
Algorithm To Layout (ATL) Systems For VLSI Design

M.A. Lynch

NEWCASTLE UNIVERSITY LIBRARY

085 13485 8
----------~--------~--------

Computing Laboratory
University of Newcastle upon Tyne

Newcastle upon Tyne NE1 7RU

April 1986

i

ABSTRACT

The complexities involved in custom VLSI design together with the
failure of CAD techniques to keep pace with advances in the fabrication
technology have resulted in a design bottleneck. Powerful tools are
required to exploit the processing potential offered by the densities now
available. Describing a system in a high level algorithmic notation
makes writing, understanding, modification, and verification of a design
description easier. It also removes some of the emphasis on the physical
issues of VLSI design, and focus attention on formulating a correct and
well structured design. This thesis examines how current trends in CAD
techniques might influence the evolution of advanced Algorithm To Layout
(ATL) systems. The envisaged features of an example system are
specified. Particular attention is given to the implementation of one
its features COPTS (Compilation Of Occam Programs To Schematics).

COPTS is capable of generating schematic diagrams from which an
actual layout can be derived. It takes a description written in a subset
of Occam and generates a high level schematic diagram depicting its
realisation as a VLSI system. This diagram provides the designer with
feedback on the relative placement and interconnection of the operators
used in the source code. It also gives a visual representation of the
parallelism defined in the Occam description. Such diagrams are a
valuable aid in documenting the implementation of a design.

Occam has also been selected as the input to the design system that
COPTS is a feature of. The choice of Occam was made on the assumption
that the most appropriate algorithmic notation for such a design system
will be a suitable high level programming language. This is in contrast
to current automated VLSI design systems, which typically use a hardware
des~ription language for input. These special purpose languages
currently concentrate on handling structural/behavioural information and
have limited ability to express algorithms. Using a language such as
Occam allows a designer to write a behavioural description which can be
compiled and executed as a simulator, or prototype, of the system. The
programmability introduced into the design process enables designers to
concentrate on a design's underlying algorithm. The choice of this
algorithm is the most crucial decision since it determines the
performance and area of the silicon implementation.

The thesis is divided into four sections, each of several chapters.
The first section considers VLSI design complexity, compares the expert
systems and silicon compilation approaches to tackling it, and examines
its parallels with software complexity. The second section reviews the
advantages of using a conventional programming language for VLSI system
descriptions. A number of alternative high level programming languages
are considered for application in VLSI design. The third section defines
the overall ATL system COPTS is envisaged to be part of, and considers
the schematic representation of Occam programs. The final section
presents a summary of the overall project and suggestions for future work
on realising the full ATL system.

ii

CHAPTER 1

CHAPTER 2

2.1
2.1.1
2.1. 2
2.2
2.3
2.4

CHAPTER 3

3.1
3.1.1
3.1.2
3.1. 3
3.1.4
3.1.5
3.2
3.2.1
3.2.2
3.3

CHAPTER 4

4.1
4.1.1
4.2
4.2.1
4.2.2

CHAPTER 5

5.1
5.1.1
5.2
5.2.1
5.3
5.3.1
5.4
5.4.1
5.5
5.5.1
5.6

CONTENTS

INTRODUCTION

TACKLING VLSI DESIGN COMPLEXITY

THE EMERGENCE OF A DESIGN METHODOLOGY.
Principles And Origins
Computer Aided Design Approaches

EXPERT SYSTEMS .
SILICON COMPILATION
CONCLUSIONS

AUTOMATED VLSI DESIGN

. 9

. 9
13
16
19
22

A COMPARISON BETWEEN SOFTWARE AND VLSI ENGINEERING 26
Specification Levels 26
Complexity 28
Compilers 28
Operating Systems 29
Differences 31

HIGH LEVEL DESIGN LANGUAGES 33
MODEL 35
STRICT . 37

THE FUTURE 39

POSSIBLE SOURCE LANGUAGES FOR A FUTURE ATL SYSTEM

PROGRAMMING LANGUAGES FOR VLSI DESIGN
Requirements Of A Hardware Design Language .

AN EXAMPLE VLSI DESIGN: A PATTERN MATCHER CHIP
Design Description
Algorithm Design. ., .

SELECTING A PROGRAMMING LANGUAGE

PASCAL
Pattern Matcher Implementation

OCCAM. ., ..
Pattern Matcher Implementation

SMALLTALK .
Pattern Matcher Implementation

LISPKIT LISP . .
Pattern Matcher Implementation

PROLOG .. .
The Pattern Matcher Implementation

CONCLUSIONS

iii

41
45
46
46
49

52
54
57
58
60
62
67
68
74
75
81

CHAPTER 6

6.1

6.2
6.2.1
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.5

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.3

7.3.1
7.3.2
7.4
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4

CHAPTER 8

8.1
8.2
8.3

CHAPTER 9

THE ROLE OF OCCAM IN VLSI DESIGN

USING OCCAM AS A BEHAVIOURAL SPECIFICATION LANGUAGE
FOR VLSI SYSTEMS 85
ATLAST: AN EXAMPLE ATL SYSTEM 87

Timing Considerations 89
SCHEMATIC REPRESENTATION OF OCCAM DESCRIPTIONS 92

The Occam Subset 93
COPTS: A Schematic Compiler 95

SCHEMATIC OPERATOR CELLS . 97
Variables And Data Lines 102
Communication Primitives 105

SUMMARY 108

GENERATING SCHEMATICS

ABSTRACT CELLS 109
EXECUTION SEQUENCE AND LAYOUT 112

Sequential Behaviour 112
Parallel Behaviour 113

EXPRESSION TREES AND THE LAYOUT OF EXPRESSION
CELLS 115

Defining Layout 116
An Example. 117

SIMPLE CELLS . 121
COMPLEX CELLS 123
IMPLEMENTATION DETAILS OF THE GRAPHICS COMPILER 123

Parse Phase 124
Graphical Specification Phase 125
Graphical Definition Phase 125
Schematic Output Phase 126

RESULTS

A SIMPLE EXAMPLE OF COMMUNICATING PROCESSES
OTHER EXAMPLE PROGRAMS HANDLED BY COPTS
SUMMARY

CONCLUSIONS

129
133
138

9.1 RELATED WORK 145
146
147

9.1.1 Occam To CMOS
9.2 FUTURE WORK

APPENDIX A REFERENCES . 154

APPENDIX B THE PATTERN MATCHER IMPLEMENTATIONS 161

iv

APPENDIX C THE SYNTAX OF THE OCCAM SUBSET 171

APPENDIX D MORE EXAMPLE SOURCE PROGRAMS 173

APPENDIX E PROGRAM DOCUMENTATION 179

APPENDIX F IMPORTANT RECORDS AND THEIR FIELDS 198

v

CHAPTER 1

INTRODUCTION

The 1980's have seen the realisation of silicon chips containing in

excess of 1,000,000 transistors. The term very large scale integration

(VLSI) is used for the technology required to produce them. Densities

are further expected to increase by at least another factor of 10 before

the limits of the technology are reached. A wide variety of complete

systems with enormous computing power are now being designed and laid out

on a single chip e.g the IMS T424 transputer chip [4] developed by INMOS.

The dawn of the VLSI era has also seen an interest in a whole range of

special purpose chips, typically designed to function as peripheral

devices attached to a conventional host computer. The motivations behind

the design of such chips are two fold. Firstly, there is the emergence

of a design philosophy [47] and design tools aimed at unlocking the

processing potential of VLSI. Secondly, there is the growing belief

[40,65] that a significant portion of the next generation of high

performance computers will be based on architectures capable of

exploiting VLSI modules. In particular, it is desirable to have compact

and inexpensive hosts into which interchangeable high performance modules

can be plugged to fit various application requirements.

- 1 -

Examples of special-purpose chips include: the programmable

systolic chip [38] developed at Carnegie-Mellon University by H.T. Kung

and used to implement various functions including two-dimensional

convolutions for signal processing applications; special purpose chips

for computer graphics developed under the supervision of Henry Fuchs [17]

at the University of North Carolina; and SCAPE: an image processing chip

by Lea [41] and his co-workers at BruneI University.

The new quick-turnaround chip fabrication facilities will sustain

the interest in special purpose chips. Application areas are expected to

broaden and more algorithms previously implemented in software will be

mapped into silicon [39]. The availability of this micro-chip

technology, however, has resulted in a "VLSI design crisis" because of

the complexity involved in the design process. This crisis centres

around the effort (in terms of time and man power costs) required to

translate a behavioural description of what the new chip is supposed to

do into the chip layout implementing this behaviour.

The translation process is achieved by passing through several

levels of abstraction, illustrated in figure 1.1. Each level attempts to

reduce complexity by hiding unnecessary detail. At each level there are

a number of design options that may be selected to solve a particular

problem. For instance, at the algorithm level, the freedom to choose

between a sequential or parallel algorithm is available. At the

architectural level, a designer can select either a bit serial or a bit

parallel implementation. Above the structural level, the definition of

the system is usually implementation independent. During the translation

process a designer typically uses several different design notations,

- 2 -

+---+
I ALGORITHM LEVEL I
I The design is defined in terms of an algorithmicl
I description capturing the characteristics of I
I the underlying algorithm. I
+---+

I
+---+

ARCHITECTURAL LEVEL I
The overall structure of the system implementing I
the algorithm is considered. Parameterised highl
level primitives such as processors, memories I
and I/O devices are used to describe the design. I
The global data flow between these primitives isl
also considered. I

+---+

+---+
I BEHAVIOURAL LEVEL I
I A procedural description of the function of eachl
I high level primitive is given, each being I
I considered as an autonomous system. I
+---+

+---+
STRUCTURAL LEVEL

Each of the subsystems is described,
possible, as a collection of defined
blocks - e.g. RAMs, ALUs, PLAs etc.
relationships are identified.

where
structural
Timing

+---+

+---+
LOGIC LEVEL I

Individual functions are defined in terms of
combinational logic and storage devices.
Signal transitions are described.

I
I
I

+---+

+---+
I CIRCUIT LEVEL I
I Combinational logic and storage devices are I
I decomposed into groups of transistors. I
+---+

I
I

FABRICATION

FIGURE 1.1: THE DESIGN PROCESS.

each aimed at representing a particular level of abstraction. The

- 3 -

designer has to verify the equivalence between the successive

descriptions.

There has been a substantial growth in the number of CAD synthesis

systems developed to meet the challenge of this crisis. However, the

majority of these "tools" are oriented towards the transformation of

design descriptions at the lower levels of the design process. Their

effect has been limited, since the capabilities they offer are badly

matched to the sheer complexity now available.

A lack of VLSI design expertise also contributes to the design

bottleneck, since present CAD tools are "passive". That is, no

assistance is given in design decision making. Designers are expected to

have gained some VLSI expertise, enabling them to make such decisions.

Without some method for reducing the inherent complexity of designs, the

ultimate benefits to be offered by the technology will remain

inaccessible.

To date, silicon area has been regarded as a limiting factor in the

implementation of a VLSI design. However, if the expected densities of

10-million transistors are achieved, effectively 10 times today's area

will be available. This means that for many designs silicon area will no

longer be a limiting factor. It is argued that this will remove the

current emphasis on layout optimisation thereby reducing the design time

and design cost. The possibility of the removal of this emphasis, or at

least a reduction of it, has led to an interest in integrated design

systems aimed at decreasing design times by automation. One of the most

important features of these systems is that a single circuit description

is used throughout the design process, ensuring that the same circuit is

- 4 -

laid out on the chip as was originally conceived. These systems can be

categorised as either knowledged based, or compilation based. The former

use AI approaches to the solution of some of the many problems connected

with the design of VLSI chips. In the case of the latter the trend is

towards a general purpose design system providing an integrated

environment similar to that currently found in software systems.

Both techniques have promise of providing a significant improvement

on the traditional graphical based CAD tools. Currently, they are aimed

at supporting the designer from the structural/behavioural level.

Advanced powerful Algorithm To Layout (ATL) systems are required to fully

exploit the processing potential available. Such systems must be capable

of transforming an algorithmic description of a design into an actual

layout implementation. This thesis considers the selection of an

appropriate algorithmic notation for a future ATL system. The approach

adopted here was to select a conventional programming language. This

removes the need to define and support a special-purpose hardware design

language capable of supporting algorithmic descriptions.

The material presented in the thesis gives a background to the

environment in which an ATL system would serve. In particular,

motivations for the future development of such systems are identified.

Current trends in CAD techniques are examined to see how these might

influence the evolution of ATL systems. Also, the reasoning behind the

choice of the programming language Occam as the source code to an example

system are given. This system is called ATLAST (Algorithm To Layout

ASsisTant) and is major features are is specified. Finally, the first

practical steps toward ATLAST's realisation are presented.

- 5 -

To begin with, Chapter 2 summarises the major features of a VLSI

design methodology that has emerged to tackle the problem of design

complexity. This chapter also compares the CAD techniques of silicon

compilation and VLSI expert systems, both of which incorporate design

knowledge. In Chapter 3 parallels are drawn between software engineering

and VLSI engineering. These parallels relate the motivations behind the

evolution of today's software environments to the future development of

design languages and their automated translation. A brief review of the

history of these languages is given and the characteristics of two

example languages, MODEL and STRICT, are summarised.

Chapter 4 considers the emerging trend of incorporating programming

mechanisms into design languages. The advantages of using a conventional

programming language in VLSI systems design are considered. A means of

identifying which of the many available languages is the most suitable

for a hardware design role is presented. This requires assessing the

ability of a number of languages (PASCAL, Occam, SmallTalk, Lispkit Lisp

and Prolog) to capture the characteristics of an example design. These

languages between them represent most of the important categories of

programming language. A pattern matching chip, an example of a special

purpose VLSI chip, is selected to test their ability. In Chapter 5 each

of the selected languages is used to describe this design and a choice

made.

Chapter 6 considers the role of Occam in VLSI, in particular, the

advantageous of using the language for specifying the behaviour of VLSI

systems. The features of a future ATL system (ATLAST) based on Occam are

specified. One of the most important issue in its future implementation

- 6 -

will be the mapping of the execution sequence of Occam programs into an

appropriate hardware model. The self timed and clocked (synchronous)

models are considered. The work to date has concentrated on the the

translation of Occam programs into a suitable intermediate graphical

(schematic) representation. A compiler capable of translating a limited

set of Occam programs into schematic diagrams has been developed. Its

approach for extracting topological information from source programs

together with brief details of its implementation are discussed in

Chapters 6 and 7. The results obtained so far are presented in Chapter 8

and their limitations and implications are considered.

Chapter 9 summarises the work in this thesis and examines related

work. Some suggestions for future work on VLSI design systems based on

Occam are also given.

- 7 -

CHAPTER 2

TACKLING VLSI DESIGN COMPLEXITY

Before advances in technology made very large scale integration

possible, it was usual to design and fabricate an integrated circuit of

up to a few thousand gates of 'random' logic. This level of integration

is commonly referred to as large scale integration (LSI). There are a

variety of design styles available to support the LSI designer in the

task of implementing designs. These range from full custom design to

semi-custom design using gate arrays and standard cells. Since VLSI is

more than just an extension of LSI, the LSI design styles alone are not

sufficient for implementing VLSI designs. In VLSI design different

issues such as complexity, internal structuring, and communication become

relevant. Also, in the design of custom special-purpose VLSI chips

flexibility becomes a key issue.

VLSI technology allows complete systems to be laid out on the

unstructured domain of a single silicon chip. The designer can take

advantage of this freedom to utilise the processing potential offered by

the medium. However, design complexity arises from this excess freedom

and the wide variety of representations offered by the silicon domain.

- 8 -

Complexity is a serious limitation on the implementation of random logic

in VLSI designs. A suitable design methodology and set of design tools

are essential if the designer is not to be overwhelmed by the problem.

One approach is to restrict the designer to certain architectural styles

and control the alternatives available in implementing a design. This

chapter considers the use of a structured design methodology as such an

approach for tackling design complexity. Also, the role of of computer

aided design tools in tackling design complexity is reviewed. These

tools are discussed in terms of traditional and future approaches.

2.1 THE EMERGENCE OF A DESIGN METHODOLOGY.

The complexities now involved in designing and debugging very large

scale integrated systems can, it is generally agreed, only be managed by

adopting some type of regular, structured design methodology. One

approach, which has gained considerable recognition, was first formulated

by Mead and Conway [47]. It represents a marked departure form earlier

LSI approaches since the emphasis is moved from logic-level design to

layout of more complex elements from symbolic descriptions or even high

level behavioural descriptions.

2.1.1 Principles And Origins

The Mead and Conway methodology for VLSI system design was strongly

influenced by the structured programming approach stimulated by Wirth

[77], Dijkstra [13], Jackson [32], and others. The main features of the

structured programming approach are:

- 9 -

1. Stepwise Refinement

The creative activity of programming is considered as a stepwise

refinement process. In each step, a given task of a program is

decomposed into a number of simpler sub-tasks.

2. Modularity

The degree of modularity obtained by refinement determines the

maintainability (with respect to change in objectives and/or

additions to its purpose) and portability of a program.

3. Notation

A notation natural to the problem should be used as long as

possible during the process of stepwise refinement. Decisions

which concern details of representation should be deferred as

long as possible.

4. Design Decisions

Each refinement implies a number of design decisions based upon

a set of design criteria (such as efficiency, clarity and

regularity of structure), and the existence of alternative

solutions. Decisions should be decomposed as much as possible.

This method has many advantages including: simplification by

partitioning the program into small manageable segments (procedures,

modules, or subroutines), writing and testing each segment independently,

and producing more understandable programs. These advantages are

achieved by placing restrictions on the programmer. However, the wide

spread use of structured programming languages has shown that a

structured methodology has given benefits far outweighing those that were

- 10 -

removed by the restrictions imposed on the programmer.

The four features outlined above were used by Mead and Conway as the

beginnings of a "top down, bottom up", structured design methodology for

VLSI systems. Their approach makes use of:

Hierarchical Decomposition

This corresponds to stepwise refinement. The technique of "divide and

conquer" has long been used to design complex systems in a variety of

fields. In applying it to VLSI design, the designer first partitions the

overall system into a number of functional blocks. These are then

recursively decomposed into sub-functional blocks until manageable

segments of design are reached. The geometric shapes, relative sizes,

and interconnection topologies of all these primitive segments are

planned. Then, the system is constructed from the bottom, by assembling

the segments, with a minimum of space and time wasted by interconnect

wiring. A system designed in this fashion is seen as a hierarchy of

building blocks, from the very lowest level device and circuit constructs

up to the high level functional blocks.

Regularity

The design problem is simplified if regularity is introduced into the

system. Regularity reduces the total number of different modules that

have to be designed. Using this technique results in designs which

exhibit one or more of the following properties [37].

(a) The system is implemented by only a few different types of

simple cell.

- 11 -

(b) The system's data and control paths are simple and regular, so

that the cells may be connected by a network with local and

regular interconnections. Long distance or irregular

communication is thus minimised.

(c) The system uses extensive pipelining and mUltiprocessing. In

this way a large number of cells are active at one time so that

the overall computational rate of the simple cells is high.

Abstraction

In this top down, bottom up approach the chip is viewed at a number of

different levels. Abstraction, by a set of simplifying assumptions, is

used to hide the lower level details of a component. Through abstraction

the designer is able to focus attention on the high level design tasks,

without concern for irrelevant detail. Abstract descriptions have

simpler specifications than complete solutions and are generated more

quickly. Boundaries (interfaces) between levels should be well defined,

and kept as simple possible to avoid merging design issues. The use of a

bounding box with input and output ports is a common example of

abstraction. Such boxes are referred to as "cells". In the simplest

case they are an abstraction from the geometry implementing a primitive

function.

Notation

There are a number of possible levels of representation for circuits,

ranging from symbolic layout geometry to textual descriptions. The

notation used is very important since an inappropriate choice can make

the design task more difficult. It should capture the features and

- 12 -

structuring properties of the implementation medium. Productivity is

improved by using high level notations, as these are concise and easier

to understand.

A design methodology in itself is not enough to overcome design

complexity. Mechanical aids incorporating design methods are required to

help the designer. Computer Aided Design (CAD) tools [52] are used to

provide considerable assistance in the design process. By making use of

the power and accuracy of computers in mapping design ideas to silicon,

these tools enhance the creativity of the designer.

2.1.2 Computer Aided Design Approaches

The traditional CAD approach in VLSI design is characterised by the

designer making all design decisions. The approach gives the designer an

efficient environment in which to implement such decisions, by providing

graphic editors, design verification and simulation tools, and databases.

These tools encourage the designer to practice a design methodology, such

as the one outlined above.

Designs are decomposed until seen in terms of primitive building

blocks (cells). Symbolic layout tools are used to make the design of

these cells more efficient and easier. Symbols, representing gates and

interconnections, are sketched out on a display device and manipulated by

means of a graphic editor. These symbols are then automatically replaced

by the appropriate geometries for implementing the represented function.

Primitive cells are assembled to form larger cells in the bottom up

construction. This involves placement and routing of interconnections.

Automatic layout programs are available. Usually there is a tradeoff

- 13 -

between area and design time in this stage of the design. This tradeoff

determines the amount of human design effort required and the extent to

which automatic design methods can be used. Design verification tools

are used to check for human design errors. For example, a design rule

checker is a commonly used tool. It ensures that the dimensions of the

shapes and their relationship with other shapes in the layout comply with

predefined values. Simulation tools then check that the derived layout

implements the intended logic function of the circuit.

The advantage of this approach is that it can result in designs

which are of high quality, since humans are very good in optimising

designs. The major disadvantage is that the human designer is slow and

error-prone. Also, the design tools are totally dependent upon the

expertise of the designer. They are limited by the fact that they are

based on graphical input. The approach places the emphasis on layout and

a 'bottom up' design style. Higher levels of abstraction are needed to

tackle the complexity of designs which can now be implemented. Textual

descriptions, in formal hardware description languages, are more powerful

than symbolic representations since they are capable of supporting a

structured top down approach. These limitations have led to an interest

in approaches supporting textual design descriptions and which

incorporate "design knowledge". Two approaches are being proposed: VLSI

expert systems and silicon compilation.

A VLSI expert system (see section 2.2) is centred around a knowledge

base, holding design expertise in the form of design rules. Such a

system "assists" the designer in the design process by providing expert

advice. It tackles local design issues and implementation details,

- 14 -

freeing the designer to concentrate on global issues. Expert systems are

intended to be less error-prone than traditional CAD techniques and more

efficient than the human designer. In order to achieve these

improvements a comprehensive knowledge base accumulating the experience

of many experts is required. Knowledge can be incrementally added, and

new design styles and new architectural concepts can be catered for by

including additional design rules in the knowledge base [18). High

density designs can be handled, but with a corresponding increase in

design time.

Complete design automation is implied by silicon compilation (see

section 2.3). The philosophy behind this approach is that design

knowledge is algorithmic and translators can be written to synthesise a

solution, or part of one, automatically from a high level description.

Such an approach is completely opposite to the traditional and expert

system approach, since the human designer is replaced rather than

assisted. A complete design automation system significantly shortens

design times. However, the cost of reduced design times is measured in

terms of the excessive use of silicon area.

An interesting approach to the synthesis of data paths and control

sequences from an algorithmic description is under development at AT&T

Bell Laboratories [36). Researchers have combined expert systems with

algorithmic approaches to automate as much as possible of this synthesis

process. Their design strategy is to break the integrated circuit design

process into stages, and implement each stage as programs. Some of these

programs are expert systems, while others are compilers. The former are

used for high-level hardware synthesis such as quality floor planning,

- 15 -

whereas the latter are used for the lower stages of chip design

e.g. layout and placement.

2.2 EXPERT SYSTEMS

Expert systems have been developed by researchers in artificial

intelligence to help solve non-numeric problems. These system attempt to

construct a model of the human ability of pattern recognition. The

essential feature of such a model is that problems can be solved by

recognising patterns and linking previously obtained solutions.

Sufficient "processing power" is now available in today's computers to

apply this approach in VLSI design [1,25].

A VLSI expert system is capable of providing solutions to a range of

design problems. A top down, incremental refinement design process is

supported by using mUltiple abstraction levels for system description.

Such an approach provides design leverage by enabling a designer to deal

with critical issues early and across the breadth of a design. Usually

these systems consist of two components: a design knowledge base, and

inference mechanisms to manipulate it. The knowledge base is a set of

rules and facts summarising design expertise. Symbolic expressions are

used to embody expertise and represent the rules and facts. Inference

mechanisms are programs which direct the system in its search for a

particular solution. Traditionally symbolic languages such as Lisp have

been used to implement these systems, but logic programming languages are

expected to replace these languages [26].

- 16 -

Palladio [7,60] is an example of an integrated VLSI expert system.

It uses mUltiple description levels similar to those employed by Mead and

Conway. Incremental refinement of design specifications is supported,

with periodic validation of the specification by simulation. Knowledge

base design aids perform some of the refinement necessary to move from an

abstract description level, termed a perspective, to a more physical

circuit specification. The multiple perspective framework provided by

Palladio simplifies the implementation of such expert systems. The

design aids provide the designer with feedback on the consequences of

circuit refinement decisions, quickly enabling him to avoid unnecessary

layout errors.

A Palladio perspective is either structural or behavioural. This

explicit decoupling of behavioural concerns from structural concerns

allows a user to adopt a modular design style. Each perspective has a

set of terms and a set of composition rules. Terms define the allowed

types of subsidiaries which can be used to describe a component with

respect to a particular perspective. Composition rules limit the way in

which terms can be interconnected and combined. The concerns of each

perspective are characterised by specific classes of bugs that can be

avoided when the composition rules are followed. A design is first

specified at a high level architectural perspective, and then

incrementally refined with the help of a set of integrated knowledge

based tools to a symbolic layout perspective.

An expert systems approach should capture more of the creative

design process than the traditional or silicon compilation approaches and

so should produce better designs [64]. The multi-level representations

- 17 -

typically supported allows design tradeoffs between more detailed

modelling and model simplification. In addition, an expert systems

approach enables formal verification of transformations from one

representation to another. Feedback from the lower levels can be used to

control high level synthesis. It is easy to add rules since the

knowledge base is separate from the inference mechanism. Performance

improves as knowledge is added.

Specifying knowledge as symbolic rules and facts make such systems

easy to understand. With a knowledge based system it is possible to

automatically generate an explanation of how it derived its solution.

For example, the program may indicate the chain of "if-then" rules which

was used to make a decision in the design of some circuit element. Also,

the approach supports easy interaction with a designer. These features

simplify the task of determining what is incorrect or incomplete about

the system's knowledge base.

A few expert systems have been developed for design tasks, for

example DAA [36], VEXED [48], REDESIGN [61], and Fujistu's computer aided

logic design system [67]. However, a generic framework for constructing

such systems is yet to emerge. Current VLSI expert systems are slow,

requiring considerable amounts of CPU time. For efficient designs the

knowledge base required must be large and comprehensive. Moreover, the

rules of thumb that a human expert designer uses are often very difficult

to quantify and to express in a form that an expert system can use.

Additionally, VLSI design is an emerging art with, as yet, no formal

design methodology. This makes it difficult to express explicitly all

the reasoning and background knowledge used by good designers.

- 18 -

Experience with expert systems is limited, it is still a very new field

with more research needed. One of the most promising applications of

expert systems is in front-end design. This is an area where very few

design aids have previously existed other than limited simulation

techniques. For example, the work of Kowalski of CMU on a VLSI Design

Automation Assistant uses an expert systems approach to manipulate one

level of design description into a lower level [36]. Expert systems and

logic programming languages such as Prolog can also be used to solve some

basic VLSI design problems in the areas of design for testability,

functional simulation, fault diagnosis, and automatic test generation

[30].

2.3 SILICON COMPILATION

The term silicon compilation was first introduced by Johannsen [34]

to describe the concept of assembling parameterised pieces of layout. A

silicon compiler can be defined as a design tool that automatically

translates a high level functional or behavioural description of a chip

into a layout implementation [75]. This translation is usually seen as a

two step process. Firstly, a brief high level description of a design is

translated into an expanded intermediate description, which is still

implementation independent. Then a chip layout is generated

automatically from this description. An "ideal" silicon compiler would

work on a general class of designs, cater for many design techniques, and

not restrict the architecture that designs are implemented in.

- 19 -

The technique of silicon compilation creates design leverage [35]

by: keeping the design activity at a high level; allowing quick

architectural exploration of design alternatives; synthesising

intermediate views of the design from one common abstraction; integrating

the support tools (e.g. simulators, layout generators etc.); and allowing

an incremental or successive design approach. Of great importance is the

source language. This is the language in which the designer describes

the behaviour to be performed by the integrated circuit. A source

language for silicon compilation must [3] provide:

1. a means for directly specifying behaviours that are supported in

the target silicon (e.g. parallelism);

2. overall integrity so that the language remains a language of

behaviour, rather than merely a language of layout.

Many of the software systems classed as silicon compilers are more

accurately described as structure compilers. Essentially, these

compilers remove the logic description stage and circuit-design stages

for some finite set of functions, or operators. Their source codes are

hardware description languages which are usually restricted to a high

level structural description of a number of the implemented functions.

Often, the syntax and semantics of these languages resemble those of

assembly languages. Consequently, they have limited usefulness, since it

is difficult to write a valid description of any significant length or

complexity. Moreover, the structural information users are required to

provide can be at an extremely detailed level.

- 20 -

Some of the silicon compilers in use today do produce a layout

description from a behavioural description of a design. However, in

order too achieve this, the design problem has been simplified. Instead

of handling a wide variety of design styles, designs are implemented in a

"target" architecture. Examples of this approach are: Dumbo [78] which

implements a standard cell array architecture, MODEL [23] which uses a

gate array architecture, FIRST [6] which derives a bit serial

architecture, and the Data Path Generator [57] for constructing a

standard data path architecture. This simplification makes mapping

straight forward, enabling results to be produced quickly. Their source

codes cannot be classed as general purpose circuit design languages as

the semantics of the languages reflect specific architectures.

MacPitts [59], for example, supports routines which automatically

synthesise a Data Path from an algorithmic description of a design. It

is aimed at designs which can utilise parallelism in such an

architecture. MacPitts allows a designer to specify an algorithm as

though completely general and sufficient parallelism existed in the data

path of some general purpose computer. Then, the MacPitts compiler

derives the minimum hardware micro-programmed machine which executes that

parallel algorithm. The compiler consists of routines at two levels.

The higher level routines extract a technology independent intermediate

level description in terms of data path specifications, control

equations, and state assignments. The lower level routines translate the

intermediate description into mask data. The resulting structure is

topologically similar to any micro-programmable machine's architecture.

- 21 -

2.4 CONCLUSIONS

There are two distinct and opposing views on the future impact of

silicon compilation [74]. On the one hand, chip layout is regarded as

analogous to deriving machine code from a high level program. By

enabling a chip design to go from a high level description to a layout,

via a compiler, the IC development effort should be reduced by a factor

of perhaps 20. The opposing view holds that chip design has nothing to

do with the problem of writing software. Software is a one dimensional

problem, whereas chip design is a two dimensional one. The routing and

placement skills of a human designer can never be matched by automatic

techniques - total automation is just inappropriate. Instead, CAD tools

should support the human designer who directs the design. An expert

systems approach captures more of the creative design process and so

produces better designs.

Certainly, in the commercial field there is a competitive need for

optimum performance in terms of speed and area used. On commercial

scales of production the overheads incurred through manual optimisations

can be recouped for viable chips. Current silicon compilers can produce,

at best, design two or three times as large as manual designs. They are

limited in application by the simplification of adopting target

architectures. Experience in implementing such compilers is limited.

However, as more experience is gained, researchers in the field are

optimistic that technical problems will be overcome. Compilers are

expected to improve until they are competitive with traditional

techniques, and ultimately surpass them.

- 22 -

Here, silicon compilers are not seen as a tool which can replace the

need for skilled VLSI design engineers. Rather, they are seen as tools

which will bring the following benefits.

1. Reduce Costs

An efficient compiler with a wide range of application will

greatly reduce design costs and times. This will make the

design of "one-off" special purpose VLSI chips more feasible.

Reducing costs and times will also stimulate designs in smaller

establishments with no large system production facilities.

2. Serve as ~ training tool

VLSI designers are skilled engineers. Their skills are obtained

through training and hands on experience. Any tool which could

shorten the learning period is advantageous. A silicon compiler

would enable a designer to quickly discover design approaches

and quickly become familiar with architectural concepts.

3. Expand Application Areas

High level software compilers have made the underlying hardware

much more usable. As a result, application areas have vastly

expanded and diversified. High level silicon compilers will

also make the micro-chip technology much more accessible to

people in other fields (i.e. non VLSI design specialists). The

range and function of special purpose chips will therefore

expand rapidly.

- 23 -

4. First Time Right Implementations

Providing the compiler has been verified, complete automation

implies 'correctness by construction' and so the silicon

produced is guaranteed to be correct.

The impact of silicon compilers has so far been limited [15]. For

the technique to gain a greater acceptance the simplification of

restricting a compiler to a specific architecture needs to be removed.

Also, higher levels of abstraction for design descriptions need to be

supported. An automated tool based on a high level design language and

capable of handling a wide range of applications is required. One

approach to realising such a tool would be to develop a single general

purpose compiler capable of solving all a designer's problems.

Alternately, several special purpose compilers could be integrated into a

single design system. Such a system would take an algorithmic design

description and transform it into an intermediate structural/behavioural

description. This description would serve as a common form of

abstraction for the compilers. Each compiler would be dedicated to a

particular architecture, with the complete suite of compilers

representing the various important architectures. A system of this type

is defined here as an Algorithm To Layout System. In effect such systems

are "high level silicon compilers". The next chapter considers how

techniques used in software engineering and the evolution of design

languages might influence the development of such systems.

- 24 -

CHAPTER 3

AUTOMATED VLSI DESIGN

The current VLSI design complexity crisis is very similar to the

crisis faced by software engineers at the end of the 1950's. Their

response was to move from assembly languages to "high level" programming

languages, such as FORTRAN and COBOL. An essential feature of this move

was the development of the technique of software compilation. The degree

of complexity which could then be tackled was greatly increased.

However, the unstructured nature of these early programming languages

meant that the complexity problem was not removed, only pushed further

back. Consequently, very high level programming languages and

corresponding compilers evolved. Such languages attempt to reduce the

complexity problem further by supporting design methodologies,

structuring techniques and documentation styles.

This chapter compares VLSI design with software design, and

identifies software techniques which can be transferred to the VLSI

design domain. Next, the development of hardware description languages

is reviewed. Finally, the emerging trend towards high level design

description languages is considered in connection with the development of

- 25 -

the technique of silicon compilation.

3.1 A COMPARISON BETWEEN SOFTWARE AND VLSI ENGINEERING

Software and VLSI designers share a common goal - layout. The

software designer lays out a one-dimensional array of memory, whereas the

VLSI designer lays out a two-dimensional area of silicon. For both,

various constraints must be satisfied in order to obtain a working

product. Also, in each case, there is a design path from a system

specification to its actual implementation. Over the past twenty five

years a software discipline has evolved to support the translation

process involved in the design path. Recently, a VLSI design discipline

has also evolved, but compared to that for software it is still in its

infancy. Techniques similar to those developed by software engineers are

being re-discovered by VLSI engineers, which suggests that a number of

parallels can be drawn in their route from specification to

implementation [28,54]. If the evolution of the VLSI discipline is

regarded as analogous to that for software, then many of the lessons

learnt in the software domain can be transferred to the VLSI domain.

Some of the parallels between the two will be explored in this section.

3.1.1 Specification Levels

Today's programmers have powerful compilers which generate

executable machine code from specifications written in very high level

programming languages. These languages have evolved from the first

machine languages via assembly languages and then procedural languages.

Each new generation brought with it a higher level of abstraction of the

- 26 -

system under design. In the early days attention was focused on physical

issues at the the assembly language and machine instruction levels

because memory layout was a serious limitation. Coding was a time

consuming and error prone activity. Technological advances lessened the

physical memory constraints and, freed from this bottleneck, the ambition

of the systems designed increased. However, the low level of abstraction

offered by assembly languages restricted the complexity of designs which

could be tackled in a realistic time period. This restriction was

overcome by the development of automated tools - software compilers.

Compilers translate an abstract specification into low level assembly or

machine code.

It appears that a similar hierarchical evolution is occurring in the

VLSI domain, but at a faster pace. Chapter one identified several levels

of design specification in use. VLSI designers have tended to

concentrate their effort at the lower levels of abstraction. Again this

is due to a physical constraint - chip area. Recent advances in the

scaling technology are beginning to lesson this constraint, enabling

designers to implement much more complex systems in the same chip area.

As their software counterparts discovered, low levels of abstraction

severely limit the complexity which can be tackled. Consequently the

higher levels of specification are taking on more significance. Just as

the higher level programming languages have evolved as the basic building

blocks of software engineering, so perhaps will higher level design

description languages become the building blocks in VLSI engineering.

For this to happen, the translation technology needed to support such

abstractions must mature.

- 27 -

3.1.2 Complexity

During the 1970's software complexity increased to the point where

the system specification phase became critical. ~ith the ever-increasing

size of software projects being undertaken, design techniques became the

predominant area of software research. Structured top down techniques

enabling designers to think in terms of "function" rather than "code"

replaced bottom-up software techniques. These techniques impose

constraints upon the designers to help solve the problem of complexity.

The problem of complexity at the system level has already been

encountered in the VLSI domain. Semi-custom design techniques developed

by LSI designers are not applicable for systems with the complexity of

VLSI. This is because the building blocks (e.g. cells) used in these

techniques are too small to serve as a starting point. Top-down

techniques as used in software have already being adopted. The use of a

top down approach for VLSI design was considered in the previous chapter.

3.1.3 Compilers

The complexity and scope of designs that can now be tackled by

software engineers have been accomplished by advances in compilation

techniques. Such techniques have matured to the point where parsers can

be automatically produced from formal descriptions of the language to be

compiled. Software compilers map high level descriptions down to the

level of the actual implementation (assembly or machine code level). In

this mapping process many errors are caught before execution through the

use of techniques such as type checking. In addition, optimisation

techniques, which are an intrinsic part of compilers, result in object

- 28 -

code whose performance is comparable to manually generated assembler code

for most applications. Compilers produce this code far more quickly and

reliably than any programmer. However, skilled programmers, willing to

devote a large amount of time, can still outperform compilers by a factor

of 2 or 3 in small program segments. This effort is only justified if

there are hard constraints such as real-time requirements or the need to

fit a program into a limited amount of main memory.

The compilation technique is also being applied in the VLSI domain,

but current silicon compilers are nowhere near as advanced as their

software counterparts. Software compilers map from the programming level

to the machine level, whereas silicon compilers map from the design

description level to the geometry level. The machine level is

characterised by a one-dimensional array of memory and sequential

activity in the time dimension. The geometry level is characterised by

two spatial dimensions (even three dimensions) and a set of concurrent

operations in the time dimension. The mapping for hardware is therefore

far more complicated and involves significantly different problems.

Current silicon compilers use simplifying assumptions (e.g fixed

geometry) which ease their task, but limit their application.

3.1.4 Operating Systems

The productivity of software designers and the magnitude and

complexity of systems implemented has increased dramatically over the

last twenty five years. In part, this has been due to the advances in

programming languages and compilers. But the increase can also be

attributed to the development of operating systems (O/S). OIS enable

- 29 -

scarce resources such as the memory and the central processing unit to be

shared among a number of users in a manner transparent to each user.

Each user is provided with a virtual machine. They relieve users of

redundant coding of commonly used functions. The global throughput is

improved although individual performance is occansionally sacrificed.

They provide an integrated software environment in which a user can

interact with a wide variety of tools e.g. compilers, editors,

debuggers, databases, filing systems etc. The entire software

development process is supported by O/S.

Integrated VLSI design environments are starting to receive

attention and there are aspects of operating systems which may be

applicable in the VLSI domain. Smith and Dallen [58] suggest that a

"Silicon Operating System" (SOS) might:

1. Improve designer productivity by allowing large numbers of

designers to share (or work on) the same chip without concerns

about the effects on other designers, or physical limitations.

As in software O/S, the need to re-implement commonly used

functions would be eliminated.

2. Provide a medium in which design components could be integrated

to form a VLSI chip.

3. Handle some of the implementation details, such as timing

(synchronisation) constraints, chip input and output, and the

assignment of components to physical areas of a chip.

- 30 -

In such a SOS, designers of individual components would work with

virtual chip area (cf. the virtual machine in software O/S), and would

not be concerned with the components physical location, its position

relative to other components it interfaces with, or their relative speed.

A "chip area manager" would be responsible for assigning (placing)

components to physical areas on the chip and the communication (routing)

between components. Constraints on the maximum amount of virtual chip

area allocated to a design component and guidelines for its aspect ratio

would probably have to be made for the approach to be realistic.

3.1.5 Differences

Several software engineering techniques have been identified as

being readily applicable to VLSI design. However, to conclude this

section some of the problems specific to the VLSI field must be outlined.

These problems arise out of the two dimensional nature of integrated

circuits and the need for physical interconnections between components.

In software implementation programmers need not (usually) concern

themselves with the overhead of jump (GOTO) instructions, since they cost

only the memory required for the jump instruction itself. The distance

between the location of the instruction and the target address in no way

effects either execution time or the amount of memory used. In contrast

a silicon jump between communicating components requires area for the

connecting "wire", and time for signals to propagate. For two components

with a high interaction, physical proximity is crucial since the

overheads for long, high bandwidth interconnections are severe.

Furthermore, a connecting wire must be routed to avoid obstacles and

- 31 -

prevent unwanted short circuits. A software jump has no obstacles.

The wire carrying a signal may be represented on anyone of several

layers. At some point, a signal has to change layers in transit and this

requires a complex of three or more shapes to make the transition. In

software all locations in memory are on the same layer. Wires must also

compete for chip area, which places topological restrictions on

implementations. There are no equivalent restrictions in software.

Re-arranging software procedures (components) is easily done with

the use of an editor. Changing the placement of a component in a layout

is much more difficult. Very few design tools re-route the attached

wires automatically when a block is moved to a different position in the

chip floorplan. Graphical editors for two dimensional layout are still

in the research stage. Also, changing the size and shape of one

component may require a change in neighbouring components. Changing the

size of a software procedure has no effect on other procedures unless

memory size is very limited.

The software design process is characterised by short iteration

times. Once a program is completed and its syntax is correct it can be

compiled and executed. Logical errors can be quickly discovered by

running the program. Debuggers are available to help designers track

down less apparent errors. The performance of the program can be

evaluated by time measurements and the effects of modifications quickly

discovered. Software is maintainable - changes to a program's

specification can easily be accommodated. The very long iteration times

in the VLSI design process give designers limited scope for

modifications. The effect of a minor design change can take weeks to be

- 32 -

seen in a finished chip. Lengthy simulations are required to detect

errors and give performance estimates. Why a particular chip does not

meet the required specification may have to be guessed at or deduced from

indirect evidence. As yet, there is no equivalent of a debugger for VLSI

chips. Once committed to silicon there is little designers can do with

regards to changes in a chip's specification. In short, the pressure on

the VLSI designer is to get it right first time.

By supporting high level structured specifications and providing an

integrated design environment incorporating tools utilising the

techniques of compilation, ATL systems will increase the chances of

achieving 'right first time' implementations. In addition ATL systems

will support fast design turnaround time. The algorithmic notations used

by these systems will replace the current design languages now being

used. In the next section the evolution of these languages will be

reviewed in order to gain an insight into the expected features of the

algorithmic design notations. These will then be considered in the next

chapter.

3.2 HIGH LEVEL DESIGN LANGUAGES

The emergence of a design methodology was reflected in the

development of layout languages. Originally, these languages were very

low level (e.g. elF [47]). However, they allowed the user to design in a

more structured and regular manner than had previously been available.

These features enhanced the creativity of the designer. The basic idea

behind layout languages was the arrangement of geometric shapes into

patterns which represented the integrated circuit being designed. The

- 33 -

low level of abstraction offered by these languages made them tedious to

use and as a result design descriptions were error prone. These

languages were improved by embedding procedure calls to generate layout

information in a high level programming language. This technique made

features such as variables, assignment, iteration and parameterised

procedures available to the designer. An example of this approach is

PLAP [73], which was developed at the University Of Newcastle. This

design tool is based on the programming language PASCAL. The drawback of

this technique is that it is limited to layout concerns. Also, as the

technology advanced, to maximise the increasing densities still required

a considerable design effort.

Gradually, design languages which were independent of the ultimate

layout began to appear. Such languages enable the designer to describe a

design in terms of its behaviour and how this description can be

implemented structurally. These structural/behavioural languages are

similar in philosophy to regular high level programming languages. In a

language like PASCAL, which has a straight forward compiling mechanism,

the programmer has control over the memory organisation during execution,

but not the physical memory elements actually used. Similarly, the

designer using a structural/behavioural language has control over the

organisation of the chip, but not the individual gate elements.

High level languages that allow both behavioural and structural

specifications can be divided into two classes: procedural and

non-procedural. The former includes languages such as MODEL [22] and

VHDL [56] which provide a hardware description in the manner of a

plotting program that specifies the hardware components and their

- 34 -

interconnections (i.e. a net list description). In the later, hardware

is described as a function composed of sub-functions. The composition of

the functions is well-structured and does not allow the unsystematic

specification of interconnections. Examples of non-procedural languages

are: CONLAN [50], ZEUS [19,42] and STRICT [8]. The hardware design

language ELLA [49] supports both explicit net list descriptions and

implicit interconnection of components through functional definitions.

As an example of procedural structural/behavioural languages MODEL will

be examined. STRICT will be examined as an example of non-procedural

languages.

3.2.1 MODEL

The MODEL language [22] was developed to support only structured

designs. Potential ambiguities in the interpretation of design

descriptions are removed by only considering such designs. It is used as

the source language to a silicon compiler, written by Lattice Logic.

Both the language and compiler are in commercial use. Design

descriptions in the language are implemented as semi-custom integrated

circuits using CMOS ULAs. This is in contrast to other design languages

which attempt to support custom designs. It also means the compiler has

a target implementation and is therefore not technology independent.

Descriptions in MODEL are hierarchical. They are translated via the

compiler into an intermediate design file, which is used by a physical

design subsystem to generate masks, test pattern generators, functional

and timing simulators, and placement and routing tools. Descriptions are

easy to read and compact.

- 35 -

The MODEL notation is strongly influenced by the structured

programming style. The fundamental structuring feature is the concept of

a part. A part is a module with one or more input signals and one or

more output signals. Parts can also have numeric parameters. The

definition of a part specifies its internal structure in terms of

instances of simpler parts and their interconnections. An instance of a

part is the use of that part within the definition of a more complex

part. Descriptions express the design of the circuit at a number of

levels, starting with the entire circuit at the top, and descending to

the primitives at the bottom. These levels are represented by parts,

each reasonably small and with a well defined interface. This style

encourages systematic debugging as each part can be tested in isolation.

The style also aids verification as higher-level parts make calls on

existing, tested parts, thus making it easier to verify a part formally.

The language supports two data types: signals and integers.

Signals are the basic objects manipulated by the language and may appear

in one dimensional vectors. The major control structures of high level

programming languages are also supported. These allow parts to be more

than just simple interconnections of other parts. A comprehensive,

parameterised design library adds strength to the language.

MODEL is rather inflexible in that all wiring and connections must

be explicitly stated in the description of the design. That is, there is

no scope for optimisations by hand wiring. Also, the size of the design

is limited, since large or complex designs may not fit onto particular

ULAs because of limitations in channel size. However, the fact that it

has gained commercial acceptance proves that it is a definite improvement

- 36 -

over previous methods for designing this type of architecture.

3.2.2 STRICT

STRICT [8] was developed as part of a joint project between the

Computing Laboratory and the Department of Electrical and Electronic

Engineering at the University of Newcastle. It is intended to provide a

formal, declarative notation for designing structured integrated circuits

in a consistent manner. It was designed for interactive use with a

syntax directed editor. This editor produces an intermediate

representation, which can be transformed into a format suitable for input

to various subsystems, such as layout, simulation, fabrication etc.

The language supports the parallel, sequential and recursive

descriptions of systems from modular components. There are two types of

component: buses and blocks. A bus transmits information of a specific

type from one part of the system to another. A block manipulates

information.

Blocks are constructed from two parts: a specification and an

implementation. A specification defines the interface to the outside

world and describes the block's intended function. An implementation

describes how the block's specification can be structurally implemented.

Each block is designed separately and through typed design parameters can

be tailored to a particular interface specification or hardware

implementation.

- 37 -

A specification is composed of an interface specification and a

block declaration. An interface specification defines the inputs and

outputs to a particular block. These are typed, and can be optionally

positioned on particular sides of the block by using edge identifiers. A

block declaration specifies the function of the block. It includes any

restrictions on the design parameters, declarations for the interface

types, and convenient function definitions.

The implementation of a block is defined in terms of instances of

other blocks, the connection between these blocks, and how they should be

structurally arranged. Connections are made by calling each instanced

block with its input parameters. STRICT uses the technique of strong

typing to produce consistency in the connections.

The language supports a number of standard types, operations, and

functions. User defined types are also supported. This enables the

designer to move to a level of abstraction where complex data structures

can be considered simply.

The declarative and recursive nature of the language simplify the

structuring features required in VLSI design. The level of abstraction

employed hides details concerning pads, power and ground lines etc.

Unlike MODEL inputs are implicitly connected to outputs. The use of a

functional style results in designs which are concise and can be formally

reasoned about. However, the syntax and recursive nature of the language

can make designs difficult to understand. Some architectural concepts

currently employed in VLSI design, such as pipelining, are not catered

for in the version of STRICT examined. Encouraging a designer to provide

a specification before an implementation is, in principle, beneficial.

- 38 -

However, in practice it is often quite difficult for users to distinguish

a boundary between the two.

3.3 THE FUTURE

Design languages have developed from simple "plotting" notations to

sophisticated structural/behavioural notations incorporating high level

programming techniques. Research into the latter is actively being

carried out in both academic and industrial environments. Consequently,

there has been a marked increase in the number of high level design

languages in use. As illustrated by STRICT and MODEL there are also a

variety of styles to choose from. This rapid growth has even led to an

attempt by the American Department Of Defence to introduce a standard

language, VHDL [55]. The decomposition of descriptions in these

languages can be regarded as low level silicon compilation. It is a

significant improvement on structural compilation.

Although structural information in design descriptions is still of

great importance today, purely algorithmic notations are being considered

for the next generation of high level design languages [71]. They are

intended to serve as general-purpose circuit design languages. The

extreme of such a notation would be a high level programming language, in

which the algorithm to be performed by the circuit is written.

Compilation of such a description is regarded as "true" silicon

compilation [68]. With this in mind several programming languages will

now be considered for their potential as the source code to an ATL

system.

- 39 -

CHAPTER 4

POSSIBLE SOURCE LANGUAGES FOR A FUTURE ATL SYSTEM

The trend in VLSI design languages is toward 'programming like'

languages which can support both the behavioural specification and the

structural implementation of VLSI circuit designs. Also, the emphasis is

shifting from structural information to behavioural information as higher

levels of abstraction are used to tackle complexity in system

specifications. Assuming both trends continue they will ultimately

converge at an algorithmic, high level programming language. For this

language to be supported by an ATL system, it must be amenable to a

straightforward translation into a physical VLSI implementation.

Probably the most significant factor in determining the effort involved

in mapping a programming language onto silicon (and hence its suitability

as the source code to an ATL system) is its underlying computational

model. If this model accurately represents VLSI designs and closely

reflects the structural geometry and properties of their silicon

implementations then there will be a direct (i.e. straightforward)

translation process. Key implementation features are: parallelism,

communication, and localised processing.

- 40 -

Chapter 4 first considers the advantages of using programming

languages for VLSI design descriptions. In order to identify which of

the many available languages is the most appropriate, a set of design

criteria are presented and an example VLSI implementation is also

described. In the next chapter several example programming languages

will be used to describe the design. Their performance in a design

description role will be evaluated against the actual VLSI design

implementation and the selected design criteria presented in this

chapter.

4.1 PROGRAMMING LANGUAGES FOR VLSI DESIGN

Programming language structures such as the conditional, loop and

procedure have been recognised by the designers of Hardware Description

Languages (HDLs) as being as powerful for describing hardware as they are

for describing programs. In HDLs loops are used to generate repeated

structures; conditionals are used to build structures depending on the

environment; and procedures are used to describe blocks of related logic.

The advantages of incorporating some programmable capability into HDLs

have also been recognised. Typically, this feature is seen as the

ability of a hardware language to handle arithmetic expressions. Such

expressions can be used anywhere the user might specify a value. In

particular, expressions are used to compute the actual values for formal

parameters of procedures, enabling the designer to develop powerful

general purpose procedures. Programmibility relieves the user of the

task of manual computation and introduces automation into the design

process. More importantly it enables the designer to think in terms of

algorithms. Algorithmic specifications are more direct and natural

- 41 -

descriptions and enhance the ability to produce correct and working ICs.

As HDLs are extended to increase their expressive powers they will

themselves become complete programming languages. Can the effort of

developing specialised programmable HDLs and building reliable and

efficient translators for them be avoided? It is argued here and

elsewhere [51] that the answer is yes, since current programming

languages are sufficiently general to be good hardware description

languages.Features exhibited by current high level programming languages

which make them attractive as design notations are listed below.

1. They support powerful, precise algorithmic descriptions which

can be tested to validate their correctness. (This testing

usually involves example runs with different input data).

2. They provide functions and structures which capture implicitly

the bulk of a specification thereby reducing the length of

specifications.

3. They provide facilities for the definition of abstract data

types and for checking that these types are respected. Type

checking traps many errors at compile time thus quickly

eliminating careless mistakes.

4. They support a modular style of program which encourages

correctness and makes them easy to understand and maintain.

Separate compilation allows the construction of extensible

program libraries.

- 42 -

5. They are flexible i.e they are suitable for a wide range of

applications.

6. They can provide concurrency, explicitly or implicitly.

A high level general purpose programming language would make the

layout task more like programming. This would enable a designer to

concentrate on the problems of the "high level" design algorithm.

Concentrating on this is important since, according to H.T Kung [37], the

most crucial design decision is the choice of the underlying algorithm.

Thus the algorithm design should receive the largest part of the design

effort. He also argues that low-level optimisations at the circuit or

layout design level are probably not worthwhile, as these will lead only

to minor improvements in the overall performance while increasing design

time.

A design automation system (i.e. a silicon compiler) based on a

conventional programming language will be simpler to implement and more

extensible than one based on a specialised hardware description language.

In such a system the designer describes a VLSI system in the chosen

language and compiles it with a standard compiler. The compiler would

need to be extended in order to produce a representation of the resulting

circuit as well as executable machine code. When a program description

is run, not only would it be capable of processing it would also produce

a detailed description of the elements of the circuit and their

interconnection. This description could then be used by a layout

subsystem to generate a complete VLSI implementation.

- 43 -

Procedural Programming

Computational Model Control Flow. Concepts:
global memory of cells, assignment as the basic action,
and implicitly sequential control structures for the
execution of statements. Two important classes of
procedural programming notations are:

- Conventional e.g. PASCAL

Developed
Neumann stored
reflect the

for programming the traditional von
program computer. Hence, the semantics

von Neumann Model: global memory, fixed
cells, and sequential execution. size memory

- Concurrent e.g. Occam

Extend the control flow model with parallel control
structures based on processes plus communication and
synchronisation mechanisms.

Object-Oriented Programming e.g. SMALLTALK

Computational Model = Actor.
upon active objects, sometimes
communicate by passing messages.

Computation is based
called actors, that

Functional Programming e.g. Lispkit Lisp

Operates by the application of functions to values.
Characterised by no sequentiality, no assignment
statements, and no side effects.

Logic Programming e.g. PROLOG

Attempts to solve goals, which fail or succeed,
when answering a question.

FIGURE 4.1: Programming Categories.

Today, there is a great variety of high level programming languages

in use. Obviously, it is not practicable to consider each one for VLSI

design. Many of these languages, however, are based on the same

computational model. Since the computational model of the language

chosen will reflect the structural geometry of VLSI designs, it would be

- 44 -

more applicable to examine languages typical of some of the various

models. A classification of programming languages, based on

computational mechanisms, is presented in [21]. Several example

languages, which between them, represent some of the important categories

in this classification will be examined. Figure 4.1 illustrates the

selected languages together with a summary of the important features of

the category to which each language belongs. The characteristics of each

language are given in the next chapter.

4.1.1 Requirements Of A Hardware Design Language

The suitability of a programming language for describing VLSI

designs is governed by its ability to satisfy certain design

requirements. The criteria used for selection here are based on those

presented in [11]. Accordingly, a circuit design language should exhibit

the following properties.

1. The language must be able to handle concurrency.

2. The language should capture

i) Structural Data e.g. what objects are required, how these

objects are to be connected.

ii) Behavioural Data e.g. specifying the overall

function/purpose of the design

3. The language should be easy to use. That is, the language

should be concise and descriptions should be easy to read and

write.

- 45 -

4. The language should encourage structured, regular, and

hierarchical (modular) design techniques.

5. The language should be supported by expandable libraries of

frequently used layout designs.

6. The language should provide an effective means of communicating

designs between co-operating designers.

4.2 AN EXAMPLE VLSI DESIGN: A PATTERN MATCHER CHIP

String pattern matching is a good example of a software application

which is well suited for implementation as a special purpose VLSI chip

connected to a general purpose computer. In this section a specific

pattern matching chip is described in terms of its underlying algorithm

and its structural implementation. This chip was selected as an example

design because it illustrates the importance of the algorithm on the

performance and area of the silicon implementation. It also illustrates

one of the most important benefits offered by VLSI systems, namely

concurrent processing.

4.2.1 Design Description

The pattern matcher chip described by Foster and Kung [16] is a

special purpose VLSI chip that performs pattern matching of strings with

wild card characters. The input and output characteristics of the chip

are shown in figure 4.2(a). There are two input streams: string and

pattern. The former is an endless string of characters, whereas the

latter contains a fixed length vector of characters containing a wild

- 46 -

+---------+ AXC
I patternl<----------

0010011 I I
<--------1 result I

I I ABCAACC
I stringl<---------­
+---------+

(a) Chip Inputs And Outputs

+-----+ +-----+ +-----+ +-----+
PATTERN --->1 1--->1 1--->1 I--

STRING <---IBLK Ol<---IBLK 11<---IBLK 21<­
RESULT <---I 1<---1 1<---1 1<-

->1 1--->
--IBLK nl<---
--I 1<---

+-----+ +-----+ +-----+ +-----+

(b) Block Structure

FIGURE 4.2: The Pattern Matcher

card character. The chip generates as output a stream of bits, each of

which corresponds to one of the characters in the text string. The data

streams move at a steady rate between the host computer and the chip,

with a constant time between data items.

Denote the input text stream as SO Sl S2... , the finite pattern

stream as PO P1 P2 ... Pn, and the output result stream as RO R1 R2 ... ,.

Characters in the two input streams may be tested for equality, with the

wild card character, 'X' say, deemed to match any character in the text

string stream. The output bit Ri is to be set to 1 if the sub-string

S(i-n) S(i+1-n) ... S(i) matches the pattern, and 0 otherwise. As an

example consider the following two input streams:

pattern: AXC (where X is the wild card character)

string: ABCAACCQQ ...

- 47 -

The following result stream should be generated:

result: 001001100 ...

The pattern AXC matches the sub-strings SO SI S2, S3 S4 S5, and S4 S5 S6

(ie ABC, AAC, and ACC respectively). Result bits R2, R5, and R6 are thus

set to 1 and all other result bits are O.

Formally that is

Ri <== (S(i-n)

4.2.2 Algorithm Design

PO) AND (S(i+l-n) PI) AND ••• AND (Si Pn)

The input strings arrive alternately over the link with the host,

one character at a time. The interval during which one character arrives

from either stream is termed a beat. During each pair of consecutive

beats the chip inputs two characters (one pattern and one string) and

outputs one result bit.

The chip is divided into a linear array of modules called character

blocks. Each block can compare a pattern and a string character and

accumulate a temporary result. Characters are successively 'clocked'

through the blocks; on each beat a character moves to a new block.

Pattern and string characters flow through the array in opposite

directions, with each string character moving past all characters of the

pattern. The pattern and string characters are separated by one cell so

that each pair of characters meet rather than just pass. Consequently

each cell is active on alternate beats.

- 48 -

A block diagram for a pattern matcher is shown in figure 4.2(b).

Initially, each block of the chip is empty. For simplicity, assume that

on the first beat, the first character to be taken off the host link is a

string character SO. This character is input to BLK n. On the next beat

the pattern character PO is taken off the link and input to BLK O. At

the same time SO is moved one cell to the left. On the third beat the

string character S1 is placed in BLK n, and PO is moved one block to the

right while SO is moved one block to the left. By the time the last

pattern character Pk leaves a block, the sub-string S(i)S(i+1) ... S(i+k)

will have met the whole pattern. If partial match results are held in a

block and updated whenever a new pair of characters enter the block then,

when the last character of the pattern goes through, the result of

comparing the two will have been accumulated. A block then outputs this

result, which moves along with the string, so that each match result

leaves the array with the last character of its sub-string. The pattern

is recirculated so that the first character follows two beats after the

last one. This enables a block to output a completed result and

initialise a new partial result on the same beat.

Each character block performs two functions:

1. it compares characters of the pattern and string,

2. it accumulates and outputs match results.

Each function can be implemented by a separate unit within a block, a

comparator cell and an accumulator cell respectively. These are shown in

4.3(a) together with their underlying algorithm. A comparator cell has

- 49 -

Din
1

+-----+ +-----+
Pin --->1 1---> Pout Lin --->1 1---> Lout

1 1
Sout <---I 1<--- Sout

1 1

Xin --->1 1---> Xout
+-----+ 1 1

Rout <---I 1<--- Rin
Dout +-----+

Pout .- Pin
Sout .- Sin

Lout := Lin
Xout := Xin

Dout .- Pin Sin t := t AND (Xin OR Din)
IF Lin THEN

begin

end
ELSE

Rout := t;
t := TRUE

Rout := Rin

COMPARATOR CELL ACCUMULATOR CELL

(a) Primitive Cells And Their Algorithms

+-----+ +-----+ +-----+ +-----+
PATTERN --->1 1--->1 1--->1 1--->1 1--->

1 1 1 1 1 1 1 1
STRING <---I 1<---1 1<---1 1<---1 1<---

+-----+ +-----+ +-----+ +-----+

+-----+ +-----+ +-----+ +-----+

EndMarker --->1 1--->1 1--->1 1--->1 1--->
1 1 1 1 1 1 1 1

VCC --->1 1--->1 1--->1 1--->1 1--->
1 1 1 1 1 1 1 1

RESULT <---I 1 <---I 1 <---I 1 <---I 1 <---
+-----+ +-----+ +-----+ +-----+

(b) Cell Topology And Interconnection

FIGURE 4.3: The Pattern Matcher Implementation

pattern characters flowing from left to right, string characters flowing

from right to left, and the comparison result for a pair of characters

flowing from the bottom. Two bits are associated with a pattern

- 50 -

character: the don't care bit and the end marker bit. The former is

used to denote the occurrence of the wild card character in the pattern.

The latter is used to denote the last character in the pattern sequence.

An accumulator cell receives the result from a comparator (Din), the end

of pattern indicator (Lin), and the don't care bit (Xin). It maintains a

temporary result 't', and at the end of the pattern uses t to replace the

result that flows from right to left. The topological arrangement and

interconnection of cells are shown in figure 4.3(b).

In the next chapter this design will be described in several

programming languages as a means of evaluating their suitability for VLSI

design. The most appropriate language will be the one which is most

capable of accurately describing the algorithm and representing the

implementation presented here.

- 51 -

CHAPTER 5

SELECTING A PROGRAMMING LANGUAGE

In order to select a suitable language for a future ATL system, the

computational mechanisms of the example languages will be compared with

the structural mechanisms employed in the pattern matcher. To facilitate

this comparison, simple programs describing the design will be examined

for each language. In these programs the algorithm has been programmed

in a relatively simplistic way, attempting only to match the example

language to the structures of the algorithm. The segments of code

included here, illustrate the different styles and represent prototype

solutions. Every attempt has been made to ensure that these solutions

represent valid code in the various languages. However, no guarantee of

their correctness can be given.

5.1 PASCAL

Pascal is a reasonably extensive language [33] offering data

structuring facilities. The primitive data types are: Boolean, integer,

char, and real. Structured types are defined by describing the types of

their components and by specifying a structuring method. Four such

- 52 -

methods are available: array structure, record structure, set structure,

and file structure.

Variables declared in explicit declarations are called static.

Dynamic generation of variables in an executable statement is possible.

It yields a pointer which serves to refer to the variable.

The assignment statement is the language's fundamental statement.

The procedure statement causes execution of the designated procedure.

Assignment and procedure statements are construed to form structured

statements. These statements specify sequential, selective or repeated

execution of their subsidiary statements. Sequential execution of

statements is specified by the compound statement, conditional or

selective repeated execution by the repeat statement, the while

statement, and the for statement.

Statements can be named and referenced through the given identifier.

A named statement is then called a procedure, and its declaration a

procedure declaration. A procedure may contain a local set of variable

declarations, type definitions, and further procedure declarations.

These can only be referenced within the procedure itself. A procedure

has a fixed number of parameters. There are four kinds of parameters:

value, variable, procedure, and function.

Functions are declared in a similar manner to procedures. The only

difference lies in the fact that a function derives a result which is

confined to a scalar or pointer type. This type must be specified in the

function declaration. Functions may therefore be used as constituents of

expressions.

- 53 -

5.1.1 Pattern Matcher Implementation

The major features of a pascal program for the pattern matcher

algorithm are summarised in figure 5.1, a more detailed form of the

program appears in Appendix B.1. A modular structure is achieved through

the use of a function and three procedures. These are called from the

main program segment. The structure and components of figure 4.2 are

represented by a one-dimensional array called "Modules". This array is

made of "Ncells" elements (where Ncells is a constant defining the number

of pattern modules). Each element is a record of type "PatternCell" and

represents a pattern module. They contain two fields: CompCel1 and

AccCell. CompCel1 is a record designed to represent the state of a

comparator cell. It is used to store the string and pattern characters

currently associated with such a cell. Similarly, AccCel1 is a record

defined to represent the state of an accumulator cell. It holds the

don't care bit, the end bit, the accumulated result, and the output

result currently residing in an instance of this cell.

Function "Compare" implements the algorithm for a comparator cell.

It has a single value parameter: "Cell" a record of type Comparator.

The result of the function is of type BIT, which is the integer sub-range

0 •• 1. If both the characters held by its parameter are identical then

Compare is set to "1" otherwise it is set to "0".

Procedure "Move" implements the left to right movement of string

characters, don't care bits, and end marker bit between adjacent pattern

cells. It also implements the right to left movement of string

characters and result bits between adjacent cells. The procedure has two

variable parameters of type PatternCells, which correspond to the two

- 54 -

FUNCTION Compare(Cell
BEGIN .•. END;

Comparator) BIT;

PROCEDURE Move (VAR left, right
BEGIN ... END;

PatternCells) ;

PROCEDURE Accumulate(DataIn
BEGIN ... END;

PROCEDURE InOut;
BEGIN ... END;

(* Main Body Of Program *)
BEGIN

Beat := 0;
~HILE NOT finished DO
BEGIN

InOut;

BIT; VAR Cell

FOR i := 1 TO (Ncells DIV 2) DO
BEGIN

Accumulator):

~ITH Modules[(i*2)-Beat] DO
Accumulate(Compare(Compcell), AccCell);

Move(Modules[(i*2)-Beat], Modules[«i*2)-1)-Beat]);

END.

END;
Beat := 1 - Beat;

END;

Figure 5.1: Pascal Program

adjacent cells. Procedure "InOut" handles the input of pattern and

string characters to the array and the output of the result bits.

Procedure "Accumulate" implements the algorithm for accumulator

cells. It has a single value parameter "DataIn" which imports the result

from a comparison cell. There is one variable parameter, an accumulator

record.

In the main program segment there is a conditional while loop, which

implements the overall behaviour of pattern modules. Execution of this

loop is terminated when the variable "finished" is set to true. The

variable "Beat" toggles between 0 and 1 on successive passes through the

- 55 -

body of the loop. Nested within the while loop is a FOR loop in which

Beat is used to determine the individual modules active during a pass

through the main loop. When Beat is set to 0 odd numbered cells are

active. Even numbered cells are active when Beat is set to 1. The FOR

loop contains the calling sequence to the Accumulate and Move procedures.

In the call to Accumulate, the actual parameter corresponding to the

DataIn parameter is a call to the function Compare. This function is

first evaluated and its result then passed to the parameter.

The array and record structuring methods enable the abstract data

structure 'Modules' to be defined. This structure is intended to

represent the structure of figure 4.2. It is a list composed of n

elements, each element describes the internal state of a pattern matching

module. The elements are sub-divided into two components, one for

describing the internal state of an accumulator cell and the other for

describing the state of a comparator cell. Although each element

accurately captures the internal states, the input and output ports of

the cells are not represented.

The function Compare and the procedure Accumulate describes the

algorithm which is common to all modules. The main body of the program

applies the cell algorithms and attempts to model the connectivity of

cells through the update of elements in the array. Both data movement

and pattern block algorithm are applied by sequentially accessing each

element in "modules". In other words, the main program defines a single

computational process which is sequentially applied to update the

internal state descriptions held in the array.

- 56 -

The sequential nature of the language is its major limitation in a

design description role, since it results in descriptions specifically

aimed at a Von Neumann serial processing architecture. The parallelism

and localised processing characterising the pattern matcher

implementation cannot be represented. An imperative language, such as

Pascal, was included in the survey because the underlying sequential

control flow model has played a central role in the evolution of

programming. No survey of programming languages would be complete with

out reference to this model. It is not particularly well suited for

capturing the concurrent aspects of VLSI design. The model would be more

appropriate for representing finite state machine descriptions.

5.2 OCCAM

Occam [31] is based on dynamically created processes which may be

executed concurrently and may communicate using Channels. The

fundamental working element in Occam is a process - a single statement,

group of statements or group of processes.

Programs are constructed from three primitive processes:

assignment, input, and output. To control the order of execution of such

processes Occam provides three control mechanisms: sequential (SEQ),

parallel (PAR), and alternate (ALT) as well as the traditional WHILE and

IF statements.

SEQ and PAR precede a list of processes, defining sequential and

parallel execution, respectively. ALT causes exactly one of a list of

processes to be executed and will wait until at least one of the

"guarding" conditions is true.

- 57 -

5.2.1 Pattern Matcher Implementation

An outline of an Occam implementation for the pattern matcher

algorithm is shown in figure 5.2; a complete listing appears in Appendix

B.2. The program is divided into five sections. The first section

declares vectors (or arrays) of channels, which are used in the main body

of the program. So, for example, "pattern[Ncellsl" declares five

channels named pattern and numbered 0 to 5.

In each of the following three sections PROC is used to declare a

name for the text of the process which follows. The text associated with

a named process is substituted for all occurrences of that name in the

subsequent process. The named processors are: Comparator, Accumulator,

and GetChar. Each has a number of formal channel parameters. When any

one of the processes is called these formal parameters are replaced by

the actual parameters.

Process Comparator consists of two sequential processes. One

initialises the local variables "pH and "s". The other is a repetitive

process which handles input/output. WHILE TRUE denotes an unbounded loop

which executes endlessly. The body of this loop is composed of three

sequential processes. The first and second are output and input

processes respectively, while the third compares p and s, and outputs the

truth value on the channel "dout".

Process Accumulator implements the algorithm for the accumulator

cells. Like comparator it also consists of two sequential processes:

one initialises the local variables, the other is a repetitive. The

repetitive process is comprised of three sequential processes.

- 58 -

PROC Comparator(CHAN PatrnIn, StrngIn, PatrnOut, StrngOut, DataOut)=

PROC Accumulator(CHAN WildBitIn, EndBitIn, ResIn, DataIn, WildBitOut,
EndBitOut, ResOut)=

PROC GetChar(CHAN BusIn,PatternIn,StringIn)=

PAR
GetChar(Sys.Bus,pattern[Oj,string[Ncells-lj)
PAR i =[1 FOR Ncells-l j

PAR
Comparator(pattern[i-lj,string[Ncells-ij,pattern[i],

string[(Ncells+l)-i],data[i-l])
Accumulator(wild[i-1j,end[i-1j,result[Ncells-i],data[i-1],

wild[i],end[ij,result[(Ncells+l)-i])

FIGURE 5.2: Occam Implementation Of The Pattern Matcher.

The first two are output and input, while the last is a conditional

process. If the value of EndMarker (a variable representing the end of

pattern) is true an accumulator uses the value of the current comparison

result (CurntRes) as the final result and then resets CurntRes to TRUE.

Otherwise, it holds a temporary result (TempRes), which is set by the

logical expression :

TempRes .- TempRes /\ (WildCard \/ CurntRes)

where "/\" , "\/,, stand for AND and OR respectively. So, if the current

temporary result is TRUE, and WildCard or CurntRes is TRUE, then the new

temporary result will be set to TRUE.

Process GetChar models the alternate arrival of pattern and string

characters on the system bus. That is, the input to the pattern matcher

module. It consists of two sequential processes, the first of which

- 59 -

simply initialises the local variable "Beat". The second is a repetitive

sequential process with the two subsidiaries. Its first subsidiary

concurrently re-assigns the value of Beat and inputs a value for "Ch"

from "BusIn". The second subsidiary is a conditional process: if the

value of Beat is 1 then Ch is placed on Channel "PatternIn", otherwise it

is placed on channel "StringIn".

The final section corresponds to the main process (or program body).

It sets up a 2x3 array of concurrent processes, which models the

structure of figure 4.2. It also sets up a process to handle input to

this array.

The program provides an accurate representation of the pattern

matcher capturing its structure, its concurrent behaviour, and the inter

communication between the cells. In the main process a parallel

replicator is used to define a pipeline of accumulator cells and a

pipeline of comparator cells. An element in one pipeline is connected to

an element in exactly the same position in the other pipeline. The

channels which link the elements directly model the behaviour of a

physical wire. Each element in the pipelines is a distinct process

capable of local computation and having its own private storage. The

CHAN construct ensures that the inter process communication is

synchronised. The WHILE TRUE construct in the two named processes ensure

the repeated execution of the processes.

5.3 SMALLTALK

Xerox Palo Research Centre's Smalltalk-80 [20] is built on the model

of communicating objects, originally used in SIMULA. It has sequential

- 60 -

control structures. All references in the language are to objects, which

consist of some private memory and a set of operations. The private

memory is a set of instance variables. A set of methods describe how to

implement an object's operations. Objects may be atomic, or may consist

of several named fields.

A message is a request for an object to carry out one of its

operations. The receiver of the message determines the method to

implement the requested operation. The set of messages to which an

object can respond is called its interface.

A class describes the implementation of a set of objects that all

represent the same kind of system component. Classes are the natural

unit of modularity in the language. The individual objects described by

a class are called its instances. A class is defined by giving it a

name, and naming the fields of its instances. Following this is an

optionally categorised list of the methods for processing the messages to

which the class responds. Each method consists of a message pattern

followed by SMALLTALK code within brackets for computing the appropriate

responses. The former consists of a selector and names for the

arguments. The code consists of some temporary variable names and

expressions to process the received message. Expressions are separated

by periods " " and the last one may be preceded by a vertical arrow

indicating the value to be returned. These expressions contain

conventional expressions that serve a similar role to procedure call.

- 61 -

Objects are created when expressions are evaluated, and they can be

passed around by uniform reference, so that no provision for their

storage is necessary in the procedures that manipulate them.

The transmission of messages is the only process that is carried on

outside of objects. A message-sending expression defines the receiver

(cf. the procedure), the selector (cf. the entry point), and the

arguments of the message.

Control structures, other than the sequential execution of

expressions in a method and the sending of messages that invoke other

methods, are based on objects called blocks. Blocks contain a sequence

of expressions. Execution of blocks may themselves be controlled by the

conditional selectors "if True" or "if False", and by conditional iteration

"whileTrue" or "whileFalse".

5.3.1 Pattern Matcher Implementation

Brief details of a SMALLTALK implementation of the pattern matching

algorithm are shown in figure 5.3, an expanded form of this appears in

Appendix B.3. The implementation centres around three classes

"Comparator", "Accumulator" and "PatternMatcher". Two other classes,

"PatternBlocks" and "BitStreams" (see Appendix B.3) support

initialisation of objects.

- 62 -

Class Comparator

Methods
Compare: stringchar and: patternchar

Class Accumulator

Super Class Object

Instance Variables accRes

Methods
ini tialise

update: dataIn with: resIn and: bitsIn

initaccRes

Class Pa tternMa tcher

Methods
go: nblocks fromhost: charstream tohost: bitstream

!pattern, string, result, bits, cells, toggle!
"initialise variables"
toggle <- O.
[charstream isEmpty]
whileFalse: [i !

"input string or pattern character"
i <- toggle + 1.
[i <= nblocks]
whileTrue:

[results at: i <-
cells at:i (update: (Compare: (string at:i) and:(pattern at:i»

with: result at:(i+1)
and: bits at:i).

pattern at:(i+1) put:(pattern at:i).
string at:(i-1) put: (string at:i).
bits at:(i+1) put:(bits at:i).
i <- 1].

toggle <- toggle - 1]

Figure 5.3: SMALLTALK implementation of the pattern matcher

Instances of class comparator represent the results of character

comparisons. Comparator responds to a single message pattern with an

instance representing the result of comparing a string character with a

- 63 -

pattern character. This message pattern consists of the selector

"compare:and:" and two arguments, named stringchar and patternchar. When

a message of this type is sent, the expression in Comparator's only

method is evaluated. This expression consists of a message to Boolean

with the selector "ifTrue:ifFalse:" and two blocks as arguments. The

value returned from ifTrue:ifFalse: is the value of the block that was

executed. This value is then returned to the sender of the message.

An instance of class Accumulator is used to represent the

accumulated result in an accumulator cell. This class has one instance

variable "accRes". The implementation description includes one class

method and two instance methods. The class method creates and

initialises new instances. It has selector "initialise". When a message

with this is received, the method creates a new instance by evaluating

the expression "super new"; it uses the method for new found in the

methods of the superclass "object". It then sends the new instance the

message initaccRes. The search for the response begins in the class of

the instance i.e. in Accumulator. An instance method is found there

which assigns the value of 1 to the instance variable accRes.

The third method of Accumulator implements the operation of an

accumulator cell. It is invoked by a keyword message with selector

"update:with:and:" and containing the values for the arguments dataIn,

resIn, and bitsIn. The argument dataIn represents a comparison result,

resIn represents the result flowing through an accumulator cell, and

bitsIn is a two element array representing the don't care bit and the end

bit respectively. The method uses a temporary variable to hold the value

to be returned. It consists of two expressions, the first of which

- 64 -

contains the "ifTrue:ifFalse" selector and two blocks. The if True block

uses an important "pseudo-variable" available in every method named self

which refers to the message receiver itself. When the expression "self

initaccRes" is executed, initaccRes is sent to the same object (self)

that the received "update: ... ". This results in the instance variable

being reset to 1.

An instance of class PatternMatcher is used to represent a pattern

matching chip. It has a single method which is invoked by a message

pattern containing arguments which define the number of pattern modules

required (nblocks), the input stream from the host (charstream), and the

output stream to the host (bitstream). Once invoked, the methods

temporary variables are first initialised. The variables pattern,

string, and result are initialised as arrays with nblock elements. Also

initialised as arrays are bits and cells. However, the elements of bits

are initialised to be arrays of two elements, while those of cells are

initialised to be instances of the class accumulator. Having initialised

all variables the expression "[...] whileTrue:[...]" is executed. This

expression is a control message which repeatedly evaluates the

expressions in the second block as long as the condition in the first

block holds. The second block contains two expressions; the first

increments the temporary variable toggle and the second is another

conditional repetition. During successive executions of the second

expression toggle alternates from 1 to 2.

The repeated block of the nested conditional consists of five

expressions, the first of which places a new value in the i th element of

the array results. This value is obtained by sending the instance of

- 65 -

accumulator stored in the i th element of cells the message with selector

"update:with:and:". Before this message is sent the expressions defining

the values for this message's arguments are evaluated. So, for example,

the actual value for dataIn is obtained by sending Comparator the message

"Compare: (string at:1) and: (pattern at :i). The parenthesised

expressions must also be evaluated before this message can be sent.

These expressions obtain the values at the i th position of arrays string

and pattern, i.e. the actual values for the arguments stringchar and

patternchar respectively. The next three expressions move an element in

pattern, string and bits, while the last expression increments i by +2.

During the repeated execution of the block the value of toggle is used to

determine which elements in the arrays are updated. For example when

toggle is 1 the instances of Accumulator at odd numbered positions in

cells are used to obtain the new values for results. This is equivalent

to odd numbered cells being active. Similarly, even numbered cells are

active when toggle is 2.

The class construct provides a good template for describing both the

computational aspects of an algorithm and the data it acts on. This

feature was illustrated by the class definitions for accumulator and

comparator cells. Their associated messages implement explicitly defined

entry points (cf. input ports) and attempt to capture the input behaviour

of the corresponding cells. The arrays pattern, string, bits and results

are used to model the data movement through the pattern matcher. An

element in these arrays can be regarded as a connecting wire and its

value the current value on that wire. So, for example, the wire on which

the i th accumulator cell receives the result from the (i+1) th cell is

represented by element (i+1) of results. The current value held in this

- 66 -

element represents the most recent value placed on the wire by the

(i+1) th accumulator cell.

The array cells was used to hold a number of identical objects, each

representing an accumulator cell. These instances can be thought of as

individual processes capable of local computation. The expression used

to invoke a particular instance in this array accurately reflects the

communication between a comparator cell and an accumulator cell. An

instance variable is used to describe the internal state of each cell.

This can only be affected by the appropriate message to this type of

object. It gives a good representation of the local storage associated

with each accumulator cell.

The main drawback of this implementation is the sequential nature of

the language. Although local computational elements could be described,

parallel operation of these could not be represented. One way round this

would be to expand the semantics of the language such that concurrent

operation of objects could be accommodated. However, the aim of this

chapter is to assess the language's current ability to describe a VLSI

implementation, not to consider how the language could be modified so as

to be suitable for such a role.

5.4 LISPKIT LISP

The Lispkit Lisp language [27] was developed by Peter Henderson. It

is a purely functional derivative of Lisp 1.5. It contains no iterative

constructs, instead recursive control structures are used. A data

structure, once defined, cannot be altered. This implies that all

operations on a data structure have a copying semantics feature.

- 67 -

There are three types of objects: atoms, lists and functions.

Atoms are indivisible data objects, either symbolic or numeric, or

parenthesis. Lists (or symbolic expressions) are built up from atoms.

Two forms of primitive function are available: those which manipulate

symbolic expressions and those which handle basic predicates and

arithmetic operations.

The language provides a number of functional forms e.g. the

conditional form "if x then y else z". User functions are defined by

specifying a name and providing the formal arguments, each referenced by

an identifier string. The language is weakly typed, and the programmer

is responsible for passing arguments of the appropriate type and

structure to a function.

Functions can accept each of the three types of objects as

arguments, and return each as the result of evaluation. Therefore, a

function may also be passed as an argument and/or returned as the result

of evaluating a function. In this way, special purpose functions may be

created from general purpose functions. These are termed higher-order

functions.

5.4.1 Pattern Matcher Implementation

The major features of a Lispkit Lisp implementation of the pattern

matcher are given in figure 5.4 (a more complete listing of the program

is included in Appendix B4). The function clock simulates the overall

behaviour of the pattern matcher chip. It has four input parameters:

beat, p, s, and m. The parameter beat is an integer which is either 0 or

1 and determines which character blocks

- 68 -

clock(beat, p, s, m) ->
if eq(beat,O) then

{cons(car(l), clock(l, p, cdr(s), cdr(l»
where 1 = move1(car(s), matchodd(m»}

else
cons(nil, clock(O, cdr(p), s,

move2(car(p), car(m), matcheven(cdr(m»»)

move1(s char, m) ->
cons(car(car(m»,

to_even(s_char, car(m), car(cdr(m», cdr(cdr(m»»

move2(p, head, tail) ->
cons(left(p, head, car(tail»,

to_odd(car(tail), car(cdr(tail», cdr(cdr(tail»»

matcheven(m) ->
if eq(cdr(m), nil) then

pmatch(car(m»
else

cons(pmatch(car(m», cons(car(cdr(m»,
matcheven(cdr(cdr(m»»)

matchodd(m) ->
if eq(cdr(cdr(m»,nil) then

cons(pmatch(car(m», cdr(cdr(m»
else

cons(pmatch(car(m», cons(car(cdr(m», matchodd(cdr(cdr(m»»)

pmatch(inpts) ->
cons(a1, cons(a2, cons(c1, cons(cons(a3,a4), c3»»
where a1 = e(l,a), a2 e(2,a), a3 = e(3,a), a4 = e(4,a),

c1 = e(l,c), c2 e(2,c), c3 = e(3,c),
p e(3,inpts), s = e(4,inpts), t = e(2,inpts),
r e(l,inpts),
c comp(car(p),s),
a acc(t, r, car(cdr(p», car(cdr(cdr(p»), c3)

comp(p,s) ->
if eq(p,s) then

cons(p, cons(s,l»
else

cons(p, cons(s,O»

acc(a,r,x,l,d) ->
if eq(l,l) then

cons(u, cons(l, cons(x,l»)
else

cons(r, cons(u, cons(x,l»)
where u = and(a,or(x,d»

Figure 5.4: Lispkit Lisp Implementation

- 69 -

in the pipeline are active. If the value of beat is 0 then even numbered

blocks are active, otherwise the odd numbered ones are. The parameter p

is a list in which each element is a 'pattern list'. A pattern list has

three elements: pch, x, 1, where pch is a pattern character, x is the

don't care bit, and 1 is the end bit. The string stream is represented

by the character list s. Finally, the input parameter m is a list of n

elements (where n is the number of blocks in the implementation), each of

which is a pattern block input list. An input list has the format

(r,t,p,s), where r is a result bit, t is the accumulated result

associated with a block, p is a pattern list, and s is a string

character. Once the function is called with the parameters initialised

to the start up conditions, it recursively calls itself building up a

list of result bits.

If beat is 0 clock simulates the behaviour of the pipeline when odd

numbered blocks transform inputs to outputs, which then form the inputs

to the even numbered blocks. Also, during this phase, a result bit is

output from the left most block, and a string character is input to the

right most block. The activity of odd numbered elements is implemented

by the function matchodd. The result of this function together with the

head of the string list are used by movel, which implements the

input/output behaviour and the movement of data from odd numbered blocks

to even numbered ones. If beat is 1 then clock simulates the behaviour

of the pipeline when even numbered blocks transform their inputs into

outputs. No result bit is output during this phase, however, a pattern

character and its associated bits are input into the left block of the

pipeline. The activity of even numbered elements is implemented by the

function matcheven, while move2 implements the input and transfer of data

- 70 -

from even numbered blocks to their right and left neighbours.

The function move1 has two parameters: s ch and m. These represent

a string character and the current outputs of the blocks respectively.

The function returns a list, the head of which is the result bit from the

left most block, and the tail of which is the list returned by the

function to even. This tail list is similar to the input parameter m.

Odd numbered elements in it are identical to the corresponding elements

in m, while even numbered elements are updated versions of the

corresponding elements in m. The function to_even implements the

transfer of data from odd numbered elements to even numbered elements and

the input of a string character. It has four arguments s,l,c,r where s

is the string character, I is an input list for an even numbered block's

left neighbour, c is the input list for this even block, and r is the

list containing the input lists for all the blocks to the right of the

even block. If the tail of r is empty then function right is called,

otherwise c is updated and the remainder of the even numbered elements in

r are updated. Although right is not defined here, it simply updates the

input list for the right most block using the next string character and

the appropriate outputs of its left neighbour.

Function move2 has three input parameters: p, head, and tail. The

parameter p is a pattern list, head is the input list associated with the

left most pattern block, and tail is a list containing the input lists

for the remaining blocks. The function returns a list whose head is the

input list returned by the function left and whose tail is the list

returned by to_odd. Although not included, left is a simple function

that defines the input list for the left most block using the pattern

- 71 -

list p and the appropriate elements of its right neighbour. The function

to odd is similar to to_even, but implements the transfer of data from

even numbered blocks to odd numbered blocks.

Both to odd and to_even use the function left right. This function

demonstrates how a block's inputs are obtained form the appropriate

outputs of its left and right neighbour. The function is not defined

here, but it has three parameters: left, centre, right. Each is an

input list, left for a block's left neighbour, right for its right

neighbour, and centre for that block. It returns a parameter list based

on the elements in these lists which represents the updated inputs to the

centre block.

The function matchodd is used to represent the pipeline when odd

numbered pattern blocks are active. It has a single parameter, m, which

is a list of pattern block input lists. It returns a similar list in

which all the even numbered elements are identical to the corresponding

elements in m. The odd numbered elements, however, are updated versions

of the corresponding elements in m. Function, matcheven is similar, only

it represents the pipeline when even numbered pattern blocks are active.

Both use the function pmatch to update the input list associated with an

active block.

The function pmatch implements the behaviour of a pattern block.

This function has a single parameter, Inpts, which is an input list for a

block. It returns an updated version of this list, which represents the

outputs of a pattern block. That is, the function captures a block/s

transformation of inputs into outputs. Within the function body, local

definitions are used to make it more readable. A primitive function

- 72 -

e(n,l) is used to return the n th element in the list 1. The output list

is built up from two subsidiaries. One of these lists is returned by the

function comp and the other by the function acc. The former function

implements a comparator cell, while the latter implements an accumulator

cell.

Lispkit Lisp allows a concise hierarchical description of the

pattern matcher to be written. The function pmatch captures the

input/output behaviour of a pattern matcher block. It uses the functions

acc and comp to illustrate how a block is sub-divided into two primitive

elements (or cells). The parameters to functions and the values returned

by them describe the connectivity between elements. In the language, no

restrictions are placed upon the order of evaluation of sub-expressions.

Parallelism can therefore be implied without the need for it to be

explicitly defined by the programmer. This is particularly true in the

functions matcheven, matchodd, to even, and to odd. These functions can

be interpreted as replicating an operation a number of times with the

occurrences operating concurrently.

The lack of an assignment statement in the language and the absence

of a shared memory posed problems in representing the state of a block.

It was not possible to hide the internal state of a block. Instead the

current value associated with a block was fed in as an input parameter.

Its updated value was then returned as an element of the output list

generated by pmatch. This suggests a feedback loop for the accumulated

result. Although there is no problem with this in terms of circuit

design, it does not truly reflect the structure of figure 4.2.

- 73 -

The major drawback of the language is that a function can only

return a single value. This meant that for multiple outputs a single

list had to be constructed. Combining values into such lists is awkward,

it distracts from the main purpose of a function and makes it less

readable. Another drawback of the language is the lack of an explicit

representation of control flow. This makes it difficult to describe

purely sequential circuits.

5.5 PROLOG

PROLOG [10] is a programming language well suited to solving

problems that involve objects and the relationships between objects. A

program in the language consists of facts about a certain subject,

expressed as a collection clauses of which express information that can

be used to solve problems or to answer questions. A predicate defines a

relationship, and is either an assertion or an implication.

PROLOG attempts to sequentially solve the composite goals of a

predicate. For a given goal, it attempts to find a clause whose head can

be made to match the goal. If the clause is an implication then it, in

turn, attempts to solve its subgoals. The possible results of a goal

will be failure or success, plus possible values associated with

variables. To achieve success for a goal, all the subgoals must succeed.

If one of the subgoals cannot be solved, PROLOG backtracks and tries to

find another clause whose head matches the goal. If no untried clauses

remain, then the failure is returned for the goal.

- 74 -

The scope of a PROLOG variable is limited to the statement in which

it appears. It is a non-procedural language. A statement in a PROLOG

program corresponds to an entire subroutine of a conventional programming

language. Thus programs are extremely modular. The order in which

statements occur is irrelevant.

5.5.1 The Pattern Matcher Implementation

Details of a Prolog implementation for the pattern matcher are given

in figure 5.5 and in Appendix BS. The overall behaviour of the pattern

matcher is implemented by the predicate "pipeline", such that

pipeline(Plist,Slist,Rlist,Mods) emulates the repeated operation of the

chip. Plist is the pattern list; it is an endless list in which each

element is a sub-list containing three atoms: [P ch,Xbit,Lbitj. P ch is

a pattern character and Xbit and Lbit denote the don't care bit and the

end of pattern bit respectively (either 0 or 1). Rlist is a list of

atoms which are either 1 or 0 and represents the results output stream.

The head of this list defines the last result to be output from the

pattern matcher. Mods is a list of n objects, where n is the number of

pattern blocks in the implementation. Each object is a list describing

the parameters to a block: [R,T,P,Sj. R is an atom representing the

result, T is the accumulated result, P is a list of type

[P_ch,Xbit,Lbitj, and S is a string character.

The predicate pipeline generates an endless list of result bits.

When it is first invoked Rlist should be initialised to an empty list

i.e. [j, whereas the other three arguments should be initialised to

define the start up conditions. In the body of pipeline there are five

- 75 -

pipeline([P chlPatternj, [S chlStrngj, Res, Blocks):­
matchodd(Blocks, Blocks la),
transfereven(S ch, Rout~ Blocks la, Blocks lb),
matcheven(Blocks lb , Blocks 2a), -
transferodd(P ch~ Blocks 2a,-Blocks 2b)
pipeline(Pattern, Strng,-[RoutIResj~ Blocks_2b).

matchodd([Ablock, Lblockj, [Nblock, Lblockj):­
process(Ablock, Nblock).

matchodd([Lblockl[RblockITailblksjj, [Nblockl[RblockIRestjj):­
process(Lblock, Nblock),
matchodd(Tailblks, Rest).

matcheven([Blk j,Blk kj, [Blk j,Nblkj):­
process(Blk_k, Nblk).

matcheven([Lblkl[RblkITailblksjj, [Lblkl[NblkIRestjj):­
process(Rblk, Nblk) ,
match(even, Tailblks, Rest).

transfereven(S in, [Blk j,Blk kj, [Blk j,Ublkjj):­
rIght(S_in~ Blk_J, Blk_k,-Ublk).

transfereven(Sin, [Blk il[Blk jl[Blk klRestjjj, [Blk il[UblkITailblksjj):­
exchange(Elk i, Elk j, Elk k, Ublk), -
transfer(Sin~ [Blk_kIRestj~ Tailblks).

transfereven(Schar, Res, [BlklITailj, Nblks):­
out(Blkl, Res),
transfer(Schar, [BlklITailj, Nblks).

transfer([Blk i,Blk j,Blk kj, [Blk i,Ublk,Blk kj):­
exchange (Blk_i, Elk_j, Blk_k, Ublk).-

transfer([Blk il[Blk jl[Blk klTailjjj, [Blk_il[UblkIRestjj):­
exchange(Blk i, Blk j, Blk k, Ublk),
transfer([Blk_kITailj, Rest).

transferodd(Pin, [Blk 11 [Blk 2lTailjj, [UblkIRestj):­
left(Pin,-Blk l,-Blk 2, Ublk),
transfer([Blk=2ITaill, Rest).

process([Rin, Temp, [Pin,Xin,Linj, Sin],
[Rout, Temp2, [Pout,Xout,Lout], Sout]):­

comp(Pin, Sin, Cout, Pout, Sout),
acc(Rin, Temp, Xin, Lin, Cout, Rout, Temp2, Xout, Lout).

Figure 5.5: Prolog Pattern Matcher Implementation

- 76 -

clauses, the first four of which divide the cyclic behaviour of the

pattern matcher into four stages. These can be specified as:

1. Odd numbered blocks in the pipeline are active.

2. Odd numbered blocks output data to their left and right

neighbours. Also, the left most block outputs a result bit and

the right most block receives the character at the head of the

string input stream.

3. Even numbered blocks in the pipeline are active.

4. Even numbered blocks pass data to their left and right

neighbours. Also, the left most module receives the head of the

pattern stream.

The final clause is recursive and ensures the repeated operation of the

above four stages.

Five variables are used in the body of the predicate: Blocks la,

Blocks 1b, Blocks_2a, Blocks 2b, and Rout. The first four are

instantiated in the various clauses to lists of parameter lists with

exactly the same format as Mods. Rout is initiated to an integer which

is either 0 or 1. The matchodd clause implements stage 1. It

instantiates Blocks la, such that it defines each block's parameters

after the first stage. Blocks 1a together with the head of the string

list are passed to transfereven which implements stage 2. In doing so,

Blocks 1b and Rout are instantiated. The former so that it describes the

state of each block's parameters after stage 2, and the latter to the

result out of the left most module. Blocks 1b is used by matcheven to

- 77 -

instantiate Blocks 2a. This clause implements stage 3 and when it

succeeds Blocks 2a describes all the blocks' parameters after this stage.

The transfereven clause then uses Blocks 2a and the head of the pattern

list to instantiate Blocks 2b. This clause is responsible for stage

four. When it succeeds Blocks 2b is set up such that it describes the

parameters after the final stage in the cycle. Blocks 2b together with

the tails of the pattern and string lists and the list produced by

placing Rout at the head of Res are fed back to pipeline.

The predicate matchodd(State_a,State_b) implements stage 1 above.

It succeeds when State_b is a list of parameter lists. The even numbered

elements in State b are identical to the corresponding elements in

State a. The odd numbered elements, however, are the corresponding

elements in State_a after the comparator and accumulator algorithms have

been applied. Predicate matcheven(State_a,State_b) is similar. Both

predicates involve the goal process(Inlist,Outlist), which correspond to

the activity of an individual block in the pipeline. This goal succeeds

when Outlist is a parameter list generated from the parameter list Inlist

such that the first two elements are updated version of the corresponding

atoms in Inlist. The remaining elements are copies of the corresponding

elements in Inlist.

The argument Inlist defines the inputs to a particular character

block and has the format [Rin,Temp,[Pin,Xin,Lin),Sin). The variable Rin

denotes the result bit in, Temp the current accumulated result associated

with a block, Pin the pattern character in, Xin the wild card bit in, Lin

the end bit in, and Sin the string character in. Outlist has exactly the

same format but defines the outputs a block generates from these inputs.

- 78 -

So the predicate process characterises a block's transformation of inputs

into outputs. It consists of two clauses, comp and acc, which correspond

to the function of a comparator cell and an accumulator cell

respectively. The variable Cout is used to represent the connectivity

between the two.

The predicates transfereven(Schar,Resout,Blocks 1,Blocks 2) and

transferodd(Pchar,Blocks_l,Blocks_2) implement stage 2 and stage 4

respectively. Blocks 1 describes the pattern blocks' parameters before

the stages; while Blocks 2 describes them after. The variable Resout is

instantiated to the output of the pattern matcher after stage 2. Pchar

and Schar are the required inputs for these stages. Both predicates are

intended to represent the movement of data between the pattern blocks and

the input/output behaviour of the chip. They build up Blocks 2 such that

it represents the situation where the outputs of the most recently active

blocks have become the inputs to those blocks which are active on the

next beat. Each predicate is recursive and involves the clause exchange.

The goal exchange(Left,Centre,Right,Inpts) is used to instantiate

the variables in the single parameter list Inpts. This is achieved

through matching of instantiated variables in the other three arguments,

which are also single parameter lists. It uses the anonymous variable

for the elements which do not playa part in this matching. The

predicate is used to update a block's inputs. It demonstrates how the

new values are obtained from the appropriate outputs of a block's left

and right neighbours.

- 79 -

Prolog enables a very modular description of the pattern matcher to

be written. It accurately describes the structure and behaviour of a

single character block. The predicate process is used to represent such

a block. Its input and output ports are represented by named variables.

Recursion was used to represent the replication of pattern blocks and to

simulate their concurrent behaviour. The transformation of inputs to

outputs is modelled by unification through named variables. A character

block is divided into two component modules (or cells). These are are

represented by the comp and acc clauses which make up the body of the

process predicate. The internal connection between these two elements is

represented by the variable Couto This variable does not appear in the

head of the process clause, and therefore stresses that it is a local,

internal connection.

The fact exchange also uses unification through named variables to

represent the connections between a block and its left and right

neighbours.

The lack of global variables means that the accumulated result

associated with a block has to be represented by an input parameter.

Similarly, its updated value is represented as an output parameter of the

block. Above it was said that the named variables in the head of the

'process' clause could be used to represent the inputs and outputs of a

pattern block. The fact that the accumulated result of a block and its

updated value are represented by named variables would therefore imply

that a pattern block has six inputs and six outputs. This is not the

situation previously described for a block.

- 80 -

Although the 'process' predicate was intended to represent structure

and connectivity not all the predicates of the program represent

structural components. For example, the predicates implementing the

movement of data and those determining the active blocks in the pipeline

represent behaviour and not structure. There is no means of

distinguishing which predicates represent structure and which represent

behaviour.

The relational approach on which Prolog is based together with the

associated matching of structures allows very flexible predicates to be

defined. For example, consider a predicate with n arguments. Given

(n-1) instantiated arguments, the predicate will instantiate the

remaining argument irrespective of which argument it is. This feature is

sometimes called "reversible programming", and abstracts away from the

notion of formal inputs and outputs to a procedure. Although this

abstraction is advantageous in software design, it makes describing a

VLSI implementation slightly confusing. This is because interpretation

of which arguments are inputs and which are outputs is less than obvious.

The order of arguments does not necessarily imply anything. Comments

would be required to help a reader distinguish between the two.

5.6 CONCLUSIONS

Five example programming languages representing five different

computational models have been used to describe a single example of a

VLSI implementation. It cannot be said that the selected example is

representative of all the techniques employed in VLSI design, nor can it

be said that the full strength of each language has been illustrated.

- 81 -

Instead the pattern matcher chip can be regarded as an example which

captures some of the important features of VLSI. The descriptions

presented in this chapter can be viewed as introducing the 'flavour' of

the example languages. With this in mind the languages can be assessed

for their ability to handle some of the important features in VLSI

implementations. This will give an insight into which languages are well

suited for a VLSI design description role.

All the languages were able to support a description of the pattern

matcher. Pascal illustrated the advantages of abstraction through

powerful data structuring techniques. The language can be used to

represent structure, but showed that the sequential control flow model

gives rise to a design which utilise a Von Neumann serial processing

architecture. The sequential control flow model was, therefore, not well

suited to this particular design. SmallTalk demonstrated that the class

construct in the Actor model is useful for defining the data and

processing characteristics of computational elements. However, the

sequential nature of the language meant that the operation of such

elements in parallel could not be represented.

Lispkit Lisp showed that the functional model is well suited for

representing wiring, connectivity, and parallelism. It is capable of

accurately describing combinatorial circuits. However, the lack of the

assignment statement makes state difficult to model. Also, the lack of

explicit control structures makes it difficult to describe sequential

circuits. The major difficulty found with the language was representing

multiple outputs as lists. For the logic model, Prolog illustrated how

unification with named variables can be used to represent connections

- 82 -

between circuit elements. Parallelism and replication can be implied by

recursion. The reversible nature of predicates suggests that the

relational approach in this model is too abstract for many basic devices.

Based on the parallel control flow model, Occam enabled the system

to be described as a collection of concurrent processes, which

communicated through named channels. This description closely reflected

the actual structure and behaviour of the VLSI implementation of the

pattern matcher.

For this particular design Occam provided the best description. The

language is well suited for describing concurrent elements which

communicate with each other. The language is not 'ideal', the following

are considered to be shortcomings of the language:

1. It lacks abstract data structures and types.

2. It cannot describe processes which do not have state. That is,

all processes require state.

3. It currently does not handle recursion.

However, based on its performance for describing the pattern matcher, it

will be selected as suitable language on which to base a future ATL

system.

- 83 -

CHAPTER 6

THE ROLE OF OCCAM IN VLSI DESIGN

VLSI design involves the consideration of the two dimensional

silicon area and the operation of the system in the time dimension. Both

are a source of complexity in the design of large systems. In the

previous chapter Occam was identified as a suitable programming language

for describing some of the important features of VLSI systems. An Occam

description of a system can be used to tackle the dual nature of design

complexity by providing a consistent, abstract representation for both

the spatial and time dimensions. The organisation of the program

(i.e. its structure) can be used to define a topology for the system,

while its control sequence (i.e. its operation) can be used to specify

the timing behaviour of the system.

This chapter considers the advantages of using Occam for behavioural

specifications of VLSI systems. The features of an ATL system based on

the language are specified. A key issues to be considered for the future

implementation of this system is: the mapping of the algorithmic

execution sequence in an Occam description into the physical timing

behaviour of a corresponding VLSI system. The reasons for adopting an

- 84 -

asynchronous, self timed approach over the synchronous, clocked approach

are given. Also considered in this chapter is the generation of

schematic diagrams from Occam programs. Such diagrams help clarify the

nature of a VLSI design and aid the comprehensibility of Occam

descriptions. Their generation from Occam programs demonstrates the

ability of the language to represent both topological information and

timing behaviour.

6.1 USING OCCAM AS A BEHAVIOURAL SPECIFICATION LANGUAGE FOR VLSI SYSTEMS

Occam is a language particularly well suited to describing a system

consisting of many interacting components (processes) which operate

concurrently and communicate through channels [45]. It is primarily

intended for describing and programming transputer systems. As shown in

the previous chapter it can also be used to provide a behavioural

specification language for VLSI designs. Occam actually is a hardware

design language, in the sense that it enables systems whose basic

components are transputers to be described [46]. Its simple model of

processes and communication corresponds exactly to the behaviour of real

electronic systems [62]. That is, there is a direct mapping of the Occam

representation onto a physical architecture of functional blocks

connected via wires.

As a behavioural specification language for VLSI systems Occam is

capable of supporting a variety of design styles. Design descriptions

can range from being purely sequential to fully concurrent. One way in

which to use the language is to decompose a problem hierarchically, using

only the parallel constructor and channels until the individual processes

- 85 -

are as simple as possible. This approach can potentially result in

descriptions which maximise concurrency. Another approach for exploiting

concurrency is to use the sequential constructor to combine parallel

constructs. This represents the action of a number of processors which

all synchronise after each step they perform. In general, the parallel

constructor can be used to allow communication and computation to proceed

together.

The advantage of using an Occam program as a specification is that

the program can be executed as a simulator, or prototype, of the system

[61]. The language has a very efficient implementation, which enables

fast execution of a system description. Compilation of a source program

into a machine executable implementation enables the algorithm

characterising a system to be investigated. The designer can check the

efficiency of the Occam description and validate its correctness. It can

be 'fine tuned' to derive an optimum representation of the algorithm.

Also, alternative solutions can be evaluated quickly. Once the designer

has demonstrated that the program provides a satisfactory representation

of a system's behaviour, the program can be used as the specification for

a special purpose chip (or application specific integrated circuit).

Such an approach would involve transforming the Occam program into an

intermediate, detailed (in terms of structural components) design

description.

Occam has a number of other features which make it an attractive

language for hardware design. These include:

- 86 -

1. It contains the necessary concepts of concurrency and

communication to enable it to be used for the design of digital

hardware at any level of detail.

2. The language employs explicit control of concurrency and

communication.

3. It is a system description language which brings methodology to

system design. Occam supports the use of parameterised

processes which enables the hierarchical decomposition of

problems. That is, the language supports a structured design

style.

4. It has a formal basis which opens up the potential of formal

reasoning and transformation as design techniques.

5. It is easy to understand since it uses the minimum of concepts

(three primitive processes). It is concise. The syntax is

regular.

6.2 ATLAST: AN EXAMPLE ATL SYSTEM

Occam's ability to describe concurrent systems in a manner

suggesting an architectural implementation makes it an attractive

notation on which to base an ATL system. In principle, an Occam program

describing the behaviour of a system could be mapped into an equivalent

hardware implementation. In order to obtain such an implementation the

program's control sequence must be mapped into an appropriate timing

model. Also, topological information must be extracted. This requires

- 87 -

Occam Program
(Behavioural Description)

1

1

1

+--------------------+
1 TRANSFORMATION
1 MODULE
+--------------------+

1

1

1

Intermediate
Executable <------ Representation ------> Schematic

Code 1 Representation
1

+-------------------------1------------------------------+
1 Design Sub-System 1

1 1 1
1 .----------------.----------------. 1

1 1 1 1 1
1 CIRCUIT LOGIC DESIGN 1

1 SIMULATION VERIFICATION FILES 1

1 1 1
1 1 1
1 .--------. 1

1 1 1 1
1 LAYOUT FABRICATION 1

+--+

FIGURE 6.1: DESIGN PHILOSOPHY BEHIND ATLAST

an efficient set of transformations which, when applied to the

description, map Occam components into appropriate VLSI circuit elements

in accordance with an appropriate timing model. The proposed philosophy

on which an example ATL system could be founded is illustrated in

figure 6.1. This figure represents the specification for a future system

called ATLAST (Algorithm To Layout ASsisTant). It is envisaged that this

type of design system will provide a 'software type' design environment

to support the translation of algorithmic descriptions into special

purpose VLSI chips.

- 88 -

The central feature of ATLAST will be a powerful dual purpose

transformation module supporting both software and hardware design. This

module will check the syntax and semantics of source programs and

generate executable machine code. That is, a standard Occam software

compiler will be an intrinsic part of it. Also, the module will derive

detailed information for specifying VLSI implementations. This

information will provide an interface to a design sub-system capable of

producing an actual implementation. It is intended that the approach

taken for implementing the sections of the transformation module

responsible for forming the VLSI interface will differ form that

currently used for silicon compilers. Rather than deriving detailed

physical information for an adopted target architecture, an Intermediate

Representation (IR) will be generated. This IR will be a structurally

optimised Occam description. In effect, Occam's concept of concurrency

and communication will be adopted as a target model. The design

sub-system will be responsible for deriving an appropriate hardware

implementation from this description.

6.2.1 Timing Considerations

Complexity in the time dimension stems from the need to determine

the discrete intervals in time at which signal events may occur. A

signal passes through a sequence of time intervals when it is correct,

then incorrect, then correct again. To interpret the signal voltage, the

times at which the signal represents valid logic must be determined. In

a complex VLSI system there are many different signals which need to be

considered. The physical concept of a time metric is at too Iowa level

for describing the times when these signals are valid and the

- 89 -

relationships between them. A structured design methodology, such as the

one described in Chapter 2, is more applicable. So instead of using a

low level means for describing time relationships, a much more powerful,

abstract level can be used - the concept of sequence.

An Occam description of an algorithm contains an explicit definition

of execution sequence. The PAR construct and named channels are used to

describe concurrent components which at certain points in time

communicate. Channels enable the components to synchronise their

execution, exchange the relevant data, and then continue executing

independently until the next communication. Sequential ordering of

events is achieved through the SEQ construct. Usually, all three

execution constructs are used together to describe a system composed of

communicating sequential processes. The inherent sequence in an Occam

description can be regarded as the abstract specification for the timing

behaviour intended for a corresponding VLSI implementation. This

specification must be mapped into physical timing in such away that

performance objectives are achieved. This involves connecting abstract

sequence to an appropriate timing discipline. These disciplines can be

divided into two categories [47]: the synchronous approach and the

self-timed approach. In the former sequence and time are connected by

means of a global clock signal. In the latter sequence and time are

connected in the interior of parts called elements.

The synchronous approach is the most widely used. A clock with two

or more non overlapping phases is normally used to remove constraints on

the minimum delay in a clocked system. The clock signals serve two

purposes. Firstly, they act as a sequence reference, the transitions

- 90 -

serve the logical purpose of defining successive instants at which system

state changes may occur. Secondly, they provide a physical time metric.

The period or interval between signal transitions is used to handle the

elements and wiring delays in the paths from the output to input of

clocked elements. This dual role of the clock binds the system

sequencing and timing so closely that "timing" is the source of numerous

difficulties in the design, maintenance, modification, and reliability of

synchronous systems.

The problems of managing complex designs in which all system parts

must operate together has led to an increased interest in the alternative

self-timed approach. Self-timed systems are interconnections of parts,

which are called elements. Time and sequence are related inside

elements, so that events such as signal transitions at the terminals of

an element may occur only in certain orders. Initiation of a given

computational step depends on completion signals produced by its

sequential predecessor. The approach involves the design of elements and

the interconnection of these elements in a system. In the design of

elements logic, physics, and timing are brought together. This is made

easier since the designer works within a domain small enough to make the

design manageable. System design involves tackling the problem of

synchronising communication of data from one element to another. One of

the major difficulties in the self-timed approach is ensuring that this

communication is achieved reliably without an enormous area overhead in

additional logic.

- 91 -

Future scaling down of feature size and scaling up chip area will

not only increase the complexity of VLSI chips, but will also change

relationships in parameters. These parameters describe the physical

(i.e. electrical) characteristics of switching devices, circuits, and

wires. The increased wire delay associated with the increased

resistivity of scaled down wires will have a dramatic impact [44]. It

will result in propagation delays within a chip causing significant

wiring delays among functional blocks. Unless a technology based

solution is found, clock skew will become such a problem that synchronous

behaviour through the use of a system wide clock may no longer be

achievable. The lack of alternatives to the aluminium/doped polysilicon

interconnection systems is convincing some designers [55,77] that the

solution lies with self-timed approach. Also, this approach is more in

keeping with a rigorous discipline of modularity [5]. For these reasons

the self-timed approach will be adopted for system implementations by

ATLAST. The execution sequence of an Occam source program will be used

to divide a system into modular parts that are self-timed elements.

These elements will be implemented as as synchronous systems with an

internal clock.

6.3 SCHEMATIC REPRESENTATION OF OCCAM DESCRIPTIONS

A complete implementation of the ATLAST system is beyond the scope

of this thesis. Instead, the aim of the work to date has been to

demonstrate the automatic generation of schematic diagrams corresponding

to the IR. Such diagrams are desirable for a number of reasons.

Firstly, they help clarify the nature of the intermediate Occam

description. Although textual descriptions are powerful and concise

- 92 -

their overall meaning can be difficult to comprehend. A schematic

diagram corresponding to a textual description provides a valuable aid to

documenting and understanding that description. Secondly, schematic

diagrams reflect the two dimensional nature of VLSI design. They are

traditionally used to provide abstract topological information form which

an actual layout can be derived. That is, schematic diagrams are used to

illustrate the relative placement and interconnection of high level

hardware primitives (functional blocks). Thirdly, schematic diagrams can

be used to provide a visual representation of the data flow and control

flow in a system.

Since the IR will itself be an Occam description the approach

adopted concentrated on mapping key features of the language into

suitable schematic representations. The overall objective was to

demonstrate how both topological and timing information can easily be

obtained from an Occam description. As mentioned above, it is envisaged

that systems implemented by ATLAST will be based on the self-timed

approach. So it was decided that the schematic representations should

reflect this approach.

6.3.1 The Occam Subset

Rather than considering the complete Occam language, schematic

generation for programs written in a subset has been demonstrated. Only

a subset of Occam was selected so as to simplify the problem of

generating schematics to diagrams which occupy a single sheet. This

simplification only allows very simple descriptions to be considered.

The syntax for the selected subset of Occam is defined in Appendix C.

- 93 -

This subset is powerful enough to enable the fundamental and most

important feature of Occam to be described, namely communicating

concurrent processes. It contains three types of primitives: operators,

channels and variables. The set of operators is comprised of the

primitive process operators and the arithmetic operators. There are

three primitive process operators: input "7", output "I", and assignment

":=". The arithmetic operators are: "+", "-", "*", and "I". Channels

and variables are the fundamental objects manipulated by the subset and

both are denoted by identifier strings.

The operator, channel, and variable primitives represent the

fundamental components from which a wide variety of programs may

ultimately be composed. They are the building blocks from which

processes are formed. They are combined, according to the subset's

syntax rules, to form primitive (or simple) processes. Simple processes

can be combined, by means of a constructor, to form a complex process. A

construct governs the order of execution of its component processes. In

the subset of Occam handled by COPTS there are two constructs:

sequential (SEQ) and parallel (PAR). A complex sequential process is

constructed by SEQ and parallel process is constructed by PAR.

In the approach adopted for generating schematic representation of

Occam programs the three types of subset primitives are mapped directly

into schematic equivalents. Operators are mapped into elements called

schematic cells (see section 6.4). Variables are mapped into elements

called registers, which have input and output data paths (see section

6.4.1). Channels are mapped into communication paths (see section

6.4.2). These schematic elements serve two purposes. Firstly, each

- 94 -

gives a high level structural representation of a hardware element which

will implement the corresponding software primitive. Secondly, each

depicts the function of its primitive. Just as operators, channels and

variables are the building blocks of software descriptions so cells,

registers, data paths and communication paths are the building blocks

from which schematic diagrams are constructed. In a schematic diagram,

each element corresponds to a software primitive identified in a

corresponding Occam program.

6.3.2 COPTS: A Schematic Compiler

A schematic compiler called COPTS (Compilation of Occam Programs To

Schematics) has been written to demonstrate the generation of high level

schematics. From an Occam program written in the subset, COPTS can

generate a schematic diagram depicting its realisation in silicon. The

diagram provides a visual representation of parallelism present in the

described system. It also illustrate the flow of the control and data

through the system and the communication paths between its components.

Ideally such diagrams could be used as structural specifications for VLSI

implementations. The arrangement of schematic elements in a diagram

could be used to specify the actual placement of their associated

hardware structure. Substituting detailed physical representations for

the elements, in accordance with each one's position, would generate an

implementation. For this approach to be practical future advances in the

fabrication technology will have to remove the silicon area constraint,

since a schematic diagram is very wasteful of space. Also the problem of

power consumption must be tackled. A more realistic approach to

obtaining implementations is suggested in the final chapter.

- 95 -

In translating an Occam design description into a schematic

implementation, every primitive occurring in the program is identified.

Its corresponding schematic element is generated and placed accordingly.

The set of elements generated for an arithmetic expression visually

represent the function of that expression. Their arrangement and

interconnection reflects the data flow and execution sequence in the

expression. The set of elements derived for simple and complex processes

illustrates the various functional steps involved and the order in which

they occur.

Source code for an Occam compiler was unavailable, so a parser for

the subset had to be written. This builds up an internal data tree to

represent the block structure and execution sequence of source programs.

The conceptual structure of this tree is then used to define the

placement and interconnection of the schematic elements. The assembly of

these elements into a network portraying a source program is based on a

simple mapping strategy. This strategy can be summarised as:

1. parallel behaviour is used to define vertical placement;

2. sequential behaviour is used to define horizontal placement;

3. data flow is, in general, left to right;

4. only vertical and horizontal routing is allowed, crossovers are

permissible;

5. compaction is not a primary concern.

- 96 -

The remainder of this chapter defines the schematic elements and

summarises the function associated with each. A more detailed

consideration of the strategy used for spatially arranging these elements

and the implementation of the graphics compiler is given in the next

chapter.

6.4 SCHEMATIC OPERATOR CELLS

All the primitive operators in the subset are mapped into schematic

elements called operator cells. The behaviour of a system, as specified

in an Occam source program, is represented by an interconnected set of

these cells. COPTS identifies the required members of this set. It then

determines their topological arrangement and interconnection in a manner

reflecting a self-timed implementation of the program's execution

sequence. Each operator cell depicts a self-timed element (or

macro-cell), which is implemented as a synchronous system with an

internal clock. From inside an element this clock appears independent of

the clocks in other elements of the implementation. However, the

operation of each element's clock is governed by signals taken from a

global clock. So, at the system level, element clocks are partly

dependent. In an actual implementation of the wire carrying the global

signals, a low signal rate would be necessary to avoid clock skew. This

would not be a problem, since an element would generate faster, internal

clocking signals from the these signals. The internal clock rate of an

element would not be dependent on that of the other elements.

- 97 -

In an implementation, initiation of a macro-cell would depend on a

completion signal produced by its sequential predecessor. In effect,

such a signal is a control token and implies a physical link between the

two - a control line. The control token informs a cell that its inputs

are available and instructs it to commence processing them. On arrival

the token is consumed by a cell. When that cell has completed its

function and formed its output it generates a new token. This token is

then sent to the next element in the execution sequence. Once enabled, a

cell cannot accept another token until it has generated the completion

signal for the current task.

Since the function of a system is implemented as the collective

behaviour of the component macro-cells, every cell must, at some stage,

receive a token. For correct functioning, the interconnection of cells,

by a control line, must be such that each receives a control token in a

defined sequence. That is, a constraint on the topological arrangement

of cells is needed to ensure correct operation of a system. This

topological constraint is reflected in the schematic diagrams generated

by COPTS. Macro-cells which would operate in parallel in an

implementation are represented by schematic operator cells placed in a

vertical array. Macro-cells which would operate one after another (i.e.

sequentially) are depicted by schematic cells placed in horizontal

arrays.

The representation for each of the macro-cells is illustrated in

figure 6.2{a)-{d). It is envisaged that a textual description of an

actual hardware element will be associated with each of the schematic

cells. This description could be a composition routine in some high

- 98 -

+------------+
VDD ----->1 1----> DATAOUT
GND ----->1 1----> CNTRLOUT
CLK ----->1 1

CNTRLIN ----->1 1
DATAINl ----->1 1
DATAIN2 ----->1 1

+------------+

(a) An Arithmetic Operator Cell.

+------------+
VDD ----->1 1----> DATAOUT
GND ----->1 1----> CNTRLOUT
CLK ----->1 1

CNTRLIN ----->1 1
RESIN ----->1 1

+------------+

(b) An Assignment Operator Cell.

+------------+
VDD ----->1 1----> CHANOUT
GND ----->1 1----> CNTRLOUT
CLK ----->1 1

CNTRLIN ----->1 1
DATAIN ----->1 1

+------------+

(c) An Output Operator Cell.

+------------+
VDD ----->1 1----> DATAOUT
GND ----->1 1----> CNTRLOUT
CLK ----->1 1

CNTRLIN ----->1 1
CHANIN ----->1 1

+------------+

(d) An Input Operator Cell.

FIGURE 6.2: THE REPRESENTATION FOR PRIMITIVE CELLS.

level notation, for example a PLAP description. From it, the complete

hardware implementation (wires, boxes, polygons, etc.) of the

- 99 -

corresponding primitive could then be generated automatically. Such

descriptions could also incorporate information required by a simulator.

At present each schematic depicts a primitive's realisation in silicon.

They can be regarded as being at a very high level of structural

abstraction with much of the implementation detail hidden,

cf. abstraction by means of a bounding box. The boxes hide details of

the physical layout of the components implementing the function of an

operator. Only the required inputs and the generated outputs are shown.

The combination of operator cells in a schematic diagram forms an overall

structural specification for the intended VLSI system.

There are four inputs common to every operator cell. These are

labelled VDD, GND, CLK, and CNTRLIN, and denote the power, ground, clock

and control inputs to each macro-cell. The first three inputs are

derived from system inputs, whereas the fourth is derived from an

operator cell's sequential predecessor. A schematic cell/s power input

denotes the metal line which would supply the operating voltage to the

corresponding macro-cell; while the ground input denotes the metal line

for sinking a voltage. The clock input represents the line from which a

macro-cell would take signals to generate its internal clocking signals.

The control input depicts the metal line on which a macro-ceIl's

initiation signal (or control token) would arrive. As well as the four

inputs common to all schematic cells, there is also one output common to

them all, labelled CNTRLOUT. This denotes the wire along which a

macro-cell would signal that it had completed its execution.

- 100 -

Arithmetic operator cells represent hardware blocks which take two

numeric inputs and compute a result according to the function of the

operator they are implementing. Their behaviour can be summarised as:

Result <-- Operand1 Operator Operand2

In the schematic representation, figure 6.2(a), DATAIN1 and DATAIN2

correspond to Operand1 and Operand2 respectively. Each line denotes the

data path for its binary operand. The actual implementation of such a

path is determined by the type of data transfer required e.g. bit serial

or bit parallel. For bit serial transfer a data line is implemented as a

single metal wire; while for fast parallel transfer a data line is

decomposed into 'n' (where n is the number of bits per word in the

implementation) metal wires. After computing the result its value is

placed on DATAOUT - the output data path.

An assignment operator cell, figure 6.2(b), depicts the transfer of

the value of an associated expression to a register (see Variables and

Data Lines). Such a cell is needed because the data path carrying the

result of the expression may not necessarily be compatible with the input

data path of the register. It represents either a sequential in parallel

out (sipo) block, or a parallel in serial out (piso) block. In the case

of the former, RESIN denotes a single metal wire, DATAOUT 'n' metal wires

and the cell represents an element for converting from bit-serial

transfer of a word to fast parallel transfer. For a piso block RESIN

denotes 'n' metal wires, DATAOUT a single metal wire, and the cell

represents an element for converting from parallel transfer to bit-serial

transfer. Should the two data paths be compatible then in an

implementation neither block would be required.

- 101 -

6.4.1 Variables And Data Lines

A variable identifier is used to hold a value within the scope of a

complex sequential process. Such a process may use several variables.

Variables must be initialised, and may well be re-initialised with

different values in the process. All of a process' variables which are

initialised in the same subsidiary are mapped into a schematic element

called a register. This register is placed immediately to the right of

the set of schematic operator cells corresponding to that software

subsidiary. In an implementation, a register would be comprised of one

or more storage locations, the actual number being defined by the

variables it represents. Each location would be capable of holding an

n-bit word and would be associated with a particular variable. In the

schematic representation of a register, see figure 6.3(a), there is an

input and an output line for each word. These are referred to as the

assignment line and the reference line respectively. New values to be

stored in the word for a particular variable arrives on the former, while

a copy of the contents of that word are sent on the latter. So, the

assignment line represents a write line and the reference line a read

line. Data flow on both lines is left to right.

A variable is initialised by either an assignment or an input

primitive process. This is represented schematically as a data line

linking the DATAOUT output of either an input or an assignment operator

cell to an assignment line of a register. Data flow on this line is

always left to right. To help illustrate the mapping strategy, an

outline of the schematic representation for the initialisation of two

variables is given in figure 6.3(b).

- 102 -

Assignment
Line

+---+
Assignment -->1 1--> Reference
Assignment -->1 1--> Reference
Assignment -->1 1--> Reference
Assignment -->1 1--> Reference

Assignment -->1 1--> Reference
+---+

(a) Schematic Representation Of A Register Cell

n~~~~~;
n~~~~~; 1----'

(b) Initiation Of A Register

(c) The Reference Line

Reference Line

Re-assignment Line

(d) Register Update

r--------p DATAOUT

FIGURE 6.3: The mapping of variables

The two boxes labelled with 11.- ?II .-, . represent the assignment or input

- 103 -

operator of the primitive process responsible for placing initial values

in the variables. Vertical placement of the two cells means that in the

source program these two processes were defined to operate in parallel

(see section 7.2). For clarity only the DATAOUT outputs of the cells are

illustrated. In keeping with a left to right representation of data

flow, the register for the two variables is placed to the right of the

cells. The register has two sets of assignment-reference lines, each one

is always associated with the same variable. The connecting data lines

represents the communication path between the two cells and the register.

It also implies a communication protocol for handling the transfer of

data from the operator cell to the register cell. For bit-serial

communication the line is implemented as a single wire, whereas for

concurrent communication the line is expanded into n wires.

Having been initialised, a variable is typically referenced as an

operand to a number of operators. Each of these operators could be in

separate expressions. This is represented schematically by the reference

line for that variable being routed to the appropriate DATAIN input of

every operator cell in which the value is required. These cells will

always be to the right of the register. As an example consider figure

6.3(c). This gives an outline of the schematics for an initialised

variable which is as an operand of five arithmetic operators. The boxes

labelled with DATAIN represent arithmetic operator cells. For clarity

only the appropriate DATAIN input of the cells are shown. The position

of the boxes is intended to merely illustrate a possible arrangement of

cells and is not intended to define any particular placement strategy.

The value being carried on the reference line is sent down each fork of

the line. Each branch maintains the left to right convention for data

- 104 -

flow.

If a variable is assigned a number of different values in a process,

then this is mapped into a subsidiary data path connected connected to

the assignment line corresponding to the variable. This path is called

the re-assignment line, and it denotes a bus for fetching updated values

for the word associated with the variable. Data flow is reversed on this

line (i.e. right to left as opposed to left to right). From it there are

branches to the DATAOUT outputs of all operator cells (either assignment

or input) responsible for updating the register corresponding to the

variable. Again these cells will always to be to the right of the

register. An outline of the schematics representing three different

updates of a var\able is given in figure 6.3(d). The cells labelled

DATAOUT denote the operator cells updating the variable. Obviously

updates occur sequentially hence the left to right horizontal arrangement

of cell (see section 7.2)

6.4.2 Communication Primitives

Channels are used to communicate between concurrent processes. Each

channel provides a one way connection between two concurrent processes.

A channel identifier is associated with an input component and an output

component of a parallel construct. The two components are said to be

connected by the channel. Only one input and one output process can be

connected by a channel. Output and input operators are represented by

the cells shown in figure 6.2(c) and figure 6.2(d) respectively, while a

channel identifier is mapped into a line called a communication path. A

communication path links the CHANIN input of an input operator cell to

- 105 -

I--------p CHANOUT
!

CHAN commu:
PAR

<-- Connecting -->
Channel commu

commu ? "data"
commu ! "data"

I----!---~ CHANOUT

Cf!T------I CHANIN
?

CHAN commu:
PAR

commu "data"
commu ? "data"

FIGURE 6.4: Schematic Representation Of A Channel Identifier.

the CHANOUT of an output operator. Data flow in such a path is always

from the output cell to the input cell.

An outline of the schematics for an input cell linked to an output

cell by a communication path is given in figure 6.4. The boxes labelled

"?" denote input cells, the boxes labelled "!" denote an output cell, and

the communication path is labelled "commu". For simplicity only the

communication path is shown. Since, the cells are associated with

primitive processes which ultimately belong to the same parallel process

they are placed vertically (parallel behaviour defines vertical

placement, see section 7.2). There are two possible arrangements for the

operator cells, both are outlined in figure 6.4 together with the

segments of code from which they were mapped. The term "data" is used to

denote the value of a word and not a variable. If the primitive input

process is the first to be defined in the parallel process then the input

cell is the upper most. If, however, the output process is the first to

be defined then the output operator cell is upper most. The connecting

- 106 -

communication line, commu, is routed between the two cells. This line

defines the routing of the communication path between the two cells. It

also depicts the implementation of the necessary synchronisation protocol

(e.g. handshaking) between the two.

If the input and output processes occur on consecutive lines of the

source program, as in figure 6.4, then COPTS places the schematic

representation for the corresponding input cell vertically adjacent to

that for the output cell. However, if the two processes are separated by

intermediate processes, then the cells are separated vertically by other

cells. The operator cell associated with the first process to reference

a channel identifier is termed the channel's source cell. The operator

cell for the corresponding process is termed the channels destination

cell. Channels declared for the main process may represent external

inputs or outputs. In which case, the corresponding channel lines are

only connected to source cells. If this source cell represents an input

process then the line is routed to the west edge of the diagram. On the

other hand, if the source cell represents an output process then the line

is routed to the east edge of the diagram.

An output operator cell denotes a hardware element for transferring

(cf. a driver) the value of an expression on to a communication channel.

An input operator cell depicts a hardware element for transferring a

value from a communication path (cf. a stabilising input buffer) to a

register. Together these hardware elements would provide communication

between concurrent components in a system. The communication path

between the two schematic cells represents the physical connection (link)

along which communication between the two hardware elements would occur.

- 107 -

This communication is synchronised. An input element will not complete

execution until the corresponding output element has executed a write.

Equally an output element will not complete execution until its

corresponding input element has executed a read from the link. Yhen both

are ready to communicate, the value to be output is copied, via the

physical link, to the input cell. After the communication has taken

place both cells generate a control token signalling the termination of

their execution. The concurrent component each one belongs to then

continues to execute independently.

6.5 SUMMARY

This chapter has considered how Occam can be used to help clarify

the nature of a VLSI design. Since Occam was designed to describe

systems composed of a number of communicating processes operating in

parallel, it can be used to provide behavioural specifications of VLSI

systems. Its features make it relatively straightforward to generate

corresponding schematic diagrams. Such diagrams help document an Occam

VLSI description. A schematic compiler (COPTS) which can generate

schematic diagrams for a limited sub-set of Occam has been developed.

The primitive elements used to build up these diagrams have been

introduced. The next chapter considers in more detail the approach

adopted by COPTS for building up diagrams.

- 108 -

CHAPTER 7

GENERATING SCHEMATICS

The task of generating a schematic diagram for an Occam description

is divided into mapping the main processes into abstract cells. Each of

these is individually defined according to whether they correspond to a

complex or primitive process. The resulting abstract cells are then

interconnected to form a network representing the program. This chapter

defines the various types of abstract cells and considers how they are

built up from the primitive schematic elements. Brief details of the

current implementation of COPTS are also given.

7.1 ABSTRACT CELLS

In deriving a schematic diagram, the compiler uses the top down

nature (i.e. the hierarchy) in the source program to structure its

representation. This involves viewing a program at a number of levels of

abstraction, ranging from the entire program down to the actual

primitives it is constructed from. A particular component of the Occam

subset is associated with each level. The primitives described in

section 6.3.1 characterise the lowest levels. Above these, occurrences

- 109 -

SOFTWARE I GRAPHICAL
--

PROGRAM
I
I

COMPLEX PROCESSES
I
I

SIMPLE PROCESSES
I
I

EXPRESSIONS
I
I

OPERATORS
I
I

IDENTIFIERS

I
---------->

I
I

---------->
I
I

---------->
I
I

---------->
I
I

---------->
I
I

---------->

SCHEMATIC DIAGRAM
I
I

COMPLEX CELLS
I
I

SIMPLE CELLS
I
I

EXPRESSION CELLS
I
I

OPERATOR CELLS
I
I

INTERCONNECT PATHS

FIGURE 7.1: Schematic Mapping

of a level's component are used to partition the schematic implementation

into collections, or blocks, of interconnected schematic operator cells.

These blocks are regarded as abstract cells. The software components,

their hierarchical arrangement and their mapping into schematic

counterparts are shown in figure 7.1. In this figure, abstract cells are

classified according to whether they represent a complex process, or a

simple process, or an expression. A simple process is comprised only of

primitive operators, whereas a complex process is comprised of simple

process and/or other complex processes.

The arrangement and interconnection of schematic operator cells in

an abstract cell depicts the function of a corresponding software

component. It defines the placement and interconnection of hardware

elements which would collectively implement that function. Defining the

layout of operator cells for a complex abstract cell entails recursively

- 110 -

partitioning the cell into component abstract cells. This recursive

decomposition is continued until abstract cells for simple processes can

be considered. These are then treated separately and according to

whether they will represent an assignment, output, or input process.

Both assignment and output abstract cells may involve defining expression

cells (see section 7.5). Abstract input cells are composed entirely of

operator cells and lines defining their interconnection and communication

paths. The defined cells are interconnected to build up the

representation of the parent complex cell. This top down, bottom up

approach produces schematic diagrams having a hierarchical structure

corresponding exactly to that in an Occam source description.

Abstract cells are treated as bounding boxes with pins located

around the periphery to identify the interconnect points for inputs and

outputs. They enable the diagram to be partitioned into distinct areas

which can be considered individually. This allows the diagram to be

built up gradually. To derive abstract cells, the compiler first routes

the appropriate lines to the input points. Then the placement and

interconnection of the schematic elements is considered. Finally, the

routing of the outputs is tackled. The definition of an abstract cell

represents the 'glue' which binds together the schematic elements

corresponding to each of the associated component's primitives. The

compiler uses the bounding box to delimit the area occupied by the

elements. It is a conceptual feature and does not appear in the overall

schematic diagram generated from an Occam description. Only operator

cells, their interconnection paths, power, ground, clock and control

lines are drawn.

- 111 -

7.2 EXECUTION SEQUENCE AND LAYOUT

The execution sequence specified in source programs is used directly

to define the spatial arrangement of cells. The interconnection of these

cells by the control line is also determined by the execution sequence.

Occam programs typically contain both sequential and parallel behaviour.

The SEQ construct is used to explicitly define a process whose

subsidiaries execute one after another. Concurrent operation of a

process' subsidiaries is defined by the PAR construct. Both sequential

and parallel execution are possible in the evaluation of an arithmetic

expression (see section 7.3). This section first considers how

sequential behaviour is used to define placement and routing and then how

parallel behaviour is similarly used. To illustrate the approach

adopted, consider an Occam component composed of 'n' subsidiaries (where

n > 1). Assume that these subsidiaries can either operate in sequence

(ie. execute and terminate one after the other), or concurrently (ie. all

commence executing at the same time). Assume also that each subsidiary

has a 'cell' representation, whether this is abstract or primitive is not

important as what follows is applicable to both.

7.2.1 Sequential Behaviour

Sequential execution of the 'n' subsidiaries is mapped into a

horizontal array of cells. An outline of the schematic representation

resulting from this mode of operation is given in figure 7.2(a). To aid

understanding only the control line and cell boundaries are illustrated.

The control line is routed such that it first connects the control in

point of CELL 1. It then connects the control out point of CELL 2 to the

- 112 -

~
------~
CELL n

(a) sequential execution of cells.

CELL 1

1--:=====: JOIN ~
CELL

(b) concurrent execution of cells.

FIGURE 7.2: Execution Sequence And Interconnection Of Cells.

control in point of CELL 3, ... , and the control out point of CELL (n-1)

to the control in point of CELL n. That is, there is a single thread of

control linking the cells from left to right. A control token arrives

from the left and enables CELL 1. This cell executes, and when it has

completed its task, places a new token on its control out line, and

terminates. The token is carried to CELL 2, which is enabled etc. This

sequence is repeated along the array of cells, each one in turn being

enabled, executing, and then terminating.

7.2.2 Parallel Behaviour

In the schematic representation for n components operating

concurrently, figure 7.2(b), the corresponding cells are arranged in a

- 113 -

vertical array. The control line is routed down the left side and

ultimately connecting with control input of CELL n. Along the route to

this connecting point are (n-l) "forks". At each fork a segment from the

control line connects with the control input of the adjacent cell. So

the intervening (n-l) cells are also connected directly to the control

line. At each fork the initiate signal propagates along both segments.

To the left of the vertical array of cells is a single cell with n

inputs. This is a JOIN cell and the top input is connected to the

control output of CELL 1, the second from top input is connected to the

control output of CELL 2, ... , and the lowest input to the control output

of CELL n. The join cell has a single output. On receiving a completion

signal from each of the n cells, the join cell simply places a completion

signal on its output.

Concurrent execution is represented by the forks on the control

line. Return to sequential execution is indicated by the join cell.

When the control token arrives at the upper left corner it is carried

simultaneously to each of the n cells, which are then enabled. The

execution time of a cell is independent of that for the other cells.

That is, each cell is time independent of all other cells in the array.

Consequently, completion signals are placed on the CNTRLOUT outputs at

different times. The join cell receives these, and when all n have

arrived places a terminating signal on its output. This is then carried

to the next cell in the execution sequence. From this cell, the vertical

array of cells appears as a single cell with a single control line in and

a single control line out.

- 114 -

7.3 EXPRESSION TREES AND THE LAYOUT OF EXPRESSION CELLS

Arithmetic expressions can be described by binary trees. The tree

for a variable identifier in such a description is simply that variable.

If e1 and e2 are elements with trees T1 and T2 then the trees for e1 + e2

and e1 e2 (ie. <element> <assoc.op> <element» are:

I
T1

+

I
T2

I
Tl

*
I
T2

The trees for e1 - e2 and e1 / e2 (ie. <element> <operator> <element»

are respectively:

I
T1

I
T2

I
T1

/

I
I
T2

As an example consider the Occam expression «a*b)+c)-(d*e). The binary

tree describing this expression is

I
+ *

--
I

_I-
I I

* c d e

_I-
I I
a b

The operator of an expression forms the root of a tree, while each

element is a variable identifier described by an end node or a

sub-expression described by a sub-tree.

- 115 -

7.3.1 Defining Layout

A tree description is used to define the mapping of an expression

into an abstract expression cell. Such cells are composed of primitive

operator cells and their interconnection paths. The placement of these

operator cells is defined by the implied execution sequence in the

corresponding tree description. A tree consists of a left and right

sub-tree, see figure 7.3(a), each of which is mapped into a

sub-expression cell. ~hen the sub-expressions described by the left and

right sub-trees have been evaluated, their results form the operands of

the root operator. This operator can then compute the overall value of

the expression. The value obtained for the left sub-tree is independent

of that obtained for the right tree. Both depend only on the values of

the variables occurring in their sub-expression. Therefore, they can be

evaluated concurrently. Since parallel behaviour is represented by

vertical placement, the abstract cells defined for the right and left

sub-trees are placed as shown in figure 7.3(b). The operator cell for

'root-Op' is placed to the right of the two expression cells.

The parallel behaviour means that the control line from the

sequential predecessor has to be split into two segments. One segment is

routed to the left expression cell and the other to the right expression

cell. A join cell immediately after the two expression cells is

required. Its output is connected to the CNTRLIN input of the root

operator cell. Neither the join cell or the control line is shown in

figure 7.3(b). This mapping into sub-expression cells and associated

routing of the control line is identical for all left and right

sub-trees. In figure 7.3(b) the root operator cell is connected to each

- 116 -

Root-OP

I
Left

Sub-Tree

I
I

I
Right

Sub-Tree

(a) Expression Tree

]~~~~:::::: CELL

]
----------1 RIGHT
EXPRESSION
CELL

(b) Mapping

FIGURE 7.3: Topological Arrangement Of Expression Cells.

expression cell via a data line. These lines carry the value of the

associated sub-expression. This mapping strategy ensures that the binary

nature of expressions is reflected in the schematic representation.

Data lines depicting the variables referenced in an expression are

routed to the appropriate operator cells. Power, ground and clock lines

are routed to each of the cells in the expression cell.

7.3.2 An Example

To illustrate the mapping strategy outlined above consider the

expression

«c_«(b+c)-a)/(a-(b/c»*a*b»)/«a-b)+c»+(c-b)+(b/c) +(a*b)

The expression tree for this is shown in figure 7.4(a). An outline of

its corresponding schematic representation is given in figure 7.4(b). To

aid clarity only the relative placement of cell elements and the routing

of each cell's RESOUT data path are outlined. Each cell is labelled

- 117 -

(+)1

1----------1------------------- I
(+)2 (+)3

1----1 I ---I I I
(/)4 (-)5 (/)6 (*)7

_I I I I
I I I I I

(-)8 (+)9 c b b cab
1- 1

I 1 I
c

I
b

1

(1)10
1 __ -

I
(-)12

I
I

I
(*)13
I

I

(-)11 c
I

I
a b

(+)14 a (*)15 b
I I

1 I
c (-)16 a

I
I

a (1)17

I
I
b c

(a): Expression Tree

+---+
I [+] 14~ -] 12 J>[/] 10 4[-] 8 /] 4 +] 2 + 111
1 I

I [/] 17~ -] 16--;)[*] 15~ *] 13 I
I I
1[-]11~+]9 1
1 1

1[-]5 I
1 1

1 [/)6~ +]3 I

I [*]7~ I
+---+

(b): Cell Arrangement

Figure 7.4: Example Expression Tree And Its Schematic Layout

- 118 -

according to the node in the tree it represents.

The root of the tree is labelled '(+)1'. Both its siblings are

themselves trees, so before the corresponding cell can be placed, the

expression cell for each tree must be placed. The left tree, with root

'(+)2' is considered first. Its left path is descended until a terminal

(a node with a variable for each sibling) is reached. In this descent,

if a node with a left path directly leading to a variable is encountered

(e.g. '(-)8'), then the right sub-tree is descended. Again, the left

path of this is followed unless it leads to a variable. Eventually the

terminal labelled '(+)14' is reached. The cell corresponding to this is

placed in the top left hand corner of the conceptual bounding box. In

figure 7.4(b) this cell is represented by '[+]14'. Having placed the

cell, its parent is considered, i.e. node '(-)12'. The right branch of

this leads directly to a variable and so the corresponding cell is placed

immediately to the right of the previous cell. The next node up, '(/)10'

is then considered. Its right sibling is a tree and so the expression

cell for it must be placed before the node's cell can be. This involves

descending the sibling tree, as described above, until the terminal node

'(/)17' is reached. Its corresponding cell is placed directly below that

for node '(+)14'. Cells can then be placed for the nodes'(-)16',

'(*)15', and '(*)13'. These cells are placed to the right of cell

'[/]17', as shown in figure 7.4(b), forming a horizontal array.

Both expression cells for the node '(/)10' have now been placed.

The left expression cell consists of two operator cells arranged in a

horizontal array, while the right consists of the horizontal array of

four cells immediately below. The cell for the node is placed to the

- 119 -

right of these, as shown in figure 7.4(b). Note a join cell, indicating

the return to sequential behaviour, would be placed just to the left of

cell '[/)10', but this is not shown. Node '(-)8' can now be placed since

its right expression cell has been laid out. This cell is placed to the

right '[/)10'. Before the cell for node '(/)4' can be placed the

expression cell for its right sub-tree must be positioned. The same

process is repeated, generating an expression cell consisting of '[-)11',

'[+)9', and '[-)5'. A cell for node '(/)4' is then placed to the right

of '[/)10'. This top down, bottom up traversal of the tree is continued

until a cell for each node has been placed.

The interpretation of the structural representation of behaviour

implied by figure 7.4 will now be considered. The execution sequence is

identical to that defined by the tree in figure 7.4(a) and is reflected

in the data flow. In the following discussion, integers refer to the

actual hardware implementations of the correspondingly labelled schematic

cell outlines in figure 7.4(b). In an implementation, 14, 17, 11, 5, 6,

and 7 would receive a control token simultaneously, and hence operate

concurrently. After 14 generates a control token 12 would commence

operating. The same applies to 17 - 16 and 11 - 9. After 16 has

completed, 15, and 13 operate one after the other. Before 10 could be

activated both 13 and 12 would have had to of terminated. When 9 and 10

have generated their control tokens, then 8 would be initiated, followed

by 4. The operation of 3 is dependent on the completion of 6 and 7; 2 is

dependent on 4 and 5; and finally 1 is dependent on 2 and 3.

- 120 -

7.4 SIMPLE CELLS

The simple processes are mapped into abstract simple cells, which

consist of one or more operator cells and lines defining their

interconnection and communication. The arrangement of these cells within

the bounds of a simple cell is determined by the implicit sequence of

operations in the corresponding process. An outline of the schematic

representation for each of the three simple processes are given in

figure 7.5.

An assignment process is mapped into two cells: an abstract

expression cell and an assignment operator cell. The abstract

representation of an expression is used, the actual layout of constituent

operator cells and their interconnection was described in the previous

section. External data lines are routed to the expression cell. These

lines fetch the value of the variables referenced in the corresponding

expression. A data line connecting the two cells is used to transfer the

value of the expression to the operator cell.

An input cell is comprised of n input operator cells, where n

denotes the number of constituent read operations in the corresponding

input process and is greater than or equal to one. That is, the mapping

produces an input operator cell for each read operation in the process.

These cells are placed sequentially to form a horizontal linear array. A

power, ground, and clock line is routed to each cell, while the control

line links the component cells together for sequential execution. The

data output line from each cell is routed along the top of the array,

from left to right, forming a bundle of lines. The channel line

corresponding to the process is routed from left to right, connecting

- 121 -

+----------+ +----+
1 expression 1----->1 : = 1--->
1 cell 1 +----+
+----------+

(a) An Abstract Assignment Cell

----------------~>

(b) An Abstract Input Cell

I
--------:---~-expreSSIon !

cell -
---------- I

--------:---~-expreSSIon !
cell -

---------- I
--------:---~-expressIon !

cell -

(c) An abstract Output Cell

Figure 7.5: Arrangement Of Components In Abstract Simple Cells

with each subsidiary cell's CHANIN input, and terminating in the right

most.

An output cell consists of n expression cells and n output operator

cells, where n represents the number of write operations occurring in the

corresponding process and is grater than or equal to one. These cells

are arranged into expression/operator pairs, with each pair corresponding

to one write operation. The n pairs of cells are placed sequentially

forming a horizontal linear array, as illustrated in figure .7.5(c).

Power, ground and clock lines are routed into each cell. The control

- 122 -

line connects the control output of each cell to the control input of its

right neighbour, so the cells execute sequentially. The output channel

line is routed from the channel output port of the left most cell to the

east edge of the array, passing underneath the intervening pairs of

cells. Each intervening operator cell is also connected to this channel

line.

7.5 COMPLEX CELLS

Complex processes are comprised of a number of subsidiaries which

are either simple or other complex processes. The abstract cell for each

subsidiary is defined by the compiler and placed as described in section

7.2. So, a sequential process is mapped into a horizontal array of cells

(see figure 7.2(a», while a parallel process is mapped into a vertical

array of cells (see figure 7.2(b». The cells in these arrays are either

simple abstract cells or other complex cells. In figure 7.2(a) the left

most cell depicts the cell for the sequential process' first subsidiary,

while the right most cell depicts that for the last (n th.) subsidiary

process. In figure 7.2(b), the top most cell is the abstract cell

derived from the first subsidiary process defined, the second from top is

that for the second process, ... , and the bottom cell is that representing

the final subsidiary.

7.6 IMPLEMENTATION DETAILS OF THE GRAPHICS COMPILER

The current version of COPTS is a Pascal program (approximately 6500

lines) which translates a source program into an equivalent graphical

representation. A more detailed description of its implementation is

- 123 -

presented in Appendix E. Source programs for it are written in the

language defined by the syntax given in Appendix C. These programs are

first analysed and then their corresponding schematic representation are

generated. An integral part of the compiler is its internal data

structure. This is used to save the information obtained during both

these steps. The data structure is represented by the record type

'CmpntRec' (see Appendix F). Pointers to records of this type are used

by different parts of the program to access and manipulate the data

structure.

The 'CmpntRec' record type was designed to implement a data base

which reflects the block structure and hierarchical nature of the source

language. This internal data base has a tree structure. It is used to

hold both the internal representation of the source program and the

information defining the corresponding graphical representation.

The compiler's SYMBOL TABLE is implemented by records of the type

'SymTabRec' (see Appendix F). References to this type of record are

distributed throughout the data structure. The record associated with

such a reference holds information on an identifier and represents a

symbol table entry.

The phases of the compiler, in order of execution, are as follows.

7.6.1 Parse Phase

Consists of two parts: a SCANNER and an ANALYSER. The scanner

reads in the characters of the source program and constructs the symbols

of the program. These symbols are classified into integers, identifier

- 124 -

strings, keywords, and delimiters ('+', '-', '*', 'I', ':=' ...). The

symbols are passed to the analyser in an internal form. Each symbol is

represented by a TOKEN. A token has an integer value associated with it,

denoting the symbol it represents.

The analyser performs a syntax and semantic check of the program.

This involves building up the internal form of the program - the PARSE

TREE - in the compiler's data structure. Information on the declaration

of identifiers is gathered and stored. Expressions are analysed and

stored in their Reverse Polish form. As each source language construct

is recognised it is checked for semantic correctness. For example,

during the parse of a declaration the identifiers are checked to see if

they have been declared twice.

7.6.2 Graphical Specification Phase

This phase completes the internal representation of the source

program. This involves a preorder traversal of the compiler's internal

data tree. During this traversal information on the occurrences of

identifiers is gathered and stored. Also, any Polish expressions in the

data structure are transformed into corresponding tree representations.

These "expression trees" specify the order of execution for the operators

of the expression. The conceptual structure of such a tree is later

mapped directly into a structural representation. Information on an

expression tree is held in a record of the type 'XprsnRec'.

7.6.3 Graphical Definition Phase

This phase translates the internal source program into the

- 125 -

corresponding internal definition of the graphical representation. This

involves conceptually building up a structural implementation of this

representation on an imaginary grid. Information defining the

implementation is stored in the compiler's data tree. The recursive

algorithm developed to generate this information incorporates a preorder

traversal of the internal tree.

During the traversal information in the internal tree is examined.

Information on each primitive operator is used to define, in terms of

co-ordinates and units of the grid, the occurrence of the corresponding

graphical (cell) in the full representation. The resulting cell

definition information is stored along side the internal representation

of the primitive. Information specifying the occurrences of each

identifier is examined. It is used to define a set of vertical and

horizontal lines. This set of lines maps the occurrences of a particular

identifier in the source program to the corresponding graphical

representation. Again the implementation information generated is

stored.

The parse phase stores information on the execution sequence of the

source program. This is also examined and used to generate plotting

information on a set of lines. The lines in this set link all the

primitives on the grid and represent the mapping for the control

sequence.

7.6.4 Schematic Output Phase

The final phase of the compiler generates the object code defining

the graphical representation. Another preorder traversal of the internal

- 126 -

tree is used to access the internal definition of the graphical

representation. During the traversal information on each line defined

for the graphical representation is written out. The resulting output is

then sorted and formatted to produce the object code. A line plotting

program later uses the object code to display the schematic

representation of the Occam source program.

The first two phases correspond to the analysis step, while the last

two phases correspond to the generation of the graphical representation.

There is a fifth phase to the program, the dump phase. The

execution of this phase is not essential. Vhen used it writes out the

contents of the tree data structure after the parse and specification

phase. It was designed as an aid in developing the program.

- 127 -

CHAPTER 8

RESULTS

Six example programs written in the defined subset were used to test

the implemented graphics compiler. The first three programs together

with their corresponding schematic diagram are included here, while the

remaining examples are included in appendix D. These programs are

intended to merely illustrate the features of Occam currently handled and

do not describe any particular algorithm. The defined subset limits the

complexity of programs which can be developed. Within these bounds the

example programs range in 'complexity', the simplest consists of

twenty-three lines of code, while the two most complex each contain

fifty-eight lines. In this chapter the schematic diagram of one example

program (Program One) will be discussed in some detail. A brief

description of the remaining programs and important features of their

schematics is also included. An overall assessment of the schematics is

made with reference to their limitations and some suggested improvements.

Before considering the first example some general introductory notes

to the diagrams included here are required. All red boxes are operator

cells, yellow boxes are join cells, and a purple box represents a

- 128 -

register corresponding to one or more variables (i.e. a register bank).

A bounding box (drawn in black) surrounds each diagram. The top four

inputs to this box represent the system's power, ground, clock and

control input lines respectively. Any remaining lines on the west edge

are input communication lines. On the east edge of the bounding box

outputs are communication lines and the control line out. The latter can

be identified by the fact that it is the only output which can be traced

back to a join cell. Blue and green are used to distinguish between

horizontal and vertical routing of lines.

8.1 A SIMPLE EXAMPLE OF COMMUNICATING PROCESSES

Program One, shown in figure 8.1, inputs two values, computes some

intermediate values and then outputs two results. The schematic diagram

generated for this program is shown in Plate 1. A key to this diagram is

given in figure 8.2. The boxes in this figure are labelled according to

the operator of the cell it is associated with. Each operator is

numbered according to its position in the source code. So, for example,

"(*)5" represents the fifth multiply operator in Program One. Registers

are also identified and labelled. In Plate 1 there are six inputs to the

bounding box, the top three are the power, ground, and clock lines

respectively. Each operator cell and register element is directly linked

to these lines. The fourth from top is the control input line. This

line threads its way through the diagram, forking and joining until it

eventually becomes an output. The other two input lines are the

communication paths corresponding to the channels 'In1' and 'In2'.

- 129 -

CHAN In1, In2, Out1, Out2:
VAR a, b:
SEQ

PAR
In1? a
In2? b

CHAN Comm1, Comm2:
PAR

VAR t1, t2:
SEQ

PAR
t1 '- a * a
t2 '- b * b

PAR
Out1! t1+(a*b)+t2
Comm1! t1
Comm2! t2

VAR asq, bsq:
SEQ

PAR
Comm1? asq
Comm2? bsq

Out2! (asq*b) - «a/b) - (bsq*a»

Figure 8.1: Listing Of Program One.

The program defines a sequential process which is comprised of two

subsidiaries, each of which is a parallel process. The first simply

inputs a value from each of the channels 'In1' and 'In2' and stores them

in the variables 'a' and 'b' respectively. This is represented by the

two left most cells, labelled "(?)1" and register element R1. The

communication line for each channel is routed to the corresponding input

cell. R1 is a register with two storage locations (words), one for 'a'

and the other for 'b'. Its upper input is the assignment line for 'a'

and the lower that for 'b'. Since the two inputs are defined to occur in

parallel, the control line forks to link with the CNTRLINs of the input

cells. A line form the CNTRLOUT of each cell is routed to the join cell

immediately to the left of "(?)1". This represents the return to

sequential behaviour.

- 130 -

[(?)1] [R1] [(*)1] [(:=)1] [R2] [(*)3] [(+)1] [(+)2] [(1)3]

[(?)2] [(*)2] [(:=)2] [(1)1]

[(1) 2]

[(?)3] [R3] [(*)4]

[(?)4] [(/)1] [(-)2]

[(*)5]

[(-)1] [(1)4]

Figure 8.2: Key To Plate 1.

The remainder of the schematic diagram represents the second

parallel process to be declared in the program. This is more involved

and consists of two sequential processes. These communicate, and hence

synchronise behaviour, via the channels 'Comm1' and 'Comm2'. The line

linking the CHAN OUT of cell "(1)1" to the CHANIN of "(1)3" represents the

former. Comm2 is represented by the line connecting the CHANOUT of cell

"(!)2" to the CHANIN of cell "(1)4".

The first sequential process squares 'a' and 'b' in parallel,

assigning the results to the variables 't1' and 't2'. It then

concurrently outputs these to the other sequential process, and outputs

the value of an arithmetic expression on 'Out1'. Cells "(*)1" and

"(:=)1" represent ':= a * a', while cells "(*)2" and "(:=)2" represent

':= b*b'. The register R2 represents the two variables t1 and t2. Both

cells "(*)1" and "(*)2" two DATAIN lines can be traced back to the

outputs of R1. The former's to the upper output (i.e. the reference line

for a) and the latter's to the lower output (i.e. the reference line for

b) Cells "(*)3", "(+)1", "(+)2" and "(1)3" represent the output process

- 131 -

(-)
_______ 1 ______ __

I 1
(*) (-)

_1- 1
1 1 1 1

asq b (-) (*)

a

I 1

1

b
1
bsq a

FIGURE 8.3: Expression Tree For '(asq*b)-«a/b)- (bsq*a»'

using Out1. The other two output processes are represented by "(!)1" and

"(1)2. Placement and interconnection of cells for all three subsidiaries

reflects the sequential execution of the process.

The second sequential process concurrently inputs the squared values

of a and b, storing them in asq and bsq. It then computes the value of

an arithmetic expression, placing its value on Out2. Cells "(7)3" and

"(?)4" represent the input operators. The register R3 represents the

variables asq and bsq. The output process evaluates the expression

(asq * b) - «alb) - (bsq*a»

Its expression tree is shown in figure 8.3. The arrangement of the cells

"(*)4", "(/)1", "(*)5", "(-)2", and "(-)1" illustrates how the conceptual

structure of the tree is mapped into arrangement of operator cells.

Careful tracing back of an operator cell's data inputs reveals its

operands.

- 132 -

In the schematic diagram there are seven join cells. Each one

depicts the return to sequential behaviour after concurrent processing.

These cells will now be considered in left to right order. The left most

cell signals the completion of the program's first parallel process. The

second from left signals the completion of the parallel process which

inputs values for asq and bsq. Completion of the parallel process which

squares a and b is signalled by the third from left. Both the fourth and

fifth cells signal the completion of intermediate parallel steps in the

evaluation of the expression given above. The second from right cell

signals the completion of the parallel process consisting of three

outputs. Finally, the right most cell produces the control out line

signalling the completion of the program's two subsidiaries.

8.2 OTHER EXAMPLE PROGRAMS HANDLED BY COPTS

The second example is intended to demonstrate the ability of the

implemented compiler to handle a program comprised of more than two

complex subsidiary processes. A listing of the program is given in

figure 8.4. This example also demonstrates the compiler's ability to

handle the re-assignment of variables. Program Two defines a sequential

process consisting of four parallel sub-processes. Its first subsidiary

inputs a value from each of the channels 'input1', 'input2', and

'input3'. The second subsidiary is responsible for assigning values to

't1', 't2' and 't3'. It consists of two assignment processes and two

sequential processes which communicate via the channel 'intrn'. The

third subsidiary consists of three assignment processes which re-assign

values to a, band c. In the last subsidiary three output processes

write the value of an expression to their associated channels.

- 133 -

CHAN input1, input2, input3, output1, output2, output3:
VAR a, b, c, t1, t2, t3:
SEQ

PAA
input1 ? a
input2 ? b
input3 ? c

CHAN intrn:
PAA

t1 := a + (b * c)
t2 := a - «b+c)*(b/(a+c»)
VAR temp1, temp2:
SEQ

PAA
temp1 := a + (b - c)
temp2 := c * (b + a)

intrn ! (temp1*temp2) + (temp1/temp2)
VAA M,N:
SEQ

PAA
intrn ? M
N := a*b*c

t3 := (N*(M-a» + (N-b)
PAA

a := a
b := b
c := c

PAA
output1
output2
output3

* a
* b
* c

(t1*t2*t3) + (a-(b+c»
(t1/(t2+t3» + a + b + c
(t3-(t1*t2» - «a*b)+c)

Figure 8.4: Listing Of Program Two

In the schematic diagram corresponding to this program four 'blocks'

of cells can be distinguished from left to right. Each block represents

the abstract cell generated for the four processes defined in the

program. The left most block illustrates the parallel input of three

values and the register bank in which they are stored. Second from left

is the block corresponding to the second process in which the variables

t1, t2, and t3 are assigned a value. This block shows the routing of the

assignment lines for these variables and the placement of the register

- 134 -

PLATE ONE

x

" I

PLATE THREE

PLATE
FOUR

)(

I
-.~- .. - -------------'--'----'---'-+------'

D 1 f1Tt: 1=1\1[:

I ,

P IX

bank intended to hold their values. It also shows the routing of the

communication path representing channel intrn. This path is routed from

the second right most cell in this block to the second from bottom left

most cell (i.e. the output and input cells) The second from right block

illustrates the re-assignment of the tree variables a, band c. Note

that the DATAOUT line of the assignment cells (the right most red boxes

in this block) are routed back to the register bank adjacent to the left

most block. The layout for three output processes in the program's

fourth subsidiary is shown in the right most block.

Program Three is intended to demonstrate the ability of the compiler

to layout detailed arithmetic expressions. A listing of the program is

given in figure 8.5. It defines a sequential process consisting of three

parallel subsidiaries. There is no communication between these

processes. The first subsidiary to be declared simply inputs three

values in parallel. In the schematic diagram, the tree left most cells

correspond to these inputs. Three simple assignment processes are

defined in the second subsidiary. Their schematic representation is

immediately to the right of the input cells. It consists of two vertical

columns, each containing three cells. Cells in the first depict the

multiply operator, while those in the second the assignment operator.

The remainder of the schematic diagram represents the final subsidiary.

this consists of two output processes and a sequential process. The

latter contains two assignments involving the evaluation of complex

expressions. One of these is the example described in section 7.3.2.

The schematic representation previously outlined for it can now be seen

in full in the bottom third of the diagram.

- 135 -

CHAN inputl,input2,input3,outputl,output2,output3:
VAR a, b, c, tl, t2, t3:
SEQ

PAR
inputl
input2
input3

PAR
tl :=
t2 .-
t3 .-

PAR

? a
? b
? c

a * a
b * b
c * c

outputl (tl*t2*t3) + (a-(b+c»
output2 ! (tl/(t2+t3» + a + b + c
VAR x,y:
SEQ

PAR
x:=(a+b)+(b+c)+(tl+t2)+(a+c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b)
y:=«c-«(b+c)-a)/«a-(b/c»*a*b»)/«a-b)+c»+(c-b)+(b/c)+(a*b)

output3 ! (t3-(tl*t2» + «a*b)+c) + (x*x*x) + (y*y*y)

Figure 8.5: Listing Of Program Three.

The fourth example is a program which links the process defined by

Program One to that defined in the previous example. That is, Program

Four defines a parallel process consisting of two subsidiaries. The

first is equivalent to the process defined by Program One, while the

second is equivalent to the process defined by Program Three. These two

subsidiaries communicate and synchronise behaviour through the channels

'intnl' and 'intrn2'. The resulting diagram can be divided into an upper

and lower block. A very close similarity between the upper, larger block

and the diagram for Program Three and between the lower smaller block and

the diagram generated for Program One can clearly be seen. The diagram

illustrates the routing of the communication paths between the two

subsidiaries. These lines are routed from the east edge of the top two

right most cells in the upper block to the west edge of the top two left

most cells in the lower block.

- 136 -

The last two examples describe the same program, they differ only in

the order in which subsidiary processes are declared. They are intended

to demonstrate how re-ordering the sequence of process declarations

changes the schematic diagrams generated. The program consists of two

sequential processes which operate concurrently. They communicate and

synchronise through the two channels named 'intrnal1' and 'intrna12'.

Both processes are modified versions of previous programs. One is a

slightly modified version of the process defined by Program One, while

the other is a slightly extended version of the process defined by

Program two. The schematic diagram for each can be divided into an upper

and a lower. Each block represents the layout of the abstract cell for

the program's two complex subsidiary processes. The largest block

corresponds to the process based on Program Two and the smaller to that

based on Program One. In the two diagrams the position of the blocks is

reversed. This illustrates how the order in which a process is declared

determines the position of the abstract cell and its components.

In reversing the order in which the two processes are declared, the

positions in the program of the input and output statements defining the

communication between the two processes is altered. In Program Five the

first process declared outputs data to the second, but in Program Six the

first process declared inputs data sent by the second. Note that

input/output behaviour between the two is unaffected, the two programs

are semantically equivalent. The routing of the data lines for

'intrnal1' and 'intrna12' is, however, different for the two diagrams.

This is because the routing strategy for communication lines is based

upon the position in the program of the input and output processes for

the associated channel. In the diagram for Program Five these lines are

- 137 -

routed from the top two right most cells in the upper block to the top

two left most cells in the bottom block. ~hile in the diagram for

Program Six they are routed from the top two left most cells in the upper

block to the top two right most cells in the lower block.

8.3 SUMMARY

The selected examples illustrate the current compiler's ability to

generate schematic diagrams for a limited subset of Occam. Their

corresponding diagrams provide an adequate representation of structure,

data flow, and control flow. The necessary information for representing

these is extracted from the source programs. The diagrams, however,

suffer form a number of shortcomings. In particular, the cells and

registers are not labelled. This makes it difficult to examine the

correspondence between a node and a software primitive in the source

code. It would be desirable to have each cell labelled with the operator

it depicts and each register element labelled with the variables it

represents. Another problem with the diagrams which effects their

clarity is the number of lines displayed. One solution would be to

reduce the number by hiding (i.e. not displaying) the power, ground and

clock lines since these are so fundamental to MOS Ie design that their

presence can be assumed. Alternatively, future advances will make it

possible to route these lines in other layers, in which case a separate

diagram for their routing could be generated.

Although not yet demonstrated, the diagrams as they stand could

conceivably be used as the starting point for prototype implementations.

Such implementations would be far from ideal and would suffer from a

- 138 -

massive area overhead and poor performance. Nevertheless, they would

demonstrate a feasible route from Occam programs to geometric layouts.

To obtain implementations would involve substituting the schematic cells

for actual blocks of layout. The necessary protocols for synchronised

data communication and register update would have to be implemented. If

bit parallel communication is to be used then the data paths involved

would have to be decomposed into the appropriate number of metal wires.

The timing mechanisms would also need to be carefully considered. As a

result of the simplicity of the mapping strategy the diagrams currently

contain a lot of white space. However, layout compactors are available

[76] which would reduce the wasted silicon area in an implementation. A

lack of time and power resources (the work to date has been a single

effort) prevented this route from being explored.

The most serious limitation of the graphics compiler is the subset

of Occam it can handle. This contains the bare minimum so as to just

allow complex communicating processes to be declared. It cannot at the

moment be practically used describe real applications. The subset and

compiler must be extended to incorporate conditionals, iteration and

replication. Named processes would be advantageous in the long term but

need not necessarily be included in a first extension.

- 139 -

CHAPTER 9

CONCLUSIONS

The densities made available through advances in the fabrication

technology enable sophisticated systems to be laid out on a silicon chip.

Single chip solutions are now possible for many systems previously

implemented with printed circuit boards containing many components.

Also, special-purpose (or application specific) chips as opposed to

programmed general-purpose microprocessors can now be considered.

However, the complexities now involved in custom design together with the

failure of CAD techniques to keep pace with the advances have resulted in

a design bottleneck. Consequently, the ability of designers to maximise

the benefits now available have been limited. Powerful tools aimed at

exploiting the processing potential offered by the technology are

required. The traditional graphical based CAD tools are no longer

appropriate since they place the emphasis on layout and a 'bottom up'

design style.

A structured 'top down' approach similar to that used by software

engineers has been recognised as appropriate for the implementation of

'complete systems on a chip'. Such an approach allows the designer to

- 140 -

abstract away from detailed physical considerations and concentrate on

higher, functional issues. As VLSI designs become more and more

ambitious, higher levels of abstraction are needed if the designers are

not to be overwhelmed by complexity. Textual descriptions, in formal

design languages, are more powerful and precise than graphical

representations for these higher levels since they encourage a more

structured approach. Therefore, design languages are playing an

increasingly significant role in VLSI design. They have evolved from

simple plotting notations to the point where they can now handle both the

behavioural specification of a design and its structural implementation.

Structures such as the conditional, loop, procedure, and arithmetic

expression are as important features of these languages as they are of

programming languages.

High level descriptions in design languages are translated into an

equivalent circuit implementation. Much of this translation is carried

out manually and typically involves passing through several intermediate

levels of abstraction. Two different CAD approaches are emerging to

support the designer in this process: expert design systems and silicon

compilers. The former assists the designer down the design hierarchy,

while the latter completely automates the translation process. The

technique of silicon compilation is favoured for making the design of

"one-off" application specific chips feasible. The reasons being: it

enables very fast design turnarounds, greatly reduces design costs, makes

the silicon medium accessible to non VLSI design specialists, and

produces a working chip first time. The overhead for these advantages is

an excessive use of silicon area. However, the expected ten-fold

increase in densities will lessen the constraint imposed by silicon area

- 141 -

giving silicon compilers a wider acceptance.

Insight into the future development of design languages and their

automated translation can be gained by drawing parallels form the

software field. The motivations behind the evolution of today's software

environments are similar to those forcing the development of advanced CAD

techniques. This similarity arises from a common problem - complexity.

Many of the techniques developed by software engineers to tackle this

problem may be applicable in the VLSI domain. In particular, high level

programming languages, compilation and operating systems.

The source code, or input design language, to a silicon compiler

requires careful consideration since it determines the ease of mapping

design descriptions into silicon implementations. At the levels of

abstraction now being considered for design, the emphasis is on the

behavioural characteristics of a system rather than its structural

implementation. This shift in emphasis reflects the importance of the

choice of the underlying algorithm in a design. It is the most crucial

design decision and determines the performance and area of the silicon

implementation. For this stage of the design to receive the required

attention algorithmic notations are expected to replace the current

structural/behavioural ones. Two choices are available for an

algorithmic notation: a fully programmable design language or a

conventional programming language. The latter was selected here since it

eases the task of implementing a silicon compiler and excludes the need

to design and support a special purpose hardware design language. There

are numerous programming languages which could be considered. Each one's

performance in a design description role is determined by the ability of

- 142 -

its underlying computational model to represent the features of VLSI

systems. Important features are: parallelism, communication, and

localised processing. Five computational models were examined:

sequential control flow, parallel control flow, actor, functional, and

logic. An example language from each category was selected and its

ability to describe the VLSI implementation of a pattern matching chip

assessed.

Pascal illustrated the use of abstraction through powerful data

structures but showed that the sequential control flow model gave rise to

designs which utilise a Von Neumann serial processing architecture.

SmallTalk demonstrated that the class construct in the Actor model can be

used to define data and processing characteristics of computational

elements. However, the sequential nature of the language meant that the

operation of such elements in parallel could not be represented. Lispkit

Lisp showed that the functional model is well suited for representing

wiring, connectivity, and parallelism. The major drawback of this model

is the lack of the assignment statement making state difficult to model.

For the logic model, Prolog illustrated how unification with named

variables can be used to represent connections between circuit elements.

The relational approach in this model is too abstract for many basic

devices. Based on the parallel control flow model, Occam enabled a

system to be described as a collection of concurrent processes, which

communicate through named channels. This closely reflects the structure

of VLSI systems composed of a large number of processing components

operating together and linked via wires. The language also handles

concurrency in a formal manner. The major disadvantage with the language

is the lack of abstract types.

- 143 -

Occam's ability to express some of the important characteristics of

VLSI design makes it an attractive language for describing hardware. An

Occam description of a system can serve two purposes. Firstly, a

designer can execute the program as a simulator, or prototype, of the

system, and investigate it and modify it in the usual software way

(i.e. through a standard editor and re-compilation). Secondly, when a

designer is confident that the program represents a satisfactory

description of a system's underlying algorithm, it can be used as the

behavioural specification for a VLSI implementation. That is, an Occam

program can be used to characterise the input/output behaviour of a VLSI

chip. Deriving a layout description for such a chip would involve

transforming the program into a detailed circuit description. The

envisaged features of an ATL system (ATLAST) for achieving this

transformation have been specified. The VLSI implementations obtained

from ATLAST will be based on the self timed approach.

A prototype implementation of one of ATLAST's features has been

developed - COPTS. This is a tool for generating schematic diagrams

corresponding to Occam descriptions. The ability of COPTS to

automatically generate a high level schematic representation of programs

written in a subset of Occam has been demonstrated. These schematics

depict an Occam description's realisation in silicon. They illustrate

the flow of data and control information in a program. The diagrams also

provide a visual representation of the parallelism present in it. The

topological information required to define a schematic representation is

extracted from the natural hierarchy found in Occam programs. It is

envisaged that future advances in the fabrication technology will be such

that silicon area may no longer be considered a scarce resource. In

- 144 -

which case, the schematics generated by COPTS will serve as a high level

structural definition of a system from which an actual implementation can

be directly derived. Probably a more realistic approach is to regard the

schematics as defining a virtual architecture from which an actual

implementation could be derived. This would involve removing some of the

replication of operators. To achieve this some of the parallel behaviour

in a system could be transformed into sequential iterative (multiplexed)

behaviour.

9.1 RELATED WORK

The technique of silicon compilation has received considerable

attention since the term was introduced by Johannsen [34] in 1979. At

least two text books on the subject have been published. Ayres [3]

describes a methodology for implementing a silicon compiler (or more

accurately a silicon assembler), while Denyer [12] presents a study of a

particular structural compiler for signal processing applications. It is

argued here that this approach to VLSI design needs extending beyond

structural silicon compilation toward automated algorithm to layout

systems. The advantages of using a conventional programming language as

the input to ATL systems has been considered. Occam was chosen as a

suitable language. Others have also considered using programming

languages in VLSI design. For example, Clocks in [9] has argued that

Prolog is an appropriate language, whereas Robinson and Dion [51] favour

Modula-2. More specifically, Trikey [66] has reported the implementation

of a system for automatically translating Pascal programs into silicon.

A literature search revealed only one other design system for generating

VLSI implementations form Occam programs.

- 145 -

9.1.1 Occam To CMOS

Researches at Fujistu have implemented a prototype expert system

intended to map an Occam specification into a standard data path

architecture [43]. It is intended that this architecture will be

implemented by CMOS circuits. The process involves three stages of

design: functional, circuit, and CMOS. Each stage is supported by a

separate design subsystem composed of several modules. Functional design

involves algorithmic investigation of the characteristics of a system.

The final Occam description is translated into an optimised functional

description of a finite state machine. This translation involves

designer interaction to determine word sizes for variables and the

implementation of Occam's inter-process communication. The state machine

description is transformed into a structural description for the circuit

design stage.

Circuit design involves generating information on the data paths and

control paths. This information is in the form of logical expressions.

These expressions are decomposed into sub-expressions in such away that

each sub-expression can be implemented by a single CMOS functional cell.

Such cells are produced during the CMOS design stage. The logic

expressions are translated into combinational circuits which are then

implemented on an array of CMOS transistors. Also, during this stage

components such as registers, memories, decoders, adders, and I/O pins

are assembled from a library of basic cells. After the basic cells and

functional cells have been assembled a facility to optimise the CMOS

circuit is available.

- 146 -

ATLAST and the above system share a common objective: to translate

algorithmic notations in Occam into VLSI implementations. ~hen fully

implemented both will enable a designer to investigate Occam programs in

a familiar software environment. ATLAST will completely automate the

translation of optimised programs, while the above requires the designer

to steer this translation. The Fujistu system uses a target architecture

(the standard data path) in its approach, whereas ATLAST uses a target

model (that of distributed processing). Adopting a target model rather

than a target architecture will give ATLAST greater leverage since its

model may be implemented by various architectures. The architecture used

for a particular design will depend on the performance requirements.

9 • 2 FUTURE ~ORK

Occam has been identified as an appropriate programming language on

which to base a future high level automated algorithm to VLSI layout

design system. The proposed features for an example system, ATLAST, were

outlined in chapter 6 (see figure 6.1). Future scaling down of feature

size and scaling up of chip area will result in propagation delays within

a chip causing significant wiring delays among functional blocks. Clock

skew will become such a problem that synchronous behaviour through the

use of a global clock will no longer be achievable. For this reason the

self-timed model has been adopted for systems implemented by ATLAST.

Also, such an approach is more in keeping with a rigorous discipline of

modularity.

- 147 -

~hen fully implemented, ATLAST will be a general purpose VLSI design

system which will broaden the spectrum of algorithms implemented by

special purpose VLSI chips. It will help bridge the gap between software

design and hardware design by providing an automated means for directly

mapping software implementations into hardware implementations. It is

intended that the system will be easy to use and understand, and it is

hoped that it will make the VLSI technology more accessible to the non

specialist. Users of the system will not require detailed hardware

knowledge, since the design approach is based on a very high level of

abstraction. However, it is assumed that a user will have some

experience in programming. The central feature of ATLAST will be a

transformation module. This will be used to automatically lower the

level of abstraction in a specified design.

The specification of a design, its implementation, and its

structural properties will be obtained from a single source - an Occam

program. A designer will implement the behaviour of a system as an

algorithmic description written in the language. This can then be

compiled and executed as a simulator, or prototype, of the system. ~hen

satisfied that it is a satisfactory description the program will be

passed to ATLAST to generate a VLSI implementation. Its decomposition

into a layout description will involve two stages. Firstly, the

transformation module in ATLAST will convert the Occam program into an

optimised structural/behavioural intermediate representation (IR). This

IR will also be an Occam program. The completed version of COPTS will

then generate a schematic representation of the IR, providing the

designer with feedback on the relative placement and interconnection of

the function blocks described in the IR.

- 148 -

In the second stage, a design sub-system will be responsible for

transforming the intermediate Occam description into the appropriate VLSI

circuits. A number of different architectural implementations can be

derived from such a description. For example, a description could be

transformed into a finite state machine description and then implemented

by a standard data path architecture. Varies degrees of concurrency and

redundancy in replicated processes could be removed by introducing

multiplexing on channels and sequential iterative behaviour. The

resulting description could then be implemented by a bit serial

architecture. The concurrency and communication of a description could

be mapped into a systolic architecture. Macro-cells corresponding to

software primitives (+,-,*,I,?,! etc.) could be substituted for the

occurrence of these primitives in the description thereby giving a cell

architecture. Alternatively, different sections of the description could

be implemented by different architectures giving a multi-architecture

system. It is envisaged that the design sUb-system will contain a suite

of silicon compilers for the various target architectures. The choice of

architecture will be user defined. A designer will therefore be able to

explore alternative architectures simply and quickly.

The selected compiler will decompose the IR into a geometrical

layout of the system. A set of design files defining the complete layout

will be generated. Each file will hold a graphic description in the form

of a machine-readable representation - a layout language (e.g. elF).

These descriptions will be used to derive other forms for layout plotters

and pattern generators.

- 149 -

The IR will also serve as the input specification language to a

simulator. Simulation of a design produces information on the behaviour

of the circuit network intended to implement the design. It provides the

designer with feedback on the performance of the system. This may

encourage design alternatives which improve performance to be examined.

Simulation is carried out at several levels of abstraction, each level

yielding information on different aspects of the design. The information

obtained is used to confirm physical functioning and make critical design

decisions. Delays, critical paths, and design errors can be detected

through simulation. Additionally, estimates on the speed of the circuit

and its power consumption are obtained.

Implementing the entire ATLAST design system is no small

undertaking, as each of the utility tools outlined above are themselves

complex systems. One of the major problems to be tackled will be the

definition of the IR, which serves as an interface between the design

sub-system and the transformation module. Its form is determined by the

information extracted from it by each tool for its particular

application. A complete definition is only possible after the input

requirements of the units have been considered. As is usually the case,

these requirements are not fully unveiled until the problems of

implementing each tool are tackled. As much use as possible should be

made of existing tools and approaches. Powerful workstations are

available [69,71] which incorporate many of the features needed in the

design sub-system. One approach to obtaining this sub-system would be to

integrate available structural silicon compilers with an appropriate

workstation.

- 150 -

Automatic generation of high level schematic diagrams from programs

written in a subset of Occam has been presented as the first steps toward

the realisation of the system. Much work still needs to be done, in

particular, as stated in section 8.3 a route from these diagrams to

working prototype implementations is required. One practical approach to

developing such a route would be to take advantage of Occam's association

with the transputer. Occam is the native language of the transputer. A

transputer is a computer on a chip and consists of a processor coupled to

an on chip RAM and four links for communication with other transputers

and transputer devices. The processor is capable of 10 million

instructions/sec. and provides efficient support for the Occam model of

concurrency and communication. The schematic diagrams generated by COPTS

could be implemented as transputer based systems.

Transputer based systems would enable real time experimentation.

Critical sections of code in a design description could be identified.

The schematics corresponding to these sections could be used as the

structural specifications for one or more dedicated hardware devices, or

"code accelerators". The approach of substituting hardware primitives

(i.e. macro-cells) for the schematic elements could then be used to

obtain these accelerators. An accelerator could be linked to the

appropriate transputer via one of its four links. In such a

configuration, the accelerator can be regarded as a process executing

concurrently with the process on the transputer. Synchronised

communication between the two processes could be implemented by the

transputer's link. The code harnessing the critical sections would be

used to program the supporting transputers. Again the schematics could

help in determining the allocation of processes among the constituent

- 151 -

transputers. This approach is not the system on a chip solution intended

for ATLAST. However, it is quickly achievable, and could form an interim

solution while an efficient algorithm to layout route is developed.

A key feature of Occam which should be exploited in future work on a

system such as ATLAST is its semantic properties. The language's formal

basis together with its ability to conveniently express concurrent

problems, emphasise its suitability for a VLSI design role. Occam is

directly based on Hoare's mathematical notation of Communicating

Sequential Processes [29]. This has two important and interesting

consequences. Firstly, it enables behavioural specifications written in

Occam to be formally verified and validated. As the complexity of

implemented VLSI systems expands this will become an essential

requirement of design. Secondly, techniques for formally validating the

equivalence between high level and low level Occam representations can be

developed. Such techniques will enable semantic preserving

transformations to be explored, in particular, transformations to 'push'

high level behavioural specifications toward equivalent detailed low

level implementations. Making these an intrinsic part of the route to

layout removes the necessity for simulation and verification since they

guarantee 'correctness'. Future work should concentrate on developing

software to support these transformations. Current research into an

automated system for semantic preserving transformation of an Occam

system description into either custom silicon or microcode for a

processor [2] may be able to make a significant contribution to this

work.

- 152 -

To sum up, application specific chips will playa significant role

in fifth generation computers. Automated algorithm to layout systems

will enable a wide variety of such chips to be implemented. The

concurrent programming language Occam is well suited to this approach

since it is capable of accurately describing their behaviour in a manner

which reflects their implementation. The language is also well suited

for providing system level specifications for these components. In

addition, Occam can be used to describe their overall integration into

the systems envisaged for the next generation of computers.

- 153 -

APPENDIX A

REFERENCES

1. Adshead G., "AI Techniques in VLSI design", Silicon Design,
VOL 2 , No.9, Sept 1985, pp10-11,16.

2. Alvey CAD015 Project, "Development of Advanced System
Description Language Transformation and Verification Tools",
1985.

3. Aryes R.F., "VLSI silicon compilation and the art of
automatic microchip design", Prentice-Hall, Inc., 1983.

4. Barron I., et aI, "Transputer does 5 or more MIPS even when
not used in parallel", Electronics, VOL 56 no. 23, Nov 1983
pp109-115.

5. Barton E.E., "A non-numeric design methodology for VLSI",
VLSI 81, Ed J.P. Gray, Academic Press, 1981, pp25-34.

6. Bergmann N., "A Case Study Of the F.I.R.S.T. Silicon
Compiler", Third Caltech Conference On VLSI, Ed
R. Bryant,1983, pp413-430.

7. Brown H., Tong C., & Foyster G., "Palladio: An Exploratory
Environment for Circuit Design", IEEE Computer Magazine, VOL
16(12), Dec. 1983, pp41-55.

8. Campbell R.H., Koelmans A.M., & McLauchlan M.R., "STRICT: a
design language for strongly typed recursive integrated
circuits", lEE PROCEEDINGS 132(2), March/April 1985,
pp108-115.

- 154 -

9. Clocksin W.F., "Logic Programming and the Specification of
Circuits", University of Cambridge, Computer Laboratory,
Technical Report No 72, 1984.

10. Clocksin W.F., and Mellish C.S., "Programming in PROLOG",
Springer-Verlag, 1981.

11. Collins B. & Gray A., "The INMOS Hardware Description
Language And Interactive Simulator", VLSI 81 Ed. J.P. Gray,
London, New York: Academic Press, 1981, pp107-116.

12. Denyer P., & Renshaw D., "VLSI Signal Processing: A
Bit-Serial Approach", Addison-Wesley Publishing Co., 1985.

13. Dijkstra E.W., "The Humble Programmer", Communications of the
ACM, vol 15(10), 1972, pp859-866.

14. Enderle G., Kansay K., and Pfaff G., "Computer Graphics
Programming: GKS - The Graphics Standard", Springer-Verlag,
1984.

15. Evanzuk S., "Silicon Compilers: No Automatic Route To
Acceptance", VLSI Systems Design, Vol VI No 10, Nov 1985,
pp42-44.

16. Foster M.J., and Kung H.T. "The Design of Special-Purpose
VLSI Chips", IEEE Computer Magazine, Jan 1980, pp26-40.

17. Fuchs H. & Abram G., "VLSI Architecture for Computer
Graphics" presented at NATO Advanced Study Institute On
Microarchitecture of VLSI Computers, Urbino, Italy. July 84.

18. Gajski D.D, Kuhn R.H., "New VLSI Tools", Computer Magazine,
VOL 16 No 12, Dec 83, ppll-14.

19. German S.M., & Lieberherr K.J., "ZEUS: A Language for
Expressing Algorithms in Hardware", Computer Magazine, Vol 18
No 2, Feb 1985, pp55-65.

20. Gouldberg A., and Robson D., "Smalltalk-80 The Language and
its Implementation", Addison-Wesley Publishing Company, 1983.

- 155 -

21. Gouveia Lima I., "Programming Decentralised Computers", Ph.D
Thesis, Computing Laboratory, University of Newcastle upon
Tyne, 1984.

22. Gray J.P., Buchanan I., & Robertson P.S., "Controlling VLSI
Complexity Using A High-Level Language For Design
Description", Proceedings of the IEEE Conference on Computer
Design: VLSI in Computers, 1983.

23. Gray J.P., Buchanan I., & Robertson P.S., "Designing Gata
Arrays Using a Silicon Compiler", ACM IEEE 19 th Design
Automation Conference Proceedings, June 1982, pp377-383.

24. Gries D., "Compiler Construction for Digital Computers", John
Wiley & Sons, 1971.

25. Hayes-Roth F., "The Knowledge-Based Expert System: A
Tutorial", Computer Magazine, Vol 17 No.9, Sept 1984,
ppll-28.

26. Hayes-Roth F., "Knowledge-Based Expert Systems", Computer
Magazine, Vol 17 No 10, Oct 1984, pp263-273.

27. Henderson P., "Functional Programming Application and
Implementation", Prentice-Hall International, 1980.

28. Hirschhorn S. & Davis A.M., "The Revolution In VLSI Design:
Parallels Between Software and VLSI Engineering", IEEE
Workshop Report: VLSI and Software Engineering, Oct. 1982,
pp75-83.

29. Hoare C.A.R., "Communicating Sequential Processes" ,
Prentice/Hall International, 1985.

30. Hortstmann P.W., "Expert Systems and Logic Programming for
CAD", VLSI Design Magazine, Nov 1983, pp37-46.

31. Inmos, "Occam Programming Manual", Prentice-Hall
International, 1984.

32. Jackson M A, "Principles Of Program Design", New York
Academic Press, 1975.

- 156 -

33. Jensen K., and Wirth N., "PASCAL User Manual and Report",
2nd. Edition, Springer-Verlag, 1978.

34. Johannsen D., "BRISTLE Blocks: A Silicon Compiler", Proc.
of 16 tho Design Automation Conference, 1979, pp310-313.

35. Johnson S.C., "VLSI circuit design reaches the level of
architectural description", Electronics Magazine, May 1984,
pp121-128.

36. Kowalski T.J., Geiger D.J., Volf W.H., & Fichtner W., "The
VLSI Design Automation Assistant: From Algorithms to
Silicon", IEEE Design & Test of Computers, August 1985,
pp33-42.

37. Kung H.T., "Let's Design Algorithms for VLSI Systems",
Proc. Cal tech Conf. on Very Large Scale Integration,
California Institute of Technology, Jan 1979.

38. Kung H.T., "Programmable Systolic Chip", presented at NATO
Advanced Study Institute On Microarchitecture of VLSI
Computers, Urbino, Italy, July 84.

39. Kung H.T., "Putting Inner Lopps Automatically In Silicon",
Lecture Notes in Computer Science, 163, VLSI Engineering
Beyond Software Engineering, Ed. T.L. Kunnii, Spinger-Verlag,
1984, pp70-104.

40. Kung H.T. & Yu s.a., "Integrating High-Performance Special
Purpose Devices Into A System", VLSI Architecture,
Ed. B. Randell & P.C. Trelevan, Prentice/Hall International
1983, pp205-211.

41. Lea R.M., "SCAPE: A VLSI CHIP ARCHITECTURE FOR IMAGE
PROCESSING", presented at NATO Advanced Study Institute On
Microarchitecture of VLSI Computers, Urbino, Italy, July 84.

42. Lieberherr K.J., "Toward a Standard Hardware Description
Language", IEEE Design & Test of Computers, Vol 2 No 1, Feb
85, pp55-62.

43. Mano T., et al., "Occam To CMOS: Experimental Logic Design
Support System", ICOT Technical Report: TR-093, December
1984.

- 157 -

44. Marques J., & Cunha A., "Clocking of VLSI circuits", VLSI
Architecture, Ed B. Randell & P.C. Treleaven, Prentice Hall
International, 1983, pp165-178.

45. May D., "Occam", SIGPLAN Notices, Vol 18 No 4, April 1983,
pp69-79.

46. May D., "Occam", lEE Colloquim on "Software tools for
hardware design", Digest No 1983/98, 1983.

47. Mead C., and Conway L., "Introduction to VLSI systems",
Addison-~esley, 1980.

48. Mitchell T.M., Steinberg L.I, and Sulman S., "A
Knowledge-Based Approach to Design", IEEE Transactions On
Pattern Analysis And Machine Intelligence, Vol. PAMI-7,
No.5, Sept 1985.

49. Morison J.D., Peeling N.E., & Thorp T.L., "The Design
Rationale of ELLA, a Hardware Design and Description
Language", Presented at 7 th International Conference on
Computer Hardware Description Languages, Tokyo, Japan, August
1985.

50. Piloty R., Borrione D., "The Conlan Project: Concepts,
Implementations, and Applications", Computer Magazine, Vol 18
No 2, Feb 1985, pp81-92.

51. Robinson P., & Dion J., "Programming Languages For Hardware
Description", ACM IEEE 20 th., Design Automation, 1983,
pp12-16.

52. Russel G., Kinniment D.J., Chester E.G., & McLauchlan M.R.,
"CAD for VLSI", Van Nostrand Reinhold (UK), 1985.

53. Seitz, C.L., "Self Timed VLSI Systems", Proc. Caltech Conf.
On VLSI, Jan 1979, pp345-255.

54. Sequin C.H., "Managing VLSI Complexity: An Outlok",
Proceddings of the IEEE, Vol 71 No 1, Jan 1983, pp149-166.

55. Shahdad M., et aI, "VHSIC Hardware Description Language",
IEEE Computer Magazine, Feb 1985, pp94-102.

- 158 -

56. Shiva S.G., Klon P.F., "The VHSIC Hardware Description
Language", VLSI Design, Vol VI No 6, June 1985, pp86-106.

57. Shrobe H.E., "The Data Path Generator", In Digest Of Papers
Spring Compcon 82: High Technology In The Information
Industry. San Fransico, CA, USA 22-25 Feb. pp340-4 1982.

58. Smith C.U., & Dallen J.A., "Future Directions For VLSI and
Software Engineering", In: Lecture Notes In Computer Science
(No 163), "VLSI Enginnering Beyond Software Engineering",
Ed T.L. Kunni, Springer-Verlag, 1984 pp2-20.

59. Southard J.R., "MacPitts: An Approach to Silicon
Compilation", IEEE Computer Magazine VOL 16(12), Dec 1983,
pp74-82.

60. Stefik M., et aI, "The Partioning Of Concerns In Digital
System Design", Conference on Advanced Research in VLSI
Proceedings, Ed., P. Penfield, Jan 1982.

61. Steinberg L.I., Mitchell T.M., "A Knowledge Based Approach To
VLSI CAD - The REDESIGN System", ACM IEEE 21 st Design
Automation Conference Proceedings, 1984, pp412-418.

62. Taylor R., "Signal processing with occam and the transputer",
lEE Proceeding, Vol 131, Pt.F, No 6, Oct 1984 pp610-614.

63. Taylor R., Wilson P., "Occam", Electronics, Nov 1982,
pp89-95.

64. Thomas D.E., et aI, "Automatic Data Path Synthesis", Computer
Magazine, VOL 16 No 12, Dec 83, pp59-70.

65. Treleaven P.C. & Gouveia Lima I., "Future Computers: Logic,
Data Flow, ... , Control Flow?", IEEE Computer Magazine 17(3),
March 84 pp47-59.

66. Trickey H., "Compiling Pascal programs into silicon", Ph.D
Thesis, Stanford University, July 1985. (STAN-CS-85-1059).

67. Uehara T., "A Knowledge-Based Logic Design System", IEEE
Design & Test of Computers, Vol 2 No 5, Oct 1985, pp27-34.

- 159 -

68. Ullman J.D., "Computational Aspects of VLSI", Computer
Science Press, 1984

69. VAX-l1 PASCAL Language Reference Manual.

70. VLSI Design Staff, "A Perspective On CAE Vorkstations", VLSI
Design, VOLUME VI, No.4 April 1985, pp52-77.

71. VLSI Design Staff, "Silicon Compilers: Part 1, Drawing a
Blank", VLSI Design Magazine, Sept 1984, pp 54-58.

72. VLSI Systems Design Staff, "Survey OF IC Layout CAD Systems",
VOL VI, No.9, Sept 1985, pp45-54.

73. VLSI Design Tools, Dept. of Electrical Engineering,
Newcastle University 1983.

74. Verner J., "The Silicon Compiler: Panacea, Vishful Thinking
Or Old Hat?", VLSI Design Magazine 3(5), Sept/Oct 1982.

75. Verner J., "Progress Toward The 'Ideal' Silicon Compiler",
VLSI Design Magazine 4(5), Sept 83.

76. Veste N. Eshraghian K., "Principles of CMOS VLSI Design, A
Systems Perspective", Addison-Vesley Publishing Company,
1985, pp297-302.

77. Virth N., "Program Development by Stepwise Refinement",
Communications of the ACM 14(4) April 1971, pp 221-227.

78. Volf V., Newkirk J., Mathews R., & Dutton R., "DUMBO, A
Schematic-To-Layout Compiler", Third Cal tech Conference on
VLSI, Ed R. Bryant, 1984, p279-393.

79. Yakovlev A., "Designing Self Timed Systems", VLSI Systems
Design, September 85, Vol VI No 9, pp70-91.

- 160 -

APPENDIX B

THE PATTERN MATCHER IMPLEMENTATIONS

B.l PASCAL

CONST
Ncells = 4;

TYPE

VAR

BIT = 0 .. 1;
Comparator = RECORD

String, Pattern CHAR;
END;

Accumulator RECORD
EndBit ,WCC,TempRes ,Result BIT;

END;
PatternCells RECORD

END;

AccCell : Accumulator;
CompCell : Comparator;

Modules: ARRAY[l .. Ncellsl OF PatternCells;
Beat : BIT;
i : 1.. Ncells;

FUNCTION Compare(Cell Comparator) BIT;
BEGIN

END;

WITH Cell DO
IF Pattern = String THEN

Compare .- 1
ELSE

Compare .- 0

PROCEDURE Move (VAR left, right: PatternCells);
BEGIN

right.CompCell.Pattern := left.CompCell.Pattern;
left.CompCell.String := right.CompCell.String;
right.AccCell.WCC := left.AccCell.WCC
right.AccCell.EndBit := left.AccCell.EndBit;
left.AccCell.Result := right.AccCell.Result;

- 161 -

END;

PROCEDURE Accumulate(DataIn BIT; VAR Cell Accumulator);
BEGIN

END;

WITH Cell DO
BEGIN

END

IF NOT «TempRes=l) AND «WCC=l) OR (DataIn=1» THEN
TempRes := 0;

IF EndBit = 1 THEN
BEGIN

END

Result := TempRes;
TempRes : = l;

(* Main Body Of Program *)
BEGIN

END.

Beat := 0;
WHILE NOT finished DO
BEGIN

END;

InOut;
FOR i := 1 TO (Ncells DIV 2) DO
BEGIN

END;

WITH Module[(i*2)-Beat] DO
Accumulate(Compare(Compcell), AccCell);

Move(Module[(i*2)-Beat], Module[«i*2)-l)-Beat]);
Beat := 1 - Beat;

- 162 -

B.2 OCCAM

DEF Ncells = 4:
CHAN Sys.Bus:
CHAN pattern[Ncellsj, string[Ncellsj, data[Ncells-1j:
CHAN end[Ncellsj, wild[Ncellsj, result[Ncellsj:

PROC Comparator(CHAN PatrnIn, StrngIn, PatrnOut, StrngOut, DataOut)=
VAR patrn, strng:
SEQ

PAR
patrn := 0
strng '- 0

WHILE TRUE
SEQ

PAR
PatrnOut
StrngOut

PAR

patrn
strng

PatrnIn ? patrn
StrngIn ? strng

DataOut ! patrn = strng :

PROC Accumulator(CHAN WildBitIn, EndBitIn, ResIn, DataIn, WildBitOut,
EndBitOut, ResOut)=

VAR CompRes, WildBit, EndBit, Result, PartialRes:
SEQ

PAR
WildBit := FALSE
EndBit := FALSE
Result := FALSE
PartialRes := TRUE

WHILE TRUE
SEQ

PAR
WildBitOut ! WildBit
EndBitOut ! EndBit
ResOut ! Result

PAR
WildBitIn ? WildBit
EndBitIn ? EndBit
ResIn? Result
DataIn ? CompRes

PartialRes := PartialRes /\ (WildBit \/ CompRes)
IF

EndBit = TRUE
SEQ

Result := PartialRes
PartialRes := TRUE :

- 163 -

PROC GetChar(CHAN BusIn,PatternIn,StringIn)=
VAR Ch, Beat:
SEQ

PAR

Beat := 0
VlHILE TRUE

SEQ
PAR

IF

Beat 0- 1 - Beat
BusIn ? Ch

Beat = 0
PatternIn ! Ch

Beat = 1
Stringln ! Ch :

GetChar(SysoBus,pattern[O],string[Ncells-l])
PAR i =[1 FOR Ncells-1]

PAR
Comparator(pattern[i-1],string[Ncells-i],pattern[i],

string[(Ncells+1)-i],data[i-1])
Accumulator(wild[i-1],end[i-1],result[Ncells-i],data[i-1],

wild[i],end[i],result[(Ncells+1)-i])

- 164 -

B.3 SMALLTALK

Class Comparator

Methods
Compare: stringChar and: patternChar

stringChar = patternChar
if True : ["1]
if False: ["0]

Class Accumulator

Super Class Object

Instance Variables

Methods
initialise

accRes

super new initaccRes

update: dataIn with: resIn and: bitsIn
I resOut I
accRes <- dataIn & (bitsIn at: 1 I accRes).
BitsIn at: 2 = 1

if True: [resOut <- accRes.
self initaccRes]

if False: [resOut <- resIn]
"resOut

initaccRes
accRes <- 1

Class PatternBlocks

Indexed Instance Variables blocks

Methods
Initialise: nblocks I i I

blocks <- array new: nblocks.
i <- 1.
[i <= nblocks]

whileTrue:[blocks at: 1 put: Accumulator initialise.
i <- i + 1]

- 165 -

Class BitStreams

Indexed Instance Variables bits

Methods
initialise: N I i I

bits <- array new: N.
i <- 1.

Class

[i <= N]
whileTrue:[bits at: 1 put: #(0 0).

i <- i + 1]

PatternMatcher

Methods
go: nblockks fromhost: charstream tohost: bitstream

Ipattern, string, result, bits, cells, toggle I
pattern <- array new: nblocks.
string <- array new: nblocks.
result <- array new: nblocks.
bits <- bitStreams initialise: nblocks.
cells <- patternBlocks initialise: nblocks.
toggle <- O.
[charstream isEmpty]
whileFalse: [i I

"input string or pattern character"
i <- toggle + 1.
[i <= nblocks]
whileTrue:

[results at: i put:
cells at:i (update: (Compare: (string at:i) and:(pattern at:i»

with: result at:(i+1)
and: bits at:i).

pattern at:(i+1) put:(pattern at:i).
string at:(i-1) put: (string at:i).
bits at:(i+1) put:(bits at:i).
i <- 1 + 2].

toggle <- toggle - 1]

- 166 -

B.4 LISPKIT-LISP

clock(beat, p, s, m) ->
if eq(beat,O) then

{cons(car(l), clock(1, p, cdr(s), cdr(l»
where 1 = move1(car(s), matchodd(m»}

else
cons(nil, clock(O, cdr(p), s,

move2(car(p), car(m), matcheven(cdr(m»»)

move1(s char, m) ->
cons(car(car(m»,

to_even(s_char, car(m), car(cdr(m», cdr(cdr(m»»

move2(p, head, tail) ->
cons(left(p, head, car(tail»,

to_odd(car(tail), car(cdr(tail», cdr(cdr(tail»»

to_even(s, 1, c, r) ->
if eq(nil, r) then

cons(l, right(s, 1, c»
else

cons(l, cons(left right(l, c, car(r»,
to_even(s, car(r), car(cdr(r», cdr(cdr(r»»)

to odd(l, c, r) ->
- if eq(cdr(r), nil) then

cons(l, cons(left right(l, c, car(r»)
else -

cons(l, cons(left right(l, c, car(r»,
to_odd(car(r), car(cdr(r», cdr(cdr(r»»)

matcheven(m) ->
if eq(cdr(m), nil) then

pmatch(car(m»
else

cons(pmatch(car(m», cons(car(cdr(m»,
matcheven(cdr(cdr(m»»)

matchodd(m) ->
if eq(cdr(cdr(m»,nil) then

cons(pmatch(car(m», cdr(cdr(m»
else

cons(pmatch(car(m», cons(car(cdr(m», matchodd(cdr(cdr(m»»)

pmatch(inpts) ->
cons(a1, cons(a2, cons(c1, cons(cons(a3,a4), c3»»
where a1 = e(l,a), a2 e(2,a), a3 = e(3,a), a4 = e(4,a),

c1 = e(1,c), c2 e(2,c), c3 = e(3,c),
p e(3,inpts), s e(4,inpts), t = e(2,inpts),
r e(l,inpts),
c comp(car(p),s),
a acc(t, r, car(cdr(p», car(cdr(cdr(p»), c3)

- 167 -

comp(p,s) ->
if eq(p,s) then

cons(p, cons(s,l»
else

cons(p, cons(s,O»

acc(a,r,x,l,d) ->
if eq(1,1) then

cons(u, cons(1, cons(x,l»)
else

cons(r, cons(u, cons(x,l»)
where u = and(a,or(x,d»

- 168 -

B.s PROLOG

pipeline([P chIPattern], [S chIStrng], Res, Blocks):­
matchodd(Blocks, Blocks 1a),
transfereven(S ch, Rout~ Blocks la, Blocks_1b),
matcheven(Blocks 1b , Blocks 2a),
transferodd(P ch~ Blocks 2a,-Blocks 2b)
pipeline(Pattern, Strng,-[RoutIRes]~ Blocks 2b).

matchodd([Ablock, Lblock], [Nblock, Lblock]):­
process(Ablock, Nblock).

matchodd([Lblockl[RblockITailblks]], [Nblockl [RblockIRest]]):­
process(Lblock, Nblock),
matchodd(Tailblks, Rest).

matcheven([Blk j,Blk k], [Blk j,Nblk]):­
process(Blk_k, Nblk).

matcheven([Lblkl[RblkITailblks]], [Lblkl[NblkIRest]]):­
process(Rblk, Nblk),
match(even, Tailblks, Rest).

transfereven(S in, [Blk j,Blk k], [Blk j,Ublk]]):­
rIght(S_in~ Blk_J, Blk_k,-Ublk).

transfereven(Sin, [Blk il[Blk jl[Blk kIRestll], [Blk il[UblkITailblks]J):­
exchange(Elk i, Elk j, Elk k, Ublk) , -
transfer(Sin~ [Blk_kIRest]~ Tailblks).

transfereven(Schar, Res, [Blk1ITail], Nblks):­
out(Blkl, Res),
transfer(Schar, [Blk1ITail], Nblks).

transfer([Blk i,Blk j,Blk k], [Blk i,Ublk,Blk k]):­
exchange (Blk_i, Elk_j, Blk_k, Ublk).-

transfer([Blk il[Blk jl[Blk kITailll], [Blk il[UblkIRest]J):­
exchange(Blk i, Blk j, Blk k, Ublk),
transfer([Blk_kITaiI], Rest).

transferodd(Pin, [Blk ll[Blk 2ITail]], [UblkIRest]):­
left(Pin,-Blk 1,-Blk 2, Ublk),
transfer([Blk=2ITail), Rest).

exchange([_,_, P1 ,_], [_, T2 ,_, _], [R3 ,_,_, S3], [R3, T2, Pl, S3]).

left(P_ch, [_,Tl,,], [R2" ,S2], [R2,Tl,P_ch,S2]).

right(S ch, [, ,P1,], [_,T2, ,], [R,T2,P1,S_ch]):-
R Is 1. -

- 169 -

process([Rin, Temp, [Pin,Xin,Lin], Sin],
[Rou t, Temp2, [Pou t , XOtl t , Lou t], Sou t]) : -

comp(Pin, Sin, Cout, Pout, Sout),
acc(Rin, Temp, Xin, Lin, Cout, Rout, Temp2, Xout, Lout).

comp(X, X, C, X, X):­
C is 1.

comp(X, Y, C, X, Y):­
C is O.

acc(R1, T1, Xl, L1, Data, R2, T2, Xl, L1):­
andor(X1, T1, Data, C),
update(L1, C, R1, T1, R2, T2).

update(1, C,
T is 1.

, C, T):-

update(O, C, R1, T1, R1, C).

- 170 -

APPENDIX C

THE SYNTAX OF THE OCCAM SUBSET

The syntax of the occam subset is described in Backus-Naur-Form.

Actual language symbols and keywords are not surrounded by <>. The

::= symbol is used to define a syntactic category. The handle for the

category is given on the left of the symbol, and the valid syntactic

forms on the right. Where there are several valid forms of one

category, they are separated by the symbol I.

An item between {} indicates that it may be repeated zero or more

times.

An item between [] indicates that the item is optional.

<program>

<process>

<primi tive>

<construct>

<declaration> : :=

<process>

<primitive>
<construct>
<declaration> <qbd>:<qnl> <process>

<assignment>
<input>
<output>

SEQ {
PAR {

<process> }
<process> }

VAR <var> { , <var> }
CHAN <chan> { , <chan> }
DEF <const.def> { , <const.def> }

- 171 -

<assignment>

<input>

<output>

<var>

<chan>

<cons t. def>

<expression>

<element>

<assoc.op>

<arithmetic.op>

.. -.. -
: :=

: :=

<var> '- <expression>

<chan> ? <var> { ; <var>

<chan> <expression> { <; <expression> }

identifier. string

identifier. string

identifier

<element> {
<element> [
<monadic.op>

= <expression>

<assoc.op> <element>}
<arithmetic.op> <element>]

<element>

number <var> I (<expression»

+ I *
+ I - I * I /

- 172 -

APPENDIX D

MORE EXAMPLE SOURCE PROGRAMS

Dol PROGRAM FOUR

CHAN input1, input2, input3, intrn1, intrn2, output1, output2, output3:
PAR

VAR a, b, c, tl, t2, t3:
SEQ

PAR
input1
input2
input3

PAR
t1 0-

t2 0-

t3 0-

PAR

? a
? b
? c

a * a
b * b
c * c

intrn1 ! (t1*t2*t3) + (a-(b+c))
intrn2 ! (t1/(t2+t3)) + a + b + c
VAR x,y:
SEQ

PAR
x:=(a+b)+(b+c)+(t1+t2)+(a+c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b)
y:=«c-«(b+c)-a)/«a-(b/c))*a*b)))/«a-b)+c))+(c-b)+(b/c)+(a*b)

output1 ! (t3-(t1*t2)) + «a*b)+c) + (x*x*x) + (y*y*y)
VAR a, b:
SEQ

PAR
intrn1 ? a
intrn2 ? b

CHAN Comm1, Comm2:
PAR

VAR t1, t2:
SEQ

PAR
t1 0- a * a
t2 0- b * b

PAR
output2 ! t1+(a*b)+t2
Comm1! t1

- 173 -

Comm2! t2
VAR asq, bsq:
SEQ

PAR
Comml? asq
Comm2? bsq

output3 I (asq*b) - «a/b) - (bsq*a»

- 174 -

Do2 PROGRAM FIVE

CHAN inputl,input2,input3,outputl,output2,output3,intrnall,intrna12:
PAR

VAR a, b, c, tl, t2, t3:
SEQ

PAR
input1 ? a
input2 ? b

c := (a*a) + (b*b)
CHAN intrn:
PAR

t1 := a + (b * c)
t2 := a - «b+c)*(b/(a+c»)
VAR tempI, temp2:
SEQ

PAR
temp1 := a + (b - c)
temp2 := c * (b + a)

intrn ! (temp1*temp2) + (tempI/temp2)
VAR M,N:
SEQ

PAR
intrn ? M
N := a*b*c

t3 := (N*(M-a» + (N-b)
PAR

a 0- a *
b 0- b * 0-

c := c *
PAR

intrnall
intrna12
VAR x:

a
b
c

(tl*t2*t3) + (a-(b+c»
(tl/(t2+t3» + a + b + c

SEQ
x:=(a*b)+(b*c)+(tl-t2)+(a/c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b)
output1 ! (t3-(t1*t2» + «a*b)+c) + (x*x*x)

a, b, c: VAR
SEQ

PAR
intrnall ? a
intrna12 ? b
input3 ? c

CHAN Comm1, Comm2:
PAR

VAR t1, t2:
SEQ

PAR
t1 0- (a * a)/c
t2 0- (b * b)/c

PAR
output2 ! t1+(a*b)+t2
Comm1! t1
Comm2! t2

VAR asq, bsq:
SEQ

- 175 -

PAR
Comml? asq
Comm2? bsq

output3 ! (asq*b) - «a/b) - (bsq*a»

- 176 -

D,3 PROGRAM SIX

CHAN input1,input2,input3,output1,output2,output3,intrnal1,intrna12:
PAR

VAR a, b, c:
SEQ

PAR
intrnal1 ? a
intrna12 ? b
input1 ? c

CHAN Comm1, Comm2:
PAR

VAR t1, t2:
SEQ

PAR
t1 '- (a * a)/c
t2 := (b * b)/c

PAR
output1 ! t1+(a*b)+t2
Comm1! t1
Comm2! t2

VAR asq, bsq:
SEQ

PAR
Comm1? asq
Comm2? bsq

output2 ! (asq*b) - «a/b) - (bsq*a»
VAR a, b, c, t1, t2, t3:
SEQ

PAR
input2 ? a
input3 ? b

c '- (a*a) + (b*b)
CHAN intrn:
PAR

t1 := a + (b * c)
t2 := a - «b+c)*(b/(a+c»)
VAR temp1, temp2:
SEQ

PAR
temp1 := a + (b - c)
temp2 := c * (b + a)

intrn ! (temp1*temp2) + (temp1/temp2)
VAR M,N:
SEQ

PAR

PAR
a
b
c

PAR

intrn ? M
N := a*b*c

t3 := (N*(M-a» + (N-b)

,- a * a
'- b * b
:= c * c

intrnal1
intrna12

(t1*t2*t3) + (a-(b+c»
(t1/(t2+t3» + a + b + c

- 177 -

VAR x:
SEQ

x:=(a*b)+(b*c)+(t1-t2)+(a/c)+(a-b)+(c-a)+(c-b)+(a/b)+(b/c)+(a*b)
output3 ! (t3-(t1*t2» + «a*b)+c) + (x*x*x)

- 178 -

APPENDIX E

PROGRAM DOCUMENTATION

This appendix describes the Pascal program developed for COPTS. It

is divided into three sections.

The first section provides an introduction to the program and

considers the calling sequence for the first level procedures, while the

second section summarises the purpose of these procedures. The final

section discusses the output produced by the program.

E.1 INTRODUCTION

The compiler program was written in VAX-11 Pascal V2.2-114 [69].

The code for the compiler is divided into five MODULES. Each module

contains the set of procedures and functions used to implement one or

more parts of the compiler. An ENVIRONMENT file holding the outermost

level of definitions of constants, types, variables, and procedures is

generated by the main program. The VAX Pascal INHERIT attribute enables

each module to use these definitions.

- 179 -

[ENVIRONMENT('SETUP')]
PROGRAM DEFINITIONS(INPUT,OUTPUT)j

(* main body of program DEFINITIONS *)
BEGIN

END.

INITIALISEj
BUILDPARSETREE(MajorPrc)j
IF NOT ErrFlag THEN

BEGIN

END

InitBoxCell(MajorPrc)j
PrcSpec(MajorPrc)j
Dump(MajorPrc);
PrcImplmntn(MajorPrc)j

FIGURE El: The Execution Sequence

The main body of the Pascal program is listed in Figure 61. The

variable 'MajorPrc' is a pointer to the root record of the internal data

tree. 'ErrFlag' is a global boolean flag used to indicate if there are

any syntax errors in the Occam source code.

Firstly, the program calls the procedure 'INITIALISE' to initialise

all of its global variables. , BUILDPARSETREE' then reads in the source

program and attempts to parse it. If syntax errors were found in the

source code then the global variable 'ErrFlag' is set to false and the

program terminates. Otherwise, 'ErrFlag' is set to true and the internal

form of the program is completed by 'PrcSpec'. This internal form is

then written out by 'Dump'. Calling this procedure is not essential

since it merely allows the user to check the internal format. Finally,

'PrcImplmntn' generates the graphical definition of the source code.

This procedure also writes out the object code defining the

representation.

- 180 -

E.2 BuildParseTree

Initialises 'MajPrc' and store information obtained from parsing the

associated process.

E.2.1 Variable Parameters

1. MajorPrc:

Pointer to the 'CmpntRec' associated with a process.

E.2.2 Description

Scans and analyses the Occam source program and corresponds to the

parse phase. The scanning algorithm is adapted from the Scanner

presented in Gries [24]. The recursive descent algorithm implemented by

the analyser is based on the grammar defined in AppendixC. The

procedure also carries out syntax checking and some semantic checking.

Limited error messages are produced on error detection. A syntax error

causes the analyser to fail, since no error recovery scheme has been

implemented.

The scanner acts upon a whole line of the source text. The tokens

obtained from a scan of the current text line are held in a buffer. The

analyser fetches tokens from this buffer one at a time. When the buffer

is empty the next line of the Occam source program is read in. This line

is scanned and the tokens, representing the identified symbols, placed in

the buffer. The sequence of tokens in the buffer after the scan

corresponds to the sequence of symbols in the text line.

- 181 -

The analyser uses the tokens to build up the internal data tree.

This requires creating and initialising 'CmpntRec' records. Each record

created is associated with a process in the Occam program and identifies

whether that process is simple or complex. The level of one of these

records in the internal data tree reflects the nesting of its process in

the source program. The root record of the tree is associated with the

process defined by the program itself. The records are initialised with

information on the parse tree - the internal representation of the

program.

For a complex process the analyser determines if any declarations

are associated with it. If there are, these are parsed and a reference

to the information gathered is stored. It also identifies the construct

governing the execution of the subsidiary components, counts them, and

parses each one according to its type. The resulting information is

stored in the 'Cdscrptr' (see Appendix F: CmplxCmpnt) field of the

associated 'CmpntRec' record.

For a simple process the analyser initialises a 'SmpleCmpnt' record

(see Appendix F). The information gathered during the parse of the

simple process is held in this type of record. Additional information is

added in the succeeding phases. A reference to the record set up is

stored in the process' 'CmpntRec'. The analyser first identifies the

process' primitive operator. It uses this to select the appropriate

parse routines called. The operator is also used to determine the form

of the 'SmpleCmpnt' record to be set up.

- 182 -

If the input operator is identified the analyser obtains and stores

a reference to the input channel identifier. Then, references for all

the input variables are obtained and stored. If the output operator is

identified a reference to the output channel is obtained and stored.

Next, each output expression is transformed into its corresponding

Reverse Polish form. References to the records representing these Polish

forms are stored. Finally, if the assignment operator is identified a

reference to the variable identifier assigned a value is obtained and

stored. The analyser then transforms the associated arithmetic

expression into its corresponding Polish form. A reference to the record

representing this form of the expression is stored.

E.3 Dump

~rites out information held and referenced by the record corresponding to

, MajorPrc'.

E.3.1 Variable Parameters

1. MajorPrc:

Pointer to the 'CmpntRec' associated with the Occam program.

E.3.2 Description

The procedure 'Dump' writes out information on the internal

representation of the Occam source program. Firstly, it writes out the

parse tree in a form reflecting the block structure of the source code.

This form also illustrates the reverse polish representation for each

arithmetic expression occurring in the program. Secondly, the contents

of the 'SymTabRec' records implementing the symbol table are displayed.

- 183 -

The data displayed for the parse tree and the symbol table represents the

information stored in the internal tree after the parse phase.

Finally, the procedure 'Dump' writes out the internal representation

of the program after it has been completed in the graphical specification

phase. This involves displaying information on the occurrences of

identifiers and writing out the tree forms of expressions. This data is

presented in a way which illustrates the structure of the parse tree.

E.4 InitBoxCel1

Prepares the internal data tree for the graphical specification and

graphical definition phases.

E.4.1 Variable Parameters

PrcPtr :

Pointer to the 'CmpntRec' associated with the Occam program.

E.4.2 Description

This recursive procedure implements a preorder traversal of the

internal data tree. During this traversal previously stored information

is used to initialise elements in the 'CmpntSpec' and 'CmpntImpl' fields

of each 'CmpntRec' implementing the internal data tree. If a 'CmpntRec'

is associated with a complex process then elements in the 'Cdscrptr'

field are also initialised.

The elements initialised are used for holding information on (a) the

occurrences of identifiers in the corresponding process and on (b) the

graphical (cell) representation of the process. The information used in

this initialisation was stored in the data tree during the parse phase.

- 184 -

E.5 INITIALIZE

Sets up the global identifiers used in the program.

E.5.1 Description

This procedure initialises identifiers used as global arrays,

identifiers used as global counters, and a global boolean used as a flag.

The global arrays are set up as follows.

1. C

The class values for the ASCII character set are stored in this

array. The position of an element in the array represents the

ASCII code for a particular character. The integer value held

in the element defines the class of the associated character.

2. DelTable

The delimiters and their internal code are stored in this array.

An element of this array holds the symbol for a particular

delimiter and its corresponding internal code.

3. RWTable

The reserved words and their internal code are stored in this

array. An element of this array holds the character string

defining a reserved word and its corresponding internal code.

The following global counters are set to zero.

1. Ntoks

Used to count the number of tokens held in the token buffer.

- 185 -

2. StartCol

Counts the number of blanks proceeding the characters composing

the current line of source text being scanned.

3. TBptr

Counts the number of tokens removed from the token buffer. This

variable represents a pointer to the current position in the

buffer.

The global boolean flag 'ErrFlag' is set to false.

E.6 Prclmplmntn

Generates the compiler's object code. This code defines the graphical

representation of the Occam source program.

E.6.1 Variable Parameters

1. MajPrc:

References the 'CmpntRec' record denoting the root of the

internal data tree.

E.6.2 Description

The task of this procedure is implemented in two stages. The first

stage derives an internal definition of the graphical representation.

The second stage uses this to generate the object code. The first stage

corresponds to the graphical representation phase, and the second to the

output phase. The data symbolising this definition is assembled in the

compiler's data tree.

- 186 -

Internal definitions of the graphical (cell) forms of the program's

processes are combined, giving one complete definition for the entire

source program. This involves examining the data previously placed in

the 'CmpntRec' records of the internal tree. A preorder traversal of the

tree is used to access these records. During this traversal information

in each record is interpreted, in order to define the cell form of the

associated process. The resulting definition information is stored in

the record.

The procedure separates the defining of the cell representation for

a simple process from that for a complex one. However, an intrinsic step

in the definition of both, is the placement of the cellon a conceptual

grid. Information obtained from this placement defines, in terms of the

grid, the co-ordinates of the cell's origin, its input ports, its output

ports, and its dimensions. These conceptual co-ordinates are later

translated into 'actual' co-ordinates during the plotting of the

representation on a display device.

The cell definition of a complex process represents the 'glue'

linking the cell representations of its subsidiary components. Deriving

it entails defining the cell forms of the subsidiaries. It also requires

defining the following.

(a) The graphical representation for the initialisation of each

variable declared in the process.

(b) The routing of the power, ground, and clock lines to the

subsidiary cells.

- 187 -

(c) The routing of the control line between the subsidiary cells.

(d) The routing of external and internal identifiers.

The algorithm developed to implement both these tasks is iterative,

obtaining the definition and associated routing for each sub-process in

turn.

Initialisation of a variable is represented graphically by a box

linked to a cell. This box represents a register for holding the values

assigned to the variable. The cell corresponds to the the assignment

operator in the process initialising the variable. Connecting the east

side of the cell to the west side of the register is an output line - the

assignment line. Obtaining this representation requires defining the

routing of this line, and defining the origin co-ordinates of the

register. Routing of the output line is determined by the parent

process' constructor.

There may be a line branching from the assignment line. This

represents re-assignment of the variable in other processes. Segments of

this line are connected to outputs of the cells in which re-assignment

occurs. The routing of this line to these cells is part of (d). The

connecting segments are defined during the definition of the

corresponding sub-cells. There is also a line routed from the east side

of the register with branches to several sub-cells. This line, termed

the reference line, represents references to the variable in other

processes. Defining the routing of this and its off-shoots is part of

(d) above.

- 188 -

Steps (c) and (d) are both sub-divided into defining the routing

into a sub-cell, and the routing out of a sub-cell. The definitions for

the input lines are obtained before the sub-cell is defined, and those

for the output lines after. Input lines are defined by a routing

strategy determined by the execution sequence of the parent process. For

identifier lines, the procedure ascertains whether a line is required in

the horizontal and/or vertical data path of the sub-cell. The decision

on which data path(s) a line is to be routed in, is based on information

specifying the occurrences of the identifier in that sub-cell.

Each sub-cell has a control line routed out from its east side.

Defining the routing of this output line is determined by the parent

process' constructor and the sub-ceIl's type (simple or complex). For a

simple sub-cell the line is routed from its right most constituent

operator to the east side of the cell. Similarly, for a complex

sequential sub-cell the control line is routed from the east face of its

right most sub-component to the east edge of the cell. If, however, the

sub-cell represents a complex parallel process the routing strategy is

more involved. Firstly, a join cell is defined to be placed in the upper

right most corner of the cell. Next, the control output line of each

component cell is routed to the west face of this join cell. Finally,

the control line for the parent process is routed from the east side of

the join cell to the east edge of the cell.

Other possible output lines of a cell are channel lines. These

lines connect two cells which represent the input and output processes

associated with a channel identifier. Defining these lines involves

routing each line from the cell it was created in, the source cell, to

the cell it terminates in, the destination cell. The source and

- 189 -

destination cells may be adjacent, or separated by several cells. The

implemented routing strategy defines lines for either situation.

Channels declared for the main process may represent external inputs

or outputs. In which case, the corresponding channel lines are only

connected to source cells. If this source cell represents an input

process then the line is routed to the west edge of the main program's

cell. On the other hand, if the source cell represents an output process

then the line is routed to the east edge of the main cell.

The representation of a simple process is composed of one or more

operator cells, several identifier lines, and power, ground, clock, and

control lines. The cells represent the operators of the simple process.

Their placement and the associated routing of the power, ground, clock,

and control lines represents the implicit execution sequence in the

process. The internal definition of this representation is derived from

data stored in the process' 'CmpntRec' record. Acquiring it means

defining each operator in turn, and defining the routing of the required

lines. Each primitive process is handled separately. However, defining

the representation of expressions is common to both assignment and output

processes.

For an input process the procedure defines operator cells for the

constituent read operations. These cells are defined sequentially to

form a horizontal linear array. Before the definition of an input

operator cell, vertical line segments from the parent's power, ground,

clock, and control lines are defined. Then, during the cell's

definition, a horizontal segment from each vertical line is defined.

Each segment connects with the corresponding input port of the cell. The

control line is defined such that it links the subsidiary cells together.

- 190 -

The variable output line of each operator cell is defined to connect to a

corresponding line in the parent's horizontal data path. The channel

line associated with the simple cell is routed from the west boundary of

the cell to each subsidiary, terminating in the right most.

The procedure defines an assignment process in two stages. Firstly,

the representation of the associated expression is defined (see below).

Secondly, a primitive operator cell is defined together with the routing

of the lines connected to its input ports. This cell represents storing

of the result of the expression in a variable. The data output line of

this cell is routed to a register as described above.

The definition of an output process involves two very similar stages

which are repeated for each constituent write operation. In the first

stage, the representation of the expression associated with a write

operation is defined. An output cell and the routing of the lines

connected to its input ports are defined in the second stage. This cell

represents the writing of the expression's value on the process' channel.

The channel is represented by a line defined to be routed from the

channel output port of the first cell to the east edge of the parent

cell, passing below the other cells. The channel outputs from the cells

in between are defined to connect with this line.

Figure 7.6(a)illustrates an arithmetic expression tree. 'XprsnRec'

records implement the nodes of such trees. Each node represents the

<operator> <operand-1> <operand-2> form of an expression. The operator

and a reference for each operand are stored in the node. The reference

for an operand is either to a variable/constant identifier, or to a

sub-tree describing a sub-expression. 'Ln-Op' denotes a node at level n

in the tree. Figure 7.6(b) outlines the graphical representation of the

- 191 -

tree. The north to south arrangement of cells in an array mirrors the

left to right order of nodes in the corresponding level. Defining this

representation requires mapping the implied structure of the tree into

the conceptual bounding box. Information stored in the tree is used to

define the mapping. Accessing this information involves a postorder

traversal of the tree.

Power, ground and clock lines are routed to each operator cell.

Segments from the control line are first routed to the cell

representation corresponding to the operand held in each leaf node

(i.e. the cells in the left most array). Subsequent routing for the

control is determined by the structure of the tree. Each subtree is used

to define the routing of the control line from the cell representation of

its siblings to the control input port of the cell corresponding to the

parent. If a root has only one subsidiary node then the control line is

routed directly from the cell representation of the node to that of the

root. If two nodes are attached to the root the control output line of

each sibling cell is routed to a join cell. A line is then routed from

this join cell to the cell corresponding to the root.

The subtrees are also used to define the routing of data lines

between the cells. The data output line from the cell representation of

each sibling node is routed to the appropriate input port of of the

root's operator cell. For a node referencing a variable the

corresponding data line is routed to an input port of its operator cell.

After deriving the internal definition for the graphical

representation, the procedure uses it to produce the compiler's object

code. To produce the object code the procedure writes out, in a text

file, the conceptual co-ordinates of all the segments composing the lines

- 192 -

for power, ground, clock, control, each variable, and each channel. The

line segments comprising the bounding box of each primitive cell are

written out. Associated with each pair of co-ordinates is an integer

denoting the colour of the line connecting the two points. This integer

is also written out. Obtaining this data involves a second preorder

traversal of the data tree. During the traversal the maximum and minimum

co-ordinates are calculated. The data in the text file is then used to

set up and format another text file. This second text file holds the

object code. It is formatted into blocks, each block containing pairs of

co-ordinates for line segments plotted in a particular colour.

E.7 PrcSpec

Implements the graphical specification phase.

E.7.1 Variable Parameters

1. MajPrc:

Pointer to the 'CmpntRec' associated with a process.

E.7.2 Description

The overall task implemented by this procedure is the completion of

the internal representation of the source code. This is split into the

following sub-tasks.

1. Identifying the subsidiary in which each of a process' declared

variables is initialised.

- 193 -

2. Classifying the variable identifiers occurring in a process.

3. Identifying the read and the write subsidiary associated with

each of a process' declared channels.

4. Classifying the occurrences of channel identifiers in a process.

5. Translating the reverse polish forms of expressions into their

tree representations.

These tasks are carried out during a preorder traversal of the

initialised data tree. Data stored during the previous phase is accessed

and used to derive the necessary specification information.

A process' variable is initialised by either an assignment operation

or an input operation. A reference to the variable occurs in the

internal form of the initialising subsidiary process. The procedure

recursively searches the internal representations of the process'

subsidiaries until the required reference is found. When found, the

reference number of the sub-process is stored in the appropriate element

of the 'Cdscrptr' field of the parent's 'CmpntRec' record. Also, a

reference to the identifier is stored in the 'CmpntSpec' field of the

sub-process' 'CmpntRec'. This reference specifies that the identifier is

external to the process. It is stored in the list for initialised

external variables. Having identified the subsidiary, the remaining ones

are searched for any other instances of the identifier. Further

occurrences are classified in to two types: re-assignment and reference.

Each type is checked for separately. If found a reference to the

identifier is stored in the appropriate external list of the 'CmpntSpec'

field of the subsidiary.

- 194 -

A process' channel identifiers will be referenced in at most two

subsidiaries. The procedure searches for the first occurrence of a

channel identifier. When found, the reference number of the subsidiary

is stored according to whether it is an input or output process. A

reference to the identifier is stored in the 'CmpntSpec' field of the

subsidiary's 'CmpntRec'. This reference is placed in one of two lists

classifying the occurrence in the process; either the list for external

channels read from, or the list for external channels written to. Then

the second subsidiary is sought. If found, a reference to it is stored

in the appropriate external channel list of the subsidiary. The

subsidiary's reference number stored in the parent's 'CmpntRec'.

As each 'CmpntRec' associated with a complex process is accessed,

the procedure searches its subsidiaries for occurrences of external

identifiers. References to these identifiers were stored earlier in the

traversal in the external lists of the 'CmpntSpec' field. Any

occurrences of variable identifiers are classified into three types:

assignment, re-assignment, and reference. While occurrences of channel

identifiers are classified into read and write references. Each type is

checked for separately. If found a reference to the identifier is stored

in the appropriate external list of the subsidiary.

The reverse polish expression associated with an assignment process

and the expressions associated with an output process are translated into

a recursive tree representation. This tree representation is used in

specifying the graphical implementation of the expression. During this

translation the execution sequence of the expression is modified to

maximise concurrency. The procedure also obtains the reference numbers

for variables occurring in the expressions associated with the sub-trees

- 195 -

of the expression tree. The pointers to the recursive tree

representations are stored in the 'SimplCmpnt' record referenced by the

'CmpntRec' record.

E.8 THE OUTPUT

The format of the the "object file" generated by the compiler is

illustrated overleaf. Such a file holds the definition of an Occam

program's graphical representation. Each item within <> represent an an

integer. A line plotting program processes this file in order to

implement the definition. This program was also written in VAX-ll Pascal

V2.2-114. It uses the VAX EXTERN facility to call a sub-set of the

subroutines in the GKS graphics package [14]. These subroutines activate

and deactivate the device on which the representation is to be displayed,

and display each line segment in the appropriate colour. The program

uses the minimum and maximum co-ordinates to scale the definition to the

GKS device co-ordinates.

- 196 -

<minX> <minY> <maxX> <maxY>
<separator>
<pen number>
<xl> <y1> <x2> <y2>
<xl> <y1> <x2> <y2>

<xl> <y1> <x2> <y2>
<separator>
<pen number>
<xl> <y1> <x2> <y2>
<xl> <y1> <x2> <y2>

<xl> <y1> <x2> <y2>
<separator>
<pen number>

<separator>
<end of file>

KEY

<Xmin> :- minimum X co-ordinate in the defined graphical representation
<Ymin> :- minimum Y co-ordinate in the defined graphical representation
<Xmax> :- maximum X co-ordinate in the defined graphical representation
<Ymax> - maximum Y co-ordinate in the defined graphical representation
<separator> :- delimiter used to split the file into sections
<Pen Number> :- integer denoting the colour a set of line segments are

to be displayed in.
<xl> :- X co-ordinate of the start point of
<y1> :- Y co-ordinate of the start point of
<x2> :- X co-ordinate of the start point of

a line
a line
a line

<y2> :- Y co-ordinate of the start point of a line

- 197 -

segment
segment
segment
segment

APPENDIX F

IMPORTANT RECORDS AND THEIR FIELDS

This appendix describes several of the important records used to

implement the compiler's data tree. A brief summary on the purpose of

each identifier and its attributes is included. The identifiers are

listed alphabetically.

F.1 CellRec
Defined for holding information on the graphical (cell) definition

of a process. The information held in the fields of this type of record
relates to the placement of the cell, its dimensions, and the inputs and
outputs of the cell. This information is obtained during the definition
phase.

- Xorig
The X co-ordinate for the upper left hand corner of the cell.

- Yorig
The Y co-ordinate for the upper left hand corner of the cell.

- ~idth
The width of the cell in 'grid' units.

- Height
The height of the cell in 'grid' units.

- Control
Pointer to record associated with the routing of the cell's control line.

- Vbundle
A record used for holding references to information on the vertical path
for the power, ground, and clock lines.

- 198 -

- Hbundle
A record used for holding references to information on the horizontal
path for the power, ground, and clock lines.

- Vdatapath
A record used for holding information on the vertical path for variable
lines.

- Hdatapath
A record used for holding information on the horizontal path for variable
lines.

- AsgnLines
A record used for holding information on the path for the lines
representing variables initialised in the cell.

- Vchanpath
A record used for holding information on the vertical path for channels.

- Hchanpath
A record used for holding information on the horizontal path for
channels.

- ThruChans
A record used for holding information on the path routing channels
through the cell.

- VarAsgnd
Indicates if a storage structure (one or more registers) is associated
with the cell. Such a structure is required if the associated process
initialises variables declared in its parent.

- ChanInfo
Record used to hold information on the graphical definition of all
channels declared in the associated process.

- JoinReqd
Selector used to indicate if a join cell is associated with the cell
representation.

1. JoinReqd = TRUE

1. - joinhght
Height of the join box in 'grid' units.

2. - join
Record holding the origin co-ordinates of the join cell.

2. JoinReqd = FALSE
No fields.

F.2 CmplxCmpnt
Defined for linking parse and specification information on a complex

process (component). A subset of the fields of this record type are

- 199 -

initialised during the parse phase to hold information on an associated
process' subsidiary components, its constructor, and its identifier
declarations. The specification phase initialises the remaining fields
with information on the occurrences of the identifiers.

- Constrctr
The internal representation for the process constructor.

- Dclration
A pointer to the record holding the information obtained from the parsing
of any declaration statements associated with process. If there are no
such statements then this pointer is given a nil value.

- Nsubcmpnts
The number of subsidiary processes composing the process.

- SubCmpnts
A list of pointers to the records associated with the subsidiary
processes.

- Ichans
The number of channels declared for the process.

- Nlocal
The number of variables declared for the process.

- Xrefs
A list holding information on references to the process' variables.

- Xredefs
A list holding information on re-assignments to the process' variables.

- Xdefs
A list holding subsidiary reference numbers. Each entry in the list
identifies the processes in which the process variable associated with
that list position is initialised.

F.3 CmpntRec
A record type defined to link all the information obtained on a

process (component). This record type always holds some specification
and definition information on the associated component. This information
is independent of the whether the component is simple or complex. If the
associated component is complex then the record holds parse and
additional specification information. If, however, the component is
simple then a pointer is held. The pointer references a record holding
parse, specification and definition information specific to a simple
component.

- SubNo
Reference number associated with a process. For the major process this
is always zero.

- Pcmpnt
Pointer to the record associated with the surrounding (parent) process.

- 200 -

- CmpntSpec
A record designed for holding information on the associated process'
external identifiers. This information specifies which variables are
initialised, referenced, and re-assigned in the process. It also
specifies which channels are read from, and written to in the process.
The information is gathered and stored during the specification phase.

- CmpntImpl
Holds, information gathered during the graphical definition phase, on the
graphical (cell) form of the process. (see CellRec)

- ProcType
Selector used to distinguish between simple and complex processes.

1. ProcType = Simple

1. - SimplPtr
Pointer to a record containing specification and definition
information for a simple process. (see SmpleCmpnt)

2. ProcType = Complex

1. - Cdscrptr
Record holding parse and specification information for a
complex process. (see CmplxCmpnt)

F.4 PrimUnit
Defined for holding the information on the graphical (cell)

definition of a primitive operator. The information held in the fields
of this type of record relates to the placement of the cell, its
dimensions, and the co-ordinates of the inputs and outputs of the cell.
This information is obtained during the definition phase.

- Xorig
The X co-ordinate of the upper left hand corner of the cell
representation.

- Yorig
The Y co-ordinate of the upper left hand corner of the cell
representation.

- Height
The height, in 'grid' units, of the cell representation for the primitive
operator.

- Width
The width, in 'grid' units, of the cell representation for the primitive
operator.

- VddIn
The co-ordinates of the input port for the power line.

- 201 -

- Gndln
The co-ordinates of the input port for the ground line.

- Clkln
The co-ordinates of the input port for the clock line.

- Cntrlln
The co-ordinates of the input port for the control line.

- CntrlOut
The co-ordinates of the output port for the control line.

- UnitType
Selector to identify which primitive operator is implemented by the
record.

1. UnitType = AsgnOp

1. - ResIn
The co-ordinates of the input port for the line bringing the
value to be assigned to a variable.

2. - DataOut
The co-ordinates of the output port for the line connecting
the operator to the appropriate register.

2. UnitType = InOp

1. - ChanIn
The co-ordinates of the input port for the channel being
read from.

2. - VarOut
The co-ordinates of the output port for the line connecting
the operator to the appropriate register.

3. UnitType = OutOp

1. - Xpln
The co-ordinates of the input port for the line bringing the
value to be output on the channel.

2. - DataOut
The co-ordinates of the output port for the line channel.

F.S SmpleCmpnt
Defined for holding parse, specification, and definition information

on a simple process (component). This information is dependent upon the
primitive operator associated with the component. During the parse phase
the primitive operator of the process is identified and used to determine
the form of this type of record. The parse phase also adds a reference
to the identifier acted on by the operator together with information on

- 202 -

the part of the statement occurring after the operator.

If the component is an assignment or output one, then, references to
associated reverse polish expressions are also stored during the parse
phase. In the succeeding phase these referenced expressions are
translated into their tree forms and pointers to the records holding
these forms are stored.

In the definition phase this type of record is used to hold
information on the graphical (cell) form of the primitive operation.

- PrmType
Selector used to identify the type of simple process information is being
gathered on.

1. PrmType = Asgnmnt

1. - VarId
Pointer to the symbol table record corresponding to the
variable being assigned a value in the process.

2. - RevPolXprsn
Pointer to the record associated with reverse polish format
of the expression.

3. - AsignUnit
Record holding the information concerning the graphical
definition of the assignment operator. (see PrimUnit)

4. - AsgnPtr
Pointer to the record holding the specification and
definition information for the expression.

2. PrmType = Inpt

1. - InChan
Pointer to the symbol table record corresponding to the
channel being read from in the process.

2. - Nin

3.

4.

Number of sequential input operations occurring in the
process.

- VarList
List of pointers to the symbol table records of each of the
variables reading a value from the channel in the process.

- InList
List of records each holding graphical definition details
for an input operator. The ordering of the list corresponds
to the order in which values are read from the channel and
stored in the variables.

- 203 -

3. PrmType = Outpt

1. - OutChan
Pointer to the symbol table record corresponding to the
channel being written to in the process.

2. - Nxprsns
The number of values being sequentially written to the
channel in the output process.

3. - RevPolXprsns
List of pointers to the records holding the reverse polish
from of the expressions occurring in the process.

4. - OutXprsns
List of records each holding graphical definition details
for an output operator. The ordering of the list
corresponds to the order in which expressions are evaluated
and the results written to the channel.

F.6 SymTabRec
Defined for holding information on identifiers. Records of this

type hold information on an associated identifier string and a reference
to the process in which the identifier was declared. These records also
hold information which is specific to the identifier type.

- IdLen
Length of the identifier string.

- IdStrng
The identifier string.

- NxtRec
Pointer to the next related record.

- ProcPtr
Pointer to the record associated with the process in which the identifer
was declared.

- Item
Selector for the variant fields needed for the different types of of
identifier.

1. item = Channel

1. - placed
Indicates if the channel identifier has already been
processed in the graphical definition phase.

2. - offchip
Indicates if there are both read and write operations
associated with a channel identifier.

- 204 -

3. - InitdFor
Defines whether the first reference to the identifier was in
an input or output statement.

4. - CellNmbr
Used to reference the current cell representation the
channel is being routed from.

5. - Usedln
A pointer to the record associated with the process in which
the read and write operations occur.

6. - Cell
A pointer to the record associated with the process in which
the identifier is first referenced.

2. item = Constant

1. - Value
The integer value associated with a constant identifier.

3. item Variable No fields.

F.7 XprsnCel1
Defined for holding information on the graphical (cell)

representation of the tree form for an arithmetic operator, and the left
and right expressions associated with it (ie <left expression> <operator>
<right expression». This information is placed in this type of record
during the interpretation of associated specification data. The data
held in the fields of this type of record relates to the placement of the
cell, its dimensions, and the inputs and outputs of the cell.

- Vbundle
Record holding the pointers to routing records for the vertical path of
the power, ground, and clock lines. (see BundlRec)

- Hbundle
Record holding the pointers to routing records for the horizontal path of
the power, ground, and clock lines.

- Xorig
The X co-ordinate for the upper left hand corner of the cell.

- Yorig
The Y co-ordinate for the upper left hand corner of the cell.

- Width
The width of the cell in 'grid' units.

- Height
The height of the cell in 'grid' units.

- 205 -

- Control
Pointer to routing record associated with the cell's control line.

- Vdatapath
Record used to hold plotting information on the vertical routing path for
variables in the cell representation.

- Hdatapath
Record used to hold plotting information on the horizontal routing path
for variables in the cell representation.

- PrimCell
Record holding details of the cell definition for the arithmetic
opera tor.

- JoinReqd
Selector indicating if a join cell is associated with the cell.

1. JoinReqd = TRUE

1. - join
Record holding the co-ordinates for the upper left hand
corner of the join cell.

2. - joinhght
Height in 'grid' units of the join cell.

F.B XprsnOpUnit
A record defined for holding information regarding the graphical

(cell) definition of an arithmetic operator. The information held in the
fields of this type of record relates to the placement of the cell, its
dimensions, and the co-ordinates of the inputs and outputs of the cell.
This information is obtained during the definition phase.

- Xorig
The X co-ordinate of the upper left hand corner of the cell
representation.

- Yorig
The Y co-ordinate of the upper left hand corner of the cell
representation.

- Height
The height, in 'grid' units, of the cell representation for the
arithmetic operator.

- Width
The width, in 'grid' units, of the cell representation for the arithmetic
operator.

- Vddln
The co-ordinates of the input port for the power line.

- 206 -

- GndIn
The co-ordinates of the input port for the ground line.

- ClkIn
The co-ordinates of the input port for the clock line.

- CntrlIn
The co-ordinates of the input port for the control line.

- CntrlOut
The co-ordinates of the output port for the control line.

- UnitType
Identifies the type of operand being represented by the record.

- DataInl
The co-ordinates of the input port for the upper data line.

- DataIn2
The co-ordinates of the input port for the lower data line.

- DataOut
The co-ordinates of the output data line for the result of the operation.

F.9 XprsnRec
A record type defined for holding information on the graphical

specification and definition of an expression. Records of this type
represent the tree forms of expressions. These trees are formed by
manipulating the corresponding Polish forms during the specification
phase. In the succeeding definition phase the implied structure of the
tree is used to place a graphical implementation of the expression on the
conceptual grid. The information generated for this placement is stored
in this record.

- InUpper
Record referencing the left input to the operator node. The input is
either a variable or the result of a sub-expression. For the former this
record holds a variable reference number. In the case of the latter the
details of the sub-expression are referenced by the record.

- InLower
Record referencing the right input to the operator node (cf InUpper).

- Spec
A record defined for holding the graphical specification information on
the tree form of an expression. This information is placed in this type
of record during the transformation of the corresponding Polish form.
This record identifies the arithmetic operator linking the two
sub-expressions trees. It also references each variable occurring in the
left subtree and each variable occurring in the right subtree.

- Strctr
Record holding the graphical definition information. (see XprsnCell)

- 207 -

	371256_0001
	371256_0002
	371256_0003
	371256_0004
	371256_0005
	371256_0006
	371256_0007
	371256_0008
	371256_0009
	371256_0010
	371256_0011
	371256_0012
	371256_0013
	371256_0014
	371256_0015
	371256_0016
	371256_0017
	371256_0018
	371256_0019
	371256_0020
	371256_0021
	371256_0022
	371256_0023
	371256_0024
	371256_0025
	371256_0026
	371256_0027
	371256_0028
	371256_0029
	371256_0030
	371256_0031
	371256_0032
	371256_0033
	371256_0034
	371256_0035
	371256_0036
	371256_0037
	371256_0038
	371256_0039
	371256_0040
	371256_0041
	371256_0042
	371256_0043
	371256_0044
	371256_0045
	371256_0046
	371256_0047
	371256_0048
	371256_0049
	371256_0050
	371256_0051
	371256_0052
	371256_0053
	371256_0054
	371256_0055
	371256_0056
	371256_0057
	371256_0058
	371256_0059
	371256_0060
	371256_0061
	371256_0062
	371256_0063
	371256_0064
	371256_0065
	371256_0066
	371256_0067
	371256_0068
	371256_0069
	371256_0070
	371256_0071
	371256_0072
	371256_0073
	371256_0074
	371256_0075
	371256_0076
	371256_0077
	371256_0078
	371256_0079
	371256_0080
	371256_0081
	371256_0082
	371256_0083
	371256_0084
	371256_0085
	371256_0086
	371256_0087
	371256_0088
	371256_0089
	371256_0090
	371256_0091
	371256_0092
	371256_0093
	371256_0094
	371256_0095
	371256_0096
	371256_0097
	371256_0098
	371256_0099
	371256_0100
	371256_0101
	371256_0102
	371256_0103
	371256_0104
	371256_0105
	371256_0106
	371256_0107
	371256_0108
	371256_0109
	371256_0110
	371256_0111
	371256_0112
	371256_0113
	371256_0114
	371256_0115
	371256_0116
	371256_0117
	371256_0118
	371256_0119
	371256_0120
	371256_0121
	371256_0122
	371256_0123
	371256_0124
	371256_0125
	371256_0126
	371256_0127
	371256_0128
	371256_0129
	371256_0130
	371256_0131
	371256_0132
	371256_0133
	371256_0134
	371256_0135
	371256_0136
	371256_0137
	371256_0138
	371256_0139
	371256_0140
	371256_0141
	371256_0141a
	371256_0141b
	371256_0142
	371256_0143
	371256_0144
	371256_0145
	371256_0146
	371256_0147
	371256_0148
	371256_0149
	371256_0150
	371256_0151
	371256_0152
	371256_0153
	371256_0154
	371256_0155
	371256_0156
	371256_0157
	371256_0158
	371256_0159
	371256_0160
	371256_0161
	371256_0162
	371256_0163
	371256_0164
	371256_0165
	371256_0166
	371256_0167
	371256_0168
	371256_0169
	371256_0170
	371256_0171
	371256_0172
	371256_0173
	371256_0174
	371256_0175
	371256_0176
	371256_0177
	371256_0178
	371256_0179
	371256_0180
	371256_0181
	371256_0182
	371256_0183
	371256_0184
	371256_0185
	371256_0186
	371256_0187
	371256_0188
	371256_0189
	371256_0190
	371256_0191
	371256_0192
	371256_0193
	371256_0194
	371256_0195
	371256_0196
	371256_0197
	371256_0198
	371256_0199
	371256_0200
	371256_0201
	371256_0202
	371256_0203
	371256_0204
	371256_0205
	371256_0206
	371256_0207
	371256_0208
	371256_0209
	371256_0210
	371256_0211
	371256_0212
	371256_0213
	371256_0214
	371256_0215
	371256_0216

