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For starters I'll have "Who?", "What?", "When?", "Where?" and the "Wither?", 

"Whence?" and "Wherefore?" to follow, and one big side order of "Why?" 

(Zpaphod Beeblebrox in the Hitch-Hikers Guide to the Galaxy, by Douglas 

Adams, writer, 1952-2001) 
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Abstract 

For an engineer to be able to modify successfully a complex computer-based 

system, he will need to understand the system's functionality. Traceability can 

help the engineer to gain that understanding, but several surveys have observed 

that traceability information is poorly recorded. This thesis argues, based on a 

survey of nine aerospace projects, that one of the main causes of poor recording is 

that Traceability does not directly benefit the development process. The recording 

of traceability information is best performed by the engineers directly involved in 

the development process, yet it is precisely these engineers who seem to obtain no 

direct benefit in performing this task. This can be summarised as the Traceability 

Benefit Problem. To overcome this problem the recording of traceability data 

must provide immediate, tangible benefits to the engineers involved in the current 

development process. 

A related problem that occurs in large multi-team projects that follow 

development processes based on predictive models (such as Waterfall or V­

Model) is the changing of interface documentation without adequate negotiation 

(referred to as Throwing the Problem over the Wall). This thesis describes, in 

detail, how a small automotive sensor project addressed these problems by 

developing a Requirements Traceability system that enabled the reuse of software 

and provided a basis for the negotiation of changes with their customer. Analysis 

of the lessons learnt from the automotive sensor and aerospace projects lead to the 

definition of the Traceable Development Contract. 

The contribution of this thesis is the description and discussion of the Traceable 

Development Contract, a method of coordinating the interaction of related 

development teams in development process that is based on a predictive 

development model. The Traceable Development Contract is proposed as a means 

of controlling the upstream team bias with respect to the imposition of changes, 

by employing traceability to provide a basis for the negotiation of change. By 
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employing traceability in this way, it becomes beneficial to the development 

engineers and therefore overcomes the Traceability Benefit Problem. 

Finally, the thesis considers how the Traceable Development Contract traceability 

information can be exploited further to provide solution maturity and design 

metrics. 
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1.1 
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1.3 

1.4 

Introduction ........................................ . 

Thesis Hypothesis ......................... .. 

Thesis Contribution ........................... . 

Background to Proposed Solution .......... . 

. ................................ 1 

................................ 2 

................................. 3 

......................................... 3 

1.5 Proposed Solution ................................................................................... 5 

1.6 Thesis Structure ....................................................................................... 5 

1.1 Introduction 

For an engineer to be able to modify successfully a complex computer-based 

system, he will need to understand the system's functionality. One way to gain 

this understanding is to review the development artefacts looking for common 

threads of reasoning. Traceability' defined as, "a property of a system description 

technique that allows changes in one of the three system descriptions -

requirements, specifications, implementation to be traced to the corresponding 

portions of the other descriptions" [Greenspan and McGowan 1978] can help the 

engineer to determine these threads. 

Development standards such as ISO 9003 [ISO 2007] and TickIT [TickIT 2000] 

require that a project shall be able to demonstrate Requirements Traceability. 

I The tenl1 "Traceability" is often prefixed with "Requirements" to demonstrate the source of the 

trace relationships. The general teml "Traceability" refers to the recording of all trace 

re lationships. 



These standards are unclear on precisely what information is required to be 

recorded and to what use it should be put. Researchers have addressed this 

problem by determining what development artefact properties and relationships 

are required to be recorded to improve the efficiency of the development process 

and the quality of the product. This research has mainly concentrated on the 

evolution of requirements and as a result there are a number of requirements 

management tools [INCOSE 2007] such as DOORS [DOORS 2003], which allow 

the recording of traceability relationships between requirements. At present, 

traceability is mainly applied to the requirements development phase and 

traceability beyond that phase is seldom achieved in an industrial environment, as 

demonstrated by the Traceability Practices Survey (Chapter 3). 

1.2 Thesis Hypothesis 

Given that Traceability is a desired or mandatory technique and there are proven 

information structures and tools that support these structures, it seems odd that the 

take-up and execution within industry is poor [Ramesh et al. 1993] [Gotel and 

Finkelstein 1994] [Arkley 2002]. 

We argue that the lack of direct benefits to the main development process from 

Traceability, which we define as the Traceability Benefit Problem, is a major 

cause of the above situation. We state that the recording of traceability 

information is best performed by the engineers who are directly involved in the 

development process and it is these engineers who seem to obtain no benefit in 

performing this task. This lack of benefits causes the development engineers and 

their management to assign a very low priority to the recording of traceability 

information, often resulting in data that is incomplete, inaccurate and out of date. 
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1.3 Thesis Contribution 

The contribution of this thesis is the proposal of a Traceable Development 

Contract, which consists of a process and information model for coordinating the 

interaction of related development teams in development process that is based on 

a predictive development model. The Traceable Development Contract is a means 

of controlling the upstream team bias with respect to the imposition of changes, 

by employing traceability to provide a basis for the negotiation of change. By 

employing traceability in this way, it becomes beneficial to the development 

engineers and therefore overcomes the Traceability Benefit Problem. 

1.4 Background to Proposed Solution 

A traditional view of the poor uptake and execution of Traceability is that it is a 

technical problem, which can be improved by the greater integration of 

development tools or by the use of search engines [ Herzog 2000] [Antoniol et al. 

2002] [Marcus and Maletic 2003] [Huffman et al. 2006] 

This thesis questions the technical based solution by considering the factors 

involved in determining a trace between two artefacts belonging to different 

development phases. An argument is made that only the engineers directly 

involved in the development transformation, such as developing a design from the 

requirements, can consistently record the correct relationships between 

development artefacts. This argument is employed to validate the poor results 

presently obtained by offline traceability recording teams (described in Chapter 3) 

and search engines (described in Chapter 4). 

From the results of a Traceability Practice Survey (Chapter 3), an argument is 

developed that states engineers will only record this information consistently if it 

is beneficial to their immediate development task: we refer to this as the 

Traceability Benefit Problem. 
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One of the projects in the Traceability Practice Survey, the Automotive Sensor 

project (Chapter 5), demonstrated how the Traceability Benefit Problem could be 

overcome by the development of a traceability system that was beneficial to their 

development process. The resulting traceability system enabled the reuse of 

software and provided a basis for the negotiation of customer changes. The 

automotive sensor project was unique among the surveyed projects as it was 

developed by a small multidisciplinary team: the rest of the surveyed projects 

were large multi-team projects that followed development processes based on 

predictive development models. 

The Traceability Practice survey (Chapter 3) highlighted a related issue that 

occurs in large multi-team projects, where an upstream development team 

imposes changes on a downstream team without any negotiation. This has been 

observed by other researchers [AI-Rawas and Easterbrook 1996] [Curtis et al. 

1988] [Christie et al.1996] and is often referred to as "Throwing the problem over 

the wall". Development processes based on predictive development models have 

the problem of establishing a suitable development phase baseline to allow 

development to advance. Changes to baselines will always occur during 

development. 

Development models say little with respect to how teams involved in different 

development phases should interact and negotiate change. Boehm tackled this 

issue in his Theory-W of software management [Boehm and Ross 1989]. In this 

theory, he states that negotiations require structure and objective information 

about the proposed change. The determination of the impact of a change to a 

development baseline is such an item of objective information. To determine the 

impact of a change requires the recording of traceability relationships between the 

baseline and the next development phase. This is how the Automotive Sensor 

team beneficially employed traceability to negotiate change with their customer. 

A similar use of traceability in the context of a structured interaction would make 
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the recording of traceability infonnation beneficial to both development phases 

and therefore it would overcome the Traceability Benefit Problem for multi-team 

development processes. 

1.5 Proposed Solution 

The Traceable Development Contract (TDC) is proposed as means of providing 

structure and objective information to change negotiations. The IDC formalises 

the interaction of two development teams by defming their behaviour with respect 

to the state of their common development artefacts. Traceability is employed as a 

means of assessing the impact of a change to the common development artefacts 

and providing a basis for the negotiation of the change. The TDC affords the 

engineers in the downstream development phase an element of control over their 

development environment by controlling the imposition of changes by the 

upstream development team. By keeping the definition of the TDC generic, for 

example the interaction between an upstream problem defining phase (e.g. 

software requirement definition) and a downstream development phase (e.g. 

software design), the contract can be applied across a number of development 

interfaces and therefore achieving traceability beyond the requirements 

development phase. The TDC consists of three parts: 

• Problem artefacts (documentation, diagrams, models etc) that describe the 

problem domain. 

• Traceabilitv data structures that record how the problem information artefacts 

are related to a proposed solution. For example, traceability structures that 

record the relationship between a software design and a requirement set. 

• A protocol that defines the behaviour of each development phase with respect 

to changes to the problem information artefacts or solution. 

1.6 Thesis Structure 

The thesis is divided into ten chapters. 
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Chapter 1 Introduction: This chapter lays the foundations for the thesis by 

describing the technical problem, thesis hypothesis, thesis contribution, proposed 

solution and finally the structure of the thesis. 

Chapter 2 Traceability: This chapter describes the origins, development of 

Traceability definitions and current implementation techniques. The aim of this 

chapter is to provide a foundation for the following chapters by clarifying terms 

and definitions. 

Chapter 3 Traceability Practice Survey: This chapter describes motivation and 

the method of a survey of traceability practices performed by a number of BAE 

SYSTEMS projects. The results of the survey are compared and contrasted with 

two widely cited studies on Requirements Traceability practice performed by 

Gotel [Gotel 1995] and Ramesh [Ramesh and Jarke 1999b; Ramesh et al. 1995]. 

Chapter 4 Traceability Benefit Problem: This chapter builds upon Chapter 3 by 

analysing the results of the Traceability Practice Survey in detail. From this 

analysis, an argument is developed that states that one of the major causes of the 

observed Requirements Traceability practice issues is the lack of benefit that it 

provides to the current development process. We define this as the Requirements 

Traceability Benefit Problem. 

Chapter 5 Automotive Sensor Case Study: This chapter describes in detail how 

Electronics and Integrated Solutions (E&IS), one of the BAE SYSTEMS 

surveyed projects, developed a Traceability system which addresses Traceability 

Benefit Problem. The chapter describes and illustrates with project data the 

development process and traceability system. Finally, the chapter describes the 

benefits the traceability system provides to the development engineer, the project 

management and their customer. 

Chapter 6 Negotiating Change: Chapter 5 described how the automotive sensor 

project employed a traceability system to help them negotiate changes to their 
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baseline requirements. The Traceability Practice Swvey (Chapter 3) highlighted 

the problem of establishing and maintaining development phase baselines. During 

the swvey, a number of engineers raised issues relating to the fact that the re­

issuing of interface documentation without any consultation or negotiation 

(referred to as Throwing Problem over the Wall). This chapter examines the issue 

of change negotiation by considering what software development models have to 

say on the subject. Finally, the BAE SYSTEMS Common Engineering Process 

Model (CEP) is reviewed as many BAE SYSTEMS development processes are 

based on this or a similar development model. The CEP is reviewed with respect 

to change negotiation and the results are related to the observations made during 

the Traceability Practice Swvey. 

Chapter 7 Traceable Development Contract: Chapter 6 highlighted the 

weaknesses in predictive development models with respect to establishing 

development phase baselines and the inherent bias these models have towards 

upstream development phases making changes to the baseline. Chapter 5 

described how the automotive sensor project employed a traceability system to 

help them negotiate customer changes to their baseline requirements. This chapter 

combines these themes and introduces the Traceable Development Contract 

(TDC). The TDC is proposed as a means of controlling the upstream team bias 

with respect to the imposition of changes, by employing traceability to provide a 

basis for the negotiation of change. By employing traceability in this way, it 

becomes beneficial to the development engineers and therefore overcomes the 

Traceability Benefit Problem. 

Chapter 8 TDC Traceability Data Structures: This chapter examines the data 

structures required to achieve the aims of the TDC. This chapter describes how 

design of the structures has been influenced by previous traceability structures and 

the Traceability Practice Swvey. The chapter concludes by examining how the 

TDC traceability data structures can be exploited further to provide solution 

maturity and design metrics. 
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Chapter 9 An Illustration of the TDC: Chapter 7 outlined the IDC protocol and 

Chapter 8 described the data structures required to support the contract. This 

chapter builds upon this work by describing how a contract may work in practice. 

To illustrate the IDC, and the complexity of the aerospace industry, this chapter 

will consider the development of the Mission Planning System software for a 

hypothetical Jet trainer. The illustration is not a proof or a validation of the IDC, 

it is presented here as a means of exemplifying the ideas presented the previous 

chapters. 

Chapter 10 Lessons Learnt and Future Work: This chapter summarises the 

problems and achievements of this work. The chapter describes the history of the 

development of the ideas in this thesis and finally, discusses how the work 

presented can be extended further. 
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2.1 Introduction 

This chapter investigates the origins of Traceability and the evolution of the 

literature definitions. The chapter examines the need for Traceability in the 

development process and summarises the data models and tools that have been 

developed to achieve Traceability. 

2.2 Origins of Traceability 

The term Requirements Traceability appears to have been coined in the 1950s by 

the US military during the development of electro-mechanical systems [Alford 

1994]. During this period, Traceability broadly referred to the ability to 

demonstrate that a system satisfied a set of requirements. As software engineering 

developed from its electro-mechanical parentage, Requirements Traceability was 

adopted and applied to the development of software. By the mid 1970s it became 

apparent that software development required new techniques: this is commonly 

referred to as the Software Crisis [Dijkstra 1972]. At this time Alford [Alford 
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1977] identified a need to improve traceability between system modelling and 

system requirements and between requirements and the originating specification 

documents. The 1970s also saw the introduction of the first requirements tracing 

tools [Pierce 1978]. 

In the 1980s Boehm illustrated his Spiral model [Boehm 1986] by describing the 

development of a Software Productivity System (SPS) which included a 

Requirements Traceability Tool (RTT). The 1990s saw an upsurge in interest in 

requirements traceability. This upsurge appeared to have two causes. The first 

cause was the availability of commercial relational database systems for common 

PC platforms, which lead to the development of commercial requirements 

managements systems such as DOORS (Dynamic Object-Orientated 

Requirements System2)[DOORS 2007] and RTM (Requirements and Traceability 

Management system3)[RTM 2007]. This instilled interest in both the academic 

and industrial communities on how these new tools could be best exploited. 

The second cause appears to have been a related upsurge in interest in 

Requirements Engineering [Gotel 1995]. There are many definitions of 

Requirements Engineering though one of the most commonly cited is Definition 

2-1. Though, the application of analysis methods to requirements dates back to the 

1970s [IEEE 1977], Requirements Engineering became established in the early 

1990s (the first International Symposium on Requirements Engineering was held 

in 1993) when new requirements analysis methods were being developed. 

2 DOORS was originally developed by Quality Systems and Software (QSS) in the early 1990s 

and is currently being developed by Telelogic 

3 RTM was originally developed by Marconi Systems Technology in the early 1990s and is 

currently being developed by Serena. 
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Definition 2-1 

Requirements Engineering 

"Requirements engineering is the branch of software engineering concerned with 

the real-world goals for functions of and constraints on software systems. It is also 

concerned with the relationship of these factors to precise specifications of 

software behaviour, and to their evolution over time and across software 

families." [Zave 1997] 

The 1990s saw significant advances in Requirements Engineering research such 

as the development of techniques for eliciting and analysing stakeholders' goals, 

modelling scenarios that characterise different contexts of use, the use of 

ethnographic techniques for studying organisations and work settings, and the use 

of formal methods for analysing safety and security requirements. 

As Requirements Traceability is an aspect of Requirements Engineering it also 

saw an increase in research effort. This research effort was initially directed at the 

problem of requirement elicitation. This had been an ongoing problem in systems 

development, as demonstrated by an early empirical study by Bell and Thayer 

[Bell and Thayer 1976]. They observed that inadequate, inconsistent, incomplete 

or ambiguous requirements are common and have an impact on the quality of the 

resulting software. They stated that "The requirements for a system, in enough 

detail for its development, do not arise natural/yo Instead, they need to be 

engineered and have continuing review and revision" [Bell and Thayer 1976]. 

Boehm highlighted the cost of not getting the system requirements correct, stating 

that the cost of correcting requirement related error increased rapidly as 

development proceeded [Boehm 1981]. Requirements Traceability researchers 

during this period tackled issues related to the recording and analysis of 

requirement development rationale [Nuseibeh et al. 1994] [Riddle and Saeed 

1998] [Riddle and Saeed 1999a] and the recording of contributions by 

development actors [GoteI1995]. 
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The new millennium saw the introduction of a wide range of Extensible Mark-up 

Language (XML) [XML 2007] tools and this caused a change in the direction of 

Requirements Traceability research. Researchers started explored how these tools 

could be employed to record traceability relationships between diverse sources. 

Two features of XML appeared to have created the most interest, the ability to 

record metadata about an artefact in a known format, and use of the bidirectional 

Xlinks [Xlink 2007]. A number of researchers [Alves-Floss et al. 2002][Anderson 

et al 2002][Collard et al.2002][Zisman et al 2003] have proposed ways of 

employing these XML technologies to create traceability information frameworks. 

2.3 Literature Definitions 

There have been a number of Traceability definitions. One of the earliest 

definitions (Defmition 2-2) came from Greenspan & McGowan [Greenspan and 

McGowan 1978]. 

Definition 2-2 

Traceability is a property of a system description technique that allows changes in 

one of the three system descriptions - requirements, specifications, 

implementation- to be traced to the corresponding portions of the other 

descriptions" [Greenspan and McGowan 1978] 

This broad definition of traceability persisted until Davis introduced the idea of 

direction to traceability relationships (Definition 2-3). 

Definition 2-3 

"Traceability can be defined as the ability to describe and follow the life of an 

artefact, in both a forward and backward direction, i.e. from its origin to 

development and vice versa" [Davis 1990] 
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The introduction of a notion of direction to traceability relationships influenced a 

number of researchers. One of the most notable contributions was from Gotel who 

employed this idea to tackle the problem of pre-requirements elicitation. Gotel 

expanded upon Davis's earlier definition to establish a defmition for Pre and Post 

Requirements Traceability (Definition 2-4). 

Definition 2-4 

"Pre-requirements traceability (pre-RT) refers to the ability to describe and follow 

those aspects of a requirement's life prior to its inclusion in the requirements 

specification in both a forwards and backwards direction (i.e., requirements 

production and refinement). 

Post-requirements traceability (post-RT) refers to the ability to describe and 

follow those aspects of a requirement's life that result from its inclusion in the 

requirements specification in both a forwards and backwards direction (i.e., 

requirements deployment and use)". [GoteI1995] 

A number of researchers [Bersoff and Davis 1991] [Gote1 1995] [Mason 1999] 

extended the notion of direction to establish a distinction between artefact version 

(or horizontal) traceability and inter-development phase artefact (or vertical 

traceability) as shown in Figure 2.1. Horizontal traceability occurs between 

iterations of the same artefact, this is commonly known as version control. 

Vertical traceability occurs between artefacts in different development phases, for 

example relationships between a requirement specification and a design artefact. 

Mason [Mason 1999] took this two dimensional view and argued the presence of 

a third dimension (Figure 2-2) which captures the traceability relationships for a 

given revision or release of a system. 
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Specifications [IEEE 1998] is presented here as an example of a working 

description of Requirements Traceability. 

"4.3.1 Correct 

A Software Requirements Specification (SRS) is correct if, and only if, every 

requirement stated therein is one that the software shall meet. There is no tool or 

procedure that ensures correctness. The SRS should be compared with any 

applicable superior specification, such as a system requirements specification, 

with other project documentation, and with other applicable standards, to ensure 

that it agrees. Alternatively the customer or user can determine if the SRS 

correctly reflects the actual needs. Traceability makes this procedure easier and 

less prone to error (see 4.3.8} ... 

4.3.8 Traceable 

An SRS is traceable if the origin of each of its requirements is clear and if it 
facilitates the referencing of each requirement in future development or 

enhancement documentation. The following two types of traceability are 

recommended: 

a) Backward traceability (i.e., to previous stages of development). This depends 

upon each requirement explicitly referencing its source in earlier documents. 

b} Forward traceability (i.e., to all documents spawned by the SRS). This depends 

upon each requirement in the SRS having a unique name or reference number. 

The forward traceability of the SRS is especially important when the software 

product enters the operation and maintenance phase. As code and design 

documents are modified, it is essential to be able to ascertain the complete set 

of requirements that may be affected by those modifications. " [IEEE 1998] 

This definition tries to answer a criticism, which has been aimed at the previous 

defmitions, that they all fail to state why requirements traceability should be 
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perfonned. This highlights a problem faced by many development managers who 

are required to implement Requirements Traceability due to a need to be 

compliant to a development standard. Many Requirements Traceability definitions 

and development standards are unclear why it should be perfonned and what 

benefits will be obtained by perfonning traceability. Without this infonnation, it is 

difficult for these managers to detennine the correct level of effort to be assigned 

to this task. 

2.4 The Need for Traceability 

The perceived need for Traceability is dependent on each stakeholder's view of 

the development process. 

2.4.1 Customer 

For the Customer, Requirements Traceability is needed as a means of showing 

that the product satisfies the requirements. This is achieved by demonstrating the 

traceability relationships between acceptance tests and the requirements and also 

design and the requirements. 

2.4.2 Project Manager 

For the project manager, Traceability provides a range of project status 

infonnation. The rate of establishment of traceability relationships provides a 

means of assessing progress. The distribution of traceability relationships can 

highlight areas of high dependency or development bottlenecks. Traceability 

provides the project manager a means of assessing the impact of a change, 

allowing him to allocate the correct level of resource to the change. 

2.4.3 Requirements Analyst 

For the requirements analyst, Requirements Traceability provides a means of 

recording the contribution of each stakeholder during requirements elicitation. It 
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also provides a means to check the correctness and consistency of the developing 

requirements. 

2.4.4 Designer 

For the designer, Traceability provides a means of demonstrating that the design 

satisfies the requirements and how it will be verified. The traceability relationship 

between the design and the requirements allows the designer to determine the 

impact of any changes to requirements on the design or the impact of design 

changes on the ability to satisfy the requirements. Traceability also provides the 

designer a means of recording design rationales and design alternatives, which can 

be employed in a design justification. 

2.4.5 Maintainer 

For the maintainer, Traceability provides a means of gaining an understanding of 

the product. By traversing the traceability relationships the maintainer is able to 

determine the impact of a change. The traceability information also provides the 

maintainer a means of determining the testing required to validate the systems 

after a change. 

2.5 Traceability Link Semantics 

Each of the above development roles requires different set of link semantics to be 

recorded. The following is a summary of the link semantics, which have appeared 

in the literature. 

• Requirements related links. 

o Linking a requirement to its source documents. 
o Linking a requirement to the personal details of the stakeholders 

who developed the requirement. 
o Linking a requirement to its change history (configuration and 

control) 
o Linking a requirement to a justification, that gives the reasons for 

the requirement 
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o Linking a requirement to subsystem requirements (requirements 
decomposition). 

o Linking a requirement to design artefact(s). 
o Linking a requirement to a validation test(s). 

• Design artefacts related links. 

o Linking a deign artefact to the personal details of the stakeholders 
who developed the artefact. 

o Linking a design artefact to requirements. 
o Linking a design artefact to subsystem design (design 

decomposition). 
o Linking a design artefact to another artefact that describes the 

problem domain from a different viewpoint. 
o Linking a design artefact to a design rationale. 
o Linking a design artefact to its change history (configuration and 

control). 
o Linking a design artefact to a validation test(s). 

• Code Module related links. 

o Linking a code module to the personal details of the stakeholders 
who wrote the code. 

o Linking a code module to design artefacts. 
o Linking a code module artefact to subsystem (code 

decomposition). 
o Linking a code module to an implementation rationale. 
o Linking a code module to its change history (configuration and 

control). 
o Linking a code module to a validation test(s). 

This list is not definitive or exhaustive. It can be seen that there are similar 

traceability relationships in each development phase (requirements, design and 

code), such as the recoding of the stakeholder relationships. Given these common 

traceability relationships, a number of researchers have proposed traceability 

development models that describe how traceability relationships are recorded and 

exploited during the development of a system. 

2.5.1 Traceability Models 

One of the first of these models was the evolution support environment (ESE) 

system [Ramamoorthy et al.1990]. The ESE model considers a system to be 
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composed of a hierarchical structure of generic objects. These objects are 

connected by three types of traceability link: hierarchical links between objects at 

different levels of the hierarchy, historical links between versions of one object 

and development links between different objects at different stages of 

development. The ESE traceability model was implemented using the Ingres 

relational database in conjunction with the UNIX SCCS version control system. 

Gotel [Gotel 1995] considered problem of pre-requirements traceability, that is 

recording the relationships with respect to contributions made to an evolving 

requirement. In her thesis, Gotel addressed this problem by proposing a set of 

Contribution Structures. The evolution of a requirement is represented by a 

hierarchy of artefacts connected by either change relationships or reference 

relationships. Contributors are related to requirement artefacts by contribution 

relations that are defined by their role in the development process. 

The ESPRIT NATURE project demonstrated a prototype Requirements 

Engineering environment called PRO-ART [Pohl 1996]. The PRO-ART tool 

allows the tracing of the development or evolution of a requirement in three 

dimensions. 

Representation Dimension: This ranges from informal to formal. Moving along 

this dimension is technical problem. The dimension records the representation of a 

requirement from informal notes, structured text and finally to formal 

specification. 

Agreement Dimension: This ranges from partial to complete and is orthogonal to 

the representation dimension. Moving along this dimension is a social process. 

This is represented by issues about which decision must be made. An issue may 

be related to an object in the specification dimension. About each issue, one or 

more positions are stored and for each position a rationale is recorded. 
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Specification Dimension: This dimension ranges from opaque to complete 

understanding of the requirement. Movement along this dimension represents the 

cognitive and psychological problems of the requirements engineering. This 

dimension is orthogonal to agreement and representation dimensions. 

The DoD traceability model has evolved from the work of Ramesh and Edwards 

[Ramesh et al. 1995] at the Naval Postgraduate School in Monterey. Ramesh and 

Edwards developed a number of interrelated traceability models by observing 

current development practices and from interviews with engineers working on 

large DoD software development contracts. Their models consisted of a 

requirements management model, a design to implementation model, decision 

rationale model and compliance verification model. Each of these models contains 

a set of permissible information types and a set of permissible relationships. For 

example, Figure 2-3 describes the requirements management model. 

Derive 

Based On 

Figure 2-3 DoD Requirements Management Model 

Derive Compliance 
Verification 
Procedure 

These models were further extended and refined by Ramesh and Jarke [Ramesh 

and Jarke 1 999a] (CREWS project). The models were implemented using 

ConceptBase [ConceptBase 2007] and the SLATE engineering development tool 

(now obsolete). Ramesh claimed that these models were successful though he 

restated older problems relating to tool implementation and development 
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processes which he raised in 1995 with Edwards [Ramesh, Stubbs, Powers and 

Edwards 1995]. 

Another example of a traceability data model is the Meta-Modelling Approach to 

Traceability for Avionics (MATra) [Mason 1999]. MATra is an object-based 

approach to tracing artefacts for the development and assessment of aviation 

electronic (avionics) systems. It is based on a set of interconnected "traceability 

structures" specified using the class diagram view from the UML, with integrity 

constraints over these structures expressed in the Object Constraint Language 

(OCL). 

Though not a traceability data model, the AP233 application protocol data model 

[Herzog 2000], is designed primarily to support design data exchange between 

software engineering tools, and provides some design traceability capabilities. 

This data model was developed to allow systems engineering development tools 

to share data. 

However, there is still no clear agreement on a common traceability model as 

there are an unlimited number of traceability relations which can be recorded and 

as Wieringa [Wieringa 1995] stated: "the ultimate traceability tool is the world". 

What these models have demonstrated, in particular Contribution Structures and 

the DoD reference model, is how traceability can be applied to the development 

process to answer relevant development needs. A successful strategy for 

developing a traceability model, as demonstrated by the success of Gotel's and 

Ramesh's traceability models, is to start with a very simple model and to expand 

on this as the organisation gains an understanding of its rigour and usefulness. 

2.6 Traceability Representation Techniques 

Wieringa [Wieringa 1995] categorised the methods of representing a traceability 

relationship as matrices, entity relational models and cross referencing. 
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2.6.1 Matrices 

A matrix is the simplest and the most common way representing a traceability 

relationship. The horizontal and vertical dimensions represent the artefacts that are 

to be linked. A mark at an intersection indicates a traceability link. AU the links 

have the same semantics. 

2.6.2 Entity Relationship (E/R) Model 

EIR modelling is one of the best known semantic modelling approaches. It can be 

employed to describe the traceability links between entities. This technique has an 

advantage over the traceability matrix, in that links with higher arity than 2 (the 

maximum for a traceability matrix) can be represented. EIR Models can also be 

represented by relational database management systems (RDBMS) and this allows 

the ad hoc queries and reports to be made on the link data. Many of the 

commercial Requirements Traceability tools, such as DOORS [DOORS 2007] 

and RTM [RTM 2007], employ EIR modelling and relational database 

management systems to represent traceability relationships. 

2.6.3 Cross-referencing 

Cross-referencing is arguably the oldest traceability technique yet it has been 

given a new life with introduction of mark-up languages such as HTML and 

XML. In Cross-referencing the semantics of the link is contained in the text 

surrounding the reference. The link is represented by textual directions or in the 

case of HTML or XML by hypertext linking. Cross-referencing is simple to 

understand, though the traceability links are always binary and unidirectional. 

There are a number of examples of prototype project cross-referencing schemes, 

which employ tagging, numbering and indexing to implement traceability 

[Jackson 1991] [Zisman et al. 2003]. 
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2.7 Traceability Tools 

Tool support for Requirement Traceability can be divided into the following broad 

categories: 

• Generic tools, such as spreadsheets, word processors, hypertext editors and 

database management systems (DBMS), 

• Software Engineering Tools which provide traceability features. 

• Requirements Traceability Tools, which provide dedicated requirements 

traceability support. 

2.7.1 Generic Tools 

The tools that fall into this category are word processors, spreadsheets editors, 

hypertext editors and database management systems (DBMS). These tools, with 

the exception of database management systems, mainly support cross-referencing 

traceability. Microsoft Excel is commonly employed to create traceability 

matrices. 

Since Kaindl [Kaindl 1993] demonstrated how hypertext technology could be 

employed to record requirements traceability, HTML and XML editors have 

greatly increased in complexity and functionality though the basic referencing 

concepts that he described remain unchanged. The same can also be said of the 

work performed by Watkins and Neal [Watkins and Neal 1994], who described 

how common desktop tools could be employed to record requirements 

traceability. Since their work, Microsoft's dominance of the desktop market has 

resulted in a reduction of tools vendors but a greater integration of the Office 

products which overall has been beneficial to the execution of Requirements 

Traceability . 

Database management systems (DBMS) can be employed to implement ER 

models that represent traceability relationships [Riddle and Saeed 1999b]. 

However, the direct use of a DBMS requires an understanding of relational 
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database theory and SQL, which many practicing development engineers may not 

have. This has resulted in the development of dedicated Requirements 

Traceability tools, such as DOORS, which aim to hide the DBMS functionality 

from the engineer. The use of generic tools can be summarised as follows: 

• They mainly support cross-referencing traceability techniques. 

• They are readily available to all project members. 

• They are generally easily understood (with the possible exception of DBMS) 

and require little training. 

• They are flexible, though this may come with the incurred cost of developing 

bespoke scripts. 

• They generally don't support any form of data analysis (with the possible 

exception of DBMS ) 

2.7.2 Software Engineering Tools 

The prime aim of this group of tools is to provide a software development service 

and a traceability facility is just one of the many features provided. Most of the 

tools which fall into this class are Computer Aided Systems Engineering (CASE) 

tools, such as CRADLE [Cradle-5 2007]. This class of tools allow the 

development of objects to be traced, though this trace information is often limited 

to version control information. The use of software engineering tools can be 

summarised as follows: 

• They sometimes only offer limited traceability data recording and analysis 

facilities. (Traceability is only one of the facilities offered by these tools). 

• They do not easily allow traces to be made to information outside the tool's 

domain. 

• They can be complex and require staff training to make use of the full 

potential of the traceability features. 

• They are well suited to large projects as they allow distributed and controlled 

access to data. 
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2.7.3 Requirements Traceability Tools 

This class of tools is mainly aimed at providing requirements traceability, though 

they can be employed to provide traceability throughout a project 's lifetime. At 

present, there are two tools which dominate this area, DOORS (Dynamic Object 

Oriented Requirements System) [DOORS 2007] , and RTM (Requirements and 

Traceability Management system) [RTM 2007]. A survey of traceability tool 

features has been performed by INCOSE [INCOSE 2007] . 

The market leader, DOORS has the ability to import a range of documents and to 

decompose them into a hierarchy of records based on the structure of the original 

document. Traceability between documents is achieved by link modules, which 

record the relationship between individual records. Documents are organised in 

fo lders akin to an operating system file system: Figure 2-4. The ease of use of the 

import functionality and the intuitive use of folders has been the key to the 

success of the DOORS tool. 
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2.8 Summary 

In summary, the practice of Traceability in software development has a long 

history and a number of data models and tools that have been developed to allow 

the engineer to make use of this valuable resource (as described in section 2.4). 

The next chapter considers the practical aspects of recording Traceability 

information by examining how a number of aerospace projects practice 

traceability. 
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3.1 Introduction 

Management from a number of BAE SYSTEMS projects reported that there were 

issues in recording Traceability information in an industrial context. These issues 

were concerned with encouraging engineers to record and maintain Traceability 

infonnation. The result of these concerns was a survey of how a number of BAE 

SYSTEMS projects practiced traceability. 

This chapter describes the survey of traceability practices conducted on a number 

of BAE SYSTEMS projects. The motivation and the method of the survey are 

described here. The results of the survey are compared and contrasted with two 

widely cited studies on traceability practice performed by Gotel [Gotel 1995] and 

Ramesh [Ramesh et a1. 1995]. 

3.2 Traceability Practice Survey Objectives 

As stated in Chapter 2 there are many different Traceability implementation 

models and tools, each of which have their own particular strengths and 
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weaknesses. However, BAE SYSTEMS project management were reporting 

issues with the recording and maintenance of Traceability information. With this 

in mind, a survey BAE SYSTEMS projects was undertaken, to understand the 

state of traceability practice. The objectives of this survey were to investigate how 

each of the projects currently performs Traceability and to determine what 

elements of "best practice" could be applied across the company. 

3.3 Survey Design 

Give the above objectives, the first stage in the development of a survey design is 

the determination of the unit of analysis [Babbie 1990]. The unit of analysis is 

what or whom is being studied. In the initial survey design, the units of analysis 

were a number of aerospace related projects, which were of a similar scale and 

complexity. After a trial run of an early version of the Preliminary Questionnaire 

it was found that this selection was too coarse and the units of analysis should be 

the engineers on the projects. 

The next stage was to determine the type of survey to be conducted, cross­

sectional or longitudinal. A cross-sectional study involves observing a subset of 

the population all at the same time, while a longitudinal study involves repeated 

observations of the same subset over long periods of time. The limited access to 

project engineers, due to their work commitments, favoured a cross-sectional 

survey. This decision was supported by the fact that the development methods and 

tools were unlikely to change during development and if repeated surveys were 

possible it is was unlikely that they would be no more illuminating than the first. 

Therefore, a cross-sectional survey was selected. 

The final stage in the survey design was to determine how to conduct the survey: 

by questionnaires, interviews or a combination of these techniques. The trial run 

of the Preliminary Questionnaire helped to answer this question. These 

questionnaires were completed poorly and it was during discussions with 
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engineers that had completed them that it was discovered that a form could not 

identify all the issues. The outcome of these discussions was the decision that the 

project engineers had to be interviewed to gain a true insight into the problems. 

However, a questionnaire still provided a good basis for the interview and this 

resulted in the modification of the initial questionnaire for that purpose, giving 

rise to the Preliminary Questionnaire in Appendix A. 

3.4 Conducting the Survey 

The survey was confined to the BAE SYSTEMS projects which were members of 

the Dependable Computing Systems Centre4 [DCSC 2007]. Five BAE SYSTEMS 

divisions took part in the survey, Airbus (Filton), Avionics (Plymouth), MBDA 

(Filton), CSS & Programmes (Brough and Warton). From each of these company 

divisions the following product programmes took part: 

• Airbus (Filton): A380 IMA, A380 Fuel Systems 

• E&IS (Electronics and Integrated Solutions): Merlin, Sensors 

• MBDA (Filton): Sea Dart, ASRAAM 

• CSS & Programmes (Brough): Tornado, Gripen 

• CSS & Programmes (Warton): Eurofighter/Typhoon 

Nineteen engineers were interviewed individually in the course of this survey. 

Their experiences ranged from an engineering graduate with six months 

4 The Dependable Computing Systems Centre (DCSC) was founded in 1991 by BAE 

SYSTEMS, the University of York and the University of Newcastle. The DCSC performs 

research into dependable computing systems in conjunction with the BAE SYSTEMS 

companies and its affiliated joint ventures. The Traceability Practice Survey was conducted 

as part of the DCSC research programme. 
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experience to a head of department who had over twenty years experience of 

aerospace development. 

Before every site visit, the site survey sponsor was sent a general product 

questionnaire (Appendix A). This questionnaire had two purposes. Firstly, it 

helped the sponsor in selecting a suitable project and secondly, it allowed the 

development of more targeted interview questions. The product questionnaire 

covered the following four areas: 

• The first area of questioning was related to the product. These questions were 

intended to gain an overview of the product and its complexity. 

• The second area of questioning related to determining the project's 

organisation. 

• The third section of the questionnaire investigated how the project 

communicated. 

• The final section of the questionnaire looked at what tools and protocols the 

project teams were employing to overcome the problems related to 

Traceability. 

An interview schedule was drawn up from the information gathered from the 

returned questionnaires. The interviews were conducted during a number of site 

visits that occurred during 2002. The interviews were structured to gain the 

maximum contribution from the engineer and were based on ideas presented in 

standard texts [Babbie 1990;Leong and Austin 1996;Robinson 1993]. The 

interviews were conducted in a relaxed, informal manner that helped to put the 

engineer at ease and helped to dispel any ideas of the interview being some form 

of quality audit. 

Each interview started by the interviewer describing the aims of the survey to the 

engineer, which involved giving a quick overview of the DCSC. This was 

followed by the interviewer describing his background, engineering interests and 

how they related to the survey. Once a rapport had been established, the engineer 
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was asked to describe his job function, his department and fmally the product that 

he was currently working on. 

The interview then concentrated on the Traceability tools employed on the 

project. The engineer was encouraged to describe the benefits and pitfalls of these 

tools and the environment that they were used in. In the fmal phase of the 

interview, the engineer was asked for ideas to improve his Traceability tool set or 

working environment. The engineer was invited to "think out of the box" by the 

interviewer stating that he, the engineer, had "three wishes" that could be used to 

bring about the ideal Traceability tool and working environment. This phase of 

interview often proved to be most fruitful. The topics discussed often related to 

deficiencies that had been covered earlier in the interview. The interview was 

finished by the engineer being thanked for his contribution. 

In the course of the survey, a total of fifteen hours of interviews were completed, 

with the average length of an interview being approximately three quarters of an 

hour. Throughout the interview, the interviewer would record informal written 

notes that were later transcribed. This technique proved to be more successful than 

recording, as many engineers appeared to be hampered by the presence of a 

microphone. 

3.5 Survey Results 

The main conclusion of this survey was that "best practice" is not a simple matter 

of selecting the correct Traceability tool or adopting a new method of working. 

The survey raised a number of factors that influenced Traceability practice. 

• Traceability Tools 

• Development Practices 

• Development Communications 

• Cost! Benefits 

• Organisation & Culture 
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• Traceability Comprehension. 

3.5.1 Traceability Tools 

The projects surveyed employed four different tools for Traceability: 

DOORS[DOORS 2007], Cradle [Cradle-5 2007], Requirement Traceability 

Management (RTM) [RTM 2007], and Product Version Control System 

(PVCS)[PVCS 2007]. Only RTM and DOORS are dedicated Requirements 

Traceability tools, while PVCS is a software configuration tool and Cradle is a 

software engineering tool that is based on the Ward-Mellor method of software 

development. 

The majority of the surveyed projects only employed Traceability tools for 

product verification. This use was highlighted by the method of deployment; on 

many of the surveyed projects, the tools were maintained by a quality team that 

was separate from the main development teams. This bias towards product 

verification role was confirmed by a number of engineers who stated that 

Traceability tools had no role to play in the development process and that these 

tools were only a means of checking that all the Hi's had been dotted". 

All the engineers surveyed expressed dissatisfaction with their Traceability tools, 

with data entry being the most commonly quoted area of dissatisfaction. The need 

for engineering data to be specially transcribed for the Traceability tools often 

caused backlogs in data entry. These delays were often further increased due to 

the lack of personnel who had the required training to manipUlate and format the 

traceability data. The resulting slow data entry process often caused Traceability 

database to be out-of-sync with the development process and as a result, the 

Traceability data was mistrusted by the development engineers. A number of 

projects tackled this problem by having the data entry performed by a dedicated 

team (usually a team with a product quality function) who understood the 

traceability tools. It was found that though this type of team organisation relieved 
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the development teams of the data entry burden, traces were not recorded 

accurately and the data was still out-of-sync with the development process 

How the tools displayed the Traceability data was heavily criticised by the 

surveyed engineers. One development engineer stated, "You see everything or 

nothing. You get swamped by the diagrams". This quote summed up the general 

feeling among the surveyed engineers. The issue of data presentation caused many 

development engineers to refrain from using a Traceability tool unless they had 

had specialised training in the use of the tool and therefore could navigate the 

Traceability data effectively. 

A number of engineers stated that the Traceability tools force them to work in an 

un-natural way, for example, one tool required all configured items to be 

referenced by a number rather than by a textual name. This numeric indexing 

caused confusion and time to be wasted in decrypting the numbers back into text. 

Traceability tools were also found to be lacking in the narrow selection of source 

media that could be traced. All the tools surveyed employed text as a base media 

for Traceability, therefore these tools were are unable to offer any Traceability 

functionality for diagrams, plans or mathematical algorithms. A number of 

projects partly solved this problem by storing the changed diagram plan or 

algorithm in a separate configuration database, such as PVCS, and then recording 

a reference to the changed item in the RT tool. 

The Traceability tools in the survey were found to be poor in the development of 

collaborative products. It was often very difficult, due to firewalls and or security 

policies, for a co-located subcontractor to view the required subset of the 

Traceability data. 

3.5.2 Development Practices 

It was found that how system requirements were created, refmed and implemented 

had a major bearing on Requirements Traceability. For example, engineers stated 
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that the way requirements were written often hindered Requirements Traceability. 

A common complaint made by design engineers was that the requirements 

documentation was written in such detail that these documents were in practice 

pseudo design documents. These over elaborate requirements documents often 

caused confusion about what the requirements really were and how the 

requirements should be mapped onto a design. The following quotes made by 

development engineers summarise the problem: 

"The requirements documentation is too complex. the granularity is too fine" 

"They (requirements engineers) have done my job for me ". 

"Why did they (requirements engineers) want it to be implemented that way?" 

Requirement Traceability was found to be confused when a set of functional 

derived requirements was mapped onto an object-oriented design (OOD). 

Engineers claimed that it was difficult to determine the correct level of mapping, 

for a requirement may be satisfied by the parent object or by one or more of the 

inherited specifications. This mapping confusion also affected software testing as 

it was difficult to determine which objects should be tested against which 

requirements. The engineers, who stated a view on this topic, stated that the 

functional requirements to OOD mapping issues could be partly solved by the 

adoption of an informal local mapping standard that dictated how functionality 

was related the 00 design. 

3.5.3 Development Communications 

The way functional teams within a project communicated was shown to have an 

effect on Traceability. The survey demonstrated that the main method of 

communication between cooperating functional teams, such as systems and 

software design, was mostly by the regular issuing of interface documentation. It 

was found that in many projects these interface documents were not updated 

regularly. Engineers would often work from personally updated annotated copies 
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of interface documents. Where this occurred, traceability between the 

requirements and design became confused. Without any traceability, the impact of 

changes to the interface documentation was not always determined and negotiated 

with the affected teams. The engineers referred to this as "Throwing the Problem 

over the Wall". 

Many of the projects surveyed demonstrated a degree of subcontracted 

engineering. It was stated by engineers, employed by the subcontractors, that stale 

interface documentation was a major issue. This problem of stale documentation 

caused many engineers to bypass the formal route of communication and to 

informally contact their colleagues to obtain the up-to-date information. These 

engineers used this informal information to annotate their original issued 

documents, therefore losing all traceability. 

Product testing was found to be affected by stale interface documentation. Product 

test engineers interviewed stated that product integration was proving to be more 

difficult due to subcomponents not functioning to the current interface 

requirements. This was often due to a subcomponent being developed from a set 

of stale interface requirements. Poor impact analysis on interface requirement 

changes was also quoted as the cause of product integration testing issues. Test 

engineers also stated that it was difficult to obtain "background" information on 

an interface requirement for example, the reasoning or justification behind a 

requirement and this often lead to poorly scoped tests being applied. 

3.5.4 Perceived Costs and Benefits 

All the surveyed Traceability tools were labour intensive and required specialist 

knowledge to enter or configure the data. A common opinion of the managers 

surveyed, was that Traceability data entry was hindering the development process. 

These managers perceived the labour costs to be too high and the benefits too low. 

These views were further coloured by the perception that Traceability did not 

contribute the general development process and was only a quality control tool. 
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Most of the engineers interviewed were disaffected with their Traceability process 

and considered it to be a burdensome task that did not have any direct benefits. 

3.5.5 Organisation & Culture 

Project organization and team size was found to have a bearing on how 

Traceability was performed. Formal Traceability practice was found to be non­

existent for projects that had small teams based in one location. These projects 

often implemented an informal RT process that relied on verbal communications, 

engineer's product knowledge and hand annotated documentation. However, aU 

the multi-national projects surveyed, demonstrated a formal tool supported 

Traceability process. 

The type of project also had a bearing on Traceability practice. New projects were 

more likely to have implemented a Traceability process, while projects that were 

updating or modifying existing projects often had no formal Traceability practice. 

For some of the projects Traceability was considered a burdensome process that 

hindered the development of the product. In such a culture, it was found that 

Traceability was sidelined to an offline process, referred to by one engineer as a 

"quality, rubber stamping process". Where this occurred, the Traceability 

database rapidly became out of date with the development process. It was also 

found that such offline traceability databases often contained a number of errors 

that could be attributed to the data entry engineers lacking the relevant project 

knowledge. 

3.5.6 Traceability Comprehension 

The survey highlighted a wide range of understanding on the benefits of 

Traceability. A number of the engineers interviewed stated that the primary use 

for Traceability was for "product quality control". When asked to elaborate on 

the term "quality control", they often replied with "change or version control". 
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This limited understanding of Traceability is one the main driving forces behind 

tool selection and associated Traceability practices. 

The lack of Traceability understanding was not applicable to all the projects 

surveyed, for there were a number of notable examples. The Gripen (Brough) 

team that developed a Traceability tool based on SGML to manage requirements 

across two organisations (BAE SYSTEMS and SAAB). The Avionics team 

(Plymouth) developed a Traceability tool based on DOORS that helped them 

develop and maintain a number of variants on a common sensor. The MBDA 

ASRAAM project traceability database recorded additional domain information, 

such as references to safety arguments and functionality warnings, to help in 

change impact analysis. 

3.6 Reflections on Traceability Practice 

The main theme that arose from the BAE survey was the perception by 

development engineers and their line management that Traceability did not 

provide any benefit to main development task. Many of the surveyed development 

engineers considered it a hindrance to their main task and were unsure of the 

benefit of this data to the project as a whole. These views were also found by 

Gotel in her survey [Gotel 1995]. The most common reason given by many 

development engineers on why the process of recording Traceability hindered 

their main development tasks was the extra effort involved in data transposition 

and entry. Again, both Gotel and Ramesh obtain similar responses. It can be 

argued that if Traceability was directly beneficial to these engineer's development 

tasks, they would have altered their tools and work practices to resolve the 

problems related to recording traceability data. Many of the tool and data 

recording issues raised in the BAE survey may well be no more than excuses, 

which justify the low priority that these engineers have placed on Traceability due 

to it not providing any benefit their immediate work tasks. 
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3.7 Previous Traceability Practice Surveys 

The studies perfonned by Ramesh and Gotel are most widely cited in the 

literature. Gotel [Gotel 1995;Gotel and Finkelstein 1994] surveyed the views of 

engineers whose work area covered all aspects of development, maintenance and 

management. The aim of this survey was to determine the issues in the 

implementation of Requirements Traceability. Ramesh [Ramesh 1998] reported 

on a study of Traceability practitioners from a wide range of organizations. The 

aim was to identify how environmental, organizational and technical factors 

influence the adoption and use of Traceability. 

Gotel reported on a survey of practitioners whose work area covered all aspects of 

development, maintenance and management. The aim was to understand why 

Requirements Traceability was a widely reported problem area despite many 

advances in research and tool development. The survey consisted of two 

questionnaires and two infonnal interview sessions. The first questionnaire was 

distributed to 80 practitioners (55 returned), the second one to 39 practitioners (31 

returned). Two large infonnal interview sessions were perfonned with the 

questionnaire respondents that lasted for one and half hours each. From this 

empirical investigation Gotel [Gotel and Finkelstein 1994] identified the 

following sources to the Requirements Traceability implementation problem: 

• Lack of common definition for the purpose of Requirements Traceability. 

• The existence of multiple incompatible and fragmented documents, fonn 

distributed sources, with no clear relationship. 

• The inability to handle the increasing amounts of documentation 

• Change, and the slowness with which all its ramifications are taken into 

account, which leads to numerous versions of documents in various stages of 

evolution. 
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• The lack of an end-to-end Requirements Traceability process, plus the absence 

of a specified Requirements Traceability job description, thus leading to 

Requirements Traceability mismanagement. 

• The involvement of too many, often uncooperative people, with inadequate 

expertise and individual agendas. 

The second extensive study on Traceability was performed by Ramesh [Ramesh 

1998]. This study involved practitioners from U. S. government system 

development, program management and testing, pharmaceutics, utility, 

telecommunications, aerospace, electronics, automobile, and software 

consulting/contracting. The aim was to identify how environmental, 

organizational, and technical factors influence the adoption and use of 

Traceability. This survey was performed in three phases. The first phase, a pilot 

study, consisted of surveying the views of 58 Master Students whose areas of 

expertise included shipbuilding and aviation maintenance. Ramesh did not state 

how many of these students had experience in software development. This pilot 

study six focus groups, seven verbal protocols and six structured interviews. From 

this data, Ramesh developed the initial version of traceability meta-model. The 

second phase of the study consisted of querying tool vendors on the traceability 

functionality of their tools. Ramesh states that his findings were similar to that of 

the INCaSE tool survel [INCaSE 2007]. 

From this data, Ramesh stated that he determined the shortcomings of the current 

tools. The final phase of the study comprised of 30 focus group discussions in 26 

organisations that included aerospace, hardware development, pharmaceutical, 

5 The INCOSE tool survey is not a truly independent survey as the data on the traceability 

functionality is provided by the tool vendor and may not have been verified. 
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systems integration and telecommunications. From this data, Ramesh developed 

the profile for high and low traceability users (Table 1). 

Finally, Ramesh argues how the traceability meta-model, developed in the pilot 

study, would have be adjusted to suit the needs of these two groupings. The 

published results do not give any indication of the problems facing engineers. 

Characteristic Low-end Traceability User High-end Traceability User 

Number of Organisations in study. 9 17 

Number of Participants S4 84 

Typical Complexity of System =1000 requirements =10,000 requirements 

Traceability Experience Level o to 2 years S to 10 years 

User definition of Traceability Document transformation of Increases the probability of 

requirements to design. producing a system that meets 

all customer requirements and 

will be easy to maintain 

Main Application of Traceability Requirements decomposition Full coverage of the lifecycle, 

including user and customer; 
Requirements Allocation captures discussions issues, 

Compliance Verification decision and rationale; 

capturing traces across product 

Change Control and process dimensions. 

Table 1 Characterisation of Low and High Level Traceability Users 

An earlier publication by Ramesh and Edwards [Ramesh et al. 1995] on the 

lessons learnt from implementing a traceability system is more informative. In this 

paper, Ramesh and Edwards describe the following problems in implementing a 

traceability process. 

• The burden on the development process due to traceability data entry and 

transposition. 

• High costs - CASE tool training, employing dedicated staff. 

40 



• Poorly structured documentation - leading to confusion over what should be 

traced. 

• Office Politics - The fear of staff that a traceability systems may be employed 

to assess their productivity 

3.8 Comparison of Surveys 

The disappointing outcome of the traceability practice survey was that it found 

similar problems to what Gotel[Gotel 1995] and Ramesh [Ramesh, Stubbs, 

Powers and Edwards 1995] both reported on over ten years ago. It appears that 

recent advances in computing over the last ten years, such as the internet and 

vastly increased computing power, have done little to alleviate these problems. 

All three studies reported a wide range of Traceability comprehension. Ramesh 

[Ramesh and Jarke 1999a] employed this fact to classify his users. This was 

reported by Gotel as lack of common definition for the purpose of Traceability. 

We also found a wide range of understanding and that this often resulted in 

managers and project leaders questioning the true cost benefits of Traceability. 

Tool related issues were reported by all three studies. These issues ranged form 

the inability of Traceability tools to cope with a diverse set of media, the high 

costs incurred in training staff in the use of these tools, to the burden of 

transposing data for these tools. 

The issue of poor communications between development teams affecting 

Traceability was highlighted by Gotel and our survey. Both surveys found that 

stale interface documentation, due to slow uncoordinated changes, was a major 

problem in implementing Traceability. The issue of poor communications, in the 

form of poorly structured documentation was also raised by all three surveys. All 

three studies highlighted how poor communications between development teams 

made end-to-end Requirements Traceability difficult to achieve in practice. 
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The next chapter examines in more detail the common issues raised by these 

surveys such as, the burden of data entry, who records and who benefits from 

traceability data. 
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Chapter 4 The Traceability Benefit Problem 

4.1 Introduction ........................................................................................... 43 

4.2 The Burden of Data Entry ..................................................................... 43 

4.3 Establishing a Relationship ................................................................... 47 

4.4 Traceability Benefit Problem ................................................................ 48 

4.1 Introduction 

This chapter builds upon Chapter 3 by reviewing the themes present in the BAE 

traceability practice survey and the surveys performed by Gotel[Gotel 1995] and 

Ramesh [Ramesh et al. 1995]. From this analysis, an argument is developed 

which states that one of the major causes of poor traceability practice is the lack of 

benefit that it provides to the current development process: this is referred to as 

the Traceability Benefit Problem. 

4.2 The Burden of Data Entry 

The burden of data entry and transposition was commonly cited in all three 

surveys by engineers as being a hindrance to their development task. Many of 

BAE SYSTEMS projects assigned a low priority to the task of recording 

traceability information. To reduce the burden of entering traceability information 

some of the BAE SYSTEMS surveyed projects separated their traceability process 

from the main development process. In these projects the traceability process was 

undertaken by a dedicated quality team, which had an understanding of the 

traceability tools and techniques. Though this organisation alleviated pressures on 

the development teams, it was found not to improve the quality of the traceability 

infomlation. It was observed that the number of wrong or bad traceability 

43 



relationships increased, and the traceability data was out-of-sync with the main 

development process. 

A way of reducing the data entry burden is to automate the process of generating 

the trace relationships between documents. There have been a number of attempts 

to achieve automatic trace generation. One of the simplest methods of trace 

automation is use of a standard naming convention. This allows traces to be 

generated between artefacts that have the same key word in their name. The 

problem with this approach is that the naming convention has to be strictly 

adhered to. Grunbacher [Grunbacher 2006] described a traceability system which 

successfully employed this method in a small example by the use of input agents 

which enforced the naming convention. 

An interesting approach to automatic trace generation was put forward by Egyed 

[Egyed 2005], who employed code call analysis in conjunction with test scenarios 

(a collection of tests) to establish the relationships between requirements and code 

and requirement interdependencies. Egyed established a relationship by executing 

a test script that exercised a given requirement on a code analyser (IBM Rational 

Pure Coverage). The code analyser recorded which items of code were called for 

that requirement test script. From this information, it possible to say that there is a 

relationship between the called code and the tested requirement. The problem with 

this approach is that a combination of tests are required to be performed to 

identify the true relationships. However, even with relatively few test scenarios 

this method can highlight dependencies between requirements, although it is 

questionable whether this is a truly automated process when a large amount of 

effort is required to the produce the test scenarios. 

A more general approach employs domain information, such as key words and 

phase, and search engine technologies to identify relationships between 

documents. This approach is similar to performing a search using a search engine 

such as Google. Instead of the keywords being highlighted by search engine links 
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are generated between documents that contain the keywords. There are number of 

examples of link generation systems, the Advanced Artefact Management System 

(ADAMS)[De Lucia et at. 2004], Requirements Tracing On-Target (RETRO) 

[Hayes et at. 2006] and Marcus et al [Marcus and Maletic 2003], Antoniol et al 

[Antoniol et at. 2002] on recovering traceability links between code and 

documentation. 

All these systems employ a technique called Latent Semantic Indexing (LSD to 

identify sections of documents, which may be related and hence are candidates for 

generating a traceability link. Traditional keyword searches, for example grep, 

look for the presence of a word or phase and documents are only retrieved if a 

match is found. Latent Semantic Indexing (LSI) tries to improve on this by 

looking for groupings of the key words. LSI assumes that there is some 

underlying or "latent structure" in the word usage that is partially obscured by 

variability in word choice, and make use of statistical techniques to estimate this 

latent structure. In addition to analysing the keywords a document contains, this 

method examines the document collection as a whole, to determine which other 

documents contain similar key words. LSI considers documents that have many 

words in common to be semantically close (a potential trace relationship), and 

ones with few words in common to be semantically distant. Supporters of this 

search method claim it correlates surprisingly well with how a human being might 

classify a document collection. For example, a search of a historical database that 

employs LSI indexing for "1944 Normandy Invasion" may select documents 

related to the Second World War invasions of Normandy that contain the key 

words followed by a number of documents which are semantically more distant 

such as the documents on the Bayeux tapestry and the Norman invasion of 

England in 1066. In a similar way the traceability link generation systems return a 

number of links ranked on their semantic distance from the key words. Filters, 

such as a simple threshold based on the link semantic ranking (e.g. taking the first 

50 links), can be employed to reduce the number oflinks. 
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To demonstrate the performance of a traceability link generator, two metrics are 

employed. Trace Recall (Equation 1) is the percentage of correct links identified 

from the set of correct links. If a recall value of 1 is obtained then all the correct 

links have been identified, though there could be recovered links that are not 

correct. 

L; I correct; n retrieved; I 
recall = ='---=;------­

L,I correct; I 

Equation 1 Trace Recall 

Trace Precision (Equation 2) is the percentage correct links identified from the 

total number of links returned. If the precision value equals 1, it means that all the 

links identified are correct, though there could be correct links that were not 

recovered. 

. . L;lcorrect; nretrievedtl 
preCISIOn = ="'--;:""::::;-:0-----,--....:. 

L..Jtlretrievedtl 

Equation 2 Trace Precision 

Researchers have applied optimisation or filtering techniques to reduce the 

number of links return by a LSI search. Weak optimisation results in high recall 

but with low precision and strong optimisation results in low recall with high 

precision. Though these researchers applied different optimisation techniques and 

had different documentation sets, they produced similar results, with the best 

optimisation compromise producing an approximate recall of 80% with a 

precision of 50%. Though these results are promising, it is accepted that LSI 

based systems can not replace the software engineer in the task of maintaining 

traceability links during software evolution [De Lucia et al. 2004]. 
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4.3 Establishing a Relationship 

To explain why separate traceability teams and LSI search engines have problems 

determining traceability links we should consider some of the processes involved 

in performing a development transformation, such as developing a software 

design from a set of requirements. 

A requirement can be defmed in a number of ways, though the most popular is 

still by the means of a natural language. Natural language can be notoriously 

ambiguous and often requires a degree of interpretation by the reader. These areas 

of ambiguity will often be resolved by peer group and inter-group (requirements 

team and design team) discussions [Weinberg 1998]. To clarify an ambiguity a 

design engineer may employ different terminology to that which is expressed in 

the requirements. This may result in a LSI search engine failing to establish a link 

or in the best case establishing a low ranking link. The counter argument to this 

problem is that its resolution lies in the rewording of the requirements, though in 

practice, unfortunately, this does not always occur. 

The development of a software design can be described as the application of a 

design method (a set of rules and conventions) to the set of requirements. These 

rules and conventions have to be rigorous enough to produce a coherent design, 

yet flexible at the same time to allow for different implementation strategies. 

Therefore, the application of a design method to a requirement set will result in a 

set of valid designs. Engineers impose their experiences onto a design [Weinberg 

1998]. Design "templates" which have worked well in the past are often reused. 

Therefore, different groups of engineers may produce different designs depending 

on the outcome of their discussion and previous experiences. During the design 

process "House Styles" often evolve, for example the naming of variables, 

functions, files etc. These local practices may be defined in local standards 

documentation, but their enforcement is achieved only by peer group pressure. 

Therefore, the consistency of a design will be influenced by how well the local 
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practices are complied with. Antoniol et al [Antoniol et al. 2002] stated that this 

information will have to be captured and incorporated into the filtering algorithms 

to improve the recall and precision of LSI based link generation systems. 

The outcome of these observations is that the production of a design is not a 

simple transformation process. There are a number of development factors which 

are often not recorded, as described above, which influence the final design. The 

degree of influence of these development factors on the fmal design is difficult to 

quantify. It can be argued that without the tacit knowledge these development 

factors may not be able to record the relationships between the design and the 

requirements accurately. This is what we observed in the BAE traceability 

practice survey with respect to the use of separated teams in the recording of the 

traceability information. The presence of non-recorded development factors also 

curtails the accuracy of search engine based technologies, such as LSI, as it may 

not be possible to capture the semantics related to these factors. This view is 

confirmed by De Lucia et al [De Lucia et al. 2004] who state that such systems 

are unlikely to replace an experienced development engineer for the determination 

of trace relationships. 

In summary, the presence of non-recorded development factors implies that only 

the engineers directly involved in the development transformation process (such 

as the development of a design from requirements), and who have therefore 

gained this tacit knowledge, can accurately record the development transformation 

traceability relationships. 

4.4 Traceability Benefit Problem 

The previous conclusion leads to a conflict. The recording of traceability 

information is best performed by the engineers directly involved in the 

development process; yet the BAE Survey (Chapter 3), Gotel [Gotel and 

Finkelstein 1994] and Ramesh [Ramesh 1998] have found that it is precisely these 
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engineers who seem to obtain no direct benefit in performing this task. The BAE 

Survey highlighted that this lack of perceived benefit resulted in the development 

engineers to assign a very low priority to traceability tasks. The outcome was 

traceability data that was incomplete, inaccurate and out of date. This can be 

summarised as the Traceability Benefit Problem. 

Traceability Benefit Problem 

The recording of traceability information is best performed by the engineers 

directly involved in the development process; it is preCisely these engineers 

who seem to obtain no benefit in performing this task. This lack of perceived 

benefit causes the development engineers to assign a very low priority to 

traceability tasks. This results in data that is incomplete, inaccurate and out of 

date. 

Therefore, to overcome this problem the recording of traceability data must 

provide immediate, tangible benefits to the engineers performing the current 

development process. 

The following chapters consider how the Traceability Benefit Problem may be 

overcome. The next chapter describes in detail how one of the surveyed projects 

addressed the Traceability Benefit Problem by developing a traceability system 

that was beneficial to the development engineer, the project management and the 

customer. The lessons learnt from this case study form that basis for a generic 

solution, the Traceable Development Contract, which is described in the latter 

chapters of this thesis. 
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5.1 Introduction 

This chapter describes in detail how one of the BAE SYSTEMS surveyed projects 

developed a traceability system that addressed the Traceability Benefit Problem. 

The traceability system and development process were developed by BAE 

Electronics and Integrated Solutions and the analysis of the project traceability 

data and the conclusions drawn from that analysis are part of the contribution of 

this thesis. The chapter describes and illustrates with project data the development 

process and traceability system. Finally, the chapter describes the benefits the 

traceability system provides to development engineer, the project management 

and the customer. 

5.2 Automotive Sensor Case Study 

One of the companies surveyed, BAE SYSTEMS E&IS (Electronics and 

Integrated Solutions), addressed the Traceability Benefit Problem by developing a 

Requirements Traceability system which is integral to their development process 

and provides direct benefits to both the engineers performing the data entry and 

the business. This division of BAE SYSTEMS produces a range of sensors that 
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measure the movement and direction of a veh icle. These sensors are employed in 

Electronic Stabili ty Program (ESP) sensor packages (Figure 5-1) 

Figure 5-1 A typical ESP sensor package 

Many modern vehicles have an ESP system that reduce oversteer or understeer 

(Figure 5-2). These systems stop the vehicle going into a spin by applying the 

brakes and or controlling the power to the drive wheels. The heart of the e 

systems is the yaw velocity sensor. The yaw sensor acts li ke a compa ; it 

constantly monitors the exact attitude of the ca r and registers every incipient spin . 

Other sensors report how high the current brake pressure is, what the pos ition of 

the steering wheel is, how great the lateral acce leration is, what the speed is and 

how big the difference in wheel speed is. Whenever handling becomes instable, 

the necessary commands are executed and the vehicle is brought under control in 

a fraction of a second . 
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Figure 5-2 Vndersteer and Overstecr 

5.3 Development Process 

Though these positional sensors have common functionali ty, each vehicle 

manufacturer has a di fferent set of requirements and this means that a number of 

di fferent variants of a common sensor are produced. The software for the 

positional sensors is developed and maintained by a small team (four to fi ve) of 

speciali st engineers. Each engineer has an assigned role, though they can be ca lled 

upon to change their roles. To aid these engineers in their tasks, a Requirements 

Traceability system was developed to provide information on each sensor variant 

and also to support tenders for new sensors. From the outset, the traceability 

system was design to answer foll owing business needs: 

• To show that all of the customer requirements have been satisfi ed. To achieve 

this, traceability relationships from the requirements to test procedures and 

related test results are recorded. 

• To identi fy which parts of the genen c sensor design are required to be 

changed to produce a customer variant. To achieve this, traceabili ty 

relationships are recorded from the requirements to des ign 
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• To record the justification for design decisions. To achieve this, traceability 

relationships between requirements and the design decisions are recorded. 

These needs drove the design of the Requirements Traceability model and the 

supporting engineering process. The data model, as shown in Figure 5-3 which 

describes the high-level data objects and links between the objects, was 

implemented in both RTM and DOORS tools. The engineering development 

phases supported by the data model and tool are described below. 

5.3.1 Prepare Inputs for a Proposal 

This development phase is concerned with capturing and reviewing the 

customer's requirements, and is divided into a number of tasks. The first task is to 

identify and capture requirements from the customer's documentation. Any 

queries on the requirements are recorded and raised with customer. The 

requirements are reviewed with respect to compliance with existing products, and 

from this information a compliance matrix (requirements vs. current product) is 

generated. This matrix is used to select the most suitable product to be a basis for 

the customer's new variant, and gives an indication of the extra work required to 

produce the new variant. 

5.3.2 Manage, Analyse, Develop System Requirements 

This phase starts once a contract has been signed. The model and supporting 

processes are employed to control the introduction of new requirements and the 

modification of existing requirements to prevent requirements creep. The main 

task of this phase is the development of the customer's new requirements. For 

each of these requirements, a development risk grading is assigned and a 

verification method is identified and recorded. The compliance matrix is 

regenerated to ensure that the new product complies with the customer's 

requirements and that there is a verification method for each requirement. 
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Figure 5-3 Traceability Data Model (BAE SYSTEMS E&IS) 

5.3.3 Design 

The design phase enables the recording of design decisions, the member of staff 

who made the decision and how it is related to the requirements. A Failure Modes 

and Effects Analysis (FMEA) also allows the recording of failure mode 

estimations and how they relate to design decisions. The accepted level for the 

total failure mode estimation is specified by the customer. This recorded design 
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information traceability enables the assessment of the impact of any change in 

requirements. 

5.3.4 Prepare Test and Qualification Procedures 

The data model enables the recording of relationships between requirements and 

test procedures. Test procedures describe the validation testing at a high level of 

abstraction (recorded under data model entity: Test Concepts). A test procedure is 

decomposed into a number of test cases that address a lower level of abstraction 

and are in turn decomposed into a number of test steps (both recorded under data 

model entity: Test Specification). The test steps describe in detail the nature of the 

test and the expected result. From the information in the traceability system, it is 

possible to generate a document that describes the test description required to 

qualify a product against the customer's requirements. 

During the qualification phase the defined test steps are run and the results 

recorded. Having traceability from the requirements to test steps and their related 

results in the data model, via test cases and test procedures, allows the verification 

information to be generated quickly and accurately. This allows the rapid sign-off 

or acceptance of the product by the customer. In addition, as verification evidence 

is accrued during the project lifecycle, the degree of compliance to the original 

requirements can be closely monitored by management to ensure that the project 

remains on track for success. 

5.4 An Illustration of the Traceability System 

Having described the traceability data model and development process, this 

section illustrates the benefits obtained from traceability by describing the 

development history for a product variant over an 18 month period. The 

development history is illustrated in Figure 5-4. 
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5.4.1 Managing Requirements and the Customer 

ur .. & Tooting 

The development of the new product variant was initiated in Month 1, when the 

customer's initial draft contractual specification was received. This specification 

was compared against the existing specifications and related software 

requirements that were recorded in the traceability system. 

Within a month of receiving the specification, the traceability system enabled the 

development engineers to answer such questions as "what is the same, what has 

changed and what is new?" with respect to the product software requirements. 

This analysis resulted in an initial breakdown of 38% new requirements (50 out of 

a total of 135),38% unchanged, 12% requiring minor modification and 12% with 

unresolved issues (shown in Figure 5-5, Month 1). This information provided the 

engineers and their management with an indication of the potential work required 

to produce this new variant. During this period the engineers employed the 

traceability system to record any issues related to the specification. 
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Figure 5-6 Requirements Changes 

Figure 5-6 shows the changes in requirements that occurred as a result of major 

milestones in the development process. 
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In Month 3, the customer issued the final version of contractual specification. The 

traceability system allowed the engineers to determine which system requirements 

were affected by the fmal version, which resulted in a substantial increase in new 

functionality (shown Figures 5-5 and 5-6). Again, this information was employed 

in the revision of the estimated cost of producing the new product. 

In Month 6, a formal review of the requirements was undertaken with the 

customer. The traceability system was employed to generate a report which 

demonstrated how each item in the specification was satisfied by the requirements 

and how it would be verified by high level qualification tests. A peer group review 

was undertaken of the documents by the customer's representatives and the 

development engineers. 

This review resulted in changes to the requirements (Figure 5-6) that consisted of 

the rewording of selected requirements to include common terms and phrase to 

aid clarification between the customer and the software engineers. No new 

requirements were introduced at this stage and the classification of requirements 

remained unchanged, as can be seen in Figure 5-5. 

Once the agreed changes resulting from the peer group review were completed, 

the specification and requirements were frozen (Month 8) for that release of the 

software. 

5.4.2 Quantitative Management 

During the requirements analysis phase the traceability system allowed the 

number of changes made to each requirement in that period to be calculated. This 

information allowed the engineers and their management to determine a time 

when the requirements where stable enough to progress to the requirements peer 

review and commence the design phase. 

During the design phase, the recording of relationships between design items and 

requirements enabled management to estimate progress. Similar quantitative 
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progress metrics were obtained in the testing phases by determining the rate at 

which trace relationships were recorded between tests, test case and test steps and 

the requirements. 

The most important metric provided by the traceability system was determining 

when the development of the software was complete. This was achieved by 

demonstrating that all the requirements had been tested, by following the trace 

relationships from the requirements to tests, test cases and fInally to each test step 

and the associated validated test result. Only when this could be demonstrated 

would the customer accept the product. 

5.4.3 Component Reuse 

As previously mentioned, the traceability systems enabled the engineers to 

determine which development components (requirements, design elements and 

tests) could be reused, by comparing the customer's specifIcation with previous 

specifIcations and identifying related design elements (or other project artefacts). 

For example, it was found that, in 14 test procedures, 5 test procedures could be 

reused unchanged and 4 test procedures could be reused with only minor 

modifIcation, giving 65% of the existing high-level tests that could be reused with 

at most a minor change (Figure 5-7). This level of reuse remained constant, 

indicating that the engineers had accurately identifIed the tests that could be 

reused at the beginning of the project. 
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In a similar fashion, the traceability system enabled the engineers to determine 

which test cases could be reused (Figure 5-8). It was found that 54% of test cases 

could be reused with at most minor changes. Again, this level of reuse remained 

constant indicating that the correct test case had been identified at the beginning 

of the project. In total, 14 test procedures, 26 test cases and 327 test steps were 

required to qualify the product. 

The accurate identification of components that can be reused by the traceability 

system improves the efficiency of the development process and therefore reduces 

development costs. This in turn reduces the overall business risk. This is seen as a 

major benefit by the development engineers and their management. 
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5.4.4 Further Examples of Reuse 

The traceability system that was employed to trace the development of the sensor 

software was also employed to trace the development of the software for an item 

of avionics equipment found in an Advanced Jet Trainer (AJT), Fast Jet, 

Transport Aircraft and a Helicopter. 

The item of equipment was originally developed for the AJT and developed 

further for the Fast Jet, the Transport Aircraft and finally for a Helicopter. Table 2 

shows the reuse of requirements between the aircraft. By tracing from the 

common AJT requirements is was possible to identify common tests and code. 
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AJT Fast Jet Transport Aircraft Helicopter 

Number of Requirements 88 131 244 131 

Number of Requirements in Common with the AJT 76 68 62 

% Reuse of AJT Requirements 58% 28% 47% 

Table 2 AJT Requirements Reuse 

5.5 Why is this System Successful? 

The development engineers and their management at BAE SYSTEMS E&IS did 

not consider their system to be a hindrance to the development process. In fact 

they considered the system to be at the heart of their development process. We 

examine the reasons for this by considering the system from three view points. 

5.5.1 The Development Engineer's View Point 

The traceability system allowed the engineers to coordinate and control changes to 

their requirements. The trace relationships between the customer's specifications 

and the requirements enable the development engineers to determine and 

negotiate the impact of any changes to specification change. These trace 

relationships were employed to generate documentation which formed part of the 

procurement contract. These documents bound the engineers and customer 

together, resulting in the reduction of "requirements creep" (introduction of new 

requirements) and the elimination of "over the waIf' (customer imposed) changes. 

The ability of the traceability system to allow the engineers to identify which 

development components (requirements, design items and tests) could be reused 

was also seen by the engineers as a way of improving their efficiency. 

5.5.2 The Manager's View Point 

Though establishment and maintenance of the traceability system required project 

budget, these cost were justified by the project management. The ability to 
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identify development components that could be reused resulted in a perceiVed 

reduction in project risk. The identification of these components also enabled the 

project management to make better estimations of the production costs. The 

traceability system allowed management to estimate progress by rate of creation 

of traceability links between development artefacts. 

5.5.3 The Customer's View Point 

The traceability system does not directly increase the cost to the customer, but the 

presence of the system is beneficial to him. The main benefit to the customer is a 

demonstration of how the requirements related to his specification and how the 

product will be tested to demonstrate compliance with the specification. 

5.6 Summary 

The traceability system is beneficial to the 

• Development engineer as it assists in the selection of a suitable base product 

and provides information that aids change negotiations. 

• Manager as it helps to reduce risks and improve cost estimates. 

• Customer as it provides a clear link from their specification to compliance 

tests. 

Traceability in this project has become part of and beneficial to the development 

process. The traceability information is directly beneficial to the development 

process being undertaken and therefore overcomes the Traceability Benefit 

Problem. This is why this traceability system is successful. 

The next chapters of the thesis examine how the lessons learnt from this case 

study can be employed in the development of a generic solution to the 

Traceability Benefit Problem. 
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Chapter 6 Negotiating Change 

6.1 Introduction ........................................................................................... 65 

6.2 Sequential and Iterative Development Models .................................... 66 

6.3 Agile Software Development.. ............................................................. 70 

6.4 BAE SYSTEMS Common Engineering Process Model (CEP) ............ 73 

6.5 Observations and Summary .................................................................. 76 

6.1 Introduction 

Chapter 5 described how the automotive sensor project employed a traceability 

system to help the development engineers negotiate customer changes to their 

baseline requirements. The Traceability Practice Survey (Chapter 3) highlighted 

the problem of establishing and maintaining development phase baselines. During 

the survey, a number of engineers raised issues relating to the re-issuing of 

interface documentation without any consultation or negotiation (referred to as 

Throwil/g Problem over the Wall). This chapter examines the issue of change 

negotiation by considering how some common software development models deal 

with change. Finally, the BAE SYSTEMS Common Engineering Process Model 

(CEP) is reviewed as many BAE SYSTEMS development processes are based on 

this or a similar development model. The CEP is reviewed with respect to change 

negotiation and the results are related to the observations made during the 

Requirement Traceability practice survey. 
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6.2 Sequential and Iterative Development Models 

6.2.1 Sequential 

The waterfall development model is one of the most cited, most abused and 

criticised development models. The model was originally proposed by Royce 

[Royce 1970]. Interestingly, his paper does not mention the term ''waterfall'' and 

this term seems to have been coined due to the cascade arrangement of his 

diagrams that outlined a sequence of generic development phases. The waterfall 

model has been strongly criticised due to the apparent need to complete one 

development phase before embarking on the next phase. In such a model, there is 

no chance to negotiate change. The ability to freeze or fully complete a 

development phase is considered to be unrealistic by many engineers [Weinberg 

1997]. 

To a large extent, Royce has been misrepresented as he did not propose that 

software development be performed in a single sequence of development phases. 

In his paper, he stated that there should be interaction between development 

phases and highlighted the issues in determining the correct development phase 

baseline to allow the procession to the next phase. 

With respect to communication between development phases, Royce strongly 

promoted the use of written communication logs and interface documentation. He 

stated, "A verbal record is too intangible to provide an adequate basis for an 

interface or management decision .... An acceptable written description forces the 

designer to take an unequivocal position and provide tangible evidence of 

completion" [Royce 1970]. 

The V Model [IABG 2007] (Figure 6-1) which was originally developed by 

Industrieanlagen-Betriebsgesellschaft GmbH (JABG) in cooperation with the 

German Federal Office for Defense Technology and Procurement (1992) is a 

development of the waterfall model. The V Model is comprised of four 
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submodels: the Software Development (SWD), Quality Assurance (QA), 

Configuration Management (CM) and the Project Management (PM). 
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The submodels are closely interconnected and mutually influence one another by 

exchange of products and results. The Software Development submodel (Figure 

6-1) is considered to be, by most engineers, the V Model. 

The Software Development submodel addresses a major criticism of the waterfall, 

namely that the waterfall model defers all testing to the later development stages. 

Such late testing often highlights problems in the implementation that are costly to 

fix. The Software Development submodel tackles this issue by describing the 

validation activities and results that are required for each stage of software 

development. The aim of the Software Development submodel is to spot 

implementation problems before they are propagated down the development 

process. 

The Software Development submodel suffers from same issues that befall the 

Waterfall model in the respect of determining a suitable baseline. The model 

assumes that a development phase is stable and validated by testing before 

moving onto the next development phase. The current version of the model, V­

Model XT [KBSt 2007] accepts that changes will occur. The V-Model XT 

document states "If a specified degree of completeness has been reached, it is 

necessary to follow product changes formally". The product change procedure 

consists of raising a change request which is evaluated and decided upon by a 

project change control board. This common method of change negotiation moves 

the decision making from the development environment to the management 

environment where the technical expertise may be not be as great. 
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6.2.2 Iterative 

Beohm's Spiral Model6 [Boehm 1986] addresses some of the deficiencies found 

in the waterfall model. The waterfall model assumes a progression of elaboration 

steps and does not accommodate evolutionary development made possible by 

rapid prototyping programming languages. The spiral model uses a cyclic 

approach to develop increasingly detailed elaborations of a software system's 

definition, culminating in incremental releases of the system's operational 

capabilities. The Spiral model can be considered a meta-model in that it is a 

generalisation of an incremental and iterative development model. With respect to 

communication and change negotiation between development teams and 

stakeholders, the original spiral model says little. This was considered a 

deficiency, addressed in the WinWin Spiral Model [Boehm and Bose 1994]. 

The Win Win Spiral Model employs the Theory W (Win) approach [Boehm and 

Ross 1989] to determine the system's next-level objectives, constraints, and 

alternatives. For example, the next-level could be the implementation of a number 

of changes that are required to be made to the existing system. The Theory W 

approach involves identifying the system's stakeholders and their win conditions, 

and using negotiation processes to determine a mutually satisfactory set of 

objectives, constraints, and alternatives for the stakeholders. The term "Theory" 

may be an overstatement, as the paper [Boehm and Ross 1989] is a collection of 

6 In his paper, A Spiral Model of Software Development and Enhancements, Boehm illustrates the 

Spiral model by describing the development of a Software Productivity System (SPS), which 

included a Requirements Traceability Tool (RTT). This tool is described in a related paper [Boehm 

et al. 1982]. Unfortunately, no further references can be found in the literature on how successful 

the RTT tool was in practice. 
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observations on software development which are employed to establish software 

project management guidelines. For example, the advice on developing a Win­

Win situation involves separating the people from the problem; focusing on 

interests and not positions; inventing options for mutual gain and insisting on 

using objective criteria. 

The application of Theory W to the Spiral Model resulted in the following 

extensions 

• Determine Objectives. Identify the system life-cycle stakeholders and their 

win conditions. Establish initial system boundaries, external interfaces. 

• Determine Constraints. Determine the conditions under which the system 

would produce win-lose or lose-lose outcome for some stakeholders. 

• Identify and Evaluate Alternatives. Solicit suggestions from stakeholders 

• Record Commitments and areas of flexibility. 

• Cycle through the Spiral. Elaborate win conditions, resolve risk, develop and 

execute downstream plan. 

The Win-Win theory and spiral model extension can be criticized as they do not 

deal with conflict between stakeholders, they assume that stakeholders will always 

cooperate, and only provide high-level guidance to solving the problem of change 

negotiation. 

6.3 Agile Software Development 

Agile Software Development developed from the principles promoted by a group 

of software developers who considered current development methods to be too 

prescriptive and restrictive. Agile Development was defined at a workshop in 

Snowbird, Utah, USA (2001), where software developers discussed the software 

development process. The outcome of the discussions was a Manifesto for Agile 

Software Development (Figure 6-2) [agilemanifesto.org 2007]. 
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"We are uncovering better ways of developing software by doing it and 

helping others do it. Through this work we have come to value: 

Individuals and interactions over processes and tools 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following a plan 

That is, while there is value in the items on the right, we value the items on the 

left more. " [agilemanifesto.org 2006] 

Figure 6-2 Manifesto for Agile Software Development 

These aims give rise to a number of methods which have the following 

characteristics. 

• Agile methods develop software in small iterations, which have development 

timescale in the order of weeks. 

• Each iteration is a miniature software project of its own, and may include all 

the tasks necessary to release the mini-increment of new functionality: 

planning, requirements analysis, design, coding, testing, and documentation. 

• Agile methods emphasize real-time communication, preferably face-to-face, 

over written documents. Change negotiations are conducted informally face­

to-face between stakeholders. 

• Agile development teams are co-located and include all the people necessary 

to finish the software. At a minimum, this includes programmers and their 

"customers" . 

Boehm and Turner [Boehm and Turner 2004] characterised Agile methods as 

being at the opposite end of a spectrum from "plan-driven" or "disciplined" 

methodologies. This definition can be misleading, as it implies that agile methods 

are ''unplanned'' or "undisciplined" which they are not. Boehm and Turner 
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suggested that development methods exist on a continuum (Figure 6-3) from 

"adaptive" to "predicti ve" . 

Adaptive 

Adaptive Proj ect 
Home Ground 

Low criti cality 
Senior deve lopers 

Hi gh requ irements change 
Small number of developers 

Culture that thr ives on 
chaos 

Agi le Methods 

Figure 6-3 Development Method Continuum 
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Methods Methods 
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Low requi rements change 
Large number of 
deve lopers 
Culture that demands 
order 

Adaptive development methods adapt quickl y to changing project requ irements. 

Therefore, an adapti ve team will have difficul ty in defining a project plan. In 

contrast, Predictive development methods define all stages of product 

development in advance. A predicti ve team can report exactly what features and 

tasks are planned for the entire length of the development process. Boehm and 

Turner [Boehm and Turner 2004], suggest that risk analys is be used to choose 

between adaptive ("agile") and predicti ve ("plan-driven") methods. Boehm and 

Turner suggest that each side of the continuum has its own home ground (Figure 

6-3). In summary, agile development methods embrace change though it is not 

clea r on what grounds changes are determined. 

Wi th respect to change negoti ation, it can be argued that the common use of the 

" Project Change Board" in the predictive development methods was one of the 

driving fo rces behind the Agile movement. The use of the Proj ect Change Boards 

removes the decision making fro m the loca l development process team. This 
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demonstrated in the one of the characteristics of an Agile process, that all 

negotiations are conducted informally, face-to-face, between stakeholders. 

6.4 BAE SYSTEMS Common Engineering Process Model (CEP) 

The common engineering process (CEP) is a template model for all BAE 

SYSTEMS development processes. The CEP owes its origins to the V-Model. 

The aim of the CEP is to bring a degree of consistency in development processes 

among the projects currently being developed within BAE SYSTEMS. Many of 

the projects which took part in the Traceability Practice Survey (Chapter 3) had 

development processes which were similar, if not based on, the CEP. The CEP 

development process (Figure 6-4) is composed of nine development processes. 

• Determine and Manage Requirements (R): Analyse, explore, refine and 

specify the requirements and agree them with the customer. Manage any 

change to the requirements. Specify the criteria for customer acceptance of the 

system and agree them with customer. 

• Perform FunctionallBehavioural Analysis (F): Analyse the required system 

functions and behaviour to resolve them down to progressively lower level 

functions and behaviour. Create and agree a behaviour structure that describes 

system behaviour, sequence and data flows. Repeat this process for each 

candidate solution produced in process (C). 

• Create Candidate Solution Concepts (C): Create, assess, refine and describe 

a number of candidate solution concepts. Establish the feasibility of meeting 

the requirements and select the preferred options for subsequent specification 

and design. 

• Design and Specify Sub Systems (D): Design the system, using the chosen 

solution as a starting point. Establish the design configuration, partition the 

system into sub-systems, allocate budgets and define interfaces. Progressively 

assess and improve the design using feedback from reviews, analysis, 

specialists, tests and trials. Specify and agree the system design and produce 
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drawings. Specify requirements for each sub-system. Specify and agree the 

requirements for test, proving and integration processes and the requirements 

for test and support equipment. Demonstrate requirements traceability. 

Determine and Manage 
Requirements (R) 

Manage System Engineering 

Provide Special Design Support 

Perform 
FunctionaVBehavioural 

Analysis (F) 

Secure Acceptance and 
certification (AC) 

Support High Level Tests (n 
Design and Specify 

Subsystems (D) 

Create Candidate 
Solution Concepts (C) Integrate and Test (I) 

Harmonise Subsystem 
Implementations (H) 

Perform Systems Analysis (A) 

Project Time 

Figure 6-4 CEP Development Processes 

• Perform Systems Analysis (A): Create models and simulations of the system 

in its operational environment. Carry out analysis using these models and 

simulations in order to predict systems properties and behaviour, including 

predictions of the emergent properties and of system performance within 

constraints. Use the analysis and predictions to support the development 

process. 

• Harmonise Sub System Implementation (H): Assess the emerging sub­

system engineering implementations and gather engineering data. Identify any 

concerns with the implementations and propose solutions. Make 

recommendations on the acceptability of any design changes and on their 
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points of embodiment to maintain harmony and compatibility between the 

developing parts. 

• Integrate and Test System (I): Produce an integrated strategy early in the 

lifecycle. Supervise the practical assembly integration and test of prototype 

system, resolve any technical problems arising and carry out design proving 

tests. 

• Support Higher level Tests (T): Plan and support test of the prototype 

system functioning in its operational environment, with its associated systems, 

in accordance with a previously defined test strategy. The higher level tests are 

usually carried out in conjunction with the customer, with the objective of 

showing that the design meets performance and other requirements when used 

under realistic operational conditions. The test results are analysed to provide 

design feedback and obtain evidence to validate the design and lead to 

customer acceptance. 

• Secure Acceptance and Certification (AC): Progressively gather and present 

design proving evidence that the system is compliant with requirements, and 

secure customer acceptance and certification of the design. 

For each development process there is a detailed process description which 

defines: the activities which the process is composed of, the roles and 

responsibilities of engineers performing the process, inputs required by the 

process, outputs produced by the process, process entry and exit criteria. Though 

CEP is an iterative process, all of the detailed process descriptions are written as if 

the product will be completed in a single iteration (e.g. similar to a waterfall 

process). There is no process for producing plans for the next iteration as would 

be found in the Spiral model based process. 

The CEP is vague on the subject of inter-process communications. The CEP says 

little on the subject other than by defining what information shall be passed 

between processes. The CEP simply states that inputs to a process should be 
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reviewed and it is not clear how issues arising from these reviews should be 

resolved. 

The detailed process descriptions do not state how changes, due to development 

iterations or reviews, are to be negotiated. The CEP simply gives precedence to 

the preceding processes with respect to change. This can cause conflicts, in 

particular for the Design and Specify (D) process which has two proceeding 

processes. With respect to the resolution of change issues, the CEP does however 

describe a project management structure that has the responsibility for escalating 

issues to the project management team. 

6.5 Observations and Summary 

The problem of determining the correct baseline to allow development progress to 

next phase occurs in all predictive development models. Change is inevitable. The 

predictive models have an inherent bias towards upstream development phases 

which often results in one-way communication [AI-Rawas and Easterbrook 

1996;Curtis, Krasner and Iscoe 1988]. This bias and the need to introduce changes 

to a baseline often give rise to "throwing the problem over the wall". Boehm 

observed similar problems and this led him to suggest the Win Win extension to 

his spiral model to improve negotiations between stakeholders. 

It can be argued that the agile software development movement has arisen partly 

due to the bad or lack of communication found in predictive models. The agile 

community has tackled this problem by discarding development phases and 

developing co-located teams able to tackle all aspects of the development. 

However, within an agile development team there still will be conflict due to team 

members taking different positions on changes. In such cases, agile team members 

will have to negotiate these changes and will need to adopt similar objective 

criteria as described in Win Win. 
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These observations suggest that, for a development process which is based on a 

predictive model, a protocol is required that defines how related development 

teams communicate and negotiate change. This protocol should curtail the 

upstream bias of these models by allowing the downstream development phases 

an opportunity to negotiate any changes. Successful change negotiations require, 

as Boehm observed, objective criteria to base the decision on. One such criterion 

is the determination of the impact of a change on the existing product. This is how 

the Automotive Sensor (Chapter 5 - Section 5.4.1) team employed their 

traceability data in the negotiation of changes to their products. 

The next chapter introduces the Traceable Development Contract (TOC). The 

TDC is proposed as a means of controlling the upstream team bias with respect to 

the imposition of changes, by employing a inter-team development protocol and 

traceability to negotiate change. 
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7.1 Introduction 

Chapter 6 highlighted the weaknesses in predictive development models with 

respect to establishing development phase baselines and the inherent bias these 

models have towards upstream development phases making changes to their 

baseline. Chapter 5 described how the automotive sensor project employed a 

traceability system to help the development engineers negotiate customer changes 

to their baseline requirements. This chapter combines these themes and introduces 

the Traceable Development Contract (TDC). The TDC is proposed as a means of 

controlling the upstream team bias with respect to the imposition of changes, by 

employing traceability to provide a basis for the negotiation of change. By 

employing traceability in this way, it becomes beneficial to the development 

engineers and therefore overcomes the Traceability Benefit Problem. 
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7.2 Origins of the Traceable Development Contract (TDe) 

The TDC is based on the traceability practice survey (Chapter 3) and the 

automotive sensor (Chapter 5) development process and traceability system. The 

automotive sensor development process is based around a customer-<ieveloper 

relationship. In this relationship, both parties have well-defined roles and 

responsibilities. For example, the customer is required to produce a specification 

that is of sufficient quality to enable the development of the product. The 

customer understands that an incomplete specification that requires frequent 

updating may result in delays and increased costs. The developer has the 

responsibility of understanding the specification and resolving any issues with the 

customer. The developer is also required to demonstrate that the product satisfies 

the customer's specification. These roles and responsibilities are defmed in the 

purchase contract. The traceability system helps both parties adhere to their 

respective responsibilities by providing information that helps them negotiate 

changes to the specification or to the sensor. 

In contrast to the automotive sensor project, the rest of the surveyed projects in 

Chapter 3 were large projects that were developed according to a predictive 

development model which was the same or similar to the BAE SYSTEMS 

Common Engineering Process (CEP - see section 6.4). In such a development 

process, the main "customer" relationship is between a development team and the 

project management and not between the related development teams. In the BAE 

SYSTEMS Common Engineering Process (CEP) each development phase/team is 

a separate entity, consuming inputs, performing development tasks and producing 

internally validated output. As a result, team managers concentrate solely on the 

progress of their phase and do not consider the impact of their decisions on their 

immediate down stream phases. 
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The weakness of predictive based development processes in establishing baselines 

and the insular nature of development team management often results in the 

"throwing the problem over the wall". This was observed during the survey and 

has also been observed in other multi team development processes by Al-Rawas 

and Easterbrook [AI-Rawas and Easterbrook 1996] Curtis et al. [Curtis et al. 

1988] and Christie et al. [Christie et al. 1996]. 

The above observations suggest that the establishment of a customer-developer 

relationship between related development phases would help to alleviate the 

issues related to the establishment and maintenance of a baseline. This 

relationship would require an upstream development phase to communicate and 

negotiate changes to their baseline with the affected downstream phases. This 

relationship has an additional benefit as the developers who produce a baseline, 

who will act as customer, have the product knowledge to allow them to validate 

the suitability of the products produced by the downstream phase. 

The automotive sensor project provides a good model on which to base such a 

customer-developer relationship. As demonstrated, a Traceability system is 

central to such a relationship as it provides information that allows the negotiation 

of changes to a baseline and provides evidence for the suitability of the product. 

As the recording of the traceability relationships would be beneficial to both sets 

of engineers, such an arrangement would also work towards overcoming the 

Traceability Benefit Problem. 

7.3 An Overview of the Traceable Development Contract 

The TDC formalises the interaction of the teams by defining their behaviour with 

respect to the state of their shared development artefacts. Traceability is employed 

as a means of assessing the impact of a change to development artefacts and 

providing a basis for the negotiation of the change. The TDC affords the engineers 

in the downstream team an element of control over their development 
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environment by limiting the imposition of changes by the upstream team. The 

TDC introduces a new contractual relationship between cooperating development 

phases. By keeping the definition of the TDC simple and generic the contract can 

be app lied to each development interfaces (Figure 7-1 ). 

New Contractual Relationships 

The TOC introduces new controctunl 
relationships between cooperating 
development ph uses 

Figure 7-1 TDe applied to each development interface 

The TDC consists of three parts: 

. ........ . 
' .... 

....... 
...... , 

...... 
..... 

Ex isting Contractual Relationships 

Each development phase is responsible 
to the Project Management 

I . A protocol that defines the responsibiliti es and behaviour of each development 

phase with respect to the estab lishment and maintenance oftbe contract 

2. Problem artefacts (documentation, diagrams, models etc.) that describe a 

problem domain (or development baseline). 

3. Traceability data structures tbat record the relationship between tbe problem 

artefacts and the solution. The traceability structures provide information that 

assists in so lution development, problem change negotiations and the 

demonstration of so lution va lidi ty and completion . 
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The contract protocol is a means of defming the behaviour of the development 

teams. The protocol is defined by five stages: Contract Initiation, Problem 

Discourse, Propose Solution, Development & Refmement and Completion (Figure 

7-2). These stages are based on the observations made during the survey and the 

operation of the automotive sensor team. 

• • 

Qualification 

Development &; 
Refinement 

Figure 7-2 Overview of TDC Stages: UML State Diagram 

7.4 Contract Initiation 

The Contract Initiation stage is concerned with defining the contractual terms of 

the work that is to be undertaken. The information that is required to be recorded 

and agreed at this stage of the contract will be: 

1. A description of the activity to be undertaken by the downstream team. 

2. The identification of the upstream and downstream stakeholders. 

83 



3. A description of the problem artefacts. 

4. Planning information: the agreement of dates for the delivery of the problem 

artefacts and estimated start dates for each phase of the TDC. 

5. The establishment of a conflict arbitration procedure and arbitrator. 

For development processes that are compliant to development standards such as 

B8 TickIT 2000 [TickIT 2000] and 1809003[1802007] contractual items 1 to 4 

are required to be defined in the project plan. 

Conflict is likely to occur between teams that have a relationship due to problems 

in the coordination of their activities [Easterbrook 1993]. Therefore, a method of 

resolving conflict, item 5, is required to be defined and agreed. A suitable 

candidate for an arbitrator would be the "traditional" chief engineer: an engineer 

who has technical knowledge yet is separate from the project hierarchy. The 

Initiation stage lays the foundations for the following stages of the TDC. 

7.5 Problem Discourse 

The Problem Discourse stage commences once the contractual terms have been 

agreed in the Contract Initiation stage and the problem artefacts have been made 

available to the downstream team. The Problem Discourse stage aims to clarify 

any issues with the problem artefacts and to obtain the agreement of the 

downstream developer team that the artefacts are suitable for the production of an 

initial solution. It is the responsibility of the downstream team to review the 

problem artefacts with reference to their suitability for the production of an initial 

solution and to agree the status with the upstream development team. The review 

of the problem artefacts by the downstream team may result in requests for 

clarification or requests to change problem statements. 

Conflict between the teams may occur at this stage and it is the role of the 

Arbitrator, who was identified in the previous stage, to resolve such disputes. The 

Arbitrator can reject, accept or defer a change to a later release. Once all the 
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problem artefacts have been agreed upon by the downstream team, the artefacts 

are frozen to allow for the development of the initial solution. The Arbitrator will 

be required to take into account the acceptance of the suitability of problem 

artefacts by the downstream team in the case of future disputes. The Problem 

Discourse stage is summarised in Figure 7-3. 

Customer 
Upstream Team 

Developer 
Downstream Team 

Figure 7-3 Problem Discourse: UML Activity Diagram 
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7.6 Proposed Solution 

The proposed solution stage commences once all problem artefacts have been 

agreed to be suitable for the production of an initial solution by the downstream 

team. The aim of this stage is to couple the solution, via traceability relationships 

(Figure 7-4), to the problem artefacts and to gain agreement from the upstream 

team of the suitability of the solution. The stage is intended to be of a short 

duration. It is understood by both teams that the initial solution will be incomplete 

and will be a prototype that will require further development. 

This coupling of the problem with the solution provides the downstream team 

shared control over the problem/solution space as changes to the problem artefacts 

cannot occur without a solution impact analysis and resulting change negotiation. 

It is the traceability relationships that provide a means of determining the impact 

ofa change. 

The downstream team will be required to record Problem/Solution Satisfaction 

Traceability to demonstrate what parts of the solution satisfy or address which 

problem artefacts (Figure 7-4). To determine the impact of a change to the 

problem artefacts the downstream team will be required to record Solution 

Decomposition Traceability. To demonstrate to the upstream team that solution is 

comprehensive and can be validated, the downstream team will be required to 

record Problem/Test Satisfaction Traceability (Figure 7-4). 

For example, the automotive sensor project employed the DOORS tool to 

manipulate traceability information to produce reports that documented which part 

of the sensor software satisfied which requirements and how the software would 

be tested. These reports were used to demonstrate to the customer the suitability 

of the sensor software. 

The presence of problem-solution traceability relationships from previous 

development iterations will allow the downstream engineers to determine quickly 
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what changes are required for the new solution. This use of traceability 

relationships to detennine component reuse was demonstrated by the automotive 

sensor project. 

Once the downstream team has recorded the traceability relationships between 

their initial solution and the problem artefacts and demonstrated to the upstream 

team the suitability of the solution, the contract progresses to the Development 

and Refinement stage. 

Problem 
Artefacts 

Validation 
Tests 

\1 -.. __ r:-l 
t= J.:""" .......... ... ~. 6- ................... . 

7--
8--

!~ "'<l ................................ .... 
12- ........ 
13-14---f·· ... 15-... ... ... 
16-... . ... 

..... '~, 
0-2:: 

Solution 

\ 

\ 

Problemrrest Satisfaction Traceability - ............................ -
Problem/Solution Satisfaction Traceability ___ - - - - --
Solution Decomposition Traceability - . - . - . - . - . - .-

Figure 7-4 Problem Solution Traceability 
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7.7 Development & Refinement 

Once the Proposed Solution stage has been completed, the downstream engineers 

will continue to progress with the development and refine their solution. As the 

solution is developed, the downstream team will continue to create new 

traceability relationships between the problem artefacts and the solution. 

During development, it is unreasonable to expect that no changes to the problem 

artefacts will occur. Change will occur due to the inherent problem of establishing 

a baseline found in predictive base development processes. The observations 

made in the course of this thesis suggest that the development issue with respect 

to baseline change is not that it occurs, but the determination of the impact of 

changes. It is difficult for development processes that do not record traceability 

between the problem artefacts and the solution to determine the impact of a 

change. Without this information, it is difficult for the teams to negotiate the 

scope of a change. This was observed in the traceability practice survey for 

development processes, which did not record any traceability information. In such 

development processes, changes were more likely to be imposed regardless of the 

impact. 

In the Development & Refinement stage, both teams are free to make requests to 

change the problem description artefacts. The impact of a change to the problem 

description artefacts is determined from the traceability relationships. Based on 

this information, the change is negotiated with consideration given to 

development timescales as defined in the contract initiation stage. Conflict may 

occur between the teams during the negotiation of a change. It is the Arbitrator's 

role to resolve such conflicts in a similar manner to the arbitration of change 

requests in the Problem Discourse stage. 
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The Development & Refmement stage continues until the downstream team can 

demonstrate to the upstream team that the solution addresses all the problem 

artefacts, or the allocated development time as defmed in the IDC has expired. 

7.8 Completion 

Projects are rarely fully completed [Weinberg 1998] and this is demonstrated in 

the Automotive Sensor Case study where approximately 2% of the customer 

requirements remained unsatisfied on completion of the project. The aim of the 

Completion stage is to demonstrate what has been successfully completed. 

It is the responsibility of the downstream team to demonstrate to the upstream 

team that the solution addresses the problem and that this can be demonstrated by 

validation tests and recorded results. The upstream team has the responsibility of 

accepting (or not) the evidence of completion and confirming the completion of 

the contract. In the automotive sensor case study (chapter 5) reports were 

generated from the traceability relationships to demonstrate to the customer that 

the sensor software satisfied their requirements and that it had been verified by 

testing. 

In the case where the solution has not completely addressed the problem it is the 

responsibility of the downstream team to list the areas in which the solution is 

deficient. Again, this information is obtained from the traceability relationships. If 

this occurs both teams will be required to negotiate the suitability of the solution 

and this may result in the issuing of a new TDC. These negotiations may result in 

conflict and the Arbitrator may be called upon by either team to make a 

judgement on the suitability of the solution based on the traceability information. 

As demonstrated in the automotive sensor case study (chapter 5) the 

problem/solution traceability data becomes a valuable resource for further 

development, for it allows the determination of which components can be reused 

in product variants or in future development iterations. 

89 



7.9 Addressing Criticisms 

The IDC can be criticised as another form of bureaucracy that will burden hard­

pressed engineers further. This criticism can be countered as follows. The IDC 

gives a structure to the interaction of related development teams. It was 

demonstrated in Chapter 6 that development processes based on a predictive 

development model, such as BAE SYSTEMS CEP, often do not define how 

related teams should cooperate. The TOC also gives a development context to the 

recording of traceability data. The TOC describes how the traceability data is 

employed to benefit the development process for example, in change impact 

negotiations. The traceability surveys (Chapter 3) demonstrated how a perceived 

lack of purpose for the recording of traceability data resulted in the poor recording 

and maintenance of traceability data. The TOC creates a customer-developer 

relationship between development phases allowing the exploitation of the 

upstream team's expertise. This is in contrast to present predictive development 

processes where the main contractual relationship is between a team and the 

project management. However, the question of whether the IDC adds 

bureaucracy to the development process will only be answered by the 

implementation of the TOC in a live development environment, which is 

discussed in Chapter 10. 

7.10 Summary 

The TOC addresses the problem of controlling the upstream team bias with 

respect to the imposition of changes to a baseline by employing traceability to 

provide a basis for communication and the negotiation of change. By employing 

traceability in this way, it becomes beneficial to the development engineers and 

therefore overcomes the Traceability Benefit Problem. The benefits of the IDC 

are further illustrated in Chapter 9 (An Illustration of the TOC) which describes 

how the contract would be employed in development of a hypothetical jet trainer. 

By making the TOC applicable to each development phase interface progress 
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towards the elusive goal of end-to-end traceability can be achieved. The next 

chapter will examine what data structures are required to achieve the aims of the 

TDe. 
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8.1 Introduction 

Chapter 7 outlined the Traceable Development Contract (TDC) and how it 

employs traceability as a basis for negotiating changes to a development baseline. 

This chapter examines the data structures required to achieve the aims of the 

TDC. A number of guiding principles have arisen out of the development of this 

thesis, which has influenced the design of TDC Traceability data structures. 

• The structures must be generic and applicable to all development phase 

boundaries. 

• The structures must only record information that is relevant to the TDC and 

therefore be able to record information that: 

o Demonstrates Problem-Solution satisfaction information 

o Allows the navigation of the solution 

o Demonstrates solution validation 
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o Supports stakeholder communications. 

This chapter describes the traceability data structures that achieve the above 

principles and how the development of the structures has been influenced by 

previous traceability structures and the Traceability Practice Survey. The chapter 

concludes by examining how the TDC traceability data structures can be exploited 

further to provide solution maturity and design metrics. 

8.2 Influences of Existing Traceability Structures 

A number of traceability structures have been proposed that have similar gu iding 

principles to that of the TDC Traceability data structures. The traceability 

structures which have influenced the development of the TDC traceability data 

structures are Rich Traceability [Dick 2002] , Contribution Structures [Gotel 1995] 

and Design Rationale Capture System (DRCS) Language [Klein 1993]. 

8.2.1 Problem-Solution Satisfaction Traceability 

Satisfaction traceability is the recording of a relationship between a solution 

artefact and problem artefact (Figure 8-1) where the solution artefact satisfies, 

either fully or prutially, the demands of the problem artefact. 

Figure 8-1 Simple Solution Satisfaction Traceability 
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Satisfaction traceability relationships can be captured in the form of a traceability 

matrix or in a hyperlink based tool such as DOORS [DOORS 2007]. These 

relationships are of limited use to the engineer, as the presence of a relationship 

does not inform the engineer if the solution artefact satisfies the problem artefact 

partially, totally or is a part of a collection of artefacts that combine to satisfy the 

problem artefact. As a result, the engineer may have difficulty in determining the 

impact of a change by just following the satisfaction relationships. 

To address these problems, additional domain information is appended to the 

satisfaction relationship to allow the engineer to determine the contribution the 

artefact makes to the solution (Figure 8-2). This information is referred to as a 

satisfaction argument, though it goes by many different names dependant on the 

development phase, for example: 

• "Requirements Elaboration" for a satisfaction argument that demonstrates how 

the system requirements are derived from the user/system specification. 

• "Design Justification" for a satisfaction argument that demonstrates how the 

design is derived from the requirements. 

• "Implementation Strategy" for a satisfaction argument that demonstrates how 

the code is derived from the design. 

• "Test Strategy" for a satisfaction argument that demonstrates how the tests 

exercise the code. 

In essence, the above data has the same aim, to present an argument to provide 

evidence of how the solution artefact contributes to satisfying the demands of the 

problem artefact. This information is normally recorded as plain text, though data 

structures have been advanced as a means of describing a satisfaction argument. 
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* Problem Artefact 
Satisfies 

Satisfaction 
Argument 

Solution Artefact 

* 

Figure 8-2 A Simplified UML Class Diagram of a Satisfaction Relationship 

Rich Traceability [Dick 2002] is promoted as a means of providing evidence of 

the contribution that a solution artefact makes to the satisfaction of a problem 

artefact by recording a satisfaction argument. In Rich Traceability, the satisfaction 

relationship is appended with a satisfaction argument expressed in plain text. 

Propositional operators are employed to indicate the way solution artefacts 

combine to satisfy a problem artefact: 

• By conjunction (&) indicating that, the contribution of all the solution 

artefacts is necessary for the satisfaction of the problem artefact to hold. 

(Figure 8-3) 

• By disjunction (OR) indicating that the contribution of anyone of the solution 

artefacts is necessary for the satisfaction of the problem artefact to hold. 

(Figure 8-3) 

Problem 
Statement 

Figure 8-3 Refinement of Solution and Satisfaction Arguments 
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Rich Traceability allows the engineer to refine his solution by use of refmement 

satisfaction arguments. Rich Traceability was successfully employed by Praxis, 

for Railtrack in the development of requirements for West Cost Rail Route 

modernisation project. Praxis has incorporated extended Rich Traceability into 

their REVEAL requirements engineering method [Praxis 2007]. 

Rich Traceability can be thought of as a member of the collection of Goal­

Oriented Requirements Engineering (GORE) methods that also include Goal 

Structuring Notation (GSN) [Kelly 1999], Knowledge Acquisition in autOmated 

Specification (KAOS) [Darimont et al. 1998] and Goal-Based Requirements 

Analysis Method (GBRAM) [Anton 1997]. These methods have similar 

taxonomies that consist of a network of goals, which are connected by links. Each 

method has its own taxonomy of goals but in essence there are two broad classes 

of goals: goals that define the desired characteristic or state of the system and 

goals that define how a system characteristic or state will be achieved. Goal links 

describe how a sub-goal is related, either positively or negatively, to its parent 

goal. Goal links can be combined with combinational operators such as AND/OR. 

An alternative to these GORE methods is Problem Frames [Jackson 2001]. 

Problem Frames represent the problem as collections of sub-problems, each of 

which is smaller and simpler than the original. A problem frame defines the shape 

of a problem by capturing the characteristics and interconnections of the parts of 

the world it is concerned with. This technique employs problem diagrams to 

describe the relationships between the machine, the problem domains and the 

requirements. A problem diagram (Figure 8-4) shows: 

• A dashed oval representing the requirement to bring about certain effects 
in the problem domains 

• Dashed lines representing requirements references 

• The Machine that is to be built is represented in bold 
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• The domain rectangles represent the interactions the machine has with the 
world 
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Figure 8-4 A Simple Problem Frame diagram 
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Hall [Hall et al 2002] demonstrated how problem frames can be employed in the 

iterative development of an architecture and its requirements 

8.2.2 Contribution Structures 

Gotel [Gotel 1995] proposed the use of traceability structures, known as 

Contribution Structures, to improve communications and cooperation between the 

stakeholders involved in the elicitation of requirements. Contribution Structures 

record the relationship between contributing stakeholders and an evolving 

requirement. Contribution structures represent a requirement as an artefact. An 

artdact can be a document, model or diagram. Artefacts are classified as being 

primitive or composite, which are constituted from further primitive or composite 

artefacts. Artefacts are created and maintained by Agents, who are stakeholders 

involved in the development of a requirement. There are three classes of Agent: a 

principal (P) who established the artefact, an author (A) who expresses the artefact 

and a documenter (D) who records or transcribes the artefact. A stakeholder can 
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perform any combination of these agent roles. The principal's responsibility is to 

determine and set the artefact's state to approved, pending approval or not 

approved. The author's responsibility is to determine how the artefact is related to 

other artefacts. The documenter's responsibility is for the physical and 

presentational aspects of the artefact. Artefacts are related to each other by one of 

two connecting relationships, referencing and adopting. Adopting relationships 

represent the following changes to an artefact: 

• Copy - use existing information as is with no changes or additions. 

• Add - use existing information with extensions to the content 

• Remove - use existing information with reduction in content. 

• Alter - use exiting information with changes to clarify the content. 

Reference relationships provide additional information to improve the 

interpretation of the artefact. The combination of these relationships results in a 

structure as shown in Figure 8-5. 

I_ contribution£P 

~--:~~ 0 A 

Connectivity : 

Artefact 

(Adopts) : 

Arte~act Contribution 0 
Connectivity GJ'8 

c-ti,;./'~-----~:~) -..: £ 
(Adopts),.. COntribUtiOn--' 0 0 A 

GJ'8 
Figure 8-5 Contribution Structure Relationships: Artefact Evolution 
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8.2.3 Design Rationale Capture System (DRCS) Language. 

Klein [Klein 1993] tackled the problem of developing generic data structures, 

which would capture the rationale for interdependencies between development 

artefacts. His approach was to consider the interdependencies between 

developments artefacts to be a result of a number of decisions that are made 

during the course of a project. The resulting DRCS language consists of a 

vocabulary of assertions consisting of entities such as modules, tasks, 

specifications and versions, as well as claims about these entities. The language is 

divided into two groups of structures, Synthesis and Evaluation. The Synthesis 

structures, Artefact Synthesis (Figure 8-6 Artefact Synthesis) and Plan Synthesis 

(Figure 8-7 Plan Synthesis), record the composition of the product and how it 

relates the production plan. 

Has Submodule 

Is a/Type 

Iso/Type Iso/Type 

Has Allribute 

Figure 8-6 Artefact Synthesis 

100 



Assertion 

Has Action 

Figure 8-7 Plan Synthesis 

HasSubtask 
Is of Type 

Has Attribute 

Module 
HasP/an 

The Evaluation group of structures (Figure 8-8) capture the design specifications 

as well as how well they have been achieved. This group of structures consist of 

Evaluation, Intent, Versions and Argumentation. The Evaluation structure links 

the requirement specification to the artefact version that best achieves the 

requirement. The Version structure captures the relationship between the current 

artefact version that satisfies the requirements and the previous rejected versions 

of the artefact. The Intent Structure records decisions made in the choice of the 

current artefact version. Closely related is the Argument structure that captures the 

argument for the chosen decision. 
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Figure 8-8 Evaluation Structures Group 

8.3 Influences of Traceability Practice Survey 

The Traceability Practice Survey (Chapter 3) raised a number of issues with 

respect to the recording of traceability data structures. The most common issue 

raised by the engineers was that a traceability data structure should not require an 

engineer to duplicate information but should refer to the original source 

documents. 

The survey raised the issue of recording satisfaction arguments. Where a 

Traceability tool allowed the recording of a satisfaction argument, engineers 

stated that it was either obvious or often too complex to be transcribed in a few 
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paragraphs and such complex arguments were better described in the project 

documentation. 

For example, the MBDA ASRAAM project (refer to section 3.5.6) took a 

different approach to the recording of satisfaction arguments. These projects did 

not try to justify the presence of a traceability relation. They appended the 

traceability relationships with data which was relevant to the use it would be put 

to. For example, if the primary aim of recording traceability was for impact 

analysis, then warnings would be appended to relations indicating the 

consequences of a change. This targeted additional information proved to be 

popular with engineers. 

The survey also highlighted problems when a set of functional derived 

requirements was mapped onto an object-oriented design (OOD). Engineers 

claimed that it was difficult to determine the correct level of mapping, for a 

requirement may be satisfied by the parent object or by one or more of the 

inherited objects. The functional requirements to OOD mapping issues were only 

partly solved by the adoption of a mapping standard that dictated how 

functionality was related the 00 design. 

8.4 TDC Traceability Data Structures Design 

This section describes how the influences of the previous Traceability data 

structures and the Traceability survey have resulted in the following generic 

Traceability data structures, which satisfy the guiding principles set out at the 

beginning of this chapter. 

The key design decision for any traceability structure is whether the structure 

should record all the product information or act as an indexing system that 

informs the engineer of the location of the relevant information. There are 

advantages and disadvantages to both approaches. 
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8.4.1 Design Decisions 

The Automotive Sensor project (Chapter 5) was unique among the surveyed 

projects as it was the only project which recorded all project information in its 

traceability system. This approach had a number of advantages. For example, data 

was not duplicated and there was no need to maintain external references. This 

enabled up-to-date and consistent project documents to be generated from the 

project data contained in the traceability system. The main disadvantage of this 

system was the restricted set of tools that could interface with the DOORS tool. 

Researchers have tried to address this problem of data sharing between tools by 

developing traceability repositories that interface with a wide range of 

development tools. The AP233 application protocol data model [Herzog 2000] is 

an example of a data model for such a traceability repository. Another example of 

a traceability data exchange model is the Meta-Modelling Approach to 

Traceability for Avionics (MATra) [Mason 1999]. Unfortunately, the success of 

these data exchange models or repositories have been limited due to complicated 

data conversion required to support a limited range of development tools. 

For the remainder of the surveyed projects their traceability systems contained a 

mixture of internal data and references to external data and the application 

required to manipulate this data. Though this approach has the inherent problem 

of maintaining external references, it does not restrict the use of development 

tools. As it is not possible to restrict or even to specify the tools required for all 

developments phases, the TDC traceability structures adopt the approach of 

recording references to external data sources and the location of the application 

required to manipulate the data. This approach of referencing is compatible with 

the developing XML technologies, such as XLink [Xlink 2007], which allow links 

to be created between diverse range of media artefacts. The XML Linking 

Language (XLink) allows elements to be inserted into XML documents in order to 

create and describe links between resources. It uses XML syntax to create 
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structures that can describe the simple unidirectional hyperlinks of today's HTML, 

as well as links that are more sophisticated. The Xlink standards and related tools 

are presently under development. 

The TDC traceability structures are required to be applicable to all development 

phases. This requirement gives rise to the idea of a "generic artefact" which can 

be decomposed as required into further artefacts. The "generic artefact" is the 

basic building block of the TDC traceability data structures. Problem and Solution 

Artefacts are generalisations of this common development artefact (Figure 8-9). 

Decom osition: 

Artefact 

Description: 
Artefact Location: 
Application: 
Development Status: {Not Agreed I Agreed I Deferred} 

Figure 8-9 Problem & Solution Generalisation of a Common Artefact (UML Class Diagram) 

Finally, the previous influences and the original guiding principles (refer to 8.1) 

have given rise to four basic data structures, Artefact, Artefact Satisfaction, 

Artefact Decomposition and Artefact Validation. 

8.5 Artefact 

The aim of the Artefact data structure (Figure 8-10) is to support the Problem 

Discourse and Development & Refinement stages of the TDC. In the Problem 
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Discourse stage, the Artefact structure aims to support the clarification of issues 

with the problem artefacts and to record the agreement of downstream developer 

team that these artefacts are suitable for the production of an initial solution. This 

is achieved by recording the queries and related replies raised on each artefact and 

their agreed development status. The Development Status attribute records the 

state of agreement between the two teams on the suitability of the artefact for the 

production of a solution. The artefact can have a Development Status of not 

agreed, agreed or deferred. 

Prevlolls Version 

Change 
Change 

UID# ------- Description 
I Type: {Copy I Add I RemovelAherl 

Arteract . 
I . 

UID#: 
Description: 

~ 
~ Change Authority Location: I 

Application: 
Development Status: {Not • Technical 
Agreed I Agreed I Dererred I I Authority 

Role: Authority 
I . Tech. 

Authority 
Challge -' IL 

I~ Implementation 
Implementer 

Artefac Implementer 
Query Role: Implementer 

I , • 
Query 

I 
UID# 
Text: 

I \Z 
Query Raised by 

Stakeholder 
Reply .... ,. 

UJD# 
,~ I I Name ... Email 

Query Reply 
I Rep/iedby I 

Telephone 
QueryUID# Location Address 

Text: 

Figure 8-10 Artefact Structure (UML Class Diagram) 
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In the Development & Refinement stage, the Artefact structure supports the 

recording of changes to problem or solution artefacts. This information would be 

recorded by two separate structures, problem artefact changes and solution 

artefact changes, both of which are instantiations of the generic Artefact structure. 

Development artefacts have stakeholders who are interested in the development 

and maintenance of the artefact. From the survey, there appear to be two classes 

of stakeholder, the Technical Authority and the Implementer. The Technical 

Authority is normally an engineer who has the responsibility of overseeing the 

production, and the approval of the artefact. This stakeholder plays a similar role 

to that of Gotel' s Principal Agent. The Implementer can be a number of engineers 

who are or have been involved in the production and maintenance of the artefact. 

Again, the role of this stakeholder is similar to the combined roles of Author and 

Documenter Agents proposed by Gote!. The changes that are allowed to be made 

to an artefact draw upon Gotel's Adopting Relation. A change to an artefact can 

be a Copy, Add, Remove or Alter just as with Gotel's relation. 

8.6 Artefact Satisfaction 

The Artefact Satisfaction structure (Figure 8-11) lies at the heart of the TOC and 

can be thought of as the core traceability structure. The purpose of this structure is 

to record the relationship between problem and solution artefacts. This 

information is employed throughout the TDC: 

• In the Proposed Solution stage of the TDC to demonstrate the coverage of the 

initial solution. 

• In the Refinement stage of the TDC to determine which solution artefacts are 

affected by changes to problem artefacts and vice versa. 

• In the Completion stage of the TDC to demonstrate the coverage of the final 

solution and how it will be validated. 
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As Dick [Dick 2002] stated, the simple recording of problem solution 

relationships may provide limited information and a satisfaction argument may be 

required to describe the contribution the solution artefact makes to the satisfaction 

of the problem. In practice, engineers found the writing of such arguments 

difficult. Dick suggests that this may be a reflection of the lack of understanding 

of the underlying relationships. The survey implies that there is a trade-off 

between the effort expended in writing such an argument and the clarity it brings 

to the interpretation of the problem-solution relationship. However, for complex 

or rigorous transformations a satisfaction argument is required and GORE 

techniques such as Rich Traceability provide a suitable method of describing such 

an argument. Therefore, the Artefact Satisfaction structure has an associated class, 

a Satisfaction Argument, which refers to a solution argument describing how the 

solution contributes to satisfying demands of the problem artefact. 

Arter.,,. (problem) 
UID#: 
Deacriplion: 
Location: 
Application: 
Status: 

Artefact (Solution) 

UlIlt: 
Sa/b/acllo" Dcacription: 

1-----.-----1 Lo<ation: 

Satisfaction Argument 

UID#: 
Reference to GORE Araument 
·Rich Traceability 

• Application: 
Status: 

Figure 8-11 Artefact Satisfaction (UML Class Diagram) 

The Artefact Satisfaction structure (Figure 8-11) is a many to many relationship, 

such relationships are often difficult to comprehend. Therefore, the Artefact 

structure can be thought as a composition of two simpler, one to many, 
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relationships: Satisfaction-Problem View and Satisfaction-Solution View (Figure 

8-12.) 

Arterac' (problem) 

UlD#: 
Description: 
Location: 
Application: 
StatUi: 

Artefact (Problem) 

UID#: 
DClcription: 
Location: 
Application: 
StatUI: 

Arter ... (SoluUoo) 
UlD#: 

Sa,i6/oeJio .. Problnn View Deoc:riptioo: 

r-------~------~ ~ • Application: 

Sati.faction Argument 

UID#: 
Rere~nce to GORE Arpunmt 
·Rich Traceability 

Sali6/action-Sollltion Yin.' 

Sati.faction Araument 

UID~: 
Reference to GORE Argument 
-Rich Traceability 

S ..... : 

Al1CflCt (Solution) 

UlD#: 
Delcription: 
Location: 
Application: 
SIalUI: 

Figure 8-12 Artefact Satisfaction: Problem and Solution Views (UML Class Diagram) 

These two relationships represent the view of each team. The upstream team will 

be mainly concerned with the problem view, while the downstream team will be 

concerned with the solution view. 

8.7 Artefact Decomposition 

The aim of the Artefact Decomposition structure (Figure 8-13) is to allow the 

engineer to describe the compositional relationships between artefacts that 

combine to form the problem or the solution. The degree of decomposition is a 
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practical issue. Fine granularity gives rise to a large number of artefacts, which in 

tum results in high data entry and maintenance burdens. The indications, drawing 

upon the traceability survey (Chapter 3) and the automotive case study (Chapter 

5), are that 200-300 artefacts seems to be the maximum number that a small team 

(of up to 5 people - 50 to 60 objects per person) can handle comfortably. 

Interface 
UID#: 
De.cription 

AllribUle 

, . 
Attribute 

UID#: 
Name 
Type 

0.0 

-" 
"' Inteiface 1 

Constraint 

\ 1 

Constraint 
UID#: 
Limits 

Artefact 
UID#: 
Description: 
Location: 
Application: 
Status: 

Decomposition: 

Demain 
Information 

WamingText: 

Figure 8-13 Artefact Decomposition (UML Class Diagram) 

The Artefact Decomposition structure takes a similar approach to Klein's Artefact 

Synthesis structure. The method of decomposition, e.g. functional or object 

orientated is not recorded, only that there is a logical decomposition relationship 

between artefacts. 

The aim of the TDe data structures is to provide information to allow the 

negotiation of change. Both Klein and the traceability practice survey highlighted 
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the importance of being able to detennine the impact of a change on interfaces 

exhibited by an artefact. Similar to Klein's Artefact Synthesis structure the 

interfaces exhibited by the artefact are recorded in Artefact Decomposition 

structure. For each interface, the attributes of the interface and their constraints are 

also recorded. 

Making changes to solution artefacts' relationships may produce unwanted 

effects. Unwanted effects related to the non-functional aspects of the system, such 

as memory usage, timing and security are difficult to determine without domain 

knowledge. The engineers at MBDA tackled this problem by tagging solution 

artefacts with known non-functional problems with "change warning" notes. 

These notes were informal warnings aimed at other engineers who may not have 

an in-depth knowledge of the domain about the problems that may occur if an 

artefact was changed. 

As a result, the Artefact Decomposition structure has an associated class, Domain 

Information, which will allow the recording of domain information to aid the 

interpretation of the traceability data. 

8.8 Artefact Validation 

The Artefact Validation (Figure 8-14) structure records how an artefact will be 

validated. This structure aims to support the Proposed Solution, Development and 

Completion stages of the TDC. In these stages, it is the responsibility of the 

downstream team to be able to demonstrate how they intend to validate their 

solution. 

The approach adopted in the automotive sensor case study (Chapter 5) was the 

decomposition test descriptions. In this case study test concepts described the 

testing at a high level. Test concepts were decomposed into test procedures which 

were in turn decomposed into test case and test steps. Individual test cases and 

steps were reused across a number of test procedures. 
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Artefact (Problem) Artefact (Solution) 
UJD#: 

" A11eflJet SIlIi8/lICIiD" UJD#: 
Deocription: Description: 
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Application: Application: 
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0·" 

Stakeholder Test Deocription Test Result 

Name UID# ~ U/D# 
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Bmail Resul,. Locstion 
Telephone 
Location Address 

Figure 8-14 Artefact Validation (UML Class Diagram) 

The Artefact Validation structure records two levels of test decomposition, a 

Validation Method that is a high-level description of the required testing and Test 

Descriptions which define individual tests. Validation Method will address a 

number of artefacts and Test Descriptions can be reused by a number of 

Validation Methods. 

As the contract progresses to completion, it is the responsibility of the 

downstream team to demonstrate the solution has been adequately tested. The 

upstream team has the responsibility of accepting, or not, the validity of the 

testing. The Artefact Validation structure records the upstream stakeholder who is 

responsible for accepting the validity of the testing. 
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8.9 TDC Data Structure Summary 

Traceable Development Contract (TDC) data structures are a refinement of 

existing traceability data structures. The structures have been kept simple and 

generic so enabling the TOC to be applied across number of development 

boundaries. These data structures can be considered the basic building blocks that 

can be extended as the development environment demands. The data structures 

are similar to structures that are already commonly employed. For example, many 

of the attributes of the Artefact structure will be found in configuration control 

data structures. This means that existing tools, such as DOORS, Commercial 

Relational Data Bases and PVCS, can be employed to implement the contract. 

Appendix B describes relational schema for an example implementation of the 

structures. 

A criticism that can be made of previous traceability structures is that they lacked 

a development context: when should the structures be populated, by whom and 

how should the traceability data be employed in the development process. The 

Traceable Development Contract protocol (Chapter 7) provides a context to these 

structures by stating who will populate the structures and how the data will be 

employed to benefit the local development process. In this way, the TDC protocol 

brings a purpose to these traceability data structures. 

8.10 Summary 

Traceable Development Contract (TDC) data structures are a refinement of 

existing traceability data structures. The structures have been kept simple and 

generic so enabling the TDC to be applied to any development interface. These 

structures can be considered the basic building blocks that can be extended as the 

development environment demands. These simple structures work in conjunction 

with the TDC stages to provide information that aids the negotiation of change to 
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development baseline artefacts; they also provide additional information on the 

maturity of the solution. 

Having described the data structures and the IDC protocol (Chapter 7), the next 

chapter illustrates how they could be employed in the development of software for 

a hypothetical jet trainer. 
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9.1 Introduction 

Chapter 7 outlined the TDC protocol and Chapter 8 described the data structures 

required to support the contract. This chapter builds upon this work by describing 

how a contract may work in practice. To illustrate the TDC, and the complexity of 

the aerospace industry, this chapter will consider the development of the Mission 

Planning System software for a hypothetical Jet trainer. The illustration is not a 

proof or a validation of the TDC, it is presented here as a means of exemplifying 

the ideas presented the previous chapters. 

The Mission Planning System is composed of two parts, the aircraft's mission 

computer and a land-based mission planning system. Each part is specified by a 

common requirements team, though the software is developed by two different 

teams. This chapter outlines how the requirements team and software design team, 

which are developing software for the aircraft, would work according to the IDC 

and how they would employ the traceability structures. These working practices 

are compared and contrasted with the relationship the requirements team has with 
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the land-based software development team that employs a traditional method of 

communications: issuing interface documents and holding review meetings. 

9.2 Background: Accipiter 300 

The hypothetical Accipiter 300 is the latest of a series of jet trainers produced by 

the (fictional) British Aircraft Corporation (BAC). This aircraft has a facility that 

allows the pilot to load a flight-plan into the aircraft's mission computer. In flight, 

the aircraft's mission computer employs this information in conjunction with 

information from its positional sensors (Figure 9-1) to overlay mission related 

information on the pilot's displays. 

Altimeter 

Figure 9-1 Positional Sensors 

9.2.1 Mission Planning System 

The Mission Planning System for the Accipiter consists of two parts: the aircraft's 

mission computer and a land-based mission planning system. The land-based 

mission planning system allows the pilot to create and store his flight-plan in the 

form of a series of navigational reference points, known as waypoints. The flight­

plan is transferred to the aircraft's mission computer via a 4mm tape data 

cartridge. 
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The Accipiter's mission computer reads the data cartridge before flight, checks 

the validity of the data and stores the resulting flight-plan. In flight, the mission 

computer employs the flight-plan information in conjunction with information 

from the aircraft's positional sensors to overlay mission related information on the 

pilot's displays. During flight, the mission computer stores information from the 

aircraft's positional sensors (Figure 9-1) so that the flight can be recreated on the 

land-based mission planning system. 

9.2.2 Development Organisation 

The development of the Mission Planning System is spread across the UK. The 

elicitation and control of the requirements for the Mission Planning System is 

performed by the main contractor, BAC, based in the North West of England. The 

software for the aircraft's mission computer is developed by a subsidiary of BAC 

based in the South West and the hardware by a subsidiary based in the East of 

England. The hardware and software for the land-based mission planning system 

are produced by a separate company, FET Systems, based on the south coast of 

England. 

9.2.3 Scope of Illustration 

This illustration will consider how traceability can employed in the development 

of the aircraft's mission computer. This illustration considers the implementation 

of an upgrade that occurs after the initial release of the requirements. 

The change in functionality is that a Secure Digital (SO) High Capacity (HC) non­

volatile memory card will replace tape data cartridges for the transfer of flight 

data between the aircraft and the land based planning system. The SO card will act 

as a virtual hard disk and there will be no requirement to validate the data held on 

the card. 
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9.2.4 Use of Traceability 

The BAC South West software team employs a traceability tool to record the 

relationships between the requirements, software design, code and validation tests. 

The BAC South West software team has an archive of traceability relationships 

for the previous versions of the mission computer. The FET Systems software 

team does not employ a specific traceability tool, though they do employ a 

spreadsheet tool to demonstrate their test coverage. 

9.2.5 The Introduction of the TDC 

For the development of the next version of the aircraft's mission computer 

software, the requirements team (BAC North West) and the software design team 

(BAC South West), agree to work according to the TDC: the requirements team 

acting as the upstream team and the software development team acting as the 

downstream team. Both teams agree to a shared file system to store shared 

artefacts and a traceability database that has a schema (described in Appendix B) 

that implements the traceability structures described in Chapter 8. 

The following sections will work through the TOC protocol stages (Section 7.3). 

• In the Contract Initiation stage (Section 9.3), the terms of the work that is to 

be undertaken are defined. 

• In the Problem Discourse stage (Section 9.4), both teams clarify and agreed 

the problem artefacts. 

• In the Proposed Solution stage (Section 9.5), the BAC South West software 

team demonstrates to the BAC North West requirements team how they intend 

to tackle the problem. 

• In the Development and Refinement stage (Section 9.6), BAC South West 

software team produces and refines the solution. 
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• In the Completion stage (Section 9.7), the BAC South West software team 

demonstrates to the BAC North West requirements team that they have 

satisfied the contract. 

For each stage, the working practices of the BAC requirements team and the BAC 

software team will be compared with the working practices of the BAC 

requirements team and FET Systems. 

9.3 Initiation 

The Initiation stage is concerned with defining the contractual terms of the work 

that is to be undertaken. The information that is required to be recorded and 

agreed at this stage of the contract is described in Table 3. 

I Activity The production of the Accipiter 300 mission computer 
Description software. 

2 Stakeholders Upstream Team: members of the requirements team (BAC 
North West) (Figure 9-4) 
Downstream Team: members of the mission computer 
software development team (BAC South West). (Figure 9-4) 

3 Problem The aircraft mission computer software requirements and 
Artefacts UML Use Case Diagrams (refer to section 9.3.1) 

4 Planning Delivery dates and milestones for the mission computer 
software. (Refer to Figure 9-3 Mission Computer 
Development Plan.) 

5 Arbitration The Chief Engineer for Accipiter 300 is identified as the 
Procedure arbitrator for any disputes. Teams are required to describe 

their position with respect to any conflict. Teams are required 
to present information, such as an impact analysis, that 
supports their position. Team are required to offer possible 
solutions to the conflict. 

Table 3 TDe Initiation Information 

9.3.1 Example Mission Computer Problem Artefacts 

The following are examples of the problem artefacts which are required at 

contract initiation. For example, Tape Interface Requirements (Table 4), UML 
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Use Case (Figure 9-2), Delivery Plan (Figure 9-3) and Stakeholder Organisation 

Charts (Figure 9-4). 

Unique Tape Interface Requirements 
ID 

10 Before Flight: Flight Plan Down Load and PDC Cartridge Insert 
10.1 The Pilot will insert the Flight Plan Data 4mm tape cartridge 

into the mission computer. 
10.2 The Pilot will select from the mission computer touch screen 

the Download Flight Plan option 
10.3 The Mission Computer will detect the presence of a correctly 

formatted Flight Plan tape cartridge. (For the format of Flight 
Plan tape cartridge refer to Appendix G: Data Formats) 

10.4 If a Flight Plan tape is not present or not of the correct format 
then the Mission Computer will display - "Download Aborted" 
and will eject the tape cartridge ifpresent. 

10.5 The Mission Computer will read and validate each waypoint 
from the tape. Writing the contents of each way point to 
FlightPlan.dat data file (For the format of FlightPlan.dat refer 
to Appendix G: Data Formats) 

10.6 If a waypoint is corrupt or the total number of waypoints does 
not agree with the number in the taper header then the Mission 
Computer will display - "Download Aborted" and will eject 
the tape cartridge. 

10.7 The Mission Computer will display - "Download Successful" 
once the FlightPlan.dat file has been written to the hard disk. 

10.8 The Mission Computer will eject the Flight Plan data tape 
cartridge. 

10.9 The Pilot will insert a blank formatted tape data cartridge, for 
the recording of the aircraft's positional data, into the Mission 
Computer. 

10.10 The Pilot will select - "Insert PDC" PDC - Positional Data 
Cartridge. 

10.11 The Mission Computer will detect the presence of a correctly 
formatted Positional Data 4mm tape cartridge. (For the format 
of Flight Plan tape cartridge refer to Appendix G: Data 
Formats) 

10.12 If a Positional Data tape is not present or not of the correct 
format then the Mission Computer will display - "PDC Insert 
Failed" and will eject the tape cartridge if present. 

10.13 On the successful insertion the Mission Computer will display 
- "PDC Inserted" 

Table 4 Requirements 
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Figure 9-2 UML Use Case Diagram: Down Load FUght Plan - Insert PDC 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct No\' Oct .................. 
f , T 

Delivery of Proposed Solution Mission 
Mission Agreed by Sol\ware 
Computor Requirements Team Accepted by 
requirements Reqwn:mertts 
.nefac'. Team 

Artefacts 
agreed by 
SoRware TDC Milestones 
Team 

Figure 9-3 Mission Computer Development Plan 
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Figure 9-4 Organization Chart 

9.3.2 Comparing and Contrasting with FET Systems' Approach 

At the start of the project, the FET Systems software team will have established 

the activity description (1), problem artefacts (3) and planning information. 

However, FET Systems software team will not have identified all the relevant 

stakeholders (2) and a method of arbitration (5). From the observation made 

during the traceability survey, none of the development processes considered the 

problem of conflict between teams. For these development processes, there was 

no requirement to define an arbitration process and this is the case for FET 

Systems. It was also observed that in many cases personal contact between teams 

was often limited to team leaders. Failing to identify a method of arbitration may 

result in the poor resolution of inter-team conflicts. Also by failing to establish all 

stakeholders, the efficiency of communications between the two teams will be 

reduced. 

9.4 Problem Discourse 

The Problem Discourse stage aims to clarify any issues with the problem artefacts 

and to obtain the agreement of the downstream developer team that the artefacts 
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are suitable for the production of an initial solution. It is at this stage, that the 

SAC requirements team start to populate the traceability structures. The fust 

structure to be populated is the logical decomposition structure (Section 8.7). This 

involves identifying all the artefacts and recording their decomposi tion. The 

logical decomposition structure acts as an index to the problem artefacts, allowing 

the engineers to navigate the composition of the problem. A suitable method of 

decomposing the Accipiter's requirements would be to decompose according to 

the parent document structure. In this case, each requirement statement would 

become an artefact. For example, Figure 9-5 represents the decomposition of the 

Accipiter's textual requirements. 
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Description: Mission Computet - Flight Modc=s 
Development S latus : No t Agreed 

Requirements 

UID# IO 
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I ----------------. I 
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,f'-.................. = ....... -----'------, 
I R«ju;rement , 

UID#IO.1l 
Description: On the success ful insertion the 
Miss ion Computer will displny - "POC 
Inserted" 
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Further dccompo cd 
requirements 

Figure 9-5 Logical Decomposition of the Accipiter Requirements 
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Each artefact has a development status (Not Agreed, Agreed or Deferred) that 

records the state of agreement between the two teams on the suitability of artefact 

for the production of solution. 

The second structure to be populated is the Artefact structure (refer to section 8.9). 

This structure records the ownership and development history for each artefact. 

For example, Figure 9-6 show how the Artefact structure is applied to textual 

requirement 10.13. These traceability structures allow queries to be performed 

that help the BAC software team determine the suitability of the requirements. 
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Figure 9-6 Artefact Structure for Requirement 10.13 
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The queries fall into three groups, 

• Information Oueries: This group of queries involve the determination of the 

requirement and its attributes, such as the implementer (or in this case the 

writer) of the requirement and the technical authority for the requirement. 

(Example queries can be found in Appendix C.) 

• Dialog Oueries: This group of queries involves creation and recording of 

dialog between the two teams with respect to issues related to the requirement. 

(Example queries can be found in Appendix C.) 

• Status Queries: This group of queries involve the determination and setting of 

the development status of a requirement. (Example queries can be found in 

Appendix C.) 

As requirements are normally specified in text, they can be recorded in the 

description attribute of the artefact structure. Where a requirement is specified by 

a drawing or a diagram, the description attribute will describe the diagram and the 

location attribute will record the location of the diagram. This approach was 

adopted by many of the projects in the traceability survey. 

As stated in section 8.5 the Artefact structure is derived from Gotel's 

Contributions Structures. Gotel claimed the following benefits from the 

implementation of such structures in a development environment: 

Artefact Ownership, Commitment and Responsibility: The Artefact structure 

defines ownership (Technical Authority and Implementer). This impels these 

stakeholders to commit to a position on the development state of an artefact The 

result of this commitment is that the responsible stakeholder would take a position 

and engage in discussions with respect to changes to an artefact. In this 

illustration, the BAC requirements team members are committed to being a 

technical authority or implementer of the Accipiter's requirements. 
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Artefact Contribution: The ability to record the contribution made by each 

stakeholder to an artefact is found to aid change discussions and allows project 

managers to track progress and allocate artefact ownership. The Artefact structure 

records the original implementer and any changes made. For each change to an 

artefact, the Artefact structure records the stakeholder who contributed. In this 

illustration, the Artefact structure will record the changes the BAC requirements 

team members make to requirement artefacts. 

Uncovering Hidden Details and Undocumented Events: The use of traceability 

structures often results in the uncovering of hidden artefact details and 

misunderstandings between stakeholders. The Artefact structure allows the 

recording of queries and replies for each artefact. In this illustration, this feature 

can be employed by the BAC software team asking questions of the requirements 

and the BAC requirements team replying to those queries. 

Agreement: The use of traceability structures help stakeholders to come to an 

agreement with respect to the development status of an artefact. Each Artefact has 

an attribute that records the agreed development status. In this illustration, the 

development status attribute is employed to demonstrate which artefacts the BAC 

software team have agreed to be suitable for development. 

9.4.1 Comparing and Contrasting with FET Systems' Approach 

On reading the requirements, the FET Systems software engineers will have 

similar questions on the new functionality to that of the BAC software team. The 

FET Systems software team takes a traditional approach, collecting its questions, 

and arranging a requirements' review meeting with the BAC requirements team to 

obtain clarification. By failing to identify all the relevant stakeholders, the FET 

software engineers may target their questions at the wrong engineer. This is in 

contrast to the use of the traceability database that allows the targeting of 

questions to the correct stakeholder. Such a shared traceability database may even 

mitigate the need for a review meeting. Given the distances between development 
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sites, this would reduce development costs. However, if a review meeting is 

required then the output from the traceability database, such as the raised queries 

and answers, will help in the review of the requirements. 

9.5 Proposed Solution 

The Proposed Solution stage starts once all the problem artefacts, the 

requirements, have been agreed or deferred to later release. This stage allows the 

BAC software team to demonstrate how their prototype design will address the 

requirements. 

Software designs are commonly described using diagrams such as UML package 

or deployment diagrams (for example, Figure 9-7 and Figure 9-8 ). Diagrams 

cannot be decomposed in the same way that the textual requirements were 

decomposed in the previous phase. 

I
M_~I 

Tn!ce R.fO{A • 

Figure 9-7 Prototype Package Decomposition 
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.execution environment. 
Mission Computer 

[] 
Ink 

Figure 9-8 Prototype Deployment Diagram 

Artefacts in the diagrams are identified by marking them with unique id, for 

example in Figure 9-7 each package is marked with an identifier. In the case of 

diagrams, the Artefact Decomposition structure becomes a flat structure that lists 

the artefacts described in the diagram (Figure 9-9). To determine the true 

relationship between artefacts the engineer will be required to refer to the original 

diagram. 
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Figure 9-9 Artefact Decomposition - Package Diagram 

Once the design artefacts have been identified, the Artefact structure is populated 

for each design artefact. In the same way as the requirements artefacts, the design 

artefact structures records the ownership and development history for each design 

artefact. 

To demonstrate how the prototype design will address the requirements, the BAC 

software design team populates the Artefact Satisfaction structure (refer to Section 

8.6), recording the relationships between the requirements and design artefacts. In 

the cases where it is not clear what contribution a design artefact makes to the 

satisfaction of a requirement (or a collection of requirements), a satisfaction 

argument may be required. In this illustration, the BAC software team have 

written a document (Mission Computer Architecture) that outlines the reasoning 

behind the design. The Mission Computer Architecture document describes the 
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engineering reasoning for the design, the decomposition of the functional 

components that comprise the design and a detailed description of the 

functionality of each design component. For design components that are safety 

critical the component textual descriptions are supplemented with a GSN 

argument (refer to 8.2.1). In this example, the requirements-tape package 

traceability links have an associated trace to the sections of the Mission Computer 

Architecture document that describe the tape interface (Figure 9-10) . 

Requirement 

Design Artefact: Decomposition Diagnm 
JlCIquirement 

r==~;;~=5~==::3~::::~J U10fI:01.4 Description: Tape Pac"''' 
Requirement Loc.tion IIAe<:I3OOIDesIMiuion Pad UMLwr,( 

Application: Urnh:t --

Reqwremenl 
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UIDNIO.13 
Doaerlptlon: On the 
successful insertion the 
Mission Computer will 
di.play - "POC In.erted" 

Slalul: Not Agreed 

UIDHSAI 
DolCription: t.ililion Computer Architecture 
Location /I Accl300/Des/ M .... ion COqNleI' Design StratelY.doc 

Figure 9-10 Artefact Satisfaction: Requirements and Tape Package 

The TDC requirement that the BAC software team be able to demonstrate the 

validity of the design will entail the population of the Artefact Validation structure 

(refer to section 8.8) for the design artefacts (Figure 9-11). The design Artefact 

Validation structure records how each design artefact is to be tested. 

Also at this point that the BAC software team start to write code. As with the 

requirement and design artefacts, the code is described by artefact decomposition 

and artefact structures. Artefact Satisfaction structures are employed to record the 

relationship between the design and code artefacts. In this case, it is a simple one 

to one relationship between code and UML package (Figure 9-11). 
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Figure 9-11 Artefact Validation: Tape Package 

In this illustration, an assumption (9.2.4) was made that the BAC software team 

had employed a traceability tool to record the relationships between the 

requirements, software design, code and validation tests for previous products. 

This assumption has been made to allow the demonstration of the benefits that can 

be achieved from traceability when developing product families. The weakness of 

this assumption will be considered in the next section. 

The Automotive Sensor case study (Chapter 5) demonstrated the benefits in the 

use of traceability in the selection of a base product for the development of a new 

product. For the production of a new sensor, the new requirements were compared 

against the exiting products to determine which sensor would be a suitable base 

product. This use of traceability enabled the software engineers to reuse existing 

software and tests, thereby reducing their workload. 

The selection of a base product is a complex process, as the engineers have to take 

into account the issues relating to the removal and addition of functionality. 

However, the TDC traceability structures can aid the process. Having the 
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requirements recorded in the Artefact Decomposition structure allows them to be 

compared with the requirements, held in the same structures, for previous releases 

of the mission computer software. This is achieved by a tree traversal of the new 

requirements and previous released requirements, comparing the contents of each 

artefact node. From this traversal, a list of differing requirements is obtained for 

each of the previous releases . For this illustration it was found, by manual 

inspection of the differing requirements, that the requirements for the Accipiter 

250 (Figure 9-12) were the best match and would be a suitable base product for 

the new Accipiter 300. 

Tree 
Compari son 

Accipiter 150 
Requ irements 

Figure 9-12 Comparison of Mission Computer Requirements 

Requirements Requirements 
that are the sa me that differ 

The process is repeated to determine the affected Accipiter 250 code modules. In 

this case, the Artefact Satisfaction structures that record how the Accipiter 250 

code modules satisfy the affected design artefacts are examined. In this case, there 

is a simple one to one relationship between the design packages and code. 
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The determination of which validation tests can be reused can obtained from 

examining the relationships between the design artefacts not affected by the 

requirement changes and the validation methods (similar to Figure 9-11). This is 

achieved by examining the Artefact Validation structure that records the 

relationships between validation methods and design artefacts. This structure will 

also be employed to determine the individual tests that comprise a validation 

method. 

The traceability structures, Artefact Decomposition (requirements, design and 

code) Artefact (requirements, design and code), Artefact Satisfaction 

(requirements to design and design to code) and Artefact Validation (design) have 

enabled the BAC software engineers to determine which artefacts can be reused 

and which require to be altered. 

At the end of Proposed Solution stage, the BAC software team will be in the 

position to present to their customer, the BAC requirements team, how they intend 

to satisfy the requirements. This presentation takes the form of a document that 

describes the strategy for tackling the problem (developing the software for 

Accipiter 300 from the Accipiter 250 mission computer software) and includes a 

compliance matrix that shows how the proposed solution satisfies the 

requirements. The compliance matrix is generated from the satisfaction 

traceability information. Similar documents were found in the course of the 

Traceability Practice survey (Chapter 3). The Automotive Sensor project 

employed scripts to generate similar documents from their DOORS database and 

the MBDA projects manually produced a document known as a "Design Reply". 

The TDC requires the BAC requirements team to act as the customer in this 

contract and therefore the requirements team has to accept the proposed solution 

or to reject it, indicating to the BAC software team where the solution fails to 

satisfy the requirements. 

133 



In this illustration, the BAC requirements team accepts the proposed solution and 

the contract proceeds to the next stage, development and refmement. 

9.5.1 Comparing and Contrasting with FET Systems' Approach. 

For the development of the land-based mission planning software, the FET 

Systems software team will be in a similar position and the team will aim to base 

their new product on existing code. The lack of traceability may mean that the 

FET Systems software team will not be able to identify efficiently a suitable base 

product and which parts of that product are required to be changed. However, the 

FET Systems software has not had to create and populate a traceability database. 

A weakness in this illustration is that the BAC software team had employed a 

traceability tool to record the relationships for previous products. The 

demonstrated benefits are a result of having a traceability database for previous 

products. What would happen if there were no previous products? In such a case, 

it could be argued that the effort expended in creating and populating the database 

out weighs any benefits such as the generation of a compliance matrix. 

Nevertheless, this argument is countered by considering the role of traceability in 

the TDC, that of a means of determining the impact of change and to provide a 

basis for the negotiation of change during development. 

In contrast to the BAC software team, the FET Systems software team does not 

have to gain the acceptance of their solution by the BAC requirements team. This 

is a lost opportunity as the BAC requirements team may identify flaws in FET 

Systems' initial approach to the requirements. Failure to identify flaws early in the 

development of the software may prove to be costly. 

9.6 Development & Refinement 

Once the BAC requirements team agree the proposed solution, both teams are 

allowed to request changes to the requirements or the proposed solution. In this 

134 



illustration the BAC requirements team request a change to replace the tape data 

cartridges for a SD Secure Digital (SD) High Capacity (HC) non-volatile memory 

card (Table 5 and Figure 9-13). The SD card will act as a virtual hard disk and 

there will be no requirement to validate the data held on the card. The use of the 

SD memory card means that a second tape cartridge, for the recording of the 

positional data will no longer be required. 

Unique Change Tape Interface Requirements 
ID 

10 Before Flight: Flight Plan Down Load and PDC Memory 
Card Insert 

10.1 Altered The Pilot will insert the SD (HC) Memory Card into 
the mission computer. 

10.2 The Pilot will select from the mission computer 
touch screen the option - Download Flight Plan 

10.3 Altered The Mission Computer will detect the presence of a 
SD(HC) Memory Card. (For the format of Flight 
Plan refer to Appendix G: Data Format~ 

10.4 Altered If a SD (HC) Memory Card is not present or of the 
correct format (For the format of Flight Plan refer to 
Appendix G: Data Formats) then the Mission 
Computer will display - "Download Aborted". 

10.5 Removed 
10.6 Removed 
10.7 Altered The Mission Computer will display - "Download 

Successful" 
10.8 Removed 
10.9 Removed 
10.10 Removed 
10.11 Removed 
10.12 Removed 
10.13 Removed 
10.14 New Waypoint data will be encrypted on the Secure Digital 

Mem~Card 
10.15 New Positional Sensor data will be encrypted on the Secure 

Digital Mem~ Card 

Table S Requirement Changes 
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Figure 9-13 New Use Case Diagram 

Table 5 illustrates a point; often changes are not clear and may be not functionally 

correct. In this case, the BAC requirements team have aimed to simplify the 

interface by removing the need to insert a separate storage media for recording 

the positional data. The positional data is recorded on the same SO memory card 

that stores the flight plan waypoints. The BAC requirements team has also 

included two new requirements 10.14 and 10.15 and it is unclear how they 

influence the new media interface. 

The traceability structures are employed to negotiate these changes. The BAC 

requirements team updates the Artefact Structure for each of the affected 

requirement Artefacts. In this case the change description and type, artefact 

description, technical authority for the change and the implementer of the change 

are recorded (for example, refer to Figure 9-6). As these changes have not been 

agreed, the Agreed Status is set to "Not Agreed". 

The BAC requirements team employs the traceability structures to determine the 

design artefact stakeholders affected by the requirement changes. This is achieved 

by employing the Artefact Satisfaction structure that records the satisfaction 
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relationships between requirements artefacts and design artefacts (for example, 

refer to Figure 9-10) to determine which design artefacts are affected. For each 

affected design artefact, its Artefact Structure is employed to determine the 

Authority and Implementer for the artefact. For the two new requirement artefacts, 

10.14 and 10.15 (refer to Table 5) there will no corresponding design artefact. In 

this case, the authority and implementer of their parent artefact 10.0 is determined. 

The BAC requirements team now notifies the affected BAC software team 

members of the proposed changes to the requirements. 

The BAC software team is in a similar position as they were in the Problem 

Discourse stage (section 9.4). The BAC software team employs the updated 

Artefact and Artefact Decomposition structures that describe the requirements to 

perform Information, Dialog and Status Queries on the changed requirement 

artefacts. In this way the BAC software team clarify the changes to the 

requirements. 

In conjunction with the process of clarifying the requirements, BAC software 

team employs the traceability structures to determine the full impact of the 

changes. This entails determining the true impact of the changes, the impact on 

the testing and code. 

To determine the true impact of the changes the BAC software team will be 

required to refer to the Satisfaction Argument (refer to Figure 9-10) for each 

affected requirement - design artefact pairing (refer to Appendix C, example 

Satisfaction Queries). This information will help the engineer to determine the 

contribution the design artefact makes to the affected requirement and therefore 

the impact of the change on the design artefact. The design Artefact 

Decomposition structure (refer to Figure 9-9) is employed to help to determine the 

impact of the changes on any child artefacts. The BAC software team employs the 

Artefact Validation structure (refer to Figure 9-11) to determine the impact on the 

validation tests. The impact on the code is determined by employing the 
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satisfaction structure that records the relationships between code and design 

artefacts (refer to Figure 9-11). Armed with the impact information both teams 

(requirements and software) now enter into negotiations on the implementation of 

the changes. In the cases where these negotiations fail, the teams may call upon 

the services of the arbitrator who was defined in the initiation phase of the 

contract. In this illustration, both teams agree the changes to the requirements and 

an extension, in conjunction with their respective project management, to a new 

completion date. 

9.6.1 Comparing and Contrasting with FET Systems' Approach. 

The engineers at FET Systems will be faced with similar issues with respect to the 

replacement of tape cartridges by a SO memory card. Without the aid of the 

traceability structures it may be difficult for the engineers to clarify the 

requirements changes efficiently. If the membership of the FET Systems' 

engineering team changes during development then the lost product knowledge 

may reduce the efficiency of determining the impact of the changes. The FET 

Systems engineers are not protected by the TOC, the BAC requirements team is 

not required to negotiate the impact of the changes and any resulting conflict will 

be required to be resolved by the project managers who may not have the 

technical expertise to resolve the conflict correctly. 

9.7 Completion 

The aim of the Completion stage of the TOC is to demonstrate what has been 

successfully completed. Traditionally, this is where traceability becomes apparent 

in most development processes usually in the form of a requirements/test 

compliance matrix. 

The TOC imposes responsibilities on the development teams. It is the 

responsibility of the BAC software team to demonstrate, by testing, that the 

software addresses the requirements. The BAC requirements team has the 
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responsibility of accepting the evidence and confinning the completion of the 

contract. 

One of the major benefits from populating the traceability database during 

development becomes apparent at this stage. It is possible to generate a 

compliance matrix, for example Figure 9-14, from the data held in the traceability 

database. The Automotive sensor project (Chapter 5) generated a number of 

different reports (refer to Figure 5.3) from their traceability database to 

demonstrate to their customer that they had satisfied the requirements. Such 

reports are employed by the BAC software team to demonstrate to the BAC 

requirements team that they have completed the contract. 

9.7.1 Comparing and Contrasting with FET Systems' Approach. 

The FET software team will be required to produce evidence, usually in the fonn 

of compliance matrices, that their software satisfies the requirements. As the FET 

software team have no traceability database these documents will have to be 

produced by hand. This will be a laborious task prone to errors. The FET software 

team also have a different customer compared to the BAC software team. The 

FET software team customer is the Accipiter 300 systems integration team, to 

whom they deliver their software. This means that the FET software team does 

not employ the expertise of the BAC requirements team in the validation of the 

software. Therefore, any issues or problems with the software are propagated to 

the development next stage: systems integration. 
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Figure 9-14 Example Compliance Matrix 

9.8 Summary 

This illustration demonstrates how Traceability can be beneficial the development 

process and to engineers who are performing that process and therefore 

overcoming the Traceability Benefit Problem. The TDC gives a purpose to 

recording the traceability information. The illustration shows that the IDC can: 

• Aid the engineer with the selection of a suitable base product. 

• Aid the engineer with the communication and negotiation of change. 

• Aid the engineer in the demonstration of the validity of the final product. 

140 



This chapter is only an illustration that does not set out to prove or disprove how 

the TOC would be beneficial in practice. The next chapter examines the issues 

and practical implications of demonstrating that the TOC is as beneficial as it is 

claimed to be. 

141 



142 



Chapter 10 Lessons Learnt and Future Work 

10.1 Introduction ......................................................................................... 143 

10.2 Identifying the Problem ....................................................................... 144 

10.3 The Importance of Observation .......................................................... 145 

10.4 Traceability Benefit Problem .............................................................. 147 

10.5 Traceable Development Contract.. ...................................................... 148 

10.6 Further Work ....................................................................................... 149 

10.7 Coda .................................................................................................... 157 

10.1 Introduction 

This chapter summarises the achievements and the problems overcome in the 

course of this work. The chapter describes the history of the development of the 

ideas present in this thesis and finally, discusses how the work presented can be 

extended further. 

Traceability, as a research topic, had declined in popularity with the academic 

community by the 2000s and this is reflected in the number of papers published 

on the topic: the bulk of the papers being published in the late 1980s and 1990s 

(Citeseer - Year of Publication of Cited Papers). The zenith of traceability 

research coincided with the general availability of relational databases that 

allowed the recording and manipUlation of links between textual objects. This 

resulted in a number of Traceability tools, the most notable being DOORS 

[DOORS 2007] and RTM [RTM 2007]. Yet, reports from the DCSC [DCSC 

2007] customer companies suggested that there were still issues in recording 

Traceability information in an industrial context. These issues were concerned 

with encouraging engineers to record and maintain Traceability information. 
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10.2 Identifying the Problem 

Initially, it was thought that the engineers were not recording and maintaining 

their Traceability information due to the data entry burden imposed by the 

Traceability tools. This hypothesis appeared to be backed up by reviews of the use 

of Traceability tools in an industrial context [Ramesh 1998] [Gotel 1995;Gotel 

and Finkelstein 1994] (as discussed in the summary of Chapter 3). The solution 

seemed relativity straightforward: find a way of reducing the data entry burden 

that the Traceability tools placed on the engineers. One possible solution to 

reducing the data entry burden was to remove the need to transpose data from 

development tools to traceability tools. This resulted in initial investigations into 

tool integration data models such as AP233 [Herzog 2000] and MA Tra [Mason 

1999] and data transfer and sharing technologies such as XML (as discussed in 

Chapter 2). 

At the time the research reported in this thesis was beginning, XML and in 

particular XML-Xlink [Xlink 2007] was being promoted as a means of linking 

documents. Xlink was a new technology that allowed the creation of bidirectional 

links between documents. These links could also be given meaning with the 

addition of meta-data, therefore allowing the sorting and classification of links 

between documents. The development of XML opened up new opportunities and 

a number of researchers [Alves-Floss et al. 2002] [Collard et al. 2002] [Anderson 

et al. 2002] [Zisman et al. 2003] [Nentwich et al. 2002] proposed ways of 

employing these XML technologies to create traceability information frameworks. 

XML appeared to be a promising technology: if all the engineering documents 

were in a known XML format then XML links could be generated between them 

with little effort. This appeared to be a way of reducing the burden of data entry 

on the engineers. 

Though the XML-Xlink approach had merit, it only addressed part of the problem 

of encouraging engineers to record Traceability data. It became apparent when 
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talking to practicing engineers that the issues relating to the recording and 

maintenance of Traceability information were more complex and not just a 

technical data entry problem. More information was required on how engineers 

recorded and employed Traceability information and this resulted in a review of 

Traceability practices (Chapter 3). 

10.3 The Importance of Observation 

Before the Survey of Traceability Practices (Chapter 3) was conducted there were 

only two other comparable studies which were performed by Ramesh [Ramesh 

1998] and Gotel[Gotel 1995; Gotel and Finkelstein 1994]. The aim of the 

Traceability Practices survey was to discover how projects perform traceability 

and to determine the truth behind the issues raised by the DCSC customer 

companies. 

The survey was difficult to organise for a number of reasons. The first problem 

encountered was obtaining the permission of the companies to be surveyed. The 

initial list of companies included the DCSC customer companies MBDA, CSS & 

Programmes, Airbus and E&IS. One of the original aims of the survey was to 

compare and contrast the traceability practices of these aerospace companies with 

a civilian project, and so the Inland Revenue was approached for this purpose. 

The Inland Revenue undertakes a number of large development projects in the 

North East. The consulting companies that develop the projects on behalf of the 

Inland Revenue refused access to their projects. The common reason for refusal 

was that if the survey identified any weakness in the development process then 

this could affect the consulting company's chance of gaining any further work 

from the Inland Revenue. The local consulting management would not take this 

risk; they preferred to keep their "dirty washing in house". 

Consulting companies consider their development processes to be an integral part 

of their business and therefore are unwilling to allow their processes to be 
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scrutinised by academics. One approach in gaining the trust of a commercial 

company is to highlight the benefits of the "free" research to their productivity 

and to promise to remove all references to the company or their product from any 

published work. For a good example of such an anonymous paper see [Berry and 

So 2006] that describes problems in the requirements engineering process for a 

very large software company. Care has to be taken though not to remove too much 

information and thereby render the publications useless. However, the Inland 

Revenue consulting companies refused this approach. 

Ironically it is the military or technical companies, such as BAE SYSTEMS, 

TRW and Boeing, which publish the majority of papers on their working methods 

and appear to be more willing to demonstrate the strengths and weaknesses of 

their development process. These companies are also willing to discuss their 

practices with peers. This could be due to these organisations having well 

established publishing processes for editing and vetting. 

Once access had been granted to the projects new problems arose. Care had to be 

taken when interviewing engineers. For example, many engineers were reluctant 

to have the interviews recorded. Many felt uncomfortable in criticising existing 

tools and working practices. This reticence was successfully overcome by asking 

the engineers to describe how they would improve their Traceability rather than 

asking them to list the problems. 

As stated, the original data entry hypothesis appeared to be reasonable until the 

survey was conducted. The survey raised a number of factors that had an 

influence on Traceability practice, such as: 

• Traceability Tools 

• Development Practices 

• CostlBenefits 

• Organisation & Culture 

• Traceability Comprehension 
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The survey proved the importance of observing engineers performing their tasks 

at fIrst hand and not solely relying on the limited academic literature in the 

development of a hypothesis. The survey, as demonstrated by the papers 

published from this thesis, has contributed to the understanding of the recording 

of Traceability information in an industrial context. The fact that so few industrial 

case studies or surveys are published is an indication of the difficulty of 

performing this type of research. 

10.4 Traceability Benefit Problem 

The main theme that arose from the survey was the perception by engineers and 

their line management that Traceability did not provide any benefIt to the main 

development task. Many of the surveyed engineers considered the recording of 

Traceability information to be a hindrance to their main task. Some of the 

surveyed projects tackled this issue by having the recording of Traceability 

information performed by a separate team. This solution proved to be 

unsuccessful. By observing the engineers recording Traceability information, it 

became apparent that establishing a link was not always a simple process and 

often required domain knowledge. The only engineers which could reliably 

establish the correct Traceability links were the engineers who were directly 

involved in the development process. These observations resulted in the defInition 

of the Traceability BenefIt Problem (Chapter 4). 

The defInition of Traceability BenefIt Problem has contributed to understanding 

the recording of Traceability as it demonstrates that the problem is not technology 

based. The observations have demonstrated the complex nature of recording of 

Traceability and highlighted that only the engineers who are involved in the 

development process can reliably record the Traceability information, therefore 

explaining the difficulties experienced by separate Traceability teams and 

automated link generation tools. 
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10.5 Traceable Development Contract 

Having defined the problem the next stage was finding a possible solution. Again, 

the solution came from the survey. 

The automotive sensor project undertaken by BAE SYSTEMS E&IS (Electronics 

and Integrated Solutions) (Chapter 5) addressed the Traceability Benefit Problem 

by developing a Traceability system which was integral to their development 

process and provided direct benefits both to the engineers performing the data 

entry and to the business. In essence, the E&IS engineers employed their 

traceability system to manage their customers demands and to improve their 

productivity. 

The survey raised the problem of the coordination of changes to interface 

documentation. This was referred to by the engineers as ''throwing the problem 

over the wall". This occurred when an upstream team imposed changes to their 

interface document without considering the impact of the changes on the 

downstream team. Development models (Chapter 6) often do not describe how 

teams should cooperate; it is assumed (wrongly) that they will work 

harmoniously. The survey highlighted the fact that due to development pressures 

teams do not always cooperate. 

It became apparent that traceability information could be employed in the 

negotiation of change. The automotive case study provided an example of how 

traceability could be employed to negotiate change and improve productivity. 

However, the negotiation would require a set of rules or a protocol that both teams 

would abide by. This was the origins of the Traceable Development Contract 

(Chapter 7). This serendipitous combination of problems, the traceability benefit 

problem and the throwing the problem over the wall, had a common solution in 

the Traceable Development Contract. By keeping the contract generic, it made it 
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applicable to all development interfaces and a combination of contracts may work 

towards to the elusive goal of end- to-end traceability. 

Traceable Development Contract (TDC) data structures (Chapter 8) are a 

refinement of existing and proven traceability data structures. In this way, this 

work builds upon and extends existing Traceability work. The structures were 

kept simple and generic so enabling the TOC to be applied across all development 

boundaries. A criticism that can be made of previous traceability work is that it 

often lacks a development context: it is not clear when the structures should be 

populated, by whom and how the traceability data should be employed in the 

development process. The Traceable Development Contract protocol provides a 

context to these structures by stating who will populate the structures and how the 

data will be employed to benefit the local development process. The TDC 

protocol brings a purpose to these traceability data structures. 

The TDC illustration (Chapter 9), loosely based on existing products and 

development practices, provided an opportunity to more fully demonstrate the 

benefits that development teams may obtain in adopting the contract. It also raised 

issues and provided some answers with respect to the evaluation of the TDC in an 

industrial context. 

10.6 Further Work 

This thesis has raised issues that require further investigation. The frrst and most 

obvious area for further work is the implementation and evaluation of the TOC in 

an industrial context. This is discussed in the next section (Section 10.6.1). The 

next candidate for future work is the further exploitation of the Traceability 

information to obtain development metrics (Sections 10.6.2 and 10.6.3). For 

example, the rate of change of Traceability information may provide an indication 

of the maturity of the solution. The arity and distribution of Traceability links may 

also give an indication of the state of evolution of the solution. 
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10.6.1 The Implementation of the TDC 

The Implementation of the TDC will answer a number of questions, such as 

whether the TDC will provide the promised benefits. An implementation would 

also enable the practical testing and adjustment of the TDC protocol and the data 

structures. 

The TDC illustration (Chapter 9) provides an example of how an assessment of a 

TDC implementation could be conducted. That illustration compared the working 

practices of two teams with comparable expertise and resources that were 

producing similar software from a common set of requirements. A full scale 

assessment would require a control team pairing and a team pairing that employs 

the TDC. Each team pairing would be required to have similar profile, technical 

expertise, staffing, tools, problem complexity and development timescales. 

Development timescales and problem complexity are important factors in the 

assessment of the TDC. The problem is required to have a complexity that will 

require the teams to discuss and clarify the problem domain issues. The 

assessment will be required to be made over a number of development cycles to 

determine the benefits obtained from the TDC and traceability data. Therefore, a 

suitable problem would be an evolving product or the development of product 

families. An assessment will require a survey of the engineer's views on the TDC. 

These views may be subjective and therefore measurable metrics are required to 

determine the true affect of the TDC. The following are examples of metrics that 

can be measured to determine how the TDC affects the performance of the 

software teams that have entered into the contract. 

• Artefact Reuse. An outcome of the recording of the traceability data is that 

engineers will be able to determine which artefacts can be reused in the 

development of new products from existing products. Therefore, it would be 

expected that teams that employed the TDC would make greater use of 

existing artefacts compared with a control team that may only employ 
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traceability in the latter stage of product development. The artefact reuse 

would be determined for the IDC team and the control team after every 

development cycle. If the IDC is successful, the team pairing employing the 

contract will show a higher percentage of artefacts reused compared to the 

control team pairing. 

• Development Cycle Timescales. If the IDC is successful then the 

development times should be reduced compared to control team pairing. This 

is due to two factors, the greater reuse of artefacts and an increase in the 

efficiency the resolution of development problems. If the TDC is successful 

the teams employing the contract will have shorter development cycles 

compared to the control team. 

• Trace Precision. The claim that the TDC makes the recording of traceability 

information beneficial to the immediate development process can be assessed 

by considering the change in Trace Precision (refer to section 4.2, equation 2). 

It is expected as the engineers gained experience of the benefits of the TDC 

and Traceability data they will increase their efforts in the development and 

maintenance of their traceability database. This should result in an increase in 

Trace Precision for their traceability database. The Trace Precision of the 

traceability database belonging to the TDC team pairing should be higher 

compared to the control team's database. To determine any increase in Trace 

Precision would require a periodic audit of the traceability database. 

Such a project pairing may prove difficult to organise, as an industrial sponsor 

will require assurances that the assessment will not affect productivity. Therefore, 

a strong case for performing such an assessment will be required to convince an 

industrial sponsor to adopt the TDC. This case will have to argue that the 

implementation of the TDC will not have detrimental affect on their product and 

production timescales. 

Another approach, that was adopted by Boehm in the evaluation of his Win Win 

Spiral Model [Boehm et at. 1998], was to employ groups of students in the 
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development of a combined group project. Experiments based on student 

implementations are not without issues, such as the length and complexity of 

student projects, background experience of students and educational constraints. It 

can be argued that such student implementation can only give limited results. 

However, the student project approach should not be rejected as it can provide a 

useful environment to test prototype processes. The results of a student 

experiment can also be employed in the case presented to an industrial sponsor to 

implement the TDC in an industrial setting as previously described. 

10.6.2 Solution Maturity 

The standard IEEE 982 Standard Dictionary of Measures to Produce Reliable 

Software [IEEE 1988] states that this measure is used to quantify the readiness of 

a software product. Changes from a previous baseline to the current baseline are 

an indication of the current product stability. A baseline can be either an internal 

release or an external delivery. This definition can be applied to the products of 

each step of the development process, for example requirements, design, tests and 

code. Felici [Felici 2004] developed and demonstrated the idea of a simple 

maturity metric, which is based on the IEEE Software Maturity Index [IEEE 

1988]. His Requirements Maturity Index (RMI) metric is related to rate of change 

of requirements. The RMI is an indirect measure that relies on two primitives (or 

direct measures) RT and Re. RT is the total number of requirements in the current 

release. Re is the number of requirements changes, i.e. added, deleted or modified 

requirements. The equation below defines RMI (Equation 3) 

Equation 3 Requirements Maturity Index 
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A mature set of requirements will have a RMI = 1. To demonstrate the use of this 

maturity index it has been applied to data from the automotive sensor case study 

(Chapter 5) traceability system. The data is at a fmer level of granularity 

compared to F elici' s work, as he was working at the level of software releases 

rather than individual requirements. Looking at the RMI for this data, it is 

possible to observe the change in maturity of the requirements as the project 

progressed (Figure 10-1). 
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Figure 10-1 Requirements Maturity Index 

In Figure 10-1, there are two dips. The first occurs in Month 4 and the second, 

smaller dip occurs in Month 7. This can be compared with the requirements 

activity shown in Figure 10-2, and with the project history; in Month 3 the 

specification was issued and in Month 6 the requirements were reviewed. Both 

events resulted in reworking of the requirements and hence a temporary fall in the 

RMI. 
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Figure 10-2 Requirements Activity 

The TDC traceability structures provide these primitives for the solution artefacts. 

Therefore, the maturity of solution artefacts (Solution Maturity Index) can be 

determined by the equation below (Equation 4) 

Equation 4 Solution Maturity Index 

ST is the total number of solution artefacts in the current release. Sc is the number 

of changes made to the solution artefacts, i.e. added, deleted or modified 

requirements. Therefore, as demonstrated above, the traceability data will allow 

the project manager to determine the maturity of a set of solution artefacts. 

10.6.3 Artefact Traceability - Arity and Distribution 

The number and distribution of traceability links can indication of the state of the 

evolution of the solution[ Hull et al. 2004], as follows: 

154 



Solution Artefact Satisfaction Traceability 

With thc exception of the development of a prototype, the distribution of solution 

satisfaction traceability links gives a guide to the state of the evolution of the 

solution. Solution artefacts that satisfy above average number of problem artefacts 

should be consider as candidates for further decomposition. For example, solution 

artefact D in FigureI0-3. 

Satisfaction Traceability 

Decomposition Traceability 

Figure 10-3 Trying to Satisfy Too Many Problem Artefacts 

Problem Artefacts that are satisfied by a large number of solution artefacts, for 

example PI in Figure 10-4, should be given special consideration, as a change to 

such an artefact would have a large impact on the solution. 

This situation can occur for non-functional requirements. For example, a 

requirement that defines the limits of the system's memory would be satisfied by 

a number of design artefacts that are required to use memory. 
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A 

Satisfaction Traceability 

Decomposition Traceability 

Figure 10-4 Problem Artefact Satisfied by Many Solution Artefacts 

Solution Artefact Decomposition Traceability: 

Solution Artefacts which have a number of parents, for example G in Figure 10-5, 

require attention as changes to this class of artefact can have a major impact on 

the rest of system. Such artefacts may perfonn a large number of services and 

therefore have low logical cohesion. G may be required to be modified so that the 

functionality is split between two new artefacts, GA and GB (Figure 10-6), 

therefore limiting the impact of any changes to G and improving the cohesion. 
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Figure 10-5 Artefact G: Too Many Parent Artefacts 
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Figure 10-6 Splitting Artefact G 

10.7 Coda 

Conducting research on industrial development practices is difficult to organise 

and needs the generous support of the sponsoring companies, yet it is only by 

observing how we produce today's systems that we can improve the development 

methods of the future. The management of BAE SYSTEMS have the foresight to 

understand this. 

At the Requirements Traceability Panel Session held at the 14th IEEE 

International Requirements Engineering Conference (Minneapolis/St. Paul, USA, 

September 11-15, 2006) a delegate asked the following question of the panel 

"Our project is 170\\' required to perform traceability - which tools should we 

hI/.\' .. 

The reply from each of the panel members was the same: 

"Concentrate on how your project will use the traceability data - then consider 

what tools you require .. 
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It is hoped that this thesis will enable that delegate to determine how to use 

traceability data to benefit his project. 
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Appendix A Traceability Survey: Preliminary Questions 

Traceability Survey: Preliminary Questions 

Overview 

The following questions have been devised to gain the maximum benefit from the 

project visits and also to aid the SIG customers in selecting a suitable project. This 

preliminary questionnaire is in four sections. 

• The first group of questions, "The Product", are intended to give an 
overview of the product and its complexity. A large, complex project may 
have more traceability issues than a smaller self contained project. 

• The second group of questions, "Project Organisation ", are concerned 
with discovering how the people in the project are organised. The way 
people are organised in projects may have a bearing on traceability. For 
example there have been a number of well-documented examples where 
failures in traceability have been traced to the problems of distributed team 
working practices. 

• The third group of questions, "Communications", are concerned with how 
the project communicates within and externally. If a project has poor 
communications then this could lead to information loss and thus lead to 
poor traceability. 

• The final group of questions, "Tools and Protocols ", are concerned with 
looking at what tools and protocols projects teams are using to overcome 
the problems related to traceability. 
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The Questions: Help on how to answer them. 

Please bear in mind the following when you answer the survey questions:-

• The most difficult aspect to any survey is the writing of the questions. It is 
difficult to write short, concise questions which are not ambiguous. 
Therefore, under some questions there may be a hint or an alternative 
wording in italics. 

• Not every question is applicable to all projects; therefore there may be 
some questions that can't be answered. 

• Try, if possible, to give a full descriptive answer. Too much information at 
this stage is not a problem, for it will aid in the development of the 
interview questions. Don't spend too long on this questionnaire; the real 
questions are yet to come. 

• If possible, please use a word processor to complete the questionnaire, 
failing that, handwritten answers on a printed version will be acceptable. 

• Finally, if there are any problems, please contact me. 

When the questionnaire is completed, please email or mail it to: 

Paul.Arkley@ncl.ac.uk 

Paul Arkley 
Centre for Software Reliability 
Bedson Building 
Newcastle University 
Newcastle upon Tyne 

Telephone: 01912223589 
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Traceability Survey: Preliminary Questions 

The Product 

These questions are intended to give an overview of the product and its complexity. 

I] What is the product produced by the project? 

(A brief description of the product: what is it?) 

2] Is the product self-contained or is it a subcomponent? 

(Is the product a wing or the final aircraft?) 

3] Is the product for an internal or external customer? 

4] Does the product employ subcomponents from external suppliers? 

5] What is the current development phase of product? 

(Design, Development, Production or Maintenance?) 

6] What is a rough estimate of the cost of development of the product? 
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Traceability Survey: Preliminary Questions 

Project Organisation 

The following questions relate to discovering how the project staff are organised. 

I] Are project staff dedicated to one project or do staff report to a number of 

projects? 

2] How many people work on the project? 

(Rough estimate) 

3] How many work area teams is the project divided into? 

(Would be possible to include a project organisation chart?) 

4] Are all the teams on the same (physical) site? 

(Or the teams distributed) 

5] Are the project staff all employed by the same company? 

(BAE SYSTEMS, EDAS, Airbus) 
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Traceability Survey: Preliminary Questions 

Communications 

These questions are concerned with how the project communicates within and externally_ 

I] Does the project use email? 

2] Do teams produce progress reports? 

(Do teams write a weekly progress report?) 

3] Are progress reports visible throughout the project') 

4] How do staff members report problems that require documentation or code 

changes to their peers or immediate management? 

(Verbally, informally via email,formally in written report?) 

5] How are staff members told of changes to documentation or code? 

(Verbally, informally via email,forma/lI- in \\'l"ill(,11 report?) 

6] Do team members have visibility of outstanding changes, bugs or problems? 

(Call a /('0111 member query a tool or file systems to find out what problems exist?) 

7] How many official languages are spoken within the project? 

(English, French, I/alian etc) 
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Traceability Survey: Preliminary Questions 

Tools and Protocols 

These questions are concerned with looking at what tools and protocols, projects teams are using 

to overcome the problems related to traceability. 

1] Does the project employ any design or integrated development tools? 

(Tools such as Teamwork?) 

2] What is the main tool for documentation? 

(MSWord. WordPerfect?) 

3] How does the project version control its documentation and source code? 

(Does the project use a tool such a sees?) 

4] How does the project record changes to documentation and source code? 

(By adding comments to the original document or by recording comments ill a version control 

tool?) 

5] How does the project formally record outstanding bugs or problems') 

(Does the project record the problems in a database. development tool or in a paper based 

system?) 

Thank you for your input 
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Appendix B IDC Database Schema 

Artefact 

The Artefact structure can be implemented by relational tables 6 to 10. 

Artefact 
Artefact Description Location Application Development Change Authority Implementer 
UID# Status UID# (Stakeholder (Stakeholder 

{Not Agreed UID#) UID#) 
IAgreedl 

Deferred} 

Table 6 Artefact 

Stakeholder UID# 

Table 7 Stakeholder 

Table 8 Query 

Table 9 Query Reply 

Chanl,e 
Change Affected Description Type Proposed By Authority Implementer 
UID# Artefact {CopYIAddl (Stakeholder (Stakeholder (Stakeholder 

(Artefact RemovelAlter} UID#) UID#) UID#) 
UID#) 

Table 10 Change 

Artefact Satisfaction 

The Artefact Satisfaction structure can be implemented by relational tables 11 to 

12. 

Satisfaction UID# 

Table 11 Satisfaction 

Table 12 Satisfaction Argument 
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Artefact Decomposition 

The Artefact Decomposition structure can be implemented by relational tables 13 

to 15 

Parent Artefact UID # Domain Infonnation Text 

Table 13 Decomposition 

Table 14 Interface 

Attribute UID # Interface UID # 

Table 15 Attribute 

Artefact Validation 

The Artefact Validation structure can be implemented by relational tables 16 to 18 

Table 16 Validation Method 

Table 17 Test 

Table 18 Results 

166 



Appendix C Example Accipiter Queries 

Information Queries 

The following are examples of information queries, which would be performed by 

the BAC software team (down stream team) while assessing the suitability of the 

requirements (problem artefacts). 

Query 
What is requirement 10.5? 

Possible Implementation 
Select Requirement.Descriptionfrom Requirement where 
Requirement. UID= '10.5 '; 

Returned Data 

Query 

"The Mission Computer will read and validate each waypoint from the 
tape. Writing the contents of each waypoint to FlightPlan.dat data file 
(For the format of FlightPlan.dat refer to Appendix G: Data Formats" 

Who is the authority for Requirement 10.5? 

Possible Implementation 
Select * from Stakeholder where Stakeholder. U1D= (Select 
Requirement.Authority from ReqUirement where 
Requirement. UID= '10.5 '); 

Returned Data 

"Requirements Analyst 
James Walker 
James. Walker@BAC.com 
01904433384 
BAC Aerodrome, Cumbria." 
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Query 
Who is the implementer of Requirement 10.5? 

Possible Implementation 
Select * from Stakeholder where Stakeholder. UlD= (Select 
Requirement.implementer from Requirement where 
Requirement. UlD=' 10.5 '); 

Returned Data 
"Requirements Analyst 
Andrew Adams 
Andrew.Adams@BAC.com 
01904433385 
BAC Aerodrome, Cumbria." 

Dialog Queries 

The following are examples of dialog queries, which would be performed by the 

BAC software team (asking questions) and the requirements team (replying to the 

raised questions) 

Query 
Raise a query on requirement 10.5: (Insert a question in the Query Table) 

Possible Implementation 

Query 

Insert Into Query (Query_UID,_Artefact_UlD, 
Stakeholder_UlD,Query_Text) Values ('QUlD124', '10.6', 'Andrew 
Adams', "Where is the Waypoint syntax defined? "; 

Are there any outstanding queries on the requirements written by Andrew 
Armstrong? 

Possible Implementation 
Select Query _ UlD, Query_Text, "Raised by", Stakeholder _ UID from 
Query ll'hereQuery.Artefact_ UlD = (Select Artefact_ UlD from Artefact 
where Implemter _ UID= 'Andrew Armstrong ') 

Returned Data 
" Where is the Waypoint syntax defined? Raised by Andrew Adams" 
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Query 
Reply to query on requirement 10.5?: (Insert a reply in the Que,y Reply 
Table) 

Possible Implementation 

Query 

1nsert Into Query_Reply 
Stakeholder _ UID,Reply _ Text) Values 
QUID124', 'Andrew Armstrong', "The 
Appendix H "; 

What is the reply to QUID124? 
Possible Implementation 

(Reply _ UID, Query _ UID, 
('R UID 145 " 'Responding to 

Waypoint syntax is defined in 

Select Reply_Text, "reply by", Stakeholder _ UID from Query_Reply where 
Query_Reply. Query _ UID= '124 ') 

Returned Data 
"The Waypoint syntax is defined in Appendix H rep/l' hI' Alldrc\\ 

Armstrong" 

Status Queries. 

The following are examples of artefact status queries, which would be performed 

during Problem Discourse stage. 

Query 
What is the development status of requirement 96 7 

Possible Implementation 
Select Requiremen.Development_Statusfrom Requirement where 
Requirement.UID= '10.5 '; 

Returned Data 
Not Agreed 

Query 
Change the development status of requirement 10.5 to "Agreed". 

Possible Implementation 
Update Artefact Set Development_Status = 'Agreed' where 
Artefact.Artefact_UID= '10.5'; 
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Satisfaction Queries. 

The following are examples of artefact satisfaction queries. 

10.13 Description: On the successful insertion the Mission Computer will display - "PDC 

Inserted" 

Query 
Which design artefacts satisfy requirement 1 0.13? 

Possible Implementation 
Select Description, Location,UID,Applicationfrom Design where 
Design. UID = (Select Design _ UID from Design_Satisfaction where 
Design _ Satisfaction.Requirement _ UID ="10.13") 

Returned Data 
UID#:D1.4 
Description: Tape Package 
Location IIAcc/300lDesiMission _Pack _ UML. uxf 
Application: Umlet 
Status: Not Agreed 

The same process would be repeated to discover which code modules satisfied the 

design artefact D 1.4. 

Query 
Which code artefacts satisfy design artefact D1.4? 

Possible Implementation 
Select Description, Location, UID,Application from Code where Code. UID 
= (Select Code _ UID from Code_Satisfaction where 
Code Satisfaction.Design_UID ="D1.4") 

Returned Data 

ID#: C1.6 
Description: Tape Interface Package 
LocationIIAcc/300ICode/TapePackage.c 
Application: Text editor 
Status: Not Agreed 
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