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Abstract 

The work presented in this thesis concerns parallel methods for finite element 
analysis. The research has been funded by British Gas and some of the presented 
material involves work on their software. Practical problems involving the finite 
element method can use a large amount of processing power and the execution 
times can be very large. It is consequently important to investigate the possibilities 
for the parallel implementation of the method. The research has been carried out 
on an Encore Multimax, a shared memory multiprocessor with 14 identical CPU's. 

We firstly experimented on autoparallelising a large British Gas finite element 
program (GASP4) using Encore's parallelising Fortran compiler (epf). The par
allel program generated by epj proved not to be efficient. The main reasons are 
the complexity of the code and small grain parallelism. Since the program is hard 
to analyse for the compiler at high levels, only small grain parallelism has been 
inserted automatically into the code. This involves a great deal of low level syn
chronisations which produce large overheads and cause inefficiency. A detailed 
analysis of the autoparallelised code has been made with a view to determining 
the reasons for the inefficiency. Suggestions have also been made about writing 
programs such that they are suitable for efficient autoparallelisation. 

The finite element method consists of the assembly of a stiffness matrix and 
the solution of a set of simultaneous linear equations. A sparse representation of 
the stiffness matrix has been used to allow experimentation on large problems. 
Parallel assembly techniques for the sparse representation have been developed. 
Some of these methods have proved to be very efficient giving speed ups that are 
near ideal. 

For the solution phase, we have used the preconditioned conjugate gradient 
method (PCG). An incomplete LU factorization ofthe stiffness matrix with no fill
in (ILU(O)) has been found to be an effective preconditioner. The factors can be 
obtained at a low cost. We have parallelised all the steps of the PCG method. The 
main bottleneck is the triangular solves (preconditioning operations) at each step. 
Two parallel methods of triangular solution have been implemented. One is based 
on level scheduling (row-oriented parallelism) and the other is a new approach 
called independent columns (column-oriented parallelism). The algorithms have 
been tested for row and red-black orderings of the nodal unknowns in the finite 
element meshes considered. 

The best speed ups obtained are 7.29 (on 12 processors) for level scheduling 
and 7.11 (on 12 processors) for independent columns. Red-black ordering gives 
rise to better parallel performance than row ordering in general. An analysis of 
methods for the improvement of the parallel efficiency has been made. 
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1.1 Overview of Chapter 

This chapter firstly describes the aims of the research and motivates the need 
for parallel computation. The various parallel architectures available are then 
described. Since the work is to be carried out on a shared memory multipro
cessor (Encore Multimax), more detail is given about such computers than 
other parallel systems. Some terminology related to parallel programming is 
then given and we discuss some strategies for parallel program design. The 
layout of the thesis is given in the final part of this chapter. 

1.2 Aims 

Many practical engineering calculations involve the solution of partial differ
ential equations on regions with complex geometrical configurations. Ana
lytical solutions are generally not possible for such problems and numerical 
techniques are often used to obtain approximate solutions. The finite ele
ment method (FEM) is one such technique and is used for modelling systems 
whose behaviour is governed by partial differential equations. 

The aim of the research described in this thesis is to investigate the po
tential for the parallelisation of the finite element method and to design 
parallel algorithms implementing this numerical technique on shared mem
ory multiprocessors. We aim to derive from this general recommendations 
concerning the implementation of similar computations on shared memory 
multiprocessors. 

The types of engineering problems which are likely to benefit from us
ing the FEM in their analysis are diverse. These include structural analysis 
problems, heat transfer problems and analysis of electromagnetic fields. The 
problems essentially involve the evaluation of unknowns such as displace
ments or temperatures across an area or volume subjected to forces, heat 
or other forms of energy. The partial differential equations governing these 
systems can be solved numerically by the FEM leading to the evaluation of 
the desired unknowns at discrete points in the domain under consideration. 

The FEM gives rise to complex and time-consuming calculations. As 
an example, one large British Gas program used for pipe stress analysis 
(GASP4), discussed in a later chapter, takes 20 minutes to run on a VAX 
8300 for each kilometre of pipe. Real problems involve many kilometres of 
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pipework. 
Finite element simulations of a system under conditions of different load

ings and configurations may be required together with graphical display of 
the results, perhaps in real time. The processing power required for such ap
plications can become very large and faster computing is therefore desirable, 
if not essential, for the solution of large scale problems. The design and use 
of parallel computers and algorithms is an important approach to gain speed 
and power. 

In the finite element method the domain of the problem is divided into a 
number of subregions (the elements) and each element is modelled indepen
dently. The behaviour of the whole domain is modelled as the summation 
of the elements' models according to their adjacency (see chapter 2). Each 
element is defined by a number of nodes and represented by an element ma
trix. The matrix representing the whole structure is formed by assembling 
the element matrices into one overall stiffness matrix. The element matrix 
entries at common nodes are summed together and the result is the coefficient 
matrix of a linear system of equations used for obtaining a set of unknowns 
in the model. These can be values like displacements or temperatures at the 
nodes of the problem domain. 

The stiffness matrix represents the material characteristics and geometry 
of the problem domain (see chapter 2). The right-hand side vector (RHS) 
represents the applied forces (for a problem of structural analysis) and is 
calculated according to the elements' properties (see section 2.3.2). The re
sulting displacements are the unknowns in this system of equations. The 
finite element process consequently consists of the assembly of the stiffness 
matrix and RHS vector and the solution of a set of simultaneous linear equa
tions. This system of equations typically has a sparse set of coefficients. 
There is scope for integrating the two phases as in frontal methods [45]. 

Our aim has been the parallelisation of the finite element method which 
involves parallel assembly of the stiffness matrix and subsequent parallel 
solution of the resulting equations. Sparse representations of the stiffness 
matrix are used. FE matrices are typically of such high orders that it is 
not practical to store them as dense. Sparse representations can reduce the 
amount of storage substantially due to the high sparsity of these matrices. 
For example, in our model program (see chapter 5), a FE mesh with 10201 
nodes would require over 100 million storage units if stored fully. The actual 
number of entries in the stiffness matrix is 90601 ie. it is only around 0.1 
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percent full, making sparse storage very convenient. 
Efficient parallel sparse techniques are difficult to design compared to the 

better understood dense case. We have investigated the problems associated 
with designing efficient parallel algorithms for sparse data structures. The 
aim has been to design algorithms for parallel assembly of the stiffness matrix 
and parallel solution of the resulting equations. 

The parallel assembly methods developed have proved to be very efficient 
(see chapter 6). The solution method used is the preconditioned conjugate 
gradient method (peG). The reason for using this method is that it is par
ticularly suited to the solution of large sparse positive definite systems (see 
section 2.3.4) ie. the type of matrices that define our model problems. The 
preconditioner is an incomplete factorization of the stiffness matrix designed 
to conform with the parallel solution schemes used (see chapter 7). 

The solution methods consist of one row-oriented parallel solution scheme 
(level scheduling) and a novel column-oriented approach to parallel solution 
which we have called independent columns. The ordering of the unknowns 
has a significant effect on the efficiency of such algorithms. We have tested 
our implementations with row and red-black orderings. We have also made 
a detailed study of the ways in which the performance of the solution algo
rithms can be improved. 

Some work has also been done on using parallelising compilers to speed 
up finite element programs. This work has led to conclusions regarding the 
writing of code suitable for such compilers. 

1.3 Types of Parallel Computers 

We can divide parallel computers into three architectural configurations [44]: 

• Pipeline computers (vector processors) 

• Array processors 

• Multiprocessor systems 

We shall briefly discuss the first two classes of parallel computers below 
and then give a more detailed account of multiprocessor systems and shared 
memory architectures which are of particular interest to us. 
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1.3.1 Pipeline Computers 

The process of executing an instruction involves instruction fetch, instruction 
decode, operand fetch (if necessary) and execute. In a non-pipelined com
puter, all four of these steps must be completed before the next instruction 
can be issued. In a pipelined computer, successive instructions are executed 
in an overlapped fashion. Similarly, individual instructions (eg. multipli
cation) may be pipelined at a lower level. Vector pipelines are specially 
designed to handle vector instructions over vector operands. Examples of 
such computers are the Cray-1 and VP-200 [44]. 

Vector computers are used extensively for numerical applications through 
vectorising compilers and/or explicitly vectorised code and produce attractive 
speed ups on problems with many vector operations on long vectors. Their 
performance on short vectors is less satisfactory due to start-up delays. Finite 
element applications give rise to matrices with sparse rows. In order to assign 
long sparse rows to vector pipelines some packing and unpacking of the rows 
is generally necessary. This causes a large amount of overhead, making vector 
computers not suitable for such computations. Such machines are, however, 
used for sparse systems in spite of the mentioned overhead [77]. 

1.3.2 Array Processors 

An array processor is a synchronous parallel computer with multiple arith
metic logic units that can operate in parallel in a lock-step fashion. The 
processing elements are synchronised to execute the same instruction at the 
same time. Each processing element consists of an Arithmetic Logic Unit 
(ALU) with registers and a local memory. The processing elements are con
nected by a data-routing network. Array instructions are broadcast to the 
processing elements for distributed execution over different components of 
the array fetched directly from the local memories. The processing elements 
are under the supervision of a control unit. 

Examples of such computers are the Burroughs Scientific Processor, the 
AMT DAP (Distributed Array Processor) and the Connection Machine. The 
range of numbers of processors varies widely. Many array processors have 
fewer than one hundred processing elements. This number is much larger 
for the DAP (1024 or 4096 processors) but the processors are very elemen
tary. The Connection Machine has approximately 65k processors. Another 
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example of array processors are butterfly networks [43J. These are made of 
rows of processors containing nodes which are interconnected according to 
the required application. 

Parallel processing algorithms have been developed by many computer 
scientists for array processors. Examples of these are algorithms for matrix 
multiplication, fast Fourier Transform and solving partial differential equa
tions [65J. 

1.3.3 Multiprocessor Systems 

A multiprocessor organisation basically consists of two or more processors 
of approximately comparable capabilities. The processors may share access 
to common sets of memory modules, I/O channels and peripheral devices. 
The entire system is controlled either by a single integrated operating sys
tem or several communicating operating systems. These provide interactions 
between processors and their programs at various levels. Besides the shared 
memories and I/O devices, each processor may have its own local memory 
and private devices. Inter-process communications can be done through the 
shared memories, an interrupt network or by message passing. Some avail
able interconnection structures between the memories and processors are: 

• Time-shared common bus 

• Cross bar switch network 

• Multiport memories 

Multiprocessors can be divided architecturally into two groups: tightly 
coupled systems and loosely coupled systems. In the latter type of multi
processor, each processor has a set of input/output devices and a large local 
memory where it accesses its instructions and data. The degree of coupling in 
such a system is very loose and the modules communicate through a message 
transfer system. An example of such an architecture is the CM* computer 
[43]. Distributed memory systems also fall into this category of multiproces
sors. Such systems provide decentralised computing networks which share 
common resources. Loosely coupled systems are best suited to low degrees 
of interaction due to the high costs of interprocessor communication. When a 
higher degree of interaction between processors is required without significant 
deterioration in performance, tightly coupled multiprocessors are used. 
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Shared Memory Architectures - Tightly coupled multiprocessor sys
tems typically contain a global shared memory (see figure 1.1). As mentioned 
earlier, one way to provide interprocessor communication is through a com
mon bus. If such an interconnection mechanism is used, the speed of data 
transfer on the bus limits the total power that can be provided by the sys
tem. The number of processors must be balanced against the bus speed. The 
typical maximum number of processors sharing a common bus is between 20 
and 30 depending on processor speed, bus bandwidth, etc. Cray machines 
usually have a smaller number of processors. In some systems the processors 
may themselves be a vector processing unit providing additional scope for 
parallel processing. 

Each processor may possess a small local memory (cache) which acts as a 
fast buffer. Caching reduces the amount of access to global memory and bus 
usage. Associated with caching is the cache coherence problem ie. avoiding 
the use of inconsistent copies of data. This problem is resolved by the use 
of cache coherence protocols [44]. Figure 1.1 outlines the configuration of a 
bus-connected shared memory system with n processors. 

Most shared memory systems use identical CPU's and are symmetric. 
This means that all CPU's can run the operating system, run user code and 
receive interrupts. Examples of such architectures are the Encore Multimax 
and the Sequent Symmetry [44]. 

Shared memory multiprocessors (SMM's) have been used for many nu
merical applications and have produced encouraging results. The use of such 
machines for numerical problems is an active area of research. The work 
described here represents a further contribution in this area. 
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Figure 1.1: A typical shared memory architecture 
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1.4 Using Shared Memory Machines 

Let us consider the Encore Multimax as a typical shared memory machine. 
The Multimax machines run Encore's version of UNIX (UMAX) as their 
operating system. Parallel processing is provided by execution units called 
processes which are managed by the operating system. Since the use of 
processes is too costly for obtaining efficient user-level parallelism, the task 
abstraction [52] is used which involves a smaller overhead. Tasks are capable 
of running user code and can be started, idled and restarted by processes. 
In this way, several tasks can be assigned to the same process. Figure 1.2 
illustrates how the 14 NS32532 processors in the Multimax machine used for 
this work are utilised by parallel tasks through a hierarchy of parallel process 
management modules. 

The most important issue concerning program design for shared memory 
machines is the avoidance of inadvertent access to shared data by different 
processes. Since two or more processors may attempt to update the same 
memory segment at one time, it must be ensured that any such write ac
cess to shared memory data is done under mutual exclusion. This means 
that any part of memory which could be incorrectly updated if accessed si
multaneously by different processors must be protected. This is done using 
synchronisation constructs (see section 4.4.1) provided by the compiler or the 
operating system. 

Multiple 
tasks 

Multiple 
processes 

Multiple 
processors 

Figure 1.2: Task/Process/Processor Relationships 
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For some shared memory machines, parallelising compilers are available 
which make an analysis of sequential code to produce parallel programs. 
The Encore parallelising Fortran compiler, epj, is one such example and is 
discussed in detail in chapter 4. Such autoparallelised programs are usually 
not sufficiently efficient, however, mainly due to the complex structure of 
the sequential code which makes it difficult for the compiler to parallelise 
efficiently (see section 4.5). 

The compilers used for shared memory machines also provide various con
structs which can be used for parallel programming. These are synchroni
sation primitives such as LOCK's, SEMAPHORE's and BARRIER's which 
are used for intertask communication to achieve goals such as mutual ex
clusion. LOCK's and similar synchronisation variables are stored in shared 
memory and are tested by parallel tasks in order to determine whether or not 
they are allowed to proceed. Some programming language extensions such as 
the Encore DOALL mechanism for spreading DO loops are also used. Sec
tion 4.1 contains descriptions of some of the parallel programming constructs 
available on the Multimax. 

Design tools are also available to aid parallel program design [76]. These 
offer the programmer a set of macros which abstract out lower level syn
chronisation detail and provide an environment in which effort can be put 
into obtaining an efficient design. An example of such tools is the Force (see 
section 3.2.1 and [47]) which provides a set of macros to facilitate parallel 
program design. 

Programs designed for shared memory machines can be used on dis
tributed memory machines by the use of virtual shared memory. This means 
that the distributed memory machine is run such that at user level it can 
perform as a shared memory machine. The shared memory model is conse
quently important because its algorithms can be transported to a distributed 

memory environment [44]. 
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1.5 Parallel Program Design Strategies for 
Shared Memory Machines 

It is better to write parallel programs with parallelism in mind at the design 
stage than to parallelise existing algorithms or programs. This is because 
we can aim to minimise the inherently sequential fraction of an algorithm by 
thinking about parallel processing at the start of our design. 

The cost of programming SMM's is related to the synchronisation cost. 
In order to achieve good speed ups we need to aim to have a large com
putation to communication ratio. This means that parallelism should be 
implemented at high levels by setting off parallel tasks to execute large num
bers of independent operations before needing to communicate. Processors' 
local memories can be used to store and accumulate each task's contribu
tion to shared values. This idea should be used to minimise synchronisation 
points. 

If autoparallelisation is to be performed, the sequential program must 
be written with simple and clear data dependencies. This allows the paral
lelising compiler to analyse the program more easily and detect possibilities 
for parallelisation more readily. We require a well structured program which 
can be parallelised at high levels. It is important to avoid the insertion of 
large amounts of low level synchronisation by the compiler which will be the 
case if the program is hard to analyse at high levels. By taking the above 
considerations into account at the design stage, the ability of the compiler 
to parallelise the program efficiently will be enhanced. Autoparallelisation is 
discussed in detail in chapter 4. 

Let us now expand on the synchronisation cost issue. Synchronisation 
primitives such as LOCK's and EVENT's (see section 4.4.1) have imple
mentation costs which must be taken into account for the design of efficient 
parallel algorithms. If an algorithm involves the use of a large amount of 
synchronisation, the cost of setting up and managing the primitives may 
become large. This overhead will have the effect of degrading the parallel 
efficiency. The degradation can be substantial if parallelism is implemented 
at low levels since many synchronisation points will be required. 

When designing parallel algorithms for SMM's we must aim to minimise 
the synchronisation overhead. This should be done by having as few syn
chronisation points as possible and implementing parallelism at higher levels 
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as far as possible. There may also be cases in which it is not beneficial to use 
parallelism. Examples of such cases are loops which perform small amounts 
of computation. If such loops are parallelised by spreading the loop index 
among the available processors, we will not necessarily gain any speed up. 
This is because the cost of the parallel loop management synchronisations 
may not be sufficiently compensated for by a gain due to parallel processing. 
If it is necessary to insert more than trivial synchronisations into the loop, 
the performance may become even poorer. 

One further important issue is load balancing. Even if we manage to 
design an algorithm (or parallelise a program) such that parallelism is im
plemented at high levels, we will not necessarily obtain maximum efficiency 
unless we make sure that the computational load is spread evenly among 
the available processors. If this is not achieved, then a significant amount 
of processing power may be wasted due to idle processors waiting for other 
processors to finish their respective jobs. 

In summary, the important issues for efficient parallel program design for 
SMM's are: 

• A high computation to communication ratio for each parallel task 

• Good load balancing 

• Only parallelising what will be beneficial. 

The above issues are discussed as they apply to the performance of parallel 
finite element algorithms in sections 4.5.1, 6.7, 7.5.2 and chapter 8. 

1.6 Some Terminology 

It is useful at this stage to make some definitions of terms used frequently 
when discussing parallel models. 

Granularity A measure of the number of instructions in a parallel compu
tation between synchronisation points [65J. Shared memory machines 
usually have synchronisation intervals in the order of 100's of instruc
tions, which is medium grain. Array processors implement very fine 
grain parallelism and network distributed systems are often very coarse 

gram. 
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Speed up The speed up achieved by a parallel algorithm running on p pro
cessors is the ratio between the time taken by a single processor of 
the same type executing the fastest sequential algorithm and the time 
taken by the same parallel computer executing the parallel algorithm 
on p processors [65]. 

Parallel Efficiency The efficiency of a parallel algorithm running on p pro
cessors is the speed up divided by p [65]. 

Amdahl '8 Law Let f be the fraction of operations in a computation that 
must be performed sequentially. The maximum speed up achievable on 
p processors is then f+(l~f)/p [65]. 

1.7 Organisation of Thesis 

In chapter 2 we discuss the finite element method in terms of what it is 
used for and how it works. Some application programs using the method 
are mentioned and we discuss some possibilities for parallelising the method. 
Chapter 3 reviews recent research work related to the thesis. 

The parallelisation of a large British Gas finite element program using the 
Encore autoparallelising Fortran compiler is discussed in chapter 4. Some 
comments are made on our experiences of hand-parallelising the program. 
We also make some suggestions about writing sequential programs suitable 
for such compilers in this chapter. 

In chapter 5 the finite element model program used for testing our par
allel algorithms is described. These algorithms are for parallel assembly of 
the stiffness matrix (chapter 6) and parallel iterative solution of the result
ing equations (chapter 7). Timing results are also given in these chapters. 
Chapter 8 contains our conclusions regarding the parallel design of finite el
ement code together with some recommendations for future work based on 
the thesis material. 
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2.1 Overview of Chapter 

In this chapter the finite element method is described in terms of why and how 
it is used to analyse physical problems in fields such as structural mechanics. 
Details of the mathematical formulation and various stages of finite element 
analysis are given together with an explanation of how the method could 
lend itself to parallelisation. We have also described some real applications 
of the method to show how costly it can be in terms of processing time. This 
motivates later chapters on the parallelisation of the method. 

2.2 The Finite Element Method 

2.2.1 Uses of the Method 

Scientists and engineers are often faced with practical physical problems 
whose solution by conventional analytical methods is either too difficult or 
even impossible. In structural mechanics, for example, there are many cases 
in which the complex geometrical configurations that practical problems have 
make it exceedingly difficult to obtain exact solutions. The analyst must 
consequently use numerical techniques to solve such problems. The Finite 
Element Method (FEM) is one such method and is used for the solution of 
partial differential equations on regions with complex geometrical configura
tions. 

2.2.2 The Method 

The finite element method is a general technique for constructing approxi
mate solutions to differential equations [5]. The method involves dividing the 
domain of the solution into a finite number of simple sub domains (the finite 
elements) and using variational concepts to construct an approximation of 
the solution over the collection of finite elements. 

In a problem of structural analysis, for example, a body is considered to 
be actually broken up into a number of elements. The elements are intercon
nected by means of nodes and the body is replaced by the system of finite 
elements and the nodes connecting them [61]. The nodes are used to identify 
points on the elements. 
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Each element is represented by an element matrix which models its in
dividual properties and behaviour. The whole body is represented by the 
summation of all element matrices into a stiffness matrix. This matrix con
sists of the coefficients of the set of equations which can be used to evaluate 
the nodal unknowns. 

The finite element method consequently consists of the following stages: 

• Discretisation of the domain 

• Evaluation of the element matrices 

• Formation of the equations ie. assembly of the overall stiffness matrix 

• Solution of the equations. 

The operations associated with the assembly and solution phases are in
dependent of the type of problem at hand. Characteristics such as problem 
type and geometry are relevant only to the element matrix evaluation stage. 
The solution phase usually dominates the processing time for finite element 
analysis. The above steps are described in detail in section 2.3. 

We shall now give some details of the mathematical formulation of the 
FEM. 

2.2.3 Mathematical Formulation 

Let us consider the solution of differential equations of the type 

cPu /Pu 
ox2 + oy2 + c(x,y)u = f(x,y) in n (2.1 ) 

subject to the following boundary conditions 

u = uo(x,y) on on} Dirichlet 

au 
on = vo(x, y) on on2 Neumann 

(see figure 2.1). 
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Figure 2.1: The domain of the problem and its boundaries 

A variational statement of the problem defined by (2.1) can take the form 

I(u) = 10 ( (~: r + (~~ r + c(x, y)u' + 2/(x, y)u) dfl - 2hn, VaU ds 

(2.2) 
subject to u = uo(x) on anI (see [38]). We can see that the Neumann 
boundary condition appears in the functional in (2.2) but not the Dirichlet 
boundary condition. 

If u is a minimum point of I, then I (u) ::; I (v) for any v. In particular, 
if v = u + cW (for any small c and any w which satisfies (2.1)) and using 
integration by parts, it follows that if u is a minimum point of I then u 
must satisfy (2.1) [38]. This means that if we determine the function u(x, y) 
which minimises (2.2) we have also obtained the solution to (2.1). The reason 
for seeking a numerical solution for (2.2) (and hence (2.1)) rather than the 
analytical one is that in many practical situations the data given in a problem 
are not smooth. In such cases some derivatives of the solution may not exist 
and therefore the solution will not satisfy (2.1) at all points in n. 

More precisely, in the case of (2.1) we are looking for a solution in the 
space of all twice-differentiable functions which satisfy (2.1) and the bound
ary conditions associated with it (ie. Dirichlet and Neumann). In the case of 
(2.2), however, we are seeking a function in the space of all once-differentiable 
functions which minimises (2.2) and satisfies the Dirichlet boundary condi-
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tion. Since minimising (2.2) is equivalent to solving (2.1), we are now seeking 
a solution to the latter equation in a more restricted domain. 

Variational methods seek an approximate solution in the form of a linear 
combination of suitable approximating functions. The result is the minimisa
tion of a functional related to the problem at hand (ie. (2.2)) with respect to 
a suitable reduced function space spanned by the approximating functions. 
The FEM can be thought of as a special case in which the chosen functions 
are piecewise continuous with respect to the mesh. 

The first step in variational methods is the expression of the solution 
u(x, y) as 

n 

u(x, y) ~ L ai Ni(x, y) (2.3) 
i=l 

where each Ni is called a shape, test or basis function and the ai's are con
stants. Our aim here is consequently the determination of the coefficients 
ai - an since the shape functions are already known. The coefficients ai are 
actually the values of the solution corresponding to the nodal unknowns in 
a finite element mesh (see section 2.3.1). The choice of shape functions de
pends on the problem under consideration and they usually take the form of 
simple linear or quadratic functions of the independent variables. 

The expression of the solution in the form of (2.3) means that we are 
dealing with a finite dimensional subspace spanned by the basis functions. 
In this subspace we now seek a function which minimises (2.2) and satisfies 
the Dirichlet boundary condition. The choice of a suitable subspace is vital 
in finding basis functions which yield values of (2.2) close to its minimum. 
Since we require only first derivative continuity, linear splines can be used 
here as basis functions. Typically the basis functions will have local support 
ie. will be zero outside a small subdomain. The solution to the variational 
form of the original problem is a projection of the actual solution onto the 
finite dimensional subspace. 

Once we have expressed the solution in the form of (2.3) we can substi
tute the latter into (2.2) and minimise with respect to the ai's. This gives 
rise to a set of linear equations from which the a;'s can be determined (see 
section 2.3.2). Alternatively, a variational method such as the method of 
weighted residuals can be used to minimise the functional. In this method, 
the parameters are determined by setting the integral (over the domain) of 
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a weighted residual of the approximation to zero, ie. 

(2.4) 

where Wi are trial or weight functions and E is the residual defined by 

[)2u [)2u 
E = 8x2 + 8y2 + c(x, y)u - f(x, y). (2.5) 

The weight functions need not be the same as the basis functions men
tioned above (ie. Ni's). The Galerkin Method is a special case of the method 
of weighted residuals in which Wi = Ni ie. weight functions equal to the 
shape functions are used giving rise to integrals of the form 

10 Ni(x, y) E(x, y, aJ ) dD = Oi = 1,2, ... , N. (2.6) 

We obtain the same linear system in the ai's from both the straight min
imisation mentioned earlier and the evaluation of (2.6). The coefficients of 
this linear system are computed by numerical integration (see section 2.3.2). 
In the case of the FEM these coefficients form what is called the stiffness 
matrix (see section 2.3.1) and the solution of the system of equations yields 
the nodal unknowns ie. the a;'s in (2.3) (see section 2.3). 

Nonlinear Problems 

Sometimes the differential equation to be solved is nonlinear in u and its 
solution is somewhat complicated due to the presence of nonlinear terms. 
For example, consider the nonlinear problem defined as (2.7) in which the 
RHS is also dependent on u ie. 

82u 82u 
8x 2 + 8y2 + c(x,y)u = f(·r,y,u). (2.7) 

In these cases one can linearise the equation by means of the introduction of 
an iteration into the solution algorithm. For example, (2.7) can be solved by 
a sequence of iterative steps such as 
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We can start with an initial guess for the solution, u(O), and compute the 
RHS (ie.j(O)) corresponding to this value for u. The next iteration is a linear 
problem involving the calculation of u(1). This is used in turn to compute 
j(I). The iterations proceed in the same manner until a satisfactory estimate 
for u is found. Other nonlinearities are possible in (2.1) such as a c(x, y, u) 
term or having an extra function of u multiplied by the derivative terms. 
These nonlinear problems can be solved by the same technique mentioned 
above as well as others (eg. Quasi-Newton method). 

The model program described in chapter 5 uses the peG method (see 
section 2.3.4) for the solution of the resulting linear equations. If the problem 
to be solved involves any form of nonlinearity, part of the stiffness matrix will 
be different at each peG outer iteration. We must consequently recompute 
the varying part of the stiffness matrix at each step before the rest of the peG 
operations are performed. This can be done by means of the introduction 
of an outer loop round each peG iteration which recomputes the necessary 
coefficients prior to each iteration. 

2.3 Steps Of The Method 

This section contains details of the steps of finite element analysis. Each step 
is treated separately and the aim is to form a basis for the topics discussed 
in the following chapters. 

2.3.1 Discretisation 

One-dimensional bodies are subdivided into finite elements by means of 
nodes. Lines and planes are used for the subdivision of two- and three
dimensional bodies. In one-dimensional bodies the resulting finite elements 
may have unequal lengths, while in two and three dimensions they may have 
unequal sizes as well as unlike shapes. 

In all cases, however, the aim is to break up the body into a number of 
finite elements which cover as much of the body as possible. It may not be 
possible to cover the whole body due to the irregularity of its boundaries. 
Also, the greater the number of nodes in the mesh, the greater will be the 
number of points in the mesh where the unknowns can be evaluated. 
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Figure 2.2(a) shows the finite element model of a beam fixed at both 
ends. Figure 2.2(b) shows the forces and displacements at the extremities of 
an element. f's refer to forces and d's refer to displacements. Each of the 
displacements is called a degree of freedom [61]. The degrees of freedom may 
be quantities such as slopes (derivatives) as well as displacements in other 
problems. 

a fixed beam 

o I 0 0 

an element 

o 0 

V 
nodes 

its finite element model 

(a) (b) 

Figure 2.2: Finite element modelling of a beam 

As explained later in this chapter, the method leads to systems of equa

tions of the form 
]{d = f 

where f is the force vector, ]{ is the stiffness matrix and d is the displacement 
vector. ]{ often has the form of a band or sparse matrix. The above system 
of equations can be solved to determine displacement unknowns, stresses 
and strains. The method extends to other applications such as tempera

ture/pressure distributions. 
Figure 2.3 illustrates how a plane body can be subdivided into rectangular 

and triangular elements. The curved boundary is approximated by the trian-
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gular elements. In order to incorporate complicated element shapes into FE 
meshes isoparametric elements are used. These provide a local mapping of 
each element onto a reference element and we can define the shape functions 
in terms of polynomials on the reference element. A closer approximation of 
the curved boundary in figure 2.3 could be obtained by such a technique. 

Figure 2.3: Discretisation of a plane body 

2.3.2 Evaluation of element matrices 

In this section we shall describe how element matrices can be calculated for 
problems involving linear two-dimensional partial differential equations. We 
consider problems having the form 

cPu 82u 
8x2 + 8y2 + c(x,y)u = j(x,y) 

where u(x, y) is given on the boundary (see section 2.2.3). 
To evaluate the unknown u at specific points in the x - y plane we need 

a two-dimensional discretisation of the domain. We can consequently use 
elements with rectangular, triangular or other shapes. 

Consider the case of a rectangular element whose element matrix we wish 
to evaluate. In order to model the variation of u across the element we can 
associate with each node, i, a shape junction, Ni (see section 2.2.3). This 
serves as a measure of the contribution of the nodal value Ui towards the value 
of u at any point within the element. The rectangular element is illustrated 
in figure 2.4. 

At any point (x, y) in the element, we can write 

u(x,y) = NiUi + Njuj + NkUk + N/u/. 



Cbapter 2:Tbe Finite Element Metbod and Linear Equation Solvers 23 

node i 
nodal shape function Ni 
nodal displacement Ui 

Figure 2.4: Shape functions and nodal unknowns for a rectangular element 

The shape functions have the following form 

Ni = g(x, y) 

and a set of these forms a basis for a suitable subspace in which the solution 
is to be approximated such as a piecewise polynomial with respect to the 
mesh (see below). These functions differ for the various element shapes. 

The evaluation of the element matrices involves a numerical integration 
(see below). It is more convenient to carry out this integration using a natural 
coordinate system. This is a local system that permits the specification 
of a point within the element by a dimensionless number whose absolute 
magnitude never exceeds unity. Using such a system with natural coordinates 
e and Tt, the rectangular element can take the form illustrated in figure 2.5. 

As an example, we can express the four bilinear shape functions (one per 
node) in a quadrilateral element in terms of the new coordinates as (see [72]) 

A 1 
Ni = 4(1 - 0(1 - Tt) 

A 1 
N j = 4 (1 + 0 (1 - Tt) 

A 1 
Nk = 4(1 + 0(1 + Tt) 

A 1 
Nt = "4 (1 - 0 (1 + Tt ) 

where -1:::; ~,Tt:::; 1. 
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7J = 1 

~ =-1 

7J = -1 

Figure 2.5: A natural coordinate system 

For the triangular element in figure 2.6 the linear shape functions have 
the form 

Ni=1-~-7J 

Nj = ~ 

Nk = 7J 

where 0 ~ ~,7J ~ 1 ,~ + 7J ~ 1. 

When a node is shared by a combination of element types, the shape function 
used during the numerical integration is that corresponding to the element 
type under consideration. 

The entries in each element matrix can be the coefficients of the set of . 
equations obtained by minimising (2.2) or evaluating (2.7) (see section 2.2.3). 
Each entry aij in an element matrix can be evaluated by integrating the 
appropriate shape functions and their derivatives over the element space, A, 
in the following way: 

aij = J l Nix(X,y)NjAx,y)+Niy(X,y)Njy(x,y)+c(x,y)(Ni(X,y)Nj(x,y))dxdy, 

i,j E A. 

c( x, y) is the coefficient function in the original differential equation and 
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1 k 

J 

o 1 1 

Figure 2.6: A triangular element 

8 
Nix = 8x(N,(x,y)), 

8 
Niy = 8y(Ni (x,y)). 

The nodal coordinates are transformed to those in the (e, 1]) system. The 
integration must be evaluated numerically assuming the problem data (eg. 
c(x,y)) are not smooth (see section 2.2.3). This can be done, for example, 
by a double application of Gauss-Legendre quadrature with n points. This 
gIVes 

n n 

aij = I: I: Wr Ws I det(J) I (Ni~(eT) 1]s)N.i~(eT) 1]s) + Ni'f)(er, 1]s)Nj'f)(er, 1]s) 
r=ls=l 

where rand s are points and Wr and Ws are weights of the quadrature 
formula for a particular value of n. J is the Jacobian matrix given by 



Chapter 2:The Finite Element Method and Linear Equation Solvers 26 

evaluated at (~r,T/s). The whole element matrix consists of the evaluation of 
the above integral for every combination of nodal points in (i,j, k, 1). 

The evaluation of each element's force vector can be done using the same 
numerical integration technique as that used for the element matrices. This 
can have the form 

n n 

Ji = I: I: WrWs I det(J) I f(~r,T/s)Ni(~r,T/s) 
r=ls=l 

where Ji is the component of the force vector corresponding to node i. 
For the specified boundary conditions, the element force vector entries 

are set to be the prefixed values. The element force vectors are accumulated 
during assembly to form the RHS vector. This can then be used as the 
right-hand side for the solution of the overall system of equations. 

The nodal displacements are required to have continuity across the ele
ment boundaries ie. U must be continuous in all cases. The continuity of 
derivatives depends on the form of the interpolating polynomial. This means 
that the interelement continuity of derivatives is determined by the number of 
interpolation points used, the shape functions and the type of elements in the 
mesh. Hence, with a suitable choice of interpolation we can obtain first and 
possibly higher order derivative continuity across the element boundaries. 

2.3.3 Assembly Phase 

The assembly phase consists of accumulating the element matrices into the 
overall stiffness matrix. This involves the summation of entries for corre
sponding nodes from different element matrices into the same positions in 

the overall matrix. 
Consider the two-dimensional row-ordered mesh consisting of 16 elements 

and 25 nodes shown in figure 2.7. Each element matrix has rows and columns 
corresponding to nodes in the element. For example, elements 6 and 7 have 
the following element matrix structures: 
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2 3 4 5 

1 2 3 4 
6 7 8 9 10 

5 6 7 8 
11 12 13 14 15 

9 10 11 12 
16 17 18 19 20 

13 14 15 16 
21 22 23 24 25 

Figure 2.7: A two-dimensional row-ordered mesh 

node 
numbers 

7 8 13 12 8 9 14 13 

7 * * * * 8 + + + + 

8 * * * * 9 + + + + 

13 * * * * 14 + + + + 

12 * * * * 13 + + + + 

Element 6 Element 7 

The two elements have a common boundary consisting of the line joining 
nodes 8 and 13. This means that there are certain entries in the overall 
stiffness matrix which consist of contributions from distinct entries in the 
two element matrices. These entries are at positions (8,8),(8,13),(13,8) and 
(13,13). The element matrices are placed in the overall stiffness matrix as 
shown in figure 2.8. The common entries are denoted by c's. 

The whole assembly process consequently consists of the insertion of the 
element matrices into the overall stiffness matrix and summing entries at 
common nodes. We then obtain from various elements' characteristics ex
pressed in terms of their respective element matrices a representation of the 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

* * * * 
* c + * c + 

+ + + + 

* * * * 
* c + * c + 

+ + + + 

Figure 2.8: Assembly of element matrices 

behaviour of the whole structure. 
We can also see how the ordering of the nodes affects the structure of the 

stiffness matrix. As can be seen from the above representation, we can expect 
a row-ordered mesh on a rectangular region to give rise to a band matrix (see 
section 7.3.1). A less regular geometry would give more scattered stiffness 
matrix entries. Various node ordering schemes can be used to produce desired 
characteristics in the assembled matrix. Examples of such orderings are 
minimum degree and red-black orderings [16]. Minimum degree ordering 
gives a scattered sparsity pattern and red-black matrices consist of one main 
and several off-diagonal bands (see section 7.2). 

With the exception of frontal methods [45] which combine assembly and 
solution, the next step of finite element analysis is the solution of the nodal 

equations. 
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2.3.4 Solution Phase 

Once the stiffness matrix is formed we can evaluate the nodal unknowns by 
solving the system of equations 

1<d = j 

for d (see section 2.3.1). The force vector, j, is initially supplied as part of the 
problem specification and is computed according to the elements' properties. 
The solution can be obtained by direct or iterative methods. 

Direct methods yield the solution after a known finite number of opera
tions. The main problem with such methods is due to fill-in ie. a previously 
zero matrix entry becoming non-zero as a result of an elimination operation. 
Direct methods used are usually Gaussian elimination or one of its variants 
such as LU decomposition or Cholesky factorization for symmetric positive 
definite 1<. It is possible to take advantage of the structure of the stiffness 
matrix to employ strategies such as blocking [33J in the factorization. 

For iterative methods, we do not know the number of operations which 
need to be performed to obtain the solution in advance but there is no extra 
storage required ie. there is no fill-in (see below). 

We shall now discuss iterative methods in some detail. 

Iterative Methods 

Iterative methods start with an initial estimate to the solution and improve 
this by obtaining a series of new approximations which converge to the exact 
solution. Preconditioning is often used to improve the rate of convergence. 
We return to a study of possible preconditioning matrices M later. The choice 
of an iterative method for a finite element application depends on the type 
of problem to be solved. 

One popular class of iterative methods for solving large sparse systems 
are 1<rylov subspace methods [68J. In these, the solution is sought in a par
ticular subspace spanned by multiples of the residual and a finite number 
of different powers of the coefficient matrix ie. r, 1< r, 1<2r , .... Examples of 
these methods are the Preconditioned Conjugate Gradient method (PCG) 
[68], Generalized Minimum Residual (GMRES) [70J [13], Conjugate Gradi
ent Squared (CGS) [75], General Conjugate Residual (GCR) [20], Modified 
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Conjugate Residual (MCR) [8], Generalized Conjugate Gradients [4], Bi
Conjugate Gradients (Bi-CG) [32], ORTHOMIN [81] and ORTHODIR [84]. 
Let us now discuss and compare some of these methods. 

In the PCG method, we start with an initial guess for the solution and 
choose successive search directions which are K-conjugate to all previous 
search directions (see below). The GCS algorithm is a variant of the PCG 
algorithm and is suitable for nonsymmetric linear systems giving a fast rate 
of convergence. ORTHOMIN, ORTHODIR and GCR are based on the min
imisation of the Euclidean norm of the residual along a particular search 
direction. 

The MCR method is a stabilised version of the GCR method for solving 
large sparse systems of linear equations. This method has special signifi
cance when the system is not positive definite when methods like PCG are 
inapplicable. 

GMRES is used for the solution of nonsymmetric non-singular systems of 
linear equations, f{ d = j, when f{ is not positive real (ie. the symmetric part 
of f{, ~(f{ + f{T), is not positive definite). CGR and ORTHODIR often fail 
to solve such systems. The GMRES algorithm starts by choosing an initial 
guess to the solution and a dimension of the Krylov subspaces. The Arnoldi 
process is used to compute an orthonormal basis of the Krylov subspace at 
each step. 

The PCG method is the most popular Krylov subspace method for solving 
symmetric positive definite linear systems giving rise to efficient implemen
tations for these [68]. Due to the particular suitability of PCG-type methods 
to the solution of large sparse systems (see below) and the fact that our test 
matrices in the model program described in chapter 5 are symmetric and 
positive definite for both node ordering schemes used (ie. row and red-black 
orderings), we have chosen the PCG method for the purposes of this work. 

Let us now make a comparison between direct and iterative methods such 
as PCG for the purposes of sparse system solution before giving an outline 

of the PCG algorithm. 
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Comparison Of Direct And Iterative Methods 

One important advantage in using PeG-type methods for sparse matrices is 
related to storage requirements. For these methods, apart from a few vectors, 
no additional storage is required. Most importantly, there is very little or no 
fill-in. For example, incomplete factorization preconditioners either have no 
fill-in or only low level fill-in (see below and section 3.2.2). 

The amount of fill-in due to direct methods can be large which increases 
both the amount of storage required and the computational cost. This means 
that one can start with a very sparse coefficient matrix and by the end 
of a direct solution scheme have generated a very dense matrix (with the 
exception of band matrices). As the size of the coefficient matrix increases, 
the extra storage and computational costs associated with fill-in become more 
substantial. 

In brief, PeG-type methods have the advantages of lower operations 
count and storage requirements over direct methods for large sparse sys
tem solution ie. the type of matrices which arise in practical finite element 
applications. 

We shall now describe the peG method in some detail since it has been 
used in our model program. This is followed by a discussion of precondition
ing and the various types of preconditioners available. 
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The PCG Method 

The PCG algorithm for the solution of the system Ax = b with preconditioner 
M is given below. We can think of the algorithm below as the conjugate 
gradient method (CG) [42J applied to the linear system M-1 Ax = M-1b. 
Alternatively, the PCG method corresponds to the standard method with 
the scalar product chosen as (x, y) = xT My. Using the new inner product 
with the CG method has the property of computing an approximate solution 
whose preconditioned residual vector M-1(b - AXi) is M-orthogonal to all 
the previous preconditioned residual vectors [68J. 

Algorithm: Preconditioned CG to solve Ax = b 
1. Preprocess: Compute preconditioner M 
2. Start: TO f- b - Axo, 

Po f- Zo f- M-1TO 

3. Iterate: Until convergence do 
(a) W f- APi 
(b) (X, f- i!.tal 

I (w,p;) 

(c) Xi+l f- Xi + (XiPi 

(d) Ti+l f- Ti - (XiW 

(e) Zi+l f- M-1Ti+l 

(f) f3 f- (r;±I,z.±I) 
Z (Tt,zd 

(g) Pi+l f- Zi+l + f3iPi 

Preconditioning 

Preconditioning aims to improve the condition of the system Ar = b by pre
multiplying the coefficient matrix A by its approximate inverse and hence im
proving the rate of convergence. The closer this approxilllation is to A -I, the 
better the rate of convergence is. The most extreme cast' of preconditioning 
is the formation of M- 1 = A -1 which would lead to immediate convergence. 
This is obviously too costly and we consequently seek a preconditioner for 
which the extra costs associated with preconditioning are compensated for 
by the reduction in the number of iterations. By the extra costs we mean 
the formation of the preconditioner and the preconditioning operations (step 

3-e above) at each step. 
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Several preconditioning schemes are available which differ in the way they 
form the preconditioning matrix and perform the preconditioning operations. 
Some popular classes of preconditioners are described below. 

Incomplete Factorizations (IL U) IL U preconditioning [1] [73] consists 
of approximating A as the product of a lower and an upper triangu
lar matrix which are approximate factors of A ie. as A ~ LU. The 
preprocessing phase of the algorithm above would consequently involve 
computing M = LU where A = LU + E for some small E. The pre
conditioning operation (step 3-e above) consists of a pair of triangular 
solves involving Land U. 

If we allow no fill-in during the factorization the scheme is called ILU(O) 
(see section 7.3.1). If fill-in due to entries in the original matrix (first
level fill-ins) are allowed then the factorization is ILU(l). In general, 
ILU(k) refers to a factorization in which the largest level of fill-in al
lowed is k [14]. As the amount of fill-in allowed increases, the precondi
tioner becomes more effective ie. the rate of convergence improves (see 
section 7.4.4). ILU preconditioners are suitable for parallel systems 
with a small number of processors (see sections 3.2.2 and 7.2). 

Polynomial Preconditioning Polynomial preconditioning [68] [46] con
sists of choosing a polynomial s and replacing the original linear system 
by s(A)Ax = s(A)b. The preconditioned matrix should be as close as 
possible to the identity matrix in some sense ego in terms of its set of 
eigenvalues. Polynomial preconditioning is suited to parallel systems 
with large numbers of processors (see section 3.2.2). 

Domain Decomposition Based Methods The idea in domain decom
position methods (see [7] and section 3.2.1) is to divide the domain 
of the problem into a number of subdomains which only interact at 
their common interfaces. If the unknowns are properly sequenced, the 
resulting coefficient matrices have a block structure consisting of sev
eral independent blocks each corresponding to a subdomain together 
with some interface blocks corresponding to the connection between 

subdomains. 

A domain decomposition preconditioner [74] is one consisting of the fac
torized blocks of a matrix with the structure mentioned above. Since 
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the subdomain problems are decoupled, their corresponding submatri
ces can be formed (and factored) independently. The interface blocks 
must be factored in a different way. Due to the independence of the 
subdomain blocks, these methods (and hence preconditioners) provide 
significant opportunities for parallel processing [.50]. 

Hierarchical Basis Functions If the usual nodal basis functions in a fi
nite element mesh are replaced by hierarchical basis functions [39], it 
can be shown that the resulting matrix (A) has improved condition. 
Hierarchical basis functions consist of the usual nodal basis function( s) 
on a coarser grid, together with the nodal basis functions for a finer 
grid corresponding to nodes that are not present in the coarsest grid, 
together with the nodal basis functions for a still finer grid correspond
ing to nodes that are not present in any of the coarser levels, etc., up 
to the finest grid on which it is desired to solve the problem. 

If S is the linear transformation which maps A onto A such that we can 
say that A = ST AS, then we can define a hierarchical basis precondi
tioner as M- 1 = SST. Such preconditioners are shown to be effective 
on both serial and parallel architectures [39]. 

Another type of preconditioner which can be mentioned arises from simple 
diagonal scaling schemes (see section 7.:3.1 and [:39]). 

Let us now discuss the effects of the ordering of the unknowns on ILU 
preconditioners since this is our chosen preconditioning scheme (see section 
7.2) and discuss some available sparse LU factorization software. 

Effects Of Ordering 

The ordering of the unknowns affects the amount of fill-in during any fac
torization (ie. incomplete or full). For example, in the ILU(O) case we allow 
no fill-in but some orderings would require more fill-in to be ignored than 
others. More precisely, the incomplete factorization obtained by the ILU(O) 
scheme can be very close (or identical) to the full L U factors or be very 
different from the latter depending on the choice of ordering. The quality 
of the preconditioner in terms of its acceleration property depends upon its 
closeness to the full factors. Hence, the choice of ordering scheme affects the 
quality of the preconditioner significantly. 
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The issue of ordering has also been discussed in detail in section 3.2.2 
where a review of some recent work on this subject and the convergence of 
CG methods in general has been presented. One interesting observation is 
that the number of CG and GMRES iterations is related to the norm of the 
residual [18] [19]. In the latter work this property has been used as the basis 
of a criterion for the assessment of the suitability of ordering algorithms to the 
problem to be solved. More precisely, the ratio of the Frobenius norms of the 
residual to that of the coefficient matrix is suggested to be a good criterion 
for choosing an ordering scheme. Some cases which confirm the usefulness of 
the mentioned criterion have been presented for the preconditioned GMRES 
algorithm. For example, reverse Cuthill-McKee ordering [18J used with an 
ILU(O) preconditioner gives a low residual ratio and rapid convergence. 

As mentioned above, the ordering scheme used affects the amount of fill-in 
for full LU decompositions as well as incomplete decompositions. This means 
that there may be cases where a full factorization might involve the addition 
of very few (or no) fill-ins. We may choose to perform an LU factorization 
with high level fill-ins in these cases to take advantage of the extra infor
mation provided so inexpensively. In all cases, the amount of fill-in affects 
the storage and computational costs significantly and must consequently be 
taken into account carefully prior to the choice of an ordering scheme for the 
unknowns. 

Sparse LV factorization Software 

It is possible to perform sparse LU factorization by means of available soft
ware packages such as the NAG library routines [59] and SPARSPACK [36]. 
These packages provide routines which can be called from a user's program 
with a specific parameter list. 

The NAG routine FOIBRF factorizes a real sparse matrix. The routine 
either forms the LU factorization of a permutation of the entire matrix, or, 
optionally, first permutes the matrix to block lower triangular form and then 
only factorizes the diagonal blocks. The factorization is intended to be used 
by F04AXF [60J which solves sparse systems of the form Ax = b or AT x = b 
by block forward and backward substitution. 

If several matrices of the same sparsity pattern are to be factorized, 
FOIBSF should be used for the second and subsequent matrices. The latter 
routine factorizes a real sparse matrix using the pivotal sequence previously 
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obtained by FOIBRF when a matrix of the same sparsity pattern was fac
torized. 

2.4 Some Applications of the Finite Element 
Method 

In this section we present some practical applications of the finite element 
method. These have been provided by the British Gas Engineering Research 
Station (ERS) at Killingworth and are described here with their kind per
mISSIOn. 

2.4.1 GASP4 - A Program for Pipework Stress Anal-. 
YSIS 

This program is used for stress analysis of gas pipelines. We have studied 
the program in some detail with a view to its parallelisation (see chapter 4). 
The program is used interactively as a design tool and is consequently run 
many times with different sets of parameters in selecting remedial measures. 
This is why it is desirable to reduce the processing time for this program. 

GASP4 is based on the frontal solution technique [45]. Although more 
general applications are possible, the frontal method can be considered as 
a particular technique for assembling finite element stiffnesses and nodal 
forces into a global structural matrix and load vector and solving this system 
for displacement unknowns by means of Gaussian elimination and backward 
substitution or some similar direct method. It is designed to minimise the 
core storage requirements, the arithmetic operations and the use of peripheral 
equipment. 

The main idea of the frontal solution is to perform assembly and elimina
tion of variables at the same time: as soon as the coefficients of an equation 
are completely summed, the corresponding variable can be eliminated. The 
complete structure stiffness matrix is never formed as such, it is immediately 
sent to the back-up storage in reduced form. 

The Application When the ground underneath gas pipelines undergoes 
changes due to, say, coal mining, the pipes experience certain stresses. 
This could cause problems if measures are not taken in advance to 
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allow for these stresses. A slab of coal removed from below a section 
of pipeline causes the material above it, including the pipe, to subside. 
Transverse and axial forces are built up in the pipe section due to this 
movement. 

The actual magnitude of these forces depends on the distance from the 
pipe to the removed slab. The greater this distance is, the smaller the 
effect on the pipe would be. When there is a bend of pipe above the 
slab, the pipe may experience high stress levels at the bend. The major 
problem that arises, however, is due to excessive axial forces in straight 
sections of the pipe. These can cause the pipe to buckle if preventive 
measures are not taken. 

Two kinds of remedial action may be taken to overcome the problem: 
uncovering a section of the pipe or fitting bellows units. When the 
pipe is uncovered, it experiences substantially reduced stresses. Bellows 
units can accommodate larger movements than the pipe. Both these 
actions are taken at problem areas ie. areas where the stresses are likely 
to be high enough to cause buckling. 

The actual mining is carried out in stages and each stage corresponds 
to a slab of coal being removed. The removal of each slab only affects 
pipework up to a certain distance from it. Data regarding planned 
mining strategies and the resulting predicted ground movements are 
provided by British Coal so that measures can be taken in advance to 
avoid buckling. 

The Program GASP4 is a Fortran program for performing stress analysis 
due to ground movement. It is primarily used by the ERS for predicting 
stress levels in sections of pipe due to coal mining and determining the 
effects of remedial actions. Each run of the program corresponds to 
one stage of ground movement ie. the removal of one slab of coal. This 
affects a certain length of pipeline only. 

Three-dimensional ground movement data are provided by British Coal. 
The sections of pipeline which would be affected by mining are divided 
up into finite element meshes and the ground movement data are inter
polated so that they correspond to the nodes in the mesh. Apart from 
the ground movement data, other inputs to the program are: physical 
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properties of the pipe, internal pressure of the pipe, soil stiffness and 
soil friction. 

The program works out a 12 x 12 stiffness matrix for each element and 
calculates the RHS of each element for thermal expansion and pressure 
forces. The frontal solution technique is then used to determine the 
stress profile at each node and consequently identify problem points. 

Once the problem areas have been identified, the best remedial action 
is found by trial and error. The choices are uncovering the pipe and 
fitting bellows units. The best position to take remedial action at is 
decided upon by certain rules of thumb. Several runs of the program 
with modified inputs due to remedial actions are made to obtain a 
satisfactory solution. 

For a lkm length of pipeline with few bends, the number of nodes 
used is around 250 and the run time of the program is approximately 
20 minutes on a VAX 8300. The greater the number of bends in the 
pipeline section, the greater would be the number of nodes (more nodes 
are needed near bends) and the run time of the program. The program 
may be run overnight for large problems. The introduction of friction 
into the analysis causes nonlinearities which increase the computational 
cost. 

2.4.2 CRISP - Critical State Program for Geotechni-
cal Applications 

CRISP has been developed by Cambridge University Soil Mechanics Group 
and is used by British Gas for the analysis of geotechnical problems such as 
estimating ground disturbance due to construction forces or trenching and 
modelling soil/pipe interactions. The program determines displacement fields 
and stresses in such applications using the FEM and the frontal technique. 

A series of load steps can be applied to the finite element model. A typical 
problem may involve about 500 steps. Elements can be removed from the 
finite element mesh to simulate excavations. Other possibilities are addition 
of elements, gravity input, additional accelerations (eg. earthquakes) and 
modelling time-dependent fluid flow. 

When tackling nonlinear three-dimensional analysis, the processing times 
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become very large (one hour per load step). An attempt is always made to 
simplify the problem to two-dimensions if possible. 

There are two Fortran programs involved: 

• The Geometry Program - this is interactive, performs simple but es
sential operations and is not costly 

• The main program - this uses the output of the Geometry Program as 
input. 

Because of the large amount of memory required for the program, disc 
I/O has to be performed if this is not available in main memory. The main 
program contains a subroutine (FRONTZ) which calculates stiffness matrices 
and solves equations. 70-80% of the processing time is spent in this routine. 
The program has been analysed by Edinburgh University for implementation 
on a transputer array. The conclusion reached at is that the program is not 
suited to such an architecture due to the amounts of I/O and main memory 
requirements (45-50 Mega-bytes). 

2.4.3 DYNA3D - Impact Analysis 

This program is used by the ERS for the analysis of the dynamic behaviour 
of offshore structures in applications such as impact analysis and assessment 
for blast in pipes, vessels and firewalls. The use of the program for such 
applications involves finite element analysis at each time step. This can 
be very costly in terms of computational effort for large problems involving 
many small time steps. 

DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimen
sions) is an explicit three-dimensional finite element code for analysing the 
large deformation dynamic response of inelastic solids and structures. A 
contact-impact algorithm permits gaps and sliding along material interfaces 
with friction. Spatial discretisation is achieved by the use of 8-node solid 
elements, 2-node beam elements, 4-node shell elements, 8-node solid shell 
elements and rigid bodies. The equations of motion are integrated in time 
by the central difference method. A large number of material models are 
available. 

The aim of using this program is to determine pressure/time and pres
sure/displacement behaviour. Typical calculations have between 1000 to 



Chapter 2:The Finite Element Method and Linear Equation Solvers 40 

200000 elements with tens of thousands of time steps of size in the order of 
hundreds of microseconds. Typical processing times are between 15 minutes 
to 2/3 hours on a CRAY Y-MP with four processors. 

2.5 Scope for Parallelism 

In this section we shall discuss some ways in which the various stages of the 
finite element method can be parallelised. This involves the identification 
of both the inherently sequential parts of the process and the parts whose 
parallelisation requires the control of inter-process contention. 

The element matrices can be computed independently with no risk of 
contention. The assembly of the stiffness matrix, however, is not free from 
such considerations. As explained in section 2.3.3, different element matrices 
could have entries which contribute to the same position in the overall matrix. 
The contention issue must be addressed if the possibility of incorrect updates 
to shared memory is to be avoided. The contention problem applies to both 
the full and sparse representations of the stiffness matrix. In either case we 
need to provide mutually exclusive updating of entries in the matrix. 

Chapter 6 contains a detailed study of the contention problems associ
ated with parallel assembly for sparse representations of the overall stiffness 
matrix. We have also presented in that chapter algorithms which success
fully overcome these contention problems and shown how to perform efficient 
parallel assembly of the sparse representation. 

The parallelisation of the solution phase basically consists of parallelising 
any linear equation solver which is suited to finite element analysis. Direct 
methods can be parallelised by the parallel application of a Gauss step to 
several rows or columns of the stiffness matrix. The amount of synchronisa
tion required to overcome contention depends on the parallelisation scheme 
used. 

Iterative methods such as the preconditioned conjugate gradient method 
can be parallelised within the main iteration loop. The main problem here is 
the parallelisation of the triangular solves at each step. These are costly op
erations which are not straightforward to parallelise. We have discussed these 
problems in chapter 7 and presented ways of parallelising the preconditioned 
conjugate gradient method efficiently. 
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3.1 Overview of Chapter 

In this chapter we shall survey recent work related to the thesis. The main in
terest is in results concerning parallel finite element analysis on shared mem
ory machines but some related topics and alternative architectures are also 
covered. The issues addressed aim to clarify what has been achieved so far in 
terms of identifying and resolving parallelisation problems and bottlenecks. 
The issues covered are: parallel assembly, parallel solution (mainly PCG-type 
methods)' domain decomposition, ordering, fill-in, synchronisation costs and 
granularity effects. Section 3.2.1 contains a summary of miscellaneous re
search works on parallel assembly and solution methods. The next section 
(3.2.2) is concerned particularly with preconditioning and parallel PCG. 

3.2 The Review 

Parallel finite element analysis has been the subject of extensive research for 
many years. The emphasis in most works on this subject is on the solution 
phase since it tends to dominate the processing time. Many parallel solution 
schemes have been suggested for various parallel architectures. The most 
important part of the whole process as far as parallelisation is concerned is 
the solution of a set of simultaneous linear equations either to evaluate the 
nodal unknowns or to improve the convergence rate of an iterative scheme ie. 
in preconditioning. The relative efficiencies of direct and indirect methods 
are widely investigated. 

We shall now summarise some previous work on parallelising all stages of 

finite element analysis. 

3.2.1 Miscellaneous Topics 

One method commonly used in finite element computations is substructuring. 
This involves the division of a finite element mesh into a number of sub do
mains which only interact at their common interfaces. Figure 3.1 illustrates 
this idea for the division of a domain into four substructures (51 to 54). 

This technique is very attractive for parallel processing because it involves 
significant amounts of independent operation (ie. processing the internal 
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nodes of the substructures). Equations for the nodes at the common inter
faces can be formed and solved once the contributions from the substructures 
are known. Colouring schemes provide an approach to domain decomposi
tion involving the division of the structure into lists of disjoint elements. This 
makes parallel processing possible within these lists. 

The work in [7] reviews the inherent and induced parallelism that oc
curs in finite element analysis. The idea of subdomain splitting is presented 
(see section 2.3.4). This involves subdividing the domain of the problem 
into a number of overlapping regions and decomposing the problem into one 
that involves the solution of boundary value problems on the subdomains. 
These problems can be solved approximately using finite element techniques. 
Substructuring is then discussed at length as a method related to sub do
main splitting. The method was introduced in the 1960's to solve large-scale 
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structural analysis problems to avoid heavy dependence on slow out-of-core 
solution algorithms. 

The entire structure is considered as being made up of a set of substruc
tures. As in the usual finite element method, the entire structure is discre
tised but each substructure is treated conceptually as a separate domain and 
can be considered in parallel with other substructures. The element contri
butions can be calculated and assembled in the usual manner to form each 
substructure stiffness matrix independently, and using static condensation 
in which the internal nodes are eliminated the substructure stiffness matrix 
can be reduced in size, retaining only a few degrees of freedom of interest 
in the interior as well as the degrees of freedom on the interfaces between 
neighbouring substructures. 

Since many of the internal degrees of freedom of the substructure have 
been pre-eliminated in the substructure calculations, the resulting final merged 
system involves only the retained degrees of freedom and is of much smaller 
size. The reason for retaining some interior degrees of freedom to each sub
structure may be that the evaluation of the substructure internal unknowns 
becomes less costly if some of the unknowns are already evaluated at this 
stage. 

In the frontal method (see [45] and section 2.4.1), as soon as the element 
contributions to a nodal displacement unknown are completed, that degree 
of freedom is eliminated and its corresponding parts of the overall coefficient 
matrix are written to secondary storage. The front propagates through the 
domain interleaving assembly and elimination. The frontal method can con
sequently be thought of as an element by element strategy because of this 
approach. 

There have been some recent developments conceptually similar to the 
sub domain strategies and substructure ideas for designing parallel frontal 
solutions. In these, elements on the left and right extremes of the domain 
are read to two independent processors which carry out independent frontal 
elimination on the system until the two fronts are later adjacent, at which 
time synchronisation is required and a final reduced stiffness equation at the 
interface is solved. The approach can be extended to multiple fronts. 

In [24] a scheme for the automatic creation of substructures is suggested 
which leads to an overall stiffness matrix in block-arrowed form. The method 
is described in terms of its implementation on a distributed memory message 
passing architecture. Each of a set of processors is assigned initially to one 
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substructure. Once a processor completes the processing of its corresponding 
substructure, it is assigned to a subset of the rows of the common interface 
matrix. The formation and reduction of the matrix for each subdomain 
requires no interprocessor communication. Each processor must however , , 
communicate its condensation terms to the interface block. Once the dis
placements are found, the determination of the stresses in each sub domain 
can be carried out concurrently. For a system with 2000 equations, an ef
ficiency of 80 percent of the maximum theoretical value has been obtained 
using 16 processors on an Intel iPSC. 

The domain subdivision algorithm in [24] is also described in [25]. A 
profile equation solver is used to reduce each subdomain. The sub domain 
interface equations are solved by a special parallel equation solver which 
features a concurrent LDLT factorization as well as parallel forward and 
backward substitutions. The concurrent factorization involves forming and 
assembling separate blocks of the stiffness matrix in parallel. These blocks 
can then be factorized independently by different processors. After this, each 
processor evaluates its corresponding displacement subvector by forward and 
backward substitution. A trivial concurrent stress evaluation free from any 
interprocessor communication terminates the algorithm. 

For very large three-dimensional finite element systems with, say, over 
10000 equations and large bandwidth, iterative solution techniques compete 
with direct schemes from the computational time aspect. When these sys
tems arise, their sparsity, and hence their low storage requirements, provide 
additional motivation for iterative solutions. This paper proposes an alterna
tive to the multi colouring technique (see below) that allows almost parallel 
SOR iterations, without any constraint on the geometrical domain to be 
analysed and without any restriction on the pattern of discretisation. 

Algorithms for concurrent dynamic analysis of nonlinear problems are 
given. The performance of the program for large linear static/dynamic prob
lems on a 32-processor hypercube connected Intel iPSC are reported as up to 
90 percent of the maximum theoretical value. The overall system has been 
shown to be suitable for multiprocessors with shared memory, such as the 
Cray X-MP series [23]. 

Colouring schemes are described in detail in [27]. The purpose of using 
colouring is to eliminate the critical regions from the code as far as possi
ble. By having large amounts of independent work done by each task and 
minimising the amount of synchronisation, we can ensure efficient process-
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ing. Colouring divides the structure into lists of disjoint elements. Each list 
corresponds to a particular colour. The lists are processed sequentially but 
within each list groups of elements can be processed concurrently. Synchroni
sation only needs to be done at the list level. A minimum number of colours 
is desirable because it maximises the amount of asynchronous parallel work. 
In order to achieve this, the FE mesh must be such that large numbers of 
elements do not share common nodes. 

The pattern of the stiffness matrix produced using colouring schemes is 
such that for each colour there is one diagonal and one off-diagonal block. 
These blocks are disjoint and consequently provide the possibility of parallel 
processing. The efficiency of parallel direct solution algorithms based on 
colouring schemes on a Cray 2 is reported to be between 95 - 99 percent (2 
- 4 processors). 

Concurrent iterative and direct methods are described for system solution. 
The iterative method is preconditioned conjugate gradient and the direct 
method is similar to the method used in [24] for processing the block-arrowed 
matrix. The software for the algorithms above has been implemented on the 
Encore Multimax in [27] and other shared memory machines using the Force 
[47] macros. 

The Force provides a Fortran style parallel programming language util
ising an extensive set of parallel constructs. It is useful because it handles 
process management automatically and produces portable code. The direct 
solver is particularly suited to the analysis of very flexible space structures 
which are inherently ill-conditioned. The speed ups achieved confirm the 
suitability of such finite element schemes for shared memory machines. 

The work in [6] presents an algorithm which involves substructuring and 
the frontal method. The substructuring phase is very similar to the method 
in [24] and the algorithm has been coded for the Alliant FX/80, a shared 
memory machine with vector processors. The vectorised version of the frontal 
method has been used both for the incomplete factorization of substructure 
matrices (performed on different processors), and for the factorization of 
the matrix relevant to the global interface variables. This second step is 
performed sequentially. Speed ups of around 75 percent of the maximum 
possible value are obtained. 

The problem of inefficiency in parallel code due to large I/O synchronisa
tion overheads is addressed and it is suggested that this could be overcome by 
a better definition of input and output data organisation on files. The best 
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results have been obtained when the processors were allocated well balanced 
large grain parallel work as would be expected. 

In [26] parallel implementation of a direct factorization of a matrix using 
profile storage is discussed. The algorithm is based on Doolittle reduction 
and is sometimes called the active column equation solver. The U matrix 
is usually evaluated column-wise in sequential implementations of this fac
torization. In the parallel algorithm discussed in this paper, U is computed 
row-wise, within a column-oriented data structure. Two levels of parallelism 
exist: concurrency at the outer loop and pipelining at the innermost loops. 

The algorithm has been tested on Intel's iPSC and the Encore Multimax. 
In the latter implementation, the coefficient matrix is stored as two linked 
lists in shared memory. To avoid memory conflicts, at each step of the 
factorization each processor copies into its local memory (cache) what is 
required from the previous step. Synchronisation is only done once, just 
before this data is updated. Each processor can then work on its set of 
columns independently, using its private values. The memory contentions 
due to parallel copying of this value cause only very small delays. Caching 
on the Multimax minimises memory contention and makes the use of private 
variables unnecessary. 

In the forward substitution phase, the processors deal with a row-oriented 
skyline data structure consisting of the columns of U. During back substitu
tion, the processors are synchronised at the beginning of the outer loop and 
evaluate blocks assigned to them independently in between synchronisations. 
A Fortran implementation of the above algorithms is given using the Force. 
The code can be easily extended for out-of-core implementation. 

As mentioned before, tests have been carried out on the iPSC and the 
Encore Multimax. The iPSe has a hypercube topology. A 32-processor 
configuration consisting of Intel 80286 and 80287 processors has been used 
for the tests. The Multimax configuration used consisted of eight National 
Semiconductor NS32032 processors but the tests have only been carried out 
on up to six processors running concurrently. 

Results on the iPSe show that for a fixed number of processors, higher 
rates of efficiency (over 80 percent) are obtained for larger size problems 
(order over 500). Also, for a fixed problem size, higher rates of efficiency are 
obtained for coarser grain configurations (ie. smaller number of processors). 
The Multimax shows very high efficiency rates in general. One reason for 
this is its coarse granularity. 
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For an equal number of processors, both machines show the same effi
ciency, but the Multimax has a much higher MFLOPS rate. For a fixed 
number of processors, the efficiency rate on the Multimax falls beyond a 
certain critical value of problem size. This is probably due to the effect of 
virtual memory on the execution of large jobs. 

The above observations were based on tests on dense matrices. It is also 
reported that tests carried out on a sparse system show that the performance 
in the sparse case is similar to the performance in a dense system with a size 
similar to the frontwidth (or bandwidth) of the sparse one. In this case, 
both the Multimax and the iPSe yield similar execution times but different 
efficiency rates. The performance of the algorithm depends upon the sparsity 
of the system and it is optimal for nearly dense problems. The method is 
best applied to the in-core solution steps of a large finite element problem, 
where these involve a dense matrix. 

The work in [79] describes a finite element method based on the fact 
that the displacement field calculated using displacement-formulated finite 
elements converges much more rapidly than the stress field. This means 
that a relatively coarse mesh may yield a reasonably accurate solution in 
displacement. This displacement solution can then be used as a displacement 
boundary condition for a local region in which the stress field is of interest. 
The local region is analysed with a refined mesh. The algorithm consequently 
consists of the following steps: 

• A global analysis of the displacement field in the whole structure using 
a coarse mesh 

• Stress analysis of local regions with refined meshes using the global 
displacements as boundary conditions for the local regions. 

The local analysis for each region can be performed independently and the 
local regions can consequently be solved concurrently on separate processors. 
Parallel computation can be invoked to solve the systems of equations for each 
local region, thus further increasing the time saving. Parallel programming 
can therefore be employed in the global analysis and in each local analysis 
to further improve efficiency. No interprocessor communication is needed in 

this algorithm. 
The algorithm has been tested on the Sequent Balance 21000 with 12 

processors and shared memory. In this global-local analysis, one processor is 
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used to perform global analysis with a coarse mesh with the resulting nodal 
displacements stored in the common memory. Subsequently, a number of 
processors depending on the number of local regions are used to perform the 
local analyses concurrently. In each process, conventional Gaussian elimina
tion is used to solve the finite element system of equations. 

Two applications have been considered: stress analysis of a thick laminate 
and calculating the stress field near a crack tip in a centre-cracked panel. In 
the cracked panel test, the global-local algorithm is shown to be about 30 
times faster than a fine-mesh analysis (1000 elements) when two local regions 
are used. Since no interprocess communication is needed in the analysis if the 
finite element meshes of the selected local regions are identical, the number of 
local regions does not alter the computing time. Furthermore, the accuracy 
of the global-local procedure is affected by the choice of local regions. It is 
important to avoid using global nodes of questionable accuracies as boundary 
nodes for the local region. 

In [9] parallel methods for the formation of the stiffness matrix for nonlin
ear large truss structures and the subsequent solution of equations are given. 
The finite element analysis of such nonlinear systems involves iterative forma
tion and solution. In each iteration, a new nonlinear global stiffness matrix 
is updated and solved (see section 2.2.:3). The algorithms are tested on the 
Sequent Balance 21000 with 12 processors and shared memory. 

During the first step element stiffnesses can be calculated independently 
and placed at the appropriate locations in the global matrix. The memory 
contention problem can be resolved by special node numbering (substructur
ing) or by means of synchronisation locks in shared memory. The solution 
method involves parallel Gaussian elimination. The rows of the stiffness 
matrix are independently processed by different processors. 

The results of the tests show that the use of locks may cause some loss in 
efficiency as the number of processors increases. Parallel Gaussian elimina
tion is not efficient for small half-bandwidth (7) on more than six processors 
but produces good results for a half-bandwidth of 50 with 12 processors. 
The speed ups are more apparent for systems with large bandwidth as the 
number of processors used increases. The algorithms are particularly suited 
to nonlinear system solution which involves formation and solution at many 
incremental load steps. 

The parallel assembly algorithm in [9] is similar to one discussed in a 
later section (Method 1, section 6.3). The speed ups are similar to those 
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for Method 1 but are lower than those for our most efficient implementation 
(Method 3, section 6.5). This is because a shared memory lock is used for 
each entry in the stiffness matrix in [9] whereas we have used one lock per 
row of the stiffness matrix in Method 3. The use of fewer locks enables us to 
increase the granularity and hence higher parallel efficiencies are obtained. 
For a detailed discussion of these issues see chapter 6. 

In [51] the architecture of the Cedar machine [34] is described and a 
block algorithm for solving banded positive definite systems is given. The 
Cedar 1024L is designed with a two-level memory organisation. It has 1024 
processors (1 to 2 MFLOP) sharing a single common memory through an 
asynchronous switching network. The processors are further organised into 
clusters of 8 or 16 processors with additional shared memory for each cluster. 
This additional structure has not been used in [51]. Each processor also has 
its own private (local) memory. The Cedar can consequently be thought of as 
a shared memory machine in which each processor is also a shared memory 
machine. 

Efficient use of such a machine involves the decoupling of an algorithm 
into smaller jobs, each of which uses a subset of the data. The stiffness matrix 
is put into a block-tridiagonal form and LDLT factorizations are performed 
concurrently on independent blocks of data. The final stage of the algorithm 
is parallel back substitution. Tests carried out on the Cedar show that the 
block algorithm becomes more efficient as the size and bandwidth of the 
system increases. For example, for a problem of order 216 and half-bandwidth 
2, the speed up is 8. If the problem size is increased to 220

, the speed up 
increases to 95. The respective speed ups for the two problem sizes with a 
half-bandwidth of 16 are 36 and 215. 

The work in [58] describes an alternative organisation of the frontal 
method which is suitable for parallel processing. The aim is to reduce 
the book keeping and data manipulation operations associated with frontal 
schemes in an algorithm which offers the simplicity of band matrix solvers. 
The method involves interleaving the assembly and solution stages of fi
nite element analysis as in frontal schemes. The use of the reverse Cuthill
McKee algorithm is advocated for the ordering of the nodes. One of the 
node numbering algorithms described produces matrices with similar profile, 
bandwidth and anticipated fill-in to the matrix for the corresponding prob
lem generated by reverse Cuthill-McKee. A simple interface between the 
assembly and factorization phases is provided and complex preprocessing is 
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avoided. 
A disadvantage of the node-driven assembly of the stiffness matrix is that 

it requires more work than the usual element-driven assembly. More espe
cially, in an element-driven assembly, the basis functions, their derivatives 
and the numerical integrations associated with an element (see section 2.3.2) 
are computed only once during the assembly of the element, while in a node
driven assembly, these have to be recalculated each time a node which is in 
the element is assembled. 

The problems associated with the node-driven assembly may be overcome 
if a window-oriented assembly is used to provide the rows of the stiffness 
matrix to a multifrontal solver. Two windows (factorization and assembly) 
travel across the band matrix and each have associated with them a group of 
processors. The objective should be to distribute the processors among the 
two groups such that the assembly and factorization proceed at about the 
same speed. The band matrix can be stored in shared memory and minimal 
processor synchronisation is required. 

The work in [28] considers the I/O aspect of finite element analysis. Rela
tive CPU-I/O times quoted show that I/O manipulations can easily dominate 
the execution time of a finite element code. Due to the vast amounts of I/O 
which are present in some finite element programs, out-of-core techniques are 
often used. However, I/O traffic between the disk and the processor main 
memory slows down the computations significantly and increases even more 
significantly the overall cost of the analysis. Reducing the amount of time 
spent in data transfer is therefore at least as important as parallelising the 
computational phases in a finite element program. 

At present only a few systems offer parallel I/O capabilities. Parallel disk 
access is possible on the NCUBE and the CRAY-2 offers limited multitasking 
I/O ie. different tasks can perform I/O simultaneously on different files. Two 
approaches for parallel I/O are described in this paper: one for local memory 
machines and one for shared memory machines. The local memory method is 
based on a substructuring technique. The shared memory method is purely 
data oriented and involves copying parts of main memory on separate disks. 
The results of tests performed on a CRAY-2 system with four CPU's confirm 
the potential for parallel processing in I/O manipulations. 

In [15] we are presented with a survey and classification of currently 
competing algorithms for dense linear algebra. The important factors in the 
design of algorithms are operations counts, vectorisability, parallelisability, 
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communication costs and scalability. 
Block algorithms offer more scope for parallelism and improvements in 

speed. Some refinements to such algorithms are possible such as adaptive 
blocking ie. switching from blocked to unblocked form and variable block 
sizes. Blocked LU factorization on a CRAY Y-MP (block size of 64) gives 
good speed up for orders around 500. For sparse factorization, if the band
width is small (20 or so) then there is no speed up but good results are 
obtained for larger bandwidths (100 or so). 

In [17] some techniques for parallel solution of sparse systems are de
scribed. For a general sparse system we can perform some steps of Gaussian 
elimination on a frontal matrix at each node of the assembly tree. Work cor
responding to leaf nodes can proceed immediately and independently. When 
work on all sons is completed, the father node can be eliminated. The speed 
ups due to exploiting the tree structure only are as follows: 

Number of processors 3 4 6 

IBM 3090E 1.9 

CRAY Y-MP 1.8 1.9 2.3 

The speed ups due to using the tree and Level 3 Basic Linear Algebra Sub
routines (BLAS) are as follows: 

Number of processors 3 4 6 

IBM 3090E 2.4 

CRAY Y-MP 2.7 3.3 4.1 

Semi-direct methods are also described. The matrix is partitioned and 
the subsystems are solved by a direct method (Gaussian elimination). The 
overall problem is then solved by an iterative scheme. Results for a block 
tridiagonal system on an ALLIANT FXj80 (shared memory, 8 processors) 

are as follows: 
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order 20700 

entries 511050 

sparsity 99.9 % approximately 

no. of iterations 18 - 33 

time 50 seconds 

speed up 4 - 6 

The speed ups can be increased by using more sophisticated iterative methods 
with better preconditioning and the incorporation of a better direct solver. 

The work in [80] is in favour of using iterative schemes rather than di
rect methods because of the large computational cost and large amounts of 
memory needed for direct methods (see section 2.3.4). The iterative schemes 
described are the conjugate gradient method, GMRES and BiCG, all three 
of which require preconditioning. The main problem in a parallel implemen
tation of such schemes is the preconditioning step. 

3.2.2 peG Related Works 

A parallel implementation of the incomplete LU preconditioning using level 
scheduling (see section 7.3.2) is described in [63]. This involves the identifi
cation of the independent unknowns and the subsequent solution for these in 
parallel. The identification process is not expensive and the whole process is 
equivalent to reordering the rows and columns of the matrix. The maximum 
global speed up obtained from runs on a CRAY Y-MP (shared memory) us
ing 4 processors is 2.65. The matrix orders range from 500 to 4500 and the 
best speed ups were obtained for larger systems. 

In [68] an extensive survey of work on parallel conjugate gradient-type 
methods is given (see section 2.3.4). These methods have proved to be very 
useful on traditional scalar computers, and their popularity is likely to in
crease as three-dimensional models gain importance since these problems will 
involve larger systems of equations. Parallelisation at iteration loop level is 
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reported to suffer from numerical instability (see section 7.2). 
The main source of difficulty in the incomplete factorization precondition

ings is in the solution of the triangular systems at each step (see section 7.3). 
A few approaches for implementing efficient parallel forward and backward 
triangular solutions are described. Among these is level scheduling which 
gives speed ups in the range 2-5 on an Alliant FX-8. These are similar to 
the speed ups for our implementations of level scheduling (see chapter 7). 

The parallelisation of the dot products in the CG algorithm also consti
tute a bottleneck on many parallel and vector machines [68]. This is because 
when all the vectors in the algorithm are split equally among the processors, 
the dot products require global communication. However, this need not be 
a problem unless the number of processors becomes large. 

There have been several works on the use of polynomial preconditioners 
(see section 2.3.4) motivated mostly by their potential on vector computers 
[3] [46] [69] [48] [71] [83]. However, there are doubts surrounding the use
fulness of the method on parallel computers. The main attraction of poly
nomial preconditioning is that the only operations involving the matrix are 
products with vectors. We also need fewer dot products than with the non
preconditioned CG method to solve a linear system. As mentioned above, 
the dot products can be bottlenecks for large numbers of processors but may 
not cause any difficulty otherwise. Thus, polynomial preconditioning is only 
likely to be efficient when the number of processors is very large. 

Polynomial preconditioning gives poor performance on sequential ma
chines or parallel machines with a small number of processors. This is because 
this type of preconditioning can only be more efficient than the standard CG 
method when the cost of matrix by vector multiplication is less than half the 
cost of the operations in a CG step [68]. In order to satisfy this requirement, 
a very large number of processors must be used so that the dot products dom
inate the cost of a CG step. On machines with a small number of processors 
incomplete factorization preconditionings (IL U) produce efficient results (see 
section 2.3.4, [1], [85] and [40]). 

The most efficient fill-in level (see section 2.3.4) for ILU preconditioning 
is 1 or 2, according to the work in [14]. This is in agreement with the 
experiments in [68] which conclude that higher level fill-ins cause the cost 
of the factorization to dominate the computing time. High fill-in levels are 
hence rarely competitive with the simpler ILU(O) or ILU(l) preconditioners 
[1] [73]. The ILU(O) preconditioner and those with low level fill ie.1 or 2 are 
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computed inexpensively due to the large number of discarded entries (see 
section 7.4.1). 

In [14] the Minimum Discared Fill (MDF) ordering technique is men
tioned. This is effective in finding good IL U preconditioners especially for 
problems arising from unstructured finite element grids. The algorithm can 
identify anisotropy in complicated physical structures and orders the un
knowns in an appropriate direction. 

The MDF scheme is expensive for high level ILU preconditioners. Sev
eralless expensive variants of this technique are explored in [14] to produce 
cost-effective ILU preconditioners. These include the Threshold MDF order
ing which combines MDF ideas with drop tolerance techniques to identify 
the sparsity pattern in the ILU preconditioners. Drop tolerance techniques 
involve ignoring fill-in entries during factorization which are small compared 
to the ratio of their corresponding diagonal entries in the original matrix (see 
section 7.3.3 and [57]). 

Another technique introduced is the Minimum Update Matrix (MUM) 
ordering which is a simplification of the MDF ordering and is an analogue 
of the minimum degree algorithm. The MUM ordering method is especially 
effective for large matrices arising from Navier-Stokes problems. Numerical 
results in [14] show that a high level threshold MDF(l) ordering combined 
with a drop tolerance produces excellent results for partial differential equa
tion problems having a relatively small molecule. This is because most of 
the high-level fill is small and can be ignored, but there are a few high-level 
fill entries that improve the quality of the preconditioner. 

The level scheduling method is described in [68] and used in [85] with ILU 
preconditioning. The experimental results show that the ILU(O) precondi
tioner performs better than any other ILU(k) preconditioner with k greater 
than zero. The best speed up obtained on a CRAY Y-MP with four proces
sors is 2.5. The work in [41] also involves level scheduling on a CRAY Y-MP 
but with eight processors. The speed ups are in the range 3-7 for different 
matrices. The ILU(O) preconditioner is again reported to be superior to any 
other ILU(k). 

In [31] a parallel IL U preconditioner is described which partitions the 
matrix in overlapping blocks and performs local incomplete factorizations. 
The speed ups are up to 3.3 on 4 processors. In [54] a new preconditioner 
with a fast convergence is introduced. The preconditioner is an approximate 
inverse for symmetric matrices ie. of the form LLT. Very efficient parallel 
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implementations of the CG method on an Alliant FX-8 are reported and 
the preconditioning efficiency is also surprisingly high (improvement ratios 
in the rate of convergence in the range 7 - 35 depending on system size). 
Block preconditioners are used in [56] for parallel solution of block tridiagonal 
systems on a CRAY X-MP. The speed ups are reported to be near optimal. 
An earlier work on the same computer [71] reports a 30 percent loss of overall 
speed up due to the cost of barrier synchronisations. 

In [67] the triangular solves of the PCG algorithm are parallelised us
ing level scheduling on an SGI 4D /340 shared memory multiprocessor. This 
machine has a deep memory hierarchy (ie. one consisting of several levels) 
and the authors suggest that on such machines previously proposed paral
lelisation approaches result in little or no speed up. This is attributed to the 
large amounts of memory system traffic in such parallel implementations. 
Significant improvements in speed ups are reported by using techniques for 
limiting data traffic. These include data re-mappings and new processor 
synchronisation techniques to decrease the use of auxiliary data structures. 
Data re-mapping consists of the restoration of the spatial locality that was 
present in the sequential code but has been lost in the parallel approaches. 

A detailed analysis of the effect of ordering on the performance of the PCG 
method is given in [18]. It is shown empirically that there can be a significant 
difference in the number of iterations required by the CG method depending 
on the original ordering of the unknowns (see section 2.3.4). Incomplete 
factorization preconditioners are considered the most useful in practice in 
terms of the acceleration they yield and being easy to generate and use (see 
section 7.3.1). 

The orderings which give the best results are reported to be those which 
are local in the sense that neighbouring nodes in the underlying mesh (ie. un
knowns in the original system) have numbers that are not too far apart. This 
is the case for orderings such as row ordering and Cuthill-McKee. There also 
seems to be in general an incompatibility between parallelism and good order
ings for incomplete factorization preconditioning. This means that many of 
the orderings well suited to parallel processing such as the dissection methods 
do not give very good results. This is because they lack the locality property 
which gives good convergence rates. On the other hand. the non-local struc
ture of orderings such as nested dissection is important for the decoupling 
property required for efficient parallel processing. 
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4.1 Overview of Chapter 

In this chapter we report on our experiences in parallelising a large Fortran 
program for stress analysis using the finite element method on a shared mem
ory multiprocessor (the Encore Multimax with 14 processors). The program 
(GASP4) has been developed at the British Gas Engineering Research Sta
tion (ERS) at Killingworth. This program has been discussed in detail in 
section 2.4.1). 

The next section contains a brief description of the program. In section 
4.3, the run time behaviour of the program is analysed in order to identify 
the more computationally expensive parts. Section 4.4.1 describes the Encore 
Parallel Fortran (epfJ parallelising compiler. The parallel version of GASP4 
generated by the epj compiler is also described in this section and some 
timing results are presented. These results are analysed in section 4.5 where 
we discuss the reasons for the inefficiency of the parallel code and describe 
some possible techniques for obtaining better speed up. 

4.2 Program Description 

GASP4 is a Fortran program for performing stress analysis due to ground 
movement. It is primarily used by the ERS for predicting stress levels in 
sections of pipe due to coal mining. The structure is modelled using the 
finite element method and the frontal solution technique [45] forms the basis 
of the program. The main subroutines in the program are as follows: 

DATINP Reading in the geometric and physical properties of the discre
tised pipe section and its surroundings. 

ELTMTX A 12 x 12 stiffness matrix is calculated for each linear element 
and the corresponding right hand side vector is determined for thermal 
expansion and pressure forces. The degrees of freedom consist of vari
ables which relate to the forces and displacements (in three dimensions) 
at the elements' extremities. 

FRONT! The frontal solution technique is used to determine the displace
ments at each node. The method interleaves the assembly of the ele
ment matrices into the overall stiffness matrix and the elimination of 
the variables. 
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PRINTl Postprocessing of displacement data is performed to produce out
put files containing extensive information on predicted stresses. Prob
lem points are consequently identified. 

For a 1 km length of pipeline with few bends, the number of nodes is 
around 250 and the run time of the program is approximately 20 minutes. 
A typical realistic configuration can consist of several kilometers of pipeline 
divided into hundreds of elements. The greater the number of bends in the 
pipeline section, the greater is the number of nodes (more nodes are needed 
near bends) and the run time of the program. The program may be run 
overnight for larger analyses. 

4.3 Execution Profile 

In order to achieve efficient parallelisation we need to determine the sections 
of GASP4 where most of the execution time is spent. Although this depends 
to a certain extent on the kind of problem at hand and problem size, the 
profiles of most problems are generally quite similar. The profiling has been 
done using the UNIX gproj profileI' which provides graph profile data. 

The program has been profiled for a problem with 101 nodes. Even though 
the problem size here is small, the run time behaviour of the program is a 
good guide to that of larger problems. The information given below is in the 
form of percentages of a total sequential execution time of 14 seconds spent 
in each subroutine. Subroutines with insignificant contributions have been 
omitted. 

* DATINP 15.7 

ELDAT 5.1 
COORDS 3.6 
DISP 2.0 
EXLOD 2.0 

LIST 1.8 
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* ELTMTX 9.2 

ELT12 7.6 
ELT3 1.6 

* FRONTl 33.1 

ELIMIN 20.5 ------ LMPYF 5.8 
ATBTOL 4.3 

DPRINT 7.0 
STRESS 3.1 
BAXSUB 1.4 
RPRINT 1.1 

* PRINTl 41.9 

TD12A 21. 8 ------ SHKDWN 18.7 
OUTPUT 13.5 
DFACT 6.4 

The profile shows that a large amount of I/O is performed by the pro
gram. Most of the I/O is done in DATINP and PRINTl which makes these 
subroutines almost completely non-parallelisable. The sequence of opera
tions in PRINTl cannot be reordered in a straightforward manner to make 
parallelisation possible since the postprocessing calculations and printing are 
interleaved. The main interest is in parallelising the formation of the stiff
ness matrix and the solution for the displacement unknowns. This involves 
parallelising ELTMTX (calculation of the element matrices) and FRONTl 
(assembly of the stiffness matrix and elimination). 
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4.4 Parallelisation Using the epj Compiler 

4.4.1 The Compiler 

The epf compiler [21] parallelises sequential Fortran code by making an anal
ysis of data dependency information it extracts from the program. It is one 
of the simpler parallel compilers but there are no alternative compilers for 
the Encore Multimax. 

During the execution of a parallel program, tasks are only created once 
and subsequently idled and restarted as necessary (see section 1.4). The num
ber of tasks is specified by the user by setting the appropriate environment 
variable to a desired value. 

Various parallel constructs are available for insertion into the program 
such as DOALL loops spreading the iterations over the available parallel 
tasks and other constructs for handling synchronisation such as LOCK's and 
EVENT's. CRITICAL SECTION's provide explicit mutual exclusion. The 
compiler parallelises DO loops and inserts necessary synchronisations into 
the loops to control memory contention by parallel tasks. Loops containing 
READ and WRITE statements are not parallelised. 

The use of some of the synchronisation constructs provided by epfis given 
below. These can be invoked in users' programs as necessary. They are also 
inserted by the compiler into these programs when the autoparallel switch is 
on. 

• The PARALLEL construct - The code between the PARALLEL 
and END PARALLEL statements is duplicated for each active task. 
This is the basic facility for the initiation and running of parallel threads 
of execution within a program. Any variables declared inside a PAR
ALLEL block are local ie. each task has a separate variable of that 
name and type. All other variables are shared. The tasks may continue 
beyond the block when all tasks have reached the END PARALLEL 
statement . 

• DOALL - This construct partitions iterations of a DO loop among 
members of the active task set. The iterations can be synchronised by 
the explicit use of intertask communication. The loop index is spread 
randomly. The block is bound by the DOALL and END DOALL state

ments. 
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• LOCK's - These are variables stored in shared memory and can be set 
to .LOCKED. and .UNLOCKED. A WAIT LOCK statement is only 
allowed to proceed when its corresponding LOCK variable has not been 
set to .LOCKED. by another task ie. when it is . UNLOCKED. If the 
LOCK is taken then the task is halted at that point and can only 
proceed when the task holding the LOCK releases this by a SEND 
LOCK operation. 

• EVENT's - These shared variables can be set to .WAIT. and .GO. 
WAIT SYNC stops a task from executing until the EVENT(s) indicated 
by the event variable(s) are completed. SEND SYNC completes the 
EVENT named by the indicated EVENT variable by setting this to 
.GO. and then unblocking any task waiting on the EVENT. 

• CRITICAL SECTION's - This construct ensures that only a sin
gle task is allowed inside the bounded code segment at a time and 
that every active task will execute the code. The protected segment is 
terminated by END CRITICAL SECTION. 

• BARRIER's - These provide a synchronisation mechanism used to 
prevent any tasks from continuing beyond a BARRIER statement until 
all tasks have arrived at that point. 

Loops containing I/O statements and others which involve complex data 
dependencies are not parallelised. Consequently all loops with subroutine 
calls are untouched. Parallelisation of loops varies from simple array ini
tialisations which require no synchronisation to parallel loops which contain 
extensive and complex synchronisations (see section 4.4.2). Also, the code 
structure within or outside the loop is sometimes altered and new variables 
are introduced in order to improve efficiency and ensure correctness. Paral
lelisation is sometimes made possible by the reordering of nested loops. 

4.4.2 The Parallel Program 

In this section we shall discuss the autoparellelised program. Some gen
eral examples are analysed together with certain specific GASP4 code sec
tions. Since DATINP, PRINTI and the subroutines associated with them 
deal mainly with I/O, they are not parallelised by epj except for simple array 
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initialisations and some postprocessing in PRINTl. Subroutines ELTMTX 
and FRONT1 together with other subroutines called by these contain many 
DO loops which epj considers parallelisable. 

There are many straightforward conversions of DO loops to DOALL loops 
without further synchronisation for operations such as array initialisations. 
One important feature of a DOALL loop is the random allocation of loop 
indices to parallel tasks. This means that DOALL ensures that each index 
is used once (and only once), but not necessarily in sequential order. This 
makes any loops with index I containing assignment statements such as 

A(I) = A(I - 1) + 1 

non-parallelisable since the correctness of such loops depends upon an ordered 
execution of loop indices. In order to ensure correct parallel execution of such 
loops, a great deal of synchronisation is required which makes parallelisation 
not worthwhile. 

The above limitation does not mean that any loop containing calculations 
of array elements which involve other elements of the same array is not 
parallelised by the compiler. For example, consider the loop: 

DO I=l,N 
A(2 * 1) = I 
A(2 * I + 1) = A(2 * 1) + 1 

END DO 

The values of array elements with odd indices are dependent on the previous 
even indexed elements and the latter are dependent only on the loop index. 
The correct execution of such a loop does not require an ordered sequence of 
iterations. Such loops are consequently converted to DOALL loops with no 
further synchronisation by epj 

One of the major tasks of the compiler is to control memory contention 
due to parallel code (see section 1.4). Memory contention occurs when two or 
more parallel tasks attempt to update the same location in shared memory 
simultaneously. The result of such inadvertent access could be the loss of 
updates to shared variables. There are two main cases in which contention 
can occur in DOALL loops: 
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(i) DOALL (I=l:N) 

A = A + function (1) 

END DOALL 

and 

(ii) DOALL (I=l:N) 

J = function (1) 

increment A( J) 

END DOALL 

There is an obvious risk of contention in (i). For the loop in (ii), con
tention is a problem if two or more values of I give the same value for J. In 
both cases the shared variable A must be updated under mutual exclusion. 
An example of such updates is in the accumulation of the element matrices 
into the overall stiffness matrix (see section 2.3.3). The elements of the array 
that are incremented in each iteration are determined by the element num
ber (loop index). Also, if incrementing A( J) involves another array element 
(for example during the matrix factorization), there may also be an ordering 
problem. 

In the autoparallelised version of GASP4, mutual exclusion is achieved 
by the use of EVENT's. The appropriate synchronisation primitives (ie. 
WAIT SYNC and SEND SYNC) are inserted into the DOALL loop so that 
the necessary synchronisations are made to ensure mutual exclusion during 
updates such as (i) and (ii) above. 

An example of the use of EVENT's by epj is given below. The code 
between the PARALLEL and END PARALLEL statements is duplicated 
according to the number of tasks that are to be used. The PRIVATE variables 
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are local to each task. The EVENT's are stored in shared memory. TASKID 
provides an integer between zero to the number of tasks-l to identify each 
task. 

All tasks are suspended at the BARRIER statement and one is allowed 
to proceed once they all reach this point. After this, each task waits on its 
respective EVENT (II4(1) for task 0, II4(2) for task 1 and II4(3) for task 2). 
Since II4(1) is set to .GO., task ° is the only task that is initially allowed to 
set its EVENT to .WAIT. and execute the protected statements. All other 
tasks are now waiting on their EVENT's. 

EVENT II4(20) 
PARALLEL 
INTEGER II2,III,I 
PRIVATE II2 ,III,I 
III = TASKID + I ¢= 

II2 = MOD(III,NTASKSO) + I ¢= 

II4(I1I) = .WAIT. 
BARRIER BEGIN 
II4(1) = .GO. 
END BARRIER 
DOALL (1=I:N) 
perform computations which need NOT be 
done under mutual exclusion 
WAIT SYNC (II4(III» 
II4(I1I) = .WAIT. 
perform computations which MUST be 
done under mutual exclusion 
SEND SYNC (II4(II2» 
END DOALL 
END PARALLEL 

This task's EVENT 
The EVENT of the 
task to be released 
by the current task 

An Example of the use of EVENT's 

Once task ° completes its mutually exclusive operations, it releases task 1 
by a SEND SYNC statement. We hence have in effect some form of pipelining 
procedure which passes on the thread of active execution from one task to 
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another in order. It must be remembered that each task ensures its own 
future suspension within the DOALL construct until it is released at the 
next cycle of the pipeline. Also, the statements within the DOALL loop are 
executed with a different value of the loop index for each task. The scheme 
is illustrated in figure 4.1 for the case of three parallel tasks. 

TASK 0 TASK 1 TASK 2 
II4(1)=.GO. 
unprotected code unprotected code unprotected code 

~ WAIT SYNC(II4(1») 

/ 
WAIT SYNC(II4(2)) 

/ 
WAIT SYNC(II4(3)) 

II4(1)=.WAIT. II4(2)=.WAIT. II4(3)=.WAIT. 
protected code protected code protected code 

SEND SYNC(II4(2)) SEND SYNC(II4(3)) SEND SYNC(II4(1)) 

Figure 4.1: An example of synchronisation using EVENT's 

The efficiency of this scheme is determined by the amount of work which 
is done in parallel compared to the cost of synchronisation. This means 
that we require sufficiently large amounts of processing in the unprotected 
segments to compensate for the cost of implementing the protected zones. 
This issue is discussed in detail in section 4.5.1. 

4.4.3 Timing Results 

The results obtained from timing the parallel version of GASP4 generated 
by the epj compiler are presented in table 4.1. Two different mesh sizes have 
been used. Np is the number of processors. All times are in seconds. 

We should not expect any significant improvement in the results for very 
large problems since the program would still be using small grain sizes (see 
section 1.6) which prove to be inefficient. This is the subject of discussion in 
the next section. 
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Table 4.1: Performance of Autoparallelised GASP4 
Np 101 nodes 441 nodes 

Sequential 17.85 39.86 
1 19.83 46.22 
2 27.68 60.80 
4 27.75 61.17 
6 28.91 65.55 
8 30.16 66.12 

4.5 Ideas for Efficient Parallelisation 

4.5.1 Reasons for Inefficiency 

The timing results in section 4.4.3 show that we are not benefiting from the 
parallelisation inserted into GASP4 by the compiler. Moreover, there is an 
increase in the processing time as the number of processors increases. This is 
due to the increasing amount of overhead associated with setting up parallel 
tasks and controlling synchronisation. Since we do not gain sufficiently from 
parallelism to compensate for this overhead, there is an overall increase in 
execution time. The sudden increase in execution time when two processors 
are used is probably due to the synchronisation overhead associated with 
accessing shared data. 

The main reason for the inefficiency of this code is the level at which 
parallelism is implemented. In order to make more benefit from parallelism 
we need to allocate to each parallel task approximately equal amounts of work 
and make sure that the work done in between synchronisations is sufficiently 
large to compensate for the overhead. 

Since the data dependency analysis is too complex at the higher levels, epj 
makes use of a great deal of small grain parallelisation with a large number 
of synchronisations. This is very costly and in many cases would not be nec
essary if certain modifications were made to the sequential code. Also, there 
are cases where the compiler inserts synchronisation into the code without 
realizing that there is no need for protection. 
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4.5.2 Ideas for Hand Parallelisation 

In order to implement parallelism at levels higher than those done by epj 
we need information on data dependency from the designers of GASP4. We 
have been provided with some such information and have used this to provide 
examples of how the program can be hand parallelised. The actual hand 
parallelisation of the whole program is a major exercise with little research 
value. We have consequently concentrated on providing general guidelines 
rather than attempting to write a parallel version of the program. 

Many large loops are not parallelised by epj because they contain I/O 
statements. It is possible, however, to parallelise some of these loops bearing 
in mind the following facts: 

• WRITE statements can be left in DOALL loops as long as they can be 
done in a random order. If their order is important and depends upon 
the loop index then we should try to take these out of the DOALL loop 
if possible and execute them sequentially after the loop . 

• READ statements can also be left in DOALL loops and the same con
siderations should be made as for WRITE statements. 

An example of such loops is in subroutine ELTMTX in which ELT12 
or ELT3 is called for each element. It is possible to have parallel calls to 
these subroutines which means that the element loop can be spread. The 
only difficulty is that both of these subroutines write to the same file and 
the order in which the writing is done with respect to the element number is 
important. The only way to overcome this is to store the data to be written 
such that the WRITE statements can be taken out of the DOALL loop. The 
rest of the processing can be done in parallel. 

Parallel READ's are useful in cases such as reading in element and nodal 
data for finite element meshes if the order in which the data is stored is not 
important. In practice, parallel READ's tend to cause run time errors in 
many cases. This is caused by the simultaneous access to the file pointer by 
parallel tasks which can inadvertently place incorrect values into program 

data sections. 
In many loops there are statements for updates of variables. If these loops 

are to be parallelised, the updates must be done under mutual exclusion. An 
example of the contention problem of type (i) of section 4.4.:2 is in subroutine 
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COORDS. The variable IERSUM is incremented by one in each iteration. In 
the parallelised loop, this must be done in a CRITICAL SECTION. 

We can also employ a certain strategy to make the parallel loop more 
efficient. Instead of having the main update in the DOALL loop, we can 
accumulate variables local to each parallel task in each iteration and then 
have each task perform a mutually exclusive update of the shared variable 
(IERSUM) after its allocated iterations. In this way the overhead associated 
with the execution of the CRITICAL SECTION construct is minimised since 
it is executed only once by each parallel task rather than once for every loop 
index. The code is as follows, where TMPIER is a local variable to each 
parallel task: 

PARALLEL 
INTEGER TMPIER 
DOALL (I=l:NNP) 

TMPIER = TMPIER + 1 

END DOALL 
CRITICAL SECTION 

IERSUM = IERSUM + TMPIER 
END CRITICAL SECTION 

END PARALLEL 

One could also experiment with implementing the update of the global 
variable (IERSUM) in parallel steps so as to minimise the number of addi
tion operations necessary and hence minimise the cost of synchronisations 
using CRITICAL SECTION's. This will only be beneficial if the cost of the 
synchronisations required for the parallel additions are low enough to make 
their implementation beneficial. 

One further strategy for improving the efficiency of the parallel code in
volves the elimination of the cost of the DOALL construct. This can be 
achieved by a small amount of preprocessing to allocate to each parallel task 
a block of consecutive loop indices and setting the tasks to process their 
respective blocks in parallel. In order to achieve good load balancing, the 
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Table 4.2: Performance of Hand Parallelised GASP4 
Time 

Np Hand Auto 
Sequential 4.21 4.21 

1 4.42 4.71 
2 3.17 5.14 
4 2.79 5.62 
6 2.58 6.02 
8 3.05 6.36 

blocks must be of equal or nearly equal size. This scheme has proved to 
increase the efficiency significantly for large loops. 

An example of updates of type (ii) of section 4.4.2 is in subroutine IEL
REF. There is a loop containing an update of the array element NREF(INOD). 
If each loop index does not necessarily give a unique value of INOD, there is 
a contention problem when this update is made. In order to test the above 
ideas for parallelisation, we have used them in subroutine ELTMTX (see sec
tion 4.2). The timing results for the 441 node mesh (see section 4.4.3) are 
presented in table 4.2 as processing times for ELTMTX (in seconds) together 
with the corresponding times for ELTMTX using autoparallelisation. 

We can see that there has been some benefit in using the mentioned 
parallelisation strategies even though this has not been very large. Better 
speed ups can be expected for larger meshes. We must also bear in mind 
the extra cost associated with reordering the code to make it parallelisable. 
Certain sections of the program require extensive reordering to improve their 
condition. This is not a good way to go about designing parallel code since 
by doing so at this stage we may make the underlying sequential algorithm 
less efficient. 

The processing times for ELTMTX using autoparallelisation show that 
there is no benefit due to parallel processing. In fact the processing time 
increases as Np is increased. For example, wheIl using :3 processors autopar
allelisation takes more than twice as long as hand parallelisation when pro
cessing ELTMTX. The reasons for the lack of efficiency of the autoparalellised 
code were discussed in section 4.5.1. 
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4.5.3 Some Suggestions for Approaching Parallelisa-
tion 

Parallelising GASP4 

Given the limitations of epj, significant benefits from parallelisation can only 
be obtained by starting with the sequential code and using the information 
provided by its designers to make suitable modifications which would allow 
us to parallelise at higher levels. The task of simple parallelisations such as 
spreading independent iterations over available tasks can then be left to the 
compiler. 

In order to benefit from parallelisation to the largest extent we need to 
parallelise DO loops containing calls to large subroutines. We consequently 
need to know whether it is possible to run parallel copies of these subroutines. 
If shared data are updated in the DO loop or its associated subroutines, 
they must be protected during updates by constructs such as CRITICAL 
SECTION's. The use of such constructs should be kept as low as possible 
to avoid large overheads. Strategies such as accumulating local sums and 
blocking the loop indices discussed in the previous section can be used for 
such purposes. In some cases, parallelisation of loops can be made possible 
by the reordering of nested loops or rearranging the loop structure such that 
some parts of the loop are executed sequentially in separate loops. 

Whenever possible, I/O statements should be taken out of loops before 
parallelisation. If they cannot be taken out then the order in which they 
would be executed should be noted. DO loops which do small amounts of 
work must not be parallelised. 

Writing Parallelisable Code 

The best strategy for writing sequential code that can be parallelised easily 
and efficiently is to bear in mind the following points: 

• The code must not contain complex data dependencies which are dif
ficult to analyse. These usually involve the dependence of array sub
scripts on calculations within or outside the loop . 

• Subroutines in DO loops must be written such that parallel copies of 
them could be run with small amounts of simple synchronisations. It 
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is consequently better if most of the processing in subroutines involves 
local variables, keeping access to global (shared) variables to a mini
mum. The use of parameters for subroutines helps in writing such code 
and is to be preferred to using COMMON block data . 

• I/O statements should be performed independently of computation and 
in separate DO loops whenever possible. 

In general, sequential code must be written such that it performs large 
amounts of independent work with simple and clear data dependencies. The 
use of GO TO and RETURN statements should be avoided whenever possible 
since they add to the complexity of the code. 
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5.1 Overview of Chapter 

The aim of this chapter is to describe the finite element model program we 
have developed for the purpose of experiments on parallelising the method. 
The model forms the basis of several Fortran programs used for testing var
ious aspects of parallel finite element analysis. 

The basic model structure is first described together with an explanation 
of the sparse storage scheme used for the stiffness matrix. An example run 
is presented to illustrate the program user interface. 

5.2 The Model 

The model described here is a Fortran program which can be used for the 
numerical solution of linear two-dimensional problems of the type discussed 
in chapter 2. The example problem in section 5.4 involves a stress field 
and the program is used for two-dimensional stress analysis. The boundary 
conditions are specified as fixed displacements at particular nodes. Physical 
and geometrical properties and information on applied forces are input to the 
program. The output is in the form of displacements at various points in the 
problem domain. The displacements can then be used to compute stresses 
at these points using stress/strain relations involving the characteristics of 
the elements in which they occur. 

One important feature of the model program is that it allows experi
mentation with different meshes, assembly strategies, solution schemes and 
various numerical techniques for each phase of finite element analysis. This 
can be done by inserting alternative program modules in relevant sections of 
the code while preserving the overall program structure. 

A separate program has been written which generates suitable regular 
two-dimensional meshes and provides for the main program data concerning 
the connectivity and positions of nodes. We have used both linear triangular 
and bilinear quadrilateral elements on a square mesh. Other types of elements 
can, however, be easily accommodated for analysis. The node orderings used 
are row and red-black orderings. 

The program can be used for the solution of a wide range of finite ele
ment problems by supplying the appropriate element matrix routines. The 
solution phase of the program can be modified for the solution of nonlin-
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ear problems (see section 2.2.3). The assembly and solution procedures are 
otherwise independent of problem type. 

The model program is structured as follows: 

Data Input Reading in the geometrical properties of the structure in the 
form of nodal connectivity information and nodal coordinates; reading 
in the physical properties of the structure; reading in applied forces. 

Stiffness Matrix Formation Element matrices are calculated and imme
diately assembled. The mathematical formulation of the element ma
trices is explained in section 2.3.2. To calculate an element matrix, 
its nodal coordinates are converted to those of a natural coordinate 
system ie. one which permits the specification of a point within the 
element by a dimensionless number whose absolute magnitude never 
exceeds unity. The numerical integration of the shape functions eval
uated at the nodes is done by the Gauss-Legendre quadrature using 
four sampling points for each element. The result is an element matrix 
representing the behaviour of the element under stress. 

The element matrix is then added on to appropriate positions in the 
overall stiffness matrix. The contribution of the right-hand side is also 
calculated at this stage and added on to the force vector (see section 
2.3.2). The stiffness matrix formation can be achieved by using any se
quential or parallel assembly strategy. Some possible implementations 
are discussed in the next chapter. 

Displacement Evaluation Nodal displacements are evaluated by solving 
the resulting system of simultaneous equations. This is done by the 
preconditioned conjugate gradient method. An incomplete LU precon
ditioner is calculated and used in the subsequent steps of solution. For 
the details of the formation of the preconditioner and the implemen
tation of the preconditioned conjugate gradient method see chapter 7. 
The reasons for choosing the PCG method with ILU preconditioning in 
our model are given in sections 2.3.4 and 7.2. It must also be said that 
it is possible to use methods other than PCG for this stage. Examples 
of these are direct methods such as Gaussian elimination. 
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5.3 Storing The Stiffness Matrix 

The overall stiffness matrix is very sparse and its sparsity increases substan
tially as matrix order increases. The sparsity can be exploited to avoid the 
large amounts of storage required when the size of the matrix (ie. the num
ber of degrees of freedom) is large. In practice, most real problems give rise 
to large stiffness matrices. In order to benefit from parallelism to the fullest 
extent we need to consider such large systems which require a large amount 
of storage. 

To overcome the storage problem we have designed our program so that 
the stiffness matrix is represented in one of the standard Fortran represen
tations of such matrices [16], as a row-linked list using four one-dimensional 
arrays. These arrays can be abstracted to a table consisting of the following 
entries: 

• IROWST - position of the first entry for each row in the table (integer 
array) 

• JCN - column number of entry (integer array) 

• VAL - value of entry (real array) 

• LINK - pointer to the next table entry for a row (integer array). 

IROWST must be of size equal to the order of the stiffness matrix whilst 
the other three arrays must be as large as the number of entries in the stiffness 
matrix. Figure 5.1 illustrates how the storage scheme can be used to store 
the sparse matrix A. 

In the table, a zero LINK denotes the end of a row. In order to locate an 
entry in a row we must follow the LINK's through the table starting from 
the position indicated by IROWST. Let us illustrate this with an example. 
If we were to look for the fourth entry in row 2, we would start by looking for 
the start of row 2 ie. IROWST(2). This has the value 1, meaning that row 
2 starts at position 1 in the table. JCN(1)=l and VAL(1)=6 which shows 
that A(2,1)=6. LINK(1)=4 and in this position of the table we find that 
A(2,4)=4. We have found the required matrix entry. LINK( 4)=0 indicating 
that there are no further entries in row 2. 
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40200 

60040 subscript 1 2 3 4 5 6 7 8 9 
IROWST 3 1 8 5 2 

00250 
JeN 1 3 3 4 5 1 2 3 4 

10007 VAL 6 2 2 4 7 4 3 2 4 

03240 LINK 4 7 6 0 10 0 9 11 0 

A 

Figure 5.1: Sparse Representation in Tabular Format 

This sparse representation provides a very efficient means of storage. As 
an example, one of our test problems with 8281 degrees of freedom is repre
sented fully by approximately 70 million (8281 x 8281) reals whereas the 
sparse representation only requires about 200000 integers and 100000 reals. 
There is consequently a substantial saving in storage when the sparse data 
structure is used and this allows us to process larger systems and test these 
for speed up. 

The entries in the table have not been ordered. For example, one could 
place the entries for a particular row of the stiffness matrix in column order. 
This ordering has associated with it the cost of moving existing entries during 
assembly when necessary. One advantage of such an ordering would be in 
the assembly phase. When searching through the entries in a particular row 
(see algorithms for Methods 1 and 2, chapter 6) to determine whether a 
certain entry exists or not, we would not necessarily need to go through the 
whole row. This is because if we go past the column number for the entry to 
be assembled, we would know that the entry has not appeared before. We 
then need to perform an insert rather than an update operation. There can 
consequently be some saving in processing time due to the ordering in this 
way. 

Other benefits due to column ordering could arise during the factoriza
tion of the stiffness matrix (see chapter 7). It could be useful to use the 
information provided by the ordering when we are trying to obtain factors 
with particular characteristics (see section 7.3). Due to the mentioned costs 
associated with ordering we have assembled the stiffness matrix unordered. 

10 11 

1 4 

1 5 

0 0 
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It is unlikely that the savings would be larger than the costs due to ordering 
unless some efficient means of ordered assembly is designed. 

The factors obtained by the incomplete LU decomposition of the stiffness 
matrix are stored in the same tabular format, linking entries in the same col
umn. An analysis of the scope for the parallel assembly of the stiffness matrix 
is made in chapter 6. We also present there algorithms for achieving efficient 
parallel sparse assembly. The solution of the system of equations represented 
by the stiffness matrix is done using the preconditioned conjugate gradient 
method. Chapter 7 contains a description of the method and suggests ways 
of implementing it in parallel efficiently. The solution algorithms are tested 
with row and red-black orderings of the nodes in the underlying mesh. 

5.4 An example run 

Consider the row-ordered mesh in figure 5.2 which consists of quadrilateral 
and triangular elements. The element numbers are in bold in the diagram. 
The number of elements is 31 and the number of nodes is 36. The cor
responding input and output data format for the program are summarised 
below. 

Input Format 

31 36 (number of elements, number of nodes) 

1 0 3 1 2 7 (element number, element type, element 

2 0 3 7 2 8 

3 0 3 2 3 8 

4 0 3 8 3 9 

5 1 4 3 4 10 9 

6 1 4 4 5 11 10 

etc. 

nodes) 

1 o. o. 0.0 
2 1.00000 O. 0.0 
3 2.00000 O. 0.0 

1 
1 

1 

(node number, x, y, z coordinates, 
nodal degrees of freedom) 
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1 2 3 4 5 6 

I){ IY: 5 6 7 

7 8 9 IX 10 11 
8 9 

11 12 13 

12 

14 15 16 

I~ 17 

14 15 16 18 19 

13 18 

20 1% :21 22 :2:3 

20 22 23 24 25 

19 24 

26 27 28 

I~ 
29 

26 27 28 30 31 

30 25 

31 32 33 34 35 36 

Figure 5.2: An example two-dimensional mesh for the model program 

12 

4 3.00000 O. 0.0 
5 4.00000 O. 0.0 
6 5.00000 O. 0.0 

etc 
1 100 
2 100 
3 100 
4 100 
5 200 
6 200 

etc 

1 
1 

1 

(node number, applied force) 

1 0.0 

(number of boundary conditions) 
(node number, fixed displacement) 

79 
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6 0.0 
7 0.0 
12 0.0 
13 0.0 
18 0.0 

etc 

Output Format 

NODAL DISPLACEMENTS 
1 
2 

O. 
282.14198006880 

3 447.78501315771 
4 460.56186475065 
5 346.10553005216 
6 O. 

etc 

80 

(node number, nodal displacement) 

It can be seen that the program uses the geometrical and physical prop
erties of a particular problem to evaluate the relevant nodal unknowns. In 
the case of a problem in the field of structural analysis, a discretised body 
which is subjected to external forces is analysed to provide a displacement 
profile. As mentioned before, the assembly and solution procedures can be 
used for any type of problem. They only need to be supplied with the element 
matrices which specify the problem characteristics. 
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6.1 Overview of Chapter 

In this chapter we present methods for the assembly of several element ma
trices in parallel into the same sparse representation of the overall stiffness 
matrix (see section 5.3). As noted in section 2.5, if the stiffness matrix is to 
be updated in shared memory we require certain synchronisation schemes to 
ensure the correctness of the resulting matrix. We also need to make these 
schemes as efficient as possible to achieve good speed ups. 

Some algorithms for parallel sparse assembly are presented and tested for 
different mesh sizes. The performance of these algorithms is shown in terms 
of their run times and their efficiency is discussed. 

6.2 Sources of Contention 

The element matrices can be evaluated in parallel without any need for syn
chronisation. The main source of contention in the parallel element by el
ement assembly of the stiffness matrix is the sharing of nodes by adjacent 
elements in the mesh. This causes different element matrices to contribute 
to the same positions in the overall stiffness matrix (see section 2.3.3). 

The effect of the node sharing is that if we are to perform parallel assembly 
of different element matrices into our sparse representation, we would need to 
resolve the problem of simultaneous access to the same table entry by parallel 
tasks. We discuss this issue in detail below and suggest ways of controlling 
this contention problem. The only other source of contention in a parallel 
assembly scheme for the sparse representation of the stiffness matrix is access 
to the table subscript during read and update (see sections 6.3 to 6.5). 

The entries in the sparse representation of the stiffness matrix are stored 
as a number of rows whose entries form a linked list (see section 5.3). We 
hence have two main options when deciding on the design of a parallel element 
by element assembly scheme: allow simultaneous assembly of the same row 
by parallel tasks or allow only the assembly of different rows. 

The first option involves a great deal of potential memory contention 
which can only be overcome by complicated and costly synchronisations. 
Possible contention problems are: 
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• (i) Simultaneous rowstart - Parallel tasks contending for the same row
start array position. For example, two tasks may both be initiating a 
new row and attempting to assign the same array position to the start 
of their respective rows. 

• (ii) Simultaneous update of the same entry - Parallel tasks attempting 
to update the same existing table entry. 

• (iii) Simultaneous creation of the same entry - Parallel tasks attempting 
to create the same table entry. 

If we only allow the assembly of different rows simultaneously, however, 
we only need to provide enough synchronisation to avoid inadvertent ac
cess to the table subscript indicating the next free table position. All other 
sources of contention which involve simultaneous access to the same entry in 
the stiffness matrix are eliminated since we are always dealing with distinct 
entries at anyone time. We have implemented both these approaches as ex
plained below. The results of tests for the efficiencies of the implementations 
are given in section 6.6. 

6.3 Method 1 Parallel assembly of the same 
rows 

The implementation of this scheme involves contention problems (i) to (iii) 
in section 6.2. We have overcome (i) and (iii) by using a single LOCK 
variable for the whole table (SUBSC) which is used to protect the shared 
data during searching and insertion. Simultaneous update of an existing 
entry is protected by an explicit critical section mechanism. 

The use of the shared memory LOCK and its associated WAIT LOCK 
and SEND LOCK operations (see section 4.4.1) ensures mutually exclusive 
access to the table entries during operations such as the insertion of a new 
row, searching through existing entries and the insertion of new entries. Also, 
the table subscript is always read and updated under such exclusion. Since it 
is possible to update existing entries while other operations are taking place, 
a CRITICAL SECTION primitive is all that is required to protect the entry. 
The following pseudo-code section outlines the algorithm: 
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DO in parallel (I=l,number of elements) 
FOR each row (J) of element matrix DO 

IF row (J) has not appeared before 
in the overall matrix THEN 
WAIT LOCK (SUBSC) 

create new row -(A) 
SEND LOCK (SUBSC) 

ELSE 
FOR each entry in row (J) DO 

IF entry has appeared before THEN 
CRITICAL SECTION 

update it -(B) 
END CRITICAL SECTION 

ELSE 
WAIT LOCK (SUBSC) 

insert it -(C) 
SEND LOCK (SUBSC) 

END IF 
END FOR 

END IF 
END FOR 

END DO 

Algorithm for Method 1 
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The locking mechanism ensures that when a task is in regions (A) or 
(C) no other tasks are allowed in that region until the LOCK is released 
by a SEND LOCK operation. The CRITICAL SECTION construct ensures 
that while a task is in region (B) no other tasks are allowed into that region 
until this task has completed the execution of (B). The difference between 
the two circumstances is that a CRITICAL SECTION only protects one 
section of code whereas any number of sections may be protected by the same 
LOCK. We can consequently see that LOCK's provide us with the ability to 
implement named protected regions consisting of several code segments. 
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6.4 Method 2 : Parallel assembly of differ
ent rows 

Our scheme for ensuring parallel assembly of different rows only involves the 
use of two types of LOCK's. We associate with each row I of the stiffness 
matrix a shared memory synchronisation variable called ROWLOCK(I). All 
these are initialised to be available ie. unlocked. 

Before attempting to assemble a row of an element matrix, each task 
must first check the corresponding ROWLOCK and can proceed with the 
assembly if the LOCK is not taken. The check is done using the WAIT 
LOCK construct which will allow a task to proceed and lock the row if 
the LOCK is not already taken. Otherwise, the task is suspended at that 
point until it is released by a SEND LOCK from another task indicating the 
completion of the assembly of the row it was waiting on by that task. 

All the table operations such as the creation of i1 row, creation of an entry 
and the update of an existing entry may proceed concurrently by parallel 
tasks as long as the shared table subscript (ie. the next free entry in the 
table) is read and updated under mutual exclusion. We implement this by 
using a single LOCK called SUBSC. Each task must WAIT LOCK on SUBSC 
before reading the subscript for its local purpose and updating it. The lock 
is then released and can be taken by a suspended task. The task's local job 
of allocation and setting up of new entries can proceed after the release using 
the local value of the subscript. The outline of the algorithm is as follows: 
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DO in parallel (I=l,number of elements) 
FOR each row (J) of element matrix DO 

WAIT LOCK (ROWLOCK(J» ¢= Point (A) 
IF row (J) has not appeared before 

in the overall matrix THEN 
create row (J) 
insert entries in row (J) 

ELSE 
FOR each entry in row (J) DO 

IF entry has appeared before THEN 
update it 

ELSE 
insert it 

END IF 
END FOR 

END IF 
SEND LOCK (ROWLOCK(J» 

END FOR 
END DO 

Algorithm for Method 2 
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The table subscript is read and updated during the insert operations in 
the above algorithm as follows: 

WAIT LOCK (SUBSC) 

• read the subscript and store it locally 

• update shared subscript 

SEND LOCK (SUBSC) 

Once a task completes assembling a row it releases its corresponding 
ROWLOCK, thereby allowing any other tasks suspended on this LOCK to 
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proceed. These are tasks which are attempting to assemble neighbouring 
elements (which share common nodes and hence ROWLOCK's). The time 
spent by tasks waiting at point (A) above can consequently be reduced by 
minimising the assembly of adjacent elements at the same time. This idea 
is the motive behind an improved version of Method 2 which is discussed 
below. 

6.5 Method 3 : Parallel assembly of differ
ent rows - improved version 

A modified version of the parallel assembly scheme presented in the previous 
section is now given. The aim is to minimise the synchronisation overhead 
associated with the locking of the rows. 

Tasks assembling adjacent elements in the mesh simultaneously will be 
suspended if they attempt to assemble a locked row. The cost of this wait
ing can be minimised by assembling disjoint elements concurrently as far as 
possible. This can be achieved by a colouring scheme in which all elements 
belonging to a particular colour are disjoint. 

Consider a mesh with row-ordered elements divided into four colours as 
shown in figure 6.l. Elements of the same colour can be grouped together 
in array COLOURS such that the following four groups are stored one after 
another: 

1 3 5 11 13 15 21 23 25 
6 8 10 16 18 20 
2 4 12 14 22 24 
7 9 17 19 

By mapping the row-ordered mesh onto this array we can reduce the num
ber of adjacent elements assembled in parallel. Method 3 can consequently 
be implemented by the following modification to the algorithm for Method 

2: 
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CD @ CD CD 0 
@ G) G) @ @ 

@ @ @ ~ @ 

@ @ @ @ @ 

@ @ @ @ @ 

Figure 6.1: Division of a mesh into several colours 

replace 

DO in parallel (I= l,number of elements) 

assemble element(I) 

END DO 

by 

DO in parallel (I=l ,number of elements) in ascending order 

assemble element(COLOURS(I)) 

END DO 

The coloured array can be formed by simple functions traversing the 
mesh and adding on their corresponding elements. These functions can pick 
combinations like (odd row,odd column), (even row,odd column) and so on. 
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Four-colour and Cuthill-McKee orderings [18] provide more general types 
of meshes which can be assembled with minimal contention. The cost of 
obtaining the colouring is small and it provides an efficient way to reduce 
waiting time on locked rows. Also, we can see that for the assembly phase it 
is the ordering of the elements that is of importance rather than the ordering 
of the nodes. 

6.6 Results 

Table 6.1 shows how the parallel assembly schemes presented in this chapter 
perform for a regular rectangular row-ordered finite element mesh with 40000 
elements (40401 nodes). Table 6.2 compares the speed ups of the improved 
version for three different problem sizes. Np is the number of processors. Sp 
is the speed up. All times are in seconds. 

Table 6 l' Performance of the three methods of parallel assembly .. 
Method 1 Method 2 Method 3 

Np Assembly Time Sp Assembly Time Sp Assembly Time Sp 
Seq. 111.36 1.00 111.36 1.00 111.36 1.00 

1 125.12 0.89 117.12 0.95 119.35 0.93 
2 78.42 1.42 64.74 1.72 59.55 1.87 
4 44.02 2.53 33.04 3.37 29.54 3.77 
6 32.12 3.47 24.75 4.50 20.78 5.36 
8 23.79 4.68 18.84 5.91 15.51 7.18 
10 21.65 5.14 16.81 6.62 13.04 8.54 
12 20.19 .5.52 15.75 7.07 11.12 10.01 

The results are illustrated graphically in graphs 6.1 and 6.2. The former 
represents the variation of speed up with number of processors for the largest 
problem and the latter shows how speed up is related to problem size. The 
results are discussed in the next section. 
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Table 6.2: Relation of Speed up to Problem Size for Method 3 
Np 400 elements 2500 elements 40000 elements 

Sequential l.00 l.00 l.00 
1 0.97 0.96 0.93 
2 1.55 l.61 1.87 
4 2.64 2.92 3.77 
6 4.07 4.35 5.36 
8 3.78 5.93 7.18 
10 3.16 6.29 8.54 
12 3.01 7.78 10.01 
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6.7 Discussion of Results 

For all three methods we observe a reduction in parallel efficiency as Np 
increases. This is inevitable and is due to the increasing overheads associated 
with setting up and managing parallel tasks. We have aimed to minimise this 
reduction, however, by providing good load balancing and high computation 
to communication ratios. 

We observe from table 6.1 that when we use one processor, all three par
allel implementations are slower than sequential assembly. This is because 
when Np = 1 we are paying certain overheads due to the extra costs asso
ciated with parallelisation without performing any parallel processing. We 
consequently have some extra work to do without any benefit due to paral
lelisation. For larger numbers of processors this extra work is compensated 
for by a gain from parallel processing. 

The mentioned loss at Np = 1 is more pronounced for algorithms with 
a larger amount of synchronisation or extra processing for parallelisation. 
Hence, Method 1 has the largest processing time when Np = 1, followed by 
Method 3 which has a few more computations to perform than Method 2. 

Table 6.2 reveals another point related to the performance of the algo
rithms at Np = 1. We observe that for a particular parallel implementation, 
as the problem size increases, so does the extra cost associated with parallel 
processing. This means that when using one processor, the parallel efficiency 
of the algorithm falls as the problem size increases. The benefit due to par
allel processing when using two or more processors causes the opposite effect 
such that the parallel efficiency of Method 3 rises with problem size in those 
cases. 

As shown by graph 6.1, parallel assembly using the same rows scheme is 
not very efficient. This is to be expected due to the large amounts of syn
chronisation required by this algorithm. This implementation uses low grain 
parallelism which does not bring about large enough speed ups to compen
sate for the synchronisation overhead sufficiently. The poor performance for 
large numbers of processors emphasises this fact. 

The use of ROWLOCK's in the second approach increases the granularity 
substantially and hence this algorithm performs better than the previous one. 
We are now doing sufficiently large amounts of work between the synchronisa
tion points to compensate for the cost of their implementation satisfactorily. 
Some waiting is done on locked rows which obviously degrades the perfor-
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mance to a certain extent. Good parallel efficiency is obtained with small Np 
for Method 2. 

The colouring algorithm eliminates some of the waiting on ROWLOCK 
and hence provides further speed up. We now have a suitable grain size and 
assemble the elements such that they are less likely to contend for the same 
row update. The parallel efficiency for Method 3 is consequently very high 
with any Npo 

As before, the improvements compared to the uncoloured algorithm are 
more significant when using large numbers of processors. For example, when 
Np = 2, the speed up ratio between methods 2 and 3 is 1.09. For Np = 6 
and Np = 10, the ratios are l.20 and l.29 respectively. The reason for this 
increase is that when Np is large, an inefficient algorithm would suffer from 
its shortcomings more significantly due to increased overhead. By the same 
token, any improvements in an algorithm would produce larger benefits when 
Np is large. 

Let us now consider the effect of problem size on speed up for Method 3. 
We have chosen sufficiently different mesh sizes to illustrate this point. As 
can be seen from graph 6.2, the largest meshes can be assembled concurrently 
with near linear speed up. Increased overhead degrades performance for large 
numbers of processors but the granularity is large enough for this problem size 
to produce good speed ups for any value of N p . For the 2.500 element mesh, 
however, the granularity is much lower and the synchronisation overhead 
degrades the performance rather more significantly. The efficiency is not 
very far from ideal for small numbers of processors but when Np is large, the 
speed ups obtained for the larger problem are much better than those for 
this mesh. 

For the smallest mesh we observe fairly good speed ups for small Np (up 
to six processors) which are comparable with those for the larger meshes. 
When more than six processors are used, however, the speed up reduces with 
increasing Np and for the largest numbers of processors the values are much 
lower than the corresponding ones for the larger mesh sizes. The reason for 
the poor performance with such small mesh sizes is that the granularity is 
too low to provide a good computation to communication ratio. We are not 
doing enough work between synchronisations to obtain satisfactory parallel 

efficiencies. 
The algorithm therefore performs far more efficiently when large meshes 

are assembled. This is a quite typical characteristic of parallel schemes in-
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volving non-trivial synchronisation strategies. For further discussion of the 
results see section 8.3. 
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7.1 Overview of Chapter 

This chapter is concerned with parallelising the preconditioned conjugate 
gradient method. The method has been described in section 2.3.4 from an 
algorithmic viewpoint. This included an explanation of how precondition
ing works. The potential of the method with respect to parallelisation is 
addressed in section 7.2. 

We then describe the construction of effective preconditioners suited to 
the parallel schemes used for the triangular solves at each iteration. This is 
followed by a description of our parallelisation strategies and the results of 
their implementations. These results are then discussed and compared with 
theoretical values. 

7.2 Scope For Parallelism 

The PCG algorithm has been discussed in chapter 2. The algorithm with 
IL U preconditioning (see section 2.3.4) is as follows: 

Algorithm: Preconditioned CG to solve Ax = b 
1. Preprocess: Compute preconditioner 

M = LU where A = LU + E 
2. Start: ro f- b - Axo, 

M - 1 Po f- Zo f- ro 
3. Iterate: Until convergence do 

(a) W f- APi 

(b) Cl'- f- (ri,Z;) 
, (w,p;j 

(c) Xi+1 f- Xi + Cl'iPi 

(d) ri+1 f- ri - Cl'iW 

(e) Zi+1 f- M-1ri+1 

(f) f3- f- (Titl ,Z.tl) 
, (Ti,Zi) 

(g) pi+1 f- Zi+1 + f3iPi 
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The main operations in the above algorithm are as follows: 

• Setting up the preconditioner (1) 

• Matrix vector multiplications (3-a) 

• Vector Updates (3-c, 3-d and 3-g) 

• Dot products (3- band 3-f) 

• Preconditioning operations (2 and 3-e). 

In the above list the potential bottlenecks are in setting up the preconditioner 
and in the solution of the linear systems with M ie. operations 2 and 3-e. 
The other steps are quite straightforward to parallelise efficiently (see section 
7.4.2). 

For polynomial preconditioning, the only operations involving the matrix 
are products with vectors. We also need fewer dot products than with the 
non-preconditioned method. The dot products can be bottlenecks for large 
numbers of processors [68]. Thus polynomial preconditioning is efficient for 
use on machines with very large numbers of processors and when the dot 
products dominate the cost of a CG step. 

We have chosen ILU preconditioning since it is more suited to the parallel 
architecture we use ie. one with a small number of processors (see [68] and 
3.2.2) and it is easy to form and use. Also, we have found this to be a 
very efficient preconditioner since it can be formed with low cost (see section 
7.4.1) and provides satisfactory reductions in the number of iterations. The 
formation and performance of an ILU(O) preconditioner is discussed in section 
7.3.1. Furthermore, we chose to use ILU and not incomplete Cholesky (IC) 
preconditioners despite the symmetry of our test matrices since the former 
allow us to draw conclusions covering a wider range of problems. 

Due to the low cost of obtaining the ILU(O) preconditioner we have con
centrated on the parallelisation of the other PCG steps. The parallelisation 
of the PCG method at iteration loop level involves the parallel processing 
of two or more iterations. This requires synchronisations which ensure that 
the sequential nature of the iterative process is preserved. It must therefore 
be ensured that only values which are completely computed in a particular 
iteration are used in subsequent iterations. The synchronisations required to 
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achieve this would be quite complex and the scheme is reported to suffer from 
numerical instability [68]. We have consequently investigated parallelisation 
within the main iteration loop. 

As mentioned above, operation 3-e is a potential bottleneck. In the case of 
ILU preconditioning this involves a pair of triangular solves at each iteration. 
Such operations are not straightforward to parallelise and account for about 
40 percent of the total sequential solution time (see section 7.4.1). 

The parallelisation of the triangular solves requires an analysis of Land 
U in order to identify the possibilities for parallel processing based on depen
dency information. We consequently need to design parallel schemes based 
on such information or form Land U such that they would suit our schemes. 
This includes the reordering of these factors. Two schemes are described in 
the next section which implement parallel row-oriented (section 7.3.2) and 
parallel column-oriented (see section 7.3.3) forward and backward substitu
tions. 

We have chosen red-black ordering as an alternative since it gives rise to 
stiffness matrices which consist of diagonally structured entries (see figure 7.1, 
page 101 and [18]) which are similar to the type of sparsity patterns required 
for the independent columns scheme (see section 7.3.3) and are hence likely 
to require the dropping of fewer entries. Also, the results in [10] and [11] 
relate to red-black ordering and can be used for comparison with the results 
presented in this work. 
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7.3 Parallel Preconditioning 

In this section we shall discuss the formation and the effectiveness of ILU 
preconditioners suited to parallel processing. The effects of ordering and level 
of fill-in are analysed and we describe two schemes for parallel triangular 
solution. 

7.3.1 Formation And Effectiveness Of The ILU(O) Pre
conditioner 

The preconditioner used in our model is obtained by an incomplete factoriza
tion of the stiffness matrix based on Doolittle's algorithm where the diagonal 
entries of L are set to be l. The entry aCi,j) in the stiffness matrix can be 
written as 

min(i,j) 

aij= L lipUpj, i,j=1,2, ... ,n 
p=] 

and the entries in Land U are given by 

lij = (aij - L~:::;i lipUpj)/Ujj, i > j 

- ",j-1 I 
Uij - aij - L."p=l ipUpj, 

We can obtain a factorization with no fill-in (ILU(O)) by only computing 
entries in Land U where there is a corresponding entry in the stiffness matrix 
ie. if aij = 0 then lij = 0 and Uij = O. This can be conveniently implemented 
by going through the linked list of entries in rows and columns of the stiffness 
matrix and factoring these entries. The factorization proceeds by alternating 
between the formation of a row of U and a column of L. 

Figure 7.2 shows the structure of the stiffness matrix for a 16 node row
ordered mesh and its corresponding Land U factors. We have found the cost 
of obtaining such a factorization to be only a small percentage of the overall 
solution time (see section 7.4.1). The reduction in the number of iterations 
due to the ILU(O) preconditioner is quite significant as illustrated in tables 
7.1 and 7.2. niter is .the number of iterations. precond is the time for the 
computation of the preconditioner. total is the overall solution time. All 
times are in seconds. 
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Figure 7.1: The sparsity pattern of a typical red-black matrix 
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Figure 7.2: The stiffness matrix and its factors for the row-ordered mesh 
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Table 7.1: Performance of the ILU(O) Preconditioner (row ordering) 
Size niter time per iter precond total 
(nodes) CG ILU(O) CG ILU(O) CG ILU(O) 
441 23 14 0.21 0.27 0.56 4.91 4.28 
2601 63 31 0.34 0.67 1.04 21.69 20.79 
10201 130 60 1.51 2.73 4.10 196.53 163.93 
40401 265 118 8.14 11.87 32.36 2157.17 1400.15 

Table 7.2: Performance of the ILU(O) Preconditioner (red-black ordering) 
Size niter time per iter precond total 
(nodes) CG ILU(O) CG ILU(O) CG ILU(O) 
441 19 12 0.20 0.23 0.41 3.75 3.12 
2601 57 28 0.31 0.59 0.98 17.67 17.50 
10201 112 55 1.29 2.54 3.86 144.48 143.56 
40401 231 105 7.79 10.11 28.67 1799.49 1090.22 

We can see that the preconditioner becomes more effective as the mesh 
size (number of nodes) increases. Since the ILU(O) preconditioner can be ob
tained at low cost and is sufficiently efficient, we have used this factorization 
in the parallel schemes for triangular solves described later in this chapter. 

Diagonal scaling involves the division of the coefficients in every row of 
a system of equations (including the RHS) by the corresponding diagonal 
entry. The aim is to preserve the numerical accuracy during operations such 
as factorization. We studied the effect of diagonal scaling on the performance 
of the CG method in order to compare this with the performance of our 
preconditioning schemes. 

Our experiences with diagonal scaling show that we do not benefit from 
the scaling of the equations with the diagonal of the stiffness matrix or its 
upper triangular factor (U). The number of iterations is unaffected by the 
former and actually increases with the latter. Also, if the forward and back
ward substitutions are carried out with the mentioned diagonals as the pre-
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conditioner, the rate of convergence becomes slower. This is different to 
diagonal scaling in the sense that a preconditioning operation (division by 
the diagonals) is performed at each iteration. 

7.3.2 Level Scheduling 

This scheme has been described in [85] and can be thought of as a reordering 
scheme whose objective is to obtain a block triangular system such that the 
unknowns in each block can be computed in parallel. Consider the lower 
triangular matrix in figure 7.3 which shows the block partitioning of LI = b. 
If the Li'S are diagonal matrices, we can compute all the entries in each 

-
LI :1'1 bI 

C2 L2 0 .r2 b2 

C3 L3 I X3 b3 

· · · . 
· · · . 
· · · . 

Cm I Lm Im bm 

Figure 7.3: Block partitioning for Lx = b using level scheduling 

subvector Xi concurrently because a diagonal Li ensures the independence of 
the unknowns corresponding to the entries of I/. We only need to synchronise 
at block level so that at step i of the forward substitution all Xi-l'S are already 
determined. Figure 7.4 shows the structure of an example matrix reordered 

by levels. 
We can see that the basic requirement of this technique is the identifi

cation of independent unknowns and grouping their corresponding rows into 
blocks which must be processed in sequence. This can be done by associating 
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Figure 7.4: Matrix reordered by levels 

with each row of L a depth computed as 

depth(i) = { 1 . 
1 + maxj<;{depth(J) : lij =I O} 

if lij = 0 V j < i 
otherwise 

104 

A level of L can be defined as the set of nodes with the same depth. 
The rows of L with only a diagonal entry will be at level 1. The next level 
consists of rows dependent only on subvector :1:1 and so on. This scheme is 
made attractive by the low cost of the preprocessing to determine the levels. 

The algorithm can be implemented without physically reordering the ma
trix by solving the row equations in increasing order of the depth of their 
nodes, distributing the nodes at each level across the processors. In order to 
explain this further let us introduce the following: 

NLEV - The number of levels in L 

IORDER - An integer array consisting of the ordering of the rows of L by 
increasing depth 
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ILEVEL - An integer array consisting of the index to the start of each level 
in IORDER. 

The two arrays can be set up quite easily and with low cost once the depths 
have been determined. The forward elimination can be implemented as fol
lows: 

DO k = 1,NLEV 
DOALL U = ILEVEL(k):ILEVEL(k+1)-1) 

i = IORDERU) 

Xi = l~i (bi - L:{j<i:l;j#O} lijxj) 
END DOALL 

END DO 

The allocation of rows within a block to processors is such that the pro
cessors start from the first rows in the block and process the next free rows 
as they complete their current ones. The level scheduled back substitution 
can be implemented in the same way. A detailed analysis of the number and 
length of levels for different row-ordered mesh sizes is given in section 7.4.3. 
Section 7.4.4 contains the results of our implementations of this technique. 
Section 7.5 contains a detailed theoretical analysis of parallelism for level 
scheduling and compares theoretical and actual speed ups. 

7.3.3 Independent Columns 

The level scheduling scheme described in the previous section involves the 
identification and subsequent parallel processing of independent rows of L. 
The only requirements for this type of parallel scheme are the diagonal blocks 
(L/ s) at each level. In this section we shall describe an al ternati ve scheme 
involving the parallel processing of columns rather than rows. 

In the independent columns scheme we compute part of the X vector at 
each stage and update the subvector of b corresponding to these unknowns. 
The idea is to update the entries in b concurrently using distinct columns of 
L. This requires that at each step the group of columns used for this update 
have only one entry per row so that no two columns would contribute to the 
same entry in b (ie. to avoid any contention in updating b). The structure 
of L should therefore be as shown in figure 7.5 where the Ci's are sparse 
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rectangular blocks with only one entry per row in each block of columns. 
The algorithm can be written as follows: 

- -
Ll Xl 

L2 X2 

C1 
L3 0 

-
X3 

C2 

C3 

fI: ~: m 
'-- -

Figure 7.5: Matrix with blocks of independent columns 

DO k = I,m 
Xk = L-,;lbk 

Update bk+l, ... ,bm usmg Xk and Ck (if k < m) 
END DO 

The blocks do not have to be of equal size. The first step of the above 
algorithm involves a triangular solve unless the L, 's are diagonal in which 
case simple division yields the solution subvector. At each step one block of 
unknowns is computed. The update operation does not need to be performed 
at the final step. The number of steps depends on the structure of Lie. the 
number of blocks of independent columns. We may wish to design L such 
that at each step a number of columns equal to the number of available 
processors are used for updating the RHS. In that case m = r N / Np 1 where 
N is the order of Land Np is the number of processors. 

- -
bi 

b2 

b3 

'--
bm -
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Figure 7.6: An example matrix with independent columns 

Let us now expand on the parallel aspects of the above algorithm. If the 
L;'s are diagonal then the components of Xi can be computed independently 
at each step. The second stage of each step is an update operation which 
involves using each column in Ck with its corresponding entry in Xk. We 
update all entries in b for which there is a corresponding entry in that column. 
This means that when processing column j, if we come across an entry in 
row i (iij) we subtract lijXj from entry bi. L is stored by columns in order to 
provide more efficient access to the entries in each column. The update at 
step k can consequently be written as: 

DO for all columns in C\ (in parallel) 
find each entry lij 
bi = bi - (lijXj) 

END DO 

This parallel loop can only be correct if there is no inadvertent access to 
the same entry bi by two or more processors. The only way to ensure this 
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without locking the bi'S is to allow only one entry per row in Ck . The results 
of our implementations of this method are given in section 7.4.4. 

Preconditioner Design 

Let us now discuss the design of suitable preconditioners for the independent 
columns method. One possible approach is the formation of Land U factors 
in the usual way (see section 7.3.1) and to drop any entries which will disturb 
the independence properties required by the method during the factorization. 
The resulting matri ces are incomplel f IL U (0) factors of the stiffness matrix. 

For the purposes of our test implementations we have performed the drop
ping of the appropriate entries in the factorization as the rows and columns of 
the factors are being formed. It is also possible to perform the factorization 
after the appropriate elements of A are dropped or forming an incomplete 
factorization first and then dropping the entries. The effect of the dropping 
scheme on the rate of convergence is insignificant [10]. 

In our implementations we have designed Land U such that all the C 
blocks (see figure 7.5) are of the same size and equal to Np ie. one column 
is assigned to each processor. Also, all L/s (and LIt's) are diagonal blocks 
allowing parallel computation of the unknowns in each J'i. An example of 
the structure of such test matrices with Np = 3 is givell in figure 7.6. 

The dropping of entries in Land U must involve some form of check on the 
state of the matrices as the factorization proceeds. More accurately, before 
allowing any entry into L or LI we must make sure that no other entry exists 
in the same row as this entry in the block of columns it appears in (see figure 
7.5). In this way the independence of the unknowns corresponding to the 
columns in each block is ensured. The checking method can be implemented 
by keeping a count of the entries in each row of the block. 

A further measure can be taken in order to try to improve the quality of 
the preconditioner. One could aim to preserve the largest entries in each row 
of each block. This can be done by using a drop tolerance technique involving 
the dropping of entries which are small compared to their corresponding 

diagonal entries [57]. 
Another possibility is to keep a record of all candidates for insertion in 

the section of each row and choose the largest as the successful entry. We 
have implemented the latter scheme but little or no improvement has been 
obtained in the quality of the preconditioners (see table 7.3). The improve-



Chapter 7:Parallel Preconditioned Conjugate Gradients 109 

Table 73Th ff t f e e ec 0 preservmg arges en nes on t e rate 0 t t' h f con vergence 
number of iterations 

row red-black 
Mesh size 2601 10201 40401 2601 10201 40401 
before 31 60 ll8 28 55 105 
after 31 59 ll6 27 .53 101 

ment is marginally better in the case of red-black ordering. Greater reduc
tions in the number of iterations are necessary to make the implementation 
cost-effecti ve. 

The reason for the lack of larger improvements in the quality of the pre
conditioners may be that the structure of our row and red-black ordered test 
matrices is such that they do not benefit from this measure to a significant 
extent. Other orderings (eg. minimum degree) could show more pronounced 
improvements in the quality of the resulting preconditioners by preserving 
the largest entries. A detailed discussion of the design of preconditioners for 
the independent columns scheme is given in section 7.5.2 and [10]. 

7.4 Parallelising The Main Iteration Loop 

In this section we shall provide information on the execution profile of the 
solution phase of our model. This will show how the costs of the precondi
tioning and other steps of the PCG implementation compare. We then go on 
to explain how these steps are parallelised and present the results of testing 
our parallel implementations. These results are analysed in section 7.5. 

7.4.1 Profile Of The Method 

A typical profile of the PCG method implemented in our model is given 
below as approximate percentages of sequential solution time for each step 
(see section 7.2). The profile varies very little for different problem sizes and 

node orderings. 
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Table 7.4: Relative Cost of the ILU (0) Preconditioner 
Problem Size Relative Cost of ILU(O) 
(nodes) row red-black 
2601 5.0% 5.6% 
10201 2.5% 2.7% 
40401 2.3% 2.6% 

• step 3-a - 35% : matrix vector multiplication 

• step 3-b - 5% : dot product 

• step 3-c - 5% : vector update 

• step 3-d - 5% : vector update 

• step 3-e - 40% : preconditioning operation 

• step 3-f - 5% : dot product 

• step 3-g - 5% : vector update 

We can see that the matrix vector multiplication (step (a)) and the triangular 
solves (step (e)) dominate the solution time. 

The cost of obtaining the ILU(O) preconditioner is given as approximate 
percentages of the total sequential solution time for different problem sizes 
using row and red-black orderings in table 7.4. Also, for all three problem 
sizes, the cost of obtaining the preconditioner is about four times the time 
spent in one sequential iteration. These results indicate that the cost of 
obtaining an ILU(O) preconditioner is very low and becomes insignificant 
compared to the cost of the other steps for larger meshes. This is why 
we have aimed to parallelise these steps rather than the formation of the 
precondi tioner. 
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7.4.2 Steps Other Than The Preconditioning Opera
tions 

We shall consider the three different types of operations in this category sep
arately (see section 7.2). For each step, further efficiency can be provided 
by eliminating the cost associated with the DOALL mechanism (see section 
4.3.2). Each task can perform a little preprocessing to determine a unique 
block of the loop indices it will execute. This is a block of consecutive in
dices and is executed sequentially by each task. We therefore process several 
parallel blocks of the loop index. The loop indices are divided in such a way 
that the blocks are of equal or nearly equal sizes in order to obtain good load 
balancing. 

Let us now consider the parallelisation of the steps. 

Matrix vector multiplications (3-a) These can be parallelised by com
puting distinct entries in the product vector independently. Each pro
cessor multiplies a different row of A by p at anyone time and there are 
consequently no synchronisation considerations. The DO loop covering 
the rows of A can be replaced by the blocking strategy described above. 
This means that Np parallel blocks of rows of A are processed. 

Vector updates (3-c, 3-d and 3-g) The entries in the resulting vector can 
be computed independently at these steps. We consequently only need 
to break up the loop covering these entries into blocks and process these 
concurrently. Steps 3-c and 3-d are independent and are consequently 
merged to increase granularity. 

Dot products (3-b and 3-f) These operations involve the accumulation 
of a single variable and must be parallelised bearing this in mind. This 
means that even though the loop index can be spread among the pro
cessors, we need to update the global sum under mutual exclusion. We 
consequently use a combination of the blocking strategy and the lo
cal sums strategy (see section 4.5.2) to implement the dot products in 
parallel. 

Each task accumulates its local sum according to its block of indices and 
adds this on to the global sum under mutual exclusion once all the block 
indices have been executed. In this way, the overhead due to DOALL 
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Tabl 75 A e .. vera e L lL eve h engt s for Level Scheduling - Row ord ering 
Mesh Size Number of Levels Average Length of Levels 
121 26 3 
441 56 6 
2601 146 16 
10201 296 33 
40401 596 66 

is removed and we only need to pay the cost of the synchronisation 
primitives implementing the mutually exclusive update of the global 
sum (ie. the CRITICAL SECTION's). 

7.4.3 The Triangular Solves 

This step (3-e) is the main bottleneck in the PCG method. Matrix vector 
multiplication (3-a) is also costly but can be parallelised quite efficiently. We 
have implemented parallel triangular solve schemes based on level scheduling 
(see section 7.3.2) and the independent columns method (see section 7.3.3) 
for row and red-black orderings of the nodes. These implementations are 
discussed separately below. 

Level Scheduling 

The same leveling strategy is used for the forward and backward substitu
tions. The number of levels and the average number of rows per level (level 
length) for different mesh sizes are given below for row ordering. There are 
many rows at levell, all of which correspond to rows with a single entry. 
These have been excluded in the calculation of the average level lengths since 
we obtain a fairer picture of the distributions in this way. Due to the sym
metry of the stiffness matrix, Land U always have the same number of levels 

and level lengths. 
We can see from table 7.5 that the number of levels does not increase 

in proportion with the mesh size and this is why we can expect to benefit 
substantially from level scheduling for large meshes. We would obviously like 
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the number of levels to be minimal so that we need to synchronise at fewer 
points. The lengths of the levels for larger meshes are more likely to provide 
the large granularity required for efficient parallel processing. 

The distribution of level lengths for two mesh sizes (row ordering) are 
presented in graphs 7.1 to 7.4. Graphs 7.1 and 7.3 show the lengths for all 
levels excluding level l. Graphs 7.2 and 7.4 show what percentage of all 
levels (excluding level 1) belong to a particular level length. These graphs 
are discussed in detail in section 7.5.2. 
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Graph 7.2 
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Graph 7.3 
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Independent Columns 

The performance of preconditioners suitable for the independent columns 
method for row-ordered and red-black ordered meshes is given in tables 7.6 
and 7.7 respectively. The CG column corresponds to the unpreconditioned 
method. The results indicate that for both orderings, as the number of 
entries dropped during the factorization increases, the rate of convergence 
becomes slower. This means that as we increase the number of processors 
(ie. the block size) to which the factors must be suited, the effectiveness of 
the resulting preconditioner falls. 

We have increased the block size up to values which make the precondi
tioners cause the same rates of convergence as the unpreconditioned method 
ie. CG (see [10] and [11]). The largest block sizes are, of course, not realistic 
numbers of processors for shared memory architectures. They are only used 
to determine the pattern of convergence rates as the block size is increased. 

At one extreme we have a full ILU(O) preconditioner for which all of the 
factors of the original matrix are included. At the other extreme we have 
diagonal factors for which all entries apart from those on the diagonal are 
dropped. The best performance in terms of the reduction in the number of 
iterations is due to the former and the latter performs identically with the 
unpreconditioned implementations (see table 7.1 and 7.2). 

In between the two extreme cases mentioned above we have a range of 
performance figures. We can see from the results that the degradation in 
the performance is particularly large when going from one to two processors. 
This is because the full ILU(O) structure which is identical to that of the 
stiffness matrix is disturbed. After two processors, the increase in the number 
of iterations is more steady. The actual rate of this increase falls as we 
go on to larger block sizes. This is because the increase in block size at 
these stages involves the dropping of fewer entries than before. The resulting 
factors consequently differ only slightly and show smaller differences in their 
performance. 

Also, a study of the effect of problem size on the performance of the 
preconditioners shows that the rate of change of the number of iterations is 
very similar for different problem sizes. Similar results are obtained in [10] 
and [11] where the above issues are also discussed. 
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7.4.4 Parallel Implementation: Experimental Results 

In this section we have presented the results of tests for our parallel imple
mentations. Tables 7.6 and 7.7 relate to the performance of independent 
columns preconditioners as mentioned in the previous section. In the other 
tables presented in this section, letters A-G refer to peG steps (see section 
7.2), row and rb refer to row and red-black node orderings respectively and 
the other headings are defined as in section 7.3.1. All times are in seconds. 

Tables 7.8 to 7.11 present the performance of level scheduling for dif
ferent mesh sizes. The performance of the independent columns method is 
presented in tables 7.12 to 7.15. For the level scheduling tables, the num
ber of iterations are fixed because the preconditioner does not vary with Np 
whereas for the independent columns tables each block size is associated with 
a different preconditioner. For both methods we have shown the variation 
of the time taken for one iteration, the total solution time and the speed up 
with increasing Np • 

The speed ups are computed as the ratio between the sequential solu
tion times with an ILU(O) preconditioner (see tables 7.1 and 7.2) and the 
parallel solution time including the time spent forming the appropriate pre
conditioner. The latter varies with block size for the independent columns 
method and is hence specified in the relevant tables together with other in
formation relating to a particular block size. Tables 7.11 and 7.15 show how 
the two parallelisation schemes speed up the preconditioning step. A break
down of the speed ups for the non-preconditioning steps (row ordering) is 
also presented (table 7.16) to show how efficiently they are parallelised. 

The actual sequential time taken to solve the equations for a 40401 node 
row ordered mesh is about 1400 seconds. This is over twelve times more 
than the time taken to assemble the stiffness matrix (see section 6.6) show
ing that, as expected, the solution phase dominates the processing time for 
finite element analysis. The cost of obtaining the level scheduling informa
tion adds about 30 percent on to the cost of obtaining the preconditioner 
(see section 7.4.1). The cost of obtaining suitable preconditioners for the in
dependent columns method is only slightly larger than the cost of computing 
the standard 1L U (0) factors. 

As mentioned above, all preprocessing costs have been taken into account 
in the computation of the speed ups for both methods. For the independent 
columns method this consists of the cost of computing the preconditioner. 
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Table 7.6: Performance of The Independent Columns Preconditioner - Row 
ordering 

Number of Iterations 
Size CG full Block size (Np ) 

(nodes) ILU(O) 2 4 6 8 10 12 24 48 96 192 
2601 63 31 42 48 53 57 59 60 61 62 63 63 
10201 130 60 82 91 102 110 117 122 127 127 128 130 
40401 265 118 152 164 189 201 219 234 248 257 262 263 

Table 7.7: Performance of the Independent Columns Preconditioner - Red
black ordering 

Number of Iterations 
Size CG full Block size (Np) 

(nodes) ILU(O) 2 4 6 8 10 12 24 48 96 192 
2601 57 28 34 38 41 44 47 49 51 54 57 57 
10201 112 55 68 77 85 91 94 96 103 106 109 111 

40401 231 105 121 132 140 146 150 152 174 191 201 212 

For level scheduling, the preprocessing costs consist of the cost of computing 
the preconditioner plus the cost of obtaining the level scheduling information. 
The results are discussed in section 7.5.2. 

384 
63 
130 
265 

384 768 
57 57 
112 112 
229 231 
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Table 7.8: Performance of Level Scheduling - 2601 nodes -
niter=31 (row ),28( rb ),precond=1.34s( row ),1.30s(rb) 

time per iter total Sp 
Np row rb row rb row rb 
1 0.66 0.58 21.88 17.68 0.95 0.99 
2 0.34 0.30 11.88 9.72 1.75 1.85 
4 0.18 0.15 6.92 5.45 3.00 3.21 
6 0.13 0.09 5.36 3.87 3.88 4.52 
8 0.11 0.08 4.90 3.41 4.24 5.13 
10 0.13 0.07 5.24 3.23 3.97 5.42 
12 0.13 0.06 5.39 3.10 3.86 5.65 

Table 7.9: Performance of Level Scheduling - 10201 nodes -
niter=60(row) 55(rb) precond=5.61s(row),5.29s(rb) , , 

time per iter total Sp 

Np row rb row rb row rb 

1 2.81 2.54 174.21 145.01 0.94 0.99 

2 1.46 1.30 93.14 76.79 1.76 1.86 

4 0.75 0.68 50.61 42.73 3.24 3.36 

6 0.52 0.46 36.67 30.54 4.47 4.70 

8 0.44 0.35 31.89 24.37 5.14 5.89 

10 0.51 0.30 36.03 21.82 4.55 6.58 

12 0.53 0.27 37.34 20.28 4.39 7.08 
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Table 7.10: Performance of Level Scheduling - 40401 nodes -
niter=118(row ),105(rb ),precond=40.12s(row) ,37 .25s(rb) 

time per iter total Sp 
Np row rb row rb row rb 
1 12.56 10.24 1522.20 1112.47 0.92 0.98 
2 6.31 5.13 784.70 576.84 1.78 1.89 
4 3.17 2.68 414.18 318.78 3.38 3.42 
6 2.25 1.75 305.04 221.14 4.59 4.93 
8 1.80 1.33 252.73 176.41 5.54 6.18 
11 1.97 1.16 272.40 158.69 5.14 6.87 
12 2.12 1.07 290.49 149.55 4.82 7.29 

Table 7 11' Performance of Level Scheduling - Step E only 
Speed Up 

2601 nodes 10201 nodes 40401 nodes 

Np row rb row rb row rb 

1 0.96 0.99 0.96 0.99 0.95 0.98 

2 1.63 1.71 1.65 1.73 1.75 1.79 

4 2.78 2.95 3.20 3.28 3.27 3.33 

6 2.85 3.61 3.80 3.89 3.86 4.19 

8 2.98 4.32 4.05 4.69 4.59 5.22 

10 2.62 4.93 3.16 5.12 3.80 5.82 

12 2.41 5.01 3.01 .5.81 3.34 6.10 
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Table 7.12: Performance of Independent Columns - 2601 nodes 

Block niter time per iter precond total Sp 
size (Np) row rb row rb row rb row rb row rb 
1 31 28 0.66 0.61 1.20 1.09 21.66 18.04 0.96 0.97 
2 42 34 0.28 0.28 1.22 1.10 13.08 10.80 1.59 1.62 
4 48 38 0.19 0.13 1.24 1.12 10.34 6.23 2.01 2.81 
6 53 41 0.13 0.08 1.27 1.14 8.12 4.46 2.56 3.92 

8 57 44 0.10 0.06 1.30 1.17 6.86 3.83 3.03 4.57 
10 59 47 0.10 0.05 1.34 1.20 7.05 3.61 2.95 4.85 

12 60 49 0.10 0.05 1.41 1.23 7.37 3.48 2.82 5.03 

Table 7.13: Performance of Independent Columns - 10201 nodes 

Block niter time per iter precond total Sp 

size (Np ) row rb row rb row rb row rb row rb 

1 60 55 2.86 2.70 4.51 4.23 176.27 152.72 0.93 0.94 

2 82 68 1.10 1.08 4.62 4.39 94.76 77.60 1.73 1.85 

4 91 77 0.62 0.54 4.79 4..51 60.94 46.01 2.69 3.12 

6 102 85 0.37 0.36 4.86 4.63 42.91 37.58 3.82 4.36 

8 110 91 0.30 0.23 4.91 4.78 37.69 25.54 4.35 5.62 

10 117 94 0.15 0.13 5.02 4.90 39.89 22.86 4.11 6.28 

12 122 96 0.13 0.11 5.09 5.01 41.71 20.99 3.93 6.84 
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Table 7.14: Performance of Independent Columns - 40401 nodes 

Block niter time per iter precond total Sp 
size (Np) row rb row rb row rb row rb row rb 
1 118 105 13.04 11.24 34.11 30.68 1573.20 1211.36 0.89 0.90 
2 152 121 4.91 4.55 35.36 32.02 782.21 583.01 1.79 1.87 
4 164 132 2.62 2.18 36.12 32.96 465.17 320.65 3.01 3.40 
6 189 140 1.70 1.35 37.01 33.89 358.09 222.95 3.91 4.89 
8 201 146 1.25 0.98 37.92 34.78 289.89 178.14 4.83 6.12 
10 219 150 1.22 0.80 38.81 35.81 306.38 156.19 4.57 6.98 
12 234 152 1.23 0.77 39.95 36.79 329.45 153.37 4.25 7.11 

Table 7 15' Performance of Independent Columns - Step E only 
Speed Up 

2601 nodes 10201 nodes 40401 nodes 

Np row rb row rb row rb 

1 0.97 0.98 0.94 0.96 0.91 0.93 

2 1.42 1.49 1.61 1.72 1.65 1.82 

4 1.87 2.24 2.31 2.69 2.40 2.89 

6 2.01 3.09 3.16 3.39 3.22 3.95 

8 2.42 3.59 3.57 4.26 3.64 5.19 

10 2.11 3.94 3.28 4.97 3.40 5.89 

12 2.06 4.14 3.09 5.25 3.12 6.12 
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Table 7.16: Speed ups for all non-preconditioning PCG steps - 40401 nodes 
- row ordering 

PCG Step 
Np A B C+D F G 
2 1.94 1.92 1.85 1.84 1.87 
4 3.62 3.59 3.71 3.67 3.59 
6 4.94 4.82 4.79 4.77 4.85 
8 6.01 5.92 6.21 6.34 6.15 
10 8.19 7.81 7.75 7.81 8.02 
12 10.01 9.53 9.89 9.14 9.96 
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7.5 Analysis Of Parallelism 

In this section we shall construct a model for the estimation of the theoretical 
parallelism of the level scheduling algorithm. A detailed discussion of the 
experimental results for level scheduling and independent columns is then 
presented. This includes a comparison between actual and theoretical speed 
ups for level scheduling. 

7.5.1 Theoretical Analysis 

The theoretical model used in this section is similar to that in [2]. Our aim 
here is to analyse the average parallelism for the level scheduling algorithm. 
We shall make the assumption that the time taken to solve one row equation 
in the triangular system is constant. This is a reasonable assumption for 
the type of test matrices we have used since these have an almost constant 
number of non-zero entries per row (ie. A, Land U). 

Let us now define a time step as the time required to solve one row equa
tion. According to this definition, solving four equations on two processors 
and solving three equations on two processors both require two time steps. 
We have consequently provided some means of accounting for the efficiency 
lost when the work at each level is not evenly balanced among the processors. 

We can now define the parallelism for a particular problem as 

number of tasks completed 
average parallelism = . 

number of steps requzred 

where the number of tasks completed is the number of rows and the number 

of steps is given by 

_ NLEV ilLEVEL(l + 1) -ILEVEL(I)l. 
number of steps - L N 

[=1 P 

Using the above definitions, we have calculated the average parallelism for 
the three mesh sizes in section 7.4.4 using both row and red-black orderings. 

These are presented in tables 7.17 and 7.18. 
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Table 7.17: Theoretical vs Actual Speed ups for Level Scheduling - Row 
ordering 

Speed Up 
2601 nodes 10201 nodes 40401 nodes 

Np Theo. Act. Theo. Act. Theo. Act. 
2 1.95 1.63 1.97 1.65 1.99 1.75 
4 3.70 2.78 3.80 3.20 3.93 3.27 
6 5.27 2.85 5.49 3.80 5.78 3.86 
8 6.70 2.98 7.07 4.05 7.57 4.59 
10 7.79 2.62 9.16 3.16 9.55 3.80 
12 9.91 2.41 10.12 3.01 10.52 3.34 

Table 7.18: Theoretical vs Actual Speed ups for Level Scheduling - Red-black 

ordering 
Speed Up 

2601 nodes 10201 nodes 40401 nodes 

Np Theo. Act. Theo. Act. Theo. Act. 

2 1.96 1.71 1.98 1.73 1.99 1.79 

4 3.73 2.95 3.82 3.28 3.94 3.33 

6 5.32 3.61 5.56 3.89 5.80 4.19 

8 6.76 4.32 7.12 4.69 7.64 5.22 

10 7.87 4.93 9.24 5.12 9.60 5.82 

12 9.96 5.01 10.31 5.81 10.65 6.10 
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7.5.2 Discussion Of Results 

As expected for both methods the overall solution process and the precondi
tioning step parallelise better for larger meshes due to increased granularity 
(see tables 7.8 to 7.11). The best overall speed up obtained is 7.29 on 12 
processors using level scheduling. This indicates that we are paying fairly 
large synchronisation costs for large Np which reduces the computation to 
communication ratio significantly even for the 40401 node mesh. This is very 
much influenced by the length and number of levels in the preconditioning 
step and the effect of these on the load balancing (see below). 

The overall speed ups are greater than those for the preconditioning step 
which indicates that the other peG steps are parallelised more efficiently 
than this step. The non-preconditioning steps parallelise similarly in terms 
of the speed ups obtained. The parallel efficiencies arf' ver,Y high and in some 
cases near ideal (see tables 7.11 and 7.15), As expected, the best efficiencies 
are yielded with smaller numbers of processors. 

For level scheduling, even though the average level length is quite satis
factory for large meshes (see section 7.4.3), the degradation due to the short 
levels is not insignificant. Therefore we would expect better performance if 
there were very few short levels and many with length near or more than the 
average length. The short levels bring about inefficiency in two ways. Firstly, 
if there are many of these we need to synchronise with small granularity too 
often. Secondly, for large numbers of processors, there could be several idle 
tasks at each level since we only assign one row per task. 

The theoretical average speed ups are very near ideal for both orderings 
(see tables 7.17 and 7.18). The actual results are comparable to theoretical 
values for small Np but for large numbers of processors we observe much 
poorer performance than theoretically possible. The reasons given above 
account for this difference together with the overheads associated with setting 
up and managing parallel tasks. The difference between the two sets of speed 
ups is also significantly smaller for red- black ordering, especially for the larger 
meshes. This can be explained by the improved parallel performance of the 

red-black ordered preconditioners (see below). 
Most of the actual level scheduling speed ups for the preconditioning 

step are in the range 2-5 (see table 7.11). The speed ups reported in a 
similar implementation on an Alliant FX/8 [85J are in the same range. Better 
efficiency can be obtained by processing meshes with long levels and many 
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entries per level. The maximum theoretical speed up for any mesh size 
can not exceed TOT NOD / N LEV. This is independent of the number of 
processors used. 

The speed ups for the independent columns scheme are influenced by 
the distribution of entries in each block of columns. We should expect to 
obtain maximum efficiency when the columns are almost equally full such 
that minimal time is spent by idle tasks waiting for other columns to be 
processed. The granularity for this scheme is determined by the number 
of entries in each column. We should consequently expect higher parallel 
efficiency for larger problems since the average number of entries per column 
is higher. This is confirmed by the results in tables 7.12 to 7.15. We could 
also benefit from better load balancing by designing the preconditioner such 
that the columns in the same block have equal or nearly equal numbers of 
entries. Better parallel efficiencies are consequently obtained for red-black 
ordering. 

The speed ups for the independent columns method are also dependent 
on the entry distribution in each block. This is determined by the order
ing scheme used. The actual speed ups are quite similar to those for level 
scheduling which indicates that the scheme is efficient for preconditioning 
operations. The best overall speed up obtained using independent columns 
is 7.11 on 12 processors which is quite close to that for level scheduling (7.29 

on 12 processors). 
We can see that both methods provide us with convenient and inexpensive 

means of parallelising the triangular solves associated with preconditioning 
operations. Good speed ups can be obtained if the preconditioning matrices 

have reasonable structures. 
The performance of preconditioners for a row-ordered mesh suited to 

the independent columns scheme is satisfactory (see table 7.6). In order to 
obtain more efficient preconditioners it is useful to reorder the stiffness matrix 
before factorization such that the subsequent dropping of entries preserves 
the original structure to a greater extent. One could also use a more suitable 
ordering to produce the same effect. The performance of our independent 
columns preconditioners for red-black ordering are examples of such a case. 

Experiments in [10] compare speedometer and red-black orderings. The 
results obtained show that both orderings yield effective preconditioners. Or
derings such as minimum degree which do not cluster the entries near the 
diagonal are also likely to be suited to this scheme. Due to the scattered 
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sparsity pattern associated with such orderings we are likely to have to drop 
fewer entries to obtain suitable preconditioners. We need to take such mea
s~res to reduce the number of extra iterations when increasing the block 
SIze. 

One more consideration concerning the formation of good preconditioners 
relates to the level of fill-in allowed. It is likely that most of the important 
entries will be level 1 or 2 (see sections 2.3.4 and 3.2.2 and [14]). We could 
consequently aim to include such low level fill-ins in the factors rather than 
those in higher levels. This has been discussed in more detail in section 3.2.2. 

The above modifications to the basic scheme for the formation of suitable 
preconditioners for the independent columns method a.im to improve the 
quality of the factors (ie. the preconditioner) by obtaining a more accurate 
picture of the stiffness matrix. The larger entries are more important for 
achieving this and hence their preservation is aimed for in the above schemes. 
The use of the mentioned modifications can be the subject of experiments 
involving the design of other suitable preconditioners. 

An implementation preserving the largest entries in each block of columns 
has not improved the quality of row and red-black ordered preconditioners 
significantly (see section 7.3.3). However, other orderings (eg. minimum 
degree) might benefit from this measure. We have also discussed the perfor
mance of the independent columns method on a transputer array in [10] and 

[llJ. 
We shall now make a detailed comparison between the quality of pre con

ditioners for the independent columns scheme produced by row and red-black 
orderings of the underlying mesh. Our aim is to examine the effectiveness of 
the preconditioners for both serial and parallel processing. 

First of all let us discuss tables 7.6 and 7.7 ie. the effect of ordering on the 
rate of convergence of incomplete ILU(O) factors. We can see that the rate 
of convergence is in general faster for red-black ordering. As we increase the 
block size and drop more entries to meet the necessary requirements for the 
independent columns scheme, the rate of convergence becomes slower. This 
is of course because the factors resemble the stiffness matrix to a lesser , , 
extent as the block size increases. What is interesting, however, is that this 
degradation in performance is smaller in the case of red-black ordering. 

The last statement shows that as we originally expected, fewer entries 
need to be dropped with red-black ordering and we consequently manage to 
preserve the authenticity of the factors with respect to the stiffness matrix 
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to a greater extent. This was, indeed, our motive for experimenting with 
this alternative ordering. By this we mean that red-black was thought to 
be a good choice of ordering for the independent columns method because it 
results in sparsity patterns which conform with the required structure to a 
certain extent (see section 7.2). 

Even though we may expect other orderings (possibly minimum degree) 
to exhibit even further improvements, we can say that mesh ordering can 
have a significant effect on the parallel performance of the preconditioners 
and that a red-black ordering appears well suited to this method. The results 
in [10] also show this ordering to perform better than speedometer ordering 
for the independent columns method. 

Let us discuss the factors determining the achievement of real gain from 
preconditioning before going on to examine the meaning of the results in the 
tables for parallel implementations using independent columns (ie. tables 
7.12 to 7.15). The costs associated with preconditioning are those due to 
the computation of the preconditioner and the extra steps required in each 
iteration. In the case of ILU preconditioning these steps correspond to the 
triangular solves at each iteration. If we are to make an overall gain from 
the use of preconditioning we need a preconditioner which: 

• is not expensive to compute 

• reduces the number of iterations significantly compared to the CG 
method 

• does not increase the cost of each iteration unreasonably 

• can be parallelised effectively. 

Tables 7.1 and 7.2 show how we make an overall gain from precondition
ing. We can see from these tables that even though the cost of each iteration 
increases when we use preconditioning, the number of iterations drops suf
ficiently to cause an overall gain. This is, of course, also related to the fact 
that the cost of obtaining our preconditioners is low. 

We shall now relate the above mentioned issues to the results in tables 
7.12 to 7.14, focusing on the second and fourth items ie. number of iterations 
and efficient parallelisation. Bearing in mind what was said in the previous 
paragraph we can see why the tables have been presented in their particular 



Chapter 7:Parallei Preconditioned Conjugate Gradients 132 

form. For each block size (ie. N p ) our ultimate aim is to determine a speed 
up which reflects the real performance of the preconditioner in a parallel 
environment. In order to achieve this we need to remember the factors men
tioned above during the computation of the speed up. This means that the 
speed ups presented in these tables take into account the cost of computing 
the preconditioner and are calculated by comparing the performance with 
Np processors to that of the fastest sequential algorithm doing the same job 
ie. the results in tables 7.1 and 7.2. 

The speed ups for level scheduling have been computed in the same man
ner. We can consequently say that for both methods the speed up figures 
indicate the net gain from using preconditioning with parallelisation. The re
sults show that both methods produce satisfactory speed ups for large enough 
meshes with a suitable ordering. 

We are now in a position to examine the core issue of parallel performance. 
Our speed up figures for different block sizes indicate that the independent 
columns method performs significantly better with red-black ordering. This 
means that not only are the serial performances of the preconditioners better, 
but also that they parallelise more efficiently. This is no longer an issue 
concerning the quality of the preconditioner but one relating to its structure. 

More precisely, the deciding factors for parallel efficiency are granularity 
and load balancing. The results indicate that our red-black preconditioners 
bring with them increased granularity. But why should the load balancing be 
any better? This is accounted for by the favourable sparsity pattern in red
black matrices. For the case of row ordering, we drop entries from the band in 
such a way that many columns end up with more entries than others. Since 
red-black matrices are already to a certain extent in the form we require, the 
dropping preserves the diagonal structure and the final matrices have many 
columns which are exactly or nearly equally full. This improves the load 

balancing significantly. 
As far as the actual speed up values are concerned we can see that, as 

expected, parallel performance improves with mesh size with a maximum 
of 7.11 on 12 processors for red-black ordering. For row ordering, the best 
performance is a speed up of 4.83 on 8 processors. We must also note that 
whereas the speed ups continue to rise for red-black ordering beyond 10 
processors, there is a fall in the speed ups for row ordering after a peak at 8 

processors. 
Let us now return to level scheduling and discuss the distribution of the 
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level lengths for row ordering. There are a large number of rows at level 
1. These have not been included in the distribution graphs 7.1-7.4. After 
level 1, the level length steadily rises and eventually falls in the same way 
(see graphs 7.1 and 7.3). The symmetry observed is due to the regularity of 
the underlying row-ordered mesh. There is a flat area in these distributions 
which corresponds to the longest levels. Graphs 7.2 and 7.4 tell us that 
approximately one third of the levels have the longest lengths. 

We can also see from graphs 7.2 and 7.4 that the same percentage of the 
levels are associated with most level lengths. The actual number of levels 
for these is 4. This means that there are 4 of most block sizes. As far as 
the variation of the distribution with problem size is concerned, we observe 
that there is a reduction in the relative size of the flat area as problem size 
increases (see graphs 7.1 and 7.3). This means that fewer levels are of the 
longest lengths for larger meshes. The actual percentage change is from 41 % 
(441 nodes) to 35% (10201 nodes) which means that the pattern is preserved 
to a large extent with increased problem size. 

Another important relevant issue is the relation between the level length 
distribution and parallel efficiency. We ideally want the distribution to have 
the shape of a tall and narrow rectangle so that the number of levels is small 
and these are all long relative to the number of processors. Furthermore, if 
Np divides exactly into the lengths of the levels then we have no idle proces
sors. Otherwise, the remainder rows in each level have to be processed using 
fewer than Np processors leaving some processors idle. Also, the broader the 
distribution, the greater are the number of synchronisation points. This is 
why we desire narrow rectangles. If there are many short levels we have the 
overhead due to idle processors when Np is greater than the length of many 
of these levels. Consequently for good parallel efficiency we require: 

• A high proportion of long levels (large granularity and minimum idle 
processors for large N p ) 

• Few levels (minimum synchronisation) 

• Many level lengths divisible by Np (minimum idle processors). 

Let us now relate the above issues to our current distributions (see graphs 
7.1 and 7.3). If we use a small number of processors (eg. Np = 2), we 
shall obtain high parallel efficiency since we have very little loss due to idle 
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processors. If we use a large number of processors, we reduce the overhead 
associated with the allocation of tasks to rows at long levels but have to 
pay a large overhead due to idle processors at short levels. The speed up 
does increase as Np increases but the parallel efficiency drops due to the idle 
processors. This means that this type of distribution does not scale very well. 

It is important that Np is a factor of the level length of highest frequency 
and divides exactly into many others. One possibility is to choose the number 
of processors on the basis of the level lengths. As the problem size increases, 
it becomes safer to use large numbers of processors since the proportion of 
the remainder rows is small compared to the level lengths. 

The factors discussed above explain why the speed ups obtained for level 
scheduling are so much lower than the theoretical values (see tables 7.17 and 
7.18). Our distributions for the row-ordered mesh show that if we use a 
large number of processors compared to the short level lengths there is some 
loss in efficiency due to idle processors. Also, there are many levels in the 
distribution and this means many synchronisation points. The granularity 
for short levels is far from ideal when Np is large. Finally, many long level 
lengths are not multiples of the numbers of processors. There is a certain 
degree of improvement in some of these sources of inefficiency as the problem 
size increases. However, a more fundamental change in the distributions is 
necessary if there are to be significant improvements in the speed ups. 

Since the distributions are determined by the ordering of the underlying 
mesh, we need to seek optimal distributions by experimenting with different 
orderings. The best orderings should be those for which there are large groups 
of independent rows in the stiffness matrix such as red-black or minimum 
degree [18]. 

This brings us to the discussion of how row and red-black orderings com
pare in the case of level scheduling according to our experiments (see tables 
7.8 to 7.11). As expected, the speed ups improve with problem size for both 
orderings. The speed ups for red-black ordering are higher than those for 
row ordering but the improvement is smaller than the case of independent 
columns. This is due to the fact that the improvements in granularity and 
load balancing are more pronounced when we switch orderings for the inde
pendent columns method. The best speed up for level scheduling is 7.29 on 
12 processors for red-black ordering and 5.54 on 8 processors for row ordering. 
The improvement in speed ups stops at Np = 8 for row ordering whereas it 
continues to rise beyond Np = 10 for red-black ordering. This suggests that 
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we obtain better level length distributions with red-black ordering which in 
turn improve the granularity and load balancing. 

Finally let us make some comments referring to how level scheduling and 
the independent columns method compare in terms of parallel performance. 
Level scheduling performs better than independent columns in general as 
far as our results show. The ordering scheme used alters the performance 
of both methods and further experiments could lead to other interesting 
conclusions. Tables 7.11 and 7.15 show how effectively the two methods 
parallelise the forward and backward substitutions only. We can see from 
these tables that from this point of view the performance of independent 
columns is even closer to that of level scheduling. Level scheduling uses a 
full ILU(O) preconditioner, whereas the independent columns method uses 
an (increasingly) incomplete ILU(O) preconditioner. This accounts for some 
of the difference in the performances of the two methods. 
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8.1 Overview of Chapter 

This chapter contains our conclusions regarding all aspects of finite element 
analysis. The topics are itemised and discussed separately. Some implemen
tation details have been included to clarify the conclusions. The final section 
explains how one might build upon the work presented in the thesis. 

Our objectives have been the analysis of the finite element method with 
the aim of exploring its potential for parallelisation. We have autoparallelised 
a large finite element program (GASP4) and tested its efficiency (see chapter 
4). A study of the structure of the autoparallelised program has been made. 
We have made recommendations concerning the design of programs suitable 
for parallelising compilers. 

The FEM consists of the assembly of a stiffness matrix and the subsequent 
solution of a set of equations with the stiffness matrix as the coefficients. We 
have implemented three algorithms for the parallel assembly of the stiffness 
matrix stored in a sparse matrix format (see chapter 6). Two of these algo
rithms have proved to be very efficient giving speed ups that are near ideal. 

For the solution phase, we have used the PCG method. This method 
is suited to the solution of large sparse systems due to its low storage re
quirements and low operations count (see section :2.3.4). The main difficulty 
with parallelising this method is the preconditioning step which consists of a 
pair of triangular solves for our chosen preconditioner which is an incomplete 
factorization of the stiffness matrix. The ILU(O) preconditioner has been 
found to be an effective means of reducing the number of CG iterations. 
This preconditioner can be computed at a low cost. 

We have implemented two algorithms for parallel triangular solution. 
One is level scheduling which is a row-oriented blocking strategy (see sec
tion 7.3.2). This scheme has proved to be quite efficient (see section 7.4.4). 
The other parallel triangular solution scheme is a novel column-oriented ap
proach (independent columns) based on the parallel update of RHS entries 
using distinct columns of the coefficient matrix at each stage (see section 
7.3.3). The speed ups obtained using this method are similar to those for 
level scheduling (see section 7.4.4). We have designed methods for obtaining 
efficient preconditioners which have the necessary structure for the imple
mentation. The two methods of parallel solution have been tested for row 

and red-black orderings of the unknowns. 
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8.2 Autoparallelisation 

In order to benefit from the use of autoparallelisation the code must be writ
ten with simple and clear data dependencies. This is because if the depen
dencies are too complex then existing parallelising compilers are incapable 
of analysing these effectively enough. 

If the code is hard to analyse at higher levels, the compiler will imple
ment parallelism at lower levels where it can be sure of correctness in parallel 
processing. This gives rise to low grain parallelism which involves large syn
chronisation overheads and is unlikely to be beneficial. 

We recommend that code to be autoparaUelised is written such that the 
possibility of large grain parallelisation can be easily detected by the com
piler. For example, it would be quite efficient to run parallel copies of large 
or medium size subroutines. Subroutines must consequently be written such 
that this kind of parallel processing can be affected without the need for 
synchronisation. This requires a conscious effort on the part of the designers 
of the code who should be made aware of the prospects and limitations of 
the compiler with regards to parallelisation. A well structured program with 
simple and clear data dependencies is a necessity for efficient autoparalleli
sation. 

The autoparallelisation of GASP4 using the epj compiler proved to be 
inefficient (see section 4.4). The processing time actually increased as the 
number of processors was increased. The reason for this is the large amount of 
synchronisation overhead paid when the number of processors increases. This 
overhead is not sufficiently compensated for by a reduction in the processing 
time due to parallel processing and we consequently have a net increase in 

processing time. 
The level at which parallelism is implemented by epjin GASP4 is too low 

to be beneficial. Since the data dependencies in the program are too complex 
at higher levels, the compiler only parallelises what it is certain to work cor
rectly. This is often very low grain and hardly ever substantial. There is no 
point having several parallel tasks performing operations such as initialising 
small arrays. The overhead associated with setting up and managing these 
tasks is too high compared to the gain due to parallel execution. Further
more, this type of inefficiency increases as we use more processors. It is very 
important to allocate enough work to tasks to compensate sufficiently for the 

cost of their implementation. 
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Another source of inefficiency in the autoparallelised version of GASP4 is 
the presence of a great deal of low level synchronisation (see section 4.4.2). 
This means that parallel tasks are required to communicate a large number of 
times during the execution of a few lines of code. This is again due to the lack 
of ability of the compiler to detect possibilities for parallelisation at higher 
levels. The overheads associated with the communications necessary for im
plementing low level synchronisation can become very large. This makes it 
very difficult to obtain any real gain from such parallel implementations. 

In summary, we should say that we can only expect to benefit from the 
use of autoparallelising compilers if we have one or both of the below items: 

• We supply them with well structured code with simple and clear data 
dependencies. The code must also be written such that large grain 
parallelism is made possible. 

• The compilers are made sophisticated enough to be able to detect par
allelism even when the code is difficult to analyse. One further desirable 
feature would be the ability of the compiler to restructure the code with 
the aim of making efficient parallelisation possible. 

While we are not in possession of the second item we need to write autopar
allelisable programs bearing in mind the points discussed above. 

We have obtained some speed up by hand parallelising parts of GASP4 
(see section 4.5.2). Strategies such as accumulating local sums to reduce the 
overhead due to critical sections and processing parallel blocks of DO loop 
indices to avoid the cost of DOALL constructs have been used to provide 
efficient parallel processing. In order to parallelise more of the program we 
would require a detailed understanding of the data dependencies so that the 
code can be restructured and written as an efficient parallel program with 

the appropriate granularity. 

8.3 Parallel Assembly 

We have identified the sources of contention for the parallel assembly of 
different elements into a sparse representation of the stiffness matrix (see 
section 6.2). These are due to the sharing of nodes by different elements 
which means that the same entry in the overall matrix can be dependent 



Chapter 8:Conclusions 140 

on several entries in different element matrices. We also need to control 
inadvertent access to the table subscript by parallel tasks. Three different 
methods of parallel sparse assembly have been designed. 

It is not efficient to allow parallel assembly into the same row of the overall 
stiffness matrix by parallel tasks assembling their respective element matrices 
(see section 6.3). Each of these will be assembling different parts of the 
same row with the possibility of a shared overall entry. The synchronisation 
required to control this type of contention has to be implemented at low 
levels giving rise to small granularity and large overheads. A synchronisation 
LOCK provides mutually exclusive access to the table entries by parallel tasks 
during row creation and entry insertion. A CRITICAL SECTION primitive 
is used to protect the update of existing table entries. 

As mentioned above, the low grain parallelisation used is inefficient. This 
source of inefficiency degrades the parallel performance and the speed ups 
obtained are far from ideal. The loss in efficiency is more pronounced for 
large numbers of processors (ie. Np 2: 6). With 4 processors, the speed up is 
2.53 and when using 12 processors this is only increased to 5.52 (see section 

6.6). 
The idea in performing parallel assembly of different rows only (see section 

6.4) is to remove the contention problem associated with the sharing of nodes 
by different elements. If we can be sure that at anyone time one particular 
row of the overall stiffness matrix is created or updated by only a single task 
then we only need to protect the table subscript during the parallel assembly 

of different rows. 
Each row of the stiffness matrix has associated with it a unique LOCK 

variable. This ROWLOCK is checked by each task attempting to create 
or update a row. If the ROWLOCK is free the task proceeds. Otherwise 
it is suspended at that point awaiting a signal by another task currently 
processing the row (ie. holding the ROWLOCK). This is an efficient way of 
performing parallel sparse assembly (see section 6.6). The only substantial 
overhead is due to the tasks waiting on a ROWLOCK. The speed ups are 
now nearer ideal at 3.37 for Np = 4 and 7.07 for Np = 12. 

Further improvement in the efficiency of parallel assembly of different 
rows is possible by the reduction in the waiting time on ROWLOCK's. This 
can be achieved by a reordering of the assembly sequence such that disjoint 
elements are assembled simultaneously as far as possible (see section 6.5). 
A colouring strategy is used to group disjoint elements such that the mesh 
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is divided into several colours. Instead of the parallel assembly of different 
elements at random we now assemble adjacent elements first by processing 
the colours in sequence. The waiting on ROWLOCK's only occurs at the 
boundary of the colours. This brings about a significant reduction in waiting 
time with a low preprocessing cost. The speed ups for this improved version 
of parallel assembly of different rows have increased to 3.77 for Np = 4 and 
10.01 for Np = 12 (see section 6.6). 

Finally, we should comment on the general effect of problem size and 
increasing numbers of processors on parallel efficiency. As can be seen from 
table 6.2, the speed ups improve as problem size increases. This is because 
for larger problems the granularity is increased and the synchronisation over
heads are better compensated for by the reduction in processing time due to 
parallel execution. This means that each task is now doing more work be
fore it needs to communicate and the computation to communication ratio 
is higher. This increases the pa.ra.llel efficiency. 

For a given problem size, as we increase the number of processors we 
observe a reduction in the parallel efficiency (see table 6.1). This is because 
as N p increases we have to pay an increasing amount of overhead associated 
with the setting up and management of parallel tasks. If the granularity 
happens to be low then the usage of a large number of processors causes a 
large amount of inefficiency due to a small computation to communication 
ratio. For large Np there is also a greater chance of having idle processors. 
All these factors account for a drop in the parallel efficiency as N p increases. 
We have aimed to minimise this effect by bearing in mind the above factors 

at the design stage. 

8.4 Parallel Solution 

We have implemented the PCG method in parallel. The profile of the method 
is such that most of the time is spent on performing matrix multiplications 
and the triangular solves (see section 7.4.1). The ILU(O) preconditioner is 
found to be an efficient means of reducing the number of iterations. The 
formation of this preconditioner involves a low cost (see section 7.4.1). 

All the PCG steps are straightforward to parallelise apart from the pre
conditioning operations (triangular solves for lL U preconditioning). The 
speed ups for the non-preconditioning steps are near ideal (see table 7.16). 
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We have implemented parallel triangular solves using level scheduling and a 
new method involving parallel update with independent columns. Both meth
ods have been tested with row and red-black orderings of the unknowns. 

Level scheduling is based on a blocking abstraction in which independent 
rows of the coefficient matrix are identified and grouped together in levels 
(see section 7.3.2). These levels must then be processed in sequence while 
within each level the rows can be processed concurrently. The independent 
columns scheme is a column-oriented approach to parallel triangular solution 
(see section 7.3.3). At each stage of this method a number of unknowns are 
computed and used in the simultaneous update of distinct RHS entries (using 
distinct columns). For this parallel update to be possible, the Land U factors 
must have a certain structure. 

Level scheduling has proved to be quite efficient giving rise to speed ups 
which are mostly in the range 2 - 5 with a maximum of 6.10 on 12 processors 
for red-black ordering (see table 7.11). These are comparable to theoretical 
speed ups for small Np but for large numbers of processors the theoretical 
values are much higher (see tables 7.17 and 7.18). The reasons for this differ
ence are non-optimal level length distributions (see below and section 7.5.2) 
and large overheads when using many processors. The speed ups increase 
with problem size due to increased granularity. 

The independent columns scheme gives similar speed ups to level schedul
ing (see tables 7.12 to 7.15). The parallel efficiency of this scheme is deter
mined by the distribution of the entries in each block of columns and the 
average number of entries per column in the block. An even distribution 
of entries minimises the overhead due to idle processors waiting for dense 
columns. As the problem size increases, the average number of entries per 
column becomes larger and this increase in granularity increases the parallel 
efficiency. We could also improve the load balancing by aiming to have equal 
or nearly equal numbers of entries in columns of the same block. The speed 
ups obtained using independent columns indicate that the entry distributions 
for row ordering are not ideal for minimising idle processor time. 

The above considerations are necessary for improving the parallel perfor
mance of this scheme. This has been the motive behind testing the indepen
dent columns scheme with an alternative ordering ie. red-black. We have 
obtained improved performance with the latter ordering (see tables 7.12 to 
7.15). The reasons for this improvement are discussed below (also see section 

7.5.2). 
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In order to obtain suitable preconditioners for the independent columns 
scheme we have performed an LU factorization during which entries which 
disturb the independence requirements are dropped (see section 7.3.3). The 
performance of these preconditioners is satisfactory for both orderings (see 
tables 7.6 and 7.7). We observe an expected increase in the number of itera
tions as the block size increases. This is due to the fact that we need to drop 
an increasing number of entries during factorization to satisfy the indepen
dence requirements and the factors become less effective. There is, however, 
an overall reduction in the solution time due to using the method (see tables 
7.12 to 7.14). This means that even though we sacrifice a few more iterations 
each time we increase the block size, this is compensated for sufficiently by 
the reduction in processing time due to the possibility of parallel processing. 

The best speed up obtained due to the independent columns scheme is 
7.11 on 12 processors (see table 7.14). The mentioned speed ups are owed 
to the design of efficient preconditioners (see tables 7.6 and 7.7). The im
provement due to the use of red-black ordering is due to the fact that the 
performance of red-black preconditioners is not degraded to a large extent as 
block size is increased. We have consequently obtained a more suitable or
dering of the underlying mesh. Other possible candidates are orderings such 
as minimum degree which are also likely to require the dropping of small 
numbers of entries. This issue has also been discussed in section 7.5.2. 

Our implementation aiming to preserve the largest entries in each block of 
columns in order to improve the quality of the preconditioner has not resulted 
in significantly faster rates of convergence (see section 7.3.3). Other orderings 
(eg. minimum degree) might benefit from such a scheme to a greater extent. 

One further point must be made regarding the structure of the precondi
tioners for the independent columns scheme. If we allow non-diagonal entries 
into the Li blocks (see figure 7.5, page 106), the effectiveness of the precondi
tioner will be enhanced due to the extra entries. There will, however, be an 
increased amount of work to be done during the first step of the algorithm ie. 
the determination of the solution subvector (see section 7.3.3). This must be 
done using a triangular solve since the parallel division possible for the case 
of a diagonal Li is no longer possi ble. A study of the effect of this trade-off 
on the efficiency of the algorithm can give rise to interesting results. 

Let us now discuss further the reasons for the improved convergence rates 
obtained using red-black incomplete ILU(O) preconditioners (see tables 7.6 
and 7.7). For both orderings, as the block size increases the rate of con-
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vergence becomes slower. In the case of red-black ordering, however, this 
degradation in performance due to an increasing number of dropped entries 
is smaller. This is because fewer entries need to be dropped in the red-black 
case for each block size since the entries are already scattered in the form 
required by the independent columns method to a certain extent (see section 
7.2). 

We can see from tables 7.12 to 7.15 that the speed ups for the independent 
columns method are affected by the choice of ordering to a great extent. The 
speed ups obtained using red-black ordering are significantly higher than 
those for row ordering. This is due to better load balancing associated with 
red-black ordering which minimises idle processor time (see section 7.5.2). 
Also, the granularity due to the processing of larger meshes accounts for the 
fact that for both orderings the best parallel efficiencies are obtained for the 
largest problem sizes. 

In order to benefit from level scheduling we need many levels with large 
lengths relative to the number of processors. This will ensure large granular
ity which is essential for good parallel efficiency. The distribution of the level 
lengths for row ordering is such that around one third of the levels have the 
largest level length (see graphs 7.1 to 7.4). This means that we can expect 
better performance from orderings which produce a more uniform distribu
tion with a larger number of long levels. The processing of short levels is 
inefficient, especially for large numbers of processors, since we not only have 
many synchronisation points but also some idle processors. 

This calls for a comparison between row and red-black orderings with 
regards to their parallel performance using level scheduling. The speed ups 
for red-black ordering are higher than those for row ordering in general (see 
tables 7.8 to 7.11). This is because we obtain better level length distributions 
with red-black ordering which improve the granularity and load balancing 

(see section 7.5.2). 
We shall now address the issue of an optimal number of processors for 

level scheduling. By looking at the level length distribution graphs we can see 
that for row ordering the least amount of overhead would be paid by using a 
number of processors approximately equal to the average level length. This 
is because even though the speed up increases with Np , we pay an increasing 
amount of overhead due to idle processors during the processing of short 
levels. For maximum parallel efficiency we need to seek an optimal trade
off such that we use as many processors as possible without paying a large 
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cost due to idle processors. As mentioned above, this occurs at around the 
average level length. 

The most efficient level length distributions must have the shape of tall 
and narrow rectangles ensuring a small number of levels all with large level 
lengths (ie. large granularity). It is also important that Np divides exactly 
into many large level lengths. We can then be sure that when processing 
these levels there is no significant loss due to idle processors. This is an issue 
because the cost of idle processors during the processing of left over rows at 
each level can become large. The improved parallel performance associated 
with red-black ordering suggests that the sparsity pattern for this ordering 
is more suited to the achievement of minimum idle processor time. 

8.5 Suggestions for Future Work 

The independent columns scheme seems to have a great deal of potential for 
performing efficient triangular solves. It would be interesting to investigate 
further the formation of other suitable preconditioners for this scheme. This 
should be done in terms of experimenting on different orderings of the un
derlying mesh. We need preconditioners (L and U factors) which conform to 
the desired structure closely such that the dropping of entries during factor
ization does not degrade the rate of convergence adversely. 

The parallel efficiency of the independent columns scheme can also be 
improved by the use of orderings which produce more uniform entry distri
butions in each block of columns. Some such orderings may also benefit from 
schemes such as preserving the largest entries in each block of columns. 

The level scheduling scheme can also benefit from more suitable orderings. 
It would be useful to experiment on the effect of ordering on level length 
distributions since it is the latter that ultimately dictate the efficiency of the 
level scheduled scheme. The aim should be to determine which orderings 
produce distributions with fewer and longer levels. 

The parallel assembly code has been ported and run successfully on a 
British Gas Cray computer. The code for the parallel solution schemes will 

be ported next. 
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