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ABSTRACT 

This thesis describes the design and development of algorithms for fault 

tolerant distributed systems. The development of such algorithms requires 

making assumptions about the types of component faults for which toler­

ance is to be provided. Such assumptions must be specified accurately. To 

this end, this thesis develops a classification of faults in systems. This fault 

classification identifies a range of fault types from the most restricted to the 

least restricted. For each fault type, an algorithm for reaching distributed 

agreement in the presence of a bounded number of faulty processors is 

developed, and thus a family of agreement algorithms is presented. The 

influence of the various fault types on the complexities of these algorithms 

is discussed. Early stopping algorithms are also developed for selected fault 

types and the influence of fault types on the early stopping conditions of the 

respective algorithms is analysed. The problem of evaluating the perfor­

mance of distributed replicated systems which will require agreement algo­

rithms is considered next. As a first step in the direction of meeting this 

challenging task, a pipeline triple modular redundant system is considered 

and analytical methods are derived to evaluate the performance of such a 

system. Finally, the accuracy of these methods is examined using computer 

simulations. 
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CHAPTER 1 

INTRODUCTION 

A system can be considered to be made up of a set of components which 

interact under the control of a design. A component of a system is a system 

by itself and can be considered, where appropriate, to be atomic with the 

implication that any further decomposition of a component is of no interest 

and can be ignored. According to the terminology presented in [Ander8l, 

Lapri85], faults in a system are the (potential or actual) causes of the 

failures of the system. A violation from the specified behaviour of a system 

will be termed a failure. Given the complexity of modern computing sys­

tems, one approach for making them reliable is to accept that despite what­

ever efforts that have been made to avoid or remove faults, systems can 

nevertheless remain potentially faulty and to incorporate provisions to 

enable the system to cope with the faults that remain or develop. This 

approach is termed the fault tolerance approach and is generally considered 

to be necessary for building systems that can be assured of providing a high 

degree of operational reliability to the user(s) of the system. 

A given component can usually fail in many different ways. That is, a 

faulty component can have many failure modes. Thus, in order to be able to 

provide any kind of guarantee of service, the designer of a fault tolerant sys­

tem should specify not only the maximum number of components that he 

presumes might be faulty, but also the types of failures a faulty component 

is presumed to have. In other words, the fault tolerance specification should 

state explicitly the type and number of component failures a system is 
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supposed to tolerate. Then, provided the actual component failures that 

occur do not violate these assumptions and the fault tolerance strategies are 

correctly designed, the overall system will not fail. Putting this another 

way, it is meaningless to claim that a system is fault tolerant, without indi­

cating the assumptions that have been made regarding the number and 

types of component failures that could occur. 

1.1. Fault and failure classification 

A distributed system will be defined as a collection of autonomous pro­

cessors which can communicate with each other, and each of which can pro­

vide one or more services and can cooperate with other processors on a com­

mon goal or task [Enslo78]. By considering processors as components in a 

distributed system, different types of processor failures have been considered 

in the literature. One of the most restricted failure types is an omission 

failure [Mohan83] whereby a faulty processor fails by producing no output 

for a given input that requires an output to be produced by the processor. A 

. fault that causes such a failure will be called an omission fault. When a 

processor's omission failure persists for all such inputs, the processor will be 

said to have failed in a permanent omission manner. With subtle 

differences, a permanent omission failure has been termed in the literature 

as processor crash, halting failure [Birma87], fail-silent failure [PoweI88l, 

and fail-stop failure [Schli83]. Failures of these types are relatively easy to 

tolerate when compared to Byzantine failures. A Byzantine failure is 

caused by a Byzantine fault and is any violation of the specified behaviour. 

A Byzantine faulty processor is customarily considered to be capable of 

being malicious in trying to "sabotage" any fault tolerance provisions in the 

system. Faults that can appear to be of malicious nature were first dis­

cussed in [Daly73, Davie78] and have been considered, for example, in the 



- 3 -

design of SIFT system [WensI78] and in [Lampo82] where the name 

"Byzantine" was coined. 

A significant advantage to be gained by assuming that processors may 

have Byzantine failures is that the analysis required for justifying the fault 

assumptions made about the processors of systems used in life critical sys­

tems is greatly simplified. In order to consider anything less than Byzantine 

failure behaviour on the part of a processor in the design of a fault tolerant 

system, one must provide a convincing argument (based on knowledge of the 

processor's design, its components, and any provisions that the design con­

siders for faults in these components) of why it can fail only in some res­

tricted manner. Since, in the Byzantine fault model, no assumption needs 

to be made about failure modes of a processor, system analysis is 

simplified. However, attempts to build systems which can tolerate Byzan­

tine failures of processors involve a significant cost in terms of the number 

of redundant processors required in the system, and of message and time 

complexity in providing the system services. For example, when processors 

are considered to suffer only omission failures, only one (redundant) proces­

sor is required in addition to the number of processors that are assumed to 

fail in providing a service; when Byzantine failures are considered, the non­

faulty processors in the system should form a majority if they are to produce 

identical outputs for a given input (as in systems with majority voting 

[Lyons62]), and they should out-number the faulty processors by more than 

three to one [Pease80] if their outputs are unlikely to be identical (such as 

outputting the reading of a local clock [Lampo85]). 

In the design of a reliable, but not life critical systems, provisions for 

tolerance to Byzantine failures may be sacrificed in the interest of economic 

considerations. In such a situation, if omission failures are considered to be 
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too restrictive, then the design of a fault tolerant system requires a realistic 

means of identifying failure types that are more restricted than in the 

Byzantine model and less restricted than in the omission model. In this 

thesis we present, in chapter 2, a fault and failure classification using 

"expected-value" and "timing" as the two properties of a component's 

response. The resulting fault and failure classes are ordered according to 

their relative restrictiveness. Examples are drawn from distributed sys­

tems. We further extend this classification to apply to a particularly impor­

tant type of components that are required to provide replicated responses. 

Our fault and failure classification is an improvement over [Mohan83, 

Crist85], and our earlier classification in [EzhiI86]. An interesting observa­

tion from our classification of faults and failures is that for a given problem 

in distributed computing one can design a family of algorithms - from rela­

tively simple ones tolerating failures of restricted types to increasingly com­

plex ones tolerating failures of less restricted (and unrestricted) types. One 

such fundamental problem considered here will be the agreement problem. 

1.2. The agreement problem and algorithms 

Processors in a distributed system cooperate on a common goal or a 

task. Fundamental to such cooperation is the problem of agreeing on a 

piece of data upon which a computation depends. For example, the data 

managers in a distributed database system need to agree on whether to 

commit or abort a given transaction [Gray79]. In a replicated database sys­

tem, the processors need to agree on an identical sequence of incoming tran­

sactions [Garci86], and might need to agree on where a particular piece of 

data (a file, for example) is supposed to reside [Giffo79, Popek81]. In a flight 

control system for an airplane [Wensl78], the engine control module and the 

flight surface control module need to agree on whether to continue or abort 
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a landing in progress. The key point is not what the processors are agreeing 

on but that they must all come to the same conclusion. 

An obvious approach to achieving agreement is for the processors to 

vote and agree on the majority value. In the absence of faults, this works 

fine, but in a close election, the vote of one faulty processor can swing the 

outcome. Suppose distinct non-faulty processors receive conflicting votes 

from a faulty processor, then they might reach conflicting conclusions and 

hence fail to reach agreement. Thus specific algorithms need to be 

developed to guarantee that non-faulty processors reach agreement by arriv­

ing at the same conclusion. This problem is called the agreement problem 

[Lampo82] or the interactive consistency problem [Pease80] in the litera­

ture and can be briefly described as follows: A processor, called the sender, 

in a distributed system of at least three processors wants to disseminate a 

value to all other processors. The non-faulty processors in the system, 

which are at least two in number, will be said to have reached agreement 

on the sender's value if they all decide on the same value, and on the sent 

value if the sender is non-faulty. Extending a solution to the agreement 

problem mentioned above into a general context where every processor can 

act as a sender is straightforward. 

The agreement problem has been studied under a variety of assump­

tions mainly concerning the synchrony of processors and message communi­

cation and the types of faults processors and communication medium are 

subjected to. (A brief survey is presented in [Fisch83a].) This thesis 

presents, in chapters 3 and 4, deterministic algorithms developed for a dis­

tributed system where relative processing speeds of, and message communi­

cation delays between, processors are assumed to be known and bounded. 

An upper bound on the number of processors that can possibly fail is also 
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assumed. Execution of these algorithms will guarantee agreement in a 

known and bounded time interval. Algorithms are developed in two con­

texts: the sender processor's broadcast time is not known, and is known, to 

other processors a priori. Algorithms designed in the context of unknown 

broadcast time can be developed into broadcast protocols as in [Crist85] 

which can provide agreement and ordering abstractions [Schne86] which are 

essential for constructing systems with replicated processing. In this con­

text, in chapter 3, we develop agreement algorithms, and show them to be 

correct, for faults of each type defined in our classification and thus present 

a family of agreement algorithms illustrating the relative complexity of 

these algori thms. 

Solutions to the agreement problem when the broadcast time of the 

sender is known can be useful in systems such as a distributed database sys­

tem where data managers have a prior knowledge of the time the agree­

ment on commit or abort decision for a given transaction should commence. 

When processors in a distributed system know the sender's broadcast time a 

priori, it may be desirable to have them reach agreement early, when the 

actual number of failed processors is less than the expected. Agreement 

algorithms that guarantee an early agreement in the presence of less-than­

expected number of processor failures are called early stopping algorithms 

[Dolev82a]. In an execution of an early stopping algorithm, non-faulty pro­

cessors may reach agreement at different timing instants; some can be ear­

lier than the others. So, these algorithms are useful in applications where 

processors, following an agreement, carry out actions that need not be time­

coordinated. In distributed transaction commit, for example, non-faulty pro­

cessors need not commit (or abort) a transaction at a coordinated time, so 

long as they all decide to do, and eventually do, the same thing; therefore, a 
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non-faulty processor can commit a transaction and continue processing as 

soon as it has reached a commit decision and thereby knows that all other 

non-faulty processors will eventually commit the transaction. For such 

applications, early stopping algorithms can be used to make the processors 

reach agreement as early as possible. The authors of [Dolev82a] considered 

Byzantine failures for developing an early stopping algorithm. In chapter 4 

of this thesis, we consider a few restricted types of failures and provide early 

stopping algorithms that are faster than the ones reported in the literature 

for these failure types. 

1.3. Performance evaluation 

The agreement algorithms presented in chapters 3 and 4 are useful in 

constructing systems with replicated processing. Replicated processing with 

majority voting - N modular redundant processing - provides a powerful 

means of constructing fault tolerant systems [Mathu70, Carte79]. In N 

modular redundant processing, NMR processing for short, a given computa­

tional task is carried out in N, N ;::: 3, processing modules. These modules 

must not have any common mode of failures so that they can fail indepen­

dently of each other. The results produced by these modules will be subject 

to a majority vote to obtain the final result. A majority vote is possible, and 

the final result will be correct, if (i) at least majority of the processing 

modules are non-faulty and (ii) non-faulty processing modules are to produce 

identical results. Thus, in NMR processing, tolerance can be provided to 

failures of at most less than half the number of modules and the failures 

may even be of Byzantine type. 

Fundamental to the fault tolerance capabilities in NMR processing is 

that non-faulty modules produce identical results for a given computational 

task. Modules may maintain some state information which can affect 
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processing of a computational task and hence the results produced. In the 

case of a deterministic processing model, when non-faulty modules with 

identical state information process a given computational task, they 

undergo identical state transitions and produce identical results. Given 

that processing is deterministic and non-faulty modules have identical ini­

tial state information, it is necessary to guarantee that non-faulty modules 

process the computational tasks in an identical order. When modules can 

receive task messages from multiple sources or from a single source via 

different communication paths, they cannot be expected to receive task mes­

sages in an identical order. This means that non-faulty modules should 

agree on the processing order for every given task message to be processed. 

If it cannot be guaranteed that a source will provide different modules with 

task messages of identical contents, then non-faulty modules should not 

only agree on the processing order for a task message but also on the con­

tents of the task message. The agreement algorithms presented in chapter 

3 can be used to meet these requirements in systems with NMR processing. 

The common form of NMR processing in practical systems is triple 

modular redundant processing, TMR processing for short, where three pro­

cessing modules are used to process the computational tasks concurrently. 

FTMP (Fault tolerant Multiple processor) [Hopki78] achieves fault tolerance 

through TMR processing and is one of the early practical systems developed 

for flight control applications. The cost of fault tolerance in TMR processing 

(NMR processing in general) is mainly the redundant processing modules, 

the majority voters, and the time taken to agree on, and order, the input 

messages and to perform majority voting. This time overhead, among other 

factors, influences the response time for a given computational task - the 

overall time taken for the final (voted) result of a computational task to be 

obtained. 
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Consider a computational task being carried out by a TMR node - a 

triad of processors grouped for TMR processing. The three processors of the 

TMR node need not produce their results exactly at the same time, since 

their processing speeds may be different and they cannot be guaranteed to 

start processing the task exactly at the same time. Consequently, they may 

be producing their results to a voter at different timing instants. A majority 

vote for the final result cannot be carried out until at least two of the three 

processors have produced their results. If anyone of these two processors 

has failed by producing incorrect results, then the results from the third 

processor has to be waited for, before performing a majority vote. Thus, the 

response time of a TMR node not only gets influenced by the time taken to 

carry out majority voting, agreement and ordering (on input messages) but 

also varies depending on whether all three or just two processors in a TMR 

node are non-faulty. This means that an evaluation of response times needs 

to consider the operational status of processors in the node. Thus, perfor­

mance evaluation of a system with replicated processing should take into 

account of a number of factors such as voting times, processor failure modes 

and failure probabilities, processing and message transmission times, etc. 

This is a challenging task. 

In chapter 5 of this thesis, we study the performance of a distributed 

replicated system that is made up of a collection of TMR nodes connected in 

tandem. We present analytical methods to evaluate the performance of such 

a TMR pipeline system. The derivation of these methods involve analytical 

approximations, the accuracy of which is examined by computer simula­

tions. Despite their simplicity and roughness due to approximations, the 

analytical methods presented here can be observed to be quite accurate in 

estimating system performance measures. These methods can serve as alter­

natives to simulation methods, when the latter are considered to be 
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expensive to carry out. We also examine the influence of majority voting 

times and processor failure rates on system performance. It should be men­

tioned here that performance evaluation of distributed replicated systems 

have not (yet) been reported in the literature and our work presented in this 

thesis, to the best of our knowledge, is the first of its kind. 

To summarise the ideas presented in this thesis: A classification of com­

ponent faults and failures is presented. Agreement algorithms are 

developed in the two contexts defined by whether the sender's broadcast 

time is or is not known to other processors in the system a priori. In the 

first context early stopping algorithms are developed for failures of selected 

types. In the second context, algorithms are developed for failures of each 

type defined in our classification - thus a family of algorithms is presented. 

Next we consider the problem of evaluating the performance of distributed 

systems which require agreement protocols. Analytical methods for evaluat­

ing the performance of a pipeline TMR system are derived based on some 

approximations, and the accuracy of these approximations is examined 

using computer simulations. The approximations turn out to estimate per­

formance fairly accurately. 

1.4. Thesis organisation 

In the next chapter, we present a classification of component faults and 

failures using "expected-value" and "timeliness" as the two properties of a 

component's response. We extend this classification to apply to components 

required to produce replicated responses. The different fault types defined 

are ordered in the form of a lattice according to their relative restrictiveness 

and the unrestricted type is shown to be Byzantine. Based on the fault and 

failure classifications for components with replicated and unreplicated 

responses, a fault analysis of composite components made up of potentially 

faulty components is performed. Composite components subject to such a 



- 11 -

fault analysis are a processor considered to be made up of computational 

unit and digital clock, and a distributed system made up of processors and 

communication subsystem. 

In chapter 3, deterministic agreement algorithms tolerant to processor 

faults are developed in the context of the sender's broadcast time not being 

known a priori. The types of processor faults considered will be the ones 

that are defined in chapter 2. A generic algorithm is presented to collec­

tively represent algorithms tolerant to different types of processor faults. 

Based on the generic algorithm, the influence of processor fault types on 

algorithm complexity is discussed. For processors in a distributed system 

having a prior knowledge of sender's broadcast time, early stopping agree­

ment algorithms are presented in chapter 4. Only selected types of proces­

sor faults are considered. The early stopping capabilities and message 

requirement of algorithms presented in this chapter will reveal the fact that 

each algorithm has been developed making complete use of the distinct 

features that characterise the respective types of faults tolerated. Chapter 5 

presents analytical methods for estimating the performance of a pipeline 

TMR system. Two system models are studied: in the first model faulty pro­

cessors stay faulty until the observation period, and in the second faulty 

processors are repaired after a finite and random delay. The accuracy of 

analytical approximations involved in the derivation of the analytical 

methods is examined by computer simulations. Performance estimates 

obtained by analytical methods are observed to be reasonably close to simu­

lation estimates. The influence of majority voting times and processor 

failure rates on system performance is also observed. Chapter 6 concludes 

the thesis and suggests directions for further research. 
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CHAPTER 2 

A CLASSIFICATION OF FAULTS IN SYSTEMS 

2.1. Introduction 

A fault tolerant computing system must be capable of providing 

specified services in the presence of a finite number of component failures. 

In order to be able to provide any kind of guarantee of services, the system 

designer must specify what kinds of, and how many, component failures the 

system is intended to tolerate. Suppose a system is constructed out of n com­

ponents, then its fault tolerance specification could be along the lines that if 

there are no more than f component failures (where f < n ) and if each 

failure is of an assumed type, then the system will continue to function as 

specified. That is, the type of component failures a system is supposed to 

tolerate has to be stated explicitly. A given component can usually have 

many failure modes (that is, a failed component can behave in one of many 

different ways) some of which can be relatively easier to tolerate than oth­

ers; at the same time, certain failure modes of a component are likely to 

occur with greater probability than others. Given that the failure data of 

system components, such as, failure modes and their probability of 

occurrences are available, the design of a reliable system will often involve 

making engineering judgements regarding the classes of component failures 

for which tolerance is to be provided. For example, if a particular type of 

component failure is hard to tolerate and if the probability of occurrence of 
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such failures is extremely small, then, in applications that are not life criti­

cal, provisions for tolerating that type of failure may well be sacrificed in 

the interest of economic and performance considerations. An interesting 

observation is that for a given system function (e.g. maintaining consistency 

of replicated data in a distributed system), one can design a family of algo­

rithms - from relatively simple ones tolerating restricted types of failures to 

increasingly complex ones tolerating less restricted (and unrestricted) types 

of failures. 

In this chapter, we present a classification of component failures which 

we believe provides a convenient and realistic means for specifying faulty 

behaviour of components and for designing corresponding fault tolerant 

algorithms. Section 2.2 presents this classification. In section 2.3, we extend 

our classification to apply to a particularly important class of components 

that are required to provide replicated responses. In the following section 

we study the behaviour of systems composed of possibly faulty components. 

Section 2.5 concludes this chapter. 

2.2. Components and Their Behaviour 

A system can be considered to be made up of a set of components which 

interact under the control of a design. A component of a system is a system 

by itself and can be considered to be atomic with the implication that any 

further decomposition of a component is of no interest and can be ignored. A 

component's behaviour in response to an input from the environment will be 

defined by the component's specification prescribing state transitions and a 

real time interval within which the transitions should occur in response to a 

given input. Following the terminology developed elsewhere [Ander81, 

Lapri85], a component fails, when its behaviour deviates from that specified. 
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The term fault will be used to refer to the cause of the failure. Consider an 

input that requires the component to produce an output. A non-faulty com­

ponent, by definition, will produce (i.e. respond with) an output that is in 

accordance with the specification. The response of a faulty component, on 

the other hand, need not be as specified. Following [Kopet85], we will con­

sider the response of a component for a given input to be correct, if not only 

the output value is as expected, but also the output is produced on time. 

Formally, a component's correct response will be defined as follows: 

Definition: Correct Response 

Let a component receive at time ti an input requiring an output from 

the component and as a result respond by producing an output with value v 

at time tj, tj > ti. For that input, the response is correct iff: 

(i) the value is as expected: v = w, where w is the expected value con­

sistent with the specification; and, 

(ii) it is produced on time: tmiD ~ tj - ti ~ tmax, where [ti + tmiD , ti + tmax] is 

the interval during which the specified output is expected to be pro­

duced; and tmin (tmin > 0) and t max (tmlLI > tmin) are constants denoting 

respectively the minimum delay time and maximum delay time for the 

output. A component's correct response for an input requiring an out­

put can be expressed concisely as: 

CR: v = wand tmin ~ tj - ti ~ t max • 

For notational convenience, CR will also be denoted as: 

CR: expected - value and ontime. 

The minimum delay time, tmiD, indicates that the output of a component 

cannot be produced instantaneously but must experience a finite minimum 
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delay of non-zero amount. The maXImum delay time, tmax, indicates the 

upper bound on the output delay. 

The above definition is based on the expected input-output behaviour of 

the component and does not refer to any internal state transitions caused by 

inputs. There can, however, be inputs that may require the component to 

behave by making appropriate changes in its internal state and by produc­

ing no output. The value w, and the quantities tmu , tmin in the above 

definition are meaningful only when output values are expected to be pro­

duced by the component in response to inputs. This also implies that the 

definition is directly applicable to "demand driven" components: components 

that produce outputs in response to having received an input. However, 

there are also autonomous components, such as clocks, which continuously 

produce outputs. A treatment on the behaviour of such components will be 

presented in section 2.4. 

Definition: Incorrect Response 

A response will be said to be incorrect, if either the output value or the 

output timing or both are incorrect. The output value will be termed 

incorrect, if the value of the output produced is not the expected value con­

sistent with the specification, i. e. v ;c w; similarly, the output timing will be 

said to be incorrect, if the output is produced outside the expected interval, 

i.e. either tj - ti < tmin (early) or tj - ti > tmu (late). 

2.2.1. Fault/Failure Classification 

In the following, five classes of faults are presented. This classification 

has been developed by considering failures in the value domain, in the time 

domain, and then in both the domains. Our classification of faults is based 
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on, and an improvement over, earlier work reported in [Mohan83, Crist85, 

Ezhil86l. 

Omission FaultlFailure 

A fault that causes a component not to respond to an input and, 

thereby, fail by not producing the expected output will be termed an omis­

sion fault and the corresponding failure an omission failure. 

A component with an omission fault behaves in a very simple fashion: 

either a correct response is produced or no response is produced. A processor 

that (perhaps momentarily) stops functioning, a sensor that occasionally 

fails to produce output signals, and a communication link which loses mes­

sages are examples of components with omission faults. In the literature, 

many fault tolerant algorithms can be found to have been designed under 

this fault assumption. 

Value Fault/Failure 

A fault that causes a component to respond, for a given input, within 

the correct time interval but with an incorrect value will be termed a value 

fault. The corresponding failure will be called a value failure which, using 

our notation, is defined as: 

VF: v :;e wand tmin :S tj - ti :S t max • 

= not expected - value and ontime. 

A processor producing erroneously computed values on time, a timely 

delivery of a corrupted message by a communication link are examples of 

value failures. 
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Timing FaultJFailure 

A timing fault causes a component to respond to a given input with the 

correct value but outside the correct interval (either early or late). The 

corresponding failure will be called a timing failure: 

TF: v = wand (tj - ti < tmin or tj - ti > tmax). 

= expected - value and not ontime. 

For example, an overloaded processor producing correct values with 

excessive delay and a fast timer which sends an early timeout signal, will 

be said to have suffered timing failures. A timing failure in which the 

response is produced late (early) will be called a late timing failure (an 

early timing failure). A late timing failure is also referred to as a perfor­

mance failure [Crist86]. 

Emission Fault/Failure 

A component with an em£sswn fault fails by producing an incorrect 

response to a given input. The corresponding failure is called an emission 

failure. Using our notation, an emission failure is: 

EF = not CR 

= v ~ w or (tj - ti < tmin or tj - ti > tmax). 

= not expected - value or not ontime. 

An emission fault can cause a component to emit a response which can 

be incorrect in the value as well as in the time domains. Emission failures 

are a combination of value and timing failures. An overloaded processor 

that responds too late to a given input with erroneously computed values 

can be said to suffer an emission failure. 
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Note that from the definitions of VF, TF, and EF, we have: 

VF implies EF and TF implies EF. 

Thus, value and timing failures (faults) are special cases of emission 

failures (faults). 

Byzantine (or General) Fault/Failure 

In tbe above four failure classes, a component's failure modes have been 

defined by analysing the properties of an output for a given input. It is also 

possible to consider a faulty component to fail in an "arbitrary" manner, i.e., 

in a manner that cannot be perceived within the framework of the above 

failure classes. For example, a failed component may produce an output 

without a valid input. All such failure modes that cannot be considered to 

be in the above four failure classes will be included in the last general fault 

class: 

A Byzantine fault causes a component to violate the specified input­

output behaviour in any manner and a Byzantine failure will be any viola­

tion of a component's specified input-output behaviour. 

By definition, 

EF implies BF, where BF is a Byzantine failure. 

Note that it is not generally feasible to enumerate all possible failure 

modes of a faulty component. A Byzantine faulty component is customarily 

considered in the literature to be capable of being "malicious" in its 

responses to its environment. The following examples of a faulty processor's 

behaviour in a distributed system can be considered to be malicious: a pro­

cessor Pi masquerading as processor Pj, j :;C i, and Pi altering 

source/destination of a message it is relaying. Faults of malicious nature 
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were first discussed in [Daly73, Davie781 and have been considered in sys­

tem designs such as SIFT [WensI78], and in algorithms for reaching agree­

ment in a distributed system [Lamp082]. 

2.2.2. Fault/Failure Ordering 

A Byzantine fault causes any violation of a component's specified 

input-output behaviour; as such, no restrictions are applicable in the result­

ing faulty behaviour. All other fault types preclude certain types of faulty 

behaviour, the omission fault type being the most restrictive. Thus the 

omission and Byzantine faults represent two ends of the fault classification 

spectrum, with the other fault types placed in between. The relationship 

between the five types of faults can be further developed as follows. 

If an omission failure can be interpreted as equivalent to 'producing a 

null value at some finite time', then it can be defined as follows: 

OF: v = NULL and ti < tj < 00. 

Since v = NULL implies v ~ w, an omission failure as defined above 

can be seen as a special case of an emission failure: OF implies EF. 

OF can also be shown to be a special case of VF, by reasoning as follows: 

In a value failure, the incorrect output value can be a null value. 

Define a proper subset of value failures in which the output values are 

NULL as: 

VFnull: v = NULL and tmin S tj - ti S tmax. 

By definition, VFnull implies VF and also implies OF. A null value pro­

duced on time is the same, for all practical reasons, as a null value produced 

at any time. Therefore, VFnull in which a null value is produced on time can 

be treated to be the same as (v = NULL and ti < tj < (0), and therefore to 
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represent OF itself; so OF implies VF in practice. 

If an omission failure can be interpreted as equivalent to 'producing 

some value at the time of infinity', then, it can be defined also as: 

OF: (v :;c NULL and tj = (0). Since tj = 00 implies tj - ti > t mas: , an omis­

sion failure as defined above can be seen as a special case of an emis­

sion failure: OF implies EF. 

It can also be shown that OF implies TF, by using arguments similar to 

those employed to show that OF implies VF: 

Define a proper subset of timing failures in which tj = 00 as: 

TFnull: {v = wand tj = oo}. 

By definition, TFnuli implies TF and also implies OF. For all practical 

purposes, producing the correct value at time 00 has the same meaning as 

producing any value at time 00, Therefore TFnuli in which the expected value 

is produced at time 00 can be considered to be equivalent to {v :;c NULL and tj 

= oo} and to represent OF itself; thus, OF implies TF in practice. 

Thus, omission faults (failures) can be treated as a special case of, and 

hence a proper subset of, emission, value, and timing faults (failures). From 

their definitions, value and timing faults (failures) can be seen to form a 

proper subset of emission faults (failures). 

The relationship among these five types of faults (failures) can be 

expressed by the ordering diagram shown in figure 2.1, where an arrow 

from A to B, A - B, indicates that fault (failure) of type A is a special case 

of, or a proper subset of, fault (failure) of type B and therefore fault assump­

tions of type B are less restrictive than those of type A. In the figure, the 

two circles in omission type represent VFnull and TFnull which, by definition, 

form proper subsets of omission type and, in practice, become omission type 
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itself. Note that the ordering relation -+ is transitive. From the ordering 

diagram, it can be stated that an algorithm designed to tolerate f, f > 0, 

value (or timing) failures can also tolerate f omission failures; similarly an 
to 

algorithm designed}olerate f emission failures can also tolerate f failures of 

either omission, value, or timing failures, and finally an algorithm designed 

to tolerate f Byzantine failures can tolerate f failures of any type. 

Omission 

Value Timing 

Byzantine 

Figure 2.1. Fault/Failure Ordering Diagram. 

Remarks 

1. Output Sequences 

The above classification is based on the behaviour of a component with 

respect to a single input. When a sequence of inputs over a given time 

interval is considered, the type of fault suffered by a faulty component will 

be the most restrictive (or the least serious) one (as per the ordering 
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diagram in figure 2.1) of which all types of failures occurred during the 

interval can be considered to be special cases. For example, if, over a given 

time interval, value and timing failures have occurred, then the component 

will be said to have suffered emission failures during that interval; if value 

and omission are the types of failures, then the component will have 

suffered value failures. If a given type of faulty behaviour persists for a 

"sufficiently lengthy" sequence of inputs, then the failures can be classified 

as a permanent failure of that type. A permanent omission fault causes the 

component to halt functioning for ever. In the literature, it is called a crash 

failure or a fail-silent failure [PoweI88]. 

2. Outputs with no timing requirements 

There may be situations where a component's responses do not need to 

follow the rigid timing requirements specified here. Under these cir­

cumstances, a timing failure cannot be defined and the component can only 

suffer three types of failures, namely, omission, value, and Byzantine. 

2.2.3. Selfchecking Components 

The fault/failure classification can be applied to understand and specify 

the behaviour of components with builtin redundancy (for selfchecking) 

where the redundancy is employed to minimise the likelihood of the 

occurrences of failures of certain types. For example, consider a component 

with value checks; for valid inputs, such a component is designed to produce 

either "normal values" or "value exceptions" - the expected values when 

failures within the component occur for which a degree of tolerance has 

been provided. A component with dual processors and a comparator that 

compares the output values of both the processors and outputs a value 

exception whenever a disagreement is detected can be such a component. It 
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can suffer only timing failures, provided the comparator is non-faulty and 

no more than one processor fails; given these fault assumptions for the com­

parator and processors, the overall behaviour of this selfchecking component 

is CR or TF: 

(expected - value and ontime) or (expected - value and not ontime), where the 

expected - value is given by: 

normal - value or value - exception. 

That is, such a component produces the normal value or a value excep­

tion either on time or not on time. Another example of a selfchecking com­

ponent will be a processor with a 'watch-dog' timer that is used to prevent 

timing failures by signalling a 'timing-exception' whenever the processor is 

deemed not capable of producing its output on time. Thus the expected 

behaviour of such a processor in the value domain includes generating a 

response indicating a timing exception. The watch-dog timer cannot, how­

ever, detect the processor's value and Byzantine failures. Given that the 

processor does not suffer Byzantine failures and the watch-dog timer is non­

faulty, the overall behaviour of such a processor will be CR or VF: 

(expected-value and ontime) or ( not expected-value and ontime), where the 

expected - value is given by: 

normal- value or timing - exception. 

That is, such a selfchecking processor produces timely responses which 

could be wrong in the value domain. If a processor has been constructed 

with both value and timing checks, then this means that its expected 

behaviour in the value domain is extended to include the production of 

value and timing exceptions (or simply failure exceptions). 
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A fail-stop processor [Schli83] is an example of a component pYopQSed 

with value and timing checks and to raise a failure exception, in case the 

possibility for producing an incorrect response is detected. It is also designed 

to stop responding for ever to input requests after having raised a failure 

exception. 

2.2.4. Selecting Fault Models for Components 

In the fault classification presented here, a Byzantine fault has been 

defined to be a fault which can cause the component to fail in any manner. 

Choosing the Byzantine fault model for components will mean that no res­

trictive assumption need be made regarding the components' failure modes. 

In practice, the type of failures that a component may be assumed to suffer 

should be decided by considering engineering factors such as the failure 

data of the component (Le. failure modes and probability of their 

occurrences), and application specific details such as the task load the com­

ponent is designed for, safety factors, and the consequences of the com­

ponent failing in a manner other than what was assumed. If the failure 

data are not available or if it is judged that it is not safe to predict the 

failure modes given the criticality of the application at hand, it will be 

appropriate to expect the component to fail in Byzantine manner; otherwise, 

faults of appropriate non-Byzantine class can be chosen to model the 

component's faulty behaviour. A choice of value, timing, or emission faults 

can be refined, if necessary, with a set of additional assumptions to precisely 

model the faults of a component. For example, it is common, in a value 

fault model, to restrict the failure modes by assuming that corruption of a 

message by a communication link are limited such that mechanisms such as 

checksums can be utilised for error detection. In [Veris89], value failures of 
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processors and communication links which result In detectable message 

corruption are classified as syntactic failures. 

2.3. Replicated Responses 

In this section the fault classification is extended to a particularly 

important type of systems where components are required to produce repli­

cated responses for a given input. For example, in triple modular redundant 

systems, a processor is required to send its output to three other processors; 

similarly, when processors (considered as components in a distributed sys­

tem) are taking part in some agreement protocol, every processor is required 

to send its output to every other processor in the system. 

Consider a component that is required to produce a replicated response 

containing r individual outputs, where r, r ~ 1, is the specified replication 

level, as a result of receiving an input at time ti. We will use the following 

vector notation to specify the replicated response: 

V = {Vl , v2, ... ,vr}, where uk is the value of the kth, 1 s k S r, indivi­

dual output. 

Tj = {tjl , tj2, ... ,tjr}, where tjk is the time at which the kth indivi­

dual output appeared. 

Definition: Correct Replicated Response 

Let a component receive at time ti an input requiring a replicated 

response. For that input, the replicated response with value V at time Tj is 

correct iff: 

(i) the output value is correct: V = W, where W is the vector of expected 

output values; and 
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(ii) the output timing is correct: t. + tmin S tjk s ti + tmax, for all tjk, 

1 s k S r, in Tj, where tmin, t max are as defined in the definition for 

correct unreplicated responses in section 2.2. 

Note that, by definition, W has the property that WP Wk = w, for all 

p,k, 1 S p,k Sr. 

Remark: The skew interval 

In a correct replicated output, all individual outputs are produced with 

the correct, hence identical, values and on time but not necessarily at 'the 

same time'; thus, for any two of the r individual outputs: 

o S ItiP - tiki S t max - tmin, for all p,k, 1 S p,k S r. 

The interval 0 .. S, where S = tmax - tmin, will be called the skew inter­

val within which all individual outputs are expected to be produced. 

Definition: Incorrect Replicated Response 

An incorrect replicated response is defined first by defining failures in 

value and time domains: 

The output value V will be termed incorrect, if V ;c W, i.e. there exists 

some p, 1 S pS r, such that UP ;c w. 

The response time Tj will be termed incorrect, if there exists some p, 

1 S P S r, such that: 

tjP < ti + tmin (response too early), or 

tjP > ti + tmu (response too late). 

A replicated response will be said to be incorrect, if either V or Ti or 

both are incorrect. 



- 27 -

Definition: Consistently Incorrect Replicated Responses 

For replicated responses, it is possible to consider a restricted violation 

of the specification by considering the notion of consistent incorrectness 

among individual responses of an incorrect replicated response: 

In a replicated response, the output value V is said to be consistently 

incorrect, if, 

(i) V is incorrect, and 

(ii) for all p,k, 1 :$ p,k :$ r, UP = uk 

That is, all individual output values are identically incorrect. Similarly, 

the response time Tj of a replicated response is said to be consistently 

incorrect, if 

(i) Tj is incorrect, and 

(ii) for all p,k, 1 :$ p,k :$ r, Itjp - tjkl :$ S. 

That is, while the response is not produced on time, all of the individual 

responses are produced within the skew interval. A replicated response is 

said to be consistently incorrect, if: 

(i) V is consistently incorrect and Tj is correct, or 

(ii) V is correct and Tj is consistently incorrect, or 

(iii) both V and TJ are consistently incorrect. 

2.3.1. Fault/Failure Classification 

A given replicated response being consistently incorrect in the value 

domain or in the time domain or in both the domains is a special case of it 

being incorrect respectively in the value domain or in the time domain or in 
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both the domains. As our fault classification is based on the input-output 

behaviour of a component, the definition of consistently incorrect responses 

will give rise to a set of fault types that were not defined for components 

with unreplicated responses. With the definitions of correct, consistently 

incorrect, and incorrect responses, the following nine classes of faults will be 

identified for components with replicated responses. 

Consistent Omission Fault/Failure 

Faults of this type cause a component to fail by not responding to a 

given input and, consequently, by not producing a response when a repli­

cated response is expected. The corresponding failure will be termed a con­

sistent omission failure. A processor that has stopped functioning, a proces­

sor that occasionally fails to broadcast a message are examples of com­

ponents with consistent omission faults. 

Consistent Value FaultlFailure 

A consistent value fault causes a component to respond to a given input 

by producing a replicated output on time but with identically incorrect 

values. That is, in a consistent value failure, V is consistently incorrect and 

Tj is correct. A processor broadcasting an incorrectly computed value is an 

example of a consistent value failure. 

Consistent Timing Fault/Failure 

A consistent timing fault causes a consistent timing failure in which V 

is correct and Tj is consistently incorrect. This fault type causes a com­

ponent to produce correct values either too early or too late, but within the 
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specified skew interval. A processor with too many computational tasks can 

suffer a consistent timing failure, when it produces a replicated output with 

correct values during the interval [t+8, t+8+S] instead of[t, t+S], where 8 

is the excess delay due to processor overloading. 

A consistent timing failure in which outputs are produced late (early) 

will be called a consistently late timing failure (a consistently early timing 

failure). 

Consistent Emission FauIt/Failure 

A consistent emission fault causes a component to produce a con­

sistently incorrect response for a given input. In a consistent emission 

failure, V and/or Tj will be consistently incorrect. An overloaded processor 

that broadcasts erroneously computed values suffers a consistent emission 

failure. 

Omission FaultlFailure 

An omission fault causes an omission failure in which none or some of 

the individual outputs of a replicated response are not produced. A processor 

that occasionally stops functioning while outputting the individual outputs 

of a replicated response is an example of a component suffering an omission 

failure. An omission fault can cause a consistent omission failure and hence 

is more general than a consistent omission fault. 



- 30 -

Value Fault/Failure 

A value fault causes a component to respond with incorrect values on 

time. In a value failure, V is incorrect and Tj is correct and but any two 

individual outputs of a replicated output need not be identical. F01' an 

example of value failure, consider a processor broadcasting a message to a 

group of processors to which it is connected by point to point links. A broad­

cast will th~n consist of sequentially transmitting a copy of the message 

held in a buffer to each member of the group; Such a processor can suffer a 

value fault if the buffer gets corrupted during a broadcast. Value failures 

(faults) subsume consistent value failures (faults). 

Timing Fault/Failure 

A timing fault causes a component to respond with correct output value 

at incorrect time. In a timing failure, V is correct and Tj is incorrect, and 

any two individual outputs need not appear within the skew interval. 

In the previous example of a value failure, instead of buffer corruption, 

if the processor slows down (due to overloading), then the individual outputs 

may not be produced within the skew interval. Timing failures (faults) sub­

sume consistent timing failures (faults). 

Emission Fault/Failure 

An emission fault causes a component to produce an incorrect response 

for a given input. Both value and timing failures are special cases of an 

emission failure. 
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Byzantine (or General) Fault/Failure 

A Byzantine 'fault, as in the case of unreplicated responses, is defined to 

be the most general fault that can cause the component to deviate from the 

specified input-output behaviour in any manner; the corresponding failure is 

defined to be a Byzantine failure which will include the component produc­

ing arbitrary responses when no input was supplied and producing 

responses with 'malicious' intentions. The behaviour of a "traitorous gen­

eral" in the Byzantine generals problem of [Lampo82] is a classic example of 

how a processor with Byzantine faults can be malicious in its responses to 

other (faulty or non-faulty) processors in a distributed system. 

2.3.2. Fault/Failure Ordering 

When a consistent omission failure is interpreted as a failure of produc­

ing null output values (identically incorrect values) at any time after the 

input was supplied, or as a failure of producing identically correct or 

incorrect output values at time 00, it can be seen to form a special case of 

failures of every other consistent type. By their definitions, consistent omis­

sion, consistent value, consistent timing, and consistent emission types of 

faults/failures are respectively special cases of omission, value, timing, and 

emission types of faults/failures. The ordering diagram shown in figure 2.2 

indicates the 'special case' relationship between various classes of faults and 

failures. As in figure 2.1, an arrow from A to B, A -+ B, in figure 2.2 indi­

cates that faults/failures of type A are a special case of faults/failures of type 

B, and the ordering relation -+ is transitive. 
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Consistent Omission 

Emission 

Byzantine 
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Timing 

Figure 2.2. FaultlFailure Ordering Diagram For Replicated Responses. 

Remark: Output Sequences 

As in the case of components with unreplicated responses, the above 

classification is based on the behaviour of a component with respect to a sin­

gle input; and, when a sequence of replicated responses over a given time 

interval is considered, the type of failure suffered by a faulty component will 

be the most restrictive one (as per the ordering diagram in figure 2.2) of 

which all types of failures occurred during the interval can be considered to 

be special cases. Note that an unreplicated response becomes a special case 

of a replicated response, when r, the degree of replication, is taken to be 1. 

When r becomes 1, a component's omission, value, timing, and emission 

failures can be respectively regarded as: consistent omission, consistent 
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value, consistent timing, and consistent emission failures. Thus, a sequence 

of replicated and 'unreplicated responses over a given time interval can also 

be treated as a sequence of replicated responses and, thereby, the type of 

fault suffered by the component during that interval can be determined 

from the ordering diagram in figure 2.2. For example, if, over a given time 

interval, value and timing failures have occurred for unreplicated responses 

and consistent timing failures for replicated responses, the component will 

be said to have a consistent emission fault during that interval; if value and 

(consistent) omission are the types of failures respectively for unreplicated 

and replicated responses, then the component will have a (consistent) value 

fault; if Byzantine and consistent omission failures occur while producing 

respectively unreplicated and replicated responses, the component becomes 

Byzantine faulty. 

2.4. Composite Components 

Following the classification of faults and failures of a single individual 

component, the behaviour of composite components made up of potentially 

faulty components is investigated. To start with, the behaviour of a proces­

sor is studied by considering a digital clock as one of its components. The 

study is then extended to a distributed system which is considered to be 

made up of processors and communication links. 

2.4.1. Processor with a Clock 

A processor, P, will be considered to be made up of two components: (i) 

computational and communication unit, CCU, that processes computational 

tasks and handles communication with the environment, and (ii) a digital 

clock, CL, that measures the passage of real time and provides the current 
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time. CCU can use CL to read the current time or to measure time inter­

vals. For some sp'ecified p, 0 < P « 1, a correct clock measures the passage 

of one time unit when a real time period between (1 - p) and (1 + p) has 

elapsed [Ellin73]. It is natural to model a digital clock as an autonomous 

component - a component that produces outputs (display of current time) not 

by receiving input requests but simply in response to the passage of real 

time. One such model is developed here. It is nevertheless possible to 

model a digital clock as a demand driven "time server" device that outputs 

current time only for an input request. 

2.4.1.1. Types of Clock Faults 

A clock's display of current time will be its response produced at every 

given timing instant. Such a sequence of responses will start from To 

reflecting the time to when the clock started functioning. Thus, a digital 

clock is an autonomous component which, once turned on, is expected to pro­

duce an infinitely long sequence of responses of monotonically non­

decreasing values such that the output value of every response (i.e. the 

value displayed) at any given timing instant will indicate the clock's meas­

urement of the passage of real time from to to that timing instant. If T is 

the value displayed at real time t, t 2: to, then the response will be said to be 

correct iff: 

CR 1 (measurement of time): 

To + (t - to)/(l + p) s T s To + (t - to)/(l - p) and, 

CR2 (monotonic display): 

T 2: T-, where T- is the display value at t-, t- = t - At, as At - O. 
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While condition CR 1 states the correctness requirement for the meas­

urement of the passage of real time, condition CR 2 ensures that values 

displayed are monotonically non-decreasing. For example, a clock that 

showed Tl and T2 respectively at t- and t such that 

To + (t - to)/(l + p) ::5 T2 < Tl ::5 To + (t - to)/(l - p) can satisfy CR 1, due 

to non-zero p, but will not satisfy CR2. 

It can be seen from CR 1 that the correctness of an output value (T) and 

the instant of time the output value is produced (t) are interdependent and, 

hence, value and timing failures cannot occur independently of each other; 

in other words, an occurrence of a value failure will imply that of a timing 

failure and vice versa. Thus, according to our fault/failure classification, CL 

can have the following three types of faults/failures: omission, emission, 

and Byzantine. 

A clock that occasionally fails to display the current time will be said to 

have an omission fault and a clock that fails to display the current time for 

a "sufficiently long time" will be said to have a permanent omission failure. 

An emission failure is the clock producing an incorrect response, i.e., not 

(CR1 and CR2). A Byzantine faulty clock can fail in any manner and no 

assumption can be considered on its failure modes. For a clock, there is lit­

tle difference between an emission fault and a Byzantine fault. A proper 

subset of emission failures can be identified by considering emission failures 

in which only CR 1 is violated, i.e. ( not CR 1 and CR 2). Such failures will be 

referred to as monotonic emission failures. For example, a fast or slow clock 

or a clock that stops by displaying the same value (running infinitely slow) 

are examples of clocks with monotonic emission faults. In the following 

analysis of P's behaviour, CL is considered to have omission, monotonic 

emission, and Byzantine types of faults/failures. 
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2.4.1.2. Types of Processor Faults 

The faulty behaviour of a processor (P) with a clock, can be studied in 

terms of the types of faults in its components CCU and CL. Suppose that 

CCU is non-faulty and CL is faulty. An omission faulty CL will make P to 

suffer at most omission failures (P's computational results that do not 

involve the use of CL will be correct and be produced on time). Suppose 

that CL has a monotonic emission fault. When CCU uses the CL's display as 

a value in its computation (e.g. to generate a sequence number), P can 

suffer a value failure. If CL is used by CCU to set timeouts, then a fast or 

slow clock can result in P's timing failure. Thus a monotonic emission faulty 

CL can make P emission faulty. A Byzantine failure in CL may result in a 

Byzantine failure in P. When CCU is faulty and CL is non-faulty, P will 

suffer the types of faults in CCU. An interesting observation is that when 

CL becomes unduly faster or slower, P can suffer an emission failure - quite 

a serious type of failure - even when CCU is non-faulty. 

When both CCU and CL are faulty, it is possible for the failures of one 

component to mask or nullify that of the other component. For example, a 

permanent omission failure in CCU will make P also to suffer that type of 

failure, irrespective of the types of faults in CL; similarly, fast computation 

by CCU and a slow CL may nullify failures of each component resulting in 

P producing a timely response. However, the possibilities of components' 

failures nullifying each other cannot be relied upon to happen all the time 

and, therefore, P should be considered to be faulty for all practical purposes. 

Thus, except in the case of the CCU having a permanent omission fault, the 

types of faults in P will be the least serious one which, according to the ord­

ering diagram in figure 2.1, subsumes the types of faults in CCU and CL, 

given that every fault type is considered to subsume itself and that 
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monotonic emission fault of CL is taken to be equivalent to, and represented 

as, emission fault in figure 2.1. For example, when both CCU and CL have 

omission faults, P will suffer failures of omission type; if CCU has timing 

faults and CL monotonic emission faults, failures of P will be of emission 

type. 

2.4.2. Processor Interconnections 

2.4.2.1. Processors with unreplicated responses 

Consider first the behaviour of a component C composed of a processor 

Pl and a link L that connects Pl to a second processor P2 (see figure 2.3). 

The function of L is merely to transmit the outputs of Pl to P2. 

,,, -
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/ ' 
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\ L' C 
\ I , / 

" / " .; 

Figure 2.3. A Three Component System. 

When one component in C is faulty the other one is non-faulty, C will 

suffer the type of faults suffered by its faulty component. Suppose that both 

Pl and L are faulty. A permanent omission failure in L will cause C also to 

have a permanent omission failure, irrespective of the type of fault in PI. If 

it can be assumed that faulty L cannot generate messages on its own accord, 
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then a permanent omission failure in PI will also mean that C as a whole 

has a fault of that type. Excepting the above two cases, the fault type of C 

will be the least serious type which, according to the ordering diagram in 

figure 2.1, will subsume the types of faults suffered by PI and by L. 

2.4.2.2. Composite component with replicated responses 

To analyse the faulty behaviour of a processor-link component produc­

ing replicated responses, consider a distributed system made up of n proces-

sors, Po, PI, ... ,Pn-I, capable of exchanging messages using a communica-

tion medium L. Suppose that a composite component Co is made up of pro­

cessor Po and L. Let L, as shown in figure 2.4, be a bus capable of providing 

a broadcast service. 

--- ........ Co 
..... , , , 

\ 
\ , 

Figure 2.4. Components With Replicated Responses. 

Suppose that Po is faulty and L is non-faulty; then Co will suffer the 

same fault as in Po. Similarly, if Po is non-faulty and L is faulty, then the 

type of fault in L will be the fault type of Co. Since Po is not responsible for 

replicating its outputs, its fault types can only be consistent or Byzantine; 
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but those of L can vary from consistent omission to Byzantine. A fault in L 

can cause the failures of L not to be consistent. If, for example, there is a 

break at the place (x) shown in the figure, L may fail by delivering Po's out­

put to all processors other than Pl. When both Po and L are faulty, the fault 

type of Co can be determined as discussed in the previous subsection. 

It is interesting to observe that if L is assumed to be reliable and if Po 

is faulty, then Co can fail only in consistent or Byzantine manner. Suppose 

the functionality of L is further enhanced such that processors receiving a 

message can authenticate the identity of the sender of the message, then 

faulty Po cannot masquerade as any other processor. The DELTA-4 distri­

buted systemlPowe1881 is such a system where the communication subsys­

tem has been designed to be reliable and with the authentication facility 

thereby considerably reducing the probability of masquerading Byzantine 

failures occurring in the system. Instead of making L reliable, if Po is made 

reliable, then the overall faulty behaviour of Co can still encompass all pos­

sible failure modes. 

Suppose that processors in a distributed system are connected by links 

such that there exists a communication path between any two processors in 

the system. The communication paths will be made up of links and, if neces­

sary, processors which will be expected to relay messages according to some 

routing algorithm. 
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Figure 2.5. Components With Replicated Responses. 

In figure 2.5, LOi represents the logical communication path between Po 

and Pi, i :5 i :5 n -1. If any LOi is faulty, then the fault type will be deter­

mined by the type of faults in processors and in links that make up LOi and 

the fault analysis of Lo, will be similar to that discussed for the unreplicated 

case. Suppose that the composite component Co is made up of Po and com-

munication paths, LOl, L02, "" LO(n -1), incident on Po, and Po produces repli-

cated output by sending a copy of the message through each communication 

path. Then the fault types of Po can vary from consistent omission to 

Byzantine. As before (discounting permanent omission failures in all Lo;'s), 

the fault type of Co will be the least serious one which, according to the ord­

ering diagram in figure 2,2, will subsume the type of faults in all faulty 

components of Co. For example, if Po has consistent value faults and some 

LOi is faulty with omission (emission) faults, then Co will be considered to 

have value (emission) faults. 

A similar fault analysis can be performed for composite components 

Cl, C2, .. " C(n-l) constructed respectively with Pl, P2, .. " P(n-l) and 
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communication paths incident on them. Such a fault analysis of composite 

components in terms of constituent components can provide useful insights 

on the faulty behaviour of the composite components. Given the nature of 

processor interconnections and the type of faults that might be suffered by 

processors and communication links or bus, the behaviour of one processor 

with respect to other processors can be analysed. 

This section has illustrated how the fault classification scheme 

presented here can be applied to develop accurate fault models of composi te 

components. Precise specifications of component faults can be exploited to 

develop efficient fault tolerant algorithms as illustrated in the next two 

chapters. 

2.5. Concluding Remarks 

Using 'timeliness' and 'expected value' as the specified properties of a 

component's response, we have presented five types of faults for components 

with unreplicated responses and extended the classification to nine types of 

faults for components with replicated responses. These classifications 

together with the fault lattices presented represent one of the main contri­

butions of this chapter. We have also discussed how faulty behaviour of a 

component can be determined, given the fault types of its constituent com­

ponents. This was illustrated by constructing fault models of clocks and pro­

cessors in a distributed system. Our fault classification provides a very con­

venient means not only for specifying the faulty behaviour of components 

but also for the construction of increasingly more sophisticated fault 

tolerant algorithms tolerating faults of increasingly more complex types. 

This will be demonstrated by the fault tolerant agreement algorithms 

presented in the following two chapters. 
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CHAPTER 3 

FAMILY OF AGREEMENT ALGORITHMS 

3.1. Introduction 

Reaching agreement in the presence of faults is a fundamental problem 

in fault tolerant distributed computing. The agreement problem originally 

formulated as the interactive consistency problem [Pease80] and later as the 

Byzantine Agreement problem [Lampo82] can be described as follows: A dis­

tributed system is made up of n, n > 2, processors capable of communicat­

ing with each other only by message passing. Among these n processors in 

the system, one processor is designated as the sender and the other proces­

sors as receiver processors. The sender wants to disseminate some value to 

all receiver processors. The difficulty is that some processors, possibly 

including the sender, may be faulty and that a non-faulty processor cannot 

ascertain which other processors are faulty. When the sender is faulty, it 

cannot be guaranteed that all non-faulty receiver processors receive the 

same value directly from the sender. Thus it is necessary to develop an 

agreement algorithm that can be executed by receiver processors to guaran­

tee that the following conditions will be met in the presence of at most f, f 

< n-l, faulty processors: 

Cl all non-faulty receiver processors decide on the same value, and 

C2 when the sender is non-faulty, all non-faulty receiver processors decide 



- 43 -

on the value sent. 

By Cl, it is' ensured that all non-faulty receiver processors reach a 

unanimous decision on a value; by C2, it is guaranteed that if the sender is 

non-faulty, then every non-faulty receiver processor reaches a valid decision 

by deciding on the value sent by the sender. When Cl and C2 are met, the 

agreement will be said to have been reached (on the sender's value) by non­

faulty receiver processors. When the sender is non-faulty, C2 implies Cl. 

The agreement problem has been studied under a variety of assump­

tions concerning the synchrony of processors, the types of failures to which 

processors are subject, the properties of communication network, and deter­

ministic versus probabilistic nature of a solution (see [Fisch83a] for a brief 

survey). We solve the agreement problem for a synchronous distributed sys­

tem in which the relative computational speeds of, and message communica­

tion delays between, non-faulty processors are assumed to be bounded. In a 

synchronous system, the agreement problem can be solved by considering 

that the receiver processors know, or do not know, a priori the time at 

which the sender is to send its value. In this chapter, receiver processors are 

considered not to have prior knowledge of the sender's send time. Deter­

ministic agreement algorithms are developed assuming that the communica­

tion medium is fault free and that faults occur only in processors. The types 

of faults that are considered to occur in processors will be the ones that are 

defined in the previous chapter for components with replicated responses. 

The range of fault types considered here thus starts from consistent omis­

sion and ends with emission and Byzantine. For each fault type, an agree­

ment algorithm is presented - thus presenting a family of agreement algo­

rithms. An execution of any of these algorithms presented here will guaran­

tee that the conditions Cl and C2 are met within some known and bounded 
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time interval denoted by tl. Since these algorithms are designed in the con­

text of synchronous and deterministic processors with no prior knowledge of 

sender's send time, they can provide agreement and ordering abstractions 

[Schne86] which are essential for constructing systems with replicated pro­

cessing (e.g. [EzhiI89]). 

In the literature, agreement algorithms have been developed in the 

above-mentioned context under omission, timing and Byzantine types of 

faults. In [Pease80, Dolev83], faulty processors are considered to fail in a 

Byzantine manner. These algorithms, of necessity [Dolev82b], require at 

most (f + 1) rounds of message exchange to be carried out between processors. 

Faster algorithms for Byzantine faults have been developed in [Babao85] 

using redundancy in the communication medium. Omission faults, timing 

faults, and Byzantine faults are the three types of faults considered by Cris­

tian et. al. in solving the agreement problem [Crist85]. 

Agreement algorithms for faults other than omission, timing, and 

Byzantine faults will be developed in this chapter. The complete presenta­

tion of the family of agreement algorithms helps the reader to compare the 

complexities of algorithms for different types of faults and thus illustrates 

the advantages, or lack of them, in assuming a particular type of fault for 

processors. Under consistent timing and consistent emission faults, a specific 

type of timing faults is also considered: processor overloading is considered 

to be the only fault that can cause a processor to suffer (late) timing 

failures. Assumptions are made to restrict the failure modes of overloaded 

processors and they lead to the development of faster agreement algorithms. 

So, for applications where these restrictive assumptions for overloaded pro­

cessors can be considered to be realistic, these algorithms can be used to 

achieve distributed agreement in a fast and cost-effective manner. 
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It should be emphasised that these algorithms are developed with the 

assumption that' the communication medium is fault free and that this 

assumption can be relaxed when processor faults are not considered to be 

consistent. One way to relax this assumption is to identify communication 

failures as processor failures. This may result in an overly pessimistic view 

of the reliability of the system. Alternatively, the communication network 

can be made redundant such that faulty links and faulty processors do not 

disconnect non-faulty processors. 

The rest of this chapter will be organised as follows: In the next section, 

the assumptions made for designing the family of agreement algorithms are 

stated and explained. In sections 3.3 to 3.10, algorithms for different types 

of processor faults - ranging from consistent omission to Byzantine faults -

are respectively presented and proved to be correct, where necessary. The 

algorithms for omission, timing, and Byzantine faults are variants of proto­

cols in [Crist85]. In each of these sections, important observations about the 

respective algorithms have been made. In section 3.11, a generic algorithm 

is developed which collectively represents the entire family of agreement 

algorithms. Based on the generic algorithm, the complexities of the agree­

ment algorithms presented in previous sections are compared and the rela­

tive influence of processor fault types on the complexities of agreement algo­

rithms is presented. Section 3.12 concludes the chapter. 
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3.2. Assumptions 

3.2.1. Clock Synchronism 

The hardware clocks of processors have small differences in their run­

ning rates and their readings tend to drift apart with the passage of real 

time [Ellin73]. Design of agreement algorithms with bounded and known 

execution time will require the processors to observe time within some 

bounded and known difference. In order to meet the requirement, the pro­

cessors have to adjust the readings of their clocks to counter the difference 

that has so far developed. The readings of clocks can be adjusted periodically 

either through the execution of a fault tolerant clock synchronisation algo­

rithm, e.g. [Halpe84, Kopet87, Crist86], or with reference to some external 

and reliable time service. The following is assumed about processor's clocks. 

Assumption AI: 

At any given instant of real time, the observable difference between 

clock readings of any two non-faulty processors will be at most e. 

Remark: 

The term "non-faulty" is not necessary in the above assumption when 

faulty processors are considered to suffer only (consistent) omission or (con­

sistent) value failures, since processors with faults of omission and value 

types do not fail by producing an untimely output. Thus processors with 

faults of above types will be taken to satisfy Al. 

3.2.2. Message Signature and Authentication 

The messages, on being relayed by processors, may get corrupted 

accidentally or deliberately by faulty processors and may, thereby, have 

their contents altered. A corrupted message, on being received, can deliver 
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a value other than what the source processor intended to deliver, if it is not 

detected to have' been corrupted. In an attempt to avoid being "misin­

formed" by corrupted messages, each processor is assumed to have facilities 

to "sign" every message it sends, and to "authenticate" the signature of 

every message it receives in order to detect any apparent attempt to corrupt 

a message. 

In [Rives78], a scheme has been proposed by which processors can gen­

erate message signatures such that the signatures are signer-dependent and 

contents-dependent, and can authenticate signed messages so that any 

attempt to alter the contents will be detected with high probability; it is 

also possible for processors to over sign an already signed message by con­

sidering the signature(s) in the message as yet another piece of data, and to 

authenticate a multiply signed message by recursively authenticating every 

individual signature starting from the one that was last added on, and end­

ing with the first one. Another such scheme is presented in [Okam088]. 

These schemes, when implemented in processors of a distributed system, 

will guarantee the following: 

(i) a non-faulty processor's signature for a given message is highly likely to 

be unique for it to be generated by any other processor, and 

(ii) any attempt to alter the contents of a non-faulty processor's signed mes­

sage is highly likely to be detected. 

Thus, when a non-faulty processor signs and sends its messages, it is 

highly unlikely that contents of its messages can be undetectably altered; 

similarly, when a non-faulty processor authenticates signed messages of 

another non-faulty processor, it is highly likely that an authentic message 

will contain what the sender sent. Assumption A2 is made on processors' 

signature and authentication capabilities. 
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Assumption A2: 

A non-faulty processor's signature for a given message cannot be forged 

by any other processor and any attempt to alter the contents of a message 

signed (or over signed) by a non-faulty processor can be detected. 

Remarks: 

From what is guaranteed by schemes for generating message signatures 

and for message authentication, it can be seen that there exists a non-zero 

probability of (i) a faulty processor being able to generate the same signa­

ture that a non-faulty processor would generate for a given message, and (ii) 

the contents of a message signed by a non-faulty processor being altered, 

accidentally or deliberately, in such a way that the corrupted message can­

not be detected as unauthentic. In A2, this probability is assumed to be 

zero. Such an assumption has often been made in the literature [Dolev83, 

Crist85, Lamp082] for designing (what are called signed message or authen­

ticated) agreement algorithms. So, by A2, a non-faulty processor's signature 

for a given message cannot be undetectably generated by a faulty processor. 

However, a faulty processor can undetectably forge another faulty 

processor's signature for a given message. This means that a faulty proces­

sor can undetectably alter the contents of a message that is signed or over­

signed only by faulty processors. Thus, by A2, only the messages that are 

signed by at least one non-faulty processor are protected against undetect­

able corruption by a faulty processor. 

3.2.3. Bounded Communication Delay 

The processors in the distributed system communicate only by message 

passing via a fully connected communication medium that is assumed to be 

fault free. The next assumption bounds the message transmission delay. 
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Assumption A3: 

If, at time T, an event occurs in a non-faulty processor p and causes a 

message to be formed and broadcast, then any other non-faulty processor q 

can receive the message at time Tr, T S Tr < T + d - where time is meas­

ured according to any non-faulty processor's clock and d > O. 

Remark 1: 

d is fixed by considering the processing time taken when the occurrence 

of an event requires a processor to decide on sending messages, and message 

routing and transmission in the communication medium. 

Remark 2: 

Based on Al and A3, the following can be stated: 

If an event occurs in a non-faulty processor p at time T according to p's 

clock that causes a message to be formed and broadcast, then any other 

non-faulty processor q will receive the message at time T r, T - e S Tr < 

T + d +e, according to q's clock. 

Remark 3: 

The term non-faulty is not necessary in A3 and in remark 2, if proces­

sors are considered to have consistent omission or consistent value faults; 

when omission or value faults are considered, A3 and remark 2 will be true 

without the term non-faulty only for those q's that receive p's message. 

Remark 4: 

When processor faults are not of consistent type, the full connectivity 

and the reliability requirements on the communication medium can be 

relaxed: the number of faults in the communication medium should be such 

that processors remain connected in the system that survives after removing 

the faulty links, faulty processors, and the links incident on faulty proces­

sC!t's.'rlle types of faults in the communication medium should be no more 
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serious than the types of processor faults considered. 

3.2.4. Message Timestamps 

Finally, the sender processor will be required to indicate its time of 

transmission by appending a timestamp (local clock reading at the time of 

transmission) to the message so that messages transmitted at different tim­

ing instants can be distinguished. For the sake of simplicity in handling of 

sender's messages by receiver processors, the following assumption is made 

on the sender processor's timestamps. 

Assumption A4: 

A non-faulty sender processor will not carry out more than one broad­

cast with the same timestamp. 

Remarks: 

If, at the same clock time, two or more distinct values are decided to be 

delivered, then A4 will require the sender processor to transmit all these 

values in a single message with one timestamp. When processors are con­

sidered to suffer only omission or value faults, the term non-faulty is not 

necessary in A4, since faulty processors fail only by sending incorrect values 

and, by Al, have properly synchronised clocks. 

3.2.5. Unanimity and Validity Conditions 

When the sender broadcasts a value with a timestamp, the decision 

made by a receiver processor will be associated with that timestamp. In this 

context, conditions, Cl and C2, for agreement will be modified as unanimity 

and validity conditions respectively: 

When the sender broadcasts a message with timestamp Ts, 
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Unanimity: 

all non-faulty receiver processors either reach the same decision for the 

message with timestamp Ts by their clock time Ts + ~, where ~ (~ > 0) is 

known and bounded, or do not ever take any decision for Ta, and 

Validity: 

when the sender is non-faulty, all non-faulty receiver processors decide 

for Ts by their clock time Ts + a on the value sent by the sender. 

For a given broadcast by the sender, condition C1 requires a non-faulty 

receiver processor to decide on a value; the unanimity condition however 

permits a non-faulty receiver not to make any decision. This modification of 

C1 is necessary because the agreement problem is being solved in a bounded 

and known interval and in the context of the sender's broadcast time not 

being known to receiver processors a priori. When the sender's broadcast 

time is not known a priori, it may not be always possible for a receiver pro­

cessor to reach a decision in a bounded interval for every broadcast carried 

out by a faulty sender. 

In the following, presented are the algorithms tolerant of at most, 

f, fSn-2, distinct processors in the system suffering from faults of a given 

type. For each agreement algorithm designed, ~ will be expressed as a func­

tion of d and e. In fixing the size of ~, it is assumed that a receiver proces­

sor will take no time for executing the instructions of the algorithm (this 

will require an increase on the value of d to accommodate execution time 

overheads). 
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3.3. Consistent Omission Fault 

The agreement problem becomes a non-problem under consistent omis­

sion faults, since a sender with consistent omission faults can fail only by 

not sending its message to any receiver processor. So, either all or none of 

the receiver processors receive a given message from the sender. So no 

agreement protocol is necessary. 

3.3.1. Algorithm ACO - Algorithm (for) Consistent Omission (Faults) 

The messages exchanged between processors are taken to be of the fol­

lowing record structure: 

type M = record 
v:value; Ts:Time; id: string of char 
end; 

A message of type M contains a value in v, a timestamp in Ts, and the 

identifier of the sending processor in id. 

The sender executes the following algorithm: 
sender: 

const own-id = .... ; 
var msg:M; local-value:value; 

begin 
msg.v : = local-value; msg.Tg : = clock. get; 
msg.id : = own-id; send(msg) 

end. 

The sender processor has a unique identifier that is assumed to be 

known to every receiver processor. The constant 'own-id' contains that 

identifier. We assume that the object 'clock' at each processor is responsible 

for maintaining the local clock synchronised with the other clocks in the 

system; its function 'get' returns the current clock reading. The current 

clock reading is given to the message as timestamp and the timestamped 

message is sent to all other receiver processors by executing the "send(msg)" 

primitive. The algorithm executed by a receiver processor will be as follows: 



receiver: 
var msg:M; 

begin 
cycle 
receive(msg) 
decide(msg.v, msg.Ts) 

endcycle 
end. 
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The "receive(msg)" primitive returns a message, if there is one or more 

messages to be received; it blocks itself, otherwise. Upon receiving a mes­

sage with sender's identifier, a receiver processor decides on msg.v for 

msg.Ts by executing "decide(msg.v, msg.Ts)". 

When a non-faulty receiver processor receives a message with times­

tamp, say, T s, its clock will read less than Ts + (d +e) due to assumptions Al 

and A3 (see remark 2 under assumption A3). So a non-faulty receiver pro­

cessor decides for Ts by its clock time less than Ts + (d+e) and, therefore, the 

size of ~ necessary to guarantee agreement is (d +e). 

3.4. Consistent Value Fault 

Under consistent value fault assumptions, a faulty sender can fail only 

by sending messages with identically incorrect value to all receiver proces­

sors. By Al, a faulty sender's messages will have correct timestamp on 

them. Therefore, agreement will be guaranteed when receiver processors 

make their decision with every message they receive from the sender. Thus, 

the algorithm for consistent value faults, ACV, becomes the same as ACO. 

Since a faulty sender does not fail by producing untimely responses, all 

non-faulty receiver processors reach agreement by their clock time Ts + ~, ~ 

=d+e (by Al and A3), on the sender's value sent with timestamp Ts. 
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3.5. Consistent Timing Fault 

A processor with a consistent timing fault fails by producing some or all 

of message replicates either early or late. All the message replicates will 

nevertheless be produced within the specified skew interval that is included 

in message delays bounded by d (A3). Consider a faulty sender suffering 

such a failure in sending its messages with timestamp, say, T.. Let one 

non-faulty receiver processor, say, p, receive the sender's message at its 

clock time Tp. Since the sender's failure is consistent, no other non-faulty 

receiver processor can receive the sender's message earlier than Tp-d and 

later than Tp +d, according to p's clock. If q, q :;c p, is any other non-faulty 

receiver processor and Tq is the time q received the sender's message accord­

ing to its clock, then, by AI, I Tp - Tq I < (d +e). 

Let the sender's failure be such that Tp is between Ts and T. + (d +e) 

and Tq is greater than Ts + (d +e). While p can regard the sender's message 

timely (by assumptions Al and A3) and decide on the value contained 

therein, q cannot do so, because unless late messages are ignored by 

receiver processors, agreement cannot be guaranteed to be reached within a 

bounded amount of time. Therefore, reaching agreement in a bounded 

amount of time and in the presence of consistent timing faults will require 

messages to be exchanged between receiver processors. A receiver processor 

which received a timely message directly from the sender should relay the 

message to every other receiver processor - thus initiating the second round 

of message exchange following the sender's broadcast which is counted as 

the first round. Since there can be at most f faulty processors, an execution 

of agreement algorithm should allow for at most f+l rounds of message 

exchange between processors. 

The messages exchanged between processors during an execution of the 

agreement algorithm, are taken to be of the following record structure: 
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type M = record 
v: value; Ts: Time; ids: sequence of identifiers; 
end; 

Every processor has a unique identifier that is assumed to be known to 

every other processor. The message variable, ids, can have a sequence of 

processors' identifiers. 

Two algorithms will be developed for consistent timing faults. The first 

algorithm is general in nature. A special version of the algorithm will be 

developed for overloaded processors with the following two assumptions: 

overloaded processors have their clocks synchronised with those of non­

faulty processors within the bounded difference of e (AI); secondly, when­

ever an overloaded processor receives and subsequently relays the message, 

the ratio of the delay involved in sending the message to the communication 

medium (as a part of relay operation), to the the delay involved in receiving 

the message from the communication medium is assumed to be bounded by 

a known quantity f). The value of f) is assumed to be known and to bound 

the ratio of the two delays irrespective of the variations in processing loads 

during the period the message is being handled. The second algorithm turns 

out to be faster than the first one, if (f -1) > f). 

3.5.1. Algorithm ACT·1 for Consistent Timing Faults 

The sender sends its message to all receiver processors as before. A 

receiver processor, on receiving a message from the sender, will accept the 

message, if the message has been received at its clock time Tr such that 

Ts-e s; Tr < Ts + (d+e), where Ts is the timestamp in the message. If the 

message is accepted, the receiver processor takes its decision for Ts on the 

value contained in the message, appends its identifier to the message, and 

sends the message to every other receiver processor. 
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When a receiver processor receives a message from another receiver 

processor, it inspects the timestamp, Ts, in that message. If it has not 

decided for the timestamp in the message, it counts the distinct processor 

identifiers in the message (let it be s) and checks the timeliness of the mes­

sage in the following manner: if the message has been received at its clock 

time Tr such that Ts - Se 5 Tr < Ts + s(d +e), it is considered timely; other­

wise, it is considered untimely and is ignored. If the received message is 

found to be timely, a decision for Ts is taken on the value contained in the 

message and, if s 5 f, the processor's identifier is appended and the message 

is sent to receiver processors whose identifiers are not present in the mes-

sage. 

Algorithm ACT-! 

The sender executes the following algorithm. 

sender: 
const own-id = .... ; 
var msg: M; local-value: value; 

begin 
msg. v : = local-value; msg. Ts: = clock.get; 
append-id-and-send(msg); 

end. 

The sender has its identifier stored in 'own-id'. By "append-id-and­

send(msg)", it appends its identifier to the message and sends the message 

to all receiver processors. 

The algorithm executed by a receiver processor accommodates (f + 1) 

rounds of message exchange. The first round allows a receiver processor to 

receive the sender's message directly, and the remaining f rounds are for 

the sender's value to be received through another receiver processor. The 

algorithm for a receiver processor is presented next: 
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const own-id = .... ; maxm-rounds = (f + 1); 
var 

msg: M; ,Tr: Time; s: integer; 
function TC: boolean; 

begin TC:= msg.T, - se S Tr < msg.T, + s(d+e) end; 
function decided(T:Time): boolean; 

begin 
cycle 

begin if a value decided for T then decided: = true else decided: = false 
end; 

1) receive(msg); 
2) T r: = clock.get; 
3) s: = no-of-identifiers(msg); 
4) if not decided(msg.T,) 
5) then ifTC 

then begin 
6) decide(msg.v, msg.T,); 
7) if s < maxm-rounds 
8) then append-id-and-send(msg) 

end 
endcycle 

end. 

Explanation 

The receiver processor's identifier is stored in 'own-id'. The constant, 

maxm-rounds, represents the maximum number of rounds of message 

exchange the algori thm accommodates and is taken to be (f + 1). The 

boolean function, Te, expresses the timeliness condition that a message 

received at time Tr (line 2) with, s processor identifiers (counted in line 3) 

should satisfy to be accepted. The boolean function, decided(T), returns true, 

if a decision has already been taken for timestamp T; returns false, other­

wise. For a message received in line 1, whether a decision has been taken 

for the timestamp in the message is checked in line 4. If not, and if the mes­

sage is timely (line 5), then a decision is taken by executing "decide(msg.v, 

msg.T,)" (line 6). If, in line 7, s is less than (f+1), the message is relayed to 

appropriate receiver processors after the processor's identifier is appended to 

the message variable ids (line 8). 
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Correctness Of Algorithm 

A processor with a consistent timing fault need not maintain its clock 

in bounded synchronism as required by Ai. Therefore, a faulty processor 

may accept and relay a message that would have been considered as 

untimely by a non-faulty processor. Suppose that a non-faulty receiver pro­

cessor, say, p, receives a message with timestamp Ts and s, s > 1, processor 

identifiers, at its clock time Ts - Se. Let q, q:;t;p, be the processor that sent 

the message to p. Either of the following two conditions can be true with q: 

q is faulty and has accepted and relayed an untimely message that should 

have been ignored; or, q is non-faulty with its clock being faster than p's 

clock by e and has received a message with (s-l) processor identifiers at its 

clock time Ts - (s-l)e, and p receives q's message in zero time. The processor 

p cannot ascertain whether q is faulty or non-faulty, and if it ignores q's 

message it may violate the unanimity condition. Similarly, by supposing 

that p receives q's message just before its clock time Ts + s(d +e), two 

scenarios can be constructed such that q is faulty in one scenario and non­

faulty in the other one in which p's clock is faster than q's clock by e and p 

receives q's message in just less than d time. Thus, itT! - Se :::; Tr 

< Ts + s(d +e)" is the necessary timeliness condition. 

Theorem 3.1 

Any execution of the above algorithm meets the unanimity and validity 

conditions for ~ = (f + l)(d +e) in the presence of at most f, f < n -1, distinct 

processors suffering consistent timing faults. 
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Proof 

Under this fault model, no faulty receiver processor will alter the con­

tents of the message it relays. Therefore, any processor that decides during 

the execution of the algorithm, will do so only on the sender's value which 

will be the same for all receiver processors. When the sender is non-faulty, 

all non-faulty receiver processors will find the sender's message with times­

tamp, say, Ts arriving in the specified time interval, due to assumptions Al 

and A3, and will decide by their clock time Ts + (d +e), T. + (d +e) < T. + ~. 

Hence the theorem, for a non-faulty sender. Next, the theorem is proved for 

a faulty sender by showing that it is not possible, at clock time 

Ts + (f + l)(d +e), for one non-faulty receiver processor to decide, and another 

one not to decide, on the sender's value broadcast with timestamp Ts. 

Since faulty processors fail only in timing manner, no receiver processor 

will send, and therefore will receive, a message with more than (f + 1) proces­

sor identifiers during any execution of the algorithm. So, no non-faulty 

receiver processor will decide for Ts no later than its clock time 

Ts + (f+1)(d+e). Let p and q be any two non-faulty receiver processors. Let 

p decide by receiving a message with s, 1 s s S f, processor identifiers. Pro­

cessor p must have received the message at its clock time, say, Tp , 

Ts - Se S Tp < Ts + s(d +e). Since s < (f+1), by Al and A3, q will receive p's 

message at its clock time Tq, T. - (s + l)e S Tq < Ts + (s + l)(d +e). Let p 

decide by receiving a message with s=(f+1). Since there can be at most f 

faulty processors, the processor whose message made p decide for T. must be 

non-faulty and must have sent a message to q not later than q's clock time 

Ts + f(d+e) + e. Therefore, q must receive that message and decide on the 

value contained therein, not later than its clock time Ts + (f+1)(d +e). Hence 

the theorem for ~ = (f+l)(d+e). 
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Observations 

1. Consistency in 'timing failures. 

In the proof, it can be observed that the algorithm has been developed 

without making use of consistency in processors' timing failures; in particu­

lar, the fact that a faulty processor's broadcast is received by all non-faulty 

processors is not utilised. The reasons for this are as follows: 

In the design of any agreement algorithm with a known bound on exe­

cution time, a time interval, I(Ts,s), of known and finite size has to be 

specified as the interval of acceptability for a message with s, l::::s::::f + 1, pro­

cessor identifiers and with timestamp T •. In the execution of the algorithm, 

a message should be accepted, only if it is received within the specified 

interval according to the receiving processor's clock. In ACT-I, I(Ts,s) is 

[T. - Se, T. + s(d +e») and has a size of less than s(d +2e). This size is the 

smallest necessary (as per assumptions Al and A3) to ensure that no mes­

sage sent or relayed by a non-faulty processor gets rejected at non-faulty 

destinations. 

Recall that a faulty processor's clock may not be in specified synchron­

ism with other non-faulty processors' clocks and that a faulty processor may 

suffer an unbounded length of delay in sending or relaying a message. 

Therefore, whatever be the specified interval I(Ts,s), it is always possible for 

a faulty processor's broadcast messages to be received by some non-faulty 

processors within the specified interval and by others outside the interval. 

In other words, for any specified interval of message acceptability, it is pos­

sible for a faulty processor to fail in such a way that its messages, while 

being received by all non-faulty processors, are rejected by some non-faulty 

processors as untimely. So, the above algorithm has to be, and has been, 

developed without making use of the consistent nature of faulty processors' 



- 61 -

timing failures. For that reason, the above algorithm will also be tolerant 

of timing faults where a faulty processor may fail by not sending its broad­

cast messages to some processors. 

2. Time Optimality. 

During a message broadcast, a faulty processor can respond to different 

processors in different timing manner - timely to some and untimely (either 

late or early) to others. Therefore, consistent failures become as severe as 

timing failures as far as reaching agreement in a bounded and known inter­

val is concerned. Therefore, an agreement algorithm whose every execution 

can be guaranteed to terminate in less than (f + 1) rounds cannot be 

designed. Thus, the above algorithm is optimal with respect to the size of Il 

which is (f+1)(d +e). 

One of the requirements for faulty processors in a distributed system to 

suffer consistent failures with respect to other processors will be to have a 

reliable communication medium with full connectivity. (See the section on 

component interconnections in chapter 2.) It is observed here that any 

attempts at achieving a fully connected reliable medium cannot make an 

agreement algorithm any faster, when processors suffer consistent timing 

failures. 

3.5.2. Algorithm ACT-2 for Overloaded Processors 

Time optimality of ACT-1 implies that a faster agreement algorithm 

cannot be developed, unless specific assumptions are made on failure modes 

of faulty processors. Processor overloading is a timing fault that can cause a 

processor to produce late responses. The second algorithm is developed with 

the only faulty processors in the system being overloaded processors which 

fail by producing consistently late responses. In developing this algorithm, 
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the following two assumptions are made in addition to the ones described in 

section 3.2. 

Assumptions 

assumption al: 

All processors have their clocks synchronised within the known and 

bounded difference of e. 

This assumption requires that the execution of clock synchronisation 

algorithm in processors be carried out at a sufficiently low level and using 

high priority messages so that processing loads at high level have little 

impact on the execution of synchronisation algorithm. It extends Al of sec­

tion 3.2 to clocks of all processors in the system. 

assumption a2: 

If an overloaded processor receives and subsequently relays a message, 

the ratio of the delay the processor suffered in sending the message to 

the communication medium, to the delay it suffered in receiving the 

message delivered to it by the communication medium is bounded by a 

known quantity D. 

In a2, no assumption is made to quantify the delay an overloaded pro­

cessor suffers in sending a message to the communication medium or the 

delay in receiving a message from the communication medium; also, there is 

no assumption to imply that an overloaded processor always receives an 

incoming message or that it always sends back a message to be relayed; 

what is assumed is a known relationship between the message relaying 

delays and message receiving delays. 

Let Wr be the time (which can be measured according to any processor's 

clock, due to al) a received message spends in a receive buffer of a processor 
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before being delivered to the destination process within the processor; let Wp 

be the message processing time and Ws be the time the message spends in an 

output buffer before being sent. Thus a message spends a total of Wr + Wp + Ws 

time after reception and ultimately relayed by a processor. Bya2, 

(Wp + Ws)/Wr < 8 

will be true for any overloaded processor, if Wp, w"~ and Wr are finite. 

The message processing required by the algorithm will be to verify the 

timeliness of the message, so Wp will be very small. The quantities Wr and 

Ws increase with processing loads. Thus, in general, a2 will be satisfied, if 

processing loads do not increase in the interval of length Wp + Wr + Ws 

(which is usually in the order of milliseconds) beyond what was perceived in 

the estimation of 8. 

Algorithm 

This algorithm requires at most two rounds of message exchange to be 

carried out between processors. In the first round, the sender, as in the pre­

vious algorithm, broadcasts its value with a timestamp and its identifier. If 

a receiver processor finds the sender's message timely, it decides and relays 

the message to other receiver processors thus initiating the second and the 

last round. The timeliness check for messages from the sender is the same 

as in ACT-l. 

If the sender is overloaded and if at least one non-faulty receiver pro­

cessor finds the message timely, then all non-faulty receiver processors will 

reach agreement in the second round. If no non-faulty receiver processor 

finds the sender's message timely, then the second round of message 

exchange, if there is to be one, will be initiated only by an overloaded 

receiver processor. Using consistency in overloaded processors' failures and 
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assumptions al and a2, calculated will be an upper bound on the time inter­

val within which all non-faulty receiver processors will receive an over­

loaded processor's relayed message. Given this bound, the failures of over­

loaded receiver processors are effectively reduced to consistent omission 

failures and the agreement is guaranteed at the end of the second round. 

Suppose that the sender is overloaded and that all non-faulty receiver 

processors find the sender's message late in the first round. Since the 

sender's timing failures are consistent, the local clock time at which non­

faulty receiver processors receive the sender's message will be within (d +e) 

of each other. Overloaded receiver processors may suffer unduly long delays 

in receiving the message delivered to it by the communication medium. By 

aI, all processors have their clocks synchronised within e. Therefore, the 

local clock readings at which non-faulty processors receive, and overloaded 

processors can potentially receive, the sender's message will be within (d +e) 

of each other. Let Ts be the message timestamp of the sender. Since no 

non-faulty receiver processor received the sender's message before its clock 

reading Ts + (d +e), an overloaded processor cannot potentially receive the 

sender's message before its clock time T,. While an overloaded receiver pro­

cessor can suffer unduly long delays in receiving a message, it will however 

decide not to relay a message which it has received after its clock reading 

Ts + (d +e). It can be established, based on a2, that if an overloaded proces­

sor receives the sender's message before its clock time Ts + (d +e) and relays 

the message, then its messages will be received by all non-faulty processors 

by their clock time Ts + (d+e) + 8*(d+e) + (d+e). Thus, when Il is taken to 

be (2+8)(d +e), either all or none of the non-faulty receiver processors will 

receive an overloaded receiver processor's relayed message by the end of the 

second round. 
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In the following, the algorithm is presented and its correctness is proved for 

A = (2+8)(d+e). 

The sender executes the following algorithm which is the same as in 

ACT-l. 
sender: 

const own-id = ..... ; 
var msg: M; local-value: value; 

begin 
msg. v : = local-value; msg. Ts: = clock.get; 
append-id-and-ser:d(msg) 

end. 

The algorithm for a receiver processor is: 

const own-id = ... ; maxm-rounds = 2; 
var 

msg: M; T r: Time; 
s: integer; 

function TC: boolean; 
begin TC := (s=2 or msg.T, - e :5 Tr < msg.T, + (d +e» end; 

function decided(T:Time): boolean; 

begin 
cycle 

begin if a value decided for T then decided: = true else decided: = false 
end; 

1) receive(msg); 
2) Tr: = clock.get; 
3) s: = no-of-identifiers(msg); 
4) if not decided(msg.Ts) 
5) then if TC 

then begin 
6) decide(msg.v, msg.Ts); 
7) if s < maxm-rounds 
8) then append-id-and-send(msg) 

endcycle 
end. 

end 

Correctness Of Algorithm 
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Theorem 3.2 

Any execution of the above algorithm meets the unanimity and validity 

conditions for .:\ = (2 + 8)(d +e) in the presence of at most f, f < n -1, over­

loaded processors suffering consistently late timing failures. 

Proof 

Consider an executi.on of the algorithm in which the sender sends its 

message with timestamp Ts. When the sender is non-faulty, all non-faulty 

receiver processors reach agreement by their clock time Ts + (d +e), due to 

assumptions Al and A3. Hence the theorem is true for a non-faulty sender. 

Suppose that the sender is overloaded. The theorem is proved for an 

overloaded sender by showing that either all non-faulty receiver processors 

decide by their clock time Ts +.:\, or none of them ever decides. 

Suppose that a non-faulty receiver processor decides for Ts by receiving 

a timely message directly from the sender. It decides by its clock time 

Ts + (d +e) and, by Al and A3, every other non-faulty receiver processor will 

be able to decide for Ts by its clock time Ts + 2(d+e) < Ts + (2+8)(d+e). 

Suppose that all non-faulty receiver processors find the message from 

the sender late; i.e., they all receive the sender's message at or after their 

clock time Ts + (d +e). Since overloaded processors' failures are consistent, if 

any overloaded receiver processor relays the sender's message, all non-faulty 

receiver processors will receive, and subsequently decide on, the message. 

Thus, either all or none of the non-faulty receiver processors decide for Ts in 

the second round. Let r be such an overloaded receiver processor that relays 

the sender's message. Let p be any non-faulty receiver processor. Since no 

non-faulty receiver processor received the sender's message before its clock 

time Ts + (d +e), r would not have been able to receive the sender's message 
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earlier than Ts + e according to p's clock. When p's clock reads Ts + e, r's 

clock will read T', Ts s T s Ts + 2e, by al. Therefore, r cannot receive the 

sender's message earlier than Ts according to its clock. 

Since r is an overloaded processor, it may suffer an unduly long delay 

in receiving the sender's message delivered to it by the communication 

medium. That delay must be less than (d +e), otherwise it could not have 

received the message before its clock time Ts + (d +e) and would not have 

subsequently decided to relay the message. By a2, the delay r can suffer in 

relaying the message will be less than (J*(d +e). These relayed messages will 

take a transmission time of less than d and will be received by non-faulty 

processors by Ts + (d +e) + (J*(d +e) + d according to r's clock. Thus, every 

non-faulty receiver processor will receive r's message by Ts + (d +e) 

+ (J*(d +e) + d +e according to its clock. Hence the unanimity condition and 

the theorem. 

Observation 

The proof of correctness is based on consistent nature of timing failures 

of overloaded processors. Therefore, ACT -2 will not be tolerant to over­

loaded processors which do not fail in consistent manner. This algorithm is 

faster than ACT-l, if (J < (f-l). 

3.6. Consistent Emission Fault 

Under the consistent emission fault model, the failure modes of a faulty 

processor are a union of consistent value and consistent timing failures. 

Algorithms will be derived from consistent timing fault tolerant algorithms 

by adding necessary measures to cope processor's value failures. Consistent 

timing fault tolerant algorithms involved more than one round of message 

exchange between processors. Under consistent emission fault model, a 
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faulty processor can attempt to alter the contents of the message it relays. 

Therefore, it is necessary for processors to sign every message they send or 

relay, and to authenticate every message they receive. 

When signed messages are exchanged between processors, a faulty pro­

cessor can undetectably forge another faulty processor's signature for a 

given message and can, therefore, undetectably alter the contents of another 

faulty processor's signed message it relays. By assumption A2, only the mes­

sages signed or over signed by a non-faulty processor are guarded against 

undetectable corruption. Therefore, when the sender is faulty, a receiver 

processor may receive, for example, two or more authentic messages con­

taining different values but with the same timestamp. To detect such a 

state, every receiver processor maintains a value bag, denoted as V-bag, in 

which the sender's value and timestamp contained in authentic messages 

will be stored as a two element set. Another bag, called time bag and 

denoted as T-bag, is also maintained to hold only the timestamps of authen­

tic messages. If there is more than one entry in V-bag for a given message 

timestamp stored in T-bag, a default decision will be made for the times­

tamp. 

Two algorithms will be presented. The first algorithm is tolerant of con­

sistent emission faults and the second will be for a special case of overloaded 

processors failing in consistently late emission manner. These algorithms 

will be derived from ACT-l and ACT-2 respectively. The development of the 

second algorithm will require assumptions al and a2 of ACT-2 in the con­

text of overloaded processors suffering consistent emission failures and 

another assumption a3 by which an overloaded processor cannot undetect­

ably forge any other processor's signature for a given message. The follow­

ing message structure will be assumed in the presentation of these two algo-

rithms: 
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v: local-value; Ts: Time; signatures: string of char; 
end; 

The message variable 'signatures' will have processors' signatures for the 

contents of the message. A receiver processor, on relaying a signed message, 

will sign the message by appending 'signatures' with its signature for mes­

sage contents which are v, Ts, and the old value of'signatures'. 

3.6.1. Algorithm ACE-I for Consistent Emission Faults 

To cope with consistent timing failures, the algorithm, like algorithm 

ACT-l, allows at most ((+1) rounds of message exchange between proces­

sors, and each message received should be checked for timeliness before 

being accepted. To cope with consistent value failures, messages are signed 

before being sent or relayed, and are authenticated before being accepted. 

The number of processor signatures in a received message, s, will indicate 

the number of processors that have sent or relayed the message. The timeli­

ness check that is carried out on a received message is the same as the one 

in ACT-l. 

Each receiver processor maintains a V-bag and a T-bag. The V-bag is a 

set of two-e~ent sets. The first element of a two-element set will be a value 

and the second a timestamp. The T -bag is a set of timestamps. When a 

receiver processor receives a message during the execution of the algorithm, 

it verifies that the message contains a value and a timestamp not already 

stored as a pair in the V-bag. If so, the message is verified for its authenti­

city and timeliness. If the message is found authentic and timely, the value 

in the message and the message timestamp are entered as a pair into the 

V-bag; message timestamp is also entered into the T-bag, avoiding duplica­

tion; if the number of processor signatures in the message is less than (( + 1), 
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the message is signed and sent to processors whose signatures are not 

present in the message. 

At any time during the execution of the algorithm, a non-faulty 

receiver processor may receive an acceptable message containing a value 

that is different from what it has stored in its V-bag for a given message 

timestamp. Therefore, unlike in ACT-!, a processor should defer its decision 

for a given message timestamp, say, Ta, until its clock time Ta + (f+l)(d+e) 

which marks the end of execution for sender's message with timestamp T •. 

If the V-bag, at that time, contains only one entry-pair for that timestamp, 

then the decision will be made on the value in the entry; otherwise, a 

default decision is made. 

Since a receiver processor should defer its decision for a given message 

timestamp until its clock reads a particular value, its algorithm will be in 

two parts that are to be executed concurrently. In the first part, received 

messages are checked for acceptability and entries into the V-bag and the 

T -bag are made, if necessary; in the second part, a decision for a message 

timestamp in the T-bag is made by referring to corresponding entries in the 

V-bag at appropriate clock times. Concurrent execution of these two parts 

of the algorithm should share the V-bag and the T-bag in a mutually 

exclusive manner. In the following presentation of the algorithm, necessary 

implementation for this mutual exclusion is assumed, and the V-bag and 

the T-bag are shown as shared sets of data: 



sender: 
var msg: M; local-value: value; 

begin 
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msg. v : = local-value; msg.Ts: = clock.get; 
sign-and-send(msg) 

end. 
receiver: 
const A = (f + 1)(d +e); mum-rounds = (f + 1); 
var 

V-bag: shared set of {vI: value, TI: Time}; 
T-bag: shared set of Time; msg: M; 
default, v2: value; Tr, T2: Time; s: integer; 

function TC: boolean; 
begin TC:= (t S s S (f+l) and 

cobegin 
begin 

cycle 

end; 

1) receive(msg); 
2) Tr: = clock.get; 

msg.Ts - se S Tr < msg.Ts + s(d +e» 

3) s: = no-of-signatures(msg); 
4) if ({msg.v, msg.Ts} not in V-bag) 
5) then if authentic(msg) and TC 

then begin 
6) store({msg.v, msg.Ta}, V-bag); 
7) if msg.Ts not in T-bag then store(msg.Ts, T-bag); 
8) if s < mum-rounds 
9) then sign-and-send(msg) 

end 
endcycle; 

end 
II 
begin 
cycle 

10) for any T2 in T-bag 
11) if clock. get = T2 + A 

then begin 
12) if {v2, T2} unique in V-bag 
13) then decide(v2, T2) 
14) else decide(default, T2); 
15) V-bag: = V-bag - { all {v2, T2} in V-bag}; 
16) T-bag: = T-bag - { T2 } 

end 
endcycle 

end 
coend. 

Algorithm ACE-l. 
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Explanation: 

The message variable 'signatures' in the sender's message will be ini­

tially null. The sender signs its message, msg, and sends it to receiver pro­

cessors by executing "sign-and-send(msg)". 

In the algorithm executed by a receiver processor, the constant, 'maxm­

rounds', represents the maximum number of rounds of message exchange 

the algorithm should accommodate and is taken to be ((+1). The operation 

"store({msg.v, msg.Ts}, V-bag)" stores the pair {msg.v, msg.T.} in V-bag; 

similarly, the operation "store(msg.T., T-bag)" stores the message timestamp 

in T-bag. 

The boolean function, Te, contains the boolean condition "1 :5 s 

:5 (f+1)" and the timeliness condition for a received message with s proces­

sor signatures. A faulty processor can undetectably forge another faulty 

processor's signature for a given message and can fail by putting not only 

its signature but also other processors' signatures onto the message it 

relays. Therefore, when messages are exchanged between processors, a 

non-faulty receiver processor may receive authentic messages with more 

than f + 1 distinct processor signatures and for such messages "1 :5 s 

s (f+1)" will not become true. 

The boolean function "authentic(msg)" (in line 5), returns true, if the 

message, msg, has only authentic signatures of distinct processors. If a mes­

sage has unauthentic signatures and/or has more than one signature of the 

same processor, then the function will return false. 

In line 4, a message received (in line 1) at time Tr (noted in line 2) with 

s processor signatures (counted in line 3) is checked whether its value and 

timestamp are already in V-bag. If not, in line 5, it is verified for its 



- 73 -

authenticity and timeliness. On being found authentic with s, 1 s s S f+1, 

distinct processor signatures and timely, the message is accepted and 

appropriate entries are made in V-bag and T-bag and if s < (f+1) (line 8), it 

is over signed and sent (line 9) to appropriate processors. 

Lines 10 to 16 represent the second part of the algorithm to be executed 

concurrently with the first part (lines 1 to 9). For any entry, T2, in T-bag, 

when the clock reads T2 + A (lines 10, 11), a decision is taken for T2 in 

lines 12 to 14. With T2 as timestamp, if {v2,T2} is the only entry in V-bag 

(identified by "unique" condition in line 12), a decision is taken on v2 for 

timestamp T2; otherwise, a default decision is made. In lines 15 and 16, 

entries corresponding to T2 are removed from V-bag and T-bag. 

In the following, the algorithm is shown to be correct. 

Correctness Of Algorithm 

Theorem 3.3 

Any execution of the above algorithm meets the unanimity and validity 

conditions for A = (f + l)(d +e) in the presence of at most f, f < n -1, distinct 

processors with consistent emission faults. 

Proof 

When the sender is non-faulty, all non-faulty receiver processors will 

obtain only one pair for every message timestamp, due to assumption A2. 

Hence the validity condition. 

Consider now the case where the sender is faulty. We will say that a 

processor "obtains" {V, T.}, when it stores {V, Ts} in its V-bag. As per the 
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conditions in TC, it is not possible for a non-faulty processor to obtain {V, 

Ts} at or after its clock time Ts + (f+l)(d+e). Consider two non-faulty pro­

cessors p and q. The unanimity condition is shown to be met by showing 

that for any {V, Ts}, when p obtains {V,Ts} before its clock time Ts + Il, q 

will also obtain {V, Ts} before its clock time Ts + Il. 

Suppose that p obtains a {V, Ts} by accepting a message with s, 

1 S s S f + 1 distinct processor signatures. The processor p accepts the mes­

sage, only if the message is authentic and is received at its clock time Tp 

such that Ts - se :S Tp < Ts + s(d+e). If SSf, then q will find p's message 

timely, authentic and with distinct processor signatures and can thereby 

obtain {V, Ts} by its clock time Ts + (S+l)(d+e) S Ts + Il. If s=(f+l), since 

there can be at most f faulty processors, it is not possible for q not to have 

obtained {V, Ts} before its clock time Ts + Il. Thus, at their clock time T. + 

Il, P and q will have identical entries for Ts in their V-bag. Hence the unan­

imity condition and the theorem. 

Observation 

Consistency in value failures. 

It can be noted that the correctness of this algorithm, like that of algo­

rithm ACT-I, has been established without making use of consistent nature 

of processors' emission failures. Therefore, this algorithm will also be 

tolerant of emission faults. 

Consistent emission failures are a union of consistent timing failures 

and consistent value failures. It was shown, in the previous section, that an 

agreement algorithm tolerant of consistent timing faults has to be developed 

without making use of consistency in processors' timing failures. Therefore, 
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the development of any consistent emission fault tolerant algorithm cannot 

make use of consistency in timing failures. It is however possible to make 

use of consistency in processors' value failures in designing a consistent 

emission fault tolerant algorithm and such an algorithm will be: 

a message received from the sender is accepted, decided on, signed, and 

relayed, if the message is authentic and timely; it is ignored, if it is unau­

thentic; it is preserved, if it is authentic alld untimely. The preserved mes­

sage is decided on, if a decision message - which is a timely and authentic 

message with s, 2 ::s; s ::s; f+l, distinct processor signatures and with value 

and timestamp same as in preserved message - is received from another 

receiver processor in any of the remaining f rounds; it is ignored, if no deci­

sion message is received until clock time T. + A. If a decision message 

received has been signed by less than (f+l) processors, it is signed and 

relayed. 

In any execution of this algorithm, non-faulty receiver processors will 

be able to decide in less than (f + 1) rounds, if the sender is non-faulty or if 

less than (f-l) receiver processors fail when a faulty sender fails by sending 

an authentic and untimely message. However, the value of A cannot be 

guaranteed to be less than that for ACE-I. 

3.6.2. Algorithm ACE·2 for Overloaded Processors 

Algorithm ACE-2 is developed to reach agreement in the presence of 

overloaded processors whose failures will be a union of consistently late tim­

ing failures (due to processing loads) and consistent value failures. It will be 

derived from ACT-2 which is for overloaded processors that fail only by pro­

ducing consistently late responses. ACT-2 was developed with assumptions 
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al and a2 mentioned in previous section and required two rounds of mes­

sage exchange between processors. 

In ACE-2, the features of ACT-2 will be combined with the use of mes­

sage signature and authentication mechanisms to cope with value failures. 

In addition to al and a2, required will be assumption a3 by which an over­

loaded processor cannot undetectably forge another processor's signature for 

a given message. Due to a3, an overloaded receiver processor cannot 

undetectably alter the contents of a signed message it relays and, therefore, 

it cannot make a non-faulty receiver processor obtain more than one value 

for a given timestamp. This eliminates a receiver processor's need, as in 

ACE-I, to maintain V-bag and T-bag and to defer the decision until partic­

ular clock time. The assumptions aI, a2, and a3 required for ACE-2 are 

stated below. 

Assumptions 

a3: An overloaded processor cannot undetectably forge another processor's 

signature for a given message. 

Assumption a3 does not guarantee that an overloaded processor will not 

attempt to forge another processor's signature nor that it will always detect 

a message with unauthentic signature. It merely ensures that a non-faulty 

processor will be able to detect any forged signature contained in the mes­

sage it receives. The underlying assumption in a3 is that the failures of an 

overloaded processor are not so serious that the signature and authentica­

tion mechanisms used will be effective enough for a3 to be true. 

Assumptions al and a2 of ACT-2 are restated in the context of over­

loaded processors suffering consistently late emission failures: 
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a1: All processors have their clocks synchronised within the known and 

bounded difference of e. 

a2: If an overloaded processor receives and subsequently relays a message, 

the ratio of the delay the processor suffered in sending the message to 

the communication medium, to the delay it suffered in receiving the 

message delivered to it by the communication medium is bounded by a 

known quantity (J. 

The assumptions underlying al are: overloaded processors have non­

faulty clocks; the execution of clock synchronisation algorithm in processors 

is carried out at a sufficiently low level and using high priority messages so 

that processing loads at high level have little impact on the execution of 

synchronisation algorithm; and, value failures do not affect clock adjust­

ments performed during the execution of synchronisation algorithm. 

Assumed in a2 is that processing loads do not increase at a rate that is more 

than what was assumed in the estimation of (J. 

Algorithm 

The sender signs and sends its message to receiver processors. The 

algorithm executed by the sender is the same as that in ACE-l. The two­

round algorithm for receiver processors is presented next. 



const maxm-rounds = 2; 
var 

msg: M; ,Tr: Time; 
s: integer; 

function TC: boolean; 
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begin TC : = (s=2 or msg.Ts - e S Tr < msg.Ta + (d +e» 
end; 

function decided(T): boolean; 
begin if a value decided for T then decided: = true else decided: = false 
end; 

begin 
cycle 

1) receive(msg); 
2) T r : = clock.get; 
3) s: = no-of-signatures(msg); 
4) if not decided(msg.Ta) 
5) then if authentic(msg) and TC 

then begin 
6) decide(msg.v, msg.T.); 
7) if s < maxm-rounds 
8) then sign-and-send(msg) 

endcycle 
end. 

end 

Correctness of Algorithm 

Theorem 3.4 

Any execution of the above algorithm meets the unanimity and validity 

condi tions for ~ = (2 + O)(d + e) in the presence of at most f, f < n -1, over­

loaded processors suffering consistently late emission failures. 

Proof 

When the sender is non-faulty, the theorem is true by theorem 3.3. 

Suppose that the sender is overloaded in an execution of the algorithm. By 

aI, the sender has a properly synchronised clock. Therefore, it will not carry 

out more than one broadcast with the same timestamp. Since its value 

failures are consistent, its replicated messages to all receiver processors will 

be of identical contents. This implies that the sender sends only one value 
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for a given message timestamp. By a3, an overloaded receiver processor, 

while relaying the sender's message, cannot undetectably alter the message 

contents. Therefore, if any non-faulty receiver processor decides for a mes­

sage timestamp, say, Ts, during the execution of the algorithm, it will do so 

only on the value sent by the sender with timestamp Ts. 

Let p and q be any two non-faulty receiver processors. The unanimity 

condition is shown to be met for ~ by showing that, for any message times­

tamp Ts, (i) it is not possible for p to decide and q not to decide; and, (ii) if p 

and q decide, they do so by their clock time Ts + ~. 

A non-faulty processor, during an execution of the algorithm, may 

receive messages with more than two signatures. This can happen, if a 

faulty processor has attempted to put other processors' signatures onto the 

message it relays or sends. A non-faulty processor, by a3, will find such 

messages unauthentic and will ignore them. Thus, it reaches a decision 

only by receiving an authentic message that is either signed once by the 

sender or doubly signed. 

Suppose that p decides for Ts by accepting a message that was signed 

only once (s = 1). The processor p accepts the message, only if the message is 

authentic and received at its clock time Tp such that Ts - e:5 Tp 

< Ts + (d +e). Processor q will find p's doubly signed message authentic and 

will decide for Ts by its clock time Ts + 2(d+e) < Ts + ~. 

Suppose that p decides for Ts by receiving a doubly signed message. By 

theorem 3.2, p will receive the message before its clock time Ts + ~; and it is 

not possible for q not to have received the message p received, before its 

clock time Ts + ~. Since value failures of an overloaded receiver processor 

are consistent, the messages received by p and q will have identical con­

tents. Since p decided on the message, q will also find the message authentic 



- 80 -

and decide for T,. Hence the unanimity condition and the theorem for 

t::. = (2+0)(d +e). 

Observations 

1. Assumption a3 and two rounds. 

Consider an execution of ACE-2 without assumption a3. Suppose that 

the sender sends its message such that the message is timely to a non-faulty 

processor, say, p, and also to an overloaded processor, say, r and that the 

message is late to another non-faulty processor, say, q. If processor r relays 

the sender's message with contents undetectably altered, processor q will 

receive, in the second round, two authentic messages of different contents 

and cannot decide which of the two messages is original. If ACE-2 had 

accommodated at most f + 1 rounds, then q could use the subsequent rounds 

to send p the message relayed by r and thereby reach agreement. There­

fore, the two-round algorithm ACE-2 will not be correct without a3. 

2. Consistency in failures. 

Theorem 3.2 requires overloaded processors' timing failures to be con­

sistent. Correctness of ACE-2 requires overloaded processors' value failures 

to be consistent and theorem 3.2. Therefore, ACE-2 will not be tolerant of 

emission faults in processors. 

3.7. Omission Fault 

The omission fault tolerant algorithm presented here is a variant of 

atomic broadcast protocol developed in [Crist85] under omission fault 

assumptions. Hence, it is briefly mentioned here to enable the reader to 

compare it with agreement algorithms developed under other fault models. 
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3.7.1. Algorithm AO for Omission Faults 

Since processors with omission faults fail only by not producing 

expected outputs, the algorithm does not require the use of message signa­

ture and message authentication facilities, and of timeliness checks that are 

to be carried out before accepting a message. An omission faulty processor, 

while producing a replicated output, can however fail by not sending it3 

messages to some of the concerned processors. Therefore, the algorithm 

should allow for at most (f + 1) rounds of message exchange so that the unan­

imity condition can be guaranteed, when the sender is faulty. 

In the following presentation of the algorithm, the messages exchanged 

between processors are taken to be of the record structure that is same as 

the one used in consistent timing fault tolerant algorithms. 

type M record 
v: value; Ts: Time; ids: sequence of identifier 
end; 

Every processor IS assumed to have a unique identifier that is known to 

every other processor. The message variable ids contains the identifiers of 

processors which have seen the message contents. 

Algorithm 

The sender sends all receiver processors its message which contains its 

value, a timestamp and its identifier. The execution of the agreement algo­

rithm will require every receiver processor to behave in the following 

manner: On receiving a message containing sender's value, a receiver pro­

cessor checks if it has decided for the timestamp in that message. If so, the 

message is ignored; otherwise, the message is accepted and a decision is 

taken. If the number of distinct processor identifiers present in an accepted 

message is less than (f + 1), then the receiver processor appends its identifier 
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to the message and relays the modified message to those processors whose 

identifiers are not in the message. 

The algorithms executed by the sender and a receiver processor are 

given below. An explanation is omitted, as it follows from the explanation 

for ACT-l. 

sender: 
const ownid = ..... ; 
var msg: M; local-value: value; 

begin 
msg.v:= local-value; msg.Ts:= clock. get; 
append-id-and-send(msg) 

end. 

receiver: 
const ownid = ... ; maxm-rounds = (f + 1); 
var msg: M; s: integer; 
function decided(T:Time): boolean; 

begin if a value decided for T then decided: = true else decided: = false 
end; 

begin 
cycle 

1) receive(msg); 
2) s: = no-of-identifiers(msg); 
3) if not decided(msg.Ts) 

then begin 
4) decide(msg.v, msg.Ts); 
5) if s < maxm-rounds 
6) then append-id-and-send(msg) 

end 
endcycle 

end. 

Algorithm AO. 

Any execution of the algorithm will guarantee that all non-faulty 

receiver processors reach agreement by their clock time 

Ts + ~,~ = (f+1)d+e. We refer the reader to [Crist85] for the correctness of 

the algorithm. To intuitively show that the size of ~ used here is necessary; 

since there can be at most f faulty processors, any execution of the algo­

rithm should allow at least (f + 1) distinct inter-processor communication 

rounds to take place so that the unanimity condition is guaranteed, when 

the sender is faulty. Considering also the clock difference, ~ cannot have a 



- 83 -

value less than (f+l)d+e. 

Observation 

The above algorithm can be modified to be faster, if it is given that a 

bounded number of omission faulty processors in the system fail only in con­

sistent manner and that all processors are reliably connected by the com­

munication network. Let a, a>l, be the maximum number of faulty proces­

sors that fail only in consistent omission manner. Thus at most (f-a) faulty 

processors can fail in a manner that is not consistent. In such a system, an 

execution of AO with maxm-rounds=f-a+l, will guarantee agreement. To 

intuitively show this: consider an execution in which the sender is faulty 

and a non-faulty receiver processor receives a message with f-a+l proces­

sor identifiers. Since no more than f-a processors fail in a manner that is 

not consistent, at least one of those processors that have sent or relayed the 

message must be either non-faulty or with consistent omission faults. There­

fore, every other non-faulty receiver processor must have received, and 

decided on, the sender's value. 

3.8. Value Fault 

Value faults subsume omission faults. This implies that the value fault 

tolerant algorithm should allow for at most (f+l) rounds of message 

exchange so that the unanimity condition can be guaranteed to be met, 

when the sender processor is faulty. A processor with value faults, in addi­

tion to suffering omission failures, may attempt to alter the contents of a 

message it relays and, while producing a replicated output, may send mes­

sages of different contents to different processors. Therefore, the messages 

exchanged between processors during the execution of the algorithm should 

be signed before being sent and be authenticated before being accepted; and, 
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as m the algorithm for consistent emission faults, each processor should 

maintain V-bag and T-bag shared data structures and should defer its deci­

sion on sender's value until a particular time on its clock. 

Under this fault model, faulty processors do not fail by producing 

untimely messages. Therefore, messages received during the execution need 

not be checked for timeliness. A faulty processor can undetectably forge 

another faulty processor's signature for a given message. It can fail by put­

ting not only its signature but also other processors' signatures onto the 

message it relays. Therefore, when messages are exchanged between pro­

cessors, a non-faulty receiver processor may receive authentic messages with 

more than f + 1 distinct processor signatures and such messages should be 

ignored. So, the value fault tolerant algorithm becomes the same as the 

algorithm for consistent emission faults with (f+l) rounds, ACE-I, except 

for the absence of timeliness condition on received messages and for a 

different value of ~. 

3.8.1. Algorithm AV for Value Faults 

With the type of messages exchanged and the algorithm executed by 

the sender being the same as ACE-I, only the algorithm executed by 

receiver processors is given below. An explanation is omitted, as it follows 

from the explanation for ACE-l. 
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const ~ = (f + l)d +e; maxm-rounds = (f + 1); 
var 

V-bag: shared set of {vI: value, T1: Time}; 
T-bag: shared set of Time; msg: M; 
default, v2: value; T2: Time; s: integer; 

function TC: boolean; 
begin TC := ( 1 ~ s ~ (f+1» end; 

cobegin 
begin 
cycle 

1) receive(msg); 
2) s: = no-of-signatures(msg); 
3) if ({msg.v, msg.Ts} not in V-bag) 
4) then if authentic(msg) and TC 
5) then begin 
6) store({msg.v, msg.T.}, V-bag); 
7) if msg.Ts not in T-bag then store(msg.Ts, T-bag); 
8) if s < maxm-rounds 
9) then sign-and-send(msg) 

endcycle 
end 

II 

begin 
cycle 

end 

10) for any T2 in T-bag 
11) if clock. get = T2 + ~ 

then begin 
12) if {v2, T2} unique in V-bag 
13) then decide(v2, T2) 
14) else decide(default, T2); 
15) V-bag: = V -bag - {all {v2, T2} in V -bag} 
16) T-bag: = T -bag - {T2} 

end 
endcycle 

end 
coend. 
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Correctness Of Algorithm A V 

Theorem 3.5 

Any execution of the above algorithm meets the unanimity and validity 

conditions for a = (f+l)d+e in the presence of at most f, f«n-l), distinct 

processors suffering value faults. 

Proof 

When the sender is non-faulty, the theorem is true by assumptions Al, 

A2, and A3. Suppose that the sender is faulty. As in theorem 3.3, we will 

say that a processor "obtains" {V,Ts}, when it stores {V,Ts} in its V-bag. A 

non-faulty receiver processor obtains {V, Ts} by receiving an authentic mes­

sage with timestamp Ts and with s, 1 $ s $f+l distinct processor signa­

tures. The unanimity condition is shown to be met by showing that for any 

{V,Ts}, it is not possible for one non-faulty receiver processor to obtain {V,Ts} 

before its clock time Ts + a and another non-faulty receiver processor not to 

obtain {V,Ts} before its clock time Ts + a. 

Let p and q be any two non-faulty receiver processors. Suppose that p 

obtains a {V,Te} by receiving a message with s, 1 $ S $ f+l, processor signa­

tures and that q does not receive the message and does not contain {V,Ts} in 

its V-bag. Since faulty processors do not fail by producing untimely 

responses, processor p must have received the message not later than Ts + 

sd according to sender's clock (due to A3) and not later than Ts + sd +e 

according to any receiver processor's clock (due to AI). If s $ t, q will obtain 

{V, Ts} through the message signed and relayed by p before its clock time Ts 

+ (s+l)d+e $ Ts + a. If s=(f+l), since there can be at most f faulty pro­

cessors, the processor from which p received the message must be non­

faulty. Therefore, it is not possible for q not to have obtained {V,T5} before 

its clock time Ts + a. 



- 87 -

Thus, for any message timestamp, say, Ts stored in T-bag, all non-faulty 

recei ver processors will have identical entries in V -bag at their clock time 

Ts + ~. Hence the unanimity condition and the theorem. 

3.9. Timing Fault and Emission Fault 

In sections 3.5 and 3.6, it was observed that the algorithms tolerant of 

consistent timing faults and consistent emission faults have been designed 

without making use of consistency in processors' timing and emission 

failures respectively. Therefore, the algorithm for timing faults, AT, 

becomes the algorithm tolerant of consistent timing faults in processors, 

ACT-I; and, the algorithm for emission faults, AE, becomes that for con­

sistent emission faults ACE-I. 

3.10. Byzantine Fault 

Faults of any type will form a proper subset of Byzantine faults that 

can cause a processor to fail in any manner. The Byzantine fault tolerant 

algorithm presented below as algorithm AB is a variant of Byzantine fault 

tolerant protocol presented in [Crist85]. It requires (f + 1) rounds of message 

exchange between processors. In each round, messages to be sent are signed 

or over signed and messages received are verified for authenticity and timel­

iness. Each receiver processor maintains V-bag and T-bag which are, as 

before, shared by two concurrent processes in a mutually exclusive manner. 

With ~ being (f+l)(d +e), at clock time Ts + ~ a receiver processor inspects 

its V-bag for the value or values stored for timestamp Ts that has been 

stored in the T-bag. If only one value is present, decision is taken on that 

value; otherwise, default decision will be made. 
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3.10.1. Algorithm AB for Byzantine Faults 

The type of messages exchanged between processors and the algorithm 

executed by the sender are the same as ACE-l. The algorithm executed by a 

receiver processor is given below. 

receiver: 
const ~ = (f+l)(d+e); mum-rounds = (f+l); 
var 

V-bag: shared set of {vI: value, Tl: Time}; 
T-bag: shared set of Time; msg: M; 
default, v2: value; Tr, T2: Time; s: integer; 

function TC: boolean; 
begin TC : = ( 1 :::; s :::; f + 1 and 

cobegin 
begin 
cycle 

end; 

1) receive(msg); 
2) Tr : = clock.get; 

msg.Ts - se :::; Tr < msg.Ts + s(d +e)) 

3) s: = no-of-signatures(msg); 
4) if ({msg.v, msg.Ts} not in V-bag) 
5) then if authentic(msg) and TC 

then begin 
6) store({msg.v, msg.Ts}, V-bag); 
7) if msg.Ts not in T -bag then store(msg.Ts, T-bag); 
8) if s < maxm-rounds 
9) then sign-and-send(msg) 

endcycle 
end 

II 
begin 
cycle 

end 

10) for any T2 in T-bag 
11) if clock.get = T2 + ~ 

then begin 
12) if {v2, T2} unique in V-bag 
13) then decide(v2, T2) 
14) else decide(default, T2); 
15) V-bag:= V-bag - {all {v2, T2} in V-bag}; 
16) T-bag:= T-bag - {T2 } 

end 
endcycle 

end 
coend. 

This algorithm is no different from algorithm ACE-l that is tolerant of 

consistent emission and emission faults in processors. A Byzantine failure 
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that is not included in emission failures is a failure in which arbitrary mes­

sages are produced by faulty processors. So, Byzantine faulty processors can 

generate arbitrary messages during the execution of the algorithm and 

thereby can increase the message traffic between processors. An implemen­

tation of AB should take this increased message traffic into consideration 

by, for example, fixing a larger value of d in assumption A3 than the one 

chosen for implementing ACE-I. An increase in the value d will increase 

the value of e, if clock synchronisation is achieved without using any time 

service external to the system. For given values of d and e which are chosen 

to meet assumptions Al and A3 in the presence of Byzantine faulty proces­

sors, algorithm AB can be proved to be correct using the approach developed 

for ACE-l (see also [Crist85] for a proof). 

3.11. The Generic Algorithm 

In this section, we present the generic algorithm from which any of the 

algorithm developed in previous sections can be derived by substituting cer­

tain variables with appropriate parameters which are tabulated following 

the presentation of the algorithm. The variables to be replaced are tc, 

maxm-rounds, and a; The variable tc represents the conditions in the 

boolean function TC of an agreement algorithm. These three variables take 

different values for different algorithms and are indexed by a which will 

represent the name of the algorithm that is to be derived from the generic 

algorithm. For example, the generic algorithm will represent agreement 

algorithm for value faults, when the variables tc(a), maxm-rounds(a), and 

A(a) in the generic algorithm are substituted by respective expressions pro­

vided in the table for a = A V. The generic algorithm and the table will 

help the reader to compare the requirements of agreement algorithms 



- 90 -

developed in previous sections. 

In algorithms for consistent timing, timing, and omission faults and for 

overloaded processors, it is possible for a non-faulty processor to be able to 

decide on a message with timestamp Ts before its clock time Ts + ~. An 

agreement reached will be said to be eventual, if one non-faulty processor 

can decide in round i and another one in round j, such that i:;c j. In some 

executions of these algorithms, c.greement reached can be eventual. It can 

be observed that in these algorithms, the types of faults considered do not 

involve value faults, or, if value faults are involved, a faulty processor is 

assumed not to be able to undetectably forge another processor's signature 

for a given message; and that a receiver processor is not required to main­

tain V-bag and T-bag. In algorithms where V-bag and T-bag are main­

tained by receiver processors, the decision for Ts will be taken at clock time 

Ts + ~ and the agreement reached will be called immediate agreement in 

which all receiver processors decide at the same round. For detailed descrip­

tions of eventual and immediate agreements, we refer the reader to 

[Dolev82al. 

In developing the generic algorithm, the possibilities of a receiver pro­

cessor being able to reach eventual agreement in certain algorithms have 

been ignored to achieve uniformity between all algorithms. For algorithms 

where early decision is possible, the generic algorithm will indicate the 

worst case time duration necessary to reach agreement. 

The type of messages exchanged between processors is taken to be of 

the following record structure: 



message structure: 
type M record 
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v: value; Ts: Time; signatures: string of char 
end; 

The message variable 'signatures' is taken to represent message signa­

tures of either of the following two types: (i) RSA type of message signatures 

which are generated and authenticated using schemes such as RSA scheme 

(Rivest, Shamir, and Adleman scheme) in [Rives78]; signatures of this type 

are signer dependent and contents dependent; (ii) ID type of signatures 

which are only signer dependent and are taken to be processors' identifiers. 

A processor's identifier, as in omission fault tolerant, and timing fault 

tolerant algorithms, will be unique and be known to every other processor 

in the system. When message signatures of ID type are used, the instruction 

"sign-and-send(msg)" will imply that the message, msg, is sent, after the 

sending processor's identifier is appended to the variable 'signatures' of the 

message; and, the boolean function "authentic(msg)" will always return 

true. The algorithm executed by the sender and a receiver processor are as 

follows: 



sender: 
var msg: M; local-value: value; 

begin 
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msg.v : = local-value; msg.T8:= clock. get; 
sign-and-send(msg) 

end. 

receiver(a: algm-name); 
var 

V-bag: shared set of {v1: value, T1: Time}; T-bag: shared set of Time; 
msg: M; default, v2: value; Tr, T2: Time; s: integer; 

function TC: boolean; 
begin with msg do TC:= tc(a) end; 

cobegin 
begin 
cycle 

1) receive(msg); 
2) Tr: = clock.get; 
3) s: = no-of-signatures(msg); 
4) if ({msg.v, msg.Ts} not in V-bag) 
5) then if authentic(msg) and TC 

then begin 
6) store({msg.v, msg.Ts}, V-bag); 
7) if msg.Ts not in T-bag then store(msg.Ts , T-bag); 
8) if s < maxm-rounds(a) 
9) then sign-and-send(msg) 

endcycle 
end 

II 
begin 
cycle 

end 

10) for any T2 in T-bag 
11) if clock. get = T2 + Ll(a) 

then begin 
12) if {v2, T2} unique in V-bag 
13) then decide(v2, T2) 
14) else decide(default, T2); 
15) V-bag: = V-bag - { all {v2,T2} in V-bag}; 
16) T-bag: = T-bag - { T2 } 

end 
endcycle 

end 
coend. 

The Generic Algorithm. 

The table showing the expressions for tc(a), maxm-rounds(a), Ll(a), and 

the type of message signatures for various agreement algorithms is 

presented next. 
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a tc(a) maxm- .:l(a) type of 
rounds(a) message 

signature 

ACO 

(consistent true 1 (d +e) ID 
omission) 

ACV 

(consistent true 1 (d+e) ID 
value) 

ACT-1 

(consistent (T. - se :5 Tr < T.+s(d+e» (f+1) (f + l)(d +e) ID 
timing) 

ACT-2 

(processor (s=2 or T.-se:5Tr<TB+s(d+e» 2 (2+8)(d +e) ID 
over loading) 

ACE-1 

(consistent (1:5s:5(f+1) and T B-se:5Tr<TB+s(d+e» (f+1) (f+1)(d+e) RSA 
emission) 

ACE-2 

(processor (s=2 or T.-se:5Tr<TB+s(d+e» 2 (2+8)(d +e) RSA 

overloading) 

AO 

(omission) true (f+1) (f+1)d +e ID 

AV 

(value) 1 :5 s :5 (f+1) (f+1) (f+1)d+e RSA 

AT 

(timing) (TB - se :5 Tr < Ts + sed +e» (f+1) (f + l)(d +e) ID 

AE (1 :5s :5 (f+1» and 

(emission) (TB - se:5 Tr < Ts +s(d+e» (f+1) (f + l)(d +e) RSA 

AB (1 S s :5 (f+1» and 

(Byzantine) (T. - se :5 Tr < TB + sed +e» (f+1) (f+l)(d+e) RSA 

Table 3.1. Expressions For The Family Of Algorithms. 
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Complexities of agreement algorithms for faults of related types 

(related by "proper subset of' relation defined in chapter 2) can be compared 

by considering the following factors in the algorithms: the requirement for 

the use of message signatures and authentication, requirement to verify the 

timeliness of a received message (by referring to a clock), and the maximum 

number of rounds of message exchanges between processors required to 

guarantee agreement. Among the algorithms developed for each fault type, 

algorithms ACO and ACV, respectively tolerant of consistent omission 

faults and consistent value faults, stand out to be the simplest of all for the 

following reasons: the sender need not sign the messages it sends; no 

receiver processor will be required to authenticate, or to verify the timeli­

ness of, the messages it receives; any execution of the algorithm guarantees 

agreement by time interval A which is as small as (d +e) and involves just 

one round of message exchange between processors in which only the sender 

sends its messages. Under these fault models, a faulty sender does not 

respond to different processors in different manner. Therefore a simple 

broadcast by the sender, which is necessary in any agreement algorithm, is 

sufficient to guarantee agreement. 

Under consistent timing and consistent emission fault models, a faulty 

processor was seen to respond to different processors in different (timing) 

manner - timely for some and untimely for others. Therefore, algorithms 

ACT-I and ACE-I required (f+l) rounds of message exchange between pro­

cessors. ACE-I is more complex than ACT-I, since it requires the use of 

signed messages. ACT-2 and ACE-2 are developed for overloaded processors 
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and by making assumptions which restrict an overloaded processor's ability 

to respond in different timing manner to different processors. They turn out 

to be two round algorithms and are more complex than ACO and ACV 

which are one round algorithms. ACT-2 and ACE-2 will be faster than 

ACT-l and ACE-l respectively, if O«f -1). Under consistent fault models, it 

can be observed that if faults of type A are a proper subset of faults of type 

B, then the algorithm tolerant of type A faults is less complex than that 

tolerant of type B faults, except when A is consistent omission and B is con­

sistent value. 

ACT-l and ACE-l have been developed without making use of con­

sistency in processor's failures and therefore become AT and AE respec­

tively. The omission fault tolerant algorithm, AO, is less complex than AT 

and AE and is more complex than ACO, since it requires at most (f + 1) 

rounds of message exchange and does not involve signed messages and 

timeliness checks. A V is more complex than AO and less complex than AE. 

Though the Byzantine fault tolerant algorithm, AB, is the same as AE, 

it was observed that a heavier message traffic may result during an execu­

tion of AB due to a Byzantine faulty processor's ability to generate arbitrary 

messages. In fact, it is not appropriate to compare the fastness of any two 

given algorithms only by considering the respective expressions for A, since 

message receiving and processing time varies depending on message traffic 

and on whether a given message is signed and/or is to be verified for timeli­

ness. Due to the possibility of increased message traffic in the presence of 

Byzantine faulty processors, the value of d in assumption A3 may well be 

large and, therefore, AB may be slower than AE. 
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From these discussions, it can be observed that when faults of type A 

are a proper subset of faults of type B, then the algorithm tolerant of type A 

faults will be less complex than that for type B faults, except if A is con­

sistent omission, consistent timing, consistent emission, and emission, when 

B is consistent value, timing, emission, and Byzantine respectively. In each 

of these four exceptional cases, type A fault tolerant algorithm is as complex 

as the algorithm tolerant of type B faults. These exceptional cases illustrate 

that an agreement algorithm does not necessarily become less complex, just 

because fault types considered are restricted to relatively "less severe" 

types. 

Processors and Knowledge of Membership 

The specification of the agreement problem "assumes" that every pro­

cessor has identical knowledge of processors involved in reaching agree­

ment. By this assumption, a processor was able to authenticate another 

processor's signed message, when signatures of RSA type are used; and, 

when signatures of ID type are used, a processor was considered to have a 

unique identifier that was known to every other processor involved in reach­

ing agreement. Realising this assumption is easy in systems with a fixed 

configuration such as [Ezhil89] in which three processors are assigned to 

form a triple modular redundant (TMR) node until the end of the mission 

period. It becomes relatively difficult in systems where membership can 

change with respect to time as processors leave or join the system. In such 

systems, it should be ensured, following the occurrence of an event which 

affects the system membership, that all non-faulty processors have correct 

and consistent knowledge of the change in system membership in a bounded 

and known time interval. This problem is referred to as the group member­

ship problem in [Crist88]. 
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Given that non-faulty processors in a system have consistent knowledge 

of current system membership and can detect occurrences of events that 

affect system membership, group membership problem can be solved using a 

solution to the agreement problem. Using agreement protocols, three proto­

cols are proposed in [Crist88] to solve membership problem in the presence 

of late timing faults in processors and communication medium. 

3.12. Concluding Remarks 

Agreement algorithms have been developed and presented for a range 

of processor fault types. When a given fault type is considered to be realis­

tic for processors in a distributed system, the respective algorithm can be 

used to reach agreement. The algorithms presented here have been 

designed with one processor among n processors being designated as the 

sender. Extending these algorithms into agreement protocols where every 

processor can be a sender is a straightforward task. 

In practical systems, a processor may be designed to have well-defined 

failure modes. For example, a fail-stop processor in [Schne84], is designed to 

restrict the failures to omission failures that are permanent and consistent. 

In designing processors with well-defined failure modes, the family of algo­

rithms presented here illustrates any advantages, or lack of them, in choos­

ing one particular failure type against another. For example, a choice of 

consistent timing failure type against timing failure type renders no 

simplification in the task of reaching agreement. However, the algorithms 

for overloaded processors indicate that agreement can be reached in a less 

complex manner (in at most two rounds, irrespective of f), if it can be 

guaranteed that processor overloading is the only consistent timing fault 

that can occur and that assumptions al and a2 can be realised. 
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Solving the agreement problem under different fault conditions, illus­

trating the relative complexities of various algorithms, and developing a 

generic algorithm are thus the main contributions of this chapter. 
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CHAPTER 4 

EARLY STOPPING AGREEMENT ALGORITHMS UNDER 

OMISSION AND TIMING FAULT TYPES 

4.1. Introduction 

The agreement algorithms presented in the previous chapter were 

developed in the context of sender's broadcast time not known to receiver 

processors a priori. Algorithms tolerant of timing faults and omission faults 

require at most f + 1 rounds of message exchange between processors to 

tolerate at most f faulty processors. In some executions of these algorithms, 

a non-faulty receiver processor was observed to be able to decide on the 

sender's value in less than f+1 rounds of message exchange between proces­

sors. During an execution, all non-faulty receiver processors decide on the 

sender's value in the first round when the sender is non-faulty, and decide 

before the (f + l)th round when the sender and fewer than (f -1) receiver pro­

cessors fail. 

Dolev, Reischuk, and Strong [Dolev82al were the first ones to investi­

gate agreement algorithms whose execution can terminate taking fewer 

than the maximum number of rounds of message exchange required by the 

algorithms. They came up with two types of agreement that can be reached: 

immediate and eventual. This classification led the authors to the following 

definition of early stopping: an agreement algorithm tolerant of at most f 
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distinct processor failures is said to exhibit early stopping if all non-faulty 

processors are guaranteed to reach agreement in strictly less than the max­

imum number of rounds accommodated by the algorithm in all executions in 

which m, m < f, distinct processors fail. That is, every execution of an early 

stopping algorithm will guarantee early agreement, if the number of actu­

ally failed processors is less than the maximum expected. 

In this chapter, we develop early stopping agreement algorithms under 

omission and timing fault types and in the context of sender's broadcast 

time being known to receiver processors a priori. When receiver processors 

know the sender's broadcast time beforehand, non-faulty receiver processors 

will be required to reach some decision, even when the sender fails to carry 

out the broadcast. Therefore, in the context of sender's broadcast time 

already being known to receiver processors, the omission fault tolerant, and 

timing fault tolerant algorithms of chapter 3 cannot guarantee agreement 

in less than (f+1) rounds, when the actual number of faulty processors, m, is 

less than f. (Consider an execution in which the sender that is to send its 

value at some known time fails by sending no message to any processor. 

Non-faulty receiver processors will come to know that the sender did not 

broadcast its message, only at the end of the (f+1)th round, even if no 

receiver processor is faulty.) The problem of reaching agreement in the 

chosen context is described below: 

A distributed system is considered to be made up of n, n > 1, poten­

tially faulty processors that are capable of communicating with each other 

only by message passing. It is assumed that the communication medium is 

fault free and that faults occur only in processors. At most f, f~n -2, pro­

cessors can be faulty. Any non-faulty processor cannot, however, ascertain 
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which other processors are faulty. Among these n processors in the system, 

one processor is designated as the sender and the others as receiver proces­

sors. The sender is to choose a value from many potential values and send it 

to all receiver processors at some time that is already known to all proces­

sors in the system. Agreement on the sender's value will be said to have 

reached, if 

C1: all non-faulty receiver processors decide on the same value (unanimity); 

and, 

C2: if the sender is non-faulty, all non-faulty receiver processors agree on 

the value the sender chose to send (validity). 

In [Dolev82a], early stopping algorithms have been developed for 

Byzantine faulty processors capable of exhibiting arbitrary behaviour. In 

this chapter, we develop and present early stopping algorithms for omission 

and timing types of faults in processors. Under omission fault types, we will 

consider permanent omission faults (which cause a processor to stop func­

tioning) and omission faults. Under timing fault types, we will consider 

timing faults and a particular case where overloaded processors fail in a 

consistently late timing manner. As in chapter 3, a known bound on mes­

sage communication delays will be assumed and non-faulty receiver proces­

sors will reach agreement in a known and bounded time interval. Our per­

manent omission fault tolerant, and omission fault tolerant algorithms are 

found to be faster than those presented in [Hadzi84, Lampo84]. The timing 

fault tolerant algorithm and the consistently late timing fault tolerant algo­

rithm are revised versions of algorithms presented in [Ezhil87, Ezhil86]. 



- 102 -

The algorithms presented here are developed with one processor being 

designated as the sender and other processors as receiver processors. Modi­

fying these algorithms to the general context of every processor in the sys­

tem being a sender and sending a value to all other processors is straight­

forward. An area of application for early stopping agreement algorithms 

will be distributed transaction commit where non-faulty processes on 

different sites have to agree unaniml)usly on a commit or abort decision on 

the results of a transaction. These algorithms will enable the processes to 

reach agreement as quickly as possible with each non-faulty process know­

ing the time by which all other non-faulty ones will have reached the deci­

sion it has reached. 

The rest of this chapter is organised as follows: The next section 

explains the assumptions involved in the design of the algorithms and the 

notations used in the presentation. Sections 4.3, 4.4, 4.5, and 4.6 respec­

tively describe, and establish the correctness of, the permanent omission 

fault tolerant, the omission fault tolerant, the timing fault tolerant, and the 

consistently late timing fault tolerant algorithms. In each of these four sec­

tions, important observations about the respective algorithm are presented. 

In the development of consistently late timing fault tolerant algorithm, the 

assumptions presented in section 4.2 are weakened and the modified ver­

sions are stated before presenting the algorithm. Section 4.7 concludes the 

chapter. 
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4.2. Assumptions and Notations 

We make two major assumptions m the design of our algorithms. 

These assumptions are identical to assumptions A1 and A3 of chapter 3 and 

are restated here for the sake of completeness. 

Assumption AI: 

At any given instant of real time, the observable difference between 

clock readings of any two non-faulty processors will be at most e. 

A1 can be satisfied, when processors periodically execute some clock 

synchronisation algorithm such as [Crist86]. The term non-faulty in A1 is 

not necessary, when permanent omission faults and omission faults are con­

sidered for processors, since under these fault models, a processor fails only 

by not producing an expected response. 

Assumption A2: 

If, at time T, an event occurs in a non-faulty processor p and causes a 

message to be formed and sent to another non-faulty processor q, then that 

message will be received in q at time Tr, T S Tr < T + d, for some d, d > 

0, where time is measured according to either processor's clock. 

The assumptions underlying A2 are: non-faulty processors are reliably 

connected; d is fixed by considering the processing time taken when the 

occurrence of an event requires a processor to decide on sending messages, 

message routing and transmission in the communication medium. 

Based on A1 and A2, the following can be stated: 

If an event occurs in a non-faulty processor p at time T according to p's 

clock and causes a message to be formed and sent by p to another non-faulty 

processor q, then the message will be received in q at time Tr, T - e S Tr < 
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T + d +e, according to q's clock. 

When processors are considered to have only permanent omission faults 

or omission faults, the term non-faulty is not necessary in A2. However, 

these assumptions need not be true for processors with consistent timing or 

timing faults. Under consistent timing fault assumptions, A1 will be 

extended to include even faulty (overloaded) processors. The assumptions in 

the design of consistently late timing fault tolerant algorithm are similar to, 

but weaker than, A1 and A2, and will be presented in section 4.6. 

Without assumptions A1 and A2, a processor cannot decide whether a 

message has not been sent at all, or is yet to be sent by another processor. 

With processors not being able to solve this ambiguity, deterministic agree­

ment algorithms cannot be designed [Fisch83b]. 

We explain a few notations that are frequently used in latter sections. 

The sender processor is denoted by s and its value to be broadcast to all 

receiver processors will be denoted by V. To is the clock time when the 

sender has to broadcast its value, V. (To is known to all receiver processors.) 

A processor denotes the set of all other processors in the system by P. N, F and 

S are any three subsets of P. 

The messages exchanged by processors during an execution of an agree­

ment algorithm are denoted by 'msg(v,i)' explicitly expressing two important 

items of their contents: v, the value a given message intends to deliver to a 

processor that receives it and i, an integer, is used to identify a given mes­

sage to group it with other relevant messages. 

In all the four types of faults concerned, a faulty sender does not fail by 

broadcasting different non-null values to different receiver processors and a 
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faulty receiver processor does not fail by trying to alter the contents of the 

message it relays. Hence the receiver processors, in any execution of the 

algorithms, have to decide either to agree on V or to conclude that the 

sender has failed to broadcast its value. We call the latter situation decid­

ing on the 'default' value as the sender's value. 

In presenting, and proving the correctness of, the algorithms, we make 

the following assumptions: a receiver processor has a "receive-buffer" that 

contains the messages received from other processors, and an object "clock" 

that represents its synchronised clock; a clock function 'get' will return the 

current clock value. A receiver processor is assumed to be able to establish 

the identity of the processor that sent the message it receives. It is also 

assumed to execute the statements of an algorithm in zero time. The last 

assumption will require an increase on the value of d to incorporate execu­

tion time overheads. 

4.3. Permanent Omission Fault Tolerant Algorithm 

A description of the early stopping algorithm tolerant of permanent 

omission faults is as follows. 

In any execution of the algorithm, the sender processor, at its clock 

time To, is to broadcast its message msg(V,O) containing value V to all 

receiver processors. Each receiver processor waits for a message that con­

tains a value to be decided on - i.e. either for a message msg(v=V,i) for 

some i, 0 sis f, or msg(v=default, i) for some i, 3 sis f. (The reason for 

the lower bound of 3 will soon become obvious.) On receiving such a mes­

sage it decides on the value contained in the message and stops after 
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broadcasting msg(v,i + 1) to other processors, if i < f. When such a message 

is not received, the processor continues to wait; while waiting, it executes 

the following steps: 

81 When the clock reads To + id +e for i ~ 1, it broadcasts to all other 

receiver processors a message msg('?',i) meaning "are you decided?" 

The set F" for any i, i ~ 1, will contain processors that have been 

observed, at time To +id+e, to have failed. For i = 1 or 2, the set F, 

will be formed to contain only the sender. 

82 Whenever it receives a message msg('?', j), for some positive integer j, it 

replies to the sender of msg('?', j) by sending a message msg('X', j + 1) 

meaning "I have not yet decided". 

83 When its clock reads To + id +e, for i, i ~ 3, it collects those receiver 

processors that replied by sending msg('X',(i-1)) in response to its mes­

sage msg('?',(i-2)) into a set N and computes the set Fi = P-N. 

84 If IFd s i-2 or IFd = IF(i-2)1, it decides on the default value and stops 

after broadcasting msg(v = default, i) to all receiver processors. (The 

smallest value of i in a msg(default, i) is 3.) 

If a processor cannot decide either by receiving a message containing 

another processor's decision or by computing appropriate F's until its clock 

reads To + (f+l)d+e, it decides on the default value and stops the execu­

tion. 

The different steps executed by a receiver processor are effectively com­

bined in the following presentation of the algorithm in figure 4.1. 
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sender: 
begin 

wait clock.get = To; 
broadcast(msg(V ,0» 

end. 

recei ver-processor: 
i, j:integer; 

begin 

1a) 

1b) 
2a) 

2b) 
3a) 

3b) 

i: = 1; 
wait clock.get = To -e; 
flush receive-buffer; 
cycle 

while clock.get < To + i(d +e) 
do 

if (msg(v = V or default, j) in receive-buffer) then 
begin decide(v); if (j < f) then broadcast(msg(v,(j + 1»; stop 
end; 

if (msg('?', j) in receive-buffer) then 
reply(msg('X',(j + 1», msg('?', j» 

od; 

if (3 :s; i:s; f) then 
begin N: = {processors whose msg('X',(i-1» in receive-buffer}; 

Fi:= P-N; 
if ( IFd :s; (i-2) or IFd = IF(i-2)1 ) then 

begin decide(default); 
broadcast(msg(default,i); stop 

end 
end; 

if (i :s; 2 and i :s; (f-2) then F, = {s}; 

ifi = (f+l) then 
begin decide(default); stop 
end; 

if i :s; (f - 2) then broadcast(msg('?' ,i»; 
i := i+1 

endcycle 
end. 

Figure 4.1. The Permanent Omission Fault Tolerant Algorithm. 
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Explanation 

By executing the algorithm, the sender broadcasts its value to all 

receiver processors at its clock time To and each receiver processor, after ini­

tialising the variable i and emptying the receive-buffer, starts receiving 

messages msg(v, j ;:::0) at its clock time To-e. In the first block of statements 

[from 1a to 1b], if a received message has v=V or v=default, decision is 

made on v; the execution is terminated by executing the "stop" statement 

after broadcasting msg(v, (j + 1», if j < f. Note that j = f (j > f) would mean 

that the value of the message received has been relayed by (at least) f pro­

cessors apart from the sender. Therefore, such a message need not be, and 

is not, relayed any further. If a received message is msg(v='?', j), then the 

statement "reply(msg('X', (j + 1», msg('?', j»" is executed to send a reply mes­

sage, msg('X', (j + 1», to the processor from which msg('?', j) has been 

received. Appropriate mechanisms are assumed to have been implemented 

to avoid replying to the same processor more than once for a given value of j 

in msg('?', j). 

In the second block of statements [from 2a to 2b], attempts are made at 

early stopping the execution for i, 3 :s i :S f. The set Fi, for i = 1 or 2, is 

formed to contain only the sender, if i:s (f - 2) i.e., (i + 2) :S f. An early stop­

ping of the execution is not possible at clock time To + id +e, for i = 1 or 2, 

and the Fi's formed at these clock time instants will not be needed at 

To + (i + 2)d +e, if (i + 2) > f, since the execution is going to be terminated at 

clock time To + (f+l)d+e. The third block of statements [from 3a to 3b] 

leads to termination of the execution in the worst case of the execution not 

having been terminated either by reception of a message with v = V or 

default or by computing appropriate Fi's. 
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If a receiver processor, following its activities at its clock time 

To + id+e, 3 sis f, has not decided, it broadcasts msg('?', i), if i s (f-2), 

and continues the execution by incrementing the value of i. For i > (f - 2), 

msg('?', i) need not be broadcast, since the corresponding reply messages, if 

any, can only be guaranteed to be received after clock time To + fd +e at 

which time any attempt for early stopping would be of little use. 

4.3.1. Correctness of the Algorithm 

The algorithm is shown to be correct by establishing a series of lemmas. 

From here on, Ti is used to denote To + id + e, for i, i ~ 1. 

Lemma 4.1 

Let p be an undecided non-faulty processor that computes F" for some i, 

i~3, at its clock time Ti. Any processor that is an element of Fi must have 

halted functioning at some time T, T < T(i-l), according to p's clock. 

Proof 

Throughout this proof, we measure time according to p's clock. The F, 

of p contains the sender processor which has obviously halted at some time 

T, T s To + e < T" i~1. For every i, i~3, the undecided non-faulty proces­

sor p broadcasts a message, msg('?',(i-2)), to all receiver processors at time 

T(i-2). By assumption A2, p's message msg('?',(i-2)) can be received by any 

other receiver processor at some time Tr, Tr < T(i-l) and the reply message 

msg('X',(i-l)), if sent, must be received by p before Ti. If any receiver proces­

sor in Fi had decided and stopped the execution without any failure by Tr, 

then p must have decided by Ti. But P is undecided. So, every processor in F, 

must have failed and halted by Tr. Hence the lemma. 
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Lemma 4.2 

Let p be an undecided non-faulty processor that computes Fi at its clock 

time Ti, L:::3. Any processor that is not in p's Fi must have remained unde­

cided at time T, TST(i-2), according to p's clock. 

Proof 

The lemma is obviously true for p which will not be in its Fi. Any other 

receiver processor that is not in p's Fi would have replied to p's message 

msg('?',(i-2)), only if it has been undecided at the time p's message was 

received. The p's message can be received by any other receiver processor, 

due to A2, at time Tr, T(i-2) :5 Tr < T(i-l), according to p's clock. Hence the 

lemma. 

Remark 

The proof of this lemma makes use of two facts: a processor does not 

suffer any undue delay in replying to msg('?', j;::: 1) and does not produce 

messages containing incorrect information (such as indicating undecided­

ness when it is indeed decided). So, the above lemma will also hold true 

under omission fault assumptions. 

Lemma 4.3 

If an undecided non-faulty processor p finds \Fd = \F(t-2)1 at time Ti, 

according to its clock, for some i, i;:::3, then no non-faulty processor could 

have decided, and can ever decide, on V. 
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Proof 

Throughout this proof, it is supposed that p's clock will be used to meas­

ure time. Under permanent omission fault assumptions, a processor, on fail­

ing, halts for ever. Therefore, any Fi will be a subset of Fj for j, j > i ~ 1 

and if IFd = IFjl, then F, = FJ • According to the algorithm, p will have Fl = 
F2 = {s}. The condition that IF31 = IFtl would imply that F3 = {s}. This 

would mean that all receiver processors had, by lemma 4.2, remained unde­

cided, when p's clock read Tl. Hence the sender must not have sent its mes­

sage (by assumptions Al and A2). Hence the lemma is true for i = 3. With 

similar reasoning, the lemma can be shown to be true for i = 4, though this 

situation can never occur, since the execution would be stopped for i = 3 

itself. 

We prove the lemma for i, i~5, by first showing that any processor, say 

q, that is in F(i-21 could not have sent a decision message containing either 

V or the default value to any processor, say r, that is not in F(i-21. Since q is 

in F(i-21, by lemma 4.1, it must have failed and halted at T, T < T(i-31. 

Assume that q has sent a decision message to r, before halting, that is 

before T(i-3). That message will be received by r before T+d, T+d < T(i-21. 

If r had been functioning until T(i-2), p should receive r's message and decide 

by T(i-l); but p is undecided at T(i-t). If, on the other hand, r had failed 

before T(i-2l, then it would not have sent msg('X', i-I) in reply to p's msg('?', 

i-2); this means that r must have been counted in p's F,. But Fi = F(i-21. 

Therefore, the hypothesis that q sent a message to r before T(i-31 cannot be 

true. 

So, no processor in F(i-2) could have sent any message containing either 

V or the default value to any processor in P-F(i-21 at any time before T(i-3) 

and, by lemma 4.2, all processors in P-F(i-2), P-F(i-21 = P-Fi, must have 
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remained undecided at T(i-4) and until T(i-2). An undecided receiver proces­

sor can decide on V only by receiving a message containing V. Therefore, 

no processor in p's P-Fi can ever decide on V. A non-faulty receiver proces­

sor could not have decided on V before T(i-4), since p was undecided at T(i-3). 

Hence the Lemma. 

Lemma 4.4 

If a non-faulty undecided processor p finds IFd :5 (i-2) at its clock T" for 

some i, i ~ 3, then no non-faulty processor could have decided, and can ever 

decide, on V. 

Proof 

When a receiver processor receives a message msg(V, j), j ~ 1, that mes­

sage must have been sequentially relayed by j distinct receiver processors 

after being sent by the sender. Under permanent omission (also omission) 

fault assumptions, faulty processors do not introduce any undue delay in 

relaying a received message. Therefore, by Al and A2, when the clock of 

any non-faulty processor reads a value greater than or equal to T(j+l), j ~ 1, 

no undecided processor can receive a message msg(V, j). By lemma 4.2, all 

processors in P-Fi must have remained undecided at p's clock time T, T :5 

T(i-2). These processors can decide on V only by receiving a message con­

taining V. If any processor in P-Fi is to receive msg(V, j), then that message 

has to come through processors in Fi (which also includes the sender) such 

that j :5 IFd -1. But p finds IFd :5 (i-2). This means j :5 i-3. Therefore, no 

processor in P-F, can receive msg(V, j:5i-3), and can therefore decide on V, 

after p's clock time T(i-2). Hence the Lemma. 
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Lemma 4.5 

When a non"-faulty processor decides on the default value, no other 

non-faulty processor could have decided, and can ever decide, on V. 

Proof 

If a non-faulty processor can decide on the default value because either 

of the following conditions IF.! s (i-2) or IFd = IF(i-2ll has come true for some 

appropriate i, then, by lemma 4.3 or by lemma 4.4, the above lemma is true. 

Alternatively, a non-faulty processor can decide on the default value by 

receiving a message containing the default value from another receiver pro­

cessor. Under permanent omission (also omission) fault assumptions, any 

response of a processor will be correct. Hence the other processor, while 

deciding on the default value, must have functioned like a non-faulty pro­

cessor, correctly making, and broadcasting, the decision on the default 

value. Hence the lemma. 

Theorem 4.1 

In any execution of the algorithm, every non-faulty receiver processor 

reaches agreement on the sender's value in the presence of m, mSf, distinct 

processors out of n processors suffering permanent omission faults, and stops 

the execution not later than To + min{(m +2)d +e, (f+l)d +e} according to its 

clock after transmitting a total of O(nm) messages, where To is the sender's 

clock time of the broadcast. 
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Proof 

Consider an execution of the algorithm. If the sender is non-faulty, 

every non-faulty receiver processor would receive the sender's message by 

To+d +e according to its clock, due to assumptions Al and A2. Hence the 

validity condition is realised. If the sender is faulty, it is impossible, by 

lemma 4.5, to have one non-faulty receiver processor deciding on V and 

another one deciding on the default value. Hence all non-faulty processors 

eventually decide either on V or on the default value. Thus the unanimity 

condition is met. 

Suppose that the sender is faulty and that all non-faulty receiver pro­

cessors decide on V. When a non-faulty receiver processor decides on V by 

receiving msg(V,i2:I), at least i distinct processors (including the sender) 

must have failed. Therefore, all non-faulty receiver processors decide on V 

before their clock time To + (m + l)d +e. 

Suppose that all non-faulty receiver processors decide on the default 

value. Consider a non-faulty receiver processor that has IFd :s; (i-2) at its 

clock time To + id+e, 3 :s; i :s; f. When i=3, the sender is faulty; if i>3, 

the processor must have had IF(i-ol > (i-I) - 2, at its clock time To + (i­

I)d+e; thus it stops the execution at its clock time To + id+e, i :s; IF(,-ol + 

2 :s; m + 2. Thus, when a non-faulty receiver processor has IFd :s; (i-2), it 

stops the execution not later than its clock time To+(m+2)d+e. If it ever has 

IFi-21 = !Pd, it will stop the execution earlier than the time it would have 

stopped the execution, if it were to stop only by having !Pd :s; (i-2). 

Consider a non-faulty receiver processor that decides by receiving a message 

containing the default value before its clock time To +id+e, i :s; f+l. If 

i2:4, the processor must have had IF(i-ui > (i-I) - 2 at its clock time To + (i­

I)d +e; thus, it decides before its clock time To + id +e, i :s; IF(i-ol + 2 :s; 

m + 2; if i:s; 3, then some receiver processor must have had F3 containing only 
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the sender and therefore the sender must be faulty. Thus, when a non­

faulty receiver processor receives a message containing the default value, it 

stops the execution not later than its clock time To + (m +2)d +e. 

When a non-faulty receiver processor decides on the default value at its 

clock time To + (f+l)d+e, it must have had IFrl>f-2. This implies that 

m > f-2, and the processor stops the execution at its clock time 

To + (f+l)d+e. Therefore, every non-faulty processor reaches agreement not 

later than its clock time To+min{(m+2)d+e, (f+l)d+e}. 

During an execution of the algorithm, a receiver processor is to broad­

cast either msg('?',i) or msg(V or default, i) to all other receiver processors at 

its clock reading To+id+e, i;:::l, until a decision for agreement is reached. 

By this way, it broadcasts at most (n -2)(min{m +2,f}) messages. Also, it has 

to reply at most i(n-2) messages of the form msg('X',i) before Ti, i;:::l, until 

it stops. Hence it broadcasts a total of O(nm) messages. Hence the theorem. 

In the following, we make two observations about the algorithm. The first 

one concerns early stopping conditions used and the second one illustrates 

that this algorithm will not work in the presence of omission faults. 

Observations 

1. Early stopping conditions. 

The above algorithm employs two early stopping rules: (i) IF" S (i-2) 

and, (ii) IFd = IF(i-2>1. Satisfying either condition leads to stopping the exe­

cution early. The first stopping rule verifies whether the size of F computed 

for every given i, i ;::: 3, is sufficiently small to decide on the default value. 

Therefore, during an execution, the smaller is the number of failed proces­

sors, the more quickly it is to be satisfied. 
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The second rule works by relating the size of F computed for a given 

value of i to that for (i-2), i ~ 3. Hence, satisfying the second rule in an exe­

cution would require the number of failed processors to remain constant 

over a period of time i.e. no functioning processor should be observed to 

have failed during a given period of time. Therefore, during an execution, 

the sooner the faulty processors fail, the more quickly the second rule 

remains to be satisfied. In other words, if all faulty processors fail before 

To + id +e, i > 0, according to a nonfaulty processor's clock, then the proces­

sor will stop the execution, by the second rule, not later than To+ (i+4)d+e, 

irrespective of the actual number of failed processors. To illustrate this, 

consider an execution with the following characteristics: exactly five proces­

sors (including the sender), named s, w, x, y, and z, fail; p is a non-faulty 

receiver processor and f> >6. 

Let the time be measured according to p's clock and Ti = To+id+e, 

i > O. In the execution, let s fail before To without broadcasting its value 

and the other four receiver processors fail before Tl. The processor p will 

now compute all the five faulty processors in F3, F4, and Fs respectively at 

T3, T4, and Ts. Hence, by the second rule, it stops the execution at Ts. If it 

were to stop by the first rule only, it should have stopped at T7. If some of 

the faulty receiver processors, say, y and z, fail after Tl and before T2, then, 

by the second rule, p will stop the execution not later than Ts with all the 

five faulty ones guaranteed to be computed in F4, Fs, and Fs respectively at 

T4, Ts, and Ts. 

Under permanent omission assumptions, a failed processor halts func­

tioning for ever. In practical systems, it may often be the case that some 

processors have failed before the execution and no processor fails during the 

execution of the algorithm. In such cases, when n > f> >4, the effect of the 

second stopping rule is more significant in bringing the execution to an 
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earlier stop (at Ts of respective non-faulty processor's clock), irrespective of 

the number of processors that have halted functioning before the execution 

started. 

2. The algorithm and omission faults. 

In an execution of the above algorithm, processors are not guaranteed 

to reach agreement in the presence of omission faults. 

Let us consider an execution in which q is another non-faulty processor 

in the context characterised in the previous observation. Let the five faulty 

processors, in this execution, fail before To, suffering omission faults and not 

reply to messages msg('?' ,i) of p and q at all. Let the sender's message be 

transmitted from s only to w, from w only to x, from x only to y, from yonly 

to Z, and from Z only to q. Let q receive the message before its clock is to 

read Ts. If p does not receive q's message before its clock reads T5, it will 

decide on the default value. So the agreement is not reached. 

4.4. Omission Fault Tolerant Algorithm 

It has been observed that the previous algorithm cannot be guaranteed 

to work in the presence of omission faults. A closer look into the early stop­

ping conditions employed in the previous algorithm will reveal that only the 

early stopping condition, !Fd = !Fu-zll, makes use of the permanent omission 

feature. The other one, IFd s (i-2), works by recognising the situation in 

which the number of processors that did not respond at some time Ti, i2! 1, 

during the execution, becomes so small and Ti is so late that no undecided 

processor will ever be able to receive a message from the failed ones. Thus, 

it can work in the presence of omission faults in processors. So the agree­

ment algorithm for the omission fault type can be derived from the previous 

algorithm by simply removing the early stopping condition IFi 1= IF(i-2ll· But 

for this, the omission fault tolerant algorithm is no different from the 



- 118 -

previous one; in the following, the part of the algorithm containing the only 

appropriate early· condition is presented: 
2a) 

2b) 

if (3 :5 i:5 f) then 
begin N; = {processors whose msg(,X',(i-l» in receive-buffer}; 

F,;= P-N; 

end; 

if ( IFd :5 (i-2» 
begin decide(default); 

broadcast(msg(default,i»; stop 
end 

if (i :5 2 and i :5 (f-2» then Ft = {s}; 

4.4.1. Correctness of the Algorithm 

Theorem 4.2 

In any execution of the algorithm, every non-faulty receiver processor 

reaches agreement on the sender's value in the presence of m, m :5f, distinct 

processors out of n processors suffering omission faults, and stops the execu­

tion not later than To + min{(m+2)d+e, (f+l)d+e} time according to its 

clock after transmitting a total of O(nm) messages, where To is the sender's 

clock time of the broadcast. 

Proof 

It has been observed that lemma 4.2 and lemma 4.4 are true under 

omission fault type as well. When "IF" :5 (i-2)" is the only early stopping 

condition in the algorithm, Lemma 4.5 will also be true for the omission 

fault tolerant algorithm. In the proof of theorem 4.1, only the early stop­

ping condition "1Ft! :5 (i-2)" is used to establish that a non-faulty receiver 

processor decides on the default value not later than its clock time To + 

min{(m+2)d+e, (f+l)d+e}. Thus, by theorem 4.1, the above theorem will be 

true. 
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In the following, we make two observations about the above algorithm. 

Observations 

3. Fastness of the algorithm. 

For the same m failures of respective types, the permanent omission 

fault tolerant algorithm will be either as fast as or faster than the above 

algorithm. 

Given the same m failures of respective types, the executions of both 

the algorithms are to stop as early as min{(m+2)d+e,(f+lld+e} after the 

start of the execution. The observation 1 illustrates that it is sometimes 

possible for the execution of the permanent omission fault tolerant algo­

rithm to be stopped, due to the condition IF.! = lFu-2>1 becoming true, earlier 

than it would have stopped, if it were to stop by the other condition. Thus, 

in some execution scenarios, the previous algorithm can be faster than the 

above one, for the same m failures of respective types. 

Remark: 

From the above observation, it can be noted that the permanent omis­

sion fault tolerant algorithm has been developed by making use of the spe­

cial features of permanent omission faults over omission faults. 

4. The algorithm and timing faults. 

The above algorithm is not tolerant of timing faults. 

The correctness of the above algorithm is based on the results of the 

lemma 4.4 in which it is stated that no processor can receive msg(v, j~O) 

when, or after, the clock of any non-faulty processor has read To + 

(j + l)d +e. Under the assumptions of timing faults, a faulty processor can be 

untimely in transmitting/relaying its messages. Therefore, the above state­

ment, hence the lemma 4.4, will no longer hold true under timing fault 
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assumptions for processors. 

4.5. Timing Fault Tolerant Algorithm 

Since a faulty processor can fail by sending untimely messages, the 

messages received during an execution of the algorithm should be checked 

for timeliness and only the timely messages should be accepted by proces­

sors. Unlike in previous algorithms, a receiver processor will decide on the 

default value to stop the execution early, only by having the early stopping 

condition becoming true and not by receiving a message containing default 

decision of another processor. Upon receiving a timely message with the 

default value, a processor will only conclude that the processor that sent the 

message has stopped the execution of the algorithm. The reasons for this 

are as follows: a faulty processor may not have its clock in bounded syn­

chronism as required by AI; therefore, during an execution, when a faulty 

receiver processor has its early stopping condition satisfied, a non-faulty 

receiver processor may be deciding on V. Due to this, any receiver processor 

should not decide on the default value just by receiving a message with the 

default value; however, it can conclude that the processor that has sent the 

message with the default value has stopped the execution. The algorithm 

is described below: 

The receiver processors, while executing the algorithm, exchange mes­

sages in synchronised phases that are of uniform length (d +e). With the 

sender processor broadcasting its message msg(V,O) at its clock time To, 

each receiver processor looks for a message, msg(V,i-L::O) or msg(default, i-

1>0) to be received between To+(i-l)(d+e)-e and To + i(d+e) according to 

its clock. On having received a msg(V,i-l), it decides on V at its clock time 

To+i(d +e) and stops after broadcasting msg(V, i) if i ::; f. If the processor is 

undecided at its clock time To + i(d +e), then, it continues to execute the 
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algorithm by broadcasting msg('X', i) when i = 1 or by carrying out the fol­

lowing steps when i > 1. 

81: if i=f+l, it decides on the default value and stops the execution; 

otherwise it executes 82 to 85. 

82: it puts those processors, if any, from which msg(default, i-I) has 

been received at clock time T, To + (i-l)(d+e)-e s T < To + i(d+e), into the 

set 8 which will contain the set of all processors that are known to have 

stopped the execution; 

83: it collects those processors whose msg('X', i-I) has been received at 

clock time T, To + (i-l)(d+e)-e s T < To + i(d+e), into the set N and com­

putes Ft, F. = P-N-8; 

84: if IF.! is less than i, then a default decision is made, a msg(default, i) 

is broadcast if i < f, and the execution is stopped; 

85: if IF.! is not less than i and if i <f, a message msg('X',i) is broadcast. 

In the following presentation of the algorithm, a non-faulty processor is 

assumed to be capable of establishing the time of reception for every mes­

sage that is in its receive-buffer. 
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sender: 
begin 

wait clock. get = To; 
broadcast(msg(V,O)) 

end. 

receiver-processor: 
i: integer; 
M: set-of-messages; S: set-of-processors; 

begin 
i:=I;S:={}; 

la) 

Ib) 
2a) 

2b) 
3a) 

3b) 

wait clock.get = To - e; 
flush receive-buffer; 
cycle 

wait clock. get = To + i(d +e); 
M: ={msg(v,(i-l» in receive-buffer and received at T, 

To+(i-l)(d+e)-e S T < To+i(d+e)}; 

if (msg(v = V,i-l) in M) then 
begin decide(V); 

if (i s f) then broadcast(msg(V,i»; stop 
end; 

if (2 sis f) then 
begin 

S: = S U {processors from which msg(default,(i-l» in M was received}; 
N: = {processors from which msg('X',(i-l» in M was received}; 
Fi:= P-N-S; 
if ClFd < i) then 

begin decide(default); 
if (i < f) then broadcast(msg(default,i»; stop 

end 
end; 

if (i = (f + 1) then 
begin decide(default); stop 
end; 

if (i < f) then broadcast(msg('X',i»; 
i:=i+ 1; 

endcycle 
end. 

Figure 4.2. The Timing Fault Tolerant Algorithm. 
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Explanation 

A receiver processor collects all timely messages in M at its clock time 

To + i(d+e), for i, 1 sis (f+l). In the first block of statements (1a to 1b), it 

attempts to decide on V and stop the execution. It executes the steps 82, 83, 

and 84 in the second block of statements. The processors whose messages 

containing the default value are in M, are added into, by "U" operator, the 

set 8 which is initially null. Thus the set 8 will contain all receiver proces­

sors that are known to have stopped the execution. 

If the receiver processor remains undecided until its clock time 

To+(f+l)(d+e), it decides on the default value and stops the execution in the 

third block of statements (step 81). A processor that could not decide at its 

clock time To + i(d +e), i s f, continues the execution by incrementing the 

value of i; it also broadcasts msg('X', i), if i < f. 

4.5.1. Correctness of the Algorithm 

In establishing the correctness of the algorithm, we let T, To + 

i(d+e), for i2:0. 

Theorem 4.3 

In any execution of the above algorithm, every non-faulty receiver pro­

cessor reaches agreement on the sender's value in the presence of m, m Sf, 

distinct processors out of n processors suffering timing faults, and stops the 

execution not later than To+(m+l)(d+e) according to its clock after 

transmitting a total of O(nm) messages, where To is the sender's clock time 

of the broadcast. 
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Proof 

Consider an execution of the above algorithm. When the sender is non­

faulty, all non-faulty receiver processors receive msg(V,O) from the sender 

and stop the execution at Tl after taking, and broadcasting, the decision on 

V. Hence, the validity condition is met. 

Suppose that the sender is faulty. The unanimity condition is shown to 

be met by showing that in any execution of tile algorithm, it is not possible 

for one non-faulty processor to decide on the default value and another one 

on V. Consider an execution in which p is a non-faulty processor that 

decides on the default value. When p decides at its clock time T({+l), no 

other non-faulty processor can decide, or could have decided, on V, as there 

can be at most f faulty processors. Suppose that p decides on the default 

value at its clock time Ti, i < (f + 1), by having IFd < i where Fi = peN -So Fi 

contains processors that have failed to send either a timely message to indi­

cate their having stopped the execution or a timely message msg('X',i-l) 

indicating their undecidedness. The processors in S that have stopped the 

execution by broadcasting msg(default, j::::i-l) could not have, and will not, 

broadcast a message containing V. Faulty processors, under timing fault 

assumptions, do not fail by producing messages of incorrect information and 

will execute the algorithm correctly in value aspects. Therefore, any faulty 

processor in N must be undecided at the time of sending its msg('X', (i-I)) 

and will not accept any message msg(V, j <i-I) from that time onwards. As 

IFd is less than i, a processor in Fi cannot broadcast msg(V, j ~ i-I) and can, if 

at all, broadcast messages msg(V, j) only for j <i-l which will be ignored by 

processors in N. Therefore, no non-faulty processor in N can decide on V. 

The set S cannot contain any non-faulty processor that had decided on V, 
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otherwise p would not be computing Fi at its clock time T,. Thus, no non­

faulty processor could have decided, and can decide, on V, when p decides on 

the default value. 

Suppose that all non-faulty processors decide on V in an execution. 

When a non-faulty processor decides by accepting msg(V,i > 0), there must 

be at least i faulty processors and therefore it decides at or before its clock 

time T(rn+l). Suppose that a non-faulty processor decides in an execution on 

the default value at its clock time Ti, 2Sis(f+1). If i=2, the sender must 

have failed. If i is greater than 2, it must have had IF(i-d ~ (i-I) at its clock 

time Ti-l; otherwise it would have stopped the execution at T(i-ll itself. This 

means that i S (m +1). Thus, all non-faulty receiver processors reach agree­

ment no later than their clock time T(m+ll. 

It can be seen that a non-faulty receiver processor, during any execu­

tion, has to broadcast, until it stops, msg('X',lsi<f} or msg(v=default, 

2si<f) or msg(v=V, Isisf) to all other receiver processors at its clock time 

Ti, for every i, i>O. Hence the number of messages broadcast will be no 

more than (n - 2)(m + 1). Thus the theorem is proved. 

Observation 

For the same m, m >3, failures of respective types, the permanent omis­

sion fault tolerant, and omission fault tolerant, algorithms are faster than 

the above algorithm. 

Any execution of the above algorithm will be stopped as early as 

To+(m+1)(d+e) according to a non-faulty processor's clock. Whereas the 

execution of the previous two algorithms can be expected to stop by To + 
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min{(m +2)d +e,(f+ l)d +e}. Dolev and Halpern [Dolev841 established that e 

would be at least as large as d/2. Assuming that e =d/2, the first two algo­

rithms can be seen to be faster than the third one, when m > 3. 

Remark 

The design of early stopping algorithms presented in [Lamp084, 

Hadzi841 is not effectively influenced by the no-untimely-response nature of 

permanent omission and omission failures. As a result, the permanent 

omission fault tolerant, and omission fault tolerant algorithms presented 

there turn out to be as slow as the timing fault tolerant algorithm presented 

here. 

4.6. Consistently Late Timing Fault Tolerant Algorithm 

This algorithm is developed by considering faulty processors to be over­

loaded processors which fail in consistently late timing manner. The 

assumptions A1 and A2 are modified to a1 and a2 respectively. 

4.6.1. Assumptions 

Assumption al,' 

At any given instant of real time, the observable difference between 

the clock readings of any two processors will be at most e. 

Assumption a1 requires the following: overloaded processors have non­

faulty clocks; and, the periodic execution of clock synchronisation algorithm 

in processors be carried out at a sufficiently low level using high priority 

messages so that the higher level processing loads have little impact on the 
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In A2, only non-faulty processors are assumed to be reliably connected. 

Here, we assume all processors are reliably connected by the communication 

network. The message communication delay between two non-faulty proces­

sors is assumed, as in A2, to be bounded by d: 

If, at time T, an event occurs in a non-faulty processor p and causes a 

message to be formed and broadcast, then a non-faulty processor q will 

receive it at time Tr, T :::; Tr < T + d - where time is measured according to 

any processor's clock. 

The message communication delay includes the skew interval (specified 

for replicated responses in section 2.3) and the bound d can be measured 

according to any processor's clock due to al. 

4.6.2. Development of the Algorithm 

The algorithm is developed by exploiting the fact that an overloaded 

processor's late timing failures are consistent and therefore the processor's 

broadcast messages will be skewed within the specified interval. Suppose 

that the sender suffers a late timing failure in broadcasting a message at its 

clock time To and that a non-faulty receiver processor, say, p receives the 

message at its clock time Tp. Since the sender's failure is consistent, any 

other receiver processor, say, q can potentially receive the sender's message 

at p's clock time T, such that ITp - TI < d. If q is non-faulty, it will receive 

the message at T; if it is overloaded, it may suffer an unduly long delay in 

receiving the message, thus T represents the earliest time q could ever 
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receive the message. 

Assuming, for a moment, that e = 0, we will refer to the diagram below. 

The three shaded bands represent three of many possible time intervals in 

which messages from an overloaded sender can be potentially received by 

receiver processors. They are of length at most d. The left window [To, To + 

d) is referred to as the acceptable time window during which the sender's 

message should be received to be regarded as timely. The interval [To, 

To + 2d) will be called the two-window time interval. 

left right 

I ////1//// 

I 
////11211 

11///3/// 

I 

I 
I 
I 

-----x--------x----------x------------ > time 

To To+d To+2d 

Referring to the above diagram, the following two properties can be 

stated: 

Property prj: 

If a non-faulty processor does not receive the sender's message during 

the two-window time interval, then no other processor will receive it during 

the acceptable time window. 

The first shaded interval (numbered 1 in the diagram) represents, and 

the second shaded interval can represent, a scenario where a non-faulty 

receiver processor does not receive the sender's message within the two-
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window time interval. 

Property pr2: 

If a non-faulty receiver processor receives the sender's message during 

the two-window time interval, [To, To+ 2d), then some receiver processor 

may well have received it during the acceptable time window. 

In the diagram, the third shaded interval represents, and the second 

shaded interval can represent, a scenario where a non-faulty receiver pro­

cessor receives the sender's message during the two-window time interval. 

When processors receive the message during the second shaded interval, no 

processor will have received the message during the acceptable time win­

dow. 

Accounting for non-zero e, the acceptable time window and the two­

window time interval in prl and pr2 can be redefined according to any 

processor's clock as [To - e,To + (d +e)) and [To - e,To + 2(d +e)) respectively. 

An execution of the algorithm presented here proceeds in rounds of 

message exchange between processors and at most f + 1 such rounds can take 

place. The sender's message initiates the first round. Any receiver processor 

that received the sender's message during the acceptable time window will 

relay the message at its clock time To+(d +e) and the relayed message will 

initiate the second round. For the message of the second round, properties 

prj and pr2 will be valid, with acceptable time window and two-window 

time interval defined by replacing To by To+(d +e). In general, if a receiver 

processor receives a timely message during the ith round, 1 s i Sf, and ini­

tiates the (i + l)th round at its clock time To + i(d +e), its message will 

satisfy the two properties, for all i < f, when acceptable time window and 

two-window time interval are defined respectively as [To + i(d +e) - e, 
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To+(i+1)(d+e» and [To+i(d+e)-e, To + (i+2)(d+e». Based on this, the 

algorithm is developed here to ensure that, in the presence of at most f dis­

tinct processor failures, all non-faulty receiver processors 

(i) decide on the default value, when all or some of them do not receive the 

sender's message during the two-window time interval; and 

(ii) decide either on the sender's value or on the default value, when all of 

them receive the sender's message during the two-window time interval. 

In (i), by prl, no receiver processor can receive a timely message from 

the sender and therefore every non-faulty receiver processor's decision has 

to be on the default value. In (ii), if, as implied by pr2, there is a receiver 

processor that has received the sender's message during the acceptable time 

window, then that receiver processor will be considered to play the role of 

the sender in the second round; thus, an execution of the algorithm can 

unfold until at most (f + 1) rounds are carried out. At the end of each round, 

attempts will be made by receiver processors, using property prJ, to decide 

on the default value: a processor's clock time reaching To + i(d+e), 2 sis 

f, marks the end of the acceptable time window for the ith round and the 

end of the two-window time interval for the (i-1)th round; a processor 

decides on the default value at its clock time Ti, if it has received neither an 

ith round message nor an (i-1)th round message. 

4.6.3. The Algorithm 

The sender processor broadcasts its message, msg(V,i=O), at its clock 

time To. The algorithm to be executed by a receiver processor can be under­

stood in three parts. In the first part, if a receiver processor receives 

msg(V,O) at its clock time T, To - esT < To + (d +e), it accepts the 
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message, decides on V, and stops after broadcasting msg(V,i = 1). If it does 

not receive msg(V,O) until its clock time To + (d +e), it continues to execute 

the algorithm. The second part of the algorithm describes the activities of 

such an undecided receiver processor from clock time To + (d +e) upto 

To + f(d +e). 

For all i, 2 :s i s (, an undecided receiver processor waits for either 

msg(V,i-1) (a timely message in the ith round) or msg(V,i-2) (a late broad­

cast which could have been timely for other processors in the (i-1)th round) 

to be received until its clock reads To + i(d +e). If rnsg(V,i-1) is received 

before To + i(d +e), then the processor decides on V and stops the execution 

after broadcasting msg(V,i). If it has not received any msg(V,i-1) until its 

clock time To + i(d +e), it can decide either to continue or to stop the execu­

tion: if it has ever received msg(V,i-2) at any time T, To + (i­

l)(d +e) s T < To + i(d +e), then it continues the execution; otherwise, it 

decides on the default value and stops the execution. 

When a receiver processor remains undecided by its clock time 

To + f(d+e), it executes the third part of the algorithm: if it receives 

msg(V,f) at clock time T, T < To + (f+l)(d+e), it decides on V and stops the 

execution; else it decides on the default value and stops the execution. 

The three parts of the algorithm executed by a receiver processor are 

effectively combined and presented in figure 4.3. 



sender: 
begin 

wait clock. get = To; 
broadcast(m s g( V, 0) ) 

end. 

receiver-processor: 
i: integer; 

begin 
i:= 1; 
wait clock.get = To - e; 
flush receive-buffer; 

cycle 
wait clock.get = To + i(d +e); 
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if (msg(V,i-1) in receive-buffer) then 
begin decide(V); 

if (i :5 f) then broadcast(msg(V,i)); 
stop 

end; 

if (2 :5 i :5 f) then 
if (msg(V,i-2) not in receive-buffer) then 

begin decide(default); stop 
end; 

if (i = f + 1) then 
begin decide(default); stop 
end; 

i:= i+l 
endcycle 

end. 

Figure 4.3. The Consistently Late Timing Fault Tolerant Algorithm. 

4.6.4. Correctness of the Algorithm 

Lemma 4.6 

In any execution of the algorithm, if the sender fails during its broad­

cast, then it is not possible for one non-faulty processor to decide on the 

default value and another non-faulty processor to decide on V. 
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Proof 

Throughout this proof, the clock time To+i(d +e) will be denoted as Ti, 

for 0 sis(f+l). Let p and q be any two non-faulty receiver processors in an 

execution of the algorithm in which the sender is overloaded. Let p decide 

on the default value at its clock time T, and i=(f+l). Since there can be at 

most f overloaded processors, q could not have decided on V during the exe­

cution by accepting a msg(V,isf). 

Suppose that p decides on the default value at Ti, 2 5 i 5 f. The 

lemma is shown to be correct by showing that it is not possible for q to 

decide on V during the execution. Processor p decides on the default value, 

if it does not receive either msg(V,i-2) or msg(V,i-l) at any time T < Ti for 

i, 2 5 i 5 f. Since p did not receive msg(V,i-l) until its clock time Ti, q 

could not have decided on V by its clock time Ti-l. The fact that p did not 

receive msg(V, i-2) until its clock time Ti implies that no processor could 

have received msg(V,i-2) before its clock time Ti-l. (This implication was 

stated as property prl). Assume, to the contrary, that a receiver processor, 

say, r, r ~ p, receives msg(V,i-2) at its clock time T, T < Ti-L. Since over­

loaded processors' timing failures are consistent, p must receive msg(V,i-2) 

before T + d according to r's clock. By aI, p should receive msg(V,i.2) before 

its clock time T+d+e, T+d+e < Ti. But P did not. Therefore, no receiver 

processor that was undecided at its clock time Ti-2 would receive a timely 

msg(V,i-2). Any overloaded processor that receives msg(V,i-2) after its clock 

time Ti-l will identify the message to be late, due to aI, and will subse­

quently ignore the message. Thus, no receiver processor that was undecided 

at its clock time Ti-2 will accept a msg(V,i-2) and therefore a message 

msg(V, j >i-2) will not be broadcast during the execution. So, if q is 
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undecided at its clock time Ti-2, it cannot decide on V later in the execution. 

Thus, it is not possible for q to decide, or to have decided, on V during the 

execution, when p decides on the default value at its clock time Ti, 2 :s; i :s; 

(f + 1). Hence the lemma. 

Theorem 4.4 

In any execution of the algorithm, every non-faulty receiver processor 

reaches agreement on the sender's value in the presence of m, m :S;f, 

distinct processors out of n processors suffering consistently late timing 

failures, and stops the execution by no later than 

To + min{(m + 2),(f + l)}<d +e) according to its clock after carrying out no 

more than one message broadcast, where To is the sender's clock time of 

the broadcast. 

Proof 

Consider an execution of the algorithm. If the sender is non-faulty, all 

non-faulty receiver processors receive the sender's message before clock time 

To + (d +e), due to assumptions a1 and a2. According to the algorithm, all of 

them decide on V and stop the execution after broadcasting a message to 

every other receiver processor. 

If the sender is overloaded, it is impossible, by lemma 4.6, to have one 

non-faulty receiver processor to decide on V and another one to decide on 

the default value. Hence all non-faulty processors eventually decide either 

on V or on the default value and thus reach agreement. 
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Suppose that all non-faulty processors decide on V. When a non-faulty 

processor decides on V by accepting a timely message msg(V,i::d), there 

must be at least i overloaded processors that have failed during the execu­

tion. Therefore, it decides on V no later than its clock time To + (m +l)(d +e). 

Suppose that all non-faulty processors decide on the default value in an 

execution. Let p be any non-faulty processor that decides at its clock time 

To + i(d+e), 2 s; i s; (f+l). When i=2, the sender must have failed. When 2 

< i s; (f+l), it must have received a late msg(V,i-3) before its clock time To 

+ (i-1)(d +e) (otherwise, it would have stopped the execution at its clock 

time To + (i-1)(d+e». A receiver processor broadcasts a message containing 

V only after receiving a message with V from another processor; it stops the 

execution after broadcasting a message with V. Therefore, (i-2) distinct pro­

cessors (including the sender) must have failed during the execution, for p to 

have received a late msg(V,i-3). Thus, p decides on the default value no 

later than its clock time To + min{(m+2)(d+e),(f+l)(d+e)}. 

When a non-faulty processor decides on V by accepting a message, 

msg(V,Os;i<f), it stops the execution after broadcasting a message contain­

ing V; when it decides on the default value, it simply stops the execution. 

Thus every non-faulty processor carries out no more than one message 

broadcast during an execution. Hence the theorem. 

Remark 

The total number of messages sent by processors in an execution of the 

algorithm is zero if the sender does not broadcast, and at most n(n -2) other­

wise; it is the smallest compared with the other three algorithms. Due to 
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this low number of messages exchanged, the message traffic in the network 

may be light resulting in a smaller value of d - the bound on message com­

munication delay between two non-faulty processors. If d is sufficiently 

small, for a given set of processors failing in an execution, the consistently 

late timing fault tolerant algorithm may turn out to be faster than the tim­

ing fault tolerant algorithm. When Byzantine faults were considered in 

[Dolev82al, O(m(t6 +nf2)+nf2) was the message complexity of the algorithm. 

4.7. Concluding Remarks 

Early stopping algorithms for reaching agreement in the presence of 

permanent omission, omission, timing, and consistently late timing faults 

have been presented. In the consistently late timing fault model, faulty pro­

cessors were considered to fail only due to processing loads and were 

assumed to have their clocks in bounded synchronism with non-faulty pro­

cessor clocks. We observed that the algorithm tolerant of permanent omis­

sion faults can sometimes be faster than the omission fault tolerant algo­

rithm, for the same number of failures of respective types. Since a per­

manent omission faulty processor fails by halting for ever, the earlier all 

faulty processors fail, the earlier the execution of the algorithm tends to 

stop. With omission fault assumptions, a processor, once failed, can later 

produce correct responses. So, stopping the execution of the omission fault 

tolerant algorithm gets delayed in direct proportion to the number of pro­

cessors that failed. We also observed that the omission fault tolerant algo­

rithm is faster than the algorithms tolerant of consistently late timing, and 

timing faults due to a timing faulty processor's failure of producing 

untimely responses. When failures are consistent, receiver processors need 
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to carry out no more than one message broadcast to reach agreement. The 

early stopping capabilities and message requirements of these algorithms 

reveal the fact that each algorithm has been designed by exploiting the dis­

tinct features that characterise the respective type of faults to be tolerated. 

This has been made possible by the fault classification developed in chapter 

2. We believe that the algorithms presented here make a significant contri­

bution to the area of early stopping algorithms for reaching agreement in 

distributed systems. 
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CHAPTER 5 

PERFORMANCE EVALUATION 

5.1. Introduction 

The agreement algorithms presented in the previous two chapters have 

been designed with one processor in a distributed system being designated 

as the sender. Extending these algorithms into agreement protocols where 

every processor in the system can be a sender is a straightforward task. 

Agreement protocols can provide a fundamental service in systems with 

replicated processing. In this chapter we consider the problem of evaluating 

the performance of systems with replicated processing and majority voting. 

Performance evaluation of such systems taking into account of failure pro­

babilities, failure modes, overheads of agreement and order protocols, etc., is 

a challenging task. We present some initial steps in this direction by consid­

ering a special case - that of a pipeline system. This architecture consider­

ably simplifies the development of analytical models. We believe our tech­

niques can be extended to more general architectures. 

Replicated processing with majority voting - N modular redundant 

(NMR) processing - provides a powerful means of constructing highly reli­

able computing systems. A given computational task will be carried out con­

currently in N, N ~ 3, processing modules which fail independently of each 

other. The results produced by these modules will be subject to a majority 

vote to obtain the final result. A majority vote is possible and the final 
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result obtained will be correct, if at least majority of the processing modules 

are functioning correctly and if correctly functioning modules produce ident­

ical results. NMR processing is of particular relevance to real time systems 

requiring a very high degree of reliability for two reasons: (i) the capability 

of masking the effects of failures of processing modules by majority voting 

means that there need not be a sudden degradation in response times due to 

failures; and (ii) majority voters are capable of tolerating arbitrary 

behaviour of failed modules. 

A common form of NMR processing in practical systems is triple modu­

lar redundant processing (TMR processing) where three processors will be 

used to process the computational tasks concurrently. In this chapter we 

consider a distributed replicated system that is made up of a collection of 

TMR processing nodes connected in tandem. We present an analytical and 

simulation study of the performance of such a pipeline TMR system. In par­

ticular we examine the influence of majority voting times and processor 

failure rates on the response times of jobs processed by nodes in the system. 

No performance evaluations of distributed replicated systems have been 

reported in the literature, although single node systems have been 

evaluated [York83, Pitte89]. In [York83], the authors evaluate the impact 

of voting on throughput, both analytically and experimentally. In [Pitte89]' 

a TMR database system has been evaluated experimentally to examine its 

throughput. An algorithm is presented in [Abrah74] to evaluate the reliabil­

ity of a distributed system of TMR nodes connected in any arbitrary 

manner. An empirical study of the performance of such a system will be the 

topic of our future work and the work presented here for a pipeline TMR 

system will, we hope, serve as a step towards that. 
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The type of system we are studying here is of practical interest. Special 

purpose multiple processor fault tolerant architectures with processors con­

nected in the form of pipelines, rings, two and multidimensional arrays are 

finding widespread applications in avionics, image processing and process 

control fields (e.g. [Theur86, Harpe88, Iacop89, NapoI89]). Thus there is 

every reason to evaluate the performance of such systems, examining in 

particular the impact of critical system parameters on the response times of 

jobs. 

The chapter is organised as follows. Some interesting features of repli­

cated processing systems are discussed in general terms in section 5.2. The 

factors which influence performance are mentioned there. The particular 

pipeline models that are considered for the purpose of performance evalua­

tion are described in section 5.3. Two evaluation methods are employed: 

analytical approximations and computer simulations. The analysis, which 

is quite simple but nevertheless effective, is presented in section 5.4. Section 

5.5 reports on a number of experiments where the models are simulated for 

different values of the parameters and the simulation results are compared 

to the analytical approximations. The latter are shown to be capable of 

predicting performance with sufficient degree of accuracy. Conclusions from 

this work are drawn in section 5.6. 

5.2. Distributed Replicated Processing Systems 

We start by considering a pipeline distributed processing system 

without replication. We assume that such a simplex system consists of a 

number of processors connected by a communication subsystem. Each pro­

cessor is capable of performing one or more system functions (for example, 

in an avionics system, such functions could be sensor related processing, 
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flight path related processing and so forth). The environment of the system 

consists of a set of initiators (the entities that demand services from the sys­

tem at arbitrary times). A service request from an initiator gives rise to a 

job which requires processing at the processors in sequence; at any time 

there could be several such requests being processed by the system. Suppose 

that a job requires processing at processors P l , P 2, .•• ,PN , in that order, 

before it completes. Then the end-to-end delay for that job - its sojourn time 

in the system - is composed of waiting and service at Plo followed by a 

transmission delay from P l to P 2 , etc., until service is completed at PN • A 

message passed from Pi to Pi+lo containing the relevant state information 

necessary for processing a job at Pi+lo will be termed a 'task message'. 

The replicated version of the above system is assumed to work as fol­

lows. Each system function will be performed by an ensemble of 3 proces­

sors. This ensemble of processors will become a triple modular redundant 

node, or TMR node for short. If at least two processors of a TMR node are 

functioning correctly and are producing identical results, then their results 

would constitute a majority. Subsequently, at most one processor failure 

can be tolerated within a node. 

Consider now the processing of a job in a replicated system where the 

nodes 1 to N are visited in that order. Each of the 3 processors in the first 

node receives a separate version of the job and works on it independently of 

the others. Those versions will be referred to as 'siblings'. When a sibling is 

completed by a processor, 3 copies of the resulting task message are sent to 

node 2. Thus, each processor in node i, Ci > 1), receives 3 messages from node 

i -1. These messages are majority voted by the voter process of the proces­

sor; if a majority can be formed, then the voted sibling is processed and 3 

copies of the task message are sent to node i + 1 (except in the case of the 
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last node, where a single task message is sent by each processor to a final 

voter). The structure of each processor within a node is shown in figure 5.1. 

voter process 

r--__ se.r~vi,e P'0=-f 
message pool voted msg pool 

Figure 5.1. Voting andjob processing at a processor ofa TMR node. 

Both the voter process and the service process of the processor maintain 

pools of buffers for storing incoming messages. The voter process performs 

voting as soon as it can form a majority on a given set of messages received 

from a sending node. The voted messages are stored in the voted message 

pool. The service process picks up a voted message from the pool and 

processes the request associated with it; if further processing at a subse­

quent node is required, then 3 copies of the task message are sent on, as 

stated earlier. 

In general, it should be assumed that processors maintain states which 

affect the execution of jobs, and that the execution of a job by a processor 

can modify its state. Job processing is assumed to be deterministic, in the 

following sense: if processes of non-faulty processors have identical states 

and then process copies of a task message, then the final states of the 

processes will be identical. Assuming that service processes of all non­

faulty processors of a node have identical initial states before any job 
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processing begins, we require that all these processes process voted mes­

sages In an identical order. This sequencing requirement is necessary in 

order to ensure that non-faulty processors of a node produce identical 

results. It is relatively easy to meet in specialised pipelined systems. How­

ever, when more general replicated systems are considered, some form of 

protocol is required to meet this requirement. For example, the processors of 

a node could execute an agreement protocol for selecting messages from the 

voted message pool in an identical order. Such agreement protocols can be 

easily developed from the agreement algorithms presented in chapter 3. 

From the above discussion, we can identify a number of factors which 

may have an impact on the sojourn time of a job within a replicated system: 

(i) Voting times: Voting consumes processing resources. If the time taken 

to reach a majority decision is relatively large compared to the actual 

processing time, then the sojourn time for a task is likely to be substan­

tially larger than the corresponding time for the simplex system. 

(ii) Processor failure rates: In a simplex system, a processor failure cannot 

be masked (the affected job will not complete). Whilst a replicated sys­

tem can tolerate a bounded number of failures, such failures can affect 

sojourn times. Consider, for example, the progress of a job through two 

consecutive nodes, i and i +1. Moreover, suppose that the loads on the 

processors in these nodes are not identical (e.g., in addition to replicated 

processing, each processor in node i may have other, unreplicated pro­

cessing functions to perform). Thus, the delay times of the job's siblings 

in node i may well be different. As a consequence, the task messages 

associated with those siblings arrive at a given voter in node i+l at 

different times (these differences may be exacerbated by variations in 

message transmission delays). If there are no failures in node i, a voter 
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in node i + 1 can form a majority as soon as 2 copies of the task message 

arrive. On the other hand, processor failures in node i can delay a voter 

in node i + 1 by obliging it to wait for the slowest processor of node i to 

respond. Thus, even if failures are masked, this can be at the expense of 

increases in sojourn times. 

(iii) Extra message traffic: A replicated system can generate more messages 

than its unreplicated counterpart. The impact of this increase will 

depend upon the network bandwidth, topology and architecture. For 

example, if nodes are connected by 3-redundant busses, a processor need 

only send a single task message on each of the 3 busses - thus a given 

bus will experience the same message traffic as in the simplex system, 

so the extra message traffic will have little impact on the sojourn time 

in this particular case. 

(iv) Sequencing overheads: As stated earlier, processors of a node must be 

kept in step to prevent sequence failures. If a sequencing protocol is 

required, it can consume both processing and communication resources, 

thereby contributing to the sojourn time of tasks. 

In this chapter we investigate the impact of first two factors on average 

sojourn time of a successfully completed job (also referred to as the system 

response time). 

We shall assume that there is enough communication bandwidth avail­

able, so that factor three is of little significance. By making the following 

assumptions, the impact of factor four on system performance will also be 

removed: the system will be assumed to receive service requests from only 

one initiator; the initiator will be assumed to be reliable and its service 

requests will be assumed to arrive at the processors of the first TMR node in 
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zero time. Moreover, the task messages will be assumed to arrive at a desti­

nation node in the order in which they are sent by the source processor. 

These assumptions, together with the fact that we will assume our distri­

buted processing system to be a pipeline, with a unique route followed by all 

jobs, implies that there is no need for special sequencing protocols. 

In practical applications, the system can receive service requests from 

several replicated initiators. Under these circumstances, processors of the 

first TMR node can execute protocols to agree on, and order the requests. 

Execution of these protocols will provide an abstraction of a single "logical" 

initiator that delivers identical requests in an identical order to the non­

faulty processors of the first node. 

With assumptions to eliminate the need for the use of sequencing proto­

cols, the message pools in figure 5.1 will be treated as FIFO queues. The 

voters will be assumed to have mechanisms to identify the siblings of a job, 

so that the siblings can be matched for voting. 

5.3. Model Definition 

We study pipeline systems consisting of N nodes, 1,2, ... , N. These 

nodes are visited by every job, in the order in which they are numbered. In 

the case of a simplex, unreplicated system, each node contains a single pro­

cessor and an unbounded queue where jobs wait in order of arrival. In the 

replicated case, all nodes have degree of replication 3. The structure of a 

TMR node is illustrated in figure 5.2. 
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Figure 5.2. Model of a TMR node. 
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The voting and computational functions of each replicate are separated 

and are carried out by two independent servers. The latter are referred to as 

the 'voter' and 'service processor', respectively. There is an unbounded queue 

for each voter and each service processor. A voter queue in node i (i > 1), 

receives job siblings (or, rather, task messages corresponding to job siblings) 

from each service processor in node i -1. As soon as 2 siblings of a job are 

present in the queue, the voter may attempt to vote on them. If that vote 

results in an agreement, then the job is passed on to the service queue; oth­

erwise, the third sibling is awaited and the procedure is repeated. If, after 

all 3 siblings are present, there is still no agreement, then the job is 

effectively discarded. 

Each service processor services the jobs in its queue in FIFO order. 

After a service completion, the processor sends 3 siblings (task messages) to 
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the 3 voter queues in node i + 1. If the processor is non-faulty, those siblings 

will agree with others produced by non-faulty processors in node i; other­

wise they will not. 

There are two exceptions to the model in figure 5.2, namely nodes 1 and 

N. In node 1, there are no voters and voter queues; jobs coming into the sys­

tem from the outside are replicated on arrival into 3 siblings which immedi­

ately join the 3 service queues there. On the other hand, the service proces­

sors in node N produce a single result after each service completion (rather 

than 3). There is a single final voter, with its queue, which arbitrates over 

the output of node N. 

Jobs arrive into the system in a Poisson stream with rate a. Service 

times at the voters and service processors in node i are exponentially distri­

buted with means lIUi (Ui is the average voting rate) and lis, (Si is the aver­

age service rate), respectively (the Poisson and exponential assumptions are 

of course not necessary when the system is simulated, but are needed for the 

analysis). The average transit time between nodes i and i + 1 (for i <N) is 

lit,; it is independent of how many messages are being transferred in paral­

lel. The distributions of the transit times are immaterial (but see the simpli­

fying approximations in section 5.4). The transit times of service requests 

from the initiator to the processors of the first node, and of messages from 

the processors of the Nth node to the final majority voter are taken to be 

zero. 

Fault assumptions. 

The system reliability assumptions are as follows. Communication sub­

system, the initiator, and the final majority voter are fault free; faults occur 

only in processors (where the term 'processor' is interpreted in the sense of 
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figure 5.1). Permanent and consistent value faults are the types of faults 

suffered by processors. The fault assumption on processors can be justified 

as follows: if processors are connected by (triplicated) busses, then processor 

failures can be consistent (see section 2.4). Since processors are assumed to 

maintain states, once a processor fails, its state gets corrupted, and the pro­

bability of the processor with corrupted state producing correct results is 

assumed to be negligibly small. 

Faults occur in different processors - whether in the same node or in 

different ones - independently of each other. The intervals of non-faulty 

operation of processors in node i, called 'up-times', are exponentially distri­

buted with mean l/ui (Ui represents the average processor failure rate). 

With respect to repairing faulty processors, two types of systems will be 

examined: 

(i) Having once failed, a processor remains so until the end of the observa­

tion period. 

(ii) A failed processor in node i is repaired, or is replaced by a new non­

faulty one, after a delay, called 'down-time', whose average length is 

lId i • 

The models resulting from these two assumptions correspond to systems 

without repair and systems with repair (cf. [Carte71, Avizi71]); they will be 

referred to as 'model 0' and 'model 1', respectively. In both the cases, it 

should be emphasised, the behaviour of a faulty processor differs from that 

of a non-faulty one only in that the former produces either no or con­

sistently incorrect results. 

One immediate consequence of the above assumptions is that the condi­

tion for stability, i.e. for the existence of a steady-state, does not involve the 
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up-time and down-time parameters. The transit parameters are not involved 

either, because there is no queueing for transmissions. Thus, the system is 

stable if 

a < Vi and a < Si, i = 1,2, ... , N. 

These conditions are assumed to hold. 

The performance measures in which we are interested are: (a) The aver­

age sojourn time, W (interval between arrival into and departure from the 

system), for jobs that are completed successfully; and, (b) the distribution of 

the system operative state. The latter has a different interpretation in 

models 0 and 1, which will be clarified in section 5.4. 

5.4. Analytical Approximations 

To represent completely the state of a system employing N-modular 

redundancy, one would have to specify not only the numbers of jobs in each 

service and voting queues, and in transit between nodes, but also the indivi­

dual identities of the jobs in all waiting, service and transit positions. This 

is necessary in order to keep track of the siblings of any given job, so as to 

account for matching delays at the voters. A representation of this type is of 

course possible. Given a suitable set of assumptions, it would lead to a 

vector-valued Markov process which could, in principle, be solved numeri­

cally. However, the size and complexity of the problem are such that, in 

practice, an exact solution is generally unattainable. The equations do not 

exhibit any 'nice' structure, such as local balance, that can be exploited in 

solving them. Simulations, on the other hand, while perfectly feasible, may 

be very expensive in both computer utilisation and elapsed time. 
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It is desirable, therefore, to devise an approximate solution method 

whereby estimates of performance measures can be obtained cheaply and 

quickly, albeit with some loss of accuracy. This is our objective in the 

present section. Certain simplifying steps are taken in the approximation. 

The first of these is to assume that all siblings of a job arrive at the service 

queues in a node at the same time. This is of course true in node 1, but not 

necessarily in subsequent nodes. However, since the voters act as synchroni­

sation points for siblings, and since voting times and transit times between 

nodes are usually small compared to the service times, the assumption is 

not unreasonable. In fact, we shall see that even when voting and transit 

times are not small, the accuracy of the approximation is acceptable. 

The second simplifying step concerns the distribution of the interval 

between the arrival of a sibling at a service queue, and its arrival at the fol­

lowing voter. That interval, which includes waiting, service and transit 

(excepting the latter in the case of node N), will be referred to as the 'pas­

sage time' for the given node. Now, it is well known (e.g., see [Mitra87]) 

that if jobs arrive into a single-server queue in a Poisson stream with rate 

a, and have exponentially distributed service times with mean 1/5, then in 

the steady-state their response times are exponentially distributed with 

mean 11(8 -a). We shall assume that the addition of the subsequent transit 

time does not destroy that exponentiality (which it does, in general). The 

passage times for node i will be treated as exponentially distributed random 

variables with mean 

1 1 
Pi = -- + -, 

S,-a tj 
(5.4.1) 

where 8j is the service rate at node i, a is the (common) job arrival rate and 

Uti is the average transit time from node i to node i + 1. Note that 1ltN = 0 by 
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definition. 

Assuming that at least 2 of the processors in a node are operating 

correctly, the following voter will be able to carry out a successful voting on 

a job when the first 2 of the job's correctly executed siblings complete their 

passage times through the node. To estimate the average time until the 

occurrence of that event, we shall use the following known result: 

Let Xl! X 2, ••. , Xn be a sample of n i.i.d. (independent and identically 

distributed) random variables distributed exponentially with parameter j.L. 

Consider the order statistics of that sample, Y 1> Y 2, ... , Y n' In other words, 

Y 1 is the smallest of the X's, Y 2 is the second smallest, etc. Then the expec­

tation of Y/e is given by E(Yk ) = (lIj.L)Hn ,k, where 

k -1 1 
Hn,k = l: --. ,k=l, 2, ... , n. 

)=0 n - J 
(5.4.2) 

Suppose that node i has c operative processors (c=2,3). Denote by Wi(cl 

the average associated delay time, i.e. the average period between the 

arrival of a job's siblings at the service queues of node i and their arrival at 

the service queues of node i + 1 (or the departure of the job from the system 

if i =N). Since the delay time consists of the second smallest passage time of 

the job's correctly executed siblings, plus the subsequent queueing and vot­

ing time, we can use the approximation 

1 
w,(c) = P,Hc2 + ---, 

, Vi+1- a 
(5.4.3) 

where Pi and H
C

•2 are given by (5.4.1) and (5.4.2) respectively, and Vi+l is the 

service rate of the voters in node i + 1 (or of the final voter, if i =N). 

Note that in the case of a TMR node with all three processors operating 

correctly, we have H 3.2= 5/6, so that the first term in (5.4.3) is actually 
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smaller than the corresponding average passage time in an unreplicated 

system. If voting times are small compared to service and/or transit times , 

then the TMR system will perform better than the unreplicated one. This is 

a reflection of the fact which (5.4.2) quantifies for the exponential distribu­

tion, namely that the second best out of three realisations of a random vari­

able tends to be better than a single realisation. On the other hand, if only 

two out of the three processors are operative, then H 2,2=3/2, and the repli­

cated system has a worse performance than the unreplicated one. These 

phenomena will be illustrated by the experimental results in section 5.5. 

Thus, the average delay time associated with a replicated node depends 

on the operative state of that node, i.e. on how many of its processors pro­

duce correct results. A node is said to be 'fully operative' if all three of its 

processors operate correctly. If only two of them do so, then the node is said 

to be 'partially operative'. The entire system is said to be 'operative' if every 

node is either fully or partially operative. 

Let Q = {1,2, ... , N} be the set of all nodes, qJ be an arbitrary subset of Q 

and Q-cp be the complement of cp with respect to Q. We shall say that the 

'working state' of the system is cp, if the nodes in cp are fully operative and 

those in Q-qJ are partially operative. Denote by q(cp) the conditional proba­

bility that the system is in working state qJ, given that it is operative. 

If the probabilities q(cp) are known, then the average response time of a 

successfully completed job, W, which is the interval between the job's arrival 

into and departure from the system, can be approximated by 

W = l: q(cp)[ l: wi(3) + l: w/2)] , 
",cO IE", IEO-", 

(5.4.4) 



- 153 -

where Wi(C) is given by (5.4.3). The first summation extends over all subsets 

of n. An alternative form of this expression is obtained by exchanging the 

order of summations: 

N 

W = l: [wi(3) l: q(q>i) + w,(2) l: q(q>')] (5.4.5) 
i = 1 'icll ,iCIl 

Here, q>i and q>i vary over all subsets of n which do, and do not, contain node 

i, res pecti ve ly . 

Note, that expressions (5.4.4) and (5.4.5) rely on equilibrium being 

reached within each operative state of the system, i.e. on intervals between 

server breakdowns being much larger than the job interarrival, service, 

transit and voting times. This is usually true in practice. 

Our object now is to determine the probabilities q(q». To simplify the 

development, we shall assume that the breakdown (and repair) rates for all 

processors are equal: Ui=U; di=d, i=1,2, ... ,N. This implies that q(q» depends 

only on the size of q>, and not on its membership. Such an assumption is 

usually justifiable in practice, since the same (or similar type of) hardware 

is likely to be used at all nodes. Moreover, we shall see that it can be gen­

eralised, at the expense of considerably increasing the computational com­

plexity of the solution. 

With the assumption of equal breakdown (and repair) rates, it is 

sufficient to find the conditional probabilities, qj, that there are j fully 

operative and N - j partially operative nodes, given that the system is opera­

tive (j=O,l, ... ,N). In terms of those probabilities, and denoting by 1q>1 the 

number of nodes in q>, we can write 

(5.4.6) 
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Next, substituting (5.4.6) into (5.4.5) and counting the number of subsets of 

a given size which do, and do not contain node i, we obtain, after some alge­

bra, 

m N N-m N 
W = N~Wi(3) + ~~wt(2) , 

t=l i=1 
(5.4.7) 

where m is the conditional average number of fully operative nodes, given 

that the svstem is operative: 

.v 
m = ~jqj 

J =1 

We are thus left with the problem of finding the distribution qj and 

hence the mean m. In solving that problem, models 0 and 1 will be con­

sidered separately, since they require different treatment. 

5.4.1. Operative State Distribution for Model 0 

Recall that in model 0 the system starts in working state n (all nodes 

fully operative), and whenever a processor breaks down, it remains broken 

for ever. Eventually, a processor breakdown occurs in a node which is only 

partially operative; at the first such instant, the entire system becomes ino­

perative. However, we are interested in the conditional distribution of the 

working state, given that the system is operative. It is appropriate, there­

fore, to consider a 'modified' system which is equivalent to the original, but 

is never inoperative. That is, whenever the original system would become 

inoperative, the modified one re-enters working state n. 

Clearly, the instants when the modified system enters working state n 

are regenerative points for the working state of that system. The operative 

period of the original system corresponds to one regenerative period of the 
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modified system. Therefore, the conditional probability q(IP) in the original 

system is equal to the steady-state probability that the modified system is in 

working state IP. 

With the above in mind, we define a Markov process which is in state) 

when, in the modified system, there are) fully operative and N -) partially 

operative nodes, )=O,l, ... ,N. From state), the process moves to state )-1 with 

rate 3)u (if one of the processors in the fully operative nodes breaks down), 

and to state N with rate 2(N - ))u (if a breakdown occurs in a partially opera­

tive node, triggering a regeneration). The corresponding state diagram is 

shown in figure 5.3. 

Figure 5.3. The State Diagram. 

The probabilities qj satisfy the balance equations 

3)qj = (2N -1 + ))qj-l , ) = 1,2,oo.,N , (5.4.8) 

together with the normalising equation 

N 
Iqj = 1. 

(5.4.9) 
j=O 
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The solution of the recurrences (5.4.8) is of the form 

(5.4.10) 

while qo is obtained by substituting (5.4.10) into (5.4.9). 

Another quantity of interest is the average operative period, A, of the 

original system. This is equal to the average first passage time from state N 

to state N of our Markov process. Since the average holding time in state N 

is 1I(3Nu), we can write 

A = _::=-1_ 
3NuqN 

(5.4.11) 

The approach described here clearly generalises to the case where the 

processor breakdown rates are different for different nodes (but the same 

within a node). One would then have to consider a vector-valued Markov 

process (b 1,b 2, ... ,bN ), where bi is 1 if node i is fully operative, 0 if partially 

operative. It would be easy to write a set of equations for the steady-state 

distribution of this process. However, solving those equations numerically 

would be a non-trivial matter, due to the large (2N) number of states. 

It should be emphasised that, in order to be able to apply the above 

results, the observation period, T (the mission time), should be large com­

pared to A. When that is not true, it is necessary to estimate the transient 

performance of the Markov process. This can be done by employing the fol­

lowing approximation. 

Let Aj be the average holding time in state j, i.e. the average uninter­

rupted interval during which there are j fully operative and N - j partially 

operative nodes. These intervals can be found by noting that qj=A/A, and 

therefore A} = qjA, j = O,1, ... ,N. 
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Now, remember that during an operative period, the process passes 

through the holding times AN, AN-t. ... , A o, in that order. In order to account 

for the possibility that the mission time, T, expires during one of those hold­

ing times, define the quantities, 

j 

Bj = min(T, l: AN -II) , j = O,l, ... ,N . (5.4.12) 
k=O 

Then the probability <ij' interpreted as the fraction of the mission time dur­

ing which there are j fully operative and N - j partially operative nodes, can 

be estimated from 

_ Bj - Bj - 1 
qN-j = BN ' j=O,l, ... ,N , (5.4.13) 

where B-1 = ° by definition. 

5.4.2. Operative State Distribution for Model 1 

In model 1, when a processor breaks down, it is repaired (or replaced by 

a new identical one), after a delay called the 'down-time'. Down-times are 

i.i.d. random variables with mean lid. In this model, neither the up-times 

nor the down-times need to be exponentially distributed. However, we still 

assume that equilibrium is reached between consecutive changes in the sys­

tem operative state. 

In the long run, any given processor is operative for a fraction of time, 

a, given by 

lIu a=----= 
lIu + lid 

d 
u + d 

(5.4.14) 

Hence, the probability that a given node is fully operative, Po, is given by 

Po = a 3 • The probability that the node is partially operative, Plo is 
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The probability that the system is operative, q, is obviously equal to 

(5.4.15) 

Finally, the conditional probability that there are j fully operative 

nodes and N - j partially operative ones, given that the system is operative, 

is of the Binomial type: 

= 1. [Nt i N-j . -0 1 N % q j J PlJ P 1 , J - , , ... , . (5.4.16) 

This analysis generalises easily to the case when the breakdown and 

repair rates are different at different nodes. 

It is perhaps worth emphasising again that these are long-run results. 

They are valid only when the observation period, T, is large compared to the 

up-times and down-times. To analyse the performance of the system in the 

short run, under assumptions of exponentially distributed up-times and 

down-times, one would have to study the transient behaviour of the Markov 

process {Jt; t~O}, where Jt=j if at time t there are j fully operative nodes and 

N-j partially operative ones (j=O, 1, ... , N). Another (absorbing) state, say 

'-1', would be added to represent an inoperative system. Then, for instance, 

the first passage time from state N to state -1 would correspond to the inter­

val during which the system is operative. While not really difficult, such an 

analysis is not considered here. 

Despite their simplicity and roughness, the approximations described 

here give quite accurate estimates of system performance measures. This 

will be illustrated in the following section. 
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5.5. Experimental Results 

Experiments' are carried out to assess the accuracy of the approxima­

tions involved in analytically estimating the system sojourn times. Both 

model 0 and model 1 are examined and the results are presented here. In an 

experiment, sojourn times obtained by simulations are compared with those 

obtained through analytical approximations. Comparisons between the per­

formance of TMR and simplex (unreplicated) systems are also made at the 

same time. 

An experiment normally involves fixing all parameters except the aver­

age voting time, and then simulating the simplex and the TMR systems for 

that set of parameters. Simulations of TMR system are repeated for 

different values of average voting time. These simulations do not assume 

any of the approximations described in the previous section but will 

correspond to the simplex or TMR system whose model is described in sec­

tion 5.3. For model 0, a 'simulation' consists of 10 independent runs which 

differ only by the random number streams. In model 1, a single long run is 

made, divided into 10 portions with equal number of jobs completed in each 

portion. These samples of observations are used to obtain point estimates 

and confidence intervals for the average sojourn time, and point estimates 

for the fraction of time that the system is operative. The confidence inter­

vals are not shown in the figures; their half-width is always less than 5% of 

the point estimate. 

When the system simulated is a TMR one, the sojourn time for the con­

cerned set of parameters can be estimated analytically using approximations 

described in section 5.4. The simplex system is of course a special case, with 

voting times equal to O. In fact, the 'approximation' is then the exact 

steady-state result for queues in tandem: 
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W=~+N-1 
s - at' (5,5,1) 

The relative error of the approximation, expressed as a percentage, IS 

denoted bye: 

e = W' - W 
W' 100 I (5,5,2) 

where W' is the point estimate by simulation and W IS the approximated 

one. 

For r = 1 (simplex system), e::::: 0 indicates that the system has reached 

steady-state during the simulation run. When e < 0, the analytical approxi­

mation overestimates the average response time; otherwise it underesti­

mates. In the following, unless specified, the value of e will be for r = 3 (TMR 

systems). 

In order to avoid having to deal with too many parameters, we have 

examined systems where all nodes are statistically identical: 

Si = s, lSiSN; ti = t, lSi<N; Vi = V, l<isN+l. (5.5.3) 

The actual choice of these parameters was influenced by the form of the 

expression for the passage times in (5.4.1). We considered cases where 

transfer times dominate queueing delays (lI(s - a) < lit), where the two are 

equal (l/(s -a) = lit), and where queueing delays dominate transfer times 

(lI(s -a) > lit). This is done by choosing different values of lis such that 

1/s<lIa. In all simulations performed here, lIa is fixed at 2 and lis is 

varied from 1.5, 1.0, and 0.5 to represent heavy, medium, and light process­

ing loads at service processors respectively. 

In each experiment, simulations of TMR system are carried out for at 

most eight values of average voting time. Thus an experiment will contain 
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at most nine simulations - one for the simplex system and the rest for the 

TMR system. 

5.5.1. Results for Model 0 

Two groups of results are presented for model O. In the first group, the 

simulation time (or observation time in the simulations) is chosen to be 

longer than the operative periods of the system. Thus, these results are for a 

system which breaks down before the end of the simulation time. The 

second group of results is for a simulation period during which a TMR sys­

tem generally remains operational, i.e., every node in the system is fully or 

partially operative. In the following, results of group 1 are presented. 

5.5.1.1. Group 1 

The results for a 5-node system are summarised in table 1. Simulation 

experiments are carried out with 1/u taking 20000, 15000, and 10000 and 

with simulation time being fixed at 20000. In all simulations, the system 

breaks down before the mission time of 20000 time units elapses. For this 

simulation time and for the range of values chosen for lIu and N, the TMR 

system operates long enough for its steady state behaviour to be observed. 

In each experiment, simulations of TMR system are carried out for eight 

different values of mean voting time which vary from 0 to at least 50% of 

the average service time considered. 

It can be observed in table 5.1 that the magnitude of e becomes smaller, 

when lis gets smaller in each of the cases for lI(s -a) being less than, equal 

to, and greater than, lit; it also decreases, as lit increases for a given lis. 

This is explained in the following manner: 
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Model 0 (group 1): Va = 2; Simulation Time = 20000; ~ = 5. 

~ 
20000 15000 10000 

{1/s,1/t} 

1I(s-a) < 11t: 

{1.S,10} -8.0% S e S -2.0% -8.0% SeS-5.0% -8.8% S e S -4.7% 
{1.0A-0} -4_S% S e S -3.3% -4.9% SeS-3_7% -S.2% S e S -3.7% 
{0.S,2.0} +1.8%SeS+2.S% +1.9%seS+2.3% + 1.8% SeS +2.4% 

11(s-a) = 1 It: 

{1.S,6.0} -9.S% S e S -6_6% -12.2% SeS-3.0% -12.3% SeS-3.4% 

{1.0,2.0} -S.2% S e S -4.3% -S.9% SeS-4.6% -6.4% S e S -4.7% 

{0.S,0.67} -4.1% SeS-3.S% -S.1%SeS-2_9% -4.S% S e S -3.0% 

11(s-a) > 11t: 

{1.S,0.S} -183% SeS-7.2% -19.9% SeS-12.0% -17.3% SeS-8.7% 

{1.0,1.2S} -7.6% SeS-S.3% -7.S% S e S -S.2% -8.1% SeS-4.6% 

{O.S,O.O} -S.6% S e S -2.3% -6.8% SeS-2.S% -4.4% S e S -2.S% 

Table 5.1. Accuracy of Approximations in Model 0 (Group 1). 
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In analytically estimating the TMR sojourn times, it is assumed that the 

passage times of task siblings at a TMR node are independent of each other. 

While the transfer times of task siblings are indeed independent of each 

other, their queueing times at the servers are not. However, that depen­

dence is reduced when the load on the servers becomes lighter. Also its 

effect becomes less noticeable when the transfer times begin to dominate. 

The results of those experiments with parameters {lis = 0.5, lit = 2, 

lIu = 15000}, {lis = 1.0, lit = 2, lIu = 15000}, {lis = 0.5, lit = 0.67, lIu = 15000}, 

and {lis = 1.5, lit = 0.5, l/u = 15000} are shown in figures 5.4, 5.5, 5.6, and 

5.7 respectively. The graphs indicated by r=3 represent TMR average 

sojourn times for different values of average voting time. The value of e for 

simplex system was so small in some experiments that both the estimates 

are shown by a single line (indicated by r = 1). 

In figures 5.4, 5.5, and 5.6, the simulation estimates of TMR sojourn 

time for zero voting time are larger than those of the simplex sojourn time. 

Recall that the average task completion time (the service time + transfer 

time) in one TMR node is analytically estimated to be 16.6% less, and 50% 

more, than the average task completion time in a simplex node, when that 

node is fully, and partially, operative respectively. When the simulation is 

run until the system breaks down, the value of miN in equation (5.4.7) is 

0.654 which is also the probability that a TMR node is fully operative given 

that the system is operative. Thus, when there is no voting in TMR system, 

the sojourn time can be expected to exceed the simplex sojourn time by 

(1 - 0.654) '* 50 - 0.654 '* 16.6 = 6.44%, (5.5.4) 

where the % difference is expressed with respect to the simplex sojourn 

time. In figure 5.4, the simulation estimate of TMR sojourn time is 8.8% 
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Model·O: lIs = 0.5; l/a = 2; lIt = 2; up-time = 15000; Simulation Time = 20000; N = S. 
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Figure 5.4. Sojourn Time Vs. Voting Time For 1/(s-a) < lIt. 

Model·O: lIs = 1.0; 1/a = 2; lIt = 2.0; up-time = 15000; Simulation Time = 20000; N = 5. 
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Figure 5.5. Sojourn Time Vs. Voting Time For 1/(s-a) = lIt. 
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Model-O: 1/s=0.5;1/a =2;1/t=0.67; up-time= 15000;Simulation Time = 20000;N = 5. 
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Figure 5.6. Sojourn Time Vs. Voting Time For 1/(s-a) = lit. 

Model·O: lis = 1.5; l/a = 2; lit = 0.5; up-time = 15000; Simulation Time = 20000; N = 5. 
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Figure 5.7. Sojourn Time Vs. Voting Time For 1/(s-a) > lit .. 
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more than the simplex sojourn time. This percentage difference between the 

simulation estimates of TMR and simplex sojourn times becomes smaller in 

figures 5.5 and 5.6, and becomes less than zero in figure 5.7. 

To observe the accuracy of approximations for different values of N , 

experiments were carried out for N = 10 and 3, and with the following sets 

of parameters: {lIs=0.5, lIt=2, lIu=15000}, {lIs=l.O, lIt=2, lIu=15000}, 

{lis = 0.5, lit =0.67, lIu = 15000}, and {lis = 1.5, lit =0.5, lIu = 15000}. When 

lis = 0.5, e was positive and less than 2.8% for N = 10 and less than 4.5% 

for N = 3, and when lis = 1.0, it was near zero (varying between -0.6% and 

1.5%) for both values of N. For lis = 1.5, the magnitude of e became larger: 

-15.4% :5 e :5 -8.7% and -7.5 :5 e :5 +2.6 for N = 10 and 3 respectively, but 

still it is less than that for N = 5. This observation, that the accuracy of the 

approximations improves for large and small number of nodes, is not intui­

tively obvious and we have no satisfactory explanation for it. 

5.5.1.2. Group 2 

In all simulation experiments in this group, simulation time is fixed at 

2000. The values of lIu considered for a 5-node system are 100000, 50000, 

and 25000. For lIu = 100000 and 50000, the TMR system suffered no 

failures, and tolerated failures, until the end of simulation, respectively. 

When lIu was 25000, it broke down before the end of simulation period in 

only 2 out of 10 'simulation runs' of a simulation. Table 5.2 summarises the 

results of simulation experiments for a 5-node system. 

The values of e in table 5.2 are largely positive implying that the 

approximations underestimate the TMR sojourn times. When it is assumed 

that all siblings of a job arrive at the service queues in a node at the same 

time, the approximation is optimistic in ignoring the variabilities in passage 
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Model 0 (group 2): 1/a = 2; Simulation Time = 2000; N = 5. 

~ 
100000 50000 25000 

{1/s,1/t} 

1I(s-a) < 7 It: 

{1.S,10} +4.5% ~ e ~ + 7.0% +4.5%~eS +9.5% + 5.8% ~e S + 8.6% 
{1.0,4.0} +6.6% SeS +8.9% +8.2% Ses +9.9% +7.8% Se~ +9.4% 

{0.5,2.0} +7.0%Ses +8.1% +8.5% SeS +9.6% +8.3% Se S +9.3% 

71(s-a) = 7/t: 

{1.S/6.0} +3.4% SeS + 7.3% + 1.0% S e S + 7.0% +2.3% Se S +9.0% 

{1.0,2.0} +S.6% ~e~ +9.0% +6.2% ~eS +9.9% +6.1% ~e~ +8.6% 

{0.S,0.67} +9.3% ~eS +6.9% + 10.4% SeS +8.1% +9.7% ~e~ +8.3% 

1I(s-a) > 7/t: 

{1.S,O.S} -2.2% ~ e ~ + 3.4% -4.1% ~ e ~ + 1.8% -8.0% ~ e ~ + 5.6% 

{1.0,1.2S} +3.8% ~e~ +6.8% +3.8%~eS+7.3% +4.9% ~e~ + 7.2% 

{0.5/0.0} -1.3% Se~-0.1% +0.3% ~e~ +2.3% +0.08%~e~+1.7% 

Table 5.2. Accuracy of Approximations in Model 0 (Group 2). 
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Model-O: lIs = 0.5; l/a = 2; lIt = 2; up-time = 50000; Simulation Time = 2000;N = 5. 
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Figure 5.8. Sojourn Time Vs. Voting Time For 1/(s-a) < lIt. 

Model-O: lIs = 1.0; l/a = 2; lIt = 2.0; up-time = 50000; Simulation Time = 2000; N = 5. 
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Figure 5.9. Sojourn Time Vs. Voting Time For 1/(s-a) = lIt. 
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Model-O: 1fs = 0.5; 1fa = 2; 1ft = 0.67; up-time = 50000; Simulation Time = 2000;N = 5. 
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Figure 5.10. Sojourn Time Vs. Voting Time For 1f(s-a) = 1ft. 
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Model-O: 1fs = 1.5; 1fa = 2; 1ft = 0.5; up-time = 50000; Simulation Time = 2000; N = 5. 
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Figure 5.11. Sojourn Time Vs. Voting Time For 1f(s-a) > 1ft. 
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times of task siblings. On the other hand, the approximation becomes pes­

simistic, when the system is considered to reach steady state instantane­

ously following a failure. These optimistic and pessimistic trends in approxi­

mations counteract each other in reality. In these experiments, no failures 

occur or a few failures occur less frequently and the approximations turn 

out to underestimate the TMR sojourn times. In the experiments for the pre­

vious group, system is observed till it breaks down and the approximations 

are seen to overestimate the sojourn times. 

The assumption that the sum of exponentially distributed queueing 

delays and transfer delays is also exponentially distributed tends to be more 

accurate when one delay is larger than the other. The worst cases of e are 

seen for lI(s - a) = lit. The assumption becomes real, when one of the delays 

is zero. Consequently, when lit is zero, the magnitude of e is the least. 

For lIu = 50000, the results of experiments for {lis = 0.5, lit = 2}, 

{lis = 1.0, lit = 2}, {lis = 0.5, lit = 0.67}, and {lis = 1.5, lit = 0.5} are shown in 

figures 5.8, 5.9, 5.10 and 5.11 respectively. In these figures, the TMR sojourn 

times for zero voting time are less than the simplex sojourn times. Since a 

few failures occur in TMR system for lIu = 50000, the simplex system is 

outperformed by the TMR system for small values of lIu. 

We also carried out experiments to study the accuracy of analytical 

approximations for different values of N which was taken to be 10 and 3. 

When the accuracy of approximations for N = 10 (N = 3 respectively) was as 

good as that for N = 5, it was worse for N = 3 (N= 10 respectively). 
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5.5.2. Results for Modell 

For all simulation experiments in this model, the values of lid were 

chosen to be 1%, 5%, and 10% of the average uptime l/u which is fixed at 

1000. A batch of 2000 jobs are successfully completed during each of the 10 

portions of a simulation run. The results for a 5-node system are summar­

ised in table 5.3. 

In most of the experiments, e is positive implying that the approxima­

tion underestimates the TMR sojourn time. When e is negative, its magni­

tude increases for a larger value of lis. The magnitude of e for lid = 100, is 

less than that for lid = 10 and 50 in respective experiments. This is 

because, as lid becomes larger, there is more time for the system to reach 

steady state following a failure. 

The results of selected experiments are presented in figures 5.12 to 

5.15. In all of these figures, the TMR sojourn time for zero voting time is 

less than the simplex sojourn time. Analytical approximations show that the 

TMR sojourn time with no voting is 85.3%, 92.0%, and 98.7% of simplex 

sojourn time, when lid is 10, 50, and 100 respectively. In almost all experi­

ments carried out, the TMR system was observed to be no slower than the 

simplex system at zero voting time. 

In the experiments carried out with N = 10 and 3, e was almost in the 

same range as that obtained for N=5, except for {lIs=1.5, lIt=0.5} in 

which case e was negative and greater than -13.3% and -5.2% for N = 10 and 

N = 3 respectively. 
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Modell: lIa = 2; lIu = 1 000; ~ umber of jobs completed = 20000; N = 5. 

~ 
10 50 100 

{1/s,1/t} 

TI(s-a) < lIt: 

{1.5,10} +3.8%SeS+7.6% +4.8% Ses +7.4% +2.4%SeS +4.7% 

{1.0,4.0} +5.2% SeS +6.7% +5.6% SeS +6.1% +4.1%SeS+5.2% 

{0.5,2.0} +5.2% SeS +6.2% +5.5% SeS +6.4% +4.9% SeS +5.6% 

lI(s-a) = 1 It: 

{1.5,6.0} +3.8% Se S + 7.5% + 4.1 % S e S + 7.3% + 1.3% SeS +4.3% 

{1.0,2.0} + 5. 1 % S e S + 6.7% +3.S%SeS+7.1% +3.1%SeS+4.0% 

{0.5,0.67} +4.5% SeS +6.6% + 5.0% SeS +6.3% +3.3% SeS +4.5% 

TI(s-a) > 11t: 

{1.S,0.5} -3.9% SeS +4.S% -8.4% S e S + 0.6% -8.5% SeS + 1.9% 

{1.0,1.0} +2.2% SeS +3.8% +2.0% SeS +3.2% +0.3% SeS +2.3% 

{O.S,O.O} -2.4% SeS-1.7% -2.4% SeS-0.7% -2.3% S e S -0.6% 

Table 5.3. Accuracy of Approximations in Modell. 
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Model·1: lIs = 0.5; l/a = 2; lIt = 2; up-time = 1000; lId = 50;N = 5. 
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Figure 5.12. Sojourn Time Vs. Voting Time For 1/(s-a) < l/t. 

Model·1: lIs = 1.0; l/a = 2; lIt = 2.0; up-time = 1000; lId = 50; N = 5. 
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Figure 5.13. Sojourn Time Vs. Voting Time For 1/(s-a) = lIt. 
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Model·': lIs = 0.5; l/a = 2; l/t = 0.67; up-time = 1000; lid = sO;N = 5. 
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Figure 5.14. Sojourn Time Vs. Voting Time For 1/(s-a) = lit 

Model·': lIs = 1.5; l/a = 2; lit = 0.5; up-time = 1000; lId = 50; N = 5. 
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Figure 5.15. Sojourn Time Vs. Voting Time For 1/(s-a) > lIt. 



- 175 -

5.5.3. Computer Time for Simulations and Analytical Estimations 

The CPU time needed for simulations and analytical estimations were 

also measured (the CPU was an Amdahl 5860). The CPU time to run a 

simulation for a given set of parameters increased with queueing delays, 

transit times, voting times and the number of nodes in the system. In model 

o and group 1, it increased for large values of lIu, since the system was 

operati ve for longer periods. An increase in lid for a gi ven 11 u increased the 

CPU time in model 1. The CPU time for analytical estimations did not show 

much variations in the respective models and was less than 60 milliseconds 

for the replicated system in both models. It should be recalled that a simu­

lation for a given set of parameters was made up of 10 'simulation runs'. In 

the following, CPU times per simulation run for the replicated system are 

given for some selected sets of parameters used in the experiments of the 

previous subsections. (lla and simulation time in respective cases are the 

same as in the experiments.) The values of e are also given in an attempt to 

indicate the loss of accuracy against saving in computer time and hence the 

cost in using analytical approximations instead of simulations. 

When lIu = 10000 and N = 5 in model 0 and group 1, the CPU time per 

simulation run was 13 and 10 seconds for {lis = 1.5, lIv = 0.0, lit = 10} (for 

which e was -6.5%) and {lis = 0.5, lIv = 0.0, lit = 2.0} (for which e was 1.8%) 

respectively; for the second case, when 1/u was increased to 20000, the CPU 

time increased to 18.5 seconds and e was 1.9%. When lis = 0.5, lit = 0.0, 

1/u = 50000 in group 2, a simulation run required 6.5 and 6.6 seconds of 

CPU time for lIv = 0.0 and 0.25 respectively. For these cases, e was respec­

tively 0.8% and 0.3%. With lIv = 0.0, when N was increased to 10, the CPU 

time requirement became 14 seconds and e was -21.5%. In modell, when 

lis = 0.5, 1/v = 0.0, lit = 0.0, N = 5, and lIu = 1000, the CPU time per run was 
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13 and 17 seconds when lid = 10 and 100 respectively; e was -2.4% and 

-1.6% respectively. The CPU time was 37 seconds and e was -4.7% when 

lid = 10 and N = 10. The CPU time for simulations can be reduced drasti­

cally by employing powerful multiprocessors and advanced concurrent simu­

lation techniques. 

5.6. Concluding Remarks 

The factors capable of affecting the performance of a TMR system in 

relation to the simplex system were discussed in section 5.2 and were 

identified to be (i) voting times, (ii) processor failure rates, (iii) extra mes­

sage traffic, and (iv) sequencing overheads. In this study, we have assumed 

a specialised pipeline architecture with high bandwidth communication 

which enables us to ignore the effects of extra message traffic and of 

sequencing overheads. The model of such a system was presented in section 

5.3. The performance of such a system was then evaluated both by com­

puter simulations and by analytical approximations. Despite their simplicity 

and roughness, the approximations developed here have been shown to esti­

mate the system performance measures fairly accurately - the analytical 

estimates are within 10% of simulation estimates in 90% of the simulation 

experiments carried out. Thus, when simulation experiments are time con­

suming and expensive to carry out, analytical approximations can provide 

an attractive alternative. 

We have compared the mean sojourn times of jobs in replicated and 

unreplicated systems. A rather surprising result has been that when voting 

times are small and processor failures are less likely, a replicated system 

can provide better response times. This is because when redundant proces­

sors in each node are considered to be unevenly loaded, the presence of extra 
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processors brings performance benefits by exploiting the earliest service 

completions of siblings. These performance measures have been discussed in 

section 5.5. 

The particular assumptions that we have made are not the only ones 

that can be handled by our approximation approach. For example, rather 

than assigning the voting and computational functions to separate (process­

ing) units within a processor, one could use a single processor, with 

appropriately modified service times, to carry out both voting and process­

ing. It is also possible to consider a system configuration in which there is a 

single voter for all three processors of a TMR node. If the voters in such a 

system are reliable, the system will be more - cost-effective than 

a system of the type considered here (cf. [Carte79]). In such a 

configuration, it is no more an approximation to consider that voters act as 

synchronisation points for messages. Also, the assumption that congestion 

has no effect on transit times can be relaxed. These generalisations of the 

models would provide a relevant topic of further research. 
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CHAPTER 6 

CONCLUSIONS 

Design and development of algorithms for fault tolerant distributed sys­

tems has been our chosen topic. Under this topic, this thesis has presented 

the following: A classification of faults in systems was presented and fault 

tolerant algorithms for a particular system function were developed. Reach­

ing agreement was the system function considered and agreement algo­

rithms tolerant to processor faults of different classes were presented. The 

problem of evaluating the performance of fault tolerant distributed systems 

that require the use of agreement algorithms was considered. Analytical 

methods (algorithms) were developed to evaluate the performance of a par­

ticular type of distributed replicated systems. These methods were derived 

based on some approximations, the accuracy of which was examined using 

computer simulations. 

Given that a component can have many failure modes, the design of a 

fault tolerant algorithm for any given system function requires making 

fault models of components and specifying precisely the assumed behaviour 

of faulty components. This requirement led us to investigate the two types 

of faults often considered in the literature: omission and Byzantine faults. It 

was observed that these two fault types represent the two extreme cases of 

the most restricted and the unrestricted types. Fault types of intermediate 

restrictions were identified and defined using "expected-value" and "timeli­

ness" as the two specified properties of a component's response. These fault 
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types are value, timing and emission. A value (timing) fault causes a 

component's response to be incorrect only in the value (time) domain. An 

emission fault causes a response to be incorrect in either domain or in both 

the domains. 

This classification has been extended to apply to components that are 

required to produce replicated responses. For such components, nine fault 

types have been identified based on the notion of consistent failures in pro­

ducing a replicated response. A transitive relationship, "a proper subset of' 

or "more restricted than", between fault types has been established. These 

fault classifications for components with replicated or unreplicated 

responses, have been applied to specify the behaviour of selfchecking com­

ponents and to analyse the faulty behaviour of a composite component in 

terms of the fault types of constituent components. One such composite 

component considered was a processor with a clock and the subsequent fault 

analysis led to some interesting observations: for a clock that responds sim­

ply in response to the passage of real time, value failures and timing 

failures cannot occur independently of each other; a clock that faik in a 

manner other omission can seriously affect the failure modes of the proces­

sor; a fast clock, for example, can make the processor fail both in the value 

and the timing domains. A distributed system was subject to fault analysis 

by considering it to be made up of processors connected by a communication 

subsystem. It was observed in the analysis that when a processor fails in a 

manner other than Byzantine, a communication subsystem capable of pro­

viding a reliable broadcast service is necessary for considering a consistent 

fault model for the processor. 

The fault classifications presented in chapter 2 provide a convenient 

means for the development of increasingly more sophisticated algorithms to 
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solve a given problem tolerating faults of increasingly general types. We 

have chosen to solve the agreement problem. The problem was defined with 

one processor in a distributed system being designated as the sender. The 

sender can be faulty or non-faulty. Extending a solution to this problem in 

a general context where every processor in the system can be a sender is a 

straightforward task. The agreement problem has been solved by consider­

ing processors of a distributed system to be synchronous and by assuming a 

known bound on message communication delays between processors. An 

upper bound on the number of processors that can possibly fail is also 

assumed. The assumptions made in solving the problem are stated and they 

are essential for reaching agreement in a bounded and known time interva1. 

In the context where processors will not know a priori the sender's 

broadcast time, deterministic agreement algorithms have been developed for 

each of the fault types defined for components with replicated responses. For 

some fault types, special cases have also been considered to develop algo­

rithms. The resulting agreement algorithms constitute a family of algo­

rithms which is presented in chapter 3. A generic algorithm is also 

presented in that chapter to represent the family of algorithms collectively. 

Based on the generic algorithm, the complexities of algorithms tolerant to 

faults of different types are compared. With some exceptions, an algorithm 

is found to be less complex than another one, if the faults for which the first 

algorithm is developed are a proper subset of the faults considered in the 

development of the second algorithm. In the exceptional cases, no change in 

complexity is observed. These algorithms can be further developed into 

broadcast protocols that are essential in systems with replicated processing. 

Agreement algorithms developed under different fault types and an illustra­

tion of their relative complexity are the main contributions of chapter 3. 
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In chapter 4, the agreement problem is solved in the context where pro­

cessors are assumed to know a priori the sender's broadcast time. Only a 

few selected fault types are considered. Agreement algorithms tolerant to 

permanent omission faults, omission faults, timing faults, and consistently 

late timing faults have been developed and presented. These algorithms are 

early stopping algorithms which attempt to reach agreement faster, when 

the number of actually failed processors is less than the upper bound 

assumed. Applications of early stopping algorithms in distributed transac­

tion commit are cited. The early stopping conditions in the permanent 

omission fault tolerant algorithm take into account of the fact that some 

faulty processors may have failed and stopped functioning before the execu­

tion of the algorithm starts. Consequently, this algorithm can be faster 

than the omission fault tolerant algorithm for the same number of failed 

processors in an execution. The omission fault tolerant algorithm can be 

faster than, and the consistently late timing fault tolerant algorithm has 

less message complexity than, the timing fault tolerant algorithm. Under 

consistently late timing fault model, faulty processors were considered to be 

overloaded processors and the agreement algorithm has been developed 

using assumptions that are weaker than, but similar to, assumptions made 

in the development of the other three algorithms. 

The algorithms of chapter 4 are substantially different from the 

corresponding ones presented in chapter 3. The reason is that they are 

developed with different assumptions about the processors' a priori 

knowledge of the sender's broadcast time. When processors do not have a 

prior knowledge of the sender's broadcast time (as is the case in chapter 3), 

they can skip reaching a unanimous decision on the sender's value, if the 

sender is faulty. However, when they know the sender's broadcast time a 
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priori, they have to reach some decision unanimously for every broadcast of 

the sender. One of the most difficult scenarios to cope with is the sender not 

carrying out any broadcast at all. Thus, when the sender does not carry out 

a broadcast that it should have performed, the processors executing an algo­

rithm of chapter 4 have to exchange more number of messages and take 

longer time to reach agreement (on the default value). On the other hand, 

the processors executing an algorithm of chapter 5 will not exchange any 

messages and will not decide on any value. 

A pipeline TMR system has been considered in chapter 5 for perfor­

mance evaluation of a distributed replicated system. Faulty processors in 

the system are assumed to fail in a permanent and consistent value manner. 

Two system models with respect to recovery of faulty processors are con­

sidered. In model 0, no mechanism for recovery was assumed and a faulty 

processor remained faulty till the end of the mission period. In modell, 

failed processors were assumed to be repaired within a finite and random 

delay. Analytical methods have been derived to evaluate system response 

times. Derivation of these methods involve simplifying approximations and, 

as a result, these methods are simple to use. 

The accuracy of analytical approximations was examined by computer 

simulations. The performance estimates obtained by analytical estimation 

and by simulation were compared for different values of system parameters. 

The differences between these two estimates for every given set of system 

parameters considered were tabulated for both models. For the first model, 

two cases were considered: the TMR system is operative, and inoperative at 

the end of the mission period of given length. For the simulation experi­

ments carried out, the analytical estimates were within 20% of the simula­

tion estimates in the worst cases, and were within 10% in ninety percent of 
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the experiments conducted. Analytical methods derived in chapter 5 make 

two important contributions: they can provide an alternative to simula­

tions, in particular, when simulations are expensive; they can be a step 

towards an empirical study of the performance of systems with more com­

plex architectures. 

The main contributions of this thesis can be summarised to be: the 

fault and failure classification, the use of the classification in the develop­

ment of a family of fault tolerant agreement algorithms and a collection of 

early stopping agreement algorithms, and development of analytical tech­

niques for evaluating the performance of distributed replicated systems. 

6.1. Directions For Further Research 

A fault analysis of a composite component in terms of fault types of con­

stituent components has been presented in chapter 2. A fault analysis in the 

reverse direction can be carried out in a particular system context. Con­

sider, for example, a distributed system where processors maintain their 

clocks in synchronism. Let a processor be considered to be made up of three 

components: clock, computational unit and network interface. For a given 

fault assumption for such a processor, the fault assumptions required on the 

processor's components can be analysed. Such an analysis will reveal the 

requirements on components' behaviour so that the processor can fail only 

in a particular manner. Suppose that the processor is assumed to fail in an 

omission manner. This means that the network interface can omit sending 

any number of messages; however, it cannot omit receiving more than cer­

tain number of messages when a clock synchronisation algorithm is being 

executed; otherwise, the clock may not be synchronised and consequently 

the processor can fail in a timing manner. Similarly, when the processor 
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maintains some state information, its computational unit should not omit 

processing a message which would result in changes in the state informa­

tion; otherwise, in subsequent message processing, the processor can produce 

incorrect values. It should be noted that the results of such an analysis will 

vary with the system context in which a particular fault assumption is con­

sidered. If a processor does not maintain a synchronised clock and all its 

processings are considered to be stateless, then assuming the omission fault 

type for the processor would mean that the network interface can omit 

receiving any number of messages and the computational unit can omit pro­

cessing any message. 

Only one type of processor fault has been considered in developing each 

of the agreement algorithms presented here. A faulty processor was 

assumed to fail in the "worst" possible manner that is permitted within the 

chosen fault model. One can consider the possibilities of developing algo­

rithms to reach agreement in the presence of faults of different types and 

with a bound on the number of faults of each type. Two such algorithms 

have been developed in the literature: timing and Byzantine faults were 

considered in [Meyer87]; in [Thamb88], Byzantine faults, consistent omis­

sion faults and malicious symmetric faults that come closely under our 

definition of consistent value faults were considered. We have considered 

consistent omission faults and omission faults in section 3.7. When it is 

given that at most (f - f'), out of at most f, omission faulty processors fail in 

a consistent manner, the algorithm has been observed to require just (f' + 1) 

rounds instead of (f+1) rounds. In fact, every algorithm in chapter 3 which 

requires (f + 1) rounds in the presence of at most f faults of the type, say A, 

considered will require just (f' + 1) rounds, if (f - f') and f' are assumed to be 

the new bounds on the number of processors that have faults of consistent 

omission and type A respectively. The family of algorithms and their 
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complexity analysis can provide useful insights into developing efficient 

algorithms tolerant of faults of multiple types. 

The development of the permanent omission fault tolerant algorithm in 

chapter 4 leaves us with an impression that it may not be possible to 

develop a faster algorithm. A permanent omission fault is a special case of 

an omission fault that is a proper subset of faults of every other type that is 

not consistent. If our impression can be formally proved, then it will estab­

lish a lower bound on the execution time of any early stopping algorithm 

that is tolerant to faults that are not consistent. 

Our work on performance evaluation is just an initial step and can be 

extended for systems with more general architectures and processor faults of 

more serious types. 

We are currently building a TMR pipeline system using transputers. 

The architecture of the system has been presented in [Ezhil89]. The tran­

sputers of a TMR node execute agreement protocols to meet ordering and 

agreement requirements. Using this system, we plan to study the perfor­

mance of agreement algorithms of chapter 3. The accuracy of analytical 

approximations of chapter 5 will also be examined. It is also our plan to 

construct a fail-silent node (a node whose failure mode is restricted to per­

manent omission) out of two transputers. Its performance will be compared 

with the fail-silent node being built by Ferranti Computer Systems Ltd., 

using special purpose hardware to achieve clock synchronisation, agreement 

and order. Our fail-silent nodes are intended to support the object oriented 

distributed systems (ARJUNA) [Shriv89] developed at Newcastle. Thus the 

theoretical work reported here will be complemented by extensive experi­

mental work concerned with the building of real systems. 
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