analyser, receives a test program, runs the program 

triggered by the test dri ver and finally generates a test report by test report generator for the users. 

A detailed textual description of the system can be found in (Belli & Jack, 1993). 

,--- ... _-------------------------------- ... _--, 
: Test Development I : Test Execution 

, 
I .......................................................................................................................... 1- ...................................................... I 

I I 

I Test Measurement 

Structure 
Repott 

Manual Source ¥~ 
'--_--I Code 

Instrumentatio 
L ________________________________ _ 

DLTIl 
Program 

, , 
----- ... -----------------------------------_. 

I 

Test 
Report 

Test 
Driver 

1 __ - __ ---------_· 

Prolog 
Source Code 

Figure ."'.21: The PROTest II system structure and functional allocation through SAA\1. 
adapted from (Eickelman & Richardson, 1996) 

89 



The PROTest II SAAM description and functional allocation is shown in Figure 3.21. It includes 

three of the canonical functional partitions: test execution, test development and test 

measurement. Test failure analysis, test management and test planning are missing. It does not 

achieve the goal which is a fully automated test environment but rather provides an interactive 

test environment that partially automates test execution, test development and test measurement. 

Eickelmann and Richardson (1996) point a major deficiency highlighted in PROTest II, which 

does not have structural separation between the functions of test development and test 

measurement. The test input generation process is interdependent with the test coverage process. 

3.6.5 TAOS SAAM description and functional allocation 

TAOS provides a toolkit that automates many tasks for supporting the testing process 

(Richardson, 1994). This support includes test artifact management, test development, test 

execution and test process measurement. TAOS consists of several components: a test data 

generator, test criterion deriver, artifact repository, parallel test executor, behaviour verifier and 

coverage analyzer. A unique aspect of TAOS is its support for test oracles and their use to verify 

behavioural correctness of test executions. TAOS also supports structural/dependence coverage 

by measuring the adequacy of the test criteria coverage and regression testing by identifying tests 

associated or dependent upon modified software artifacts. This is accomplished by the integrating 

the ProDAG (Program Dependence Analysis Graph), Artemis (source code instrumentor) and 

LPT (Language Processing Tools) with TAOS. A complete detailed textual description of TAOS 

and its integration with the Arcadia SDE is given in (Richardson, 1994). Specification-based test 

oracles as automated by TAOS are described in (Richardson, Aha & O'Malley, 1992). 

The TAOS SAAM description and functional allocation is shown in Figure 3.22. It provides 

support for test execution, test development, test failure analysis, test measurement and test 

management. TAOS does not support the test planning. As shown in Figure 17, TAOS achieves 

loosely coupled components through separation of concerns with respect to system 

functionalities. Test generation and test execution are independent processes without connecting 

to other functional areas. Test failure analysis and test measurement are invoked by the test driver, 

but remain highly cohesive components within their respective functional partitions. The high 

90 



.. ------------. 
I Test Development: 

Test 
Generator 

-------------. 
I Test Measurement: 

Coverage 
Report 

. - - - -- --- - -- - -. 
I 

, Test Execution 

I Test Execution 

Task 

:~ , ' 
I 

Source Code 

--------------. 
: Test Failure Analysis: , , 

Test Failure 
Report 

I , , 

--------+-- '-----1---+---· '------+------

~- ----------- --* --------------* ----. L--__ ~ 

Ada 
~ Source LPT Language Code 

Object Management 
Process Management 

TAOS 
Manager 

, Process Tools .. _-----------------------------------------

Figure 3.22: The TAOS system structure and functional allocation through SAAM, 
adapted from (Eickelman & Richardson, 1996) 

degree of separation of concerns is facilitated by the primary component integration mechanism 

which is the object management system. It supports persistence of data and data relations in an 

active repository. 

TAOS integrates several multipurpose components: ProDAG, LPT and Artemis. Effective data 

integration is achieved through a consistent internal data representation in the Language 

Processing Tools (LTP) which is also used by ProDAG and Artemis. Integration of generic 

analysis tools supports multiple test and analysis purposes. ProDAG, for instance supports the 

usc of program dependence graphs for test adequacy criteria, test coverage analysis and 

optimizing efforts in regression testing. 

91 



3.6.6 CITE SAAM description and functional allocation 

CITE consists of many components and each component covers a specific area of automated test 

management. It includes a test driver (TD), test coverage analyzer (TCA), test data reviewer 

(TDReview and TDPP) , test generator and databases and a rule base. Additional tools have been 

integrated for use with the system, such as the GCT test coverage tool and the Expect interactive 

session simulator which are based on utilities obtained from the public domain. A complete 

textual description of CITE is given in (Vogel, 1993). 

, .......... _-_ .. _--. 
Test 
Measurement 

Test 
Coverage 
Report 

, 
, Test 

, Development 
Test 
Failure 
Analysis 

Test Failure ' 
Report 

,-------------. 
Test 

Execution 

Test 
Report 

.------t,--, 
Test 

Driver 

TD 

, I I I I 

, ... t . :I ... , ... ' ~ ~ J ~ ~ l ~ ~ ~ , ... '~ ~ ~ J ~ 1 ~ ~ ~ , .. ~ : t : 1" ..... , 
: Test Management 

: Object Management 

, 

Rule-Based 
Process Template 

, 

,------ ________________________________________________ J 

Source 

Code 

Figure 3.23: The CITE system structure and functional allocation through SAAM, 
adapted from (Eickelman & Richardson, 1996) 

As shown in Figure 3.23, the SAAM graphical depiction of CITE reflects the structural 

separation desired in a system that automatically controls the test process. It provides support for 

test C\cclltinn, test development, test failure analysis, test measurement and test management. 

Testing planning, howe vcr, is not supp0l1ed. 



CITE has achieved the desired functionalities through allocation to structurally cohesive 

components. The process control exercised by the rule-based is evidenced in direct control to 

each functional area. This clean separation of concerns supports the primary goal of a fully 

automated and general purpose software test environment. 

3.6.7 STE Comparison 

The stated goals of automating the test process are shared by four STEs, PROTTest II, TAOS, 

CITE and SITE. The use of SAAM clarifies how well each STE achieves this goal and to what 

degree. The use of SAAM provides a canonical functional partition to characterize the system 

structure at a component level. The functionalities supported and structural constraints imposed 

by the architecture are more readily identified when compared in a uniform notation. A 

comparison of four STEs, PROTest II, TAOS, CITE and SITE, made by the SAAM is shown in 

Figure 3.24. 

Test Test Test Failure Test Test Test 
Execution Development Analysis Measurement Management Planning 

PROTest II J/ J/ J/ 

TAOS J/ J/ J/ J/ J/ 

CITE J/ J/ J/ J/ J/ 

SITE J/ J/ J/ J/ J/ J/ 

Figure 3.24: A comparison of four STEs by SAAM 

However, test process focus was identified for each STE across the software development life 

cycle, shown in Figure 3.25. 

93 



Analyze Software Test Test Case Test 
Problem Design Coding Design Generation Execution Evaluate Tests 

~ implementation-based testing ~ 

Analyze Software Coding 
Problem Design Test 
with Test Test Case 

Evaluate Tests 
Execution 

Specification Design Generation 

~ specification-based testing ~ 

Analyze Software Coding 
Problem Design 

Specification Test Evaluate Tests 
with Test Test Case Execution and Software 
Modelling Design Generation 

~ statistics-based testing • 

Software Development Life Cycle 

Figure 3.25: Test process focus appears the life cycle 

• PROTest II and CITE support implementation-based testing and have a destructive testing 

process focus. This focus has a limited scope of life cycle applicability, as it initiates testing 

after implementation for the purpose of detecting failures. 

• TAOS SUppOltS specification-based testing and has an evaluative test process focus. An 

evaluative test process focus provides complete life cycle support, as failure detection extends 

from requirements and design to code. 

• SITE supports statistics-based testing and has a prevention testing process focus. It focuses 

on fault prevention through parallel development and test processes. SITE uses the way that 

timely testing impro\cs software specifications by building models that show the 

consequences of the software specifications. 

94 



There exist some differences amongst implementation-based, specification-based and 

statistics-based testing. With implementation-based testing, only a set of input data can be 

generated from an implementation, but the expected outputs can not be derived from the 

implementation. In this case, the existence of an oracle (in the human mind) must be assumed 

and checking the test results against the oracles has to be done. With specification-based testing, 

both test input data and the expected outputs can be generated from a specification. The 

statistics-based testing is on the top of specification-based testing with the quality plan before 

specification. The quality plan addresses testing issues such as the testing strategy, test tools 

needed, acceptance criteria, what reviews are to be performed, risk management (e.g. what tests 

not to do, when to stop testing). With statistics-based testing, the tests are developed according 

to prevailing standards and at the right time as well as the software quality will be achieved. 

3.7 Conclusion 

The support of fully automated test environment for distributed applications is a significant issue 

for the software development process. In this chapter, an operational environment for testing 

distributed applications is proposed. An essential component for developing quality software is 

SITE in this operational environment. It consists of control components (test manager, test 

driver), computational components (Modeller, SMAD tree editor, quality analyst, test data 

generator, test paths tracer, test results validator, simulator) and an integrated database. The 

activities of the test process are integrated around an object management system which includes 

a public, shared data model describing the data entities and relationships which are manipulable 

by these tools. SITE provides automated support for test execution, test development, test failure 

analysis, test measurement, test management and test planning. 

95 



Chapter 4 

A Statistics-based Framework For Testing 
Distributed Software 

4.1 Introduction 

In this chapter, we extend the concept of the SIADISOAD tree from FAST (Chu, Dobson & Liu, 

1997) to the SMAD tree making it a more powerful technique for test data generation and test 

result inspection in distributed software. Based on the SMAD tree, we develop a framework 

which not only can generate the input messages and a sequence of intermediate message pairs 

(in/out events) with their causality relations, but can inspect the test results, both with respect to 

their syntactic structure and the causal message ordering under repeated executions. 

In Section 4.2 of this chapter, the related work in statistical testing is surveyed. A graph model 

is introduced to represent the behaviour both sequential and distributed software in Section 4.3. 

Section 4.4 introduces the SIAD/SOAD tree and the SMAD tree as well. In Section 4.5, we 

present a framework of distributed software testing based on SMAD tree. Section 4.6 summarizes 

my research. 

4.2 Statistical Software Testing 

.t.2.1 Quality Programming 

In quality programming as introduced by Cho, a statistical approach to control the quality of 

software is used. When software is viewed as a factory, processing of input units into product 

units becomes conceptually equivalent to taking random product units from the software 

popUlation. If the product units in the population are all of a good quality, then the units taken 

will be of a good quality. A simplified view of the process of quality programming is shown in 

Figure 4.1. 

96 



8-'" 
H b 'ld "i t "?~ Requirement ow to UI ac ory, S 'f" ..... 

peCI lcatlon " , 
What are the inputs/outputs ~ 
and what is their quality? 

Figure 4,1: The process of Quality Programming 

Examination 

Software testing 
and software 
acceptance 

As shown, the process is divided into the following stages: model, requirements specification, 

design and implementation and examination, This process ensures that quality is built into 

software from the beginning of its development. 

• Model: given a system to be developed, a model is developed to analyse and understand the 

problem, Models including a description of the problem and product to be generated by the 

software are built to form the basis of product design and the concept of the software being 

developed. 

• Requirements specification: requirements are then generated as a result of the modeling 

activity. Included in the requirements are software and test requirements. Software 

requirements define the functions the software is to perform and the quality characteristics 

such as response time, throughput, understandability and portability. Test requirements define 

the product units and product unit defectiveness for statistical sampling, sampling methods 

for estimating the defective rate of the software population with which to judge software 

quality, statistical inference methods and the confidence levels of software output population 

quality, the acceptable software defect rate and the generation methods of test input units. 

• Design and implementation: with well-defined requirements, software development can be 

divided into two channels which can proceed concurrently: software design and 

implementation and software test design and implementation. Top-Down programming and 

critical-module-first implementation methods are used in the software channel. Methods 

97 



using the fonnulation of sampling plans are used in the test channel. During the design and 

implementation phases, interfaces between the channels are incorporated to ensure that 

quality is built into the software at every stage of development. 

• Examination: software testing is perfonned again on a most--critical-module-first basis to 

ensure that the software is integrated on a secure-quality-part basis. If the software passes the 

test requirements, delivery to the user takes place. The user employs quality control tools to 

determine the acceptability of the software output population, and this becomes the basis for 

accepting or rejecting the software. 

4.2.2 FAST: a Framework for Automating Statistics-based Testing 

FAST (Chu, Dobson & Liu, 1997), which is an extension of the testing concept in qUality 

programming, has been proposed to help develop good quality and cost effective software. In 

FAST, we present a "Symbolic Output Attribute Decomposition" (SOAD) tree, which is similar 

to the structure of the SIAD tree, to represent the syntactic structure of the product unit and 

product unit defectiveness. Based on this tool, automated inspection of the product unit can be 

achieved. It is a starting point based on single thread software. Extension to distributed software 

will be introduced in Section 4.3 and Section 4.4. The role of the FAST is shown in Figure 4.2. 

• Requirement specification: The test requirement can be divided into two groups: functional 

and quality requirements. These requirements define the input domain, product units and 

product unit defectiveness for statistical sampling, sampling methods for estimating the 

defective rate of the software population with which to judge software quality, statistical 

inference methods and the confidence levels of software output population quality, the 

acceptable software defect rate and the generation methods oftest input units. From functional 

requirements, the input domain and the product units are defined. From quality requirements, 

we can define the product unit defectiveness and specify the quality statement. Without the 

definitions of input domain, product unit and product unit defectiveness, it is not possible to 

control the quality of the data produced by a piece of software. 

98 



Function 
Specification 
~----. 

provide --. 

t!!enerate 

Generate 
Random 
Number 

generate 
Define r---. 

Input Domain 
provide --.--~ 
information 
for generating 
test data 

Automated ..-___ ..J 
When to stop testing 

Test ..------------. 

Data 
Generator ---. 

Quality 
Specification 

+ 

Statistical 
Analysis 

input 
generate 

How good the software is 
..-__ ....l 

+ 
The range of 
defecti ve rate 

Requirement 
Specification ---'------. 

Define Product 
Unit and its 
Defecti veness 

Quality 

+-----. '--_A_n_i .... l_yS_i_S-..J 

generate '--::.------. c::::7 '-------. 
~ Quality Index 

Figure 4.2: FAST: a framework for automating statistics-based testing 

• The SIAD/SOAD tree: One of the major problems in software development is ambiguity in 

requirements specification, particularly specification of the input domain and product unit. 

The SIAD tree is a syntax structure representing the input domain of a piece of software in 

a form that facilitates construction of random test data for producing random output for quality 

inspection. It is used to represent the hierarchical and "network" relation between input 

elements and incorporate rules into the tree for using the inputs. Input is constructed from data 

of different characteristics that are called input attributes. Associated with each input attribute 

is a syntax structure. The structure can be decomposed into a lower level substructure and so 

on, until futther decomposition is not possible. The lowest level substructure is called a basic 

element. If the basic element is numerical then the lower bound and the upper bound of the 

99 



element are given under the element. The overall structure is a tree. The tree can be arranged 

as a linear list with the structure preserved by a set of symbols called the tree symbols. In FAST, 

the specification of the product unit and product unit defectiveness is addressed by the 

"Symbolic Output Attribute Decomposition" (SOAD) tree which is similar to the structure 

of the SIAD tree. 

• Statistical Analysis: Testing a piece of software is equivalent to finding the defect rate of the 

product unit population generated by the software. The defect rate is defined as the ratio of 

the number of product units that are defective to the total number of product units that the 

software has generated. The total number of product units, denoted by N, of any non-trivial 

piece of software ranges from extremely large to infinite, but can still be treated as an object 

of statistical interest. Although impossible in practice, it can be conceptually assumed that all 

N units have been produced and analysed. Each of them can be classified as defective or 

non-defective. If there are D units that are defective, then the product unit population defect 

rate, denoted bye, is e = DIN. Since it is impossible to obtain all N units, the best approach 

is to estimate by means of statistical sampling. 

• Test Process: Based on the SIAD/SOAD tree, FAST can automatically generate test data with 

an iterative sampling process which dynamically determines the sample size n (when to stop 

testing); the software quality can be estimated with the inspection of test results which can be 

automatically achieved by lexical and syntax analysis and the product unit of population 

defect rate which can be estimated from the sample defect rate which may be imposed on the 

software as the software quality index (how good is the software after testing). 

• The major advantages of FAST are: Firstly, testing can be completely automated using a 

statistical approach, from the generation of test data based on the SIAD tree to the inspection 

of test results based on the SOAD tree; secondly, changing distributions do not need to be 

acknowledged since the SIAD tree is static; thirdly, the software quality can be assessed using 

statistical techniques (such as sampling or inference); fourthly, the test data do not need to be 

stored for regression testing, as it only requires a small space in which to keep the random 

number seeds; fifthly, after the specification of requirements is developed, the generation of 

test data is independent from the software design and implementation; sixthly, we do not need 

100 



the test oracle to compute expected results and finally, testing can be performed based on the 

user's actual execution of the soft~are. A comparison of FAST with Clearnroom (Dyer, 1992) 

and formal testing (deterministic testing from formal specification) presented by Horcher and 

Peleska (1995) is shown in Table 4.1. 

Table 4.1: Software testing method comparison 

Formal testing Cleanroom FAST 

Test data selection deterministic random random 

Dependabili ty biased by the selective unbiased by using the unbiased by using 

evaluation choice of the test inputs operational input profile random sampling on 

output population 

# test data low high high 

Test data generation automatic automatic automatic 

Output inspection automatic manual automatic 

Sampling no input domain output population 

(SIAD tree) 

Test data storage yes yes 
no (keep random 

number seeds) 

Reliability no execution time execution number 
assessment 

• In any software factory, it is difficult to attain fault-free software. If users require high-quality 

software, the cost of software development is correspondingly high. In comparing FAST and 

other testing methods, we find that there is more front-end test planning in FAST in 

developing the SIAD/SOAD tree, but this is effectively balanced by lower cost in the test 

operation, since testing can be automatically achieved. We now discuss the relation between 

FAST and other testing techniques. Current software testing strategies use either conventional 

testing approaches, statistical testing approaches or both. The strategy of software testing 

advocated here is to use FAST on the most critical module and to use other conventional testing 

techniques on the remaining modules, or to use the conventional testing techniques first for 

removing the more easily discovered faults and use FAST for assessing the quality of the 

101 



resulting software. The best way to mix the testing techniques is deduced from an analysis of 

their complementary features. 

4.3 Modelling Distributed Software 

4.3.1 A Graph Model for Modelling Distributed Software 

Distributed software is constructed from a collection of sequential processes and a network 

capable of implementing unidirectional communication channels between pairs of processes for 

message exchange. Channels are reliable but may deliver messages out of order. It means that 

the communication network is assumed to be strongly connected. 

A distributed computation describes the execution of distributed software by a collection of 

processes. The activity of each sequential process is modelled as executing a sequence of events. 

An event may be internal to a process and cause only a local state change, or it may involve 

communication with another process. 

From an abstract point of view, a distributed computation can be described by the types and 

relative order of events occurring in each process. Let ~ denote the set of events occurring in 

process Pj, and let E = El U .... U En denote the set of all events of the distributed computation. 

These event sets are evolving dynamically during the computation; they can be obtained by 

collecting traces issued by the running processes. As we assume that each Pi is strictly sequential, 

the events in Ei are totally ordered by the sequence of their occurrence. Thus, it is convenient to 

index the events of a process Pi in the order in which they occur: ~ = {eil, ei2, ei3, ... }. We will 

refer to this occurrence order as the standard enumeration of ~ (Schwarz & Mattern, 1994). 

A graph model is used to define both sequential and distributed software as follows: 

102 



Definition 4.1: A message flow graph (MFG) of a software S is a directed graph G = (E,M,s,r, 

1,0), where 

(1) E is a set of events, 

(2) M is a set of messages. It is a binary relation on E (a subset of E X E), referred to as a set 

of directed edges, 

(3) s and r are, respectively, unique send-message and unique receive-message events, s,r E E, 

(4) I and 0 are, respectively, input and output messages. 

The MFG is a representation of a directed graph which shows how input messages are 

transformed to intermediate messages and output messages through a sequence of functional 

transformations in a single-thread software. 

The MFG is deterministic, however, the execution behaviour of a distributed computation is 

nondeterministic. Because of indeterminacy, it is difficult to know the possible execution 

behaviours of a distributed software, to exactly identify the execution behaviour to be tested, and 

to control the software execution for testing a specific execution behaviour. Based on the analysis 

of execution behaviour of distributed software, a message-flow-graph-based model is not suited 

for modeling the execution behaviour of distributed software. Therefore, a Distributed Message 

Flow Graph (DMFG) is proposed. 

Definition 4.2: A Distributed message flow graph (DMFG) of a distributed software DS is a pair 

(D,W), where D is a set of MFG, D = {GpI. Gp2, ... , GPm } where MFG Gpi corresponds to 

process i and W set of communication edges, W = { Cij, ... , cm,n } in a distributed software. Cij 

is a subset of Ei X Ej , where Ei in Gpi , Ej in GPj and Gpi #- Gpj. 

The DMFG consists of a set of MFGs and a set of communication edges showing message flow 

amongst processers in distributed software and provides us a useful and intuitive way of 

expressing execution behaviour in a distributed software. 

103 



We also need the concept of the EventlMeesage Path (EMP) and the Distributed EventlMessage 

Path (DEMP) as basis for building the SMAD tree in my work. 

Definition 4.3: An Event/Message Path (EMP) (Jorgensen & Erickson, 1994) is a sequence of 

event executions communicated by messages. An Atomic System Function (ASF) is an input 

message, followed by a set of EMPs, and terminated by an output message. A Distributed 

EventIMessage Path (DEMP) is a sequence of event executions communicates by messages in 

the same process or between different processes. An DistributedAtomic System Function (DASF) 

is an input message, followed by a set of DEMPs, and terminated by an output message. 

An EMP starts with an event and ends when it reaches an event which does not issue any messages 

of its own. An ASF is an elemental function visible at the system level. Since DEMPs are 

composed oflinked event-message pairs in a distributed computation, they interleave and branch 

off from other DEMPs to provides analogous descriptive capabilities to the integration testing. 

The construction of the DASF reflects the even-driven nature of distributed software. Execution 

of distributed software begins with an event, which we refer to as a port input event. This 

system-level input message triggers the event-message sequence of an DEMP. This initial 

DEMP may trigger other DEMPs. Finally the sequence of DEMPs should end with some 

system-level response (a port output event). Together, the initial and final events together with 

the intermediate distributed events constitute a DASF. As such, DASFs constitute the point at 

which integration and system testing meet, which results in a more seamless flow between these 

two forms of testing. 

We now have all the concepts we need to describe causality and the 'happens before' relationship. 

4.3.2 The Causality Relation 

In a DMFG, it is sometimes impossible to say that one of two events occurred first. The relation 

'happened before' is therefore only a partial order of events in this graph (Lamport, 1978). In 

contrast, events on a MFG are totally ordered, so this order can easily be determined, since it is 

104 



possible to use the same clock to determine the time at which each event occurs. The 'happened 

before' relation defined over E in DMFG determines the causal order of those events. We can 

formalize this relation by defining the causality relation as follows: 

Definition 4.4: In DMFG, the causality relation -> ~ E X E is the smallest transitive relation 

satisfying: 

(1) If eJej, ekj E Ek occur in the same process Pk, and i < j in DEMP, then eki -> ekj. 

(2) If eJej E Sk is a send event and ekj E rk is the corresponding receive event in the same Pk, 

then eJej -> ekj. 

(3) If (ekh elj )E W, then eJej -> elj, where eki E Ek and elj EEl, Ek ;z!:EI. 

What this means is that the causality relation extends the partial order relation defined by the 

standard enumeration of EI, E2, ...... , and En by defining a new relation "->". Informally, the 

causal relationship between events can be stated in terms of the causality relation as follows: An 

event ej may causally affect another ej if and only if ej -> ej-

Any pair of events not related by the causal order are logically concurrent and cannot affect each 

other. The determination of an ordering of events in a distributed system can be described in a 

system of causal timestamps based on partially ordered logical clocks (Fidge, 1991; Lamport, 

1978; Schwarz & Mattern, 1994). When a receive event is executed, the logical clock in the clock 

vector is updated to be greater than both the previous local value and the logical clock of the 

inCOming message. The recording of causal timestamps is useful for detecting whether or not the 

determination of an ordering of events in distributed systems. 

While causal timestamps allow us to determine the relative order of any pair of events, they 

cannot be used to determine if there are any intervening events (Cherirton & Skeen, 1993). This 

means that messages can be delivered in an order that violates causality. As an improvement, we 

extend the -> relationship to include messages. Following definition 4.4 of the causality relation 

-> of events, we define the causality relation of two messages as follows: 

105 



Definition 4.5: In DMFG, the causality relation -> ~ (MUW) X (MUW) is the smallest 

transitive relation satisfying: 

(1) If mj, mj E Mk occur in the same process Pk, and i < j in DEMP, then ffij -> mj. 

(2) If a process receives mj prior to m} then mj -> mj. 

What this means is that there is the same causality relation between message send events and the 

corresponding message receive events. It states that messages between processes can be only be 

delivered in a causal order, since there is no notion of a deadline or expiration time to the data. 

Causal message ordering guarantees that the order of delivery of messages does not violate 

causality in systems of communicating processes. Typically, messages are delayed at the receiver 

until all causally preceding messages are delivered. Specifically, if two input messages are 

sending to execute the same DASF and the sending of one input message happens before the 

sending of another input message, then the output message corresponding to the first input 

message is delivered before the second output message at all processes in the DASF. 

One of the major problems in dynamic testing of distributed software is reproducible software 

execution. Distributed software often makes non-deterministic selections of interleaving events. 

Thus repeated executions of distributed software with the same test data may result in the 

execution of different DEMPs. We also can examine repeated executions of different software 

paths which derive from the same input message to test the casual relation between messages. 

4.4 The SMAD Tree 

The processes which will be considered in distributed system are message-driven. An input 

message could be a request from another process to perform a service, or a report that an event 

has occurred. As a response to an input, the process will become active and an output message 

will be produced as a result. An intermediate message will be used to denote a sequence of 

inputl(expected) output pairs, which drive the DASF from its input message to its output message. 

An output message could be a command to another process or null. After the output message has 

106 



been produced, the process either terminates itself or waits for further input messages. In this 

section, we extend the concept of SlAD tree for the Quality Programming by Cho (1988) to 

SMAD tree specifying all possible delivered messages between events. 

To guide testers in testing distributed software, the tool, the SMAD tree, is presented. Extending 

this concept of the SIAD tree, we can specify all possible delivered messages between events by 

means of the "Symbolic Message Attribute Decomposition" (SMAD) tree. It combines with 

classification and syntactic structure to specify all delivered messages in the DMFG. In the upper 

level of the SMAD tree, we classify all delivered messages into three types of message: input 

message, intermediate message and output message. Each type of message has a syntactic subtree 

describing the characteristics of messages with a time domain so that it can be determined 

whether messages were delivered in an order consistent with the potential causal dependencies 

between messages. The structure of the SMAD tree is shown in Figure 4.8: 

'1' '1' 
happen I happen I 
before I before I 

s_name c_name 

XI,Xl.l,X1.2,X1.3,Xl.l.l.l, ... are tree symbols, 
s_name, c_name ... are tree elements 

Xl 

'1' 
happen I 
before I 

c_name 

Syntactic 
Structure 

'1' '1' 
happen I I happen 
before I I before 

s_id c_id 

Figure 4.8: A tree structure of the SMAD tree 

The SMAD tree is used to define test cases, which consist of an input message plus a sequence 

of intermediate message corresponding to messages in DEMPs, to resolve any non-deterministic 

choices that are possible during software execution, e.g., exchange of messages between 

processes. In other words, there are two uses of the SMAD tree: one is to describe abstract syntax 

oftest data (including temporal aspects); another one is that one SMAD tree is instantiated for 

each test, to hold data occurring during the test. 

107 



Example: A distributed database system for a Grade Report 

Consider a grade report database system that has four relations (shown in Figure 4.9) distributed 

over two different processes which communicate with each other by message exchange. 

STUDENT COURSE 

student id 
student name 

first name surname 

course id course name teacher id 

CS2010 Data Base N4508 
945216775 Huey-Der Chu 

TEACHER 

GRADE teacher id teacher name 

student id course id score N4508 Michael Lee 

945216775 CS2010 B 

Figure 4.9: A distributed database system for grade report 

Query: Give a Student name and Course name to find the score of this student in this course. 

To answer this query, we use the DMFG to describe their behavior in Figure 4.10: 

e20 : Initial event , elO: Ini!ial event _____ _ 

,'student name \ ' 
course name.': -~-. 

, 
\ 

........ - ...... 
Process 1 

Process 2 
e23 : Final event 

- EMP 

••• DEMP 

- -:.- Message 

Figure -+ 10: A DMFG for a computation for a grade report 

108 



In the get-c_id event, we can get the course id for the given course name from the COURSE 

relation and pass this course id to the show-score event. In the get-s_id event, we also can get 

the student id for the given student name from the STUDENT relation and pass it to the 

show-score simultaneously. When receiving both the course id and the student id, we can get the 

value of score from the Grade relation. The simple SMAD tree for messages in this DMFG is 

shown in Figure 4.11. A detailed SMAD tree describes the decompositions of messages. 

index 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

rule index 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

subrule index 

1 
2 
3 
4 

symbol 

Xl 
X1.1 
X1.l.1 
Xl. l. l.1 
X1.1.l.l.1 
Xl.l.2 
Xl.2 
Xl.2.1 
Xl.2.2 
Xl.2.3 
Xl.3 
Xl.3.1 

tree element 

!llessage 
mput message 
studenCname, K1 bytes 
first name, K2 bytes 
last name, K3 bytes 
course_name 
intermediate message 
studenUd 
teachecid 
course_id 
output message 
score, K4 bytes 

(a) 

rule 

1,7 
2,4 
3,4 

4,8,9 

5,10 
5 

5,10 

4,6 

rule description subrule index 

Kl = K2 + K3 1,2 
K2 1 
K3 2 

Excluding characters + * /' "< > & $ ; : ... 
Including characters 0 1 2 3 4 5 ... 
K4 3,4 

Happened before studenUd 
Happened before course_id 

Happened before teachecid 
Happened before score 

(b) 

subrule description 

lsK2s20 
2 s K3 s 15 
1 s K4 s 3 
K4 is an integer 

(c) 

remark 

length of first name 
length of last name 
length of score 

Figure 4.11: A simple SMAD tree for a grade report database system 

109 



4.5 A Framework For Testing Distributed Software 

In this section, we develop a framework for the test data generation and test result inspection of 

distributed software. We have extended the concept of the SIAD/SOAD tree to a new construct 

which we term the SMAD tree making it a more powerful technique for test data generation and 

test result inspection in distributed software. 

A test data input message can be generated based on the input message part in the SMAD tree 

and rules for setting up the time domain of messages which are incorporated into the tree (initial 

event). The causal message ordering can be inspected based on the 'happen before' rule in the 

SMAD tree during the lifetime of the computation. The test results can also be inspected based 

on the output message part in the SMAD tree (final event), both with respect to their syntactic 

structure and the causal message ordering under repeated executions. The framework is shown 

in Figure 4.12. 

Statistical Analysis 
--------------------------T------------------------ ...-
When to stop testing 

~sarnPle size 

Test Data 
Generator 
of Messages 

provide 
information 

I 

How good is the software 

Distributed , 
Software ~_~: 

under Test 

t quality 
, measurement 

Test Results 

Validator 

-

~ provide t 
information , 

Test Bed with Specification 
(SMAD Tree) 

Functional Requirements t Quality Requirements 

Problem Modelling I---

Figure 4.12: A framework for distributed software testing 

110 



4.5.1 Statistical Analysis 

Testing a piece of software is equivalent to finding the defect rate of the product unit population 

generated by the software. The defect rate is defined as the ratio of the number of product units 

that are defective to the total number of product units that the software has generated. The total 

number of product units, denoted by N, of any non-trivial piece of software ranges from 

extremely large to infinite, but can still be treated as an object of statistical interest. Although 

impossible in practice, it can be conceptually assumed that all N units have been produced and 

analyzed. Each of them can be classified as defective or non-defective. If there are D units that 

are defective, then the product unit population defect rate, denoted bye, is e = DIN. Since it is 

impossible to obtain all N units, the best approach is to estimate by means of statistical sampling. 

If the population is conceptually shuffled, it provides a basis for applying the principle of 

binomial distribution sampling. The application of the distribution often arises when sampling 

from a finite population consisting of a finite number of units with replacement, or from an 

infinite population consisting of an infinite number of units with or without replacement. The 

probability of getting x defectives in a sample of n units taken from a population having a defect 

rate of e is given by the binomial distribution: 

b(x) = (:) 9'(1- a)~' 
The mean and variance of the distribution are given by: 

J.t = ne 

cr2 = ne(1 - e) 

A sample of n units is taken randomly from the population. If it contains d defective units, then 

the sample defect rate, denoted by eO, is eO = din. If n is large enough, then the rate eO can be 

used to estimate the product unit population defective rate e. These two major testing issues are 

discussed in the following sections. 

How good the software is after testing 

The defect rate of the population can then be estimated from d. The estimate may be expressed 

in an interval called JOOc% confidence interval, where 0 $ c $1. An approximation of the JOOc% 

confidence interval of the population defective rate may be computed by: 

11l 



° v' a°(1 - aO) J ' a + tn-l, CY/2 ----­
n 

(4.1) 

where tn-l,CY/2 is called the value of the Student t-distribution at n - 1 degrees of freedom and 

ex = 1 - c is called a risk factor (In statistics, a binomial distribution can be approximated by a 

normal distribution). Formula (4.1) can be used to estimate the mean of the product unit 

population, denoted by 1.1 • Once the value of 1.1 is estimated, the product unit population defect 

rate e can be computed by 1.1 = na. If the value of a is acceptable, then the product unit population 

is acceptable. The piece of software is acceptable only when the product unit population is 

acceptable. Therefore, the estimated product unit population defect rate a can be viewed as the 

software quality index. 

When to stop testing 

The accuracy of the estimates depends on the sample size. In general, the larger the size, the more 

accurate the estimate. The value of n may be computed by the formula: 

n= (4.2) 

where a is the desired accuracy factor such that I a - aO I = aa, and z is the value of z aJ2, which 

is the number of standard deviations in the normal distribution such that the area to its right under 

the normal curve is al2. The value of z aJ2 is the same as tn-l, CY/2 if n is large, e.g., n ~ 30. Since 

the population defect rate a is unknown, the determination of n requires dynamic adjustment 

during sampling. An adjustment procedure, which is iterative in nature, is given as follows: 

112 



Stepl: Take an initial sample of a small size, no units (e.g., 50) from a software product population 

by executing no input units. 

Step2: Let 00° be the defect rate of the sample of size no, 

Step3: Compute the sample size 11i+l by formula (4.2) as follows: 

11i+l = 
z2(1 - 8iO) 

u20iO 

where 8iO is the cumulative defect rate of the cumulative sample units 11i already taken 

after the ith iteration, for i = 0,1,2, ... , 

Step4: If 11i+ 1 > 11i, then take (11i+ 1 - 11i) additional units and repeat Step3 and Step4. 

StepS: Else stop. The total number of sample units taken is sufficient. 

The final sample defect rate is then used to estimate /..I. and cr2. In any factory it is almost 

impossible to produce a defect-free product lot: therefore, the conformance of product quality 

is usually measured by the defect rate being less than an acceptable number, e.g., 8 < 0.01. With 

a statistical sampling method, a confidence level of 98% certainity can be imposed on the final 

value of the estimated defect rate. 

4.5.2 Quality analysis 

If the software output is defined in terms of the "product unit", then the output is a coIlection of 

product units called the output population of the software. For any non-trivial software, the 

population contains a very large number of units. The goal of software testing is to find certain 

characteristics of the population such as the ratio of the number of defective units in the 

population to the total number of units in the population. The ratio may be called the defect rate 

of the population and may be imposed on the software as the software quality index. 

The sampling processing procedure discussed in section 4.5.1 above represents the drawing of 

a product unit at random from a binomial distribution. If the number of defective product units 

in the sample is less than the tolerable number of defecti ves determined by the selected sampling 

plan, then the software can be delivered to users as acceptable. Otherwise, the developer should 

improve the quality by correcting the errors found during the test. 

113 



The quality statement defines software quality that is equivalent to p% of the output population 

being non-defective (the acceptance level). The result of the iterating sampling process, sample 

n, will be dynamically saved into a sample size file for providing an information to the test data 

generator. The values of confidence interval also is computed and will be saved into a file for the 

range of defect rate for supporting the evaluation of software quality by the test results validator. 

To analyse the failure data collected during the statistical testing a reliability model is need. The 

model is based on a control chart with three regions, reject, continue and accept, as shown in 

Figure 4.13. 

Reject 
Continue 

sampling 

Accept 

r 

Sr: the cumulative number of defectives in the sample of r units 

Figure 4.13: A control chart for statistical analysis 

The defect rate is plotted in the chart. As long as the plots fall in the continue region, the testing 

has to continue. If the plot falls in the rejection region, the software reliability is so bad that it 

has to be rejected and re-engineered. If the plots fall in the acceptance region, the software can 

be accepted based on the required quality statement with given confidence and the testing can 

be stopped. 

114 



4.5.3 Test Data Generator of Messages 

The process of automated test data generation follows as the following steps: 

Stepl: Generate the number of test data M for each sample by random number seed, 

Step2: The construction of test data using the input message part of the SMAD tree can be 

accomplished as follows: 

2.1 Let K be the number of elements in the SMAD tree. Each element in the tree is indexed 

by a number ranging from 1 to K. A random number selected from [1,K] is produced 

by using a random number generator. 

2.2 The element with its index equal to the random number is selected. 

2.3 If the element has a parent in the SMAD tree, then go backtracking to select it. 

Step3: A total of M elements will be randomly sampled from tree for designing test data. 

For example, there are 6 elements in the SIAD tree of Figure 4.6. A test data includes one student 

id and several course ids. The student id is generated from the index 2 of the SIAD tree. Two 

course ids are to be chosen for a sample using random number generation producing 5 and 6. The 

elements in index 5 and 6 are drawn for constructing the test data with the student id. According 

to this process, the test data can be generated as Table 4.2: 

Index 

2 

4 

5 

6 

Table 4.2: A test data is drawn from SIAD tree 

Tree Symbol 

X1,l 

X1,2,1 

X1,2,1,l 

Xl,2,2 

Tree Element Remarks 

student id Sampled element 

CS Descriptive element 

0210 Sampled element 

AM Sampled element 

In this sampling, it takes two course ids - 'CS021O' and' AM'. The second course id is used 

to conduct the invalid test (incomplete data). 

115 



4.5.3 The Construction of the Causality Relation 

The 'happened before' rule in the SMAD tree can be used for examining the causal message 

ordering. A partial order of all possible messages between events can be built based on the 

'happened before' rule in the SMAD tree. For example, there are six messages, studenCname, 

course_name, studenCid, teachecid, course_id and score, in SMAD tree for a grade report 

database system as shown in Figure 4.11. The rules 8,9, 10 are therefore only a partial order of 

messages in this system. According to definition 4.5, Figure 4.14 shows a space-time diagram 

for the causality relation. 

Porc 1 

Porc 2 

Figure 4.14: A causality relation for messages 

4.5.4 Test Results Valida tor 

The output message part in the SMAD tree can be used as a tool for describing the expected result 

which satisfies the user's requirement and as a basis for analyzing the output messages 

automatically, particularly in non-numerical applications such as an interpreter and updating a 

data base. 

Validate the syntactic structure 

The result of executing an input by the software can be classified into two categories: defective 

and non-defective. Each product unit must be carefully analyzed for its conformance to the 

software requirements in order to reach the classification. The outcome of the analysis leads to 

classifying the output into either of the categories which, in turn, results in the acceptance or 

rejection of the software. Any unfair bias can increase the producer's risk of having good software 

rejected or can increase the user's risk of accepting poor software. 

116 



Test results can be inspected by manual, semi-manual or automatic means, which depend on 

software applications. A SMAD tree can be used as a tool for describing the expected result which 

satisfies the user's requirement and as a basis for analysing the product unit automatically, 

particularly in non-numerical applications such as an interpreter and updating a data base. It is 

a data structure containing a record for each output element with fields for the attributes of the 

output element. 

Based on the SMAD tree, the process of automated test result analysis is shown in Figure 4.15: 

read 
cliaracter 

lexical 
analyzer 

pass token 
I-----~ 

get next token 

syntax 
analyzer 

match the token with the 
tree element and examine 

~-...-:;.-~ the rules 

Figure 4.15: The process of test result analysis 

The lexical analyzer is the first phase of inspection. It main task is to read the characters of test 

results and produce as output a sequence of tokens. In this process, the syntax analyser obtains 

a string of tokens from the lexical analyser, as shown in Figure 4.15, and verifies that the string 

is defective or nondefective by matching the token with the tree element and examining the rules 

in the SMAD tree. According to the different types of software applications, the algorithm of 

inspection based on its SMAD tree can be separately designed. The main advantage of using the 

SMAD tree here is that we do not need a test oracle to compute expected results. The SMAD tree 

can be used directly for automatic inspection whether or not the results produced by the software 

are correct. 

Examine the causal message ordering 

Because of the existence of non-deterministic behaviour, it is generally impossible to test all 

distinct execution behaviours of distributed software by proper selection of test cases and 

reproduce previous test results by repeating execution with the same input. The causality relation 

117 



between messages is a fundamentally new approach to the analysis and control of execution 

behaviour of distributed software. Based on the 'happen before' rule in the SMAD tree, we can 

receive an accurate representation of the message orderings, see all causal relationships, and 

derive all possible totally ordered interleavings. As a result, the technique greatly reduces the 

number of tests required. It is never necessary to perform the same computation more than once 

to see whether different message orderings (interleavings) are possible. However, we need to test 

the causal message ordering to guarantee that order of delivery of messages does not violate 

causality in systems of communicating processes. 

We can examine the execution of different software paths which derive from different test data 

or from the same test data (repeated execution) to test the causality relation between messages. 

Specifically, if two input messages are sending to execute the same DASF and the sending of one 

input message happens before the sending of another input message, then the output message 

corresponding first input message should be delivered before the second output message at all 

processes in the DASF. Figure 4.16 describes this behaviour in DMFG. 

Clientj 

for a grade report 

Clientj 

Figure 4.16: A DASF with two clients in distributed software 

Consider a DASF on a distributed computation with receiving two input messages mj and m} We 

can test the output messages corresponding mj and Illj using causality relation to ensure the causal 

consistency of processes in this distributed software. 

For example, there are two EMPs and one DEMP in Figure 4.10: 

118 



According to this query, we can get the DASFi based SMAD tree as shown in following: 

DASFj : eilO -> ei20 -> EMFil -> DEMFi -> ei23, 

where eilO is an event for generating student name ( input message mi ), 

ei20 is an event for generating course name (input message mi), 

ei23 is an event for inspecting test result (output message). 

Figure 4.17 shows a space-time diagram for the events in the computation with two different 

input messages in two different cases. There are two input messages mi and mj corresponding 

two different execution behaviours: DASFi for clienti and DASFj for clientj, where 

, 
",I 2 ' 3 4 

eilO eill ",ejlO ejll 
Pore I • 

~ 
• \. :.( :.( 

Pore 2 • 0 • • • :.( 1 , :(3 4 5 6 7 8 
ei20 ci21 • ej20 e",,'") ej21 ej22 ei23 ej23 1_-

eilO -> ejlO ~ ei23 -> ej23 (true) 

(a) Case 1: causal message ordering is consistent 
, 

Porc 1 

, , 1 '2 3 4 
~eilO ~ ejlO ei11 ejll 

: • :::;: :.( :.( 

• • • • 
• ,.." 1 " 

,.." 3 4 5 6 7 8 
ei20 Ci21 • ej20 ej21 e"." e·')", ej23 ei23 J-- 1_-

Pore 2 

eiIO-> ejlO~ ei23-> ej23 (false) 

(b) Case 2: causal message ordering is inconsistent 

Figure 4.17: A space-time diagram of a distributed computation 

119 



I can observe the execution behaviour from this space-time diagram. In case 1 in (a), I can test 

that the causal message ordering is consistent. However, when we examine case 2 in (b) , we can 

see that it violates causality, because the message for clientj at e22 should arrive later then the 

message for clientj according to my expectation. In this case, student i will get a grade report with 

studentj's grades. 

4.6 Conclusion 

In the rapid advance of computer technology, distributed computing systems will be the major 

trend of current computer system design. In order to take the advantages of these new systems, 

distributed software engineering become very important. Because of indeterminacy, it is 

generally accepted that testing distributed software is more difficult than testing sequential ones. 

However, the area of distributed software testing has received little attention previously. 

In this chapter, a graph model suited for testing purposes is proposed for modeling the execution 

behaviour of distributed software. To guide testers in testing distributed software, the SMAD tree 

which specifies all possible delivered messages is presented. The SMAD tree is used to define 

test cases, which consist of an input message plus a sequence of intermediate message, to identify 

the execution behaviour to be tested. Based on the SMAD tree, I develop a framework which not 

only can generate the input messages and a sequence of intermediate message pairs (in/out 

events) with their time domain, but can inspect the test results, both with respect to their syntactic 

structure and the causal message ordering under repeated executions. 

120 



Chapter 5 

The Design And Implementation of SITE For A 
Simple Banking Application 

5.1 Introduction 

Theory is a wonderful thing, but from the perspective of the practicing engineer, the most 

elegant theory ever devised is entirely useless if it does not help us build systems for the 

real world. 

- Grady Booch (1991) 

The framework of automating statistics-based testing and the statistics-based integrated test 

environment have been presented and described in previous chapters. In this chapter, a banking 

application written using Java Remote Method Invocation (RMI) and Java DataBase 

Connectivity (IDBe) will show the testing process of fitting it into SITE. Based on the 

framework of automating statistics-based testing, this chapter is arranged in the following 

sections as shown in Figure 5.1. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - --

III 

5.3 

Ba 
App 

nking 
Iicatton 

FAST 

, 
, 
, 

5.4 

~ Modelling 

5.7 

~ 
SITE 

design 

i 
I 

I 

5.5 I 

I 

I --. Requirement I 

specification I 

I 

I 

5.8.2 

--. SITE t--
coding 

i 
I 

,It 
I 

I 5.9 
I 

I Test and I 

I integration 
I 

I t_'----------'--- ----00--. 

5.6 5.8.1 

o 0 - • - 0 - - .- - 0 0 0 - - - f -0 - - - - -, 

Application --. Application-
design coding 

--. 
I 

Delivery 

Figure 5.1: The process of developing the banking application with SITE 

121 



What this implementation would look like to the industrial user is described in Section 5.2. A 

simple banking application is described in Section 5.3. Section 5.4 discusses modelling activities 

of a physical or conceptual phenomenon being considered for automation via a piece of software. 

The requirements specification for the application design and SITE design is defined in Section 

5.5. Section 5.6 and Section 5.7 show that application design and SITE design are to proceed 

concurrently based on the requirement documents prepared. Section 5.8 shows concurrent 

implementations of application design and SITE design. The test and integration is illustrated 

in Section 5.9. On successful completion, software delivery takes place. How the test of the 

application is conducted together with some comments are given in Section 5.10. 

S.2 What The Tool Looks Like 

SITE, a statistics-based integrated test environment, provides an operational environment that 

automates many tasks in the testing process for Java client/server applications which can be run 

across the SUN/Solaris and the PCIWindows platforms. The capabilities provided by the 

environment can be divided into control components (the Test Manager and the Test Driver), 

computational components (the Modeller, the SMAD Tree Editor, the Test Data Generator, the 

Test Results Validator, the Test Paths Tracer and the Quality Analyst) and an integrated database. 

SITE provides an easy to use menu-driven interface and searnlessly handles the complexities of 

the automated testing of client/server applications. 

The cost of testing with SITE is higher, because there is more front-end test planning in the work 

of developing the activities of Modelling and Requirement Specifications, however, this is 

effectively balanced by less test operation, since testing can be automatically achieved and the 

quality index can be estimated. Before using of SITE for automated test execution, a user need 

to do some tasks as follows: 

• Modelling. The modelling activity includes: firstly, modelling of inputs and outputs. Inputs 

are modelled in terms of types of input data, rules for constructing inputs and sources of inputs. 

The modelling of output includes the crucial definitions of product unit and product unit 

defectiveness on which the design and testing of the application must be based. This part of 

122 



the modelling includes output quality planning, in which sampling methods and parameters 

for software testing and the acceptance procedure are determined. Secondly, modelling of the 

application. This activity is analogous to the modelling of a factory. The application itself, as 

distinct from its output, is modelled in terms of the description of the process being automated, 

rules for using inputs, methods for producing outputs, data flows, process control and methods 

for development the software system. A Distributed Message Flow Graph (DMFG) can be 

used for modelling the application. 

The result of the modelling activities is a document that represents a through understanding 

of the problem that the proposed application is intended to solve . 

• Requirements Specification. It is the activity of identifying all of the requirements necessary 

to develop the application and fulfill the user's needs. This requirements cover all input, 

processing and output requirements. The input domain of the application, that is, the types of 

input, rules for using the input and constraints on using the input, is identified from the 

modelling document and refined. The output requirements are specified for both the software 

system and for each module of the system and include refinement of the product unit and 

product defectiveness definitions. the SMAD Tree Editor in the SITE is a tool to edit these 

requirements and it saves back to the SMAD tree file in the integrated database. 

• Modification of the Test Data Generator and the Test Results Validator. The design and 

implementation of these two tools depends on the SMAD tree file, therefore, some procedures 

inside these two tools are need to be modified for different applications with different SMAD 

tree files. 

Once these works have been done, the test can be automatically run by the Test Driver. An 

example, a simple banking application, which will help to clarify the use of SITE for the 

automated testing of client/server applications in following sections. 

123 



5.3 The Simple Banking Application 

A banking application is an embedded software system which is commonly seen inside or outside 

banks to drive the machine hardware and to communicate with the bank's central banking 

database. This application accepts customers requests and produces cash, account information, 

database updates and so on. In this chapter, a Simple Banking Application (SBA) will be designed 

as a 3-tier client/server application as shown in Figure 5.2 within a banking enterprise, more 

specifically a corporate and distributed database collection for the personal data of customers, 

the balance status of customers, the password data and account type data. The corporation seeks 

to assimilate their data sources into one virtual data store and access it through a common 

interface. 

Client 1 

'" 
on Anick Application Database 

Server Server 
_(RMI) (mSQL) 

Remote 
Object ... ... I ~uslQm!.:d 

Client 2 ... ... I check I I balance I on Kieldcr 
balance 

Database 

• I I 
on Kenton 

• deposit ... .... II pa:"11 • 

/ I 
I type I I withdraw 

Database 
Client n on Kielder on Kielder 

on Anick 

Figure 5.2: Three-tier System Structure 

There are four business activities at this application: check balance, deposit money, withdraw 

money and print the statement. One of transactions is as shown in Figure 5.3. 



Input : account id, account type and password 

~-------------------------------------
Business activities: 

1. Check the balance 

2. Deposit 500 pounds 

3. Check the balance 

4. Withdraw 250 pounds 

5. print the statement 
~-------------------------------------

OUtput: balance or a banking statement 

Figure 5.3: A transaction of the banking application 

This standard transaction will accept customer requests (checking, depositing, withdrawing and 

printing) after the customer has input the account id, the account type and the correct password 

on the Client site. SBA will retrieve the balance from the database on the Database Server site, 

process the request on the Application Server site and save the balance back to the database. It 

also will produce the balance or print a banking statement to the customer. 

5.4 Modelling 

The modelling tasks are to develop a product description and process description, based on the 

concept that an application is analogous to a factory. The results of performing these tasks are 

recorded in a modelling document. 

5 .... 1 Manufacturing Process 

The stages of the application process are identified. As a supplement, a DistributedMessage Flow 

Graph (DMFG) for the banking behaviour is shown in Figure 5.4. 

125 



, , 

. -.. Message 

eij Event 

, , 

Database Serve~ 

BAN!<ING 

Application Server' , , , , 

Database Server 

,b;mking type 

........ -.... 

Figure 5.4: A DMFG for a transaction 

The input test data can be decomposed into account id, accounCtype id and password. In the 

get-Ud event (e21), we can get the account type id for a gi ven account type name from the TYPE 

object and pass this type id to the BALANCE object. In the check-a_id event (ell), we also can 

check the account id for a given account name from the CUSTOMER object and pass it to the 

check_psw event (e22) in the PASSWORD object simultaneously. In PASSWORD object, we get 

the account id and recei ve the password. If the password is correct, the account id will be passed 

to the BALANCE object, otherwise, the exception will be handled. When receiving both the 

account id and the account type id in BALANCE object, it can retrieve the balance using the 

look_up event (el2) and get the banking type to select the choice event (e13) which will be one 

of the banking activity to execute the balance checking event (e31), the deposit event (e32), the 

withdraw event (e33) and the statement event (e34) from the remote BANKING object. The 

amount of money will be requested for the deposit event and the withdraw event. After executing, 

it will save the balance back to the database using save_back event (eI4) or produce the output 

the balance. 

1~6 



5.4.2 Type of Raw Materials 

The raw materials are the inputs to the application. In this application, the raw materials are: the 

value of the accounUd, the accounCtype, the password, the types of banIGng activities and the 

amount of money in relation to the type of banking activity. 

5.4.3 Characteristics of The Raw Materials 

Once the types of raw materials have been identified, the characteristics of each material must 

be analysed. 

I. The accounUd. The value of the account id will consist of 6 numerical characters. The first 

two characters will denote the year in which the customer opened the account and the latter four 

characters will be made up of any of the characters in the set {0123456789}, for example, 980321 

is an id for an account that has been opened by a customer in 1998. 

2. The account_type. There are three types of account in this application, the current account, the 

high rate account and the capital account. 

3. The password. The value of the password will consist of 4 numerical characters which are 

chosen by a customer from any of the characters in the set {0123456789}. 

~. The types of banIGng activities. There are four types of activities in this application, checking 

the balance, depositing the money, withdrawing the money and printing the statement. These will 

be shown in menu style on the screen and the customer wiII select one of the activities. 

5. The amount. The value is the numerical amount to be cashed and will be represented by a 

decimal number, for example, 1324.50. 

127 



5.4.4 Rules for Using the Raw Materials 

The following rules for using the raw materials are identified: 

1. The order of input will be to input the accounUd and the account_type first and the password 

later. After checking the password, the selection menu of banking activities will be shown on the 

screen requesting the customer to select one business activity. The amount of money will be 

requested if customers select the deposit and withdraw activities. 

2. The account id will be created identically. No customer will have the same account id as 

another. 

3. When the data for new customers is created, it must be saved on the banking database with the 

customer's name, address and their mother's maiden name. 

5.4.5 Definition of Product Unit 

Product unit is what is under inspection. This can be either the result of a process or the order of 

execution of the process. In this application, the product unit on the client site is defined to be 

the bank statement which includes the customer's name, address and balance. The product unit 

on the server side is the ordeling of behaviours during the execution of the application. 

5.4.6 Definition of Production Unit Defectiveness 

Based on the product unit definition, a product unit on the client site will be considered defective 

if the amount of balance is wrong after execution of the application or the value is out of range 

and a product unit on the server site will be considered defective if it does not concur with the 

causal message ordering. 

5 .... 7 Data Modelling 

In the banking application, a distributed database is created for the application being developed. 

The way of defining the logical form of the data which is manipulated by the application is to 

Use the Entity-Relation (E-R) Model. The E-R Model for the transaction is as shown in Figure 

\3 and the banking application is as shown in Figure 5.5. 

128 



Customer 
....... ___ ---'.....'m 

Password 

Figure 5.5: A E-R model for the banking application 

5.5 The Requirements Specification 

The major activity of the requirements specification is to specify the detailed input, output and 

processing requirements for the design of the application. The result of the requirements 

specification phase of application development is a requirements specification document that can 

be used to communicate with the application developers, designers, test designers and users. 

Following the steps of requirements specification, the software design and test requirements for 

the development of the banking application are identified below. 

5.5.1 Software Design Requirements 

The software design requirements include input domain and processing. 

11Iput Domain 

The input domain of the software is defined using a SMAD tree and input domain rules, as shown 

in Figure 5.6. 

129 



index symbol element rule index 

Xl account - id 6 
2 XU open_year 1 
3 Xl.1.1 accouncnumber 2 
4 X2 account_name 
5 X2.1 firsCname 

6 X2.1.l surname 

7 X3 address 
8 X3.1 number 
9 X3.1.l streeCname 
10 X3.1.l.1 posCcode 
II X4 accounctype 3,8 

12 X5 password 2,6 
13 X6 banking type 
14 X6.1 check_balance 4 
15 X6,2 deposicmoney 4,7 
16 X6.2,1 money _amount 5 
17 X6.3 wi thdra w _money 4,7 

18 X6.3.1 money _amount 5 
19 X6.4 statement 4 
20 X6,5 exicbanking 4 

rule index rule description remark 

1 80,81, ...... ",,99 
2 integer, length = 4 
3 "Current", "High rate", "Capital" 
4 check=" 1", deposit="2", withdraw="3" 

statement="4", exit="5" 
5 positive real number with floating point 
6 happened before banking type 
7 happened before money _amount 
8 happened before type id (intermediate message) 

Figure 5,6: The input message of SMAD tree for a banking application 

Processing 

All of the functions that the application must perform should be specified, including 

manipulation of data, methods of producing outputs, data flO\vs, process control features and so 

on, Whether the designer follows a function-oriented or object-oriented design approach, all 

functional requirements should be identified at this stage of software de\elopment. The use of 

an Ada-based Program Description Language (POL) for the function of withdrawing and 

depositing money in the banking application is shown in Figure 5.7, 

130 



procedure Withdraw_money (AC_ID: accounUd; TP _ID: type_id; 
CASH: amount; BAL: in out balance) is 

- Function checks the balance in the database to see if the amount is 
- enough to take from this transaction 

begin 

GeCbalance_from_BALANCE_table; 

if balance >= amount then 

balance := balance - amount; 
Save_balance_back_BALANCE_table; 

else 
princerror _message; 

end if; 
end Withdraw_money; 

procedure Deposicmoney (AC_ID: accounUd; TP _ID: type_id; 
CASH: amount; BAL: in out balance) is 

begin 

Get_balance_from_BALANCE_table; 
balance := balance - amount; 
Save_balance_back_BALANCE_table; 

end Deposit_money; 

Figure 5.7: Requirements specification using a PDL 

5.5.2 Test Requirements 

The test requirements for the development of test environment includes the definitions of product 

unit and product unit defectiveness, software acceptance criteria and sampling methods. 

Definition of Output Domain 

The definition of output domain includes the product unit and the product unit defectiveness. It 

can be defined using the SMAD tree as shown in Figure 5.8. 

131 



index symbol 

1 Xl 
2 Xl.l 
3 Xl.l.1 
4 X2 
5 X2.1 
6 X2.1.1 
7 X3 
8 X3.1 
9 X3.1.1 
10 X3.1.1.1 
11 X4 

rule index 

2 

3 

4 
5 
6 

element 

account _id 
open_year 

accounCn umber 
accounCname 

firsCname 
surname 
address 
number 
streeCname 
posCcode 
balance 

rule description 

80,81, ......... ,99 

integer, length = 4 

integer, correct amount 

happened before accounCname 
happened before address 
happened before balance 

rule index 

4,5,6 
1 
2 

3 

remark 

Figure 5.8: The output message of SMAD tree for a banking application 

Software Acceptance Criteria 

The acceptance critelia for the sampling method in this application are: a sample of II units is 

to be taken randomly from the product unit population such that the sample defect rate eO and 

the population defect rate e differ with an accuracy factor of 0.1, that is I e - eO I = 0.1 e and 

e < 0.01. 

Sampling Method 

The construction of a sampling input unit starts with random sampling of elements from the SIAD 

tree of the piece of software. The sampled elements are used to construct the test input unit. The 

software processes the unit and generates a product unit. There are three test methods employed 

in this implementation: 

I. One for functional testing, to test whether or not every function is tested: the test coverage is 

to test all banking types (check, deposit, withdraw and print) which should be traversed at least 

once. 

132 



2. One for statistical testing, to test whether or not the quality can be achieved: the rule of "when 

to stop testing" is that a sample ofn units is to be taken randomly from the product unit population 

to estimate the defect rate of the software product population. This process is equivalent to 

sampling a product unit from the product unit population of the application. 

3. One for invalid testing, to test whether the application can handle erroneous input test data. 

In other words, the invalid test is for testing a piece of software's capability to handle imalid 

data. The input test data are constructed by generating data that go against the rules and 

sub-rules defined in the SIAD tree. 

5.6 The design of the Banking Application 

According to the software design requirements, this application is designed as a three-tier 

client/server system which has three basic components: the client, the database server and the 

application server as shown in Figure 5.2. SBA consists of three modules with two remote 

databases as shown in Figure 5.9. 

Client Site 

Database Server 
on Kielder 

Application Server Site 

Database Server 
on Kenton 

Figure 5.9: The design of the simple banking application 

(Kielder and Kenton are the names of the two machines used during the actual experiment.) Each 

module function in this application is described below: 

133 



5.6.1 The Password Checker 

The Password Checker will receive input data, the account id and the password, from the user 

on the client site. It initiates the database on the database server and uses the account id and the 

input password to check the input password with the password in the PASSWORD table. If these 

two passwords do not match, it will print the error message. If the password is valid, the account 

id will be passed to the Banking Data Manager. 

5.6.2 The Banking Data Manager 

The Banking Data Manager has three main tasks on remote databases. They are to look up, to 

save back and to print the banking statement. 

1. To look up. The Banking Data Manager will retrieve the account type id from the TYPE table 

in the database according to the account type name which is an input data from the user. To get 

the balance with the account id and the type id, the SQL command SELECT is used as follows: 

SELECT balance FROM BALANCE WHERE accounUd='970001' and accounUd= '01'; 

The value of balance will be delivered to the Banking Activity Executor which will call a remote 

object on application server site. 

2. To save back. When the business activity is completed, the value of balance will be saved back 

to the database using the SQL command UPDATE as follows: 

UPDATE BALANCE SET balance= balance WHERE accounUd='970001' and accounUd= '01'; 

3. To print the banking statement. When the user selects the business activity for printing a 

statement, the Banking Data Manager will retrieve the account id, the type name, the customer's 

name, the customer's address and the balance from remote databases and produce a banking 

statement for the customer. 

134 



5.6.3 The Banking Activity Executor 

The Banking Activity Executor receives the account object and executes three acti\ities, 

checking the balance, depositing money and withdrawing money, according to the selection from 

the user on the client site. The account object includes five data items (the client's host name, the 

account id, the account name, the address name and the balance) and methods for getting these 

data items. The banking activity executor uses the Java RMI to make calls to a remote object on 

the application server on to execute the balance checking, the deposit event and the withdrawal 

event. 

I. The balance checking. It is a simple procedure to return the value of balance. 

2. The deposit event. It adds an amount to the account's balance. 

3. The withdrawal event. It checks whether or not the account's balance exceeds the withdrawal 

amount. If yes, it subtracts this amount from the account's balance, otherwise, it raises an 

exception event. 

It will send the account object back to the banking data manager. The banking activity executor 

can allow as many connections to itself from client sites as it wants and display the ordering of 

the events. 

5.7 The Design of the Integrated Test Environment 

According to the following test requirements, SITE is designed for the banking client/server 

application. 

• To set up test requirements, including the functional requirements and quality requirements, 

• To execute automated testing until it has been sufficiently tested (when to stop testing), 

• To re-execute the input units which have been tested (regression testing), 

• To execute the testing first for only one client and later for several clients, 

135 



• To test all business activities which should be traversed at least once (test coverage) 

• To produce the test execution report, the test failure report and the test quality report. 

The environment of the automated software testing consists of seven modules as shown in Figure 

5.lD. The function of each module in the testing environment is described below: 

SOAD file t . 
....J..::t 

4 ~ Control flow line 

~... Data flow line 

Ordering 

File 

+ traclnl! 
, paths 

Figure 5.10: An Integrated Test Environment for the Banking Application 

5.7.1 Test Manager 

The Test Manaoer receives a command from the tester and communicates with the functional b 

module to execute the action and achieve the test requirements. It executes two main tasks: data 

management and control management. 

136 



1. Data management: in this implementation, the test manager maintains two databases, Testing 

and SMAD, as shown in Figure 6. The Testing database saves the values of the accuracy factor, 

the deviation factor and the initial sample size from the Modeller and the values of the defect rate , 

the sample size and the testing result from the Quality Analyst. It provides the values of the 

accuracy factor and the deviation factor to the Quality Analyst for the dynamic sampling process 

and the values of the sample size and the random number seed to the Test Data Generator for 

generating test data based on the SIAD tree file in the SMAD database. Three dynamic files, the 

input unit file, the product unit file and the testing ordering file, will be produced during the 

testing process. The contents of these files will be seen through the Test Manager. 

2. Control Management: the Test Manager controls three main functional modules: the Modeller, 

the SMAD Tree Editor and the Test Driver. The Modeller is used for receiving the test plan such 

as test requirements and test methods from the user, creating the test plan documentation and 

saving some values for the Testing database. The documentation provides support for test 

planning to the test dri ver as well as the SMAD tree editor for specifying messages among events. 

The SMAD Tree Editor is used to create the SIAD/SOAD tree file that can be used to describe 

the abstract syntax of the test cases as well as to trace data occurring during the test. The SMAD 

database provides the structure to the Test Data Generator for generating the input unit and to the 

Quality Analyst to inspect the product unit. The Test Driver executes the main task of testing 

which is described in more detail in the next section. 

5.7.2 Test Driver 

The Test Driver sets up the test execution environment for the banking application, which 

involves valid testing with Test Coverage, valid testing using the statistical approach and invalid 

testing. In the valid testing with the statistical approach, the Test Driver sets up the values of the 

initial sample size, the accuracy factor and the deviation factor, initiating the Test Data Generator 

to generate an input unit, sending it to the Test Execution to execute the application and getting 

the product unit and delivering it to the Test Results Validator. When the sample size is satisfied 

from the Dynamic Sampling Process, the Test Driver passes the latest value of the defect rate to 

137 



the Statistical Inference Process for estimating the confidence interval of the mean and variance 

of the population. This is used to determine the acceptability of the application. The activities of 

the Test Driver are shown in Figure 5.11. 

r::L ,-_1I_e_st_D_a_ta--l o ~ Generator 

Test data generator 

Test 

Execution 

Dynamic 

Sampling 

Test Results 

Validator 

Figure 5.11: The activities of Test Driver 

Statistical 

Inference 

The input unit can be automatically generated and stored in the input unit file for re-executing 

according to the test requirements. The input unit file is also passed to the Test Execution as a 

input file for the banking application. There are three types of tree elements that can be specified 

in a SIAD tree; numerical, non-numerical and a data value. The construction of a random input 

unit can be based on anyone of these types. 

I. Numetical Elements: If LA and UA are two tree elements representing the lower and upper 

bounds of a variable A in a SIAD tree, then the value of A may be generated randomly by: 

A = LA + (UA - LA) r, where r is a random number, 0 < r < l. 

2. Non-Numerical Elements: If a tree element randomly sampled from a SIAD tree represents 

non-numerical data, the actual data are to be selected by the designer. In the banking application, 

the account id is combined of an open year with the two last digits (98 means 1998) and a4-length 

integer. The data of an open year is selected between 90 to 100 and the 4-length integer is selected 

between 0 to 9 using a random selection process .f times. 

138 



3. Data Value Elements: If the data is specified directly in the SIAD tree, then it is entered into 

an input unit directly, if sampled. For example, the accounCtype in the SIAD tree as shown in 

Figure 5.6 is directly defined as "Current", "High rate" and "Capital". These data values are 

saved in an array and directly selected by random sampling. 

Test execution 

As with all applications, this banking application requires an environment to run it. It will receive 

an input unit and produce a product unit. The test execution is invoked by the Test Driver with 

a valid input unit to check whether the test works correctly or with an invalid input unit to check 

whether the application can detect the erroneous input and produce the product unit on the client 

site and the ordering file on the server side to the Test Results Validator. The ordering file is 

produced for checking for asynchronous messages or events. The process of test execution on 

serval client sites is complex and will be discussed in the next Chapter. 

Test results validator 

The inspection of the test results is based on the SOAD tree. Two files, the product unit on the 

client site and the ordering file on the server site, needed to be inspected. The result of the 

inspection is used to compute the defect rate and thus provide data to the sampling process in the 

Quality Analyst dynamically. This inspection can be done in two ways, either dynamically while 

the application is running or after the Test Execution has finished running the application. Either 

way, the expected results from the the SOAD tree file in the SMAD database must be set up for 

comparison purposes as part of the process of automating testing. In this implementation, the 

product unit is inspected using the SOAD tree file and the ordering file is examined by the causal 

message ordering which is recorded in the SMAD database. 

Quality analyst 

Testing a piece of software is equivalent to finding the defect rate of the product unit population 

generated by the application. The defect rate is defined as the ratio of the number of product units 

that are defective to the total number of product units that the software has generated. A sample 

of n units is taken randomly from the population. If it contains d defective units, then the sample 

defect rate, denoted by eO, is eO= din. Ifn is large enough, then the rate eO can be used to estimate 

the product unit population defective rate e. 

139 



5.8 Concurrent Implementation of Software Design and Test Design 

The software design and test design discussed in Section 5.5 and Section 5.6 are implemented 

in a multi-platfonn, multi-DBMS environment as shown in Figure 5.12. The hardware platfonn 

SITE for SBA 

The Simple Banking Application 

Java Development Kit (JDK) 1.1.3 

~- -~-:-: -1;-- -~--7"-

__ _ __ 'L~_ _ ___ _ 

Figure 5.12. An operational environment for implementation 

of the testbed at the lowest level in Figure 5.12, is a network of UNIX machines running the 

Solaris 2.x operating system which often plays a part in distributed systems. The widespread use 

of the Personal Computer (PC) has also prompted an ongoing effort to port the environment to 

the PCIMS-DOS platfonn. On the top of the hardware platfonn is Java Development Kit (JDK) 

and mSQL. JDK consists of the Java programming language core functionality, the Java 

Application Programming Interface (API) with multiple package sets and the essential tools such 

as Java Abstract Windowing Toolkit (AWT) , Java DataBase Conncetivity (JDBC) and Java 

Remote Method Invocation (RMJ). Mini SQL (mSQL) is a lightweight database engine designed 

to provide fast access to stored data with low memory requirements. As its name implies, mSQL 

offers a subset of SQL as its query interface. 

5.8.1 The Implementation of the Simple Banking Application 

The customers can run the client class (BankingClient.class) to input their account id, password 

and account type on client sites. The client class uses the Java JDBC Driver to access all of the 

critical database servers: the password database on the mSQL DBMS (version 2.0 B6 for Solaris 

140 



2.5) on Kielder and the dbbanking database on the mSQL DBMS (version 2.1 for SunOS 4.1.3) 

on Kenton. If the customer passes the checking procedure, the client class will wait for transaction 

selection: Check Balance, Deposit, Withdrawal, Statement and Exit. According to the selection, 

the client class uses the Java RMI to make calls to a remote object (BankingImpl.class) on the 

application server on Kielder to execute the balance checking, the deposit event or the withdrawal 

event. The application server will send back the results to the client class. 

The database servers with JDBC and mSQL 

The rnSQL database system includes a program called msql which provides with users a SQL 

interface to a particular database. In this implementation, the contents of two databases, the 

password with the password table and the type table on Kielder and the dbbanking with the 

customer table and the balance table on Kenton displayed using a mSQL command, relshow, are 

as shown in Figure 5.13. 

The JDBC Driver for mSQL is a user--<:ontributed package by George Resse. If offers the Java 

developers access to an mSQL database using the standard JDBC API. It was downloaded from 

ftp;l/ftp.imaginary.comland installed on the Kielder SUN Solaris system. 

Communicating with two mSQL database servers, the developer should simply instantiate two 

URL strings, each with its own host-name and port-number. The application can then instantiate 

two Connection objects: firstly, one to each URL specified, using the appropriate user name and 

password in each connection instantiation and secondly, two statements should be created from 

each connection object. 

The Java application opens two connections to the two databases after the Driver Manager loads 

drivers into the workspace. Once the connection to the remote database has been established, the 

code may begin using the Statement object to communicate with the database server. 

These database servers are managed by the Banking Data Manager. They will check if the account 

141 



kielder:529> relshow password 

Database • password 

+---------------------+ 
Table 

+---------------------+ 
I password 
I type 
+---------------------+ 

kielder:530> msql password 

Welcome to the miniSQL monitor. Type \h for help. 

mSQL > select· from password\g 

Query OK. 3 row(s) modified or retrieved. 

+------------+----------+ 
I account_id I password I 
+------------+----------+ 
I 970001 I 1112 
I 970002 I 2223 
I 970003 I 3334 
+------------+----------+ 

mSQL > select· from type\g 

Query OK. 3 row(s) modified or retrieved. 

i-t~~;=id-i-t~~;=~;~;--i-~;t;---------i 
i-01------i-c~~~;~t----i-1~5----------i 
I 02 I Highrate I 2.5 I 
I 03 I Capital I 3.5 I 
+---------+------------+--------------+ 

-

I 
J 

r~ ---------------------------- ---- sl~.ellto--o--I---/--b-i-n-/-c-s-,,------------------------------------

kenton: 123> rel5l10w Cf5Danki ng 

Database - dbbanking 

+---------------------+ 
Table I 

+---------------------+ 
I customer I 
I bal ance I 
+---------------------+ 

kenton:124> msql dbbanking 

Welcome to the miniSQL monitor. Type \h for help. 

mSQL > select· from customer\g 

Query OK. 2 row(s) modified or retrieved. 

+------------+---------------------------+--------------------------------+------------------+ 
I account_ i d I account_name I add ress I mother _, ast_nalle I 
+------------+---------------------------+--------------------------------+------------------+ 
I 970002 I Donna Mai I Heaton Road Newcastl e I Wang 
I 970001 I Joseph Chu I 25 Larchwood Avenue. NE3 2AP I Hwang 
+------------+---------------------------+--------------------------------+------------------+ 

mSQL > select ~ from balance\g 

Query OK. 6 row(s) modified or retrieved. 

+------------+---------+--------------+ 
I account_id I type_id I balance I 
+------------+---------+--------------+ 
I 970001 01 I 500 
I 970001 02 I 2500 
I 970002 01 I 345.5 
I 970002 02 I 3500 
I 970002 03 I 5000 
I 970003 01 I 2375.45 I 
+------------+---------+--------------+ 

Figure 5.13: Database Servers on two different sites 

exists and if the password is correct through the Password Checker and provide the data to the 

Banking Activity Executor and save back on the database. 



The application server with RMI 

The client class (BankingCLient.class) uses the Java RMI to make calls to a remote object 

(Bankinglmpl.class) on the application server on KieIder to execute the balance checking, the 

deposit event or the withdrawal event. To create this class that will be remotely accessible, remote 

methods are defined by remote interfaces in an interface class (Banking.c1ass). A stub 

(BankingImpl_Stub.class) which runs on the client side and a skeleton (Bankinglmpl_Skel.class) 

which runs on the application server side are generated using nnic tool. In this implementation. 

Figure 5.l4 shows the relationship between a client, a server, a stub and a skeleton. 

--- ... -----, , 

,'Banking.class '. 
,-----------..1 
: checkBalanceO : 
: withdrawO: 

',- _ Aep9~i!Q.:' 
.. "f' ... - _ Application 

server side Client side 
Both-side 

BankingClicnLclas, 

methodO 
connection 

lookup 

(here} _ ' 
t--_N_am_in....:;g_--iA-.•• 

rmi:/lkicldcr,ncl.ac.ukINetBan ........................ ... 

Bankinglmpl_Stub.class 

8ankinglmpl.class 

\----. methodO 

remote 
bindl 
rebind reference 

r----'----, 
Naming Registry 

... ............... - ... ..,. Ilkielder.ncLac ukf.'\t.'tB .. mk 

Bankinglmpl_Skel.class 

Figure 5.14: The RMI structure for SBA 

When a client wishes to make calls to a remote object it must first look up the object in the naming 

service. This retull1s a remote reference to the object which automatically informs the object that 

it has a remote client. RMI provides a simple name lookup object that allows a client to get a stub 

for a particular server based on the server's name. 

5.8.2 The Implementation of SITE for SBA 

The design of the statistics-based integrated test environment for SBA in Section 5.6 has been 

implemented using the Java Development Kit (JDK) 1.1 and mSQL. In this implementation the 

Java language is used as a general purpose programming language for application development. 

Most tools in this implementation do not include World Wide Web compatibili ty and their GUIs 

j·B 



extend the Frame class in the core Java API. Inheriting the Applet class is an alternative for applet 

programmers, as it provides access to many of same AWT functions that the Frame class does. 

According to the design of integrated test environment described in Section 5.6, the 

implementation structure of this test environment is arranged as shown in Figure 5.15. 

Test 
Manager 

I I 

Data Control 
Management Management 

I I I ~ 

Database Files Test Smad_Tree Modelling 
Management Management Driver Editor 

I I 

Valid Testing Valid Testing Invalid Testing 
(Test Coverage (Statistical) 

I I 1 
i I I I 

Test Data Test Test Result Test Data Test Test Result Quality Test Data Test 

Generato Executior Validator Generator Execution Validator Analyst Generato Executior 

Figure 5.15: The structure of implementation 

The GUI of the main menu has been implemented by lavaAWT as shown in Figure 5.16 and can 

be seen on the WWW at http://kielder.ncl.ac.ukl-n4521677/site!site.html. 

Data Management 

The Data Management component maintains a database (site) and files (input files, output files 

and a file for recording the order) which are produced during the testing process. There are two 

tables in the site database, the siad_tree table and the sampling table on Kenton. They can be 

displayed using a mSQL command, relshow, as shown in Figure 5.17. 

144 



r "Test Manager 
.. ;;;,;...,"U"UN .... """~n' ...... "Nu .... '..,'n"""NN''' .. '''''' .. '' ...... '...,h~ __ ..., ........ "" ... u .. ,,,,'N' .... "N...,,, 

Monitor Help , 
~ WWAW#/////#///#/M 

~Data Management r» 
WT//,W 

Control Manager > Modeller 

Exit SIlE SMPJ) Tree Editor 

Test Driver > Valid Testing (Test Coverage) 

Valid Testing (Statistical Metho d) 

Invalid Testing 

a ..... d 
~Unsi9ned Java Applet Window 

Figure 5.16: The GUI of the main menu 

nton~33> msq site 

W.lcome to the m1 n1 SQL mon1 tor~ Type \h fof'" hel p. 

MSQL > sal Get ... from s1 ad_tree \9 

Query OK. 20 row(s) modi f1 ad or retri eyed. 

i-~~d;~i~d;~-i-~~;b~l---------------j-;l~;;~t---------i-~~;;~t---i 
+------------+----------------------+-----------------+----------+ 

3 X1.1.1 number 1 
2 )(1.1 year 1 
1)(1 account_1 d -1 
")(2 accound_name-1 
5 )(2.1 first_name 1 
6 )(2.1.1 sur_name 1 
7)(3 add ress -1 
8 )(3.1 number 1 
9 )(3.1 .1 st reet_name 1 
10 )(3.1.1.1 post_code 1 
11)(4 account_type-1 

~ ~ ~~ ~:~kr~~~type:~ 
14 X6.1 chec~bal ance -1 
1S X6.2 deposit_money -1 
16 X6.2.1 money amount 1 
17 )(6.3 wi thdraw_money -1 
18 X6.3.1 money_amount 1 
19 )(6.4 statement-1 
20 )(6.5 exi t_banki ng -1 

+------------+----------------------+-----------------+----------+ 

IIISQl) select ... from sampling \9 

Qu.ry OK. 1 row(s) modified or retrieved. 

i:~~~~;~~~~~=~~~~~~~~=====t=~~~~~~~~~~===t=~~~~~~;~~~~=t=~~~~~~;~~~~==~=~~~~~~~;~~~~~~=~=~~~~~~;~~~~=~ 
+ --------+--------------+--------------+-------------+--------------+----------------+-------------+ 

.SQL > 

Figure 5.17: A database for developing SITE 

Based-on the IDBe driver, the database management will create the different siad_tree, 

SO(/('-tn'c and sampling tables for different applications. It can also display the structure and 

Contents of these tables as users require. 

1~5 

, 

= 

C' 



To extend the dialog class of the A WT package, the file management builds a dialog box to handle 

related events such as the removal or display of files which are created during the testing process. 

Control Management 

The Control Management component consists of three components: the Modeller, the 

SMAD_Tree Editor and the Test Driver. 

1. The Modeller: This receives the input data, the testin8-id, the % of confidence interval and 

the accuracy factor from the users or testers. It computes the standard deviation factor according 

to the % of confidence interval, for example, if the probability is 0.95 the standard deviation 

factor is found to be 1.96. The data for testing_id, the deviation factor and the accuracy will be 

saved back in the sampling table in the site database as shown in Figure 5.17. 

At this stage, the Modeller is simply used in the sampling process in the Test Driver. It does not 

include a process to model the application using the GUI. It could be improved to display the 

graphic of modelling as shown in Figure 4 on the screen or on the WWW. 

2. The SMAD_Tree Editor: Based-on the JDBC driver, the contents of the siad_tree table and 

the soad_tree table are inserted and updated by the SMAD_Tree Editor and provide data for the 

Test Data Generator to generate input test data and the Test Result Validator to inspect the test 

results. The SMAD_Tree Editor has been implemented by Java as a standalone application as 

shown in Figure 5.18 and can insert the data of the SIAD/SOAD tree from users and save them 

on the siad_tree table as shown in Figure 5.16 and the soad_tree table. 

146 



shellt:ool /bin/csh 
kielder:75> java Smad Editor Standalone 

********************************************* 
... SHAD Tree Edi to r ... 
********************************************* 

1) Insert the SIAD Tree 
2) Insert the SOAD Tree 
3) Update the SIAD Tree 
4) Update the SOAD Tree 
5) Di spl ay the SIAD Tree 
6) Display the SOAD Tree 
7) Exit 

Ente r choi ce : 1 
........................ Create SIAD Tree Database ..................... ... 

Tree Node Index: 1 

Ente r Tree Symbol : X1 

Enter Tree Element :account_id 

Does it have parent? (O=No/1=Ves) :~ 

Figure 5.18: The running of SMAD_Tree Editor standalone application 

Ic:;u 

The GUI version for the SMAD_tree Editor has also been implemented by Java AWT as shown 

in Figure 5.19 and can be seen on the WWW at http://kielder.ncl.ac.ukl-114521677ltree.html.At 

the moment, it does not connect to the database and can be improved in the future. 

The SMAD Tree Editor 

Edit Preference History Window 

SMAD TREE Tree Element Input Area 

Index: D 
Symbol r-p----------, 
Element: 1""1 ______ ___ 

Rule IL,,,,,,,,_, ___ ,,,,,,,,,,,,,,,J 

Parent: PWithout Parent Node 
'''''''''''''''''''''''''''''''''''''''''1 

i Without Parent Node c::J 

l::::l 

Figure 5.19: The GUI of the SMAD_Tree Editor 

147 



3. The Test Driver: The test driver has been implemented with a standalone application using the 

Java 10K 1.1 and mSQL. It consists of valid testing component with test coverage, valid testing 

component with statistical testing and invalid testing component as referred to the Section 5.6.2. 

In order to generate the random input units for the valid testing, a random number generator is 

required. The scenario for running the test driver for testing a simple banking application is as 

shown in Figure 5.20. 

shelltool - /bin/csh 
ki el der: 57> Java Test_Dn ver _Standalone 

************************************************* •• *** 
* Test Driver for Banking * 
****************************************************** 

1) Valid Testing (Test Coverage) 
2) Valid Testing (Statistical Testing) 
3) Invalid Testing 
4) Exit 

Enter choice 1 
Testing Size is 18 determined randomly. 
Generate Test Data 1 ..... . 
testcov1.in 
Test Executi on 1 •.... 
Test Validator 1 
Generate Test Data 2 ..... . 
testcov2.in 
Test Execution 2 •...• 
Test Validator 2 ....• 

Figure 5.20: The main menu of the test driver 

., 

I 
I~ 

c." 

The sampling size of valid testing with test coverage between 0 and 50 is determined by the 

random number generator. The input date file is generated with file name, testcovX.in, where X 

is the number of samples. Based on the siad_tree table, the input test data is generated through 

the random number generator and the JDBC driver. After test execution, a output file with file 

name, testcovX.out, will be generated. 

The sample size for valid testing with the statistical testing is dynamically adjusted by the 

sampling processor which implements the dynamic sampling process as referred to Section 6.2.4. 

The defect rate will be computed during the dynamic sampling process and will be saved on the 

sampling table. The invalid input test data is generated when the invalid testing is selected for 

eXamining whether or not the application can detect the wrong input. All source codes for this 

implementation can be downloaded at http://www.ncl.ac.ukl-n4521677lbankingl. 

148 



5.9 Testing and Integration 

Test and integration are the activities that assemble modules into a complete software s;. stem. 

Once the application design and the test design have been implemented, the testing of the simple 

banking application can be proceed using this statistics-based integrated test environment. The 

testers or users only follows the menu to select the testing activities for achieving automated 

testing as shown in Figure 5.21. 

shelltool - /bin/csh 
r1k~ire~l~d"e~r~:11rO~>~~j~a~v~a~Tr.e~~~t~_'M~a~n~a~g~e~r~--------------------------------------'~ 

~ ~~.~ •••• ~~**~***************************************.* 
• Test Manager for Banking • 
****************************************************** 

1) Data Mamagement 
2) Control Managerement 
3) Help 
4) Exit 

Enter choice: 2 

~.**************************************************** 

• Control Management for Banking • 
********************************************++++++++++ 

1) Modelling 
2) SMAD Tree Editor 
3) Test Driver 
4) Exit 

Enter choice: 3 

• Test Dri ver for Banki ng • 
**++++++++++++++++++++++++************++++++++++++++++ 

1) Valid Testing (Test Coverage) 
2) Valid Testing (Statistical Testing) 
3) Invalid Testing 
4) Exit 

Enter choi ce : 2 
Sampl i ng No: 1 Sampl i ng Si ze = 15 
Generate Test Data 1 ..... . 

Figure 5.21: The behaviour of the automated test execution 

5.10 Experimental Results and Discussion 

The simple banking application presented in this chapter has been implemented and tested on the 

statistics-based integrated test environment. This section describes how the automatic test of the 

application was conducted based on one client site and one server site and how the manual test 

of the application \\as conducted based on two client sites and one server site are examined and 

comments on the results obtained. 

149 



5.10.1 Automatic Testing on One Client Site 

Valid testing with test coverage 

Following the menu to select the item "Valid Testing (Test Coverage)", the sample size of valid 

testing with test coverage between 0 and 50 is determined by the random number generator. The 

input date file is generated with a file name, testcovX.in, where X is the number of sampling. All 

input data files will cover all banking activities at least once. In this implementation, we can get 

zero-defect for each valid testing with test coverage. 

Valid testing with statistical testing 

In my experience of running the test on this application on one client site, no defects were 

reported. In order to demonstrate the sampling process with statistical testing, I added a random 

number generator into the Test Results Validator. If the number is less then 10, the Test Results 

Validator will return 'fail' value. 

The acceptance criteria for the sampling method in this application are: a sample of n units is 

to be taken randomly from the product unit population such that the sample defect rate eO and 

the population defect rate 8 differ with an accuracy factor of 0.1, that is 18 - 8° I = 0.1 8 and 

e < 0.D1. In this implementation, given the probability is 0.95, the standard deviation factor z is 

found to be 1.96 from (Cho, 1988). As discussed in the Section 4.5.1, in this implementation the 

sampling plan implements the formula 

n= 

with z= 1.96 and a. = 0.1. The results of sampling are as shown in Figure 5.22. 

150 



Iteration n (i+ 1) n (i) n (i+l) - nO) Defective Rate 

2019 100 1919 0.16 

2 3194 2019 1175 0.1074 

3 3107 3194 -87 0.1101 

Sample size = 3194 Defective rate = 0.1101 

Figure 5.22: An iterative sampling test results in testing 

The sampling process stops at iteration 3 with a sample size of 3194 units and a sample defective 

rate of 0.110 1. In other words, at iteration 1 the sample size is determined by 

I1J = 

at iteration 2: 

112 = 

and at iteration 3: 

113 = 

1.962(1- 0.16) 
= 2019 

01 X 0.1 X 0.16 

1.962(1- 0.1074) 
= 3194 

01 X 0.1 X 0.1074 

1.962(1- 0.1101) 
------- = 3107 

01 X 0.1 X 0.1101 

Since 113 = 3107 is less than 112 = 3194, the total number of units sampled at iteration 2, the 

sampling process stops. 

The 95-percent confidence interval of the mean of the population (for z= 1.96) can be estimated 

by: 

s 
lieD + tn-1 a/2 , . 

s ] 
where /leO = 319-l X 0.1101 = 352 and 

151 



s = v' neo (1- eO) = v' 3194 X 0.1101 X (1- 0.1101) = 17.7 

tn-i. a/2 = t2492.0.0112 = 2.576 from Appendix 4 of (Cho, 1988) 

= v' 3194 = 56.52 

Thus, the range of population mean is found to be: 

[351.193,352.807] 

The defective rate of the output population of the routine is estimated from this mean. Therefore, 

the 95-percent confidence interval of the defective rate is: 

[ 
or: 

351.193 

3194 

352.807 

3194 
] = [0.1099,0.1105] 

In other words, the test results documented in the testing document show that the estimated 

product unit defective rate at the 95-percent confidence level is from 0.1099 to 0.1105. The 

software acceptance and test requirements documented in the requirements specification state 

that to be accepted, the software must have a product unit population defective rate of e < 0.01. 

Clearly, the value between 0.1099 and 0.1105 > 0.01, and therefore, the software product 

population does not meet the acceptance criteria. In this situation, the software developer should 

conclude that the application is not ready for delivery to the user. Further development is required 

to reduce the defective rate and improve the quality of the application. 

152 



Invalid testing 

The invalid test is for testing a piece of software's capability to handle invalid data. The input 

test data are constructed by generating data that go against the rules and sub-rules defined in 

the SIAD tree. In this implementation, I created input test data without saving the password on 

the database and ran the test with this test data to examine whether ornot the application can detect 

the wrong password. All the invalid input test data can be detected in this application in these 

tests. 

5.10.2 Manual Testing on Two Client Sites 

At this stage of implementation, I can only automatically run the tests on one client site, therefore, 

I tried to send test data files on two client sites (Anick.ncl.ac.uk and Kielder.ncl.ac.uk) to run the 

tests by hand. Two different types are given as following: 

Two different inputs with two different DASFs 

There are two test data files test1.in and test2.in corresponding two different execution paths: 

DASFa run on Anick.ncl.ac.uk and DASFk run on Kielder.ncl.ac.uk, where, 

DASFa : eall -> ea21 -> ea22 -> ea12 -> ea13 -> ea32 -> ea14 -> ea13 -> ea31 -> ea13 -> ea33 

-> ea14 -> ea13 -> ea32 -> ea14 

DASFk : ekll -> ek21 -> ek22 -> ek12 -> ek13 -> ek33 -> ek14 -> ek13 -> ek32 -> ek14 -> ekl3 

-> ek33 -> ek14 -> ek13 -> ek31 

Figure 5.23 shows the relation among test data files, test results files and the trace file on server 

site when the application under tests. 

153 



Current 
1112 
2 
500 
1 
3 
350 
2 
57 

testl.in on Anick 

824 
Highrate 
4239 
3 
164 
2 
222 
3 
46 
1 

test2.in on Kielder 

Application 

Deposited £500.00 balance is: 2234.0 

The balance is: 2234.0 

Withdrew £350.00 balance is: 1884.0 

Deposited £57.00 balance is: 1941.0 

testl.out on Anick 

Withdrew £164.00 balance is: 8730.0 

Deposited £222.00 balance is: 8952.0 

Withdrew £46.00 balance is: 8906.0 

The balance is: 8906.0 

test2.out on Kielder 

** Account No: 970001 from ->anick.ncl.ac.uk Deposit (e32) 
** Account No: 970001 from ->anick.ncl.ac.uk Check Balance (e31) 
** Account No: 970001 from ->anick.ncl.ac.uk Withdraw (e33) 
** Account No: 964824 from ->kielder.ncl.ac.uk Withdraw (e33) 
** Account No: 964824 from ->Kielder.ncl.ac.uk Deposit (e32) 
** Account No: 964824 from ->Kielder.ncl.ac.uk Withdraw (e33) 
** Account No: 970001 from ->anick.ncl.ac.uk Deposit (e32) 
** Account No: 964824 from ->Kielder.ncl.ac.uk Check Balance (e31) 

testorder on Kielder 

Figure 5.23 The application under test with two different inputs 

The test results are satisfied and the test order followed the causality relation. 

Two identical inputs with the same DASFs 

In this case, two identical test data files test l.in and test l.in are corresponding the same execution 

paths: DASFa run on Anick.ncl.ac.uk and DASFk run on Kielder.ncl.ac.uk, where, 

DASFa : eall -> ea21 -> ea22 -> ea12 -> ea13 -> ea32 -> ea14 -> ea13 -> ea31 -> ea13 -> ea33 

-> ea14 -> ea13 -> ea32 -> ea14 

154 



Figure 5.24 shows the relation among test data files, test results files and the trace file on server 

site when the application under tests. 

970001 
Current 
1112 
2 
500 
1 
3 
350 
2 
57 
5 

testl.in on Anick 

97 1 
Current 
1112 
2 
500 
1 
3 
350 
2 
57 
5 

testl.in on Kielder 

Application 

Deposited £500.00 balance is: 2441.0 

The balance is: 2941.0 

Withdrew £350.00 balance is: 2591.0 

Deposited £57.00 balance is: 2705.0 

test Lout on Anick 

Withdrew £500.00 balance is:2941.0 

The balance is: 2941.0 

Withdrew £350.00 balance is: 2591.0 

Deposited £57.00 balance is: 2648.0 

test Lout on Kielder 

"'* Account No: 970001 from ->anick.ncl.ac.uk Deposit (e32) 
"'''' Account No: 970001 from ->Kielder.ncl.ac.uk Deposit (e32) 
"'''' Account No: 970001 from ->anick.ncl.ac.uk Check Balance (e31) 
"'''' Account No: 970001 from ->Kielder.ncl.ac.uk Check Balance (e31) 
"'''' Account No: 970001 from ->Kielder.ncl.ac.uk Withdraw (e33) 
"'''' Account No: 970001 from ->anick.ncl.ac.uk Withdraw (e33) 
"'''' Account No: 970001 from ->Kielder.ncl.ac.uk Deposit (e32) 
"'''' Account No: 970001 from ->anick.ncl.ac.uk Deposit (e32) 

testorder on Kielder 

Figure 5.24 The application under test with two identical inputs 

The test results are not satisfied, because the expected balance on Anick is 2298 and on Kielder 

is 2355. This application didn't consider the problem of concurrent access control which caused 

that the causal message ordering was inconsistent as shown in Figure 5.25. 

155 



· 
'~ea;~ekl1 

" " " " " . 
ea12 ek12'" eat:;'" ek13 ea14 ek~i'. eal~'" ek;:'''' ea;~ek13 

pore 1 

Pore 2 

Pore 3 

Figure 5.25: A space-time diagram showing the causal message ordering 

As a result of lack of time, the examination of the causal message ordering in this stage was done 

manually not mechanically. 

5.10.3 Comment 

• Current automated testing tools focus on two-tier client/server applications. However, the 

Gartner Group found 80 percent were planning for multi-tier (at least three-tier) client/server 

applications (Mooney & Chadwick, 1998). In this implementation, a simple three-tier 

banking application was implemented, which was big enough to address middleware testing 

issues such as Java RMI and JDBC. 

• In this implementation, I found that there are three basic premises using my approach to the 

automated testing: firstly, the modeling must precisely catch the behaviors of distributed 

applications, secondly, the requirements specification should be really defined and finally the 

testing tools must integrate well. 

• According to the different type of software applications, I can use a number of different types 

of SIAD trees (a detailed description of these trees is given in Cho). Therefore, I need to design 

different Test Data Generators for each application. In other words, there is currently not a 

general test data generator which could be adapted for all applications. 

156 



• At this stage of implementation, I can only automatically run the tests on one client site and 

inspect the tracing file on the server site using a manual approach because the file can not be 

sent back by itself. 

• According to the sampling method in this implementation, a large number of test data are 

needed to achieve high quality. In other words, the larger the size, the more accurate the 

estimate. However, the cost of sampling is almost negligible compared with that of a 

lOO-percent inspection. In fact, if a population contains millions and millions of units, 

sampling is the only practical way to determine the defective rate of the popUlation. 

• The cost of testing with this approach was higher, because there was more front-end test 

planning in the work in developing the SMAD tree, however, this is effectively balanced by 

less test operation, since testing can be automatically achieved and the quality index can be 

estimated. 

• In this implementation, I constructed invalid test data using invalid testing component to test 

whether the application could detect erroneous test data. In this work, the error message of the 

input data was displayed in the executing record file (product unit), which satisfies our 

expectation. 

• From this implementation, I found the syntax of test results can be inspected based on the 

SMAD tree, However, the semantic analysis for test results can not be achieved. In this work, 

I counted the value of the same account id on the server site to compare with the value of this 

account id on the client site. Differences between these values highlight defects of the simple 

banking application. 

• In this implementation, I tried to seed the code with known artificial errors to evaluate the 

fault-finding capability. As a result of this work, these faults were detected by this application. 

For example, the input unit did not save back on the database server in early implementation. 

The error message "the account id is not exist" was displayed in the product unit after the 

application ran with this input unit. 

• In this implementation, the same test data cannot automatically be sent to two or more client 

sites at the same time, therefore, I tried to copy a test data file and send it to another client site. 

157 



When I ran the tests on two client sites simultaneously by manual test execution, a problem 

might arise when the database is accessed with the same account id without the consideration 

of mutual exclusive access. Therefore, I need to consider how to generate the test data and 

broadcast it to multiple client sites to find out a solution to this problem. 

5.11 Conclusion 

The implementation of the simple banking application written using Java Remote Method 

Invocation (RMI) and Java DataBase Connectivity (JDBC) shows the testing process of fitting 

it into SITE. This application is simple, however, it is big enough to address middleware testing 

issues such as Java RMI and JDBC which is a new area in client/server testing. 

After the behaviour of this application is modelled by a DMFG and messages amongst events are 

defined by the SMAD tree, the concurrent design and implementation of this application and 

SITE are processed. How the test of the application was conducted and comments on the results 

obtained are described in the final section. 

158 



Chapter 6 

Automated Test Execution Through Mobile Agents 
and Multicast 

6.1 Introduction 

Test execution is a process of feeding test input data to the application and collecting infonnation 

to determine the correctness of the test run. It is natural to assume that automating test execution 

must involve the use of a test execution tool which requires an environment to run it, to accept 

inputs and to produce outputs (Fewster & Graham, 1998). Some tools require additional 

special-purpose hardware as part of their environment; some require the presence of a software 

development language environment. The remaining problems in this research are how to run the 

test on the multi-client sites and server site and how to perfonn repeated executions for 

distributed applications. 

In this chapter, the concept of mobile agents is applied to launch the test driver to different client 

sites and send the test order file from the server site back to the tester and the multicast technique is 

used for broadcasting test data files to multi-client sites simultaneously to perfonn repeated 

executions. A dynamic test plan based-on the blackboard model is proposed for automated test 

execution later. 

The agent-based architecture of VISITOR, which can support flexible communication and 

co--opcration between mobile agents and local agents which may provide some services through 

the agent broker, is described in Section 6.2. Section 6.3 illustrates the application of VISITOR to 

the client/server test execution. In the Section 6.4, the concept of the multicast system is firstly 

introduced. We illustrate the multicast framework for the client/server test execution later. The 

blackboard-based test plan for automating test execution is proposed in Section 6.5. Section 6.6 

summaIizes our research and offers suggestions for future researches. 

159 



6.2 An agent-based architecture of VISITOR 

6.2.1 Mobile Agents 

An agent is an object that is autonomous enough to act independently even when the user or 

application that created it is not available to provide guidance and handle error. Agents can 

receive requests from external sources, such as other agents, but each individual agent decides 

whether or not to comply with external requests. In the computer world, an agent is a computer 

program whose purpose is to help a user perform some tasks (or set of tasks) (Lingnau & Drobnik, 

1995). To achieve this aim, it maintains a persistent state and can communicate with its owner, 

other agents and the environment in general. Agents can do routine work for users or assist them 

with complicated tasks. In addition, they can mediate between incompatible programs and thus 

generate new, modular and problem-oriented solutions thus saving work. 

Mobile agents (Chen, 1997; Chess, Harrison & Kershenbaum, 1997) provide a new alternative 

paradigm for distributed object computing on the WWw. A mobile agent is a computer object 

that can move through a computer network under its own control, migrating from host to host and 

interacting with other agents and resources in order to satisfy requests made by its clients. They 

may move around on behalf of their users seeking out, filtering and forwarding information or 

even doing business in their own name. Possible applications for mobile agents include 

information retrieval, data-mining, network management, electronic commerce, mobile 

computing, remote control and monitor, etc. Therefore, mobile agents show a way to think about 

solving software problems in a networked environment that fits more naturally with the real 

world. 

The concept of mobile agents is in contrast to the concept of Java Applets. In the latter case, a 

program is downloaded from remote computers to execute locally, while in the former, a program 

is sent to remote machines to execute remotely, When mobile agents execute remotely, there may 

not be any transactions in the home machine. The advantages of mobile agents are (Chess, 

Harrison & Kershenbaum, 1997; Gray, Kotz, Nog, Rus, & Cybenko, 1997): firstly, they offer an 

effective paradigm for distributed applications, particularly in partially connected computing; 

160 



secondly, they can provide a pervasive, open, generalized framework for the development and 

personalization of network services; thirdly, they move the programmer away from the rigid 

client/server model to the more flexible peer-to-peer model in which programs communicate as 

peers and act as either clients or servers depending on their current needs and fourthly, they allow 

ad-hoc, on-the-fly applications that represent what would be an unreasonable investment of time 

if a code had to be installed on each network site rather than dynamically dispatched. 

Nowadays, there are already some frameworks for mobile agents, such as the Aglet and the 

Java-to-go. They all support dispatching a segment of code to remote machines to execute, 

however, they do not give proper support to the co-operation between mobile agents and services 

in remote machines. This section presents a flexible infrastructure for mobile agent computing: 

VISITOR (Chen, Greenwood & Chu, 1998), which can support flexible communication and 

co-operation between mobile agents and local agents which may provide some services through 

the agent broker. Furthermore, combining with the Java Remote Method Invocation (RMI), 

mobile agents can make use of distributed objects to accomplish such tasks as sending the results 

back to the home machine. VISITOR shows a paradigm for service-providers to provide services 

and for service-clients to get services in a networked environment that fits more naturally with 

the real world. 

The application of VISITOR to software testing, Mobile Testing Agent (Chu, Dobson, Chen & 

Greenwood, 1998), has been implemented and can be downloaded at the MObile Software 

Testing (MOST) wesite (http://www.casq.orglmostl) constructed and maintained by Huey-Der 

Chu 1998. 

161 



6.2.2 The Architecture of VISITOR 

The architecture of the VISITOR is shown as in Figure 6.1 which consists of a network of 

agent-servers, agent clients and a security server. 

Agent Serverl A B k I . gent ro er. 
Agent Client 

reg/, 

& 
RMI ,,-, 0 

,:-_~ ,'--_~---. 0 0 
Launch 

Agents to launch Objects 

Figure 6.1: The architecture of VISITOR 

These components communicate with one another based on Java sockets. Agent servers are 

destinations which mobile agents want to visit. Agent Servers are also the hosts which 

accommodate mobile agents and provide services to them. Agent Clients are applications which 

launch mobile agents to the agent servers for accomplishing their particular tasks. In this 

framework, the agent servers are like offices which receive visitors and provide some services to 

them, while the mobile agents are like visitors which move around one office to another for their 

particular goals. 

Agent servers 

In each agent-server, there are five types of components: The Agent Broker (AB), service agents, 

the receiving agent, mobile agents and the network class server. 

An AB is a stockbroker among agents. All other agents have to be registered with the AB. TheAB 

keeps them as resources. When an agent is created, it sends a message to the AB to register its 

existence and address. When an agent A wants to communicate with another agent B, A first 

162 



transmits a message to the AB to ask B's address. The AB would acknowledge with B's address if 

B exists. When B first receives Jil s message, it also need to ask the AB for Jils address. Afterwards, 

A and B would communicate with each other directly. 

Furthermore, if an agent, for example a service agent, could provide some service, it would send 

the AB a message to register that service. When some agent, for example a new coming mobile 

agent wants the service, it would request the AB. If the service has been registered, the AB would 

return the agent's address that can provide that service. Then, they would dialogue directly as 

normal. 

Service agents provide services for other agents. When they are created, they would register the 

service with the AB which they can provide. The services they can provide are various, from 

general information services (e.g. databases) to particular commercial services (e.g. purchasing 

some CD at the lowest price). 

It is the receiving agent that is responsi ble for recei ving and instantiating corning mobile agents. It 

also creates execution environments and forks a thread for the agent run. There is only one 

receiving agent in each agent-server. For the structure of the receiving agent, see section 6.2.4. 

Mobile agents come from remote agent clients. When they arrive, the receiving agent creates the 

execution environment for them and they would register with the AB. Together with main classes, 

a knowledge base which include initial information is sent. The receiving agent will save this 

knowledge as a specific file. A mobile agent will run in a separate thread to accomplish its tasks. It 

can also make use of services which are provided by execution environments or service agents. 

For the structure of mobile agents, see section 6.2.5. 

The network class server listens to the network. If there is a request for loading a class from this 

machine, it is responsible for finding, loading and sending the class to the destination. When a 

163 



mobile agent is launched, only the main class is sent. the auxiliary classes are loaded on demand 

from the home machine or the previous machine, where a network class server is set up. 

Agent clients 

Agent clients design and launch mobile agents for accomplishing their particular tasks. The 

clients may be located in an agent-server or in a separate machine. For the latter, a network class 

server has to be set up for remote class loading. In the case where there is no network class server 

set up, the agent launcher has to send all class of the agent, or the class loader would fail. 

Arriving at remote agent servers, mobile agents can execute home transactions by the Java RMI. 

For example, when a mobile agent retrieves information in remote agent servers, it can make use 

of the RMI to display the result on the home machine simultaneously. 

The picture above characterises a flexible agent-oriented method of constructing client 

applications, producing a new paradigm for distributing computing. 

Security server 

The security Server is listening to the network. When clients want to launch a mobile agent for 

accomplishing their particular tasks, they have to register with the security server to gain a key, 

which the mobile agent will bring with it. The agent servers will check the key to see whether or 

not it is valid. If the key is valid, the process will continue, if not the server will send back an error 

message to the client. 

6.2.3 A General Structure of Agents 

The static structure of an agent is designed following the Java Agent Template (JAT). An agent 

consists of three parts: a message handler, a resource manager and a knowledge base. The 

message handler sends and receives Knowledge Query and Manipulation Language (KQML) 

messages by the communication interface Comminterface. The message handler is also 

responsible for message processing. 

164 



The resource manager is responsible for managing resources which the agent possesses. There are 

five types of resources: Languages, interpreters, classes, files and addresses in the JAT. 

The knowledge base includes the initial information of agents and the information about the 

services which it can provide. When the agent moves from one machine to another, the 

information in the knowledge base will move along. 

An agent executes within a AgentContext which is the execution environment of the agent. 

Agents could make use of services in the agent-server by the Contextlnterface which is 

implemented by the AgentContext. When an agent arrives at a new agent-server, the receiving 

agent will initiate the agent with the knowledge base, which is sent with the underlying agent. 

When an agent leaves the machine, it will clean up the environment. The initiate and cleanup 

methods are provided by the Agentlnterface. 

Dynamically, an agent is a thread. When an agent moves to a new agent-server, a new thread is 

created, on which the agent is running. 

6.2.4 Structure of the Receiving Agents 

The receiving agent inherits from a general agent but the receiving agent has its specific functions 

in VISITOR. The layers of a receiving agent are as shown in Figure 6.2. 

Agent Server 

Receiving Agent Network Class 
Router Server 

Listener I Transmission 

Communication 

Figure 6.2: Layers of a Receiving Agent 

When the receiving agent starts up, it forks a thread to execute the Router, which in tum forks a 

Ii ., I er thread to execute the Listener. Based on Java Sockets and severSockets, the ransmlssron ay 

. . .... th etwork to provides semantics of the agent-packet transffilSSlon. The Listener IS momtonng en 

165 



see if a new packet is coming. If so, the Listener makes use of the methods provided by the 

Transmission layer to receive the packet and pass it to the Router. The Router unpacks the packet 

and instantiates the coming agent first, then checks if the underlying machine is the destination of 

the agent. If not, the Router would rout the agent to the correct machine. If it is true, the Router 

would initiate the agent, create its execution environment and pass it to the receiving agent. The 

receiving agent forks a new thread to execute the new coming agent. 

It is the Network Class Server (NCS) that implements the dynamic class loading. The principle of 

Dynamic class loading is shown as in Figure 6.3. The NCS is listening on the network, when a 

Network Class Loader (NCL) asks for classes it will find, load and transport the classes. The NCS 

not only can load classes from the local class library but can also load classes from a remote class 

library. 

Local Class Lib. 

Network 

Class Loader 

o Class 

Remote Class Lib. 

Figure 6.3: Dynamic Class Loading 

The layer structure of a NCS is as shown in Figure 6.4. Like the agent-server, it is also based on 

Java Sockets and serverSockets. 

Network Class Server 

Listener I Transmission 

Socket and Server Socket 

Figure 6.4: The layers of Network Class Server 

166 



In the context of VISITOR, when the Router in the agent server instantiates a coming mobile 

agent, it will load the classes relevant to the agent dynamically. 

6.2.5 Communication between Agents 

Agents communicate with each other using the KQML (Mayfield, Labrou & Finin, 1996), which 

is a high-level language intended for the run-time exchange of knowledge between intelligent 

systems. 

Logically the KQML message consists of three layers: the content layer, the message layer, and 

the communication layer. The content layer includes the actual content of the message in the 

programs' own know ledge representation of the message. KQML can carry expressions encoded 

in any representation language such as the Knowledge Interchange Format (KIF), the KQML or 

even ASCII strings. 

The communication layer encodes a set of message features which describe the lower level 

communication parameters, such as the identity of the sender and recipient, anda unique identity 

associated with the communication. 

It is the message layer that is used to encode a message that one application would like to transmit 

to another. The message layer forms the core of the KQML and determines the kinds of 

interaction one can have with a KQML-speaking agent. A primary function of the message is to 

identify the protocol to deliver the message and to supply a speech act or performative which the 

sender attaches to the content (such as an assertion, a query, a command or any of a set of known 

performatives). In addition, since the content may be opaque to the KQML-peaking agent, this 

layer also includes optical features which describe the content language, the ontology it assumes 

and some type of description of the content such as a descriptor naming a topic with the ontology. 

Syntactically, a KQML message is a ASCII string called a performative, which consists of a 

performative's name and a list of its parameters. A parameter is represented as keyword/value 

pair. The keyword, that is the parameter name must begin with a colon and must precede the 

167 



corresponding parameter value. 

Here is an example of a KQML message, which is used as an initial message in our framework: 

(evaluate :sender kbase :receiver agent 

:Ianguage KQML :ontology agent 

:content ( tell-resource :type address 

:name AS :value kielder.ncl.ac.uk:5001)) 

In this message, the KQML performative is the evaluate, the content is (tell-resource :type 

address :name AB :value kielder.ncl.ac.uk:5001), another KQML message which tells the agent 

that the AB's address is kielder.ncl.ac.uk:500I, the ontology assumed is agent, the receiver and 

sender of the message are agent and kbase respectively, and the content is written in the language 

KQML. 

The value of the content keyword is content level, the values of :sender and :receiver belong to 

communication level, and the performative s name (evaluate) with : language and :ontology form 

message layer. 

When an agent ClientA moves to an agent-server, it would transmit a message like the following 

to the AB for telling its existence: 

(evaluate :sender ClientA 

content (tell-resource :type address :name ClientA 

:value kielder.ac.uk:541 00) 

ontology agent : receiver AS :Ianguage KQML) 

Suppose that there was already another agent ClientB which sent the following message to the AB 

When it started up. 

168 



(evaluate :sender ClientS 

:content (tell-resource :type address :name ClientS 

:value kielder.ac. uk:541 03) 

:ontology agent : receiver AS :Ianguage KOML) 

When the agent ClientA wants to communicate with the ClientB, it would first send the following 

message to AB: 

(evaluate :sender ClientA 

:content (ask-resource :type address :name ClientS) 

:ontologyagentreceiver AS :Ianguage KOML) 

The AB would answer with the message below: 

(evaluate :sender AS 

:content (tell-resource :type address 

:value kielder.ncl.ac.uk:54103 :name ClientS) 

:ontology agent :receiver AS :Ianguage KOML) 

After that, the ClientA would dialogue with ClientB directly. 

169 



6.3 Automated Test Execution Through VISITOR 

The application of VISITOR to the automated test execution on the banking application is as 

shown in Figure 6.5. 

est result t 
b 
m 

ack by 
obile 
~ent 

MI) 
a 
( 

TR 

TR 

~ 

TD 

'-------

[;I 
~ 

TD 

-

~R 

---. 

lent 
on Aidan 

~ 
Application 

Server 
(RMI) 

cr 1 
, 

Remote 
Object ~ 

Client 2 
on Kielder ~ ~ check 

balance 

• 
; deposit I • ... 

• 

/ I withdraw I 
r------

Client n on Glororan 
on Aidan 

the test dliver launched by mobile agent (RMI) 

'---

--1 ~ 
Test Results ..- Test 

~ Validator Execution 
~ 

Database 
Server 

(mSQL) 

~ I custome~ 
I balanc9 

Database 
on Kenton 

~ lpasswor~ 

I type I 
Database 

on Kielder 

paths trace file 

Test Data ...... Generator 

Figure 6.5: Automated Client/Server Test Execution through a mobile agent 

Aidan, Kie1der, Kenton and Glororan are the UNIX machines that were used for this 

implementation. 

The test driver is launched by a mobile agent to remote client sites to run the tests. During the 

testing, the mobile agent will use the network class se",erto dynamically load the classes relevant 

to this test such as the Test Data Generator and the Test Results Validator. The test result (pass/fail) 

on each client site will be sent back by the mobile agent with Java RMI. The mobile agent roams 

across different platforms and finally it arrives at the application server site to bring back the paths 

170 



trace file for inspecting the testing order. 

This framework has been implemented with the Java Agent Template (JAT) and the Java Remote 

Method Invocation (RMI). The JAT provides a fully functional template for constructing agents 

which communicate peer-to-peer with a community of other agents distributed over the Internet. 

However, JAT agents are not migratory but rather have a static existence on a single host. As an 

improvement, the Java RMI is used to let JAT agents dynamically migrate to foreign hosts in this 

implementation. As a result of the Java RMI not currently working effectively well on the 

Netscape Browser currently, the implementation of MTA (Mobile Testing Agent), the name of a 

mobile agent for the automated testing in this implementation, is not available with Java Applet, 

but with stand-alone style. It can be downloaded at the MObile Software Testing (MOST) web 

site (http://www.casq.org/mostl) which is under the web site for Chinese Association for 

Software Quality (CASQ) constructed and maintained by Huey-Der Chu 1998. 

To implement MTA, an operational environment is presented based on the Java software as 

shown in Figure 6.6, allowing MTA to roam cross the disparate platforms. 

Home 

MTA ------------------ ... 
I Re~ote M~th~d Invocation (RMI) 

Java Network Programming 

c::: Java Agent Template (JATU 
, 

Java Abstract Windowing Toolkit 

Java Development Kit (JDK) 1.1.3 

Figure 6.6: An operational environment for implementing MTA 

171 



The hardware platfonn of the test-bed at the lowest level in Figure 5.6, is a network of C;-';IX 

machines running the Solaris 2.x operating system which often plays a part in the distributed 

system. The widespread use of the Personal Computer (PC) has also prompted an ongoing effort 

to port the environment to the PCIMS-DOS platfonn. On the top of the hardware platfonn is Java 

Development Kit (JDK) and JAT. JDK consists of the Java programming language core 

functionality, the Java Application Programming Interface (API) with multiple package sets and 

the essential tools such as Java Abstract Windowing Toolkit (AWT) and Java RMl. On top of this 

platform is VISITOR which consists of aserversite, a client site and a home site. \1TA is launched 

by the user on the Home site, migrates to the Client and Server sites and sends results back to the 

user. 

Before launching the Mobile Testing Agent on the Home site, we set up two Tools Brokers on the 

Server and Client sites on two different hosts: Tools Broker A on Glororan and Tools Broker Bon 

Walton. The name of the Tools Broker is the name of an Agent Broker for the automated testing in 

this implementation. The GUI includes a menu bar and a text area fordisplaying system messages 

as shown in Figure 6.7 and shows it receives three messages from MTA, the local service agent 

and the receiving agent in the initial status. 

r Action Message Resource He I p 

Messages received: 3 

Messages sent: 0 

o utgoi ng buffer: 0 

I ncom i ng buffer: 0 

S ste m M essaqes 

Figure 6.7: GUI for Tool Brokers and MTAs 

The system messages with KQML can be displayed on another window as shown in Figure 6.8 

after clicking on the "System Messages" button. Each message is written to a log file. 

172 



Message rece !ve d: (eval uate :se n der Rece iveAge nttheta :conte nt (te II-resouro 
Message rece Ive d: (eval uate :se n der Rece iveAge ntbeta :conte nt (te II-resource 
Connected to network on local port 5001 
Message rece ive d: (eval uate :se n der in it-fi Ie :conte nt (te II-resource :ty pe ad c 

Figure 6.8: GUI for displaying System Messages 

, 

When we launch an MTA from the Home on Aidan to the Client on Glororan, the standard l"-.ITA 

QUI is the same as with Tools Broker. The MTA gets the message here, sends it back to the useron 

the Home site and migrates to the Server to bring the paths trace file back to the user. 

Current testing tools with the capture/playback paradigm emulate a multi-user environment and 

ends at the client site but are not designed to test the server, as referred to in the Introduction. The 

application of mobile agents to automated test execution can let the tests really run on multiple 

client sites across different platforms and go to the server site to bring the paths trace file back to 

the home site for inspection of the test ordering. However, VISITOR cannot be used to solve the 

non-reproducible problem. Therefore, a broadcast model is presented in the next Section to 

perform repeated executions for the client/server applications. 

6.4 Automated Test Execution Through The Multicast System 

6.4.1 The Chat System 

A chat application allows multiple clients to enrol under a particular name and send messages 

to each other. A simple example of a multi-threaded client/server chat system is as shown in 

Figure 6.9. It makes a socket connection and then opens a window with two areas: a small input 

area and a large output area. 



(!) CSR Chat System on: klelder.ncl.ac.uk ~ CSR Chat System en: klelder .ncl.ac.uk 

.IONt~ ~ ~~ I m joseph. 
Andrl~ f Andrej from Hlxham 

Andre~ l' Andrej from Hexham 
Josep ]: How are you? 

p How are you? 
r.'droJ Fine. How about yo ... work? 

Andrej 1: Fine. How about your work? 

~".Phl:l 
g 

~Andr.Jl:I I 
II 

I 
III tmlpd JIJII. fWlet Window I!aII hi.,... Joy. Applet WI_ 

(a) Joseph chats on Kenton machine (b) Andrej chats on Hexham machine 

Figure 6.9: A multi-threaded client/server chat system 

After the user types the user name and the text into the input area on the client side, the text is 

transmitted to the server. The server echoes back everything that is sent by the user. The screen 

on the client site displays everything received from the server in the output area. When multiple 

clients connect to one server, a simple chat system is given. 

The concept of the multi-threaded client/server chat system provides a direction to perform 

repeated executions for the client/server applications. When a client wishes to join the test, it 

enrols this chat system and waits for messages from the server site. The test data file is generated 

and broadcast to clients on the server site. The clients receive the test data file and execute the 

test simultaneously and the test results are transmitted to the server. In the next Section, the 

concept of the multicast system is firstly introduced. The multicast framework for the 

client/server test execution is illustrated later. 

6.4.2 The Multicast System 

This multicast system based on the client/server chat system consists of a simple chat client and 

a multi-threaded broadcast chat server (Hughes, Hughes, Shoffner & Winslow, 1997). A client 

class, ChatClient, implements the chat client and involves setting up a basic user interface, 

handling user interaction and receiving messages from the server. A multi-threaded server 

contains two classes: a ChatServer class and a ChatHandler class. The framework of this chat 

174 



system is shown as in Figure 6.10. 

runO 

new ChatClient 

mainO 
register 

Class ChatHandler 

ChatHandler 2 

runO 

_. mainO 

Figure 6.10: The framework of the multicast system 

The ChatServer class is a server that accepts connections from clients and assigns them to new 

connection handler objects. The ehatHandler class actually does the work of listening for 

messages and broadcasting them to all connected clients. One thread (the main thread) handles 

new connections and there is a thread for each client. 

6.4.3 Automated Test Execution Through the Multicast System 

In the simple banking application implemented in Chapter 5, when the same test data file ran the 

test on two different client sites, the results were wrong as a result of the race condition on the 

database server. This can not be tested using the mobile agents to send the same test data to two or 

more remote client sites to run the tests simultaneously. Therefore, the framework of automated 

test execution through the multicast system as shown in Figure 6.10 is introduced to perform 

repeated executions. 

175 



"4 
Test Data Client 1 

Generato on Aidan 

~ 
Application Database 

Server Server 

: (RMI) (mSQL) 

Remote 
Object ""4 ~ I custome~ 

Client 2 "4 ~ check I balanc9 ~ on Kielder 
balance 

File Database 

• 
; deposit I 

on Kenton 

: • "4 ~ I passwor~ • 

/ I with~w I type I 
est Resul s Client n 

Database 

Validator on Aidan 
on Glororan on Kielder 

"4 
Test 
Result 

Figure 6.10: Automated Client/Server Test Execution through Multicast 

In this framework, the ChatServer class accepts connections from the clients of the simple 

banking application and assigns them to the connection handler objects. The ChatHalldlerclass 

does the work of broadcasting the test data files which are generated from the Test Data Generator 

as well as the Test Execution and listening for the test results from clients to the home site for the 

inspection of the test results using the Test Results Validator. 

As a result of lack of time, this framework has not been implemented, however, some chat 

systems have been implemented using Java RMI (Wutka, 1997). Therefore, learning 

programming skills from these systems could fit this framework as follows. To connect to a 

server, this framework could use the RMI name registry to get a remote reference to the 

ChatServerclass which includes the ChatHalldlerclass. A CliellfCliellfclass could be created for 

the clients of application to invoke the connection to the server to request the test data file and the 

Test Execution. When multiple clients connect to one server, the repeated test executions could be 

performed. 

176 



This approach could solve the non-reproducible problem. However, it cannot bring the paths 

trace file from the application server, which can be achieved using mobile agents. Therefore, the 

dynamic testing strategy advocated here combines two approaches in Section 6.3 and Section 6.4 

to achieve the goal of the automated client/server testing. The way to mix the two testing 

techniques is deduced from their complementary features, that is, before the multi-user test 

executions, a dynamic test plan to classify the testing types between multiple users on different 

platforms. A blackboard-based test plan for test automation is proposed in the next Section. 

6.5 A Blackboard-based Dynamic Test Plan for Test Automation 

6.5.1 Blackboard Architecture 

The proposed framework for the dynamic test plan is a blackboard architecture with multiple 

agents. A blackboard architecture consists of a control unit, a blackboard and knowledge sources 

(agents) (Corkill, 1991; Imam, 1996) as shown in Figure 6.11. 

[ Control J 
_V_nit j control 

Blackboard 

Knowledge 

........ Sources 

control (Agents) 

Figure 6.11: The blackboard architecture 

The control unit makes runtime decisions about the course of problem solving and is responsible 

for all communications amongst agents and between the user and the whole system. The 

hlackboard is a global database containing input data, partial solutions and other data that is 

shared by all agents and managed by the control unit. The agents are systems that are responsible 

for performing certain tasks or controlling other agents. 

177 



6.5.2 Illustration of the Framework 

To explain how the blackboard works on the dynamic test planning before the test execution, 

consider the following framework on the simple banking application as shown in Figure 6.12. 

; .... r ... ~ti;; .. J. ~ ........ ~ .......... . 
r - - - - - - - - - - - - - -. , 

Blackboard 

_1~' _1_,._ . .J _ _ p_,_~,::.J_ 
~Iients in Client 1 Client 2 • • • t e banking on UNIX on PC with application machine WinOS 

Testin o 
Tool wfth 
obile agents 

lo~~tWfth 
he multicast 

S stem 

• 
• 
• 

Current 
Testing tool 

_1~' _l_,~ .. J_ 

o~IB~\~ 
machine 

Figure 6.12: A blackboard-based framework for the dynamic test plan 

Assume that the global goal of testing addresses issues of indeterminacy, scalability and 

multi-user interaction that often determine the successful deployment of a client/server system. 

The initial input into the framework are testing tools with different approaches and clients wiII 

enrol the testing. The expected output is a dynamic test plan to aIlocate testing tasks to these 

testing tools to clients before the test is executed, such as which clients wiII use a testing tool 

through mobile agents. 

Whenever, a new client in the client/server banking application is to be enroIled, the control unit 

sends a signal to the client agent to acquire the necessary information about the given client, such 

as what is the base of the operating system, what testing tools are suitable on this client site and 

What is the IP address. The client agent stores this information in the blackboard and sends a signal 

to the control unit so that it can accomplish its job. 

178 



The control unit sends a message to the planning agent to generate a partial plan for the dynamic 

test execution using the information in the blackboard. In this case, the test execution using the 

framework of VISITOR is working effectively across platforms which are UNIX machine. 

Therefore, if a client under the UNIX platform wants to enrol the test, the planning agent will 

notice the tool agent whether or not the client is accepted for joining the testing of the multi-user 

interaction. The tool agent will send its decision back to the planning agent. If it is acceptable for 

the testing of multi-user interaction, the planning agent sends a vector which records the 

assignment of the testing tool to the client agent and the IP address of the given client will be 

added into the scripts (a visiting list for remote testing) to VISITOR through the tool agent. The 

planning agent sends a signal to the control unit that it has accomplished its job and waits for the 

coming of the next client. 

The process of the dynamic test planning will be repeated until no clients join. The planning agent 

will check whether or not the test plan achieves the global goal for testing the client/server 

banking application. If so, the mission of the dynamic test planning is complete and the automated 

test execution will be ignited based on this test plan. Otherwise, the planning agent will re-plan 

(re-assign the tasks amongst clients) until the global goal is achieved. 

This section gives a reasonable proposal of the dynamic test planning for the automated test 

execution of client/server applications. However, undertaking the development of Multi-Agent 

Design Systems (MADS) has been challenging, because both theory and software support have 

been limited (Lander, 1997). Therefore, the design and implementation of this framework will be 

extended in future study. 

6.6 Conclusion 

Current testing tools with a capture/playback paradigm have some limitations for client/server 

applications. The common one is a lack of consideration of the real world operating environment 

across multiple platforms. A mobile agent is a computer object that can roam over the Internet 

under its own control, migrating from host to host and interacting with other agents and resources 

in order to satisfy requests made by its clients. Based on the concept of mobile agents, the test 

179 



driver can be launched by a mobile agent to remote client sites to run the tests and the paths trace 

file on the server side can also be sent back to the user for inspecting the test ordering. This 

concept has been implemented on a 3-tier banking client/server application with Java RMI and 

JDBe. It is completely different from current automated testing tools. 

The major advantages of this approach are: firstly, changing the layouts does not need to be 

acknowledged during test execution since the SMAD tree file is static, secondly, some testing 

activities such as the Modeller and the SMAD_Tree Editor can be done early, thirdly, the 

interaction behaviours between clients and server can be recorded in a paths tracer file which can 

be inspected based on the SMAD tree database and finally, the tests can be really run on multiple 

clients across different platforms. 

However, this approach can not perform repeated executions. The concept of the chat system was 

introduced to automated test execution. This framework can let the same test data file broadcast to 

multiple client sites to run the tests simultaneously and can listen to the test results which return 

from client sites. These two approaches are complementary to achieve the global goal of 

client/server testing. Therefore, a framework based on the blackboard architecture is proposed 

for a dynamic test plan to mix these two approaches to the automated testing of client/server 

applications. 

180 



7.1 The Problem 

Chapter 7 

Summary and Conclusions 

The straightforward definition of a high quality system is that it meets its users' requirements. 

Software testing is traditionally performed at the end of a release, however, market-driven 

schedule pressures often forces organizations to release products before they are adequately 

tested. The long-term effect has been increased warranty costs due to a products' poor reliabi lity 

and poor quality (Blackburn, 1998). Much focus has been placed on the front-end development 

efforts, not realizing that testing accounts for 40 to 75 percent of the cost and effort and can 

significantly delay product release (Beizer 1990). If the testing process could be automated, the 

cost of developing software could be significantly reduced (lnce, 1987). It is axiomatic that a 

problem is cheaper to fix if it is identified early, therefore, the sooner tests can be executed after 

the application is written, the more likely defects will not be carried forward. A strategy for test 

automation should consider automating these tests as early as possible as well as later in the 

testing life cycle. Client/server architectures allow complex systems to be assembled from 

components, therefore, the complexity of client/server also makes testing more difficult 

(GeITard, 1997), consequently some mechanisms are required. 

The hypothesis presented in this thesis is of the automated testing of distributed applications to 

achieve high quality software by means of a statistics-based framework which is an extension 

of the testing concept in Quality Programming and a statistics-based integrated test environment. 

The following assertions are made: 

181 



• It may be possible to propose A Distributed Message Flow Graph (DMFG) for modeling the 

execution behaviour of distributed applications. 

• Quality Programming introduced by Cho can automatically generate data for testing, based 

on a so-called 'SIAD tree' which is used to represent the hierarchical and syntactic relation 

between input elements and also incorporates rules into the tree for using the inputs. In my 

research, it is possible to extend the concept of SIAD tree to the 'Symbolic Message Attribute 

Decomposition' (SMAD) tree which specifies all possible delivered messages between 

events. 

• Based on the SMAD tree, it is possible to develop a framework which is based on a statistical 

approach. It could automatically generate the test data with an iterative sampling process 

which determines the sample size n; the software quality could be estimated with the 

inspection of test results, both with respect to their syntactic structure and the causal message 

ordering under repeated execution. 

• Based on the framework , it is possible to propose a Statistics-based Integrated Test 

Environment (SITE) which could secure automated support for the testing process, to address 

two main issues, when to stop testing and how good the software is after testing. 

• To run the test on the multi-client sites and the server site, it is possible to apply the concept 

of mobile agents to the automated testing of client/server testing. A mobile agent is a computer 

object that can move through a computer network under its own control, migrating from host 

to host and interacting with other agents and resources in order to satisfy requests made by its 

clients. In our research, the test driver could be launched by a mobile agent to remote client 

sites to run the tests and the tracing file on the server site could also be brought back to the 

user for inspecting. 

The validation of this thesis takes the implementation of a simple banking application which 

incorporates the framework and the integrated environment. A simple banking application is an 

embedded software system which is commonly seen inside or outside banks to drive the machine 

hardware and to communicate with the bank's central banking database. This application accepts 

182 



customers requests and produces cash, account information, database updates and so on. In our 

research, a Simple Banking Application (SBA) has been designed as a 3-tier client/server 

application. The validation of the hypothesis against this implementation will take the following 

components: 

• A Distributed Message Flow Graph was developed for modeling this simple banking 

application. The behaviour of this application was shown in this graphic model. (See Section 

5.3 of Chapter 5) 

• The definition of the input domain, of the product unit and of product unit defectiveness for 

this simple application was specified by SMAD tree. (See Section 5.4.1 of Chapter 5 and 

Section 5.4.2 of Chapter 5). 

• This simple banking application written using Java Remote Invocation (RMI) and Java 

DataBase Connectivity (JDBC) showed the testing process of fitting it into a statistics-based 

integrated test environment. (See Section 5.6 of Chapter 5). 

• The concept of the automated test execution through mobile agents across multiple platforms 

was implemented on this simple banking application. (See Section 6.3 of Chapter 6). 

7.2 Contribution of Current Understanding 

Software testing is an expensive process and consumes at least 30% of the total costs involved 

in developing software, while adding nothing to the functionality of the product. It remains, 

however, the primary method through which confidence in software is achieved. Therefore, 

automation of the testing process is desirable both to reduce development costs and also to 

improve the quality of software. Many development managers are now comfortable tackling the 

issues of creating client/server applications, because the market is flooded with client/server 

development tools. However, there is a real void in the area of automated testing facilities to test 

the complex distributed applications that client/server configurations enable .. 

In this thesis a statistics-based framework which is an extension of the testing concept in Quality 

183 



Programming is presented for automating testing of client/server applications. The main 

contributions of this thesis can be summarized as follows: 

• A framework for surveying software testing techniques is presented in Section 2.2 of Chapter 

2. After the classification of testing techniques, based on when to stop testing and how good 

the software is after testing, a classification scheme for testing techniques is presented in 

Section 2.3 of Chapter 2. This scheme enables infonned judgements to be made concerning 

choice of testing strategy. 

• In Section 4.4 of Chapter 4, we specify all possible delivered messages between events by 

means of the "Symbolic Message Attribute Decomposition" (SMAD) tree. It combines 

classification and syntactic structure to specify all possible delivered messages in a 

client/server application. In the upper level of the SMAD tree, all delivered messages are 

classified into three types of messages: input messages, intermediate messages and output 

messages. Each type of message has a syntactic subtree describing the characteristics of 

messages with a "happens before" relationship so that it can be determined whether messages 

were delivered in an order consistent with the potential causal dependencies between 

messages. With the SMAD tree, a statistics-based framework for testing distributed 

applications (see Chapter 4) not only can generate the test script on client sites, but can inspect 

the test ordering on the server site, with respect to the causal message ordering under repeated 

executions. 

• Based on the testing framework described in Chapter 2, this thesis proposes a Statistics-based 

Integrated Test Environment (SITE) which secures automated support for the testing process, 

to address two main issues, when to stop testing and how good the software is after testing (see 

Chapter 3). It consists of computational components, control components and an integrated 

database. The computational components include the Modeller for modelling the applications 

as well as the quality plan, the SMAD Tree Editor for specifying input and output messages, 

the Quality Analyst which includes the statistical analysis for determining the sample size for 

the statistical testing and the test coverage analysis for evaluating the test data adequacy, the 

Test Data Generator for generating test data, the Test Tracer for recording testing behaviours 

on the server side and the Test Results Validator for inspecting the test results as well as 

184 



examining the "happens before" relationship. 

There are two control components, the Test Manager and the Test Driver. The Test Manager 

receives the command from the tester and corresponds with the functional module to execute 

the action and achieve the test requirements. It executes two main tasks: the data management 

and the control management. In the data management, the Test Manager maintains an 

integrated testing database which consists of static data files and dynamic data files which will 

be created, manipulated and accessed during the test process. The static files include a SMAD 

tree file, a random number seed file and a quality requirement file. The dynamic files include 

an input unit file, a product unit file, a test ordering file, a defect rate file, a file for the defect 

rate range and a sample size file. 

In control management, the Test Manager controls three main functional modules: the 

Modeller, the SMAD Tree Editor and the Test Driver. The Modeller is used for receiving the 

test plan such as test requirements and test methods from the users, creating test plan 

documentation and saving some values for the testing database. The documentation provides 

support for test planning to the Test Driver as well as the SMAD Tree Editor for specifying 

messages among events. The SMAD Tree Editor is used to create the SMAD tree file that can 

be used to describe the abstract syntax of the test cases as well as to trace data occurring during 

the test. The SMAD tree file provides the structure to the Test Data Generator for generating 

input unit and the Quality Analyst to inspect the product unit. The Test Driver executes the 

main task of testing which includes the Test Data Generator, the Test Execution, the Test 

Results Validator and the Sampling Processor. The implementation of a 3-tier client/server 

application which incorporates the framework is also described in Chapter 5. 

• To assist a solution to the problem of the test environment spanning multiple platforms, the 

concept of mobile agents was introduced in Chapter 6. The test driver can be launched by a 

mobile agent to remote client sites to run the tests and the paths trace file on the server site can 

also be sent back to the tester for inspecting the test ordering. It has been implemented on a 

3-tier banking client/server application as described in Section 6.3 of Chapter 6. 

185 



Often, automated testing is introduced very late in the implementation process and is restricted 

to regression testing. The earlier the testers incorporate an automated test approach into the 

development process, the greater the return on the investment. In this implementation for 

automated testing through mobile agents, changing syntactic structures such as screen layouts 

does not interfere with test execution since any changes for these structures can be done by 

the SMAD_Tree Editor before the test execution. In other words, some testing activities 

involving components such as the Modeller and the SMAD_Tree Editor can be done early. 

To address the problem for repeated executions, the concept of the chat system was introduced 

in Section 6.4 of Chapter 6. Based on the multicast framework, the same test data file can be 

broadcasted to multiple clients sites to run the tests simultaneously and the test results can be 

returned from the client sites. Moreover, the interaction behaviour between client and server 

sites can be inspected by the SMAD tree file based on the causal message ordering. Finally, 

the tests can be really run on multiple clients across different platforms. The combination of 

all these features into a single automated test environment is a considerable advance, not 

before achieved in test environments for distributed applications. 

7.3 Future Research 

This thesis has concentrated on the extension of Quality Programming to the automated testing 

of client/server applications. A statistics-based integrated test environment was proposed for 

testing distributed applications. One way to check the usefulness of the software test environment 

presented in this thesis is to perform further applications. Within this thesis one worked 

application, a simple banking application with Java RMI and JDBC, is presented through this 

thesis. 

As a result of lack of time and resources, not all features will be available at the same time with 

full functionality. In this thesis, the causality relation is presented for examining the test results 

with the casual ordering message in the distributed computation. However, this concept has not 

been implemented. In my implementation, the testing order of interactive behaviours between 

two client sites is traced by writing codes in events inside the application. If I had more time and 

186 



resource, the tool, the Test Paths Tracer, should be developed for instrumenting the source code 

to monitor test execution. It could allow the user to select the "level" of instrumentation and the 

instrumented execution could produce a trace of the execution behaviour. The choices should 

include statement, branch, remote method call, task entry and exception etc. These traces could 

be used for behaviour verification. 

Automated behaviour verification is one of the innovative claims of SITE. Most testing tools 

provide limited, if any, support for test oracles and behaviour verification. In particular, some 

provide the ability to specify expected output for specific test inputs or they may provide 

capture/playback capabilities that are useful in re-testing. Very few capabilities are provided for 

first time test execution or for general specification of expected behaviour. This is a major 

shortcoming in testing tools, as leaving behaviour verification totally to the user can be extremely 

error prone. After execution of each test data, the Test Results Validator in the SITE should apply 

all valid procedures associated with the input messages, intermediate messages and output 

messages using the SMAD tree file. The valid procedure could basically compare the execution 

trace, intermediate messages and out messages with the information of the causality relation in 

the SMAD tree file and determines if this test execution has passed or failed. If the test fails, a 

failure report generated by the Test Results Validator. 

Accurate process and product measurement is required to support continuous improvement of 

products and processes. Automation of the testing process should support automatic metric 

collection. SITE currently performs the statistical analysis, however, it is a limited coverage 

measurement of testing. Therefore, SITE should be developed with the hooks in place to collect 

more metrics and do more coverage measurement. 

A test criterion does not explicitly define test cases by actual inputs but rather describes the 

requirements on test inputs or test execution. SITE should use these descriptions to measure 

whether and how much of a test criterion is adequately satisfied. When a test with test coverage 

is executed, the Quality Analyst in the SITE should determine whether a test suite (providing the 

187 



environment for the test case) is to be checked against any test criterion. IT it is related, then the 

execution traces produced by executing each test case in the suite are compared with each element 

of the test criterion to determine which, if any, criterion elements were covered by the test 

execution. 

The statistics-based integrated test environment could be further developed in one of five 

directions: 

• Firstly a more detailed and complex application could be undertaken. In our implementation 

in Chapter 5, the simply banking application with Java RMI and JDBC was implemented 

under UNIX platforms and the integrated database in SITE was implemented using mSQL 

and Java JDBC. Therefore, a complex application with other programming languages and 

across different operating system platforms would serve to show the ability of SITE. In 

addition, the integrated database in SITE could be implemented by other database systems to 

examine how Java JDBC works on a multiple database environment. 

• The second direction is the expansion of SMAD Tree Editor for wider applications. According 

to the different types of software applications, we can use a number of different types of SIAD 

trees (a detailed description of these threes is given in Cho). In Chapter 5, I apply the rule 

SIAD/SOAD tree for the simply banking application. In (Liu, Yang, Chu, Liu & Chang. 

1992), we applied the weighted and ruled SIAD trees for the Command File Interpreter (CFI) 

software, the regular SIAD tree for interface software in a relational database system and the 

regular SIAD tree for a LEX generator. Therefore, the expansion of SMAD Tree Editor would 

allow us to build different types of SMAD tree files for different applications. 

• The third is to build up a general Test Data Generator which can automatically generate test 

data for different applications. In my implementation in Chapter 5, I found out the Test Data 

Generator depended on the SMAD tree file to generate test data. In other words, a new 

application could not use the Test Data Generator in Chapter 5 to generate test data. We must 

replace some procedures for this new application. Therefore, we need to develop a compatible 

tool which could be used for replace these procedures for different applications to let Test Data 

Generator become a flexible tool. 

188 



• The four direction is the design and implementation of the proposed framework in Section 6.5 

of Chapter 6. A dynamic testing strategy advocated in this thesis to combine two approaches 

in Section 6.3 and Section 6.4 to achieve the global goal of the automated client/server testing. 

The way to mix these two testing approaches is deduced from their complementary features, 

that is, before the multi-user test executions, a dynamic test plan to classify the testing types 

between multiple users on different platforms. The proposed framework under a blackboard 

architecture with multiple agents is a reasonable framework. However, undertaking the 

development of Multi-Agent Design System (MADS) has been challenging, because both 

theory and software support have been limited (Lander, 1997). Therefore, the design and 

implementation of this framework will be extended in future study. 

• The final direction is to extend SITE for testing Graphical User Interface (GUI) applications. 

Most modern client/server applications include a GUI, these interfaces can be extremely 

simple to agonizingly complex depending on the application. In many companies the testing 

of the GUI interface is a critical part of the plan for product release (Schroeder & Apfelbaum, 

1998). The use of a graphical model to describe the behaviour of a GUI combined with an 

automated test generation system could dramatically reduce the time required to test an 

client/server application. Therefore, it is necessary to apply SITE for testing GUI applications 

189 



REFERENCE LIST 

Basili, V.R & Selby, RW. (1987). Comparing the Effectiveness of Software Testing Strategies, 

IEEE Transactions on Software En&ineerin&, SE-13(12), 1278 - 1296. 

Beizer, B. (1990). Software Testin& Techniques (Second ed.). Van Nostrand Reinhold, New York. 

Beizer, B. (1995). Black-Box Testin&: Techniques for Functional Testin& of Software and 

Systems. John Wiley & Sons, Inc., New York. 

Beizer, B. (1997). The Future of Software Quality. In International Software Ouality Week 

Europe (QWE'97), Brussels. 

Belli, F. & Jack, O. (1993). Implementation-based analysis and testing of prolog programs. In 

International Symposi urn on Software Testin& and Analysis, Cambridge, Massachusetts, 70 - 80. 

Berry, A. (1995). An Application-level Implementation of Causal Timestamps and Causal 

Ordering. Distributed System En&ineer, (2), 74-86. 

Bertolino, A. (1991). An Overview of Automated Software Testing. Journal Systems Software, 

15, 133 - 138. 

Blackburn, M. (1998). Specification Transformation to Support Automated Testing. In 15th 

International Conference and Exposition on Testing Computer Software (TCS'98), Washington, 

D.C. 

Bottaci, L. & Jones, J. (1995). Formal Specification Using Z: A Modellin& Approach. 

International Thomson Publishing, London. 

Chaar, J. K., Halliday, M. J., Bhandari, I. S. & Chillarege, R (1993). In-Process Evaluation for 

Software Inspection and Test. IEEE Transactions on Software Engineering, SE-19(U), 1055-

1070. 

Chen, T. Y. & Yu, Y. T. (1996). On the Expected Number of Failures Detected by Subdomain 

Testing and Random Testing. IEEE Transactions on Software En&ineering, SE-22(2), 109 - 119. 

Chen, J. (1997). A flexible framework for mobile agent systems. Available at 

<http://www.casg.or&/most/chen.ps>. 

190 



Chen, J., Greenwood, S. & Chu, H. D. (1998). In 10th International Conference on Software 

Engineering and Knowledge Engineering (SEKE'98), San Francisco, CA. 

Cheriton, D. R. & Skeen, D. (1993). Understanding the Limitations of Causally and Totally 

Ordered Communication. In 14th ACM Symposium on Operating Systems Principles, 44-57. 

Chess, D., Harrison, C. & Kershenbaum, A. (1997). Mobile agents: Are they a good idea? 

Lecture Notes in Computer Science 1222, 25-45. 

Cho, C. K. (1988). Quality Programming: Developing and Testing Software with Statistical 

Quality Control. John Wiley & Sons, Inc., New York. 

Chow, T. S. (1980). Integration Testing of Distributed Software. In IEEE Conference on 

Distriuted Computing, 706-711. 

Chu, H. D. & Dobson, J. (1996). A Statistics-based Framework for Automated Software Testing. 

In 9th International Software Quality Week (QW'96), San Francisco, CA. 

Chu, H. D. (1997). An Evaluation Scheme of Software Testing Techniques. Reliability, Quality 

and Safety of Software-Intensive Systems. Ed. Dimitris Gritzalis. Chapman & Hall, London, 

259 - 262. 

Chu, H. D., Dobson, J. E. & Liu, I. C. (1997). FAST: A Framework for Automating 

Statistics-based Testing. Software Quality Journal, 9.(1), 13-36. 

Chu, H. D. & Dobson, J. E. (1997). An Integrated Test Environment for Distributed Applications. 

In 10th International Software Quality Week (QW'97), San Francisco, CA. 

Chu, H.D., Dobson, J., Chen, J. & Greenwood, S. (1998). The Application of Mobile Agents to 

Software Testing. In 15th International Conference and Exposition on Testing Computer 

Software (TCS'98), Washington, D.C. 

Corkill, D. D. (1991). Blackboard Systems. AI Expert, 9.(9),40-47. 

Currit, P. A., Dyer, M. & Mills, H. D. (1986). Certifying the Reliability of Software. IEEE 

Transactions on Software Engineering, SE-12(1), 3 - 11. 

Deck, M. (1996). Cleanroom practice: a theme and variations. in 9th International Software 

Quality Week (QW'96), San Francisco, CA. 

191 



DeMillo, R. A., Lipton, R. J. & Perlis, A. J. (1979). Social Processes and the Proofs of Theorems 

and Programs. Communications of the ACM, 22(5), 271 - 280. 

DeMillo, R. A., McCrracken, W. M., Martin, R. J. & Passafiume, J. F. (1987). Software Testing 

and Evaluation, The Benjamin/Cummings Publishing Company, Inc., Workingham. 

Deutsch, M. S. & Willis, R. R. (1988). Software Quality Engineering: A Total Technical and 

Management Approach. Prentice-Hall Inc., Englewood Cliffs. 

Duran, J. W. & Ntafos, S. C. (1984). An Evaluation of Random Testing. IEEE Transactions on 

Software Engineering. SE-1O(4), 438 - 444. 

Eickelmann, N. S. & Richardson, D. J. (1996). An Evaluation of Software Test Environment 

Architectures. In 18th International Conference on Software Engineering, 353 - 364. 

Dyer, M. (1992). The Cleanroom Approach to Quality Software Development. John Wiley & 

Sons, New York. 

Fagan, M. E. (1976). Design and Code Inspections to Reduce Errors in Program Development. 

IBM Systems journal, 15(3), 182 - 211. 

Fagan, M. E. (1986). Advances in Inspections, IEEE Transactions on Software Engineering. 

SE-12(7), 744 -751. 

Ferguson, R, C. (1993). Test Data Generation for Sequential and Distributed Programs. Ph.D. 

Thesis, Wayne State Univetsity. 

Ferguson, R. C. & Korel, B. (1996). The Chaining Approach for Software Test Data Generation. 

ACM Transactions on Software Engineering and Methodology . .2(1), 63 - 86. 

Fewster, M. & Graham, D. (1998). Automating Software testing, Addison WesleyPublishing 

Company, Wokingham, England (To be published later 1998). 

Fidge. C. (1991). Logical Time in Distributed Computing Systems. IEEE Computer. 24(8), 28 

-33. 

Frankl, P. G. & Weyuker, E. J. (1993). A Formal Analysis of the Fault-Detecting Ability of 

Testing Methods. IEEE Transactions on Software Engineering, SE-19(3), 202 - 213. 

192 



Gelperin, D. & Hetzel, B. (1988). The Growth of Software Testing. Communication of the ACM, 
1l(6), 687 - 695. 

Gerrard, P. (1997). Testing Client/Server Systems. Available at 
<http://www.ftech.net/-evolutif/articJes/cstestin~.html>. 

Gilb, T. & Graham, D. (1993). Software Inspection. Addison-Wesley Publishing Company, 
Wokingham. 

Goodenough, J. B. & Gerhart, S. L. (1975). Toward a Theory of Test Data Selection. IEEE 

Transactions on Software En~ineerin~, SE-1(2), 156 - 173. 

Graham, D. R. & Herzlich, P. (1993). The CAST Report (second ed.). Cambridge Market 

Intelligence Limited, London. 

Gray, R. Kotz, D., Nog, S., Rus, D. and Cybenko, G. (1997). Mobile Agents: The next 

generation in distributed computing. In Int. Symposium on Parallal Al~orithms Architecture 

Synthesis, Japan. 

Hamlet, D. (1988). Special Section on Software Testing. Communication of the ACM,.ll(6), 662 

-667. 

Hamlet, D. & Taylor, R. (1990). Partition Testing Does Not Inspire Confidence. IEEE 

Transactions on Software En~ineerin~, SE-19(3), 202 - 213. 

Horcher, H. M. & Peleska, J. (1995). Using Formal Specifications to Support Software Testing. 

Software Quality Journal, 4, 309-327. 

Hughes, M., Hughes, c., Shoffner, M. & Winslow, M. (1997). JAVA Network Programming. 

Manning Publication Co., Greenwich. 

Humphrey, W. S. (1989). Characterizing the Software Process: a maturity framework. IEEE 

Software. March. 

IEEE (1983). IEEE Standard for Software Test Documentation: IEEElANSI Srandard 

829-1983. New York: Institute of Electrical and Electronic Engineers. 

193 



Imam, I. F. (1996). A Proposed Framework for Automating Software Testing. In 9th Florida 

Artifical Intellit:ence Research Symposium, 478-481, Florida, U.S.A. 

Ince, D. C. (1987). The Automatic Generation of Test Data. The Computer Journal, 30(1), 63-
69. 

Jorgensen, P. C. & Erickson, C. (1994). Object-Oriented Integration Testing. Communication 
of the ACM, 37(9), 30 - 38. 

Kazman, R., Bass, L., Abowd, G. & Webb, W. (1994). SAAM: A Method for Analyzing the 

Properties of Software Architectures. In 16th International Conference On Software Ent:ineering, 

81 - 90. Sorrento, Italy. 

Kit, E. (1995). Software Testing in the Real World: improving the process. Addison-Wesley 

Publishing Company, Workingham. 

Korel, B. (1990). Automated Software Test Data Generation. IEEE Transactions on Software 

Engineering, SE-16(8), 870 - 879. 

Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed System. 

Communications of the ACM, 21(7), 558 - 565. 

Lander, S. E. (1997). Issues in Multiagent Design Systems. IEEE Expert, March-April, 18 - 26. 

Lauterbach, L. & Randall, W. (1989). Experimental Evaluation of Six Test Techniques. In 

Proceedings COMPASS 89,36 - 41. 

Laprie, J. C. (1995). Dependability - Its Attributes, Impairments and Means. In Predictably 

Dependable Computing Systems. (pp. 3 - 18). Springer. 

Liggesmeyer, P. (1996). Selecting Test Methods, Techniques, Metrics and Tools Using 

Systematic Decision Support. In 9th International Software Quality Week (OW'96), San 

Francisco, CA. 

Lingnau, A. & Drobnik, O. (1995). An HTTP-based infrastructure for mobile agents, 

Available at <http://www.w3.org!pub/Conferences/WWW4>. 

Liu, I C., Yang, R.D., Chu, H.D., Liu, F.H. & Chang, C.S. (1992). Software Statistical Ouality 

Assurance ,Technical Report, Institute for Information and Industry, Taiwan. 

194 



Lyons, N. R. (1977). An Automatic Data Generation System for Data Base Simulation and 

Testing. Data Base, B.(4), 10 - 13. 

Marre, B., Thevenod-Fosse, P., Waeselynck, H., GaIl, P. L. & Crouzet, Y. (1995). An 

Experimental Evaluation of Formal Testing and Statistical Testing. In Predictably Dependable 

Computin~ Systems. (pp. 273 - 281). Springer. 

Mayfield, J., Labrou, Y., & Finin, T. (1996). Evaluation of KQML as an agent communication 

language, Available at <http://www.cs.umbc.eduflaitlpapers!kqml-eval.ps>. 

Mills, H.D., Dyer, M. & Linger, R. (1987). Cleanroom Software Engineering. IEEE Software, 

~(5), 19 - 25. 

Mooney, K. & Chadwick, D. (1998). Overcoming the Challengs of Testing Client/Server 

Applications. Available at <http://www.rational.comlsupport/techpapers/challen~es/> 

Musa, J. D. & Ackerman, A. F. (1989). Quantifying Software Validation: When to Stop Testing? 

IEEE Software, May. 

Myers, GJ. (1978). The Art of Software Testin~. John Wiley & Sons, New York. 

Nair, B., Gulledge, K. & Lingevitch, R. (1996). Using OLE Automation for Efficiently 

Automating Software Testing. In 9th International Software Ouality Week (OW'96), San 

Francisco, CA. 

Niemeyer, P. & Peck, J. (1997). Explorin~ JAVA (Second ed.). O'Reilly & Associates, Inc., USA. 

Norman, S. (1993). Software Testin~ Tools. Ovum Ltd, London. 

Ould, M. A. & Unwin, C. (1986). Testin~ in Software Development. Cambridge University 

Press, Cambridge. 

Parnas, D., Schouwen, J. V. & Kwan, S. P. (1988). Evaluation of Safety-Critical Software. 

Communication of the ACM, 31(6),636 - 648. 

Parrish, A. & Zweben, S. H. (1991). Analysis and Refinement of Software Test Data Adequacy 

Properties. IEEE Transactions on Software En~ineerin~. SE-17(6), 565 - 58l. 

195 



Petti chord, B. (1996) .Success with Test Automation. In 9th International Software Ouality Week 

(OW'96), San Francisco, CA. 

Poston, R. M. (1994). Automated Testing from Object Models. Communication of the ACM , 
J1(9), 48 - 58. 

Poston, R. M. (1996). Automating Specification-Based Software Testing. IEEE Computer 

Society Press, Los Alamitos, CA, US. 

Quinn, S.R. & Sitaram, M. (1996). Shrink-wrapped and custom tools ease the testing of 

client/server applications, Byte, September, 97-102. 

Ramamoorthy, C. V. & Ho, S. F. (1975). Testing Large Software with Automated Software 

Evaluation Systems. IEEE Transactions on Software Engineering, SE-1(3), 46 - 58. 

Ramamoorthy, C. V., Ho, S. F. & Chen, W. T. (1976). On the Automated Generation of Program 

Test Data. IEEE Transactions on Software Engineering, SE-2(4), 293 - 300. 

Rapps, S. & Weyuker, E. J. (1985). Selecting Software Test Data Using Data Flow Information. 

IEEE Transactions on Software Engineering, SE-11(4), 367 - 375. 

Richardson, D.J., Aha, S.L. & O'Malley, T. O. (1992). Specification-based Test Oracles for 

Reactive Systems. In 14th International Conference on Software Engineering, 105 -118. Melpq 

lbourne, Australia. 

Richardson, D.J. (1994). TAOS: Testing with Oracles and Analysis Suport. In International 

Symposium on Software Testing and Analysis, 138 - 153. Seattle, Washington. 

Roper, M. (1994). Software Testing. McGraw-Hill Book Company, London. 

Schroeder, J. & Apfelbaum, L. (1998). Automating Test Generation for Gills. In 15th 

International Conference and Exposition on Testing Computer Software (TCS'98). Washington. 

U.S.A. 

Schwarz, R. & Mattern. F. (1994). Detecting Causal Relationships in Distributed Computations: 

in Search of the Holy Grail. Distributed Computing, 1.149 - 174. 

Shatz. S. M. & Wang. J. P. (1987). Introduction to Distributed-Software Engineering. IEEE 

Computer, m(10), 23 - 31. 

196 



Shatz, S. M. & Wang, J. P. (1988). Tutoial: Distributed-Software Engineering. IEEE Computer 

Society Press, Los Angeles, CA. 

Singhal, M. & Casavant, T. L. (1991). Distributed Computing Systems, IEEE Computer, 24(8), 

12 -14. 

Smith, D. 1. & Wood, K. B. (1989). Engineering Ouality Software: A review of Current Practices 

Standards and Guidelines including New Methods and Development Tools (Second ed.). 

Elsevier Science Publishers Ltd., Essex. 

Sommerville, 1. (1996). Software Engineering (Fifth ed.). Addison-Wesley Publishing 

Company, Wokingham, England._ 

Spillner, A. (1995). Test Criteria and Coverage Measures for Software Integration Testing. 

Software Ouality Journal, 1,275 - 286. 

Thevenod-Fosse, P. & Waeselynck, H. (1991). An Investigation of Statistical Software Testing. 

Journal of Software Testing. Verification and Reliability. 1(2), 5 - 25. 

Thevenod-Fosse, P. & Waeselynck, H. (1996). Towards a Statistical Approach to Testing 

Object-Oriented Programs. Design for Validation. First Year Report, 403 - 424. 

Thevenod-Fosse, P. Waeselynck, H., & Crouzet, Y. (1995). Software Statistical Testing. In 

Predictably Dependable Computing Systems. (pp. 253 - 272). Springer. 

Umar, A. (1993). Distributed Computing: A Practical Synthesis. Prentice-Hall, International, 

Inc., London. 

Vliet, H. V. (1994). Software Engineering: Principles and Practice. John Wiley & Sons, New 

York, US. 

Vogel, P. A. (1993). An Integrated General Purpose Automated Test Environment. In 

International Symposium on Software Testing and Analysis, 61-69. Cambridge, Massachusetts. 

Weyuker, E. J. (1986). Axiomatizing Software Test Data Adequacy. IEEE Transactions on 

Software Engineering, SE-12(12), 1128 - 1138. 

Weyuker, E. J. & Jeng, B. (1991). Analyzing Partition Testing Strategies. IEEE Transactions on 

Software Engineering, SE-17(7), 703 - 711. 

197 



Whittaker, J.A. & Thomason, M.G. (1994). A Markov Chain Model for Statistical Software 

Testing, IEEE Transcations on Software Engineering. SE-20(10), 812-824. 

Wutka, M. (1997). Hacking Java: The java Professional's Resource Kit, Oue Corporation, 

Indianapolis, U.S.A. 

Zallar, K. (1997) Automated Software Testing - A Perspective. In 10th International Software 

Quality Week (OW'97), San Francisco, CA. 

Zhu, H., Hall, P.A.V. & May, J.H.R. (1994). Software Test Coverage and Adequacy. Technical 

Report No. 94115, The Open University. 

Zhu, H. (1996). A Formal Analysis of the Subsume Relation Between Software Testing 

Adequacy Criteria. IEEE Transactions on Software Engineering, SE-22(4), 248 - 255. 

198 


	262882_0001
	262882_0002
	262882_0003
	262882_0004
	262882_0005
	262882_0006
	262882_0007
	262882_0008
	262882_0009
	262882_0010
	262882_0011
	262882_0012
	262882_0013
	262882_0014
	262882_0015
	262882_0016
	262882_0017
	262882_0018
	262882_0019
	262882_0020
	262882_0021
	262882_0022
	262882_0023
	262882_0024
	262882_0025
	262882_0026
	262882_0027
	262882_0028
	262882_0029
	262882_0030
	262882_0031
	262882_0032
	262882_0033
	262882_0034
	262882_0035
	262882_0036
	262882_0037
	262882_0038
	262882_0039
	262882_0040
	262882_0041
	262882_0042
	262882_0043
	262882_0044
	262882_0045
	262882_0046
	262882_0047
	262882_0048
	262882_0049
	262882_0050
	262882_0051
	262882_0052
	262882_0053
	262882_0054
	262882_0055
	262882_0056
	262882_0057
	262882_0058
	262882_0059
	262882_0060
	262882_0061
	262882_0062
	262882_0063
	262882_0064
	262882_0065
	262882_0066
	262882_0067
	262882_0068
	262882_0069
	262882_0070
	262882_0071
	262882_0072
	262882_0073
	262882_0074
	262882_0075
	262882_0076
	262882_0077
	262882_0078
	262882_0079
	262882_0080
	262882_0081
	262882_0082
	262882_0083
	262882_0084
	262882_0085
	262882_0086
	262882_0087
	262882_0088
	262882_0089
	262882_0090
	262882_0091
	262882_0092
	262882_0093
	262882_0094
	262882_0095
	262882_0096
	262882_0097
	262882_0098
	262882_0099
	262882_0100
	262882_0101
	262882_0102
	262882_0103
	262882_0104
	262882_0105
	262882_0106
	262882_0107
	262882_0108
	262882_0109
	262882_0110
	262882_0111
	262882_0112
	262882_0113
	262882_0114
	262882_0115
	262882_0116
	262882_0117
	262882_0118
	262882_0119
	262882_0120
	262882_0121
	262882_0122
	262882_0123
	262882_0124
	262882_0125
	262882_0126
	262882_0127
	262882_0128
	262882_0129
	262882_0130
	262882_0131
	262882_0132
	262882_0133
	262882_0134
	262882_0135
	262882_0136
	262882_0137
	262882_0138
	262882_0139
	262882_0140
	262882_0141
	262882_0142
	262882_0143
	262882_0144
	262882_0145
	262882_0146
	262882_0147
	262882_0148
	262882_0149
	262882_0150
	262882_0151
	262882_0152
	262882_0153
	262882_0154
	262882_0155
	262882_0156
	262882_0157
	262882_0158
	262882_0159
	262882_0160
	262882_0161
	262882_0162
	262882_0163
	262882_0164
	262882_0165
	262882_0166
	262882_0167
	262882_0168
	262882_0169
	262882_0170
	262882_0171
	262882_0172
	262882_0173
	262882_0174
	262882_0175
	262882_0176
	262882_0177
	262882_0178
	262882_0179
	262882_0180
	262882_0181
	262882_0182
	262882_0183
	262882_0184
	262882_0185
	262882_0186
	262882_0187
	262882_0188
	262882_0189
	262882_0190
	262882_0191
	262882_0192
	262882_0193
	262882_0194
	262882_0195
	262882_0196
	262882_0197
	262882_0198
	262882_0199
	262882_0200
	262882_0201
	262882_0202
	262882_0203
	262882_0204
	262882_0205
	262882_0206

