
Parallel Implementation of The Finite
Element Method on Shared Memory

Multiprocessors

M.Pakzad

NEWCASTLE UNIVERSITY LIBRARY

094 52494 1

Ph.D. Thesis

Department of Computing Science
University of Newcastle upon Tyne

1995

Abstract

The work presented in this thesis concerns parallel methods for finite element
analysis. The research has been funded by British Gas and some of the presented
material involves work on their software. Practical problems involving the finite
element method can use a large amount of processing power and the execution
times can be very large. It is consequently important to investigate the possibilities
for the parallel implementation of the method. The research has been carried out
on an Encore Multimax, a shared memory multiprocessor with 14 identical CPU's.

We firstly experimented on autoparallelising a large British Gas finite element
program (GASP4) using Encore's parallelising Fortran compiler (epf). The par
allel program generated by epj proved not to be efficient. The main reasons are
the complexity of the code and small grain parallelism. Since the program is hard
to analyse for the compiler at high levels, only small grain parallelism has been
inserted automatically into the code. This involves a great deal of low level syn
chronisations which produce large overheads and cause inefficiency. A detailed
analysis of the autoparallelised code has been made with a view to determining
the reasons for the inefficiency. Suggestions have also been made about writing
programs such that they are suitable for efficient autoparallelisation.

The finite element method consists of the assembly of a stiffness matrix and
the solution of a set of simultaneous linear equations. A sparse representation of
the stiffness matrix has been used to allow experimentation on large problems.
Parallel assembly techniques for the sparse representation have been developed.
Some of these methods have proved to be very efficient giving speed ups that are
near ideal.

For the solution phase, we have used the preconditioned conjugate gradient
method (PCG). An incomplete LU factorization ofthe stiffness matrix with no fill
in (ILU(O)) has been found to be an effective preconditioner. The factors can be
obtained at a low cost. We have parallelised all the steps of the PCG method. The
main bottleneck is the triangular solves (preconditioning operations) at each step.
Two parallel methods of triangular solution have been implemented. One is based
on level scheduling (row-oriented parallelism) and the other is a new approach
called independent columns (column-oriented parallelism). The algorithms have
been tested for row and red-black orderings of the nodal unknowns in the finite
element meshes considered.

The best speed ups obtained are 7.29 (on 12 processors) for level scheduling
and 7.11 (on 12 processors) for independent columns. Red-black ordering gives
rise to better parallel performance than row ordering in general. An analysis of
methods for the improvement of the parallel efficiency has been made.

Acknow ledgements

I would like to express my sincere gratitude and acknowledge my
debt to the following:

• Dr.J .L.Lloyd for his patient supervision

• Dr.C.Phillips for his invaluable help and guidance

• Dr.P.K.Jimack for his helpful suggestions

• Mr.Luiz E. Buzato, Mr.Ehsan Mesbahi and Mr.Saeed Taghavi
for their help in preparing the text

• British Gas for providing the funding

Publications

The work described in this thesis is entirely my own. Some mate
rial related to that described in chapter 7 of this thesis, concern
ing the implementation of parallel solvers for finite element-type
problems on distributed memory systems conducted jointly with
Dr.R.Cook and Dr.C.Phillips has been published in the following:

• Cook,R.,Pakzad.,M.,and Phillips,C.,Parallel Implementation
of Conjugate Gradient- Type M ethods,presented at The Sixth
International Conference on Scientific Computing, University
of Benin,Nigeria, 24-28 Jan.1994.

• Cook,R.,Pakzad.,M.,and Phillips,C.,Parallel Preconditioners
for the Conjugate Gradient Method,Tech.Rept.No.467,Dept.
Comput. Sci., Univ.Newcastle upon Tyne,1994.

II

Contents

Abstract

Acknowledgements 11

Publications 11

1 Introduction 1
1.1 Overview of Chapter 2
1.2 Aims......... 2
1.3 Types of Parallel Computers 4

1.3.1 Pipeline Computers. 5
1.3.2 Array Processors . . 5
1.3.3 Multiprocessor Systems. 6

1.4 Using Shared Memory Machines 9
1.5 Parallel Program Design Strategies for Shared Memory Machines 11
1.6 Some Terminology .. 12
1. 7 Organisation of Thesis .. 13

2 The Finite Element Method and Linear Equation Solvers 14
2.1 Overview of Chapter 15
2.2 The Finite Element Method 15

2.2.1 Uses of the Method. 15
2.2.2 The Method. 15
2.2.3 Mathematical Formulation 16

2.3 Steps Of The Method. 20
2.3.1 Discretisation....... 20
2.3.2 Evaluation of element matrices 22

III

Contents IV

2.3.3 Assembly Phase 26
2.3.4 Solution Phase 29

2.4 Some Applications of the Finite Element Method 36
2.4.1 GASP4 - A Program for Pipework Stress Analysis. 36
2.4.2 CRISP - Critical State Program for Geotechnical Ap-

plications 38
2.4.3 DYN A3D - Impact Analysis 39

2.5 Scope for Parallelism 40

3 Literature Review
3.1 Overview of Chapter
3.2 The Review

3.2.1 Miscellaneous Topics
3.2.2 PCG Related Works

4 Parallelisation of GASP4
4.1 Overview of Chapter
4.2 Program Description ..
4.3 Execution Profile
4.4 Parallelisation Using the epj Compiler.

4.4.1 The Compiler
4.4.2 The Parallel Program .. .
4.4.3 Timing Results

4.5 Ideas for Efficient Parallelisation .
4.5.1 Reasons for Inefficiency ..
4.5.2 Ideas for Hand Parallelisation

41
42
42
42
53

57
58
58
59
61
61
62
66
67
67
68

4.5.3 Some Suggestions for Approaching Parallelisation 71

5 The Model Program
5.1 Overview of Chapter
5.2 The Model
5.3 Storing The Stiffness Matrix
5.4 An example run

6 Parallel Assembly Methods
6.1 Overview of Chapter .
6.2 Sources of Contention. . .

73
74
74
76
78

81
82
82

v

6.3 Method 1 : Parallel assembly of the same rows " 83
6.4 Method 2 : Parallel assembly of different rows 85
6.5 Method 3 : Parallel assembly of different rows - improved version 87
6.6 Results........ 89
6.7 Discussion of Results 93

7 Parallel Preconditioned Conjugate Gradients 96
7.1 Overview of Chapter . . 97
7.2 Scope For Parallelism. 97
7.3 Parallel Preconditioning 100

7.3.1 Formation And Effectiveness Of The ILU(O) Precondi-
tioner 100

7.3.2 Level Scheduling 103
7.3.3 Independent Columns 105

7.4 Parallelising The Main Iteration Loop. 109
7.4.1 Profile Of The Method 109
7.4.2 Steps Other Than The Preconditioning Operations 111
7.4.3 The Triangular Solves 112
7.4.4 Parallel Implementation: Experimental Results 119

7.5 Analysis Of Parallelism 126
7.5.1 Theoretical Analysis . 126
7.5.2 Discussion Of Results. 128

8 Conclusions 136
8.1 Overview of Chapter 137
8.2 Autoparallelisation 138
8.3 Parallel Assembly . . 139
8.4 Parallel Solution 141
8.5 Suggestions for Future Work 145

Bibliography 146

List of Figures

1.1 A typical shared memory architecture.
1.2 Task/Process/Processor Relationships.

8
9

2.1 The domain of the problem and its boundaries 17
2.2 Finite element modelling of a beam 21
2.3 Discretisation of a plane body 22
2.4 Shape functions and nodal unknowns for a rectangular element 23
2.5 A natural coordinate system 24
2.6 A triangular element 25
2.7 A two-dimensional row-ordered mesh 27
2.8 Assembly of element matrices .. 28

3.1 Domain decomposition in substructuring 43

4.1 An example of synchronisation using EVENT's 66

5.1 Sparse Representation in Tabular Format. . . 77
5.2 An example two-dimensional mesh for the model program 79

6.1 Division of a mesh into several colours 88

7.1 The sparsity pattern of a typical red-black matrix 101
7.2 The stiffness matrix and its factors for the row-ordered mesh 101
7.3 Block partitioning for Lx = b using level scheduling 103
7.4 Matrix reordered by levels 104
7.5 Matrix with blocks of independent columns. . 106
7.6 An example matrix with independent columns 107

VI

List of Tables

4.1 Performance of Autoparallelised GASP4 . 67
4.2 Performance of Hand Parallelised GASP4 . 70

6.1 Performance of the three methods of parallel assembly 89
6.2 Relation of Speed up to Problem Size for Method 3 . . 90

7.1 Performance of the ILU(O) Preconditioner (row ordering) 102
7.2 Performance of the ILU(O) Preconditioner (red-black ordering) 102
7.3 The effect of preserving largest entries on the rate of convergence109
7.4 Relative Cost of the ILU(O) Preconditioner 110
7.5 Average Level Lengths for Level Scheduling - Row ordering .. 112
7.6 Performance of The Independent Columns Preconditioner -

Row ordering . 120
7.7 Performance of the Independent Columns Preconditioner -

Red-black ordering 120
7.8 Performance of Level Scheduling - 2601 nodes . 121
7.9 Performance of Level Scheduling - 10201 nodes. 121
7.10 Performance of Level Scheduling - 40401 nodes. 122
7.11 Performance of Level Scheduling - Step E only. 122
7.12 Performance of Independent Columns - 2601 nodes 123
7.13 Performance of Independent Columns - 10201 nodes 123
7.14 Performance of Independent Columns - 40401 nodes 124
7.15 Performance of Independent Columns - Step E only 124
7.16 Speed ups for all non-preconditioning PCG steps - 40401 nodes

- row ordering . 125
7.17 Theoretical vs Actual Speed ups for Level Scheduling - Row

ordering . 127

Vll

Vlll

7.18 Theoretical vs Actual Speed ups for Level Scheduling - Red-
black ordering . 127

Chapter 1

Introduction

1

Chapter 1: Introduction 2

1.1 Overview of Chapter

This chapter firstly describes the aims of the research and motivates the need
for parallel computation. The various parallel architectures available are then
described. Since the work is to be carried out on a shared memory multipro
cessor (Encore Multimax), more detail is given about such computers than
other parallel systems. Some terminology related to parallel programming is
then given and we discuss some strategies for parallel program design. The
layout of the thesis is given in the final part of this chapter.

1.2 Aims

Many practical engineering calculations involve the solution of partial differ
ential equations on regions with complex geometrical configurations. Ana
lytical solutions are generally not possible for such problems and numerical
techniques are often used to obtain approximate solutions. The finite ele
ment method (FEM) is one such technique and is used for modelling systems
whose behaviour is governed by partial differential equations.

The aim of the research described in this thesis is to investigate the po
tential for the parallelisation of the finite element method and to design
parallel algorithms implementing this numerical technique on shared mem
ory multiprocessors. We aim to derive from this general recommendations
concerning the implementation of similar computations on shared memory
multiprocessors.

The types of engineering problems which are likely to benefit from us
ing the FEM in their analysis are diverse. These include structural analysis
problems, heat transfer problems and analysis of electromagnetic fields. The
problems essentially involve the evaluation of unknowns such as displace
ments or temperatures across an area or volume subjected to forces, heat
or other forms of energy. The partial differential equations governing these
systems can be solved numerically by the FEM leading to the evaluation of
the desired unknowns at discrete points in the domain under consideration.

The FEM gives rise to complex and time-consuming calculations. As
an example, one large British Gas program used for pipe stress analysis
(GASP4), discussed in a later chapter, takes 20 minutes to run on a VAX
8300 for each kilometre of pipe. Real problems involve many kilometres of

Chapter 1: Introduction 3

pipework.
Finite element simulations of a system under conditions of different load

ings and configurations may be required together with graphical display of
the results, perhaps in real time. The processing power required for such ap
plications can become very large and faster computing is therefore desirable,
if not essential, for the solution of large scale problems. The design and use
of parallel computers and algorithms is an important approach to gain speed
and power.

In the finite element method the domain of the problem is divided into a
number of subregions (the elements) and each element is modelled indepen
dently. The behaviour of the whole domain is modelled as the summation
of the elements' models according to their adjacency (see chapter 2). Each
element is defined by a number of nodes and represented by an element ma
trix. The matrix representing the whole structure is formed by assembling
the element matrices into one overall stiffness matrix. The element matrix
entries at common nodes are summed together and the result is the coefficient
matrix of a linear system of equations used for obtaining a set of unknowns
in the model. These can be values like displacements or temperatures at the
nodes of the problem domain.

The stiffness matrix represents the material characteristics and geometry
of the problem domain (see chapter 2). The right-hand side vector (RHS)
represents the applied forces (for a problem of structural analysis) and is
calculated according to the elements' properties (see section 2.3.2). The re
sulting displacements are the unknowns in this system of equations. The
finite element process consequently consists of the assembly of the stiffness
matrix and RHS vector and the solution of a set of simultaneous linear equa
tions. This system of equations typically has a sparse set of coefficients.
There is scope for integrating the two phases as in frontal methods [45].

Our aim has been the parallelisation of the finite element method which
involves parallel assembly of the stiffness matrix and subsequent parallel
solution of the resulting equations. Sparse representations of the stiffness
matrix are used. FE matrices are typically of such high orders that it is
not practical to store them as dense. Sparse representations can reduce the
amount of storage substantially due to the high sparsity of these matrices.
For example, in our model program (see chapter 5), a FE mesh with 10201
nodes would require over 100 million storage units if stored fully. The actual
number of entries in the stiffness matrix is 90601 ie. it is only around 0.1

Chapter 1: Introduction 4

percent full, making sparse storage very convenient.
Efficient parallel sparse techniques are difficult to design compared to the

better understood dense case. We have investigated the problems associated
with designing efficient parallel algorithms for sparse data structures. The
aim has been to design algorithms for parallel assembly of the stiffness matrix
and parallel solution of the resulting equations.

The parallel assembly methods developed have proved to be very efficient
(see chapter 6). The solution method used is the preconditioned conjugate
gradient method (peG). The reason for using this method is that it is par
ticularly suited to the solution of large sparse positive definite systems (see
section 2.3.4) ie. the type of matrices that define our model problems. The
preconditioner is an incomplete factorization of the stiffness matrix designed
to conform with the parallel solution schemes used (see chapter 7).

The solution methods consist of one row-oriented parallel solution scheme
(level scheduling) and a novel column-oriented approach to parallel solution
which we have called independent columns. The ordering of the unknowns
has a significant effect on the efficiency of such algorithms. We have tested
our implementations with row and red-black orderings. We have also made
a detailed study of the ways in which the performance of the solution algo
rithms can be improved.

Some work has also been done on using parallelising compilers to speed
up finite element programs. This work has led to conclusions regarding the
writing of code suitable for such compilers.

1.3 Types of Parallel Computers

We can divide parallel computers into three architectural configurations [44]:

• Pipeline computers (vector processors)

• Array processors

• Multiprocessor systems

We shall briefly discuss the first two classes of parallel computers below
and then give a more detailed account of multiprocessor systems and shared
memory architectures which are of particular interest to us.

Chapter 1: Introduction 5

1.3.1 Pipeline Computers

The process of executing an instruction involves instruction fetch, instruction
decode, operand fetch (if necessary) and execute. In a non-pipelined com
puter, all four of these steps must be completed before the next instruction
can be issued. In a pipelined computer, successive instructions are executed
in an overlapped fashion. Similarly, individual instructions (eg. multipli
cation) may be pipelined at a lower level. Vector pipelines are specially
designed to handle vector instructions over vector operands. Examples of
such computers are the Cray-1 and VP-200 [44].

Vector computers are used extensively for numerical applications through
vectorising compilers and/or explicitly vectorised code and produce attractive
speed ups on problems with many vector operations on long vectors. Their
performance on short vectors is less satisfactory due to start-up delays. Finite
element applications give rise to matrices with sparse rows. In order to assign
long sparse rows to vector pipelines some packing and unpacking of the rows
is generally necessary. This causes a large amount of overhead, making vector
computers not suitable for such computations. Such machines are, however,
used for sparse systems in spite of the mentioned overhead [77].

1.3.2 Array Processors

An array processor is a synchronous parallel computer with multiple arith
metic logic units that can operate in parallel in a lock-step fashion. The
processing elements are synchronised to execute the same instruction at the
same time. Each processing element consists of an Arithmetic Logic Unit
(ALU) with registers and a local memory. The processing elements are con
nected by a data-routing network. Array instructions are broadcast to the
processing elements for distributed execution over different components of
the array fetched directly from the local memories. The processing elements
are under the supervision of a control unit.

Examples of such computers are the Burroughs Scientific Processor, the
AMT DAP (Distributed Array Processor) and the Connection Machine. The
range of numbers of processors varies widely. Many array processors have
fewer than one hundred processing elements. This number is much larger
for the DAP (1024 or 4096 processors) but the processors are very elemen
tary. The Connection Machine has approximately 65k processors. Another

Chapter 1: Introduction 6

example of array processors are butterfly networks [43J. These are made of
rows of processors containing nodes which are interconnected according to
the required application.

Parallel processing algorithms have been developed by many computer
scientists for array processors. Examples of these are algorithms for matrix
multiplication, fast Fourier Transform and solving partial differential equa
tions [65J.

1.3.3 Multiprocessor Systems

A multiprocessor organisation basically consists of two or more processors
of approximately comparable capabilities. The processors may share access
to common sets of memory modules, I/O channels and peripheral devices.
The entire system is controlled either by a single integrated operating sys
tem or several communicating operating systems. These provide interactions
between processors and their programs at various levels. Besides the shared
memories and I/O devices, each processor may have its own local memory
and private devices. Inter-process communications can be done through the
shared memories, an interrupt network or by message passing. Some avail
able interconnection structures between the memories and processors are:

• Time-shared common bus

• Cross bar switch network

• Multiport memories

Multiprocessors can be divided architecturally into two groups: tightly
coupled systems and loosely coupled systems. In the latter type of multi
processor, each processor has a set of input/output devices and a large local
memory where it accesses its instructions and data. The degree of coupling in
such a system is very loose and the modules communicate through a message
transfer system. An example of such an architecture is the CM* computer
[43]. Distributed memory systems also fall into this category of multiproces
sors. Such systems provide decentralised computing networks which share
common resources. Loosely coupled systems are best suited to low degrees
of interaction due to the high costs of interprocessor communication. When a
higher degree of interaction between processors is required without significant
deterioration in performance, tightly coupled multiprocessors are used.

Chapter 1: Introduction 7

Shared Memory Architectures - Tightly coupled multiprocessor sys
tems typically contain a global shared memory (see figure 1.1). As mentioned
earlier, one way to provide interprocessor communication is through a com
mon bus. If such an interconnection mechanism is used, the speed of data
transfer on the bus limits the total power that can be provided by the sys
tem. The number of processors must be balanced against the bus speed. The
typical maximum number of processors sharing a common bus is between 20
and 30 depending on processor speed, bus bandwidth, etc. Cray machines
usually have a smaller number of processors. In some systems the processors
may themselves be a vector processing unit providing additional scope for
parallel processing.

Each processor may possess a small local memory (cache) which acts as a
fast buffer. Caching reduces the amount of access to global memory and bus
usage. Associated with caching is the cache coherence problem ie. avoiding
the use of inconsistent copies of data. This problem is resolved by the use
of cache coherence protocols [44]. Figure 1.1 outlines the configuration of a
bus-connected shared memory system with n processors.

Most shared memory systems use identical CPU's and are symmetric.
This means that all CPU's can run the operating system, run user code and
receive interrupts. Examples of such architectures are the Encore Multimax
and the Sequent Symmetry [44].

Shared memory multiprocessors (SMM's) have been used for many nu
merical applications and have produced encouraging results. The use of such
machines for numerical problems is an active area of research. The work
described here represents a further contribution in this area.

Chapter 1: Introduction 8

Common Bus

Shared Memory

)
Processors (p) -

Modules (M
Caches (c)

PI

[;] [;]
P2

[;] EJ

[;J Pn

EJ

L-

Figure 1.1: A typical shared memory architecture

Chapter 1: Introduction 9

1.4 Using Shared Memory Machines

Let us consider the Encore Multimax as a typical shared memory machine.
The Multimax machines run Encore's version of UNIX (UMAX) as their
operating system. Parallel processing is provided by execution units called
processes which are managed by the operating system. Since the use of
processes is too costly for obtaining efficient user-level parallelism, the task
abstraction [52] is used which involves a smaller overhead. Tasks are capable
of running user code and can be started, idled and restarted by processes.
In this way, several tasks can be assigned to the same process. Figure 1.2
illustrates how the 14 NS32532 processors in the Multimax machine used for
this work are utilised by parallel tasks through a hierarchy of parallel process
management modules.

The most important issue concerning program design for shared memory
machines is the avoidance of inadvertent access to shared data by different
processes. Since two or more processors may attempt to update the same
memory segment at one time, it must be ensured that any such write ac
cess to shared memory data is done under mutual exclusion. This means
that any part of memory which could be incorrectly updated if accessed si
multaneously by different processors must be protected. This is done using
synchronisation constructs (see section 4.4.1) provided by the compiler or the
operating system.

Multiple
tasks

Multiple
processes

Multiple
processors

Figure 1.2: Task/Process/Processor Relationships

Chapter 1,' Introduction 10

For some shared memory machines, parallelising compilers are available
which make an analysis of sequential code to produce parallel programs.
The Encore parallelising Fortran compiler, epj, is one such example and is
discussed in detail in chapter 4. Such autoparallelised programs are usually
not sufficiently efficient, however, mainly due to the complex structure of
the sequential code which makes it difficult for the compiler to parallelise
efficiently (see section 4.5).

The compilers used for shared memory machines also provide various con
structs which can be used for parallel programming. These are synchroni
sation primitives such as LOCK's, SEMAPHORE's and BARRIER's which
are used for intertask communication to achieve goals such as mutual ex
clusion. LOCK's and similar synchronisation variables are stored in shared
memory and are tested by parallel tasks in order to determine whether or not
they are allowed to proceed. Some programming language extensions such as
the Encore DOALL mechanism for spreading DO loops are also used. Sec
tion 4.1 contains descriptions of some of the parallel programming constructs
available on the Multimax.

Design tools are also available to aid parallel program design [76]. These
offer the programmer a set of macros which abstract out lower level syn
chronisation detail and provide an environment in which effort can be put
into obtaining an efficient design. An example of such tools is the Force (see
section 3.2.1 and [47]) which provides a set of macros to facilitate parallel
program design.

Programs designed for shared memory machines can be used on dis
tributed memory machines by the use of virtual shared memory. This means
that the distributed memory machine is run such that at user level it can
perform as a shared memory machine. The shared memory model is conse
quently important because its algorithms can be transported to a distributed

memory environment [44].

Chapter 1: Introduction 11

1.5 Parallel Program Design Strategies for
Shared Memory Machines

It is better to write parallel programs with parallelism in mind at the design
stage than to parallelise existing algorithms or programs. This is because
we can aim to minimise the inherently sequential fraction of an algorithm by
thinking about parallel processing at the start of our design.

The cost of programming SMM's is related to the synchronisation cost.
In order to achieve good speed ups we need to aim to have a large com
putation to communication ratio. This means that parallelism should be
implemented at high levels by setting off parallel tasks to execute large num
bers of independent operations before needing to communicate. Processors'
local memories can be used to store and accumulate each task's contribu
tion to shared values. This idea should be used to minimise synchronisation
points.

If autoparallelisation is to be performed, the sequential program must
be written with simple and clear data dependencies. This allows the paral
lelising compiler to analyse the program more easily and detect possibilities
for parallelisation more readily. We require a well structured program which
can be parallelised at high levels. It is important to avoid the insertion of
large amounts of low level synchronisation by the compiler which will be the
case if the program is hard to analyse at high levels. By taking the above
considerations into account at the design stage, the ability of the compiler
to parallelise the program efficiently will be enhanced. Autoparallelisation is
discussed in detail in chapter 4.

Let us now expand on the synchronisation cost issue. Synchronisation
primitives such as LOCK's and EVENT's (see section 4.4.1) have imple
mentation costs which must be taken into account for the design of efficient
parallel algorithms. If an algorithm involves the use of a large amount of
synchronisation, the cost of setting up and managing the primitives may
become large. This overhead will have the effect of degrading the parallel
efficiency. The degradation can be substantial if parallelism is implemented
at low levels since many synchronisation points will be required.

When designing parallel algorithms for SMM's we must aim to minimise
the synchronisation overhead. This should be done by having as few syn
chronisation points as possible and implementing parallelism at higher levels

Chapter 1: Introduction 12

as far as possible. There may also be cases in which it is not beneficial to use
parallelism. Examples of such cases are loops which perform small amounts
of computation. If such loops are parallelised by spreading the loop index
among the available processors, we will not necessarily gain any speed up.
This is because the cost of the parallel loop management synchronisations
may not be sufficiently compensated for by a gain due to parallel processing.
If it is necessary to insert more than trivial synchronisations into the loop,
the performance may become even poorer.

One further important issue is load balancing. Even if we manage to
design an algorithm (or parallelise a program) such that parallelism is im
plemented at high levels, we will not necessarily obtain maximum efficiency
unless we make sure that the computational load is spread evenly among
the available processors. If this is not achieved, then a significant amount
of processing power may be wasted due to idle processors waiting for other
processors to finish their respective jobs.

In summary, the important issues for efficient parallel program design for
SMM's are:

• A high computation to communication ratio for each parallel task

• Good load balancing

• Only parallelising what will be beneficial.

The above issues are discussed as they apply to the performance of parallel
finite element algorithms in sections 4.5.1, 6.7, 7.5.2 and chapter 8.

1.6 Some Terminology

It is useful at this stage to make some definitions of terms used frequently
when discussing parallel models.

Granularity A measure of the number of instructions in a parallel compu
tation between synchronisation points [65J. Shared memory machines
usually have synchronisation intervals in the order of 100's of instruc
tions, which is medium grain. Array processors implement very fine
grain parallelism and network distributed systems are often very coarse

gram.

Chapter 1: Introduction 13

Speed up The speed up achieved by a parallel algorithm running on p pro
cessors is the ratio between the time taken by a single processor of
the same type executing the fastest sequential algorithm and the time
taken by the same parallel computer executing the parallel algorithm
on p processors [65].

Parallel Efficiency The efficiency of a parallel algorithm running on p pro
cessors is the speed up divided by p [65].

Amdahl '8 Law Let f be the fraction of operations in a computation that
must be performed sequentially. The maximum speed up achievable on
p processors is then f+(l~f)/p [65].

1.7 Organisation of Thesis

In chapter 2 we discuss the finite element method in terms of what it is
used for and how it works. Some application programs using the method
are mentioned and we discuss some possibilities for parallelising the method.
Chapter 3 reviews recent research work related to the thesis.

The parallelisation of a large British Gas finite element program using the
Encore autoparallelising Fortran compiler is discussed in chapter 4. Some
comments are made on our experiences of hand-parallelising the program.
We also make some suggestions about writing sequential programs suitable
for such compilers in this chapter.

In chapter 5 the finite element model program used for testing our par
allel algorithms is described. These algorithms are for parallel assembly of
the stiffness matrix (chapter 6) and parallel iterative solution of the result
ing equations (chapter 7). Timing results are also given in these chapters.
Chapter 8 contains our conclusions regarding the parallel design of finite el
ement code together with some recommendations for future work based on
the thesis material.

Chapter 2

The Finite Element Method
and Linear Equation Solvers

14

Chapter 2:The Finite Element Method and Linea.r Equation Solvers 15

2.1 Overview of Chapter

In this chapter the finite element method is described in terms of why and how
it is used to analyse physical problems in fields such as structural mechanics.
Details of the mathematical formulation and various stages of finite element
analysis are given together with an explanation of how the method could
lend itself to parallelisation. We have also described some real applications
of the method to show how costly it can be in terms of processing time. This
motivates later chapters on the parallelisation of the method.

2.2 The Finite Element Method

2.2.1 Uses of the Method

Scientists and engineers are often faced with practical physical problems
whose solution by conventional analytical methods is either too difficult or
even impossible. In structural mechanics, for example, there are many cases
in which the complex geometrical configurations that practical problems have
make it exceedingly difficult to obtain exact solutions. The analyst must
consequently use numerical techniques to solve such problems. The Finite
Element Method (FEM) is one such method and is used for the solution of
partial differential equations on regions with complex geometrical configura
tions.

2.2.2 The Method

The finite element method is a general technique for constructing approxi
mate solutions to differential equations [5]. The method involves dividing the
domain of the solution into a finite number of simple sub domains (the finite
elements) and using variational concepts to construct an approximation of
the solution over the collection of finite elements.

In a problem of structural analysis, for example, a body is considered to
be actually broken up into a number of elements. The elements are intercon
nected by means of nodes and the body is replaced by the system of finite
elements and the nodes connecting them [61]. The nodes are used to identify
points on the elements.

Chapter 2:The Finite Element Method a.nd Linear Equation Solvers 16

Each element is represented by an element matrix which models its in
dividual properties and behaviour. The whole body is represented by the
summation of all element matrices into a stiffness matrix. This matrix con
sists of the coefficients of the set of equations which can be used to evaluate
the nodal unknowns.

The finite element method consequently consists of the following stages:

• Discretisation of the domain

• Evaluation of the element matrices

• Formation of the equations ie. assembly of the overall stiffness matrix

• Solution of the equations.

The operations associated with the assembly and solution phases are in
dependent of the type of problem at hand. Characteristics such as problem
type and geometry are relevant only to the element matrix evaluation stage.
The solution phase usually dominates the processing time for finite element
analysis. The above steps are described in detail in section 2.3.

We shall now give some details of the mathematical formulation of the
FEM.

2.2.3 Mathematical Formulation

Let us consider the solution of differential equations of the type

cPu /Pu
ox2 + oy2 + c(x,y)u = f(x,y) in n (2.1)

subject to the following boundary conditions

u = uo(x,y) on on} Dirichlet

au
on = vo(x, y) on on2 Neumann

(see figure 2.1).

Chapter 2:The Finite Element Method and Linear Equation Solvers 17

Figure 2.1: The domain of the problem and its boundaries

A variational statement of the problem defined by (2.1) can take the form

I(u) = 10 ((~: r + (~~ r + c(x, y)u' + 2/(x, y)u) dfl - 2hn, VaU ds

(2.2)
subject to u = uo(x) on anI (see [38]). We can see that the Neumann
boundary condition appears in the functional in (2.2) but not the Dirichlet
boundary condition.

If u is a minimum point of I, then I (u) ::; I (v) for any v. In particular,
if v = u + cW (for any small c and any w which satisfies (2.1)) and using
integration by parts, it follows that if u is a minimum point of I then u
must satisfy (2.1) [38]. This means that if we determine the function u(x, y)
which minimises (2.2) we have also obtained the solution to (2.1). The reason
for seeking a numerical solution for (2.2) (and hence (2.1)) rather than the
analytical one is that in many practical situations the data given in a problem
are not smooth. In such cases some derivatives of the solution may not exist
and therefore the solution will not satisfy (2.1) at all points in n.

More precisely, in the case of (2.1) we are looking for a solution in the
space of all twice-differentiable functions which satisfy (2.1) and the bound
ary conditions associated with it (ie. Dirichlet and Neumann). In the case of
(2.2), however, we are seeking a function in the space of all once-differentiable
functions which minimises (2.2) and satisfies the Dirichlet boundary condi-

Chapter 2:The Finite Element Method and Linear Equation Solvers 18

tion. Since minimising (2.2) is equivalent to solving (2.1), we are now seeking
a solution to the latter equation in a more restricted domain.

Variational methods seek an approximate solution in the form of a linear
combination of suitable approximating functions. The result is the minimisa
tion of a functional related to the problem at hand (ie. (2.2)) with respect to
a suitable reduced function space spanned by the approximating functions.
The FEM can be thought of as a special case in which the chosen functions
are piecewise continuous with respect to the mesh.

The first step in variational methods is the expression of the solution
u(x, y) as

n

u(x, y) ~ L ai Ni(x, y) (2.3)
i=l

where each Ni is called a shape, test or basis function and the ai's are con
stants. Our aim here is consequently the determination of the coefficients
ai - an since the shape functions are already known. The coefficients ai are
actually the values of the solution corresponding to the nodal unknowns in
a finite element mesh (see section 2.3.1). The choice of shape functions de
pends on the problem under consideration and they usually take the form of
simple linear or quadratic functions of the independent variables.

The expression of the solution in the form of (2.3) means that we are
dealing with a finite dimensional subspace spanned by the basis functions.
In this subspace we now seek a function which minimises (2.2) and satisfies
the Dirichlet boundary condition. The choice of a suitable subspace is vital
in finding basis functions which yield values of (2.2) close to its minimum.
Since we require only first derivative continuity, linear splines can be used
here as basis functions. Typically the basis functions will have local support
ie. will be zero outside a small subdomain. The solution to the variational
form of the original problem is a projection of the actual solution onto the
finite dimensional subspace.

Once we have expressed the solution in the form of (2.3) we can substi
tute the latter into (2.2) and minimise with respect to the ai's. This gives
rise to a set of linear equations from which the a;'s can be determined (see
section 2.3.2). Alternatively, a variational method such as the method of
weighted residuals can be used to minimise the functional. In this method,
the parameters are determined by setting the integral (over the domain) of

Chapter 2:The Finite Element Method and Linear Equation Solvers 19

a weighted residual of the approximation to zero, ie.

(2.4)

where Wi are trial or weight functions and E is the residual defined by

[)2u [)2u
E = 8x2 + 8y2 + c(x, y)u - f(x, y). (2.5)

The weight functions need not be the same as the basis functions men
tioned above (ie. Ni's). The Galerkin Method is a special case of the method
of weighted residuals in which Wi = Ni ie. weight functions equal to the
shape functions are used giving rise to integrals of the form

10 Ni(x, y) E(x, y, aJ) dD = Oi = 1,2, ... , N. (2.6)

We obtain the same linear system in the ai's from both the straight min
imisation mentioned earlier and the evaluation of (2.6). The coefficients of
this linear system are computed by numerical integration (see section 2.3.2).
In the case of the FEM these coefficients form what is called the stiffness
matrix (see section 2.3.1) and the solution of the system of equations yields
the nodal unknowns ie. the a;'s in (2.3) (see section 2.3).

Nonlinear Problems

Sometimes the differential equation to be solved is nonlinear in u and its
solution is somewhat complicated due to the presence of nonlinear terms.
For example, consider the nonlinear problem defined as (2.7) in which the
RHS is also dependent on u ie.

82u 82u
8x 2 + 8y2 + c(x,y)u = f(·r,y,u). (2.7)

In these cases one can linearise the equation by means of the introduction of
an iteration into the solution algorithm. For example, (2.7) can be solved by
a sequence of iterative steps such as

Chapter 2:The Finite Element Method and Linear Equation Solvers 20

We can start with an initial guess for the solution, u(O), and compute the
RHS (ie.j(O)) corresponding to this value for u. The next iteration is a linear
problem involving the calculation of u(1). This is used in turn to compute
j(I). The iterations proceed in the same manner until a satisfactory estimate
for u is found. Other nonlinearities are possible in (2.1) such as a c(x, y, u)
term or having an extra function of u multiplied by the derivative terms.
These nonlinear problems can be solved by the same technique mentioned
above as well as others (eg. Quasi-Newton method).

The model program described in chapter 5 uses the peG method (see
section 2.3.4) for the solution of the resulting linear equations. If the problem
to be solved involves any form of nonlinearity, part of the stiffness matrix will
be different at each peG outer iteration. We must consequently recompute
the varying part of the stiffness matrix at each step before the rest of the peG
operations are performed. This can be done by means of the introduction
of an outer loop round each peG iteration which recomputes the necessary
coefficients prior to each iteration.

2.3 Steps Of The Method

This section contains details of the steps of finite element analysis. Each step
is treated separately and the aim is to form a basis for the topics discussed
in the following chapters.

2.3.1 Discretisation

One-dimensional bodies are subdivided into finite elements by means of
nodes. Lines and planes are used for the subdivision of two- and three
dimensional bodies. In one-dimensional bodies the resulting finite elements
may have unequal lengths, while in two and three dimensions they may have
unequal sizes as well as unlike shapes.

In all cases, however, the aim is to break up the body into a number of
finite elements which cover as much of the body as possible. It may not be
possible to cover the whole body due to the irregularity of its boundaries.
Also, the greater the number of nodes in the mesh, the greater will be the
number of points in the mesh where the unknowns can be evaluated.

Chapter 2:The Finite Element Method and Linear Equation Solvers 21

Figure 2.2(a) shows the finite element model of a beam fixed at both
ends. Figure 2.2(b) shows the forces and displacements at the extremities of
an element. f's refer to forces and d's refer to displacements. Each of the
displacements is called a degree of freedom [61]. The degrees of freedom may
be quantities such as slopes (derivatives) as well as displacements in other
problems.

a fixed beam

o I 0 0

an element

o 0

V
nodes

its finite element model

(a) (b)

Figure 2.2: Finite element modelling of a beam

As explained later in this chapter, the method leads to systems of equa

tions of the form
]{d = f

where f is the force vector,]{ is the stiffness matrix and d is the displacement
vector.]{ often has the form of a band or sparse matrix. The above system
of equations can be solved to determine displacement unknowns, stresses
and strains. The method extends to other applications such as tempera

ture/pressure distributions.
Figure 2.3 illustrates how a plane body can be subdivided into rectangular

and triangular elements. The curved boundary is approximated by the trian-

Chapter 2:The Finite Element Method and Linear Equation Solvers 22

gular elements. In order to incorporate complicated element shapes into FE
meshes isoparametric elements are used. These provide a local mapping of
each element onto a reference element and we can define the shape functions
in terms of polynomials on the reference element. A closer approximation of
the curved boundary in figure 2.3 could be obtained by such a technique.

Figure 2.3: Discretisation of a plane body

2.3.2 Evaluation of element matrices

In this section we shall describe how element matrices can be calculated for
problems involving linear two-dimensional partial differential equations. We
consider problems having the form

cPu 82u
8x2 + 8y2 + c(x,y)u = j(x,y)

where u(x, y) is given on the boundary (see section 2.2.3).
To evaluate the unknown u at specific points in the x - y plane we need

a two-dimensional discretisation of the domain. We can consequently use
elements with rectangular, triangular or other shapes.

Consider the case of a rectangular element whose element matrix we wish
to evaluate. In order to model the variation of u across the element we can
associate with each node, i, a shape junction, Ni (see section 2.2.3). This
serves as a measure of the contribution of the nodal value Ui towards the value
of u at any point within the element. The rectangular element is illustrated
in figure 2.4.

At any point (x, y) in the element, we can write

u(x,y) = NiUi + Njuj + NkUk + N/u/.

Cbapter 2:Tbe Finite Element Metbod and Linear Equation Solvers 23

node i
nodal shape function Ni
nodal displacement Ui

Figure 2.4: Shape functions and nodal unknowns for a rectangular element

The shape functions have the following form

Ni = g(x, y)

and a set of these forms a basis for a suitable subspace in which the solution
is to be approximated such as a piecewise polynomial with respect to the
mesh (see below). These functions differ for the various element shapes.

The evaluation of the element matrices involves a numerical integration
(see below). It is more convenient to carry out this integration using a natural
coordinate system. This is a local system that permits the specification
of a point within the element by a dimensionless number whose absolute
magnitude never exceeds unity. Using such a system with natural coordinates
e and Tt, the rectangular element can take the form illustrated in figure 2.5.

As an example, we can express the four bilinear shape functions (one per
node) in a quadrilateral element in terms of the new coordinates as (see [72])

A 1
Ni = 4(1 - 0(1 - Tt)

A 1
N j = 4 (1 + 0 (1 - Tt)

A 1
Nk = 4(1 + 0(1 + Tt)

A 1
Nt = "4 (1 - 0 (1 + Tt)

where -1:::; ~,Tt:::; 1.

Chapter 2:The Finite Element Method and Linear Equation Solvers 24

7J = 1

~ =-1

7J = -1

Figure 2.5: A natural coordinate system

For the triangular element in figure 2.6 the linear shape functions have
the form

Ni=1-~-7J

Nj = ~

Nk = 7J

where 0 ~ ~,7J ~ 1 ,~ + 7J ~ 1.

When a node is shared by a combination of element types, the shape function
used during the numerical integration is that corresponding to the element
type under consideration.

The entries in each element matrix can be the coefficients of the set of .
equations obtained by minimising (2.2) or evaluating (2.7) (see section 2.2.3).
Each entry aij in an element matrix can be evaluated by integrating the
appropriate shape functions and their derivatives over the element space, A,
in the following way:

aij = J l Nix(X,y)NjAx,y)+Niy(X,y)Njy(x,y)+c(x,y)(Ni(X,y)Nj(x,y))dxdy,

i,j E A.

c(x, y) is the coefficient function in the original differential equation and

Chapter 2:The Finite Element Method and Linear Equation Solvers 25

1 k

J

o 1 1

Figure 2.6: A triangular element

8
Nix = 8x(N,(x,y)),

8
Niy = 8y(Ni (x,y)).

The nodal coordinates are transformed to those in the (e, 1]) system. The
integration must be evaluated numerically assuming the problem data (eg.
c(x,y)) are not smooth (see section 2.2.3). This can be done, for example,
by a double application of Gauss-Legendre quadrature with n points. This
gIVes

n n

aij = I: I: Wr Ws I det(J) I (Ni~(eT) 1]s)N.i~(eT) 1]s) + Ni'f)(er, 1]s)Nj'f)(er, 1]s)
r=ls=l

where rand s are points and Wr and Ws are weights of the quadrature
formula for a particular value of n. J is the Jacobian matrix given by

Chapter 2:The Finite Element Method and Linear Equation Solvers 26

evaluated at (~r,T/s). The whole element matrix consists of the evaluation of
the above integral for every combination of nodal points in (i,j, k, 1).

The evaluation of each element's force vector can be done using the same
numerical integration technique as that used for the element matrices. This
can have the form

n n

Ji = I: I: WrWs I det(J) I f(~r,T/s)Ni(~r,T/s)
r=ls=l

where Ji is the component of the force vector corresponding to node i.
For the specified boundary conditions, the element force vector entries

are set to be the prefixed values. The element force vectors are accumulated
during assembly to form the RHS vector. This can then be used as the
right-hand side for the solution of the overall system of equations.

The nodal displacements are required to have continuity across the ele
ment boundaries ie. U must be continuous in all cases. The continuity of
derivatives depends on the form of the interpolating polynomial. This means
that the interelement continuity of derivatives is determined by the number of
interpolation points used, the shape functions and the type of elements in the
mesh. Hence, with a suitable choice of interpolation we can obtain first and
possibly higher order derivative continuity across the element boundaries.

2.3.3 Assembly Phase

The assembly phase consists of accumulating the element matrices into the
overall stiffness matrix. This involves the summation of entries for corre
sponding nodes from different element matrices into the same positions in

the overall matrix.
Consider the two-dimensional row-ordered mesh consisting of 16 elements

and 25 nodes shown in figure 2.7. Each element matrix has rows and columns
corresponding to nodes in the element. For example, elements 6 and 7 have
the following element matrix structures:

Chapter 2:The Finite Element Method and Linear Equation Solvers 27

2 3 4 5

1 2 3 4
6 7 8 9 10

5 6 7 8
11 12 13 14 15

9 10 11 12
16 17 18 19 20

13 14 15 16
21 22 23 24 25

Figure 2.7: A two-dimensional row-ordered mesh

node
numbers

7 8 13 12 8 9 14 13

7 * * * * 8 + + + +

8 * * * * 9 + + + +

13 * * * * 14 + + + +

12 * * * * 13 + + + +

Element 6 Element 7

The two elements have a common boundary consisting of the line joining
nodes 8 and 13. This means that there are certain entries in the overall
stiffness matrix which consist of contributions from distinct entries in the
two element matrices. These entries are at positions (8,8),(8,13),(13,8) and
(13,13). The element matrices are placed in the overall stiffness matrix as
shown in figure 2.8. The common entries are denoted by c's.

The whole assembly process consequently consists of the insertion of the
element matrices into the overall stiffness matrix and summing entries at
common nodes. We then obtain from various elements' characteristics ex
pressed in terms of their respective element matrices a representation of the

Cbapter 2:Tbe Finite Element Metbod and Linear Equation Solvers 28

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

* * * *
* c + * c +

+ + + +

* * * *
* c + * c +

+ + + +

Figure 2.8: Assembly of element matrices

behaviour of the whole structure.
We can also see how the ordering of the nodes affects the structure of the

stiffness matrix. As can be seen from the above representation, we can expect
a row-ordered mesh on a rectangular region to give rise to a band matrix (see
section 7.3.1). A less regular geometry would give more scattered stiffness
matrix entries. Various node ordering schemes can be used to produce desired
characteristics in the assembled matrix. Examples of such orderings are
minimum degree and red-black orderings [16]. Minimum degree ordering
gives a scattered sparsity pattern and red-black matrices consist of one main
and several off-diagonal bands (see section 7.2).

With the exception of frontal methods [45] which combine assembly and
solution, the next step of finite element analysis is the solution of the nodal

equations.

Chapter 2:The Finite Element Method and Linear Equation Solvers 29

2.3.4 Solution Phase

Once the stiffness matrix is formed we can evaluate the nodal unknowns by
solving the system of equations

1<d = j

for d (see section 2.3.1). The force vector, j, is initially supplied as part of the
problem specification and is computed according to the elements' properties.
The solution can be obtained by direct or iterative methods.

Direct methods yield the solution after a known finite number of opera
tions. The main problem with such methods is due to fill-in ie. a previously
zero matrix entry becoming non-zero as a result of an elimination operation.
Direct methods used are usually Gaussian elimination or one of its variants
such as LU decomposition or Cholesky factorization for symmetric positive
definite 1<. It is possible to take advantage of the structure of the stiffness
matrix to employ strategies such as blocking [33J in the factorization.

For iterative methods, we do not know the number of operations which
need to be performed to obtain the solution in advance but there is no extra
storage required ie. there is no fill-in (see below).

We shall now discuss iterative methods in some detail.

Iterative Methods

Iterative methods start with an initial estimate to the solution and improve
this by obtaining a series of new approximations which converge to the exact
solution. Preconditioning is often used to improve the rate of convergence.
We return to a study of possible preconditioning matrices M later. The choice
of an iterative method for a finite element application depends on the type
of problem to be solved.

One popular class of iterative methods for solving large sparse systems
are 1<rylov subspace methods [68J. In these, the solution is sought in a par
ticular subspace spanned by multiples of the residual and a finite number
of different powers of the coefficient matrix ie. r, 1< r, 1<2r , Examples of
these methods are the Preconditioned Conjugate Gradient method (PCG)
[68], Generalized Minimum Residual (GMRES) [70J [13], Conjugate Gradi
ent Squared (CGS) [75], General Conjugate Residual (GCR) [20], Modified

Chapter 2:The Finite Element Method and Linear Equation Solvers 30

Conjugate Residual (MCR) [8], Generalized Conjugate Gradients [4], Bi
Conjugate Gradients (Bi-CG) [32], ORTHOMIN [81] and ORTHODIR [84].
Let us now discuss and compare some of these methods.

In the PCG method, we start with an initial guess for the solution and
choose successive search directions which are K-conjugate to all previous
search directions (see below). The GCS algorithm is a variant of the PCG
algorithm and is suitable for nonsymmetric linear systems giving a fast rate
of convergence. ORTHOMIN, ORTHODIR and GCR are based on the min
imisation of the Euclidean norm of the residual along a particular search
direction.

The MCR method is a stabilised version of the GCR method for solving
large sparse systems of linear equations. This method has special signifi
cance when the system is not positive definite when methods like PCG are
inapplicable.

GMRES is used for the solution of nonsymmetric non-singular systems of
linear equations, f{ d = j, when f{ is not positive real (ie. the symmetric part
of f{, ~(f{ + f{T), is not positive definite). CGR and ORTHODIR often fail
to solve such systems. The GMRES algorithm starts by choosing an initial
guess to the solution and a dimension of the Krylov subspaces. The Arnoldi
process is used to compute an orthonormal basis of the Krylov subspace at
each step.

The PCG method is the most popular Krylov subspace method for solving
symmetric positive definite linear systems giving rise to efficient implemen
tations for these [68]. Due to the particular suitability of PCG-type methods
to the solution of large sparse systems (see below) and the fact that our test
matrices in the model program described in chapter 5 are symmetric and
positive definite for both node ordering schemes used (ie. row and red-black
orderings), we have chosen the PCG method for the purposes of this work.

Let us now make a comparison between direct and iterative methods such
as PCG for the purposes of sparse system solution before giving an outline

of the PCG algorithm.

Chapter 2:The Finite Element Method and Linear Equation Solvers 31

Comparison Of Direct And Iterative Methods

One important advantage in using PeG-type methods for sparse matrices is
related to storage requirements. For these methods, apart from a few vectors,
no additional storage is required. Most importantly, there is very little or no
fill-in. For example, incomplete factorization preconditioners either have no
fill-in or only low level fill-in (see below and section 3.2.2).

The amount of fill-in due to direct methods can be large which increases
both the amount of storage required and the computational cost. This means
that one can start with a very sparse coefficient matrix and by the end
of a direct solution scheme have generated a very dense matrix (with the
exception of band matrices). As the size of the coefficient matrix increases,
the extra storage and computational costs associated with fill-in become more
substantial.

In brief, PeG-type methods have the advantages of lower operations
count and storage requirements over direct methods for large sparse sys
tem solution ie. the type of matrices which arise in practical finite element
applications.

We shall now describe the peG method in some detail since it has been
used in our model program. This is followed by a discussion of precondition
ing and the various types of preconditioners available.

Chapter 2:The Finite Element Method and Linear Equation Solvers 32

The PCG Method

The PCG algorithm for the solution of the system Ax = b with preconditioner
M is given below. We can think of the algorithm below as the conjugate
gradient method (CG) [42J applied to the linear system M-1 Ax = M-1b.
Alternatively, the PCG method corresponds to the standard method with
the scalar product chosen as (x, y) = xT My. Using the new inner product
with the CG method has the property of computing an approximate solution
whose preconditioned residual vector M-1(b - AXi) is M-orthogonal to all
the previous preconditioned residual vectors [68J.

Algorithm: Preconditioned CG to solve Ax = b
1. Preprocess: Compute preconditioner M
2. Start: TO f- b - Axo,

Po f- Zo f- M-1TO

3. Iterate: Until convergence do
(a) W f- APi
(b) (X, f- i!.tal

I (w,p;)

(c) Xi+l f- Xi + (XiPi

(d) Ti+l f- Ti - (XiW

(e) Zi+l f- M-1Ti+l

(f) f3 f- (r;±I,z.±I)
Z (Tt,zd

(g) Pi+l f- Zi+l + f3iPi

Preconditioning

Preconditioning aims to improve the condition of the system Ar = b by pre
multiplying the coefficient matrix A by its approximate inverse and hence im
proving the rate of convergence. The closer this approxilllation is to A -I, the
better the rate of convergence is. The most extreme cast' of preconditioning
is the formation of M- 1 = A -1 which would lead to immediate convergence.
This is obviously too costly and we consequently seek a preconditioner for
which the extra costs associated with preconditioning are compensated for
by the reduction in the number of iterations. By the extra costs we mean
the formation of the preconditioner and the preconditioning operations (step

3-e above) at each step.

Chapter 2:The Finite Element Method and Linear Equation Solvers 33

Several preconditioning schemes are available which differ in the way they
form the preconditioning matrix and perform the preconditioning operations.
Some popular classes of preconditioners are described below.

Incomplete Factorizations (IL U) IL U preconditioning [1] [73] consists
of approximating A as the product of a lower and an upper triangu
lar matrix which are approximate factors of A ie. as A ~ LU. The
preprocessing phase of the algorithm above would consequently involve
computing M = LU where A = LU + E for some small E. The pre
conditioning operation (step 3-e above) consists of a pair of triangular
solves involving Land U.

If we allow no fill-in during the factorization the scheme is called ILU(O)
(see section 7.3.1). If fill-in due to entries in the original matrix (first
level fill-ins) are allowed then the factorization is ILU(l). In general,
ILU(k) refers to a factorization in which the largest level of fill-in al
lowed is k [14]. As the amount of fill-in allowed increases, the precondi
tioner becomes more effective ie. the rate of convergence improves (see
section 7.4.4). ILU preconditioners are suitable for parallel systems
with a small number of processors (see sections 3.2.2 and 7.2).

Polynomial Preconditioning Polynomial preconditioning [68] [46] con
sists of choosing a polynomial s and replacing the original linear system
by s(A)Ax = s(A)b. The preconditioned matrix should be as close as
possible to the identity matrix in some sense ego in terms of its set of
eigenvalues. Polynomial preconditioning is suited to parallel systems
with large numbers of processors (see section 3.2.2).

Domain Decomposition Based Methods The idea in domain decom
position methods (see [7] and section 3.2.1) is to divide the domain
of the problem into a number of subdomains which only interact at
their common interfaces. If the unknowns are properly sequenced, the
resulting coefficient matrices have a block structure consisting of sev
eral independent blocks each corresponding to a subdomain together
with some interface blocks corresponding to the connection between

subdomains.

A domain decomposition preconditioner [74] is one consisting of the fac
torized blocks of a matrix with the structure mentioned above. Since

Chapter 2:The Finite Element Method and Linear Equation Solvers 34

the subdomain problems are decoupled, their corresponding submatri
ces can be formed (and factored) independently. The interface blocks
must be factored in a different way. Due to the independence of the
subdomain blocks, these methods (and hence preconditioners) provide
significant opportunities for parallel processing [.50].

Hierarchical Basis Functions If the usual nodal basis functions in a fi
nite element mesh are replaced by hierarchical basis functions [39], it
can be shown that the resulting matrix (A) has improved condition.
Hierarchical basis functions consist of the usual nodal basis function(s)
on a coarser grid, together with the nodal basis functions for a finer
grid corresponding to nodes that are not present in the coarsest grid,
together with the nodal basis functions for a still finer grid correspond
ing to nodes that are not present in any of the coarser levels, etc., up
to the finest grid on which it is desired to solve the problem.

If S is the linear transformation which maps A onto A such that we can
say that A = ST AS, then we can define a hierarchical basis precondi
tioner as M- 1 = SST. Such preconditioners are shown to be effective
on both serial and parallel architectures [39].

Another type of preconditioner which can be mentioned arises from simple
diagonal scaling schemes (see section 7.:3.1 and [:39]).

Let us now discuss the effects of the ordering of the unknowns on ILU
preconditioners since this is our chosen preconditioning scheme (see section
7.2) and discuss some available sparse LU factorization software.

Effects Of Ordering

The ordering of the unknowns affects the amount of fill-in during any fac
torization (ie. incomplete or full). For example, in the ILU(O) case we allow
no fill-in but some orderings would require more fill-in to be ignored than
others. More precisely, the incomplete factorization obtained by the ILU(O)
scheme can be very close (or identical) to the full L U factors or be very
different from the latter depending on the choice of ordering. The quality
of the preconditioner in terms of its acceleration property depends upon its
closeness to the full factors. Hence, the choice of ordering scheme affects the
quality of the preconditioner significantly.

Chapter 2:The Finite Element Method and Linear Equation Solvers 35

The issue of ordering has also been discussed in detail in section 3.2.2
where a review of some recent work on this subject and the convergence of
CG methods in general has been presented. One interesting observation is
that the number of CG and GMRES iterations is related to the norm of the
residual [18] [19]. In the latter work this property has been used as the basis
of a criterion for the assessment of the suitability of ordering algorithms to the
problem to be solved. More precisely, the ratio of the Frobenius norms of the
residual to that of the coefficient matrix is suggested to be a good criterion
for choosing an ordering scheme. Some cases which confirm the usefulness of
the mentioned criterion have been presented for the preconditioned GMRES
algorithm. For example, reverse Cuthill-McKee ordering [18J used with an
ILU(O) preconditioner gives a low residual ratio and rapid convergence.

As mentioned above, the ordering scheme used affects the amount of fill-in
for full LU decompositions as well as incomplete decompositions. This means
that there may be cases where a full factorization might involve the addition
of very few (or no) fill-ins. We may choose to perform an LU factorization
with high level fill-ins in these cases to take advantage of the extra infor
mation provided so inexpensively. In all cases, the amount of fill-in affects
the storage and computational costs significantly and must consequently be
taken into account carefully prior to the choice of an ordering scheme for the
unknowns.

Sparse LV factorization Software

It is possible to perform sparse LU factorization by means of available soft
ware packages such as the NAG library routines [59] and SPARSPACK [36].
These packages provide routines which can be called from a user's program
with a specific parameter list.

The NAG routine FOIBRF factorizes a real sparse matrix. The routine
either forms the LU factorization of a permutation of the entire matrix, or,
optionally, first permutes the matrix to block lower triangular form and then
only factorizes the diagonal blocks. The factorization is intended to be used
by F04AXF [60J which solves sparse systems of the form Ax = b or AT x = b
by block forward and backward substitution.

If several matrices of the same sparsity pattern are to be factorized,
FOIBSF should be used for the second and subsequent matrices. The latter
routine factorizes a real sparse matrix using the pivotal sequence previously

Chapter 2:The Finite Element Method and Linear Equation Solvers 36

obtained by FOIBRF when a matrix of the same sparsity pattern was fac
torized.

2.4 Some Applications of the Finite Element
Method

In this section we present some practical applications of the finite element
method. These have been provided by the British Gas Engineering Research
Station (ERS) at Killingworth and are described here with their kind per
mISSIOn.

2.4.1 GASP4 - A Program for Pipework Stress Anal-.
YSIS

This program is used for stress analysis of gas pipelines. We have studied
the program in some detail with a view to its parallelisation (see chapter 4).
The program is used interactively as a design tool and is consequently run
many times with different sets of parameters in selecting remedial measures.
This is why it is desirable to reduce the processing time for this program.

GASP4 is based on the frontal solution technique [45]. Although more
general applications are possible, the frontal method can be considered as
a particular technique for assembling finite element stiffnesses and nodal
forces into a global structural matrix and load vector and solving this system
for displacement unknowns by means of Gaussian elimination and backward
substitution or some similar direct method. It is designed to minimise the
core storage requirements, the arithmetic operations and the use of peripheral
equipment.

The main idea of the frontal solution is to perform assembly and elimina
tion of variables at the same time: as soon as the coefficients of an equation
are completely summed, the corresponding variable can be eliminated. The
complete structure stiffness matrix is never formed as such, it is immediately
sent to the back-up storage in reduced form.

The Application When the ground underneath gas pipelines undergoes
changes due to, say, coal mining, the pipes experience certain stresses.
This could cause problems if measures are not taken in advance to

Chapter 2:The Finite Element Method and Linear Equation Solvers 37

allow for these stresses. A slab of coal removed from below a section
of pipeline causes the material above it, including the pipe, to subside.
Transverse and axial forces are built up in the pipe section due to this
movement.

The actual magnitude of these forces depends on the distance from the
pipe to the removed slab. The greater this distance is, the smaller the
effect on the pipe would be. When there is a bend of pipe above the
slab, the pipe may experience high stress levels at the bend. The major
problem that arises, however, is due to excessive axial forces in straight
sections of the pipe. These can cause the pipe to buckle if preventive
measures are not taken.

Two kinds of remedial action may be taken to overcome the problem:
uncovering a section of the pipe or fitting bellows units. When the
pipe is uncovered, it experiences substantially reduced stresses. Bellows
units can accommodate larger movements than the pipe. Both these
actions are taken at problem areas ie. areas where the stresses are likely
to be high enough to cause buckling.

The actual mining is carried out in stages and each stage corresponds
to a slab of coal being removed. The removal of each slab only affects
pipework up to a certain distance from it. Data regarding planned
mining strategies and the resulting predicted ground movements are
provided by British Coal so that measures can be taken in advance to
avoid buckling.

The Program GASP4 is a Fortran program for performing stress analysis
due to ground movement. It is primarily used by the ERS for predicting
stress levels in sections of pipe due to coal mining and determining the
effects of remedial actions. Each run of the program corresponds to
one stage of ground movement ie. the removal of one slab of coal. This
affects a certain length of pipeline only.

Three-dimensional ground movement data are provided by British Coal.
The sections of pipeline which would be affected by mining are divided
up into finite element meshes and the ground movement data are inter
polated so that they correspond to the nodes in the mesh. Apart from
the ground movement data, other inputs to the program are: physical

Chapter 2:The Finite Element Method and Linear Equation Solvers 38

properties of the pipe, internal pressure of the pipe, soil stiffness and
soil friction.

The program works out a 12 x 12 stiffness matrix for each element and
calculates the RHS of each element for thermal expansion and pressure
forces. The frontal solution technique is then used to determine the
stress profile at each node and consequently identify problem points.

Once the problem areas have been identified, the best remedial action
is found by trial and error. The choices are uncovering the pipe and
fitting bellows units. The best position to take remedial action at is
decided upon by certain rules of thumb. Several runs of the program
with modified inputs due to remedial actions are made to obtain a
satisfactory solution.

For a lkm length of pipeline with few bends, the number of nodes
used is around 250 and the run time of the program is approximately
20 minutes on a VAX 8300. The greater the number of bends in the
pipeline section, the greater would be the number of nodes (more nodes
are needed near bends) and the run time of the program. The program
may be run overnight for large problems. The introduction of friction
into the analysis causes nonlinearities which increase the computational
cost.

2.4.2 CRISP - Critical State Program for Geotechni-
cal Applications

CRISP has been developed by Cambridge University Soil Mechanics Group
and is used by British Gas for the analysis of geotechnical problems such as
estimating ground disturbance due to construction forces or trenching and
modelling soil/pipe interactions. The program determines displacement fields
and stresses in such applications using the FEM and the frontal technique.

A series of load steps can be applied to the finite element model. A typical
problem may involve about 500 steps. Elements can be removed from the
finite element mesh to simulate excavations. Other possibilities are addition
of elements, gravity input, additional accelerations (eg. earthquakes) and
modelling time-dependent fluid flow.

When tackling nonlinear three-dimensional analysis, the processing times

Chapter 2:The Finite Element Method and Linear Equation Solvers 39

become very large (one hour per load step). An attempt is always made to
simplify the problem to two-dimensions if possible.

There are two Fortran programs involved:

• The Geometry Program - this is interactive, performs simple but es
sential operations and is not costly

• The main program - this uses the output of the Geometry Program as
input.

Because of the large amount of memory required for the program, disc
I/O has to be performed if this is not available in main memory. The main
program contains a subroutine (FRONTZ) which calculates stiffness matrices
and solves equations. 70-80% of the processing time is spent in this routine.
The program has been analysed by Edinburgh University for implementation
on a transputer array. The conclusion reached at is that the program is not
suited to such an architecture due to the amounts of I/O and main memory
requirements (45-50 Mega-bytes).

2.4.3 DYNA3D - Impact Analysis

This program is used by the ERS for the analysis of the dynamic behaviour
of offshore structures in applications such as impact analysis and assessment
for blast in pipes, vessels and firewalls. The use of the program for such
applications involves finite element analysis at each time step. This can
be very costly in terms of computational effort for large problems involving
many small time steps.

DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimen
sions) is an explicit three-dimensional finite element code for analysing the
large deformation dynamic response of inelastic solids and structures. A
contact-impact algorithm permits gaps and sliding along material interfaces
with friction. Spatial discretisation is achieved by the use of 8-node solid
elements, 2-node beam elements, 4-node shell elements, 8-node solid shell
elements and rigid bodies. The equations of motion are integrated in time
by the central difference method. A large number of material models are
available.

The aim of using this program is to determine pressure/time and pres
sure/displacement behaviour. Typical calculations have between 1000 to

Chapter 2:The Finite Element Method and Linear Equation Solvers 40

200000 elements with tens of thousands of time steps of size in the order of
hundreds of microseconds. Typical processing times are between 15 minutes
to 2/3 hours on a CRAY Y-MP with four processors.

2.5 Scope for Parallelism

In this section we shall discuss some ways in which the various stages of the
finite element method can be parallelised. This involves the identification
of both the inherently sequential parts of the process and the parts whose
parallelisation requires the control of inter-process contention.

The element matrices can be computed independently with no risk of
contention. The assembly of the stiffness matrix, however, is not free from
such considerations. As explained in section 2.3.3, different element matrices
could have entries which contribute to the same position in the overall matrix.
The contention issue must be addressed if the possibility of incorrect updates
to shared memory is to be avoided. The contention problem applies to both
the full and sparse representations of the stiffness matrix. In either case we
need to provide mutually exclusive updating of entries in the matrix.

Chapter 6 contains a detailed study of the contention problems associ
ated with parallel assembly for sparse representations of the overall stiffness
matrix. We have also presented in that chapter algorithms which success
fully overcome these contention problems and shown how to perform efficient
parallel assembly of the sparse representation.

The parallelisation of the solution phase basically consists of parallelising
any linear equation solver which is suited to finite element analysis. Direct
methods can be parallelised by the parallel application of a Gauss step to
several rows or columns of the stiffness matrix. The amount of synchronisa
tion required to overcome contention depends on the parallelisation scheme
used.

Iterative methods such as the preconditioned conjugate gradient method
can be parallelised within the main iteration loop. The main problem here is
the parallelisation of the triangular solves at each step. These are costly op
erations which are not straightforward to parallelise. We have discussed these
problems in chapter 7 and presented ways of parallelising the preconditioned
conjugate gradient method efficiently.

Chapter 3

Literature Review

41

Chapter 3:Literature Review 42

3.1 Overview of Chapter

In this chapter we shall survey recent work related to the thesis. The main in
terest is in results concerning parallel finite element analysis on shared mem
ory machines but some related topics and alternative architectures are also
covered. The issues addressed aim to clarify what has been achieved so far in
terms of identifying and resolving parallelisation problems and bottlenecks.
The issues covered are: parallel assembly, parallel solution (mainly PCG-type
methods)' domain decomposition, ordering, fill-in, synchronisation costs and
granularity effects. Section 3.2.1 contains a summary of miscellaneous re
search works on parallel assembly and solution methods. The next section
(3.2.2) is concerned particularly with preconditioning and parallel PCG.

3.2 The Review

Parallel finite element analysis has been the subject of extensive research for
many years. The emphasis in most works on this subject is on the solution
phase since it tends to dominate the processing time. Many parallel solution
schemes have been suggested for various parallel architectures. The most
important part of the whole process as far as parallelisation is concerned is
the solution of a set of simultaneous linear equations either to evaluate the
nodal unknowns or to improve the convergence rate of an iterative scheme ie.
in preconditioning. The relative efficiencies of direct and indirect methods
are widely investigated.

We shall now summarise some previous work on parallelising all stages of

finite element analysis.

3.2.1 Miscellaneous Topics

One method commonly used in finite element computations is substructuring.
This involves the division of a finite element mesh into a number of sub do
mains which only interact at their common interfaces. Figure 3.1 illustrates
this idea for the division of a domain into four substructures (51 to 54).

This technique is very attractive for parallel processing because it involves
significant amounts of independent operation (ie. processing the internal

Chapter 3:Literature Review

DOMAIN

I
sub domain
interfaces

Figure 3.1: Domain decomposition in substructuring

43

nodes of the substructures). Equations for the nodes at the common inter
faces can be formed and solved once the contributions from the substructures
are known. Colouring schemes provide an approach to domain decomposi
tion involving the division of the structure into lists of disjoint elements. This
makes parallel processing possible within these lists.

The work in [7] reviews the inherent and induced parallelism that oc
curs in finite element analysis. The idea of subdomain splitting is presented
(see section 2.3.4). This involves subdividing the domain of the problem
into a number of overlapping regions and decomposing the problem into one
that involves the solution of boundary value problems on the subdomains.
These problems can be solved approximately using finite element techniques.
Substructuring is then discussed at length as a method related to sub do
main splitting. The method was introduced in the 1960's to solve large-scale

Chapter 3:Literature Review 44

structural analysis problems to avoid heavy dependence on slow out-of-core
solution algorithms.

The entire structure is considered as being made up of a set of substruc
tures. As in the usual finite element method, the entire structure is discre
tised but each substructure is treated conceptually as a separate domain and
can be considered in parallel with other substructures. The element contri
butions can be calculated and assembled in the usual manner to form each
substructure stiffness matrix independently, and using static condensation
in which the internal nodes are eliminated the substructure stiffness matrix
can be reduced in size, retaining only a few degrees of freedom of interest
in the interior as well as the degrees of freedom on the interfaces between
neighbouring substructures.

Since many of the internal degrees of freedom of the substructure have
been pre-eliminated in the substructure calculations, the resulting final merged
system involves only the retained degrees of freedom and is of much smaller
size. The reason for retaining some interior degrees of freedom to each sub
structure may be that the evaluation of the substructure internal unknowns
becomes less costly if some of the unknowns are already evaluated at this
stage.

In the frontal method (see [45] and section 2.4.1), as soon as the element
contributions to a nodal displacement unknown are completed, that degree
of freedom is eliminated and its corresponding parts of the overall coefficient
matrix are written to secondary storage. The front propagates through the
domain interleaving assembly and elimination. The frontal method can con
sequently be thought of as an element by element strategy because of this
approach.

There have been some recent developments conceptually similar to the
sub domain strategies and substructure ideas for designing parallel frontal
solutions. In these, elements on the left and right extremes of the domain
are read to two independent processors which carry out independent frontal
elimination on the system until the two fronts are later adjacent, at which
time synchronisation is required and a final reduced stiffness equation at the
interface is solved. The approach can be extended to multiple fronts.

In [24] a scheme for the automatic creation of substructures is suggested
which leads to an overall stiffness matrix in block-arrowed form. The method
is described in terms of its implementation on a distributed memory message
passing architecture. Each of a set of processors is assigned initially to one

Chapter 3:Literature Review 45

substructure. Once a processor completes the processing of its corresponding
substructure, it is assigned to a subset of the rows of the common interface
matrix. The formation and reduction of the matrix for each subdomain
requires no interprocessor communication. Each processor must however , ,
communicate its condensation terms to the interface block. Once the dis
placements are found, the determination of the stresses in each sub domain
can be carried out concurrently. For a system with 2000 equations, an ef
ficiency of 80 percent of the maximum theoretical value has been obtained
using 16 processors on an Intel iPSC.

The domain subdivision algorithm in [24] is also described in [25]. A
profile equation solver is used to reduce each subdomain. The sub domain
interface equations are solved by a special parallel equation solver which
features a concurrent LDLT factorization as well as parallel forward and
backward substitutions. The concurrent factorization involves forming and
assembling separate blocks of the stiffness matrix in parallel. These blocks
can then be factorized independently by different processors. After this, each
processor evaluates its corresponding displacement subvector by forward and
backward substitution. A trivial concurrent stress evaluation free from any
interprocessor communication terminates the algorithm.

For very large three-dimensional finite element systems with, say, over
10000 equations and large bandwidth, iterative solution techniques compete
with direct schemes from the computational time aspect. When these sys
tems arise, their sparsity, and hence their low storage requirements, provide
additional motivation for iterative solutions. This paper proposes an alterna
tive to the multi colouring technique (see below) that allows almost parallel
SOR iterations, without any constraint on the geometrical domain to be
analysed and without any restriction on the pattern of discretisation.

Algorithms for concurrent dynamic analysis of nonlinear problems are
given. The performance of the program for large linear static/dynamic prob
lems on a 32-processor hypercube connected Intel iPSC are reported as up to
90 percent of the maximum theoretical value. The overall system has been
shown to be suitable for multiprocessors with shared memory, such as the
Cray X-MP series [23].

Colouring schemes are described in detail in [27]. The purpose of using
colouring is to eliminate the critical regions from the code as far as possi
ble. By having large amounts of independent work done by each task and
minimising the amount of synchronisation, we can ensure efficient process-

Chapter 3:Literature Review 46

ing. Colouring divides the structure into lists of disjoint elements. Each list
corresponds to a particular colour. The lists are processed sequentially but
within each list groups of elements can be processed concurrently. Synchroni
sation only needs to be done at the list level. A minimum number of colours
is desirable because it maximises the amount of asynchronous parallel work.
In order to achieve this, the FE mesh must be such that large numbers of
elements do not share common nodes.

The pattern of the stiffness matrix produced using colouring schemes is
such that for each colour there is one diagonal and one off-diagonal block.
These blocks are disjoint and consequently provide the possibility of parallel
processing. The efficiency of parallel direct solution algorithms based on
colouring schemes on a Cray 2 is reported to be between 95 - 99 percent (2
- 4 processors).

Concurrent iterative and direct methods are described for system solution.
The iterative method is preconditioned conjugate gradient and the direct
method is similar to the method used in [24] for processing the block-arrowed
matrix. The software for the algorithms above has been implemented on the
Encore Multimax in [27] and other shared memory machines using the Force
[47] macros.

The Force provides a Fortran style parallel programming language util
ising an extensive set of parallel constructs. It is useful because it handles
process management automatically and produces portable code. The direct
solver is particularly suited to the analysis of very flexible space structures
which are inherently ill-conditioned. The speed ups achieved confirm the
suitability of such finite element schemes for shared memory machines.

The work in [6] presents an algorithm which involves substructuring and
the frontal method. The substructuring phase is very similar to the method
in [24] and the algorithm has been coded for the Alliant FX/80, a shared
memory machine with vector processors. The vectorised version of the frontal
method has been used both for the incomplete factorization of substructure
matrices (performed on different processors), and for the factorization of
the matrix relevant to the global interface variables. This second step is
performed sequentially. Speed ups of around 75 percent of the maximum
possible value are obtained.

The problem of inefficiency in parallel code due to large I/O synchronisa
tion overheads is addressed and it is suggested that this could be overcome by
a better definition of input and output data organisation on files. The best

Chapter 3:Literature Review 47

results have been obtained when the processors were allocated well balanced
large grain parallel work as would be expected.

In [26] parallel implementation of a direct factorization of a matrix using
profile storage is discussed. The algorithm is based on Doolittle reduction
and is sometimes called the active column equation solver. The U matrix
is usually evaluated column-wise in sequential implementations of this fac
torization. In the parallel algorithm discussed in this paper, U is computed
row-wise, within a column-oriented data structure. Two levels of parallelism
exist: concurrency at the outer loop and pipelining at the innermost loops.

The algorithm has been tested on Intel's iPSC and the Encore Multimax.
In the latter implementation, the coefficient matrix is stored as two linked
lists in shared memory. To avoid memory conflicts, at each step of the
factorization each processor copies into its local memory (cache) what is
required from the previous step. Synchronisation is only done once, just
before this data is updated. Each processor can then work on its set of
columns independently, using its private values. The memory contentions
due to parallel copying of this value cause only very small delays. Caching
on the Multimax minimises memory contention and makes the use of private
variables unnecessary.

In the forward substitution phase, the processors deal with a row-oriented
skyline data structure consisting of the columns of U. During back substitu
tion, the processors are synchronised at the beginning of the outer loop and
evaluate blocks assigned to them independently in between synchronisations.
A Fortran implementation of the above algorithms is given using the Force.
The code can be easily extended for out-of-core implementation.

As mentioned before, tests have been carried out on the iPSC and the
Encore Multimax. The iPSe has a hypercube topology. A 32-processor
configuration consisting of Intel 80286 and 80287 processors has been used
for the tests. The Multimax configuration used consisted of eight National
Semiconductor NS32032 processors but the tests have only been carried out
on up to six processors running concurrently.

Results on the iPSe show that for a fixed number of processors, higher
rates of efficiency (over 80 percent) are obtained for larger size problems
(order over 500). Also, for a fixed problem size, higher rates of efficiency are
obtained for coarser grain configurations (ie. smaller number of processors).
The Multimax shows very high efficiency rates in general. One reason for
this is its coarse granularity.

Chapter 3:Literature Review 48

For an equal number of processors, both machines show the same effi
ciency, but the Multimax has a much higher MFLOPS rate. For a fixed
number of processors, the efficiency rate on the Multimax falls beyond a
certain critical value of problem size. This is probably due to the effect of
virtual memory on the execution of large jobs.

The above observations were based on tests on dense matrices. It is also
reported that tests carried out on a sparse system show that the performance
in the sparse case is similar to the performance in a dense system with a size
similar to the frontwidth (or bandwidth) of the sparse one. In this case,
both the Multimax and the iPSe yield similar execution times but different
efficiency rates. The performance of the algorithm depends upon the sparsity
of the system and it is optimal for nearly dense problems. The method is
best applied to the in-core solution steps of a large finite element problem,
where these involve a dense matrix.

The work in [79] describes a finite element method based on the fact
that the displacement field calculated using displacement-formulated finite
elements converges much more rapidly than the stress field. This means
that a relatively coarse mesh may yield a reasonably accurate solution in
displacement. This displacement solution can then be used as a displacement
boundary condition for a local region in which the stress field is of interest.
The local region is analysed with a refined mesh. The algorithm consequently
consists of the following steps:

• A global analysis of the displacement field in the whole structure using
a coarse mesh

• Stress analysis of local regions with refined meshes using the global
displacements as boundary conditions for the local regions.

The local analysis for each region can be performed independently and the
local regions can consequently be solved concurrently on separate processors.
Parallel computation can be invoked to solve the systems of equations for each
local region, thus further increasing the time saving. Parallel programming
can therefore be employed in the global analysis and in each local analysis
to further improve efficiency. No interprocessor communication is needed in

this algorithm.
The algorithm has been tested on the Sequent Balance 21000 with 12

processors and shared memory. In this global-local analysis, one processor is

Chapter 3:Literature Review 49

used to perform global analysis with a coarse mesh with the resulting nodal
displacements stored in the common memory. Subsequently, a number of
processors depending on the number of local regions are used to perform the
local analyses concurrently. In each process, conventional Gaussian elimina
tion is used to solve the finite element system of equations.

Two applications have been considered: stress analysis of a thick laminate
and calculating the stress field near a crack tip in a centre-cracked panel. In
the cracked panel test, the global-local algorithm is shown to be about 30
times faster than a fine-mesh analysis (1000 elements) when two local regions
are used. Since no interprocess communication is needed in the analysis if the
finite element meshes of the selected local regions are identical, the number of
local regions does not alter the computing time. Furthermore, the accuracy
of the global-local procedure is affected by the choice of local regions. It is
important to avoid using global nodes of questionable accuracies as boundary
nodes for the local region.

In [9] parallel methods for the formation of the stiffness matrix for nonlin
ear large truss structures and the subsequent solution of equations are given.
The finite element analysis of such nonlinear systems involves iterative forma
tion and solution. In each iteration, a new nonlinear global stiffness matrix
is updated and solved (see section 2.2.:3). The algorithms are tested on the
Sequent Balance 21000 with 12 processors and shared memory.

During the first step element stiffnesses can be calculated independently
and placed at the appropriate locations in the global matrix. The memory
contention problem can be resolved by special node numbering (substructur
ing) or by means of synchronisation locks in shared memory. The solution
method involves parallel Gaussian elimination. The rows of the stiffness
matrix are independently processed by different processors.

The results of the tests show that the use of locks may cause some loss in
efficiency as the number of processors increases. Parallel Gaussian elimina
tion is not efficient for small half-bandwidth (7) on more than six processors
but produces good results for a half-bandwidth of 50 with 12 processors.
The speed ups are more apparent for systems with large bandwidth as the
number of processors used increases. The algorithms are particularly suited
to nonlinear system solution which involves formation and solution at many
incremental load steps.

The parallel assembly algorithm in [9] is similar to one discussed in a
later section (Method 1, section 6.3). The speed ups are similar to those

Chapter 3:Lit.erature Review 50

for Method 1 but are lower than those for our most efficient implementation
(Method 3, section 6.5). This is because a shared memory lock is used for
each entry in the stiffness matrix in [9] whereas we have used one lock per
row of the stiffness matrix in Method 3. The use of fewer locks enables us to
increase the granularity and hence higher parallel efficiencies are obtained.
For a detailed discussion of these issues see chapter 6.

In [51] the architecture of the Cedar machine [34] is described and a
block algorithm for solving banded positive definite systems is given. The
Cedar 1024L is designed with a two-level memory organisation. It has 1024
processors (1 to 2 MFLOP) sharing a single common memory through an
asynchronous switching network. The processors are further organised into
clusters of 8 or 16 processors with additional shared memory for each cluster.
This additional structure has not been used in [51]. Each processor also has
its own private (local) memory. The Cedar can consequently be thought of as
a shared memory machine in which each processor is also a shared memory
machine.

Efficient use of such a machine involves the decoupling of an algorithm
into smaller jobs, each of which uses a subset of the data. The stiffness matrix
is put into a block-tridiagonal form and LDLT factorizations are performed
concurrently on independent blocks of data. The final stage of the algorithm
is parallel back substitution. Tests carried out on the Cedar show that the
block algorithm becomes more efficient as the size and bandwidth of the
system increases. For example, for a problem of order 216 and half-bandwidth
2, the speed up is 8. If the problem size is increased to 220

, the speed up
increases to 95. The respective speed ups for the two problem sizes with a
half-bandwidth of 16 are 36 and 215.

The work in [58] describes an alternative organisation of the frontal
method which is suitable for parallel processing. The aim is to reduce
the book keeping and data manipulation operations associated with frontal
schemes in an algorithm which offers the simplicity of band matrix solvers.
The method involves interleaving the assembly and solution stages of fi
nite element analysis as in frontal schemes. The use of the reverse Cuthill
McKee algorithm is advocated for the ordering of the nodes. One of the
node numbering algorithms described produces matrices with similar profile,
bandwidth and anticipated fill-in to the matrix for the corresponding prob
lem generated by reverse Cuthill-McKee. A simple interface between the
assembly and factorization phases is provided and complex preprocessing is

Chapter 3:Literature Review 51

avoided.
A disadvantage of the node-driven assembly of the stiffness matrix is that

it requires more work than the usual element-driven assembly. More espe
cially, in an element-driven assembly, the basis functions, their derivatives
and the numerical integrations associated with an element (see section 2.3.2)
are computed only once during the assembly of the element, while in a node
driven assembly, these have to be recalculated each time a node which is in
the element is assembled.

The problems associated with the node-driven assembly may be overcome
if a window-oriented assembly is used to provide the rows of the stiffness
matrix to a multifrontal solver. Two windows (factorization and assembly)
travel across the band matrix and each have associated with them a group of
processors. The objective should be to distribute the processors among the
two groups such that the assembly and factorization proceed at about the
same speed. The band matrix can be stored in shared memory and minimal
processor synchronisation is required.

The work in [28] considers the I/O aspect of finite element analysis. Rela
tive CPU-I/O times quoted show that I/O manipulations can easily dominate
the execution time of a finite element code. Due to the vast amounts of I/O
which are present in some finite element programs, out-of-core techniques are
often used. However, I/O traffic between the disk and the processor main
memory slows down the computations significantly and increases even more
significantly the overall cost of the analysis. Reducing the amount of time
spent in data transfer is therefore at least as important as parallelising the
computational phases in a finite element program.

At present only a few systems offer parallel I/O capabilities. Parallel disk
access is possible on the NCUBE and the CRAY-2 offers limited multitasking
I/O ie. different tasks can perform I/O simultaneously on different files. Two
approaches for parallel I/O are described in this paper: one for local memory
machines and one for shared memory machines. The local memory method is
based on a substructuring technique. The shared memory method is purely
data oriented and involves copying parts of main memory on separate disks.
The results of tests performed on a CRAY-2 system with four CPU's confirm
the potential for parallel processing in I/O manipulations.

In [15] we are presented with a survey and classification of currently
competing algorithms for dense linear algebra. The important factors in the
design of algorithms are operations counts, vectorisability, parallelisability,

Chapter 3:Literature Review 52

communication costs and scalability.
Block algorithms offer more scope for parallelism and improvements in

speed. Some refinements to such algorithms are possible such as adaptive
blocking ie. switching from blocked to unblocked form and variable block
sizes. Blocked LU factorization on a CRAY Y-MP (block size of 64) gives
good speed up for orders around 500. For sparse factorization, if the band
width is small (20 or so) then there is no speed up but good results are
obtained for larger bandwidths (100 or so).

In [17] some techniques for parallel solution of sparse systems are de
scribed. For a general sparse system we can perform some steps of Gaussian
elimination on a frontal matrix at each node of the assembly tree. Work cor
responding to leaf nodes can proceed immediately and independently. When
work on all sons is completed, the father node can be eliminated. The speed
ups due to exploiting the tree structure only are as follows:

Number of processors 3 4 6

IBM 3090E 1.9

CRAY Y-MP 1.8 1.9 2.3

The speed ups due to using the tree and Level 3 Basic Linear Algebra Sub
routines (BLAS) are as follows:

Number of processors 3 4 6

IBM 3090E 2.4

CRAY Y-MP 2.7 3.3 4.1

Semi-direct methods are also described. The matrix is partitioned and
the subsystems are solved by a direct method (Gaussian elimination). The
overall problem is then solved by an iterative scheme. Results for a block
tridiagonal system on an ALLIANT FXj80 (shared memory, 8 processors)

are as follows:

Chapter 3:Literature Review 53

order 20700

entries 511050

sparsity 99.9 % approximately

no. of iterations 18 - 33

time 50 seconds

speed up 4 - 6

The speed ups can be increased by using more sophisticated iterative methods
with better preconditioning and the incorporation of a better direct solver.

The work in [80] is in favour of using iterative schemes rather than di
rect methods because of the large computational cost and large amounts of
memory needed for direct methods (see section 2.3.4). The iterative schemes
described are the conjugate gradient method, GMRES and BiCG, all three
of which require preconditioning. The main problem in a parallel implemen
tation of such schemes is the preconditioning step.

3.2.2 peG Related Works

A parallel implementation of the incomplete LU preconditioning using level
scheduling (see section 7.3.2) is described in [63]. This involves the identifi
cation of the independent unknowns and the subsequent solution for these in
parallel. The identification process is not expensive and the whole process is
equivalent to reordering the rows and columns of the matrix. The maximum
global speed up obtained from runs on a CRAY Y-MP (shared memory) us
ing 4 processors is 2.65. The matrix orders range from 500 to 4500 and the
best speed ups were obtained for larger systems.

In [68] an extensive survey of work on parallel conjugate gradient-type
methods is given (see section 2.3.4). These methods have proved to be very
useful on traditional scalar computers, and their popularity is likely to in
crease as three-dimensional models gain importance since these problems will
involve larger systems of equations. Parallelisation at iteration loop level is

Chapter 3:Literature Review 54

reported to suffer from numerical instability (see section 7.2).
The main source of difficulty in the incomplete factorization precondition

ings is in the solution of the triangular systems at each step (see section 7.3).
A few approaches for implementing efficient parallel forward and backward
triangular solutions are described. Among these is level scheduling which
gives speed ups in the range 2-5 on an Alliant FX-8. These are similar to
the speed ups for our implementations of level scheduling (see chapter 7).

The parallelisation of the dot products in the CG algorithm also consti
tute a bottleneck on many parallel and vector machines [68]. This is because
when all the vectors in the algorithm are split equally among the processors,
the dot products require global communication. However, this need not be
a problem unless the number of processors becomes large.

There have been several works on the use of polynomial preconditioners
(see section 2.3.4) motivated mostly by their potential on vector computers
[3] [46] [69] [48] [71] [83]. However, there are doubts surrounding the use
fulness of the method on parallel computers. The main attraction of poly
nomial preconditioning is that the only operations involving the matrix are
products with vectors. We also need fewer dot products than with the non
preconditioned CG method to solve a linear system. As mentioned above,
the dot products can be bottlenecks for large numbers of processors but may
not cause any difficulty otherwise. Thus, polynomial preconditioning is only
likely to be efficient when the number of processors is very large.

Polynomial preconditioning gives poor performance on sequential ma
chines or parallel machines with a small number of processors. This is because
this type of preconditioning can only be more efficient than the standard CG
method when the cost of matrix by vector multiplication is less than half the
cost of the operations in a CG step [68]. In order to satisfy this requirement,
a very large number of processors must be used so that the dot products dom
inate the cost of a CG step. On machines with a small number of processors
incomplete factorization preconditionings (IL U) produce efficient results (see
section 2.3.4, [1], [85] and [40]).

The most efficient fill-in level (see section 2.3.4) for ILU preconditioning
is 1 or 2, according to the work in [14]. This is in agreement with the
experiments in [68] which conclude that higher level fill-ins cause the cost
of the factorization to dominate the computing time. High fill-in levels are
hence rarely competitive with the simpler ILU(O) or ILU(l) preconditioners
[1] [73]. The ILU(O) preconditioner and those with low level fill ie.1 or 2 are

Chapter 3:Literature Review 55

computed inexpensively due to the large number of discarded entries (see
section 7.4.1).

In [14] the Minimum Discared Fill (MDF) ordering technique is men
tioned. This is effective in finding good IL U preconditioners especially for
problems arising from unstructured finite element grids. The algorithm can
identify anisotropy in complicated physical structures and orders the un
knowns in an appropriate direction.

The MDF scheme is expensive for high level ILU preconditioners. Sev
eralless expensive variants of this technique are explored in [14] to produce
cost-effective ILU preconditioners. These include the Threshold MDF order
ing which combines MDF ideas with drop tolerance techniques to identify
the sparsity pattern in the ILU preconditioners. Drop tolerance techniques
involve ignoring fill-in entries during factorization which are small compared
to the ratio of their corresponding diagonal entries in the original matrix (see
section 7.3.3 and [57]).

Another technique introduced is the Minimum Update Matrix (MUM)
ordering which is a simplification of the MDF ordering and is an analogue
of the minimum degree algorithm. The MUM ordering method is especially
effective for large matrices arising from Navier-Stokes problems. Numerical
results in [14] show that a high level threshold MDF(l) ordering combined
with a drop tolerance produces excellent results for partial differential equa
tion problems having a relatively small molecule. This is because most of
the high-level fill is small and can be ignored, but there are a few high-level
fill entries that improve the quality of the preconditioner.

The level scheduling method is described in [68] and used in [85] with ILU
preconditioning. The experimental results show that the ILU(O) precondi
tioner performs better than any other ILU(k) preconditioner with k greater
than zero. The best speed up obtained on a CRAY Y-MP with four proces
sors is 2.5. The work in [41] also involves level scheduling on a CRAY Y-MP
but with eight processors. The speed ups are in the range 3-7 for different
matrices. The ILU(O) preconditioner is again reported to be superior to any
other ILU(k).

In [31] a parallel IL U preconditioner is described which partitions the
matrix in overlapping blocks and performs local incomplete factorizations.
The speed ups are up to 3.3 on 4 processors. In [54] a new preconditioner
with a fast convergence is introduced. The preconditioner is an approximate
inverse for symmetric matrices ie. of the form LLT. Very efficient parallel

Chapter 3:Literature Review 56

implementations of the CG method on an Alliant FX-8 are reported and
the preconditioning efficiency is also surprisingly high (improvement ratios
in the rate of convergence in the range 7 - 35 depending on system size).
Block preconditioners are used in [56] for parallel solution of block tridiagonal
systems on a CRAY X-MP. The speed ups are reported to be near optimal.
An earlier work on the same computer [71] reports a 30 percent loss of overall
speed up due to the cost of barrier synchronisations.

In [67] the triangular solves of the PCG algorithm are parallelised us
ing level scheduling on an SGI 4D /340 shared memory multiprocessor. This
machine has a deep memory hierarchy (ie. one consisting of several levels)
and the authors suggest that on such machines previously proposed paral
lelisation approaches result in little or no speed up. This is attributed to the
large amounts of memory system traffic in such parallel implementations.
Significant improvements in speed ups are reported by using techniques for
limiting data traffic. These include data re-mappings and new processor
synchronisation techniques to decrease the use of auxiliary data structures.
Data re-mapping consists of the restoration of the spatial locality that was
present in the sequential code but has been lost in the parallel approaches.

A detailed analysis of the effect of ordering on the performance of the PCG
method is given in [18]. It is shown empirically that there can be a significant
difference in the number of iterations required by the CG method depending
on the original ordering of the unknowns (see section 2.3.4). Incomplete
factorization preconditioners are considered the most useful in practice in
terms of the acceleration they yield and being easy to generate and use (see
section 7.3.1).

The orderings which give the best results are reported to be those which
are local in the sense that neighbouring nodes in the underlying mesh (ie. un
knowns in the original system) have numbers that are not too far apart. This
is the case for orderings such as row ordering and Cuthill-McKee. There also
seems to be in general an incompatibility between parallelism and good order
ings for incomplete factorization preconditioning. This means that many of
the orderings well suited to parallel processing such as the dissection methods
do not give very good results. This is because they lack the locality property
which gives good convergence rates. On the other hand. the non-local struc
ture of orderings such as nested dissection is important for the decoupling
property required for efficient parallel processing.

Chapter 4

Parallelisation of GASP4

57

Chapter 4: Parallelisation of GASP4 58

4.1 Overview of Chapter

In this chapter we report on our experiences in parallelising a large Fortran
program for stress analysis using the finite element method on a shared mem
ory multiprocessor (the Encore Multimax with 14 processors). The program
(GASP4) has been developed at the British Gas Engineering Research Sta
tion (ERS) at Killingworth. This program has been discussed in detail in
section 2.4.1).

The next section contains a brief description of the program. In section
4.3, the run time behaviour of the program is analysed in order to identify
the more computationally expensive parts. Section 4.4.1 describes the Encore
Parallel Fortran (epfJ parallelising compiler. The parallel version of GASP4
generated by the epj compiler is also described in this section and some
timing results are presented. These results are analysed in section 4.5 where
we discuss the reasons for the inefficiency of the parallel code and describe
some possible techniques for obtaining better speed up.

4.2 Program Description

GASP4 is a Fortran program for performing stress analysis due to ground
movement. It is primarily used by the ERS for predicting stress levels in
sections of pipe due to coal mining. The structure is modelled using the
finite element method and the frontal solution technique [45] forms the basis
of the program. The main subroutines in the program are as follows:

DATINP Reading in the geometric and physical properties of the discre
tised pipe section and its surroundings.

ELTMTX A 12 x 12 stiffness matrix is calculated for each linear element
and the corresponding right hand side vector is determined for thermal
expansion and pressure forces. The degrees of freedom consist of vari
ables which relate to the forces and displacements (in three dimensions)
at the elements' extremities.

FRONT! The frontal solution technique is used to determine the displace
ments at each node. The method interleaves the assembly of the ele
ment matrices into the overall stiffness matrix and the elimination of
the variables.

Chapter 4: Parallelisation of GASP4 59

PRINTl Postprocessing of displacement data is performed to produce out
put files containing extensive information on predicted stresses. Prob
lem points are consequently identified.

For a 1 km length of pipeline with few bends, the number of nodes is
around 250 and the run time of the program is approximately 20 minutes.
A typical realistic configuration can consist of several kilometers of pipeline
divided into hundreds of elements. The greater the number of bends in the
pipeline section, the greater is the number of nodes (more nodes are needed
near bends) and the run time of the program. The program may be run
overnight for larger analyses.

4.3 Execution Profile

In order to achieve efficient parallelisation we need to determine the sections
of GASP4 where most of the execution time is spent. Although this depends
to a certain extent on the kind of problem at hand and problem size, the
profiles of most problems are generally quite similar. The profiling has been
done using the UNIX gproj profileI' which provides graph profile data.

The program has been profiled for a problem with 101 nodes. Even though
the problem size here is small, the run time behaviour of the program is a
good guide to that of larger problems. The information given below is in the
form of percentages of a total sequential execution time of 14 seconds spent
in each subroutine. Subroutines with insignificant contributions have been
omitted.

* DATINP 15.7

ELDAT 5.1
COORDS 3.6
DISP 2.0
EXLOD 2.0

LIST 1.8

Chapter 4: Parallelisation of GASP4 60

* ELTMTX 9.2

ELT12 7.6
ELT3 1.6

* FRONTl 33.1

ELIMIN 20.5 ------ LMPYF 5.8
ATBTOL 4.3

DPRINT 7.0
STRESS 3.1
BAXSUB 1.4
RPRINT 1.1

* PRINTl 41.9

TD12A 21. 8 ------ SHKDWN 18.7
OUTPUT 13.5
DFACT 6.4

The profile shows that a large amount of I/O is performed by the pro
gram. Most of the I/O is done in DATINP and PRINTl which makes these
subroutines almost completely non-parallelisable. The sequence of opera
tions in PRINTl cannot be reordered in a straightforward manner to make
parallelisation possible since the postprocessing calculations and printing are
interleaved. The main interest is in parallelising the formation of the stiff
ness matrix and the solution for the displacement unknowns. This involves
parallelising ELTMTX (calculation of the element matrices) and FRONTl
(assembly of the stiffness matrix and elimination).

Chapter 4: Parallelisation of GASP4 61

4.4 Parallelisation Using the epj Compiler

4.4.1 The Compiler

The epf compiler [21] parallelises sequential Fortran code by making an anal
ysis of data dependency information it extracts from the program. It is one
of the simpler parallel compilers but there are no alternative compilers for
the Encore Multimax.

During the execution of a parallel program, tasks are only created once
and subsequently idled and restarted as necessary (see section 1.4). The num
ber of tasks is specified by the user by setting the appropriate environment
variable to a desired value.

Various parallel constructs are available for insertion into the program
such as DOALL loops spreading the iterations over the available parallel
tasks and other constructs for handling synchronisation such as LOCK's and
EVENT's. CRITICAL SECTION's provide explicit mutual exclusion. The
compiler parallelises DO loops and inserts necessary synchronisations into
the loops to control memory contention by parallel tasks. Loops containing
READ and WRITE statements are not parallelised.

The use of some of the synchronisation constructs provided by epfis given
below. These can be invoked in users' programs as necessary. They are also
inserted by the compiler into these programs when the autoparallel switch is
on.

• The PARALLEL construct - The code between the PARALLEL
and END PARALLEL statements is duplicated for each active task.
This is the basic facility for the initiation and running of parallel threads
of execution within a program. Any variables declared inside a PAR
ALLEL block are local ie. each task has a separate variable of that
name and type. All other variables are shared. The tasks may continue
beyond the block when all tasks have reached the END PARALLEL
statement .

• DOALL - This construct partitions iterations of a DO loop among
members of the active task set. The iterations can be synchronised by
the explicit use of intertask communication. The loop index is spread
randomly. The block is bound by the DOALL and END DOALL state

ments.

Chapter 4: Parallelisation of GASP4 62

• LOCK's - These are variables stored in shared memory and can be set
to .LOCKED. and .UNLOCKED. A WAIT LOCK statement is only
allowed to proceed when its corresponding LOCK variable has not been
set to .LOCKED. by another task ie. when it is . UNLOCKED. If the
LOCK is taken then the task is halted at that point and can only
proceed when the task holding the LOCK releases this by a SEND
LOCK operation.

• EVENT's - These shared variables can be set to .WAIT. and .GO.
WAIT SYNC stops a task from executing until the EVENT(s) indicated
by the event variable(s) are completed. SEND SYNC completes the
EVENT named by the indicated EVENT variable by setting this to
.GO. and then unblocking any task waiting on the EVENT.

• CRITICAL SECTION's - This construct ensures that only a sin
gle task is allowed inside the bounded code segment at a time and
that every active task will execute the code. The protected segment is
terminated by END CRITICAL SECTION.

• BARRIER's - These provide a synchronisation mechanism used to
prevent any tasks from continuing beyond a BARRIER statement until
all tasks have arrived at that point.

Loops containing I/O statements and others which involve complex data
dependencies are not parallelised. Consequently all loops with subroutine
calls are untouched. Parallelisation of loops varies from simple array ini
tialisations which require no synchronisation to parallel loops which contain
extensive and complex synchronisations (see section 4.4.2). Also, the code
structure within or outside the loop is sometimes altered and new variables
are introduced in order to improve efficiency and ensure correctness. Paral
lelisation is sometimes made possible by the reordering of nested loops.

4.4.2 The Parallel Program

In this section we shall discuss the autoparellelised program. Some gen
eral examples are analysed together with certain specific GASP4 code sec
tions. Since DATINP, PRINTI and the subroutines associated with them
deal mainly with I/O, they are not parallelised by epj except for simple array

Chapter 4: Parallelisation of GASP4 63

initialisations and some postprocessing in PRINTl. Subroutines ELTMTX
and FRONT1 together with other subroutines called by these contain many
DO loops which epj considers parallelisable.

There are many straightforward conversions of DO loops to DOALL loops
without further synchronisation for operations such as array initialisations.
One important feature of a DOALL loop is the random allocation of loop
indices to parallel tasks. This means that DOALL ensures that each index
is used once (and only once), but not necessarily in sequential order. This
makes any loops with index I containing assignment statements such as

A(I) = A(I - 1) + 1

non-parallelisable since the correctness of such loops depends upon an ordered
execution of loop indices. In order to ensure correct parallel execution of such
loops, a great deal of synchronisation is required which makes parallelisation
not worthwhile.

The above limitation does not mean that any loop containing calculations
of array elements which involve other elements of the same array is not
parallelised by the compiler. For example, consider the loop:

DO I=l,N
A(2 * 1) = I
A(2 * I + 1) = A(2 * 1) + 1

END DO

The values of array elements with odd indices are dependent on the previous
even indexed elements and the latter are dependent only on the loop index.
The correct execution of such a loop does not require an ordered sequence of
iterations. Such loops are consequently converted to DOALL loops with no
further synchronisation by epj

One of the major tasks of the compiler is to control memory contention
due to parallel code (see section 1.4). Memory contention occurs when two or
more parallel tasks attempt to update the same location in shared memory
simultaneously. The result of such inadvertent access could be the loss of
updates to shared variables. There are two main cases in which contention
can occur in DOALL loops:

Chapter 4: Parallelisation of GASP4 64

(i) DOALL (I=l:N)

A = A + function (1)

END DOALL

and

(ii) DOALL (I=l:N)

J = function (1)

increment A(J)

END DOALL

There is an obvious risk of contention in (i). For the loop in (ii), con
tention is a problem if two or more values of I give the same value for J. In
both cases the shared variable A must be updated under mutual exclusion.
An example of such updates is in the accumulation of the element matrices
into the overall stiffness matrix (see section 2.3.3). The elements of the array
that are incremented in each iteration are determined by the element num
ber (loop index). Also, if incrementing A(J) involves another array element
(for example during the matrix factorization), there may also be an ordering
problem.

In the autoparallelised version of GASP4, mutual exclusion is achieved
by the use of EVENT's. The appropriate synchronisation primitives (ie.
WAIT SYNC and SEND SYNC) are inserted into the DOALL loop so that
the necessary synchronisations are made to ensure mutual exclusion during
updates such as (i) and (ii) above.

An example of the use of EVENT's by epj is given below. The code
between the PARALLEL and END PARALLEL statements is duplicated
according to the number of tasks that are to be used. The PRIVATE variables

Chapter 4: Parallelisation of GASP4 65

are local to each task. The EVENT's are stored in shared memory. TASKID
provides an integer between zero to the number of tasks-l to identify each
task.

All tasks are suspended at the BARRIER statement and one is allowed
to proceed once they all reach this point. After this, each task waits on its
respective EVENT (II4(1) for task 0, II4(2) for task 1 and II4(3) for task 2).
Since II4(1) is set to .GO., task ° is the only task that is initially allowed to
set its EVENT to .WAIT. and execute the protected statements. All other
tasks are now waiting on their EVENT's.

EVENT II4(20)
PARALLEL
INTEGER II2,III,I
PRIVATE II2 ,III,I
III = TASKID + I ¢=

II2 = MOD(III,NTASKSO) + I ¢=

II4(I1I) = .WAIT.
BARRIER BEGIN
II4(1) = .GO.
END BARRIER
DOALL (1=I:N)
perform computations which need NOT be
done under mutual exclusion
WAIT SYNC (II4(III»
II4(I1I) = .WAIT.
perform computations which MUST be
done under mutual exclusion
SEND SYNC (II4(II2»
END DOALL
END PARALLEL

This task's EVENT
The EVENT of the
task to be released
by the current task

An Example of the use of EVENT's

Once task ° completes its mutually exclusive operations, it releases task 1
by a SEND SYNC statement. We hence have in effect some form of pipelining
procedure which passes on the thread of active execution from one task to

Chapter 4: Parallelisation of GASP4 66

another in order. It must be remembered that each task ensures its own
future suspension within the DOALL construct until it is released at the
next cycle of the pipeline. Also, the statements within the DOALL loop are
executed with a different value of the loop index for each task. The scheme
is illustrated in figure 4.1 for the case of three parallel tasks.

TASK 0 TASK 1 TASK 2
II4(1)=.GO.
unprotected code unprotected code unprotected code

~ WAIT SYNC(II4(1»)

/
WAIT SYNC(II4(2))

/
WAIT SYNC(II4(3))

II4(1)=.WAIT. II4(2)=.WAIT. II4(3)=.WAIT.
protected code protected code protected code

SEND SYNC(II4(2)) SEND SYNC(II4(3)) SEND SYNC(II4(1))

Figure 4.1: An example of synchronisation using EVENT's

The efficiency of this scheme is determined by the amount of work which
is done in parallel compared to the cost of synchronisation. This means
that we require sufficiently large amounts of processing in the unprotected
segments to compensate for the cost of implementing the protected zones.
This issue is discussed in detail in section 4.5.1.

4.4.3 Timing Results

The results obtained from timing the parallel version of GASP4 generated
by the epj compiler are presented in table 4.1. Two different mesh sizes have
been used. Np is the number of processors. All times are in seconds.

We should not expect any significant improvement in the results for very
large problems since the program would still be using small grain sizes (see
section 1.6) which prove to be inefficient. This is the subject of discussion in
the next section.

Chapter 4: Parallelisation of GASP4 67

Table 4.1: Performance of Autoparallelised GASP4
Np 101 nodes 441 nodes

Sequential 17.85 39.86
1 19.83 46.22
2 27.68 60.80
4 27.75 61.17
6 28.91 65.55
8 30.16 66.12

4.5 Ideas for Efficient Parallelisation

4.5.1 Reasons for Inefficiency

The timing results in section 4.4.3 show that we are not benefiting from the
parallelisation inserted into GASP4 by the compiler. Moreover, there is an
increase in the processing time as the number of processors increases. This is
due to the increasing amount of overhead associated with setting up parallel
tasks and controlling synchronisation. Since we do not gain sufficiently from
parallelism to compensate for this overhead, there is an overall increase in
execution time. The sudden increase in execution time when two processors
are used is probably due to the synchronisation overhead associated with
accessing shared data.

The main reason for the inefficiency of this code is the level at which
parallelism is implemented. In order to make more benefit from parallelism
we need to allocate to each parallel task approximately equal amounts of work
and make sure that the work done in between synchronisations is sufficiently
large to compensate for the overhead.

Since the data dependency analysis is too complex at the higher levels, epj
makes use of a great deal of small grain parallelisation with a large number
of synchronisations. This is very costly and in many cases would not be nec
essary if certain modifications were made to the sequential code. Also, there
are cases where the compiler inserts synchronisation into the code without
realizing that there is no need for protection.

Chapter 4: Parallelisation of GASP4 68

4.5.2 Ideas for Hand Parallelisation

In order to implement parallelism at levels higher than those done by epj
we need information on data dependency from the designers of GASP4. We
have been provided with some such information and have used this to provide
examples of how the program can be hand parallelised. The actual hand
parallelisation of the whole program is a major exercise with little research
value. We have consequently concentrated on providing general guidelines
rather than attempting to write a parallel version of the program.

Many large loops are not parallelised by epj because they contain I/O
statements. It is possible, however, to parallelise some of these loops bearing
in mind the following facts:

• WRITE statements can be left in DOALL loops as long as they can be
done in a random order. If their order is important and depends upon
the loop index then we should try to take these out of the DOALL loop
if possible and execute them sequentially after the loop .

• READ statements can also be left in DOALL loops and the same con
siderations should be made as for WRITE statements.

An example of such loops is in subroutine ELTMTX in which ELT12
or ELT3 is called for each element. It is possible to have parallel calls to
these subroutines which means that the element loop can be spread. The
only difficulty is that both of these subroutines write to the same file and
the order in which the writing is done with respect to the element number is
important. The only way to overcome this is to store the data to be written
such that the WRITE statements can be taken out of the DOALL loop. The
rest of the processing can be done in parallel.

Parallel READ's are useful in cases such as reading in element and nodal
data for finite element meshes if the order in which the data is stored is not
important. In practice, parallel READ's tend to cause run time errors in
many cases. This is caused by the simultaneous access to the file pointer by
parallel tasks which can inadvertently place incorrect values into program

data sections.
In many loops there are statements for updates of variables. If these loops

are to be parallelised, the updates must be done under mutual exclusion. An
example of the contention problem of type (i) of section 4.4.:2 is in subroutine

Chapter 4: Para.llelisation of G/-\SP4 69

COORDS. The variable IERSUM is incremented by one in each iteration. In
the parallelised loop, this must be done in a CRITICAL SECTION.

We can also employ a certain strategy to make the parallel loop more
efficient. Instead of having the main update in the DOALL loop, we can
accumulate variables local to each parallel task in each iteration and then
have each task perform a mutually exclusive update of the shared variable
(IERSUM) after its allocated iterations. In this way the overhead associated
with the execution of the CRITICAL SECTION construct is minimised since
it is executed only once by each parallel task rather than once for every loop
index. The code is as follows, where TMPIER is a local variable to each
parallel task:

PARALLEL
INTEGER TMPIER
DOALL (I=l:NNP)

TMPIER = TMPIER + 1

END DOALL
CRITICAL SECTION

IERSUM = IERSUM + TMPIER
END CRITICAL SECTION

END PARALLEL

One could also experiment with implementing the update of the global
variable (IERSUM) in parallel steps so as to minimise the number of addi
tion operations necessary and hence minimise the cost of synchronisations
using CRITICAL SECTION's. This will only be beneficial if the cost of the
synchronisations required for the parallel additions are low enough to make
their implementation beneficial.

One further strategy for improving the efficiency of the parallel code in
volves the elimination of the cost of the DOALL construct. This can be
achieved by a small amount of preprocessing to allocate to each parallel task
a block of consecutive loop indices and setting the tasks to process their
respective blocks in parallel. In order to achieve good load balancing, the

Chapter 4: Parallelisation of GASP4 70

Table 4.2: Performance of Hand Parallelised GASP4
Time

Np Hand Auto
Sequential 4.21 4.21

1 4.42 4.71
2 3.17 5.14
4 2.79 5.62
6 2.58 6.02
8 3.05 6.36

blocks must be of equal or nearly equal size. This scheme has proved to
increase the efficiency significantly for large loops.

An example of updates of type (ii) of section 4.4.2 is in subroutine IEL
REF. There is a loop containing an update of the array element NREF(INOD).
If each loop index does not necessarily give a unique value of INOD, there is
a contention problem when this update is made. In order to test the above
ideas for parallelisation, we have used them in subroutine ELTMTX (see sec
tion 4.2). The timing results for the 441 node mesh (see section 4.4.3) are
presented in table 4.2 as processing times for ELTMTX (in seconds) together
with the corresponding times for ELTMTX using autoparallelisation.

We can see that there has been some benefit in using the mentioned
parallelisation strategies even though this has not been very large. Better
speed ups can be expected for larger meshes. We must also bear in mind
the extra cost associated with reordering the code to make it parallelisable.
Certain sections of the program require extensive reordering to improve their
condition. This is not a good way to go about designing parallel code since
by doing so at this stage we may make the underlying sequential algorithm
less efficient.

The processing times for ELTMTX using autoparallelisation show that
there is no benefit due to parallel processing. In fact the processing time
increases as Np is increased. For example, wheIl using :3 processors autopar
allelisation takes more than twice as long as hand parallelisation when pro
cessing ELTMTX. The reasons for the lack of efficiency of the autoparalellised
code were discussed in section 4.5.1.

Chapter 4: Parallelisation of GASP4 71

4.5.3 Some Suggestions for Approaching Parallelisa-
tion

Parallelising GASP4

Given the limitations of epj, significant benefits from parallelisation can only
be obtained by starting with the sequential code and using the information
provided by its designers to make suitable modifications which would allow
us to parallelise at higher levels. The task of simple parallelisations such as
spreading independent iterations over available tasks can then be left to the
compiler.

In order to benefit from parallelisation to the largest extent we need to
parallelise DO loops containing calls to large subroutines. We consequently
need to know whether it is possible to run parallel copies of these subroutines.
If shared data are updated in the DO loop or its associated subroutines,
they must be protected during updates by constructs such as CRITICAL
SECTION's. The use of such constructs should be kept as low as possible
to avoid large overheads. Strategies such as accumulating local sums and
blocking the loop indices discussed in the previous section can be used for
such purposes. In some cases, parallelisation of loops can be made possible
by the reordering of nested loops or rearranging the loop structure such that
some parts of the loop are executed sequentially in separate loops.

Whenever possible, I/O statements should be taken out of loops before
parallelisation. If they cannot be taken out then the order in which they
would be executed should be noted. DO loops which do small amounts of
work must not be parallelised.

Writing Parallelisable Code

The best strategy for writing sequential code that can be parallelised easily
and efficiently is to bear in mind the following points:

• The code must not contain complex data dependencies which are dif
ficult to analyse. These usually involve the dependence of array sub
scripts on calculations within or outside the loop .

• Subroutines in DO loops must be written such that parallel copies of
them could be run with small amounts of simple synchronisations. It

Chapter 4: Parallelisation of GASP4 72

is consequently better if most of the processing in subroutines involves
local variables, keeping access to global (shared) variables to a mini
mum. The use of parameters for subroutines helps in writing such code
and is to be preferred to using COMMON block data .

• I/O statements should be performed independently of computation and
in separate DO loops whenever possible.

In general, sequential code must be written such that it performs large
amounts of independent work with simple and clear data dependencies. The
use of GO TO and RETURN statements should be avoided whenever possible
since they add to the complexity of the code.

Chapter 5

The Model Program

73

Chapter 5:The Model Program 74

5.1 Overview of Chapter

The aim of this chapter is to describe the finite element model program we
have developed for the purpose of experiments on parallelising the method.
The model forms the basis of several Fortran programs used for testing var
ious aspects of parallel finite element analysis.

The basic model structure is first described together with an explanation
of the sparse storage scheme used for the stiffness matrix. An example run
is presented to illustrate the program user interface.

5.2 The Model

The model described here is a Fortran program which can be used for the
numerical solution of linear two-dimensional problems of the type discussed
in chapter 2. The example problem in section 5.4 involves a stress field
and the program is used for two-dimensional stress analysis. The boundary
conditions are specified as fixed displacements at particular nodes. Physical
and geometrical properties and information on applied forces are input to the
program. The output is in the form of displacements at various points in the
problem domain. The displacements can then be used to compute stresses
at these points using stress/strain relations involving the characteristics of
the elements in which they occur.

One important feature of the model program is that it allows experi
mentation with different meshes, assembly strategies, solution schemes and
various numerical techniques for each phase of finite element analysis. This
can be done by inserting alternative program modules in relevant sections of
the code while preserving the overall program structure.

A separate program has been written which generates suitable regular
two-dimensional meshes and provides for the main program data concerning
the connectivity and positions of nodes. We have used both linear triangular
and bilinear quadrilateral elements on a square mesh. Other types of elements
can, however, be easily accommodated for analysis. The node orderings used
are row and red-black orderings.

The program can be used for the solution of a wide range of finite ele
ment problems by supplying the appropriate element matrix routines. The
solution phase of the program can be modified for the solution of nonlin-

Chapter 5:The Model Program 75

ear problems (see section 2.2.3). The assembly and solution procedures are
otherwise independent of problem type.

The model program is structured as follows:

Data Input Reading in the geometrical properties of the structure in the
form of nodal connectivity information and nodal coordinates; reading
in the physical properties of the structure; reading in applied forces.

Stiffness Matrix Formation Element matrices are calculated and imme
diately assembled. The mathematical formulation of the element ma
trices is explained in section 2.3.2. To calculate an element matrix,
its nodal coordinates are converted to those of a natural coordinate
system ie. one which permits the specification of a point within the
element by a dimensionless number whose absolute magnitude never
exceeds unity. The numerical integration of the shape functions eval
uated at the nodes is done by the Gauss-Legendre quadrature using
four sampling points for each element. The result is an element matrix
representing the behaviour of the element under stress.

The element matrix is then added on to appropriate positions in the
overall stiffness matrix. The contribution of the right-hand side is also
calculated at this stage and added on to the force vector (see section
2.3.2). The stiffness matrix formation can be achieved by using any se
quential or parallel assembly strategy. Some possible implementations
are discussed in the next chapter.

Displacement Evaluation Nodal displacements are evaluated by solving
the resulting system of simultaneous equations. This is done by the
preconditioned conjugate gradient method. An incomplete LU precon
ditioner is calculated and used in the subsequent steps of solution. For
the details of the formation of the preconditioner and the implemen
tation of the preconditioned conjugate gradient method see chapter 7.
The reasons for choosing the PCG method with ILU preconditioning in
our model are given in sections 2.3.4 and 7.2. It must also be said that
it is possible to use methods other than PCG for this stage. Examples
of these are direct methods such as Gaussian elimination.

Chapter 5:The Model Program 76

5.3 Storing The Stiffness Matrix

The overall stiffness matrix is very sparse and its sparsity increases substan
tially as matrix order increases. The sparsity can be exploited to avoid the
large amounts of storage required when the size of the matrix (ie. the num
ber of degrees of freedom) is large. In practice, most real problems give rise
to large stiffness matrices. In order to benefit from parallelism to the fullest
extent we need to consider such large systems which require a large amount
of storage.

To overcome the storage problem we have designed our program so that
the stiffness matrix is represented in one of the standard Fortran represen
tations of such matrices [16], as a row-linked list using four one-dimensional
arrays. These arrays can be abstracted to a table consisting of the following
entries:

• IROWST - position of the first entry for each row in the table (integer
array)

• JCN - column number of entry (integer array)

• VAL - value of entry (real array)

• LINK - pointer to the next table entry for a row (integer array).

IROWST must be of size equal to the order of the stiffness matrix whilst
the other three arrays must be as large as the number of entries in the stiffness
matrix. Figure 5.1 illustrates how the storage scheme can be used to store
the sparse matrix A.

In the table, a zero LINK denotes the end of a row. In order to locate an
entry in a row we must follow the LINK's through the table starting from
the position indicated by IROWST. Let us illustrate this with an example.
If we were to look for the fourth entry in row 2, we would start by looking for
the start of row 2 ie. IROWST(2). This has the value 1, meaning that row
2 starts at position 1 in the table. JCN(1)=l and VAL(1)=6 which shows
that A(2,1)=6. LINK(1)=4 and in this position of the table we find that
A(2,4)=4. We have found the required matrix entry. LINK(4)=0 indicating
that there are no further entries in row 2.

Chapter 5:The Model Program 77

40200

60040 subscript 1 2 3 4 5 6 7 8 9
IROWST 3 1 8 5 2

00250
JeN 1 3 3 4 5 1 2 3 4

10007 VAL 6 2 2 4 7 4 3 2 4

03240 LINK 4 7 6 0 10 0 9 11 0

A

Figure 5.1: Sparse Representation in Tabular Format

This sparse representation provides a very efficient means of storage. As
an example, one of our test problems with 8281 degrees of freedom is repre
sented fully by approximately 70 million (8281 x 8281) reals whereas the
sparse representation only requires about 200000 integers and 100000 reals.
There is consequently a substantial saving in storage when the sparse data
structure is used and this allows us to process larger systems and test these
for speed up.

The entries in the table have not been ordered. For example, one could
place the entries for a particular row of the stiffness matrix in column order.
This ordering has associated with it the cost of moving existing entries during
assembly when necessary. One advantage of such an ordering would be in
the assembly phase. When searching through the entries in a particular row
(see algorithms for Methods 1 and 2, chapter 6) to determine whether a
certain entry exists or not, we would not necessarily need to go through the
whole row. This is because if we go past the column number for the entry to
be assembled, we would know that the entry has not appeared before. We
then need to perform an insert rather than an update operation. There can
consequently be some saving in processing time due to the ordering in this
way.

Other benefits due to column ordering could arise during the factoriza
tion of the stiffness matrix (see chapter 7). It could be useful to use the
information provided by the ordering when we are trying to obtain factors
with particular characteristics (see section 7.3). Due to the mentioned costs
associated with ordering we have assembled the stiffness matrix unordered.

10 11

1 4

1 5

0 0

Chapter 5:The Model Program 78

It is unlikely that the savings would be larger than the costs due to ordering
unless some efficient means of ordered assembly is designed.

The factors obtained by the incomplete LU decomposition of the stiffness
matrix are stored in the same tabular format, linking entries in the same col
umn. An analysis of the scope for the parallel assembly of the stiffness matrix
is made in chapter 6. We also present there algorithms for achieving efficient
parallel sparse assembly. The solution of the system of equations represented
by the stiffness matrix is done using the preconditioned conjugate gradient
method. Chapter 7 contains a description of the method and suggests ways
of implementing it in parallel efficiently. The solution algorithms are tested
with row and red-black orderings of the nodes in the underlying mesh.

5.4 An example run

Consider the row-ordered mesh in figure 5.2 which consists of quadrilateral
and triangular elements. The element numbers are in bold in the diagram.
The number of elements is 31 and the number of nodes is 36. The cor
responding input and output data format for the program are summarised
below.

Input Format

31 36 (number of elements, number of nodes)

1 0 3 1 2 7 (element number, element type, element

2 0 3 7 2 8

3 0 3 2 3 8

4 0 3 8 3 9

5 1 4 3 4 10 9

6 1 4 4 5 11 10

etc.

nodes)

1 o. o. 0.0
2 1.00000 O. 0.0
3 2.00000 O. 0.0

1
1

1

(node number, x, y, z coordinates,
nodal degrees of freedom)

Chapter 5:The Model Program

1 2 3 4 5 6

I){ IY: 5 6 7

7 8 9 IX 10 11
8 9

11 12 13

12

14 15 16

I~ 17

14 15 16 18 19

13 18

20 1% :21 22 :2:3

20 22 23 24 25

19 24

26 27 28

I~
29

26 27 28 30 31

30 25

31 32 33 34 35 36

Figure 5.2: An example two-dimensional mesh for the model program

12

4 3.00000 O. 0.0
5 4.00000 O. 0.0
6 5.00000 O. 0.0

etc
1 100
2 100
3 100
4 100
5 200
6 200

etc

1
1

1

(node number, applied force)

1 0.0

(number of boundary conditions)
(node number, fixed displacement)

79

Chapter 5:The Model Program

6 0.0
7 0.0
12 0.0
13 0.0
18 0.0

etc

Output Format

NODAL DISPLACEMENTS
1
2

O.
282.14198006880

3 447.78501315771
4 460.56186475065
5 346.10553005216
6 O.

etc

80

(node number, nodal displacement)

It can be seen that the program uses the geometrical and physical prop
erties of a particular problem to evaluate the relevant nodal unknowns. In
the case of a problem in the field of structural analysis, a discretised body
which is subjected to external forces is analysed to provide a displacement
profile. As mentioned before, the assembly and solution procedures can be
used for any type of problem. They only need to be supplied with the element
matrices which specify the problem characteristics.

Chapter 6

Parallel Assembly Methods

81

Chapter 6: Parallel Assembly Methods 82

6.1 Overview of Chapter

In this chapter we present methods for the assembly of several element ma
trices in parallel into the same sparse representation of the overall stiffness
matrix (see section 5.3). As noted in section 2.5, if the stiffness matrix is to
be updated in shared memory we require certain synchronisation schemes to
ensure the correctness of the resulting matrix. We also need to make these
schemes as efficient as possible to achieve good speed ups.

Some algorithms for parallel sparse assembly are presented and tested for
different mesh sizes. The performance of these algorithms is shown in terms
of their run times and their efficiency is discussed.

6.2 Sources of Contention

The element matrices can be evaluated in parallel without any need for syn
chronisation. The main source of contention in the parallel element by el
ement assembly of the stiffness matrix is the sharing of nodes by adjacent
elements in the mesh. This causes different element matrices to contribute
to the same positions in the overall stiffness matrix (see section 2.3.3).

The effect of the node sharing is that if we are to perform parallel assembly
of different element matrices into our sparse representation, we would need to
resolve the problem of simultaneous access to the same table entry by parallel
tasks. We discuss this issue in detail below and suggest ways of controlling
this contention problem. The only other source of contention in a parallel
assembly scheme for the sparse representation of the stiffness matrix is access
to the table subscript during read and update (see sections 6.3 to 6.5).

The entries in the sparse representation of the stiffness matrix are stored
as a number of rows whose entries form a linked list (see section 5.3). We
hence have two main options when deciding on the design of a parallel element
by element assembly scheme: allow simultaneous assembly of the same row
by parallel tasks or allow only the assembly of different rows.

The first option involves a great deal of potential memory contention
which can only be overcome by complicated and costly synchronisations.
Possible contention problems are:

Chapter 6: Parallel Assembly Methods 83

• (i) Simultaneous rowstart - Parallel tasks contending for the same row
start array position. For example, two tasks may both be initiating a
new row and attempting to assign the same array position to the start
of their respective rows.

• (ii) Simultaneous update of the same entry - Parallel tasks attempting
to update the same existing table entry.

• (iii) Simultaneous creation of the same entry - Parallel tasks attempting
to create the same table entry.

If we only allow the assembly of different rows simultaneously, however,
we only need to provide enough synchronisation to avoid inadvertent ac
cess to the table subscript indicating the next free table position. All other
sources of contention which involve simultaneous access to the same entry in
the stiffness matrix are eliminated since we are always dealing with distinct
entries at anyone time. We have implemented both these approaches as ex
plained below. The results of tests for the efficiencies of the implementations
are given in section 6.6.

6.3 Method 1 Parallel assembly of the same
rows

The implementation of this scheme involves contention problems (i) to (iii)
in section 6.2. We have overcome (i) and (iii) by using a single LOCK
variable for the whole table (SUBSC) which is used to protect the shared
data during searching and insertion. Simultaneous update of an existing
entry is protected by an explicit critical section mechanism.

The use of the shared memory LOCK and its associated WAIT LOCK
and SEND LOCK operations (see section 4.4.1) ensures mutually exclusive
access to the table entries during operations such as the insertion of a new
row, searching through existing entries and the insertion of new entries. Also,
the table subscript is always read and updated under such exclusion. Since it
is possible to update existing entries while other operations are taking place,
a CRITICAL SECTION primitive is all that is required to protect the entry.
The following pseudo-code section outlines the algorithm:

Chapter 6: Parallel Assembly Methods

DO in parallel (I=l,number of elements)
FOR each row (J) of element matrix DO

IF row (J) has not appeared before
in the overall matrix THEN
WAIT LOCK (SUBSC)

create new row -(A)
SEND LOCK (SUBSC)

ELSE
FOR each entry in row (J) DO

IF entry has appeared before THEN
CRITICAL SECTION

update it -(B)
END CRITICAL SECTION

ELSE
WAIT LOCK (SUBSC)

insert it -(C)
SEND LOCK (SUBSC)

END IF
END FOR

END IF
END FOR

END DO

Algorithm for Method 1

84

The locking mechanism ensures that when a task is in regions (A) or
(C) no other tasks are allowed in that region until the LOCK is released
by a SEND LOCK operation. The CRITICAL SECTION construct ensures
that while a task is in region (B) no other tasks are allowed into that region
until this task has completed the execution of (B). The difference between
the two circumstances is that a CRITICAL SECTION only protects one
section of code whereas any number of sections may be protected by the same
LOCK. We can consequently see that LOCK's provide us with the ability to
implement named protected regions consisting of several code segments.

Chapter 6: Parallel Assembly Methods 85

6.4 Method 2 : Parallel assembly of differ
ent rows

Our scheme for ensuring parallel assembly of different rows only involves the
use of two types of LOCK's. We associate with each row I of the stiffness
matrix a shared memory synchronisation variable called ROWLOCK(I). All
these are initialised to be available ie. unlocked.

Before attempting to assemble a row of an element matrix, each task
must first check the corresponding ROWLOCK and can proceed with the
assembly if the LOCK is not taken. The check is done using the WAIT
LOCK construct which will allow a task to proceed and lock the row if
the LOCK is not already taken. Otherwise, the task is suspended at that
point until it is released by a SEND LOCK from another task indicating the
completion of the assembly of the row it was waiting on by that task.

All the table operations such as the creation of i1 row, creation of an entry
and the update of an existing entry may proceed concurrently by parallel
tasks as long as the shared table subscript (ie. the next free entry in the
table) is read and updated under mutual exclusion. We implement this by
using a single LOCK called SUBSC. Each task must WAIT LOCK on SUBSC
before reading the subscript for its local purpose and updating it. The lock
is then released and can be taken by a suspended task. The task's local job
of allocation and setting up of new entries can proceed after the release using
the local value of the subscript. The outline of the algorithm is as follows:

Chapter 6: Parallel Assembly Methods

DO in parallel (I=l,number of elements)
FOR each row (J) of element matrix DO

WAIT LOCK (ROWLOCK(J» ¢= Point (A)
IF row (J) has not appeared before

in the overall matrix THEN
create row (J)
insert entries in row (J)

ELSE
FOR each entry in row (J) DO

IF entry has appeared before THEN
update it

ELSE
insert it

END IF
END FOR

END IF
SEND LOCK (ROWLOCK(J»

END FOR
END DO

Algorithm for Method 2

86

The table subscript is read and updated during the insert operations in
the above algorithm as follows:

WAIT LOCK (SUBSC)

• read the subscript and store it locally

• update shared subscript

SEND LOCK (SUBSC)

Once a task completes assembling a row it releases its corresponding
ROWLOCK, thereby allowing any other tasks suspended on this LOCK to

Chapter 6: Parallel Assembly Methods 87

proceed. These are tasks which are attempting to assemble neighbouring
elements (which share common nodes and hence ROWLOCK's). The time
spent by tasks waiting at point (A) above can consequently be reduced by
minimising the assembly of adjacent elements at the same time. This idea
is the motive behind an improved version of Method 2 which is discussed
below.

6.5 Method 3 : Parallel assembly of differ
ent rows - improved version

A modified version of the parallel assembly scheme presented in the previous
section is now given. The aim is to minimise the synchronisation overhead
associated with the locking of the rows.

Tasks assembling adjacent elements in the mesh simultaneously will be
suspended if they attempt to assemble a locked row. The cost of this wait
ing can be minimised by assembling disjoint elements concurrently as far as
possible. This can be achieved by a colouring scheme in which all elements
belonging to a particular colour are disjoint.

Consider a mesh with row-ordered elements divided into four colours as
shown in figure 6.l. Elements of the same colour can be grouped together
in array COLOURS such that the following four groups are stored one after
another:

1 3 5 11 13 15 21 23 25
6 8 10 16 18 20
2 4 12 14 22 24
7 9 17 19

By mapping the row-ordered mesh onto this array we can reduce the num
ber of adjacent elements assembled in parallel. Method 3 can consequently
be implemented by the following modification to the algorithm for Method

2:

Chapter 6: Parallel Assembly Methods 88

CD @ CD CD 0
@ G) G) @ @

@ @ @ ~ @

@ @ @ @ @

@ @ @ @ @

Figure 6.1: Division of a mesh into several colours

replace

DO in parallel (I= l,number of elements)

assemble element(I)

END DO

by

DO in parallel (I=l ,number of elements) in ascending order

assemble element(COLOURS(I))

END DO

The coloured array can be formed by simple functions traversing the
mesh and adding on their corresponding elements. These functions can pick
combinations like (odd row,odd column), (even row,odd column) and so on.

Chapter 6: Parallel Assembly Methods 89

Four-colour and Cuthill-McKee orderings [18] provide more general types
of meshes which can be assembled with minimal contention. The cost of
obtaining the colouring is small and it provides an efficient way to reduce
waiting time on locked rows. Also, we can see that for the assembly phase it
is the ordering of the elements that is of importance rather than the ordering
of the nodes.

6.6 Results

Table 6.1 shows how the parallel assembly schemes presented in this chapter
perform for a regular rectangular row-ordered finite element mesh with 40000
elements (40401 nodes). Table 6.2 compares the speed ups of the improved
version for three different problem sizes. Np is the number of processors. Sp
is the speed up. All times are in seconds.

Table 6 l' Performance of the three methods of parallel assembly ..
Method 1 Method 2 Method 3

Np Assembly Time Sp Assembly Time Sp Assembly Time Sp
Seq. 111.36 1.00 111.36 1.00 111.36 1.00

1 125.12 0.89 117.12 0.95 119.35 0.93
2 78.42 1.42 64.74 1.72 59.55 1.87
4 44.02 2.53 33.04 3.37 29.54 3.77
6 32.12 3.47 24.75 4.50 20.78 5.36
8 23.79 4.68 18.84 5.91 15.51 7.18
10 21.65 5.14 16.81 6.62 13.04 8.54
12 20.19 .5.52 15.75 7.07 11.12 10.01

The results are illustrated graphically in graphs 6.1 and 6.2. The former
represents the variation of speed up with number of processors for the largest
problem and the latter shows how speed up is related to problem size. The
results are discussed in the next section.

Chapter 6: Parallel Assembly Methods 90

Table 6.2: Relation of Speed up to Problem Size for Method 3
Np 400 elements 2500 elements 40000 elements

Sequential l.00 l.00 l.00
1 0.97 0.96 0.93
2 1.55 l.61 1.87
4 2.64 2.92 3.77
6 4.07 4.35 5.36
8 3.78 5.93 7.18
10 3.16 6.29 8.54
12 3.01 7.78 10.01

Chapter 6: Parallel Assembly Methods 91

c.
:::J

"C
G)
G)

c.
en

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Graph 6.1

Performance of the Assembly
Methods

40000 elements

--0- Method 1

Method 2

----0---- Method 3

----i:s.---- Ideal

O+--r~--~-r~--.--r~--r-~-r-'--'
1 2 3 4 5 6 '7 8 9

Np

c..
::l

'C
CI)
CI)

c..
(J)

Chapter 6: Parallel Assembly Methods 92

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0
1

Graph 6.2

Variation of Speed up with
Problem Size

Method 3

---0- 400 elements

........ <> 2500 elements

····0·-·- 40000 elements

----0---- Ideal

2 3 4 5 6 7 8 9 10 11 12 13 14

Np

Chapter 6: Parallel Assembly Methods 93

6.7 Discussion of Results

For all three methods we observe a reduction in parallel efficiency as Np
increases. This is inevitable and is due to the increasing overheads associated
with setting up and managing parallel tasks. We have aimed to minimise this
reduction, however, by providing good load balancing and high computation
to communication ratios.

We observe from table 6.1 that when we use one processor, all three par
allel implementations are slower than sequential assembly. This is because
when Np = 1 we are paying certain overheads due to the extra costs asso
ciated with parallelisation without performing any parallel processing. We
consequently have some extra work to do without any benefit due to paral
lelisation. For larger numbers of processors this extra work is compensated
for by a gain from parallel processing.

The mentioned loss at Np = 1 is more pronounced for algorithms with
a larger amount of synchronisation or extra processing for parallelisation.
Hence, Method 1 has the largest processing time when Np = 1, followed by
Method 3 which has a few more computations to perform than Method 2.

Table 6.2 reveals another point related to the performance of the algo
rithms at Np = 1. We observe that for a particular parallel implementation,
as the problem size increases, so does the extra cost associated with parallel
processing. This means that when using one processor, the parallel efficiency
of the algorithm falls as the problem size increases. The benefit due to par
allel processing when using two or more processors causes the opposite effect
such that the parallel efficiency of Method 3 rises with problem size in those
cases.

As shown by graph 6.1, parallel assembly using the same rows scheme is
not very efficient. This is to be expected due to the large amounts of syn
chronisation required by this algorithm. This implementation uses low grain
parallelism which does not bring about large enough speed ups to compen
sate for the synchronisation overhead sufficiently. The poor performance for
large numbers of processors emphasises this fact.

The use of ROWLOCK's in the second approach increases the granularity
substantially and hence this algorithm performs better than the previous one.
We are now doing sufficiently large amounts of work between the synchronisa
tion points to compensate for the cost of their implementation satisfactorily.
Some waiting is done on locked rows which obviously degrades the perfor-

Chapter 6: Parallel Assembly Met.hods 94

mance to a certain extent. Good parallel efficiency is obtained with small Np
for Method 2.

The colouring algorithm eliminates some of the waiting on ROWLOCK
and hence provides further speed up. We now have a suitable grain size and
assemble the elements such that they are less likely to contend for the same
row update. The parallel efficiency for Method 3 is consequently very high
with any Npo

As before, the improvements compared to the uncoloured algorithm are
more significant when using large numbers of processors. For example, when
Np = 2, the speed up ratio between methods 2 and 3 is 1.09. For Np = 6
and Np = 10, the ratios are l.20 and l.29 respectively. The reason for this
increase is that when Np is large, an inefficient algorithm would suffer from
its shortcomings more significantly due to increased overhead. By the same
token, any improvements in an algorithm would produce larger benefits when
Np is large.

Let us now consider the effect of problem size on speed up for Method 3.
We have chosen sufficiently different mesh sizes to illustrate this point. As
can be seen from graph 6.2, the largest meshes can be assembled concurrently
with near linear speed up. Increased overhead degrades performance for large
numbers of processors but the granularity is large enough for this problem size
to produce good speed ups for any value of N p . For the 2.500 element mesh,
however, the granularity is much lower and the synchronisation overhead
degrades the performance rather more significantly. The efficiency is not
very far from ideal for small numbers of processors but when Np is large, the
speed ups obtained for the larger problem are much better than those for
this mesh.

For the smallest mesh we observe fairly good speed ups for small Np (up
to six processors) which are comparable with those for the larger meshes.
When more than six processors are used, however, the speed up reduces with
increasing Np and for the largest numbers of processors the values are much
lower than the corresponding ones for the larger mesh sizes. The reason for
the poor performance with such small mesh sizes is that the granularity is
too low to provide a good computation to communication ratio. We are not
doing enough work between synchronisations to obtain satisfactory parallel

efficiencies.
The algorithm therefore performs far more efficiently when large meshes

are assembled. This is a quite typical characteristic of parallel schemes in-

Chapter 6: Parallel Assembly Methods 95

volving non-trivial synchronisation strategies. For further discussion of the
results see section 8.3.

Chapter 7

Parallel Preconditioned
Conjugate Gradients

96

Chapter 7:Parallel Preconditioned Conjugate Gradients 97

7.1 Overview of Chapter

This chapter is concerned with parallelising the preconditioned conjugate
gradient method. The method has been described in section 2.3.4 from an
algorithmic viewpoint. This included an explanation of how precondition
ing works. The potential of the method with respect to parallelisation is
addressed in section 7.2.

We then describe the construction of effective preconditioners suited to
the parallel schemes used for the triangular solves at each iteration. This is
followed by a description of our parallelisation strategies and the results of
their implementations. These results are then discussed and compared with
theoretical values.

7.2 Scope For Parallelism

The PCG algorithm has been discussed in chapter 2. The algorithm with
IL U preconditioning (see section 2.3.4) is as follows:

Algorithm: Preconditioned CG to solve Ax = b
1. Preprocess: Compute preconditioner

M = LU where A = LU + E
2. Start: ro f- b - Axo,

M - 1 Po f- Zo f- ro
3. Iterate: Until convergence do

(a) W f- APi

(b) Cl'- f- (ri,Z;)
, (w,p;j

(c) Xi+1 f- Xi + Cl'iPi

(d) ri+1 f- ri - Cl'iW

(e) Zi+1 f- M-1ri+1

(f) f3- f- (Titl ,Z.tl)
, (Ti,Zi)

(g) pi+1 f- Zi+1 + f3iPi

Chapter 7:Parallel Preconditioned Conjugate Gradients 98

The main operations in the above algorithm are as follows:

• Setting up the preconditioner (1)

• Matrix vector multiplications (3-a)

• Vector Updates (3-c, 3-d and 3-g)

• Dot products (3- band 3-f)

• Preconditioning operations (2 and 3-e).

In the above list the potential bottlenecks are in setting up the preconditioner
and in the solution of the linear systems with M ie. operations 2 and 3-e.
The other steps are quite straightforward to parallelise efficiently (see section
7.4.2).

For polynomial preconditioning, the only operations involving the matrix
are products with vectors. We also need fewer dot products than with the
non-preconditioned method. The dot products can be bottlenecks for large
numbers of processors [68]. Thus polynomial preconditioning is efficient for
use on machines with very large numbers of processors and when the dot
products dominate the cost of a CG step.

We have chosen ILU preconditioning since it is more suited to the parallel
architecture we use ie. one with a small number of processors (see [68] and
3.2.2) and it is easy to form and use. Also, we have found this to be a
very efficient preconditioner since it can be formed with low cost (see section
7.4.1) and provides satisfactory reductions in the number of iterations. The
formation and performance of an ILU(O) preconditioner is discussed in section
7.3.1. Furthermore, we chose to use ILU and not incomplete Cholesky (IC)
preconditioners despite the symmetry of our test matrices since the former
allow us to draw conclusions covering a wider range of problems.

Due to the low cost of obtaining the ILU(O) preconditioner we have con
centrated on the parallelisation of the other PCG steps. The parallelisation
of the PCG method at iteration loop level involves the parallel processing
of two or more iterations. This requires synchronisations which ensure that
the sequential nature of the iterative process is preserved. It must therefore
be ensured that only values which are completely computed in a particular
iteration are used in subsequent iterations. The synchronisations required to

Chapter 7:Parallel Preconditioned Conjugate Gradients 99

achieve this would be quite complex and the scheme is reported to suffer from
numerical instability [68]. We have consequently investigated parallelisation
within the main iteration loop.

As mentioned above, operation 3-e is a potential bottleneck. In the case of
ILU preconditioning this involves a pair of triangular solves at each iteration.
Such operations are not straightforward to parallelise and account for about
40 percent of the total sequential solution time (see section 7.4.1).

The parallelisation of the triangular solves requires an analysis of Land
U in order to identify the possibilities for parallel processing based on depen
dency information. We consequently need to design parallel schemes based
on such information or form Land U such that they would suit our schemes.
This includes the reordering of these factors. Two schemes are described in
the next section which implement parallel row-oriented (section 7.3.2) and
parallel column-oriented (see section 7.3.3) forward and backward substitu
tions.

We have chosen red-black ordering as an alternative since it gives rise to
stiffness matrices which consist of diagonally structured entries (see figure 7.1,
page 101 and [18]) which are similar to the type of sparsity patterns required
for the independent columns scheme (see section 7.3.3) and are hence likely
to require the dropping of fewer entries. Also, the results in [10] and [11]
relate to red-black ordering and can be used for comparison with the results
presented in this work.

Chapter 7:Parallel Preconditioned Conjugat.e Gradients 100

7.3 Parallel Preconditioning

In this section we shall discuss the formation and the effectiveness of ILU
preconditioners suited to parallel processing. The effects of ordering and level
of fill-in are analysed and we describe two schemes for parallel triangular
solution.

7.3.1 Formation And Effectiveness Of The ILU(O) Pre
conditioner

The preconditioner used in our model is obtained by an incomplete factoriza
tion of the stiffness matrix based on Doolittle's algorithm where the diagonal
entries of L are set to be l. The entry aCi,j) in the stiffness matrix can be
written as

min(i,j)

aij= L lipUpj, i,j=1,2, ... ,n
p=]

and the entries in Land U are given by

lij = (aij - L~:::;i lipUpj)/Ujj, i > j

- ",j-1 I
Uij - aij - L."p=l ipUpj,

We can obtain a factorization with no fill-in (ILU(O)) by only computing
entries in Land U where there is a corresponding entry in the stiffness matrix
ie. if aij = 0 then lij = 0 and Uij = O. This can be conveniently implemented
by going through the linked list of entries in rows and columns of the stiffness
matrix and factoring these entries. The factorization proceeds by alternating
between the formation of a row of U and a column of L.

Figure 7.2 shows the structure of the stiffness matrix for a 16 node row
ordered mesh and its corresponding Land U factors. We have found the cost
of obtaining such a factorization to be only a small percentage of the overall
solution time (see section 7.4.1). The reduction in the number of iterations
due to the ILU(O) preconditioner is quite significant as illustrated in tables
7.1 and 7.2. niter is .the number of iterations. precond is the time for the
computation of the preconditioner. total is the overall solution time. All
times are in seconds.

Chapter 7:Parallel Preconditioned Conjugate Gradients 101

Figure 7.1: The sparsity pattern of a typical red-black matrix

** **
*** ***

*** ***
** **

** ** **
*** *** *** A

*** *** ***
** ** **

** ** **
*** *** ***

*** *** ***
** ** **

** **
*** ***

*** ***
** **

*
**
**
**

** *
*** ** L

*** **
** **

** *
*** **

*** **
** **

** *
*** **

*** **
** **

** **
** ***

** ***
* **

** **
** *** U

** ***
* **

** **
** ***

** ***
* **
**
**

**
*

Figure 7.2: The stiffness matrix and its factors for the row-ordered mesh

Chapter 7:Parallel Preconditioned Conjugate Gradients 102

Table 7.1: Performance of the ILU(O) Preconditioner (row ordering)
Size niter time per iter precond total
(nodes) CG ILU(O) CG ILU(O) CG ILU(O)
441 23 14 0.21 0.27 0.56 4.91 4.28
2601 63 31 0.34 0.67 1.04 21.69 20.79
10201 130 60 1.51 2.73 4.10 196.53 163.93
40401 265 118 8.14 11.87 32.36 2157.17 1400.15

Table 7.2: Performance of the ILU(O) Preconditioner (red-black ordering)
Size niter time per iter precond total
(nodes) CG ILU(O) CG ILU(O) CG ILU(O)
441 19 12 0.20 0.23 0.41 3.75 3.12
2601 57 28 0.31 0.59 0.98 17.67 17.50
10201 112 55 1.29 2.54 3.86 144.48 143.56
40401 231 105 7.79 10.11 28.67 1799.49 1090.22

We can see that the preconditioner becomes more effective as the mesh
size (number of nodes) increases. Since the ILU(O) preconditioner can be ob
tained at low cost and is sufficiently efficient, we have used this factorization
in the parallel schemes for triangular solves described later in this chapter.

Diagonal scaling involves the division of the coefficients in every row of
a system of equations (including the RHS) by the corresponding diagonal
entry. The aim is to preserve the numerical accuracy during operations such
as factorization. We studied the effect of diagonal scaling on the performance
of the CG method in order to compare this with the performance of our
preconditioning schemes.

Our experiences with diagonal scaling show that we do not benefit from
the scaling of the equations with the diagonal of the stiffness matrix or its
upper triangular factor (U). The number of iterations is unaffected by the
former and actually increases with the latter. Also, if the forward and back
ward substitutions are carried out with the mentioned diagonals as the pre-

Chapter 7:Parallel Preconditioned Conjugate Gradients 103

conditioner, the rate of convergence becomes slower. This is different to
diagonal scaling in the sense that a preconditioning operation (division by
the diagonals) is performed at each iteration.

7.3.2 Level Scheduling

This scheme has been described in [85] and can be thought of as a reordering
scheme whose objective is to obtain a block triangular system such that the
unknowns in each block can be computed in parallel. Consider the lower
triangular matrix in figure 7.3 which shows the block partitioning of LI = b.
If the Li'S are diagonal matrices, we can compute all the entries in each

-
LI :1'1 bI

C2 L2 0 .r2 b2

C3 L3 I X3 b3

· · · .
· · · .
· · · .

Cm I Lm Im bm

Figure 7.3: Block partitioning for Lx = b using level scheduling

subvector Xi concurrently because a diagonal Li ensures the independence of
the unknowns corresponding to the entries of I/. We only need to synchronise
at block level so that at step i of the forward substitution all Xi-l'S are already
determined. Figure 7.4 shows the structure of an example matrix reordered

by levels.
We can see that the basic requirement of this technique is the identifi

cation of independent unknowns and grouping their corresponding rows into
blocks which must be processed in sequence. This can be done by associating

Chapter 7:Parallel Preconditioned Conjugate Gradients

*
*

* * 0
* * *

* *
* * *

* * *
* * *

* * *
* * * *

* * * * * *
* * * *

Figure 7.4: Matrix reordered by levels

with each row of L a depth computed as

depth(i) = { 1 .
1 + maxj<;{depth(J) : lij =I O}

if lij = 0 V j < i
otherwise

104

A level of L can be defined as the set of nodes with the same depth.
The rows of L with only a diagonal entry will be at level 1. The next level
consists of rows dependent only on subvector :1:1 and so on. This scheme is
made attractive by the low cost of the preprocessing to determine the levels.

The algorithm can be implemented without physically reordering the ma
trix by solving the row equations in increasing order of the depth of their
nodes, distributing the nodes at each level across the processors. In order to
explain this further let us introduce the following:

NLEV - The number of levels in L

IORDER - An integer array consisting of the ordering of the rows of L by
increasing depth

Chapter 7:Parallel Preconditioned Conjugate Gradients 105

ILEVEL - An integer array consisting of the index to the start of each level
in IORDER.

The two arrays can be set up quite easily and with low cost once the depths
have been determined. The forward elimination can be implemented as fol
lows:

DO k = 1,NLEV
DOALL U = ILEVEL(k):ILEVEL(k+1)-1)

i = IORDERU)

Xi = l~i (bi - L:{j<i:l;j#O} lijxj)
END DOALL

END DO

The allocation of rows within a block to processors is such that the pro
cessors start from the first rows in the block and process the next free rows
as they complete their current ones. The level scheduled back substitution
can be implemented in the same way. A detailed analysis of the number and
length of levels for different row-ordered mesh sizes is given in section 7.4.3.
Section 7.4.4 contains the results of our implementations of this technique.
Section 7.5 contains a detailed theoretical analysis of parallelism for level
scheduling and compares theoretical and actual speed ups.

7.3.3 Independent Columns

The level scheduling scheme described in the previous section involves the
identification and subsequent parallel processing of independent rows of L.
The only requirements for this type of parallel scheme are the diagonal blocks
(L/ s) at each level. In this section we shall describe an al ternati ve scheme
involving the parallel processing of columns rather than rows.

In the independent columns scheme we compute part of the X vector at
each stage and update the subvector of b corresponding to these unknowns.
The idea is to update the entries in b concurrently using distinct columns of
L. This requires that at each step the group of columns used for this update
have only one entry per row so that no two columns would contribute to the
same entry in b (ie. to avoid any contention in updating b). The structure
of L should therefore be as shown in figure 7.5 where the Ci's are sparse

Chapter 7:Parallel Preconditioned Conjugate Gradients 106

rectangular blocks with only one entry per row in each block of columns.
The algorithm can be written as follows:

- -
Ll Xl

L2 X2

C1
L3 0

-
X3

C2

C3

fI: ~: m
'-- -

Figure 7.5: Matrix with blocks of independent columns

DO k = I,m
Xk = L-,;lbk

Update bk+l, ... ,bm usmg Xk and Ck (if k < m)
END DO

The blocks do not have to be of equal size. The first step of the above
algorithm involves a triangular solve unless the L, 's are diagonal in which
case simple division yields the solution subvector. At each step one block of
unknowns is computed. The update operation does not need to be performed
at the final step. The number of steps depends on the structure of Lie. the
number of blocks of independent columns. We may wish to design L such
that at each step a number of columns equal to the number of available
processors are used for updating the RHS. In that case m = r N / Np 1 where
N is the order of Land Np is the number of processors.

- -
bi

b2

b3

'--
bm -

Chapter 7:Parallel Preconditioned Conjugate Gradients 107

*
*

* 0
* *

* *
* *

* * *
* * *

* * *
* * * *

* * * *
* * * *

Figure 7.6: An example matrix with independent columns

Let us now expand on the parallel aspects of the above algorithm. If the
L;'s are diagonal then the components of Xi can be computed independently
at each step. The second stage of each step is an update operation which
involves using each column in Ck with its corresponding entry in Xk. We
update all entries in b for which there is a corresponding entry in that column.
This means that when processing column j, if we come across an entry in
row i (iij) we subtract lijXj from entry bi. L is stored by columns in order to
provide more efficient access to the entries in each column. The update at
step k can consequently be written as:

DO for all columns in C\ (in parallel)
find each entry lij
bi = bi - (lijXj)

END DO

This parallel loop can only be correct if there is no inadvertent access to
the same entry bi by two or more processors. The only way to ensure this

Chapter 7:Para,}jel Preconditioned Conjugate Gra,dients 108

without locking the bi'S is to allow only one entry per row in Ck . The results
of our implementations of this method are given in section 7.4.4.

Preconditioner Design

Let us now discuss the design of suitable preconditioners for the independent
columns method. One possible approach is the formation of Land U factors
in the usual way (see section 7.3.1) and to drop any entries which will disturb
the independence properties required by the method during the factorization.
The resulting matri ces are incomplel f IL U (0) factors of the stiffness matrix.

For the purposes of our test implementations we have performed the drop
ping of the appropriate entries in the factorization as the rows and columns of
the factors are being formed. It is also possible to perform the factorization
after the appropriate elements of A are dropped or forming an incomplete
factorization first and then dropping the entries. The effect of the dropping
scheme on the rate of convergence is insignificant [10].

In our implementations we have designed Land U such that all the C
blocks (see figure 7.5) are of the same size and equal to Np ie. one column
is assigned to each processor. Also, all L/s (and LIt's) are diagonal blocks
allowing parallel computation of the unknowns in each J'i. An example of
the structure of such test matrices with Np = 3 is givell in figure 7.6.

The dropping of entries in Land U must involve some form of check on the
state of the matrices as the factorization proceeds. More accurately, before
allowing any entry into L or LI we must make sure that no other entry exists
in the same row as this entry in the block of columns it appears in (see figure
7.5). In this way the independence of the unknowns corresponding to the
columns in each block is ensured. The checking method can be implemented
by keeping a count of the entries in each row of the block.

A further measure can be taken in order to try to improve the quality of
the preconditioner. One could aim to preserve the largest entries in each row
of each block. This can be done by using a drop tolerance technique involving
the dropping of entries which are small compared to their corresponding

diagonal entries [57].
Another possibility is to keep a record of all candidates for insertion in

the section of each row and choose the largest as the successful entry. We
have implemented the latter scheme but little or no improvement has been
obtained in the quality of the preconditioners (see table 7.3). The improve-

Chapter 7:Parallel Preconditioned Conjugate Gradients 109

Table 73Th ff t f e e ec 0 preservmg arges en nes on t e rate 0 t t' h f con vergence
number of iterations

row red-black
Mesh size 2601 10201 40401 2601 10201 40401
before 31 60 ll8 28 55 105
after 31 59 ll6 27 .53 101

ment is marginally better in the case of red-black ordering. Greater reduc
tions in the number of iterations are necessary to make the implementation
cost-effecti ve.

The reason for the lack of larger improvements in the quality of the pre
conditioners may be that the structure of our row and red-black ordered test
matrices is such that they do not benefit from this measure to a significant
extent. Other orderings (eg. minimum degree) could show more pronounced
improvements in the quality of the resulting preconditioners by preserving
the largest entries. A detailed discussion of the design of preconditioners for
the independent columns scheme is given in section 7.5.2 and [10].

7.4 Parallelising The Main Iteration Loop

In this section we shall provide information on the execution profile of the
solution phase of our model. This will show how the costs of the precondi
tioning and other steps of the PCG implementation compare. We then go on
to explain how these steps are parallelised and present the results of testing
our parallel implementations. These results are analysed in section 7.5.

7.4.1 Profile Of The Method

A typical profile of the PCG method implemented in our model is given
below as approximate percentages of sequential solution time for each step
(see section 7.2). The profile varies very little for different problem sizes and

node orderings.

Chapter 7:Parallel Preconditioned Conjugate Gradients 110

Table 7.4: Relative Cost of the ILU (0) Preconditioner
Problem Size Relative Cost of ILU(O)
(nodes) row red-black
2601 5.0% 5.6%
10201 2.5% 2.7%
40401 2.3% 2.6%

• step 3-a - 35% : matrix vector multiplication

• step 3-b - 5% : dot product

• step 3-c - 5% : vector update

• step 3-d - 5% : vector update

• step 3-e - 40% : preconditioning operation

• step 3-f - 5% : dot product

• step 3-g - 5% : vector update

We can see that the matrix vector multiplication (step (a)) and the triangular
solves (step (e)) dominate the solution time.

The cost of obtaining the ILU(O) preconditioner is given as approximate
percentages of the total sequential solution time for different problem sizes
using row and red-black orderings in table 7.4. Also, for all three problem
sizes, the cost of obtaining the preconditioner is about four times the time
spent in one sequential iteration. These results indicate that the cost of
obtaining an ILU(O) preconditioner is very low and becomes insignificant
compared to the cost of the other steps for larger meshes. This is why
we have aimed to parallelise these steps rather than the formation of the
precondi tioner.

Chapter 7:Parallel Preconditioned Conjugate Gradients 111

7.4.2 Steps Other Than The Preconditioning Opera
tions

We shall consider the three different types of operations in this category sep
arately (see section 7.2). For each step, further efficiency can be provided
by eliminating the cost associated with the DOALL mechanism (see section
4.3.2). Each task can perform a little preprocessing to determine a unique
block of the loop indices it will execute. This is a block of consecutive in
dices and is executed sequentially by each task. We therefore process several
parallel blocks of the loop index. The loop indices are divided in such a way
that the blocks are of equal or nearly equal sizes in order to obtain good load
balancing.

Let us now consider the parallelisation of the steps.

Matrix vector multiplications (3-a) These can be parallelised by com
puting distinct entries in the product vector independently. Each pro
cessor multiplies a different row of A by p at anyone time and there are
consequently no synchronisation considerations. The DO loop covering
the rows of A can be replaced by the blocking strategy described above.
This means that Np parallel blocks of rows of A are processed.

Vector updates (3-c, 3-d and 3-g) The entries in the resulting vector can
be computed independently at these steps. We consequently only need
to break up the loop covering these entries into blocks and process these
concurrently. Steps 3-c and 3-d are independent and are consequently
merged to increase granularity.

Dot products (3-b and 3-f) These operations involve the accumulation
of a single variable and must be parallelised bearing this in mind. This
means that even though the loop index can be spread among the pro
cessors, we need to update the global sum under mutual exclusion. We
consequently use a combination of the blocking strategy and the lo
cal sums strategy (see section 4.5.2) to implement the dot products in
parallel.

Each task accumulates its local sum according to its block of indices and
adds this on to the global sum under mutual exclusion once all the block
indices have been executed. In this way, the overhead due to DOALL

Chapter 7:Parallel Preconditioned Conjugate Gradients 112

Tabl 75 A e .. vera e L lL eve h engt s for Level Scheduling - Row ord ering
Mesh Size Number of Levels Average Length of Levels
121 26 3
441 56 6
2601 146 16
10201 296 33
40401 596 66

is removed and we only need to pay the cost of the synchronisation
primitives implementing the mutually exclusive update of the global
sum (ie. the CRITICAL SECTION's).

7.4.3 The Triangular Solves

This step (3-e) is the main bottleneck in the PCG method. Matrix vector
multiplication (3-a) is also costly but can be parallelised quite efficiently. We
have implemented parallel triangular solve schemes based on level scheduling
(see section 7.3.2) and the independent columns method (see section 7.3.3)
for row and red-black orderings of the nodes. These implementations are
discussed separately below.

Level Scheduling

The same leveling strategy is used for the forward and backward substitu
tions. The number of levels and the average number of rows per level (level
length) for different mesh sizes are given below for row ordering. There are
many rows at levell, all of which correspond to rows with a single entry.
These have been excluded in the calculation of the average level lengths since
we obtain a fairer picture of the distributions in this way. Due to the sym
metry of the stiffness matrix, Land U always have the same number of levels

and level lengths.
We can see from table 7.5 that the number of levels does not increase

in proportion with the mesh size and this is why we can expect to benefit
substantially from level scheduling for large meshes. We would obviously like

Chapter 7:Para,llei Preconditioned Conjugate Gradients 113

the number of levels to be minimal so that we need to synchronise at fewer
points. The lengths of the levels for larger meshes are more likely to provide
the large granularity required for efficient parallel processing.

The distribution of level lengths for two mesh sizes (row ordering) are
presented in graphs 7.1 to 7.4. Graphs 7.1 and 7.3 show the lengths for all
levels excluding level l. Graphs 7.2 and 7.4 show what percentage of all
levels (excluding level 1) belong to a particular level length. These graphs
are discussed in detail in section 7.5.2.

Chapter 7: Parallel Preconditioned ConjugA/,e GrAdients

14

12

10

8

6

4

2

o

Graph 7.1

Level Length Distribution

441 nodes

1 6 11 16 21 26 31 36 41

Level

114

.!:
O'l
C
Q)

.!: o§:

~
Q)

>
Q)

...... o
rf-

Chapter 7:Parallel Preconditioned Conjuga.te Gradients
115

Graph 7.2

Percentage of levels with the same length

441 nodes

25-

20-

15-

10-

..

0? SIT TIS 1F %IT % ¥J BT :i:::i:::i:
..

5 -
.

..

:-:-:-: .:-: :-:«<.:-
....

.

::}}: 1/ }}}I/ ::}}:\L ::::}:::: o I I I I I I I

1 2 3 4 5 6 7

Length

Chapter 7: Parallel Precondit ioned Conj lIga.Le Grad ien ts 116

Graph 7.3

Level Length Distribution

10201 nodes

60~----------------------------------____ -,

50

Level

Chapter 7:Parallel Precondi tioned Conjugate Gl'a.dients ll7

..c
en
c
(])

..c
"§
(J)

(])
>
(]) -0

~ 0

20

15

10

5

Graph 7.4

Percentage of levels with the same length

10201 nodes

o~~~~~~~~~~~~~~~--
11 16 21 26 31 36 41 46 1 6

Length

Chapter 7:Parallel Preconditioned Conjugate Gradients 118

Independent Columns

The performance of preconditioners suitable for the independent columns
method for row-ordered and red-black ordered meshes is given in tables 7.6
and 7.7 respectively. The CG column corresponds to the unpreconditioned
method. The results indicate that for both orderings, as the number of
entries dropped during the factorization increases, the rate of convergence
becomes slower. This means that as we increase the number of processors
(ie. the block size) to which the factors must be suited, the effectiveness of
the resulting preconditioner falls.

We have increased the block size up to values which make the precondi
tioners cause the same rates of convergence as the unpreconditioned method
ie. CG (see [10] and [11]). The largest block sizes are, of course, not realistic
numbers of processors for shared memory architectures. They are only used
to determine the pattern of convergence rates as the block size is increased.

At one extreme we have a full ILU(O) preconditioner for which all of the
factors of the original matrix are included. At the other extreme we have
diagonal factors for which all entries apart from those on the diagonal are
dropped. The best performance in terms of the reduction in the number of
iterations is due to the former and the latter performs identically with the
unpreconditioned implementations (see table 7.1 and 7.2).

In between the two extreme cases mentioned above we have a range of
performance figures. We can see from the results that the degradation in
the performance is particularly large when going from one to two processors.
This is because the full ILU(O) structure which is identical to that of the
stiffness matrix is disturbed. After two processors, the increase in the number
of iterations is more steady. The actual rate of this increase falls as we
go on to larger block sizes. This is because the increase in block size at
these stages involves the dropping of fewer entries than before. The resulting
factors consequently differ only slightly and show smaller differences in their
performance.

Also, a study of the effect of problem size on the performance of the
preconditioners shows that the rate of change of the number of iterations is
very similar for different problem sizes. Similar results are obtained in [10]
and [11] where the above issues are also discussed.

Chapter 7:Parallel Preconditioned Conjuga.t.e Gradients 119

7.4.4 Parallel Implementation: Experimental Results

In this section we have presented the results of tests for our parallel imple
mentations. Tables 7.6 and 7.7 relate to the performance of independent
columns preconditioners as mentioned in the previous section. In the other
tables presented in this section, letters A-G refer to peG steps (see section
7.2), row and rb refer to row and red-black node orderings respectively and
the other headings are defined as in section 7.3.1. All times are in seconds.

Tables 7.8 to 7.11 present the performance of level scheduling for dif
ferent mesh sizes. The performance of the independent columns method is
presented in tables 7.12 to 7.15. For the level scheduling tables, the num
ber of iterations are fixed because the preconditioner does not vary with Np
whereas for the independent columns tables each block size is associated with
a different preconditioner. For both methods we have shown the variation
of the time taken for one iteration, the total solution time and the speed up
with increasing Np •

The speed ups are computed as the ratio between the sequential solu
tion times with an ILU(O) preconditioner (see tables 7.1 and 7.2) and the
parallel solution time including the time spent forming the appropriate pre
conditioner. The latter varies with block size for the independent columns
method and is hence specified in the relevant tables together with other in
formation relating to a particular block size. Tables 7.11 and 7.15 show how
the two parallelisation schemes speed up the preconditioning step. A break
down of the speed ups for the non-preconditioning steps (row ordering) is
also presented (table 7.16) to show how efficiently they are parallelised.

The actual sequential time taken to solve the equations for a 40401 node
row ordered mesh is about 1400 seconds. This is over twelve times more
than the time taken to assemble the stiffness matrix (see section 6.6) show
ing that, as expected, the solution phase dominates the processing time for
finite element analysis. The cost of obtaining the level scheduling informa
tion adds about 30 percent on to the cost of obtaining the preconditioner
(see section 7.4.1). The cost of obtaining suitable preconditioners for the in
dependent columns method is only slightly larger than the cost of computing
the standard 1L U (0) factors.

As mentioned above, all preprocessing costs have been taken into account
in the computation of the speed ups for both methods. For the independent
columns method this consists of the cost of computing the preconditioner.

Chapter 7:Parallel Preconditioned Conjugate Gradients 120

Table 7.6: Performance of The Independent Columns Preconditioner - Row
ordering

Number of Iterations
Size CG full Block size (Np)

(nodes) ILU(O) 2 4 6 8 10 12 24 48 96 192
2601 63 31 42 48 53 57 59 60 61 62 63 63
10201 130 60 82 91 102 110 117 122 127 127 128 130
40401 265 118 152 164 189 201 219 234 248 257 262 263

Table 7.7: Performance of the Independent Columns Preconditioner - Red
black ordering

Number of Iterations
Size CG full Block size (Np)

(nodes) ILU(O) 2 4 6 8 10 12 24 48 96 192
2601 57 28 34 38 41 44 47 49 51 54 57 57
10201 112 55 68 77 85 91 94 96 103 106 109 111

40401 231 105 121 132 140 146 150 152 174 191 201 212

For level scheduling, the preprocessing costs consist of the cost of computing
the preconditioner plus the cost of obtaining the level scheduling information.
The results are discussed in section 7.5.2.

384
63
130
265

384 768
57 57
112 112
229 231

Chapter 7:Parallel Preconditioned Conjugate Gradients 121

Table 7.8: Performance of Level Scheduling - 2601 nodes -
niter=31 (row),28(rb),precond=1.34s(row),1.30s(rb)

time per iter total Sp
Np row rb row rb row rb
1 0.66 0.58 21.88 17.68 0.95 0.99
2 0.34 0.30 11.88 9.72 1.75 1.85
4 0.18 0.15 6.92 5.45 3.00 3.21
6 0.13 0.09 5.36 3.87 3.88 4.52
8 0.11 0.08 4.90 3.41 4.24 5.13
10 0.13 0.07 5.24 3.23 3.97 5.42
12 0.13 0.06 5.39 3.10 3.86 5.65

Table 7.9: Performance of Level Scheduling - 10201 nodes -
niter=60(row) 55(rb) precond=5.61s(row),5.29s(rb) , ,

time per iter total Sp

Np row rb row rb row rb

1 2.81 2.54 174.21 145.01 0.94 0.99

2 1.46 1.30 93.14 76.79 1.76 1.86

4 0.75 0.68 50.61 42.73 3.24 3.36

6 0.52 0.46 36.67 30.54 4.47 4.70

8 0.44 0.35 31.89 24.37 5.14 5.89

10 0.51 0.30 36.03 21.82 4.55 6.58

12 0.53 0.27 37.34 20.28 4.39 7.08

Chapter 7:Parallel Preconditioned Conjugate Gradients 122

Table 7.10: Performance of Level Scheduling - 40401 nodes -
niter=118(row),105(rb),precond=40.12s(row) ,37 .25s(rb)

time per iter total Sp
Np row rb row rb row rb
1 12.56 10.24 1522.20 1112.47 0.92 0.98
2 6.31 5.13 784.70 576.84 1.78 1.89
4 3.17 2.68 414.18 318.78 3.38 3.42
6 2.25 1.75 305.04 221.14 4.59 4.93
8 1.80 1.33 252.73 176.41 5.54 6.18
11 1.97 1.16 272.40 158.69 5.14 6.87
12 2.12 1.07 290.49 149.55 4.82 7.29

Table 7 11' Performance of Level Scheduling - Step E only
Speed Up

2601 nodes 10201 nodes 40401 nodes

Np row rb row rb row rb

1 0.96 0.99 0.96 0.99 0.95 0.98

2 1.63 1.71 1.65 1.73 1.75 1.79

4 2.78 2.95 3.20 3.28 3.27 3.33

6 2.85 3.61 3.80 3.89 3.86 4.19

8 2.98 4.32 4.05 4.69 4.59 5.22

10 2.62 4.93 3.16 5.12 3.80 5.82

12 2.41 5.01 3.01 .5.81 3.34 6.10

Chapter 7:Parallel Preconditioned Conjugate Gradients 123

Table 7.12: Performance of Independent Columns - 2601 nodes

Block niter time per iter precond total Sp
size (Np) row rb row rb row rb row rb row rb
1 31 28 0.66 0.61 1.20 1.09 21.66 18.04 0.96 0.97
2 42 34 0.28 0.28 1.22 1.10 13.08 10.80 1.59 1.62
4 48 38 0.19 0.13 1.24 1.12 10.34 6.23 2.01 2.81
6 53 41 0.13 0.08 1.27 1.14 8.12 4.46 2.56 3.92

8 57 44 0.10 0.06 1.30 1.17 6.86 3.83 3.03 4.57
10 59 47 0.10 0.05 1.34 1.20 7.05 3.61 2.95 4.85

12 60 49 0.10 0.05 1.41 1.23 7.37 3.48 2.82 5.03

Table 7.13: Performance of Independent Columns - 10201 nodes

Block niter time per iter precond total Sp

size (Np) row rb row rb row rb row rb row rb

1 60 55 2.86 2.70 4.51 4.23 176.27 152.72 0.93 0.94

2 82 68 1.10 1.08 4.62 4.39 94.76 77.60 1.73 1.85

4 91 77 0.62 0.54 4.79 4..51 60.94 46.01 2.69 3.12

6 102 85 0.37 0.36 4.86 4.63 42.91 37.58 3.82 4.36

8 110 91 0.30 0.23 4.91 4.78 37.69 25.54 4.35 5.62

10 117 94 0.15 0.13 5.02 4.90 39.89 22.86 4.11 6.28

12 122 96 0.13 0.11 5.09 5.01 41.71 20.99 3.93 6.84

Chapter 7:Parallel Preconditioned Conjugate Gradients 124

Table 7.14: Performance of Independent Columns - 40401 nodes

Block niter time per iter precond total Sp
size (Np) row rb row rb row rb row rb row rb
1 118 105 13.04 11.24 34.11 30.68 1573.20 1211.36 0.89 0.90
2 152 121 4.91 4.55 35.36 32.02 782.21 583.01 1.79 1.87
4 164 132 2.62 2.18 36.12 32.96 465.17 320.65 3.01 3.40
6 189 140 1.70 1.35 37.01 33.89 358.09 222.95 3.91 4.89
8 201 146 1.25 0.98 37.92 34.78 289.89 178.14 4.83 6.12
10 219 150 1.22 0.80 38.81 35.81 306.38 156.19 4.57 6.98
12 234 152 1.23 0.77 39.95 36.79 329.45 153.37 4.25 7.11

Table 7 15' Performance of Independent Columns - Step E only
Speed Up

2601 nodes 10201 nodes 40401 nodes

Np row rb row rb row rb

1 0.97 0.98 0.94 0.96 0.91 0.93

2 1.42 1.49 1.61 1.72 1.65 1.82

4 1.87 2.24 2.31 2.69 2.40 2.89

6 2.01 3.09 3.16 3.39 3.22 3.95

8 2.42 3.59 3.57 4.26 3.64 5.19

10 2.11 3.94 3.28 4.97 3.40 5.89

12 2.06 4.14 3.09 5.25 3.12 6.12

Chapter 7:Parallel Preconditioned Conjugate Gradients 125

Table 7.16: Speed ups for all non-preconditioning PCG steps - 40401 nodes
- row ordering

PCG Step
Np A B C+D F G
2 1.94 1.92 1.85 1.84 1.87
4 3.62 3.59 3.71 3.67 3.59
6 4.94 4.82 4.79 4.77 4.85
8 6.01 5.92 6.21 6.34 6.15
10 8.19 7.81 7.75 7.81 8.02
12 10.01 9.53 9.89 9.14 9.96

Chapter 7:Parallel Preconditioned Conjugate Gradients 126

7.5 Analysis Of Parallelism

In this section we shall construct a model for the estimation of the theoretical
parallelism of the level scheduling algorithm. A detailed discussion of the
experimental results for level scheduling and independent columns is then
presented. This includes a comparison between actual and theoretical speed
ups for level scheduling.

7.5.1 Theoretical Analysis

The theoretical model used in this section is similar to that in [2]. Our aim
here is to analyse the average parallelism for the level scheduling algorithm.
We shall make the assumption that the time taken to solve one row equation
in the triangular system is constant. This is a reasonable assumption for
the type of test matrices we have used since these have an almost constant
number of non-zero entries per row (ie. A, Land U).

Let us now define a time step as the time required to solve one row equa
tion. According to this definition, solving four equations on two processors
and solving three equations on two processors both require two time steps.
We have consequently provided some means of accounting for the efficiency
lost when the work at each level is not evenly balanced among the processors.

We can now define the parallelism for a particular problem as

number of tasks completed
average parallelism = .

number of steps requzred

where the number of tasks completed is the number of rows and the number

of steps is given by

_ NLEV ilLEVEL(l + 1) -ILEVEL(I)l.
number of steps - L N

[=1 P

Using the above definitions, we have calculated the average parallelism for
the three mesh sizes in section 7.4.4 using both row and red-black orderings.

These are presented in tables 7.17 and 7.18.

Chapter 7:Parallel Preconditioned Conjugate Gradients 127

Table 7.17: Theoretical vs Actual Speed ups for Level Scheduling - Row
ordering

Speed Up
2601 nodes 10201 nodes 40401 nodes

Np Theo. Act. Theo. Act. Theo. Act.
2 1.95 1.63 1.97 1.65 1.99 1.75
4 3.70 2.78 3.80 3.20 3.93 3.27
6 5.27 2.85 5.49 3.80 5.78 3.86
8 6.70 2.98 7.07 4.05 7.57 4.59
10 7.79 2.62 9.16 3.16 9.55 3.80
12 9.91 2.41 10.12 3.01 10.52 3.34

Table 7.18: Theoretical vs Actual Speed ups for Level Scheduling - Red-black

ordering
Speed Up

2601 nodes 10201 nodes 40401 nodes

Np Theo. Act. Theo. Act. Theo. Act.

2 1.96 1.71 1.98 1.73 1.99 1.79

4 3.73 2.95 3.82 3.28 3.94 3.33

6 5.32 3.61 5.56 3.89 5.80 4.19

8 6.76 4.32 7.12 4.69 7.64 5.22

10 7.87 4.93 9.24 5.12 9.60 5.82

12 9.96 5.01 10.31 5.81 10.65 6.10

Chapter 7:Parallel Preconditioned Conjuga.te Gradients 128

7.5.2 Discussion Of Results

As expected for both methods the overall solution process and the precondi
tioning step parallelise better for larger meshes due to increased granularity
(see tables 7.8 to 7.11). The best overall speed up obtained is 7.29 on 12
processors using level scheduling. This indicates that we are paying fairly
large synchronisation costs for large Np which reduces the computation to
communication ratio significantly even for the 40401 node mesh. This is very
much influenced by the length and number of levels in the preconditioning
step and the effect of these on the load balancing (see below).

The overall speed ups are greater than those for the preconditioning step
which indicates that the other peG steps are parallelised more efficiently
than this step. The non-preconditioning steps parallelise similarly in terms
of the speed ups obtained. The parallel efficiencies arf' ver,Y high and in some
cases near ideal (see tables 7.11 and 7.15), As expected, the best efficiencies
are yielded with smaller numbers of processors.

For level scheduling, even though the average level length is quite satis
factory for large meshes (see section 7.4.3), the degradation due to the short
levels is not insignificant. Therefore we would expect better performance if
there were very few short levels and many with length near or more than the
average length. The short levels bring about inefficiency in two ways. Firstly,
if there are many of these we need to synchronise with small granularity too
often. Secondly, for large numbers of processors, there could be several idle
tasks at each level since we only assign one row per task.

The theoretical average speed ups are very near ideal for both orderings
(see tables 7.17 and 7.18). The actual results are comparable to theoretical
values for small Np but for large numbers of processors we observe much
poorer performance than theoretically possible. The reasons given above
account for this difference together with the overheads associated with setting
up and managing parallel tasks. The difference between the two sets of speed
ups is also significantly smaller for red- black ordering, especially for the larger
meshes. This can be explained by the improved parallel performance of the

red-black ordered preconditioners (see below).
Most of the actual level scheduling speed ups for the preconditioning

step are in the range 2-5 (see table 7.11). The speed ups reported in a
similar implementation on an Alliant FX/8 [85J are in the same range. Better
efficiency can be obtained by processing meshes with long levels and many

Chapter 7:Parallel Preconditioned Conjugate Gradients 129

entries per level. The maximum theoretical speed up for any mesh size
can not exceed TOT NOD / N LEV. This is independent of the number of
processors used.

The speed ups for the independent columns scheme are influenced by
the distribution of entries in each block of columns. We should expect to
obtain maximum efficiency when the columns are almost equally full such
that minimal time is spent by idle tasks waiting for other columns to be
processed. The granularity for this scheme is determined by the number
of entries in each column. We should consequently expect higher parallel
efficiency for larger problems since the average number of entries per column
is higher. This is confirmed by the results in tables 7.12 to 7.15. We could
also benefit from better load balancing by designing the preconditioner such
that the columns in the same block have equal or nearly equal numbers of
entries. Better parallel efficiencies are consequently obtained for red-black
ordering.

The speed ups for the independent columns method are also dependent
on the entry distribution in each block. This is determined by the order
ing scheme used. The actual speed ups are quite similar to those for level
scheduling which indicates that the scheme is efficient for preconditioning
operations. The best overall speed up obtained using independent columns
is 7.11 on 12 processors which is quite close to that for level scheduling (7.29

on 12 processors).
We can see that both methods provide us with convenient and inexpensive

means of parallelising the triangular solves associated with preconditioning
operations. Good speed ups can be obtained if the preconditioning matrices

have reasonable structures.
The performance of preconditioners for a row-ordered mesh suited to

the independent columns scheme is satisfactory (see table 7.6). In order to
obtain more efficient preconditioners it is useful to reorder the stiffness matrix
before factorization such that the subsequent dropping of entries preserves
the original structure to a greater extent. One could also use a more suitable
ordering to produce the same effect. The performance of our independent
columns preconditioners for red-black ordering are examples of such a case.

Experiments in [10] compare speedometer and red-black orderings. The
results obtained show that both orderings yield effective preconditioners. Or
derings such as minimum degree which do not cluster the entries near the
diagonal are also likely to be suited to this scheme. Due to the scattered

Chapter 7:Parallel Preconditioned Conjugate Gradients 130

sparsity pattern associated with such orderings we are likely to have to drop
fewer entries to obtain suitable preconditioners. We need to take such mea
s~res to reduce the number of extra iterations when increasing the block
SIze.

One more consideration concerning the formation of good preconditioners
relates to the level of fill-in allowed. It is likely that most of the important
entries will be level 1 or 2 (see sections 2.3.4 and 3.2.2 and [14]). We could
consequently aim to include such low level fill-ins in the factors rather than
those in higher levels. This has been discussed in more detail in section 3.2.2.

The above modifications to the basic scheme for the formation of suitable
preconditioners for the independent columns method a.im to improve the
quality of the factors (ie. the preconditioner) by obtaining a more accurate
picture of the stiffness matrix. The larger entries are more important for
achieving this and hence their preservation is aimed for in the above schemes.
The use of the mentioned modifications can be the subject of experiments
involving the design of other suitable preconditioners.

An implementation preserving the largest entries in each block of columns
has not improved the quality of row and red-black ordered preconditioners
significantly (see section 7.3.3). However, other orderings (eg. minimum
degree) might benefit from this measure. We have also discussed the perfor
mance of the independent columns method on a transputer array in [10] and

[llJ.
We shall now make a detailed comparison between the quality of pre con

ditioners for the independent columns scheme produced by row and red-black
orderings of the underlying mesh. Our aim is to examine the effectiveness of
the preconditioners for both serial and parallel processing.

First of all let us discuss tables 7.6 and 7.7 ie. the effect of ordering on the
rate of convergence of incomplete ILU(O) factors. We can see that the rate
of convergence is in general faster for red-black ordering. As we increase the
block size and drop more entries to meet the necessary requirements for the
independent columns scheme, the rate of convergence becomes slower. This
is of course because the factors resemble the stiffness matrix to a lesser , ,
extent as the block size increases. What is interesting, however, is that this
degradation in performance is smaller in the case of red-black ordering.

The last statement shows that as we originally expected, fewer entries
need to be dropped with red-black ordering and we consequently manage to
preserve the authenticity of the factors with respect to the stiffness matrix

Chapter 7:ParalJei Preconditioned Conjugate Gradients 131

to a greater extent. This was, indeed, our motive for experimenting with
this alternative ordering. By this we mean that red-black was thought to
be a good choice of ordering for the independent columns method because it
results in sparsity patterns which conform with the required structure to a
certain extent (see section 7.2).

Even though we may expect other orderings (possibly minimum degree)
to exhibit even further improvements, we can say that mesh ordering can
have a significant effect on the parallel performance of the preconditioners
and that a red-black ordering appears well suited to this method. The results
in [10] also show this ordering to perform better than speedometer ordering
for the independent columns method.

Let us discuss the factors determining the achievement of real gain from
preconditioning before going on to examine the meaning of the results in the
tables for parallel implementations using independent columns (ie. tables
7.12 to 7.15). The costs associated with preconditioning are those due to
the computation of the preconditioner and the extra steps required in each
iteration. In the case of ILU preconditioning these steps correspond to the
triangular solves at each iteration. If we are to make an overall gain from
the use of preconditioning we need a preconditioner which:

• is not expensive to compute

• reduces the number of iterations significantly compared to the CG
method

• does not increase the cost of each iteration unreasonably

• can be parallelised effectively.

Tables 7.1 and 7.2 show how we make an overall gain from precondition
ing. We can see from these tables that even though the cost of each iteration
increases when we use preconditioning, the number of iterations drops suf
ficiently to cause an overall gain. This is, of course, also related to the fact
that the cost of obtaining our preconditioners is low.

We shall now relate the above mentioned issues to the results in tables
7.12 to 7.14, focusing on the second and fourth items ie. number of iterations
and efficient parallelisation. Bearing in mind what was said in the previous
paragraph we can see why the tables have been presented in their particular

Chapter 7:Parallei Preconditioned Conjugate Gradients 132

form. For each block size (ie. N p) our ultimate aim is to determine a speed
up which reflects the real performance of the preconditioner in a parallel
environment. In order to achieve this we need to remember the factors men
tioned above during the computation of the speed up. This means that the
speed ups presented in these tables take into account the cost of computing
the preconditioner and are calculated by comparing the performance with
Np processors to that of the fastest sequential algorithm doing the same job
ie. the results in tables 7.1 and 7.2.

The speed ups for level scheduling have been computed in the same man
ner. We can consequently say that for both methods the speed up figures
indicate the net gain from using preconditioning with parallelisation. The re
sults show that both methods produce satisfactory speed ups for large enough
meshes with a suitable ordering.

We are now in a position to examine the core issue of parallel performance.
Our speed up figures for different block sizes indicate that the independent
columns method performs significantly better with red-black ordering. This
means that not only are the serial performances of the preconditioners better,
but also that they parallelise more efficiently. This is no longer an issue
concerning the quality of the preconditioner but one relating to its structure.

More precisely, the deciding factors for parallel efficiency are granularity
and load balancing. The results indicate that our red-black preconditioners
bring with them increased granularity. But why should the load balancing be
any better? This is accounted for by the favourable sparsity pattern in red
black matrices. For the case of row ordering, we drop entries from the band in
such a way that many columns end up with more entries than others. Since
red-black matrices are already to a certain extent in the form we require, the
dropping preserves the diagonal structure and the final matrices have many
columns which are exactly or nearly equally full. This improves the load

balancing significantly.
As far as the actual speed up values are concerned we can see that, as

expected, parallel performance improves with mesh size with a maximum
of 7.11 on 12 processors for red-black ordering. For row ordering, the best
performance is a speed up of 4.83 on 8 processors. We must also note that
whereas the speed ups continue to rise for red-black ordering beyond 10
processors, there is a fall in the speed ups for row ordering after a peak at 8

processors.
Let us now return to level scheduling and discuss the distribution of the

Chapter 7:Parallel Preconditioned Conjuga.te Gradients 133

level lengths for row ordering. There are a large number of rows at level
1. These have not been included in the distribution graphs 7.1-7.4. After
level 1, the level length steadily rises and eventually falls in the same way
(see graphs 7.1 and 7.3). The symmetry observed is due to the regularity of
the underlying row-ordered mesh. There is a flat area in these distributions
which corresponds to the longest levels. Graphs 7.2 and 7.4 tell us that
approximately one third of the levels have the longest lengths.

We can also see from graphs 7.2 and 7.4 that the same percentage of the
levels are associated with most level lengths. The actual number of levels
for these is 4. This means that there are 4 of most block sizes. As far as
the variation of the distribution with problem size is concerned, we observe
that there is a reduction in the relative size of the flat area as problem size
increases (see graphs 7.1 and 7.3). This means that fewer levels are of the
longest lengths for larger meshes. The actual percentage change is from 41 %
(441 nodes) to 35% (10201 nodes) which means that the pattern is preserved
to a large extent with increased problem size.

Another important relevant issue is the relation between the level length
distribution and parallel efficiency. We ideally want the distribution to have
the shape of a tall and narrow rectangle so that the number of levels is small
and these are all long relative to the number of processors. Furthermore, if
Np divides exactly into the lengths of the levels then we have no idle proces
sors. Otherwise, the remainder rows in each level have to be processed using
fewer than Np processors leaving some processors idle. Also, the broader the
distribution, the greater are the number of synchronisation points. This is
why we desire narrow rectangles. If there are many short levels we have the
overhead due to idle processors when Np is greater than the length of many
of these levels. Consequently for good parallel efficiency we require:

• A high proportion of long levels (large granularity and minimum idle
processors for large N p)

• Few levels (minimum synchronisation)

• Many level lengths divisible by Np (minimum idle processors).

Let us now relate the above issues to our current distributions (see graphs
7.1 and 7.3). If we use a small number of processors (eg. Np = 2), we
shall obtain high parallel efficiency since we have very little loss due to idle

Chapter 7:ParaJJel Preconditioned Conjugate Gradients 134

processors. If we use a large number of processors, we reduce the overhead
associated with the allocation of tasks to rows at long levels but have to
pay a large overhead due to idle processors at short levels. The speed up
does increase as Np increases but the parallel efficiency drops due to the idle
processors. This means that this type of distribution does not scale very well.

It is important that Np is a factor of the level length of highest frequency
and divides exactly into many others. One possibility is to choose the number
of processors on the basis of the level lengths. As the problem size increases,
it becomes safer to use large numbers of processors since the proportion of
the remainder rows is small compared to the level lengths.

The factors discussed above explain why the speed ups obtained for level
scheduling are so much lower than the theoretical values (see tables 7.17 and
7.18). Our distributions for the row-ordered mesh show that if we use a
large number of processors compared to the short level lengths there is some
loss in efficiency due to idle processors. Also, there are many levels in the
distribution and this means many synchronisation points. The granularity
for short levels is far from ideal when Np is large. Finally, many long level
lengths are not multiples of the numbers of processors. There is a certain
degree of improvement in some of these sources of inefficiency as the problem
size increases. However, a more fundamental change in the distributions is
necessary if there are to be significant improvements in the speed ups.

Since the distributions are determined by the ordering of the underlying
mesh, we need to seek optimal distributions by experimenting with different
orderings. The best orderings should be those for which there are large groups
of independent rows in the stiffness matrix such as red-black or minimum
degree [18].

This brings us to the discussion of how row and red-black orderings com
pare in the case of level scheduling according to our experiments (see tables
7.8 to 7.11). As expected, the speed ups improve with problem size for both
orderings. The speed ups for red-black ordering are higher than those for
row ordering but the improvement is smaller than the case of independent
columns. This is due to the fact that the improvements in granularity and
load balancing are more pronounced when we switch orderings for the inde
pendent columns method. The best speed up for level scheduling is 7.29 on
12 processors for red-black ordering and 5.54 on 8 processors for row ordering.
The improvement in speed ups stops at Np = 8 for row ordering whereas it
continues to rise beyond Np = 10 for red-black ordering. This suggests that

Chapter 7:Parallel Preconditioned Conjugate Gradients 135

we obtain better level length distributions with red-black ordering which in
turn improve the granularity and load balancing.

Finally let us make some comments referring to how level scheduling and
the independent columns method compare in terms of parallel performance.
Level scheduling performs better than independent columns in general as
far as our results show. The ordering scheme used alters the performance
of both methods and further experiments could lead to other interesting
conclusions. Tables 7.11 and 7.15 show how effectively the two methods
parallelise the forward and backward substitutions only. We can see from
these tables that from this point of view the performance of independent
columns is even closer to that of level scheduling. Level scheduling uses a
full ILU(O) preconditioner, whereas the independent columns method uses
an (increasingly) incomplete ILU(O) preconditioner. This accounts for some
of the difference in the performances of the two methods.

Chapter 8

Conclusions

136

Chapter 8:Conclusions 137

8.1 Overview of Chapter

This chapter contains our conclusions regarding all aspects of finite element
analysis. The topics are itemised and discussed separately. Some implemen
tation details have been included to clarify the conclusions. The final section
explains how one might build upon the work presented in the thesis.

Our objectives have been the analysis of the finite element method with
the aim of exploring its potential for parallelisation. We have autoparallelised
a large finite element program (GASP4) and tested its efficiency (see chapter
4). A study of the structure of the autoparallelised program has been made.
We have made recommendations concerning the design of programs suitable
for parallelising compilers.

The FEM consists of the assembly of a stiffness matrix and the subsequent
solution of a set of equations with the stiffness matrix as the coefficients. We
have implemented three algorithms for the parallel assembly of the stiffness
matrix stored in a sparse matrix format (see chapter 6). Two of these algo
rithms have proved to be very efficient giving speed ups that are near ideal.

For the solution phase, we have used the PCG method. This method
is suited to the solution of large sparse systems due to its low storage re
quirements and low operations count (see section :2.3.4). The main difficulty
with parallelising this method is the preconditioning step which consists of a
pair of triangular solves for our chosen preconditioner which is an incomplete
factorization of the stiffness matrix. The ILU(O) preconditioner has been
found to be an effective means of reducing the number of CG iterations.
This preconditioner can be computed at a low cost.

We have implemented two algorithms for parallel triangular solution.
One is level scheduling which is a row-oriented blocking strategy (see sec
tion 7.3.2). This scheme has proved to be quite efficient (see section 7.4.4).
The other parallel triangular solution scheme is a novel column-oriented ap
proach (independent columns) based on the parallel update of RHS entries
using distinct columns of the coefficient matrix at each stage (see section
7.3.3). The speed ups obtained using this method are similar to those for
level scheduling (see section 7.4.4). We have designed methods for obtaining
efficient preconditioners which have the necessary structure for the imple
mentation. The two methods of parallel solution have been tested for row

and red-black orderings of the unknowns.

Chapter 8:Conciusions 138

8.2 Autoparallelisation

In order to benefit from the use of autoparallelisation the code must be writ
ten with simple and clear data dependencies. This is because if the depen
dencies are too complex then existing parallelising compilers are incapable
of analysing these effectively enough.

If the code is hard to analyse at higher levels, the compiler will imple
ment parallelism at lower levels where it can be sure of correctness in parallel
processing. This gives rise to low grain parallelism which involves large syn
chronisation overheads and is unlikely to be beneficial.

We recommend that code to be autoparaUelised is written such that the
possibility of large grain parallelisation can be easily detected by the com
piler. For example, it would be quite efficient to run parallel copies of large
or medium size subroutines. Subroutines must consequently be written such
that this kind of parallel processing can be affected without the need for
synchronisation. This requires a conscious effort on the part of the designers
of the code who should be made aware of the prospects and limitations of
the compiler with regards to parallelisation. A well structured program with
simple and clear data dependencies is a necessity for efficient autoparalleli
sation.

The autoparallelisation of GASP4 using the epj compiler proved to be
inefficient (see section 4.4). The processing time actually increased as the
number of processors was increased. The reason for this is the large amount of
synchronisation overhead paid when the number of processors increases. This
overhead is not sufficiently compensated for by a reduction in the processing
time due to parallel processing and we consequently have a net increase in

processing time.
The level at which parallelism is implemented by epjin GASP4 is too low

to be beneficial. Since the data dependencies in the program are too complex
at higher levels, the compiler only parallelises what it is certain to work cor
rectly. This is often very low grain and hardly ever substantial. There is no
point having several parallel tasks performing operations such as initialising
small arrays. The overhead associated with setting up and managing these
tasks is too high compared to the gain due to parallel execution. Further
more, this type of inefficiency increases as we use more processors. It is very
important to allocate enough work to tasks to compensate sufficiently for the

cost of their implementation.

Chapter 8:Conclusions 139

Another source of inefficiency in the autoparallelised version of GASP4 is
the presence of a great deal of low level synchronisation (see section 4.4.2).
This means that parallel tasks are required to communicate a large number of
times during the execution of a few lines of code. This is again due to the lack
of ability of the compiler to detect possibilities for parallelisation at higher
levels. The overheads associated with the communications necessary for im
plementing low level synchronisation can become very large. This makes it
very difficult to obtain any real gain from such parallel implementations.

In summary, we should say that we can only expect to benefit from the
use of autoparallelising compilers if we have one or both of the below items:

• We supply them with well structured code with simple and clear data
dependencies. The code must also be written such that large grain
parallelism is made possible.

• The compilers are made sophisticated enough to be able to detect par
allelism even when the code is difficult to analyse. One further desirable
feature would be the ability of the compiler to restructure the code with
the aim of making efficient parallelisation possible.

While we are not in possession of the second item we need to write autopar
allelisable programs bearing in mind the points discussed above.

We have obtained some speed up by hand parallelising parts of GASP4
(see section 4.5.2). Strategies such as accumulating local sums to reduce the
overhead due to critical sections and processing parallel blocks of DO loop
indices to avoid the cost of DOALL constructs have been used to provide
efficient parallel processing. In order to parallelise more of the program we
would require a detailed understanding of the data dependencies so that the
code can be restructured and written as an efficient parallel program with

the appropriate granularity.

8.3 Parallel Assembly

We have identified the sources of contention for the parallel assembly of
different elements into a sparse representation of the stiffness matrix (see
section 6.2). These are due to the sharing of nodes by different elements
which means that the same entry in the overall matrix can be dependent

Chapter 8:Conclusions 140

on several entries in different element matrices. We also need to control
inadvertent access to the table subscript by parallel tasks. Three different
methods of parallel sparse assembly have been designed.

It is not efficient to allow parallel assembly into the same row of the overall
stiffness matrix by parallel tasks assembling their respective element matrices
(see section 6.3). Each of these will be assembling different parts of the
same row with the possibility of a shared overall entry. The synchronisation
required to control this type of contention has to be implemented at low
levels giving rise to small granularity and large overheads. A synchronisation
LOCK provides mutually exclusive access to the table entries by parallel tasks
during row creation and entry insertion. A CRITICAL SECTION primitive
is used to protect the update of existing table entries.

As mentioned above, the low grain parallelisation used is inefficient. This
source of inefficiency degrades the parallel performance and the speed ups
obtained are far from ideal. The loss in efficiency is more pronounced for
large numbers of processors (ie. Np 2: 6). With 4 processors, the speed up is
2.53 and when using 12 processors this is only increased to 5.52 (see section

6.6).
The idea in performing parallel assembly of different rows only (see section

6.4) is to remove the contention problem associated with the sharing of nodes
by different elements. If we can be sure that at anyone time one particular
row of the overall stiffness matrix is created or updated by only a single task
then we only need to protect the table subscript during the parallel assembly

of different rows.
Each row of the stiffness matrix has associated with it a unique LOCK

variable. This ROWLOCK is checked by each task attempting to create
or update a row. If the ROWLOCK is free the task proceeds. Otherwise
it is suspended at that point awaiting a signal by another task currently
processing the row (ie. holding the ROWLOCK). This is an efficient way of
performing parallel sparse assembly (see section 6.6). The only substantial
overhead is due to the tasks waiting on a ROWLOCK. The speed ups are
now nearer ideal at 3.37 for Np = 4 and 7.07 for Np = 12.

Further improvement in the efficiency of parallel assembly of different
rows is possible by the reduction in the waiting time on ROWLOCK's. This
can be achieved by a reordering of the assembly sequence such that disjoint
elements are assembled simultaneously as far as possible (see section 6.5).
A colouring strategy is used to group disjoint elements such that the mesh

Chapter 8:Conclusions 141

is divided into several colours. Instead of the parallel assembly of different
elements at random we now assemble adjacent elements first by processing
the colours in sequence. The waiting on ROWLOCK's only occurs at the
boundary of the colours. This brings about a significant reduction in waiting
time with a low preprocessing cost. The speed ups for this improved version
of parallel assembly of different rows have increased to 3.77 for Np = 4 and
10.01 for Np = 12 (see section 6.6).

Finally, we should comment on the general effect of problem size and
increasing numbers of processors on parallel efficiency. As can be seen from
table 6.2, the speed ups improve as problem size increases. This is because
for larger problems the granularity is increased and the synchronisation over
heads are better compensated for by the reduction in processing time due to
parallel execution. This means that each task is now doing more work be
fore it needs to communicate and the computation to communication ratio
is higher. This increases the pa.ra.llel efficiency.

For a given problem size, as we increase the number of processors we
observe a reduction in the parallel efficiency (see table 6.1). This is because
as N p increases we have to pay an increasing amount of overhead associated
with the setting up and management of parallel tasks. If the granularity
happens to be low then the usage of a large number of processors causes a
large amount of inefficiency due to a small computation to communication
ratio. For large Np there is also a greater chance of having idle processors.
All these factors account for a drop in the parallel efficiency as N p increases.
We have aimed to minimise this effect by bearing in mind the above factors

at the design stage.

8.4 Parallel Solution

We have implemented the PCG method in parallel. The profile of the method
is such that most of the time is spent on performing matrix multiplications
and the triangular solves (see section 7.4.1). The ILU(O) preconditioner is
found to be an efficient means of reducing the number of iterations. The
formation of this preconditioner involves a low cost (see section 7.4.1).

All the PCG steps are straightforward to parallelise apart from the pre
conditioning operations (triangular solves for lL U preconditioning). The
speed ups for the non-preconditioning steps are near ideal (see table 7.16).

Chapter 8:Conclusions 142

We have implemented parallel triangular solves using level scheduling and a
new method involving parallel update with independent columns. Both meth
ods have been tested with row and red-black orderings of the unknowns.

Level scheduling is based on a blocking abstraction in which independent
rows of the coefficient matrix are identified and grouped together in levels
(see section 7.3.2). These levels must then be processed in sequence while
within each level the rows can be processed concurrently. The independent
columns scheme is a column-oriented approach to parallel triangular solution
(see section 7.3.3). At each stage of this method a number of unknowns are
computed and used in the simultaneous update of distinct RHS entries (using
distinct columns). For this parallel update to be possible, the Land U factors
must have a certain structure.

Level scheduling has proved to be quite efficient giving rise to speed ups
which are mostly in the range 2 - 5 with a maximum of 6.10 on 12 processors
for red-black ordering (see table 7.11). These are comparable to theoretical
speed ups for small Np but for large numbers of processors the theoretical
values are much higher (see tables 7.17 and 7.18). The reasons for this differ
ence are non-optimal level length distributions (see below and section 7.5.2)
and large overheads when using many processors. The speed ups increase
with problem size due to increased granularity.

The independent columns scheme gives similar speed ups to level schedul
ing (see tables 7.12 to 7.15). The parallel efficiency of this scheme is deter
mined by the distribution of the entries in each block of columns and the
average number of entries per column in the block. An even distribution
of entries minimises the overhead due to idle processors waiting for dense
columns. As the problem size increases, the average number of entries per
column becomes larger and this increase in granularity increases the parallel
efficiency. We could also improve the load balancing by aiming to have equal
or nearly equal numbers of entries in columns of the same block. The speed
ups obtained using independent columns indicate that the entry distributions
for row ordering are not ideal for minimising idle processor time.

The above considerations are necessary for improving the parallel perfor
mance of this scheme. This has been the motive behind testing the indepen
dent columns scheme with an alternative ordering ie. red-black. We have
obtained improved performance with the latter ordering (see tables 7.12 to
7.15). The reasons for this improvement are discussed below (also see section

7.5.2).

Chapter 8:Conclusions 143

In order to obtain suitable preconditioners for the independent columns
scheme we have performed an LU factorization during which entries which
disturb the independence requirements are dropped (see section 7.3.3). The
performance of these preconditioners is satisfactory for both orderings (see
tables 7.6 and 7.7). We observe an expected increase in the number of itera
tions as the block size increases. This is due to the fact that we need to drop
an increasing number of entries during factorization to satisfy the indepen
dence requirements and the factors become less effective. There is, however,
an overall reduction in the solution time due to using the method (see tables
7.12 to 7.14). This means that even though we sacrifice a few more iterations
each time we increase the block size, this is compensated for sufficiently by
the reduction in processing time due to the possibility of parallel processing.

The best speed up obtained due to the independent columns scheme is
7.11 on 12 processors (see table 7.14). The mentioned speed ups are owed
to the design of efficient preconditioners (see tables 7.6 and 7.7). The im
provement due to the use of red-black ordering is due to the fact that the
performance of red-black preconditioners is not degraded to a large extent as
block size is increased. We have consequently obtained a more suitable or
dering of the underlying mesh. Other possible candidates are orderings such
as minimum degree which are also likely to require the dropping of small
numbers of entries. This issue has also been discussed in section 7.5.2.

Our implementation aiming to preserve the largest entries in each block of
columns in order to improve the quality of the preconditioner has not resulted
in significantly faster rates of convergence (see section 7.3.3). Other orderings
(eg. minimum degree) might benefit from such a scheme to a greater extent.

One further point must be made regarding the structure of the precondi
tioners for the independent columns scheme. If we allow non-diagonal entries
into the Li blocks (see figure 7.5, page 106), the effectiveness of the precondi
tioner will be enhanced due to the extra entries. There will, however, be an
increased amount of work to be done during the first step of the algorithm ie.
the determination of the solution subvector (see section 7.3.3). This must be
done using a triangular solve since the parallel division possible for the case
of a diagonal Li is no longer possi ble. A study of the effect of this trade-off
on the efficiency of the algorithm can give rise to interesting results.

Let us now discuss further the reasons for the improved convergence rates
obtained using red-black incomplete ILU(O) preconditioners (see tables 7.6
and 7.7). For both orderings, as the block size increases the rate of con-

Chapter 8:ConclusioIlS 144

vergence becomes slower. In the case of red-black ordering, however, this
degradation in performance due to an increasing number of dropped entries
is smaller. This is because fewer entries need to be dropped in the red-black
case for each block size since the entries are already scattered in the form
required by the independent columns method to a certain extent (see section
7.2).

We can see from tables 7.12 to 7.15 that the speed ups for the independent
columns method are affected by the choice of ordering to a great extent. The
speed ups obtained using red-black ordering are significantly higher than
those for row ordering. This is due to better load balancing associated with
red-black ordering which minimises idle processor time (see section 7.5.2).
Also, the granularity due to the processing of larger meshes accounts for the
fact that for both orderings the best parallel efficiencies are obtained for the
largest problem sizes.

In order to benefit from level scheduling we need many levels with large
lengths relative to the number of processors. This will ensure large granular
ity which is essential for good parallel efficiency. The distribution of the level
lengths for row ordering is such that around one third of the levels have the
largest level length (see graphs 7.1 to 7.4). This means that we can expect
better performance from orderings which produce a more uniform distribu
tion with a larger number of long levels. The processing of short levels is
inefficient, especially for large numbers of processors, since we not only have
many synchronisation points but also some idle processors.

This calls for a comparison between row and red-black orderings with
regards to their parallel performance using level scheduling. The speed ups
for red-black ordering are higher than those for row ordering in general (see
tables 7.8 to 7.11). This is because we obtain better level length distributions
with red-black ordering which improve the granularity and load balancing

(see section 7.5.2).
We shall now address the issue of an optimal number of processors for

level scheduling. By looking at the level length distribution graphs we can see
that for row ordering the least amount of overhead would be paid by using a
number of processors approximately equal to the average level length. This
is because even though the speed up increases with Np , we pay an increasing
amount of overhead due to idle processors during the processing of short
levels. For maximum parallel efficiency we need to seek an optimal trade
off such that we use as many processors as possible without paying a large

Chapter 8:Conclusions 145

cost due to idle processors. As mentioned above, this occurs at around the
average level length.

The most efficient level length distributions must have the shape of tall
and narrow rectangles ensuring a small number of levels all with large level
lengths (ie. large granularity). It is also important that Np divides exactly
into many large level lengths. We can then be sure that when processing
these levels there is no significant loss due to idle processors. This is an issue
because the cost of idle processors during the processing of left over rows at
each level can become large. The improved parallel performance associated
with red-black ordering suggests that the sparsity pattern for this ordering
is more suited to the achievement of minimum idle processor time.

8.5 Suggestions for Future Work

The independent columns scheme seems to have a great deal of potential for
performing efficient triangular solves. It would be interesting to investigate
further the formation of other suitable preconditioners for this scheme. This
should be done in terms of experimenting on different orderings of the un
derlying mesh. We need preconditioners (L and U factors) which conform to
the desired structure closely such that the dropping of entries during factor
ization does not degrade the rate of convergence adversely.

The parallel efficiency of the independent columns scheme can also be
improved by the use of orderings which produce more uniform entry distri
butions in each block of columns. Some such orderings may also benefit from
schemes such as preserving the largest entries in each block of columns.

The level scheduling scheme can also benefit from more suitable orderings.
It would be useful to experiment on the effect of ordering on level length
distributions since it is the latter that ultimately dictate the efficiency of the
level scheduled scheme. The aim should be to determine which orderings
produce distributions with fewer and longer levels.

The parallel assembly code has been ported and run successfully on a
British Gas Cray computer. The code for the parallel solution schemes will

be ported next.

Bibliography

[1] Anderson,E.C.,Parallel implementation of preconditioned conjugate gra
dient methods for solving sparse system:; of linear equations,Technical
Report 794,University of Iliinois,CSRD,Urbana,IL,1988.

[2] Anderson, E.C., and Saad, Y, Solving Sparse Linear Systems On Paral
lel Computers, International Journal of High Speed Computing, VoL1,
No.1, pp. 73-95, 1989.

[3] Ashby,S.F., Polynomial preconditioning for conjugate gradient methods,
Ph.D. thesis, Computer Science Dept., University of Illinois, Urbana,
IL, 1987.

[4] Axelsson,O.,A Generalized Conjugate Direction Method and its Applica
tion on a Singular Perturbation Problem, Lecture Notes in Mathematics
773,Springer-Verlag,Berlin,Heidelberg, New York,1980,pp. 1-11.

[5] Becker,E.B.,Carey,G.F.,and Oden,J.T.,Finite Elements - An Introduc
tion, Volume 1,Prentice-Hall,1981.

[6] Brusa,L.,and Riccio,F.,Substructure technique for parallel solution of
linear systems in finite element analyses,In "Para.llel Computing. Meth
ods, Algorithms and Applications", Proceedings of the International
Meeting on Parallel Computing, Verona, Italy, 28-30 Sept. 1988.

[7] Carey,G.F.,Parailelism in Finite Element Modelling, Communications
in Applied Numerica.l Methods,Vo1.2,1986.

[8] Chandra,R.,Eisenstat,S.C.,and Schultz,M.H.,A
modified conjugate residual method for partial differential equations, In
"Advances in Computer Methods for Partial Differential Equations - 2"
(Vichnevetsky,R. ,ed.) ,Publ.lMACS(AICA) ,1977.

146

Bibliography 147

[9] Chien,L.S.,and Sun,C.T.,Parallel processing techniques for finite el
ement analysis of large truss st'ructures, Computers and Struc
tures, Vo1.31,N 0.5,1989.

[10] Cook,R.,Pakzad.,M.,and Phillips,C.,Parallel Implementation of Con
jugate Gradient- Type M ethods,presented at The Sixth International
Conference on Scientific Computing,University of Benin,Nigeria, 24-28
Jan.1994.

[11] Cook,R.,Pakzad.,M.,and Phillips,C.,Parallel Preconditioners for
the Conjugate Gradient Method,Tech.Rept.No.467,Dept.Comput.Sci.,
Univ.Newcastle upon Tyne,1994.

[12] Cuthill,E.,and McKee,J.,Reducing the bandwidth of sparse symmetric
matrices, Proc. of the 24th National Conference ofthe ACM,ACM Pub
lications, 1969.

[13] Da Cunha,R.D.,and Hopkins,T.,A Parallel Implementation of the
Restarted GMRES Iterative Method for Nonsymmetric Systems of Lin
ear Equations, Technical Report No.7 /93,Computing Laboratory,Univ.
of Kent at Canterbury, May 1993.

[14] D 'Azevedo,E.F. ,Forsyth,P.A. ,and Tang W .P., Towards a cost-effective
preconditioner with high level fill, BIT,Vo1.32,pp. 442-463,1992.

[15] Du Croz,J .,Evolution of Parallel Algorithms in Dense Linear Algebra, In
"Parallel Computation" ,Proceedings of the IMA Conference on Parallel
Computation,18-20 Sept. 1991, Oxford University,IMA,1994.

[16] Duff,I.S.,Erisman,A.M.,and Reid,J.K.,Direct Methods for Sparse Matri
ces, In "Parallel Computation" ,Proceedings of the IMA Conference on
Parallel Computation,18-20 Sept. 1991, Oxford University,IMA,1994.

[17] Duff,I.S.,Exploitation of Parallelism in Direct and Semi-Direct Solution
of Large Sparse Systems, In "Parallel Computation" ,Proceedings of the
IMA Conference on Parallel Computation,lx-20 Sept. 1991, Oxford Uni
versity,IMA,1994.

[18] Duff,LS. and Meurant,G.A.,The effect of ordering on preconditioned
conjugate gradients, BIT ,Vo1.29,pp.635-657 ,1989.

[19] Dutto,L.C., The effect of ordering on preconditioned GMRES algorithm
for solving the compressible Navier-Stokes equations, International Jour
nal for Numerical Methods in Engineering,Vo1.36, pp. 457-497,1993.

Bi bliography

[20] Eisenstat,S.C.,Elman,H.C.,and Schultz,M.H., Variational
erative methods for nonsymmetric systems of linear' equations,
Journal of Numerical Analysis,Vo1.20,pp. 345-357,1983.

148

it
SIAM

[21] Encore. Encore Parallel Fortran, Ref.No. 724-06785,Encore Computer
Corporation,Fort Lauderdale,Florida, 1988.

[22] Farhat,C.,A simple and efficient finite element method domain decom
poser,Computers and Structures,Vo1.28,No.5,1988.

[23] Farhat,C.,Multiprocessors in computational mechanics, Ph.D. Disserta
tion, University of California, Berkeley, 1986.

[24] Farhat,C.,Wilson,E.,and Powell,G.,Solution of Finite Element Sys
tems on Concurrent Processing Computers, Engineering with Comput
ers,Vo1.2,1987.

[25] Farhat,C.,and Wilson,E.,A New Finite Element Concurrent Computer
Program Architecture, International Journal for Numerical Methods in
Engineering,Vo1.24,1987.

[26] Farhat,C.,and Wilson,E.,A parallel active column equation solver, Com
puters and Structures,Yo1.28,No.2,1988.

[27] Farhat,C.,and Crivelli,L.,A general approach to nonlinear FE computa
tions on shared-memory multiprocessors, Computer Methods in Applied
Mechanics and Engineering,Yol. 72,1989.

[28] Farhat,C.,Pramono,E.,and Felippa,C., Towards parallel I/O in finite el
ement simulations, International Journal for Numerical Methods in En
gineering, Vo1.28,1989.

[29] Farhat,C.,and Wilson,E.,Concurrent iterative solution of large fi
nite element systems, Communications in Applied Numerical Meth
ods,Vo1.3,1987.

[30] Farhat,C.,and Wilson,E.,Modal superposition dynamic analysis on con
current multiprocessors, Eng. Computations,1987.

[31] Fillipone,S.,Marrone,M.,and Radicati di Brozolo,G.,Parallel precondi
tioned conjugate-gradient type algorithms for general sparsity structures
Intern. J. Computer Math.,Vo1.40,pp. 159-167,1992.

Bibliography 149

[32] Fletcher,R.,Conjugate Gradient Methods for Indefinite Systems, Lec
ture Notes in Mathematics 506,Springer-Verlag,Berlin,Heidelberg, New
York,1976,pp. 73-89.

[33] Freeman,T.L.,and Phillips,C.,Parallel Numerical Algorithms, Prentice
Hall Int.,1992.

[34] Gajski,D.,Kuck,D.,Lawrie,D.,and Sameh,A.,Planfor the construction of
a large scale multiprocessor,83-1123,Feb.1983,Dept. of Computer Sci
ence, University of illinois at Urbana-Champaign,(Cedar Doc. No.5).

[35] George,A., Computer implementation of the finite element method, Tech.
Rept. STAN-CS-208,Stanford University,1971.

[36] George,A.,and Liu,J.W.,Computer solution of large sparSE positive def
inite systems,Prentice Hall,1981.

[37] Golub,G.H. and van Loan,C.F.,Matrix Computations, Second Edi
tion,The Johns Hopkins University Press,1989.

[38] Gladwell,I.,and Wait,R.,A Survey of Numerical Methods for Partial Dif
ferential Equations, Oxford University Press,1979.

[39] Greenbaum,A.,Li,C., and Chao,H.Z.,Comparison of Linear Sys
tem Solvers Applied to Diffusion- Type Finite Element Equations,
N umer .Math., Vo1.56,pp.54 7 -589,1989.

[40] Hammond,S.W. and Schreiber,R.,Efficient ICCG on a shared memory
multiprocessor, Int. J. High Speed Comput.,VoI.4,No.l,pp. 1-21,1992.

[41] Heroux,M.A.,Vu,P.,and Yang,C.,A parallel preconditioned conjugate
gradient package for solving sparse linear systems on a Cray Y-MP,
Applied Numerical Mathematics,VoI.8,pp. 93-115,1991.

[42] Hestenes,M.R.,and Stiefel,E.,Methods of conjugate gradients for solving
linear systems,J .Res.N at.Bureau Standards,VoI.49,pp.409-436,1952.

[43] Hockney,R.W.,and
Hilger(IOP),1988.

Jesshope,C.R.,Parallel Computers Adam

[44] Hwang,K.,and Briggs,F.A.,Computer Architecture and Parallel

Processing,McGraw- Hill,1987.

Bibliography 150

[45] Irons,B.M.,A Frontal Solution Program for Finite Element Analysis,
International Journal for Numerical Methods in Engineering,Vo1.2,1970.

[46] Johnson,O.G.,Micchelli,C.A., and Paul,G.,Polynomial preconditionings
for conjugate gradient calculations, SIAM J.Numer.Anal.,Vo1.20,pp.
362-376,1983.

[47] Jordan,H.,Benten,M. and Arenstorf,N .,Force user's manual, Depart
ment of Electrical and Computer Engineering,Uni. of Colorado, Boul
der,1987.

[48] Jordan,T.L.,Conjugaie gradient preconditioners for vector and par
allel processors, In "Elliptic Problem Solvers 2, Proceedings of
the Elliptic Problem Solvers Conference" ,Monterey,CA, Jan.10-12
1983, (Birkhoff,G.N.,and Schoenstadt,A.,eds.),pp. 127-139,Academic
Press,1983.

[49] Kantorovich,L.V.,and Krylov,V.I.,Approximate Methods of Higher
Analysis, P.Noordhoff,Ltd.,The Netherlands,1958.

[50] Keyes,D.E.,and Gropp,W.D.,A comparison of domain decomposition
techniques for partial differential equations and their parallel implemen
tation, SIAM J.Sci.Stat.Comput.,Vo1.8,166-202.

[51] Lawrie,D.H.,and Sameh,A.H.,Applications of structural mechanics on
large-scale multiprocessor computers,In "Impact of new computing sys
tems on computational mechanics" ,(A.Noor,ed.),The ASME,1983

[52] Lee,P.A.,Parallel Processing on the Multimax Computer System, Paral
lel Processing Memorandum (PPM/001),Computing Laboratory, Uni
versity of Newcatle upon Tyne,1987.

[53] Leuze,M.R.,Parallel triangularisation of substructured finite element
problems, Linear Algebra and its Applications,Vol.77,1986.

[54] Luo,J.C.,An incomplete inverse os II preconditioner for the conjugate
gradient method, Computers Math. Applic.,Vo1.2.5,No.:2,pp. 73-79,1993.

[55] Mitchell,A.R.,and Wait,R., The Finite Element Method in Partial Dif
ferential Equations, John Wiley and Sons,1977.

[56] Meurant,G.,Multitasking the conjugate gradient method on the CRAY
X-MP/48, Parallel Computing,Vol..5,pp. 267-280,1987.

Bibliography 151

[57] Munksgaard,N .,Solving Spar'se Symmetric Sets of Linear Equations by
Preconditioned Conjugate Gradients, ACM Transactions on Mathemat
ical Software, Vo1.6,N 0.2,pp.206-219,1980.

[58] Melhem,R.G.,A Modified Frontal Technique Suitable For Parallel Sys
tems,SIAM J .Sci.Stat.Comput.,Vo1.9,N 0.2,1988.

[59] The Numerical Algorithms Group Ltd.,The NAG Fortran Library Man
ual, Vo1.5,Mark 16,1993.

[60] The Numerical Algorithms Group Ltd.,The NAG Fortran Library Man
ual, Vo1.6,Mark 16,1993.

[61] Nath,B.,Fundamentals of Finite Elements for Engineers, Athlone
Press,1974.

[62] NOUI'-Omid,B.,Raefsky,A.,and Lyzenga,G.,Solving finite element equa
tions on concurrent computers, Proc. of the ASME Symposium on Par
allel Computations and their Impact on Mechanics,Dec. 13-18,1987.

[63] Pini,G.,Zilli,G.,and Contenaro,E.,Sparse Systems of Linear Equations
and Related Eigenanalysis in a Parallel Environment, In "Paral
lel Computation" ,Proceedings of the IMA Conference on Parallel
Computation,18-20 Sept. 1991, Oxford University,IMA,1994.

[64] Prenter,P.M.,Splines and Variational Methods, John Wiley and
Sons.,1975.

[65] Quinn,M.J .,Designing Efficient Algorithms fol' Parallel Computers,
McGraw-Hill,1988.

[66] Reddy,J.N .,An introduction to the finitE element method, McGraw
Hill,1984.

[67] Rothberg,E. and Gupta,A.,Pamllel IGCG on a hierarchical memory
multiprocessor - Addressing the t1·iangu.lar solve bottleneck, Parallel
Computing,Vo1.l8,pp. 719-741,1992.

[68] Saad,Y.,Krylov Subspace Methods on Supercomputers, SIAM
J .Sci.Stat. Comput. ,Vo1.10,N 0.6,pp. 1200-1232,1989.

[69] Saad,Y,Practical USE of polynomial pI'econditionings for the conjugate
gradient method, SIAM J.Sci.Stat.Comput.,Vo1.6,pp. 865-881,1985.

Bi bliography

[70] Saad,Y.,and Schultz,M.H.,GMRES:a
minimal residual algorithm for solving nonsymmetric
SIAM J.Sci.Stat.Comput.,Vo1.7,pp. 856-869,1986.

152

generalized
linear systems,

[71] Seager ,M.K. ,Parallelising
gr'adient for' the CRA Y X-MP, Technical
National Lab.,Livermore,CA,1984.

conjugate
Report,Lawrence Livermore

[72] Segerlind,L.J .,Applied Finite Element Analysis, John Wiley and
Sons,Inc.,1984.

[73] Simon,H.D.,Incomplete L U preconditioners for' conjugate gradient type
iterative methods In "Proceedings of the SPE 1985 reservoir simu
lation symposium" ,pp. 302-306, Society of Petroleum Engineers of
AIME,Dallas,TX,Paper number 13533,1988.

[74] Smith,B.F.,An optimal domain decomposition preconditioner for
the finite element solution of linear elasticity problems, SIAM
J .Sci.Stat .Com put., Vo1.13,pp. 364-378,1992.

[75] Sonneveld,P.,GCS, A Fast Lanszos-Type Solver for Nonsymmetric Lin
ear Systems, SIAM J.Sci.Stat.Comput.,Vol.l0,No.1,pp. 36-52,1989.

[76] Stoker ,M.A., The exploitation of paralellism on shared memory multi
processors,Ph.D. Thesis, Computing Laboratory,University of Newcas
tle upon Tyne,1990.

[77] Stone,H.S.,Pamllel Computers,In "Introduct.ion to Computer Architec
ture" ,(Stone,ed.),SRA,1980.

[78] Strang,G.,and Fix,J.,An analysis of the finite element method, Prentice
Hall,1973.

[79] Sun,C.T .,and Mao,K.M.,A global-local finite element method suitable for
parallel computations, Computers and Structures,Vo1.29,N 0.2,1988.

[80] Van der Vorst,H.,Parailel Aspect.s of Iterative Methods, In "Paral
lel Computation" ,Proceedings of the IMA Conference on Parallel
Computation,18-20 Sept. 1991, Oxford University,IMA,1994.

[81] Vinsome,P. W., Orthomin, an Iterative Method for Solving Sparse Sets of
Simultaneous Linear Equations, paper SPE 5729,Society of Petroleum
Engineers of AIME,1976.

Bibliography 153

[82] Wilson,E.L.,and Farhat,C.H.,Linear and Nonlinear Finite Element
Analysis on Multiprocessor ComputeT' Systems, Communications in Ap
plied Numerical Methods,Vo1.4,1988.

[83] Wong,Y.S.,Solving large elliptic difference equations on CYBER 205,
Parallel Comput. ,Vo1.6,pp.195-207 ,1988.

[84] Young,D.M.,and Jea,K.C.,Generalized Conjugate-Gradient acceleration
of nonsymmetrizable iterative methods,In "Linear Algebra and its Ap
plications" ,Vo1.34,pp. 159-194,1980.

[85] Zilli,G.,Iterative methods foT' solving sparse linear systems with a parallel
preconditioner, Intern. J. Computer Math.,Vo1.44,pp. 111-119,1992.

	282766_0001
	282766_0002
	282766_0003
	282766_0004
	282766_0005
	282766_0006
	282766_0007
	282766_0008
	282766_0009
	282766_0010
	282766_0011
	282766_0012
	282766_0013
	282766_0014
	282766_0015
	282766_0016
	282766_0017
	282766_0018
	282766_0019
	282766_0020
	282766_0021
	282766_0022
	282766_0023
	282766_0024
	282766_0025
	282766_0026
	282766_0027
	282766_0028
	282766_0029
	282766_0030
	282766_0031
	282766_0032
	282766_0033
	282766_0034
	282766_0035
	282766_0036
	282766_0037
	282766_0038
	282766_0039
	282766_0040
	282766_0041
	282766_0042
	282766_0043
	282766_0044
	282766_0045
	282766_0046
	282766_0047
	282766_0048
	282766_0049
	282766_0050
	282766_0051
	282766_0052
	282766_0053
	282766_0054
	282766_0055
	282766_0056
	282766_0057
	282766_0058
	282766_0059
	282766_0060
	282766_0061
	282766_0062
	282766_0063
	282766_0064
	282766_0065
	282766_0066
	282766_0067
	282766_0068
	282766_0069
	282766_0070
	282766_0071
	282766_0072
	282766_0073
	282766_0074
	282766_0075
	282766_0076
	282766_0077
	282766_0078
	282766_0079
	282766_0080
	282766_0081
	282766_0082
	282766_0083
	282766_0084
	282766_0085
	282766_0086
	282766_0087
	282766_0088
	282766_0089
	282766_0090
	282766_0091
	282766_0092
	282766_0093
	282766_0094
	282766_0095
	282766_0096
	282766_0097
	282766_0098
	282766_0099
	282766_0100
	282766_0101
	282766_0102
	282766_0103
	282766_0104
	282766_0105
	282766_0106
	282766_0107
	282766_0108
	282766_0109
	282766_0110
	282766_0111
	282766_0112
	282766_0113
	282766_0114
	282766_0115
	282766_0116
	282766_0117
	282766_0118
	282766_0119
	282766_0120
	282766_0121
	282766_0122
	282766_0123
	282766_0124
	282766_0125
	282766_0126
	282766_0127
	282766_0128
	282766_0129
	282766_0130
	282766_0131
	282766_0132
	282766_0133
	282766_0134
	282766_0135
	282766_0136
	282766_0137
	282766_0138
	282766_0139
	282766_0140
	282766_0141
	282766_0142
	282766_0143
	282766_0144
	282766_0145
	282766_0146
	282766_0147
	282766_0148
	282766_0149
	282766_0150
	282766_0151
	282766_0152
	282766_0153
	282766_0154
	282766_0155
	282766_0156
	282766_0157
	282766_0158
	282766_0159
	282766_0160
	282766_0161
	282766_0162

