
Algorithm To Layout (ATL) Systems For VLSI Design 

M.A. Lynch 

NEWCASTLE UNIVERSITY LIBRARY 

085 13485 8 
----------~--------~--------

Computing Laboratory 
University of Newcastle upon Tyne 

Newcastle upon Tyne NE1 7RU 

April 1986 

i 



ABSTRACT 

The complexities involved in custom VLSI design together with the 
failure of CAD techniques to keep pace with advances in the fabrication 
technology have resulted in a design bottleneck. Powerful tools are 
required to exploit the processing potential offered by the densities now 
available. Describing a system in a high level algorithmic notation 
makes writing, understanding, modification, and verification of a design 
description easier. It also removes some of the emphasis on the physical 
issues of VLSI design, and focus attention on formulating a correct and 
well structured design. This thesis examines how current trends in CAD 
techniques might influence the evolution of advanced Algorithm To Layout 
(ATL) systems. The envisaged features of an example system are 
specified. Particular attention is given to the implementation of one 
its features COPTS (Compilation Of Occam Programs To Schematics). 

COPTS is capable of generating schematic diagrams from which an 
actual layout can be derived. It takes a description written in a subset 
of Occam and generates a high level schematic diagram depicting its 
realisation as a VLSI system. This diagram provides the designer with 
feedback on the relative placement and interconnection of the operators 
used in the source code. It also gives a visual representation of the 
parallelism defined in the Occam description. Such diagrams are a 
valuable aid in documenting the implementation of a design. 

Occam has also been selected as the input to the design system that 
COPTS is a feature of. The choice of Occam was made on the assumption 
that the most appropriate algorithmic notation for such a design system 
will be a suitable high level programming language. This is in contrast 
to current automated VLSI design systems, which typically use a hardware 
des~ription language for input. These special purpose languages 
currently concentrate on handling structural/behavioural information and 
have limited ability to express algorithms. Using a language such as 
Occam allows a designer to write a behavioural description which can be 
compiled and executed as a simulator, or prototype, of the system. The 
programmability introduced into the design process enables designers to 
concentrate on a design's underlying algorithm. The choice of this 
algorithm is the most crucial decision since it determines the 
performance and area of the silicon implementation. 

The thesis is divided into four sections, each of several chapters. 
The first section considers VLSI design complexity, compares the expert 
systems and silicon compilation approaches to tackling it, and examines 
its parallels with software complexity. The second section reviews the 
advantages of using a conventional programming language for VLSI system 
descriptions. A number of alternative high level programming languages 
are considered for application in VLSI design. The third section defines 
the overall ATL system COPTS is envisaged to be part of, and considers 
the schematic representation of Occam programs. The final section 
presents a summary of the overall project and suggestions for future work 
on realising the full ATL system. 
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CHAPTER 1 

INTRODUCTION 

The 1980's have seen the realisation of silicon chips containing in 

excess of 1,000,000 transistors. The term very large scale integration 

(VLSI) is used for the technology required to produce them. Densities 

are further expected to increase by at least another factor of 10 before 

the limits of the technology are reached. A wide variety of complete 

systems with enormous computing power are now being designed and laid out 

on a single chip e.g the IMS T424 transputer chip [4] developed by INMOS. 

The dawn of the VLSI era has also seen an interest in a whole range of 

special purpose chips, typically designed to function as peripheral 

devices attached to a conventional host computer. The motivations behind 

the design of such chips are two fold. Firstly, there is the emergence 

of a design philosophy [47] and design tools aimed at unlocking the 

processing potential of VLSI. Secondly, there is the growing belief 

[40,65] that a significant portion of the next generation of high 

performance computers will be based on architectures capable of 

exploiting VLSI modules. In particular, it is desirable to have compact 

and inexpensive hosts into which interchangeable high performance modules 

can be plugged to fit various application requirements. 
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Examples of special-purpose chips include: the programmable 

systolic chip [38] developed at Carnegie-Mellon University by H.T. Kung 

and used to implement various functions including two-dimensional 

convolutions for signal processing applications; special purpose chips 

for computer graphics developed under the supervision of Henry Fuchs [17] 

at the University of North Carolina; and SCAPE: an image processing chip 

by Lea [41] and his co-workers at BruneI University. 

The new quick-turnaround chip fabrication facilities will sustain 

the interest in special purpose chips. Application areas are expected to 

broaden and more algorithms previously implemented in software will be 

mapped into silicon [39]. The availability of this micro-chip 

technology, however, has resulted in a "VLSI design crisis" because of 

the complexity involved in the design process. This crisis centres 

around the effort (in terms of time and man power costs) required to 

translate a behavioural description of what the new chip is supposed to 

do into the chip layout implementing this behaviour. 

The translation process is achieved by passing through several 

levels of abstraction, illustrated in figure 1.1. Each level attempts to 

reduce complexity by hiding unnecessary detail. At each level there are 

a number of design options that may be selected to solve a particular 

problem. For instance, at the algorithm level, the freedom to choose 

between a sequential or parallel algorithm is available. At the 

architectural level, a designer can select either a bit serial or a bit 

parallel implementation. Above the structural level, the definition of 

the system is usually implementation independent. During the translation 

process a designer typically uses several different design notations, 
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+-------------------------------------------------+ 
I ALGORITHM LEVEL I 
I The design is defined in terms of an algorithmicl 
I description capturing the characteristics of I 
I the underlying algorithm. I 
+-------------------------------------------------+ 

I 
+-------------------------------------------------+ 

ARCHITECTURAL LEVEL I 
The overall structure of the system implementing I 
the algorithm is considered. Parameterised highl 
level primitives such as processors, memories I 
and I/O devices are used to describe the design. I 
The global data flow between these primitives isl 
also considered. I 

+-------------------------------------------------+ 

+-------------------------------------------------+ 
I BEHAVIOURAL LEVEL I 
I A procedural description of the function of eachl 
I high level primitive is given, each being I 
I considered as an autonomous system. I 
+-------------------------------------------------+ 

+-------------------------------------------------+ 
STRUCTURAL LEVEL 

Each of the subsystems is described, 
possible, as a collection of defined 
blocks - e.g. RAMs, ALUs, PLAs etc. 
relationships are identified. 

where 
structural 
Timing 

+-------------------------------------------------+ 

+-------------------------------------------------+ 
LOGIC LEVEL I 

Individual functions are defined in terms of 
combinational logic and storage devices. 
Signal transitions are described. 

I 
I 
I 

+-------------------------------------------------+ 

+-------------------------------------------------+ 
I CIRCUIT LEVEL I 
I Combinational logic and storage devices are I 
I decomposed into groups of transistors. I 
+-------------------------------------------------+ 

I 
I 

FABRICATION 

FIGURE 1.1: THE DESIGN PROCESS. 

each aimed at representing a particular level of abstraction. The 
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designer has to verify the equivalence between the successive 

descriptions. 

There has been a substantial growth in the number of CAD synthesis 

systems developed to meet the challenge of this crisis. However, the 

majority of these "tools" are oriented towards the transformation of 

design descriptions at the lower levels of the design process. Their 

effect has been limited, since the capabilities they offer are badly 

matched to the sheer complexity now available. 

A lack of VLSI design expertise also contributes to the design 

bottleneck, since present CAD tools are "passive". That is, no 

assistance is given in design decision making. Designers are expected to 

have gained some VLSI expertise, enabling them to make such decisions. 

Without some method for reducing the inherent complexity of designs, the 

ultimate benefits to be offered by the technology will remain 

inaccessible. 

To date, silicon area has been regarded as a limiting factor in the 

implementation of a VLSI design. However, if the expected densities of 

10-million transistors are achieved, effectively 10 times today's area 

will be available. This means that for many designs silicon area will no 

longer be a limiting factor. It is argued that this will remove the 

current emphasis on layout optimisation thereby reducing the design time 

and design cost. The possibility of the removal of this emphasis, or at 

least a reduction of it, has led to an interest in integrated design 

systems aimed at decreasing design times by automation. One of the most 

important features of these systems is that a single circuit description 

is used throughout the design process, ensuring that the same circuit is 
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laid out on the chip as was originally conceived. These systems can be 

categorised as either knowledged based, or compilation based. The former 

use AI approaches to the solution of some of the many problems connected 

with the design of VLSI chips. In the case of the latter the trend is 

towards a general purpose design system providing an integrated 

environment similar to that currently found in software systems. 

Both techniques have promise of providing a significant improvement 

on the traditional graphical based CAD tools. Currently, they are aimed 

at supporting the designer from the structural/behavioural level. 

Advanced powerful Algorithm To Layout (ATL) systems are required to fully 

exploit the processing potential available. Such systems must be capable 

of transforming an algorithmic description of a design into an actual 

layout implementation. This thesis considers the selection of an 

appropriate algorithmic notation for a future ATL system. The approach 

adopted here was to select a conventional programming language. This 

removes the need to define and support a special-purpose hardware design 

language capable of supporting algorithmic descriptions. 

The material presented in the thesis gives a background to the 

environment in which an ATL system would serve. In particular, 

motivations for the future development of such systems are identified. 

Current trends in CAD techniques are examined to see how these might 

influence the evolution of ATL systems. Also, the reasoning behind the 

choice of the programming language Occam as the source code to an example 

system are given. This system is called ATLAST (Algorithm To Layout 

ASsisTant) and is major features are is specified. Finally, the first 

practical steps toward ATLAST's realisation are presented. 
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To begin with, Chapter 2 summarises the major features of a VLSI 

design methodology that has emerged to tackle the problem of design 

complexity. This chapter also compares the CAD techniques of silicon 

compilation and VLSI expert systems, both of which incorporate design 

knowledge. In Chapter 3 parallels are drawn between software engineering 

and VLSI engineering. These parallels relate the motivations behind the 

evolution of today's software environments to the future development of 

design languages and their automated translation. A brief review of the 

history of these languages is given and the characteristics of two 

example languages, MODEL and STRICT, are summarised. 

Chapter 4 considers the emerging trend of incorporating programming 

mechanisms into design languages. The advantages of using a conventional 

programming language in VLSI systems design are considered. A means of 

identifying which of the many available languages is the most suitable 

for a hardware design role is presented. This requires assessing the 

ability of a number of languages (PASCAL, Occam, SmallTalk, Lispkit Lisp 

and Prolog) to capture the characteristics of an example design. These 

languages between them represent most of the important categories of 

programming language. A pattern matching chip, an example of a special 

purpose VLSI chip, is selected to test their ability. In Chapter 5 each 

of the selected languages is used to describe this design and a choice 

made. 

Chapter 6 considers the role of Occam in VLSI, in particular, the 

advantageous of using the language for specifying the behaviour of VLSI 

systems. The features of a future ATL system (ATLAST) based on Occam are 

specified. One of the most important issue in its future implementation 
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will be the mapping of the execution sequence of Occam programs into an 

appropriate hardware model. The self timed and clocked (synchronous) 

models are considered. The work to date has concentrated on the the 

translation of Occam programs into a suitable intermediate graphical 

(schematic) representation. A compiler capable of translating a limited 

set of Occam programs into schematic diagrams has been developed. Its 

approach for extracting topological information from source programs 

together with brief details of its implementation are discussed in 

Chapters 6 and 7. The results obtained so far are presented in Chapter 8 

and their limitations and implications are considered. 

Chapter 9 summarises the work in this thesis and examines related 

work. Some suggestions for future work on VLSI design systems based on 

Occam are also given. 
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CHAPTER 2 

TACKLING VLSI DESIGN COMPLEXITY 

Before advances in technology made very large scale integration 

possible, it was usual to design and fabricate an integrated circuit of 

up to a few thousand gates of 'random' logic. This level of integration 

is commonly referred to as large scale integration (LSI). There are a 

variety of design styles available to support the LSI designer in the 

task of implementing designs. These range from full custom design to 

semi-custom design using gate arrays and standard cells. Since VLSI is 

more than just an extension of LSI, the LSI design styles alone are not 

sufficient for implementing VLSI designs. In VLSI design different 

issues such as complexity, internal structuring, and communication become 

relevant. Also, in the design of custom special-purpose VLSI chips 

flexibility becomes a key issue. 

VLSI technology allows complete systems to be laid out on the 

unstructured domain of a single silicon chip. The designer can take 

advantage of this freedom to utilise the processing potential offered by 

the medium. However, design complexity arises from this excess freedom 

and the wide variety of representations offered by the silicon domain. 
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Complexity is a serious limitation on the implementation of random logic 

in VLSI designs. A suitable design methodology and set of design tools 

are essential if the designer is not to be overwhelmed by the problem. 

One approach is to restrict the designer to certain architectural styles 

and control the alternatives available in implementing a design. This 

chapter considers the use of a structured design methodology as such an 

approach for tackling design complexity. Also, the role of of computer 

aided design tools in tackling design complexity is reviewed. These 

tools are discussed in terms of traditional and future approaches. 

2.1 THE EMERGENCE OF A DESIGN METHODOLOGY. 

The complexities now involved in designing and debugging very large 

scale integrated systems can, it is generally agreed, only be managed by 

adopting some type of regular, structured design methodology. One 

approach, which has gained considerable recognition, was first formulated 

by Mead and Conway [47]. It represents a marked departure form earlier 

LSI approaches since the emphasis is moved from logic-level design to 

layout of more complex elements from symbolic descriptions or even high 

level behavioural descriptions. 

2.1.1 Principles And Origins 

The Mead and Conway methodology for VLSI system design was strongly 

influenced by the structured programming approach stimulated by Wirth 

[77], Dijkstra [13], Jackson [32], and others. The main features of the 

structured programming approach are: 
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1. Stepwise Refinement 

The creative activity of programming is considered as a stepwise 

refinement process. In each step, a given task of a program is 

decomposed into a number of simpler sub-tasks. 

2. Modularity 

The degree of modularity obtained by refinement determines the 

maintainability (with respect to change in objectives and/or 

additions to its purpose) and portability of a program. 

3. Notation 

A notation natural to the problem should be used as long as 

possible during the process of stepwise refinement. Decisions 

which concern details of representation should be deferred as 

long as possible. 

4. Design Decisions 

Each refinement implies a number of design decisions based upon 

a set of design criteria (such as efficiency, clarity and 

regularity of structure), and the existence of alternative 

solutions. Decisions should be decomposed as much as possible. 

This method has many advantages including: simplification by 

partitioning the program into small manageable segments (procedures, 

modules, or subroutines), writing and testing each segment independently, 

and producing more understandable programs. These advantages are 

achieved by placing restrictions on the programmer. However, the wide 

spread use of structured programming languages has shown that a 

structured methodology has given benefits far outweighing those that were 
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removed by the restrictions imposed on the programmer. 

The four features outlined above were used by Mead and Conway as the 

beginnings of a "top down, bottom up", structured design methodology for 

VLSI systems. Their approach makes use of: 

Hierarchical Decomposition 

This corresponds to stepwise refinement. The technique of "divide and 

conquer" has long been used to design complex systems in a variety of 

fields. In applying it to VLSI design, the designer first partitions the 

overall system into a number of functional blocks. These are then 

recursively decomposed into sub-functional blocks until manageable 

segments of design are reached. The geometric shapes, relative sizes, 

and interconnection topologies of all these primitive segments are 

planned. Then, the system is constructed from the bottom, by assembling 

the segments, with a minimum of space and time wasted by interconnect 

wiring. A system designed in this fashion is seen as a hierarchy of 

building blocks, from the very lowest level device and circuit constructs 

up to the high level functional blocks. 

Regularity 

The design problem is simplified if regularity is introduced into the 

system. Regularity reduces the total number of different modules that 

have to be designed. Using this technique results in designs which 

exhibit one or more of the following properties [37]. 

(a) The system is implemented by only a few different types of 

simple cell. 
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(b) The system's data and control paths are simple and regular, so 

that the cells may be connected by a network with local and 

regular interconnections. Long distance or irregular 

communication is thus minimised. 

(c) The system uses extensive pipelining and mUltiprocessing. In 

this way a large number of cells are active at one time so that 

the overall computational rate of the simple cells is high. 

Abstraction 

In this top down, bottom up approach the chip is viewed at a number of 

different levels. Abstraction, by a set of simplifying assumptions, is 

used to hide the lower level details of a component. Through abstraction 

the designer is able to focus attention on the high level design tasks, 

without concern for irrelevant detail. Abstract descriptions have 

simpler specifications than complete solutions and are generated more 

quickly. Boundaries (interfaces) between levels should be well defined, 

and kept as simple possible to avoid merging design issues. The use of a 

bounding box with input and output ports is a common example of 

abstraction. Such boxes are referred to as "cells". In the simplest 

case they are an abstraction from the geometry implementing a primitive 

function. 

Notation 

There are a number of possible levels of representation for circuits, 

ranging from symbolic layout geometry to textual descriptions. The 

notation used is very important since an inappropriate choice can make 

the design task more difficult. It should capture the features and 
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structuring properties of the implementation medium. Productivity is 

improved by using high level notations, as these are concise and easier 

to understand. 

A design methodology in itself is not enough to overcome design 

complexity. Mechanical aids incorporating design methods are required to 

help the designer. Computer Aided Design (CAD) tools [52] are used to 

provide considerable assistance in the design process. By making use of 

the power and accuracy of computers in mapping design ideas to silicon, 

these tools enhance the creativity of the designer. 

2.1.2 Computer Aided Design Approaches 

The traditional CAD approach in VLSI design is characterised by the 

designer making all design decisions. The approach gives the designer an 

efficient environment in which to implement such decisions, by providing 

graphic editors, design verification and simulation tools, and databases. 

These tools encourage the designer to practice a design methodology, such 

as the one outlined above. 

Designs are decomposed until seen in terms of primitive building 

blocks (cells). Symbolic layout tools are used to make the design of 

these cells more efficient and easier. Symbols, representing gates and 

interconnections, are sketched out on a display device and manipulated by 

means of a graphic editor. These symbols are then automatically replaced 

by the appropriate geometries for implementing the represented function. 

Primitive cells are assembled to form larger cells in the bottom up 

construction. This involves placement and routing of interconnections. 

Automatic layout programs are available. Usually there is a tradeoff 
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between area and design time in this stage of the design. This tradeoff 

determines the amount of human design effort required and the extent to 

which automatic design methods can be used. Design verification tools 

are used to check for human design errors. For example, a design rule 

checker is a commonly used tool. It ensures that the dimensions of the 

shapes and their relationship with other shapes in the layout comply with 

predefined values. Simulation tools then check that the derived layout 

implements the intended logic function of the circuit. 

The advantage of this approach is that it can result in designs 

which are of high quality, since humans are very good in optimising 

designs. The major disadvantage is that the human designer is slow and 

error-prone. Also, the design tools are totally dependent upon the 

expertise of the designer. They are limited by the fact that they are 

based on graphical input. The approach places the emphasis on layout and 

a 'bottom up' design style. Higher levels of abstraction are needed to 

tackle the complexity of designs which can now be implemented. Textual 

descriptions, in formal hardware description languages, are more powerful 

than symbolic representations since they are capable of supporting a 

structured top down approach. These limitations have led to an interest 

in approaches supporting textual design descriptions and which 

incorporate "design knowledge". Two approaches are being proposed: VLSI 

expert systems and silicon compilation. 

A VLSI expert system (see section 2.2) is centred around a knowledge 

base, holding design expertise in the form of design rules. Such a 

system "assists" the designer in the design process by providing expert 

advice. It tackles local design issues and implementation details, 
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freeing the designer to concentrate on global issues. Expert systems are 

intended to be less error-prone than traditional CAD techniques and more 

efficient than the human designer. In order to achieve these 

improvements a comprehensive knowledge base accumulating the experience 

of many experts is required. Knowledge can be incrementally added, and 

new design styles and new architectural concepts can be catered for by 

including additional design rules in the knowledge base [18). High 

density designs can be handled, but with a corresponding increase in 

design time. 

Complete design automation is implied by silicon compilation (see 

section 2.3). The philosophy behind this approach is that design 

knowledge is algorithmic and translators can be written to synthesise a 

solution, or part of one, automatically from a high level description. 

Such an approach is completely opposite to the traditional and expert 

system approach, since the human designer is replaced rather than 

assisted. A complete design automation system significantly shortens 

design times. However, the cost of reduced design times is measured in 

terms of the excessive use of silicon area. 

An interesting approach to the synthesis of data paths and control 

sequences from an algorithmic description is under development at AT&T 

Bell Laboratories [36). Researchers have combined expert systems with 

algorithmic approaches to automate as much as possible of this synthesis 

process. Their design strategy is to break the integrated circuit design 

process into stages, and implement each stage as programs. Some of these 

programs are expert systems, while others are compilers. The former are 

used for high-level hardware synthesis such as quality floor planning, 
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whereas the latter are used for the lower stages of chip design 

e.g. layout and placement. 

2.2 EXPERT SYSTEMS 

Expert systems have been developed by researchers in artificial 

intelligence to help solve non-numeric problems. These system attempt to 

construct a model of the human ability of pattern recognition. The 

essential feature of such a model is that problems can be solved by 

recognising patterns and linking previously obtained solutions. 

Sufficient "processing power" is now available in today's computers to 

apply this approach in VLSI design [1,25]. 

A VLSI expert system is capable of providing solutions to a range of 

design problems. A top down, incremental refinement design process is 

supported by using mUltiple abstraction levels for system description. 

Such an approach provides design leverage by enabling a designer to deal 

with critical issues early and across the breadth of a design. Usually 

these systems consist of two components: a design knowledge base, and 

inference mechanisms to manipulate it. The knowledge base is a set of 

rules and facts summarising design expertise. Symbolic expressions are 

used to embody expertise and represent the rules and facts. Inference 

mechanisms are programs which direct the system in its search for a 

particular solution. Traditionally symbolic languages such as Lisp have 

been used to implement these systems, but logic programming languages are 

expected to replace these languages [26]. 
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Palladio [7,60] is an example of an integrated VLSI expert system. 

It uses mUltiple description levels similar to those employed by Mead and 

Conway. Incremental refinement of design specifications is supported, 

with periodic validation of the specification by simulation. Knowledge 

base design aids perform some of the refinement necessary to move from an 

abstract description level, termed a perspective, to a more physical 

circuit specification. The multiple perspective framework provided by 

Palladio simplifies the implementation of such expert systems. The 

design aids provide the designer with feedback on the consequences of 

circuit refinement decisions, quickly enabling him to avoid unnecessary 

layout errors. 

A Palladio perspective is either structural or behavioural. This 

explicit decoupling of behavioural concerns from structural concerns 

allows a user to adopt a modular design style. Each perspective has a 

set of terms and a set of composition rules. Terms define the allowed 

types of subsidiaries which can be used to describe a component with 

respect to a particular perspective. Composition rules limit the way in 

which terms can be interconnected and combined. The concerns of each 

perspective are characterised by specific classes of bugs that can be 

avoided when the composition rules are followed. A design is first 

specified at a high level architectural perspective, and then 

incrementally refined with the help of a set of integrated knowledge 

based tools to a symbolic layout perspective. 

An expert systems approach should capture more of the creative 

design process than the traditional or silicon compilation approaches and 

so should produce better designs [64]. The multi-level representations 

- 17 -



typically supported allows design tradeoffs between more detailed 

modelling and model simplification. In addition, an expert systems 

approach enables formal verification of transformations from one 

representation to another. Feedback from the lower levels can be used to 

control high level synthesis. It is easy to add rules since the 

knowledge base is separate from the inference mechanism. Performance 

improves as knowledge is added. 

Specifying knowledge as symbolic rules and facts make such systems 

easy to understand. With a knowledge based system it is possible to 

automatically generate an explanation of how it derived its solution. 

For example, the program may indicate the chain of "if-then" rules which 

was used to make a decision in the design of some circuit element. Also, 

the approach supports easy interaction with a designer. These features 

simplify the task of determining what is incorrect or incomplete about 

the system's knowledge base. 

A few expert systems have been developed for design tasks, for 

example DAA [36], VEXED [48], REDESIGN [61], and Fujistu's computer aided 

logic design system [67]. However, a generic framework for constructing 

such systems is yet to emerge. Current VLSI expert systems are slow, 

requiring considerable amounts of CPU time. For efficient designs the 

knowledge base required must be large and comprehensive. Moreover, the 

rules of thumb that a human expert designer uses are often very difficult 

to quantify and to express in a form that an expert system can use. 

Additionally, VLSI design is an emerging art with, as yet, no formal 

design methodology. This makes it difficult to express explicitly all 

the reasoning and background knowledge used by good designers. 
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Experience with expert systems is limited, it is still a very new field 

with more research needed. One of the most promising applications of 

expert systems is in front-end design. This is an area where very few 

design aids have previously existed other than limited simulation 

techniques. For example, the work of Kowalski of CMU on a VLSI Design 

Automation Assistant uses an expert systems approach to manipulate one 

level of design description into a lower level [36]. Expert systems and 

logic programming languages such as Prolog can also be used to solve some 

basic VLSI design problems in the areas of design for testability, 

functional simulation, fault diagnosis, and automatic test generation 

[30]. 

2.3 SILICON COMPILATION 

The term silicon compilation was first introduced by Johannsen [34] 

to describe the concept of assembling parameterised pieces of layout. A 

silicon compiler can be defined as a design tool that automatically 

translates a high level functional or behavioural description of a chip 

into a layout implementation [75]. This translation is usually seen as a 

two step process. Firstly, a brief high level description of a design is 

translated into an expanded intermediate description, which is still 

implementation independent. Then a chip layout is generated 

automatically from this description. An "ideal" silicon compiler would 

work on a general class of designs, cater for many design techniques, and 

not restrict the architecture that designs are implemented in. 
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The technique of silicon compilation creates design leverage [35] 

by: keeping the design activity at a high level; allowing quick 

architectural exploration of design alternatives; synthesising 

intermediate views of the design from one common abstraction; integrating 

the support tools (e.g. simulators, layout generators etc.); and allowing 

an incremental or successive design approach. Of great importance is the 

source language. This is the language in which the designer describes 

the behaviour to be performed by the integrated circuit. A source 

language for silicon compilation must [3] provide: 

1. a means for directly specifying behaviours that are supported in 

the target silicon (e.g. parallelism); 

2. overall integrity so that the language remains a language of 

behaviour, rather than merely a language of layout. 

Many of the software systems classed as silicon compilers are more 

accurately described as structure compilers. Essentially, these 

compilers remove the logic description stage and circuit-design stages 

for some finite set of functions, or operators. Their source codes are 

hardware description languages which are usually restricted to a high 

level structural description of a number of the implemented functions. 

Often, the syntax and semantics of these languages resemble those of 

assembly languages. Consequently, they have limited usefulness, since it 

is difficult to write a valid description of any significant length or 

complexity. Moreover, the structural information users are required to 

provide can be at an extremely detailed level. 
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Some of the silicon compilers in use today do produce a layout 

description from a behavioural description of a design. However, in 

order too achieve this, the design problem has been simplified. Instead 

of handling a wide variety of design styles, designs are implemented in a 

"target" architecture. Examples of this approach are: Dumbo [78] which 

implements a standard cell array architecture, MODEL [23] which uses a 

gate array architecture, FIRST [6] which derives a bit serial 

architecture, and the Data Path Generator [57] for constructing a 

standard data path architecture. This simplification makes mapping 

straight forward, enabling results to be produced quickly. Their source 

codes cannot be classed as general purpose circuit design languages as 

the semantics of the languages reflect specific architectures. 

MacPitts [59], for example, supports routines which automatically 

synthesise a Data Path from an algorithmic description of a design. It 

is aimed at designs which can utilise parallelism in such an 

architecture. MacPitts allows a designer to specify an algorithm as 

though completely general and sufficient parallelism existed in the data 

path of some general purpose computer. Then, the MacPitts compiler 

derives the minimum hardware micro-programmed machine which executes that 

parallel algorithm. The compiler consists of routines at two levels. 

The higher level routines extract a technology independent intermediate 

level description in terms of data path specifications, control 

equations, and state assignments. The lower level routines translate the 

intermediate description into mask data. The resulting structure is 

topologically similar to any micro-programmable machine's architecture. 
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2.4 CONCLUSIONS 

There are two distinct and opposing views on the future impact of 

silicon compilation [74]. On the one hand, chip layout is regarded as 

analogous to deriving machine code from a high level program. By 

enabling a chip design to go from a high level description to a layout, 

via a compiler, the IC development effort should be reduced by a factor 

of perhaps 20. The opposing view holds that chip design has nothing to 

do with the problem of writing software. Software is a one dimensional 

problem, whereas chip design is a two dimensional one. The routing and 

placement skills of a human designer can never be matched by automatic 

techniques - total automation is just inappropriate. Instead, CAD tools 

should support the human designer who directs the design. An expert 

systems approach captures more of the creative design process and so 

produces better designs. 

Certainly, in the commercial field there is a competitive need for 

optimum performance in terms of speed and area used. On commercial 

scales of production the overheads incurred through manual optimisations 

can be recouped for viable chips. Current silicon compilers can produce, 

at best, design two or three times as large as manual designs. They are 

limited in application by the simplification of adopting target 

architectures. Experience in implementing such compilers is limited. 

However, as more experience is gained, researchers in the field are 

optimistic that technical problems will be overcome. Compilers are 

expected to improve until they are competitive with traditional 

techniques, and ultimately surpass them. 
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Here, silicon compilers are not seen as a tool which can replace the 

need for skilled VLSI design engineers. Rather, they are seen as tools 

which will bring the following benefits. 

1. Reduce Costs 

An efficient compiler with a wide range of application will 

greatly reduce design costs and times. This will make the 

design of "one-off" special purpose VLSI chips more feasible. 

Reducing costs and times will also stimulate designs in smaller 

establishments with no large system production facilities. 

2. Serve as ~ training tool 

VLSI designers are skilled engineers. Their skills are obtained 

through training and hands on experience. Any tool which could 

shorten the learning period is advantageous. A silicon compiler 

would enable a designer to quickly discover design approaches 

and quickly become familiar with architectural concepts. 

3. Expand Application Areas 

High level software compilers have made the underlying hardware 

much more usable. As a result, application areas have vastly 

expanded and diversified. High level silicon compilers will 

also make the micro-chip technology much more accessible to 

people in other fields (i.e. non VLSI design specialists). The 

range and function of special purpose chips will therefore 

expand rapidly. 
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4. First Time Right Implementations 

Providing the compiler has been verified, complete automation 

implies 'correctness by construction' and so the silicon 

produced is guaranteed to be correct. 

The impact of silicon compilers has so far been limited [15]. For 

the technique to gain a greater acceptance the simplification of 

restricting a compiler to a specific architecture needs to be removed. 

Also, higher levels of abstraction for design descriptions need to be 

supported. An automated tool based on a high level design language and 

capable of handling a wide range of applications is required. One 

approach to realising such a tool would be to develop a single general 

purpose compiler capable of solving all a designer's problems. 

Alternately, several special purpose compilers could be integrated into a 

single design system. Such a system would take an algorithmic design 

description and transform it into an intermediate structural/behavioural 

description. This description would serve as a common form of 

abstraction for the compilers. Each compiler would be dedicated to a 

particular architecture, with the complete suite of compilers 

representing the various important architectures. A system of this type 

is defined here as an Algorithm To Layout System. In effect such systems 

are "high level silicon compilers". The next chapter considers how 

techniques used in software engineering and the evolution of design 

languages might influence the development of such systems. 

- 24 -



CHAPTER 3 

AUTOMATED VLSI DESIGN 

The current VLSI design complexity crisis is very similar to the 

crisis faced by software engineers at the end of the 1950's. Their 

response was to move from assembly languages to "high level" programming 

languages, such as FORTRAN and COBOL. An essential feature of this move 

was the development of the technique of software compilation. The degree 

of complexity which could then be tackled was greatly increased. 

However, the unstructured nature of these early programming languages 

meant that the complexity problem was not removed, only pushed further 

back. Consequently, very high level programming languages and 

corresponding compilers evolved. Such languages attempt to reduce the 

complexity problem further by supporting design methodologies, 

structuring techniques and documentation styles. 

This chapter compares VLSI design with software design, and 

identifies software techniques which can be transferred to the VLSI 

design domain. Next, the development of hardware description languages 

is reviewed. Finally, the emerging trend towards high level design 

description languages is considered in connection with the development of 
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the technique of silicon compilation. 

3.1 A COMPARISON BETWEEN SOFTWARE AND VLSI ENGINEERING 

Software and VLSI designers share a common goal - layout. The 

software designer lays out a one-dimensional array of memory, whereas the 

VLSI designer lays out a two-dimensional area of silicon. For both, 

various constraints must be satisfied in order to obtain a working 

product. Also, in each case, there is a design path from a system 

specification to its actual implementation. Over the past twenty five 

years a software discipline has evolved to support the translation 

process involved in the design path. Recently, a VLSI design discipline 

has also evolved, but compared to that for software it is still in its 

infancy. Techniques similar to those developed by software engineers are 

being re-discovered by VLSI engineers, which suggests that a number of 

parallels can be drawn in their route from specification to 

implementation [28,54]. If the evolution of the VLSI discipline is 

regarded as analogous to that for software, then many of the lessons 

learnt in the software domain can be transferred to the VLSI domain. 

Some of the parallels between the two will be explored in this section. 

3.1.1 Specification Levels 

Today's programmers have powerful compilers which generate 

executable machine code from specifications written in very high level 

programming languages. These languages have evolved from the first 

machine languages via assembly languages and then procedural languages. 

Each new generation brought with it a higher level of abstraction of the 
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system under design. In the early days attention was focused on physical 

issues at the the assembly language and machine instruction levels 

because memory layout was a serious limitation. Coding was a time 

consuming and error prone activity. Technological advances lessened the 

physical memory constraints and, freed from this bottleneck, the ambition 

of the systems designed increased. However, the low level of abstraction 

offered by assembly languages restricted the complexity of designs which 

could be tackled in a realistic time period. This restriction was 

overcome by the development of automated tools - software compilers. 

Compilers translate an abstract specification into low level assembly or 

machine code. 

It appears that a similar hierarchical evolution is occurring in the 

VLSI domain, but at a faster pace. Chapter one identified several levels 

of design specification in use. VLSI designers have tended to 

concentrate their effort at the lower levels of abstraction. Again this 

is due to a physical constraint - chip area. Recent advances in the 

scaling technology are beginning to lesson this constraint, enabling 

designers to implement much more complex systems in the same chip area. 

As their software counterparts discovered, low levels of abstraction 

severely limit the complexity which can be tackled. Consequently the 

higher levels of specification are taking on more significance. Just as 

the higher level programming languages have evolved as the basic building 

blocks of software engineering, so perhaps will higher level design 

description languages become the building blocks in VLSI engineering. 

For this to happen, the translation technology needed to support such 

abstractions must mature. 
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3.1.2 Complexity 

During the 1970's software complexity increased to the point where 

the system specification phase became critical. ~ith the ever-increasing 

size of software projects being undertaken, design techniques became the 

predominant area of software research. Structured top down techniques 

enabling designers to think in terms of "function" rather than "code" 

replaced bottom-up software techniques. These techniques impose 

constraints upon the designers to help solve the problem of complexity. 

The problem of complexity at the system level has already been 

encountered in the VLSI domain. Semi-custom design techniques developed 

by LSI designers are not applicable for systems with the complexity of 

VLSI. This is because the building blocks (e.g. cells) used in these 

techniques are too small to serve as a starting point. Top-down 

techniques as used in software have already being adopted. The use of a 

top down approach for VLSI design was considered in the previous chapter. 

3.1.3 Compilers 

The complexity and scope of designs that can now be tackled by 

software engineers have been accomplished by advances in compilation 

techniques. Such techniques have matured to the point where parsers can 

be automatically produced from formal descriptions of the language to be 

compiled. Software compilers map high level descriptions down to the 

level of the actual implementation (assembly or machine code level). In 

this mapping process many errors are caught before execution through the 

use of techniques such as type checking. In addition, optimisation 

techniques, which are an intrinsic part of compilers, result in object 
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code whose performance is comparable to manually generated assembler code 

for most applications. Compilers produce this code far more quickly and 

reliably than any programmer. However, skilled programmers, willing to 

devote a large amount of time, can still outperform compilers by a factor 

of 2 or 3 in small program segments. This effort is only justified if 

there are hard constraints such as real-time requirements or the need to 

fit a program into a limited amount of main memory. 

The compilation technique is also being applied in the VLSI domain, 

but current silicon compilers are nowhere near as advanced as their 

software counterparts. Software compilers map from the programming level 

to the machine level, whereas silicon compilers map from the design 

description level to the geometry level. The machine level is 

characterised by a one-dimensional array of memory and sequential 

activity in the time dimension. The geometry level is characterised by 

two spatial dimensions (even three dimensions) and a set of concurrent 

operations in the time dimension. The mapping for hardware is therefore 

far more complicated and involves significantly different problems. 

Current silicon compilers use simplifying assumptions (e.g fixed 

geometry) which ease their task, but limit their application. 

3.1.4 Operating Systems 

The productivity of software designers and the magnitude and 

complexity of systems implemented has increased dramatically over the 

last twenty five years. In part, this has been due to the advances in 

programming languages and compilers. But the increase can also be 

attributed to the development of operating systems (O/S). OIS enable 
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scarce resources such as the memory and the central processing unit to be 

shared among a number of users in a manner transparent to each user. 

Each user is provided with a virtual machine. They relieve users of 

redundant coding of commonly used functions. The global throughput is 

improved although individual performance is occansionally sacrificed. 

They provide an integrated software environment in which a user can 

interact with a wide variety of tools e.g. compilers, editors, 

debuggers, databases, filing systems etc. The entire software 

development process is supported by O/S. 

Integrated VLSI design environments are starting to receive 

attention and there are aspects of operating systems which may be 

applicable in the VLSI domain. Smith and Dallen [58] suggest that a 

"Silicon Operating System" (SOS) might: 

1. Improve designer productivity by allowing large numbers of 

designers to share (or work on) the same chip without concerns 

about the effects on other designers, or physical limitations. 

As in software O/S, the need to re-implement commonly used 

functions would be eliminated. 

2. Provide a medium in which design components could be integrated 

to form a VLSI chip. 

3. Handle some of the implementation details, such as timing 

(synchronisation) constraints, chip input and output, and the 

assignment of components to physical areas of a chip. 
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In such a SOS, designers of individual components would work with 

virtual chip area (cf. the virtual machine in software O/S), and would 

not be concerned with the components physical location, its position 

relative to other components it interfaces with, or their relative speed. 

A "chip area manager" would be responsible for assigning (placing) 

components to physical areas on the chip and the communication (routing) 

between components. Constraints on the maximum amount of virtual chip 

area allocated to a design component and guidelines for its aspect ratio 

would probably have to be made for the approach to be realistic. 

3.1.5 Differences 

Several software engineering techniques have been identified as 

being readily applicable to VLSI design. However, to conclude this 

section some of the problems specific to the VLSI field must be outlined. 

These problems arise out of the two dimensional nature of integrated 

circuits and the need for physical interconnections between components. 

In software implementation programmers need not (usually) concern 

themselves with the overhead of jump (GOTO) instructions, since they cost 

only the memory required for the jump instruction itself. The distance 

between the location of the instruction and the target address in no way 

effects either execution time or the amount of memory used. In contrast 

a silicon jump between communicating components requires area for the 

connecting "wire", and time for signals to propagate. For two components 

with a high interaction, physical proximity is crucial since the 

overheads for long, high bandwidth interconnections are severe. 

Furthermore, a connecting wire must be routed to avoid obstacles and 
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prevent unwanted short circuits. A software jump has no obstacles. 

The wire carrying a signal may be represented on anyone of several 

layers. At some point, a signal has to change layers in transit and this 

requires a complex of three or more shapes to make the transition. In 

software all locations in memory are on the same layer. Wires must also 

compete for chip area, which places topological restrictions on 

implementations. There are no equivalent restrictions in software. 

Re-arranging software procedures (components) is easily done with 

the use of an editor. Changing the placement of a component in a layout 

is much more difficult. Very few design tools re-route the attached 

wires automatically when a block is moved to a different position in the 

chip floorplan. Graphical editors for two dimensional layout are still 

in the research stage. Also, changing the size and shape of one 

component may require a change in neighbouring components. Changing the 

size of a software procedure has no effect on other procedures unless 

memory size is very limited. 

The software design process is characterised by short iteration 

times. Once a program is completed and its syntax is correct it can be 

compiled and executed. Logical errors can be quickly discovered by 

running the program. Debuggers are available to help designers track 

down less apparent errors. The performance of the program can be 

evaluated by time measurements and the effects of modifications quickly 

discovered. Software is maintainable - changes to a program's 

specification can easily be accommodated. The very long iteration times 

in the VLSI design process give designers limited scope for 

modifications. The effect of a minor design change can take weeks to be 
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seen in a finished chip. Lengthy simulations are required to detect 

errors and give performance estimates. Why a particular chip does not 

meet the required specification may have to be guessed at or deduced from 

indirect evidence. As yet, there is no equivalent of a debugger for VLSI 

chips. Once committed to silicon there is little designers can do with 

regards to changes in a chip's specification. In short, the pressure on 

the VLSI designer is to get it right first time. 

By supporting high level structured specifications and providing an 

integrated design environment incorporating tools utilising the 

techniques of compilation, ATL systems will increase the chances of 

achieving 'right first time' implementations. In addition ATL systems 

will support fast design turnaround time. The algorithmic notations used 

by these systems will replace the current design languages now being 

used. In the next section the evolution of these languages will be 

reviewed in order to gain an insight into the expected features of the 

algorithmic design notations. These will then be considered in the next 

chapter. 

3.2 HIGH LEVEL DESIGN LANGUAGES 

The emergence of a design methodology was reflected in the 

development of layout languages. Originally, these languages were very 

low level (e.g. elF [47]). However, they allowed the user to design in a 

more structured and regular manner than had previously been available. 

These features enhanced the creativity of the designer. The basic idea 

behind layout languages was the arrangement of geometric shapes into 

patterns which represented the integrated circuit being designed. The 
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low level of abstraction offered by these languages made them tedious to 

use and as a result design descriptions were error prone. These 

languages were improved by embedding procedure calls to generate layout 

information in a high level programming language. This technique made 

features such as variables, assignment, iteration and parameterised 

procedures available to the designer. An example of this approach is 

PLAP [73], which was developed at the University Of Newcastle. This 

design tool is based on the programming language PASCAL. The drawback of 

this technique is that it is limited to layout concerns. Also, as the 

technology advanced, to maximise the increasing densities still required 

a considerable design effort. 

Gradually, design languages which were independent of the ultimate 

layout began to appear. Such languages enable the designer to describe a 

design in terms of its behaviour and how this description can be 

implemented structurally. These structural/behavioural languages are 

similar in philosophy to regular high level programming languages. In a 

language like PASCAL, which has a straight forward compiling mechanism, 

the programmer has control over the memory organisation during execution, 

but not the physical memory elements actually used. Similarly, the 

designer using a structural/behavioural language has control over the 

organisation of the chip, but not the individual gate elements. 

High level languages that allow both behavioural and structural 

specifications can be divided into two classes: procedural and 

non-procedural. The former includes languages such as MODEL [22] and 

VHDL [56] which provide a hardware description in the manner of a 

plotting program that specifies the hardware components and their 
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interconnections (i.e. a net list description). In the later, hardware 

is described as a function composed of sub-functions. The composition of 

the functions is well-structured and does not allow the unsystematic 

specification of interconnections. Examples of non-procedural languages 

are: CONLAN [50], ZEUS [19,42] and STRICT [8]. The hardware design 

language ELLA [49] supports both explicit net list descriptions and 

implicit interconnection of components through functional definitions. 

As an example of procedural structural/behavioural languages MODEL will 

be examined. STRICT will be examined as an example of non-procedural 

languages. 

3.2.1 MODEL 

The MODEL language [22] was developed to support only structured 

designs. Potential ambiguities in the interpretation of design 

descriptions are removed by only considering such designs. It is used as 

the source language to a silicon compiler, written by Lattice Logic. 

Both the language and compiler are in commercial use. Design 

descriptions in the language are implemented as semi-custom integrated 

circuits using CMOS ULAs. This is in contrast to other design languages 

which attempt to support custom designs. It also means the compiler has 

a target implementation and is therefore not technology independent. 

Descriptions in MODEL are hierarchical. They are translated via the 

compiler into an intermediate design file, which is used by a physical 

design subsystem to generate masks, test pattern generators, functional 

and timing simulators, and placement and routing tools. Descriptions are 

easy to read and compact. 
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The MODEL notation is strongly influenced by the structured 

programming style. The fundamental structuring feature is the concept of 

a part. A part is a module with one or more input signals and one or 

more output signals. Parts can also have numeric parameters. The 

definition of a part specifies its internal structure in terms of 

instances of simpler parts and their interconnections. An instance of a 

part is the use of that part within the definition of a more complex 

part. Descriptions express the design of the circuit at a number of 

levels, starting with the entire circuit at the top, and descending to 

the primitives at the bottom. These levels are represented by parts, 

each reasonably small and with a well defined interface. This style 

encourages systematic debugging as each part can be tested in isolation. 

The style also aids verification as higher-level parts make calls on 

existing, tested parts, thus making it easier to verify a part formally. 

The language supports two data types: signals and integers. 

Signals are the basic objects manipulated by the language and may appear 

in one dimensional vectors. The major control structures of high level 

programming languages are also supported. These allow parts to be more 

than just simple interconnections of other parts. A comprehensive, 

parameterised design library adds strength to the language. 

MODEL is rather inflexible in that all wiring and connections must 

be explicitly stated in the description of the design. That is, there is 

no scope for optimisations by hand wiring. Also, the size of the design 

is limited, since large or complex designs may not fit onto particular 

ULAs because of limitations in channel size. However, the fact that it 

has gained commercial acceptance proves that it is a definite improvement 
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over previous methods for designing this type of architecture. 

3.2.2 STRICT 

STRICT [8] was developed as part of a joint project between the 

Computing Laboratory and the Department of Electrical and Electronic 

Engineering at the University of Newcastle. It is intended to provide a 

formal, declarative notation for designing structured integrated circuits 

in a consistent manner. It was designed for interactive use with a 

syntax directed editor. This editor produces an intermediate 

representation, which can be transformed into a format suitable for input 

to various subsystems, such as layout, simulation, fabrication etc. 

The language supports the parallel, sequential and recursive 

descriptions of systems from modular components. There are two types of 

component: buses and blocks. A bus transmits information of a specific 

type from one part of the system to another. A block manipulates 

information. 

Blocks are constructed from two parts: a specification and an 

implementation. A specification defines the interface to the outside 

world and describes the block's intended function. An implementation 

describes how the block's specification can be structurally implemented. 

Each block is designed separately and through typed design parameters can 

be tailored to a particular interface specification or hardware 

implementation. 
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A specification is composed of an interface specification and a 

block declaration. An interface specification defines the inputs and 

outputs to a particular block. These are typed, and can be optionally 

positioned on particular sides of the block by using edge identifiers. A 

block declaration specifies the function of the block. It includes any 

restrictions on the design parameters, declarations for the interface 

types, and convenient function definitions. 

The implementation of a block is defined in terms of instances of 

other blocks, the connection between these blocks, and how they should be 

structurally arranged. Connections are made by calling each instanced 

block with its input parameters. STRICT uses the technique of strong 

typing to produce consistency in the connections. 

The language supports a number of standard types, operations, and 

functions. User defined types are also supported. This enables the 

designer to move to a level of abstraction where complex data structures 

can be considered simply. 

The declarative and recursive nature of the language simplify the 

structuring features required in VLSI design. The level of abstraction 

employed hides details concerning pads, power and ground lines etc. 

Unlike MODEL inputs are implicitly connected to outputs. The use of a 

functional style results in designs which are concise and can be formally 

reasoned about. However, the syntax and recursive nature of the language 

can make designs difficult to understand. Some architectural concepts 

currently employed in VLSI design, such as pipelining, are not catered 

for in the version of STRICT examined. Encouraging a designer to provide 

a specification before an implementation is, in principle, beneficial. 
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However, in practice it is often quite difficult for users to distinguish 

a boundary between the two. 

3.3 THE FUTURE 

Design languages have developed from simple "plotting" notations to 

sophisticated structural/behavioural notations incorporating high level 

programming techniques. Research into the latter is actively being 

carried out in both academic and industrial environments. Consequently, 

there has been a marked increase in the number of high level design 

languages in use. As illustrated by STRICT and MODEL there are also a 

variety of styles to choose from. This rapid growth has even led to an 

attempt by the American Department Of Defence to introduce a standard 

language, VHDL [55]. The decomposition of descriptions in these 

languages can be regarded as low level silicon compilation. It is a 

significant improvement on structural compilation. 

Although structural information in design descriptions is still of 

great importance today, purely algorithmic notations are being considered 

for the next generation of high level design languages [71]. They are 

intended to serve as general-purpose circuit design languages. The 

extreme of such a notation would be a high level programming language, in 

which the algorithm to be performed by the circuit is written. 

Compilation of such a description is regarded as "true" silicon 

compilation [68]. With this in mind several programming languages will 

now be considered for their potential as the source code to an ATL 

system. 
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CHAPTER 4 

POSSIBLE SOURCE LANGUAGES FOR A FUTURE ATL SYSTEM 

The trend in VLSI design languages is toward 'programming like' 

languages which can support both the behavioural specification and the 

structural implementation of VLSI circuit designs. Also, the emphasis is 

shifting from structural information to behavioural information as higher 

levels of abstraction are used to tackle complexity in system 

specifications. Assuming both trends continue they will ultimately 

converge at an algorithmic, high level programming language. For this 

language to be supported by an ATL system, it must be amenable to a 

straightforward translation into a physical VLSI implementation. 

Probably the most significant factor in determining the effort involved 

in mapping a programming language onto silicon (and hence its suitability 

as the source code to an ATL system) is its underlying computational 

model. If this model accurately represents VLSI designs and closely 

reflects the structural geometry and properties of their silicon 

implementations then there will be a direct (i.e. straightforward) 

translation process. Key implementation features are: parallelism, 

communication, and localised processing. 

- 40 -



Chapter 4 first considers the advantages of using programming 

languages for VLSI design descriptions. In order to identify which of 

the many available languages is the most appropriate, a set of design 

criteria are presented and an example VLSI implementation is also 

described. In the next chapter several example programming languages 

will be used to describe the design. Their performance in a design 

description role will be evaluated against the actual VLSI design 

implementation and the selected design criteria presented in this 

chapter. 

4.1 PROGRAMMING LANGUAGES FOR VLSI DESIGN 

Programming language structures such as the conditional, loop and 

procedure have been recognised by the designers of Hardware Description 

Languages (HDLs) as being as powerful for describing hardware as they are 

for describing programs. In HDLs loops are used to generate repeated 

structures; conditionals are used to build structures depending on the 

environment; and procedures are used to describe blocks of related logic. 

The advantages of incorporating some programmable capability into HDLs 

have also been recognised. Typically, this feature is seen as the 

ability of a hardware language to handle arithmetic expressions. Such 

expressions can be used anywhere the user might specify a value. In 

particular, expressions are used to compute the actual values for formal 

parameters of procedures, enabling the designer to develop powerful 

general purpose procedures. Programmibility relieves the user of the 

task of manual computation and introduces automation into the design 

process. More importantly it enables the designer to think in terms of 

algorithms. Algorithmic specifications are more direct and natural 
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descriptions and enhance the ability to produce correct and working ICs. 

As HDLs are extended to increase their expressive powers they will 

themselves become complete programming languages. Can the effort of 

developing specialised programmable HDLs and building reliable and 

efficient translators for them be avoided? It is argued here and 

elsewhere [51] that the answer is yes, since current programming 

languages are sufficiently general to be good hardware description 

languages.Features exhibited by current high level programming languages 

which make them attractive as design notations are listed below. 

1. They support powerful, precise algorithmic descriptions which 

can be tested to validate their correctness. (This testing 

usually involves example runs with different input data). 

2. They provide functions and structures which capture implicitly 

the bulk of a specification thereby reducing the length of 

specifications. 

3. They provide facilities for the definition of abstract data 

types and for checking that these types are respected. Type 

checking traps many errors at compile time thus quickly 

eliminating careless mistakes. 

4. They support a modular style of program which encourages 

correctness and makes them easy to understand and maintain. 

Separate compilation allows the construction of extensible 

program libraries. 
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5. They are flexible i.e they are suitable for a wide range of 

applications. 

6. They can provide concurrency, explicitly or implicitly. 

A high level general purpose programming language would make the 

layout task more like programming. This would enable a designer to 

concentrate on the problems of the "high level" design algorithm. 

Concentrating on this is important since, according to H.T Kung [37], the 

most crucial design decision is the choice of the underlying algorithm. 

Thus the algorithm design should receive the largest part of the design 

effort. He also argues that low-level optimisations at the circuit or 

layout design level are probably not worthwhile, as these will lead only 

to minor improvements in the overall performance while increasing design 

time. 

A design automation system (i.e. a silicon compiler) based on a 

conventional programming language will be simpler to implement and more 

extensible than one based on a specialised hardware description language. 

In such a system the designer describes a VLSI system in the chosen 

language and compiles it with a standard compiler. The compiler would 

need to be extended in order to produce a representation of the resulting 

circuit as well as executable machine code. When a program description 

is run, not only would it be capable of processing it would also produce 

a detailed description of the elements of the circuit and their 

interconnection. This description could then be used by a layout 

subsystem to generate a complete VLSI implementation. 
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Procedural Programming 

Computational Model Control Flow. Concepts: 
global memory of cells, assignment as the basic action, 
and implicitly sequential control structures for the 
execution of statements. Two important classes of 
procedural programming notations are: 

- Conventional e.g. PASCAL 

Developed 
Neumann stored 
reflect the 

for programming the traditional von 
program computer. Hence, the semantics 

von Neumann Model: global memory, fixed 
cells, and sequential execution. size memory 

- Concurrent e.g. Occam 

Extend the control flow model with parallel control 
structures based on processes plus communication and 
synchronisation mechanisms. 

Object-Oriented Programming e.g. SMALLTALK 

Computational Model = Actor. 
upon active objects, sometimes 
communicate by passing messages. 

Computation is based 
called actors, that 

Functional Programming e.g. Lispkit Lisp 

Operates by the application of functions to values. 
Characterised by no sequentiality, no assignment 
statements, and no side effects. 

Logic Programming e.g. PROLOG 

Attempts to solve goals, which fail or succeed, 
when answering a question. 

FIGURE 4.1: Programming Categories. 

Today, there is a great variety of high level programming languages 

in use. Obviously, it is not practicable to consider each one for VLSI 

design. Many of these languages, however, are based on the same 

computational model. Since the computational model of the language 

chosen will reflect the structural geometry of VLSI designs, it would be 
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more applicable to examine languages typical of some of the various 

models. A classification of programming languages, based on 

computational mechanisms, is presented in [21]. Several example 

languages, which between them, represent some of the important categories 

in this classification will be examined. Figure 4.1 illustrates the 

selected languages together with a summary of the important features of 

the category to which each language belongs. The characteristics of each 

language are given in the next chapter. 

4.1.1 Requirements Of A Hardware Design Language 

The suitability of a programming language for describing VLSI 

designs is governed by its ability to satisfy certain design 

requirements. The criteria used for selection here are based on those 

presented in [11]. Accordingly, a circuit design language should exhibit 

the following properties. 

1. The language must be able to handle concurrency. 

2. The language should capture 

i) Structural Data e.g. what objects are required, how these 

objects are to be connected. 

ii) Behavioural Data e.g. specifying the overall 

function/purpose of the design 

3. The language should be easy to use. That is, the language 

should be concise and descriptions should be easy to read and 

write. 
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4. The language should encourage structured, regular, and 

hierarchical (modular) design techniques. 

5. The language should be supported by expandable libraries of 

frequently used layout designs. 

6. The language should provide an effective means of communicating 

designs between co-operating designers. 

4.2 AN EXAMPLE VLSI DESIGN: A PATTERN MATCHER CHIP 

String pattern matching is a good example of a software application 

which is well suited for implementation as a special purpose VLSI chip 

connected to a general purpose computer. In this section a specific 

pattern matching chip is described in terms of its underlying algorithm 

and its structural implementation. This chip was selected as an example 

design because it illustrates the importance of the algorithm on the 

performance and area of the silicon implementation. It also illustrates 

one of the most important benefits offered by VLSI systems, namely 

concurrent processing. 

4.2.1 Design Description 

The pattern matcher chip described by Foster and Kung [16] is a 

special purpose VLSI chip that performs pattern matching of strings with 

wild card characters. The input and output characteristics of the chip 

are shown in figure 4.2(a). There are two input streams: string and 

pattern. The former is an endless string of characters, whereas the 

latter contains a fixed length vector of characters containing a wild 
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+---------+ AXC 
I patternl<----------

0010011 I I 
<--------1 result I 

I I ABCAACC 
I stringl<---------­
+---------+ 

(a) Chip Inputs And Outputs 

+-----+ +-----+ +-----+ +-----+ 
PATTERN --->1 1--->1 1--->1 I--

STRING <---IBLK Ol<---IBLK 11<---IBLK 21<­
RESULT <---I 1<---1 1<---1 1<-

->1 1---> 
--IBLK nl<---
--I 1<---

+-----+ +-----+ +-----+ +-----+ 

(b) Block Structure 

FIGURE 4.2: The Pattern Matcher 

card character. The chip generates as output a stream of bits, each of 

which corresponds to one of the characters in the text string. The data 

streams move at a steady rate between the host computer and the chip, 

with a constant time between data items. 

Denote the input text stream as SO Sl S2... , the finite pattern 

stream as PO P1 P2 ... Pn, and the output result stream as RO R1 R2 ... ,. 

Characters in the two input streams may be tested for equality, with the 

wild card character, 'X' say, deemed to match any character in the text 

string stream. The output bit Ri is to be set to 1 if the sub-string 

S(i-n) S(i+1-n) ... S(i) matches the pattern, and 0 otherwise. As an 

example consider the following two input streams: 

pattern: AXC (where X is the wild card character) 

string: ABCAACCQQ ... 

- 47 -



The following result stream should be generated: 

result: 001001100 ... 

The pattern AXC matches the sub-strings SO SI S2, S3 S4 S5, and S4 S5 S6 

(ie ABC, AAC, and ACC respectively). Result bits R2, R5, and R6 are thus 

set to 1 and all other result bits are O. 

Formally that is 

Ri <== (S(i-n) 

4.2.2 Algorithm Design 

PO) AND (S(i+l-n) PI) AND ••• AND (Si Pn) 

The input strings arrive alternately over the link with the host, 

one character at a time. The interval during which one character arrives 

from either stream is termed a beat. During each pair of consecutive 

beats the chip inputs two characters (one pattern and one string) and 

outputs one result bit. 

The chip is divided into a linear array of modules called character 

blocks. Each block can compare a pattern and a string character and 

accumulate a temporary result. Characters are successively 'clocked' 

through the blocks; on each beat a character moves to a new block. 

Pattern and string characters flow through the array in opposite 

directions, with each string character moving past all characters of the 

pattern. The pattern and string characters are separated by one cell so 

that each pair of characters meet rather than just pass. Consequently 

each cell is active on alternate beats. 
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A block diagram for a pattern matcher is shown in figure 4.2(b). 

Initially, each block of the chip is empty. For simplicity, assume that 

on the first beat, the first character to be taken off the host link is a 

string character SO. This character is input to BLK n. On the next beat 

the pattern character PO is taken off the link and input to BLK O. At 

the same time SO is moved one cell to the left. On the third beat the 

string character S1 is placed in BLK n, and PO is moved one block to the 

right while SO is moved one block to the left. By the time the last 

pattern character Pk leaves a block, the sub-string S(i)S(i+1) ... S(i+k) 

will have met the whole pattern. If partial match results are held in a 

block and updated whenever a new pair of characters enter the block then, 

when the last character of the pattern goes through, the result of 

comparing the two will have been accumulated. A block then outputs this 

result, which moves along with the string, so that each match result 

leaves the array with the last character of its sub-string. The pattern 

is recirculated so that the first character follows two beats after the 

last one. This enables a block to output a completed result and 

initialise a new partial result on the same beat. 

Each character block performs two functions: 

1. it compares characters of the pattern and string, 

2. it accumulates and outputs match results. 

Each function can be implemented by a separate unit within a block, a 

comparator cell and an accumulator cell respectively. These are shown in 

4.3(a) together with their underlying algorithm. A comparator cell has 
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Din 
1 

+-----+ +-----+ 
Pin --->1 1---> Pout Lin --->1 1---> Lout 

1 1 
Sout <---I 1<--- Sout 

1 1 

Xin --->1 1---> Xout 
+-----+ 1 1 

Rout <---I 1<--- Rin 
Dout +-----+ 

Pout .- Pin 
Sout .- Sin 

Lout := Lin 
Xout := Xin 

Dout .- Pin Sin t := t AND (Xin OR Din) 
IF Lin THEN 

begin 

end 
ELSE 

Rout := t; 
t := TRUE 

Rout := Rin 

COMPARATOR CELL ACCUMULATOR CELL 

(a) Primitive Cells And Their Algorithms 

+-----+ +-----+ +-----+ +-----+ 
PATTERN --->1 1--->1 1--->1 1--->1 1---> 

1 1 1 1 1 1 1 1 
STRING <---I 1<---1 1<---1 1<---1 1<---

+-----+ +-----+ +-----+ +-----+ 

+-----+ +-----+ +-----+ +-----+ 

EndMarker --->1 1--->1 1--->1 1--->1 1---> 
1 1 1 1 1 1 1 1 

VCC --->1 1--->1 1--->1 1--->1 1---> 
1 1 1 1 1 1 1 1 

RESULT <---I 1 <---I 1 <---I 1 <---I 1 <---
+-----+ +-----+ +-----+ +-----+ 

(b) Cell Topology And Interconnection 

FIGURE 4.3: The Pattern Matcher Implementation 

pattern characters flowing from left to right, string characters flowing 

from right to left, and the comparison result for a pair of characters 

flowing from the bottom. Two bits are associated with a pattern 
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character: the don't care bit and the end marker bit. The former is 

used to denote the occurrence of the wild card character in the pattern. 

The latter is used to denote the last character in the pattern sequence. 

An accumulator cell receives the result from a comparator (Din), the end 

of pattern indicator (Lin), and the don't care bit (Xin). It maintains a 

temporary result 't', and at the end of the pattern uses t to replace the 

result that flows from right to left. The topological arrangement and 

interconnection of cells are shown in figure 4.3(b). 

In the next chapter this design will be described in several 

programming languages as a means of evaluating their suitability for VLSI 

design. The most appropriate language will be the one which is most 

capable of accurately describing the algorithm and representing the 

implementation presented here. 
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CHAPTER 5 

SELECTING A PROGRAMMING LANGUAGE 

In order to select a suitable language for a future ATL system, the 

computational mechanisms of the example languages will be compared with 

the structural mechanisms employed in the pattern matcher. To facilitate 

this comparison, simple programs describing the design will be examined 

for each language. In these programs the algorithm has been programmed 

in a relatively simplistic way, attempting only to match the example 

language to the structures of the algorithm. The segments of code 

included here, illustrate the different styles and represent prototype 

solutions. Every attempt has been made to ensure that these solutions 

represent valid code in the various languages. However, no guarantee of 

their correctness can be given. 

5.1 PASCAL 

Pascal is a reasonably extensive language [33] offering data 

structuring facilities. The primitive data types are: Boolean, integer, 

char, and real. Structured types are defined by describing the types of 

their components and by specifying a structuring method. Four such 
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methods are available: array structure, record structure, set structure, 

and file structure. 

Variables declared in explicit declarations are called static. 

Dynamic generation of variables in an executable statement is possible. 

It yields a pointer which serves to refer to the variable. 

The assignment statement is the language's fundamental statement. 

The procedure statement causes execution of the designated procedure. 

Assignment and procedure statements are construed to form structured 

statements. These statements specify sequential, selective or repeated 

execution of their subsidiary statements. Sequential execution of 

statements is specified by the compound statement, conditional or 

selective repeated execution by the repeat statement, the while 

statement, and the for statement. 

Statements can be named and referenced through the given identifier. 

A named statement is then called a procedure, and its declaration a 

procedure declaration. A procedure may contain a local set of variable 

declarations, type definitions, and further procedure declarations. 

These can only be referenced within the procedure itself. A procedure 

has a fixed number of parameters. There are four kinds of parameters: 

value, variable, procedure, and function. 

Functions are declared in a similar manner to procedures. The only 

difference lies in the fact that a function derives a result which is 

confined to a scalar or pointer type. This type must be specified in the 

function declaration. Functions may therefore be used as constituents of 

expressions. 
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5.1.1 Pattern Matcher Implementation 

The major features of a pascal program for the pattern matcher 

algorithm are summarised in figure 5.1, a more detailed form of the 

program appears in Appendix B.1. A modular structure is achieved through 

the use of a function and three procedures. These are called from the 

main program segment. The structure and components of figure 4.2 are 

represented by a one-dimensional array called "Modules". This array is 

made of "Ncells" elements (where Ncells is a constant defining the number 

of pattern modules). Each element is a record of type "PatternCell" and 

represents a pattern module. They contain two fields: CompCel1 and 

AccCell. CompCel1 is a record designed to represent the state of a 

comparator cell. It is used to store the string and pattern characters 

currently associated with such a cell. Similarly, AccCel1 is a record 

defined to represent the state of an accumulator cell. It holds the 

don't care bit, the end bit, the accumulated result, and the output 

result currently residing in an instance of this cell. 

Function "Compare" implements the algorithm for a comparator cell. 

It has a single value parameter: "Cell" a record of type Comparator. 

The result of the function is of type BIT, which is the integer sub-range 

0 •• 1. If both the characters held by its parameter are identical then 

Compare is set to "1" otherwise it is set to "0". 

Procedure "Move" implements the left to right movement of string 

characters, don't care bits, and end marker bit between adjacent pattern 

cells. It also implements the right to left movement of string 

characters and result bits between adjacent cells. The procedure has two 

variable parameters of type PatternCells, which correspond to the two 
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FUNCTION Compare(Cell 
BEGIN .•. END; 

Comparator) BIT; 

PROCEDURE Move (VAR left, right 
BEGIN ... END; 

PatternCells) ; 

PROCEDURE Accumulate(DataIn 
BEGIN ... END; 

PROCEDURE InOut; 
BEGIN ... END; 

(* Main Body Of Program *) 
BEGIN 

Beat := 0; 
~HILE NOT finished DO 
BEGIN 

InOut; 

BIT; VAR Cell 

FOR i := 1 TO (Ncells DIV 2) DO 
BEGIN 

Accumulator): 

~ITH Modules[(i*2)-Beat] DO 
Accumulate(Compare(Compcell), AccCell); 

Move(Modules[(i*2)-Beat], Modules[«i*2)-1)-Beat]); 

END. 

END; 
Beat := 1 - Beat; 

END; 

Figure 5.1: Pascal Program 

adjacent cells. Procedure "InOut" handles the input of pattern and 

string characters to the array and the output of the result bits. 

Procedure "Accumulate" implements the algorithm for accumulator 

cells. It has a single value parameter "DataIn" which imports the result 

from a comparison cell. There is one variable parameter, an accumulator 

record. 

In the main program segment there is a conditional while loop, which 

implements the overall behaviour of pattern modules. Execution of this 

loop is terminated when the variable "finished" is set to true. The 

variable "Beat" toggles between 0 and 1 on successive passes through the 
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body of the loop. Nested within the while loop is a FOR loop in which 

Beat is used to determine the individual modules active during a pass 

through the main loop. When Beat is set to 0 odd numbered cells are 

active. Even numbered cells are active when Beat is set to 1. The FOR 

loop contains the calling sequence to the Accumulate and Move procedures. 

In the call to Accumulate, the actual parameter corresponding to the 

DataIn parameter is a call to the function Compare. This function is 

first evaluated and its result then passed to the parameter. 

The array and record structuring methods enable the abstract data 

structure 'Modules' to be defined. This structure is intended to 

represent the structure of figure 4.2. It is a list composed of n 

elements, each element describes the internal state of a pattern matching 

module. The elements are sub-divided into two components, one for 

describing the internal state of an accumulator cell and the other for 

describing the state of a comparator cell. Although each element 

accurately captures the internal states, the input and output ports of 

the cells are not represented. 

The function Compare and the procedure Accumulate describes the 

algorithm which is common to all modules. The main body of the program 

applies the cell algorithms and attempts to model the connectivity of 

cells through the update of elements in the array. Both data movement 

and pattern block algorithm are applied by sequentially accessing each 

element in "modules". In other words, the main program defines a single 

computational process which is sequentially applied to update the 

internal state descriptions held in the array. 
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The sequential nature of the language is its major limitation in a 

design description role, since it results in descriptions specifically 

aimed at a Von Neumann serial processing architecture. The parallelism 

and localised processing characterising the pattern matcher 

implementation cannot be represented. An imperative language, such as 

Pascal, was included in the survey because the underlying sequential 

control flow model has played a central role in the evolution of 

programming. No survey of programming languages would be complete with 

out reference to this model. It is not particularly well suited for 

capturing the concurrent aspects of VLSI design. The model would be more 

appropriate for representing finite state machine descriptions. 

5.2 OCCAM 

Occam [31] is based on dynamically created processes which may be 

executed concurrently and may communicate using Channels. The 

fundamental working element in Occam is a process - a single statement, 

group of statements or group of processes. 

Programs are constructed from three primitive processes: 

assignment, input, and output. To control the order of execution of such 

processes Occam provides three control mechanisms: sequential (SEQ), 

parallel (PAR), and alternate (ALT) as well as the traditional WHILE and 

IF statements. 

SEQ and PAR precede a list of processes, defining sequential and 

parallel execution, respectively. ALT causes exactly one of a list of 

processes to be executed and will wait until at least one of the 

"guarding" conditions is true. 
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5.2.1 Pattern Matcher Implementation 

An outline of an Occam implementation for the pattern matcher 

algorithm is shown in figure 5.2; a complete listing appears in Appendix 

B.2. The program is divided into five sections. The first section 

declares vectors (or arrays) of channels, which are used in the main body 

of the program. So, for example, "pattern[Ncellsl" declares five 

channels named pattern and numbered 0 to 5. 

In each of the following three sections PROC is used to declare a 

name for the text of the process which follows. The text associated with 

a named process is substituted for all occurrences of that name in the 

subsequent process. The named processors are: Comparator, Accumulator, 

and GetChar. Each has a number of formal channel parameters. When any 

one of the processes is called these formal parameters are replaced by 

the actual parameters. 

Process Comparator consists of two sequential processes. One 

initialises the local variables "pH and "s". The other is a repetitive 

process which handles input/output. WHILE TRUE denotes an unbounded loop 

which executes endlessly. The body of this loop is composed of three 

sequential processes. The first and second are output and input 

processes respectively, while the third compares p and s, and outputs the 

truth value on the channel "dout". 

Process Accumulator implements the algorithm for the accumulator 

cells. Like comparator it also consists of two sequential processes: 

one initialises the local variables, the other is a repetitive. The 

repetitive process is comprised of three sequential processes. 
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PROC Comparator(CHAN PatrnIn, StrngIn, PatrnOut, StrngOut, DataOut)= 

PROC Accumulator(CHAN WildBitIn, EndBitIn, ResIn, DataIn, WildBitOut, 
EndBitOut, ResOut)= 

PROC GetChar(CHAN BusIn,PatternIn,StringIn)= 

PAR 
GetChar(Sys.Bus,pattern[Oj,string[Ncells-lj) 
PAR i =[ 1 FOR Ncells-l j 

PAR 
Comparator(pattern[i-lj,string[Ncells-ij,pattern[i], 

string[(Ncells+l)-i],data[i-l]) 
Accumulator(wild[i-1j,end[i-1j,result[Ncells-i],data[i-1], 

wild[i],end[ij,result[(Ncells+l)-i]) 

FIGURE 5.2: Occam Implementation Of The Pattern Matcher. 

The first two are output and input, while the last is a conditional 

process. If the value of EndMarker (a variable representing the end of 

pattern) is true an accumulator uses the value of the current comparison 

result (CurntRes) as the final result and then resets CurntRes to TRUE. 

Otherwise, it holds a temporary result (TempRes), which is set by the 

logical expression : 

TempRes .- TempRes /\ (WildCard \/ CurntRes) 

where "/\" , "\/,, stand for AND and OR respectively. So, if the current 

temporary result is TRUE, and WildCard or CurntRes is TRUE, then the new 

temporary result will be set to TRUE. 

Process GetChar models the alternate arrival of pattern and string 

characters on the system bus. That is, the input to the pattern matcher 

module. It consists of two sequential processes, the first of which 
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simply initialises the local variable "Beat". The second is a repetitive 

sequential process with the two subsidiaries. Its first subsidiary 

concurrently re-assigns the value of Beat and inputs a value for "Ch" 

from "BusIn". The second subsidiary is a conditional process: if the 

value of Beat is 1 then Ch is placed on Channel "PatternIn", otherwise it 

is placed on channel "StringIn". 

The final section corresponds to the main process (or program body). 

It sets up a 2x3 array of concurrent processes, which models the 

structure of figure 4.2. It also sets up a process to handle input to 

this array. 

The program provides an accurate representation of the pattern 

matcher capturing its structure, its concurrent behaviour, and the inter 

communication between the cells. In the main process a parallel 

replicator is used to define a pipeline of accumulator cells and a 

pipeline of comparator cells. An element in one pipeline is connected to 

an element in exactly the same position in the other pipeline. The 

channels which link the elements directly model the behaviour of a 

physical wire. Each element in the pipelines is a distinct process 

capable of local computation and having its own private storage. The 

CHAN construct ensures that the inter process communication is 

synchronised. The WHILE TRUE construct in the two named processes ensure 

the repeated execution of the processes. 

5.3 SMALLTALK 

Xerox Palo Research Centre's Smalltalk-80 [20] is built on the model 

of communicating objects, originally used in SIMULA. It has sequential 
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control structures. All references in the language are to objects, which 

consist of some private memory and a set of operations. The private 

memory is a set of instance variables. A set of methods describe how to 

implement an object's operations. Objects may be atomic, or may consist 

of several named fields. 

A message is a request for an object to carry out one of its 

operations. The receiver of the message determines the method to 

implement the requested operation. The set of messages to which an 

object can respond is called its interface. 

A class describes the implementation of a set of objects that all 

represent the same kind of system component. Classes are the natural 

unit of modularity in the language. The individual objects described by 

a class are called its instances. A class is defined by giving it a 

name, and naming the fields of its instances. Following this is an 

optionally categorised list of the methods for processing the messages to 

which the class responds. Each method consists of a message pattern 

followed by SMALLTALK code within brackets for computing the appropriate 

responses. The former consists of a selector and names for the 

arguments. The code consists of some temporary variable names and 

expressions to process the received message. Expressions are separated 

by periods " " and the last one may be preceded by a vertical arrow 

indicating the value to be returned. These expressions contain 

conventional expressions that serve a similar role to procedure call. 
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Objects are created when expressions are evaluated, and they can be 

passed around by uniform reference, so that no provision for their 

storage is necessary in the procedures that manipulate them. 

The transmission of messages is the only process that is carried on 

outside of objects. A message-sending expression defines the receiver 

(cf. the procedure), the selector (cf. the entry point), and the 

arguments of the message. 

Control structures, other than the sequential execution of 

expressions in a method and the sending of messages that invoke other 

methods, are based on objects called blocks. Blocks contain a sequence 

of expressions. Execution of blocks may themselves be controlled by the 

conditional selectors "if True" or "if False", and by conditional iteration 

"whileTrue" or "whileFalse". 

5.3.1 Pattern Matcher Implementation 

Brief details of a SMALLTALK implementation of the pattern matching 

algorithm are shown in figure 5.3, an expanded form of this appears in 

Appendix B.3. The implementation centres around three classes 

"Comparator", "Accumulator" and "PatternMatcher". Two other classes, 

"PatternBlocks" and "BitStreams" (see Appendix B.3) support 

initialisation of objects. 
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Class Comparator 

Methods 
Compare: stringchar and: patternchar 

Class Accumulator 

Super Class Object 

Instance Variables accRes 

Methods 
ini tialise 

update: dataIn with: resIn and: bitsIn 

initaccRes 

Class Pa tternMa tcher 

Methods 
go: nblocks fromhost: charstream tohost: bitstream 

!pattern, string, result, bits, cells, toggle! 
"initialise variables" 
toggle <- O. 
[charstream isEmpty] 
whileFalse: [ i ! 

"input string or pattern character" 
i <- toggle + 1. 
[i <= nblocks] 
whileTrue: 

[results at: i <-
cells at:i (update: (Compare: (string at:i) and:(pattern at:i» 

with: result at:(i+1) 
and: bits at:i). 

pattern at:(i+1) put:(pattern at:i). 
string at:(i-1) put: (string at:i). 
bits at:(i+1) put:(bits at:i). 
i <- 1]. 

toggle <- toggle - 1] 

Figure 5.3: SMALLTALK implementation of the pattern matcher 

Instances of class comparator represent the results of character 

comparisons. Comparator responds to a single message pattern with an 

instance representing the result of comparing a string character with a 
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pattern character. This message pattern consists of the selector 

"compare:and:" and two arguments, named stringchar and patternchar. When 

a message of this type is sent, the expression in Comparator's only 

method is evaluated. This expression consists of a message to Boolean 

with the selector "ifTrue:ifFalse:" and two blocks as arguments. The 

value returned from ifTrue:ifFalse: is the value of the block that was 

executed. This value is then returned to the sender of the message. 

An instance of class Accumulator is used to represent the 

accumulated result in an accumulator cell. This class has one instance 

variable "accRes". The implementation description includes one class 

method and two instance methods. The class method creates and 

initialises new instances. It has selector "initialise". When a message 

with this is received, the method creates a new instance by evaluating 

the expression "super new"; it uses the method for new found in the 

methods of the superclass "object". It then sends the new instance the 

message initaccRes. The search for the response begins in the class of 

the instance i.e. in Accumulator. An instance method is found there 

which assigns the value of 1 to the instance variable accRes. 

The third method of Accumulator implements the operation of an 

accumulator cell. It is invoked by a keyword message with selector 

"update:with:and:" and containing the values for the arguments dataIn, 

resIn, and bitsIn. The argument dataIn represents a comparison result, 

resIn represents the result flowing through an accumulator cell, and 

bitsIn is a two element array representing the don't care bit and the end 

bit respectively. The method uses a temporary variable to hold the value 

to be returned. It consists of two expressions, the first of which 
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contains the "ifTrue:ifFalse" selector and two blocks. The if True block 

uses an important "pseudo-variable" available in every method named self 

which refers to the message receiver itself. When the expression "self 

initaccRes" is executed, initaccRes is sent to the same object (self) 

that the received "update: ... ". This results in the instance variable 

being reset to 1. 

An instance of class PatternMatcher is used to represent a pattern 

matching chip. It has a single method which is invoked by a message 

pattern containing arguments which define the number of pattern modules 

required (nblocks), the input stream from the host (charstream), and the 

output stream to the host (bitstream). Once invoked, the methods 

temporary variables are first initialised. The variables pattern, 

string, and result are initialised as arrays with nblock elements. Also 

initialised as arrays are bits and cells. However, the elements of bits 

are initialised to be arrays of two elements, while those of cells are 

initialised to be instances of the class accumulator. Having initialised 

all variables the expression "[ ... ] whileTrue:[ ... ]" is executed. This 

expression is a control message which repeatedly evaluates the 

expressions in the second block as long as the condition in the first 

block holds. The second block contains two expressions; the first 

increments the temporary variable toggle and the second is another 

conditional repetition. During successive executions of the second 

expression toggle alternates from 1 to 2. 

The repeated block of the nested conditional consists of five 

expressions, the first of which places a new value in the i th element of 

the array results. This value is obtained by sending the instance of 
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accumulator stored in the i th element of cells the message with selector 

"update:with:and:". Before this message is sent the expressions defining 

the values for this message's arguments are evaluated. So, for example, 

the actual value for dataIn is obtained by sending Comparator the message 

"Compare: (string at:1) and: (pattern at :i). The parenthesised 

expressions must also be evaluated before this message can be sent. 

These expressions obtain the values at the i th position of arrays string 

and pattern, i.e. the actual values for the arguments stringchar and 

patternchar respectively. The next three expressions move an element in 

pattern, string and bits, while the last expression increments i by +2. 

During the repeated execution of the block the value of toggle is used to 

determine which elements in the arrays are updated. For example when 

toggle is 1 the instances of Accumulator at odd numbered positions in 

cells are used to obtain the new values for results. This is equivalent 

to odd numbered cells being active. Similarly, even numbered cells are 

active when toggle is 2. 

The class construct provides a good template for describing both the 

computational aspects of an algorithm and the data it acts on. This 

feature was illustrated by the class definitions for accumulator and 

comparator cells. Their associated messages implement explicitly defined 

entry points (cf. input ports) and attempt to capture the input behaviour 

of the corresponding cells. The arrays pattern, string, bits and results 

are used to model the data movement through the pattern matcher. An 

element in these arrays can be regarded as a connecting wire and its 

value the current value on that wire. So, for example, the wire on which 

the i th accumulator cell receives the result from the (i+1) th cell is 

represented by element (i+1) of results. The current value held in this 
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element represents the most recent value placed on the wire by the 

(i+1) th accumulator cell. 

The array cells was used to hold a number of identical objects, each 

representing an accumulator cell. These instances can be thought of as 

individual processes capable of local computation. The expression used 

to invoke a particular instance in this array accurately reflects the 

communication between a comparator cell and an accumulator cell. An 

instance variable is used to describe the internal state of each cell. 

This can only be affected by the appropriate message to this type of 

object. It gives a good representation of the local storage associated 

with each accumulator cell. 

The main drawback of this implementation is the sequential nature of 

the language. Although local computational elements could be described, 

parallel operation of these could not be represented. One way round this 

would be to expand the semantics of the language such that concurrent 

operation of objects could be accommodated. However, the aim of this 

chapter is to assess the language's current ability to describe a VLSI 

implementation, not to consider how the language could be modified so as 

to be suitable for such a role. 

5.4 LISPKIT LISP 

The Lispkit Lisp language [27] was developed by Peter Henderson. It 

is a purely functional derivative of Lisp 1.5. It contains no iterative 

constructs, instead recursive control structures are used. A data 

structure, once defined, cannot be altered. This implies that all 

operations on a data structure have a copying semantics feature. 
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There are three types of objects: atoms, lists and functions. 

Atoms are indivisible data objects, either symbolic or numeric, or 

parenthesis. Lists (or symbolic expressions) are built up from atoms. 

Two forms of primitive function are available: those which manipulate 

symbolic expressions and those which handle basic predicates and 

arithmetic operations. 

The language provides a number of functional forms e.g. the 

conditional form "if x then y else z". User functions are defined by 

specifying a name and providing the formal arguments, each referenced by 

an identifier string. The language is weakly typed, and the programmer 

is responsible for passing arguments of the appropriate type and 

structure to a function. 

Functions can accept each of the three types of objects as 

arguments, and return each as the result of evaluation. Therefore, a 

function may also be passed as an argument and/or returned as the result 

of evaluating a function. In this way, special purpose functions may be 

created from general purpose functions. These are termed higher-order 

functions. 

5.4.1 Pattern Matcher Implementation 

The major features of a Lispkit Lisp implementation of the pattern 

matcher are given in figure 5.4 (a more complete listing of the program 

is included in Appendix B4). The function clock simulates the overall 

behaviour of the pattern matcher chip. It has four input parameters: 

beat, p, s, and m. The parameter beat is an integer which is either 0 or 

1 and determines which character blocks 
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clock(beat, p, s, m) -> 
if eq(beat,O) then 

{cons(car(l), clock(l, p, cdr(s), cdr(l» 
where 1 = move1(car(s), matchodd(m»} 

else 
cons(nil, clock(O, cdr(p), s, 

move2(car(p), car(m), matcheven(cdr(m»») 

move1(s char, m) -> 
cons(car(car(m», 

to_even(s_char, car(m), car(cdr(m», cdr(cdr(m»» 

move2(p, head, tail) -> 
cons(left(p, head, car(tail», 

to_odd(car(tail), car(cdr(tail», cdr(cdr(tail»» 

matcheven(m) -> 
if eq(cdr(m), nil) then 

pmatch(car(m» 
else 

cons(pmatch(car(m», cons(car(cdr(m», 
matcheven(cdr(cdr(m»») 

matchodd(m) -> 
if eq(cdr(cdr(m»,nil) then 

cons(pmatch(car(m», cdr(cdr(m» 
else 

cons(pmatch(car(m», cons(car(cdr(m», matchodd(cdr(cdr(m»») 

pmatch(inpts) -> 
cons(a1, cons(a2, cons(c1, cons(cons(a3,a4), c3»» 
where a1 = e(l,a), a2 e(2,a), a3 = e(3,a), a4 = e(4,a), 

c1 = e(l,c), c2 e(2,c), c3 = e(3,c), 
p e(3,inpts), s = e(4,inpts), t = e(2,inpts), 
r e(l,inpts), 
c comp(car(p),s), 
a acc(t, r, car(cdr(p», car(cdr(cdr(p»), c3) 

comp(p,s) -> 
if eq(p,s) then 

cons(p, cons(s,l» 
else 

cons(p, cons(s,O» 

acc(a,r,x,l,d) -> 
if eq(l,l) then 

cons(u, cons(l, cons(x,l») 
else 

cons(r, cons(u, cons(x,l») 
where u = and(a,or(x,d» 

Figure 5.4: Lispkit Lisp Implementation 
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in the pipeline are active. If the value of beat is 0 then even numbered 

blocks are active, otherwise the odd numbered ones are. The parameter p 

is a list in which each element is a 'pattern list'. A pattern list has 

three elements: pch, x, 1, where pch is a pattern character, x is the 

don't care bit, and 1 is the end bit. The string stream is represented 

by the character list s. Finally, the input parameter m is a list of n 

elements (where n is the number of blocks in the implementation), each of 

which is a pattern block input list. An input list has the format 

(r,t,p,s), where r is a result bit, t is the accumulated result 

associated with a block, p is a pattern list, and s is a string 

character. Once the function is called with the parameters initialised 

to the start up conditions, it recursively calls itself building up a 

list of result bits. 

If beat is 0 clock simulates the behaviour of the pipeline when odd 

numbered blocks transform inputs to outputs, which then form the inputs 

to the even numbered blocks. Also, during this phase, a result bit is 

output from the left most block, and a string character is input to the 

right most block. The activity of odd numbered elements is implemented 

by the function matchodd. The result of this function together with the 

head of the string list are used by movel, which implements the 

input/output behaviour and the movement of data from odd numbered blocks 

to even numbered ones. If beat is 1 then clock simulates the behaviour 

of the pipeline when even numbered blocks transform their inputs into 

outputs. No result bit is output during this phase, however, a pattern 

character and its associated bits are input into the left block of the 

pipeline. The activity of even numbered elements is implemented by the 

function matcheven, while move2 implements the input and transfer of data 
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from even numbered blocks to their right and left neighbours. 

The function move1 has two parameters: s ch and m. These represent 

a string character and the current outputs of the blocks respectively. 

The function returns a list, the head of which is the result bit from the 

left most block, and the tail of which is the list returned by the 

function to even. This tail list is similar to the input parameter m. 

Odd numbered elements in it are identical to the corresponding elements 

in m, while even numbered elements are updated versions of the 

corresponding elements in m. The function to_even implements the 

transfer of data from odd numbered elements to even numbered elements and 

the input of a string character. It has four arguments s,l,c,r where s 

is the string character, I is an input list for an even numbered block's 

left neighbour, c is the input list for this even block, and r is the 

list containing the input lists for all the blocks to the right of the 

even block. If the tail of r is empty then function right is called, 

otherwise c is updated and the remainder of the even numbered elements in 

r are updated. Although right is not defined here, it simply updates the 

input list for the right most block using the next string character and 

the appropriate outputs of its left neighbour. 

Function move2 has three input parameters: p, head, and tail. The 

parameter p is a pattern list, head is the input list associated with the 

left most pattern block, and tail is a list containing the input lists 

for the remaining blocks. The function returns a list whose head is the 

input list returned by the function left and whose tail is the list 

returned by to_odd. Although not included, left is a simple function 

that defines the input list for the left most block using the pattern 
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list p and the appropriate elements of its right neighbour. The function 

to odd is similar to to_even, but implements the transfer of data from 

even numbered blocks to odd numbered blocks. 

Both to odd and to_even use the function left right. This function 

demonstrates how a block's inputs are obtained form the appropriate 

outputs of its left and right neighbour. The function is not defined 

here, but it has three parameters: left, centre, right. Each is an 

input list, left for a block's left neighbour, right for its right 

neighbour, and centre for that block. It returns a parameter list based 

on the elements in these lists which represents the updated inputs to the 

centre block. 

The function matchodd is used to represent the pipeline when odd 

numbered pattern blocks are active. It has a single parameter, m, which 

is a list of pattern block input lists. It returns a similar list in 

which all the even numbered elements are identical to the corresponding 

elements in m. The odd numbered elements, however, are updated versions 

of the corresponding elements in m. Function, matcheven is similar, only 

it represents the pipeline when even numbered pattern blocks are active. 

Both use the function pmatch to update the input list associated with an 

active block. 

The function pmatch implements the behaviour of a pattern block. 

This function has a single parameter, Inpts, which is an input list for a 

block. It returns an updated version of this list, which represents the 

outputs of a pattern block. That is, the function captures a block/s 

transformation of inputs into outputs. Within the function body, local 

definitions are used to make it more readable. A primitive function 
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e(n,l) is used to return the n th element in the list 1. The output list 

is built up from two subsidiaries. One of these lists is returned by the 

function comp and the other by the function acc. The former function 

implements a comparator cell, while the latter implements an accumulator 

cell. 

Lispkit Lisp allows a concise hierarchical description of the 

pattern matcher to be written. The function pmatch captures the 

input/output behaviour of a pattern matcher block. It uses the functions 

acc and comp to illustrate how a block is sub-divided into two primitive 

elements (or cells). The parameters to functions and the values returned 

by them describe the connectivity between elements. In the language, no 

restrictions are placed upon the order of evaluation of sub-expressions. 

Parallelism can therefore be implied without the need for it to be 

explicitly defined by the programmer. This is particularly true in the 

functions matcheven, matchodd, to even, and to odd. These functions can 

be interpreted as replicating an operation a number of times with the 

occurrences operating concurrently. 

The lack of an assignment statement in the language and the absence 

of a shared memory posed problems in representing the state of a block. 

It was not possible to hide the internal state of a block. Instead the 

current value associated with a block was fed in as an input parameter. 

Its updated value was then returned as an element of the output list 

generated by pmatch. This suggests a feedback loop for the accumulated 

result. Although there is no problem with this in terms of circuit 

design, it does not truly reflect the structure of figure 4.2. 
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The major drawback of the language is that a function can only 

return a single value. This meant that for multiple outputs a single 

list had to be constructed. Combining values into such lists is awkward, 

it distracts from the main purpose of a function and makes it less 

readable. Another drawback of the language is the lack of an explicit 

representation of control flow. This makes it difficult to describe 

purely sequential circuits. 

5.5 PROLOG 

PROLOG [10] is a programming language well suited to solving 

problems that involve objects and the relationships between objects. A 

program in the language consists of facts about a certain subject, 

expressed as a collection clauses of which express information that can 

be used to solve problems or to answer questions. A predicate defines a 

relationship, and is either an assertion or an implication. 

PROLOG attempts to sequentially solve the composite goals of a 

predicate. For a given goal, it attempts to find a clause whose head can 

be made to match the goal. If the clause is an implication then it, in 

turn, attempts to solve its subgoals. The possible results of a goal 

will be failure or success, plus possible values associated with 

variables. To achieve success for a goal, all the subgoals must succeed. 

If one of the subgoals cannot be solved, PROLOG backtracks and tries to 

find another clause whose head matches the goal. If no untried clauses 

remain, then the failure is returned for the goal. 
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The scope of a PROLOG variable is limited to the statement in which 

it appears. It is a non-procedural language. A statement in a PROLOG 

program corresponds to an entire subroutine of a conventional programming 

language. Thus programs are extremely modular. The order in which 

statements occur is irrelevant. 

5.5.1 The Pattern Matcher Implementation 

Details of a Prolog implementation for the pattern matcher are given 

in figure 5.5 and in Appendix BS. The overall behaviour of the pattern 

matcher is implemented by the predicate "pipeline", such that 

pipeline(Plist,Slist,Rlist,Mods) emulates the repeated operation of the 

chip. Plist is the pattern list; it is an endless list in which each 

element is a sub-list containing three atoms: [P ch,Xbit,Lbitj. P ch is 

a pattern character and Xbit and Lbit denote the don't care bit and the 

end of pattern bit respectively (either 0 or 1). Rlist is a list of 

atoms which are either 1 or 0 and represents the results output stream. 

The head of this list defines the last result to be output from the 

pattern matcher. Mods is a list of n objects, where n is the number of 

pattern blocks in the implementation. Each object is a list describing 

the parameters to a block: [R,T,P,Sj. R is an atom representing the 

result, T is the accumulated result, P is a list of type 

[P_ch,Xbit,Lbitj, and S is a string character. 

The predicate pipeline generates an endless list of result bits. 

When it is first invoked Rlist should be initialised to an empty list 

i.e. [j, whereas the other three arguments should be initialised to 

define the start up conditions. In the body of pipeline there are five 
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pipeline([P chlPatternj, [S chlStrngj, Res, Blocks):­
matchodd(Blocks, Blocks la), 
transfereven(S ch, Rout~ Blocks la, Blocks lb), 
matcheven(Blocks lb , Blocks 2a), -
transferodd(P ch~ Blocks 2a,-Blocks 2b) 
pipeline(Pattern, Strng,-[RoutIResj~ Blocks_2b). 

matchodd([Ablock, Lblockj, [Nblock, Lblockj):­
process(Ablock, Nblock). 

matchodd([Lblockl[RblockITailblksjj, [Nblockl[RblockIRestjj):­
process(Lblock, Nblock), 
matchodd(Tailblks, Rest). 

matcheven([Blk j,Blk kj, [Blk j,Nblkj):­
process(Blk_k, Nblk). 

matcheven([Lblkl[RblkITailblksjj, [Lblkl[NblkIRestjj):­
process(Rblk, Nblk) , 
match(even, Tailblks, Rest). 

transfereven(S in, [Blk j,Blk kj, [Blk j,Ublkjj):­
rIght(S_in~ Blk_J, Blk_k,-Ublk). 

transfereven(Sin, [Blk il[Blk jl[Blk klRestjjj, [Blk il[UblkITailblksjj):­
exchange(Elk i, Elk j, Elk k, Ublk), -
transfer(Sin~ [Blk_kIRestj~ Tailblks). 

transfereven(Schar, Res, [BlklITailj, Nblks):­
out(Blkl, Res), 
transfer(Schar, [BlklITailj, Nblks). 

transfer([Blk i,Blk j,Blk kj, [Blk i,Ublk,Blk kj):­
exchange (Blk_i, Elk_j, Blk_k, Ublk).-

transfer([Blk il[Blk jl[Blk klTailjjj, [Blk_il[UblkIRestjj):­
exchange(Blk i, Blk j, Blk k, Ublk), 
transfer([Blk_kITailj, Rest). 

transferodd(Pin, [Blk 11 [Blk 2lTailjj, [UblkIRestj):­
left(Pin,-Blk l,-Blk 2, Ublk), 
transfer([Blk=2ITaill, Rest). 

process([Rin, Temp, [Pin,Xin,Linj, Sin], 
[Rout, Temp2, [Pout,Xout,Lout], Sout]):­

comp(Pin, Sin, Cout, Pout, Sout), 
acc(Rin, Temp, Xin, Lin, Cout, Rout, Temp2, Xout, Lout). 

Figure 5.5: Prolog Pattern Matcher Implementation 
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clauses, the first four of which divide the cyclic behaviour of the 

pattern matcher into four stages. These can be specified as: 

1. Odd numbered blocks in the pipeline are active. 

2. Odd numbered blocks output data to their left and right 

neighbours. Also, the left most block outputs a result bit and 

the right most block receives the character at the head of the 

string input stream. 

3. Even numbered blocks in the pipeline are active. 

4. Even numbered blocks pass data to their left and right 

neighbours. Also, the left most module receives the head of the 

pattern stream. 

The final clause is recursive and ensures the repeated operation of the 

above four stages. 

Five variables are used in the body of the predicate: Blocks la, 

Blocks 1b, Blocks_2a, Blocks 2b, and Rout. The first four are 

instantiated in the various clauses to lists of parameter lists with 

exactly the same format as Mods. Rout is initiated to an integer which 

is either 0 or 1. The matchodd clause implements stage 1. It 

instantiates Blocks la, such that it defines each block's parameters 

after the first stage. Blocks 1a together with the head of the string 

list are passed to transfereven which implements stage 2. In doing so, 

Blocks 1b and Rout are instantiated. The former so that it describes the 

state of each block's parameters after stage 2, and the latter to the 

result out of the left most module. Blocks 1b is used by matcheven to 
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instantiate Blocks 2a. This clause implements stage 3 and when it 

succeeds Blocks 2a describes all the blocks' parameters after this stage. 

The transfereven clause then uses Blocks 2a and the head of the pattern 

list to instantiate Blocks 2b. This clause is responsible for stage 

four. When it succeeds Blocks 2b is set up such that it describes the 

parameters after the final stage in the cycle. Blocks 2b together with 

the tails of the pattern and string lists and the list produced by 

placing Rout at the head of Res are fed back to pipeline. 

The predicate matchodd(State_a,State_b) implements stage 1 above. 

It succeeds when State_b is a list of parameter lists. The even numbered 

elements in State b are identical to the corresponding elements in 

State a. The odd numbered elements, however, are the corresponding 

elements in State_a after the comparator and accumulator algorithms have 

been applied. Predicate matcheven(State_a,State_b) is similar. Both 

predicates involve the goal process(Inlist,Outlist), which correspond to 

the activity of an individual block in the pipeline. This goal succeeds 

when Outlist is a parameter list generated from the parameter list Inlist 

such that the first two elements are updated version of the corresponding 

atoms in Inlist. The remaining elements are copies of the corresponding 

elements in Inlist. 

The argument Inlist defines the inputs to a particular character 

block and has the format [Rin,Temp,[Pin,Xin,Lin),Sin). The variable Rin 

denotes the result bit in, Temp the current accumulated result associated 

with a block, Pin the pattern character in, Xin the wild card bit in, Lin 

the end bit in, and Sin the string character in. Outlist has exactly the 

same format but defines the outputs a block generates from these inputs. 
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So the predicate process characterises a block's transformation of inputs 

into outputs. It consists of two clauses, comp and acc, which correspond 

to the function of a comparator cell and an accumulator cell 

respectively. The variable Cout is used to represent the connectivity 

between the two. 

The predicates transfereven(Schar,Resout,Blocks 1,Blocks 2) and 

transferodd(Pchar,Blocks_l,Blocks_2) implement stage 2 and stage 4 

respectively. Blocks 1 describes the pattern blocks' parameters before 

the stages; while Blocks 2 describes them after. The variable Resout is 

instantiated to the output of the pattern matcher after stage 2. Pchar 

and Schar are the required inputs for these stages. Both predicates are 

intended to represent the movement of data between the pattern blocks and 

the input/output behaviour of the chip. They build up Blocks 2 such that 

it represents the situation where the outputs of the most recently active 

blocks have become the inputs to those blocks which are active on the 

next beat. Each predicate is recursive and involves the clause exchange. 

The goal exchange(Left,Centre,Right,Inpts) is used to instantiate 

the variables in the single parameter list Inpts. This is achieved 

through matching of instantiated variables in the other three arguments, 

which are also single parameter lists. It uses the anonymous variable 

for the elements which do not playa part in this matching. The 

predicate is used to update a block's inputs. It demonstrates how the 

new values are obtained from the appropriate outputs of a block's left 

and right neighbours. 
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Prolog enables a very modular description of the pattern matcher to 

be written. It accurately describes the structure and behaviour of a 

single character block. The predicate process is used to represent such 

a block. Its input and output ports are represented by named variables. 

Recursion was used to represent the replication of pattern blocks and to 

simulate their concurrent behaviour. The transformation of inputs to 

outputs is modelled by unification through named variables. A character 

block is divided into two component modules (or cells). These are are 

represented by the comp and acc clauses which make up the body of the 

process predicate. The internal connection between these two elements is 

represented by the variable Couto This variable does not appear in the 

head of the process clause, and therefore stresses that it is a local, 

internal connection. 

The fact exchange also uses unification through named variables to 

represent the connections between a block and its left and right 

neighbours. 

The lack of global variables means that the accumulated result 

associated with a block has to be represented by an input parameter. 

Similarly, its updated value is represented as an output parameter of the 

block. Above it was said that the named variables in the head of the 

'process' clause could be used to represent the inputs and outputs of a 

pattern block. The fact that the accumulated result of a block and its 

updated value are represented by named variables would therefore imply 

that a pattern block has six inputs and six outputs. This is not the 

situation previously described for a block. 
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Although the 'process' predicate was intended to represent structure 

and connectivity not all the predicates of the program represent 

structural components. For example, the predicates implementing the 

movement of data and those determining the active blocks in the pipeline 

represent behaviour and not structure. There is no means of 

distinguishing which predicates represent structure and which represent 

behaviour. 

The relational approach on which Prolog is based together with the 

associated matching of structures allows very flexible predicates to be 

defined. For example, consider a predicate with n arguments. Given 

(n-1) instantiated arguments, the predicate will instantiate the 

remaining argument irrespective of which argument it is. This feature is 

sometimes called "reversible programming", and abstracts away from the 

notion of formal inputs and outputs to a procedure. Although this 

abstraction is advantageous in software design, it makes describing a 

VLSI implementation slightly confusing. This is because interpretation 

of which arguments are inputs and which are outputs is less than obvious. 

The order of arguments does not necessarily imply anything. Comments 

would be required to help a reader distinguish between the two. 

5.6 CONCLUSIONS 

Five example programming languages representing five different 

computational models have been used to describe a single example of a 

VLSI implementation. It cannot be said that the selected example is 

representative of all the techniques employed in VLSI design, nor can it 

be said that the full strength of each language has been illustrated. 
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Instead the pattern matcher chip can be regarded as an example which 

captures some of the important features of VLSI. The descriptions 

presented in this chapter can be viewed as introducing the 'flavour' of 

the example languages. With this in mind the languages can be assessed 

for their ability to handle some of the important features in VLSI 

implementations. This will give an insight into which languages are well 

suited for a VLSI design description role. 

All the languages were able to support a description of the pattern 

matcher. Pascal illustrated the advantages of abstraction through 

powerful data structuring techniques. The language can be used to 

represent structure, but showed that the sequential control flow model 

gives rise to a design which utilise a Von Neumann serial processing 

architecture. The sequential control flow model was, therefore, not well 

suited to this particular design. SmallTalk demonstrated that the class 

construct in the Actor model is useful for defining the data and 

processing characteristics of computational elements. However, the 

sequential nature of the language meant that the operation of such 

elements in parallel could not be represented. 

Lispkit Lisp showed that the functional model is well suited for 

representing wiring, connectivity, and parallelism. It is capable of 

accurately describing combinatorial circuits. However, the lack of the 

assignment statement makes state difficult to model. Also, the lack of 

explicit control structures makes it difficult to describe sequential 

circuits. The major difficulty found with the language was representing 

multiple outputs as lists. For the logic model, Prolog illustrated how 

unification with named variables can be used to represent connections 
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between circuit elements. Parallelism and replication can be implied by 

recursion. The reversible nature of predicates suggests that the 

relational approach in this model is too abstract for many basic devices. 

Based on the parallel control flow model, Occam enabled the system 

to be described as a collection of concurrent processes, which 

communicated through named channels. This description closely reflected 

the actual structure and behaviour of the VLSI implementation of the 

pattern matcher. 

For this particular design Occam provided the best description. The 

language is well suited for describing concurrent elements which 

communicate with each other. The language is not 'ideal', the following 

are considered to be shortcomings of the language: 

1. It lacks abstract data structures and types. 

2. It cannot describe processes which do not have state. That is, 

all processes require state. 

3. It currently does not handle recursion. 

However, based on its performance for describing the pattern matcher, it 

will be selected as suitable language on which to base a future ATL 

system. 
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CHAPTER 6 

THE ROLE OF OCCAM IN VLSI DESIGN 

VLSI design involves the consideration of the two dimensional 

silicon area and the operation of the system in the time dimension. Both 

are a source of complexity in the design of large systems. In the 

previous chapter Occam was identified as a suitable programming language 

for describing some of the important features of VLSI systems. An Occam 

description of a system can be used to tackle the dual nature of design 

complexity by providing a consistent, abstract representation for both 

the spatial and time dimensions. The organisation of the program 

(i.e. its structure) can be used to define a topology for the system, 

while its control sequence (i.e. its operation) can be used to specify 

the timing behaviour of the system. 

This chapter considers the advantages of using Occam for behavioural 

specifications of VLSI systems. The features of an ATL system based on 

the language are specified. A key issues to be considered for the future 

implementation of this system is: the mapping of the algorithmic 

execution sequence in an Occam description into the physical timing 

behaviour of a corresponding VLSI system. The reasons for adopting an 
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asynchronous, self timed approach over the synchronous, clocked approach 

are given. Also considered in this chapter is the generation of 

schematic diagrams from Occam programs. Such diagrams help clarify the 

nature of a VLSI design and aid the comprehensibility of Occam 

descriptions. Their generation from Occam programs demonstrates the 

ability of the language to represent both topological information and 

timing behaviour. 

6.1 USING OCCAM AS A BEHAVIOURAL SPECIFICATION LANGUAGE FOR VLSI SYSTEMS 

Occam is a language particularly well suited to describing a system 

consisting of many interacting components (processes) which operate 

concurrently and communicate through channels [45]. It is primarily 

intended for describing and programming transputer systems. As shown in 

the previous chapter it can also be used to provide a behavioural 

specification language for VLSI designs. Occam actually is a hardware 

design language, in the sense that it enables systems whose basic 

components are transputers to be described [46]. Its simple model of 

processes and communication corresponds exactly to the behaviour of real 

electronic systems [62]. That is, there is a direct mapping of the Occam 

representation onto a physical architecture of functional blocks 

connected via wires. 

As a behavioural specification language for VLSI systems Occam is 

capable of supporting a variety of design styles. Design descriptions 

can range from being purely sequential to fully concurrent. One way in 

which to use the language is to decompose a problem hierarchically, using 

only the parallel constructor and channels until the individual processes 
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are as simple as possible. This approach can potentially result in 

descriptions which maximise concurrency. Another approach for exploiting 

concurrency is to use the sequential constructor to combine parallel 

constructs. This represents the action of a number of processors which 

all synchronise after each step they perform. In general, the parallel 

constructor can be used to allow communication and computation to proceed 

together. 

The advantage of using an Occam program as a specification is that 

the program can be executed as a simulator, or prototype, of the system 

[61]. The language has a very efficient implementation, which enables 

fast execution of a system description. Compilation of a source program 

into a machine executable implementation enables the algorithm 

characterising a system to be investigated. The designer can check the 

efficiency of the Occam description and validate its correctness. It can 

be 'fine tuned' to derive an optimum representation of the algorithm. 

Also, alternative solutions can be evaluated quickly. Once the designer 

has demonstrated that the program provides a satisfactory representation 

of a system's behaviour, the program can be used as the specification for 

a special purpose chip (or application specific integrated circuit). 

Such an approach would involve transforming the Occam program into an 

intermediate, detailed (in terms of structural components) design 

description. 

Occam has a number of other features which make it an attractive 

language for hardware design. These include: 
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1. It contains the necessary concepts of concurrency and 

communication to enable it to be used for the design of digital 

hardware at any level of detail. 

2. The language employs explicit control of concurrency and 

communication. 

3. It is a system description language which brings methodology to 

system design. Occam supports the use of parameterised 

processes which enables the hierarchical decomposition of 

problems. That is, the language supports a structured design 

style. 

4. It has a formal basis which opens up the potential of formal 

reasoning and transformation as design techniques. 

5. It is easy to understand since it uses the minimum of concepts 

(three primitive processes). It is concise. The syntax is 

regular. 

6.2 ATLAST: AN EXAMPLE ATL SYSTEM 

Occam's ability to describe concurrent systems in a manner 

suggesting an architectural implementation makes it an attractive 

notation on which to base an ATL system. In principle, an Occam program 

describing the behaviour of a system could be mapped into an equivalent 

hardware implementation. In order to obtain such an implementation the 

program's control sequence must be mapped into an appropriate timing 

model. Also, topological information must be extracted. This requires 
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Occam Program 
(Behavioural Description) 

1 

1 

1 

+--------------------+ 
1 TRANSFORMATION 
1 MODULE 
+--------------------+ 

1 

1 

1 

Intermediate 
Executable <------ Representation ------> Schematic 

Code 1 Representation 
1 

+-------------------------1------------------------------+ 
1 Design Sub-System 1 

1 1 1 
1 .----------------.----------------. 1 

1 1 1 1 1 
1 CIRCUIT LOGIC DESIGN 1 

1 SIMULATION VERIFICATION FILES 1 

1 1 1 
1 1 1 
1 .--------. 1 

1 1 1 1 
1 LAYOUT FABRICATION 1 

+--------------------------------------------------------+ 

FIGURE 6.1: DESIGN PHILOSOPHY BEHIND ATLAST 

an efficient set of transformations which, when applied to the 

description, map Occam components into appropriate VLSI circuit elements 

in accordance with an appropriate timing model. The proposed philosophy 

on which an example ATL system could be founded is illustrated in 

figure 6.1. This figure represents the specification for a future system 

called ATLAST (Algorithm To Layout ASsisTant). It is envisaged that this 

type of design system will provide a 'software type' design environment 

to support the translation of algorithmic descriptions into special 

purpose VLSI chips. 
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The central feature of ATLAST will be a powerful dual purpose 

transformation module supporting both software and hardware design. This 

module will check the syntax and semantics of source programs and 

generate executable machine code. That is, a standard Occam software 

compiler will be an intrinsic part of it. Also, the module will derive 

detailed information for specifying VLSI implementations. This 

information will provide an interface to a design sub-system capable of 

producing an actual implementation. It is intended that the approach 

taken for implementing the sections of the transformation module 

responsible for forming the VLSI interface will differ form that 

currently used for silicon compilers. Rather than deriving detailed 

physical information for an adopted target architecture, an Intermediate 

Representation (IR) will be generated. This IR will be a structurally 

optimised Occam description. In effect, Occam's concept of concurrency 

and communication will be adopted as a target model. The design 

sub-system will be responsible for deriving an appropriate hardware 

implementation from this description. 

6.2.1 Timing Considerations 

Complexity in the time dimension stems from the need to determine 

the discrete intervals in time at which signal events may occur. A 

signal passes through a sequence of time intervals when it is correct, 

then incorrect, then correct again. To interpret the signal voltage, the 

times at which the signal represents valid logic must be determined. In 

a complex VLSI system there are many different signals which need to be 

considered. The physical concept of a time metric is at too Iowa level 

for describing the times when these signals are valid and the 
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relationships between them. A structured design methodology, such as the 

one described in Chapter 2, is more applicable. So instead of using a 

low level means for describing time relationships, a much more powerful, 

abstract level can be used - the concept of sequence. 

An Occam description of an algorithm contains an explicit definition 

of execution sequence. The PAR construct and named channels are used to 

describe concurrent components which at certain points in time 

communicate. Channels enable the components to synchronise their 

execution, exchange the relevant data, and then continue executing 

independently until the next communication. Sequential ordering of 

events is achieved through the SEQ construct. Usually, all three 

execution constructs are used together to describe a system composed of 

communicating sequential processes. The inherent sequence in an Occam 

description can be regarded as the abstract specification for the timing 

behaviour intended for a corresponding VLSI implementation. This 

specification must be mapped into physical timing in such away that 

performance objectives are achieved. This involves connecting abstract 

sequence to an appropriate timing discipline. These disciplines can be 

divided into two categories [47]: the synchronous approach and the 

self-timed approach. In the former sequence and time are connected by 

means of a global clock signal. In the latter sequence and time are 

connected in the interior of parts called elements. 

The synchronous approach is the most widely used. A clock with two 

or more non overlapping phases is normally used to remove constraints on 

the minimum delay in a clocked system. The clock signals serve two 

purposes. Firstly, they act as a sequence reference, the transitions 
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serve the logical purpose of defining successive instants at which system 

state changes may occur. Secondly, they provide a physical time metric. 

The period or interval between signal transitions is used to handle the 

elements and wiring delays in the paths from the output to input of 

clocked elements. This dual role of the clock binds the system 

sequencing and timing so closely that "timing" is the source of numerous 

difficulties in the design, maintenance, modification, and reliability of 

synchronous systems. 

The problems of managing complex designs in which all system parts 

must operate together has led to an increased interest in the alternative 

self-timed approach. Self-timed systems are interconnections of parts, 

which are called elements. Time and sequence are related inside 

elements, so that events such as signal transitions at the terminals of 

an element may occur only in certain orders. Initiation of a given 

computational step depends on completion signals produced by its 

sequential predecessor. The approach involves the design of elements and 

the interconnection of these elements in a system. In the design of 

elements logic, physics, and timing are brought together. This is made 

easier since the designer works within a domain small enough to make the 

design manageable. System design involves tackling the problem of 

synchronising communication of data from one element to another. One of 

the major difficulties in the self-timed approach is ensuring that this 

communication is achieved reliably without an enormous area overhead in 

additional logic. 
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Future scaling down of feature size and scaling up chip area will 

not only increase the complexity of VLSI chips, but will also change 

relationships in parameters. These parameters describe the physical 

(i.e. electrical) characteristics of switching devices, circuits, and 

wires. The increased wire delay associated with the increased 

resistivity of scaled down wires will have a dramatic impact [44]. It 

will result in propagation delays within a chip causing significant 

wiring delays among functional blocks. Unless a technology based 

solution is found, clock skew will become such a problem that synchronous 

behaviour through the use of a system wide clock may no longer be 

achievable. The lack of alternatives to the aluminium/doped polysilicon 

interconnection systems is convincing some designers [55,77] that the 

solution lies with self-timed approach. Also, this approach is more in 

keeping with a rigorous discipline of modularity [5]. For these reasons 

the self-timed approach will be adopted for system implementations by 

ATLAST. The execution sequence of an Occam source program will be used 

to divide a system into modular parts that are self-timed elements. 

These elements will be implemented as as synchronous systems with an 

internal clock. 

6.3 SCHEMATIC REPRESENTATION OF OCCAM DESCRIPTIONS 

A complete implementation of the ATLAST system is beyond the scope 

of this thesis. Instead, the aim of the work to date has been to 

demonstrate the automatic generation of schematic diagrams corresponding 

to the IR. Such diagrams are desirable for a number of reasons. 

Firstly, they help clarify the nature of the intermediate Occam 

description. Although textual descriptions are powerful and concise 
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their overall meaning can be difficult to comprehend. A schematic 

diagram corresponding to a textual description provides a valuable aid to 

documenting and understanding that description. Secondly, schematic 

diagrams reflect the two dimensional nature of VLSI design. They are 

traditionally used to provide abstract topological information form which 

an actual layout can be derived. That is, schematic diagrams are used to 

illustrate the relative placement and interconnection of high level 

hardware primitives (functional blocks). Thirdly, schematic diagrams can 

be used to provide a visual representation of the data flow and control 

flow in a system. 

Since the IR will itself be an Occam description the approach 

adopted concentrated on mapping key features of the language into 

suitable schematic representations. The overall objective was to 

demonstrate how both topological and timing information can easily be 

obtained from an Occam description. As mentioned above, it is envisaged 

that systems implemented by ATLAST will be based on the self-timed 

approach. So it was decided that the schematic representations should 

reflect this approach. 

6.3.1 The Occam Subset 

Rather than considering the complete Occam language, schematic 

generation for programs written in a subset has been demonstrated. Only 

a subset of Occam was selected so as to simplify the problem of 

generating schematics to diagrams which occupy a single sheet. This 

simplification only allows very simple descriptions to be considered. 

The syntax for the selected subset of Occam is defined in Appendix C. 
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This subset is powerful enough to enable the fundamental and most 

important feature of Occam to be described, namely communicating 

concurrent processes. It contains three types of primitives: operators, 

channels and variables. The set of operators is comprised of the 

primitive process operators and the arithmetic operators. There are 

three primitive process operators: input "7", output "I", and assignment 

":=". The arithmetic operators are: "+", "-", "*", and "I". Channels 

and variables are the fundamental objects manipulated by the subset and 

both are denoted by identifier strings. 

The operator, channel, and variable primitives represent the 

fundamental components from which a wide variety of programs may 

ultimately be composed. They are the building blocks from which 

processes are formed. They are combined, according to the subset's 

syntax rules, to form primitive (or simple) processes. Simple processes 

can be combined, by means of a constructor, to form a complex process. A 

construct governs the order of execution of its component processes. In 

the subset of Occam handled by COPTS there are two constructs: 

sequential (SEQ) and parallel (PAR). A complex sequential process is 

constructed by SEQ and parallel process is constructed by PAR. 

In the approach adopted for generating schematic representation of 

Occam programs the three types of subset primitives are mapped directly 

into schematic equivalents. Operators are mapped into elements called 

schematic cells (see section 6.4). Variables are mapped into elements 

called registers, which have input and output data paths (see section 

6.4.1). Channels are mapped into communication paths (see section 

6.4.2). These schematic elements serve two purposes. Firstly, each 
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gives a high level structural representation of a hardware element which 

will implement the corresponding software primitive. Secondly, each 

depicts the function of its primitive. Just as operators, channels and 

variables are the building blocks of software descriptions so cells, 

registers, data paths and communication paths are the building blocks 

from which schematic diagrams are constructed. In a schematic diagram, 

each element corresponds to a software primitive identified in a 

corresponding Occam program. 

6.3.2 COPTS: A Schematic Compiler 

A schematic compiler called COPTS (Compilation of Occam Programs To 

Schematics) has been written to demonstrate the generation of high level 

schematics. From an Occam program written in the subset, COPTS can 

generate a schematic diagram depicting its realisation in silicon. The 

diagram provides a visual representation of parallelism present in the 

described system. It also illustrate the flow of the control and data 

through the system and the communication paths between its components. 

Ideally such diagrams could be used as structural specifications for VLSI 

implementations. The arrangement of schematic elements in a diagram 

could be used to specify the actual placement of their associated 

hardware structure. Substituting detailed physical representations for 

the elements, in accordance with each one's position, would generate an 

implementation. For this approach to be practical future advances in the 

fabrication technology will have to remove the silicon area constraint, 

since a schematic diagram is very wasteful of space. Also the problem of 

power consumption must be tackled. A more realistic approach to 

obtaining implementations is suggested in the final chapter. 
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In translating an Occam design description into a schematic 

implementation, every primitive occurring in the program is identified. 

Its corresponding schematic element is generated and placed accordingly. 

The set of elements generated for an arithmetic expression visually 

represent the function of that expression. Their arrangement and 

interconnection reflects the data flow and execution sequence in the 

expression. The set of elements derived for simple and complex processes 

illustrates the various functional steps involved and the order in which 

they occur. 

Source code for an Occam compiler was unavailable, so a parser for 

the subset had to be written. This builds up an internal data tree to 

represent the block structure and execution sequence of source programs. 

The conceptual structure of this tree is then used to define the 

placement and interconnection of the schematic elements. The assembly of 

these elements into a network portraying a source program is based on a 

simple mapping strategy. This strategy can be summarised as: 

1. parallel behaviour is used to define vertical placement; 

2. sequential behaviour is used to define horizontal placement; 

3. data flow is, in general, left to right; 

4. only vertical and horizontal routing is allowed, crossovers are 

permissible; 

5. compaction is not a primary concern. 
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The remainder of this chapter defines the schematic elements and 

summarises the function associated with each. A more detailed 

consideration of the strategy used for spatially arranging these elements 

and the implementation of the graphics compiler is given in the next 

chapter. 

6.4 SCHEMATIC OPERATOR CELLS 

All the primitive operators in the subset are mapped into schematic 

elements called operator cells. The behaviour of a system, as specified 

in an Occam source program, is represented by an interconnected set of 

these cells. COPTS identifies the required members of this set. It then 

determines their topological arrangement and interconnection in a manner 

reflecting a self-timed implementation of the program's execution 

sequence. Each operator cell depicts a self-timed element (or 

macro-cell), which is implemented as a synchronous system with an 

internal clock. From inside an element this clock appears independent of 

the clocks in other elements of the implementation. However, the 

operation of each element's clock is governed by signals taken from a 

global clock. So, at the system level, element clocks are partly 

dependent. In an actual implementation of the wire carrying the global 

signals, a low signal rate would be necessary to avoid clock skew. This 

would not be a problem, since an element would generate faster, internal 

clocking signals from the these signals. The internal clock rate of an 

element would not be dependent on that of the other elements. 
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In an implementation, initiation of a macro-cell would depend on a 

completion signal produced by its sequential predecessor. In effect, 

such a signal is a control token and implies a physical link between the 

two - a control line. The control token informs a cell that its inputs 

are available and instructs it to commence processing them. On arrival 

the token is consumed by a cell. When that cell has completed its 

function and formed its output it generates a new token. This token is 

then sent to the next element in the execution sequence. Once enabled, a 

cell cannot accept another token until it has generated the completion 

signal for the current task. 

Since the function of a system is implemented as the collective 

behaviour of the component macro-cells, every cell must, at some stage, 

receive a token. For correct functioning, the interconnection of cells, 

by a control line, must be such that each receives a control token in a 

defined sequence. That is, a constraint on the topological arrangement 

of cells is needed to ensure correct operation of a system. This 

topological constraint is reflected in the schematic diagrams generated 

by COPTS. Macro-cells which would operate in parallel in an 

implementation are represented by schematic operator cells placed in a 

vertical array. Macro-cells which would operate one after another (i.e. 

sequentially) are depicted by schematic cells placed in horizontal 

arrays. 

The representation for each of the macro-cells is illustrated in 

figure 6.2{a)-{d). It is envisaged that a textual description of an 

actual hardware element will be associated with each of the schematic 

cells. This description could be a composition routine in some high 
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+------------+ 
VDD ----->1 1----> DATAOUT 
GND ----->1 1----> CNTRLOUT 
CLK ----->1 1 

CNTRLIN ----->1 1 
DATAINl ----->1 1 
DATAIN2 ----->1 1 

+------------+ 

(a) An Arithmetic Operator Cell. 

+------------+ 
VDD ----->1 1----> DATAOUT 
GND ----->1 1----> CNTRLOUT 
CLK ----->1 1 

CNTRLIN ----->1 1 
RESIN ----->1 1 

+------------+ 

(b) An Assignment Operator Cell. 

+------------+ 
VDD ----->1 1----> CHANOUT 
GND ----->1 1----> CNTRLOUT 
CLK ----->1 1 

CNTRLIN ----->1 1 
DATAIN ----->1 1 

+------------+ 

(c) An Output Operator Cell. 

+------------+ 
VDD ----->1 1----> DATAOUT 
GND ----->1 1----> CNTRLOUT 
CLK ----->1 1 

CNTRLIN ----->1 1 
CHANIN ----->1 1 

+------------+ 

(d) An Input Operator Cell. 

FIGURE 6.2: THE REPRESENTATION FOR PRIMITIVE CELLS. 

level notation, for example a PLAP description. From it, the complete 

hardware implementation (wires, boxes, polygons, etc.) of the 

- 99 -



corresponding primitive could then be generated automatically. Such 

descriptions could also incorporate information required by a simulator. 

At present each schematic depicts a primitive's realisation in silicon. 

They can be regarded as being at a very high level of structural 

abstraction with much of the implementation detail hidden, 

cf. abstraction by means of a bounding box. The boxes hide details of 

the physical layout of the components implementing the function of an 

operator. Only the required inputs and the generated outputs are shown. 

The combination of operator cells in a schematic diagram forms an overall 

structural specification for the intended VLSI system. 

There are four inputs common to every operator cell. These are 

labelled VDD, GND, CLK, and CNTRLIN, and denote the power, ground, clock 

and control inputs to each macro-cell. The first three inputs are 

derived from system inputs, whereas the fourth is derived from an 

operator cell's sequential predecessor. A schematic cell/s power input 

denotes the metal line which would supply the operating voltage to the 

corresponding macro-cell; while the ground input denotes the metal line 

for sinking a voltage. The clock input represents the line from which a 

macro-cell would take signals to generate its internal clocking signals. 

The control input depicts the metal line on which a macro-ceIl's 

initiation signal (or control token) would arrive. As well as the four 

inputs common to all schematic cells, there is also one output common to 

them all, labelled CNTRLOUT. This denotes the wire along which a 

macro-cell would signal that it had completed its execution. 
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Arithmetic operator cells represent hardware blocks which take two 

numeric inputs and compute a result according to the function of the 

operator they are implementing. Their behaviour can be summarised as: 

Result <-- Operand1 Operator Operand2 

In the schematic representation, figure 6.2(a), DATAIN1 and DATAIN2 

correspond to Operand1 and Operand2 respectively. Each line denotes the 

data path for its binary operand. The actual implementation of such a 

path is determined by the type of data transfer required e.g. bit serial 

or bit parallel. For bit serial transfer a data line is implemented as a 

single metal wire; while for fast parallel transfer a data line is 

decomposed into 'n' (where n is the number of bits per word in the 

implementation) metal wires. After computing the result its value is 

placed on DATAOUT - the output data path. 

An assignment operator cell, figure 6.2(b), depicts the transfer of 

the value of an associated expression to a register (see Variables and 

Data Lines). Such a cell is needed because the data path carrying the 

result of the expression may not necessarily be compatible with the input 

data path of the register. It represents either a sequential in parallel 

out (sipo) block, or a parallel in serial out (piso) block. In the case 

of the former, RESIN denotes a single metal wire, DATAOUT 'n' metal wires 

and the cell represents an element for converting from bit-serial 

transfer of a word to fast parallel transfer. For a piso block RESIN 

denotes 'n' metal wires, DATAOUT a single metal wire, and the cell 

represents an element for converting from parallel transfer to bit-serial 

transfer. Should the two data paths be compatible then in an 

implementation neither block would be required. 

- 101 -



6.4.1 Variables And Data Lines 

A variable identifier is used to hold a value within the scope of a 

complex sequential process. Such a process may use several variables. 

Variables must be initialised, and may well be re-initialised with 

different values in the process. All of a process' variables which are 

initialised in the same subsidiary are mapped into a schematic element 

called a register. This register is placed immediately to the right of 

the set of schematic operator cells corresponding to that software 

subsidiary. In an implementation, a register would be comprised of one 

or more storage locations, the actual number being defined by the 

variables it represents. Each location would be capable of holding an 

n-bit word and would be associated with a particular variable. In the 

schematic representation of a register, see figure 6.3(a), there is an 

input and an output line for each word. These are referred to as the 

assignment line and the reference line respectively. New values to be 

stored in the word for a particular variable arrives on the former, while 

a copy of the contents of that word are sent on the latter. So, the 

assignment line represents a write line and the reference line a read 

line. Data flow on both lines is left to right. 

A variable is initialised by either an assignment or an input 

primitive process. This is represented schematically as a data line 

linking the DATAOUT output of either an input or an assignment operator 

cell to an assignment line of a register. Data flow on this line is 

always left to right. To help illustrate the mapping strategy, an 

outline of the schematic representation for the initialisation of two 

variables is given in figure 6.3(b). 
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Assignment 
Line 

+---+ 
Assignment -->1 1--> Reference 
Assignment -->1 1--> Reference 
Assignment -->1 1--> Reference 
Assignment -->1 1--> Reference 

Assignment -->1 1--> Reference 
+---+ 

(a) Schematic Representation Of A Register Cell 

n~~~~~; 
n~~~~~; 1----' 

(b) Initiation Of A Register 

(c) The Reference Line 

Reference Line 

Re-assignment Line 

(d) Register Update 

r--------p DATAOUT 
--------

FIGURE 6.3: The mapping of variables 

The two boxes labelled with 11.- ?II .-, . represent the assignment or input 
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operator of the primitive process responsible for placing initial values 

in the variables. Vertical placement of the two cells means that in the 

source program these two processes were defined to operate in parallel 

(see section 7.2). For clarity only the DATAOUT outputs of the cells are 

illustrated. In keeping with a left to right representation of data 

flow, the register for the two variables is placed to the right of the 

cells. The register has two sets of assignment-reference lines, each one 

is always associated with the same variable. The connecting data lines 

represents the communication path between the two cells and the register. 

It also implies a communication protocol for handling the transfer of 

data from the operator cell to the register cell. For bit-serial 

communication the line is implemented as a single wire, whereas for 

concurrent communication the line is expanded into n wires. 

Having been initialised, a variable is typically referenced as an 

operand to a number of operators. Each of these operators could be in 

separate expressions. This is represented schematically by the reference 

line for that variable being routed to the appropriate DATAIN input of 

every operator cell in which the value is required. These cells will 

always be to the right of the register. As an example consider figure 

6.3(c). This gives an outline of the schematics for an initialised 

variable which is as an operand of five arithmetic operators. The boxes 

labelled with DATAIN represent arithmetic operator cells. For clarity 

only the appropriate DATAIN input of the cells are shown. The position 

of the boxes is intended to merely illustrate a possible arrangement of 

cells and is not intended to define any particular placement strategy. 

The value being carried on the reference line is sent down each fork of 

the line. Each branch maintains the left to right convention for data 
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flow. 

If a variable is assigned a number of different values in a process, 

then this is mapped into a subsidiary data path connected connected to 

the assignment line corresponding to the variable. This path is called 

the re-assignment line, and it denotes a bus for fetching updated values 

for the word associated with the variable. Data flow is reversed on this 

line (i.e. right to left as opposed to left to right). From it there are 

branches to the DATAOUT outputs of all operator cells (either assignment 

or input) responsible for updating the register corresponding to the 

variable. Again these cells will always to be to the right of the 

register. An outline of the schematics representing three different 

updates of a var\able is given in figure 6.3(d). The cells labelled 

DATAOUT denote the operator cells updating the variable. Obviously 

updates occur sequentially hence the left to right horizontal arrangement 

of cell (see section 7.2) 

6.4.2 Communication Primitives 

Channels are used to communicate between concurrent processes. Each 

channel provides a one way connection between two concurrent processes. 

A channel identifier is associated with an input component and an output 

component of a parallel construct. The two components are said to be 

connected by the channel. Only one input and one output process can be 

connected by a channel. Output and input operators are represented by 

the cells shown in figure 6.2(c) and figure 6.2(d) respectively, while a 

channel identifier is mapped into a line called a communication path. A 

communication path links the CHANIN input of an input operator cell to 

- 105 -



I--------p CHANOUT 
! 

--------

CHAN commu: 
PAR 

<-- Connecting --> 
Channel commu 

commu ? "data" 
commu ! "data" 

I----!---~ CHANOUT 
--------

Cf!T------I CHANIN 
? 

-------

CHAN commu: 
PAR 

commu "data" 
commu ? "data" 

FIGURE 6.4: Schematic Representation Of A Channel Identifier. 

the CHANOUT of an output operator. Data flow in such a path is always 

from the output cell to the input cell. 

An outline of the schematics for an input cell linked to an output 

cell by a communication path is given in figure 6.4. The boxes labelled 

"?" denote input cells, the boxes labelled "!" denote an output cell, and 

the communication path is labelled "commu". For simplicity only the 

communication path is shown. Since, the cells are associated with 

primitive processes which ultimately belong to the same parallel process 

they are placed vertically (parallel behaviour defines vertical 

placement, see section 7.2). There are two possible arrangements for the 

operator cells, both are outlined in figure 6.4 together with the 

segments of code from which they were mapped. The term "data" is used to 

denote the value of a word and not a variable. If the primitive input 

process is the first to be defined in the parallel process then the input 

cell is the upper most. If, however, the output process is the first to 

be defined then the output operator cell is upper most. The connecting 
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communication line, commu, is routed between the two cells. This line 

defines the routing of the communication path between the two cells. It 

also depicts the implementation of the necessary synchronisation protocol 

(e.g. handshaking) between the two. 

If the input and output processes occur on consecutive lines of the 

source program, as in figure 6.4, then COPTS places the schematic 

representation for the corresponding input cell vertically adjacent to 

that for the output cell. However, if the two processes are separated by 

intermediate processes, then the cells are separated vertically by other 

cells. The operator cell associated with the first process to reference 

a channel identifier is termed the channel's source cell. The operator 

cell for the corresponding process is termed the channels destination 

cell. Channels declared for the main process may represent external 

inputs or outputs. In which case, the corresponding channel lines are 

only connected to source cells. If this source cell represents an input 

process then the line is routed to the west edge of the diagram. On the 

other hand, if the source cell represents an output process then the line 

is routed to the east edge of the diagram. 

An output operator cell denotes a hardware element for transferring 

(cf. a driver) the value of an expression on to a communication channel. 

An input operator cell depicts a hardware element for transferring a 

value from a communication path (cf. a stabilising input buffer) to a 

register. Together these hardware elements would provide communication 

between concurrent components in a system. The communication path 

between the two schematic cells represents the physical connection (link) 

along which communication between the two hardware elements would occur. 
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This communication is synchronised. An input element will not complete 

execution until the corresponding output element has executed a write. 

Equally an output element will not complete execution until its 

corresponding input element has executed a read from the link. Yhen both 

are ready to communicate, the value to be output is copied, via the 

physical link, to the input cell. After the communication has taken 

place both cells generate a control token signalling the termination of 

their execution. The concurrent component each one belongs to then 

continues to execute independently. 

6.5 SUMMARY 

This chapter has considered how Occam can be used to help clarify 

the nature of a VLSI design. Since Occam was designed to describe 

systems composed of a number of communicating processes operating in 

parallel, it can be used to provide behavioural specifications of VLSI 

systems. Its features make it relatively straightforward to generate 

corresponding schematic diagrams. Such diagrams help document an Occam 

VLSI description. A schematic compiler (COPTS) which can generate 

schematic diagrams for a limited sub-set of Occam has been developed. 

The primitive elements used to build up these diagrams have been 

introduced. The next chapter considers in more detail the approach 

adopted by COPTS for building up diagrams. 

- 108 -



CHAPTER 7 

GENERATING SCHEMATICS 

The task of generating a schematic diagram for an Occam description 

is divided into mapping the main processes into abstract cells. Each of 

these is individually defined according to whether they correspond to a 

complex or primitive process. The resulting abstract cells are then 

interconnected to form a network representing the program. This chapter 

defines the various types of abstract cells and considers how they are 

built up from the primitive schematic elements. Brief details of the 

current implementation of COPTS are also given. 

7.1 ABSTRACT CELLS 

In deriving a schematic diagram, the compiler uses the top down 

nature (i.e. the hierarchy) in the source program to structure its 

representation. This involves viewing a program at a number of levels of 

abstraction, ranging from the entire program down to the actual 

primitives it is constructed from. A particular component of the Occam 

subset is associated with each level. The primitives described in 

section 6.3.1 characterise the lowest levels. Above these, occurrences 
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I 
I 

INTERCONNECT PATHS 

FIGURE 7.1: Schematic Mapping 

of a level's component are used to partition the schematic implementation 

into collections, or blocks, of interconnected schematic operator cells. 

These blocks are regarded as abstract cells. The software components, 

their hierarchical arrangement and their mapping into schematic 

counterparts are shown in figure 7.1. In this figure, abstract cells are 

classified according to whether they represent a complex process, or a 

simple process, or an expression. A simple process is comprised only of 

primitive operators, whereas a complex process is comprised of simple 

process and/or other complex processes. 

The arrangement and interconnection of schematic operator cells in 

an abstract cell depicts the function of a corresponding software 

component. It defines the placement and interconnection of hardware 

elements which would collectively implement that function. Defining the 

layout of operator cells for a complex abstract cell entails recursively 
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partitioning the cell into component abstract cells. This recursive 

decomposition is continued until abstract cells for simple processes can 

be considered. These are then treated separately and according to 

whether they will represent an assignment, output, or input process. 

Both assignment and output abstract cells may involve defining expression 

cells (see section 7.5). Abstract input cells are composed entirely of 

operator cells and lines defining their interconnection and communication 

paths. The defined cells are interconnected to build up the 

representation of the parent complex cell. This top down, bottom up 

approach produces schematic diagrams having a hierarchical structure 

corresponding exactly to that in an Occam source description. 

Abstract cells are treated as bounding boxes with pins located 

around the periphery to identify the interconnect points for inputs and 

outputs. They enable the diagram to be partitioned into distinct areas 

which can be considered individually. This allows the diagram to be 

built up gradually. To derive abstract cells, the compiler first routes 

the appropriate lines to the input points. Then the placement and 

interconnection of the schematic elements is considered. Finally, the 

routing of the outputs is tackled. The definition of an abstract cell 

represents the 'glue' which binds together the schematic elements 

corresponding to each of the associated component's primitives. The 

compiler uses the bounding box to delimit the area occupied by the 

elements. It is a conceptual feature and does not appear in the overall 

schematic diagram generated from an Occam description. Only operator 

cells, their interconnection paths, power, ground, clock and control 

lines are drawn. 
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7.2 EXECUTION SEQUENCE AND LAYOUT 

The execution sequence specified in source programs is used directly 

to define the spatial arrangement of cells. The interconnection of these 

cells by the control line is also determined by the execution sequence. 

Occam programs typically contain both sequential and parallel behaviour. 

The SEQ construct is used to explicitly define a process whose 

subsidiaries execute one after another. Concurrent operation of a 

process' subsidiaries is defined by the PAR construct. Both sequential 

and parallel execution are possible in the evaluation of an arithmetic 

expression (see section 7.3). This section first considers how 

sequential behaviour is used to define placement and routing and then how 

parallel behaviour is similarly used. To illustrate the approach 

adopted, consider an Occam component composed of 'n' subsidiaries (where 

n > 1). Assume that these subsidiaries can either operate in sequence 

(ie. execute and terminate one after the other), or concurrently (ie. all 

commence executing at the same time). Assume also that each subsidiary 

has a 'cell' representation, whether this is abstract or primitive is not 

important as what follows is applicable to both. 

7.2.1 Sequential Behaviour 

Sequential execution of the 'n' subsidiaries is mapped into a 

horizontal array of cells. An outline of the schematic representation 

resulting from this mode of operation is given in figure 7.2(a). To aid 

understanding only the control line and cell boundaries are illustrated. 

The control line is routed such that it first connects the control in 

point of CELL 1. It then connects the control out point of CELL 2 to the 
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~
------~ 
CELL n 
------

(a) sequential execution of cells. 

CELL 1 

1--:=====: JOIN ~ 
CELL 

(b) concurrent execution of cells. 

FIGURE 7.2: Execution Sequence And Interconnection Of Cells. 

control in point of CELL 3, ... , and the control out point of CELL (n-1) 

to the control in point of CELL n. That is, there is a single thread of 

control linking the cells from left to right. A control token arrives 

from the left and enables CELL 1. This cell executes, and when it has 

completed its task, places a new token on its control out line, and 

terminates. The token is carried to CELL 2, which is enabled etc. This 

sequence is repeated along the array of cells, each one in turn being 

enabled, executing, and then terminating. 

7.2.2 Parallel Behaviour 

In the schematic representation for n components operating 

concurrently, figure 7.2(b), the corresponding cells are arranged in a 
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vertical array. The control line is routed down the left side and 

ultimately connecting with control input of CELL n. Along the route to 

this connecting point are (n-l) "forks". At each fork a segment from the 

control line connects with the control input of the adjacent cell. So 

the intervening (n-l) cells are also connected directly to the control 

line. At each fork the initiate signal propagates along both segments. 

To the left of the vertical array of cells is a single cell with n 

inputs. This is a JOIN cell and the top input is connected to the 

control output of CELL 1, the second from top input is connected to the 

control output of CELL 2, ... , and the lowest input to the control output 

of CELL n. The join cell has a single output. On receiving a completion 

signal from each of the n cells, the join cell simply places a completion 

signal on its output. 

Concurrent execution is represented by the forks on the control 

line. Return to sequential execution is indicated by the join cell. 

When the control token arrives at the upper left corner it is carried 

simultaneously to each of the n cells, which are then enabled. The 

execution time of a cell is independent of that for the other cells. 

That is, each cell is time independent of all other cells in the array. 

Consequently, completion signals are placed on the CNTRLOUT outputs at 

different times. The join cell receives these, and when all n have 

arrived places a terminating signal on its output. This is then carried 

to the next cell in the execution sequence. From this cell, the vertical 

array of cells appears as a single cell with a single control line in and 

a single control line out. 
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7.3 EXPRESSION TREES AND THE LAYOUT OF EXPRESSION CELLS 

Arithmetic expressions can be described by binary trees. The tree 

for a variable identifier in such a description is simply that variable. 

If e1 and e2 are elements with trees T1 and T2 then the trees for e1 + e2 

and e1 e2 (ie. <element> <assoc.op> <element» are: 

I 
T1 

+ 

I 
T2 

I 
Tl 

* 
I 
T2 

The trees for e1 - e2 and e1 / e2 (ie. <element> <operator> <element» 

are respectively: 

I 
T1 

I 
T2 

I 
T1 

/ 

I 
I 
T2 

As an example consider the Occam expression «a*b)+c)-(d*e). The binary 

tree describing this expression is 

I 
+ * 

--
I 

_I-
I I 

* c d e 

_I-
I I 
a b 

The operator of an expression forms the root of a tree, while each 

element is a variable identifier described by an end node or a 

sub-expression described by a sub-tree. 
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7.3.1 Defining Layout 

A tree description is used to define the mapping of an expression 

into an abstract expression cell. Such cells are composed of primitive 

operator cells and their interconnection paths. The placement of these 

operator cells is defined by the implied execution sequence in the 

corresponding tree description. A tree consists of a left and right 

sub-tree, see figure 7.3(a), each of which is mapped into a 

sub-expression cell. ~hen the sub-expressions described by the left and 

right sub-trees have been evaluated, their results form the operands of 

the root operator. This operator can then compute the overall value of 

the expression. The value obtained for the left sub-tree is independent 

of that obtained for the right tree. Both depend only on the values of 

the variables occurring in their sub-expression. Therefore, they can be 

evaluated concurrently. Since parallel behaviour is represented by 

vertical placement, the abstract cells defined for the right and left 

sub-trees are placed as shown in figure 7.3(b). The operator cell for 

'root-Op' is placed to the right of the two expression cells. 

The parallel behaviour means that the control line from the 

sequential predecessor has to be split into two segments. One segment is 

routed to the left expression cell and the other to the right expression 

cell. A join cell immediately after the two expression cells is 

required. Its output is connected to the CNTRLIN input of the root 

operator cell. Neither the join cell or the control line is shown in 

figure 7.3(b). This mapping into sub-expression cells and associated 

routing of the control line is identical for all left and right 

sub-trees. In figure 7.3(b) the root operator cell is connected to each 
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Sub-Tree 

(a) Expression Tree 

]~~~~:::::: CELL 
----------

]
----------1 RIGHT 
EXPRESSION 
CELL 
----------

(b) Mapping 

FIGURE 7.3: Topological Arrangement Of Expression Cells. 

expression cell via a data line. These lines carry the value of the 

associated sub-expression. This mapping strategy ensures that the binary 

nature of expressions is reflected in the schematic representation. 

Data lines depicting the variables referenced in an expression are 

routed to the appropriate operator cells. Power, ground and clock lines 

are routed to each of the cells in the expression cell. 

7.3.2 An Example 

To illustrate the mapping strategy outlined above consider the 

expression 

«c_«(b+c)-a)/(a-(b/c»*a*b»)/«a-b)+c»+(c-b)+(b/c) +(a*b) 

The expression tree for this is shown in figure 7.4(a). An outline of 

its corresponding schematic representation is given in figure 7.4(b). To 

aid clarity only the relative placement of cell elements and the routing 

of each cell's RESOUT data path are outlined. Each cell is labelled 
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(a): Expression Tree 
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(b): Cell Arrangement 

Figure 7.4: Example Expression Tree And Its Schematic Layout 
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according to the node in the tree it represents. 

The root of the tree is labelled '(+)1'. Both its siblings are 

themselves trees, so before the corresponding cell can be placed, the 

expression cell for each tree must be placed. The left tree, with root 

'(+)2' is considered first. Its left path is descended until a terminal 

(a node with a variable for each sibling) is reached. In this descent, 

if a node with a left path directly leading to a variable is encountered 

(e.g. '(-)8'), then the right sub-tree is descended. Again, the left 

path of this is followed unless it leads to a variable. Eventually the 

terminal labelled '(+)14' is reached. The cell corresponding to this is 

placed in the top left hand corner of the conceptual bounding box. In 

figure 7.4(b) this cell is represented by '[+]14'. Having placed the 

cell, its parent is considered, i.e. node '(-)12'. The right branch of 

this leads directly to a variable and so the corresponding cell is placed 

immediately to the right of the previous cell. The next node up, '(/)10' 

is then considered. Its right sibling is a tree and so the expression 

cell for it must be placed before the node's cell can be. This involves 

descending the sibling tree, as described above, until the terminal node 

'(/)17' is reached. Its corresponding cell is placed directly below that 

for node '(+)14'. Cells can then be placed for the nodes'(-)16', 

'(*)15', and '(*)13'. These cells are placed to the right of cell 

'[/]17', as shown in figure 7.4(b), forming a horizontal array. 

Both expression cells for the node '(/)10' have now been placed. 

The left expression cell consists of two operator cells arranged in a 

horizontal array, while the right consists of the horizontal array of 

four cells immediately below. The cell for the node is placed to the 
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right of these, as shown in figure 7.4(b). Note a join cell, indicating 

the return to sequential behaviour, would be placed just to the left of 

cell '[/)10', but this is not shown. Node '(-)8' can now be placed since 

its right expression cell has been laid out. This cell is placed to the 

right '[/)10'. Before the cell for node '(/)4' can be placed the 

expression cell for its right sub-tree must be positioned. The same 

process is repeated, generating an expression cell consisting of '[-)11', 

'[+)9', and '[-)5'. A cell for node '(/)4' is then placed to the right 

of '[/)10'. This top down, bottom up traversal of the tree is continued 

until a cell for each node has been placed. 

The interpretation of the structural representation of behaviour 

implied by figure 7.4 will now be considered. The execution sequence is 

identical to that defined by the tree in figure 7.4(a) and is reflected 

in the data flow. In the following discussion, integers refer to the 

actual hardware implementations of the correspondingly labelled schematic 

cell outlines in figure 7.4(b). In an implementation, 14, 17, 11, 5, 6, 

and 7 would receive a control token simultaneously, and hence operate 

concurrently. After 14 generates a control token 12 would commence 

operating. The same applies to 17 - 16 and 11 - 9. After 16 has 

completed, 15, and 13 operate one after the other. Before 10 could be 

activated both 13 and 12 would have had to of terminated. When 9 and 10 

have generated their control tokens, then 8 would be initiated, followed 

by 4. The operation of 3 is dependent on the completion of 6 and 7; 2 is 

dependent on 4 and 5; and finally 1 is dependent on 2 and 3. 
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7.4 SIMPLE CELLS 

The simple processes are mapped into abstract simple cells, which 

consist of one or more operator cells and lines defining their 

interconnection and communication. The arrangement of these cells within 

the bounds of a simple cell is determined by the implicit sequence of 

operations in the corresponding process. An outline of the schematic 

representation for each of the three simple processes are given in 

figure 7.5. 

An assignment process is mapped into two cells: an abstract 

expression cell and an assignment operator cell. The abstract 

representation of an expression is used, the actual layout of constituent 

operator cells and their interconnection was described in the previous 

section. External data lines are routed to the expression cell. These 

lines fetch the value of the variables referenced in the corresponding 

expression. A data line connecting the two cells is used to transfer the 

value of the expression to the operator cell. 

An input cell is comprised of n input operator cells, where n 

denotes the number of constituent read operations in the corresponding 

input process and is greater than or equal to one. That is, the mapping 

produces an input operator cell for each read operation in the process. 

These cells are placed sequentially to form a horizontal linear array. A 

power, ground, and clock line is routed to each cell, while the control 

line links the component cells together for sequential execution. The 

data output line from each cell is routed along the top of the array, 

from left to right, forming a bundle of lines. The channel line 

corresponding to the process is routed from left to right, connecting 

- 121 -



+----------+ +----+ 
1 expression 1----->1 : = 1---> 
1 cell 1 +----+ 
+----------+ 

(a) An Abstract Assignment Cell 

----------------~> 

(b) An Abstract Input Cell 

I
--------:---~-expreSSIon ! 

cell -
---------- I

--------:---~-expreSSIon ! 
cell -

---------- I
--------:---~-expressIon ! 

cell -
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(c) An abstract Output Cell 

Figure 7.5: Arrangement Of Components In Abstract Simple Cells 

with each subsidiary cell's CHANIN input, and terminating in the right 

most. 

An output cell consists of n expression cells and n output operator 

cells, where n represents the number of write operations occurring in the 

corresponding process and is grater than or equal to one. These cells 

are arranged into expression/operator pairs, with each pair corresponding 

to one write operation. The n pairs of cells are placed sequentially 

forming a horizontal linear array, as illustrated in figure .7.5(c). 

Power, ground and clock lines are routed into each cell. The control 
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line connects the control output of each cell to the control input of its 

right neighbour, so the cells execute sequentially. The output channel 

line is routed from the channel output port of the left most cell to the 

east edge of the array, passing underneath the intervening pairs of 

cells. Each intervening operator cell is also connected to this channel 

line. 

7.5 COMPLEX CELLS 

Complex processes are comprised of a number of subsidiaries which 

are either simple or other complex processes. The abstract cell for each 

subsidiary is defined by the compiler and placed as described in section 

7.2. So, a sequential process is mapped into a horizontal array of cells 

(see figure 7.2(a», while a parallel process is mapped into a vertical 

array of cells (see figure 7.2(b». The cells in these arrays are either 

simple abstract cells or other complex cells. In figure 7.2(a) the left 

most cell depicts the cell for the sequential process' first subsidiary, 

while the right most cell depicts that for the last (n th.) subsidiary 

process. In figure 7.2(b), the top most cell is the abstract cell 

derived from the first subsidiary process defined, the second from top is 

that for the second process, ... , and the bottom cell is that representing 

the final subsidiary. 

7.6 IMPLEMENTATION DETAILS OF THE GRAPHICS COMPILER 

The current version of COPTS is a Pascal program (approximately 6500 

lines) which translates a source program into an equivalent graphical 

representation. A more detailed description of its implementation is 
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presented in Appendix E. Source programs for it are written in the 

language defined by the syntax given in Appendix C. These programs are 

first analysed and then their corresponding schematic representation are 

generated. An integral part of the compiler is its internal data 

structure. This is used to save the information obtained during both 

these steps. The data structure is represented by the record type 

'CmpntRec' (see Appendix F). Pointers to records of this type are used 

by different parts of the program to access and manipulate the data 

structure. 

The 'CmpntRec' record type was designed to implement a data base 

which reflects the block structure and hierarchical nature of the source 

language. This internal data base has a tree structure. It is used to 

hold both the internal representation of the source program and the 

information defining the corresponding graphical representation. 

The compiler's SYMBOL TABLE is implemented by records of the type 

'SymTabRec' (see Appendix F). References to this type of record are 

distributed throughout the data structure. The record associated with 

such a reference holds information on an identifier and represents a 

symbol table entry. 

The phases of the compiler, in order of execution, are as follows. 

7.6.1 Parse Phase 

Consists of two parts: a SCANNER and an ANALYSER. The scanner 

reads in the characters of the source program and constructs the symbols 

of the program. These symbols are classified into integers, identifier 
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strings, keywords, and delimiters ('+', '-', '*', 'I', ':=' ... ). The 

symbols are passed to the analyser in an internal form. Each symbol is 

represented by a TOKEN. A token has an integer value associated with it, 

denoting the symbol it represents. 

The analyser performs a syntax and semantic check of the program. 

This involves building up the internal form of the program - the PARSE 

TREE - in the compiler's data structure. Information on the declaration 

of identifiers is gathered and stored. Expressions are analysed and 

stored in their Reverse Polish form. As each source language construct 

is recognised it is checked for semantic correctness. For example, 

during the parse of a declaration the identifiers are checked to see if 

they have been declared twice. 

7.6.2 Graphical Specification Phase 

This phase completes the internal representation of the source 

program. This involves a preorder traversal of the compiler's internal 

data tree. During this traversal information on the occurrences of 

identifiers is gathered and stored. Also, any Polish expressions in the 

data structure are transformed into corresponding tree representations. 

These "expression trees" specify the order of execution for the operators 

of the expression. The conceptual structure of such a tree is later 

mapped directly into a structural representation. Information on an 

expression tree is held in a record of the type 'XprsnRec'. 

7.6.3 Graphical Definition Phase 

This phase translates the internal source program into the 
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corresponding internal definition of the graphical representation. This 

involves conceptually building up a structural implementation of this 

representation on an imaginary grid. Information defining the 

implementation is stored in the compiler's data tree. The recursive 

algorithm developed to generate this information incorporates a preorder 

traversal of the internal tree. 

During the traversal information in the internal tree is examined. 

Information on each primitive operator is used to define, in terms of 

co-ordinates and units of the grid, the occurrence of the corresponding 

graphical (cell) in the full representation. The resulting cell 

definition information is stored along side the internal representation 

of the primitive. Information specifying the occurrences of each 

identifier is examined. It is used to define a set of vertical and 

horizontal lines. This set of lines maps the occurrences of a particular 

identifier in the source program to the corresponding graphical 

representation. Again the implementation information generated is 

stored. 

The parse phase stores information on the execution sequence of the 

source program. This is also examined and used to generate plotting 

information on a set of lines. The lines in this set link all the 

primitives on the grid and represent the mapping for the control 

sequence. 

7.6.4 Schematic Output Phase 

The final phase of the compiler generates the object code defining 

the graphical representation. Another preorder traversal of the internal 
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tree is used to access the internal definition of the graphical 

representation. During the traversal information on each line defined 

for the graphical representation is written out. The resulting output is 

then sorted and formatted to produce the object code. A line plotting 

program later uses the object code to display the schematic 

representation of the Occam source program. 

The first two phases correspond to the analysis step, while the last 

two phases correspond to the generation of the graphical representation. 

There is a fifth phase to the program, the dump phase. The 

execution of this phase is not essential. Vhen used it writes out the 

contents of the tree data structure after the parse and specification 

phase. It was designed as an aid in developing the program. 
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CHAPTER 8 

RESULTS 

Six example programs written in the defined subset were used to test 

the implemented graphics compiler. The first three programs together 

with their corresponding schematic diagram are included here, while the 

remaining examples are included in appendix D. These programs are 

intended to merely illustrate the features of Occam currently handled and 

do not describe any particular algorithm. The defined subset limits the 

complexity of programs which can be developed. Within these bounds the 

example programs range in 'complexity', the simplest consists of 

twenty-three lines of code, while the two most complex each contain 

fifty-eight lines. In this chapter the schematic diagram of one example 

program (Program One) will be discussed in some detail. A brief 

description of the remaining programs and important features of their 

schematics is also included. An overall assessment of the schematics is 

made with reference to their limitations and some suggested improvements. 

Before considering the first example some general introductory notes 

to the diagrams included here are required. All red boxes are operator 

cells, yellow boxes are join cells, and a purple box represents a 
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register corresponding to one or more variables (i.e. a register bank). 

A bounding box (drawn in black) surrounds each diagram. The top four 

inputs to this box represent the system's power, ground, clock and 

control input lines respectively. Any remaining lines on the west edge 

are input communication lines. On the east edge of the bounding box 

outputs are communication lines and the control line out. The latter can 

be identified by the fact that it is the only output which can be traced 

back to a join cell. Blue and green are used to distinguish between 

horizontal and vertical routing of lines. 

8.1 A SIMPLE EXAMPLE OF COMMUNICATING PROCESSES 

Program One, shown in figure 8.1, inputs two values, computes some 

intermediate values and then outputs two results. The schematic diagram 

generated for this program is shown in Plate 1. A key to this diagram is 

given in figure 8.2. The boxes in this figure are labelled according to 

the operator of the cell it is associated with. Each operator is 

numbered according to its position in the source code. So, for example, 

"(*)5" represents the fifth multiply operator in Program One. Registers 

are also identified and labelled. In Plate 1 there are six inputs to the 

bounding box, the top three are the power, ground, and clock lines 

respectively. Each operator cell and register element is directly linked 

to these lines. The fourth from top is the control input line. This 

line threads its way through the diagram, forking and joining until it 

eventually becomes an output. The other two input lines are the 

communication paths corresponding to the channels 'In1' and 'In2'. 
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CHAN In1, In2, Out1, Out2: 
VAR a, b: 
SEQ 

PAR 
In1? a 
In2? b 

CHAN Comm1, Comm2: 
PAR 

VAR t1, t2: 
SEQ 

PAR 
t1 '- a * a 
t2 '- b * b 

PAR 
Out1! t1+(a*b)+t2 
Comm1! t1 
Comm2! t2 

VAR asq, bsq: 
SEQ 

PAR 
Comm1? asq 
Comm2? bsq 

Out2! (asq*b) - «a/b) - (bsq*a» 

Figure 8.1: Listing Of Program One. 

The program defines a sequential process which is comprised of two 

subsidiaries, each of which is a parallel process. The first simply 

inputs a value from each of the channels 'In1' and 'In2' and stores them 

in the variables 'a' and 'b' respectively. This is represented by the 

two left most cells, labelled "(?)1" and register element R1. The 

communication line for each channel is routed to the corresponding input 

cell. R1 is a register with two storage locations (words), one for 'a' 

and the other for 'b'. Its upper input is the assignment line for 'a' 

and the lower that for 'b'. Since the two inputs are defined to occur in 

parallel, the control line forks to link with the CNTRLINs of the input 

cells. A line form the CNTRLOUT of each cell is routed to the join cell 

immediately to the left of "(?)1". This represents the return to 

sequential behaviour. 
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[(?)1] [R1] [(*)1] [(:=)1] [R2] [(*)3] [(+)1] [(+)2] [(1)3] 

[(?)2] [(*)2] [(:=)2] [(1)1] 

[ ( 1 ) 2] 

[(?)3] [R3] [(*)4] 

[(?)4] [(/)1] [(-)2] 

[(*)5] 

[(-)1] [(1)4] 

Figure 8.2: Key To Plate 1. 

The remainder of the schematic diagram represents the second 

parallel process to be declared in the program. This is more involved 

and consists of two sequential processes. These communicate, and hence 

synchronise behaviour, via the channels 'Comm1' and 'Comm2'. The line 

linking the CHAN OUT of cell "(1)1" to the CHANIN of "(1)3" represents the 

former. Comm2 is represented by the line connecting the CHANOUT of cell 

"(!)2" to the CHANIN of cell "(1)4". 

The first sequential process squares 'a' and 'b' in parallel, 

assigning the results to the variables 't1' and 't2'. It then 

concurrently outputs these to the other sequential process, and outputs 

the value of an arithmetic expression on 'Out1'. Cells "(*)1" and 

"(:=)1" represent ':= a * a', while cells "(*)2" and "(:=)2" represent 

':= b*b'. The register R2 represents the two variables t1 and t2. Both 

cells "(*)1" and "(*)2" two DATAIN lines can be traced back to the 

outputs of R1. The former's to the upper output (i.e. the reference line 

for a) and the latter's to the lower output (i.e. the reference line for 

b) Cells "(*)3", "(+)1", "(+)2" and "(1)3" represent the output process 
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(-) 
_______ 1 ______ __ 

I 1 
(*) (-) 

_1- 1 
1 1 1 1 

asq b (-) (*) 

a 

I 1 

1 

b 
1 
bsq a 

FIGURE 8.3: Expression Tree For '(asq*b)-«a/b)- (bsq*a»' 

using Out1. The other two output processes are represented by "(!)1" and 

"(1)2. Placement and interconnection of cells for all three subsidiaries 

reflects the sequential execution of the process. 

The second sequential process concurrently inputs the squared values 

of a and b, storing them in asq and bsq. It then computes the value of 

an arithmetic expression, placing its value on Out2. Cells "(7)3" and 

"(?)4" represent the input operators. The register R3 represents the 

variables asq and bsq. The output process evaluates the expression 

(asq * b) - «alb) - (bsq*a» 

Its expression tree is shown in figure 8.3. The arrangement of the cells 

"(*)4", "(/)1", "(*)5", "(-)2", and "(-)1" illustrates how the conceptual 

structure of the tree is mapped into arrangement of operator cells. 

Careful tracing back of an operator cell's data inputs reveals its 

operands. 
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In the schematic diagram there are seven join cells. Each one 

depicts the return to sequential behaviour after concurrent processing. 

These cells will now be considered in left to right order. The left most 

cell signals the completion of the program's first parallel process. The 

second from left signals the completion of the parallel process which 

inputs values for asq and bsq. Completion of the parallel process which 

squares a and b is signalled by the third from left. Both the fourth and 

fifth cells signal the completion of intermediate parallel steps in the 

evaluation of the expression given above. The second from right cell 

signals the completion of the parallel process consisting of three 

outputs. Finally, the right most cell produces the control out line 

signalling the completion of the program's two subsidiaries. 

8.2 OTHER EXAMPLE PROGRAMS HANDLED BY COPTS 

The second example is intended to demonstrate the ability of the 

implemented compiler to handle a program comprised of more than two 

complex subsidiary processes. A listing of the program is given in 

figure 8.4. This example also demonstrates the compiler's ability to 

handle the re-assignment of variables. Program Two defines a sequential 

process consisting of four parallel sub-processes. Its first subsidiary 

inputs a value from each of the channels 'input1', 'input2', and 

'input3'. The second subsidiary is responsible for assigning values to 

't1', 't2' and 't3'. It consists of two assignment processes and two 

sequential processes which communicate via the channel 'intrn'. The 

third subsidiary consists of three assignment processes which re-assign 

values to a, band c. In the last subsidiary three output processes 

write the value of an expression to their associated channels. 
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CHAN input1, input2, input3, output1, output2, output3: 
VAR a, b, c, t1, t2, t3: 
SEQ 

PAA 
input1 ? a 
input2 ? b 
input3 ? c 

CHAN intrn: 
PAA 

t1 := a + (b * c) 
t2 := a - «b+c)*(b/(a+c») 
VAR temp1, temp2: 
SEQ 

PAA 
temp1 := a + (b - c) 
temp2 := c * (b + a) 

intrn ! (temp1*temp2) + (temp1/temp2) 
VAA M,N: 
SEQ 

PAA 
intrn ? M 
N := a*b*c 

t3 := (N*(M-a» + (N-b) 
PAA 

a := a 
b := b 
c := c 

PAA 
output1 
output2 
output3 

* a 
* b 
* c 

(t1*t2*t3) + (a-(b+c» 
(t1/(t2+t3» + a + b + c 
(t3-(t1*t2» - «a*b)+c) 

Figure 8.4: Listing Of Program Two 

In the schematic diagram corresponding to this program four 'blocks' 

of cells can be distinguished from left to right. Each block represents 

the abstract cell generated for the four processes defined in the 

program. The left most block illustrates the parallel input of three 

values and the register bank in which they are stored. Second from left 

is the block corresponding to the second process in which the variables 

t1, t2, and t3 are assigned a value. This block shows the routing of the 

assignment lines for these variables and the placement of the register 
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bank intended to hold their values. It also shows the routing of the 

communication path representing channel intrn. This path is routed from 

the second right most cell in this block to the second from bottom left 

most cell (i.e. the output and input cells) The second from right block 

illustrates the re-assignment of the tree variables a, band c. Note 

that the DATAOUT line of the assignment cells (the right most red boxes 

in this block) are routed back to the register bank adjacent to the left 

most block. The layout for three output processes in the program's 

fourth subsidiary is shown in the right most block. 

Program Three is intended to demonstrate the ability of the compiler 

to layout detailed arithmetic expressions. A listing of the program is 

given in figure 8.5. It defines a sequential process consisting of three 

parallel subsidiaries. There is no communication between these 

processes. The first subsidiary to be declared simply inputs three 

values in parallel. In the schematic diagram, the tree left most cells 

correspond to these inputs. Three simple assignment processes are 

defined in the second subsidiary. Their schematic representation is 

immediately to the right of the input cells. It consists of two vertical 

columns, each containing three cells. Cells in the first depict the 

multiply operator, while those in the second the assignment operator. 

The remainder of the schematic diagram represents the final subsidiary. 

this consists of two output processes and a sequential process. The 

latter contains two assignments involving the evaluation of complex 

expressions. One of these is the example described in section 7.3.2. 

The schematic representation previously outlined for it can now be seen 

in full in the bottom third of the diagram. 
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CHAN inputl,input2,input3,outputl,output2,output3: 
VAR a, b, c, tl, t2, t3: 
SEQ 

PAR 
inputl 
input2 
input3 

PAR 
tl := 
t2 .-
t3 .-

PAR 

? a 
? b 
? c 

a * a 
b * b 
c * c 

outputl (tl*t2*t3) + (a-(b+c» 
output2 ! (tl/(t2+t3» + a + b + c 
VAR x,y: 
SEQ 

PAR 
x:=(a+b)+(b+c)+(tl+t2)+(a+c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b) 
y:=«c-«(b+c)-a)/«a-(b/c»*a*b»)/«a-b)+c»+(c-b)+(b/c)+(a*b) 

output3 ! (t3-(tl*t2» + «a*b)+c) + (x*x*x) + (y*y*y) 

Figure 8.5: Listing Of Program Three. 

The fourth example is a program which links the process defined by 

Program One to that defined in the previous example. That is, Program 

Four defines a parallel process consisting of two subsidiaries. The 

first is equivalent to the process defined by Program One, while the 

second is equivalent to the process defined by Program Three. These two 

subsidiaries communicate and synchronise behaviour through the channels 

'intnl' and 'intrn2'. The resulting diagram can be divided into an upper 

and lower block. A very close similarity between the upper, larger block 

and the diagram for Program Three and between the lower smaller block and 

the diagram generated for Program One can clearly be seen. The diagram 

illustrates the routing of the communication paths between the two 

subsidiaries. These lines are routed from the east edge of the top two 

right most cells in the upper block to the west edge of the top two left 

most cells in the lower block. 
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The last two examples describe the same program, they differ only in 

the order in which subsidiary processes are declared. They are intended 

to demonstrate how re-ordering the sequence of process declarations 

changes the schematic diagrams generated. The program consists of two 

sequential processes which operate concurrently. They communicate and 

synchronise through the two channels named 'intrnal1' and 'intrna12'. 

Both processes are modified versions of previous programs. One is a 

slightly modified version of the process defined by Program One, while 

the other is a slightly extended version of the process defined by 

Program two. The schematic diagram for each can be divided into an upper 

and a lower. Each block represents the layout of the abstract cell for 

the program's two complex subsidiary processes. The largest block 

corresponds to the process based on Program Two and the smaller to that 

based on Program One. In the two diagrams the position of the blocks is 

reversed. This illustrates how the order in which a process is declared 

determines the position of the abstract cell and its components. 

In reversing the order in which the two processes are declared, the 

positions in the program of the input and output statements defining the 

communication between the two processes is altered. In Program Five the 

first process declared outputs data to the second, but in Program Six the 

first process declared inputs data sent by the second. Note that 

input/output behaviour between the two is unaffected, the two programs 

are semantically equivalent. The routing of the data lines for 

'intrnal1' and 'intrna12' is, however, different for the two diagrams. 

This is because the routing strategy for communication lines is based 

upon the position in the program of the input and output processes for 

the associated channel. In the diagram for Program Five these lines are 
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routed from the top two right most cells in the upper block to the top 

two left most cells in the bottom block. ~hile in the diagram for 

Program Six they are routed from the top two left most cells in the upper 

block to the top two right most cells in the lower block. 

8.3 SUMMARY 

The selected examples illustrate the current compiler's ability to 

generate schematic diagrams for a limited subset of Occam. Their 

corresponding diagrams provide an adequate representation of structure, 

data flow, and control flow. The necessary information for representing 

these is extracted from the source programs. The diagrams, however, 

suffer form a number of shortcomings. In particular, the cells and 

registers are not labelled. This makes it difficult to examine the 

correspondence between a node and a software primitive in the source 

code. It would be desirable to have each cell labelled with the operator 

it depicts and each register element labelled with the variables it 

represents. Another problem with the diagrams which effects their 

clarity is the number of lines displayed. One solution would be to 

reduce the number by hiding (i.e. not displaying) the power, ground and 

clock lines since these are so fundamental to MOS Ie design that their 

presence can be assumed. Alternatively, future advances will make it 

possible to route these lines in other layers, in which case a separate 

diagram for their routing could be generated. 

Although not yet demonstrated, the diagrams as they stand could 

conceivably be used as the starting point for prototype implementations. 

Such implementations would be far from ideal and would suffer from a 
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massive area overhead and poor performance. Nevertheless, they would 

demonstrate a feasible route from Occam programs to geometric layouts. 

To obtain implementations would involve substituting the schematic cells 

for actual blocks of layout. The necessary protocols for synchronised 

data communication and register update would have to be implemented. If 

bit parallel communication is to be used then the data paths involved 

would have to be decomposed into the appropriate number of metal wires. 

The timing mechanisms would also need to be carefully considered. As a 

result of the simplicity of the mapping strategy the diagrams currently 

contain a lot of white space. However, layout compactors are available 

[76] which would reduce the wasted silicon area in an implementation. A 

lack of time and power resources (the work to date has been a single 

effort) prevented this route from being explored. 

The most serious limitation of the graphics compiler is the subset 

of Occam it can handle. This contains the bare minimum so as to just 

allow complex communicating processes to be declared. It cannot at the 

moment be practically used describe real applications. The subset and 

compiler must be extended to incorporate conditionals, iteration and 

replication. Named processes would be advantageous in the long term but 

need not necessarily be included in a first extension. 
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CHAPTER 9 

CONCLUSIONS 

The densities made available through advances in the fabrication 

technology enable sophisticated systems to be laid out on a silicon chip. 

Single chip solutions are now possible for many systems previously 

implemented with printed circuit boards containing many components. 

Also, special-purpose (or application specific) chips as opposed to 

programmed general-purpose microprocessors can now be considered. 

However, the complexities now involved in custom design together with the 

failure of CAD techniques to keep pace with the advances have resulted in 

a design bottleneck. Consequently, the ability of designers to maximise 

the benefits now available have been limited. Powerful tools aimed at 

exploiting the processing potential offered by the technology are 

required. The traditional graphical based CAD tools are no longer 

appropriate since they place the emphasis on layout and a 'bottom up' 

design style. 

A structured 'top down' approach similar to that used by software 

engineers has been recognised as appropriate for the implementation of 

'complete systems on a chip'. Such an approach allows the designer to 
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abstract away from detailed physical considerations and concentrate on 

higher, functional issues. As VLSI designs become more and more 

ambitious, higher levels of abstraction are needed if the designers are 

not to be overwhelmed by complexity. Textual descriptions, in formal 

design languages, are more powerful and precise than graphical 

representations for these higher levels since they encourage a more 

structured approach. Therefore, design languages are playing an 

increasingly significant role in VLSI design. They have evolved from 

simple plotting notations to the point where they can now handle both the 

behavioural specification of a design and its structural implementation. 

Structures such as the conditional, loop, procedure, and arithmetic 

expression are as important features of these languages as they are of 

programming languages. 

High level descriptions in design languages are translated into an 

equivalent circuit implementation. Much of this translation is carried 

out manually and typically involves passing through several intermediate 

levels of abstraction. Two different CAD approaches are emerging to 

support the designer in this process: expert design systems and silicon 

compilers. The former assists the designer down the design hierarchy, 

while the latter completely automates the translation process. The 

technique of silicon compilation is favoured for making the design of 

"one-off" application specific chips feasible. The reasons being: it 

enables very fast design turnarounds, greatly reduces design costs, makes 

the silicon medium accessible to non VLSI design specialists, and 

produces a working chip first time. The overhead for these advantages is 

an excessive use of silicon area. However, the expected ten-fold 

increase in densities will lessen the constraint imposed by silicon area 
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giving silicon compilers a wider acceptance. 

Insight into the future development of design languages and their 

automated translation can be gained by drawing parallels form the 

software field. The motivations behind the evolution of today's software 

environments are similar to those forcing the development of advanced CAD 

techniques. This similarity arises from a common problem - complexity. 

Many of the techniques developed by software engineers to tackle this 

problem may be applicable in the VLSI domain. In particular, high level 

programming languages, compilation and operating systems. 

The source code, or input design language, to a silicon compiler 

requires careful consideration since it determines the ease of mapping 

design descriptions into silicon implementations. At the levels of 

abstraction now being considered for design, the emphasis is on the 

behavioural characteristics of a system rather than its structural 

implementation. This shift in emphasis reflects the importance of the 

choice of the underlying algorithm in a design. It is the most crucial 

design decision and determines the performance and area of the silicon 

implementation. For this stage of the design to receive the required 

attention algorithmic notations are expected to replace the current 

structural/behavioural ones. Two choices are available for an 

algorithmic notation: a fully programmable design language or a 

conventional programming language. The latter was selected here since it 

eases the task of implementing a silicon compiler and excludes the need 

to design and support a special purpose hardware design language. There 

are numerous programming languages which could be considered. Each one's 

performance in a design description role is determined by the ability of 
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its underlying computational model to represent the features of VLSI 

systems. Important features are: parallelism, communication, and 

localised processing. Five computational models were examined: 

sequential control flow, parallel control flow, actor, functional, and 

logic. An example language from each category was selected and its 

ability to describe the VLSI implementation of a pattern matching chip 

assessed. 

Pascal illustrated the use of abstraction through powerful data 

structures but showed that the sequential control flow model gave rise to 

designs which utilise a Von Neumann serial processing architecture. 

SmallTalk demonstrated that the class construct in the Actor model can be 

used to define data and processing characteristics of computational 

elements. However, the sequential nature of the language meant that the 

operation of such elements in parallel could not be represented. Lispkit 

Lisp showed that the functional model is well suited for representing 

wiring, connectivity, and parallelism. The major drawback of this model 

is the lack of the assignment statement making state difficult to model. 

For the logic model, Prolog illustrated how unification with named 

variables can be used to represent connections between circuit elements. 

The relational approach in this model is too abstract for many basic 

devices. Based on the parallel control flow model, Occam enabled a 

system to be described as a collection of concurrent processes, which 

communicate through named channels. This closely reflects the structure 

of VLSI systems composed of a large number of processing components 

operating together and linked via wires. The language also handles 

concurrency in a formal manner. The major disadvantage with the language 

is the lack of abstract types. 
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Occam's ability to express some of the important characteristics of 

VLSI design makes it an attractive language for describing hardware. An 

Occam description of a system can serve two purposes. Firstly, a 

designer can execute the program as a simulator, or prototype, of the 

system, and investigate it and modify it in the usual software way 

(i.e. through a standard editor and re-compilation). Secondly, when a 

designer is confident that the program represents a satisfactory 

description of a system's underlying algorithm, it can be used as the 

behavioural specification for a VLSI implementation. That is, an Occam 

program can be used to characterise the input/output behaviour of a VLSI 

chip. Deriving a layout description for such a chip would involve 

transforming the program into a detailed circuit description. The 

envisaged features of an ATL system (ATLAST) for achieving this 

transformation have been specified. The VLSI implementations obtained 

from ATLAST will be based on the self timed approach. 

A prototype implementation of one of ATLAST's features has been 

developed - COPTS. This is a tool for generating schematic diagrams 

corresponding to Occam descriptions. The ability of COPTS to 

automatically generate a high level schematic representation of programs 

written in a subset of Occam has been demonstrated. These schematics 

depict an Occam description's realisation in silicon. They illustrate 

the flow of data and control information in a program. The diagrams also 

provide a visual representation of the parallelism present in it. The 

topological information required to define a schematic representation is 

extracted from the natural hierarchy found in Occam programs. It is 

envisaged that future advances in the fabrication technology will be such 

that silicon area may no longer be considered a scarce resource. In 
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which case, the schematics generated by COPTS will serve as a high level 

structural definition of a system from which an actual implementation can 

be directly derived. Probably a more realistic approach is to regard the 

schematics as defining a virtual architecture from which an actual 

implementation could be derived. This would involve removing some of the 

replication of operators. To achieve this some of the parallel behaviour 

in a system could be transformed into sequential iterative (multiplexed) 

behaviour. 

9.1 RELATED WORK 

The technique of silicon compilation has received considerable 

attention since the term was introduced by Johannsen [34] in 1979. At 

least two text books on the subject have been published. Ayres [3] 

describes a methodology for implementing a silicon compiler (or more 

accurately a silicon assembler), while Denyer [12] presents a study of a 

particular structural compiler for signal processing applications. It is 

argued here that this approach to VLSI design needs extending beyond 

structural silicon compilation toward automated algorithm to layout 

systems. The advantages of using a conventional programming language as 

the input to ATL systems has been considered. Occam was chosen as a 

suitable language. Others have also considered using programming 

languages in VLSI design. For example, Clocks in [9] has argued that 

Prolog is an appropriate language, whereas Robinson and Dion [51] favour 

Modula-2. More specifically, Trikey [66] has reported the implementation 

of a system for automatically translating Pascal programs into silicon. 

A literature search revealed only one other design system for generating 

VLSI implementations form Occam programs. 
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9.1.1 Occam To CMOS 

Researches at Fujistu have implemented a prototype expert system 

intended to map an Occam specification into a standard data path 

architecture [43]. It is intended that this architecture will be 

implemented by CMOS circuits. The process involves three stages of 

design: functional, circuit, and CMOS. Each stage is supported by a 

separate design subsystem composed of several modules. Functional design 

involves algorithmic investigation of the characteristics of a system. 

The final Occam description is translated into an optimised functional 

description of a finite state machine. This translation involves 

designer interaction to determine word sizes for variables and the 

implementation of Occam's inter-process communication. The state machine 

description is transformed into a structural description for the circuit 

design stage. 

Circuit design involves generating information on the data paths and 

control paths. This information is in the form of logical expressions. 

These expressions are decomposed into sub-expressions in such away that 

each sub-expression can be implemented by a single CMOS functional cell. 

Such cells are produced during the CMOS design stage. The logic 

expressions are translated into combinational circuits which are then 

implemented on an array of CMOS transistors. Also, during this stage 

components such as registers, memories, decoders, adders, and I/O pins 

are assembled from a library of basic cells. After the basic cells and 

functional cells have been assembled a facility to optimise the CMOS 

circuit is available. 
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ATLAST and the above system share a common objective: to translate 

algorithmic notations in Occam into VLSI implementations. ~hen fully 

implemented both will enable a designer to investigate Occam programs in 

a familiar software environment. ATLAST will completely automate the 

translation of optimised programs, while the above requires the designer 

to steer this translation. The Fujistu system uses a target architecture 

(the standard data path) in its approach, whereas ATLAST uses a target 

model (that of distributed processing). Adopting a target model rather 

than a target architecture will give ATLAST greater leverage since its 

model may be implemented by various architectures. The architecture used 

for a particular design will depend on the performance requirements. 

9 • 2 FUTURE ~ORK 

Occam has been identified as an appropriate programming language on 

which to base a future high level automated algorithm to VLSI layout 

design system. The proposed features for an example system, ATLAST, were 

outlined in chapter 6 (see figure 6.1). Future scaling down of feature 

size and scaling up of chip area will result in propagation delays within 

a chip causing significant wiring delays among functional blocks. Clock 

skew will become such a problem that synchronous behaviour through the 

use of a global clock will no longer be achievable. For this reason the 

self-timed model has been adopted for systems implemented by ATLAST. 

Also, such an approach is more in keeping with a rigorous discipline of 

modularity. 
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~hen fully implemented, ATLAST will be a general purpose VLSI design 

system which will broaden the spectrum of algorithms implemented by 

special purpose VLSI chips. It will help bridge the gap between software 

design and hardware design by providing an automated means for directly 

mapping software implementations into hardware implementations. It is 

intended that the system will be easy to use and understand, and it is 

hoped that it will make the VLSI technology more accessible to the non 

specialist. Users of the system will not require detailed hardware 

knowledge, since the design approach is based on a very high level of 

abstraction. However, it is assumed that a user will have some 

experience in programming. The central feature of ATLAST will be a 

transformation module. This will be used to automatically lower the 

level of abstraction in a specified design. 

The specification of a design, its implementation, and its 

structural properties will be obtained from a single source - an Occam 

program. A designer will implement the behaviour of a system as an 

algorithmic description written in the language. This can then be 

compiled and executed as a simulator, or prototype, of the system. ~hen 

satisfied that it is a satisfactory description the program will be 

passed to ATLAST to generate a VLSI implementation. Its decomposition 

into a layout description will involve two stages. Firstly, the 

transformation module in ATLAST will convert the Occam program into an 

optimised structural/behavioural intermediate representation (IR). This 

IR will also be an Occam program. The completed version of COPTS will 

then generate a schematic representation of the IR, providing the 

designer with feedback on the relative placement and interconnection of 

the function blocks described in the IR. 
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In the second stage, a design sub-system will be responsible for 

transforming the intermediate Occam description into the appropriate VLSI 

circuits. A number of different architectural implementations can be 

derived from such a description. For example, a description could be 

transformed into a finite state machine description and then implemented 

by a standard data path architecture. Varies degrees of concurrency and 

redundancy in replicated processes could be removed by introducing 

multiplexing on channels and sequential iterative behaviour. The 

resulting description could then be implemented by a bit serial 

architecture. The concurrency and communication of a description could 

be mapped into a systolic architecture. Macro-cells corresponding to 

software primitives (+,-,*,I,?,! etc.) could be substituted for the 

occurrence of these primitives in the description thereby giving a cell 

architecture. Alternatively, different sections of the description could 

be implemented by different architectures giving a multi-architecture 

system. It is envisaged that the design sUb-system will contain a suite 

of silicon compilers for the various target architectures. The choice of 

architecture will be user defined. A designer will therefore be able to 

explore alternative architectures simply and quickly. 

The selected compiler will decompose the IR into a geometrical 

layout of the system. A set of design files defining the complete layout 

will be generated. Each file will hold a graphic description in the form 

of a machine-readable representation - a layout language (e.g. elF). 

These descriptions will be used to derive other forms for layout plotters 

and pattern generators. 
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The IR will also serve as the input specification language to a 

simulator. Simulation of a design produces information on the behaviour 

of the circuit network intended to implement the design. It provides the 

designer with feedback on the performance of the system. This may 

encourage design alternatives which improve performance to be examined. 

Simulation is carried out at several levels of abstraction, each level 

yielding information on different aspects of the design. The information 

obtained is used to confirm physical functioning and make critical design 

decisions. Delays, critical paths, and design errors can be detected 

through simulation. Additionally, estimates on the speed of the circuit 

and its power consumption are obtained. 

Implementing the entire ATLAST design system is no small 

undertaking, as each of the utility tools outlined above are themselves 

complex systems. One of the major problems to be tackled will be the 

definition of the IR, which serves as an interface between the design 

sub-system and the transformation module. Its form is determined by the 

information extracted from it by each tool for its particular 

application. A complete definition is only possible after the input 

requirements of the units have been considered. As is usually the case, 

these requirements are not fully unveiled until the problems of 

implementing each tool are tackled. As much use as possible should be 

made of existing tools and approaches. Powerful workstations are 

available [69,71] which incorporate many of the features needed in the 

design sub-system. One approach to obtaining this sub-system would be to 

integrate available structural silicon compilers with an appropriate 

workstation. 
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Automatic generation of high level schematic diagrams from programs 

written in a subset of Occam has been presented as the first steps toward 

the realisation of the system. Much work still needs to be done, in 

particular, as stated in section 8.3 a route from these diagrams to 

working prototype implementations is required. One practical approach to 

developing such a route would be to take advantage of Occam's association 

with the transputer. Occam is the native language of the transputer. A 

transputer is a computer on a chip and consists of a processor coupled to 

an on chip RAM and four links for communication with other transputers 

and transputer devices. The processor is capable of 10 million 

instructions/sec. and provides efficient support for the Occam model of 

concurrency and communication. The schematic diagrams generated by COPTS 

could be implemented as transputer based systems. 

Transputer based systems would enable real time experimentation. 

Critical sections of code in a design description could be identified. 

The schematics corresponding to these sections could be used as the 

structural specifications for one or more dedicated hardware devices, or 

"code accelerators". The approach of substituting hardware primitives 

(i.e. macro-cells) for the schematic elements could then be used to 

obtain these accelerators. An accelerator could be linked to the 

appropriate transputer via one of its four links. In such a 

configuration, the accelerator can be regarded as a process executing 

concurrently with the process on the transputer. Synchronised 

communication between the two processes could be implemented by the 

transputer's link. The code harnessing the critical sections would be 

used to program the supporting transputers. Again the schematics could 

help in determining the allocation of processes among the constituent 
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transputers. This approach is not the system on a chip solution intended 

for ATLAST. However, it is quickly achievable, and could form an interim 

solution while an efficient algorithm to layout route is developed. 

A key feature of Occam which should be exploited in future work on a 

system such as ATLAST is its semantic properties. The language's formal 

basis together with its ability to conveniently express concurrent 

problems, emphasise its suitability for a VLSI design role. Occam is 

directly based on Hoare's mathematical notation of Communicating 

Sequential Processes [29]. This has two important and interesting 

consequences. Firstly, it enables behavioural specifications written in 

Occam to be formally verified and validated. As the complexity of 

implemented VLSI systems expands this will become an essential 

requirement of design. Secondly, techniques for formally validating the 

equivalence between high level and low level Occam representations can be 

developed. Such techniques will enable semantic preserving 

transformations to be explored, in particular, transformations to 'push' 

high level behavioural specifications toward equivalent detailed low 

level implementations. Making these an intrinsic part of the route to 

layout removes the necessity for simulation and verification since they 

guarantee 'correctness'. Future work should concentrate on developing 

software to support these transformations. Current research into an 

automated system for semantic preserving transformation of an Occam 

system description into either custom silicon or microcode for a 

processor [2] may be able to make a significant contribution to this 

work. 
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To sum up, application specific chips will playa significant role 

in fifth generation computers. Automated algorithm to layout systems 

will enable a wide variety of such chips to be implemented. The 

concurrent programming language Occam is well suited to this approach 

since it is capable of accurately describing their behaviour in a manner 

which reflects their implementation. The language is also well suited 

for providing system level specifications for these components. In 

addition, Occam can be used to describe their overall integration into 

the systems envisaged for the next generation of computers. 
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APPENDIX B 

THE PATTERN MATCHER IMPLEMENTATIONS 

B.l PASCAL 

CONST 
Ncells = 4; 

TYPE 

VAR 

BIT = 0 .. 1; 
Comparator = RECORD 

String, Pattern CHAR; 
END; 

Accumulator RECORD 
EndBit ,WCC,TempRes ,Result BIT; 

END; 
PatternCells RECORD 

END; 

AccCell : Accumulator; 
CompCell : Comparator; 

Modules: ARRAY[l .. Ncellsl OF PatternCells; 
Beat : BIT; 
i : 1.. Ncells; 

FUNCTION Compare(Cell Comparator) BIT; 
BEGIN 

END; 

WITH Cell DO 
IF Pattern = String THEN 

Compare .- 1 
ELSE 

Compare .- 0 

PROCEDURE Move (VAR left, right: PatternCells); 
BEGIN 

right.CompCell.Pattern := left.CompCell.Pattern; 
left.CompCell.String := right.CompCell.String; 
right.AccCell.WCC := left.AccCell.WCC 
right.AccCell.EndBit := left.AccCell.EndBit; 
left.AccCell.Result := right.AccCell.Result; 
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END; 

PROCEDURE Accumulate(DataIn BIT; VAR Cell Accumulator); 
BEGIN 

END; 

WITH Cell DO 
BEGIN 

END 

IF NOT «TempRes=l) AND «WCC=l) OR (DataIn=1» THEN 
TempRes := 0; 

IF EndBit = 1 THEN 
BEGIN 

END 

Result := TempRes; 
TempRes : = l; 

(* Main Body Of Program *) 
BEGIN 

END. 

Beat := 0; 
WHILE NOT finished DO 
BEGIN 

END; 

InOut; 
FOR i := 1 TO (Ncells DIV 2) DO 
BEGIN 

END; 

WITH Module[(i*2)-Beat] DO 
Accumulate(Compare(Compcell), AccCell); 

Move(Module[(i*2)-Beat], Module[«i*2)-l)-Beat]); 
Beat := 1 - Beat; 
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B.2 OCCAM 

DEF Ncells = 4: 
CHAN Sys.Bus: 
CHAN pattern[Ncellsj, string[Ncellsj, data[Ncells-1j: 
CHAN end[Ncellsj, wild[Ncellsj, result[Ncellsj: 

PROC Comparator(CHAN PatrnIn, StrngIn, PatrnOut, StrngOut, DataOut)= 
VAR patrn, strng: 
SEQ 

PAR 
patrn := 0 
strng '- 0 

WHILE TRUE 
SEQ 

PAR 
PatrnOut 
StrngOut 

PAR 

patrn 
strng 

PatrnIn ? patrn 
StrngIn ? strng 

DataOut ! patrn = strng : 

PROC Accumulator(CHAN WildBitIn, EndBitIn, ResIn, DataIn, WildBitOut, 
EndBitOut, ResOut)= 

VAR CompRes, WildBit, EndBit, Result, PartialRes: 
SEQ 

PAR 
WildBit := FALSE 
EndBit := FALSE 
Result := FALSE 
PartialRes := TRUE 

WHILE TRUE 
SEQ 

PAR 
WildBitOut ! WildBit 
EndBitOut ! EndBit 
ResOut ! Result 

PAR 
WildBitIn ? WildBit 
EndBitIn ? EndBit 
ResIn? Result 
DataIn ? CompRes 

PartialRes := PartialRes /\ (WildBit \/ CompRes) 
IF 

EndBit = TRUE 
SEQ 

Result := PartialRes 
PartialRes := TRUE : 
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PROC GetChar(CHAN BusIn,PatternIn,StringIn)= 
VAR Ch, Beat: 
SEQ 

PAR 

Beat := 0 
VlHILE TRUE 

SEQ 
PAR 

IF 

Beat 0- 1 - Beat 
BusIn ? Ch 

Beat = 0 
PatternIn ! Ch 

Beat = 1 
Stringln ! Ch : 

GetChar(SysoBus,pattern[O],string[Ncells-l]) 
PAR i =[ 1 FOR Ncells-1 ] 

PAR 
Comparator(pattern[i-1],string[Ncells-i],pattern[i], 

string[(Ncells+1)-i],data[i-1]) 
Accumulator(wild[i-1],end[i-1],result[Ncells-i],data[i-1], 

wild[i],end[i],result[(Ncells+1)-i]) 
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B.3 SMALLTALK 

Class Comparator 

Methods 
Compare: stringChar and: patternChar 

stringChar = patternChar 
if True : [ "1] 
if False: ["0] 

Class Accumulator 

Super Class Object 

Instance Variables 

Methods 
initialise 

accRes 

super new initaccRes 

update: dataIn with: resIn and: bitsIn 
I resOut I 
accRes <- dataIn & (bitsIn at: 1 I accRes). 
BitsIn at: 2 = 1 

if True: [resOut <- accRes. 
self initaccRes] 

if False: [resOut <- resIn] 
"resOut 

initaccRes 
accRes <- 1 

Class PatternBlocks 

Indexed Instance Variables blocks 

Methods 
Initialise: nblocks I i I 

blocks <- array new: nblocks. 
i <- 1. 
[i <= nblocks] 

whileTrue:[blocks at: 1 put: Accumulator initialise. 
i <- i + 1] 
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Class BitStreams 

Indexed Instance Variables bits 

Methods 
initialise: N I i I 

bits <- array new: N. 
i <- 1. 

Class 

[i <= N] 
whileTrue:[bits at: 1 put: #(0 0). 

i <- i + 1] 

PatternMatcher 

Methods 
go: nblockks fromhost: charstream tohost: bitstream 

Ipattern, string, result, bits, cells, toggle I 
pattern <- array new: nblocks. 
string <- array new: nblocks. 
result <- array new: nblocks. 
bits <- bitStreams initialise: nblocks. 
cells <- patternBlocks initialise: nblocks. 
toggle <- O. 
[charstream isEmpty] 
whileFalse: [i I 

"input string or pattern character" 
i <- toggle + 1. 
[i <= nblocks] 
whileTrue: 

[results at: i put: 
cells at:i (update: (Compare: (string at:i) and:(pattern at:i» 

with: result at:(i+1) 
and: bits at:i). 

pattern at:(i+1) put:(pattern at:i). 
string at:(i-1) put: (string at:i). 
bits at:(i+1) put:(bits at:i). 
i <- 1 + 2]. 

toggle <- toggle - 1] 
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B.4 LISPKIT-LISP 

clock(beat, p, s, m) -> 
if eq(beat,O) then 

{cons(car(l), clock(1, p, cdr(s), cdr(l» 
where 1 = move1(car(s), matchodd(m»} 

else 
cons(nil, clock(O, cdr(p), s, 

move2(car(p), car(m), matcheven(cdr(m»») 

move1(s char, m) -> 
cons(car(car(m», 

to_even(s_char, car(m), car(cdr(m», cdr(cdr(m»» 

move2(p, head, tail) -> 
cons(left(p, head, car(tail», 

to_odd(car(tail), car(cdr(tail», cdr(cdr(tail»» 

to_even(s, 1, c, r) -> 
if eq(nil, r) then 

cons(l, right(s, 1, c» 
else 

cons(l, cons(left right(l, c, car(r», 
to_even(s, car(r), car(cdr(r», cdr(cdr(r»») 

to odd(l, c, r) -> 
- if eq(cdr(r), nil) then 

cons(l, cons(left right(l, c, car(r») 
else -

cons(l, cons(left right(l, c, car(r», 
to_odd(car(r), car(cdr(r», cdr(cdr(r»») 

matcheven(m) -> 
if eq(cdr(m), nil) then 

pmatch(car(m» 
else 

cons(pmatch(car(m», cons(car(cdr(m», 
matcheven(cdr(cdr(m»») 

matchodd(m) -> 
if eq(cdr(cdr(m»,nil) then 

cons(pmatch(car(m», cdr(cdr(m» 
else 

cons(pmatch(car(m», cons(car(cdr(m», matchodd(cdr(cdr(m»») 

pmatch(inpts) -> 
cons(a1, cons(a2, cons(c1, cons(cons(a3,a4), c3»» 
where a1 = e(l,a), a2 e(2,a), a3 = e(3,a), a4 = e(4,a), 

c1 = e(1,c), c2 e(2,c), c3 = e(3,c), 
p e(3,inpts), s e(4,inpts), t = e(2,inpts), 
r e(l,inpts), 
c comp(car(p),s), 
a acc(t, r, car(cdr(p», car(cdr(cdr(p»), c3) 
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comp(p,s) -> 
if eq(p,s) then 

cons(p, cons(s,l» 
else 

cons(p, cons(s,O» 

acc(a,r,x,l,d) -> 
if eq(1,1) then 

cons(u, cons(1, cons(x,l») 
else 

cons(r, cons(u, cons(x,l») 
where u = and(a,or(x,d» 
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B.s PROLOG 

pipeline([P chIPattern], [S chIStrng], Res, Blocks):­
matchodd(Blocks, Blocks 1a), 
transfereven(S ch, Rout~ Blocks la, Blocks_1b), 
matcheven(Blocks 1b , Blocks 2a), 
transferodd(P ch~ Blocks 2a,-Blocks 2b) 
pipeline(Pattern, Strng,-[RoutIRes]~ Blocks 2b). 

matchodd([Ablock, Lblock], [Nblock, Lblock]):­
process(Ablock, Nblock). 

matchodd([Lblockl[RblockITailblks]], [Nblockl [RblockIRest]]):­
process(Lblock, Nblock), 
matchodd(Tailblks, Rest). 

matcheven([Blk j,Blk k], [Blk j,Nblk]):­
process(Blk_k, Nblk). 

matcheven([Lblkl[RblkITailblks]], [Lblkl[NblkIRest]]):­
process(Rblk, Nblk), 
match(even, Tailblks, Rest). 

transfereven(S in, [Blk j,Blk k], [Blk j,Ublk]]):­
rIght(S_in~ Blk_J, Blk_k,-Ublk). 

transfereven(Sin, [Blk il[Blk jl[Blk kIRestll], [Blk il[UblkITailblks]J):­
exchange(Elk i, Elk j, Elk k, Ublk) , -
transfer(Sin~ [Blk_kIRest]~ Tailblks). 

transfereven(Schar, Res, [Blk1ITail], Nblks):­
out(Blkl, Res), 
transfer(Schar, [Blk1ITail], Nblks). 

transfer([Blk i,Blk j,Blk k], [Blk i,Ublk,Blk k]):­
exchange (Blk_i, Elk_j, Blk_k, Ublk).-

transfer([Blk il[Blk jl[Blk kITailll], [Blk il[UblkIRest]J):­
exchange(Blk i, Blk j, Blk k, Ublk), 
transfer([Blk_kITaiI], Rest). 

transferodd(Pin, [Blk ll[Blk 2ITail]], [UblkIRest]):­
left(Pin,-Blk 1,-Blk 2, Ublk), 
transfer([Blk=2ITail), Rest). 

exchange( [_,_, P1 ,_], [_, T2 ,_, _], [R3 ,_,_, S3], [R3, T2, Pl, S3]). 

left(P_ch, [_,Tl,,], [R2" ,S2], [R2,Tl,P_ch,S2]). 

right(S ch, [ , ,P1, ], [_,T2, , ], [R,T2,P1,S_ch]):-
R Is 1. -
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process([Rin, Temp, [Pin,Xin,Lin], Sin], 
[Rou t, Temp2, [ Pou t , XOtl t , Lou t ], Sou t ]) : -

comp(Pin, Sin, Cout, Pout, Sout), 
acc(Rin, Temp, Xin, Lin, Cout, Rout, Temp2, Xout, Lout). 

comp(X, X, C, X, X):­
C is 1. 

comp(X, Y, C, X, Y):­
C is O. 

acc(R1, T1, Xl, L1, Data, R2, T2, Xl, L1):­
andor(X1, T1, Data, C), 
update(L1, C, R1, T1, R2, T2). 

update(1, C, 
T is 1. 

, C, T):-

update(O, C, R1, T1, R1, C). 
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APPENDIX C 

THE SYNTAX OF THE OCCAM SUBSET 

The syntax of the occam subset is described in Backus-Naur-Form. 

Actual language symbols and keywords are not surrounded by <>. The 

::= symbol is used to define a syntactic category. The handle for the 

category is given on the left of the symbol, and the valid syntactic 

forms on the right. Where there are several valid forms of one 

category, they are separated by the symbol I. 

An item between {} indicates that it may be repeated zero or more 

times. 

An item between [] indicates that the item is optional. 

<program> 

<process> 

<primi tive> 

<construct> 

<declaration> : := 

<process> 

<primitive> 
<construct> 
<declaration> <qbd>:<qnl> <process> 

<assignment> 
<input> 
<output> 

SEQ { 
PAR { 

<process> } 
<process> } 

VAR <var> { , <var> } 
CHAN <chan> { , <chan> } 
DEF <const.def> { , <const.def> } 
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<assignment> 

<input> 

<output> 

<var> 

<chan> 

<cons t. def> 

<expression> 

<element> 

<assoc.op> 

<arithmetic.op> 

.. -.. -
: := 

: := 

<var> '- <expression> 

<chan> ? <var> { ; <var> 

<chan> <expression> { <; <expression> } 

identifier. string 

identifier. string 

identifier 

<element> { 
<element> [ 
<monadic.op> 

= <expression> 

<assoc.op> <element>} 
<arithmetic.op> <element>] 

<element> 

number <var> I ( <expression» 

+ I * 
+ I - I * I / 
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APPENDIX D 

MORE EXAMPLE SOURCE PROGRAMS 

Dol PROGRAM FOUR 

CHAN input1, input2, input3, intrn1, intrn2, output1, output2, output3: 
PAR 

VAR a, b, c, tl, t2, t3: 
SEQ 

PAR 
input1 
input2 
input3 

PAR 
t1 0-

t2 0-

t3 0-

PAR 

? a 
? b 
? c 

a * a 
b * b 
c * c 

intrn1 ! (t1*t2*t3) + (a-(b+c)) 
intrn2 ! (t1/(t2+t3)) + a + b + c 
VAR x,y: 
SEQ 

PAR 
x:=(a+b)+(b+c)+(t1+t2)+(a+c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b) 
y:=«c-«(b+c)-a)/«a-(b/c))*a*b)))/«a-b)+c))+(c-b)+(b/c)+(a*b) 

output1 ! (t3-(t1*t2)) + «a*b)+c) + (x*x*x) + (y*y*y) 
VAR a, b: 
SEQ 

PAR 
intrn1 ? a 
intrn2 ? b 

CHAN Comm1, Comm2: 
PAR 

VAR t1, t2: 
SEQ 

PAR 
t1 0- a * a 
t2 0- b * b 

PAR 
output2 ! t1+(a*b)+t2 
Comm1! t1 
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Comm2! t2 
VAR asq, bsq: 
SEQ 

PAR 
Comml? asq 
Comm2? bsq 

output3 I (asq*b) - «a/b) - (bsq*a» 
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Do2 PROGRAM FIVE 

CHAN inputl,input2,input3,outputl,output2,output3,intrnall,intrna12: 
PAR 

VAR a, b, c, tl, t2, t3: 
SEQ 

PAR 
input1 ? a 
input2 ? b 

c := (a*a) + (b*b) 
CHAN intrn: 
PAR 

t1 := a + (b * c) 
t2 := a - «b+c)*(b/(a+c») 
VAR tempI, temp2: 
SEQ 

PAR 
temp1 := a + (b - c) 
temp2 := c * (b + a) 

intrn ! (temp1*temp2) + (tempI/temp2) 
VAR M,N: 
SEQ 

PAR 
intrn ? M 
N := a*b*c 

t3 := (N*(M-a» + (N-b) 
PAR 

a 0- a * 
b 0- b * 0-

c := c * 
PAR 

intrnall 
intrna12 
VAR x: 

a 
b 
c 

(tl*t2*t3) + (a-(b+c» 
(tl/(t2+t3» + a + b + c 

SEQ 
x:=(a*b)+(b*c)+(tl-t2)+(a/c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b) 
output1 ! (t3-(t1*t2» + «a*b)+c) + (x*x*x) 

a, b, c: VAR 
SEQ 

PAR 
intrnall ? a 
intrna12 ? b 
input3 ? c 

CHAN Comm1, Comm2: 
PAR 

VAR t1, t2: 
SEQ 

PAR 
t1 0- (a * a)/c 
t2 0- (b * b)/c 

PAR 
output2 ! t1+(a*b)+t2 
Comm1! t1 
Comm2! t2 

VAR asq, bsq: 
SEQ 
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PAR 
Comml? asq 
Comm2? bsq 

output3 ! (asq*b) - «a/b) - (bsq*a» 
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D,3 PROGRAM SIX 

CHAN input1,input2,input3,output1,output2,output3,intrnal1,intrna12: 
PAR 

VAR a, b, c: 
SEQ 

PAR 
intrnal1 ? a 
intrna12 ? b 
input1 ? c 

CHAN Comm1, Comm2: 
PAR 

VAR t1, t2: 
SEQ 

PAR 
t1 '- (a * a)/c 
t2 := (b * b)/c 

PAR 
output1 ! t1+(a*b)+t2 
Comm1! t1 
Comm2! t2 

VAR asq, bsq: 
SEQ 

PAR 
Comm1? asq 
Comm2? bsq 

output2 ! (asq*b) - «a/b) - (bsq*a» 
VAR a, b, c, t1, t2, t3: 
SEQ 

PAR 
input2 ? a 
input3 ? b 

c '- (a*a) + (b*b) 
CHAN intrn: 
PAR 

t1 := a + (b * c) 
t2 := a - «b+c)*(b/(a+c») 
VAR temp1, temp2: 
SEQ 

PAR 
temp1 := a + (b - c) 
temp2 := c * (b + a) 

intrn ! (temp1*temp2) + (temp1/temp2) 
VAR M,N: 
SEQ 

PAR 

PAR 
a 
b 
c 

PAR 

intrn ? M 
N := a*b*c 

t3 := (N*(M-a» + (N-b) 

,- a * a 
'- b * b 
:= c * c 

intrnal1 
intrna12 

(t1*t2*t3) + (a-(b+c» 
(t1/(t2+t3» + a + b + c 
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VAR x: 
SEQ 

x:=(a*b)+(b*c)+(t1-t2)+(a/c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b) 
output3 ! (t3-(t1*t2» + «a*b)+c) + (x*x*x) 
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APPENDIX E 

PROGRAM DOCUMENTATION 

This appendix describes the Pascal program developed for COPTS. It 

is divided into three sections. 

The first section provides an introduction to the program and 

considers the calling sequence for the first level procedures, while the 

second section summarises the purpose of these procedures. The final 

section discusses the output produced by the program. 

E.1 INTRODUCTION 

The compiler program was written in VAX-11 Pascal V2.2-114 [69]. 

The code for the compiler is divided into five MODULES. Each module 

contains the set of procedures and functions used to implement one or 

more parts of the compiler. An ENVIRONMENT file holding the outermost 

level of definitions of constants, types, variables, and procedures is 

generated by the main program. The VAX Pascal INHERIT attribute enables 

each module to use these definitions. 
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[ENVIRONMENT('SETUP')] 
PROGRAM DEFINITIONS(INPUT,OUTPUT)j 

(* main body of program DEFINITIONS *) 
BEGIN 

END. 

INITIALISEj 
BUILDPARSETREE(MajorPrc)j 
IF NOT ErrFlag THEN 

BEGIN 

END 

InitBoxCell(MajorPrc)j 
PrcSpec(MajorPrc)j 
Dump(MajorPrc); 
PrcImplmntn(MajorPrc)j 

FIGURE El: The Execution Sequence 

The main body of the Pascal program is listed in Figure 61. The 

variable 'MajorPrc' is a pointer to the root record of the internal data 

tree. 'ErrFlag' is a global boolean flag used to indicate if there are 

any syntax errors in the Occam source code. 

Firstly, the program calls the procedure 'INITIALISE' to initialise 

all of its global variables. , BUILDPARSETREE' then reads in the source 

program and attempts to parse it. If syntax errors were found in the 

source code then the global variable 'ErrFlag' is set to false and the 

program terminates. Otherwise, 'ErrFlag' is set to true and the internal 

form of the program is completed by 'PrcSpec'. This internal form is 

then written out by 'Dump'. Calling this procedure is not essential 

since it merely allows the user to check the internal format. Finally, 

'PrcImplmntn' generates the graphical definition of the source code. 

This procedure also writes out the object code defining the 

representation. 
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E.2 BuildParseTree 

Initialises 'MajPrc' and store information obtained from parsing the 

associated process. 

E.2.1 Variable Parameters 

1. MajorPrc: 

Pointer to the 'CmpntRec' associated with a process. 

E.2.2 Description 

Scans and analyses the Occam source program and corresponds to the 

parse phase. The scanning algorithm is adapted from the Scanner 

presented in Gries [24]. The recursive descent algorithm implemented by 

the analyser is based on the grammar defined in AppendixC. The 

procedure also carries out syntax checking and some semantic checking. 

Limited error messages are produced on error detection. A syntax error 

causes the analyser to fail, since no error recovery scheme has been 

implemented. 

The scanner acts upon a whole line of the source text. The tokens 

obtained from a scan of the current text line are held in a buffer. The 

analyser fetches tokens from this buffer one at a time. When the buffer 

is empty the next line of the Occam source program is read in. This line 

is scanned and the tokens, representing the identified symbols, placed in 

the buffer. The sequence of tokens in the buffer after the scan 

corresponds to the sequence of symbols in the text line. 
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The analyser uses the tokens to build up the internal data tree. 

This requires creating and initialising 'CmpntRec' records. Each record 

created is associated with a process in the Occam program and identifies 

whether that process is simple or complex. The level of one of these 

records in the internal data tree reflects the nesting of its process in 

the source program. The root record of the tree is associated with the 

process defined by the program itself. The records are initialised with 

information on the parse tree - the internal representation of the 

program. 

For a complex process the analyser determines if any declarations 

are associated with it. If there are, these are parsed and a reference 

to the information gathered is stored. It also identifies the construct 

governing the execution of the subsidiary components, counts them, and 

parses each one according to its type. The resulting information is 

stored in the 'Cdscrptr' (see Appendix F: CmplxCmpnt) field of the 

associated 'CmpntRec' record. 

For a simple process the analyser initialises a 'SmpleCmpnt' record 

(see Appendix F). The information gathered during the parse of the 

simple process is held in this type of record. Additional information is 

added in the succeeding phases. A reference to the record set up is 

stored in the process' 'CmpntRec'. The analyser first identifies the 

process' primitive operator. It uses this to select the appropriate 

parse routines called. The operator is also used to determine the form 

of the 'SmpleCmpnt' record to be set up. 
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If the input operator is identified the analyser obtains and stores 

a reference to the input channel identifier. Then, references for all 

the input variables are obtained and stored. If the output operator is 

identified a reference to the output channel is obtained and stored. 

Next, each output expression is transformed into its corresponding 

Reverse Polish form. References to the records representing these Polish 

forms are stored. Finally, if the assignment operator is identified a 

reference to the variable identifier assigned a value is obtained and 

stored. The analyser then transforms the associated arithmetic 

expression into its corresponding Polish form. A reference to the record 

representing this form of the expression is stored. 

E.3 Dump 

~rites out information held and referenced by the record corresponding to 

, MajorPrc'. 

E.3.1 Variable Parameters 

1. MajorPrc: 

Pointer to the 'CmpntRec' associated with the Occam program. 

E.3.2 Description 

The procedure 'Dump' writes out information on the internal 

representation of the Occam source program. Firstly, it writes out the 

parse tree in a form reflecting the block structure of the source code. 

This form also illustrates the reverse polish representation for each 

arithmetic expression occurring in the program. Secondly, the contents 

of the 'SymTabRec' records implementing the symbol table are displayed. 
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The data displayed for the parse tree and the symbol table represents the 

information stored in the internal tree after the parse phase. 

Finally, the procedure 'Dump' writes out the internal representation 

of the program after it has been completed in the graphical specification 

phase. This involves displaying information on the occurrences of 

identifiers and writing out the tree forms of expressions. This data is 

presented in a way which illustrates the structure of the parse tree. 

E.4 InitBoxCel1 

Prepares the internal data tree for the graphical specification and 

graphical definition phases. 

E.4.1 Variable Parameters 

PrcPtr : 

Pointer to the 'CmpntRec' associated with the Occam program. 

E.4.2 Description 

This recursive procedure implements a preorder traversal of the 

internal data tree. During this traversal previously stored information 

is used to initialise elements in the 'CmpntSpec' and 'CmpntImpl' fields 

of each 'CmpntRec' implementing the internal data tree. If a 'CmpntRec' 

is associated with a complex process then elements in the 'Cdscrptr' 

field are also initialised. 

The elements initialised are used for holding information on (a) the 

occurrences of identifiers in the corresponding process and on (b) the 

graphical (cell) representation of the process. The information used in 

this initialisation was stored in the data tree during the parse phase. 
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E.5 INITIALIZE 

Sets up the global identifiers used in the program. 

E.5.1 Description 

This procedure initialises identifiers used as global arrays, 

identifiers used as global counters, and a global boolean used as a flag. 

The global arrays are set up as follows. 

1. C 

The class values for the ASCII character set are stored in this 

array. The position of an element in the array represents the 

ASCII code for a particular character. The integer value held 

in the element defines the class of the associated character. 

2. DelTable 

The delimiters and their internal code are stored in this array. 

An element of this array holds the symbol for a particular 

delimiter and its corresponding internal code. 

3. RWTable 

The reserved words and their internal code are stored in this 

array. An element of this array holds the character string 

defining a reserved word and its corresponding internal code. 

The following global counters are set to zero. 

1. Ntoks 

Used to count the number of tokens held in the token buffer. 
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2. StartCol 

Counts the number of blanks proceeding the characters composing 

the current line of source text being scanned. 

3. TBptr 

Counts the number of tokens removed from the token buffer. This 

variable represents a pointer to the current position in the 

buffer. 

The global boolean flag 'ErrFlag' is set to false. 

E.6 Prclmplmntn 

Generates the compiler's object code. This code defines the graphical 

representation of the Occam source program. 

E.6.1 Variable Parameters 

1. MajPrc: 

References the 'CmpntRec' record denoting the root of the 

internal data tree. 

E.6.2 Description 

The task of this procedure is implemented in two stages. The first 

stage derives an internal definition of the graphical representation. 

The second stage uses this to generate the object code. The first stage 

corresponds to the graphical representation phase, and the second to the 

output phase. The data symbolising this definition is assembled in the 

compiler's data tree. 
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Internal definitions of the graphical (cell) forms of the program's 

processes are combined, giving one complete definition for the entire 

source program. This involves examining the data previously placed in 

the 'CmpntRec' records of the internal tree. A preorder traversal of the 

tree is used to access these records. During this traversal information 

in each record is interpreted, in order to define the cell form of the 

associated process. The resulting definition information is stored in 

the record. 

The procedure separates the defining of the cell representation for 

a simple process from that for a complex one. However, an intrinsic step 

in the definition of both, is the placement of the cellon a conceptual 

grid. Information obtained from this placement defines, in terms of the 

grid, the co-ordinates of the cell's origin, its input ports, its output 

ports, and its dimensions. These conceptual co-ordinates are later 

translated into 'actual' co-ordinates during the plotting of the 

representation on a display device. 

The cell definition of a complex process represents the 'glue' 

linking the cell representations of its subsidiary components. Deriving 

it entails defining the cell forms of the subsidiaries. It also requires 

defining the following. 

(a) The graphical representation for the initialisation of each 

variable declared in the process. 

(b) The routing of the power, ground, and clock lines to the 

subsidiary cells. 
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(c) The routing of the control line between the subsidiary cells. 

(d) The routing of external and internal identifiers. 

The algorithm developed to implement both these tasks is iterative, 

obtaining the definition and associated routing for each sub-process in 

turn. 

Initialisation of a variable is represented graphically by a box 

linked to a cell. This box represents a register for holding the values 

assigned to the variable. The cell corresponds to the the assignment 

operator in the process initialising the variable. Connecting the east 

side of the cell to the west side of the register is an output line - the 

assignment line. Obtaining this representation requires defining the 

routing of this line, and defining the origin co-ordinates of the 

register. Routing of the output line is determined by the parent 

process' constructor. 

There may be a line branching from the assignment line. This 

represents re-assignment of the variable in other processes. Segments of 

this line are connected to outputs of the cells in which re-assignment 

occurs. The routing of this line to these cells is part of (d). The 

connecting segments are defined during the definition of the 

corresponding sub-cells. There is also a line routed from the east side 

of the register with branches to several sub-cells. This line, termed 

the reference line, represents references to the variable in other 

processes. Defining the routing of this and its off-shoots is part of 

(d) above. 
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Steps (c) and (d) are both sub-divided into defining the routing 

into a sub-cell, and the routing out of a sub-cell. The definitions for 

the input lines are obtained before the sub-cell is defined, and those 

for the output lines after. Input lines are defined by a routing 

strategy determined by the execution sequence of the parent process. For 

identifier lines, the procedure ascertains whether a line is required in 

the horizontal and/or vertical data path of the sub-cell. The decision 

on which data path(s) a line is to be routed in, is based on information 

specifying the occurrences of the identifier in that sub-cell. 

Each sub-cell has a control line routed out from its east side. 

Defining the routing of this output line is determined by the parent 

process' constructor and the sub-ceIl's type (simple or complex). For a 

simple sub-cell the line is routed from its right most constituent 

operator to the east side of the cell. Similarly, for a complex 

sequential sub-cell the control line is routed from the east face of its 

right most sub-component to the east edge of the cell. If, however, the 

sub-cell represents a complex parallel process the routing strategy is 

more involved. Firstly, a join cell is defined to be placed in the upper 

right most corner of the cell. Next, the control output line of each 

component cell is routed to the west face of this join cell. Finally, 

the control line for the parent process is routed from the east side of 

the join cell to the east edge of the cell. 

Other possible output lines of a cell are channel lines. These 

lines connect two cells which represent the input and output processes 

associated with a channel identifier. Defining these lines involves 

routing each line from the cell it was created in, the source cell, to 

the cell it terminates in, the destination cell. The source and 
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destination cells may be adjacent, or separated by several cells. The 

implemented routing strategy defines lines for either situation. 

Channels declared for the main process may represent external inputs 

or outputs. In which case, the corresponding channel lines are only 

connected to source cells. If this source cell represents an input 

process then the line is routed to the west edge of the main program's 

cell. On the other hand, if the source cell represents an output process 

then the line is routed to the east edge of the main cell. 

The representation of a simple process is composed of one or more 

operator cells, several identifier lines, and power, ground, clock, and 

control lines. The cells represent the operators of the simple process. 

Their placement and the associated routing of the power, ground, clock, 

and control lines represents the implicit execution sequence in the 

process. The internal definition of this representation is derived from 

data stored in the process' 'CmpntRec' record. Acquiring it means 

defining each operator in turn, and defining the routing of the required 

lines. Each primitive process is handled separately. However, defining 

the representation of expressions is common to both assignment and output 

processes. 

For an input process the procedure defines operator cells for the 

constituent read operations. These cells are defined sequentially to 

form a horizontal linear array. Before the definition of an input 

operator cell, vertical line segments from the parent's power, ground, 

clock, and control lines are defined. Then, during the cell's 

definition, a horizontal segment from each vertical line is defined. 

Each segment connects with the corresponding input port of the cell. The 

control line is defined such that it links the subsidiary cells together. 

- 190 -



The variable output line of each operator cell is defined to connect to a 

corresponding line in the parent's horizontal data path. The channel 

line associated with the simple cell is routed from the west boundary of 

the cell to each subsidiary, terminating in the right most. 

The procedure defines an assignment process in two stages. Firstly, 

the representation of the associated expression is defined (see below). 

Secondly, a primitive operator cell is defined together with the routing 

of the lines connected to its input ports. This cell represents storing 

of the result of the expression in a variable. The data output line of 

this cell is routed to a register as described above. 

The definition of an output process involves two very similar stages 

which are repeated for each constituent write operation. In the first 

stage, the representation of the expression associated with a write 

operation is defined. An output cell and the routing of the lines 

connected to its input ports are defined in the second stage. This cell 

represents the writing of the expression's value on the process' channel. 

The channel is represented by a line defined to be routed from the 

channel output port of the first cell to the east edge of the parent 

cell, passing below the other cells. The channel outputs from the cells 

in between are defined to connect with this line. 

Figure 7.6(a)illustrates an arithmetic expression tree. 'XprsnRec' 

records implement the nodes of such trees. Each node represents the 

<operator> <operand-1> <operand-2> form of an expression. The operator 

and a reference for each operand are stored in the node. The reference 

for an operand is either to a variable/constant identifier, or to a 

sub-tree describing a sub-expression. 'Ln-Op' denotes a node at level n 

in the tree. Figure 7.6(b) outlines the graphical representation of the 
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tree. The north to south arrangement of cells in an array mirrors the 

left to right order of nodes in the corresponding level. Defining this 

representation requires mapping the implied structure of the tree into 

the conceptual bounding box. Information stored in the tree is used to 

define the mapping. Accessing this information involves a postorder 

traversal of the tree. 

Power, ground and clock lines are routed to each operator cell. 

Segments from the control line are first routed to the cell 

representation corresponding to the operand held in each leaf node 

(i.e. the cells in the left most array). Subsequent routing for the 

control is determined by the structure of the tree. Each subtree is used 

to define the routing of the control line from the cell representation of 

its siblings to the control input port of the cell corresponding to the 

parent. If a root has only one subsidiary node then the control line is 

routed directly from the cell representation of the node to that of the 

root. If two nodes are attached to the root the control output line of 

each sibling cell is routed to a join cell. A line is then routed from 

this join cell to the cell corresponding to the root. 

The subtrees are also used to define the routing of data lines 

between the cells. The data output line from the cell representation of 

each sibling node is routed to the appropriate input port of of the 

root's operator cell. For a node referencing a variable the 

corresponding data line is routed to an input port of its operator cell. 

After deriving the internal definition for the graphical 

representation, the procedure uses it to produce the compiler's object 

code. To produce the object code the procedure writes out, in a text 

file, the conceptual co-ordinates of all the segments composing the lines 
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for power, ground, clock, control, each variable, and each channel. The 

line segments comprising the bounding box of each primitive cell are 

written out. Associated with each pair of co-ordinates is an integer 

denoting the colour of the line connecting the two points. This integer 

is also written out. Obtaining this data involves a second preorder 

traversal of the data tree. During the traversal the maximum and minimum 

co-ordinates are calculated. The data in the text file is then used to 

set up and format another text file. This second text file holds the 

object code. It is formatted into blocks, each block containing pairs of 

co-ordinates for line segments plotted in a particular colour. 

E.7 PrcSpec 

Implements the graphical specification phase. 

E.7.1 Variable Parameters 

1. MajPrc: 

Pointer to the 'CmpntRec' associated with a process. 

E.7.2 Description 

The overall task implemented by this procedure is the completion of 

the internal representation of the source code. This is split into the 

following sub-tasks. 

1. Identifying the subsidiary in which each of a process' declared 

variables is initialised. 
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2. Classifying the variable identifiers occurring in a process. 

3. Identifying the read and the write subsidiary associated with 

each of a process' declared channels. 

4. Classifying the occurrences of channel identifiers in a process. 

5. Translating the reverse polish forms of expressions into their 

tree representations. 

These tasks are carried out during a preorder traversal of the 

initialised data tree. Data stored during the previous phase is accessed 

and used to derive the necessary specification information. 

A process' variable is initialised by either an assignment operation 

or an input operation. A reference to the variable occurs in the 

internal form of the initialising subsidiary process. The procedure 

recursively searches the internal representations of the process' 

subsidiaries until the required reference is found. When found, the 

reference number of the sub-process is stored in the appropriate element 

of the 'Cdscrptr' field of the parent's 'CmpntRec' record. Also, a 

reference to the identifier is stored in the 'CmpntSpec' field of the 

sub-process' 'CmpntRec'. This reference specifies that the identifier is 

external to the process. It is stored in the list for initialised 

external variables. Having identified the subsidiary, the remaining ones 

are searched for any other instances of the identifier. Further 

occurrences are classified in to two types: re-assignment and reference. 

Each type is checked for separately. If found a reference to the 

identifier is stored in the appropriate external list of the 'CmpntSpec' 

field of the subsidiary. 
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A process' channel identifiers will be referenced in at most two 

subsidiaries. The procedure searches for the first occurrence of a 

channel identifier. When found, the reference number of the subsidiary 

is stored according to whether it is an input or output process. A 

reference to the identifier is stored in the 'CmpntSpec' field of the 

subsidiary's 'CmpntRec'. This reference is placed in one of two lists 

classifying the occurrence in the process; either the list for external 

channels read from, or the list for external channels written to. Then 

the second subsidiary is sought. If found, a reference to it is stored 

in the appropriate external channel list of the subsidiary. The 

subsidiary's reference number stored in the parent's 'CmpntRec'. 

As each 'CmpntRec' associated with a complex process is accessed, 

the procedure searches its subsidiaries for occurrences of external 

identifiers. References to these identifiers were stored earlier in the 

traversal in the external lists of the 'CmpntSpec' field. Any 

occurrences of variable identifiers are classified into three types: 

assignment, re-assignment, and reference. While occurrences of channel 

identifiers are classified into read and write references. Each type is 

checked for separately. If found a reference to the identifier is stored 

in the appropriate external list of the subsidiary. 

The reverse polish expression associated with an assignment process 

and the expressions associated with an output process are translated into 

a recursive tree representation. This tree representation is used in 

specifying the graphical implementation of the expression. During this 

translation the execution sequence of the expression is modified to 

maximise concurrency. The procedure also obtains the reference numbers 

for variables occurring in the expressions associated with the sub-trees 
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of the expression tree. The pointers to the recursive tree 

representations are stored in the 'SimplCmpnt' record referenced by the 

'CmpntRec' record. 

E.8 THE OUTPUT 

The format of the the "object file" generated by the compiler is 

illustrated overleaf. Such a file holds the definition of an Occam 

program's graphical representation. Each item within <> represent an an 

integer. A line plotting program processes this file in order to 

implement the definition. This program was also written in VAX-ll Pascal 

V2.2-114. It uses the VAX EXTERN facility to call a sub-set of the 

subroutines in the GKS graphics package [14]. These subroutines activate 

and deactivate the device on which the representation is to be displayed, 

and display each line segment in the appropriate colour. The program 

uses the minimum and maximum co-ordinates to scale the definition to the 

GKS device co-ordinates. 

- 196 -



<minX> <minY> <maxX> <maxY> 
<separator> 
<pen number> 
<xl> <y1> <x2> <y2> 
<xl> <y1> <x2> <y2> 

<xl> <y1> <x2> <y2> 
<separator> 
<pen number> 
<xl> <y1> <x2> <y2> 
<xl> <y1> <x2> <y2> 

<xl> <y1> <x2> <y2> 
<separator> 
<pen number> 

<separator> 
<end of file> 

KEY 

<Xmin> :- minimum X co-ordinate in the defined graphical representation 
<Ymin> :- minimum Y co-ordinate in the defined graphical representation 
<Xmax> :- maximum X co-ordinate in the defined graphical representation 
<Ymax> - maximum Y co-ordinate in the defined graphical representation 
<separator> :- delimiter used to split the file into sections 
<Pen Number> :- integer denoting the colour a set of line segments are 

to be displayed in. 
<xl> :- X co-ordinate of the start point of 
<y1> :- Y co-ordinate of the start point of 
<x2> :- X co-ordinate of the start point of 

a line 
a line 
a line 

<y2> :- Y co-ordinate of the start point of a line 
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APPENDIX F 

IMPORTANT RECORDS AND THEIR FIELDS 

This appendix describes several of the important records used to 

implement the compiler's data tree. A brief summary on the purpose of 

each identifier and its attributes is included. The identifiers are 

listed alphabetically. 

F.1 CellRec 
Defined for holding information on the graphical (cell) definition 

of a process. The information held in the fields of this type of record 
relates to the placement of the cell, its dimensions, and the inputs and 
outputs of the cell. This information is obtained during the definition 
phase. 

- Xorig 
The X co-ordinate for the upper left hand corner of the cell. 

- Yorig 
The Y co-ordinate for the upper left hand corner of the cell. 

- ~idth 
The width of the cell in 'grid' units. 

- Height 
The height of the cell in 'grid' units. 

- Control 
Pointer to record associated with the routing of the cell's control line. 

- Vbundle 
A record used for holding references to information on the vertical path 
for the power, ground, and clock lines. 
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- Hbundle 
A record used for holding references to information on the horizontal 
path for the power, ground, and clock lines. 

- Vdatapath 
A record used for holding information on the vertical path for variable 
lines. 

- Hdatapath 
A record used for holding information on the horizontal path for variable 
lines. 

- AsgnLines 
A record used for holding information on the path for the lines 
representing variables initialised in the cell. 

- Vchanpath 
A record used for holding information on the vertical path for channels. 

- Hchanpath 
A record used for holding information on the horizontal path for 
channels. 

- ThruChans 
A record used for holding information on the path routing channels 
through the cell. 

- VarAsgnd 
Indicates if a storage structure (one or more registers) is associated 
with the cell. Such a structure is required if the associated process 
initialises variables declared in its parent. 

- ChanInfo 
Record used to hold information on the graphical definition of all 
channels declared in the associated process. 

- JoinReqd 
Selector used to indicate if a join cell is associated with the cell 
representation. 

1. JoinReqd = TRUE 

1. - joinhght 
Height of the join box in 'grid' units. 

2. - join 
Record holding the origin co-ordinates of the join cell. 

2. JoinReqd = FALSE 
No fields. 

F.2 CmplxCmpnt 
Defined for linking parse and specification information on a complex 

process (component). A subset of the fields of this record type are 
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initialised during the parse phase to hold information on an associated 
process' subsidiary components, its constructor, and its identifier 
declarations. The specification phase initialises the remaining fields 
with information on the occurrences of the identifiers. 

- Constrctr 
The internal representation for the process constructor. 

- Dclration 
A pointer to the record holding the information obtained from the parsing 
of any declaration statements associated with process. If there are no 
such statements then this pointer is given a nil value. 

- Nsubcmpnts 
The number of subsidiary processes composing the process. 

- SubCmpnts 
A list of pointers to the records associated with the subsidiary 
processes. 

- Ichans 
The number of channels declared for the process. 

- Nlocal 
The number of variables declared for the process. 

- Xrefs 
A list holding information on references to the process' variables. 

- Xredefs 
A list holding information on re-assignments to the process' variables. 

- Xdefs 
A list holding subsidiary reference numbers. Each entry in the list 
identifies the processes in which the process variable associated with 
that list position is initialised. 

F.3 CmpntRec 
A record type defined to link all the information obtained on a 

process (component). This record type always holds some specification 
and definition information on the associated component. This information 
is independent of the whether the component is simple or complex. If the 
associated component is complex then the record holds parse and 
additional specification information. If, however, the component is 
simple then a pointer is held. The pointer references a record holding 
parse, specification and definition information specific to a simple 
component. 

- SubNo 
Reference number associated with a process. For the major process this 
is always zero. 

- Pcmpnt 
Pointer to the record associated with the surrounding (parent) process. 
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- CmpntSpec 
A record designed for holding information on the associated process' 
external identifiers. This information specifies which variables are 
initialised, referenced, and re-assigned in the process. It also 
specifies which channels are read from, and written to in the process. 
The information is gathered and stored during the specification phase. 

- CmpntImpl 
Holds, information gathered during the graphical definition phase, on the 
graphical (cell) form of the process. (see CellRec) 

- ProcType 
Selector used to distinguish between simple and complex processes. 

1. ProcType = Simple 

1. - SimplPtr 
Pointer to a record containing specification and definition 
information for a simple process. (see SmpleCmpnt) 

2. ProcType = Complex 

1. - Cdscrptr 
Record holding parse and specification information for a 
complex process. (see CmplxCmpnt) 

F.4 PrimUnit 
Defined for holding the information on the graphical (cell) 

definition of a primitive operator. The information held in the fields 
of this type of record relates to the placement of the cell, its 
dimensions, and the co-ordinates of the inputs and outputs of the cell. 
This information is obtained during the definition phase. 

- Xorig 
The X co-ordinate of the upper left hand corner of the cell 
representation. 

- Yorig 
The Y co-ordinate of the upper left hand corner of the cell 
representation. 

- Height 
The height, in 'grid' units, of the cell representation for the primitive 
operator. 

- Width 
The width, in 'grid' units, of the cell representation for the primitive 
operator. 

- VddIn 
The co-ordinates of the input port for the power line. 
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- Gndln 
The co-ordinates of the input port for the ground line. 

- Clkln 
The co-ordinates of the input port for the clock line. 

- Cntrlln 
The co-ordinates of the input port for the control line. 

- CntrlOut 
The co-ordinates of the output port for the control line. 

- UnitType 
Selector to identify which primitive operator is implemented by the 
record. 

1. UnitType = AsgnOp 

1. - ResIn 
The co-ordinates of the input port for the line bringing the 
value to be assigned to a variable. 

2. - DataOut 
The co-ordinates of the output port for the line connecting 
the operator to the appropriate register. 

2. UnitType = InOp 

1. - ChanIn 
The co-ordinates of the input port for the channel being 
read from. 

2. - VarOut 
The co-ordinates of the output port for the line connecting 
the operator to the appropriate register. 

3. UnitType = OutOp 

1. - Xpln 
The co-ordinates of the input port for the line bringing the 
value to be output on the channel. 

2. - DataOut 
The co-ordinates of the output port for the line channel. 

F.S SmpleCmpnt 
Defined for holding parse, specification, and definition information 

on a simple process (component). This information is dependent upon the 
primitive operator associated with the component. During the parse phase 
the primitive operator of the process is identified and used to determine 
the form of this type of record. The parse phase also adds a reference 
to the identifier acted on by the operator together with information on 
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the part of the statement occurring after the operator. 

If the component is an assignment or output one, then, references to 
associated reverse polish expressions are also stored during the parse 
phase. In the succeeding phase these referenced expressions are 
translated into their tree forms and pointers to the records holding 
these forms are stored. 

In the definition phase this type of record is used to hold 
information on the graphical (cell) form of the primitive operation. 

- PrmType 
Selector used to identify the type of simple process information is being 
gathered on. 

1. PrmType = Asgnmnt 

1. - VarId 
Pointer to the symbol table record corresponding to the 
variable being assigned a value in the process. 

2. - RevPolXprsn 
Pointer to the record associated with reverse polish format 
of the expression. 

3. - AsignUnit 
Record holding the information concerning the graphical 
definition of the assignment operator. (see PrimUnit) 

4. - AsgnPtr 
Pointer to the record holding the specification and 
definition information for the expression. 

2. PrmType = Inpt 

1. - InChan 
Pointer to the symbol table record corresponding to the 
channel being read from in the process. 

2. - Nin 

3. 

4. 

Number of sequential input operations occurring in the 
process. 

- VarList 
List of pointers to the symbol table records of each of the 
variables reading a value from the channel in the process. 

- InList 
List of records each holding graphical definition details 
for an input operator. The ordering of the list corresponds 
to the order in which values are read from the channel and 
stored in the variables. 
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3. PrmType = Outpt 

1. - OutChan 
Pointer to the symbol table record corresponding to the 
channel being written to in the process. 

2. - Nxprsns 
The number of values being sequentially written to the 
channel in the output process. 

3. - RevPolXprsns 
List of pointers to the records holding the reverse polish 
from of the expressions occurring in the process. 

4. - OutXprsns 
List of records each holding graphical definition details 
for an output operator. The ordering of the list 
corresponds to the order in which expressions are evaluated 
and the results written to the channel. 

F.6 SymTabRec 
Defined for holding information on identifiers. Records of this 

type hold information on an associated identifier string and a reference 
to the process in which the identifier was declared. These records also 
hold information which is specific to the identifier type. 

- IdLen 
Length of the identifier string. 

- IdStrng 
The identifier string. 

- NxtRec 
Pointer to the next related record. 

- ProcPtr 
Pointer to the record associated with the process in which the identifer 
was declared. 

- Item 
Selector for the variant fields needed for the different types of of 
identifier. 

1. item = Channel 

1. - placed 
Indicates if the channel identifier has already been 
processed in the graphical definition phase. 

2. - offchip 
Indicates if there are both read and write operations 
associated with a channel identifier. 
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3. - InitdFor 
Defines whether the first reference to the identifier was in 
an input or output statement. 

4. - CellNmbr 
Used to reference the current cell representation the 
channel is being routed from. 

5. - Usedln 
A pointer to the record associated with the process in which 
the read and write operations occur. 

6. - Cell 
A pointer to the record associated with the process in which 
the identifier is first referenced. 

2. item = Constant 

1. - Value 
The integer value associated with a constant identifier. 

3. item Variable No fields. 

F.7 XprsnCel1 
Defined for holding information on the graphical (cell) 

representation of the tree form for an arithmetic operator, and the left 
and right expressions associated with it (ie <left expression> <operator> 
<right expression». This information is placed in this type of record 
during the interpretation of associated specification data. The data 
held in the fields of this type of record relates to the placement of the 
cell, its dimensions, and the inputs and outputs of the cell. 

- Vbundle 
Record holding the pointers to routing records for the vertical path of 
the power, ground, and clock lines. (see BundlRec) 

- Hbundle 
Record holding the pointers to routing records for the horizontal path of 
the power, ground, and clock lines. 

- Xorig 
The X co-ordinate for the upper left hand corner of the cell. 

- Yorig 
The Y co-ordinate for the upper left hand corner of the cell. 

- Width 
The width of the cell in 'grid' units. 

- Height 
The height of the cell in 'grid' units. 
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- Control 
Pointer to routing record associated with the cell's control line. 

- Vdatapath 
Record used to hold plotting information on the vertical routing path for 
variables in the cell representation. 

- Hdatapath 
Record used to hold plotting information on the horizontal routing path 
for variables in the cell representation. 

- PrimCell 
Record holding details of the cell definition for the arithmetic 
opera tor. 

- JoinReqd 
Selector indicating if a join cell is associated with the cell. 

1. JoinReqd = TRUE 

1. - join 
Record holding the co-ordinates for the upper left hand 
corner of the join cell. 

2. - joinhght 
Height in 'grid' units of the join cell. 

F.B XprsnOpUnit 
A record defined for holding information regarding the graphical 

(cell) definition of an arithmetic operator. The information held in the 
fields of this type of record relates to the placement of the cell, its 
dimensions, and the co-ordinates of the inputs and outputs of the cell. 
This information is obtained during the definition phase. 

- Xorig 
The X co-ordinate of the upper left hand corner of the cell 
representation. 

- Yorig 
The Y co-ordinate of the upper left hand corner of the cell 
representation. 

- Height 
The height, in 'grid' units, of the cell representation for the 
arithmetic operator. 

- Width 
The width, in 'grid' units, of the cell representation for the arithmetic 
operator. 

- Vddln 
The co-ordinates of the input port for the power line. 
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- GndIn 
The co-ordinates of the input port for the ground line. 

- ClkIn 
The co-ordinates of the input port for the clock line. 

- CntrlIn 
The co-ordinates of the input port for the control line. 

- CntrlOut 
The co-ordinates of the output port for the control line. 

- UnitType 
Identifies the type of operand being represented by the record. 

- DataInl 
The co-ordinates of the input port for the upper data line. 

- DataIn2 
The co-ordinates of the input port for the lower data line. 

- DataOut 
The co-ordinates of the output data line for the result of the operation. 

F.9 XprsnRec 
A record type defined for holding information on the graphical 

specification and definition of an expression. Records of this type 
represent the tree forms of expressions. These trees are formed by 
manipulating the corresponding Polish forms during the specification 
phase. In the succeeding definition phase the implied structure of the 
tree is used to place a graphical implementation of the expression on the 
conceptual grid. The information generated for this placement is stored 
in this record. 

- InUpper 
Record referencing the left input to the operator node. The input is 
either a variable or the result of a sub-expression. For the former this 
record holds a variable reference number. In the case of the latter the 
details of the sub-expression are referenced by the record. 

- InLower 
Record referencing the right input to the operator node (cf InUpper). 

- Spec 
A record defined for holding the graphical specification information on 
the tree form of an expression. This information is placed in this type 
of record during the transformation of the corresponding Polish form. 
This record identifies the arithmetic operator linking the two 
sub-expressions trees. It also references each variable occurring in the 
left subtree and each variable occurring in the right subtree. 

- Strctr 
Record holding the graphical definition information. (see XprsnCell) 
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