
Benefits of Traceability in Software
Development

Thesis by Paul Arkley.
School of Computing Science,

Newcastle University.

In Partial Fulfilment of the Requirements
for the Degree of Doctor Philosophy.

2007

Newcastle
University

NEWCASTLE UNIVERSITY LIBRARY

206 53508 6

~n:;ffi1"':J k~ l 4-li-

For starters I'll have "Who?", "What?", "When?", "Where?" and the "Wither?",

"Whence?" and "Wherefore?" to follow, and one big side order of "Why?"

(Zpaphod Beeblebrox in the Hitch-Hikers Guide to the Galaxy, by Douglas

Adams, writer, 1952-2001)

11

Acknow ledgements

I would like to thank, first and foremost, my PhD supervisor Dr Steve Riddle for

his patience, guidance and his abundant supply of red ink. Secondly, I would like

to thank my family and colleagues, in particular John Fitzgerald, Cristina Gacek

and Jim Armstrong, for their help and encouragement in those dark days of

writing-up. Thirdly, I would like to thank Dr Tom Brookes (BAE SYSTEMS) for

his guidance in the practical aspects of Traceability. Finally, I would like to thank

Professor Tom Anderson and the BAE SYSTEMS customers of the Dependable

Computing Systems Centre for affording me the opportunity to undertake this

thesis.

iii

Publications
The following papers have been published from this work:

Presented at the 18t International Workshop on Traceability in Emerging Forms of
Software Engineering in conjunction with the 1 i" IEEE International Conference
on Automated Software Engineering September 28 th

, 2002 Edinburgh, U.K.

Abstract

Position Paper: Enabling Traceability
Paul Arkley, Paul Mason, Steve Riddle

School of Computing Science,
University of Newcastle upon Tyne

NEl7RU
United Kingdom

Research into traceability at the University of Newcastle upon Tyne has
concentrated on a framework supporting all aspects of the lifecycle, as a vehicle
for recording, analysing and tracing development and assessment artefacts. This
framework is focussed on the recording of design rationale, over and above the
standard inter-relationships between product artefacts, and has been developed in
an aerospace systems engineering context. Despite technological advances in
terms of databases, internet and processing power, many aspects of the
requirements traceability problem are still current. We look at the reasons for this
and suggest some research areas to address some of these aspects.

Presented at the 13 th IEEE International Requirements Engineering Conference,
La Sorbonne, France, August 29-September 2,2005.

Abstract

Overcoming the Traceability Benefit Problem
Paul Arkley, Steve Riddle

School of Computing Science,
University of Newcastle upon Tyne,

NE17RU, UK

To modify complex computer-based systems requires a detailed understanding of
their functionality. Requirements Traceability can help the engineer to gain that
understanding, but several surveys have observed that traceability information is
poorly recorded. We argue that the cause is the lack of direct perceived benefit to
the main development process. As a consequence traceability information will be

iv

incomplete, inaccurate and out-of-date. We propose a method of recording
traceability information, a Traceable Development Contract (TDC), as a means of
reducing this problem by tackling the issue of an upstream functional
development team imposing changes on a downstream development team. The
contract makes the recording of traceability information beneficial to both
development teams.

Presented at the 14th IEEE International Requirements Engineering Conference,
Minneapolis/St. Paul, USA, September 11-15, 2006 and at the BAE SYSTEMS
SPIRE Conference, Hinckley, Leicestershire, UK, October 23-26,2006.

Abstract

Tailoring Traceability Information to Business Needs
Paul Arkley, Steve Riddle

School of Computing Science,
University of Newcastle upon Tyne,

NEI7RU, UK

Tom Brookes
BAE SYSTEMS, Electronics and Integrated Solutions, Plymouth, UK

Several surveys over the past 20 years have observed that traceability information
is often poorly recorded. In previous work, we have argued that this is a result of
many requirements traceability systems failing to provide any direct benefit to the
development process. In this paper, we describe an application of traceability by a
company, with a resulting increase in profitability as well as other benefits for the
development engineer, project management and customer.

v

Abstract

For an engineer to be able to modify successfully a complex computer-based

system, he will need to understand the system's functionality. Traceability can

help the engineer to gain that understanding, but several surveys have observed

that traceability information is poorly recorded. This thesis argues, based on a

survey of nine aerospace projects, that one of the main causes of poor recording is

that Traceability does not directly benefit the development process. The recording

of traceability information is best performed by the engineers directly involved in

the development process, yet it is precisely these engineers who seem to obtain no

direct benefit in performing this task. This can be summarised as the Traceability

Benefit Problem. To overcome this problem the recording of traceability data

must provide immediate, tangible benefits to the engineers involved in the current

development process.

A related problem that occurs in large multi-team projects that follow

development processes based on predictive models (such as Waterfall or V­

Model) is the changing of interface documentation without adequate negotiation

(referred to as Throwing the Problem over the Wall). This thesis describes, in

detail, how a small automotive sensor project addressed these problems by

developing a Requirements Traceability system that enabled the reuse of software

and provided a basis for the negotiation of changes with their customer. Analysis

of the lessons learnt from the automotive sensor and aerospace projects lead to the

definition of the Traceable Development Contract.

The contribution of this thesis is the description and discussion of the Traceable

Development Contract, a method of coordinating the interaction of related

development teams in development process that is based on a predictive

development model. The Traceable Development Contract is proposed as a means

of controlling the upstream team bias with respect to the imposition of changes,

by employing traceability to provide a basis for the negotiation of change. By

VI

employing traceability in this way, it becomes beneficial to the development

engineers and therefore overcomes the Traceability Benefit Problem.

Finally, the thesis considers how the Traceable Development Contract traceability

information can be exploited further to provide solution maturity and design

metrics.

VB

Table of Contents
Acknowledgements .. iii

Publications .. iv

Abstract .. vi

Table of Contents ... viii

Table of Figures ... xiv

Chapter 1 Introduction ... 1

1.1 Introduction.. ... 1

1.2 Thesis Hypothesis ... 2

1.3 Thesis Contribution ... 3

1.4 Background to Proposed Solution ... 3

1.5 Proposed Solution ... 5

1.6 Thesis Structure ... 5

Chapter 2 Traceability ... 9

2.1 Introduction ... 9

2.2 Origins of Traceability .. 9

2.3 Literature Definitions .. 12

2.4 The Need for Traceability ... 16

2.4.1 Customer ... 16

2.4.2 Project Manager .. 16

2.4.3 Requirements Analyst ... 16

2.4.4 Designer .. 17

2.4.5 Maintainer ... 17

viii

2.5 Traceability Link Semantics ... 17

2.5.1 Traceability Models .. 18

2.6 Traceability Representation Techniques ... 21

2.6.1 Matrices ... 22

2.6.2 Entity Relationship (EIR) Model .. 22

2.6.3 Cross-referencing .. 22

2.7 Traceability Tools ... 23

2.7.1 Generic Tools .. 23

2.7.2 Software Engineering Tools .. 24

2.7.3 Requirements Traceability Tools .. 25

2.8 Summary ... 26

Chapter 3 A Survey of Traceability Practices ... 27

3.1 Introduction ... 27

3.2 Traceability Practice Survey Objectives ... 27

3.3 Survey Design ... 28

3.4 Conducting the Survey .. 29

3.5 Survey Results ... 31

3.5.1 Traceability Tools ... 32

3.5.2 Development Practices .. 33

3.5.3 Development Communications ... 34

3.5.4 Perceived Costs and Benefits .. 35

3.5.5 Organisation & Culture ... 36

3.5.6 Traceability Comprehension ... 36

3.6 Reflections on Traceability Practice ... 37

3.7 Previous Traceability Practice Surveys ... 38

lX

3.8 Comparison of Surveys ... 41

Chapter 4 The Traceability Benefit Problem ... 43

4.1 Introduction ... 43

4.2 The Burden of Data Entry ... 43

4.3 Establishing a Relationship ... 47

4.4 Traceability Benefit Problem .. 48

Chapter 5 Automotive Sensor Case Study ... 51

5.1 Introduction ... 51

5.2 Automotive Sensor Case Study ... 51

5.3 Development Process .. 53

5.3.1 Prepare Inputs for a ProposaL .. 54

5.3.2 Manage, Analyse, Develop System Requirements 54

5.3.3 Design ... 55

5.3.4 Prepare Test and Qualification Procedures 56

5.4 An Illustration of the Traceability System .. 56

5.4.1 Managing Requirements and the Customer 57

5.4.2 Quantitative Management ... 59

5.4.3 Component Reuse ... 60

5.4.4 Further Examples of Reuse ... 62

5.5 Why is this System Successful? .. 63

5.5.1 The Development Engineer's View Point... 63

5.5.2 The Manager's View Point ... 63

5.5.3 The Customer's View Point.. .. 64

5.6 Summary ... 64

Chapter 6 Negotiating Change ... 65

x

6.1 Introduction ... 65

6.2 Sequential and Iterative Development Models 66

6.2.1 Sequential .. 66

6.2.2 Iterative ... 69

6.3 Agile Software Development. ... 70

6.4 BAE SYSTEMS Common Engineering Process Model (CEP) 73

6.5 Observations and Summary .. 76

Chapter 7 Traceable Development Contract... ... 79

7.1 Introduction ... 79

7.2 Origins of the Traceable Development Contract (TDC) 80

7.3 An Overview of the Traceable Development Contract.. 81

7.4 Contract Initiation ... 83

7.5 Problem Discourse .. 84

7.6 Proposed Solution ... 86

7.7 Development & Refinement ... 88

7.8 Completion .. 89

7.9 Addressing Criticisms ... 90

7.10 Summary ... 90

Chapter 8 TDC Traceability Data Structures ... 93

8.1 Introduction ... 93

8.2 Influences of Existing Traceability Structures 94

8.2.1 Problem-Solution Satisfaction Traceability 94

8.2.2 Contribution Structures ... 98

8.2.3 Design Rationale Capture System (DRCS) Language 100

8.3 Influences of Traceability Practice Survey ... 102

xi

8.4 TDC Traceability Data Structures Design .. 103

8.4.1 Design Decisions ... 104

8.5 Artefact. ... 105

8.6 Artefact Satisfaction .. 107

8.7 Artefact Decomposition .. 109

8.8 Artefact Validation .. III

8.9 TDC Data Structure Summary .. 113

8.10 Summary ... 113

Chapter 9 An Illustration of the TDC .. liS

9.1 Introduction... liS

9.2 Background: Accipiter 300 ... 116

9.2.1 Mission Planning System .. 116

9.2.2 Development Organisation ... 117

9.2.3 Scope of Illustration .. 117

9.2.4 Use of Traceability .. 11 8

9.2.5 The Introduction of the TDC .. 118

9.3 Initiation .. 119

9.3.1 Example Mission Computer Problem Artefacts 119

9.3.2 Comparing and Contrasting with FET Systems' Approach 122

9.4 Problem Discourse .. 122

9.4.1 Comparing and Contrasting with FET Systems' Approach 126

9.5 Proposed Solution ... 127

9.5.1 Comparing and Contrasting with FET Systems' Approach 134

9.6 Development & Refmement ... 134

9.6.1 Comparing and Contrasting with FET Systems' Approach 138

xii

9.7 Completion .. 138

9.7.1 Comparing and Contrasting with FET Systems' Approach 139

9.8 Summary ... 140

Chapter 10 Lessons Learnt and Future Work .. 143

10.1 Introduction ... 143

10.2 Identifying the Problem ... 144

10.3 The Importance of Observation .. 145

10.4 Traceability Benefit Problem .. 147

10.5 Traceable Development Contract... ... 148

10.6 Further Work ... 149

10.6.1 The Implementation of the TDC ... 150

10.6.2 Solution Maturity .. 152

10.6.3 Artefact Traceability - Arity and Distribution 154

10.7 Coda .. 157

Appendix A Traceability Survey: Preliminary Questions 159

Appendix B TDC Database Schema ... 165

Appendix C Example Accipiter Queries ... 167

Information Queries .. 167

Dialog Queries .. 168

Status Queries .. ·· .. · · .. 169

Satisfaction Queries .. 170

Bibliography .. 171

xiii

Table of Figures
Figure 2-1 Vertical and Horizontal Traceability [Mason 1999] 14

Figure 2-2 Vertical, Horizontal and Revision Traceability [Mason 1999] 14

Figure 2-3 DoD Requirements Management ModeL .. 20

Figure 2-4 DOORS Folder Window 25

Figure 5-1 A typical ESP sensor package 52

Figure 5-2 Understeer and Oversteer .. 53

Figure 5-3 Traceability Data Model (BAE SYSTEMS E&IS) 55

Figure 5-4 Project Milestones ... 57

Figure 5-5 Classification of Project Requirements ... 58

Figure 5-6 Requirements Changes .. 58

Figure 5-7 Test Procedures 61

Figure 5-8 Test Cases 62

Figure 6-1 V Model -Software Development Model [IABG 2007]. 67

Figure 6-2 Manifesto for Agile Software Development.. 71

Figure 6-3 Development Method Continuum 72

Figure 6-4 CEP Development Processes ... 74

Figure 7-1 TDC applied to each development interface '" 82

Figure 7-2 Overview ofTDC Stages: UML State Diagram 83

Figure 7-3 Problem Discourse: UML Activity Diagram 85

Figure 7-4 Problem Solution Traceability ... 87

Figure 8-1 Simple Solution Satisfaction Traceability ... 94

Figure 8-2 A Simplified UML Class Diagram of a Satisfaction Relationship 96

Figure 8-3 Refinement of Solution and Satisfaction Arguments 96

Figure 8-4 A Simple Problem Frame diagram 98

xiv

Figure 8-5 Contribution Structure Relationships: Artefact Evolution 99

Figure 8-6 Artefact Synthesis ... 100

Figure 8-7 Plan Synthesis ... 101

Figure 8-8 Evaluation Structures Group ... 102

Figure 8-9 Problem & Solution Generalisation of a Common Artefact (UML
Class Diagram) .. 105

Figure 8-10 Artefact Structure (UML Class Diagram) 106

Figure 8-11 Artefact Satisfaction (UML Class Diagram) 108

Figure 8-12 Artefact Satisfaction: Problem and Solution Views (UML Class
Diagram) ... 109

Figure 8-13 Artefact Decomposition (UML Class Diagram) 110

Figure 8-14 Artefact Validation (UML Class Diagram) 112

Figure 9-1 Positional Sensors ... 116

Figure 9-2 UML Use Case Diagram: Down Load Flight Plan - Insert PDC 121

Figure 9-3 Mission Computer Development Plan .. 121

Figure 9-4 Organization Chart .. 122

Figure 9-5 Logical Decomposition of the Accipiter Requirements 123

Figure 9-6 Artefact Structure for Requirement 10.13 ... 124

Figure 9-7 Prototype Package Decomposition .. 127

Figure 9-8 Prototype Deployment Diagram .. 128

Figure 9-9 Artefact Decomposition - Package Diagram 129

Figure 9-10 Artefact Satisfaction: Requirements and Tape Package 130

Figure 9-11 Artefact Validation: Tape Package .. 131

Figure 9-12 Comparison of Mission Computer Requirements 132

Figure 9-13 New Use Case Diagram .. 136

Figure 9-14 Example Compliance Matrix ... 140

Figure 10-1 Requirements Maturity Index .. 153

xv

Figure 10-2 Requirements Activity ... 154

Figure 10-3 Trying to Satisfy Too Many Problem Artefacts 155

Figure 10-4 Problem Artefact Satisfied by Many Solution Artefacts 156

Figure 10-5 Artefact G: Too Many Parent Artefacts .. 156

Figure 10-6 Splitting Artefact G 157

xvi

Chapter 1 Introduction

1.1

1.2

1.3

1.4

Introduction .. .

Thesis Hypothesis

Thesis Contribution

Background to Proposed Solution

. 1

................................ 2

................................. 3

... 3

1.5 Proposed Solution ... 5

1.6 Thesis Structure ... 5

1.1 Introduction

For an engineer to be able to modify successfully a complex computer-based

system, he will need to understand the system's functionality. One way to gain

this understanding is to review the development artefacts looking for common

threads of reasoning. Traceability' defined as, "a property of a system description

technique that allows changes in one of the three system descriptions -

requirements, specifications, implementation to be traced to the corresponding

portions of the other descriptions" [Greenspan and McGowan 1978] can help the

engineer to determine these threads.

Development standards such as ISO 9003 [ISO 2007] and TickIT [TickIT 2000]

require that a project shall be able to demonstrate Requirements Traceability.

I The tenl1 "Traceability" is often prefixed with "Requirements" to demonstrate the source of the

trace relationships. The general teml "Traceability" refers to the recording of all trace

re lationships.

These standards are unclear on precisely what information is required to be

recorded and to what use it should be put. Researchers have addressed this

problem by determining what development artefact properties and relationships

are required to be recorded to improve the efficiency of the development process

and the quality of the product. This research has mainly concentrated on the

evolution of requirements and as a result there are a number of requirements

management tools [INCOSE 2007] such as DOORS [DOORS 2003], which allow

the recording of traceability relationships between requirements. At present,

traceability is mainly applied to the requirements development phase and

traceability beyond that phase is seldom achieved in an industrial environment, as

demonstrated by the Traceability Practices Survey (Chapter 3).

1.2 Thesis Hypothesis

Given that Traceability is a desired or mandatory technique and there are proven

information structures and tools that support these structures, it seems odd that the

take-up and execution within industry is poor [Ramesh et al. 1993] [Gotel and

Finkelstein 1994] [Arkley 2002].

We argue that the lack of direct benefits to the main development process from

Traceability, which we define as the Traceability Benefit Problem, is a major

cause of the above situation. We state that the recording of traceability

information is best performed by the engineers who are directly involved in the

development process and it is these engineers who seem to obtain no benefit in

performing this task. This lack of benefits causes the development engineers and

their management to assign a very low priority to the recording of traceability

information, often resulting in data that is incomplete, inaccurate and out of date.

2

1.3 Thesis Contribution

The contribution of this thesis is the proposal of a Traceable Development

Contract, which consists of a process and information model for coordinating the

interaction of related development teams in development process that is based on

a predictive development model. The Traceable Development Contract is a means

of controlling the upstream team bias with respect to the imposition of changes,

by employing traceability to provide a basis for the negotiation of change. By

employing traceability in this way, it becomes beneficial to the development

engineers and therefore overcomes the Traceability Benefit Problem.

1.4 Background to Proposed Solution

A traditional view of the poor uptake and execution of Traceability is that it is a

technical problem, which can be improved by the greater integration of

development tools or by the use of search engines [Herzog 2000] [Antoniol et al.

2002] [Marcus and Maletic 2003] [Huffman et al. 2006]

This thesis questions the technical based solution by considering the factors

involved in determining a trace between two artefacts belonging to different

development phases. An argument is made that only the engineers directly

involved in the development transformation, such as developing a design from the

requirements, can consistently record the correct relationships between

development artefacts. This argument is employed to validate the poor results

presently obtained by offline traceability recording teams (described in Chapter 3)

and search engines (described in Chapter 4).

From the results of a Traceability Practice Survey (Chapter 3), an argument is

developed that states engineers will only record this information consistently if it

is beneficial to their immediate development task: we refer to this as the

Traceability Benefit Problem.

3

One of the projects in the Traceability Practice Survey, the Automotive Sensor

project (Chapter 5), demonstrated how the Traceability Benefit Problem could be

overcome by the development of a traceability system that was beneficial to their

development process. The resulting traceability system enabled the reuse of

software and provided a basis for the negotiation of customer changes. The

automotive sensor project was unique among the surveyed projects as it was

developed by a small multidisciplinary team: the rest of the surveyed projects

were large multi-team projects that followed development processes based on

predictive development models.

The Traceability Practice survey (Chapter 3) highlighted a related issue that

occurs in large multi-team projects, where an upstream development team

imposes changes on a downstream team without any negotiation. This has been

observed by other researchers [AI-Rawas and Easterbrook 1996] [Curtis et al.

1988] [Christie et al.1996] and is often referred to as "Throwing the problem over

the wall". Development processes based on predictive development models have

the problem of establishing a suitable development phase baseline to allow

development to advance. Changes to baselines will always occur during

development.

Development models say little with respect to how teams involved in different

development phases should interact and negotiate change. Boehm tackled this

issue in his Theory-W of software management [Boehm and Ross 1989]. In this

theory, he states that negotiations require structure and objective information

about the proposed change. The determination of the impact of a change to a

development baseline is such an item of objective information. To determine the

impact of a change requires the recording of traceability relationships between the

baseline and the next development phase. This is how the Automotive Sensor

team beneficially employed traceability to negotiate change with their customer.

A similar use of traceability in the context of a structured interaction would make

4

the recording of traceability infonnation beneficial to both development phases

and therefore it would overcome the Traceability Benefit Problem for multi-team

development processes.

1.5 Proposed Solution

The Traceable Development Contract (TDC) is proposed as means of providing

structure and objective information to change negotiations. The IDC formalises

the interaction of two development teams by defming their behaviour with respect

to the state of their common development artefacts. Traceability is employed as a

means of assessing the impact of a change to the common development artefacts

and providing a basis for the negotiation of the change. The TDC affords the

engineers in the downstream development phase an element of control over their

development environment by controlling the imposition of changes by the

upstream development team. By keeping the definition of the TDC generic, for

example the interaction between an upstream problem defining phase (e.g.

software requirement definition) and a downstream development phase (e.g.

software design), the contract can be applied across a number of development

interfaces and therefore achieving traceability beyond the requirements

development phase. The TDC consists of three parts:

• Problem artefacts (documentation, diagrams, models etc) that describe the

problem domain.

• Traceabilitv data structures that record how the problem information artefacts

are related to a proposed solution. For example, traceability structures that

record the relationship between a software design and a requirement set.

• A protocol that defines the behaviour of each development phase with respect

to changes to the problem information artefacts or solution.

1.6 Thesis Structure

The thesis is divided into ten chapters.

5

Chapter 1 Introduction: This chapter lays the foundations for the thesis by

describing the technical problem, thesis hypothesis, thesis contribution, proposed

solution and finally the structure of the thesis.

Chapter 2 Traceability: This chapter describes the origins, development of

Traceability definitions and current implementation techniques. The aim of this

chapter is to provide a foundation for the following chapters by clarifying terms

and definitions.

Chapter 3 Traceability Practice Survey: This chapter describes motivation and

the method of a survey of traceability practices performed by a number of BAE

SYSTEMS projects. The results of the survey are compared and contrasted with

two widely cited studies on Requirements Traceability practice performed by

Gotel [Gotel 1995] and Ramesh [Ramesh and Jarke 1999b; Ramesh et al. 1995].

Chapter 4 Traceability Benefit Problem: This chapter builds upon Chapter 3 by

analysing the results of the Traceability Practice Survey in detail. From this

analysis, an argument is developed that states that one of the major causes of the

observed Requirements Traceability practice issues is the lack of benefit that it

provides to the current development process. We define this as the Requirements

Traceability Benefit Problem.

Chapter 5 Automotive Sensor Case Study: This chapter describes in detail how

Electronics and Integrated Solutions (E&IS), one of the BAE SYSTEMS

surveyed projects, developed a Traceability system which addresses Traceability

Benefit Problem. The chapter describes and illustrates with project data the

development process and traceability system. Finally, the chapter describes the

benefits the traceability system provides to the development engineer, the project

management and their customer.

Chapter 6 Negotiating Change: Chapter 5 described how the automotive sensor

project employed a traceability system to help them negotiate changes to their

6

baseline requirements. The Traceability Practice Swvey (Chapter 3) highlighted

the problem of establishing and maintaining development phase baselines. During

the swvey, a number of engineers raised issues relating to the fact that the re­

issuing of interface documentation without any consultation or negotiation

(referred to as Throwing Problem over the Wall). This chapter examines the issue

of change negotiation by considering what software development models have to

say on the subject. Finally, the BAE SYSTEMS Common Engineering Process

Model (CEP) is reviewed as many BAE SYSTEMS development processes are

based on this or a similar development model. The CEP is reviewed with respect

to change negotiation and the results are related to the observations made during

the Traceability Practice Swvey.

Chapter 7 Traceable Development Contract: Chapter 6 highlighted the

weaknesses in predictive development models with respect to establishing

development phase baselines and the inherent bias these models have towards

upstream development phases making changes to the baseline. Chapter 5

described how the automotive sensor project employed a traceability system to

help them negotiate customer changes to their baseline requirements. This chapter

combines these themes and introduces the Traceable Development Contract

(TDC). The TDC is proposed as a means of controlling the upstream team bias

with respect to the imposition of changes, by employing traceability to provide a

basis for the negotiation of change. By employing traceability in this way, it

becomes beneficial to the development engineers and therefore overcomes the

Traceability Benefit Problem.

Chapter 8 TDC Traceability Data Structures: This chapter examines the data

structures required to achieve the aims of the TDC. This chapter describes how

design of the structures has been influenced by previous traceability structures and

the Traceability Practice Swvey. The chapter concludes by examining how the

TDC traceability data structures can be exploited further to provide solution

maturity and design metrics.

7

Chapter 9 An Illustration of the TDC: Chapter 7 outlined the IDC protocol and

Chapter 8 described the data structures required to support the contract. This

chapter builds upon this work by describing how a contract may work in practice.

To illustrate the IDC, and the complexity of the aerospace industry, this chapter

will consider the development of the Mission Planning System software for a

hypothetical Jet trainer. The illustration is not a proof or a validation of the IDC,

it is presented here as a means of exemplifying the ideas presented the previous

chapters.

Chapter 10 Lessons Learnt and Future Work: This chapter summarises the

problems and achievements of this work. The chapter describes the history of the

development of the ideas in this thesis and finally, discusses how the work

presented can be extended further.

8

Chapter 2 Traceability

2.1 Introduction ... 9

2.2 Origins of Traceability 9

2.3 Literature Definitions .. 12

2.4 The Need for Traceability ... 16

2.5 Traceability Link Semantics ... 17

2.6 Traceability Representation Techniques ... 21

2.7 Traceability Tools ... 23

2.8 Summary ... 26

2.1 Introduction

This chapter investigates the origins of Traceability and the evolution of the

literature definitions. The chapter examines the need for Traceability in the

development process and summarises the data models and tools that have been

developed to achieve Traceability.

2.2 Origins of Traceability

The term Requirements Traceability appears to have been coined in the 1950s by

the US military during the development of electro-mechanical systems [Alford

1994]. During this period, Traceability broadly referred to the ability to

demonstrate that a system satisfied a set of requirements. As software engineering

developed from its electro-mechanical parentage, Requirements Traceability was

adopted and applied to the development of software. By the mid 1970s it became

apparent that software development required new techniques: this is commonly

referred to as the Software Crisis [Dijkstra 1972]. At this time Alford [Alford

9

1977] identified a need to improve traceability between system modelling and

system requirements and between requirements and the originating specification

documents. The 1970s also saw the introduction of the first requirements tracing

tools [Pierce 1978].

In the 1980s Boehm illustrated his Spiral model [Boehm 1986] by describing the

development of a Software Productivity System (SPS) which included a

Requirements Traceability Tool (RTT). The 1990s saw an upsurge in interest in

requirements traceability. This upsurge appeared to have two causes. The first

cause was the availability of commercial relational database systems for common

PC platforms, which lead to the development of commercial requirements

managements systems such as DOORS (Dynamic Object-Orientated

Requirements System2)[DOORS 2007] and RTM (Requirements and Traceability

Management system3)[RTM 2007]. This instilled interest in both the academic

and industrial communities on how these new tools could be best exploited.

The second cause appears to have been a related upsurge in interest in

Requirements Engineering [Gotel 1995]. There are many definitions of

Requirements Engineering though one of the most commonly cited is Definition

2-1. Though, the application of analysis methods to requirements dates back to the

1970s [IEEE 1977], Requirements Engineering became established in the early

1990s (the first International Symposium on Requirements Engineering was held

in 1993) when new requirements analysis methods were being developed.

2 DOORS was originally developed by Quality Systems and Software (QSS) in the early 1990s

and is currently being developed by Telelogic

3 RTM was originally developed by Marconi Systems Technology in the early 1990s and is

currently being developed by Serena.

10

Definition 2-1

Requirements Engineering

"Requirements engineering is the branch of software engineering concerned with

the real-world goals for functions of and constraints on software systems. It is also

concerned with the relationship of these factors to precise specifications of

software behaviour, and to their evolution over time and across software

families." [Zave 1997]

The 1990s saw significant advances in Requirements Engineering research such

as the development of techniques for eliciting and analysing stakeholders' goals,

modelling scenarios that characterise different contexts of use, the use of

ethnographic techniques for studying organisations and work settings, and the use

of formal methods for analysing safety and security requirements.

As Requirements Traceability is an aspect of Requirements Engineering it also

saw an increase in research effort. This research effort was initially directed at the

problem of requirement elicitation. This had been an ongoing problem in systems

development, as demonstrated by an early empirical study by Bell and Thayer

[Bell and Thayer 1976]. They observed that inadequate, inconsistent, incomplete

or ambiguous requirements are common and have an impact on the quality of the

resulting software. They stated that "The requirements for a system, in enough

detail for its development, do not arise natural/yo Instead, they need to be

engineered and have continuing review and revision" [Bell and Thayer 1976].

Boehm highlighted the cost of not getting the system requirements correct, stating

that the cost of correcting requirement related error increased rapidly as

development proceeded [Boehm 1981]. Requirements Traceability researchers

during this period tackled issues related to the recording and analysis of

requirement development rationale [Nuseibeh et al. 1994] [Riddle and Saeed

1998] [Riddle and Saeed 1999a] and the recording of contributions by

development actors [GoteI1995].

11

The new millennium saw the introduction of a wide range of Extensible Mark-up

Language (XML) [XML 2007] tools and this caused a change in the direction of

Requirements Traceability research. Researchers started explored how these tools

could be employed to record traceability relationships between diverse sources.

Two features of XML appeared to have created the most interest, the ability to

record metadata about an artefact in a known format, and use of the bidirectional

Xlinks [Xlink 2007]. A number of researchers [Alves-Floss et al. 2002][Anderson

et al 2002][Collard et al.2002][Zisman et al 2003] have proposed ways of

employing these XML technologies to create traceability information frameworks.

2.3 Literature Definitions

There have been a number of Traceability definitions. One of the earliest

definitions (Defmition 2-2) came from Greenspan & McGowan [Greenspan and

McGowan 1978].

Definition 2-2

Traceability is a property of a system description technique that allows changes in

one of the three system descriptions - requirements, specifications,

implementation- to be traced to the corresponding portions of the other

descriptions" [Greenspan and McGowan 1978]

This broad definition of traceability persisted until Davis introduced the idea of

direction to traceability relationships (Definition 2-3).

Definition 2-3

"Traceability can be defined as the ability to describe and follow the life of an

artefact, in both a forward and backward direction, i.e. from its origin to

development and vice versa" [Davis 1990]

12

The introduction of a notion of direction to traceability relationships influenced a

number of researchers. One of the most notable contributions was from Gotel who

employed this idea to tackle the problem of pre-requirements elicitation. Gotel

expanded upon Davis's earlier definition to establish a defmition for Pre and Post

Requirements Traceability (Definition 2-4).

Definition 2-4

"Pre-requirements traceability (pre-RT) refers to the ability to describe and follow

those aspects of a requirement's life prior to its inclusion in the requirements

specification in both a forwards and backwards direction (i.e., requirements

production and refinement).

Post-requirements traceability (post-RT) refers to the ability to describe and

follow those aspects of a requirement's life that result from its inclusion in the

requirements specification in both a forwards and backwards direction (i.e.,

requirements deployment and use)". [GoteI1995]

A number of researchers [Bersoff and Davis 1991] [Gote1 1995] [Mason 1999]

extended the notion of direction to establish a distinction between artefact version

(or horizontal) traceability and inter-development phase artefact (or vertical

traceability) as shown in Figure 2.1. Horizontal traceability occurs between

iterations of the same artefact, this is commonly known as version control.

Vertical traceability occurs between artefacts in different development phases, for

example relationships between a requirement specification and a design artefact.

Mason [Mason 1999] took this two dimensional view and argued the presence of

a third dimension (Figure 2-2) which captures the traceability relationships for a

given revision or release of a system.

13

&'
:.0
co
1l

]~
.€ -
" Cl > E

0-
o
-.;
>
" o

tQ
,

D.~~-

0
, +------4 -~

Hori zontal
Version Traceability

,

c)
,

·6

Key:
Shapes represent artefacts belonging to a
development phase.
Shading represents the evolution of an
artefact

Figure 2-1 Vertical and Horizontal Traceability IMason 19991

Revision Traceabli ity

Horizontal
Version Traceabili ty

Figure 2-2 Vertical, Horizontal and Revision Traceability IMason 19991

The previous definitions are from the academic communi ty. The fo llowing text

which i taken fro m IEEE Recommended Practi ce for Software Requirements

14

Specifications [IEEE 1998] is presented here as an example of a working

description of Requirements Traceability.

"4.3.1 Correct

A Software Requirements Specification (SRS) is correct if, and only if, every

requirement stated therein is one that the software shall meet. There is no tool or

procedure that ensures correctness. The SRS should be compared with any

applicable superior specification, such as a system requirements specification,

with other project documentation, and with other applicable standards, to ensure

that it agrees. Alternatively the customer or user can determine if the SRS

correctly reflects the actual needs. Traceability makes this procedure easier and

less prone to error (see 4.3.8} ...

4.3.8 Traceable

An SRS is traceable if the origin of each of its requirements is clear and if it
facilitates the referencing of each requirement in future development or

enhancement documentation. The following two types of traceability are

recommended:

a) Backward traceability (i.e., to previous stages of development). This depends

upon each requirement explicitly referencing its source in earlier documents.

b} Forward traceability (i.e., to all documents spawned by the SRS). This depends

upon each requirement in the SRS having a unique name or reference number.

The forward traceability of the SRS is especially important when the software

product enters the operation and maintenance phase. As code and design

documents are modified, it is essential to be able to ascertain the complete set

of requirements that may be affected by those modifications. " [IEEE 1998]

This definition tries to answer a criticism, which has been aimed at the previous

defmitions, that they all fail to state why requirements traceability should be

15

perfonned. This highlights a problem faced by many development managers who

are required to implement Requirements Traceability due to a need to be

compliant to a development standard. Many Requirements Traceability definitions

and development standards are unclear why it should be perfonned and what

benefits will be obtained by perfonning traceability. Without this infonnation, it is

difficult for these managers to detennine the correct level of effort to be assigned

to this task.

2.4 The Need for Traceability

The perceived need for Traceability is dependent on each stakeholder's view of

the development process.

2.4.1 Customer

For the Customer, Requirements Traceability is needed as a means of showing

that the product satisfies the requirements. This is achieved by demonstrating the

traceability relationships between acceptance tests and the requirements and also

design and the requirements.

2.4.2 Project Manager

For the project manager, Traceability provides a range of project status

infonnation. The rate of establishment of traceability relationships provides a

means of assessing progress. The distribution of traceability relationships can

highlight areas of high dependency or development bottlenecks. Traceability

provides the project manager a means of assessing the impact of a change,

allowing him to allocate the correct level of resource to the change.

2.4.3 Requirements Analyst

For the requirements analyst, Requirements Traceability provides a means of

recording the contribution of each stakeholder during requirements elicitation. It

16

also provides a means to check the correctness and consistency of the developing

requirements.

2.4.4 Designer

For the designer, Traceability provides a means of demonstrating that the design

satisfies the requirements and how it will be verified. The traceability relationship

between the design and the requirements allows the designer to determine the

impact of any changes to requirements on the design or the impact of design

changes on the ability to satisfy the requirements. Traceability also provides the

designer a means of recording design rationales and design alternatives, which can

be employed in a design justification.

2.4.5 Maintainer

For the maintainer, Traceability provides a means of gaining an understanding of

the product. By traversing the traceability relationships the maintainer is able to

determine the impact of a change. The traceability information also provides the

maintainer a means of determining the testing required to validate the systems

after a change.

2.5 Traceability Link Semantics

Each of the above development roles requires different set of link semantics to be

recorded. The following is a summary of the link semantics, which have appeared

in the literature.

• Requirements related links.

o Linking a requirement to its source documents.
o Linking a requirement to the personal details of the stakeholders

who developed the requirement.
o Linking a requirement to its change history (configuration and

control)
o Linking a requirement to a justification, that gives the reasons for

the requirement

17

o Linking a requirement to subsystem requirements (requirements
decomposition).

o Linking a requirement to design artefact(s).
o Linking a requirement to a validation test(s).

• Design artefacts related links.

o Linking a deign artefact to the personal details of the stakeholders
who developed the artefact.

o Linking a design artefact to requirements.
o Linking a design artefact to subsystem design (design

decomposition).
o Linking a design artefact to another artefact that describes the

problem domain from a different viewpoint.
o Linking a design artefact to a design rationale.
o Linking a design artefact to its change history (configuration and

control).
o Linking a design artefact to a validation test(s).

• Code Module related links.

o Linking a code module to the personal details of the stakeholders
who wrote the code.

o Linking a code module to design artefacts.
o Linking a code module artefact to subsystem (code

decomposition).
o Linking a code module to an implementation rationale.
o Linking a code module to its change history (configuration and

control).
o Linking a code module to a validation test(s).

This list is not definitive or exhaustive. It can be seen that there are similar

traceability relationships in each development phase (requirements, design and

code), such as the recoding of the stakeholder relationships. Given these common

traceability relationships, a number of researchers have proposed traceability

development models that describe how traceability relationships are recorded and

exploited during the development of a system.

2.5.1 Traceability Models

One of the first of these models was the evolution support environment (ESE)

system [Ramamoorthy et al.1990]. The ESE model considers a system to be

18

composed of a hierarchical structure of generic objects. These objects are

connected by three types of traceability link: hierarchical links between objects at

different levels of the hierarchy, historical links between versions of one object

and development links between different objects at different stages of

development. The ESE traceability model was implemented using the Ingres

relational database in conjunction with the UNIX SCCS version control system.

Gotel [Gotel 1995] considered problem of pre-requirements traceability, that is

recording the relationships with respect to contributions made to an evolving

requirement. In her thesis, Gotel addressed this problem by proposing a set of

Contribution Structures. The evolution of a requirement is represented by a

hierarchy of artefacts connected by either change relationships or reference

relationships. Contributors are related to requirement artefacts by contribution

relations that are defined by their role in the development process.

The ESPRIT NATURE project demonstrated a prototype Requirements

Engineering environment called PRO-ART [Pohl 1996]. The PRO-ART tool

allows the tracing of the development or evolution of a requirement in three

dimensions.

Representation Dimension: This ranges from informal to formal. Moving along

this dimension is technical problem. The dimension records the representation of a

requirement from informal notes, structured text and finally to formal

specification.

Agreement Dimension: This ranges from partial to complete and is orthogonal to

the representation dimension. Moving along this dimension is a social process.

This is represented by issues about which decision must be made. An issue may

be related to an object in the specification dimension. About each issue, one or

more positions are stored and for each position a rationale is recorded.

19

Specification Dimension: This dimension ranges from opaque to complete

understanding of the requirement. Movement along this dimension represents the

cognitive and psychological problems of the requirements engineering. This

dimension is orthogonal to agreement and representation dimensions.

The DoD traceability model has evolved from the work of Ramesh and Edwards

[Ramesh et al. 1995] at the Naval Postgraduate School in Monterey. Ramesh and

Edwards developed a number of interrelated traceability models by observing

current development practices and from interviews with engineers working on

large DoD software development contracts. Their models consisted of a

requirements management model, a design to implementation model, decision

rationale model and compliance verification model. Each of these models contains

a set of permissible information types and a set of permissible relationships. For

example, Figure 2-3 describes the requirements management model.

Derive

Based On

Figure 2-3 DoD Requirements Management Model

Derive Compliance
Verification
Procedure

These models were further extended and refined by Ramesh and Jarke [Ramesh

and Jarke 1 999a] (CREWS project). The models were implemented using

ConceptBase [ConceptBase 2007] and the SLATE engineering development tool

(now obsolete). Ramesh claimed that these models were successful though he

restated older problems relating to tool implementation and development

20

processes which he raised in 1995 with Edwards [Ramesh, Stubbs, Powers and

Edwards 1995].

Another example of a traceability data model is the Meta-Modelling Approach to

Traceability for Avionics (MATra) [Mason 1999]. MATra is an object-based

approach to tracing artefacts for the development and assessment of aviation

electronic (avionics) systems. It is based on a set of interconnected "traceability

structures" specified using the class diagram view from the UML, with integrity

constraints over these structures expressed in the Object Constraint Language

(OCL).

Though not a traceability data model, the AP233 application protocol data model

[Herzog 2000], is designed primarily to support design data exchange between

software engineering tools, and provides some design traceability capabilities.

This data model was developed to allow systems engineering development tools

to share data.

However, there is still no clear agreement on a common traceability model as

there are an unlimited number of traceability relations which can be recorded and

as Wieringa [Wieringa 1995] stated: "the ultimate traceability tool is the world".

What these models have demonstrated, in particular Contribution Structures and

the DoD reference model, is how traceability can be applied to the development

process to answer relevant development needs. A successful strategy for

developing a traceability model, as demonstrated by the success of Gotel's and

Ramesh's traceability models, is to start with a very simple model and to expand

on this as the organisation gains an understanding of its rigour and usefulness.

2.6 Traceability Representation Techniques

Wieringa [Wieringa 1995] categorised the methods of representing a traceability

relationship as matrices, entity relational models and cross referencing.

21

2.6.1 Matrices

A matrix is the simplest and the most common way representing a traceability

relationship. The horizontal and vertical dimensions represent the artefacts that are

to be linked. A mark at an intersection indicates a traceability link. AU the links

have the same semantics.

2.6.2 Entity Relationship (E/R) Model

EIR modelling is one of the best known semantic modelling approaches. It can be

employed to describe the traceability links between entities. This technique has an

advantage over the traceability matrix, in that links with higher arity than 2 (the

maximum for a traceability matrix) can be represented. EIR Models can also be

represented by relational database management systems (RDBMS) and this allows

the ad hoc queries and reports to be made on the link data. Many of the

commercial Requirements Traceability tools, such as DOORS [DOORS 2007]

and RTM [RTM 2007], employ EIR modelling and relational database

management systems to represent traceability relationships.

2.6.3 Cross-referencing

Cross-referencing is arguably the oldest traceability technique yet it has been

given a new life with introduction of mark-up languages such as HTML and

XML. In Cross-referencing the semantics of the link is contained in the text

surrounding the reference. The link is represented by textual directions or in the

case of HTML or XML by hypertext linking. Cross-referencing is simple to

understand, though the traceability links are always binary and unidirectional.

There are a number of examples of prototype project cross-referencing schemes,

which employ tagging, numbering and indexing to implement traceability

[Jackson 1991] [Zisman et al. 2003].

22

2.7 Traceability Tools

Tool support for Requirement Traceability can be divided into the following broad

categories:

• Generic tools, such as spreadsheets, word processors, hypertext editors and

database management systems (DBMS),

• Software Engineering Tools which provide traceability features.

• Requirements Traceability Tools, which provide dedicated requirements

traceability support.

2.7.1 Generic Tools

The tools that fall into this category are word processors, spreadsheets editors,

hypertext editors and database management systems (DBMS). These tools, with

the exception of database management systems, mainly support cross-referencing

traceability. Microsoft Excel is commonly employed to create traceability

matrices.

Since Kaindl [Kaindl 1993] demonstrated how hypertext technology could be

employed to record requirements traceability, HTML and XML editors have

greatly increased in complexity and functionality though the basic referencing

concepts that he described remain unchanged. The same can also be said of the

work performed by Watkins and Neal [Watkins and Neal 1994], who described

how common desktop tools could be employed to record requirements

traceability. Since their work, Microsoft's dominance of the desktop market has

resulted in a reduction of tools vendors but a greater integration of the Office

products which overall has been beneficial to the execution of Requirements

Traceability .

Database management systems (DBMS) can be employed to implement ER

models that represent traceability relationships [Riddle and Saeed 1999b].

However, the direct use of a DBMS requires an understanding of relational

23

database theory and SQL, which many practicing development engineers may not

have. This has resulted in the development of dedicated Requirements

Traceability tools, such as DOORS, which aim to hide the DBMS functionality

from the engineer. The use of generic tools can be summarised as follows:

• They mainly support cross-referencing traceability techniques.

• They are readily available to all project members.

• They are generally easily understood (with the possible exception of DBMS)

and require little training.

• They are flexible, though this may come with the incurred cost of developing

bespoke scripts.

• They generally don't support any form of data analysis (with the possible

exception of DBMS)

2.7.2 Software Engineering Tools

The prime aim of this group of tools is to provide a software development service

and a traceability facility is just one of the many features provided. Most of the

tools which fall into this class are Computer Aided Systems Engineering (CASE)

tools, such as CRADLE [Cradle-5 2007]. This class of tools allow the

development of objects to be traced, though this trace information is often limited

to version control information. The use of software engineering tools can be

summarised as follows:

• They sometimes only offer limited traceability data recording and analysis

facilities. (Traceability is only one of the facilities offered by these tools).

• They do not easily allow traces to be made to information outside the tool's

domain.

• They can be complex and require staff training to make use of the full

potential of the traceability features.

• They are well suited to large projects as they allow distributed and controlled

access to data.

24

2.7.3 Requirements Traceability Tools

This class of tools is mainly aimed at providing requirements traceability, though

they can be employed to provide traceability throughout a project 's lifetime. At

present, there are two tools which dominate this area, DOORS (Dynamic Object

Oriented Requirements System) [DOORS 2007] , and RTM (Requirements and

Traceability Management system) [RTM 2007]. A survey of traceability tool

features has been performed by INCOSE [INCOSE 2007] .

The market leader, DOORS has the ability to import a range of documents and to

decompose them into a hierarchy of records based on the structure of the original

document. Traceability between documents is achieved by link modules, which

record the relationship between individual records. Documents are organised in

fo lders akin to an operating system file system: Figure 2-4. The ease of use of the

import functionality and the intuitive use of folders has been the key to the

success of the DOORS tool.

II /DOORS Database/SoHwam Projects/DOORS Family/DOORS/DOORS Black · DOORS I!t~~

DOORS Dalabase
D Company Siandards
CJ M anagemenl Projecls
·0 Services Projecls

B CJ Sofiware Projecls
i B D DOORS Family
: I 8 CJ DOORS

i 8~ D a
I I: Iii CPS sub'projecl
i I IiJ D Desi9n

1· ~ El<perimental Des

j. GUI Redesign SUj
'1 D Requiremenls

I I' S yslem R equI

I I
I D User Requirel
r' Softwdre
: D Tesl

Tesl
DUse Cases
~ M eating M inules

~ Producl Plan
~ Projecl Plans

Figure 2-4 DOORS Folder Window

25

Project

PrOlect
Folder An desi9n docu:nentation
Folder Designs used to lesl new Ideas

Folder An requirements documents
Folder Code dalalor delaaed Iraceabillty
Folder AU lesl speciflCalions
Folder Traced 10 Requiements
Formal Weekly meelrn9s
Formal Producl Plan
Formal Development Protecl Plans

2.8 Summary

In summary, the practice of Traceability in software development has a long

history and a number of data models and tools that have been developed to allow

the engineer to make use of this valuable resource (as described in section 2.4).

The next chapter considers the practical aspects of recording Traceability

information by examining how a number of aerospace projects practice

traceability.

26

Chapter 3 A Survey of Traceability Practices

3.1 Introduction ... 27

3.2 Traceability Practice Survey Objectives ... 27

3.3 Survey Design ... 28

3.4 Conducting the Survey .. 29

3.5 Survey Results ... 31

3.6 Reflections on Traceability Practice ... 37

3.7 Previous Traceability Practice Surveys ... 38

3.8 Comparison of Surveys ... 41

3.1 Introduction

Management from a number of BAE SYSTEMS projects reported that there were

issues in recording Traceability information in an industrial context. These issues

were concerned with encouraging engineers to record and maintain Traceability

infonnation. The result of these concerns was a survey of how a number of BAE

SYSTEMS projects practiced traceability.

This chapter describes the survey of traceability practices conducted on a number

of BAE SYSTEMS projects. The motivation and the method of the survey are

described here. The results of the survey are compared and contrasted with two

widely cited studies on traceability practice performed by Gotel [Gotel 1995] and

Ramesh [Ramesh et a1. 1995].

3.2 Traceability Practice Survey Objectives

As stated in Chapter 2 there are many different Traceability implementation

models and tools, each of which have their own particular strengths and

27

weaknesses. However, BAE SYSTEMS project management were reporting

issues with the recording and maintenance of Traceability information. With this

in mind, a survey BAE SYSTEMS projects was undertaken, to understand the

state of traceability practice. The objectives of this survey were to investigate how

each of the projects currently performs Traceability and to determine what

elements of "best practice" could be applied across the company.

3.3 Survey Design

Give the above objectives, the first stage in the development of a survey design is

the determination of the unit of analysis [Babbie 1990]. The unit of analysis is

what or whom is being studied. In the initial survey design, the units of analysis

were a number of aerospace related projects, which were of a similar scale and

complexity. After a trial run of an early version of the Preliminary Questionnaire

it was found that this selection was too coarse and the units of analysis should be

the engineers on the projects.

The next stage was to determine the type of survey to be conducted, cross­

sectional or longitudinal. A cross-sectional study involves observing a subset of

the population all at the same time, while a longitudinal study involves repeated

observations of the same subset over long periods of time. The limited access to

project engineers, due to their work commitments, favoured a cross-sectional

survey. This decision was supported by the fact that the development methods and

tools were unlikely to change during development and if repeated surveys were

possible it is was unlikely that they would be no more illuminating than the first.

Therefore, a cross-sectional survey was selected.

The final stage in the survey design was to determine how to conduct the survey:

by questionnaires, interviews or a combination of these techniques. The trial run

of the Preliminary Questionnaire helped to answer this question. These

questionnaires were completed poorly and it was during discussions with

28

engineers that had completed them that it was discovered that a form could not

identify all the issues. The outcome of these discussions was the decision that the

project engineers had to be interviewed to gain a true insight into the problems.

However, a questionnaire still provided a good basis for the interview and this

resulted in the modification of the initial questionnaire for that purpose, giving

rise to the Preliminary Questionnaire in Appendix A.

3.4 Conducting the Survey

The survey was confined to the BAE SYSTEMS projects which were members of

the Dependable Computing Systems Centre4 [DCSC 2007]. Five BAE SYSTEMS

divisions took part in the survey, Airbus (Filton), Avionics (Plymouth), MBDA

(Filton), CSS & Programmes (Brough and Warton). From each of these company

divisions the following product programmes took part:

• Airbus (Filton): A380 IMA, A380 Fuel Systems

• E&IS (Electronics and Integrated Solutions): Merlin, Sensors

• MBDA (Filton): Sea Dart, ASRAAM

• CSS & Programmes (Brough): Tornado, Gripen

• CSS & Programmes (Warton): Eurofighter/Typhoon

Nineteen engineers were interviewed individually in the course of this survey.

Their experiences ranged from an engineering graduate with six months

4 The Dependable Computing Systems Centre (DCSC) was founded in 1991 by BAE

SYSTEMS, the University of York and the University of Newcastle. The DCSC performs

research into dependable computing systems in conjunction with the BAE SYSTEMS

companies and its affiliated joint ventures. The Traceability Practice Survey was conducted

as part of the DCSC research programme.

29

experience to a head of department who had over twenty years experience of

aerospace development.

Before every site visit, the site survey sponsor was sent a general product

questionnaire (Appendix A). This questionnaire had two purposes. Firstly, it

helped the sponsor in selecting a suitable project and secondly, it allowed the

development of more targeted interview questions. The product questionnaire

covered the following four areas:

• The first area of questioning was related to the product. These questions were

intended to gain an overview of the product and its complexity.

• The second area of questioning related to determining the project's

organisation.

• The third section of the questionnaire investigated how the project

communicated.

• The final section of the questionnaire looked at what tools and protocols the

project teams were employing to overcome the problems related to

Traceability.

An interview schedule was drawn up from the information gathered from the

returned questionnaires. The interviews were conducted during a number of site

visits that occurred during 2002. The interviews were structured to gain the

maximum contribution from the engineer and were based on ideas presented in

standard texts [Babbie 1990;Leong and Austin 1996;Robinson 1993]. The

interviews were conducted in a relaxed, informal manner that helped to put the

engineer at ease and helped to dispel any ideas of the interview being some form

of quality audit.

Each interview started by the interviewer describing the aims of the survey to the

engineer, which involved giving a quick overview of the DCSC. This was

followed by the interviewer describing his background, engineering interests and

how they related to the survey. Once a rapport had been established, the engineer

30

was asked to describe his job function, his department and fmally the product that

he was currently working on.

The interview then concentrated on the Traceability tools employed on the

project. The engineer was encouraged to describe the benefits and pitfalls of these

tools and the environment that they were used in. In the fmal phase of the

interview, the engineer was asked for ideas to improve his Traceability tool set or

working environment. The engineer was invited to "think out of the box" by the

interviewer stating that he, the engineer, had "three wishes" that could be used to

bring about the ideal Traceability tool and working environment. This phase of

interview often proved to be most fruitful. The topics discussed often related to

deficiencies that had been covered earlier in the interview. The interview was

finished by the engineer being thanked for his contribution.

In the course of the survey, a total of fifteen hours of interviews were completed,

with the average length of an interview being approximately three quarters of an

hour. Throughout the interview, the interviewer would record informal written

notes that were later transcribed. This technique proved to be more successful than

recording, as many engineers appeared to be hampered by the presence of a

microphone.

3.5 Survey Results

The main conclusion of this survey was that "best practice" is not a simple matter

of selecting the correct Traceability tool or adopting a new method of working.

The survey raised a number of factors that influenced Traceability practice.

• Traceability Tools

• Development Practices

• Development Communications

• Cost! Benefits

• Organisation & Culture

31

• Traceability Comprehension.

3.5.1 Traceability Tools

The projects surveyed employed four different tools for Traceability:

DOORS[DOORS 2007], Cradle [Cradle-5 2007], Requirement Traceability

Management (RTM) [RTM 2007], and Product Version Control System

(PVCS)[PVCS 2007]. Only RTM and DOORS are dedicated Requirements

Traceability tools, while PVCS is a software configuration tool and Cradle is a

software engineering tool that is based on the Ward-Mellor method of software

development.

The majority of the surveyed projects only employed Traceability tools for

product verification. This use was highlighted by the method of deployment; on

many of the surveyed projects, the tools were maintained by a quality team that

was separate from the main development teams. This bias towards product

verification role was confirmed by a number of engineers who stated that

Traceability tools had no role to play in the development process and that these

tools were only a means of checking that all the Hi's had been dotted".

All the engineers surveyed expressed dissatisfaction with their Traceability tools,

with data entry being the most commonly quoted area of dissatisfaction. The need

for engineering data to be specially transcribed for the Traceability tools often

caused backlogs in data entry. These delays were often further increased due to

the lack of personnel who had the required training to manipUlate and format the

traceability data. The resulting slow data entry process often caused Traceability

database to be out-of-sync with the development process and as a result, the

Traceability data was mistrusted by the development engineers. A number of

projects tackled this problem by having the data entry performed by a dedicated

team (usually a team with a product quality function) who understood the

traceability tools. It was found that though this type of team organisation relieved

32

the development teams of the data entry burden, traces were not recorded

accurately and the data was still out-of-sync with the development process

How the tools displayed the Traceability data was heavily criticised by the

surveyed engineers. One development engineer stated, "You see everything or

nothing. You get swamped by the diagrams". This quote summed up the general

feeling among the surveyed engineers. The issue of data presentation caused many

development engineers to refrain from using a Traceability tool unless they had

had specialised training in the use of the tool and therefore could navigate the

Traceability data effectively.

A number of engineers stated that the Traceability tools force them to work in an

un-natural way, for example, one tool required all configured items to be

referenced by a number rather than by a textual name. This numeric indexing

caused confusion and time to be wasted in decrypting the numbers back into text.

Traceability tools were also found to be lacking in the narrow selection of source

media that could be traced. All the tools surveyed employed text as a base media

for Traceability, therefore these tools were are unable to offer any Traceability

functionality for diagrams, plans or mathematical algorithms. A number of

projects partly solved this problem by storing the changed diagram plan or

algorithm in a separate configuration database, such as PVCS, and then recording

a reference to the changed item in the RT tool.

The Traceability tools in the survey were found to be poor in the development of

collaborative products. It was often very difficult, due to firewalls and or security

policies, for a co-located subcontractor to view the required subset of the

Traceability data.

3.5.2 Development Practices

It was found that how system requirements were created, refmed and implemented

had a major bearing on Requirements Traceability. For example, engineers stated

33

that the way requirements were written often hindered Requirements Traceability.

A common complaint made by design engineers was that the requirements

documentation was written in such detail that these documents were in practice

pseudo design documents. These over elaborate requirements documents often

caused confusion about what the requirements really were and how the

requirements should be mapped onto a design. The following quotes made by

development engineers summarise the problem:

"The requirements documentation is too complex. the granularity is too fine"

"They (requirements engineers) have done my job for me ".

"Why did they (requirements engineers) want it to be implemented that way?"

Requirement Traceability was found to be confused when a set of functional

derived requirements was mapped onto an object-oriented design (OOD).

Engineers claimed that it was difficult to determine the correct level of mapping,

for a requirement may be satisfied by the parent object or by one or more of the

inherited specifications. This mapping confusion also affected software testing as

it was difficult to determine which objects should be tested against which

requirements. The engineers, who stated a view on this topic, stated that the

functional requirements to OOD mapping issues could be partly solved by the

adoption of an informal local mapping standard that dictated how functionality

was related the 00 design.

3.5.3 Development Communications

The way functional teams within a project communicated was shown to have an

effect on Traceability. The survey demonstrated that the main method of

communication between cooperating functional teams, such as systems and

software design, was mostly by the regular issuing of interface documentation. It

was found that in many projects these interface documents were not updated

regularly. Engineers would often work from personally updated annotated copies

34

of interface documents. Where this occurred, traceability between the

requirements and design became confused. Without any traceability, the impact of

changes to the interface documentation was not always determined and negotiated

with the affected teams. The engineers referred to this as "Throwing the Problem

over the Wall".

Many of the projects surveyed demonstrated a degree of subcontracted

engineering. It was stated by engineers, employed by the subcontractors, that stale

interface documentation was a major issue. This problem of stale documentation

caused many engineers to bypass the formal route of communication and to

informally contact their colleagues to obtain the up-to-date information. These

engineers used this informal information to annotate their original issued

documents, therefore losing all traceability.

Product testing was found to be affected by stale interface documentation. Product

test engineers interviewed stated that product integration was proving to be more

difficult due to subcomponents not functioning to the current interface

requirements. This was often due to a subcomponent being developed from a set

of stale interface requirements. Poor impact analysis on interface requirement

changes was also quoted as the cause of product integration testing issues. Test

engineers also stated that it was difficult to obtain "background" information on

an interface requirement for example, the reasoning or justification behind a

requirement and this often lead to poorly scoped tests being applied.

3.5.4 Perceived Costs and Benefits

All the surveyed Traceability tools were labour intensive and required specialist

knowledge to enter or configure the data. A common opinion of the managers

surveyed, was that Traceability data entry was hindering the development process.

These managers perceived the labour costs to be too high and the benefits too low.

These views were further coloured by the perception that Traceability did not

contribute the general development process and was only a quality control tool.

35

Most of the engineers interviewed were disaffected with their Traceability process

and considered it to be a burdensome task that did not have any direct benefits.

3.5.5 Organisation & Culture

Project organization and team size was found to have a bearing on how

Traceability was performed. Formal Traceability practice was found to be non­

existent for projects that had small teams based in one location. These projects

often implemented an informal RT process that relied on verbal communications,

engineer's product knowledge and hand annotated documentation. However, aU

the multi-national projects surveyed, demonstrated a formal tool supported

Traceability process.

The type of project also had a bearing on Traceability practice. New projects were

more likely to have implemented a Traceability process, while projects that were

updating or modifying existing projects often had no formal Traceability practice.

For some of the projects Traceability was considered a burdensome process that

hindered the development of the product. In such a culture, it was found that

Traceability was sidelined to an offline process, referred to by one engineer as a

"quality, rubber stamping process". Where this occurred, the Traceability

database rapidly became out of date with the development process. It was also

found that such offline traceability databases often contained a number of errors

that could be attributed to the data entry engineers lacking the relevant project

knowledge.

3.5.6 Traceability Comprehension

The survey highlighted a wide range of understanding on the benefits of

Traceability. A number of the engineers interviewed stated that the primary use

for Traceability was for "product quality control". When asked to elaborate on

the term "quality control", they often replied with "change or version control".

36

This limited understanding of Traceability is one the main driving forces behind

tool selection and associated Traceability practices.

The lack of Traceability understanding was not applicable to all the projects

surveyed, for there were a number of notable examples. The Gripen (Brough)

team that developed a Traceability tool based on SGML to manage requirements

across two organisations (BAE SYSTEMS and SAAB). The Avionics team

(Plymouth) developed a Traceability tool based on DOORS that helped them

develop and maintain a number of variants on a common sensor. The MBDA

ASRAAM project traceability database recorded additional domain information,

such as references to safety arguments and functionality warnings, to help in

change impact analysis.

3.6 Reflections on Traceability Practice

The main theme that arose from the BAE survey was the perception by

development engineers and their line management that Traceability did not

provide any benefit to main development task. Many of the surveyed development

engineers considered it a hindrance to their main task and were unsure of the

benefit of this data to the project as a whole. These views were also found by

Gotel in her survey [Gotel 1995]. The most common reason given by many

development engineers on why the process of recording Traceability hindered

their main development tasks was the extra effort involved in data transposition

and entry. Again, both Gotel and Ramesh obtain similar responses. It can be

argued that if Traceability was directly beneficial to these engineer's development

tasks, they would have altered their tools and work practices to resolve the

problems related to recording traceability data. Many of the tool and data

recording issues raised in the BAE survey may well be no more than excuses,

which justify the low priority that these engineers have placed on Traceability due

to it not providing any benefit their immediate work tasks.

37

3.7 Previous Traceability Practice Surveys

The studies perfonned by Ramesh and Gotel are most widely cited in the

literature. Gotel [Gotel 1995;Gotel and Finkelstein 1994] surveyed the views of

engineers whose work area covered all aspects of development, maintenance and

management. The aim of this survey was to determine the issues in the

implementation of Requirements Traceability. Ramesh [Ramesh 1998] reported

on a study of Traceability practitioners from a wide range of organizations. The

aim was to identify how environmental, organizational and technical factors

influence the adoption and use of Traceability.

Gotel reported on a survey of practitioners whose work area covered all aspects of

development, maintenance and management. The aim was to understand why

Requirements Traceability was a widely reported problem area despite many

advances in research and tool development. The survey consisted of two

questionnaires and two infonnal interview sessions. The first questionnaire was

distributed to 80 practitioners (55 returned), the second one to 39 practitioners (31

returned). Two large infonnal interview sessions were perfonned with the

questionnaire respondents that lasted for one and half hours each. From this

empirical investigation Gotel [Gotel and Finkelstein 1994] identified the

following sources to the Requirements Traceability implementation problem:

• Lack of common definition for the purpose of Requirements Traceability.

• The existence of multiple incompatible and fragmented documents, fonn

distributed sources, with no clear relationship.

• The inability to handle the increasing amounts of documentation

• Change, and the slowness with which all its ramifications are taken into

account, which leads to numerous versions of documents in various stages of

evolution.

38

• The lack of an end-to-end Requirements Traceability process, plus the absence

of a specified Requirements Traceability job description, thus leading to

Requirements Traceability mismanagement.

• The involvement of too many, often uncooperative people, with inadequate

expertise and individual agendas.

The second extensive study on Traceability was performed by Ramesh [Ramesh

1998]. This study involved practitioners from U. S. government system

development, program management and testing, pharmaceutics, utility,

telecommunications, aerospace, electronics, automobile, and software

consulting/contracting. The aim was to identify how environmental,

organizational, and technical factors influence the adoption and use of

Traceability. This survey was performed in three phases. The first phase, a pilot

study, consisted of surveying the views of 58 Master Students whose areas of

expertise included shipbuilding and aviation maintenance. Ramesh did not state

how many of these students had experience in software development. This pilot

study six focus groups, seven verbal protocols and six structured interviews. From

this data, Ramesh developed the initial version of traceability meta-model. The

second phase of the study consisted of querying tool vendors on the traceability

functionality of their tools. Ramesh states that his findings were similar to that of

the INCaSE tool survel [INCaSE 2007].

From this data, Ramesh stated that he determined the shortcomings of the current

tools. The final phase of the study comprised of 30 focus group discussions in 26

organisations that included aerospace, hardware development, pharmaceutical,

5 The INCOSE tool survey is not a truly independent survey as the data on the traceability

functionality is provided by the tool vendor and may not have been verified.

39

systems integration and telecommunications. From this data, Ramesh developed

the profile for high and low traceability users (Table 1).

Finally, Ramesh argues how the traceability meta-model, developed in the pilot

study, would have be adjusted to suit the needs of these two groupings. The

published results do not give any indication of the problems facing engineers.

Characteristic Low-end Traceability User High-end Traceability User

Number of Organisations in study. 9 17

Number of Participants S4 84

Typical Complexity of System =1000 requirements =10,000 requirements

Traceability Experience Level o to 2 years S to 10 years

User definition of Traceability Document transformation of Increases the probability of

requirements to design. producing a system that meets

all customer requirements and

will be easy to maintain

Main Application of Traceability Requirements decomposition Full coverage of the lifecycle,

including user and customer;
Requirements Allocation captures discussions issues,

Compliance Verification decision and rationale;

capturing traces across product

Change Control and process dimensions.

Table 1 Characterisation of Low and High Level Traceability Users

An earlier publication by Ramesh and Edwards [Ramesh et al. 1995] on the

lessons learnt from implementing a traceability system is more informative. In this

paper, Ramesh and Edwards describe the following problems in implementing a

traceability process.

• The burden on the development process due to traceability data entry and

transposition.

• High costs - CASE tool training, employing dedicated staff.

40

• Poorly structured documentation - leading to confusion over what should be

traced.

• Office Politics - The fear of staff that a traceability systems may be employed

to assess their productivity

3.8 Comparison of Surveys

The disappointing outcome of the traceability practice survey was that it found

similar problems to what Gotel[Gotel 1995] and Ramesh [Ramesh, Stubbs,

Powers and Edwards 1995] both reported on over ten years ago. It appears that

recent advances in computing over the last ten years, such as the internet and

vastly increased computing power, have done little to alleviate these problems.

All three studies reported a wide range of Traceability comprehension. Ramesh

[Ramesh and Jarke 1999a] employed this fact to classify his users. This was

reported by Gotel as lack of common definition for the purpose of Traceability.

We also found a wide range of understanding and that this often resulted in

managers and project leaders questioning the true cost benefits of Traceability.

Tool related issues were reported by all three studies. These issues ranged form

the inability of Traceability tools to cope with a diverse set of media, the high

costs incurred in training staff in the use of these tools, to the burden of

transposing data for these tools.

The issue of poor communications between development teams affecting

Traceability was highlighted by Gotel and our survey. Both surveys found that

stale interface documentation, due to slow uncoordinated changes, was a major

problem in implementing Traceability. The issue of poor communications, in the

form of poorly structured documentation was also raised by all three surveys. All

three studies highlighted how poor communications between development teams

made end-to-end Requirements Traceability difficult to achieve in practice.

41

The next chapter examines in more detail the common issues raised by these

surveys such as, the burden of data entry, who records and who benefits from

traceability data.

42

Chapter 4 The Traceability Benefit Problem

4.1 Introduction ... 43

4.2 The Burden of Data Entry ... 43

4.3 Establishing a Relationship ... 47

4.4 Traceability Benefit Problem .. 48

4.1 Introduction

This chapter builds upon Chapter 3 by reviewing the themes present in the BAE

traceability practice survey and the surveys performed by Gotel[Gotel 1995] and

Ramesh [Ramesh et al. 1995]. From this analysis, an argument is developed

which states that one of the major causes of poor traceability practice is the lack of

benefit that it provides to the current development process: this is referred to as

the Traceability Benefit Problem.

4.2 The Burden of Data Entry

The burden of data entry and transposition was commonly cited in all three

surveys by engineers as being a hindrance to their development task. Many of

BAE SYSTEMS projects assigned a low priority to the task of recording

traceability information. To reduce the burden of entering traceability information

some of the BAE SYSTEMS surveyed projects separated their traceability process

from the main development process. In these projects the traceability process was

undertaken by a dedicated quality team, which had an understanding of the

traceability tools and techniques. Though this organisation alleviated pressures on

the development teams, it was found not to improve the quality of the traceability

infomlation. It was observed that the number of wrong or bad traceability

43

relationships increased, and the traceability data was out-of-sync with the main

development process.

A way of reducing the data entry burden is to automate the process of generating

the trace relationships between documents. There have been a number of attempts

to achieve automatic trace generation. One of the simplest methods of trace

automation is use of a standard naming convention. This allows traces to be

generated between artefacts that have the same key word in their name. The

problem with this approach is that the naming convention has to be strictly

adhered to. Grunbacher [Grunbacher 2006] described a traceability system which

successfully employed this method in a small example by the use of input agents

which enforced the naming convention.

An interesting approach to automatic trace generation was put forward by Egyed

[Egyed 2005], who employed code call analysis in conjunction with test scenarios

(a collection of tests) to establish the relationships between requirements and code

and requirement interdependencies. Egyed established a relationship by executing

a test script that exercised a given requirement on a code analyser (IBM Rational

Pure Coverage). The code analyser recorded which items of code were called for

that requirement test script. From this information, it possible to say that there is a

relationship between the called code and the tested requirement. The problem with

this approach is that a combination of tests are required to be performed to

identify the true relationships. However, even with relatively few test scenarios

this method can highlight dependencies between requirements, although it is

questionable whether this is a truly automated process when a large amount of

effort is required to the produce the test scenarios.

A more general approach employs domain information, such as key words and

phase, and search engine technologies to identify relationships between

documents. This approach is similar to performing a search using a search engine

such as Google. Instead of the keywords being highlighted by search engine links

44

are generated between documents that contain the keywords. There are number of

examples of link generation systems, the Advanced Artefact Management System

(ADAMS)[De Lucia et at. 2004], Requirements Tracing On-Target (RETRO)

[Hayes et at. 2006] and Marcus et al [Marcus and Maletic 2003], Antoniol et al

[Antoniol et at. 2002] on recovering traceability links between code and

documentation.

All these systems employ a technique called Latent Semantic Indexing (LSD to

identify sections of documents, which may be related and hence are candidates for

generating a traceability link. Traditional keyword searches, for example grep,

look for the presence of a word or phase and documents are only retrieved if a

match is found. Latent Semantic Indexing (LSI) tries to improve on this by

looking for groupings of the key words. LSI assumes that there is some

underlying or "latent structure" in the word usage that is partially obscured by

variability in word choice, and make use of statistical techniques to estimate this

latent structure. In addition to analysing the keywords a document contains, this

method examines the document collection as a whole, to determine which other

documents contain similar key words. LSI considers documents that have many

words in common to be semantically close (a potential trace relationship), and

ones with few words in common to be semantically distant. Supporters of this

search method claim it correlates surprisingly well with how a human being might

classify a document collection. For example, a search of a historical database that

employs LSI indexing for "1944 Normandy Invasion" may select documents

related to the Second World War invasions of Normandy that contain the key

words followed by a number of documents which are semantically more distant

such as the documents on the Bayeux tapestry and the Norman invasion of

England in 1066. In a similar way the traceability link generation systems return a

number of links ranked on their semantic distance from the key words. Filters,

such as a simple threshold based on the link semantic ranking (e.g. taking the first

50 links), can be employed to reduce the number oflinks.

45

To demonstrate the performance of a traceability link generator, two metrics are

employed. Trace Recall (Equation 1) is the percentage of correct links identified

from the set of correct links. If a recall value of 1 is obtained then all the correct

links have been identified, though there could be recovered links that are not

correct.

L; I correct; n retrieved; I
recall = ='---=;------­

L,I correct; I

Equation 1 Trace Recall

Trace Precision (Equation 2) is the percentage correct links identified from the

total number of links returned. If the precision value equals 1, it means that all the

links identified are correct, though there could be correct links that were not

recovered.

. . L;lcorrect; nretrievedtl
preCISIOn = ="'--;:""::::;-:0-----,--....:.

L..Jtlretrievedtl

Equation 2 Trace Precision

Researchers have applied optimisation or filtering techniques to reduce the

number of links return by a LSI search. Weak optimisation results in high recall

but with low precision and strong optimisation results in low recall with high

precision. Though these researchers applied different optimisation techniques and

had different documentation sets, they produced similar results, with the best

optimisation compromise producing an approximate recall of 80% with a

precision of 50%. Though these results are promising, it is accepted that LSI

based systems can not replace the software engineer in the task of maintaining

traceability links during software evolution [De Lucia et al. 2004].

46

4.3 Establishing a Relationship

To explain why separate traceability teams and LSI search engines have problems

determining traceability links we should consider some of the processes involved

in performing a development transformation, such as developing a software

design from a set of requirements.

A requirement can be defmed in a number of ways, though the most popular is

still by the means of a natural language. Natural language can be notoriously

ambiguous and often requires a degree of interpretation by the reader. These areas

of ambiguity will often be resolved by peer group and inter-group (requirements

team and design team) discussions [Weinberg 1998]. To clarify an ambiguity a

design engineer may employ different terminology to that which is expressed in

the requirements. This may result in a LSI search engine failing to establish a link

or in the best case establishing a low ranking link. The counter argument to this

problem is that its resolution lies in the rewording of the requirements, though in

practice, unfortunately, this does not always occur.

The development of a software design can be described as the application of a

design method (a set of rules and conventions) to the set of requirements. These

rules and conventions have to be rigorous enough to produce a coherent design,

yet flexible at the same time to allow for different implementation strategies.

Therefore, the application of a design method to a requirement set will result in a

set of valid designs. Engineers impose their experiences onto a design [Weinberg

1998]. Design "templates" which have worked well in the past are often reused.

Therefore, different groups of engineers may produce different designs depending

on the outcome of their discussion and previous experiences. During the design

process "House Styles" often evolve, for example the naming of variables,

functions, files etc. These local practices may be defined in local standards

documentation, but their enforcement is achieved only by peer group pressure.

Therefore, the consistency of a design will be influenced by how well the local

47

practices are complied with. Antoniol et al [Antoniol et al. 2002] stated that this

information will have to be captured and incorporated into the filtering algorithms

to improve the recall and precision of LSI based link generation systems.

The outcome of these observations is that the production of a design is not a

simple transformation process. There are a number of development factors which

are often not recorded, as described above, which influence the final design. The

degree of influence of these development factors on the fmal design is difficult to

quantify. It can be argued that without the tacit knowledge these development

factors may not be able to record the relationships between the design and the

requirements accurately. This is what we observed in the BAE traceability

practice survey with respect to the use of separated teams in the recording of the

traceability information. The presence of non-recorded development factors also

curtails the accuracy of search engine based technologies, such as LSI, as it may

not be possible to capture the semantics related to these factors. This view is

confirmed by De Lucia et al [De Lucia et al. 2004] who state that such systems

are unlikely to replace an experienced development engineer for the determination

of trace relationships.

In summary, the presence of non-recorded development factors implies that only

the engineers directly involved in the development transformation process (such

as the development of a design from requirements), and who have therefore

gained this tacit knowledge, can accurately record the development transformation

traceability relationships.

4.4 Traceability Benefit Problem

The previous conclusion leads to a conflict. The recording of traceability

information is best performed by the engineers directly involved in the

development process; yet the BAE Survey (Chapter 3), Gotel [Gotel and

Finkelstein 1994] and Ramesh [Ramesh 1998] have found that it is precisely these

48

engineers who seem to obtain no direct benefit in performing this task. The BAE

Survey highlighted that this lack of perceived benefit resulted in the development

engineers to assign a very low priority to traceability tasks. The outcome was

traceability data that was incomplete, inaccurate and out of date. This can be

summarised as the Traceability Benefit Problem.

Traceability Benefit Problem

The recording of traceability information is best performed by the engineers

directly involved in the development process; it is preCisely these engineers

who seem to obtain no benefit in performing this task. This lack of perceived

benefit causes the development engineers to assign a very low priority to

traceability tasks. This results in data that is incomplete, inaccurate and out of

date.

Therefore, to overcome this problem the recording of traceability data must

provide immediate, tangible benefits to the engineers performing the current

development process.

The following chapters consider how the Traceability Benefit Problem may be

overcome. The next chapter describes in detail how one of the surveyed projects

addressed the Traceability Benefit Problem by developing a traceability system

that was beneficial to the development engineer, the project management and the

customer. The lessons learnt from this case study form that basis for a generic

solution, the Traceable Development Contract, which is described in the latter

chapters of this thesis.

49

50

Chapter 5 Automotive Sensor Case Study

5.1 Introduction ... 51

5.2 Automotive Sensor Case Study ... 51

5.3 Development Process .. 53

5.4 An Illustration of the Traceability System .. 56

5.5 Why is this System Successful? .. 63

5.6 Summary ... 64

5.1 Introduction

This chapter describes in detail how one of the BAE SYSTEMS surveyed projects

developed a traceability system that addressed the Traceability Benefit Problem.

The traceability system and development process were developed by BAE

Electronics and Integrated Solutions and the analysis of the project traceability

data and the conclusions drawn from that analysis are part of the contribution of

this thesis. The chapter describes and illustrates with project data the development

process and traceability system. Finally, the chapter describes the benefits the

traceability system provides to development engineer, the project management

and the customer.

5.2 Automotive Sensor Case Study

One of the companies surveyed, BAE SYSTEMS E&IS (Electronics and

Integrated Solutions), addressed the Traceability Benefit Problem by developing a

Requirements Traceability system which is integral to their development process

and provides direct benefits to both the engineers performing the data entry and

the business. This division of BAE SYSTEMS produces a range of sensors that

51

measure the movement and direction of a veh icle. These sensors are employed in

Electronic Stabili ty Program (ESP) sensor packages (Figure 5-1)

Figure 5-1 A typical ESP sensor package

Many modern vehicles have an ESP system that reduce oversteer or understeer

(Figure 5-2). These systems stop the vehicle going into a spin by applying the

brakes and or controlling the power to the drive wheels. The heart of the e

systems is the yaw velocity sensor. The yaw sensor acts li ke a compa ; it

constantly monitors the exact attitude of the ca r and registers every incipient spin .

Other sensors report how high the current brake pressure is, what the pos ition of

the steering wheel is, how great the lateral acce leration is, what the speed is and

how big the difference in wheel speed is. Whenever handling becomes instable,

the necessary commands are executed and the vehicle is brought under control in

a fraction of a second .

52

Figure 5-2 Vndersteer and Overstecr

5.3 Development Process

Though these positional sensors have common functionali ty, each vehicle

manufacturer has a di fferent set of requirements and this means that a number of

di fferent variants of a common sensor are produced. The software for the

positional sensors is developed and maintained by a small team (four to fi ve) of

speciali st engineers. Each engineer has an assigned role, though they can be ca lled

upon to change their roles. To aid these engineers in their tasks, a Requirements

Traceability system was developed to provide information on each sensor variant

and also to support tenders for new sensors. From the outset, the traceability

system was design to answer foll owing business needs:

• To show that all of the customer requirements have been satisfi ed. To achieve

this, traceability relationships from the requirements to test procedures and

related test results are recorded.

• To identi fy which parts of the genen c sensor design are required to be

changed to produce a customer variant. To achieve this, traceabili ty

relationships are recorded from the requirements to des ign

53

• To record the justification for design decisions. To achieve this, traceability

relationships between requirements and the design decisions are recorded.

These needs drove the design of the Requirements Traceability model and the

supporting engineering process. The data model, as shown in Figure 5-3 which

describes the high-level data objects and links between the objects, was

implemented in both RTM and DOORS tools. The engineering development

phases supported by the data model and tool are described below.

5.3.1 Prepare Inputs for a Proposal

This development phase is concerned with capturing and reviewing the

customer's requirements, and is divided into a number of tasks. The first task is to

identify and capture requirements from the customer's documentation. Any

queries on the requirements are recorded and raised with customer. The

requirements are reviewed with respect to compliance with existing products, and

from this information a compliance matrix (requirements vs. current product) is

generated. This matrix is used to select the most suitable product to be a basis for

the customer's new variant, and gives an indication of the extra work required to

produce the new variant.

5.3.2 Manage, Analyse, Develop System Requirements

This phase starts once a contract has been signed. The model and supporting

processes are employed to control the introduction of new requirements and the

modification of existing requirements to prevent requirements creep. The main

task of this phase is the development of the customer's new requirements. For

each of these requirements, a development risk grading is assigned and a

verification method is identified and recorded. The compliance matrix is

regenerated to ensure that the new product complies with the customer's

requirements and that there is a verification method for each requirement.

54

REQUIREMENT
CUSTOMER INFORMATION

~'~h
s,._DDlt.~

"""-""-'-"*'
SF-"""-,,,*" --I OOR~5F".JJr*5

-t~
I "'J~

.,~ '-~ t ~"l Sf'J'~ FlEA

"""-'-"" sw·,,. I ~~SF~~~.,
SFReq- 1. FWEA-

.... -"""-"'*"

Hi~ l--~ ll'~L.." "

I~I "......-
~~ ""ie<i="

STANDARDS

TC_s,...J,.IraI.
TC~[~' TS_'~ 1'5-'i-1iU

rs.-s"_litm I T_C_ ~I 5W I HW Tem ConccpI

~~ TC-
IUfl2 .. Li'lkll T5....SY'o • .LInQ IU{-'_.

I ~~:,,~ ~- 1
VortncatlDn Spa:

J"Ts:I
1Il...rs_~ ~~

TA-

T5~TR

TEST ANO QUALIFICATION

G.G.1J1t1

Figure 5-3 Traceability Data Model (BAE SYSTEMS E&IS)

5.3.3 Design

The design phase enables the recording of design decisions, the member of staff

who made the decision and how it is related to the requirements. A Failure Modes

and Effects Analysis (FMEA) also allows the recording of failure mode

estimations and how they relate to design decisions. The accepted level for the

total failure mode estimation is specified by the customer. This recorded design

55

information traceability enables the assessment of the impact of any change in

requirements.

5.3.4 Prepare Test and Qualification Procedures

The data model enables the recording of relationships between requirements and

test procedures. Test procedures describe the validation testing at a high level of

abstraction (recorded under data model entity: Test Concepts). A test procedure is

decomposed into a number of test cases that address a lower level of abstraction

and are in turn decomposed into a number of test steps (both recorded under data

model entity: Test Specification). The test steps describe in detail the nature of the

test and the expected result. From the information in the traceability system, it is

possible to generate a document that describes the test description required to

qualify a product against the customer's requirements.

During the qualification phase the defined test steps are run and the results

recorded. Having traceability from the requirements to test steps and their related

results in the data model, via test cases and test procedures, allows the verification

information to be generated quickly and accurately. This allows the rapid sign-off

or acceptance of the product by the customer. In addition, as verification evidence

is accrued during the project lifecycle, the degree of compliance to the original

requirements can be closely monitored by management to ensure that the project

remains on track for success.

5.4 An Illustration of the Traceability System

Having described the traceability data model and development process, this

section illustrates the benefits obtained from traceability by describing the

development history for a product variant over an 18 month period. The

development history is illustrated in Figure 5-4.

56

..... -----Prepare
Inputa for
Propotll

I u~ I Spec::ificatioD
Month 3

Prepare Test, Qualification Proc:cd

-~ 'III

III

Formal Review
of Software

Requirements
Month 6

• Software
Manage, De.ign
Analyse & Review
Develop Month 9
Requirements

........ -.-.-.-.-~
Design

Software
Tm: Plan Review

Month 11

Figure 5-4 Project Milestones

5.4.1 Managing Requirements and the Customer

ur .. & Tooting

The development of the new product variant was initiated in Month 1, when the

customer's initial draft contractual specification was received. This specification

was compared against the existing specifications and related software

requirements that were recorded in the traceability system.

Within a month of receiving the specification, the traceability system enabled the

development engineers to answer such questions as "what is the same, what has

changed and what is new?" with respect to the product software requirements.

This analysis resulted in an initial breakdown of 38% new requirements (50 out of

a total of 135),38% unchanged, 12% requiring minor modification and 12% with

unresolved issues (shown in Figure 5-5, Month 1). This information provided the

engineers and their management with an indication of the potential work required

to produce this new variant. During this period the engineers employed the

traceability system to record any issues related to the specification.

57

zoo
.A

180
/ 160

140
n-6

t;T

120

100 Y"
~

80 /
60

j

40
r-.z;:::

20
~666666666666666

::I< -::I<
0 '::K -::1<-::I<-,*, :;=)K:;=)K:;=)K:;=)K~:;=)K:;=)K~:;=)K:;=)K~

I 2 3 4 S 6 7 8 9 10 II 12 13 14 IS 16 17 18

Montb.

-<>-Total Number ofRequircmcntl

-0-New Rcquircmcmta

___ Unchanged Requirement.

--IJr- Requirements which Required a Minor Modification

-X- Requirements with Unrelolvcd luuea

Figure 5-5 Classification of Project Requirements

100 , , , : c , Cbangel due to differences helMen
.~

,
I , 1- , J dran and issued specification. ,

'" , J!L: () ,
t.;:i , c' .;:; ,

~: ,
Q,

0--.-
."

<I) .!= ' =,'
<> I g-:
~ CI:i' J Clarification Chloges-

~ =' I o : -----;;;::..--- 1 requirements rewording
'" ~t '"
] .2: /\ 1.':'
~ ~CI:i i / \ "'" : I Requirements Frozen I

} \!I \
:A

/
,

~ \7 , ,

90

80

70

60

so

40

30

20

10

10 \I 12 \3 14 IS 16 17 \8

Months

-+-Changes to Requirements

Figure 5-6 Requirements Changes

Figure 5-6 shows the changes in requirements that occurred as a result of major

milestones in the development process.

58

In Month 3, the customer issued the final version of contractual specification. The

traceability system allowed the engineers to determine which system requirements

were affected by the fmal version, which resulted in a substantial increase in new

functionality (shown Figures 5-5 and 5-6). Again, this information was employed

in the revision of the estimated cost of producing the new product.

In Month 6, a formal review of the requirements was undertaken with the

customer. The traceability system was employed to generate a report which

demonstrated how each item in the specification was satisfied by the requirements

and how it would be verified by high level qualification tests. A peer group review

was undertaken of the documents by the customer's representatives and the

development engineers.

This review resulted in changes to the requirements (Figure 5-6) that consisted of

the rewording of selected requirements to include common terms and phrase to

aid clarification between the customer and the software engineers. No new

requirements were introduced at this stage and the classification of requirements

remained unchanged, as can be seen in Figure 5-5.

Once the agreed changes resulting from the peer group review were completed,

the specification and requirements were frozen (Month 8) for that release of the

software.

5.4.2 Quantitative Management

During the requirements analysis phase the traceability system allowed the

number of changes made to each requirement in that period to be calculated. This

information allowed the engineers and their management to determine a time

when the requirements where stable enough to progress to the requirements peer

review and commence the design phase.

During the design phase, the recording of relationships between design items and

requirements enabled management to estimate progress. Similar quantitative

59

progress metrics were obtained in the testing phases by determining the rate at

which trace relationships were recorded between tests, test case and test steps and

the requirements.

The most important metric provided by the traceability system was determining

when the development of the software was complete. This was achieved by

demonstrating that all the requirements had been tested, by following the trace

relationships from the requirements to tests, test cases and fInally to each test step

and the associated validated test result. Only when this could be demonstrated

would the customer accept the product.

5.4.3 Component Reuse

As previously mentioned, the traceability systems enabled the engineers to

determine which development components (requirements, design elements and

tests) could be reused, by comparing the customer's specifIcation with previous

specifIcations and identifying related design elements (or other project artefacts).

For example, it was found that, in 14 test procedures, 5 test procedures could be

reused unchanged and 4 test procedures could be reused with only minor

modifIcation, giving 65% of the existing high-level tests that could be reused with

at most a minor change (Figure 5-7). This level of reuse remained constant,

indicating that the engineers had accurately identifIed the tests that could be

reused at the beginning of the project.

60

16

14

12

10

6

4

2

o

-

""'-

I

...
l. "- ~ ~

rf
1

~ ~ ~
,., , , , , , , , , , , , , i

2 4 6 7 9 10 11 12 13 14 IS 16 17 18

Months

-<>- Total Number of Test Procedures

-0- New Test Procedures
__ PreviousTest Procedures Requiring Minor Modification

-.- Unchanged Test Procedures

Figure 5-7 Test Procedures

In a similar fashion, the traceability system enabled the engineers to determine

which test cases could be reused (Figure 5-8). It was found that 54% of test cases

could be reused with at most minor changes. Again, this level of reuse remained

constant indicating that the correct test case had been identified at the beginning

of the project. In total, 14 test procedures, 26 test cases and 327 test steps were

required to qualify the product.

The accurate identification of components that can be reused by the traceability

system improves the efficiency of the development process and therefore reduces

development costs. This in turn reduces the overall business risk. This is seen as a

major benefit by the development engineers and their management.

61

30

25

20t-----------------~L-----~----------------------

15,--------------

101---------------~~+_---------------------------

o
2

Figure 5-8 Test Cases

4 6 7 8 9 10 II 12 13 14 15 16 17 17

Months

-O--Test Case Total

---*"- Unchanged Test Cases

__ Test Cases Requiring Minor Modification

~NewTest Cases

5.4.4 Further Examples of Reuse

The traceability system that was employed to trace the development of the sensor

software was also employed to trace the development of the software for an item

of avionics equipment found in an Advanced Jet Trainer (AJT), Fast Jet,

Transport Aircraft and a Helicopter.

The item of equipment was originally developed for the AJT and developed

further for the Fast Jet, the Transport Aircraft and finally for a Helicopter. Table 2

shows the reuse of requirements between the aircraft. By tracing from the

common AJT requirements is was possible to identify common tests and code.

62

AJT Fast Jet Transport Aircraft Helicopter

Number of Requirements 88 131 244 131

Number of Requirements in Common with the AJT 76 68 62

% Reuse of AJT Requirements 58% 28% 47%

Table 2 AJT Requirements Reuse

5.5 Why is this System Successful?

The development engineers and their management at BAE SYSTEMS E&IS did

not consider their system to be a hindrance to the development process. In fact

they considered the system to be at the heart of their development process. We

examine the reasons for this by considering the system from three view points.

5.5.1 The Development Engineer's View Point

The traceability system allowed the engineers to coordinate and control changes to

their requirements. The trace relationships between the customer's specifications

and the requirements enable the development engineers to determine and

negotiate the impact of any changes to specification change. These trace

relationships were employed to generate documentation which formed part of the

procurement contract. These documents bound the engineers and customer

together, resulting in the reduction of "requirements creep" (introduction of new

requirements) and the elimination of "over the waIf' (customer imposed) changes.

The ability of the traceability system to allow the engineers to identify which

development components (requirements, design items and tests) could be reused

was also seen by the engineers as a way of improving their efficiency.

5.5.2 The Manager's View Point

Though establishment and maintenance of the traceability system required project

budget, these cost were justified by the project management. The ability to

63

identify development components that could be reused resulted in a perceiVed

reduction in project risk. The identification of these components also enabled the

project management to make better estimations of the production costs. The

traceability system allowed management to estimate progress by rate of creation

of traceability links between development artefacts.

5.5.3 The Customer's View Point

The traceability system does not directly increase the cost to the customer, but the

presence of the system is beneficial to him. The main benefit to the customer is a

demonstration of how the requirements related to his specification and how the

product will be tested to demonstrate compliance with the specification.

5.6 Summary

The traceability system is beneficial to the

• Development engineer as it assists in the selection of a suitable base product

and provides information that aids change negotiations.

• Manager as it helps to reduce risks and improve cost estimates.

• Customer as it provides a clear link from their specification to compliance

tests.

Traceability in this project has become part of and beneficial to the development

process. The traceability information is directly beneficial to the development

process being undertaken and therefore overcomes the Traceability Benefit

Problem. This is why this traceability system is successful.

The next chapters of the thesis examine how the lessons learnt from this case

study can be employed in the development of a generic solution to the

Traceability Benefit Problem.

64

Chapter 6 Negotiating Change

6.1 Introduction ... 65

6.2 Sequential and Iterative Development Models 66

6.3 Agile Software Development.. ... 70

6.4 BAE SYSTEMS Common Engineering Process Model (CEP) 73

6.5 Observations and Summary .. 76

6.1 Introduction

Chapter 5 described how the automotive sensor project employed a traceability

system to help the development engineers negotiate customer changes to their

baseline requirements. The Traceability Practice Survey (Chapter 3) highlighted

the problem of establishing and maintaining development phase baselines. During

the survey, a number of engineers raised issues relating to the re-issuing of

interface documentation without any consultation or negotiation (referred to as

Throwil/g Problem over the Wall). This chapter examines the issue of change

negotiation by considering how some common software development models deal

with change. Finally, the BAE SYSTEMS Common Engineering Process Model

(CEP) is reviewed as many BAE SYSTEMS development processes are based on

this or a similar development model. The CEP is reviewed with respect to change

negotiation and the results are related to the observations made during the

Requirement Traceability practice survey.

65

6.2 Sequential and Iterative Development Models

6.2.1 Sequential

The waterfall development model is one of the most cited, most abused and

criticised development models. The model was originally proposed by Royce

[Royce 1970]. Interestingly, his paper does not mention the term ''waterfall'' and

this term seems to have been coined due to the cascade arrangement of his

diagrams that outlined a sequence of generic development phases. The waterfall

model has been strongly criticised due to the apparent need to complete one

development phase before embarking on the next phase. In such a model, there is

no chance to negotiate change. The ability to freeze or fully complete a

development phase is considered to be unrealistic by many engineers [Weinberg

1997].

To a large extent, Royce has been misrepresented as he did not propose that

software development be performed in a single sequence of development phases.

In his paper, he stated that there should be interaction between development

phases and highlighted the issues in determining the correct development phase

baseline to allow the procession to the next phase.

With respect to communication between development phases, Royce strongly

promoted the use of written communication logs and interface documentation. He

stated, "A verbal record is too intangible to provide an adequate basis for an

interface or management decision An acceptable written description forces the

designer to take an unequivocal position and provide tangible evidence of

completion" [Royce 1970].

The V Model [IABG 2007] (Figure 6-1) which was originally developed by

Industrieanlagen-Betriebsgesellschaft GmbH (JABG) in cooperation with the

German Federal Office for Defense Technology and Procurement (1992) is a

development of the waterfall model. The V Model is comprised of four

66

submodels: the Software Development (SWD), Quality Assurance (QA),

Configuration Management (CM) and the Project Management (PM).

Activity

SWDI
System

Requirements
Analysis and

Design

~,-----------------,

--------------- , - , , ,
,,' "

... -'

SWD2
Data Processing
Requirements

Analysis and Design

... ---
SWD3

SW
Requirements

Analysis

--- ------------- , , , , , , ,

--
SWD9

DP
System

Integration

T
SWD8

Data Processing
Integration

f

.. ------- ... , ,

~ ... ,--" "'"

SWD7

_&.-,

D

SWD4

Preliminary
Design

r-------, , , ,
~~' \ _.a._ ... ~., '.

SWD5

Detailed
Design

, ,

S W Integration

i

\. 1

Proof Activity SWD6

Implementation

Figure 6-1 V Model -Software Development Model [IABG 2007]

67

The submodels are closely interconnected and mutually influence one another by

exchange of products and results. The Software Development submodel (Figure

6-1) is considered to be, by most engineers, the V Model.

The Software Development submodel addresses a major criticism of the waterfall,

namely that the waterfall model defers all testing to the later development stages.

Such late testing often highlights problems in the implementation that are costly to

fix. The Software Development submodel tackles this issue by describing the

validation activities and results that are required for each stage of software

development. The aim of the Software Development submodel is to spot

implementation problems before they are propagated down the development

process.

The Software Development submodel suffers from same issues that befall the

Waterfall model in the respect of determining a suitable baseline. The model

assumes that a development phase is stable and validated by testing before

moving onto the next development phase. The current version of the model, V­

Model XT [KBSt 2007] accepts that changes will occur. The V-Model XT

document states "If a specified degree of completeness has been reached, it is

necessary to follow product changes formally". The product change procedure

consists of raising a change request which is evaluated and decided upon by a

project change control board. This common method of change negotiation moves

the decision making from the development environment to the management

environment where the technical expertise may be not be as great.

68

6.2.2 Iterative

Beohm's Spiral Model6 [Boehm 1986] addresses some of the deficiencies found

in the waterfall model. The waterfall model assumes a progression of elaboration

steps and does not accommodate evolutionary development made possible by

rapid prototyping programming languages. The spiral model uses a cyclic

approach to develop increasingly detailed elaborations of a software system's

definition, culminating in incremental releases of the system's operational

capabilities. The Spiral model can be considered a meta-model in that it is a

generalisation of an incremental and iterative development model. With respect to

communication and change negotiation between development teams and

stakeholders, the original spiral model says little. This was considered a

deficiency, addressed in the WinWin Spiral Model [Boehm and Bose 1994].

The Win Win Spiral Model employs the Theory W (Win) approach [Boehm and

Ross 1989] to determine the system's next-level objectives, constraints, and

alternatives. For example, the next-level could be the implementation of a number

of changes that are required to be made to the existing system. The Theory W

approach involves identifying the system's stakeholders and their win conditions,

and using negotiation processes to determine a mutually satisfactory set of

objectives, constraints, and alternatives for the stakeholders. The term "Theory"

may be an overstatement, as the paper [Boehm and Ross 1989] is a collection of

6 In his paper, A Spiral Model of Software Development and Enhancements, Boehm illustrates the

Spiral model by describing the development of a Software Productivity System (SPS), which

included a Requirements Traceability Tool (RTT). This tool is described in a related paper [Boehm

et al. 1982]. Unfortunately, no further references can be found in the literature on how successful

the RTT tool was in practice.

69

observations on software development which are employed to establish software

project management guidelines. For example, the advice on developing a Win­

Win situation involves separating the people from the problem; focusing on

interests and not positions; inventing options for mutual gain and insisting on

using objective criteria.

The application of Theory W to the Spiral Model resulted in the following

extensions

• Determine Objectives. Identify the system life-cycle stakeholders and their

win conditions. Establish initial system boundaries, external interfaces.

• Determine Constraints. Determine the conditions under which the system

would produce win-lose or lose-lose outcome for some stakeholders.

• Identify and Evaluate Alternatives. Solicit suggestions from stakeholders

• Record Commitments and areas of flexibility.

• Cycle through the Spiral. Elaborate win conditions, resolve risk, develop and

execute downstream plan.

The Win-Win theory and spiral model extension can be criticized as they do not

deal with conflict between stakeholders, they assume that stakeholders will always

cooperate, and only provide high-level guidance to solving the problem of change

negotiation.

6.3 Agile Software Development

Agile Software Development developed from the principles promoted by a group

of software developers who considered current development methods to be too

prescriptive and restrictive. Agile Development was defined at a workshop in

Snowbird, Utah, USA (2001), where software developers discussed the software

development process. The outcome of the discussions was a Manifesto for Agile

Software Development (Figure 6-2) [agilemanifesto.org 2007].

70

"We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more. " [agilemanifesto.org 2006]

Figure 6-2 Manifesto for Agile Software Development

These aims give rise to a number of methods which have the following

characteristics.

• Agile methods develop software in small iterations, which have development

timescale in the order of weeks.

• Each iteration is a miniature software project of its own, and may include all

the tasks necessary to release the mini-increment of new functionality:

planning, requirements analysis, design, coding, testing, and documentation.

• Agile methods emphasize real-time communication, preferably face-to-face,

over written documents. Change negotiations are conducted informally face­

to-face between stakeholders.

• Agile development teams are co-located and include all the people necessary

to finish the software. At a minimum, this includes programmers and their

"customers" .

Boehm and Turner [Boehm and Turner 2004] characterised Agile methods as

being at the opposite end of a spectrum from "plan-driven" or "disciplined"

methodologies. This definition can be misleading, as it implies that agile methods

are ''unplanned'' or "undisciplined" which they are not. Boehm and Turner

71

suggested that development methods exist on a continuum (Figure 6-3) from

"adaptive" to "predicti ve" .

Adaptive

Adaptive Proj ect
Home Ground

Low criti cality
Senior deve lopers

Hi gh requ irements change
Small number of developers

Culture that thr ives on
chaos

Agi le Methods

Figure 6-3 Development Method Continuum

Iterat ive-Spiral Waterfall
Based Based

Methods Methods

Predictive

Predictive Project
Home Ground

High criticality
Junior developers
Low requi rements change
Large number of
deve lopers
Culture that demands
order

Adaptive development methods adapt quickl y to changing project requ irements.

Therefore, an adapti ve team will have difficul ty in defining a project plan. In

contrast, Predictive development methods define all stages of product

development in advance. A predicti ve team can report exactly what features and

tasks are planned for the entire length of the development process. Boehm and

Turner [Boehm and Turner 2004], suggest that risk analys is be used to choose

between adaptive ("agile") and predicti ve ("plan-driven") methods. Boehm and

Turner suggest that each side of the continuum has its own home ground (Figure

6-3). In summary, agile development methods embrace change though it is not

clea r on what grounds changes are determined.

Wi th respect to change negoti ation, it can be argued that the common use of the

" Project Change Board" in the predictive development methods was one of the

driving fo rces behind the Agile movement. The use of the Proj ect Change Boards

removes the decision making fro m the loca l development process team. This

72

demonstrated in the one of the characteristics of an Agile process, that all

negotiations are conducted informally, face-to-face, between stakeholders.

6.4 BAE SYSTEMS Common Engineering Process Model (CEP)

The common engineering process (CEP) is a template model for all BAE

SYSTEMS development processes. The CEP owes its origins to the V-Model.

The aim of the CEP is to bring a degree of consistency in development processes

among the projects currently being developed within BAE SYSTEMS. Many of

the projects which took part in the Traceability Practice Survey (Chapter 3) had

development processes which were similar, if not based on, the CEP. The CEP

development process (Figure 6-4) is composed of nine development processes.

• Determine and Manage Requirements (R): Analyse, explore, refine and

specify the requirements and agree them with the customer. Manage any

change to the requirements. Specify the criteria for customer acceptance of the

system and agree them with customer.

• Perform FunctionallBehavioural Analysis (F): Analyse the required system

functions and behaviour to resolve them down to progressively lower level

functions and behaviour. Create and agree a behaviour structure that describes

system behaviour, sequence and data flows. Repeat this process for each

candidate solution produced in process (C).

• Create Candidate Solution Concepts (C): Create, assess, refine and describe

a number of candidate solution concepts. Establish the feasibility of meeting

the requirements and select the preferred options for subsequent specification

and design.

• Design and Specify Sub Systems (D): Design the system, using the chosen

solution as a starting point. Establish the design configuration, partition the

system into sub-systems, allocate budgets and define interfaces. Progressively

assess and improve the design using feedback from reviews, analysis,

specialists, tests and trials. Specify and agree the system design and produce

73

drawings. Specify requirements for each sub-system. Specify and agree the

requirements for test, proving and integration processes and the requirements

for test and support equipment. Demonstrate requirements traceability.

Determine and Manage
Requirements (R)

Manage System Engineering

Provide Special Design Support

Perform
FunctionaVBehavioural

Analysis (F)

Secure Acceptance and
certification (AC)

Support High Level Tests (n
Design and Specify

Subsystems (D)

Create Candidate
Solution Concepts (C) Integrate and Test (I)

Harmonise Subsystem
Implementations (H)

Perform Systems Analysis (A)

Project Time

Figure 6-4 CEP Development Processes

• Perform Systems Analysis (A): Create models and simulations of the system

in its operational environment. Carry out analysis using these models and

simulations in order to predict systems properties and behaviour, including

predictions of the emergent properties and of system performance within

constraints. Use the analysis and predictions to support the development

process.

• Harmonise Sub System Implementation (H): Assess the emerging sub­

system engineering implementations and gather engineering data. Identify any

concerns with the implementations and propose solutions. Make

recommendations on the acceptability of any design changes and on their

74

points of embodiment to maintain harmony and compatibility between the

developing parts.

• Integrate and Test System (I): Produce an integrated strategy early in the

lifecycle. Supervise the practical assembly integration and test of prototype

system, resolve any technical problems arising and carry out design proving

tests.

• Support Higher level Tests (T): Plan and support test of the prototype

system functioning in its operational environment, with its associated systems,

in accordance with a previously defined test strategy. The higher level tests are

usually carried out in conjunction with the customer, with the objective of

showing that the design meets performance and other requirements when used

under realistic operational conditions. The test results are analysed to provide

design feedback and obtain evidence to validate the design and lead to

customer acceptance.

• Secure Acceptance and Certification (AC): Progressively gather and present

design proving evidence that the system is compliant with requirements, and

secure customer acceptance and certification of the design.

For each development process there is a detailed process description which

defines: the activities which the process is composed of, the roles and

responsibilities of engineers performing the process, inputs required by the

process, outputs produced by the process, process entry and exit criteria. Though

CEP is an iterative process, all of the detailed process descriptions are written as if

the product will be completed in a single iteration (e.g. similar to a waterfall

process). There is no process for producing plans for the next iteration as would

be found in the Spiral model based process.

The CEP is vague on the subject of inter-process communications. The CEP says

little on the subject other than by defining what information shall be passed

between processes. The CEP simply states that inputs to a process should be

75

reviewed and it is not clear how issues arising from these reviews should be

resolved.

The detailed process descriptions do not state how changes, due to development

iterations or reviews, are to be negotiated. The CEP simply gives precedence to

the preceding processes with respect to change. This can cause conflicts, in

particular for the Design and Specify (D) process which has two proceeding

processes. With respect to the resolution of change issues, the CEP does however

describe a project management structure that has the responsibility for escalating

issues to the project management team.

6.5 Observations and Summary

The problem of determining the correct baseline to allow development progress to

next phase occurs in all predictive development models. Change is inevitable. The

predictive models have an inherent bias towards upstream development phases

which often results in one-way communication [AI-Rawas and Easterbrook

1996;Curtis, Krasner and Iscoe 1988]. This bias and the need to introduce changes

to a baseline often give rise to "throwing the problem over the wall". Boehm

observed similar problems and this led him to suggest the Win Win extension to

his spiral model to improve negotiations between stakeholders.

It can be argued that the agile software development movement has arisen partly

due to the bad or lack of communication found in predictive models. The agile

community has tackled this problem by discarding development phases and

developing co-located teams able to tackle all aspects of the development.

However, within an agile development team there still will be conflict due to team

members taking different positions on changes. In such cases, agile team members

will have to negotiate these changes and will need to adopt similar objective

criteria as described in Win Win.

76

These observations suggest that, for a development process which is based on a

predictive model, a protocol is required that defines how related development

teams communicate and negotiate change. This protocol should curtail the

upstream bias of these models by allowing the downstream development phases

an opportunity to negotiate any changes. Successful change negotiations require,

as Boehm observed, objective criteria to base the decision on. One such criterion

is the determination of the impact of a change on the existing product. This is how

the Automotive Sensor (Chapter 5 - Section 5.4.1) team employed their

traceability data in the negotiation of changes to their products.

The next chapter introduces the Traceable Development Contract (TOC). The

TDC is proposed as a means of controlling the upstream team bias with respect to

the imposition of changes, by employing a inter-team development protocol and

traceability to negotiate change.

77

78

Chapter 7 Traceable Development Contract

7.1 Introduction ... 79

7.2 Origins of the Traceable Development Contract (TDC) 80

7.3 An Overview of the Traceable Development Contract 81

7.4 Contract Initiation ... 83

7.5 Problem Discourse .. 84

7.6 Proposed Solution ... 86

7.7 Development & Refinement ... 88

7.8 Completion .. 89

7.9 Addressing Criticisms ... 90

7.10 Summary .. 90

7.1 Introduction

Chapter 6 highlighted the weaknesses in predictive development models with

respect to establishing development phase baselines and the inherent bias these

models have towards upstream development phases making changes to their

baseline. Chapter 5 described how the automotive sensor project employed a

traceability system to help the development engineers negotiate customer changes

to their baseline requirements. This chapter combines these themes and introduces

the Traceable Development Contract (TDC). The TDC is proposed as a means of

controlling the upstream team bias with respect to the imposition of changes, by

employing traceability to provide a basis for the negotiation of change. By

employing traceability in this way, it becomes beneficial to the development

engineers and therefore overcomes the Traceability Benefit Problem.

79

7.2 Origins of the Traceable Development Contract (TDe)

The TDC is based on the traceability practice survey (Chapter 3) and the

automotive sensor (Chapter 5) development process and traceability system. The

automotive sensor development process is based around a customer-<ieveloper

relationship. In this relationship, both parties have well-defined roles and

responsibilities. For example, the customer is required to produce a specification

that is of sufficient quality to enable the development of the product. The

customer understands that an incomplete specification that requires frequent

updating may result in delays and increased costs. The developer has the

responsibility of understanding the specification and resolving any issues with the

customer. The developer is also required to demonstrate that the product satisfies

the customer's specification. These roles and responsibilities are defmed in the

purchase contract. The traceability system helps both parties adhere to their

respective responsibilities by providing information that helps them negotiate

changes to the specification or to the sensor.

In contrast to the automotive sensor project, the rest of the surveyed projects in

Chapter 3 were large projects that were developed according to a predictive

development model which was the same or similar to the BAE SYSTEMS

Common Engineering Process (CEP - see section 6.4). In such a development

process, the main "customer" relationship is between a development team and the

project management and not between the related development teams. In the BAE

SYSTEMS Common Engineering Process (CEP) each development phase/team is

a separate entity, consuming inputs, performing development tasks and producing

internally validated output. As a result, team managers concentrate solely on the

progress of their phase and do not consider the impact of their decisions on their

immediate down stream phases.

80

The weakness of predictive based development processes in establishing baselines

and the insular nature of development team management often results in the

"throwing the problem over the wall". This was observed during the survey and

has also been observed in other multi team development processes by Al-Rawas

and Easterbrook [AI-Rawas and Easterbrook 1996] Curtis et al. [Curtis et al.

1988] and Christie et al. [Christie et al. 1996].

The above observations suggest that the establishment of a customer-developer

relationship between related development phases would help to alleviate the

issues related to the establishment and maintenance of a baseline. This

relationship would require an upstream development phase to communicate and

negotiate changes to their baseline with the affected downstream phases. This

relationship has an additional benefit as the developers who produce a baseline,

who will act as customer, have the product knowledge to allow them to validate

the suitability of the products produced by the downstream phase.

The automotive sensor project provides a good model on which to base such a

customer-developer relationship. As demonstrated, a Traceability system is

central to such a relationship as it provides information that allows the negotiation

of changes to a baseline and provides evidence for the suitability of the product.

As the recording of the traceability relationships would be beneficial to both sets

of engineers, such an arrangement would also work towards overcoming the

Traceability Benefit Problem.

7.3 An Overview of the Traceable Development Contract

The TDC formalises the interaction of the teams by defining their behaviour with

respect to the state of their shared development artefacts. Traceability is employed

as a means of assessing the impact of a change to development artefacts and

providing a basis for the negotiation of the change. The TDC affords the engineers

in the downstream team an element of control over their development

81

environment by limiting the imposition of changes by the upstream team. The

TDC introduces a new contractual relationship between cooperating development

phases. By keeping the definition of the TDC simple and generic the contract can

be app lied to each development interfaces (Figure 7-1).

New Contractual Relationships

The TOC introduces new controctunl
relationships between cooperating
development ph uses

Figure 7-1 TDe applied to each development interface

The TDC consists of three parts:

.
'

.......
...... ,

......
.....

Ex isting Contractual Relationships

Each development phase is responsible
to the Project Management

I . A protocol that defines the responsibiliti es and behaviour of each development

phase with respect to the estab lishment and maintenance oftbe contract

2. Problem artefacts (documentation, diagrams, models etc.) that describe a

problem domain (or development baseline).

3. Traceability data structures tbat record the relationship between tbe problem

artefacts and the solution. The traceability structures provide information that

assists in so lution development, problem change negotiations and the

demonstration of so lution va lidi ty and completion .

82

The contract protocol is a means of defming the behaviour of the development

teams. The protocol is defined by five stages: Contract Initiation, Problem

Discourse, Propose Solution, Development & Refmement and Completion (Figure

7-2). These stages are based on the observations made during the survey and the

operation of the automotive sensor team.

• •

Qualification

Development &;
Refinement

Figure 7-2 Overview of TDC Stages: UML State Diagram

7.4 Contract Initiation

The Contract Initiation stage is concerned with defining the contractual terms of

the work that is to be undertaken. The information that is required to be recorded

and agreed at this stage of the contract will be:

1. A description of the activity to be undertaken by the downstream team.

2. The identification of the upstream and downstream stakeholders.

83

3. A description of the problem artefacts.

4. Planning information: the agreement of dates for the delivery of the problem

artefacts and estimated start dates for each phase of the TDC.

5. The establishment of a conflict arbitration procedure and arbitrator.

For development processes that are compliant to development standards such as

B8 TickIT 2000 [TickIT 2000] and 1809003[1802007] contractual items 1 to 4

are required to be defined in the project plan.

Conflict is likely to occur between teams that have a relationship due to problems

in the coordination of their activities [Easterbrook 1993]. Therefore, a method of

resolving conflict, item 5, is required to be defined and agreed. A suitable

candidate for an arbitrator would be the "traditional" chief engineer: an engineer

who has technical knowledge yet is separate from the project hierarchy. The

Initiation stage lays the foundations for the following stages of the TDC.

7.5 Problem Discourse

The Problem Discourse stage commences once the contractual terms have been

agreed in the Contract Initiation stage and the problem artefacts have been made

available to the downstream team. The Problem Discourse stage aims to clarify

any issues with the problem artefacts and to obtain the agreement of the

downstream developer team that the artefacts are suitable for the production of an

initial solution. It is the responsibility of the downstream team to review the

problem artefacts with reference to their suitability for the production of an initial

solution and to agree the status with the upstream development team. The review

of the problem artefacts by the downstream team may result in requests for

clarification or requests to change problem statements.

Conflict between the teams may occur at this stage and it is the role of the

Arbitrator, who was identified in the previous stage, to resolve such disputes. The

Arbitrator can reject, accept or defer a change to a later release. Once all the

84

problem artefacts have been agreed upon by the downstream team, the artefacts

are frozen to allow for the development of the initial solution. The Arbitrator will

be required to take into account the acceptance of the suitability of problem

artefacts by the downstream team in the case of future disputes. The Problem

Discourse stage is summarised in Figure 7-3.

Customer
Upstream Team

Developer
Downstream Team

Figure 7-3 Problem Discourse: UML Activity Diagram

85

Arbitrator

(DefCf~l

7.6 Proposed Solution

The proposed solution stage commences once all problem artefacts have been

agreed to be suitable for the production of an initial solution by the downstream

team. The aim of this stage is to couple the solution, via traceability relationships

(Figure 7-4), to the problem artefacts and to gain agreement from the upstream

team of the suitability of the solution. The stage is intended to be of a short

duration. It is understood by both teams that the initial solution will be incomplete

and will be a prototype that will require further development.

This coupling of the problem with the solution provides the downstream team

shared control over the problem/solution space as changes to the problem artefacts

cannot occur without a solution impact analysis and resulting change negotiation.

It is the traceability relationships that provide a means of determining the impact

ofa change.

The downstream team will be required to record Problem/Solution Satisfaction

Traceability to demonstrate what parts of the solution satisfy or address which

problem artefacts (Figure 7-4). To determine the impact of a change to the

problem artefacts the downstream team will be required to record Solution

Decomposition Traceability. To demonstrate to the upstream team that solution is

comprehensive and can be validated, the downstream team will be required to

record Problem/Test Satisfaction Traceability (Figure 7-4).

For example, the automotive sensor project employed the DOORS tool to

manipulate traceability information to produce reports that documented which part

of the sensor software satisfied which requirements and how the software would

be tested. These reports were used to demonstrate to the customer the suitability

of the sensor software.

The presence of problem-solution traceability relationships from previous

development iterations will allow the downstream engineers to determine quickly

86

what changes are required for the new solution. This use of traceability

relationships to detennine component reuse was demonstrated by the automotive

sensor project.

Once the downstream team has recorded the traceability relationships between

their initial solution and the problem artefacts and demonstrated to the upstream

team the suitability of the solution, the contract progresses to the Development

and Refinement stage.

Problem
Artefacts

Validation
Tests

\1 -.. __ r:-l
t= J.:""" ~. 6-

7--
8--

!~ "'<l
12-
13-14---f·· ... 15-...
16-...

..... '~,
0-2::

Solution

\

\

Problemrrest Satisfaction Traceability - -
Problem/Solution Satisfaction Traceability ___ - - - - --
Solution Decomposition Traceability - . - . - . - . - . - .-

Figure 7-4 Problem Solution Traceability

87

7.7 Development & Refinement

Once the Proposed Solution stage has been completed, the downstream engineers

will continue to progress with the development and refine their solution. As the

solution is developed, the downstream team will continue to create new

traceability relationships between the problem artefacts and the solution.

During development, it is unreasonable to expect that no changes to the problem

artefacts will occur. Change will occur due to the inherent problem of establishing

a baseline found in predictive base development processes. The observations

made in the course of this thesis suggest that the development issue with respect

to baseline change is not that it occurs, but the determination of the impact of

changes. It is difficult for development processes that do not record traceability

between the problem artefacts and the solution to determine the impact of a

change. Without this information, it is difficult for the teams to negotiate the

scope of a change. This was observed in the traceability practice survey for

development processes, which did not record any traceability information. In such

development processes, changes were more likely to be imposed regardless of the

impact.

In the Development & Refinement stage, both teams are free to make requests to

change the problem description artefacts. The impact of a change to the problem

description artefacts is determined from the traceability relationships. Based on

this information, the change is negotiated with consideration given to

development timescales as defined in the contract initiation stage. Conflict may

occur between the teams during the negotiation of a change. It is the Arbitrator's

role to resolve such conflicts in a similar manner to the arbitration of change

requests in the Problem Discourse stage.

88

The Development & Refmement stage continues until the downstream team can

demonstrate to the upstream team that the solution addresses all the problem

artefacts, or the allocated development time as defmed in the IDC has expired.

7.8 Completion

Projects are rarely fully completed [Weinberg 1998] and this is demonstrated in

the Automotive Sensor Case study where approximately 2% of the customer

requirements remained unsatisfied on completion of the project. The aim of the

Completion stage is to demonstrate what has been successfully completed.

It is the responsibility of the downstream team to demonstrate to the upstream

team that the solution addresses the problem and that this can be demonstrated by

validation tests and recorded results. The upstream team has the responsibility of

accepting (or not) the evidence of completion and confirming the completion of

the contract. In the automotive sensor case study (chapter 5) reports were

generated from the traceability relationships to demonstrate to the customer that

the sensor software satisfied their requirements and that it had been verified by

testing.

In the case where the solution has not completely addressed the problem it is the

responsibility of the downstream team to list the areas in which the solution is

deficient. Again, this information is obtained from the traceability relationships. If

this occurs both teams will be required to negotiate the suitability of the solution

and this may result in the issuing of a new TDC. These negotiations may result in

conflict and the Arbitrator may be called upon by either team to make a

judgement on the suitability of the solution based on the traceability information.

As demonstrated in the automotive sensor case study (chapter 5) the

problem/solution traceability data becomes a valuable resource for further

development, for it allows the determination of which components can be reused

in product variants or in future development iterations.

89

7.9 Addressing Criticisms

The IDC can be criticised as another form of bureaucracy that will burden hard­

pressed engineers further. This criticism can be countered as follows. The IDC

gives a structure to the interaction of related development teams. It was

demonstrated in Chapter 6 that development processes based on a predictive

development model, such as BAE SYSTEMS CEP, often do not define how

related teams should cooperate. The TOC also gives a development context to the

recording of traceability data. The TOC describes how the traceability data is

employed to benefit the development process for example, in change impact

negotiations. The traceability surveys (Chapter 3) demonstrated how a perceived

lack of purpose for the recording of traceability data resulted in the poor recording

and maintenance of traceability data. The TOC creates a customer-developer

relationship between development phases allowing the exploitation of the

upstream team's expertise. This is in contrast to present predictive development

processes where the main contractual relationship is between a team and the

project management. However, the question of whether the IDC adds

bureaucracy to the development process will only be answered by the

implementation of the TOC in a live development environment, which is

discussed in Chapter 10.

7.10 Summary

The TOC addresses the problem of controlling the upstream team bias with

respect to the imposition of changes to a baseline by employing traceability to

provide a basis for communication and the negotiation of change. By employing

traceability in this way, it becomes beneficial to the development engineers and

therefore overcomes the Traceability Benefit Problem. The benefits of the IDC

are further illustrated in Chapter 9 (An Illustration of the TOC) which describes

how the contract would be employed in development of a hypothetical jet trainer.

By making the TOC applicable to each development phase interface progress

90

towards the elusive goal of end-to-end traceability can be achieved. The next

chapter will examine what data structures are required to achieve the aims of the

TDe.

91

92

Chapter 8 TDC Traceability Data Structures

8.1 Introduction ... 93

8.2 Influences of Existing Traceability Structures 94

8.3 Influences of Traceability Practice Survey ... 102

8.4 TDC Traceability Data Structures Design .. 103

8.5 Artefact... ... 105

8.6 Artefact Satisfaction .. 107

8.7 Artefact Decomposition .. 109

8.8 Artefact Validation .. III

8.9 TDC Data Structure Summary .. 113

8.10 Summary ... 113

8.1 Introduction

Chapter 7 outlined the Traceable Development Contract (TDC) and how it

employs traceability as a basis for negotiating changes to a development baseline.

This chapter examines the data structures required to achieve the aims of the

TDC. A number of guiding principles have arisen out of the development of this

thesis, which has influenced the design of TDC Traceability data structures.

• The structures must be generic and applicable to all development phase

boundaries.

• The structures must only record information that is relevant to the TDC and

therefore be able to record information that:

o Demonstrates Problem-Solution satisfaction information

o Allows the navigation of the solution

o Demonstrates solution validation

93

o Supports stakeholder communications.

This chapter describes the traceability data structures that achieve the above

principles and how the development of the structures has been influenced by

previous traceability structures and the Traceability Practice Survey. The chapter

concludes by examining how the TDC traceability data structures can be exploited

further to provide solution maturity and design metrics.

8.2 Influences of Existing Traceability Structures

A number of traceability structures have been proposed that have similar gu iding

principles to that of the TDC Traceability data structures. The traceability

structures which have influenced the development of the TDC traceability data

structures are Rich Traceability [Dick 2002] , Contribution Structures [Gotel 1995]

and Design Rationale Capture System (DRCS) Language [Klein 1993].

8.2.1 Problem-Solution Satisfaction Traceability

Satisfaction traceability is the recording of a relationship between a solution

artefact and problem artefact (Figure 8-1) where the solution artefact satisfies,

either fully or prutially, the demands of the problem artefact.

Figure 8-1 Simple Solution Satisfaction Traceability

94

Satisfaction traceability relationships can be captured in the form of a traceability

matrix or in a hyperlink based tool such as DOORS [DOORS 2007]. These

relationships are of limited use to the engineer, as the presence of a relationship

does not inform the engineer if the solution artefact satisfies the problem artefact

partially, totally or is a part of a collection of artefacts that combine to satisfy the

problem artefact. As a result, the engineer may have difficulty in determining the

impact of a change by just following the satisfaction relationships.

To address these problems, additional domain information is appended to the

satisfaction relationship to allow the engineer to determine the contribution the

artefact makes to the solution (Figure 8-2). This information is referred to as a

satisfaction argument, though it goes by many different names dependant on the

development phase, for example:

• "Requirements Elaboration" for a satisfaction argument that demonstrates how

the system requirements are derived from the user/system specification.

• "Design Justification" for a satisfaction argument that demonstrates how the

design is derived from the requirements.

• "Implementation Strategy" for a satisfaction argument that demonstrates how

the code is derived from the design.

• "Test Strategy" for a satisfaction argument that demonstrates how the tests

exercise the code.

In essence, the above data has the same aim, to present an argument to provide

evidence of how the solution artefact contributes to satisfying the demands of the

problem artefact. This information is normally recorded as plain text, though data

structures have been advanced as a means of describing a satisfaction argument.

95

* Problem Artefact
Satisfies

Satisfaction
Argument

Solution Artefact

*

Figure 8-2 A Simplified UML Class Diagram of a Satisfaction Relationship

Rich Traceability [Dick 2002] is promoted as a means of providing evidence of

the contribution that a solution artefact makes to the satisfaction of a problem

artefact by recording a satisfaction argument. In Rich Traceability, the satisfaction

relationship is appended with a satisfaction argument expressed in plain text.

Propositional operators are employed to indicate the way solution artefacts

combine to satisfy a problem artefact:

• By conjunction (&) indicating that, the contribution of all the solution

artefacts is necessary for the satisfaction of the problem artefact to hold.

(Figure 8-3)

• By disjunction (OR) indicating that the contribution of anyone of the solution

artefacts is necessary for the satisfaction of the problem artefact to hold.

(Figure 8-3)

Problem
Statement

Figure 8-3 Refinement of Solution and Satisfaction Arguments

96

Solution S2.1

Solution S2.2

Rich Traceability allows the engineer to refine his solution by use of refmement

satisfaction arguments. Rich Traceability was successfully employed by Praxis,

for Railtrack in the development of requirements for West Cost Rail Route

modernisation project. Praxis has incorporated extended Rich Traceability into

their REVEAL requirements engineering method [Praxis 2007].

Rich Traceability can be thought of as a member of the collection of Goal­

Oriented Requirements Engineering (GORE) methods that also include Goal

Structuring Notation (GSN) [Kelly 1999], Knowledge Acquisition in autOmated

Specification (KAOS) [Darimont et al. 1998] and Goal-Based Requirements

Analysis Method (GBRAM) [Anton 1997]. These methods have similar

taxonomies that consist of a network of goals, which are connected by links. Each

method has its own taxonomy of goals but in essence there are two broad classes

of goals: goals that define the desired characteristic or state of the system and

goals that define how a system characteristic or state will be achieved. Goal links

describe how a sub-goal is related, either positively or negatively, to its parent

goal. Goal links can be combined with combinational operators such as AND/OR.

An alternative to these GORE methods is Problem Frames [Jackson 2001].

Problem Frames represent the problem as collections of sub-problems, each of

which is smaller and simpler than the original. A problem frame defines the shape

of a problem by capturing the characteristics and interconnections of the parts of

the world it is concerned with. This technique employs problem diagrams to

describe the relationships between the machine, the problem domains and the

requirements. A problem diagram (Figure 8-4) shows:

• A dashed oval representing the requirement to bring about certain effects
in the problem domains

• Dashed lines representing requirements references

• The Machine that is to be built is represented in bold

97

• The domain rectangles represent the interactions the machine has with the
world

/
Problem ... ----------..,,' , Domain A

f
I
\ , , , ,

Machine

,

~
, ,

, ,

Problem r-- Problem
Domain B DomainC

Figure 8-4 A Simple Problem Frame diagram

-Requirement

...... ;r------
, , , ,

, ,
\

Hall [Hall et al 2002] demonstrated how problem frames can be employed in the

iterative development of an architecture and its requirements

8.2.2 Contribution Structures

Gotel [Gotel 1995] proposed the use of traceability structures, known as

Contribution Structures, to improve communications and cooperation between the

stakeholders involved in the elicitation of requirements. Contribution Structures

record the relationship between contributing stakeholders and an evolving

requirement. Contribution structures represent a requirement as an artefact. An

artdact can be a document, model or diagram. Artefacts are classified as being

primitive or composite, which are constituted from further primitive or composite

artefacts. Artefacts are created and maintained by Agents, who are stakeholders

involved in the development of a requirement. There are three classes of Agent: a

principal (P) who established the artefact, an author (A) who expresses the artefact

and a documenter (D) who records or transcribes the artefact. A stakeholder can

98

perform any combination of these agent roles. The principal's responsibility is to

determine and set the artefact's state to approved, pending approval or not

approved. The author's responsibility is to determine how the artefact is related to

other artefacts. The documenter's responsibility is for the physical and

presentational aspects of the artefact. Artefacts are related to each other by one of

two connecting relationships, referencing and adopting. Adopting relationships

represent the following changes to an artefact:

• Copy - use existing information as is with no changes or additions.

• Add - use existing information with extensions to the content

• Remove - use existing information with reduction in content.

• Alter - use exiting information with changes to clarify the content.

Reference relationships provide additional information to improve the

interpretation of the artefact. The combination of these relationships results in a

structure as shown in Figure 8-5.

I_ contribution£P

~--:~~ 0 A

Connectivity :

Artefact

(Adopts) :

Arte~act Contribution 0
Connectivity GJ'8

c-ti,;./'~-----~:~) -..: £
(Adopts),.. COntribUtiOn--' 0 0 A

GJ'8
Figure 8-5 Contribution Structure Relationships: Artefact Evolution

99

8.2.3 Design Rationale Capture System (DRCS) Language.

Klein [Klein 1993] tackled the problem of developing generic data structures,

which would capture the rationale for interdependencies between development

artefacts. His approach was to consider the interdependencies between

developments artefacts to be a result of a number of decisions that are made

during the course of a project. The resulting DRCS language consists of a

vocabulary of assertions consisting of entities such as modules, tasks,

specifications and versions, as well as claims about these entities. The language is

divided into two groups of structures, Synthesis and Evaluation. The Synthesis

structures, Artefact Synthesis (Figure 8-6 Artefact Synthesis) and Plan Synthesis

(Figure 8-7 Plan Synthesis), record the composition of the product and how it

relates the production plan.

Has Submodule

Is a/Type

Iso/Type Iso/Type

Has Allribute

Figure 8-6 Artefact Synthesis

100

Assertion

Has Action

Figure 8-7 Plan Synthesis

HasSubtask
Is of Type

Has Attribute

Module
HasP/an

The Evaluation group of structures (Figure 8-8) capture the design specifications

as well as how well they have been achieved. This group of structures consist of

Evaluation, Intent, Versions and Argumentation. The Evaluation structure links

the requirement specification to the artefact version that best achieves the

requirement. The Version structure captures the relationship between the current

artefact version that satisfies the requirements and the previous rejected versions

of the artefact. The Intent Structure records decisions made in the choice of the

current artefact version. Closely related is the Argument structure that captures the

argument for the chosen decision.

101

D

r················· ····· __ ·_·_·_···_·_-_·_·-
l ,

! j
I Has-I(riority
, !

I I
IB--------~:~:;r----- I

!
I !
I !
I Has-kriority

I j
I I ;
I I I .

l_ - - - - t~;;~; _~ _~ _~ _~ _- '~i·:·~·~~···~···~·-·-. ~'~~;;~~:;r~-' _. _. _. _. _. _. _.

I

Raises-Que:ilions Has-
Answer

Question

I
Hps-Priority

I
I

A- Evaluation Structure
8-Version Structure
C-I ntent Structure
D-Argumentation Structure

Figure 8-8 Evaluation Structures Group

8.3 Influences of Traceability Practice Survey

The Traceability Practice Survey (Chapter 3) raised a number of issues with

respect to the recording of traceability data structures. The most common issue

raised by the engineers was that a traceability data structure should not require an

engineer to duplicate information but should refer to the original source

documents.

The survey raised the issue of recording satisfaction arguments. Where a

Traceability tool allowed the recording of a satisfaction argument, engineers

stated that it was either obvious or often too complex to be transcribed in a few

102

paragraphs and such complex arguments were better described in the project

documentation.

For example, the MBDA ASRAAM project (refer to section 3.5.6) took a

different approach to the recording of satisfaction arguments. These projects did

not try to justify the presence of a traceability relation. They appended the

traceability relationships with data which was relevant to the use it would be put

to. For example, if the primary aim of recording traceability was for impact

analysis, then warnings would be appended to relations indicating the

consequences of a change. This targeted additional information proved to be

popular with engineers.

The survey also highlighted problems when a set of functional derived

requirements was mapped onto an object-oriented design (OOD). Engineers

claimed that it was difficult to determine the correct level of mapping, for a

requirement may be satisfied by the parent object or by one or more of the

inherited objects. The functional requirements to OOD mapping issues were only

partly solved by the adoption of a mapping standard that dictated how

functionality was related the 00 design.

8.4 TDC Traceability Data Structures Design

This section describes how the influences of the previous Traceability data

structures and the Traceability survey have resulted in the following generic

Traceability data structures, which satisfy the guiding principles set out at the

beginning of this chapter.

The key design decision for any traceability structure is whether the structure

should record all the product information or act as an indexing system that

informs the engineer of the location of the relevant information. There are

advantages and disadvantages to both approaches.

103

8.4.1 Design Decisions

The Automotive Sensor project (Chapter 5) was unique among the surveyed

projects as it was the only project which recorded all project information in its

traceability system. This approach had a number of advantages. For example, data

was not duplicated and there was no need to maintain external references. This

enabled up-to-date and consistent project documents to be generated from the

project data contained in the traceability system. The main disadvantage of this

system was the restricted set of tools that could interface with the DOORS tool.

Researchers have tried to address this problem of data sharing between tools by

developing traceability repositories that interface with a wide range of

development tools. The AP233 application protocol data model [Herzog 2000] is

an example of a data model for such a traceability repository. Another example of

a traceability data exchange model is the Meta-Modelling Approach to

Traceability for Avionics (MATra) [Mason 1999]. Unfortunately, the success of

these data exchange models or repositories have been limited due to complicated

data conversion required to support a limited range of development tools.

For the remainder of the surveyed projects their traceability systems contained a

mixture of internal data and references to external data and the application

required to manipulate this data. Though this approach has the inherent problem

of maintaining external references, it does not restrict the use of development

tools. As it is not possible to restrict or even to specify the tools required for all

developments phases, the TDC traceability structures adopt the approach of

recording references to external data sources and the location of the application

required to manipulate the data. This approach of referencing is compatible with

the developing XML technologies, such as XLink [Xlink 2007], which allow links

to be created between diverse range of media artefacts. The XML Linking

Language (XLink) allows elements to be inserted into XML documents in order to

create and describe links between resources. It uses XML syntax to create

104

structures that can describe the simple unidirectional hyperlinks of today's HTML,

as well as links that are more sophisticated. The Xlink standards and related tools

are presently under development.

The TDC traceability structures are required to be applicable to all development

phases. This requirement gives rise to the idea of a "generic artefact" which can

be decomposed as required into further artefacts. The "generic artefact" is the

basic building block of the TDC traceability data structures. Problem and Solution

Artefacts are generalisations of this common development artefact (Figure 8-9).

Decom osition:

Artefact

Description:
Artefact Location:
Application:
Development Status: {Not Agreed I Agreed I Deferred}

Figure 8-9 Problem & Solution Generalisation of a Common Artefact (UML Class Diagram)

Finally, the previous influences and the original guiding principles (refer to 8.1)

have given rise to four basic data structures, Artefact, Artefact Satisfaction,

Artefact Decomposition and Artefact Validation.

8.5 Artefact

The aim of the Artefact data structure (Figure 8-10) is to support the Problem

Discourse and Development & Refinement stages of the TDC. In the Problem

105

Discourse stage, the Artefact structure aims to support the clarification of issues

with the problem artefacts and to record the agreement of downstream developer

team that these artefacts are suitable for the production of an initial solution. This

is achieved by recording the queries and related replies raised on each artefact and

their agreed development status. The Development Status attribute records the

state of agreement between the two teams on the suitability of the artefact for the

production of a solution. The artefact can have a Development Status of not

agreed, agreed or deferred.

Prevlolls Version

Change
Change

UID# ------- Description
I Type: {Copy I Add I RemovelAherl

Arteract .
I .

UID#:
Description:

~
~ Change Authority Location: I

Application:
Development Status: {Not • Technical
Agreed I Agreed I Dererred I I Authority

Role: Authority
I . Tech.

Authority
Challge -' IL

I~ Implementation
Implementer

Artefac Implementer
Query Role: Implementer

I , •
Query

I
UID#
Text:

I \Z
Query Raised by

Stakeholder
Reply ,.

UJD#
,~ I I Name ... Email

Query Reply
I Rep/iedby I

Telephone
QueryUID# Location Address

Text:

Figure 8-10 Artefact Structure (UML Class Diagram)

106

In the Development & Refinement stage, the Artefact structure supports the

recording of changes to problem or solution artefacts. This information would be

recorded by two separate structures, problem artefact changes and solution

artefact changes, both of which are instantiations of the generic Artefact structure.

Development artefacts have stakeholders who are interested in the development

and maintenance of the artefact. From the survey, there appear to be two classes

of stakeholder, the Technical Authority and the Implementer. The Technical

Authority is normally an engineer who has the responsibility of overseeing the

production, and the approval of the artefact. This stakeholder plays a similar role

to that of Gotel' s Principal Agent. The Implementer can be a number of engineers

who are or have been involved in the production and maintenance of the artefact.

Again, the role of this stakeholder is similar to the combined roles of Author and

Documenter Agents proposed by Gote!. The changes that are allowed to be made

to an artefact draw upon Gotel's Adopting Relation. A change to an artefact can

be a Copy, Add, Remove or Alter just as with Gotel's relation.

8.6 Artefact Satisfaction

The Artefact Satisfaction structure (Figure 8-11) lies at the heart of the TOC and

can be thought of as the core traceability structure. The purpose of this structure is

to record the relationship between problem and solution artefacts. This

information is employed throughout the TDC:

• In the Proposed Solution stage of the TDC to demonstrate the coverage of the

initial solution.

• In the Refinement stage of the TDC to determine which solution artefacts are

affected by changes to problem artefacts and vice versa.

• In the Completion stage of the TDC to demonstrate the coverage of the final

solution and how it will be validated.

107

As Dick [Dick 2002] stated, the simple recording of problem solution

relationships may provide limited information and a satisfaction argument may be

required to describe the contribution the solution artefact makes to the satisfaction

of the problem. In practice, engineers found the writing of such arguments

difficult. Dick suggests that this may be a reflection of the lack of understanding

of the underlying relationships. The survey implies that there is a trade-off

between the effort expended in writing such an argument and the clarity it brings

to the interpretation of the problem-solution relationship. However, for complex

or rigorous transformations a satisfaction argument is required and GORE

techniques such as Rich Traceability provide a suitable method of describing such

an argument. Therefore, the Artefact Satisfaction structure has an associated class,

a Satisfaction Argument, which refers to a solution argument describing how the

solution contributes to satisfying demands of the problem artefact.

Arter.,,. (problem)
UID#:
Deacriplion:
Location:
Application:
Status:

Artefact (Solution)

UlIlt:
Sa/b/acllo" Dcacription:

1-----.-----1 Lo<ation:

Satisfaction Argument

UID#:
Reference to GORE Araument
·Rich Traceability

• Application:
Status:

Figure 8-11 Artefact Satisfaction (UML Class Diagram)

The Artefact Satisfaction structure (Figure 8-11) is a many to many relationship,

such relationships are often difficult to comprehend. Therefore, the Artefact

structure can be thought as a composition of two simpler, one to many,

108

relationships: Satisfaction-Problem View and Satisfaction-Solution View (Figure

8-12.)

Arterac' (problem)

UlD#:
Description:
Location:
Application:
StatUi:

Artefact (Problem)

UID#:
DClcription:
Location:
Application:
StatUI:

Arter ... (SoluUoo)
UlD#:

Sa,i6/oeJio .. Problnn View Deoc:riptioo:

r-------~------~ ~ • Application:

Sati.faction Argument

UID#:
Rere~nce to GORE Arpunmt
·Rich Traceability

Sali6/action-Sollltion Yin.'

Sati.faction Araument

UID~:
Reference to GORE Argument
-Rich Traceability

S :

Al1CflCt (Solution)

UlD#:
Delcription:
Location:
Application:
SIalUI:

Figure 8-12 Artefact Satisfaction: Problem and Solution Views (UML Class Diagram)

These two relationships represent the view of each team. The upstream team will

be mainly concerned with the problem view, while the downstream team will be

concerned with the solution view.

8.7 Artefact Decomposition

The aim of the Artefact Decomposition structure (Figure 8-13) is to allow the

engineer to describe the compositional relationships between artefacts that

combine to form the problem or the solution. The degree of decomposition is a

109

practical issue. Fine granularity gives rise to a large number of artefacts, which in

tum results in high data entry and maintenance burdens. The indications, drawing

upon the traceability survey (Chapter 3) and the automotive case study (Chapter

5), are that 200-300 artefacts seems to be the maximum number that a small team

(of up to 5 people - 50 to 60 objects per person) can handle comfortably.

Interface
UID#:
De.cription

AllribUle

, .
Attribute

UID#:
Name
Type

0.0

-"
"' Inteiface 1

Constraint

\ 1

Constraint
UID#:
Limits

Artefact
UID#:
Description:
Location:
Application:
Status:

Decomposition:

Demain
Information

WamingText:

Figure 8-13 Artefact Decomposition (UML Class Diagram)

The Artefact Decomposition structure takes a similar approach to Klein's Artefact

Synthesis structure. The method of decomposition, e.g. functional or object

orientated is not recorded, only that there is a logical decomposition relationship

between artefacts.

The aim of the TDe data structures is to provide information to allow the

negotiation of change. Both Klein and the traceability practice survey highlighted

110

the importance of being able to detennine the impact of a change on interfaces

exhibited by an artefact. Similar to Klein's Artefact Synthesis structure the

interfaces exhibited by the artefact are recorded in Artefact Decomposition

structure. For each interface, the attributes of the interface and their constraints are

also recorded.

Making changes to solution artefacts' relationships may produce unwanted

effects. Unwanted effects related to the non-functional aspects of the system, such

as memory usage, timing and security are difficult to determine without domain

knowledge. The engineers at MBDA tackled this problem by tagging solution

artefacts with known non-functional problems with "change warning" notes.

These notes were informal warnings aimed at other engineers who may not have

an in-depth knowledge of the domain about the problems that may occur if an

artefact was changed.

As a result, the Artefact Decomposition structure has an associated class, Domain

Information, which will allow the recording of domain information to aid the

interpretation of the traceability data.

8.8 Artefact Validation

The Artefact Validation (Figure 8-14) structure records how an artefact will be

validated. This structure aims to support the Proposed Solution, Development and

Completion stages of the TDC. In these stages, it is the responsibility of the

downstream team to be able to demonstrate how they intend to validate their

solution.

The approach adopted in the automotive sensor case study (Chapter 5) was the

decomposition test descriptions. In this case study test concepts described the

testing at a high level. Test concepts were decomposed into test procedures which

were in turn decomposed into test case and test steps. Individual test cases and

steps were reused across a number of test procedures.

111

Artefact (Problem) Artefact (Solution)
UJD#:

" A11eflJet SIlIi8/lICIiD" UJD#:
Deocription: Description:
Location: " Location:
Application: Application:
Status:

" Status:

" " Problem Tech Authority Tesler YalldDliDn

I I ill
Tecbnical Authority Tester Validation

(Problem) Role: Tester Method
Role: Authority - UJD#
Te.t Acceptance Description

I I I

~
Test

0·"

Stakeholder Test Deocription Test Result

Name UID# ~ U/D#
UID# Description I Description
Bmail Resul,. Locstion
Telephone
Location Address

Figure 8-14 Artefact Validation (UML Class Diagram)

The Artefact Validation structure records two levels of test decomposition, a

Validation Method that is a high-level description of the required testing and Test

Descriptions which define individual tests. Validation Method will address a

number of artefacts and Test Descriptions can be reused by a number of

Validation Methods.

As the contract progresses to completion, it is the responsibility of the

downstream team to demonstrate the solution has been adequately tested. The

upstream team has the responsibility of accepting, or not, the validity of the

testing. The Artefact Validation structure records the upstream stakeholder who is

responsible for accepting the validity of the testing.

112

8.9 TDC Data Structure Summary

Traceable Development Contract (TDC) data structures are a refinement of

existing traceability data structures. The structures have been kept simple and

generic so enabling the TOC to be applied across number of development

boundaries. These data structures can be considered the basic building blocks that

can be extended as the development environment demands. The data structures

are similar to structures that are already commonly employed. For example, many

of the attributes of the Artefact structure will be found in configuration control

data structures. This means that existing tools, such as DOORS, Commercial

Relational Data Bases and PVCS, can be employed to implement the contract.

Appendix B describes relational schema for an example implementation of the

structures.

A criticism that can be made of previous traceability structures is that they lacked

a development context: when should the structures be populated, by whom and

how should the traceability data be employed in the development process. The

Traceable Development Contract protocol (Chapter 7) provides a context to these

structures by stating who will populate the structures and how the data will be

employed to benefit the local development process. In this way, the TDC protocol

brings a purpose to these traceability data structures.

8.10 Summary

Traceable Development Contract (TDC) data structures are a refinement of

existing traceability data structures. The structures have been kept simple and

generic so enabling the TDC to be applied to any development interface. These

structures can be considered the basic building blocks that can be extended as the

development environment demands. These simple structures work in conjunction

with the TDC stages to provide information that aids the negotiation of change to

113

development baseline artefacts; they also provide additional information on the

maturity of the solution.

Having described the data structures and the IDC protocol (Chapter 7), the next

chapter illustrates how they could be employed in the development of software for

a hypothetical jet trainer.

114

Chapter 9 An Illustration of the TDC

9.1 Introduction... 115

9.2 Background: Accipiter 300 ... 116

9.3 Initiation .. 119

9.4 Problem Discourse .. 122

9.5 Proposed Solution ... 127

9.6 Development & Refinement ... 134

9.7 Completion .. 138

9.8 Summary ... 140

9.1 Introduction

Chapter 7 outlined the TDC protocol and Chapter 8 described the data structures

required to support the contract. This chapter builds upon this work by describing

how a contract may work in practice. To illustrate the TDC, and the complexity of

the aerospace industry, this chapter will consider the development of the Mission

Planning System software for a hypothetical Jet trainer. The illustration is not a

proof or a validation of the TDC, it is presented here as a means of exemplifying

the ideas presented the previous chapters.

The Mission Planning System is composed of two parts, the aircraft's mission

computer and a land-based mission planning system. Each part is specified by a

common requirements team, though the software is developed by two different

teams. This chapter outlines how the requirements team and software design team,

which are developing software for the aircraft, would work according to the IDC

and how they would employ the traceability structures. These working practices

are compared and contrasted with the relationship the requirements team has with

lIS

the land-based software development team that employs a traditional method of

communications: issuing interface documents and holding review meetings.

9.2 Background: Accipiter 300

The hypothetical Accipiter 300 is the latest of a series of jet trainers produced by

the (fictional) British Aircraft Corporation (BAC). This aircraft has a facility that

allows the pilot to load a flight-plan into the aircraft's mission computer. In flight,

the aircraft's mission computer employs this information in conjunction with

information from its positional sensors (Figure 9-1) to overlay mission related

information on the pilot's displays.

Altimeter

Figure 9-1 Positional Sensors

9.2.1 Mission Planning System

The Mission Planning System for the Accipiter consists of two parts: the aircraft's

mission computer and a land-based mission planning system. The land-based

mission planning system allows the pilot to create and store his flight-plan in the

form of a series of navigational reference points, known as waypoints. The flight­

plan is transferred to the aircraft's mission computer via a 4mm tape data

cartridge.

116

The Accipiter's mission computer reads the data cartridge before flight, checks

the validity of the data and stores the resulting flight-plan. In flight, the mission

computer employs the flight-plan information in conjunction with information

from the aircraft's positional sensors to overlay mission related information on the

pilot's displays. During flight, the mission computer stores information from the

aircraft's positional sensors (Figure 9-1) so that the flight can be recreated on the

land-based mission planning system.

9.2.2 Development Organisation

The development of the Mission Planning System is spread across the UK. The

elicitation and control of the requirements for the Mission Planning System is

performed by the main contractor, BAC, based in the North West of England. The

software for the aircraft's mission computer is developed by a subsidiary of BAC

based in the South West and the hardware by a subsidiary based in the East of

England. The hardware and software for the land-based mission planning system

are produced by a separate company, FET Systems, based on the south coast of

England.

9.2.3 Scope of Illustration

This illustration will consider how traceability can employed in the development

of the aircraft's mission computer. This illustration considers the implementation

of an upgrade that occurs after the initial release of the requirements.

The change in functionality is that a Secure Digital (SO) High Capacity (HC) non­

volatile memory card will replace tape data cartridges for the transfer of flight

data between the aircraft and the land based planning system. The SO card will act

as a virtual hard disk and there will be no requirement to validate the data held on

the card.

117

9.2.4 Use of Traceability

The BAC South West software team employs a traceability tool to record the

relationships between the requirements, software design, code and validation tests.

The BAC South West software team has an archive of traceability relationships

for the previous versions of the mission computer. The FET Systems software

team does not employ a specific traceability tool, though they do employ a

spreadsheet tool to demonstrate their test coverage.

9.2.5 The Introduction of the TDC

For the development of the next version of the aircraft's mission computer

software, the requirements team (BAC North West) and the software design team

(BAC South West), agree to work according to the TDC: the requirements team

acting as the upstream team and the software development team acting as the

downstream team. Both teams agree to a shared file system to store shared

artefacts and a traceability database that has a schema (described in Appendix B)

that implements the traceability structures described in Chapter 8.

The following sections will work through the TOC protocol stages (Section 7.3).

• In the Contract Initiation stage (Section 9.3), the terms of the work that is to

be undertaken are defined.

• In the Problem Discourse stage (Section 9.4), both teams clarify and agreed

the problem artefacts.

• In the Proposed Solution stage (Section 9.5), the BAC South West software

team demonstrates to the BAC North West requirements team how they intend

to tackle the problem.

• In the Development and Refinement stage (Section 9.6), BAC South West

software team produces and refines the solution.

118

• In the Completion stage (Section 9.7), the BAC South West software team

demonstrates to the BAC North West requirements team that they have

satisfied the contract.

For each stage, the working practices of the BAC requirements team and the BAC

software team will be compared with the working practices of the BAC

requirements team and FET Systems.

9.3 Initiation

The Initiation stage is concerned with defining the contractual terms of the work

that is to be undertaken. The information that is required to be recorded and

agreed at this stage of the contract is described in Table 3.

I Activity The production of the Accipiter 300 mission computer
Description software.

2 Stakeholders Upstream Team: members of the requirements team (BAC
North West) (Figure 9-4)
Downstream Team: members of the mission computer
software development team (BAC South West). (Figure 9-4)

3 Problem The aircraft mission computer software requirements and
Artefacts UML Use Case Diagrams (refer to section 9.3.1)

4 Planning Delivery dates and milestones for the mission computer
software. (Refer to Figure 9-3 Mission Computer
Development Plan.)

5 Arbitration The Chief Engineer for Accipiter 300 is identified as the
Procedure arbitrator for any disputes. Teams are required to describe

their position with respect to any conflict. Teams are required
to present information, such as an impact analysis, that
supports their position. Team are required to offer possible
solutions to the conflict.

Table 3 TDe Initiation Information

9.3.1 Example Mission Computer Problem Artefacts

The following are examples of the problem artefacts which are required at

contract initiation. For example, Tape Interface Requirements (Table 4), UML

119

Use Case (Figure 9-2), Delivery Plan (Figure 9-3) and Stakeholder Organisation

Charts (Figure 9-4).

Unique Tape Interface Requirements
ID

10 Before Flight: Flight Plan Down Load and PDC Cartridge Insert
10.1 The Pilot will insert the Flight Plan Data 4mm tape cartridge

into the mission computer.
10.2 The Pilot will select from the mission computer touch screen

the Download Flight Plan option
10.3 The Mission Computer will detect the presence of a correctly

formatted Flight Plan tape cartridge. (For the format of Flight
Plan tape cartridge refer to Appendix G: Data Formats)

10.4 If a Flight Plan tape is not present or not of the correct format
then the Mission Computer will display - "Download Aborted"
and will eject the tape cartridge ifpresent.

10.5 The Mission Computer will read and validate each waypoint
from the tape. Writing the contents of each way point to
FlightPlan.dat data file (For the format of FlightPlan.dat refer
to Appendix G: Data Formats)

10.6 If a waypoint is corrupt or the total number of waypoints does
not agree with the number in the taper header then the Mission
Computer will display - "Download Aborted" and will eject
the tape cartridge.

10.7 The Mission Computer will display - "Download Successful"
once the FlightPlan.dat file has been written to the hard disk.

10.8 The Mission Computer will eject the Flight Plan data tape
cartridge.

10.9 The Pilot will insert a blank formatted tape data cartridge, for
the recording of the aircraft's positional data, into the Mission
Computer.

10.10 The Pilot will select - "Insert PDC" PDC - Positional Data
Cartridge.

10.11 The Mission Computer will detect the presence of a correctly
formatted Positional Data 4mm tape cartridge. (For the format
of Flight Plan tape cartridge refer to Appendix G: Data
Formats)

10.12 If a Positional Data tape is not present or not of the correct
format then the Mission Computer will display - "PDC Insert
Failed" and will eject the tape cartridge if present.

10.13 On the successful insertion the Mission Computer will display
- "PDC Inserted"

Table 4 Requirements

120

Figure 9-2 UML Use Case Diagram: Down Load FUght Plan - Insert PDC

Jan Feb Mar Apr May Jun Jul Aug Sep Oct No\' Oct
f , T

Delivery of Proposed Solution Mission
Mission Agreed by Sol\ware
Computor Requirements Team Accepted by
requirements Reqwn:mertts
.nefac'. Team

Artefacts
agreed by
SoRware TDC Milestones
Team

Figure 9-3 Mission Computer Development Plan

121

BACNortb W ...
Minion Computer Tape In

Requiremenll Team I
BACSoudIWcot
Miui ... Com

m........ SoJlwar< Team

T Leod
Jam. Browne

Jameo.Browne2@BAC,
01904433383

SAC Aerodrome, Cumbria.

T lad
Paul~

PauI.Smilh8@llAC.com
01904633985

BACSOftw Somonct

I
Rcquirernenll AnaJ)'It Requiremenll Anal),.t

James Walker Andrew AdamJ
James, WaJker@BAC.com Andrew.Adamo@BAC.com

1
Developei' DovcJopcr

Henry Anderson ADdmo AnDIIroa&
Hcnry.Andcn0n@8AC.com ADdmo.Anns1ruoIJ@lJAC

01904633984 01904633986
01904433384 01904433385 SAC MiNion Software SAC Mi.uion SoftwaR"

SAC Aerodrome, Cumbria. SAC Aerodrome. Cumbria, SOmenet. Som

Figure 9-4 Organization Chart

9.3.2 Comparing and Contrasting with FET Systems' Approach

At the start of the project, the FET Systems software team will have established

the activity description (1), problem artefacts (3) and planning information.

However, FET Systems software team will not have identified all the relevant

stakeholders (2) and a method of arbitration (5). From the observation made

during the traceability survey, none of the development processes considered the

problem of conflict between teams. For these development processes, there was

no requirement to define an arbitration process and this is the case for FET

Systems. It was also observed that in many cases personal contact between teams

was often limited to team leaders. Failing to identify a method of arbitration may

result in the poor resolution of inter-team conflicts. Also by failing to establish all

stakeholders, the efficiency of communications between the two teams will be

reduced.

9.4 Problem Discourse

The Problem Discourse stage aims to clarify any issues with the problem artefacts

and to obtain the agreement of the downstream developer team that the artefacts

122

are suitable for the production of an initial solution. It is at this stage, that the

SAC requirements team start to populate the traceability structures. The fust

structure to be populated is the logical decomposition structure (Section 8.7). This

involves identifying all the artefacts and recording their decomposi tion. The

logical decomposition structure acts as an index to the problem artefacts, allowing

the engineers to navigate the composition of the problem. A suitable method of

decomposing the Accipiter's requirements would be to decompose according to

the parent document structure. In this case, each requirement statement would

become an artefact. For example, Figure 9-5 represents the decomposition of the

Accipiter's textual requirements.

Rcquiremenl$

UID# I
Description: Mission Computet - Flight Modc=s
Development S latus : No t Agreed

Requirements

UID# IO
Description: Pre FliSlu
Development SU\ lus: Not Agreed

Requirement

UIOff IO.1

Requirement

UIDNI I
Description In Fl ight Mode
De velopment Stalus : Not Agreed

Requm::ments

UIO#12
~scnplion : Fhght Complete
lk"c:lopment Status: Not Agreed

UIO# IO.2

Requirenu:nt ~~-------- ~------~ V
UIO#IO.l

• __ ... _ ' ___ ...r.I .. ______ _

I Requirement :
I ----------------. I

- - - ~ UJDN... :
,f'-.................. = -----'------,
I R«ju;rement ,

UID#IO.1l
Description: On the success ful insertion the
Miss ion Computer will displny - "POC
Inserted"
De velopme nt Slnhl.~ : Not Agn-ed

Further dccompo cd
requirements

Figure 9-5 Logical Decomposition of the Accipiter Requirements

123

Each artefact has a development status (Not Agreed, Agreed or Deferred) that

records the state of agreement between the two teams on the suitability of artefact

for the production of solution.

The second structure to be populated is the Artefact structure (refer to section 8.9).

This structure records the ownership and development history for each artefact.

For example, Figure 9-6 show how the Artefact structure is applied to textual

requirement 10.13. These traceability structures allow queries to be performed

that help the BAC software team determine the suitability of the requirements.

I UID~S4 Chonge

Change Implemenler --,
Chonae ,

UIDNSS
,

I>eac:riplion "POIitional Data Canridp" - ,
Chang. Authority

,
Type: AI.er , , ,

I

J UIDNIO.U

I
Requiremall ,

I , ,
Stakeholder: Authority

I
,

UID#12 Authority Requiremcot ,

L....t
Name James Browne l7---rl EmaiUamee.Browne2@BAC,com

~
Requirement T.I.phoneOI904433383

~~----j Address BAC Aerodrome, Cumbria.
UID#10.13
Description: On the successful illlCrtion the
Million Computer will dilplay - "PDC t-- P,.,,/o",

Stakeholder: Implementer
InJertcd" Vers;OIU
Development StatUi: Not Aareed

UID#13 .. Name Andrew AdlU1ll
Email Androw.AdlU1ll@BAC,com Implem.nter F
T.I.phon.01904433383 t-
Addreal BAC Aerodrome, Cumbria. Art./act Qu.ry Stakeholder

UID.S6

Query y Name Andrew AnnItrona
EorWI AndRw._ .. @BAC.com

UID#IOO T.lephone 01904633986
Text:What is PDel Address BAC Mission Software. Somcnet.

Repll.dBy Art./act Reply ~~ Raised By

Query Reply

Query UID#120 I Text: POC "Positional Dala CartridRe

Figure 9-6 Artefact Structure for Requirement 10.13

124

The queries fall into three groups,

• Information Oueries: This group of queries involve the determination of the

requirement and its attributes, such as the implementer (or in this case the

writer) of the requirement and the technical authority for the requirement.

(Example queries can be found in Appendix C.)

• Dialog Oueries: This group of queries involves creation and recording of

dialog between the two teams with respect to issues related to the requirement.

(Example queries can be found in Appendix C.)

• Status Queries: This group of queries involve the determination and setting of

the development status of a requirement. (Example queries can be found in

Appendix C.)

As requirements are normally specified in text, they can be recorded in the

description attribute of the artefact structure. Where a requirement is specified by

a drawing or a diagram, the description attribute will describe the diagram and the

location attribute will record the location of the diagram. This approach was

adopted by many of the projects in the traceability survey.

As stated in section 8.5 the Artefact structure is derived from Gotel's

Contributions Structures. Gotel claimed the following benefits from the

implementation of such structures in a development environment:

Artefact Ownership, Commitment and Responsibility: The Artefact structure

defines ownership (Technical Authority and Implementer). This impels these

stakeholders to commit to a position on the development state of an artefact The

result of this commitment is that the responsible stakeholder would take a position

and engage in discussions with respect to changes to an artefact. In this

illustration, the BAC requirements team members are committed to being a

technical authority or implementer of the Accipiter's requirements.

125

Artefact Contribution: The ability to record the contribution made by each

stakeholder to an artefact is found to aid change discussions and allows project

managers to track progress and allocate artefact ownership. The Artefact structure

records the original implementer and any changes made. For each change to an

artefact, the Artefact structure records the stakeholder who contributed. In this

illustration, the Artefact structure will record the changes the BAC requirements

team members make to requirement artefacts.

Uncovering Hidden Details and Undocumented Events: The use of traceability

structures often results in the uncovering of hidden artefact details and

misunderstandings between stakeholders. The Artefact structure allows the

recording of queries and replies for each artefact. In this illustration, this feature

can be employed by the BAC software team asking questions of the requirements

and the BAC requirements team replying to those queries.

Agreement: The use of traceability structures help stakeholders to come to an

agreement with respect to the development status of an artefact. Each Artefact has

an attribute that records the agreed development status. In this illustration, the

development status attribute is employed to demonstrate which artefacts the BAC

software team have agreed to be suitable for development.

9.4.1 Comparing and Contrasting with FET Systems' Approach

On reading the requirements, the FET Systems software engineers will have

similar questions on the new functionality to that of the BAC software team. The

FET Systems software team takes a traditional approach, collecting its questions,

and arranging a requirements' review meeting with the BAC requirements team to

obtain clarification. By failing to identify all the relevant stakeholders, the FET

software engineers may target their questions at the wrong engineer. This is in

contrast to the use of the traceability database that allows the targeting of

questions to the correct stakeholder. Such a shared traceability database may even

mitigate the need for a review meeting. Given the distances between development

126

sites, this would reduce development costs. However, if a review meeting is

required then the output from the traceability database, such as the raised queries

and answers, will help in the review of the requirements.

9.5 Proposed Solution

The Proposed Solution stage starts once all the problem artefacts, the

requirements, have been agreed or deferred to later release. This stage allows the

BAC software team to demonstrate how their prototype design will address the

requirements.

Software designs are commonly described using diagrams such as UML package

or deployment diagrams (for example, Figure 9-7 and Figure 9-8). Diagrams

cannot be decomposed in the same way that the textual requirements were

decomposed in the previous phase.

I
M_~I

Tn!ce R.fO{A •

Figure 9-7 Prototype Package Decomposition

127

.execution environment.
Mission Computer

[]
Ink

Figure 9-8 Prototype Deployment Diagram

Artefacts in the diagrams are identified by marking them with unique id, for

example in Figure 9-7 each package is marked with an identifier. In the case of

diagrams, the Artefact Decomposition structure becomes a flat structure that lists

the artefacts described in the diagram (Figure 9-9). To determine the true

relationship between artefacts the engineer will be required to refer to the original

diagram.

128

Design Artefact: Decomposition Diagram
UIDfI:Dl.O
Deocription: Mi"ion Computer Deployment

,....- Location IIAccI3OO1DesIMiJ,ion]aok _ UML.uxf
Application: Umlet
Statui: Not Agreed

f
Design Artefact: Decomposition Diagram .,

UID#:Dl.l

....---. o...ripti~?: Sheduler

A DeBiS!! Artefact: Decoml!!!sition DiaS!!!!!
S UID#:DI.2

Descriotion: User Interface
Lo Design Artefact: Decomposition Diagram

.\ ~~ U1D#:D1.3
Description: Display Waypoint
L

L...;.. A Design Artefact: Decomposition Diagram _\
S U1D#:D1.4

Description: Tape Package

~ Design Artefact: Decomposition Diagram
SI UlD#:D1.S

Description: Read SCDlor

L.;;E
l.e<ation IIAccl300lDesIMiuion_ Pock _ UML.uxf
Application: Umlet
Statui: Not Agreed

Figure 9-9 Artefact Decomposition - Package Diagram

Once the design artefacts have been identified, the Artefact structure is populated

for each design artefact. In the same way as the requirements artefacts, the design

artefact structures records the ownership and development history for each design

artefact.

To demonstrate how the prototype design will address the requirements, the BAC

software design team populates the Artefact Satisfaction structure (refer to Section

8.6), recording the relationships between the requirements and design artefacts. In

the cases where it is not clear what contribution a design artefact makes to the

satisfaction of a requirement (or a collection of requirements), a satisfaction

argument may be required. In this illustration, the BAC software team have

written a document (Mission Computer Architecture) that outlines the reasoning

behind the design. The Mission Computer Architecture document describes the

129

engineering reasoning for the design, the decomposition of the functional

components that comprise the design and a detailed description of the

functionality of each design component. For design components that are safety

critical the component textual descriptions are supplemented with a GSN

argument (refer to 8.2.1). In this example, the requirements-tape package

traceability links have an associated trace to the sections of the Mission Computer

Architecture document that describe the tape interface (Figure 9-10) .

Requirement

Design Artefact: Decomposition Diagnm
JlCIquirement

r==~;;~=5~==::3~::::~J U10fI:01.4 Description: Tape Pac"'''
Requirement Loc.tion IIAe<:I3OOIDesIMiuion Pad UMLwr,(

Application: Urnh:t --

Reqwremenl

Rcquirement

UIDNIO.13
Doaerlptlon: On the
successful insertion the
Mission Computer will
di.play - "POC In.erted"

Slalul: Not Agreed

UIDHSAI
DolCription: t.ililion Computer Architecture
Location /I Accl300/Des/ M ion COqNleI' Design StratelY.doc

Figure 9-10 Artefact Satisfaction: Requirements and Tape Package

The TDC requirement that the BAC software team be able to demonstrate the

validity of the design will entail the population of the Artefact Validation structure

(refer to section 8.8) for the design artefacts (Figure 9-11). The design Artefact

Validation structure records how each design artefact is to be tested.

Also at this point that the BAC software team start to write code. As with the

requirement and design artefacts, the code is described by artefact decomposition

and artefact structures. Artefact Satisfaction structures are employed to record the

relationship between the design and code artefacts. In this case, it is a simple one

to one relationship between code and UML package (Figure 9-11).

130

I~-~ SaJ/sjlu

II ~i""",' Lor..
o..ip _: Dt:compoaitilRl 0;.

UID#:DIA Coclo Arl<fact

Dfteriplion: Tape ln1<rface Package ~ UID#:C1.6

Locationi/Aecl3OO1Dea1Miuion Pad< UML.w<f
DacripIion: Tape _ Pocb&e

Requir.mmt ~-~ Awlicalion: Umlct -- LocatiooIIAco:I3OOICodefTapePocb&e .•

RoquiMmcRt 1 Yallda/ion

UlDHIO.13
inaertion the

Validation Method ValiditiouTCSII

~ UlD#:V2.0
Tu/

V.IIA •• : :-:;::
OeKription: Tape InterfacePackage Validation Method N VllidotiooT_
Locationl/Ac:cI)OOIT •• tlTapo]odIall'_ VIl_Modtod.dac
Application: MS Word UID#:TSO

I
Dfteription: Tape Pocb&e Tal

Au/horfty 1RUUfIS .. • Tu'e,.

Stakeholder: Te.l Authority Stalcelt.lder:Teo
UIDHI3 UlDHS6 I ValicWion Tell ReIuJb

~ Name Andrew Adam, Name Andrew ArmItrong v.,...·::-.;; :-;;
Bmail Andrew.AdamJ@BAC.com Email Andrew.Al111Itrong@BAC.com
Telephone 0190443)383 Telephone 01904633986 Validation Tesu R.uh.

AddreH BAC Aerodrome, Cumbria. Addreu BAC Million Software, Sommet. y UID#:TRSO
DelCription: Tape Tat Resuhl
Location:l/AccI3OO1VALl1RES1 .. -- .

Figure 9-11 Artefact Validation: Tape Package

In this illustration, an assumption (9.2.4) was made that the BAC software team

had employed a traceability tool to record the relationships between the

requirements, software design, code and validation tests for previous products.

This assumption has been made to allow the demonstration of the benefits that can

be achieved from traceability when developing product families. The weakness of

this assumption will be considered in the next section.

The Automotive Sensor case study (Chapter 5) demonstrated the benefits in the

use of traceability in the selection of a base product for the development of a new

product. For the production of a new sensor, the new requirements were compared

against the exiting products to determine which sensor would be a suitable base

product. This use of traceability enabled the software engineers to reuse existing

software and tests, thereby reducing their workload.

The selection of a base product is a complex process, as the engineers have to take

into account the issues relating to the removal and addition of functionality.

However, the TDC traceability structures can aid the process. Having the

131

requirements recorded in the Artefact Decomposition structure allows them to be

compared with the requirements, held in the same structures, for previous releases

of the mission computer software. This is achieved by a tree traversal of the new

requirements and previous released requirements, comparing the contents of each

artefact node. From this traversal, a list of differing requirements is obtained for

each of the previous releases . For this illustration it was found, by manual

inspection of the differing requirements, that the requirements for the Accipiter

250 (Figure 9-12) were the best match and would be a suitable base product for

the new Accipiter 300.

Tree
Compari son

Accipiter 150
Requ irements

Figure 9-12 Comparison of Mission Computer Requirements

Requirements Requirements
that are the sa me that differ

The process is repeated to determine the affected Accipiter 250 code modules. In

this case, the Artefact Satisfaction structures that record how the Accipiter 250

code modules satisfy the affected design artefacts are examined. In this case, there

is a simple one to one relationship between the design packages and code.

132

The determination of which validation tests can be reused can obtained from

examining the relationships between the design artefacts not affected by the

requirement changes and the validation methods (similar to Figure 9-11). This is

achieved by examining the Artefact Validation structure that records the

relationships between validation methods and design artefacts. This structure will

also be employed to determine the individual tests that comprise a validation

method.

The traceability structures, Artefact Decomposition (requirements, design and

code) Artefact (requirements, design and code), Artefact Satisfaction

(requirements to design and design to code) and Artefact Validation (design) have

enabled the BAC software engineers to determine which artefacts can be reused

and which require to be altered.

At the end of Proposed Solution stage, the BAC software team will be in the

position to present to their customer, the BAC requirements team, how they intend

to satisfy the requirements. This presentation takes the form of a document that

describes the strategy for tackling the problem (developing the software for

Accipiter 300 from the Accipiter 250 mission computer software) and includes a

compliance matrix that shows how the proposed solution satisfies the

requirements. The compliance matrix is generated from the satisfaction

traceability information. Similar documents were found in the course of the

Traceability Practice survey (Chapter 3). The Automotive Sensor project

employed scripts to generate similar documents from their DOORS database and

the MBDA projects manually produced a document known as a "Design Reply".

The TDC requires the BAC requirements team to act as the customer in this

contract and therefore the requirements team has to accept the proposed solution

or to reject it, indicating to the BAC software team where the solution fails to

satisfy the requirements.

133

In this illustration, the BAC requirements team accepts the proposed solution and

the contract proceeds to the next stage, development and refmement.

9.5.1 Comparing and Contrasting with FET Systems' Approach.

For the development of the land-based mission planning software, the FET

Systems software team will be in a similar position and the team will aim to base

their new product on existing code. The lack of traceability may mean that the

FET Systems software team will not be able to identify efficiently a suitable base

product and which parts of that product are required to be changed. However, the

FET Systems software has not had to create and populate a traceability database.

A weakness in this illustration is that the BAC software team had employed a

traceability tool to record the relationships for previous products. The

demonstrated benefits are a result of having a traceability database for previous

products. What would happen if there were no previous products? In such a case,

it could be argued that the effort expended in creating and populating the database

out weighs any benefits such as the generation of a compliance matrix.

Nevertheless, this argument is countered by considering the role of traceability in

the TDC, that of a means of determining the impact of change and to provide a

basis for the negotiation of change during development.

In contrast to the BAC software team, the FET Systems software team does not

have to gain the acceptance of their solution by the BAC requirements team. This

is a lost opportunity as the BAC requirements team may identify flaws in FET

Systems' initial approach to the requirements. Failure to identify flaws early in the

development of the software may prove to be costly.

9.6 Development & Refinement

Once the BAC requirements team agree the proposed solution, both teams are

allowed to request changes to the requirements or the proposed solution. In this

134

illustration the BAC requirements team request a change to replace the tape data

cartridges for a SD Secure Digital (SD) High Capacity (HC) non-volatile memory

card (Table 5 and Figure 9-13). The SD card will act as a virtual hard disk and

there will be no requirement to validate the data held on the card. The use of the

SD memory card means that a second tape cartridge, for the recording of the

positional data will no longer be required.

Unique Change Tape Interface Requirements
ID

10 Before Flight: Flight Plan Down Load and PDC Memory
Card Insert

10.1 Altered The Pilot will insert the SD (HC) Memory Card into
the mission computer.

10.2 The Pilot will select from the mission computer
touch screen the option - Download Flight Plan

10.3 Altered The Mission Computer will detect the presence of a
SD(HC) Memory Card. (For the format of Flight
Plan refer to Appendix G: Data Format~

10.4 Altered If a SD (HC) Memory Card is not present or of the
correct format (For the format of Flight Plan refer to
Appendix G: Data Formats) then the Mission
Computer will display - "Download Aborted".

10.5 Removed
10.6 Removed
10.7 Altered The Mission Computer will display - "Download

Successful"
10.8 Removed
10.9 Removed
10.10 Removed
10.11 Removed
10.12 Removed
10.13 Removed
10.14 New Waypoint data will be encrypted on the Secure Digital

Mem~Card
10.15 New Positional Sensor data will be encrypted on the Secure

Digital Mem~ Card

Table S Requirement Changes

135

SyaIIIm: Acc:IpIor MillIon eon.Mer ; Before Flight

Actor: Pilot ~~socn~
"

Figure 9-13 New Use Case Diagram

Table 5 illustrates a point; often changes are not clear and may be not functionally

correct. In this case, the BAC requirements team have aimed to simplify the

interface by removing the need to insert a separate storage media for recording

the positional data. The positional data is recorded on the same SO memory card

that stores the flight plan waypoints. The BAC requirements team has also

included two new requirements 10.14 and 10.15 and it is unclear how they

influence the new media interface.

The traceability structures are employed to negotiate these changes. The BAC

requirements team updates the Artefact Structure for each of the affected

requirement Artefacts. In this case the change description and type, artefact

description, technical authority for the change and the implementer of the change

are recorded (for example, refer to Figure 9-6). As these changes have not been

agreed, the Agreed Status is set to "Not Agreed".

The BAC requirements team employs the traceability structures to determine the

design artefact stakeholders affected by the requirement changes. This is achieved

by employing the Artefact Satisfaction structure that records the satisfaction

136

relationships between requirements artefacts and design artefacts (for example,

refer to Figure 9-10) to determine which design artefacts are affected. For each

affected design artefact, its Artefact Structure is employed to determine the

Authority and Implementer for the artefact. For the two new requirement artefacts,

10.14 and 10.15 (refer to Table 5) there will no corresponding design artefact. In

this case, the authority and implementer of their parent artefact 10.0 is determined.

The BAC requirements team now notifies the affected BAC software team

members of the proposed changes to the requirements.

The BAC software team is in a similar position as they were in the Problem

Discourse stage (section 9.4). The BAC software team employs the updated

Artefact and Artefact Decomposition structures that describe the requirements to

perform Information, Dialog and Status Queries on the changed requirement

artefacts. In this way the BAC software team clarify the changes to the

requirements.

In conjunction with the process of clarifying the requirements, BAC software

team employs the traceability structures to determine the full impact of the

changes. This entails determining the true impact of the changes, the impact on

the testing and code.

To determine the true impact of the changes the BAC software team will be

required to refer to the Satisfaction Argument (refer to Figure 9-10) for each

affected requirement - design artefact pairing (refer to Appendix C, example

Satisfaction Queries). This information will help the engineer to determine the

contribution the design artefact makes to the affected requirement and therefore

the impact of the change on the design artefact. The design Artefact

Decomposition structure (refer to Figure 9-9) is employed to help to determine the

impact of the changes on any child artefacts. The BAC software team employs the

Artefact Validation structure (refer to Figure 9-11) to determine the impact on the

validation tests. The impact on the code is determined by employing the

137

satisfaction structure that records the relationships between code and design

artefacts (refer to Figure 9-11). Armed with the impact information both teams

(requirements and software) now enter into negotiations on the implementation of

the changes. In the cases where these negotiations fail, the teams may call upon

the services of the arbitrator who was defined in the initiation phase of the

contract. In this illustration, both teams agree the changes to the requirements and

an extension, in conjunction with their respective project management, to a new

completion date.

9.6.1 Comparing and Contrasting with FET Systems' Approach.

The engineers at FET Systems will be faced with similar issues with respect to the

replacement of tape cartridges by a SO memory card. Without the aid of the

traceability structures it may be difficult for the engineers to clarify the

requirements changes efficiently. If the membership of the FET Systems'

engineering team changes during development then the lost product knowledge

may reduce the efficiency of determining the impact of the changes. The FET

Systems engineers are not protected by the TOC, the BAC requirements team is

not required to negotiate the impact of the changes and any resulting conflict will

be required to be resolved by the project managers who may not have the

technical expertise to resolve the conflict correctly.

9.7 Completion

The aim of the Completion stage of the TOC is to demonstrate what has been

successfully completed. Traditionally, this is where traceability becomes apparent

in most development processes usually in the form of a requirements/test

compliance matrix.

The TOC imposes responsibilities on the development teams. It is the

responsibility of the BAC software team to demonstrate, by testing, that the

software addresses the requirements. The BAC requirements team has the

138

responsibility of accepting the evidence and confinning the completion of the

contract.

One of the major benefits from populating the traceability database during

development becomes apparent at this stage. It is possible to generate a

compliance matrix, for example Figure 9-14, from the data held in the traceability

database. The Automotive sensor project (Chapter 5) generated a number of

different reports (refer to Figure 5.3) from their traceability database to

demonstrate to their customer that they had satisfied the requirements. Such

reports are employed by the BAC software team to demonstrate to the BAC

requirements team that they have completed the contract.

9.7.1 Comparing and Contrasting with FET Systems' Approach.

The FET software team will be required to produce evidence, usually in the fonn

of compliance matrices, that their software satisfies the requirements. As the FET

software team have no traceability database these documents will have to be

produced by hand. This will be a laborious task prone to errors. The FET software

team also have a different customer compared to the BAC software team. The

FET software team customer is the Accipiter 300 systems integration team, to

whom they deliver their software. This means that the FET software team does

not employ the expertise of the BAC requirements team in the validation of the

software. Therefore, any issues or problems with the software are propagated to

the development next stage: systems integration.

139

REQ Requirement Satisfied Satisfied Val Validation Test Test Results Loc:ation
UID By By MetUID Method UID Description

Design Code
Artefact Artefact

REQ Aircrafts ~~ ~ VAL30 Positional
10:15 Positional ...

Sensor 1 r n

Sensor data IQ.
Simulator .. i '" will be if ~ harness

encrypted
(' employed

on Secure 51 !l ~ to mimic
Digital "'- actual
Memory !. ~ input
Card

~ TS6 Recording IAcc300N AL30rrS6IRES I
IE. of
~ encrypted

I~ of radar

0 data

~
n

~ TS7 Recording IAcc300N AL30rrS71RES4
IQ. of
Cl encrypted
"=
I'" ofOPS
0 data
~
" ? TS8 Recording IAcc300N AL30rrS81RES3
IQ. of
> encrypted
g- of
10 Altimeter

~ data
n

TS9 Recording IAcc300N AL30rrS91RES I
of
encrypted
data for all
sensors

Figure 9-14 Example Compliance Matrix

9.8 Summary

This illustration demonstrates how Traceability can be beneficial the development

process and to engineers who are performing that process and therefore

overcoming the Traceability Benefit Problem. The TDC gives a purpose to

recording the traceability information. The illustration shows that the IDC can:

• Aid the engineer with the selection of a suitable base product.

• Aid the engineer with the communication and negotiation of change.

• Aid the engineer in the demonstration of the validity of the final product.

140

This chapter is only an illustration that does not set out to prove or disprove how

the TOC would be beneficial in practice. The next chapter examines the issues

and practical implications of demonstrating that the TOC is as beneficial as it is

claimed to be.

141

142

Chapter 10 Lessons Learnt and Future Work

10.1 Introduction ... 143

10.2 Identifying the Problem ... 144

10.3 The Importance of Observation .. 145

10.4 Traceability Benefit Problem .. 147

10.5 Traceable Development Contract.. .. 148

10.6 Further Work ... 149

10.7 Coda .. 157

10.1 Introduction

This chapter summarises the achievements and the problems overcome in the

course of this work. The chapter describes the history of the development of the

ideas present in this thesis and finally, discusses how the work presented can be

extended further.

Traceability, as a research topic, had declined in popularity with the academic

community by the 2000s and this is reflected in the number of papers published

on the topic: the bulk of the papers being published in the late 1980s and 1990s

(Citeseer - Year of Publication of Cited Papers). The zenith of traceability

research coincided with the general availability of relational databases that

allowed the recording and manipUlation of links between textual objects. This

resulted in a number of Traceability tools, the most notable being DOORS

[DOORS 2007] and RTM [RTM 2007]. Yet, reports from the DCSC [DCSC

2007] customer companies suggested that there were still issues in recording

Traceability information in an industrial context. These issues were concerned

with encouraging engineers to record and maintain Traceability information.

143

10.2 Identifying the Problem

Initially, it was thought that the engineers were not recording and maintaining

their Traceability information due to the data entry burden imposed by the

Traceability tools. This hypothesis appeared to be backed up by reviews of the use

of Traceability tools in an industrial context [Ramesh 1998] [Gotel 1995;Gotel

and Finkelstein 1994] (as discussed in the summary of Chapter 3). The solution

seemed relativity straightforward: find a way of reducing the data entry burden

that the Traceability tools placed on the engineers. One possible solution to

reducing the data entry burden was to remove the need to transpose data from

development tools to traceability tools. This resulted in initial investigations into

tool integration data models such as AP233 [Herzog 2000] and MA Tra [Mason

1999] and data transfer and sharing technologies such as XML (as discussed in

Chapter 2).

At the time the research reported in this thesis was beginning, XML and in

particular XML-Xlink [Xlink 2007] was being promoted as a means of linking

documents. Xlink was a new technology that allowed the creation of bidirectional

links between documents. These links could also be given meaning with the

addition of meta-data, therefore allowing the sorting and classification of links

between documents. The development of XML opened up new opportunities and

a number of researchers [Alves-Floss et al. 2002] [Collard et al. 2002] [Anderson

et al. 2002] [Zisman et al. 2003] [Nentwich et al. 2002] proposed ways of

employing these XML technologies to create traceability information frameworks.

XML appeared to be a promising technology: if all the engineering documents

were in a known XML format then XML links could be generated between them

with little effort. This appeared to be a way of reducing the burden of data entry

on the engineers.

Though the XML-Xlink approach had merit, it only addressed part of the problem

of encouraging engineers to record Traceability data. It became apparent when

144

talking to practicing engineers that the issues relating to the recording and

maintenance of Traceability information were more complex and not just a

technical data entry problem. More information was required on how engineers

recorded and employed Traceability information and this resulted in a review of

Traceability practices (Chapter 3).

10.3 The Importance of Observation

Before the Survey of Traceability Practices (Chapter 3) was conducted there were

only two other comparable studies which were performed by Ramesh [Ramesh

1998] and Gotel[Gotel 1995; Gotel and Finkelstein 1994]. The aim of the

Traceability Practices survey was to discover how projects perform traceability

and to determine the truth behind the issues raised by the DCSC customer

companies.

The survey was difficult to organise for a number of reasons. The first problem

encountered was obtaining the permission of the companies to be surveyed. The

initial list of companies included the DCSC customer companies MBDA, CSS &

Programmes, Airbus and E&IS. One of the original aims of the survey was to

compare and contrast the traceability practices of these aerospace companies with

a civilian project, and so the Inland Revenue was approached for this purpose.

The Inland Revenue undertakes a number of large development projects in the

North East. The consulting companies that develop the projects on behalf of the

Inland Revenue refused access to their projects. The common reason for refusal

was that if the survey identified any weakness in the development process then

this could affect the consulting company's chance of gaining any further work

from the Inland Revenue. The local consulting management would not take this

risk; they preferred to keep their "dirty washing in house".

Consulting companies consider their development processes to be an integral part

of their business and therefore are unwilling to allow their processes to be

145

scrutinised by academics. One approach in gaining the trust of a commercial

company is to highlight the benefits of the "free" research to their productivity

and to promise to remove all references to the company or their product from any

published work. For a good example of such an anonymous paper see [Berry and

So 2006] that describes problems in the requirements engineering process for a

very large software company. Care has to be taken though not to remove too much

information and thereby render the publications useless. However, the Inland

Revenue consulting companies refused this approach.

Ironically it is the military or technical companies, such as BAE SYSTEMS,

TRW and Boeing, which publish the majority of papers on their working methods

and appear to be more willing to demonstrate the strengths and weaknesses of

their development process. These companies are also willing to discuss their

practices with peers. This could be due to these organisations having well

established publishing processes for editing and vetting.

Once access had been granted to the projects new problems arose. Care had to be

taken when interviewing engineers. For example, many engineers were reluctant

to have the interviews recorded. Many felt uncomfortable in criticising existing

tools and working practices. This reticence was successfully overcome by asking

the engineers to describe how they would improve their Traceability rather than

asking them to list the problems.

As stated, the original data entry hypothesis appeared to be reasonable until the

survey was conducted. The survey raised a number of factors that had an

influence on Traceability practice, such as:

• Traceability Tools

• Development Practices

• CostlBenefits

• Organisation & Culture

• Traceability Comprehension

146

The survey proved the importance of observing engineers performing their tasks

at fIrst hand and not solely relying on the limited academic literature in the

development of a hypothesis. The survey, as demonstrated by the papers

published from this thesis, has contributed to the understanding of the recording

of Traceability information in an industrial context. The fact that so few industrial

case studies or surveys are published is an indication of the difficulty of

performing this type of research.

10.4 Traceability Benefit Problem

The main theme that arose from the survey was the perception by engineers and

their line management that Traceability did not provide any benefIt to the main

development task. Many of the surveyed engineers considered the recording of

Traceability information to be a hindrance to their main task. Some of the

surveyed projects tackled this issue by having the recording of Traceability

information performed by a separate team. This solution proved to be

unsuccessful. By observing the engineers recording Traceability information, it

became apparent that establishing a link was not always a simple process and

often required domain knowledge. The only engineers which could reliably

establish the correct Traceability links were the engineers who were directly

involved in the development process. These observations resulted in the defInition

of the Traceability BenefIt Problem (Chapter 4).

The defInition of Traceability BenefIt Problem has contributed to understanding

the recording of Traceability as it demonstrates that the problem is not technology

based. The observations have demonstrated the complex nature of recording of

Traceability and highlighted that only the engineers who are involved in the

development process can reliably record the Traceability information, therefore

explaining the difficulties experienced by separate Traceability teams and

automated link generation tools.

147

10.5 Traceable Development Contract

Having defined the problem the next stage was finding a possible solution. Again,

the solution came from the survey.

The automotive sensor project undertaken by BAE SYSTEMS E&IS (Electronics

and Integrated Solutions) (Chapter 5) addressed the Traceability Benefit Problem

by developing a Traceability system which was integral to their development

process and provided direct benefits both to the engineers performing the data

entry and to the business. In essence, the E&IS engineers employed their

traceability system to manage their customers demands and to improve their

productivity.

The survey raised the problem of the coordination of changes to interface

documentation. This was referred to by the engineers as ''throwing the problem

over the wall". This occurred when an upstream team imposed changes to their

interface document without considering the impact of the changes on the

downstream team. Development models (Chapter 6) often do not describe how

teams should cooperate; it is assumed (wrongly) that they will work

harmoniously. The survey highlighted the fact that due to development pressures

teams do not always cooperate.

It became apparent that traceability information could be employed in the

negotiation of change. The automotive case study provided an example of how

traceability could be employed to negotiate change and improve productivity.

However, the negotiation would require a set of rules or a protocol that both teams

would abide by. This was the origins of the Traceable Development Contract

(Chapter 7). This serendipitous combination of problems, the traceability benefit

problem and the throwing the problem over the wall, had a common solution in

the Traceable Development Contract. By keeping the contract generic, it made it

148

applicable to all development interfaces and a combination of contracts may work

towards to the elusive goal of end- to-end traceability.

Traceable Development Contract (TDC) data structures (Chapter 8) are a

refinement of existing and proven traceability data structures. In this way, this

work builds upon and extends existing Traceability work. The structures were

kept simple and generic so enabling the TOC to be applied across all development

boundaries. A criticism that can be made of previous traceability work is that it

often lacks a development context: it is not clear when the structures should be

populated, by whom and how the traceability data should be employed in the

development process. The Traceable Development Contract protocol provides a

context to these structures by stating who will populate the structures and how the

data will be employed to benefit the local development process. The TDC

protocol brings a purpose to these traceability data structures.

The TDC illustration (Chapter 9), loosely based on existing products and

development practices, provided an opportunity to more fully demonstrate the

benefits that development teams may obtain in adopting the contract. It also raised

issues and provided some answers with respect to the evaluation of the TDC in an

industrial context.

10.6 Further Work

This thesis has raised issues that require further investigation. The frrst and most

obvious area for further work is the implementation and evaluation of the TOC in

an industrial context. This is discussed in the next section (Section 10.6.1). The

next candidate for future work is the further exploitation of the Traceability

information to obtain development metrics (Sections 10.6.2 and 10.6.3). For

example, the rate of change of Traceability information may provide an indication

of the maturity of the solution. The arity and distribution of Traceability links may

also give an indication of the state of evolution of the solution.

149

10.6.1 The Implementation of the TDC

The Implementation of the TDC will answer a number of questions, such as

whether the TDC will provide the promised benefits. An implementation would

also enable the practical testing and adjustment of the TDC protocol and the data

structures.

The TDC illustration (Chapter 9) provides an example of how an assessment of a

TDC implementation could be conducted. That illustration compared the working

practices of two teams with comparable expertise and resources that were

producing similar software from a common set of requirements. A full scale

assessment would require a control team pairing and a team pairing that employs

the TDC. Each team pairing would be required to have similar profile, technical

expertise, staffing, tools, problem complexity and development timescales.

Development timescales and problem complexity are important factors in the

assessment of the TDC. The problem is required to have a complexity that will

require the teams to discuss and clarify the problem domain issues. The

assessment will be required to be made over a number of development cycles to

determine the benefits obtained from the TDC and traceability data. Therefore, a

suitable problem would be an evolving product or the development of product

families. An assessment will require a survey of the engineer's views on the TDC.

These views may be subjective and therefore measurable metrics are required to

determine the true affect of the TDC. The following are examples of metrics that

can be measured to determine how the TDC affects the performance of the

software teams that have entered into the contract.

• Artefact Reuse. An outcome of the recording of the traceability data is that

engineers will be able to determine which artefacts can be reused in the

development of new products from existing products. Therefore, it would be

expected that teams that employed the TDC would make greater use of

existing artefacts compared with a control team that may only employ

150

traceability in the latter stage of product development. The artefact reuse

would be determined for the IDC team and the control team after every

development cycle. If the IDC is successful, the team pairing employing the

contract will show a higher percentage of artefacts reused compared to the

control team pairing.

• Development Cycle Timescales. If the IDC is successful then the

development times should be reduced compared to control team pairing. This

is due to two factors, the greater reuse of artefacts and an increase in the

efficiency the resolution of development problems. If the TDC is successful

the teams employing the contract will have shorter development cycles

compared to the control team.

• Trace Precision. The claim that the TDC makes the recording of traceability

information beneficial to the immediate development process can be assessed

by considering the change in Trace Precision (refer to section 4.2, equation 2).

It is expected as the engineers gained experience of the benefits of the TDC

and Traceability data they will increase their efforts in the development and

maintenance of their traceability database. This should result in an increase in

Trace Precision for their traceability database. The Trace Precision of the

traceability database belonging to the TDC team pairing should be higher

compared to the control team's database. To determine any increase in Trace

Precision would require a periodic audit of the traceability database.

Such a project pairing may prove difficult to organise, as an industrial sponsor

will require assurances that the assessment will not affect productivity. Therefore,

a strong case for performing such an assessment will be required to convince an

industrial sponsor to adopt the TDC. This case will have to argue that the

implementation of the TDC will not have detrimental affect on their product and

production timescales.

Another approach, that was adopted by Boehm in the evaluation of his Win Win

Spiral Model [Boehm et at. 1998], was to employ groups of students in the

151

development of a combined group project. Experiments based on student

implementations are not without issues, such as the length and complexity of

student projects, background experience of students and educational constraints. It

can be argued that such student implementation can only give limited results.

However, the student project approach should not be rejected as it can provide a

useful environment to test prototype processes. The results of a student

experiment can also be employed in the case presented to an industrial sponsor to

implement the TDC in an industrial setting as previously described.

10.6.2 Solution Maturity

The standard IEEE 982 Standard Dictionary of Measures to Produce Reliable

Software [IEEE 1988] states that this measure is used to quantify the readiness of

a software product. Changes from a previous baseline to the current baseline are

an indication of the current product stability. A baseline can be either an internal

release or an external delivery. This definition can be applied to the products of

each step of the development process, for example requirements, design, tests and

code. Felici [Felici 2004] developed and demonstrated the idea of a simple

maturity metric, which is based on the IEEE Software Maturity Index [IEEE

1988]. His Requirements Maturity Index (RMI) metric is related to rate of change

of requirements. The RMI is an indirect measure that relies on two primitives (or

direct measures) RT and Re. RT is the total number of requirements in the current

release. Re is the number of requirements changes, i.e. added, deleted or modified

requirements. The equation below defines RMI (Equation 3)

Equation 3 Requirements Maturity Index

152

A mature set of requirements will have a RMI = 1. To demonstrate the use of this

maturity index it has been applied to data from the automotive sensor case study

(Chapter 5) traceability system. The data is at a fmer level of granularity

compared to F elici' s work, as he was working at the level of software releases

rather than individual requirements. Looking at the RMI for this data, it is

possible to observe the change in maturity of the requirements as the project

progressed (Figure 10-1).

.. • ...

1.20

1.00

i 0.80
·c
i
:I 0.60
JiI
:;
~ 0.40
.;

E 0.20

0.00

'\ AI
\ I •

V

I 2 l 4 5 6 7 8 9 10 II 12 13 14 IS 16 17 18

Month.

Figure 10-1 Requirements Maturity Index

In Figure 10-1, there are two dips. The first occurs in Month 4 and the second,

smaller dip occurs in Month 7. This can be compared with the requirements

activity shown in Figure 10-2, and with the project history; in Month 3 the

specification was issued and in Month 6 the requirements were reviewed. Both

events resulted in reworking of the requirements and hence a temporary fall in the

RMI.

153

100

90 " Cban •• due to differeocCi bel_ea
. := t" IdrII1IDdi_cllpUifaIIoD . I .. w
Ie /1 " ·u ~
Q, \ .~ '" <>

\ .:l !'!' ClarirK:atioa Cbu,ea· 1-" l~ t"----- lr.remn'lrewordinl
~-L-

-' \ "E 1\ ~ :
a !I ~'" 1 \ ""' ' Requirement. FrouD 1

1 \il \ ./
, ~ \/ ,

10

70

60

50

40

lO

20

10

I 2 l 4 5 6 7 1 9 10 II 12 Il 14 15 16 17 II

Month.

-+-Change. to Requiremcnu

Figure 10-2 Requirements Activity

The TDC traceability structures provide these primitives for the solution artefacts.

Therefore, the maturity of solution artefacts (Solution Maturity Index) can be

determined by the equation below (Equation 4)

Equation 4 Solution Maturity Index

ST is the total number of solution artefacts in the current release. Sc is the number

of changes made to the solution artefacts, i.e. added, deleted or modified

requirements. Therefore, as demonstrated above, the traceability data will allow

the project manager to determine the maturity of a set of solution artefacts.

10.6.3 Artefact Traceability - Arity and Distribution

The number and distribution of traceability links can indication of the state of the

evolution of the solution[Hull et al. 2004], as follows:

154

Solution Artefact Satisfaction Traceability

With thc exception of the development of a prototype, the distribution of solution

satisfaction traceability links gives a guide to the state of the evolution of the

solution. Solution artefacts that satisfy above average number of problem artefacts

should be consider as candidates for further decomposition. For example, solution

artefact D in FigureI0-3.

Satisfaction Traceability

Decomposition Traceability

Figure 10-3 Trying to Satisfy Too Many Problem Artefacts

Problem Artefacts that are satisfied by a large number of solution artefacts, for

example PI in Figure 10-4, should be given special consideration, as a change to

such an artefact would have a large impact on the solution.

This situation can occur for non-functional requirements. For example, a

requirement that defines the limits of the system's memory would be satisfied by

a number of design artefacts that are required to use memory.

155

A

Satisfaction Traceability

Decomposition Traceability

Figure 10-4 Problem Artefact Satisfied by Many Solution Artefacts

Solution Artefact Decomposition Traceability:

Solution Artefacts which have a number of parents, for example G in Figure 10-5,

require attention as changes to this class of artefact can have a major impact on

the rest of system. Such artefacts may perfonn a large number of services and

therefore have low logical cohesion. G may be required to be modified so that the

functionality is split between two new artefacts, GA and GB (Figure 10-6),

therefore limiting the impact of any changes to G and improving the cohesion.

8
~----[b----t:J

[!fchtt(6j---[if8
_ _ _ _ _ _ _ _ Decomposition Traceability

Figure 10-5 Artefact G: Too Many Parent Artefacts

156

[J
cn---[tj----~

[~f~ib~<~--:·b--0
_ _ _ _ _ _ _ _ Decomposition Traceability

Figure 10-6 Splitting Artefact G

10.7 Coda

Conducting research on industrial development practices is difficult to organise

and needs the generous support of the sponsoring companies, yet it is only by

observing how we produce today's systems that we can improve the development

methods of the future. The management of BAE SYSTEMS have the foresight to

understand this.

At the Requirements Traceability Panel Session held at the 14th IEEE

International Requirements Engineering Conference (Minneapolis/St. Paul, USA,

September 11-15, 2006) a delegate asked the following question of the panel

"Our project is 170\\' required to perform traceability - which tools should we

hI/.\' ..

The reply from each of the panel members was the same:

"Concentrate on how your project will use the traceability data - then consider

what tools you require ..

157

It is hoped that this thesis will enable that delegate to determine how to use

traceability data to benefit his project.

158

Appendix A Traceability Survey: Preliminary Questions

Traceability Survey: Preliminary Questions

Overview

The following questions have been devised to gain the maximum benefit from the

project visits and also to aid the SIG customers in selecting a suitable project. This

preliminary questionnaire is in four sections.

• The first group of questions, "The Product", are intended to give an
overview of the product and its complexity. A large, complex project may
have more traceability issues than a smaller self contained project.

• The second group of questions, "Project Organisation ", are concerned
with discovering how the people in the project are organised. The way
people are organised in projects may have a bearing on traceability. For
example there have been a number of well-documented examples where
failures in traceability have been traced to the problems of distributed team
working practices.

• The third group of questions, "Communications", are concerned with how
the project communicates within and externally. If a project has poor
communications then this could lead to information loss and thus lead to
poor traceability.

• The final group of questions, "Tools and Protocols ", are concerned with
looking at what tools and protocols projects teams are using to overcome
the problems related to traceability.

159

The Questions: Help on how to answer them.

Please bear in mind the following when you answer the survey questions:-

• The most difficult aspect to any survey is the writing of the questions. It is
difficult to write short, concise questions which are not ambiguous.
Therefore, under some questions there may be a hint or an alternative
wording in italics.

• Not every question is applicable to all projects; therefore there may be
some questions that can't be answered.

• Try, if possible, to give a full descriptive answer. Too much information at
this stage is not a problem, for it will aid in the development of the
interview questions. Don't spend too long on this questionnaire; the real
questions are yet to come.

• If possible, please use a word processor to complete the questionnaire,
failing that, handwritten answers on a printed version will be acceptable.

• Finally, if there are any problems, please contact me.

When the questionnaire is completed, please email or mail it to:

Paul.Arkley@ncl.ac.uk

Paul Arkley
Centre for Software Reliability
Bedson Building
Newcastle University
Newcastle upon Tyne

Telephone: 01912223589

160

Traceability Survey: Preliminary Questions

The Product

These questions are intended to give an overview of the product and its complexity.

I] What is the product produced by the project?

(A brief description of the product: what is it?)

2] Is the product self-contained or is it a subcomponent?

(Is the product a wing or the final aircraft?)

3] Is the product for an internal or external customer?

4] Does the product employ subcomponents from external suppliers?

5] What is the current development phase of product?

(Design, Development, Production or Maintenance?)

6] What is a rough estimate of the cost of development of the product?

161

Traceability Survey: Preliminary Questions

Project Organisation

The following questions relate to discovering how the project staff are organised.

I] Are project staff dedicated to one project or do staff report to a number of

projects?

2] How many people work on the project?

(Rough estimate)

3] How many work area teams is the project divided into?

(Would be possible to include a project organisation chart?)

4] Are all the teams on the same (physical) site?

(Or the teams distributed)

5] Are the project staff all employed by the same company?

(BAE SYSTEMS, EDAS, Airbus)

162

Traceability Survey: Preliminary Questions

Communications

These questions are concerned with how the project communicates within and externally_

I] Does the project use email?

2] Do teams produce progress reports?

(Do teams write a weekly progress report?)

3] Are progress reports visible throughout the project')

4] How do staff members report problems that require documentation or code

changes to their peers or immediate management?

(Verbally, informally via email,formally in written report?)

5] How are staff members told of changes to documentation or code?

(Verbally, informally via email,forma/lI- in \\'l"ill(,11 report?)

6] Do team members have visibility of outstanding changes, bugs or problems?

(Call a /('0111 member query a tool or file systems to find out what problems exist?)

7] How many official languages are spoken within the project?

(English, French, I/alian etc)

163

Traceability Survey: Preliminary Questions

Tools and Protocols

These questions are concerned with looking at what tools and protocols, projects teams are using

to overcome the problems related to traceability.

1] Does the project employ any design or integrated development tools?

(Tools such as Teamwork?)

2] What is the main tool for documentation?

(MSWord. WordPerfect?)

3] How does the project version control its documentation and source code?

(Does the project use a tool such a sees?)

4] How does the project record changes to documentation and source code?

(By adding comments to the original document or by recording comments ill a version control

tool?)

5] How does the project formally record outstanding bugs or problems')

(Does the project record the problems in a database. development tool or in a paper based

system?)

Thank you for your input

164

Appendix B IDC Database Schema

Artefact

The Artefact structure can be implemented by relational tables 6 to 10.

Artefact
Artefact Description Location Application Development Change Authority Implementer
UID# Status UID# (Stakeholder (Stakeholder

{Not Agreed UID#) UID#)
IAgreedl

Deferred}

Table 6 Artefact

Stakeholder UID#

Table 7 Stakeholder

Table 8 Query

Table 9 Query Reply

Chanl,e
Change Affected Description Type Proposed By Authority Implementer
UID# Artefact {CopYIAddl (Stakeholder (Stakeholder (Stakeholder

(Artefact RemovelAlter} UID#) UID#) UID#)
UID#)

Table 10 Change

Artefact Satisfaction

The Artefact Satisfaction structure can be implemented by relational tables 11 to

12.

Satisfaction UID#

Table 11 Satisfaction

Table 12 Satisfaction Argument

165

Artefact Decomposition

The Artefact Decomposition structure can be implemented by relational tables 13

to 15

Parent Artefact UID # Domain Infonnation Text

Table 13 Decomposition

Table 14 Interface

Attribute UID # Interface UID #

Table 15 Attribute

Artefact Validation

The Artefact Validation structure can be implemented by relational tables 16 to 18

Table 16 Validation Method

Table 17 Test

Table 18 Results

166

Appendix C Example Accipiter Queries

Information Queries

The following are examples of information queries, which would be performed by

the BAC software team (down stream team) while assessing the suitability of the

requirements (problem artefacts).

Query
What is requirement 10.5?

Possible Implementation
Select Requirement.Descriptionfrom Requirement where
Requirement. UID= '10.5 ';

Returned Data

Query

"The Mission Computer will read and validate each waypoint from the
tape. Writing the contents of each waypoint to FlightPlan.dat data file
(For the format of FlightPlan.dat refer to Appendix G: Data Formats"

Who is the authority for Requirement 10.5?

Possible Implementation
Select * from Stakeholder where Stakeholder. U1D= (Select
Requirement.Authority from ReqUirement where
Requirement. UID= '10.5 ');

Returned Data

"Requirements Analyst
James Walker
James. Walker@BAC.com
01904433384
BAC Aerodrome, Cumbria."

167

Query
Who is the implementer of Requirement 10.5?

Possible Implementation
Select * from Stakeholder where Stakeholder. UlD= (Select
Requirement.implementer from Requirement where
Requirement. UlD=' 10.5 ');

Returned Data
"Requirements Analyst
Andrew Adams
Andrew.Adams@BAC.com
01904433385
BAC Aerodrome, Cumbria."

Dialog Queries

The following are examples of dialog queries, which would be performed by the

BAC software team (asking questions) and the requirements team (replying to the

raised questions)

Query
Raise a query on requirement 10.5: (Insert a question in the Query Table)

Possible Implementation

Query

Insert Into Query (Query_UID,_Artefact_UlD,
Stakeholder_UlD,Query_Text) Values ('QUlD124', '10.6', 'Andrew
Adams', "Where is the Waypoint syntax defined? ";

Are there any outstanding queries on the requirements written by Andrew
Armstrong?

Possible Implementation
Select Query _ UlD, Query_Text, "Raised by", Stakeholder _ UID from
Query ll'hereQuery.Artefact_ UlD = (Select Artefact_ UlD from Artefact
where Implemter _ UID= 'Andrew Armstrong ')

Returned Data
" Where is the Waypoint syntax defined? Raised by Andrew Adams"

168

Query
Reply to query on requirement 10.5?: (Insert a reply in the Que,y Reply
Table)

Possible Implementation

Query

1nsert Into Query_Reply
Stakeholder _ UID,Reply _ Text) Values
QUID124', 'Andrew Armstrong', "The
Appendix H ";

What is the reply to QUID124?
Possible Implementation

(Reply _ UID, Query _ UID,
('R UID 145 " 'Responding to

Waypoint syntax is defined in

Select Reply_Text, "reply by", Stakeholder _ UID from Query_Reply where
Query_Reply. Query _ UID= '124 ')

Returned Data
"The Waypoint syntax is defined in Appendix H rep/l' hI' Alldrc\\

Armstrong"

Status Queries.

The following are examples of artefact status queries, which would be performed

during Problem Discourse stage.

Query
What is the development status of requirement 96 7

Possible Implementation
Select Requiremen.Development_Statusfrom Requirement where
Requirement.UID= '10.5 ';

Returned Data
Not Agreed

Query
Change the development status of requirement 10.5 to "Agreed".

Possible Implementation
Update Artefact Set Development_Status = 'Agreed' where
Artefact.Artefact_UID= '10.5';

169

Satisfaction Queries.

The following are examples of artefact satisfaction queries.

10.13 Description: On the successful insertion the Mission Computer will display - "PDC

Inserted"

Query
Which design artefacts satisfy requirement 1 0.13?

Possible Implementation
Select Description, Location,UID,Applicationfrom Design where
Design. UID = (Select Design _ UID from Design_Satisfaction where
Design _ Satisfaction.Requirement _ UID ="10.13")

Returned Data
UID#:D1.4
Description: Tape Package
Location IIAcc/300lDesiMission _Pack _ UML. uxf
Application: Umlet
Status: Not Agreed

The same process would be repeated to discover which code modules satisfied the

design artefact D 1.4.

Query
Which code artefacts satisfy design artefact D1.4?

Possible Implementation
Select Description, Location, UID,Application from Code where Code. UID
= (Select Code _ UID from Code_Satisfaction where
Code Satisfaction.Design_UID ="D1.4")

Returned Data

ID#: C1.6
Description: Tape Interface Package
LocationIIAcc/300ICode/TapePackage.c
Application: Text editor
Status: Not Agreed

170

Bibliography

[agilemanifesto.org 2007]

agilernanifesto.org, (2006). Web Page: Manifesto for Agile Software
Development, http://www.agilemanifesto.org!. Accessed on 7/7/07.

[Al-Rawas and Easterbrook 1996]

Al-Rawas, A, and Easterbrook, S (1996). Communication Problems in
Requirements Engineering: Field Study, Westminster Conference on
Professional Awareness in Software Engineering, Royal Society,
London. 1-2 February.

[Alford 1977]

Alford, M (1977). A Requirements Engineering Methodology For Real­
Time Processing Requirements, IEEE Transactions on Software
Engineering III (1), pages 60-69, January 1977

[Alford 1994]

Alford, M (1994). Types of Traceability, Requirenautics Quarterly, Issue
I, pages 4-5, October 1994

[Alves-Floss et aI. 2002]

Alves-Floss, J, Conte de Leon, D and Oman, P (2002). Experiments in the
Use of XML to Enhance Traceability Between Object-Oriented Design
Specifications and Source Code, 35th International Conference on
Systems Sciences, Hawaii, IEEE Press, pages 3959-3966,January 2002.

[Anderson et al. 2002]

Anderson, K, Sheba, Sand Lepthien, W (2002). Towards Large-Scale
Information Integration, 24th International Conference on Software
Engineering, Orland, Florida, ACM, pages524- 534, May 2002

[Anton 1997]

Anton, A (1997). Goal Identification and Refinement in the Specification
of Software-Based Information Systems, Ph.D. Thesis, Computer Science,
Georgia Institute of Technology, Atlanta GA, USA.

[Antoniol et al. 2002]

Antoniol, G, Canfora, G, Casazza, G, De Lucia, A, Merlo, E (2002).
Recovering Traceability Links between Code and Documentation, IEEE
Transactions on Software Engineering, IEEE Press ,Volume 28, Issue 10,
pages 970-983, October 2002

171

[Arldey 2002]

Arkley, P (2002). A Survey of Traceability Practices, Technical Report
DCSCrrRl2002/18, BAE SYSTEMS DCSC, University of Newcastle,
Newcastle upon Tyne, UK.

[Arkley and Riddle 2005]

Arkley, P and Riddle, S (2005). Overcoming the Traceability Problem,
13th IEEE International Requirements Engineering Conference, La
Sorbonne, Paris, France, IEEE Press, pages 385 - 389, September 2005.

[Babbie 1990]

Babbie, E (1990). Survey Research Methods, 2nd Edition, Wadsworth
Publishing USA, ISBN 0-534-12672-3.

[Bell and Thayer 1976]

Bell, T and Thayer, T (1976). Software Requirements: Are They really a
Problem?, 2nd International Conference on Software Engineering, San
Francisco, IEEE Press, pages 61-68, May 1976.

[Berry and So 2006]

Berry, D and So, J (2006). Experiences of Requirements Engineering for
Two Consecutive Versions of a Product at VLSC, 14th IEEE International
Requirements Engineering Conference, MinneapolisiSt. Pauls, Minnesota,
USA, IEEE Press, pages 221-226, September 2006.

[Bersoff and Davis 1991]

Bersoff, E and Davis, A (1991). Impact of Life Cycle Models on Software,
Communications of the ACM, ACM, Volume 34, Issue 8, pages 106 -117,
August 1991.

[Boehm 1981]

Boehm, B (1981). Software Engineering Economics, Prentice-Hall, Angle
Cliffs, N.J., ISBN 0138221227.

[Boehm 1986]

Boehm, B (1986). A Spiral Model of Software Development and
Enhancements, ACM SIGSOFT Software Engineering Notes, ACM,
Volume II, Issue 4, pages 21-42, August 1986.

(Boehm and Bose 1994]

Boehm, B and Bose, P (1994). A Collaborative Spiral Software Process
Model Based on Theory W, International Conference on the Software
Process (ICSP), Reston. USA, IEEE Press, page 59-68, October 1994.

172

[Boehm, et al. 1982]

Boehm, B, Elwell, J, Pyster, A, Stuckle,D and Williams, R (1982). The
TRW Softwaxe Productivity System, Proceedings of the 6th International
Conference on Software engineering, Tokyo, Japan, IEEE Press, pages
148 - 156, May 1982.

[Boehm et al. 1998]

Boehm, B, Egyed, A, Kwan, J, Port, D, Shah, A and Madachy, R (1998).
Using the WinWin spiral model: a case study, IEEE Computer, IEEE
Press,Volume 31, Issue 7, pages 33-44, July 1998.

[Boehm and Ross 1989]

Boehm, B, and Ross, R (1989). Theory-W Softwaxe Project Management:
Principles and Examples, IEEE Transactions on Software Engineering,
IEEE Press, Volume 15, Issue 7, pages 902-916, July 1989.

[Boehm and Turner 2004]

Boehm, B and Turner, R (2004). Balancing Agility and Discipline, 1st
Edition, Addison Wesley, U.S., ISBN 0-321-18612-5.

[Christie 1996 et al.]

Christie, A, Levine, L, Morris, E, Zubrow, D (1996). Software Process
Automation: Experiences From the Trenches, Research Report CMU/SEI-
96-TR-013, CMU, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213.

[Collard et al. 2002]

Collaxd, M, Maletic, J and Maxcus, A(2002). Supporting Document and
Data Views of Source Code, Document Engineering 02, Mclean, Virginia
USA, ACM, pages 34-41, November 2002.

[ConceptBase 2007]

ConceptBase, (2007). Web Page: ConceptBase Home Page, http://www­
i5.informatik.rwth-aachen.de/CBdoc/, Accessed on 717107.

[Cradle-S 2007]

Cradle-5, (2007). Web Page: Cradle 5,
http://www.tbreesl.com/pages/products/index. pbp, Accessed on 717/07.

[Curtis et al. 1988]
Curtis, B, Krasner, H and Iscoe, N (1988). A Field Study of The Software
Design Process for Large Systems, Communications of the ACM, Volume
31, Issue 11, pages 1268-1286, November 1988.

173

[Darimont et al. 1998]

Darimont, R, Delor, E, Massonet, P and Lamsweerde, A (1998).
GRAILIKAOS: An Environment for Goal-Driven Requirements
Engineering, ICSE'98 - 20th International Conference on Software
Engineering, Kyoto, Japan, IEEE Press ,pages 58-62, April 1998.

[Davis 1990]

Davis, A, (1990). Software requirements: analysis and specification,
Edition, Prentice Hall Press, Upper Saddle River, NJ, USA, ISBN:O-13-
824673-4.

[DCSC 2007]

DCSC, (2007). Web Page: DCSC: Dependable Computing Systems Centre
Home Page, http://www.cs.york.ac.uklhise/dcsc.php.Accessed on 717107.

[De Lucia et al. 2004]

De Lucia, A, Fasano, F, Oliveto, R, and Tortora, G (2004). Enhancing an
Artefact Management System with Traceability Recovery Features, 20th
IEEE International Conference on Software Maintenance (lCSM 04),
Chicago Illinois, USA, IEEE Press, pages 306- 315, September 2004.

[Dick 2002]

Dick, J (2002). Rich Traceability, Ist International workshop on
Traceability in Emerging Forms of Software Engineering in conjunction
with the 17th IEEE International Conference on Automated Software
Engineering, Edinburgh, Scotland, IEEE Press, page range 18-25,
September 2002.

[Dijkstra 1972]

Dijkstra, E (1972). The humble programmer, Communications of the
ACM, ACM , Volume 15, Issue 10, pages 859-866, October 1972.

[DOORS 2007]

DOORS, (2007). Web Page: Dynamic Object Oriented Requirements
System, http://www.telelogic.comldoors. Accessed on 7/7107.

[Easterbrook 1993]

Easterbrook, S (1993). CSCW: Cooperation or Conflict, Springer-Verlag
pages 1-64, ISBN: 978-0387197555

[Egyed 2005]

Egyed, A., Griinbacher, P (2005). Supporting Software Understanding
with Automated Traceability, International Journal of Software
Engineering and Knowledge Engineering (lJSEKE), World Scientific
Publishing Company, vol. 15, No 5, pp. 783-810, 2005,

174

[Felici 2004]

Felici, M (2004). Observational Models of Requirements Evolution, Ph.D.
Thesis, Laboratory for Foundation of Computing Science, University of
Edinburgh, Edinburgh.

[Gote1199S]

Gotel, 0 (1995). Contribution Structures for Requirements Traceability,
Ph.D. Thesis, Computer Science, Imperial College of Science, Technology
and Medicine, London.

[Go tel and Finkelstein 1994]

Gotel, 0 and Finkelstein, A (1994). An Analysis of the Requirements
Traceability Problem, First International Conference on Requirements
Engineering, Colorado Springs, Co, USA, IEEE Press, pages 94-101,
April 1994.

[Greenspan and McGowan 1978]

Greenspan, S and McGowan, C (1978). Structuring software development
for reliability, Microelectronics and Reliability, Elsevier, Volume 17, Issue
1, pages 75-83, January 1978.

[Hall et al. 2002]

Hall, J, Jackson, M, Laney, R, Nuseibeh, B and Rapanotti, L, (2002)
Relating Software Requirements and Architectures using Problem Frames,
IEEE International Requirements Engineering Conference (RE'02), Essen,
Germany, IEEE Press, pages 137-144, September 2002

[Hayes et al. 2006]

Hayes, J Dekhtyar, A and Sundaram, S (2006). Advanced Candidate Link
Generation for Requirements Tracing: The Study of Methods, IEEE
Transactions on Software Engineering, IEEE Press, Volume 32, Issue I,
pages 4 -19. January 2006

[Herzog 2000]

Herzog, E (2000). AP233 Architecture,10th annual International
Symposium of the International Council on Systems Engineering, pages
815-822,July 2000.

[Hull et al. 2004]

Hull E, Jackson K and Dick J (2004). Requirements Engineering, 2
0d

Edition, Springer -Verlag, ISBN 1-85233-879-2.

[IABG 2007]

IABG, (2007). Web Page: V Development Model, WWW.v­
modell.iabg.delkurzb/vm/k _ vm _ e.doc, Accessed on 7/7/07.

175

[IEEE 1977)

IEEE, (1977). Special Issue on Requirements Analysis and Requirements
Tools, IEEE Transactions on Software Engineering, IEEE Press, Volume
SE-3, Number 1, January 1977

[IEEE 1988)

IEEE, (1988). IEEE Standard Dictionary of Measures of Produce Reliable
Software, IEEE Std 982.1, IEEE The Institute of Electrical and Electronics
Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA.

[IEEE 1998)

IEEE, (1998). IEEE Recommended Practice for Software Requirements
Specifications, IEEE Std 830-1998 (Revision of IEEE Std 830-1993),
IEEE-SA Standards Board, The Institute of Electrical and Electronics
Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA.

[INCOSE 2007)

INCOSE, (2007). Web Page: Online Requirements Management Tool
Survey, http://www.paper-review.com/tools/rms/read.php. Accessed on
7/7/07.

[ISO 2007)

ISO, (2007). Web Page: International Organisation for Standardisation,
http://www.iso.org/iso/enlISOOnline.frontpage, Accessed on 717107.

[Jackson 1991)

Jackson, J (1991). A Key-phrase Based Traceability Scheme, Tools and
Techniques for Maintaining Traceability During Design, lEE Colloquium,
Computing and Control Division, Professional Group Cl (Software
Engineering), Savoy Place London, Digest Number: 19911180 December
2nd 1991, pages 2/1-2/4.

[Jackson 2001)
Jackson, M (2001). Analysing and Structuring Software Development
Problems, Pearson Education Ltd, 128 Long Acre, London, WC2E 9AN
ISBN: 0-201-59627-X.

[KaindlI993]
Kaindl, H (1993). The Missing Link In Requirements Engineering, ACM
SIGSOFT Software Engineering Notes, ACM, Volume 18, Issue 2, pages
30 - 39, April 1993

[KBSt 2007)
KBSt, (2007). Web Page: V-Modell XT, http://www.v-modell-xt.del.
Accessed on 717/07.

176

[Kelly 1999J

Kel1~, T (1999). A Systematic Approach to Managing Safety Cases, DPhil.
ThesIs, Department of Computer Science, The University of York,
England.

[Klein 1993J

Klein, M (1993). Capturing Design Rationale in Concurrent Engineering
Teams, IEEE Computer: Special Issue on Computer Support for
Concurrent Engineering, IEEE Press, Volume 26, Issue 1, pages 39-47,
January 1993.

[Leong and Austin 1996J

Leong, F and Austin, J (1996). The Psychology Research Handbook: A
Guide for Graduate Students and Research Assistants, Company, Sage
Publications, ISBN 0-8039-7049-8.

[Marcus and Maletic 2003]

Marcus, A and Maletic, J (2003). Recovering Document-to-Source-Code
Traceability Links using Latent Semantic Indexing, 25th International
Conference on Software Engineering, Portland, Oregon, USA, IEEE
Computer Society, pages 125-135, May 2003.

[Mason 1999]

Mason, P (1999). MATrA : Meta-modelling Approach to Traceability for
Avionics, Ph.D. Thesis, School of Computing Science, University of
Newcastle, Newcastle upon Tyne, UK.

[Nentwich et al. 2002J
Nentwich, C, Emmerich,W, and Finkelstein, A, (2002) Edit, Compile,
Debug - From Hacking to Distributed Engineering, Proceedings of the
Workshop on Aspect Oriented Design at the 1 st International Conference
on Aspect Oriented Software Development (AOSD), April 2002.

[Neumtllle and Grtlnbache 2006J

Neumiiller, C., Griinbacher, P (2006). Automating Software Traceability
in Very Small Companies: A Case Study and Lessons Learned ,
Proceedings 21 st IEEE/ ACM International Conference on Automated
Software Engineering, Tokyo, Japan, pp. 145-156, September 2006.

[Nuseibeh et al. 1994J
Nuseibeh, B, Kramer, J and Finkelstein, A (1994). A Framework for
Expressing the Relationships Between Multiple Views ~ R~uirements
Specifications, IEEE Transactions on Software Engmeenng, IEEE
Computer Society Press ,Volume 20, Issue 10, pages 760-773, October

1994.

177

(Pierce 1978J

Pierce, R (1978). A Requirements Tracing Tool, ACM SIGSOFf
Software Engineering Notes,ACM, Volume 3, Issue 5 , pages 53 - 60,
November 1978.

[Poh11996]

Pohl, K.(1996). PRO-ART: enabling requirements pre-traceability, IEEE
Proceedings of the Second International Conference on Requirements
Engineering (lCRE'96), Colorado Springs, Co, USA, IEEE Press, pages
76-90, Apri11996.

(Praxis 2007]

Praxis, (2007). Web Page: REVEAL:Requirements Engineering Method,
http://www.praxis-his.comlreveaVindex.htm. Accessed on 7/7107.

(PVCS 2007]

PVCS, (2007). Web Page: Product Version Control System Home Page,
http://www.serena.comlProducts/professionaVvm/home.asp. Accessed on
7/7/07.

(Ramamoorthy et al.1990]

Ramamoorthy, C, Yutaka, U, Prakash, A and Tasi, T (1990). The
Evolution Support Environment System, IEEE Transactions on Software
Engineering, IEEE Press, Volume 16, Issue 11, Pages 1225 - 1234,
November 1990.

(Ramesh 1998]
Ramesh, B (1998). Factors Influencing Requirements Traceability
Practice, Communications of the ACM, ACM, Volume 41, Issue 12, Pages
32-35, December 1998.

(Ramesh and Jarke 1999a]
Ramesh, B and Jarke, M (1999). Towards Reference Models For
Requirements Traceability, Report, ESPRIT project 21.903 CREWS 1
DAAD Ja44515-1, German DAAD and US National Science Foundation.

[Ramesh and Jarke 1999b]
Ramesh,B and Jarke, M(1999). Towards Reference Models for
Requirements Traceability, CREWS Research ~eport Ja~5/~-I,
Department of Computing Information Systems, Georgta State Umverslty,
Atlanta, GA 30303, USA.

178

[Ramesh et al. 1993]

Ramesh, B, Stubbs, C, Powers, T and Edwards, M (1993). Issues in the
development of a requirements traceability model, IEEE International
Symposium on Requirements Engineering, San Diego, CA, USA IEEE
Press, page 256-259, January 1993.

[Ramesh et al.1995]

Ramesh, Stubbs, C, Powers, T and Edwards, M (1995). Implementing
requirements traceability: a case study, 2nd IEEE International
Symposium on Requirements Engineering, York, England, IEEE Press,
page 89-99, March 1995.

[Riddle and Saeed 1998]

Riddle, S and Saeed, A (1998). Tracking Conflicting Requirements and
Trade-Offs., Research Report DCSCfTRl98/16, BAE SYSTEMS DCSC,
University of Newcastle, Newcastle upon Tyne UK.

[Riddle and Saeed 1999a]

Riddle, S and Saeed, A (1999). Application of Traceability Structures.
Technical Report DCSC/TRl99/2, BAE SYSTEMS DCSC, University of
Newcastle, Newcastle upon Tyne, UK.

[Riddle and Saeed 1999b]

Riddle, S and Saeed, A(1999). Tool Support for Implementation and
Analysis of Traceability Structures, International Council on Systems
Engineering, Brighton UK, INCOSE, pages 1083 -1090, June 1990.

[Robinson 1993]
Robinson, C (1993). Real World Research: A Resource for Social
Scientists and Practitioner-researchers, Blackwells, ISBN 0-631-17689-6.

[Royce 1970]
Royce, W (1970). Managing The Development of Large Software
Systems, Proceeding ofIEEE WESCON, IEEE Press, ,pages 1-9. August

1970

[RTM 2007]
RTM, (2007). Web Page: Requirements and Traceability Management
system, http://www.serena.com/Products/rtmlhome.asp. Accessed on

717/07.

[TickIT 2000]
TickIT, (2000). TickIT,2000. Guide. Using ISO 9001:2000 For Sofn:are
Quality Management Systems Construction. Certification and CO!'Il!'ual
Improvement. BSI, Issue 5, BSI, Holborn Gate,26 Southampton Buildings,
London ,WC2A IPQ,United Kingdom,

179

[Watkins and Neal 1994]

Watkins, R and Neal, M (1994). Why & How of Requirements Tracing,
IEEE Software, IEEE Press, Volume 11, Issue4, pages 104 -106, July
1994

[Weinberg 1997]

Weinberg, G (1997). The Quality Software Management. Volume 4:
Anticipating Change, Edition, Dorset House Publishing, 353 West 12th
Street New York, New York 10011, ISBN: 0-932633-32-3.

[Weinberg 1998]

Weinberg, G (1998). The Psychology of Computer Programming, Edition,
Dorset House Publishing, 353 West 12th Street New York, New York
10011, ISBN 0-932633-42-0

[Wieringa 1995]

Wieringa, R (1995). An Introduction to Requirements Traceability,
Technical Report TR-389, Faculty of Mathematics and Computer Science,
Vrije Universiteit, Amsterdam.

[XLink 2007]

XLink, (2007). Web Page: http://www.w3.orgIXMLlLinking, Accessed on
7/7/07.

[XML 2007]

XML, (2007). Web Page: http://www.w3.orgIXML,Accessedon 717107.

[Zave 1997]
Zave, P (1997). Classification of Research Efforts in Requirements
Engineering, ACM Computing Surveys, ACM, Volume 29, Issue 4, pages
214-216, December 1997.

[Zisman et al. 2003]
Zisman, A, Spanoudakis, G, Perez-Minana, E and Krause, P (2003).
Tracing Software Requirements Artefacts, International Conference on
Software Engineering Research Practice, Las Vegas, Nevada,
USA,CSREA Press, Volume 1, pages 448-455, June 2003.

180

181

	445544_0001
	445544_0002
	445544_0003
	445544_0004
	445544_0005
	445544_0006
	445544_0007
	445544_0008
	445544_0009
	445544_0010
	445544_0011
	445544_0012
	445544_0013
	445544_0014
	445544_0015
	445544_0016
	445544_0017
	445544_0018
	445544_0019
	445544_0020
	445544_0021
	445544_0022
	445544_0023
	445544_0024
	445544_0025
	445544_0026
	445544_0027
	445544_0028
	445544_0029
	445544_0030
	445544_0031
	445544_0032
	445544_0033
	445544_0034
	445544_0035
	445544_0036
	445544_0037
	445544_0038
	445544_0039
	445544_0040
	445544_0041
	445544_0042
	445544_0043
	445544_0044
	445544_0045
	445544_0046
	445544_0047
	445544_0048
	445544_0049
	445544_0050
	445544_0051
	445544_0052
	445544_0053
	445544_0054
	445544_0055
	445544_0056
	445544_0057
	445544_0058
	445544_0059
	445544_0060
	445544_0061
	445544_0062
	445544_0063
	445544_0064
	445544_0065
	445544_0066
	445544_0067
	445544_0068
	445544_0069
	445544_0070
	445544_0071
	445544_0072
	445544_0073
	445544_0074
	445544_0075
	445544_0076
	445544_0077
	445544_0078
	445544_0079
	445544_0080
	445544_0081
	445544_0082
	445544_0083
	445544_0084
	445544_0085
	445544_0086
	445544_0087
	445544_0088
	445544_0089
	445544_0090
	445544_0091
	445544_0092
	445544_0093
	445544_0094
	445544_0095
	445544_0096
	445544_0097
	445544_0098
	445544_0099
	445544_0100
	445544_0101
	445544_0102
	445544_0103
	445544_0104
	445544_0105
	445544_0106
	445544_0107
	445544_0108
	445544_0109
	445544_0110
	445544_0111
	445544_0112
	445544_0113
	445544_0114
	445544_0115
	445544_0116
	445544_0117
	445544_0118
	445544_0119
	445544_0120
	445544_0121
	445544_0122
	445544_0123
	445544_0124
	445544_0125
	445544_0126
	445544_0127
	445544_0128
	445544_0129
	445544_0130
	445544_0131
	445544_0132
	445544_0133
	445544_0134
	445544_0135
	445544_0136
	445544_0137
	445544_0138
	445544_0139
	445544_0140
	445544_0141
	445544_0142
	445544_0143
	445544_0144
	445544_0145
	445544_0146
	445544_0147
	445544_0148
	445544_0149
	445544_0150
	445544_0151
	445544_0152
	445544_0153
	445544_0154
	445544_0155
	445544_0156
	445544_0157
	445544_0158
	445544_0159
	445544_0160
	445544_0161
	445544_0162
	445544_0163
	445544_0164
	445544_0165
	445544_0166
	445544_0167
	445544_0168
	445544_0169
	445544_0170
	445544_0171
	445544_0172
	445544_0173
	445544_0174
	445544_0175
	445544_0176
	445544_0177
	445544_0178
	445544_0179
	445544_0180
	445544_0181
	445544_0182
	445544_0183
	445544_0184
	445544_0185
	445544_0186
	445544_0187
	445544_0188
	445544_0189
	445544_0190
	445544_0191
	445544_0192
	445544_0193
	445544_0194
	445544_0195
	445544_0196
	445544_0197

