
LOAD SHARING IN DISTRIBUTED

COMPUTER SYSTEMS

TAHIR M. AFZAL

NEWCASTLE UNIVCRSITY LIBRARY
'" ___ •• M _____ •••••

.. .. " .- .- .. - _." .-., . -.- .. ~-"'.--............. .

. .. " _---_ _ .. - -.......... -... _ .. .
--·--··--~·;s L-'3~~q

PhD Thesis

The University of Newcastle upon Tyne

Computing Laboratory

August, 1987

ABSTRACT

In this thesis the problem ofload sharing in distributed computer systems is

investigated. Fundamental issues that need to be resolved in order to

implement a load sharing scheme in a distributed system are identified and

possible solutions suggested. A load sharing scheme has been designed and

implemented on an existing Unix United system. The performance of this load

sharing scheme is then measured for different types of programs. It is

demonstrated that a load sharing scheme can be implemented on the Unix

United systems using the existing mechanisms provided by the Newcastle

Connection, and without making any significant changes to the existing

software. It is concluded that under some circumstances a substantial

improvement in the system performance can be obtained by the load sharing

scheme.

ACKNOWLEDGEMENTS

I would like to thank Dr. Snow for his constructive advice in supervising this

thesis. I am also very grateful to Professor Brian Randell for his invaluable

comments on preliminary drafts of this thesis.

Several colleagues in the Computing Laboratory helped me during my

research. In particular I am thankful to Robert Stroud for his help in solving the

problems related to the Newcastle Connection. I wish to thank Dr. Lindsay

Marshall, Andy Linton and Steve Grimes for their technical help. I am grateful

to Professor Peter Lee for his comments on the final draft of this thesis.

The support of Science and Engineering Research Council during the first

two years of my research is gratefully acknowledged.

II

TABLE OF CONTENTS

Chapter page

1- INTRODUCTION 1

1.1 OBJECTIVES AND FEATURES OF DISTRIBUTED
SYSTEMS 2

1.2 CLASSIFICATION OF DISTRIBUTED SYSTEMS 7

1.3 LOAD SHARING MULTIPROCESSOR AND
DISTRIBUTED SYSTEMS 9

1.4 AIMS AND STRUCTURE OF THESIS 14

2- A SURVEY OF LOAD SHARING 16

2.1 INTRODUCTION 16

2.2 MULTIPROCESSOR SYSTEMS 16

2.2.1 Stone's Graph Theoretic Approach 21

2.2.2 Lo's Heuristic Algorithms 24

2.2.3 Other Work 31

2.3 DISTRIBUTED SYSTEMS 32

2.3.1 A Load Sharing Scheme for MOS 34

2.3.2 Load Sharing with Maitre d' 36

2.3.3 Load Sharing to Meet Real Time Constraints 37

2.3.40therWork 39

2.4 CONCLUSIONS 43

3- ISSUES IN LOAD SHARING DISTRIBUTED

SYSTEMS

3.1 INTRODUCTION

3.2 LOAD SHARING ISSUES

3.2.1 Objective

III

45

45

45

46

3.2.2 Granularity and Mechanism

3.3.3 Initiator

3.2.4 Initiation

3.2.5 Information Dependency

3.2.6 Computer Connectivity

3.2.7 Information Measurement and Exchange

3.2.8 Desirable Features

3.3 MOS AND MAITRE D' REVISITED

3.4 CONCLUSIONS

4- THE NEWCASTLE CONNECTION AND

47

49

50
52

57

60

63

64

64

UNIX UNITED SYSTEMS 66

4.1 INTRODUCTION 66

4.2 UNIX UNITED SYSTEMS 67

4.3 ENSLOW'S CRITERIA AND UNIX UNITED SYSTEMS 70

4.4 LOAD SHARING IN UNIX UNITED SYSTEMS 75

4.5 CONCLUSIONS 78

5- A LOAD SHARING SCHEME FOR A

UNIX UNITED SYSTEM

5.1 INTRODUCTION

5.2 THE PERQ'S UNIX UNITED SYSTEM

5.3 RESOLVING THE LOAD SHARING ISSUES

5.3.1 Objective

5.3.2 Granularity and Mechanism

5.3.3 Initiator

5.3.4 Initiation

5.3.5 Information Dependency

5.3.6 Computer Connectivity

5.3.7 Information Measurement and Exchange

5.3.8 Desirable Features

IV

79

79

79

81

81

82

86

86

87

94

95

100

5.4 CONCLUSIONS 101

6- IMPLEMENTATION 102

6.1 INTRODUCTION 102

6.2 TRAPPING EXEC AND DETERMINING A
PROGRAM'S SUITABILITY 102

6.3 ESTABLISHING WHETHER A LOCAL MACHINE
IS BUSY 106

6.4 REPRESENTING THE STATE VECTORS 108

6.5 DETECTING THE STATE TRANSITIONS 111

6.6 CONCLUSIONS 116

7 -EXPERIMENTS, RESULTS, AND
DISCUSSION 117

7.1 INTRODUCTION 117

7.2 A CPU INTENSIVE PROGRAM 119

7.3 AN I/O INTENSIVE PROGRAM 128

7.4 A MIXED PROGRAM 134

7.5 UNIX UTILITY PROGRAMS 138

7.5.1 nroff 138

7.5.2 cc 143

7.6 CONCLUSIONS 147

8- CONCLUSIONS 148

8.1 DESIRABLE FEATURES 148

8.2 SUGGESTIONS FOR FUTURE WORK 152

8.3 EPILOGUE 153

REFERENCES 155

v

CHAPTER ONE

INTRODUCTION

Throughout the history of computers, efforts have been made to make them

faster to meet the ever increasing demands of new applications. In the past

these efforts had largely been concentrated on increasing the speeds of physical

components such as processors and memories. Then the decreasing costs of

processors made it possible to develop multiprocessor machines with the

objective of providing fast computers.

The availability of cheap processors and memories also resulted in relatively

cheap computers. Therefore, more organisations could afford several

independent computers to meet their computational demands. Later, the desire

to share the resources existing on different computers within an organisation,

coupled with the advances in the communications technology, led to the

development of what are now known as Distributed Systems.

In most distributed systems a user on one computer can normally access data

and programs residing on other computers in the system. It is less common,

however, to find distributed systems where some computational load of a

heavily used computer is automatically and surreptitiously transferred to a less

loaded computer, thus performing load sharing in the system. In this thesis we

shall address this problem ofload sharing in distributed computer systems.

The term Distributed has been used to describe a variety of computer

systems. The differences in the nature, location, and the interconnection of the

physical components of such systems make it virtually impossible to define

distributed systems according to their physical attributes. Therefore, in section

-1-

1.1 we shall consider the fundamental objectives of distributed systems, and

present a logical definition that encompasses the features necessary to achieve

these objectives.

Although difficult to define, several classification schemes have been

proposed for existing distributed systems. In order to understand which of these

classes we shall consider for load sharing, in section 1.2 we present a

classification scheme that is useful in the context of this thesis.

In section 1.3 we first define, informally, the terms Multiprocessor

System, Distributed System, and Load Sharing as they will be used in this

thesis. We shall then discuss the role of load sharing in multiprocessor and

distributed systems. Finally, in section 1.4 the aims and the structure of the

thesis are presented.

1.1 OBJECTIVES AND FEATURES OF DISTRIBUTED

SYSTEMS

The fundamental objectives of a distributed system have been identified by

Lelann [LELANN 81] as being: Increased Performance, Extensibility,

Availability, and Resource Sharing. Several logical definitions of distributed

systems have been suggested [LELANN 81, ENSLOW 78, JENSEN 78, BLAIR 83,

TRIPATHI 80]. These definitions identify the features that help achieve the

objectives of distributed systems. Enslow's definition [ENSLOW 78] is possibly the

most widely accepted. Therefore, we discuss below five features that are

identified by Enslow as being necessary for a system to be Fully Distributed.

For each feature we discuss the effect it has on the four objectives of distributed

systems listed above.

-2-

I - Multiplicity of Resources:

A distributed system consists of a multiplicity of general-purpose physical

and logical resource components. The term general-purpose is important since

it excludes the systems where the components are bound to specific tasks. Thus

a mainframe with several I/O processors and special arithmetic units is not

regarded as constituting a distributed system since these components each

perform just one specific function.

Besides being general purpose, the constituent components in a distributed

system should be dynamically assignable, on a short-term basis, to various

system tasks. For the purpose of multiplicity, the components may be

replicated, and it is not necessary for them to be homogeneous.

Jensen [JENSEN 78] has implied this requirement in Multiplicity of

Processors, and Blair [BLAIR 83] requires it in the second property of his

definition. Multiplicity of resources is related to all four objectives of distributed

systems. Increased performance can be obtained if a service is provided by more

than one component in the system because there will be less waiting for that

service. The objective of extensibility is likely to be satisfied because if the

system has been designed with the knowledge that various resource components

can provide a particular service then one would expect it to be an easy task to

add other resources that provide the same service. Availability is increased

because a failure of one component providing a particular service need not

result in the failure of the whole system since it would be possible to provide the

failed service by another component, thus sharing a resource.

-3-

II - Component Interconnection:

The physical distribution of resource components in a distributed system can

range from a length of connecting track on an integrated chip to the distance

between two computers linked together through an international network. The

important point about the interconnection in a distributed system is that the

communication between the components is established by utilising two-party

cooperative protocols. This means that each component is free to make its own

decisions about receiving and replying to a message.

Systems whose components communicate in a master-slave manner (where

the master has the full authority to force a slave to perform some task) are not

regarded as distributed since they preclude the autonomous operation (criterion

v) of the components. Tripathi's [TRIPATHI 80] and Lelann's [LELANN 81]

definitions make an explicit requirement that the communication be based on

message passing, presumably to avoid the master-slave relationship between

the components.

m- Unity of Control:

In a distributed system individual processors are allowed to have their own

operating systems controlling their resources. These operating systems mayor

may not be identical. In order to achieve the objectives of a distributed system, a

high level operating system (also known as an 'executive control') is required

that implements a well-defined set of policies that govern the distributed

system as a whole. However, there must be no strong hierarchy existing

between the high-level operating system and the local operating systems since

this would violate the criterion for autonomous operation (criterion V).

-4-

What policies this high level operating system should implement depends on

the nature of the system. As an example, for a general purpose system

supporting interactive users, a common command language interpreter would

be required. This will encourage the users to use the resources on remote

machines, thus achieving the objectives of resource sharing and high

performance.

IV- System Transparency:

An important characteristic of a distributed system is the degree to which its

distributedness can be transparent to the user. Enslow requires that the users

should be able to request services by their generic names and need not be

concerned about which physical or logical component is to provide that service.

The issue of transparency must be considered for the following three

different types of distributed systems:

a) Distributed Systems where various services are provided by different

machines; these services, when combined, form one operating system;

b) Distributed Systems where different machines are running the same

operating system;

c) Distributed Systems where different machines are running different

operating systems;

Transparency required by Enslow's criterion involves two issues:

transparency in location of components providing the service and, secondly,

transparency in method of access.

In the first type of distributed systems a service can be provided by more

than one component and, therefore transparency of location of components is

-5-

required. The issue of transparency of method of access does not arise here since

there is only one operating system involved.

The second type of distributed system can be regarded as another form of the

first type in which all or most of the services are replicated. In this type

therefore transparency oflocation of component is required.

In the third type of distributed systems the transparency of both the location

and the method of access is required. The user of such a system need only specify

what service is required. The local operating system can then determine

whether a local or a remote component is required. If the service of a remote

operating system is required then the operating system should be able to access

it. This level of transparency can be provided by the high level or executive

operating system mentioned in the previous sub-section. The high level

operating system effectively changes the third type of distributed systems into

second type.

System transparency is an essential feature because it helps achieve the

objectives of increased performance, availability and resource sharing by

making it easier for the users to access other computers in the system. Blair

[BLAIR 83] and Jensen [JENSEN 78] have also included it in their definitions.

v -Cooperative Autonomy:

Both the logical and physical components of a distributed system should

interact in a manner described as cooperative autonomy. This means that the

components operate in an autonomous fashion requiring cooperation among

processes for the exchange of information as well as for the provision of services.

Any component is able to refuse requests for service, even after it has accepted

the message requesting that service. This could result in anarchy except for the

-6-

fact that all components adhere to a common set of system utilisation and

management policies expressed by the high-level operating system. Cooperative

autonomy is essential for the objectives of availability, and extensibility.

The degree to which a system incorporates the above features determines the

extent to which the objectives of distributed systems are achieved.

1.2 CLASSIFICATION OF DISTRIBUTED SYSTEMS

Existing distributed systems incorporate the features discussed in the last

section to a varying degree. Therefore, in order to understand exactly what type

of systems we shall be considering later for load sharing, a classification scheme

for distributed systems is presented in this section. This scheme has been

proposed by Keefe [KEEFE 85] and is largely based on the way the individual

computers in a distributed system interact with each other.

I - Network of Autonomous Systems with Explicit Network

The main characteristic of this division is that no attempt is made to provide

system transparency. In order that machines of widely different architectures

and different operating systems may communicate, there must be protocols for

all projected activities. An example of such a system is provided by the Bell

Laboratory's dial-up network ofUnixt systems called UUCP [NOWITZ 80]. In this

system the user needs to give different commands when dealing with remote

machines; for example when copying a file from a remote machine the uucp

command is used instead of the standard Unix command cpo

tUnix is a registered trademark of AT &T Bell Laborotories.

-7-

II- A Network of Autonomous Systems with the Network
Hidden

Systems in this class are similar to those described above, except that the

presence of a network is hidden from the user. This is usually achieved by

introducing a layer of software between the user and the network. The user still

has to know the location of a resource within his name space, but the interface

to access remote services is same as that for local services. Examples of this type

of system are Unix United [BROWNBRIDGE 82] (further described in chapter 4),

and Cocanet [ROWE 82].

m- Integrated Loosely Coupled Systems with Autonomous

Nodes

This category of distributed systems is characterised by the presentation of a

uniform name space to all users, but where individual nodes of the system may

function alone, albeit with only a subset of that name space available to them.

Any given resource will have the same name, irrespective of its location, and

the source of the request. Distributed systems that can be placed in this class

are PULSE [KEEFE 85] and LOCUS [POPEK 83].

IV- Integrated Loosely Coupled Systems with

Non-autonomous Nodes

Systems in this class are similar to those in the previous one, except that the

nodes are not capable of operating alone. A machine removed from the network

will no longer be operable, but the remainder will continue to function.

Examples of this class of system are the New Mexico State U niversi ty Ring-Star

system [KARSH MER 83], and the Cambridge distributed computing system

[NEEDHAM 80].

-8-

v· Tightly Coupled Distributed Systems

This category applies to systems consisting of several processors sharing

memory on common bus. Such systems are more commonly called

multiprocessor systems; the distinction we choose to make between

multiprocessor and distributed systems is described in section 1.3 below. A good

example of this class of systems is provided by the StarOS system [JONES 79]

that was implemented at Carnegie-Mellon University for the fifty processor

Cm* multiprocessor computer.

The categories mentioned above do not constitute an exhaustive list, and

other systems can be classified according to their filing arrangements,

homogeneity of components or the power of the processors involved. However,

by considering the classes mentioned above, it is clear that different classes

achieve the objectives of distributed systems to a varying degree. The systems in

class 1, for example, achieve to some extent the objectives of resource sharing

and extensibility. The systems in classes 2 and 3 come closest to achieving all

the objectives. Although the systems in classes 4 and 5 may achieve the

objectives of resource sharing and increased performance, due to the dependence

of components on each other the objectives of availability and extensibility are

not fully met.

1.3 LOAD SHARING MULTIPROCESSOR AND

DISTRIBUTED SYSTEMS

This thesis is primarily concerned with load sharing in distributed computer

systems. However, since most early reported work on load sharing was done for

multiprocessor systems, and some of the concepts employed could be applicable

to distributed systems, we shall also briefly discuss load sharing in

-9-

multiprocessor systems. Therefore in this section we shall informally define the

terms Multiprocessor System, Distributed System, and Load Sharing as they

will be used in this thesis.

Multiprocessor System

In this thesis a Multiprocessor System will be assumed to have the generic

form shown in Figure 1.1 below. A multiprocessor system consists of more than

one processor (PI, P2 Pn). All the tasks (Tl, T2 Tm) waiting to be executed

are allocated to the processors by one scheduler. Communications between the

processors are established through the communication medium, which is likely

to be, but not necessarily, shared memory. This definition of a multiprocessor

system would cover most systems in group five of Keefe's classification scheme.

Scheduler

MULTIPROCESSOR SYSTEM

FIGURE 1.1

-10-

Distributed System

The term Distributed System, in this thesis, will refer to systems with the

generic form shown in Figure 1.2. In a distributed system there is more than one

computer. Note that a multiprocessor system can be part of a distributed

system. Each computer has a scheduler that allocates the tasks waiting at that

computer to the processor (or one of the processors if the computer is a

multiprocessor). The computers communicate with each other through the

communications medium. The arrows between the schedulers indicate that it is

possible for a computer to request, but not demand, services on the others in the

system.

Therefore, our distributed system includes the systems belonging to classes

one, two and three of the Keefe's classification. Systems belonging to class four

are not considered in this thesis.

Load Sharing

One of the main objectives of distributed and multiprocessor systems is to

increase the system performance by utilising more resources. A resource that

influences the performance of a system more than any other is the processing

unit or simply the processor of a system. In a multiprocessor system there is

more than one processor to execute the tasks. It is intuitively clear that the best

performance will be obtained if all the processors are kept equally busy

(provided that there are more tasks than processors).

Since in a multiprocessor system there is only one scheduler allocating

tasks, it will be aware of the current computational load on each processor.

Therefore one would expect that allocating tasks to processors in a way that

-11-

Computer 1

...
C

Computer 2 0
m
m
u
n

1 1

C

a
t
1

0
n

.... ...
M

S M e
Computern h e d

1

U

Tl, T2 ... Tmn m

DISTRIBUTED SYSTEM

FIGURE 1.2

maximises the performance would not be difficult. However, since there can be

differences in the powers and memory capacities of processors, as well as

differences in the computational and communication requirements of tasks,

finding an optimal allocation can be quite complicated.

-12-

In most distributed systems it is only when a computer requires remote data,

or remote execution of a program, that it communicates with other computers in

the system. Therefore it is common to find situations, particularly in teaching

laboratories, where one computer is being used by so many students that its

response time degrades to an intolerable level, while several other computers in

the system are either being used very little or not at all. It is clear that in these

situations the transfer of some suitable tasks from a heavily loaded computer to

the less loaded or an idle computer may improve the overall performance of the

system. However, several problems need to be resolved before this can be

achieved; for example, how does one computer in the system find the load on

others, and how can one be sure that the overhead of transferring a task to a

remote computer will not outweigh the benefits?

Thus, we see that both in multiprocessor and distributed systems the

problem is essentially that of sharing the computational load of a system among

its available processing resources. We shall, therefore, refer to this problem as

that of Load Sharing. The purpose of load sharing is to improve the

performance of a system. The performance of a system can, however, be

measured with respect to several criteria; for example, throughput, response

time, and completion time. The informal definition of Load Sharing will

therefore be the distribution of a system's computational load among its

available processing resources to improve one or more of the performance criteria.

The criteria being improved will be called the Objective of load sharing. A

system can perform load sharing by implementing what will be known as a

Load Sharing Scheme.

The role of load sharing in a system can be looked at from two different

angles. Firstly, load sharing may be regarded as a feature that helps achieve the

objectives of resource sharing and increased performance. In this role, load

-13-

sharing is like the feature of system transparency (section 1.1) that encourages

the users to share the system resources.

Secondly, load sharing can be viewed as an extension of the responsibilities

of a scheduler. For example, a scheduler in a multi-user computer switches the

processor among waiting tasks to achieve some objective(s) of the scheduling

scheme. This objective can, for example, be the provision of an acceptable

response time to all interactive users. When performing load sharing, the

scheduler would also have to consider other computers in the system before

assigning a task to a processor.

1.4 AIMS AND STRUCTURE OF THESIS

In this thesis we shall study the problem of load sharing in distributed

systems. In order to further understand the load sharing problem and to find

how it has been resolved in the past, in Chapter Two we review several proposed

load sharing schemes for multiprocessor and distributed systems. However, due

to lack of common assumptions and differences in their structures it is difficult

to establish meaningful comparisons between the various load sharing schemes

reviewed for distributed systems. Therefore in Chapter three we identify and

suggest solutions for the fundamental issues that need to be resolved when

implementing a load sharing scheme on any distributed system. Two reported

load sharing schemes for real distributed systems are then compared to find how

each has resolved the identified fundamental issues.

The Computing Laboratory at the University of Newcastle upon Tyne has

developed an architecture for distributed systems called Unix United. For an

existing distributed system based on this architecture it was observed that at

most times not all the constituent single-user machines were being used. Hence

-14-

there was a possiblity of improving the system performance by designing and

implementing a load sharing scheme on it. In Chapter Four we first describe the

general structure of Unix United systems and then consider ways of

incorporating load sharing in this architecture. Chapter Five describes the

details of the existing Unix United system, and how a load sharing scheme was

designed for it by resolving the fundamental issues identified in Chapter three.

In Chapter Six we describe the implementation of the load sharing scheme

designed in the previous chapter.

In order to assess the benefits of implementing the load sharing scheme we

carried out several experiments under different system conditions. These

experiments are described, and their results discussed in Chapter Seven.

Finally, in Chapter Eight, conclusions of the study, and suggestions for future

work are outlined.

-15-

CHAPTER TWO

A SURVEY OF LOAD SHARING

2.1 INTRODUCTION

Many researchers have studied the problem of load sharing either

abstractly or for real systems, albeit under different titles such as : Load

Levelling, Task Allocation, Software Allocation, Task Assignment, Load

Balancing, and Task Scheduling. Although this thesis is concerned with load

sharing in distributed systems, in section 2.2 the load sharing schemes for

multiprocessor systems are reviewed because most of the early work on load

sharing was done for multiprocessor systems. Furthermore, we were interested

in comparing the load sharing schemes for multiprocessor systems with those

for distributed systems that are reviewed in section 2.3. This chapter is

concluded by section 2.4 which discusses the differences beteween load sharing

schemes for multiprocessor and for distributed systems.

2.2 MULTIPROCESSOR SYSTEMS

In order to illustrate the load sharing problem, consider an example of a

multiprocessor system shown in Figure 2.1. There are two processors (PI, P2)

and three tasks (TI, T2 and T3) to be scheduled. Most of the load sharing

schemes for multiprocessor systems reviewed in this section make the following

assumptions about such a system:

- No tasks arrive at the scheduler queue during the scheduling oftasks Tl,

T2 and T3;

- At the start of the scheduling the processors in the system are not

execu ting any tasks;

-16-

A MULTIPROCESSOR SYSTEM

FIGURE 2.1

- For each Task the following information is supplied:

Execution Cost on Each Processor: The execution cost is some

measure of the amount of computation required by the task. This could be,

for example, the actual cost in money terms, the number of instructions to

be executed, or the CPU time required. The execution cost can depend on

many factors including the processor speed. Therefore, if the processors are

not identical, the execution costs of a task would vary from processor to

processor. The execution cost of a task does not include the cost that is

incurred when a task communicates with another task(s).

Communication Costs: The communication cost is some measure of the

amount of communication that takes place between two given tasks. Two

assumptions are made about the communication costs. Firstly, the

communication cost for two tasks executing on the same processor is

negligible. Secondly, the communication cost for two tasks executing on

-17-

different processors is independent of the processors being used (this will

not be true, for example, in a distributed system where the communication

costs for neighbouring computers will be less than the computers that are

farther apart, in networking terms).

Both the execution and the communication costs are assumed to be positive

integers, and a higher value represents higher cost. How these costs are

calculated, and who provides them, need not concern us at this stage.

Tables 2.1 and 2.2 give sample execution and communication costs

respectively for the system shown in Figure 2.1

PI

Tl 2

T2 3

T3 2

EXECUTION

TABLE 2.1

P2

1

3

1

COSTS

TI T2 T3

TI 3 0

T2 3 2

T3 0 2

COMMUNICATION COSTS

TABLE 2.2

Consider a load sharing scheme with the objective of minimising the total

cost of executing all three tasks. The total cost will be the sum of all execution

costs plus the communication costs of tasks on different processors. Given N

processors and M tasks there are NM possible ways to schedule the tasks to

processors. Table 2.3 gives the eight (23) possible allocations for the system in

Figure 2.1 along with their total costs.

-18-

No PI P2 EXECUTION COMMUNICATION TOTAL
COST COST COST

1 T1, T2, T3 - 2+3+2-7 - 7

2 - T1, T2, T3 1+3+1=5 - 5

3 T1, T2 T3 2+3+1=6 2 8

4 T3 T1, T2 1+3+2=6 2 8

5 T2,T3 T1 3+2+1=6 3 9

6 T1 T2,T3 2+3+1=6 3 9

7 T2 T1, T3 3+1+1=5 2+3=5 10

8 TI, T3 T2 2+2+3=7 2+3=5 12

TABLE 2.3

The second allocation, where all the tasks are assigned to processor P2,

results in the minimum total cost. One reason is that this allocation avoids the

communication cost between the task pairs T1,T2 and T2,T3.

It might seem that load sharing to achieve minimum total cost is a trivial

matter because it would always result in allocating all the tasks to a processor

with minimum sum of execution costs, thus avoiding any communication costs.

However, this is not necessarily true because sometimes the difference in

execution cost of a given task on two different processors is large enough to

make up for the communication costs. For example, consider a system

consisting of two tasks (T1 and T2) and two processors (PI and P2). The

execution and the communication costs for this system"~e shown in Tables 2.4

and 2.5 respectively. The four possible allocations with their total costs are

shown in Table 2.6.

In this case the allocation ofT2 to PI, and T1 to P2 results in the minimum

total cost. This rather simple example illustrates that the avoidance of

communication costs does not always result in the minimum total cost.

-19-

PI P2

Tl 6 2 Tl

T2 1 4 T2 1

EXECUTION COSTS COMMUNICATION COSTS

TABLE 2.4 TABLE 2.5

No PI P2 EXECUTION COMMUNICATION TOTAL
COST COST COST

1 Tl, T2 - 6+1=7 - 7

2 - Tl, T2 2+4=6 - 6

3 Tl T2 6+4=10 1 11

4 T2 Tl 1+2=3 1 4

TABLE 2.6

In the previous chapter (section 1.3) load sharing was informally defined to

be the distribution of computational load throughout the system in order to

achieve some objective(s). In the above two examples the objective had been the

minimisation of total costs. If the execution costs for the example of Figure 2.1

represent the CPU times required for each task, and the communication costs

represent the additional CPU time required for communication between a pair

of given tasks, then the allocation chosen (all tasks to P2) will use the minimum

number of CPU time units (ignoring the interference costs that result due to

switching of the processor among three tasks).

-20-

The minimisation of the total CPU time does not mean, however, that the

allocation of all three tasks to one processor satisfies the other objectives also.

For example, the response time (for interactive tasks) and the system finishing

time (tl:t-e time when all the tasks in the system have been executed) may not be

minimised by this allocation. If the objective of load sharing is, for example, to

minimise the response time, then load sharing should involve the evaluation of

a function that relates the execution and the communication costs to response

time. This function will have to be evaluated for all the possible allocations if

the optimal case is to be found.

N ow that we have some understanding of the nature of the load sharing

problem in a multiprocessor system, we can review the efforts that have been

made by various researchers to solve it. Two studies (Stone's and Lo's work) will

be considered in some detail, while other work is mentioned only briefly. Stone's

work is looked at in detail because it has also been used in several other studies.

Lo's work is considered because it illustrates how the optimal solution methods

of Stone's work can be adapted for larger multiprocessor systems to give non­

optimal, but still acceptable, solutions.

2.2.1 Stone's Graph Theoretic Approach:

In [STONE 77] Stone has used a graph theoretic approach to analyse the

problem of finding an allocation oftasks to processors which minimises the total

of execution and communication costs. Similar approaches have been adopted in

[BOKHARI 79, CHU 80, WU 80, RAO 79]. The algorithm presented in [STONE 77]

constructs a graph whose nodes represent either a processor or a task. The edges

between the task nodes represent their communication, and are labelled with

the corresponding costs. The edges between the processor and task nodes are

labelled with weights given by the following equation:

-21-

I

N-I

where:

r:;t:q

(N-2)

(N-I) Equation I

Wiq is the weight of the edge joining task i to processor q;
N is the number of processors;

and Xir is the execution cost of task i on processor r.

For a two processor system with two tasks this means that the edge between

say a task node TI, and a processor node PI is labelled with the execution cost of

Tl on P2; while the edge between the task node Tl and processor node P2 is

labelled with the execution cost ofTl on PI. For example, the graph obtained for

the system in Figure 2.1 is shown below in Figure 2.2. Compare the weights on

FIGURE 2.2

-22-

the edges between the processor and the task nodes with the values given

earlier in Table 2.1.

In graph theory a cut set consists of a minimum set of edges whose removal

from the graph would split the graph into two disjoint sub graphs. For two given

nodes there can be more than one cut sets that leaves them in different sub

graphs. The capacity of a cut set is the sum of weights of all the edges in it. The

maximum flow minimum cut set is the one with minimum capacity [NARSINGH

74].

Stone shows that if there are N processor nodes in the graph, then an N-way

cut could partition the graph into N disjoint subsets such that there is only one

processor node in each subset. It is proved that the maximum flow minimum cut

set of this graph specifies the optimal allocation of tasks to processors. For

example, all the possible cut sets for the graph in Figure 2.2 are shown, with

their capacities, in Figure 2.3. The minimum capacity of five is given by the cut

set C2 that leaves all the task nodes with the processor node P2 and none with

P1.

While this method of finding an optimal allocation is simple, it has several

limitations. Firstly, an extension of this method to an arbitrary number of

processors would require an N-dimensional min-cut algorithm which is known

to be an NP-complete problem and, therefore, computationally intractable

[HARARY 69]. Secondly, this method of finding a minimum cost assumes that all

the processors have enough capacity to execute all the tasks that are assigned to

them. For example, an extension of this method to include a memory constraint

is complex and the solution is, again, NP-complete [RAO 79]. Another drawback

of this method is that it does not take into account the decrease in throughput

-23-

9

FIGURE 2.3

that results from delays occurring when a processor is switched between various

tasks that are allocated to it.

2.2.2 Lo's Heuristic Algorithms:

In [LO 84] Lo proposed heuristic algorithms for load sharing with the

objectives of minimising the following:

execution and communication costs;

execution, communication, and interference costs;

-24-

execution and communication costs, whilst respecting bounds on the

number of tasks assigned to each processor.

Minimising execution and communication costs:

This algorithm consists of three parts: Iterative, Lump, and Greedy. The

Iterative part is based on Stone's work [STONE 77]. In this part a graph of task

and processor nodes is first constructed as described in section 2.2.1. A graph Gj

is obtained from this graph by replacing all the processor nodes, except one

special node called Pj, by one node Pj'. All the edges from each task node to all

the processor nodes (except Pj) are replaced by a new edge with weight equal to

the sum of weights on the replaced edges. For example, consider the graph G

(Figure 2.4) with three tasks and three processor nodes. If Pl is selected as a

or----- 1 -3 ==3-"""""'IIII~~~::111111
3

.............................. "'--________ 3 ________ ~""""'""""'

GRAPHG

FIGURE 2.4

-25-

special node then the graph G1 (Figure 2.5) will be obtained.

1

2

GRAPHGI

FIGURE 2.5

Thus a graph is obtained with only two processor nodes. The maximum flow

minimum cut on this graph would partition it into two disjoint subsets Aj and

Aj'. Aj would contain the processor node Pj and some Task nodes. According to

the result in [STONE 77], in an optimal task allocation, the tasks in Aj are

assigned to the processor j.

If there are N processor nodes in the system then the above process IS

repeated N times, once regarding each processor as a special node. Each time

the maximum flow minimum cut algorithm is applied to find the allocation of

tasks nodes to the special processor node.

If after N iterations all the tasks have been allocated then the allocation is

optimal with respect to total execution and communication costs. However, if

some tasks are left over, then the graph at the time oflast iteration is modified

-26-

by deleting all the assigned task nodes from the graph (recall that there will be

two processor nodes Pj and Pj' in the graph). The execution costs (on Pj) of the

remaining tasks are redefined as their original execution cost plus the sum of

communication costs between the task and all tasks already assigned to

processors other than Pj. The weight on the edges from remaining tasks to Pj are

recalculated according to equation 1 in section 2.1. The maximum flow

minimum cut algorithm is applied again for each processor.

This second iteration stops when either all the tasks have been assigned or

when no tasks are assigned in the last iteration. If all the tasks are allocated

then the allocation is optimal. Proofs of this and that no two processors will be

assigned the same task and that the iteration process does indeed halt are given

in [LO 83].

If it is found that, even after the second set of iterations, there are still some

tasks that have not been assigned to processors then the second part of the

algorithm, Lump, is applied. This part checks whether it would be cheaper to

assign all the remaining tasks to one processor rather than to find an optimal N­

way cut for the remaining graph. If so, the remaining tasks are all assigned to

the processor that yields minimum total execution cost for remaining tasks.

Otherwise, part three (Greedy) of the algorithm is applied. This part locates

clusters of tasks with high communication costs. All the tasks in the same

cluster are allocated to the same processor.

Minimising execution, communication, and interference costs:

When more than one task is assigned to a processor then they compete with

each other for the resources of the processor (e.g. CPU time) potentially

resulting in low throughput and longer completion times. In [LO 84] an

algorithm is proposed that takes account of the competition for resources. For

-27-

this purpose the concept of interference costs is used. Interference costs are based

on two main factors:

Processor based: The processor based interference costs affect all the

tasks on a processor and are dependent upon the amount of resources

available on that processor;

Communication based: The communication based interference costs

apply to communicating tasks on a same processor which make use of the

inter-process communication facilities (e.g. message buffers).

Therefore the interference costs between two tasks i and j, which arise when

both are assigned to processor q, can be expressed as the sum of two components:

Iq(i,j) = IqP(i,j) + Iqc(i,j)

where:

Iq(i,j) = total interference cost between tasks i andj when

allocated to processor q;

IqP(i, j) = processor based interference cost;

Iqc(i,j) = communication based interference cost.

It is assumed that the interference costs are independent of the processors to

which two tasks, i andj, are assigned. Therefore Iq(i,j) = I(i,j)'

In order to find an allocation of tasks to processors that minimises the total

costs of execution, communication and interference, the same algorithm as in

the last sub-section is used. The difference is that this time the weights of the

edges between a task node and a processor node are calculated using the

equation 2 (instead of equation 1 in section 2.2.1):

-28-

1 L Xir
(N-2) 1 LIif Wiq = Xiq +

N-l r:;t:q (N-l) 2(N-l)
l~f~M

Equation 2

The edges between the communicating task nodes, i andj, have weight equal to

their communication costs minus their interference costs (W ij = Cij - lij).

Lo found that the addition of interference costs to the algorithm caused a

moderate decline in its performance in finding optimal assignments. However,

it dramatically improved the ability of the algorithm to choose assignments

with greater parallelism and less completion times.

Bounds on number of tasks assigned to each processor:

Restricting the number of tasks assigned to each processor allows one to

take into account the finite capacity of the processors as a factor in task

assignments. As a result a more realistic model is obtained which reduces the

completion times of the set of tasks by deliberately utilising more processors.

In [LO 84] it is proved that for small systems in which the number of tasks is

less than or equal to twice the number of processors, and in which each

processor may be assigned at most two tasks, an optimal assignment can be

found in polynomial time. For this purpose the graph theory concept of

matching is used. It is proved that a maximum weight matching corresponds to

an assignment which minimises the total execution and communication costs

under the constraint that no processor is assigned more than two tasks.

-29-

Maximum weight matching, and thus optimal assignments, can be found in

polynomial time by network flow algorithms.

For systems with M tasks, N identical processors, and bound B, rMINl < B

< M, as the maximum number of tasks per processor, the following algorithm is

used to find sub optimal assignment:

Construct a graph G with a node for each task Ti and and an edge between

each pair of tasks, Ti and Tj, with weight Cij (the communication cost);

IfM < 2N then the graph matching algorithm can be applied to obtain

an optimal assignment;

IfM> 2N, then tasks are grouped in classes using the greedy algorithm

mentioned in the last section. The maximum size of a cluster is B/2.

The greedy algorithm is repeated until the number of clusters is less

than or equal to 2N.

A new graph G' is obtained with a node corresponding to each cluster and an

edge between a pair of clusters, Ra and Rh, with weight Wij such that:

Wah = ~Cij
Mi E Ra

Mj E Rh

Since the number of nodes in this new graph G' is less then 2N, a graph

matching algorithm can be used to produce an assignment of clusters to

processors which minimises the total execution and communication costs of

clusters, while keeping the number of tasks on each processor less than or equal

to the bound B. The graph matching algorithm produces an optimal assignment

-30-

for the reduced graph G' but this assignment may be sub optimal for the original

graph G. The simulation results reported by Lo show that the algorithm found

optimal assignments in 82.4% of cases.

2.2.3 Other Work:

In this section brief descriptions of some further approaches to solving the

problem ofload sharing in multiprocessor systems are presented.

In [CHOW 79] queuing models for a simple heterogeneous multiprocessor

system are presented, analysed and compared. Each model is distinguished by a

task routing strategy which is designed to reduce the average task turnaround

time by balancing the total load among the processors. The following three task

assignment policies were analysed:

Minimum Response Time Policy: An arriving task is sent to the processor with

the least value of queue length to service rate ratio.

Minimum System Time Policy: On arrival of a new task, the expected time to

complete the tasks already at a processor plus the new task is calculated for

each processor. The new task is then assigned to the processor with smallest

value for the expected completion time.

Maximum Throughput Policy: This policy assigns each arriving task to the

processor that will maximise the expected sum of the individual throughputs of

each processor.

The comparison of above policies for a two-processor system showed that the

maximum througput policy achieves the best average job turnaround time.

In [PRICE 84] Price and Krishanparsad have proposed a simple heuristic

algorithm called the Clustering algorithm. In this algorithm pairs of tasks are

-31-

considered for allocation in order of decreasing communication costs. Thus tasks

that communicate heavily are more likely to be assigned to the same processor.

If neither task of a given pair is currently assigned to a processor, then the pair

is assigned to the processor for which the communication costs are minimal and

the processor capacity is not violated. The clustering algorithm was tested on

simulated networks with uniform data links and processor capacities. It was

found that the optimal solutions were achieved for the problems in which

communication costs dominated execution costs.

In [NI 81] Ni and Hwang have studied optimal probabilistic load sharing

policies to improve the average task turn around time (time from the

submission of a task to the scheduler to its completion by one of the processors)

for a multiprocessor system. In probabilistic load sharing the scheduler

allocates the tasks to processors on a proportionate approach which is

independent of the current load on processors. For example, the probability of

assigning a task to processors can be proportional to their processing speeds. It

is argued that the probabilistic load-sharing policy is easier to implement than

the deterministic policies in systems with large number of processors. The

scheduling overhead in the probabilistic approach is low because the current

processor information is not needed. In addition, to prove optimality of a

deterministic load sharing policy is a non-trivial task and more difficult than

the probabilistic policies.

2.3 DISTRIBUTED SYSTEMS

In order to illustrate how the load sharing problem relates to distributed

systems, consider an example of a distributed system with two computers

(Cl,C2), as shown in Figure 2.6.

-32-

ComputerCl ---.

II : ~~ ;~~;f~;f~': ~~: III ·[~~1~~tl ·1" I~
C M

Pl .. 0 e
~ m d

~ m 1
u u
n m
1

c
ComputerC2 a

'r- t

Scheduler 2 J ".,.,.,
1 P2 l..t 110.. ,..

E, .• ' •• ~ 0

n
... _---.....

A DISTRIBUTED SYSTEM

FIGURE 2.6

We make the following, rather unrealistic, assumptions about this system:

Both schedulers use a non-pre-emptive scheduling scheme. Thus, a task

does not give up CPU until it is finished.

All the tasks (Tl to T5) require t seconds of CPU time to execute.

None ofthe tasks need to communicate with each other.

Time tJ.t is required to transfer a task from one computer to the other;

No more tasks arrive at either computer until all five tasks have been

completed.

Without any load sharing, the completion time of all tasks in the system

would be 5t. If the scheduler on Cl sends tasks T4 and T5 to execute on C2, then

the completion time would be 3t + 2tJ.t. As long as tJ.t is less than t, the

completion time would be reduced as a result ofload sharing.

-33-

In a real system, however, there are several issues that have to be resolved

before any load sharing could be performed, for example:

How does C1 know that C2 has less tasks than itself?

How is the time for task transfer established?

What if other tasks arrive at C2 soon after it has received tasks from C1?

In a distributed system with more than two computers, which one would

be selected by C1 to execute its tasks?

These and other issues are discussed in detail in Chapter Three. In the

following sub-sections, however, we first review some approaches that have

already been taken to resolve the load sharing problem in distributed systems.

2.3.1 A Load Sharing Scheme for MOS:

In [BARAK 85a, BARAK 85b, SHILOH 83] a load sharing scheme has been

described for MOS: A Multicomputer Distributed Operating System. MOS is a

general-purpose time-sharing operating system that makes a cluster of loosely

connected independent homogeneous computers behave as a single machine

Unix system. The main goals of the system include network transparency,

decentralised control, site autonomy, and dynamic process migration.

The dynamic process migration feature forms the basis of the load sharing

scheme implemented on MOS to reduce response times. The scheme is

implemented by three algorithms: local load, exchange, and process migration.

The local load algorithm is executed independently by each computer to monitor

its own load. The number of processes ready to run and waiting for the CPU is

taken every 20 milliseconds and, essentially, averaged over a 1 second period.

-34-

The exchange algorithm exchanges the load information between the computers

every 1 second. Each computer maintains a small load vector L of size (to store

the load information. The first component of this vector (L[O]) holds the value of

the local load. The remaining components hold the load values of an arbitrary

subset of computers. Every second each processor:

Updates its own load value;

Chooses a random integer i such that 1 <i< n, where n is the number of

computers in the system;

Sends the first halfofits load vector to computer i;

On receiving a portion of load vector each computer merges this information

with its local load vector, using the mapping:

L[i] -- > L[2i] 1 < i < «(/2) - 1

and Lr[i] -- > L[2i + 1] 0 < i < «(/2)-1

Where Lr are the components of the received vector.

The process migration algorithm on each computer picks up the candidate

processes in a round robin fashion, and causes them to consider migration. Since

it is difficult to determine in advance the computational requirements of a

process, only those processes which have already used some minimum CPU

time on the current machine become candidates for migration. In this way short

processes, or those that have just completed migration, are prevented from

migration until they have gained sufficient CPU cycles on the current

computer.

The main considerations for process migration are:

-35-

Computer load information that is supplied by the load exchange

algorithm. This information is used to estimate the expected response time

which a process would get on a given computer.

Communications overhead. Each process accumulates information about

its communication with different computers. Ifmore than half of the

process's communication is performed with any single computer, then the

process favours running on that computer.

When the process table of a computer becomes nearly full, migration of

new processes becomes essential, and the computer raises its local load

(in its load vector) above a certain value to prevent processes from other

computers moving in.

The initial performance evaluation of the above scheme confirmed that it

was possible to reduce the response time of MOS by dynamically load sharing

the system.

2.3.2 Load Sharing with Maitre d' :

In [BERSHAD 86] a load sharing scheme called Maitre d' (French for host or

server) has been described. It runs at the user level on computers (VAX 750, 780,

785, MicrovaxII) running Unix systems. All computers that are to be able to

offioad tasks to other computers run a client process that maintains the list of all

server machines, including status information as to whether or not they are

currently willing to accept tasks.

The computers that are prepared to receive tasks from others run a server

process that maintains status connections with client computers and accepts

remote tasks. A server declares itself available ifits five minute load average is

less than some threshold (receive threshold), and there are fewer than a given

-36-

number of active users logged in to it. Normally, all the machines would run

both the client and the server processes, thus allowing all the computers to

exchange tasks with all the other computers.

Only those application programs that are modified to run under Maitre d'

participate in the load sharing scheme. These application programs first contact

the local client process, asking for an available computer. If the local load is less

than the send-off threshold, or no remote computers are presently available, the

application is informed by the client process to perform itselflocally. Otherwise,

the client process carries out a round-robin traversal of its list of available

servers until it finds a computer where the server has advertised a willingness

to accept tasks. In this case the client passes back the internet address of this

server to the application program. The application then requests the remote

server to execute it.

It is reported that the statistics collected over a one year period show that the

load sharing scheme has, on average, halved the response times for programs

that were modified to run under Maitre d'.

2.3.3 Load Sharing to meet Real Time Constraints:

Some applications require that the tasks submitted to a distributed system

must be executed within a given time limit. Therefore one of the objectives of

load sharing could be to meet the real time constraints of tasks in the system.

In [RAMAMRITHM 84, ZHAO 85] Ramamrithm and Zhao have proposed an

algorithm that performs load sharing in a loosely coupled distributed system. In

this algorithm the schedulers have to consider two types of tasks:

-37-

I - Periodic: A periodic task, say with period T, is one which has to be

executed once every T time units. These tasks have known start times,

deadlines and computation times.

11- Non-periodic: A non-periodic task is one which occurs in the system just

once and at an unpredictable time. Upon arrival it is characterised by its

deadline and its computation time.

A task is said to be guaranteed if under all circumstances it will be scheduled

to meet its real time requirements. The aim of the load sharing scheme is to

guarantee as many tasks as possible, by utilizing the resources of the entire

system. The scheduler on each computer in the distributed system consists of

four components that work together and with components running on other

schedulers to achieve the objective ofload sharing. These four components are:

I - The Local Scheduler deals with the tasks that arrive directly (not from

guarantee routine (described below). If the task cannot be guaranteed, it is

put in the bidder's queue to be tried by another scheduler in the system.

11- The Dispatcher determines which of the guaranteed periodic and non­

periodic tasks is to be executed next. The decision is based on earliest­

deadline-first scheme. The run time cost of the dispatcher is part of the

computation time of every task.

m- The Bidder receives requests from the local scheduler to send a task to

another bidder. It also receives requests from other bidders and tries to

guarantee the received tasks on the local scheduler.

-38-

IV- The Guarantee Routine determines if there is enough surplus processing

power to execute a newly arriving task before its deadline, without

effecting the tasks guaranteed already.

Note that for the above scheme to work, the bidder needs to know how much

surplus processing power is available on other computers. This information can

be passed in bids or on request. When bidding for a task, the resources are not

reserved for it. This is because some times the surplus situation gets changed by

the time a task arrives after a successful bid.

The above strategy is extended in [ZHAO 87] to handle the resource

requirements of tasks in addition to deadlines. A heuristic function is developed

which synthesizes various factors of real-time scheduling considerations to

actively direct the scheduling process to a plausible path to follow, and prevents

it from considering implausible paths. The simulation results show that in most

cases the schedules found by the heuristic algorithm are optimal or close to

optimal.

2.3.4 Other Work:

In [EAGER 84, EAGER 85] three types of load sharing schemes for distributed

systems have been studied. In the random scheme a computer is selected at

random, and a new task is transferred there for execution. No other system

information is therefore used by this scheme. In the threshold scheme a

computer is selected at random, but this time the selected computer is probed to

determine whether the transfer of the task would increase the number of tasks

already in service or waiting for service (queue length on the selected computer)

above a given threshold value. If not, then the task is transferred to the

randomly chosen computer, otherwise another computer is randomly selected

-39-

and probed. In the shortest scheme a given number of distinct computers are

chosen at random, and each is polled in turn to determine its queue length. The

task is then transferred to the computer with the shortest queue, unless it is

greater than or equal to some threshold queue length in which case the task is

executed at the originating computer. The study concluded that the threshold

scheme was better than the random; although the shortest scheme used more

system information, its performance was not significantly better than the

threshold policy.

In [LIVNY 82] three algorithms for a load sharing scheme have been studied.

In the state broadcast algorithm whenever the state of a computer changes

because of the arrival or departure of a task, the computer broadcasts a status

message that describes its new state. The decisions by all the computers in the

system to transfer tasks are based on this information. In the broadcast idle

algorithm a computer broadcasts its state only when it enters an idle state.

This message alerts other computers and they start considering task transfer.

In the poll idle algorithm a computer starts polling a subset of system

computers for tasks when it enters an idle state. The simulation results showed

that each algorithm was good for certain conditions, and therefore it was not

possible to select one as being the best.

In [ZATTI 85] a multi variable information scheme to balance the load in a

distributed system has been described. The objective was to minimise the

response time of a particular set of jobs. However, instead of using one general

load index which could give some indications of the expected response time of a

new task, a multivariable information scheme is used where a separate index

for each resource (CPU, free memory, I/O traffic) is maintained over the whole

system. A machine is selected to execute a task by matching each of the

machine's available resources with the corresponding requirements of the task.

-40-

The experiments performed with a prototype implementation show that the

load sharing scheme is able to make the right choice on a set of test jobs between

55 and 80% of the times.

In [CAREY 86] an approach to query processing in a locally distributed

database system has been presented which integrates query processing and load

sharing. This approach uses the load information to dynamically choose from

among those sites that have copies of the relations referenced by the query.

Simulation results indicate that load-shared query processing can provide

improvements in both query response times and overall system throughput as

compared to schemes where execution sites are either statically or randomly

selected.

Dynamic load sharing in locally distributed data base systems is also

investigated in [YU 86]. Here the database is partitioned and distributed among

multiple transaction processing systems, and a common front-end processor is

employed for transaction placing. Simulation studies of four different load

sharing strategies showed that dynamic strategies which considered both

balancing the load and reducing remote processing requests can be superior to

the optimal static strategies.

In [HAC 85] a dynamic load sharing policy is described for a distributed

system consisting of a number of hosts connected by a local area network. The

file system modelled in this study was that of the LOCUS system [POPEK 83]

which allowed replicated files. The load sharing algorithm selects the site for

process execution and also decides which file to use. The algorithm bases its

decision on a periodically collected system information. The simulated

experiments show that the performance of the system improved by up to 21.7%

for file accesses, and up to 19.6% for the CPU intensive jobs.

-41-

Two different dynamic process assignment schemes for load balancing in

distributed systems are studied in [LELAND 86]. In the initial placement process

assignment scheme the operating system assigns a process to one of the

computers (not necessarily the one on which the process was submitted) at the

time of process creation. In the process migration scheme the operating system

may reassign (migrate) a process to different computers while the process is

being executed. In order to model the behaviour of these two schemes, the

resource utilisation (CPU usage and disk accesses) of over 9.5 million Unix

processes was observed. These processes were created during normal

professional computing by the users in two computing laboratories. The data

obtained was then used to carry out simulation studies of the two process

assignment schemes. A comprehensive set of results are given in [LELAND 86],

however, the final conclusions were that:

Initial placement alone, or process migration alone, provides significant

reductions in the response times of processes requiring large amounts of

CPU time.

Initial placement and process migration provide still more improvement

when used together, especially as the number of processes involved

increases.

Simple heuristics for initial placement and process migration suffice to

protect ordinary processes from harm while providing dramatic benefits

for CPU-intensive processes.

In [WANG 85] a hierarchical taxonomy of load sharing schemes, based on the

amount of system information employed, has been presented. The load sharing

schemes in different classes are then compared by observing their performance

under simulated conditions. It is concluded that widely varying performance is

-42-

obtained with different schemes. Furthermore, with the same level of

information available, Server Initiative algorithms (where free servers find busy

servers and offer to execute their tasks) have the potential of outperforming

Source Initiative algorithms (where busy servers look for free servers).

In [NI 85] a distributed algorithm for load sharing has been described. It is

reported that by employing the algorithm a significant system performance

improvement over no load sharing effort is shown by simulating a sample five­

processor distributed system. The results also indicated that the definition and

measurement of processor load is not required to be very accurate and a good

estimate of processor load is sufficient to improve the system performance.

2.4 CONCLUSIONS

In this chapter we have considered several load sharing schemes for

multiprocessor and distributed systems. It is difficult to make direct comparison

between these load sharing schemes, particularly those for distributed systems,

because they are designed for different systems with different objectives.

Therefore, in the next chapter we identify the fundamental issues that are

common to all load sharing schemes for distributed systems. However, it is

possible to make general comparison between load sharing schemes for

distributed and load sharing schemes for multiprocessor systems.

We observe that most schemes for load sharing on multiprocessor systems

assume that there is one scheduler that makes use of prior knowledge of tasks'

computational requirements in assigning them to processors. Furthermore,

many of these schemes take account of the communications costs between tasks

executing on different processors. Generally, no attention is given to the

additional cost of assigning a task to a particular processor, or to the fact that

-43-

for real systems it is almost impossible to determine a task's computational and

communication requirements in advance.

On the other hand, most load sharing schemes for distributed systems do not

assume prior knowledge of tasks' computational requirements. The decision to

transfer tasks is based on the current state of the system, and is made by

independent schedulers on each computer in the system. In contrast to the

multiprocessor schemes, load sharing schemes for distributed systems do not

generally consider the additional communications costs between tasks

executing on different computers, though the costs of transferring a task from

one computer to the other are usually taken into account.

The above survey also indicates that it is difficult to develop efficient and

computationally feasible algorithms that will give optimal solutions even for

very simple, and possibly unrealistic, models of task assignment. Heuristic

methods employed by load sharing schemes for distributed systems do not

guarantee an optimal solution but they have proved, in several simulated

studies, to yield results that provide an acceptable compromise between the

quality of a solution and the computation required to obtain it.

-44-

CHAPTER THREE

ISSUES IN LOAD SHARING DISTRIBUTED
SYSTEMS

3.1 INTRODUCTION

The examination of load sharing algorithms presented in the last chapter

has revealed a variety of proposed approaches to solve the load sharing problem

both in multiprocessor and distributed systems. However, due to lack of

common assumptions, and differences in the systems for which the algorithms

were designed, it is difficult to establish meaningful comparisons between these

various approaches.

In this chapter, therefore, a common set of fundamental issues regarding the

load sharing problem in distributed systems are identified. Some of the issues

will no doubt be applicable to multiprocessor systems as well, but the discussion

in this chapter will only be concerned with distributed systems.

The issues are presented in the following section. In section 3.3 it is shown

that two of the load sharing schemes for distriouted systems, discussed in

Chapter Two, differ from each other only in the way they resolve each of the

identified issues.

3.2 LOAD SHARING ISSUES

This section identifies the issues that have to be resolved by all load sharing

schemes. While discussing these issues we suggest some general solutions only

because the precise solutions will depend on the characteristics of the system on

45

which load sharing is being implemented. The following sub-sections present

each issue separately.

3.2.1 OBJECTIVE:

The objective ofload sharing is generally understood to be the improvement

of system performance. Since the performance of a system can be measured

according to several criteria [FERRARI 83], one needs to be more precise in

stating which criterion, or the combination of criteria, is being improved. Some

performance criteria that may be improved by applying load sharing in a

distributed system are:

- response time of the system;

- completion time of a given amount of computation;

- system through pu t;

- ability to meet real time constraints;

- execution cost (e.g. in terms of time) of a given set of tasks.

The above list is not exhaustive. Furthermore, the improvement in one

criterion may result in the deterioration of another. For example, reduction in

average response times may reduce the overall throughput of the system. Which

criterion is selected as an objective of a load sharing scheme depends on the

purpose of the system being considered. A computing service dealing mainly

with batch oriented tasks may wish to increase its throughput by load sharing.

On the other hand, a computer system controlling an industrial plant may use

load sharing to improve the ability of the system to meet the real time demands

of the plant.

46

Although it is possible to imagine a distributed system where each computer

has its own objective for load sharing, it is very unlikely in practice because of

the complexity of algorithms to implement such a scheme. In this study,

therefore, we shall assume that all the computers have same objective for

participating in a load sharing scheme.

Which ever criterion is selected, the essential point is that before

implementing a load sharing scheme, the designer should clearly and precisely

define its objective.

3.2.2 GRANULARITY AND MECHANISM:

The discussion about sharing the computational load has so far been based

on the implicit assumptions that the computational load of a system is already

partitioned into tasks that can, somehow, be distributed across the system. In

practice, the implementation of any load sharing scheme would require the

designer to make decisions about the form of the tasks, and the mechanism for

their transfer to other computers in the system.

The form of the tasks to be transferred is important for at least two reasons.

Firstly, if the load is presented to the system in a form that is not suitable for

transfer, then the load sharing scheme has to provide a facility for packaging

the load into tasks of an appropriate form that may be send to another computer

for execution.

Secondly, the performance of a load sharing scheme, and therefore the

degree to which it achieves its objective, will depend on the granularity of the

tasks that are exchanged between the computers. A finer granularity will, for

example, allow the computers to share the load more evenly, but since there will

be an overhead associated with the transfer of each task, the total overhead of

47

transferring a given amount of load would be higher than it would be for the

tasks of coarser granularity. Thus, some balance has to be achieved between the

two conflicting aims for finer granularity and lower overhead.

At the hardware level the load on a computer consists of a number of

machine operations to be carried out. From the user's point of view, in a general

purpose distributed system most of this load gets generated in an hierarchical

manner. At the top level there are users who issue commands. The commands

result in the running of programs. A program may consist of modules that

may be executed concurrently. The modules would consist of instructions that

map into machine operations to be performed.

In a load sharing scheme the granularity of tasks to be transferred to other

computers can, at least theoretically, be placed at any stage in the above

hierarchy ofload generation. Thus, at the coarsest granularity one can imagine

the transfer of users, say at login time, from a heavily loaded computer to an

idle computer. On the other hand, at the finest level of granularity, individual

machine operations could be carried out by a less busy remote computer.

From the system's point of view, however, there may be no distinction, as far

as their execution is concerned, between a user, a command, a program, and a

module. For example, a user may well be represented by a process that runs

other processes to run commands. The commands, in turn, generate more

processes to run particular programs. The modules inside programs may then be

executed by separate processes. Therefore, as far as the system is concerned, the

transfer of a task of any granularity to another machine effectively amounts to

a remote process execution. There are basically two mechanisms by which a

system can achieve remote process execution:

48

i) Code Transfer: In this mechanism, the complete image (machine code and

its data) of a process is transferred from one machine to the other. This

mechanism can, for example, be used by a load sharing scheme using the

module level granularity in a completely homogeneous, or an architecturally

homogeneous (identical machines running different operating systems)

distributed system.

ii) Remote Call: In this mechanism, a computer with heavy load requests a

computer with less load to execute a process on its behalf. The code to be

executed already resides on the remote machine and is identified by the

parameters passed with the request. This mechanism may be used to implement

a load sharing scheme that employs a command level granularity in a

completely homogeneous or a functionally homogeneous (different machines

running identical operating systems) distributed system.

The level of granularity chosen for a load sharing scheme would depend on

the features of the system being considered. If the load sharing scheme is

considered as a part of the design of a distributed system, then one could select a

particular granularity and provide mechanisms in the system to support it.

Alternatively, if the load sharing is implemented as an after-thought in a

distributed system that already provides some mechanisms for remote process

execution, then the granularity can be selected to suit this mechanism.

3.2.3 INITIA TO R:

As a result of load sharing in a distributed system, a busy computer, the

source, transfers its task(s) to a less busy (or even idle) computer, the server.

The distinction between the source and the server is based on the particular

task being transferred. In another transaction, the roles of the source and the

server may well be reversed.

49

The discussion ofload sharing so far may imply that it is always the source

that takes the initiative and searches the rest of the system for a possible server.

However, this need not be the case. In some schemes it could be the server that ,

upon becoming less busy or idle, starts searching for work and a possible source

in the system.

In [WANG 85, EAGER 85] both types of scheme have been considered in some

detail. It is reported that in source-initiated schemes the queues of tasks tend to

form at the servers, while in server-initiated schemes the queues tend to form at

sources. The study concludes that, provided the communication costs are not a

dominant factor, and both schemes use same amount of information in making

their load sharing decisions, the server-initiated schemes outperform the

source-initiated schemes.

We believe that, at least in theory, there is also a third possibility, namely

that of having a mixed scheme. In this scheme both the server and the source

may initiate the load sharing. Thus when the load of a computer exceeds a

certain maximum, or falls below a certain minimum, it starts searching the

system for a possible server or a source respectively. Such a scheme has not been

reported in the literature, possibly because of the complexity of its

implementation.

In discussing the remainder of the issues, where necessary, clear distinction

will be made between the source and server initiated schemes. Otherwise, a

source initiated scheme will be assumed.

3.2.4 INITIA TI 0 N:

In the last section we only considered the nature of the initiator of load

sharing. We did not discuss, however, the timing of this initiation. In other

50

words, when does a computer in a distributed system invoke the load sharing

scheme? There are two obvious possibilities:

i) Periodically: Every t seconds a computer starts the load sharing scheme and

considers transferring one or more of its tasks to another computer. Periodic

initiation can either be done independently by each computer (even allowing

different values of t), or it can be done collectively by all the computers at the

same time. The practical difficulties in synchronising all the computers would

make the latter approach almost impossible to implement. Periodic initiation

allows the possibility of transferring a task that is already executing on the

local computer (pre-emptive schemes).

ii) Task-arrival: When a task arrives (or when a task completes for server­

initiated schemes) the computer starts the load sharing scheme and makes

decisions about the task's transfer. For example, if command level granularity

is being used, then before carrying out the command issued by the user, the

computer may compare its load with the load on other computers. It could then

decide whether to carry out the command locally or transfer it to another

computer.

It may be suggested that there are other times when a computer may

initiate load sharing, such as when a computer's load exceeds certain threshold

value. We believe that this is a special case of periodic initiation. In this case the

first step of the scheme would be to check whether the local load is above or

below a certain value. If so, the rest of the scheme is carried out, otherwise it is

stopped until the next periodic invocation.

It is also possible to imagine a scheme that combines the above two

possibilities. For example, the scheme is normally invoked upon task arrival;

51

however, if a task does not arrive for certain period of time, then the periodic

method gets invoked by default.

Which of the above two methods is selected by a load sharing scheme would

depend on the nature of demands being put on the system as well as the

overhead of initiating the scheme. If, for example, the system is highly

interactive and the load sharing scheme is relatively cheap, then the task

arrival method is likely to be employed.

3.2.5 INFORMATION DEPENDENCY:

Mter its initiation on a particular computer, the load sharing scheme has to

make the following two decisions:

- Should one or more of its tasks be transferred to another computer?

- Ifso, to which computer should they be sent?

The rules that determine the answer to the first question are called the

transfer policy, while the rules used to answer the second question are known

as the location policy [EAGER 84]. Both these policies may use information

about the computational requirements of the task being considered, and the

current state of the system. Generally it is not possible to determine in advance

the precise computational requirements of a task. Therefore, a load sharing

scheme is likely to use information about system state only. Hence, in this

section we consider the types of system information that may be employed by

the transfer and location policies of a load sharing scheme.

In [CHOU 82, NI 85, LELAND 86] load sharing schemes have been classified as

either being static or dynamic. In static schemes the processor on which a

given task must execute is predetermined, independently of the current state of

52

the system. For example, tasks can be assigned to computers according to

probabili ties fixed in proportion to their processing speeds.

In dynamic load sharing schemes, the computer to execute a given task is

selected according to the current state of the system. For example, a dynamic

scheme may choose to assign the new task to the computer with the shortest

queue of wai ting tasks.

We believe, however, that the above definitions of static and dynamic

classes are not satisfactory for at least two reasons. Firstly, all load sharing

schemes, including static, make use of some system information, otherwise load

sharing would be impossible. In the probability-based example given above, the

static scheme has to know the correspondence between the probability values it

generates and the computers in the system.

It may be argued that the static schemes use information that remains

fixed, while the dynamic schemes use information that varies during the

operation of the system. Unfortunately, even this argument does not resolve the

issue. Although the correspondence between the probability values and the

computers may remain constant, the availability of all the processors in the

system cannot be guaranteed to remain constant (unless the system is 100%

reliable, or a crash of one computer stops the whole system). Thus, both static

and dynamic schemes need to know about the availability of computers in the

system.

The second objection to the classification of load sharing schemes into static

and dynamic schemes is that it does not reflect the amount of system

information that is used by the dynamic schemes to select a computer. In our

shortest-queue example above, the dynamic scheme could have also taken

account of the communications overhead, and the processing speeds of the

53

available computers, but this would not have been indicated by our

classification.

In [WANG 85] a taxonomy based on the system information used by load

sharing algorithms has been presented. The algorithms have been divided into

classes 1 to 7. Algorithms in a higher numbered class use all the information

employed by the algorithms of next lower class as well as some extra

information. We think that, although useful for comparing the performance of

algorithms in its different classes, this taxonomy cannot be used to classify

various algorithms incorporated in several reported load sharing schemes. This

is because algorithms in different schemes use different types of system

information, but not necessarily in the hierarchical manner that is required by

the above linear taxonomy.

Instead of attempting to classify the load sharing schemes according to the

nature of system information employed by their transfer and location policies,

we list below different types of information, a subset of which may be used by

any load sharing scheme:

i) Processor Availability: As discussed earlier, this information is used,

either explicitly or implicitly, by all load sharing schemes. All this piece of

information tells is whether or not a computer is working, and therefore

available to be considered by the transfer and location policies of a load sharing

scheme. It must be stressed that this information is just concerned with the

availability of the computer, and does not tell us, for example, that the computer

is too busy to consider tasks from other computers.

ii) Random Choice: A heavily loaded computer may randomly select another

computer to share its load. This random choice mayor may not be weighted with

the other features of the receiving computers such as their processing speeds.

54

iii) Processing Speeds: In systems that are not fully homogeneous, the

processing speeds of the computers may be one of the factors that is taken into

account by the transfer and location policies of a load sharing scheme. For

example, provided that everything else is the same, a computer may prefer to

share its load with a faster computer. The speeds of the computers will, of course

have to be represented in a form that makes their comparison possible.

iv) Processor Functionality: In a distributed system it is possible that

certain computers are dedicated to specific tasks, such as file handling or

graphics calculations. In such an environment a load sharing scheme would

have to use the information regarding the functionality of computers in the

system. Thus, a computer wishing to transfer a task would then have to consider

whether the candidate computer has the functionality required to perform that

task.

v) Communication Costs: If the computers in the system are connected by

different speed links, or if the system is not fully interconnected, then the

communication costs, for example, in terms of time used, can be different for

different pairs of computers. In a tightly coupled computer system the

differences in these costs may not merit attention, but in a loosely coupled

system, particularly one spread over a wide area, these costs can influence the

performance ofload sharing scheme quite significantly. Although it is difficult

to establish exact communication costs, especially under varying traffic

conditions, the load sharing scheme may require the participating computers to

take account of some relative measure of communication costs in establishing a

computer to share their load.

vi) History: Some load sharing schemes, such as [BERSHAD 86], require the

computers to consider the load sharing decisions they have made in the past

before making a new decision about sharing their load. For example, if a

55

computer has already sent a task to a particular computer in the system, then it

may not consider the same computer for another task until the previous task

has been completed. The concept of using history can, indeed, be extended so

that the computers learn from their past decisions. So, for example, if the choice

of a particular computer in the past was found not to be beneficial, then a

computer may decide to exclude that computer from the list of possible

computers that may share its future load.

vii) Current Load: The current load on computers is the most important factor

that a load sharing scheme could require a computer to consider before selecting

another computer to share its load. If a task can be performed locally, there is no

point in a computer sending this task to another computer which has more load

than i tselfl Many indices can be used to express the load existing on a machine

at a given time, for example: CPU utilisation, the length of the ready queue, the

stretch factor (defined as the ratio between the execution time of a process on a

loaded machine and its execution time on the same machine when it is empty)

[FERRARI 86], paging activity, terminal I/O, disk transfers, and more

complicated functions of these simple variables.

How often the values for different types information are calculated and

updated is a separate issue, and discussed later. For the time being we are

simply saying that each computer could maintain some indication of load on

itself and other computers in the system. This information could then be used by

the transfer and location policies of the load sharing scheme.

We are now in a position to give better and more applicable definitions of

static and dynamic load sharing schemes. A static load sharing scheme makes

use of only that system information (system knowledge would be a better term)

that it assumes remains constant during system operation. For example, if a

load sharing scheme assumes that the computer speeds and availabilities

56

remain constant (quite reasonable assumptions!), and then assigns tasks to

computers according to probabilities that are fixed in proportion to their speeds,

then that scheme would be regarded as being static.

On the other hand, if a load sharing scheme makes use of even one piece of

system information that it knows can vary during system operation, then that

scheme would be dynamic. To overcome the second objection to the earlier

definitions, we must state clearly the system information that is used by the

load sharing scheme either explicitly or implicitly.

Which of the seven types of system information mentioned above are used

(either as varying or constant quantities) by the transfer and location policies

would depend on the configuration and the attributes of the system, as well as

the objective of the load sharing scheme being considered. One general point

that can be made, however, is that the use of more information may allow the

transfer and location policies to make better decisions, but it will, no doubt,

carry more overhead of maintaining and using that information.

Furthermore, system information, particularly load information, has a

tendency to become out of date very quickly, hence its validity is always in

question. Therefore, the benefit to be gained by using certain type(s) of

information must be assessed against its overhead and the cost of possible

inaccuracies.

3.2.6 COMPUTER CONNECTIVITY:

The discussion in previous sub-sections may have implied that, both for

transfer of its tasks and for exchange of information, a computer considers all

57

other computers in the system. This is not necessarily true in either case. To

discuss this issue further, we define the following terms:

The send connectivity (SC) of a computer is a set of all computers in the

system, excluding itself, that it considers likely to execute its tasks.

The receive connectivity (RC) of a computer is a set of all computers in

the system, excluding itself, that are likely to send it their tasks for

execution.

The other computers (OC) of a computer is a set of all the other computers

in the system excluding itself.

To understand these terms further, consider the distributed system of six

computers shown in Figure 3.1. A single headed arrow going from computer 3 to

FIGURE 3.1

computer 4 means that computer 3 can send tasks to computer 4 and,

conversely, computer 4 can receive tasks from computer 3. A double-headed

arrow between computers 1 and 2 means that computer 1 can send tasks to, as

58

well as receive tasks from computer 2, and vice versa. The corresponding SC,

RC, and OC sets for each computer are shown in Table 3.1.

COMPUTER SC RC OC

1 {2,3} {2,3} {2,3,4,5,6}

2 {1} {1,3} {1,3,4,5,6}

3 {1,2,4} {1} {1,2,4,5,6}

4 {} {3,5} {1,2,3,5,6}

5 {4} {} {1,2,3,4,6}

6 {} {} {1,2,3,4,5}

TABLE 3.1

Note that arrows between computers only indicate their connectivities for

the sake ofload sharing. A physical connection may well exist between all of the

computers.

We note that SC and RC can be proper subsets of OC, and need not be equal.

Although it is very likely that if a computer can send tasks to another then it

will be able to receive tasks from it as well, but this is not necessary (see SC and

RC for 3). In fact, it is possible for a computer in a distributed system not to

participate in the load sharing scheme at all (computer 6).

In a dynamic load sharing scheme, system information may have to be

exchanged between computers. Typically, a computer will require the

information about the computers in its SC, while it needs to supply, either

voluntarily or on demand, information about itself to computers in its RC.

Indeed, it is the cost of exchanging the system information that generally

restricts the RC and SC of a computer in a large distributed system to be subsets

of their OC. In other words, computers do not consider all other computers for

59

task transfers because that would imply having to exchange system information

with all of them. If there are N computers in a system, then each computer

would have to exchange system information with N-1 other computers. If each

computer has information to exchange with all the others, and assuming equal

cost (C) for each such exchange, then the total cost of exchange would be:

C x N x (N -1) or C x (N2 - N)

Thus, the total cost is proportional to the square of the number of computers.

Therefore, the overhead will increase quite rapidly as the number of computers

participating in the load sharing scheme increases. By considering only a subset

of all the computers in the system, the transfer and location policies of a load

sharing scheme may not make the best possible decisions, but it would keep the

overhead ofload sharing under control.

The SC and RC sets of a computer will be determined by the characteristics

of the system, such as the communication costs between pairs of computers.

Some sophisticated load sharing schemes may even allow these sets to change

during the operation of a system. For example, when a computer does not

receive any information, either for a long time or when an explicit request is

made, from one of the computers in its SC, it may then decide to replace that

computer with another in its DC.

3.2.7 INFORMATION MEASUREMENT AND EXCHANGE:

The transfer and the location policies of a load sharing scheme use the

system information to make their decisions. In this section we consider the

issues of measurement of system information on each computer, and exchange

of this information between computers.

60

The component of a load sharing scheme which measures the system

information can be invoked independently on each computer in the following

ways:

- Periodically every t seconds;

- Irregularly, on the request of a load sharing scheme;

. Combination of the above two; i.e. periodically as well as when an additional

request is made by the load sharing scheme.

The component of the load sharing scheme that exchanges the information

of a computer with the computers in its RC could be invoked in the following

ways:

- Periodically, every T seconds; normally T would be larger than t above;

- On Request from another computer to supply the system information;

- On becoming Idle, a computer starts informing the others in its RC of its

idleness;

- Combination of the above; e.g. information is exchanged periodically as well

as when requested by another computer.

Although the methods for measuring and exchanging information are

similar, it is not essential that the same methods are adopted in both cases. For

example, the information on each computer could be measured periodically, but

exchanged with other computers only when requested. Furthermore, it is not

even necessary to exchange exactly the same information as measured locally.

The values exchanged could, for example, be the average of values measured

periodically on the local computer since the last exchange.

61

Besides the features of the system, the choice of methods for resolving the

above two issues will also depend on the method of initiating the load sharing

scheme. For example, if the load sharing scheme is initiated periodically, then it

would make sense to select periodic methods of information measurement and

exchange.

Both the information measurement, and information exchange schemes

suffer from the problem of information-ageing. This means that by the time the

information is actually used by the transfer and the location policies of a load

sharing scheme, particularly at a remote computer, the information may

already be out-of-date. There is no complete solution to this problem. However,

by measuring the information just before it is required, and using weighted

averages over a given period rather than instantaneous values, the effects of

information-aging can, to some extent, be reduced.

We have not discussed in this section the exact methods of measuring

different types of information (e.g. load) mentioned in section 3.2.5, because

they would depend on the way other issues have been resolved as well as on the

particular system being considered. Nevertheless, it should be mentioned that

the extent of improvement in the system performance by load sharing is greatly

influenced by the accuracy and speed of these methods. Accurate values would

lead to better decisions by transfer and location policies. Fast methods of

measurement, on the other hand, would either reduce the overhead of load

sharing or, for a given overhead, allow a higher frequency ofload measurement,

thus reducing the effects of information-ageing.

62

3.2.8 DESIRABLE FEATURES:

Throughout the discussion of the above issues, we have maintained that

their solution depends on the features of the particular system being considered.

There are, however, some features that are desirable in any load sharing

scheme on any system. In [ALONSO 83] six features of a good load sharing

scheme are given:

i) Stability: If an idle computer announces its availability to computers in its

RC, then it may get inundated with tasks from all possible sources. Unless

catered for, it is also possible that a task may keep hopping from one computer

to the other, but not getting executed at all. The load sharing scheme should

avoid situations that can potentially lead the system into an unstable state.

Stability and distributed scheduling algorithms have been discussed in

[STANKOVIC 85].

ii) Implementability: The implementation of a load sharing scheme should

not require major changes to the existing system. The load sharing scheme

should, therefore, not alter the basic attributes of the system.

iii) Cost: The total cost of running a whole load sharing scheme should be as

small as possible. The objective of load sharing can then be achieved to a better

degree.

iv) Autonomy: The servers in the system should be free to accept or reject

requests from the source computers. In case of rejection, the source should be

able to recover, and either try another server or execute the task locally.

63

v) Transparency: The users of the system should not be aware that some of

their tasks are being executed remotely. This is essential if the user is to be

saved from having to learn new system commands to perform load sharing.

vi) Tunability: The load sharing schemes should be tunable to the changing

environment. The tuning could either be automatic, or could be done by the

system's manager.

The issues mentioned in the earlier sections must be resolved in a way that

retains these six desirable features of a load sharing scheme.

3.3 MOS and MAITRE D' REVISITED

In this section we reconsider two load sharing schemes, MOS and Maitre d',

that were mentioned in Chapter Two. These two schemes have been chosen

because, unlike other schemes that are either entirely theoretical or only partly

simulated, these two have been implemented on real systems. Our aim in

looking at these two schemes is to discover the way both of them have resolved

the issues that were identified in the last section. This has been done in Table

3.2 below.

Note that the two schemes have adopted contrasting solutions for some of

the issues. For example, MOS has used periodic initiation, while Maitre d' has

employed Task (command) arrival initiation.

3.4 CONCLUSIONS

In this chapter we have looked at the fundamental issues that arise if a load

sharing scheme is implemented in a distributed system. For each issue, possible

ways of resolving that issue are suggested. In the end two existing load sharing

64

ISSUES MOS MAITRED'

Irnprovementofthe Even distribution ofload
OBJECTIVE response time. amongst computers

GRANULARITY Process Level Command Level
AND

MECHANISM Code transfer Remote Call

INITIATOR Source Source

Task Arrival
INITIATION Periodic (when command given)

Computer Loads and CPU History, least recently used
INFORMATION times already used by available com!.uter is
DEPENDENCY processes selecte .

Local load > Threshold

At each computer a Fully Connected, each
CONNECTIVITY randomly changing subset computer considers every

ofOC is maintained. other.

LOAD Server informs all others of
MEASUREMENT Local measurement every its availability. Only local

AND 20 msec; Random exchange load measured at command
EXCHANGE every 1 sec. issue time.

DESIRABLE Transparent, Stable, All features satisfied to an
FEATURES Tunable, required changes extent.

to existing system.

TABLE 3.2

schemes were compared according to the way they had solved each of the issues

discussed earlier. We conclude that the solution to a load sharing issue depends

on three factors: the characteristics of the distributed system being considered,

the desirable features of a load sharing scheme that are to be retained, and the

way some of the other issues have already been resolved.

65

CHAPTER FOUR

THE NEWCASTLE CONNECTION
AND

UNIX UNITED SYSTEMS

4.1 INTRODUCTION

The Newcastle Connection is a software subsystem developed at the

University of Newcastle upon Tyne. This subsystem has been used in

construction of distributed systems which are commonly known as Unix United

systems [BROWNBRIDGE 82, RANDELL 84, BLACK 86]. In the next chapter we shall

describe the design of a load sharing scheme for one such Unix United system.

Therefore, in this chapter we describe the general structure of Unix United

systems, and the role of Newcastle Connection in their construction.

In section 4.2 we shall briefly examIne the external and internal

characteristics ofa Unix United system. We then argue in section 4.3 that Unix

United systems embody the essential features of Enslow's definition (discussed

in Chapter One) of a distributed system. The position ofload sharing within the

structure of a Unix United system is then discussed in section 4.4. This chapter

is concluded in section 4.5. In this and the following chapters we assume that

the reader is familiar with the design and terminology of Unix systems. Further

details about the Unix system can be found in [BACH 86, DUNSMUIR 85, BROWN

84, FOXLEY 85, BANAHAN 82, RITCHIE 78, RITCHIE 84].

-66-

4.2 UNIX UNITED SYSTEMS

A Unix United system is a distributed system composed out of a set of inter­

linked Unix systems, each with its own storage and peripheral devices,

accredited set of users and system administrators [BROWNBRIDGE 82]. The

naming structure for files, devices, commands and directories of each

component Unix system are joined together into a single naming structure, in

which each Unix system is, to all intents and purposes, just a directory. An

example is given in Figure 4.1 of a simple Unix United system consisting of just

two machines.

Unix 1 Unix 2

/ \
brian dick

/\ /\
result filel sort copy

FIGURE 4.1

It must be noted that Unix 1 and Unix2 are two completely separate,

autonomous Unix systems residing on distinct machines. The tree-structured

-67-

nature ofthe Unix naming scheme makes it easy to create a Unix United tree of

which the original systems are subtrees (as shown in Figure 4.1).

In a Unix U ni ted system a user can access any file on any machine in the

system (assuming the user has the access permission for that file). For example,

in the system shown in Figure 4.1, a user working in the directory dick on

Unix2 can issue the following command (the root directory 'I' is on Unix2):

cp I .. ID nix1lbrianlresult copy

to copy the file called result (residing in the directory brian on Unix1) into a file

called copy residing on the local machine U nix2.

Similarly, a user is able to invoke a program on a remote machine and then

be able to get the results returned into a file on his machine. For example, if the

user working in the directory brian of the system shown in Figure 4.1 issues the

Unix command (the root directory 'I' is at Unix1):

1 .. lDnix2/dick/sort file1 > result

then the program sort residing in the directory dick on U nix2 will be applied to

the file filel (on Unix1), and the result will then be put in the file result in the

directory brian on U nixl.

In a Unix United system execution always takes place at the machine where

the program resides. Therefore, in the above example the data in file filel in

directory brian on Unix1 will be accessed remotely from the directory dick on

Unix2 where the program sort resides. The execution will take place on Unix2

machine and the results passed back to directory brian on Unixl.

-68-

In both the examples given above the format of the commands would be

similar even ifUnixl and Unix2 were two directories residing on one machine.

Thus, a Unix United system hides from its users the presence of more than one

machine in the system. This system transparency is achieved by adding to each

standard Unix system which is part of the Unix United system, a layer of

software called the Newcastle Connection. Figure 4.2 shows the position of the

Unix 1 Unix 2

RPC

FIGURE 4.2

Newcastle Connection layer for the system in Figure 4.1.

The Newcastle Connection layer hides from the user all the issues

concerning network protocols and inter-process communication. The user

programs make calls to the Newcastle Connection layer as though the calls are

being directed to the kernel, while to the Unix kernel the Newcastle Connection

appears as a user program. The Newcastle Connection layer filters out system

calls that have to be redirected to the Newcastle Connection layers on remote

-69-

machines (and thence to the remote kernel), and accepts system calls that have

been directed to it.

To communicate with the other machines in the system, the Newcastle

Connection layer makes use of a Remote Procedure Call (RPC) mechanism

[SHRIVASTAVA 82]. As shown in Figure 4.2, the logical communication between

the machines in the system takes place through their Newcastle Connection

layers. However, this communication actually occurs at the hardware level, and

for this purpose the kernel includes means for handling low level

communication protocols.

4.3 ENSLOW'S CRITERIA AND UNIX UNITED SYSTEMS

In this section we assess Unix United as a distributed system by

determining the extent to which it possesses the five features identified by

Enslow in his definition of fully distributed systems (discussed in Chapter One).

I - Multiplicity of resources:

The first Unix United system was based on a set of three PDP 11123s and

two PDP 11145s all running Unix V7 and connected by a Cambridge Ring. Since

these machines are all general purpose physical resources, while the facilities

provided by Unix V7 (e.g. file systems, editors, compilers etc.) on each machine

can be regarded as multiple logical resources, the first requirement that a

distributed system is composed of a multiplicity of general purpose physical and

logical resources is satisfied.

The second part of the first feature is that the multiple resources should be

dynamically assignable. A user on Unix United can run programs on various

remote machines. If the user decides to perform a task in the background then

-70-

he need not wait for one machine to finish his task before starting another

program on the same machine or a different remote machine. Thus a user on

Unix U ni ted can dynamically use differen t resources of the system.

The Newcastle Connection has also been run on ICL's PERQ machines over

Ethernet at the University of Newcastle upon Tyne, and elsewhere it has been

run between VAX and 68000 machines, thus making Unix United systems

heterogeneous in terms of physical resources. However, it is still required that

all the machines in a Unix United system be running either Unix (various

versions can be supported simultaneously) or Unix look-alike systems. Even

though the definition of distributed systems allows machines in the system to

have different operating systems, the homogeneity in Unix United does not

exclude it from the definition. Therefore it can safely be concluded that the Unix

United satisfies the first criterion of the definitioI:.

II· Component Interconnection:

All communication between machines In the Unix United system is

performed by the means of a Remote Procedure Call (RPC) protocol. The

mechanism for RPC is part of the Newcastle Connection layer. This layer filters

out system calls that have to be redirected to the Newcastle Connection layer on

a remote machine, and accepts system calls that have been directed to the local

machine.

The RPC uses the term client for the sender of the request, and server for the

intended receiver. The important point about this protocol, as far as the

definition of distributed systems is concerned, is that the server is quite free to

make its own decision, depending on the local situation, as whether to perform

the requested service or not. In other words, Unixl can call Unix2 and vice

-71-

versa. Hence the system is symmetrical and there is no master-slave

relationship between the system components. It can, therefore, be said that

Unix United satisfies the second requirement of the definition of distributed

systems.

m· Unity of control:

This criterion requires that a distributed system has a high level operating

system or an executive control that defines and supports a unified set of policies

in order to achieve the overall objectives of the system. In Unix United it is

difficult to pinpoint the existence of such an operating system. The need for a

high level operating system is more apparent in heterogeneous distributed

systems. For example, if the components of a system are running different

operating systems, then it might be necessary for the high level operating

system to provide a command interpreter, so that the system's components are

compatible and transparent to the user.

In Unix U ni ted all the machines run same operating system, therefore there

is no need for a special command interpreter. Other policies to achieve, for

example, reliab~lity, load sharing, and security are (or can be) part of the

Newcastle connection layer. Therefore one could argue that an implicit

executive control does exist in Unix United that has been hidden inside the

connection layer.

An important point about the requirement of a high level operating system

is that it should not be a centralised block of code with strong hierarchical

control over the system. Since the connection layer is replicated on each

machine in the Unix United system, the implementation of the high level

operating system can be viewed as being distributed in the system. The common

-72-

goals of the system are thus achieved by mutual cooperation of components

rather then being enforced by one particular component.

It can, therefore, be concluded that, as far as the Unix United system

consists of machines running the same operating system, the third feature of

the definition of distributed systems is satisfied.

IV - System Transparency:

This criterion requires that a distributed system should be totally

transparent to the user, and the user should be able to request services by

generic names and not be aware of their physical location. In Unix United if a

user in the directory dick on U nix2 issues the following command:

cp 1 . .Iunixl/user/tmairesult filename

meaning that the file called result on Unixl in the directory of user tma is to be

copied into a file called filename in the current directory, then the Newcastle

Connection will recognise this as a command requiring the use of RPC and

make a call to the connection layer on Unixl. So, the details of communication

with Unix2 are hidden from the user and he need not be concerned about the

protocol used to transfer the contents offile result.

It might be argued that the system is not completely transparent to the user

because he needs to use .. IUnixll .. in his command. However, when using

. .IUnixll .. in his command, as far as the user is concerned the Unixl is just

another directory, similar to other directories which reside on his own machine.

Therefore the user's view of Unix2 is that of another directory and not of

-73-

another machine. In fact there is no way for the user to tell that Unix! is a

machine because every test made will report that it is a directory.

If the user wants to compile a program in a particular language, and the

user's machine does not have a compiler, then the user can give a command for

his program to be compiled on a remote machine. The Connection layer

recognises the remote request and passes the program to the remote machine

that possesses the compiler. The result of the compilation is then passed back to

the user as if the compilation had been performed on the local machine.

There is one area where Unix United might not appear to be transparent. If

a user has registered with Unix!, then he can log-on to Unix! and be able to use

the facilities of other Unix systems without having to log-on and give the

password to each system accessed. But, if Unix! crashes then that user would be

unable to use any of the facilities of the system. This inability might suggest

that Unix-United is not fully distributed. This is not the case for two reasons.

Firstly, the definition does not require that the user of one system be able to log­

on to another system. Secondly, this facility could be provided by making each

Unix system have a copy of user identifiers and passwords for all the other

systems.

v -Cooperative Autonomy:

This criterion requires that the logical and physical components in a

distributed system should interact in a manner described as cooperative

autonomy. In Unix United the servers on a particular machine can decide to

deny the services to a client on another machine. Thus mutual cooperation

between the client and the server, rather than master-slave arrangement, is

used.

-74-

In Unix United each machine runs a full Unix system and is capable of

providing all the facilities of Unix without being connected to the network.

Similarly if every machine in the network has been connected to all the others,

then the removal of one machine will only degrade the performance of the

system and not shut down the whole system. Therefore the components in the

system are autonomous and the final requirement of the definition is satisfied.

It has been shown that the Unix United satisfies all the features required by

Enslow's definition. This does not mean that all the objectives of a distributed

system are achieved by the Unix United systems. Extra layers can, however, be

added to achieve these objectives. For example, if higher performance is

required then a load sharing scheme can be implemented on a Unix United

system. Therefore, it can be concluded that Unix United provides a distributed

framework on which layers can be added to achieve the objectives of a

distributed system.

4.4 LOAD SHARING IN UNIX UNITED SYSTEMS

The complexity of implementing large and sophisticated computing systems

can be reduced significantly by ensuring that the system is constructed out of a

well-chosen set of largely independent components which interact in well­

understood ways.

In [RANDELL 85] Unix United systems have been presented as systems that

have been developed using this philosophy and as a system structuring

technique that distinguishes the functionality of the system from its desirable

attributes. These attributes are then provided by separate components. For

example, the functionality of Unix United systems is the provision of a Unix

-75-

environment. The desirable attribute of distribution is provided by the

component called the Newcastle Connection as shown in Figure 4.2. Similarly,

additional reliability has been included in one of the Unix United prototypes by

adding a transparent software component (the Triple Modular Redundancy,

TMR layer) on top of Newcastle Connection layers as shown in Figure 4.3

[RANDELL 85].

Unix 1

:: TMR
~~ LAYER ~m~
• 1 •••••

NEWCASTLE
CONNECTION

RPC

Unix 2

......................
:::: TMR m! LAYER m~
.

NEWCASTLE
CONNECTION

FIGURE 4.3

RPC

Unix 3

.
~~ .. TMii :::::
:: LAYER ::::: .. , ,

NEWCASTLE
CONNECTION

Similarly, the presence of the attribute of distributedness in Unix United

systems makes it possible to increase their performance by load sharing. In the

context of Unix United systems load sharing can, therefore, be regarded as a

desirable attribute that is independent of the functionality of the system. It is

proposed, therefore, that this attribute, like the attributes of distributedness

and reliability, should be added to Unix United systems by another independent

-76-

component. This component will be implemented by adding to each Unix

machine in the system a software layer called Load Sharing layer.

The load sharing layer on each machine will perform two main functions:

(1) Collect system information from the other machines;

(2) Use this information to divide the computational load in the system to

achieve certain objectives.

In order to perform both these functions, the load sharing layer on a

particular machine will need to communicate with the other machines in the

system. Since the Newcastle Connection layer provides mechanisms for this

communication, and also mechanisms for initiating computation on a remote

machine, it seems natural to place the load sharing layer on top of the

Newcastle Connection layer. If highly reliable load sharing (i.e. load sharing

that can survive hardware errors and crashes) is required then the load sharing

layer should be placed above the TMR layer (Figure 4.4).

It must be pointed out, however, that placing the load sharing layer above

the Newcastle Connection layer is not the only way to incorporate load sharing

in Unix United systems. The load sharing layer could, for example, be placed

below the Newcastle Connection layer in which case it will need to interface

directly with the RPC mechanisms. Alternatively, load sharing can be made

part of the Newcastle Connection layer, or indeed it could be implemented

inside the Unix kernel (these possibilities are further considered in chapter

Six). In these cases substantial changes would have to be made to the Newcastle

Connection layer, or the Unix kernel. Therefore, we believe that placing the

load sharing layer above the Newcastle Connection layer provides the simplest

way of incorporating load sharing in Unix United systems.

-77-

Unix 1

:: TMR
g LAYER m~~

Unix 2

...........
m~~~¥MR~~~~mg ~
mi LAYER ~~m :I ~ ~••........••.........

Unix 3

LOAD
SHARING

LAYER

.......
~r--TMR-----::::
:: LAYER :::::
:: '::::

NEWCASTLE NEWCASTLE NEWCASTLE
CONNECTION j.-~ CONNECTION j ~~ CONNECTION

FIGURE 4.4

4.5 CONCLUSIONS

In this chapter we have looked at the general structure of Unix United

systems, and the role of the Newcastle Connection in these systems. We have

argued that the Unix United systems provide a framework on which the

objectives of distributed systems can be achieved by implementing additional

layers. Finally, we considered possible ways of incorporating load sharing in

the existing structure of Unix U ni ted systems.

-78-

CHAPTER FIVE

A LOAD SHARING SCHEME FOR A
UNIX UNITED SYSTEM

5.1 INTRODUCTION

In this chapter we shall describe the design of a load sharing scheme for an

existing Unix United system by resolving the issues identified in Chapter

Three. In section 5.2 we describe the Unix United system to be considered for

load sharing. The load sharing issues are then resolved for this Unix United

system in section 5.3, and this chapter is concluded in section 5.4.

5.2 THE PERQS' UNIX UNITED SYSTEM

The Unix United system considered for load sharing consists of four ICL's

Perq1 (named Tyne, Tweed, Catcleugh and Kielder) single-user, multi-process

computers [ICL 84]. These computers are linked together by a high speed (10

Mh/sec) Ethernet [METCALFE 85] as shown in Figure 5.1.

All the machines run same version of a Unix look-alike operating system

called PNX. Therefore, this Unix United system is fully homogeneous (identical

machines running the same operating system). Each computer has its own

internal disk storing its file system, and is capable of running on its own. We

shall refer to this Unix United system of four Perqs as the Perq system.

The Perq system was set up specifically for carrying out load sharing

experiments, and therefore it was not possible to see how it would have been

-79-

.........

. _ _ _ _ .. _ - .
10 MBIT / SEC ETHERNET ~

FIGURE 5.1

.

used had it been available for general use. However, it is reasonable to assume

that the computers in the Perq system would have been used in very much the

same way as the other single-user, multiprocess Unix computers in the

department. The observation of the usage of these other computers revealed two

potentially significant points. Firstly, it was very rare to find all machines

being used at the same time. In fact, most of the time more than half the

machines were idle. Secondly, it was common for the users of these machines to

have several programs running simultaneously. This was encouraged by the

following factors:

- the abili ty to run programs in the background;

- the ability to create pipes between different programs where the output

generated by one program is used as an input for another;

- and most importantly, the ability to create windows that

allows a user to split a VDU screen into several independent virtual screens.

The user is able to start a program in one window, and then move into next

window to start another independent program.

-80-

These three facilities are also available on all the computers in the Perq system.

The above two observations indicated that it would be common to find the

Perq system in situations where one computer is running more than one

program, while at least one other computer is not being used at all. The load

sharing scheme we have designed for the Perq system is intended to exploit this

situation.

5.3 RESOLVING THE LOAD SHARING ISSUES

In the following subsections we describe how the fundamental load sharing

issues, identified in Chapter Three, were resolved by keeping in mind the

characteristics and the expected usage of the Perq system.

5.3.1 OBJECTIVE:

The most important criterion of the system performance for the user of the

Perq system is the time taken to complete his task(s). We shall refer to this time

as the Completion Time. Since there can be more than one user of the system,

and reducing the completion time for one user may increase the completion time

for another, the objective of the load sharing scheme for the Perq system was

chosen to be the reduction of the sum of the completion times for all the users of

the system. To be more precise about this objective, we define the following

terms:

OstJ The observation start time: This is, effectively, the time on the clock

on the wall, and not on any particular computer in the Perq system. At

this time the system is not executing any task.

-81-

Oft, The observation finish time: Again, this is the time on the clock on

the wall. At this time the system has finished executing all the tasks of
all the users.

OP, The observation period: OP = Oft - Ost.

N, The total number of users using the system during OP. The first user

to login is the user number one, and the last user to login is the user
numberN.

Tis: The time, on the computer where user i is logged on, when the
system starts executing the tasks of user i.

Tif: The time, on the computer where user i is logged on, when the
system finishes executing the tasks of user i.

Ci: The completion time for user i, Ci = Tif- Tis.

TC : Total completion Time,

i= 1

The objective of the load sharing scheme for the Perq system was to reduce

TC. The effectiveness of the load sharing scheme can be determined by

comparing the values of TC obtained with and without the use of the load

sharing scheme. This comparison will, of course, be meaningful only when in

both situations the system is required to perform identical tasks for the same

users in same conditions.

5.3.2 GRANULARITY AND MECHANISM:

Most of the computational load on a computer in the Perq system gets

generated by the users' requests for program execution. The Perq system

provides, through the Newcastle Connection, a mechanism for transferring a

-82-

program from one computer to the other, and also to execute a program residing

on the remote computer. Therefore, it was appropriate to choose a program as

the granularity of the load sharing scheme for the Perq system.

Recall that in Unix United systems a program is always executed on the

computer where it resides, irrespective of the computer which requested its

execution (Chapter Four). Hence, for the purpose ofload sharing, a heavily used

computer will first transfer a program, originally intended to be executed

locally, to a free machine in the system, and then use the existing mechanism

for its remote execution. However, if the program being considered for remote

execution is a standard Unix utility, then it will be available on all the

computers, thus avoiding the need for program transfer. The heavily loaded

machine would simply use the existing mechanism to execute the program

already resident on the remote machine.

Therefore, it was decided that initially the load sharing scheme for the Perq

system would only consider transferring the execution of standard Unix utility

programs. Besides avoiding the overhead of transferring the programs to the

remote computer, this approach makes this load sharing scheme applicable to

systems where the programs on one computer cannot be executed on the other,

but the computers run the same operating systems and utilities.

One would expect a CPU intensive program to be better suited for remote

execution than an I/O intensive program that needs data resident on the local

machine. The load sharing scheme therefore had to be selective in which

programs to consider for remote execution. After implementing the load sharing

scheme, we experimented with different types of programs to discover which

-83-

ones are best suited for remote execution (This is covered in more detail in

Chapter Seven).

The essential point at this stage is that the granularity for the load sharing

scheme for the Perq system was chosen to be the standard Unix utility

programs. The remote program execution is carried out by using the existing

mechanism provided by the Newcastle Connection. This mechanism is based on

the remote call method for remote process execution described in section 3.2.2.

In order to understand how this mechanism is used by the load sharing

scheme, let us first consider how a computer in the Perq system (and in other

Unix United systems) carries out a command typed in by the user. At login

time, a program called shell is started by the computer for the user. The user

interacts with the system through shell. The shell is, therefore, responsible for

reading, interpreting, and carrying out the commands typed in by the user. For

example, if the user types in the command cat filel then, in simple terms, the

shell performs the following functions:

I - It reads the command cat filel.

II - It searches for a program called cat in some predefined directories. If it does

not find the program cat, it gives an error message and waits for the user to type

in the next command.

ill - If the program cat is found, then the path name of the program is generated

by shell. Thus, if the program cat is found in the directory /bin, then the

pathname /bin/cat will be generated. The name of the program (cat) is in the

first element of an array called argv. The parameters to the command, like filel

in this case, are then put in the successive elements of the array argv.

-84-

IV - The shell then issues the system call fork. This system call makes an

identical copy of shell program and its data. This child shell starts executing

simultaneously with, and independently of, the original or the parent shell.

Normally, after starting the child shell, the parent shell would wait for the child

shell to finish before prompting the user for the next command.

v -Soon after its birth, the child shell issues the system call exec. The path name

of the program, and a pointer to the array argv are passed as parameters to exec.

The system call exec overwrites the child shell with the program identified by

the pathname. In our example, the child shell will be replaced by the cat

program residing in the directory Ibin.

Note that if the pathname referred to a remote program (e.g I . ./tynelbinlcat),

then the exec system call would get trapped by the Newcastle Connection which

will arrange for it to execute remotely on Tyne.

VI- When the cat program terminates, the parent shell is informed so that it may

prompt the user for the next command.

To achieve remote execution the load sharing scheme changes the pathname

before it is passed to the system call exec as a parameter. In our last example the

pathname was Ibinlcat. If according to the load sharing scheme the program cat

should be executed remotely on the machine catcleugh then the pathname will

be changed to I . ./catcleughlbinlcat. The Newcastle Connection will recognise this

exec as the one requiring remote execution, and take the necessary steps. The

system call exec can be issued by other system and user programs to start the

execution of another program. Therefore a method of detecting the occurence of

exec system calls is required so that the load sharing scheme may be invoked.

The method used by our scheme is described in Chapter Six.

-85-

5.3.3 INITIA TO R:

The mechanism for remote program execution in the Perq system allows a

computer to invoke the execution of a program on another computer. However,

this mechanism cannot be used to transfer a program, that has already started

executing, to complete its execution on another computer. Therefore the

decision regarding the transfer of a program for remote execution has to be

taken before starting its execution. In other words, this decision has to be made

when the request is made for the execution of a program.

Since the running of a program puts load on a computer on which it

executes, and more up-to-date load information is available locally, it was

appropriate that the computer on which the program would have executed (in

the absence of any load sharing) should consider whether to execute the

program locally or remotely. Thus, if the command cat myfile is issued on Tyne

then the load sharing scheme will be invoked on Tyne. However, if the

command / . .ltweed/bin/cat myfile is issued, still from tyne, then the load sharing

scheme on Tweed will decide whether to execute the program locally (on Tweed)

or select another computer in the system for its execution.

Therefore, the load sharing scheme for the Perq system is source initiated.

The word source in this context means the computer where the program would

have executed, not necessarily where the request for its execution is made.

5.3.4 INITIATION:

In the previous section we explained that in the Perq system the decision to

transfer a program has to be made when a request is made for the execution of a

-86-

program. Therefore, the load sharing scheme will be initiated at the task­

arrival time (see section 3.2.4).

The task-arrival initiation can result in a very high overhead. However, in

the Perq system this is unlikely to happen for two reasons. First, the rate at

which commands arrive on a single user machine is fairly low. Hence the load

sharing scheme will not be invoked too often. Secondly, the transfer policy of the

load sharing scheme is designed such that the computationally expensive parts

of the scheme are not performed until it is clear that the program being

considered is suitable for remote execution (section 5.3.5). Thus the expensive

parts of the load sharing scheme will be executed even more infrequently.

5.3.5 INFORMATION DEPENDENCY:

In the Perq system a computer can be in one of the following states:

1- Unavailable (U): In this state the computer is not operating, i.e. it is

swi tched off.

2- Free (F): In this state the computer is operating but no user is logged on it;

3- Occupied (0): In this state a computer is operating, and a user is logged on

it. An Occupied computer is said to be busy if at the time of observation it has

more than a given number of processes waiting for the CPU, or a fast event such

as disk I/O;

4- Hosting (H): In this state a free computer is executing task(s) for another

computer. Note that only a previously free computer can be hosting. An

occupied computer executing tasks for another computer remains occupied.

-87-

Each computer in the system maintains a vector which stores the states of

the computers. How these vectors are initialised and updated is described in

section 5.3.7. For now we assume that these vectors have been initialised to

some particular values. For example consider the Perq system shown in Figure

5.2.

10 MBIT / SEC ETHERNET

FIGURE 5.2

Tyne and Catcleugh are in the state occupied, while Tweed and Kielder are

free. The corresponding state vectors are shown in Figure 5.3. Note that the

state vectors on Tyne and Catcleugh are fully up to date and show the current

state of the system. The state vectors on Tweed and Kielder are not up to date.

The load sharing scheme is designed keeping in mind that it would not be

possible for all the state vectors to represent the current system state.

The zeroth component of the state vector always stores the local state, hence

avoiding the need for each computer to know its offset in the state vector. The

order for storing other computer states is different in each vector. Thus, the

-88-

TYNE (TY) TWEED (TD)

o 1 2 3 o 1 2 3

TY TD CH KR TD CH KR TY

CATCLEUGH (CH) KIELDER (KR)

o 1 2 3 o 1 2 3

CH KR TY TD KR TY TD CH

FIGURE 5.3

second component of the state vector on Tyne holds the state of Tweed, but on

Catcleugh it holds the state of Kielder. This arrangement can, in some system

states, avoid the same free computer being selected by more than one occupied

computer to execute their program (see the location policy later in this section).

The state vectors are used by the transfer and the location policies of the

load sharing scheme. We describe these two policies separately below.

-89-

TRANSFER POLICY

In the Perq system the commands on an occupied computer can either

require local program execution, or a remote program execution. In the absence

of any load sharing scheme the program is executed on the machine for which

the request has been made. For example, on Tyne the command

catmyfile

would result in the program cat being executed locally on Tyne. On the other

hand the following command (again issued on Tyne)

I .. lkielderlbinlcat myfile

would result in the program being executed remotely on kielder. For the local

requests the transfer policy of the load sharing scheme for the Perq system has

to decide whether to execute the program locally, or to select a computer by

using the location policy and execute the program there.

The remote requests are passed on to the requested machine which then

decides whether to execute the program or send it to another computer for

execution. This arrangement requires that thare are two transfer policies on

each computer. The L-transfer policy considers the requests made locally (either

for local or remote execution) while the R-transfer policy considers the requests

received directly from other computers (not as a result ofload sharing).

-90-

The algorithm implementing the L-transfer policy is shown below using a

pseudo-pascal notation:

IF (remote request) THEN

invoke R-transfer policy on the remote computer with this request.
ELSE IF (program not suitable for load sharing)

OR (local machine not busy) THEN
execu te it locally.

ELSE BEGIN

END;

Try to locate a free computer;

IF (could not find a free computer) THEN execute locally.
ELSE BEGIN

make request for remote execution;

wait for it to finish;

IF (erronous finish) THEN re-execute locally;

END;

First of all the L-transfer policy decides whether the request is for local or

remote execution. If it is for a remote computer then the R-transfer policy on

that computer is invoked with the original request as a parameter. Otherwise, if

the program is not suitable for loadsharing, or the local computer is not busy

then the request is carried out locally. On the other hand, if the program is

suitable for load sharing and the local computer is found to be busy then the

location policy (described in the next section) of the load sharing scheme is

invoked.

If the location policy cannot find a free computer then the request is carried

out locally. However, if the location policy finds a free computer then a request

is made for remote execution. It is important to note that this request will not be

further considered by the transfer policy on the remote computer. This is

essential to avoid a situation where a request keeps circulating among

-91-

computers without ever getting executed. If the remote execution is not

successfull then the program is re-excuted locally.

The R-transfer policy is very similar to the L-transfer policy. The only

difference is that the R-transfer policy does not check if the request is local or

remote. Instead it starts off by determining the programs suitability for load

sharing, and then performs same checks as the L-transfer policy.

LOCATION POLICY

The location policy for the load sharing scheme for Perq system works in two

phases. First, it searches the local state vector for a computer in free state. This

search starts from the component two of the state vector and the first computer

in free state is selected. So, in the example of system state shown in Figures 5.2

and 5.3, the location policy executing on Tyne would select Tweed, while the

location policy executing on Catcleugh would select Kielder. This illustrates

that in some system states (as indicated in the state vectors) this method of

search would prevent a same computer being selected by two busy computers.

If the search for a free computer fails then a similar search is carried out for

a hosting computer, and the first hosting computer is selected. If either free or a

hosting computer is found, then the location policy enters the second phase;

otherwise the location policy returns the local computer as its choice for

executing the program.

The second phase of the location policy makes a direct request to the selected

computer to find its current state. If the current state of the selected computer is

found to be free then the selected computer is returned to the transfer policy as

being chosen for executing the program. On the other hand, if the current state

-92-

of the selected computer is found not to be free then its state in the local state

vector is updated to its current value. Phase one of the algorithm is then

repeated to select preferably free or a hosting computer; the phase two is

repeated for the newly selected computer. This process continues until a remote

free computer is found, or all the free or hosting computers in the local state

vector have been investigated, in which case the local computer is returned to

the transfer policy as being chosen to execute the program.

In the absence of any free computers in the local state vector, the hosting

computer is selected for further investigation because in the Perq system the

hosting state is temporary. Therefore, one expects that a computer in the

hosting state is likely to have gone back to the free state (In section 5.3.7 we will

find that the other computers are not informed of the state transition from

hosting to free). Note, however, that a remote computer is chosen to execute a

program only when its current state is found to be free, irrespective of whether

it was shown to be free or hosting in the local state vector.

The decision to investigate another free or hosting computer after the

current state of the earlier selection is found not to be free, is suitable in the

Perq system because of the small number of computers involved and the high

probability of finding a free computer. Besides, an unsuccessful investigation is

not entirely waste of time because as a result the local computer becomes aware

of the latest state of the selected computer.

In Chapter Three (section 3.2.5) we identified different types of information

that may be used by a load sharing scheme. Our load sharing scheme for the

Perq system implicitly uses the following types of information:

-93-

- Processor Availability: If the state of the computer is Unavailable, then that

computer does not participate in the load sharing scheme.

- Processor Functionality: By considering only suitable programs for load

sharing we are ensuring that the selected computers will be able to execute the

program.

- Current Load: We consider whether the local computer is busy by observing

its current load. Furthermore, the states of the computers effectively reflect

their loads.

We decided to ignore the communications costs and the processor speeds in

our load sharing scheme for two main reasons. First, we wanted to keep the

initial load sharing scheme as simple as possible. Secondly, these two types of

information depend on the type of program being executed and therefore not

easy to measure.

Finally, since our load sharing scheme makes use of system information

that it knows to vary during the system operation, we can classify it as being

dynamic.

5.3.6 COMPUTER CONNECTIVITY:

The Perq system consists of four computers, which is a relatively small

number. Therefore, the Send Connectivity (SC) and the Receive Connectivity

(RC) of all the computers is the Other Computers (DC) participating in the load

sharing scheme. Another reason for this decision is that the method of

-94-

information measurement and exchange (section 5.3.7) is such that all the other

computers are informed of a very few changes in the state of a computer.

5.3.7 INFORMATION MEASUREMENT AND EXCHANGE:

In section 5.3.5 we identified the four states (D, 0, F, H) of a computer in the

Perq system. The information measurement and exchange in our load sharing

scheme is therefore concerned with detecting, on each computer, the transitions

from one state to another, updating the local state vector, and then if necessary

informing the other remote computers.

A state transition on a computer in the Perq system is caused by an event,

for example when a computer is switched ON and starts operating its state

changes from U to F. If a user now logs on this computer (another event), its

state will change from F to O. Note that a computer cannot get into state 0

straight from state U and therefore the transition 0 to U is invalid.

We list below all the possible state transitions and for each indicate, with

reasons, whether it is valid or invalid in the Perq system. For each valid

transition we consider the event(s) that may cause it, and decide whether to

inform the local and remote computers about this change in the state. The

decision to inform the remote computers must be made bearing in mind that the

exchange of information puts an extra load on the sender as well as on the

receiver computer. Hence, our aim is to avoid unnecessary information

exchange.

1- U to F (valid): This state transition takes place when a switched OFF

computer is switched ON. In this case it is necessary to update the first

component of the local state vector, and to inform every other computer because

-95-

unless other computers know that a computer has become free they do not

consider it for execution of their programs. The current states of the computers

that can be contacted at this stage are obtained and the local state vector

updated. The computers that cannot be contacted are assumed to be

unavailable.

2- U to U (invalid): A switched OFF computer cannot be switched off again!

3- U to 0 (invalid): A switched OFF computer must become free before it can get

into any other state.

4- U to H (invalid): A switched OFF computer cannot start hosting.

5- F to H (valid): This state transition is made when a free computer starts

executing a task of another computer. In this case only the local state vector is

updated to show that the local machine has started hosting. There is no need to

inform any other computer of this change because an occupied computer that

may mistakenly believe it to be free will be updated when its locate policy tries

to confirm the current state.

6- F to 0 (valid): This transition takes place when a user logs on a free

computer. In this case it is necessary to change the first component of the local

state vector to occupied. Again, there is no need to inform any other computer of

this change because an occupied computer that may mistakenly believe it to be

free will be updated when its locate policy tries to confirm the current state.

7- F to F (invalid): No event can cause this transition.

-96-

8- F to U (valid): This transition is made when a free computer is switched OFF.

In this case there is no need to inform any other computer about this change,

because they will all discover its unavailability when they try to contact it.

9- H to H (valid): This transition is made when an already hosting computer

receives another task from a remote computer. In this transition no action need

be taken since the first component of the local state vector is already set to

hosting.

10- H to 0 (valid): This transition takes place when a user logs in on an already

hosting computer. The first component of the local state vector is changed to

occupied. There is no need to inform any other computer of this change because

an occupied computer that may mistakenly believe it to be hosting will be

updated when its locate policy tries to confirm its current state.

11- H to U (invalid): We are assuming that a computer can only be switched

OFF when it is in the free state.

12- H to F (valid): This transition takes place when a hosting computer finishes

all the tasks of remote computers. The first component of the local state vector is

updated to show a free state. There is no need to inform any other computer of

this change because an occupied computer that may mistakenly believe it to be

hosting can still consider it for load sharing and find its current state.

13- 0 to H (valid): This transition occurs when a user logs off from a computer

that is still executing some task(s) for the remote computer(s). The first

component of the local state vector is updated to show the hosting state, and all

-97-

other computers informed of this transition so that they may, in future, consider

this computer as a candidate to execute their tasks.

14- 0 to 0 (valid): A user on a computer can login as another user without

necessarily logging off first. The system remains in state 0, therefore there is

no need to inform anyone of this transi tion.

15- 0 to U (invalid): We are assuming that a computer can only be switched

OFF when it is in free state F.

16- 0 to F (valid): This transition is caused when a user logs off from an

occupied, non-hosting, computer. The first component of the local state vector is

updated to show the free state. All other computers are informed of this

transition so that they may, in future, consider this computer as a candidate to

execute their tasks.

The above state transitions, and the actions that need be taken are

summarised in Table 5.1. Note that in all the valid transitions mentioned

above, the only times all the other computers are informed is when there is a

transition into a free or hosting state from either being unavailable or occupied

state. This global exchange is essential because unless the remote computers

know that a particular computer is free or hosting, their location policy will not

select it for further investigation about executing the tasks.

It may be argued that it is only necessary to exchange this information with

the occupied computers because they are the only ones that can possibly send

any tasks. However, to be able to inform just the occupied computers, a

computer needs to know which computers are occupied; thus a global exchange

of information is required whenever a user logs on any computer. This will be an

-98-

COMPUTERS CURRENT STATE
TOBE

INFORMED
F H 0 U

LOCAL LOCAL

F INVALID LOCAL AND AND

OTHERS OTHERS

N LOCAL
E
X H LOCAL NONE AND INVALID
T

OTHERS
S
T
A
T
E 0 LOCAL LOCAL NONE INVALID

U NONE INVALID INVALID INVALID

TABLE 5.1

absurd solution where global information exchange is made to avoid a global

exchange!

Since exchanging information with the non-occupied computers will not put

any load on the occupied computers themselves (ignoring the effects it may have

on the availability of the Ethernet) the overhead of the global exchange will not

-99-

reduce the performance of the occupied computers any more than if the

exchange was only with the occupied computers. Furthermore, the event of a

computer becoming free is not too common in Unix United systems (particularly

those with only four computers!), so we would expect that there will not be too

many instances when a global exchange of information is necessary.

One can imagine more sophisticated schemes for information exchange in

the Perq system. For example, each computer could keep a record of the last

state information it supplied to a particular computer, which need not be same

as its present state. Upon a state transition it could then inform only those

computers that have some grossly wrong idea of its state. For a Perq system

with a large number of computers, such a scheme could reduce information

exchange with remote computers, albeit at the expense of more local processing.

We have, however, preferred our scheme for its simplici ty and low overhead.

Comparing our information measurement and exchange policy with the

possibilities mentioned in Chapter Three (3.2.7), we find that our information

measurement is irregular. The information exchange policy is irregular as far

as the potential receiver of the tasks is concerned; from the point of view of the

sender of the tasks, this information is supplied on request.

5.3.8 DESIRABLE FEATURES:

The desirable features of our load sharing scheme are discussed in Chapter

Eight after we have described its implementation in Chapter Six and discussed

the results of experiments in Chapter Seven.

-100-

5.4 CONCLUSIONS

In this chapter we have developed a load sharing scheme for the Perq

system. In the design of a load sharing scheme many initial decisions can be

rather subjective. We have, however, tried to be as objective as possible about

our decisions and based them on the structure and the expected use of the

system being considered. The only way to be sure that one has made proper

decisions, or to discover the wrong decisions, is to implement and evaluate the

scheme. Such an implementation is described in the next chapter.

-101-

CHAPTER SIX

IMPLEMENT ATION

6.1 INTRODUCTION

In this chapter we shall describe how the load sharing scheme, developed in

Chapter Five, was implemented on the Perq system. During this

implementation following major problems had to be resolved:

- Trapping execs and establishing any given programs suitability for

load sharing;

- Establishing whether a local machine is busy;

- Representing the state vectors;

- Detecting state transitions;

In sections 6.2 to 6.5 we consider possible solutions for each problem, and

conclude this chapter in section 6.6.

6.2 TRAPPING EXEC AND DETERMINING PROGRAM'S

SUITABILITY

The load sharing scheme for the Perq system requires that the transfer

policy is invoked just before a program starts executing. As explained in section

5.3.2 all new programs are started by the exec system call. Therefore, the

transfer policy had to be invoked just before any exec system call was issued.

Thus, we needed to detect or trap the occurence of exec calls. After trapping an

exec call, the transfer policy establishes whether the requested program is

-102-

suitable for load sharing. We considered the following four ways of trapping exec

system calls and establishing the suitability of requested programs for load

sharing:

1- From Shell:

As explained in section 5.3.2, on Unix systems a program called shell is

responsible for running requested programs by issuing the exec system call. By

inserting code to invoke the transfer policy before every occurence of exec

system call in the shell program, one could invoke the load sharing scheme prior

to execution of programs requested by shell. The transfer policy could then find

out whether the request is for the local or a remote computer. If it is remote then

the R-transfer policy on the remote computer is invoked. If the request is for

local execution then the name of the requested program can be compared with

the names of programs suitable for load sharing. This list of suitable programs

could either be built in the code of the transfer policy or could be read from an

external file every time it is invoked.

Since each user of a Unix system can arrange to have a personal shell

program the above technique for trapping execs would have allowed users to

select either a load sharing mode (by running the modified shell) or a normal

mode. Besides requiring changes to a standard Unix system program (shell) this

technique had a disadvantage of failing to trap exec calls made from within

other user and system programs.

2- Changing exec:

The code of the exec system call could itselfbe extended by adding at its front

the code for the transfer policy. This way the calls to exec from all the system

and user programs would first invoke the transfer policy. The transfer policy

-103-

could then determine the computer to be used for execution and the suitability

of program in the same way as described above for the shell method.

Since all the users use same exec, with this technique everyone will be forced to

work in a load sharing mode. It must be pointed out, however, that exec, like

other system calls, is part of the Unix Kernel. Hence, changing it was not only

difficult but also undesirable since we wish to implement load sharing scheme

as a layer on top of Newcastle Connection, and not as an integrated part of the

Unix system itself.

3- Changing exec at an entry point:

Like Unix itself the load sharing scheme was implemented using a system's

programming language called C [KERNIGHAN 78, KELLEY 84]. However, C

cannot make a direct Unix system call (which is a TRAP instruction into the

Unix system Kernel). Instead, the C programmer calls an external routine

which makes the system call on his behalf. One way of trapping the exec calls

was to make a copy of the external routine responsible for making exec system

calls, and rename the new copy. The original routine was then modified so that

it first executed the transfer policy and then called the renamed copy of the

original routine. The transfer policy could then establish the computer to

execute the program and its suitability for load sharing in the same way as

described for the shell method.

This method is used by the Newcastle Connection to trap all system calls

[STROUD 83]. A disadvantage of this method is that all the programs that needed

to make use of the load sharing scheme have to be recompiled to link them to the

new versions of the system call routines.

-104-

4- Linking suitable programs:

A file on a Unix system can have more than one name. This is achieved by

creating a link between the original file and the new name. This facility could

be used to trap the execs for the execution of suitable programs. Each suitable

program is saved under a new name. The original name is then linked to a

program that first executes the transfer policy and then executes the saved

program. In this method there is no need to determine whether the request is for

local or remote execution because if the requested program is suitable for load

sharing then the transfer policy will, by default, get executed on the machine

where the program resides.

The suitability of the requested program for load sharing does not have to be

established since only the sui table programs would be linked to the program

that first invokes the transfer policy. Therefore, the unsuitable programs will

not be delayed unnecessarily by the transfer policy. However, this method

requires two invocations of system call exec. The first exec is used to start the

program that invokes the transfer policy; this program in turn issues the second

exec to execute the requested program.

Among the four methods of trapping execs described above we decided to

implement the last method of relinking the suitable programs. It was selected

because of its simplicity, ease of implementation and the features mentioned

above. We expect that the additional exec call required by this method is

compensated by the absence of a need to find out either the place of execution or

the suitability of the requested program for load sharing.

-105-

6.3 ESTABLISHING WHETHER A LOCAL MACHINE IS

BUSY

The transfer policy of the load sharing scheme for the Perq system considers

a program for remote execution only if the local machine is found to be busy.

Being 'busy' in in this context means that the current load of the machine

exceeds a predefined threshold value. Therefore, the problem was how to

measure the load on a machine, and what threshold value to use.

The load on Unix systems is ultimately executed by user and system processes.

Therefore, the measurement of load involved looking at the number and states

of processes currently resident on a machine. Each process on the machine has

an entry in what is known as a process table. This entry contains various pieces

of information regarding that process. We considered the following methods for

measuring the load on the machine:

1) Number of processes:

In this method one assumed that the load is proportional to the number of

processes currently resident on the machine. Therefore, one would simply count

the number of entries in the process table, and if this count exceeds the

threshold number then the machine is regarded as being busy.

2) Ready to run processes:

At any instant the processes on a machine could be in one of several states.

For example, a process could be ready to run and waiting for the CPU to become

available, it could be waiting for a user to type in a command, it could be

waiting for a disk I/O to complete, or it could have been put to sleep by another

-106-

process. Thus the total number of entries in the process table could give a

misleadingly high value for the current load on the machine. A better idea of

the load on the machine would be obtained if one only counted the number of

ready-to-run process.

3) Number of active processes:

It was possible that at the instant of observing the process table, a number of

processes were waiting for a fast event, such as disk 110, to complete. These

processes could soon become ready-to-run soon after the load value was

calculated. Thus simply counting the number of ready-to-run processes could

give a deceptively low value of the current load.

Each process has a priority value assigned to it by the system. The priority

value is available in the process entry in the process table. The processes that

await the completion of fast events are assigned a priority value higher than a

certain value. Thus it is possible to identify such processes. Therefore an even

better method for estimating load would be to count the number of active

processes which includes ready-to-run as well as processes awaiting completion

offast events.

4) Complex methods:

Several pieces of information are available in a process entry in the process

table. These include CPU and system time used by a process, the nature of the

particular event awaited by the process, the owner of the process, etc. A complex

method could incorporate this information in estimating the load on the

machine.

-107-

Among the methods described above, we decided to use the number of

currently active processes as an indication of load on the machine. This method

was chosen because it was simple, easy to implement, and gave a reasonable

estimate of the load on the machine. The threshold value to be used with this

method is really a tunable parameter of the load sharing scheme. This threshold

value was adjusted between two and four during the experimentation (Chapter

Seven).

6.4 REPRESENTING THE STATE VECTORS

The load sharing scheme for the Perq system requires that each computer

maintains a state vector which stores local and other computers' states. During

the operation of the load sharing scheme a computer needs to access local and

remote state vectors. Therefore, whatever form was used to represent state

vectors, facilities had to be provided for access (reading and writing) to it by

local and remote computers.

A possible way of representing the state vectors was to start a process called

state server when the computer is switched ON. The state server on each

computer would maintain the local state vector, and upon requests from local

and remote computers supply and/or update the values in the state vector. To do

this, some form of inter-process communication was needed. On Unix systems

pipes and signals are used for inter-process communication. Unfortunately,

pipes can only be established between related processes. Since the computers in

the Perq system were to be switched ON independently, it would not have been

easy to establish pipes between the state server and programs that needed its

services. Note that some Unix systems provide named pipes and sockets

[LEFFLER 83] for establishing communication among processes. These means of

-108-

communication would have been useful in implementing this representation of

state vectors, but they were not available on the Perq system and therefore this

method was not used.

Another way of representing the state vectors was to change the kernel so

that it stored the states in some known locations in the memory. The local and

remote computers could then manipulate these locations. This approach

requires that every time a computer was added to the load sharing scheme, the

kernel has to be modified and recompiled. As we wanted to avoid changes to the

kernel, this approach was not implemented either .

. Instead we implemented the state vectors as files. Each computer maintains

its state vector in a known file. The local and remote computers can read from

this file to find the current state of the local computer, as well as write to it to

update their own values in the vector. Each state value is simply stored as a

character 0, F, H, or U. Since only four machines are involved each state file is

only four bytes long. On each computer the first byte contains the local state,

while the remaining bytes contain the states of other computers.

As explained in section 5.3.5 each computer stores the states in a different

order. This order is given in a file on each computer. From this order, each

computer can calculate which byte in another computer's state file contains its

state, and therefore is able to modify it upon a state transition such as 0 to F.

We were somewhat concerned about the possibility of more than one computer

attempting to update a state vector simultaneously. So, a simple experiment

was set up to determine whether the state values are corrupted in such a

situation. It was discovered that as long as each computer updated different

byte of the file all state values were updated properly.

-109-

However, if two computers try to update the same byte of a state vector then

the order in which it is done becomes important. For example, Tweed might find

the current state of the Tyne to be occupied (by reading first byte in the state file

on Tyne) but has not yet updated the local state vector (by writing in the byte

corresponding to Tyne in the state file on Tweed). In the meanwhile Tyne

becomes free and somehow manages to update its value on Tweed to free. Ifnow

Tweed overwrites the latest value by the outdated value (0) then it will not

consider Tyne as a possible candidate to execute its tasks. This problem can be

prevented by making use of locking mechanisms to prevent any attempts to

modify a byte while some other computer is already doing so. The computer

wishing to update can try again after some time.

In our implementation we have assumed that the above race condition does

not occur. Indeed it is very unlikely to occur when only four machines are

involved. Furthermore, the updates are carried out in a way that attempts to

avoid wrong values being passed on to state vectors. In the above example, upon

becoming free Tyne would update its own state vector before updating its state

value on other computers; thus making the above race situation more unlikely.

To manipulate the state vectors we developed the following primitive functions:

-local_update (machine, state)

This function updates the state vector on the local computer. The contents of

the byte corresponding to computer 'machine' are changed to value 'state'.

Integer value zero is returned upon successful completion; otherwise -1 is

returned.

110

- rem_update (machine, state)

This function updates the state vector on a remote computer. On computer

'machine' the contents of the byte corresponding to computer that called the

function are changed to value 'state'. Integer value zero is returned upon

successful completion; otherwise -1 is returned.

-local_get (machine)

This function reads a state value from the local state vector. The value

stored in the byte corresponding to the computer 'machine' is returned. If the

value cannot be read for any reason, NULL value is returned.

- remote_get (machine)

This function reads a state value from a remote computer. From the state

file on computer 'machine' the value of the first byte, corresponding to the state

of computer, machine is returned. If the value cannot be read for any reason,

NULL value is returned.

6.5 DETECTING THE STATE TRANSITIONS

The state vectors used by the transfer and the location policy of the load

sharing scheme contain the states of the computers. As described in Chapter

Five (5.3.7), local and sometimes remote state vectors have to be updated at the

occurrence of some valid state transitions. In this section we consider each such

valid transition separately and explain how it is detected in our

implementation.

111

Uto F:

This state transition takes place when a switched off computer is switched

on. Before prompting the user to login, the PNX system executes commands

stored in a file called /ete/re. The system manager can put commands in this file

that need to be executed every time the computer is switched on. For example

the Newcastle Connection is ini tialised and started this way.

After the command to start the Newcastle Connection, we have added

another command to run a program called u_to_f. This program changes the

first component of the local state vector to F (by using local_update), and then

tries to update (by using remote_update) the byte corresponding to the local

computer in the state vectors of all other computers. The current states of the

other computers are obtained and the local state vector updated accordingly.

Recall that the computers that cannot be contacted are assumed to be

unavailable (U).

F to 0, H to 0, and 0 to 0:

These state transitions take place when a user logs on a free, hosting or an

occupied computer respectively. A user is logged on by a program called login

that gets started by another program called init after the computer has executed

the commands contained in /etc/rc (as described above in section 6.5.1). Ideally

the program login needs to be modified so that when a user manages to log on

successfully, it changes the local state vector to show that the current state of

the local machine is occupied (0).

However, as we wanted to avoid making changes to standard programs

during this experimental implementation, we took another approach to detect

112

these transitions. After successfully logging in a user, the program login starts

the shell for the new user. when the shell is invoked by the login program (as

opposed to when started by a user) it first executes the commands contained in

file called '.profile' which resides in the home directory of the user. We put the

command to execute a program called fho_to_o in the .profile files of all the

users. Thus whenever a user logs in, the program 'fho_to_o' gets executed. This

program changes the first component of the local state vector to show that the

local computer is now occupied.

The use of this approach to detect the transitions F to 0, H to 0, and ° to ° led

to another problem. The creation of a window while running wini t, the window

manager, leads to invocation of another shell that first carries out commands in

'.profile'. To avoid the program fho_to_o being executed every time a window

was created, the command to execute fho_to_o is carried out only if win it is not

running.

Oto F, 0 to H:

These two transition can take place when a user logs off from a computer.

On some Unix systems a special command exists (normally called 'logout') to log

off a user. This command results in the execution of a program that logs off the

user. The transitions 0 to F, and ° to H can be detected by modifying this

program. Unfortunately, on PNX a user logs off by typing in a control character

(CTRL z) that terminates the shell program that was started by login when the

user logged on. To detect the termination of this shell one needs to change the

init program that awaits the terminations of shells started by login.

The init program is the very first to start when the computer is switched

ON. Therefore one needs to be very careful in making any changes to it. An

113

error in init can result in the computer not starting up at all, thus preventing

any corrections of init. For this reason, and because we have avoided making

changes to standard programs where possible, we did not adopt this approach to

detect the transitions 0 to F, and 0 to H.

Fortunately, in shell it is possible to trap the terminating signal (that gets

generated when CTRL z is pressed) and invoke the execution of commands

contained in a file. For example, by issuing the command

trap $HOME/.logout 0

one can cause the commands contained in file .logout (in the home directory of

the user) to be executed when the current shell is terminated. We included the

above trap instruction in the .profile file of all the users. So, when the login shell

of a user is terminated the commands in file .logout are carried out. The .logout

file contains a command to run a program called o_to_fh. This program checks

whether the local computer is executing tasks for a remote computer. If it is,

then the local state vector is changed to show that the local computer is hosting,

otherwise it shows it to be free. The program o_to_fh then attempts to inform

all the other computers about the transition that has taken place by modifying

their state vectors accordingly.

Fto H, H to F:

The state transition F to H takes place when a free computer receives a

request from a process on another computer to execute a program. In contrast,

the state transition H to F takes place when a computer finishes a request made

by a remote computer, and there is no other remote request being carried out. In

the Perq Unix United system the remote requests are carried out by a process

called 'USRV'. Since a computer can be executing requests of several remote

114

processes, there can be a number of USRVs executing on a computer at any

time.

Recall that a remote request can either be made directly by the user or

system programs, or it can be made by the transfer policy of the load sharing

scheme on another computer. In both cases a free computer gets into a hosting

state upon arrival of the request; and can possibly get back to free state upon its

completion. Therefore we need to detect the arrival and completion of both types

of requests.

An obvious way to achieve this is by modifying USRV so that before

carrying out a remote request it invokes a function called f_to_h. This function

checks whether the current state of the machine is free. If so, it changes the

local state to hosting; otherwise the local state remains unchanged. In either

case the value of a counter to keep the current number of remote requests is

incremented by one. USRV then executes the remote request and awaits its

completion. When the remote request is completed, USRV invokes a function

called h to f. This function decrements the value of the counter. If the value of

the counter becomes zero, and the current state of the local computer is hosting

(i.e it has not become occupied in the meanwhile) then the local state is changed

to free. Otherwise the local state remains unchanged.

In order to avoid making changes to the USRV program, we implemented a

different method to detect state transitions F to H, and H to F. We assumed

(only for this experimental implementation) that the remote requests will only

be made by the transfer policies; hence no remote requests are made directly by

the user and system programs. With this assumption, the functions f_to_h, and

h_to_fmentioned above are executed by the transfer policy before making the

remote request and after the completion of the remote request respectively.

115

Another reason for making the above assumption is that the version of the

Newcastle Connection running on the Perq system does not allow a remotely

executing program to exec another remote program. It is however possible to

add this facility to the Newcastle Connection [MARSHALL 87, STROUD 86].

6.6 CONCLUSIONS

In this chapter we have described how the load sharing scheme was

implemented on the Perq system. Throughout this implementation we have

avoided making any changes to the existing programs. As a result our

implementation may not be the most efficient way (in terms of speed) of

providing the Perq system with our load sharing scheme, but it works!

Furthermore, if our load sharing scheme can prove to be beneficial with this

implementation, we can be certain that with faster implementations, that make

changes to the existing software, the load sharing scheme will perform even

better. The performance of our implementation of the load sharing scheme is

experimentally assessed in the next chapter.

116

CHAPTER SEVEN

EXPERIMENTS, RESULTS, AND DISCUSSION

7.1 INTRODUCTION

In this chapter we describe the experiments carried out to evaluate our load

sharing scheme and discuss the results obtained. The essential method used in

these experiments was to execute a given workload in a controlled system

environment both with and without the use of the load sharing scheme. Thus

two values of TC, the total completion time (as defined in section 5.3.1), are

obtained. In order to measure the benefit achieved by load sharing, the term

Gain is used and defined as follows:

GAIN (G) @c without load sharing (TCw) J
- 1 * 100 %

TC with load sharing (TCs)

Note that ifTCs and TCw, the total completion times with and without load

sharing respectively, are equal then G, the gain, will be 0%. A negative value of

G indicates the loss of performance as a result ofload sharing the system.

So far in our discussion of the load sharing scheme for the Perq system we

assumed that the transfer policy only selects suitable programs for remote

execution. Therefore we need to find out what type of programs are suitable for

remote execution using our load sharing scheme. To do this we investigated

three types of programs: CPU intensive, I/O intensive, and Mixed. We were also

-117-

interested in observing the effect upon the gain of increasing computational

requirements of each type of program. Therefore, it was necessary to be aware of

the exact behaviour of the programs that represented three different types of

programs. If the existing Unix utility programs were used as an example then it

would have been difficult to change the computational requirements of these

programs linearly. Therefore, we decided to use our own simple programs

(described later in the appropriate sections).

To be able to make meaningful comparisons between their results, the

experiments need to be carried out in a controlled and known environment. For

example the values of TCw and TCs should be obtained by executing identical

programs using identical data. Furthermore, the state transitions made during

one experiment should also be made during the other. It must be realised,

however, that on a real system it is almost impossible to guarantee absolutely

identical behaviour of the system during successive experiments. For example,

it would be difficult to control the scheduler so that it allocates CPU to processes

in identical manners during the two experiments, or to ensure that the input or

output data is placed in identical blocks in order to eliminate the effects of

different disk arm movements!

Therefore, we shall assume that the uncontrollable factors in the system

environment contribute, at least on average, the same amount of time during

the measurement ofTCs and TCw. We believe that the environment for the load

sharing experiments on the Perq system was largely determined by the

following controllable factors:

- The system state at the start of the experiment;.

- the state transitions during the experiment;

- the pattern ofload generation and completion at each computer;

-118-

- and the threshold value used by the transfer policy of the load sharing

scheme.

It is obvious that different combinations of the above factors can generate

numerous possible environments to carry out the experiments. The

environments used, the experiments carried out, and the results obtained for

CPU intensive, I/O intensive and Mixed programs are described below in

sections 7.2, 7.3 and 7.4 respectively. In section 7.5 we describe the experiments

and present the results for two real Unix utility programs.

Each experiment was repeated at least three times (in most cases five times)

and the results given here use the average value. In all the experiments the

difference between the successive readings was very small.

7.2 A CPU INTENSIVE PROGRAM

The following program (in pseudo-pascal notation) consisting of three nested

FOR loops was used as an example of a CPU intensive program:

Begin
For loop1 : = 1 to LIMIT do

For loop2: = 1 to LIMIT do

For loop3 : = 1 to LIMIT do

count: = count + 1;

writeln (count);

End.

The maximum value of the control variable, LIMIT, was passed as a

parameter to the program, thus providing means of controlling the computation

required. Table 7.1 shows different values of LIMIT with the corresponding

-119-

COMPUTATION COMPUTATION
LIMIT TIME (C) LIMIT TIME (C)

(seconds) (seconds)

10 1.0 140 54.0

25 1.4 160 80.8

40 2.4 180 116.6

50 3.4 200 158.0

60 5.2 210 179.6

70 7.8 220 206.0

80 11.0 230 240.6

100 20.4 240 272.0

120 34.4 250 307.4

Computation Times for a CPU Intensive Program

TABLE 7.1

values of the time taken to complete the above program when executed on

Tweed in the absence of any other user-level program. The Unix time facility

was used to measure the times. These times indicate the computation time (C)

required by the program.

The above program was repeated on all the other computers with the value

of LIMIT being 250. The average value obtained on different computers is

shown in Table 7.2. It is clear that all computers take almost identical time to

-120-

COMPUTATION

COMPUTER TIME FOR

LIMIT = 250

CATCLEUGH 309

KIELDER 307

TYNE 301

TWEED 302

AVERAGE COMPUTATION TIMES

ON DIFFERENT COMPUTERS

TABLE 7.2

execute the CPU intensive program. Hence one can attribute any differences in

the values of TCs and TCw to load sharing rather then the differences in the

speeds of the computers involved.

The values of the controllable factors of the environment used during the

CPU intensive experiments were as follows:

1) Initial system state: The load sharing scheme is evaluated for different

initial states of the system. Therefore, the experiments for the CPU intensive

program were carried out under the following initial states:

-121-

a) One computer is occupied, and all the others are unavailable.

Since no free computers are available we shall refer to the gain as

GO.

b) One computer is occupied, one is free, while the other two are

unavailable. The gain obtained in this case is denoted by G 1.

c) One computer is occupied, two are free, and one is unavailable.

The gain in this case is G2.

All the experiments were carried out from the occupied computer. Furthermore,

the state vectors of the occupied and the other computers involved were fully

updated before the start of the experiment.

2) State Transitions: In order to interpret the results clearly, and be able to

attribute any differences in the gains only to initial system state, we decided

that there would be no external state transitions during all the experiments.

Any state transitions occurrring as a result ofload sharing itself were, of course,

allowed.

3) Load Generation: Since no external state transitions were to be allowed,

any load on the system was generated by a Control program running on the

occupied computer. This program received two parameters: one indicating

whether to take measurements with or without the load sharing scheme, and

the other representing the value of LIMIT to be used by the CPU intensive

program.

The Control program noted the current time in a known file and then forked

four child processes at the interval of three seconds. Each child process then

executed the CPU intensive program with the supplied value of LIMIT. The

-122-

parent process then awaited the completion of all four child processes, and then

made a note of the current time.

The output of each child process was directed to a separate file. When

measuring TCw , the completion time without load sharing, this output

consisted of the final value of count generated by the CPU intensive program.

However, when measuring TCs, the completion time with load sharing, the

output also consisted of the load value and the identity of the machine chosen by

the load sharing scheme to execute the program. This enabled us to tell which

processes were executed remotely.

The reason for using a three second interval between forking of child processes

was that it allowed sufficient time for the load sharing scheme to update the

local state vector before another process made use of that vector. Furthermore,

in a real interactive environment one presumably does not expect two requests

to be made for load sharing programs wi thin three seconds!

We decided to fork four child processes because there were four machines

involved in the experiment, and we were interested in the value of gain when

each machine executed one program.

4) Threshold Value: The threshold value of two was used by the load sharing

scheme to decide whether the local machine is busy or not. Thus if there were

more than two processes executing on the local machine then the machine was

regarded as being busy, and an attempt was made to find another computer to

execute the program.

The value of two was chosen because there was always one active process on the

local machine (the child process trying to find the load); however the parent

process (taking the measurements) also had an entry in the process table and its

status (Le. sleeping, running, or waiting) could not be known in advance.

-123-

Therefore, if one found more than two active processes in the process table than

at least one CPU intensive program was being executed locally.

It is clear from the above description of the controllable factors that during

the investigation of CPU intensive program only the initial state of the system

was varied, while the other factors remained unchanged. We measured the

values ofTCw and TCs under different initial state conditions for all the values

of LIMIT indicated in Table 7.1. Thus we calculated gains GO, Gl, and G2 for

each value of LIMIT under three different initial states. The values of these

gains have been plotted against the computation (C) in Figure 7.1.

We shall first discuss the transient parts of the graphs that occur before the

computation time of approximately 8 seconds. This transient part is shown more

clearly in Figure 7.2. We note that here all three gains start off being negative

and then become much worse before recovering. When the computation time is

low, the overhead of the load sharing scheme is comparatively high, and

therefore initially we get negative gain. To understand the further drop in gain

(before its recovery) we need to recall the way the load sharing scheme works. If

the program is suitable for load sharing then the first thing that the load

sharing scheme does is to find out whether the local machine is busy.

Now, when the value of Computation time is less than approximately 2.2

seconds, the first child process completes before the next one is forked. Thus no

child process finds the local machine to be busy, and the load sharing scheme

does not do any more work. Hence at these values of computation the overhead

ofload sharing is smaller, and therefore the value of gains is less negative.

As the value of the computation time becomes greater than about 2.2

seconds, the forked child processes begin to discover that the local machine is

-124-

120

90

60

30

o

-30

-60

%GAIN

..
,

. ,
.-

.............
,

I FIGURE 7.1 I
G2

.....•........................ ..•
.............

.•.

..

Gt

.------.--------.-----------.-------------~--.

GO
• ~ J ~.-.~.-.-.~.-.-.- ••• -.-.-.-.~.-.-.-.-.-.-.-.-.-.-.-.-. _.-.-.-.-

" ;r- .

,T'
.:
~I
I,

" II
u •

o 40 80 120 160 200

GAINS FOR A CPU INTENSIVE PROGRAM

240

COMPUTATION
TIME

(seconds)

280 320

1

10
C'I
"'i

o
%GAIN

-10

-20

-30

-40

-50

-60

o

~
"'

,

[FIGU-RE 7.21 Gl

~.~ .. ~ "

..... \
\~. \.. ,-"

\

' ,.

.. " "
\ ... " , '

GO

1

,"
'.

\, ' "
\' ' " \' "

.. ' .. ' _.-.-._._
\ ... _.-.-.,...-._'-'
\

...' ,.,. " . ,.'
\ ' .,.,. ,,'

• ,.' i

....
G2

....

2

\ . ~.'. "
\ ' ~ . /.

\

'. /.

\ , ~~
\ .. ~ ...
\" /. .' a" /. .' /.

..... /. ...
..... ./., , ./.

..... '. ..-/ , ' /

3

,.'/' ..
4 5

TRANSIENT "GAINS" FOR A CPU INTENSIVE PROGRAM

6

COMPUTATION
TIME

(seconds)

7 8

I

10
('01

"T

busy. This results in execution of more expensive parts of the load sharing

scheme to find a free computer in the local state vector. In the case of GO no free

computer is found, and the load sharing scheme stops there. So, we note that the

GO becomes further negative but not as much as G1 and G2.

In the case of Gland G2 the child processes find free machines in the local

state vector, and execute even more expensive part of the load sharing scheme

to confirm the free state of a remote computer. Although these processes are

then executed remotely, they do not require enough computation to make up for

the extra work they have already done to get there. As a result the gain becomes

even more negative.

Fortunately, in the case of CPU intensive programs the full overhead ofload

sharing remains constant irrespective of the computation required by the

program. So as the computation time increases, the time spent on the remote

computer begins to make up for the earlier loss and we get positive gains.

One would expect that as the value of computation becomes very large

compared to the overhead of load sharing, the gains would reach their

theoretical steady state values. In our experiments for a CPU intensive program

this value of steady state gain is given by the following expression:

Total number of programs executed

Number of programs executed locally

-127-

1 * 100%

So, for GO, G1, G2 the steady state gain is 0%, 33.3%, and 100% respectively.

We note in figure 7.1 that for large computations the gains GO, G1, and G2

asymtotically approach their theoretical values.

7.3 AN 1/0 INTENSIVE PROGRAM

The following program (in pseudo pascal notation) was used as an example of

an I/O intensive program:

For count: = 1 to FACTOR do begin

Get to the start ofl/O files;

While not end of file do begin

Read 100 bytes from input file;

write 100 bytes to output file;

end;

end;

The maximum value of the control variable, FACTOR, was passed as a

parameter to the program, thus providing means of controlling the I/O intensive

computation.With this program the size of the output file does not become very

large, and same input file could be used to provide different amount of

computation. Table 7.3 shows different values of FACTOR, with the

corresponding completion times when an input file of 900 bytes was used on

Tweed and Catcleugh (the two computers used in the I/O intensive

experiments). There is approximately 10% difference in the values obtained for

Tweed and Catcleugh, possibly due to different layout of data on the disks. As

the later results will confirm, this difference is negligible compared to the gain

or loss in the performance of the system due to load sharing.

-128-

FACTOR Tweed Catcleugh

8 2.65 2.83

16 2.77 2.70

32 2.80 3.01

64 4.70 4.68

128 9.02 8.75

256 14.78 12.25

512 22.77 23.82

1024 59.65 55.22

2048 130.78 144.47

4096 266.40 234.08

COMPUTATION TIMES FOR AN I/O
INTENSIVE PROGRAM

TABLE 7.3

The values of the controllable factors of the environment used during the I/O

intensive experiments were as follows:

1) Initial system state: In the case of I/O intensive program, we were interested

in observing the effects of the locations of I/O files on the gain of the load

sharing scheme. Therefore the experiments for I/O intensive programs were

carried out in the following initial system states.

a) One computer is occupied, the others are unavailable. All I/O files are

located an the Occupied computer. Since the I/O files are on the same

computer as the control program we refer to the gain as GIO.

b) One computer is occupied, one is free and the other two are unavailable.

All the I/O files are located on the occupied computer. The gain in this case

is GIL

-129-

c) Two computers are occupied and two are unavailable. The I/O files for

one program are located on the occupied computer where the control

program runs, and for the other program they are located on the other

occupied computer. Since the I/O files for one program are remote from the

control program, the gain is called GrO.

d) One computer is occupied, one is free, and the other two are

unavailable. The I/O files for one program are located on the occupied

computer, and for another program they are located on the free computer.

The gain in this case is called Grl.

2) State transitions: No state transitions, except those occurring as a result of

load sharing scheme, were allowed during the experimentation with the I/O

intensive program.

3) Load Generation: The load was generated by the Control program running

on the occupied computer. This program received two parameters: one

indicating whether to take measurements with or without the use of load

sharing scheme, and the other other representing the value of FA eTO R to be

used.

The control program made note of the current time and then forked two

processes at interval of three seconds. Both child processes then execute the I/O

intensive program with the supplied value of FACTOR. The control program

awaited the completion of both processes, and made note of the current time.

Note that both processes use separate but identical I/O files in order to avoid

contention.

-130-

4) Threshold Values: Since only two processes were being forked by the control

program the threshold value of one was used. Thus, ifmore than one program is

active then the computer is regarded as being busy.

The gains obtained for the I/O intensive program are plotted against the

computation (shown for Tweed in table 7.3) in Figure 7.3. Considering the

transient parts of the graphs (shown more clearly in Figure 7.4) we note that

initially all graphs are negative. This is because the overhead ofload sharing is

high compared to the computation required by the program. GIO and GrO

become further negative before recovery. The reasons for this behaviour are

related to the way the load sharing scheme works and have already been

explained for the CPU intensive program.

In the case of GIl one I/O intensive program gets executed remotely on

previously free computer, while its I/O files are located on the occupied

computer. This means that the remotely executing program has to access its

data over the Ethernet. This remote access of data carries its own overhead,

making the gain GIl even more negative. The overhead of remote data access is

associated with each read and write system call. However, since the ratio of

remote to local read or write system call remains constant irrespective of the

computation required, the gain GIl becomes permanently negative. It reaches

its steady state value of approximately -90% after the initial load sharing

overhead has been offset by the computation required (about 10 seconds).

In the case of Grl, one program is executed on a previously free computer

where its I/O files are residing. There are two reasons for very high (note the

change in scale of Y-axis in Figure 7.3) values for Grl. First, one program gets

executed remotely; thus two CPUs are employed instead of one. Secondly, and

-131-

•

500
%GAIN

400

/

300 ~ .
I

(
200 ~ ; .

I .
I .

100 I
I

J GrO
o ' .

\

~.-
..... "",-

/
/

/

1 ;IGU~E 7.31
~.~.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.~ -

Grl

GIO

GIl

~ ... --- - - - -.- -. - - - - - - -. - - - - - ... - - -. - - - - - - - - - ~ - - - - - - - - ~ - - ..
-100

o 50 100 150 200 250

COMPUTATION

"GAINS" FOR AN 10 INTENSIVE PROGRAM
TIME (seconds)

300

,
('oj

M ..

100 r
%GAIN

75 I-

50 I-

25 I-

o I-

-25 I-

-50 I-

-75 I-

-100 I

o 1

~

I

2

[fiffiriE -;.; I

" " "

" .""
" ".

"". ".
" ~.

" "

:r '

~ -

I I

3 4

~-­---

I

5

I

6

" "
" ".

" "
"" "". " "

~

" Grl

GrO
.• '"

----- Gd ----------- ..
I I I

7 8 9

COMPUTATION

TRANSIENT "GAINS" FOR AN 10 INTENSIVE PROGRAM
TIME (seconds)

-

-

-

-

-

-

-

-

10

I
M
M
'i"

more importantly, in the absence of any load sharing both programs were

executed on the occupied computer; therefore one program has to access its I/O

files over the Ethernet. By executing that program where its I/O files were

residing, the load sharing scheme avoided a substantial overhead of remote I/O

system calls. As a result we note that once the computation required by the

program exceeds the initial overhead of load sharing, the gain becomes steady

at about 500%.

7.4 A MIXED PROGRAM:

A mixed program contains both CPU intensive and I/O intensive parts. As

an example we used the following program (in pseudo pascal notation) :

Begin

End;

Do CPU intensive part;

Do I/O intensive part;

Do CPU intensive part;

Do I/O intensive part;

The CPU and I/O intensive parts are same as the ones described for CPU and

I/O intensive programs described in sections 7.2 and 7.3 respectively. Therefore,

the mixed program received two parameters: LIMIT to control the computation

required by each CPU intensive parts; and FACTOR to control the

computations required by each of the I/O intensive parts.

For the experiments the values of LIMIT and FACTOR were chosen such

that when the above program was executed on its own the contributions (to total

computation time) of CPU and I/O intensive parts were roughly equal. Table 7.4

-134-

shows the combinations of LIMIT and FACTOR along wl'th the d' , correspon mg

total computation.

LIMIT FACTOR COMPUTATION
(SECONDS)

10 1 2.04

25 4 2.42

40 8 4.57

50 32 8.25

60 64 14.00

70 128 23.50

80 256 38.59

100 512 75.26

120 800 122.62

140 1024 177.19

150 1800 254.41

COMPUTATION TIMES FOR A MIXED
PROGRAM

TABLE 7.4

The values of the controllable factors of the environment used during the

mixed program experiments were same as used for the 110 intensive program.

The difference was that the control program running on the occupied computer

forked two processes that executed the mixed program (rather than the 110

intensive program). Therefore the control program had to be supplied with three

parameters: one to indicate whether to take measurements with or without the

use of load sharing; and the other two indicating the values of LIMIT and

FACTOR.

The gains obtained for the mixed program are plotted against the

computation (given in Table 7.4) in Figure 7.5. The transient gains are shown in

-135-

550

500

450

400

350

300

250

200

150

100

50

o

-50

-100

o

.%GAIN

I .
I .

I

I .
I .

I

/

/

I FIGURE 7.5]
• - • ..,#(-.-

.~.-.-.-.-.-.~.- .-' _._ 0- -.-
.-' -. -'

T
o

- _. -' G ""..."".. rl
-- • -w-- •

I

I G~ G~
.A··~··"· • •

~ .. -. - - - - - - - - ... - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!!~ - --II

20 40 60 80 100 120 140 160 180 200 220 240

COMPUTATION

"GAINS" FOR A MIXED PROGRAM
TIME (seconds)

260

• <0
M
"i'

~
~
> z
00
~
Z
~

c5
> z
~
~
0
~

>
~
><
~
t:j

~
~
0
~
~
>
~

0
0

~=: ~ =:e
~~

>
~

-0 ;z
n
0
::J
Q.
III -

_~ ____ '--~_J-~ _______________ --,

o

U'1

00

1.0

.....
0

I
'-..I
U'1

, , , , , , , ,
1

,
~ -I-'

~

;/
~

\ {
' ,:
) \

,'\
: ,

\ :
' -
\: .,
\
'.
\
: ,
:: \
' .
+\ . , , ,

:

:

..
~ ~ - ""I
Q Q

-137-

~
~

0
Cj
~
trj

'l . = , , , . , , , , . , , , , . , , ,
'x
~

""I

Figure 7.6. We note that these gains are very similar to the gains of the I/O

intensive program. The main difference is that in this case the steady state gain

GIl is at about -65% (compared to -90% for an I/O intensive program). This is

because of the CPU component of the program which increases the gain, but not

sufficient enough to make up for the loss due to the I/O component.

Although the CPU and I/O components contributed the same amount of time

when only one mixed program was run, the results indicate that once there is a

competition for the disk access, the I/O component of the program dominates the

outcome of the gain ofload sharing.

7.5 UNIX UTILITY PROGRAMS

We investigated our load sharing scheme using two commonly used Unix

utility programs called nroff and cc. Although the precise behaviour of these

programs was not known, thus making it difficult to interpret the results, we

wanted to observe the gains with some real programs.

7.5.1 nroff:

Nroff is a text formatting program that can be run with several different

options. We used the following form:

nroff -ms infile > outfile

Five different sized input files were u~ed to provide different computations.

Table 7.5 shows the file sizes and the corresponding computation times.

The environment used for the nroff program was same as for the I/O

intensive program. However, in this case the control program received only one

-138-

parameter which indicated whether to take measurements with or without the

use ofload sharing scheme. The name of the input file was built into the control

program, and its contents were changed to that of different sized input files.

FILE SIZE COMPUTATION
(BYTES) (SECONDS)

74 33.33

340 37.22

4590 65.42

11377 101.64

22449 300.47

COMPUTATION TIMES FOR
nroff

TABLE 7.5

In order to find a typical size of an nroff source file we carried out a survey of

all nroff source files resident under the luser directory on a multiuser general

purpose machine extensively used by the research staff of the Computing

Laboratory. The results of this survey are summarised in Table 7.6. We found

that the average size of an nroff source file was 10367 bytes, and more than 77%

files were larger than 1000 bytes.

The results for the nroffprogram are shown in Figure 7.7. Here we note that

Grl and GIl start being negative and become steady at around 0%. This is

different from all the previous results. The fact that GIl moves towards 0%

indicates that as the computation increases nroff becomes more of a CPU

intensive program, but because of remote accesses to I/O files the gain does not

become higher than 0%. Note that for an average sized source file the gain is in

the region of -5% to 0%.

The behaviour of Gr 1 can be explained if we remember that nroff not only

accesses I/O files supplied by the user, but also needs macro files that contain

-139-

5
%GAIN

o

-5

-10

-15

Grl

-20

-25

o 20

GrO

~.

EG~~~ 7.~]

.-.-.-._.-.-.-
---~'~'-'-'~'~

.~.-.-.-.-.-.-.-.-.-.-.­~~-------------------------
'/

//
// . /

//
// , /

//
,/'/

/ /
, /

,/ /
'(/
. / Gil
I /
.(

-A,

I ,

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

COMPUTATION

"GAINS" FOR nroff
TIME (seconds)

• o
-.:t
~

GREATER
THAN PERCENTAGE
(bytes)

1000 77.67 %

2000 60.33 %

3000 50.48 %

4000 43.69 %

5000 39.32 %

11000 25.59 %

20000 17.41 %

nroffSOURCE FILE SIZES

TABLE 7.6

details of how to interpret the formatting commands given by the user in the

input text. Normally the macro files are accessed from the machine which

forked the process that executes the nroffprogram. Thus, in the case ofGrl even

though the I/O files are located on the program where the program is executed,

the macro files are still accessed over the Ethernet from the occupied computer.

Hence a low value for gain is obtained.

The Newcastle Connection provides a system call to execute a program with

root (/) changed to the computer that executes the program. If the remotely

executing program now needs a file, then it would be searched for on the remote

computer. If this changed root method of remote execution is used to execute

nroff on the remote free computer (during the measurements for Grl) then the

macro files would be accessed from the previously free computer. Hence, the

overhead of remote access of macro files will also be avoided.

We obtained another set of values for Grl using the changed root execution.

The result is plotted in Figure 7.8. We note that the gain in this case is positive,

and for an average sized source file it is over 55%.

-141-

80
% GAIN

70

60

50

40

30

20

10

o
o 20 40 60 80

~----I fiGURE 7.8

Gerl

100 120 140 160 180 200 220 240 260 280 300 320

COMPUTATION

"GAIN" FOR NROFF WITH CHANGED ROOT
TIME (seconds)

~ t t t" '"he,

I
N
o:t
""i

7.5.2cc:

cc is a compiler for the programming language C. We investigated our load

sharing scheme using this program in same environment as described for the

I/O intensive program. CC program was run using different sized input files to

provide different amount of computation. Table 7.7 shows the file sizes with the

corresponding compu ta tions.

FILE SIZE COMPUTATION
(BYTES) (SECONDS)

45 24.73

391 34.16

900 40.37

2016 47.08

4386 60.14

11277 109.89

COMPUTATION TIMES FOR cc

TABLE 7.7

In order to find a typical size of a cc source file we carried out a survey of all

cc source files resident under the luser directory on a multiuser general purpose

machine extensively used by the research staff of the Computing Laboratory.

The results of this survey are summarised in Table 7.8. We found that the

average size of a C source file was 3944 bytes, and more than 58% files were

larger than 1000 bytes.

The results obtained for the cc program are shown in Figure 7.9. These

results show that both GIl and Gr 1 remain negative, and for an average sized

file the gain is in the region of -20% to 0%.

-143-

GREATER
THAN PERCENTAGE
(bytes)

1000 58.10 %

2000 38.99 %

3000 30.18 %

4000 25.07 %

5000 21.12 %

11000 09.77 %

20000 04.08 %

cc SOURCE FILE SIZES

TABLE 7.8

The attempts to investigate the gain Gr1 when executed with changed root

failed initially because the cc program forks other programs, and the execute

with changed root facility could not cope with that. Further investigation

revealed that the problem was occuring in the cc program where it invoked shell

to start the linker by using '<' and '>' symbols to assign the input and output

files respectively. We could not readily extend the functionality of excr, but by

changing the cc program so that it opened the 110 files before using the exec

system call to invoke the linker, we managed to get readings for Gr 1 with

changed root. The cc program became faster because of our changes, therefore

TCw and TCs (completion time without and with load sharing) were taken

again. The result for Gr 1 with changed root is shown in Figure 7.10. We note

that the gain is now increasingly positive for computation times larger than 60

seconds. However the gain for an average sized input file is still in the region of

0%.

-144-

10
%GAIN

o

-10

-20

-30

-40

-50

o 20

[iIGir~~ u7~9-1

GrO
.................... , .. ~

/ .
./ ~---------------------- ...

/ / . / ~1

..
/ /
./

// ~
./

, ",6
.... . .

~. ,

/
~

/
/

/

I
~

.~~
I

I
I

40 60

"GAINS" FOR cc

80 100 120

COMPUTATION (seconds)
TIME

,
~

'"

35
%GAIN

25

15

5

-5

-15

-25

-35

o

[FW~;~ ;.;oJ

20 40 60 80

"GAINS" FOR cc WITH CHANGED ROOT

100 120

COMPUTATION (seconds)
TIME

I
(0
~

"'i

7.6 CONCLUSIONS

In this chapter we have presented the results of the experiments carried out

to evaluate our load sharing scheme. We used different types of programs, and

discovered that the CPU intensive programs are suited for load sharing as long

as their computational requirements are more than about 10 seconds. The I/O

intensive and mixed programs are suited for load sharing only when their I/O

files are located on the computer where the program is to be executed, in which

case very high gains can be obtained. For standard Unix utilities we found that

it is necessary to know the general behaviour of the program before it can be

decided whether they are suitable for remote execution as a result of load

sharing. If the I/O files of a Unix utility programs are residing on the remote

free computer then executing the program with changed root can result in

positive gain.

-147-

CHAPTER EIGHT

CONCLUSIONS

In this thesis the problem of load sharing in distributed computer systems

has been studied. After discussing the role ofload sharing within the context of

distributed systems, we reviewed several studies already carried out in the field

of load sharing. The fundamental issues that need to be resolved in order to

implement a load sharing scheme in any distributed system were identified. We

then considered an existing Unix U ni ted system and designed a simple load

sharing scheme for it. This load sharing scheme was implemented and

experiments were carried out to evaluate it.

In this chapter we look back at our work and discuss what has been learnt

from it. In section 8.1 we consider our load sharing scheme for the Perq system

to establish the extent to which it satisfies the desirable features described in

section 3.2.8. In section 8.2 we give some suggestions for future work involving

our load sharing scheme. We conclude this thesis in section 8.3 by discussing

what we have learnt from our work about our scheme in particular, and load

sharing in general.

8.1 DESIRABLE FEATURES

In this subsection we shall assess the load sharing scheme for the Perq

system by observing the degree to which it possesses the desirable features of

load sharing schemes as outlined in Chapter Three (section 3.2.8). We consider

each feature separately:

-148-

I - Stability: The stability of a system can be measured with respect to several

criteria. For example, a stable system would give an acceptable response time to

its users in different system states; more relevant to the systems implementing

a load sharing scheme is that a free computer should not become inundated with

requests from the remote computers. There are some built-in features of our

load sharing scheme for the Perq system that encourage stability. For example,

confirmation of the current state of the server computer avoids tasks being sent

to computers that have changed state since the last information exchange; the

different order of storing the state information in the state vectors prevents the

same free or hosting computer being selected by all the other computers.

Furthermore a request to execute a program remotely (as a result of load

sharing) is not further considered for load sharing by the receiving computer;

thus preventing a request from moving among the computers without being

executed at any computer.

11- Implementability: We have demonstrated that it is possible to implement

our load sharing scheme without changing the existing system software. This

was achieved because we decided to implement our scheme above the Newcastle

Connection, and therefore utilised the existing mechanisms for remote program

execution and information exchange. Therefore we can safely say that the

implementation of our load sharing scheme is fairly simple, and does not

require major changes to the existing structure of PNX or the Newcastle

Connection.

m- Cost: The total overhead of the load sharing scheme for the Perq system can

be divided into five distinct components. The first component of the cost is

incurred when a program suitable for load sharing is invoked and it is

determined whether the local computer is busy. The average time taken to do

this, in the absence of any other user-level programs, is 1.94 seconds.

-149-

If the local computer is busy then the second component of the cost is

contributed by the function (gethost) responsible for finding a free computer in

the system. The minimum value of this cost is obtained when no free or hosting

computer can be found in the local state vector; while the maximum value is

obtained when the local state vector shows all the other computers to be free

which are in fact all occupied. Figure 8.1 shows the minimum and maximum

10

9

8

7

6

5

4

3

2

SECONDS I FIGURE 8.11

U-to-F costs

gethost
maximum

gethost
minimum

-------------------O~~~==~~~-~--~--~--~--=-~--~--~~==~~--~

1 2 3 NUMBER OF
COMPUTERS

LOAD SHARING OVERHEADS

4

values of these costs for different number of computers in the system. Note that

the maximum cost of the second component varies almost linearly with the

number of computers in the system, while the minimum cost remains constant

at about 0.14 seconds.

-150-

If a free remote computer can be found then there are some additonal costs

involved in updating local and remote state vectors, and setting the count of

remotely executing requests. The total value of this third component of the

overhead is approximately 11 seconds.

The fourth component of the overhead is incurred when a program is

executed remotely. Our results in Chapter Seven have shown that the value of

this component depends on the nature of program being executed remotely. The

CPU intensive programs have less overhead than the I/O intensive programs.

The last and fifth component of the overhead is incurred when a state

transition takes place on a computer, for example when a computer is switched

ON all the other computers need to be informed. Figure 8.1 shows the times

taken to inform different number of other computers in the system when the

transi tion U to F takes place.

Thus we see that the cost of our ofload sharing scheme, excluding the cost of

remotely executing a ptrogram, can be as little as 1.94 seconds and as high as 20

seconds. It must be recalled, however, that our load sharing scheme avoids the

expensive parts until it is clear that there is a good chance of finding a free

computer, and the unnecessary exchange of system information is also avoided.

IV- Autonomy: The mechanism used by the Newcastle Connection (and

therefore by the load sharing scheme) for invoking remote execution does not

force the remote computers to execute tasks. The remote computers are free to

either reject or accept the request made by the other computers. If the remote

computer rejects the request then the load sharing scheme re-executes the

command on the machine originally requested by the user. Note that the load

-151-

sharing scheme is not responsible for recovering from the mistakes in the

original requests.; the load sharing scheme would only re-execute a command if

it made changes to it.

v - Transparency: The load sharing scheme is transparent in that a user does

not become aware that some of his commands are not executed where he

intended.

VI- Tunability: The only explicit parameter that can be varied according to the

changes in the system is the threshold value used to decide whether the local

machine is busy or not. Some control is however implicit in the design of the

scheme. For example, as more computers become occupied, there is less chance

of a program being executed remotely. Once all the computers are occupied, the

load sharing scheme does not find any free computers, and all the programs are

executed locally. This is what is desired of a load sharing scheme: it is more

active when there are large differences, and less active when there are less

differences in the loads on the computers in the system. We can claim (rather

optimistically) that our load sharing scheme is self-tuning.

8.2 Suggestions for Future work

Our implementation of the load sharing scheme for the Perq system is

essentially a prototype that did not require any changes to the existing

software. It would be interesting to measure the performance of our load

sharing scheme using an implementation that makes changes (discussed in

Chapter Six) to Unix and Newcastle Connection software.

The experiments described in Chapter Seven were designed to reveal the

potential of our load sharing scheme and, therefore, rather extreme

environments were used. A better idea of the benefits of our load sharing

-152-

scheme will be established if more realistic workloads were used for the

experiments. For example, one could observe the usage of single-user machines

over a given period to find out the typical command-mix and command-arrival

rate in the system. It would then be possible to construct a workload that

represents the real load.

In the design of our load sharing scheme we assumed that only the standard

programs which already exist on the remote computers are considered for load

sharing. It should, however, be interesting to investigate the gains of load

sharing when a program is first copied to the remote computer (using the

existing Newcastle Connection mechanisms) and then executed remotely.

Our results indicated that for real Unix programs load sharing was more

useful when these programs accessed local temporary files. One could change

other commonly used programs so that they always access local files.

Furthermore, the load sharing scheme can be modified to take account of the

location of I/O files before making a decision to execute a program remotely.

This new scheme could then be evaluated.

8.3 EPILOGUE

By designing, implementing and experimenting with the load sharing

scheme for the Perq system we have discovered several significant points. We

confirmed that the benefit of our load sharing scheme depends on the nature of

the program that gets executed remotely as a result of load sharing the system.

In this respect the CPU intensive programs are well suited for remote

execution. The I/O intensive and mixed programs are not suited for remote

execution if most of their I/O files are resident on the local machine. However,

large gains are to be made ifload sharing results in executing a program where

-153-

its I/O files are residing. The standard Unix utility programs benefit from load

sharing ifnot only the user-supplied I/O files are located where the program is

to be executed but also the I/O files which the program uses itself are at its place

of execution.

In this study we have demonstrated that it is possible to implement a load

sharing scheme using the mechanisms provided by the Newcastle Connection.

However the connected server facility had to be added to the Newcastle

Connection for the load sharing scheme to work properly. If the load sharing

scheme is to be modified to take account of the location of I/O files then the

Newcastle Connection should provide system calls that can determine the

location of I/O files. Furthermore if we are to load share requests which arrive

directly from another computer (and not sent by the load sharing scheme) then

the Newcastle Connection should allow a remotely executing program to

remotely execute another program.

Looking back at our work, we have learnt a great deal about the issues

involved in load sharing distributed computer systems, but have not been able

to completely resolve these issues for the load sharing scheme to be beneficial in

every situation. Our view is that there are no absolute solutions to the problems

in load sharing distributed systems. The potential usage and the structure of

the system dictate the solutions, and the resulting load sharing scheme is

beneficial in certain situations. Whether load sharing is worthwhile will depend

on how often these situations exist in the system.

-154-

REFERENCES

[ALONSO 83]

R. Alonso,

The Design of Load Balancing Systems For Local Area Network Based
Distributions,

U.C. Berkeley Publications, Fall 1983.

[BACH 86]

Maurice J Bach,

The Design of the Unix Operating system,

Prentice Hall Software Series, 1986.

ISBN NO: 0132017997

[BANAHAN 82]

M. F. Banahan,A. Rutter,

Unix: The Book,

Sigma Technical Press, 1982.

ISBN No: 0905104218

[BARAK 85a]

Amnon Barak, Ami Litman,

MOS: A Multicomputer Distributed Operating System,

Software Practice and Experience, Volume 15(8), August, 1985.

Pages 725-737

[BARAK 85b]

Amnon Barak, Amnon Shiloh,

A Distributed Load-balancing Policy for a Multicomputer,

Software Practice and Experience, Volume 15(9), September, 1985.

Pages 901-913

155

[BERSHAD 86]

Brian Bershad,

Load Balancing With Maitre d',

;login: Volume 11 (1), JanuarylFebruary, 1986

pages 32-45

[BLACK 86]

J. P. Black,

The Architecture of UNIX United,

Technical Report Series No 220, August, 1986.

Computing Laboratory,

University of Newcastle upon Tyne.

[BLAIR 83]

Gordon S. Blair,

Distributed Operating System Structures for Local Area Network

Based Systems,

PhD Thesis, 1983, University ofStrathclyde.

[BOKHARI79]

S. H. Bokhari,
Dual Processor Scheduling with Dynamic Reassignment,

IEEE Transactions of Software Engineering

Volume SE-5 No 4, July, 1979.

Pages 341-349

[BROWN 84]

P.J.Brown,

Starting with Unix

Addison-Wesley, 1984.

ISBN No: 0201132338

156

[BROWNBRIDGE 82]

D. R. Brownbridge, L. F. Marshall, B. Randell,

The Newcastle Connection - or UN/Xes of the world unite
Software Practice and Experience

Volume 12(12), December, 1982.

Pages 1147-1162

[CAREY 86]

Michael J. Carey, Hongjun Lu,

Load Balancing in a Locally Distributed System

ACM Proceedings ofSIGMOD '86 International Conference on

management of Data, Washington D C, May 28-30,1986.
Pages 108-119.

[CHOU 82]

Timothy C. K. Chou, Jacob A. Abraham,

Load Balancing in Distributed Systems

IEEE Transactions of Software Engineering, Volume SE-8, 1982.

[CHOW 79]

Yuan-cheih Chow, Walter H. Kohler,

Models for Dynamic Load balancing in a Heterogeneous Multiple

Processor System

IEEE Transactions on Computers, Volume C-28 No: 5, May, 1979.

Pages 354-361

[CHU 80]

W. W. Chu, L. J. Holloway, M. T. Lan, Kemal Efe,

Task allocation in Distributed Data Processing,

IEEE Computer, November, 1980.

Pages 57-69

157

[DUNSMUIR 85]

M. R. M. Dunsmuir, G. J. Davies,

Programming the UNIX System,

Macmillan Computer Science Series, 1985.
ISBN No: 0333371569

[EAGER 84]

Derek L. Eager, Edward D. Lazowska, John Zahorjan,

Dynamic Load Sharing in Homogenous Distributed Systems

Technical Report 84-10-01, October, 1984,

Department of Computer Science,

University of Washington

[EAGER 85]

Derek L. Eager, Edward D. Lazowska, John Zahorjan,

A Comparison of Receiver-Initiated and Sender-Initiated Adaptive

Load Sharing,

Proceedings of the 1985 ACM SIGMETRICS Conference on

Measurement and Modelling of Computer Systems, August, 1985.

Performance Evaluation Review, Volume 13 No: 2.

Pages 1-3

[ENSLOW 78]

Philip H. Enslow,

What is a Distributed Processing System?

Computer, January, 1978.

[FERRARI 83]

D. Ferrari, G. Serazzi, A. Zeigner,

Measurement and Tuning of Computer Systems

Prentice Hall, 1983.

158

[FERRARI 86]

Domenico Ferrari, Songnian Zhou,

A study of Load Indices for Load Balancing Schemes

1986 Proceedings of Fall Joint Conference, Dallas, Texas.

November 2-6,1986. IEEE Computer Society Press.
Pages 684-690

[FOXLEY85]

Eric Foxley,

Unix for super Users

International Computer Science Series, 1985.

ISBN No: 0201142287

[HAC 85]

Anna Hac, Theodore Johnson

A Study of Dynamic Load Balancing in a Distributed System

Report No: JHUIEECS-85/15, 1985.

Department of Electrical Engineering & Computer science

The Johns Hopkins University.

[HARARY69]

F.Harary,

Graph Theory,

Addison Wesley, New York, 1969.

[ICL 84]

ICLPERQ: Guide toPNX

R10139/00
International Computers Limited

January, 1984

[JENSEN 78]

Douglas E. Jensen
The Honeywell Distrbuted System

Computer, January, 1978.

159

[JONES 79]

A. K. Jones et aI,

StarOS, a Multiprocessor Operating system for the support of Task

Forces

Proceedings of the Seventh ACM Symposium on Operating System

Principles, Pacific Grove, Calfornia, December, 1979.

Pages 117-127

[KARSHMER 83]

A. Karshmer, D.DePree, J. Phelan,

The New Mexico State University Ring Star System: A Distributed

UNIX Environment

Software Practice and Experience,

Volume 13(12), December, 1983.

Pages 1157-1168.

[KA UFELD 82]

J. C. Kaufeld, D. L. Russel

Distributed Unix System,
Workshop on Fundamental Issues in Distributed Computing,

ACM SIGOPS and SIGPLAN,

15-17, December, 1982.

[KEEFE 85]

D. Keefe, G. M. Tomlinson, 1. C. Wand, A. J. Wellings,

PULSE - An ADA-based Distributed Operating system,

Academic Press, 1985.

[KELLEY 84]

A. L. Kelley, Ira Pohl,

ABookonC,

1984.
ISBN No: 0805368604

160

[KERNIGHAN 78]

Brian W. Kernighan, Dennis M. Ritchie

The C Programming Language

Prentice Hall Software Series, 1978.

[LEFFLER 83]

Samuel J. Leffier, Robert S. Fabry, William N. Joy,

A 4.2 bsd Interprocess Communication Primer (Draft of JUly 27,1983)

Computer Systems Research Group, Department of Electrical
Engineering & Computer Science

University of California, Berkeley.

[LELAND 86]

Will E. Leland, Teunis J. Ott,

Load-balancing Heuristics and Process Behavior

ACM Performance Evaluation Review

Special Issue Vol: 14 No: 1, May, 1986

Pages 54-69

[LELANN81]

Gerard Lelann,

Motivations, Objectives, and Charescterisation of Distributed Systems,

Lecture Notes in Computer Science (105),

Edited by B. W. Lampson, M. Paul, & H. J. Siegert,

Springer Verlag, 1981.

[LIVNY 82]

Miron Livny, Myron Melman
Load Balancing in Homogeneous Broadcast Distributed Systems

Department of Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel.

161

[LO 83]

Virginia Mary Lo,

Task Assignment in Distributed Systems,

PhD Thesis, October, 1983,

Univesity of Illinois.

[LO 84]

Virginia Mary Lo,

Heuristic Algorithms for Task Assignment in Distributed Systems,

Proceedings of 4th International Conference on Distributed
Computing, 1984.

Pages 30-39

[MARSHALL 87]

Lindsay F. Marshall

RobertJ. Stroud

Personal Communication

Computing Laboratory, The University of Newcastle upon Tyne

March, 1987

[METCALFE 85]

R. M. Metcalfe, D. R. Boggs,
Ethernet: Distributed Packet Switching for Local Computer Networks,

Comms. A. C. M., Volume 19(7), July 1976.

Pages 395- 404

[NARSINGH 74]

Deo N arsingh,
Graph Theory with applications to Engineering and Computer Science

Prentice Hall, 1974.

[NEEDHAM 80]

R. M. Needham, A. J. Herbert,
The Cambridge Distributed Computing System

Addison-Wesley, 1980.

162

[NI81]

Lionel M Ni, Kai Hwang,

Optimal Load Balancing strategies for a Multiple Processor System

Proceedings of the 1981 International Conference on Parallel
Processing.

Pages 352-357

[NI85]

Lionel M. Ni, Chong-Wei Xu, Thomas B. Gendreau,

A Disributed Drafting Algorithm for Load Balancing,

IEEE Transactions of Software Engineering, Volume SE-ll (10),
October, 1985.

Pages 1153-1161

[NOWITZ 80]

D. A. Nowitz, M. E. Lesk,

Implementation of a Dial Up Network of Unix Systems

Proceedings of the COMPCON 80, Washington D C, September, 1980.
Pages 483-486.

[POPEK 83]

G. Popek, B. walker, et al.,

LOCUS A Network transparent, High Reliability Distributed system

Proceedings ofEigth ACM Symposium on Operating Systems

Principles, Pacific Grove, California, December, 1983.

Pages 169-177

[PRICE 84]

Camille C. Price, S. Krishanaprasad,

Software Allocation Models for Distributed Computing Systems

Proceedings of 4th International Conference on distributed

Computing, 1984.

Pages 40-48

163

[RAMAMRITHAM 84]

Krithivasan Ramamritham, John A. Stankovic

Dynamic Load Scheduling in Distributed Hard Real Time Systems

Proceedings of 4th International Conference on Distributed
computing, 1984.

Pages 96-107

[RANDELL 84]

B. Randell,

The Newcastle Connection: A Software subsystem for Constructing

Distributed UNIX Systems,

Technical Report Series 194, September, 1984,

Computing Laboratory,

University of Newcastle upon Tyne.

[RANDELL 85]

B.Randell

System Design and Structuring,

Technical Report Series No: 198, March 1985,

Computing Laboratory,

University of Newcastle upon Tyne.

[RAO 79]

G. S. Rao, et aI,
Assignment of Tasks in a Distributed Processing System with Limited

Memory
IEEE Transactions on Computers, Volume C-28 No: 4, April 1979

Pages 291-299

[RITCHIE 78]

D. M. Ritchie, et aI,

Unix Time-Sharing System
Bell Systems Technical Journal, Part 2, Vol 57, No: 6,

July-August 1978.

164

[RITCHIE 84]

D. M. Ritchie, et aI,

The Unix System,

AT & T Bell Laborotories Technical Journal, part 2, Vol 63, No: 8
October, 1984.

[ROWE 82]

L. Rowe, K. Birman,

A Local Network Based on the UNIX Operating System,

IEEE Transactions of Software Engineering,

Volume SE-8(2), March, 1987.

Pages 137-146.

[SHILOH 83]

A. Shiloh

Load sharing in a Distributed Operating System,

M. S Thesis, July, 1983,

Department of Computer Science, The hebrew University of

Jerusalem, 91904, Israel.

[SHRIV AST A V A 82]

S. K. Shrivastava, F. Panzieri,

The Design of a Reliable Remote Procedure Call Mechanism,

IEEE Transactions on computers, July, 1982.

[STANKOVIC 85]

John A. Stankovic,
Stability and Distributed Scheduling Algorithms,
IEEE Transactions of Software Engineering, Vol SE-ll, No: 10,

October, 1985.

Pages 1141-1152

165

[STONE 77]

H. S. Stone,

Multiprocessor Scheduling with the aid of Network Flow Algorithms

IEEE Transactions of Software Engineering, Vol SE-3 No 1, Jan, 1977.
Pages 85-93

[STROUD 83]

RobertJ. Stroud,

Installing the Newcastle Connection on a Perq (a study in paranoia) or

How the Butterflies finally came home to roost

SRM 350, July, 1983,

Computing Laboratory,

The University of Newcastle upon Tyne.

[STROUD 86]

RobertJ. Stroud,

Recursive Transparency OR Just how transparent is the Connection

anyway?

SRM 431, June, 1986,

Computing Laboratory,

The University of Newcastle upon Tyne.

[STROUD 87]

Robert J. Stroud,
Naming Issues in the Design of Transparently Distributed Operating

Systems.

PhD Thesis, July 1987.

Computing Laboratory,

The University of Newcastle upon Tyne.

[TRIPATHI80]

Anand R. Tripathi, Edwin T. Upchurch, Jones C. Browne

An Overview of Research Directions in Distributed Processing

Proceedings of Distributed Computing, Washington D C, Sept 23-25,

1980, COMPCON 80.

Pages 333-340

166

[WANG 85]

Yung-terngWang, RobertJ. T. Morris,

Load sharing in Distributed Systems

IEEE transactions on Computers, Vol C-34, March, 1985.
Pages 204-217

[WU 80]

S. B. Wu, M. T. Liu,

Assignment of Tasks and Resources for Distributed Processing

IEEE COMPCON Proceedings on Distributed Processing, Fall 1980.
Pages 655-662

[YU 86]

Philip S. Yu, Simonetta Balsamo, Yan-Hang Lee,

Dynamic Load Sharing in Distributed Database Systems

Proceedings of Fall Joint Computer Conference, Dallas, Texas,

November 2-6, 1986,

IEEE Computer Society Press.

Pages 675-683

[ZATTI85]

Stefanno Zatti,
A Multivariable Information Scheme to Balance the Load in a

Distributed System

Report No: UCBICSD 851234, May 1985.
Computer Science Division, Department of Electrical Engineering and

Computer Science, University of California, Berkeley, CA 94720

[ZHAO 85]

W. Zhao, K. Ramamritham,
Distributed Scheduling Using Bidding and Focussed Addressing

IEEE Proceedings of Real-Time Systems Symposium, December, 3-6

1985.
Pages 103-111

167

	378297_0001
	378297_0002
	378297_0003
	378297_0004
	378297_0005
	378297_0006
	378297_0007
	378297_0008
	378297_0009
	378297_0010
	378297_0011
	378297_0012
	378297_0013
	378297_0014
	378297_0015
	378297_0016
	378297_0017
	378297_0018
	378297_0019
	378297_0020
	378297_0021
	378297_0022
	378297_0023
	378297_0024
	378297_0025
	378297_0026
	378297_0027
	378297_0028
	378297_0029
	378297_0030
	378297_0031
	378297_0032
	378297_0033
	378297_0034
	378297_0035
	378297_0036
	378297_0037
	378297_0038
	378297_0039
	378297_0040
	378297_0041
	378297_0042
	378297_0043
	378297_0044
	378297_0045
	378297_0046
	378297_0047
	378297_0048
	378297_0049
	378297_0050
	378297_0051
	378297_0052
	378297_0053
	378297_0054
	378297_0055
	378297_0056
	378297_0057
	378297_0058
	378297_0059
	378297_0060
	378297_0061
	378297_0062
	378297_0063
	378297_0064
	378297_0065
	378297_0066
	378297_0067
	378297_0068
	378297_0069
	378297_0070
	378297_0071
	378297_0072
	378297_0073
	378297_0074
	378297_0075
	378297_0076
	378297_0077
	378297_0078
	378297_0079
	378297_0080
	378297_0081
	378297_0082
	378297_0083
	378297_0084
	378297_0085
	378297_0086
	378297_0087
	378297_0088
	378297_0089
	378297_0090
	378297_0091
	378297_0092
	378297_0093
	378297_0094
	378297_0095
	378297_0096
	378297_0097
	378297_0098
	378297_0099
	378297_0100
	378297_0101
	378297_0102
	378297_0103
	378297_0104
	378297_0105
	378297_0106
	378297_0107
	378297_0108
	378297_0109
	378297_0110
	378297_0111
	378297_0112
	378297_0113
	378297_0114
	378297_0115
	378297_0116
	378297_0117
	378297_0118
	378297_0119
	378297_0120
	378297_0121
	378297_0122
	378297_0123
	378297_0124
	378297_0125
	378297_0126
	378297_0127
	378297_0128
	378297_0129
	378297_0130
	378297_0131
	378297_0132
	378297_0133
	378297_0134
	378297_0135
	378297_0136
	378297_0137
	378297_0138
	378297_0139
	378297_0140
	378297_0141
	378297_0142
	378297_0143
	378297_0144
	378297_0145
	378297_0146
	378297_0147
	378297_0148
	378297_0149
	378297_0150
	378297_0151
	378297_0152
	378297_0153
	378297_0154
	378297_0155
	378297_0156
	378297_0157
	378297_0158
	378297_0159
	378297_0160
	378297_0161
	378297_0162
	378297_0163
	378297_0164
	378297_0165
	378297_0166
	378297_0167
	378297_0168
	378297_0169
	378297_0170
	378297_0171
	378297_0172
	378297_0173

