
Reliability Issues in the Design of

Distributed Object-Based Architectures

by

Luigi Vincenzo Mancini

Ph.D. Thesis

NEWCASTLE UNIVERSITY LI~~~~~

089 05083 2
-----_ - -----------------

The University of Newcastle upon Tyne
Computing Laboratory

March 1989

Abstract

This thesis is aimed at enhancing the existing set of techniques for building

distributed systems, specifically from the point of view of fault-tolerant com

puting.

Reliability is of fundamental importance in the design and operation of dis

tributed systems, as an increasing number of computers are employed in the

automation of various essential services. In the past decade, much research

effort has been concerned with the object-based methodology for the design

and implementation of reliable distributed systems.

This thesis describes three contributions to this effort. First, it is shown

that object-based programming features can in fact be introduced into pro

cedural languages provided that these languages are endowed with certain

facilities. Then, work is discussed which illustrates the relationship

between distributed object-based architectures and an apparently different

form of distributed architectures based on processes. This work puts the

notion of object-based architectures into a new perspective, which shows

that the object-based philosophy and the process-based philosophy are the

dual of each other.

Finally, an important aspect of the design of an object-based distributed

architecture is investigated, that of automatic garbage collection. A distri

buted garbage collection scheme is described that handles fault tolerance by

an extension of the technique commonly employed to detect unwanted com

putations in distributed architectures. The scheme proposed can also be

seen as yet a further illustration of the link between object-based and

process-based architectures.

Acknowledgements

I owe a special debt of gratitude to my supervisor, Brian Randell, for sug

gesting my research topic, for his continuous and useful encouragement and

precise hints, and for reading and commenting on the many drafts of this

thesis.

I am also grateful to Santosh Shrivastava whose invaluable advice

influenced my work on the duality of fault-tolerant system structures and

on distributed garbage collection, and to Pete Lee for his constructive criti

cism in reading the crucial parts of this thesis.

Moreover, I must thank several colleagues at the Computing Laboratory for

their advices and comments. In particular, I wish to acknowledge the many

helpful discussions with Ron Kerr, Lindsay Marshall, Giuseppe Pappalardo,

and Geppino Pucci.

I would also like to express my gratitude to Chiara, my wife, for being so

patient throughout the difficult years of my research, and giving me great

emotional support and companionship.

Financial support for this work was provided by grants from the Royal Sig

nals and Radar Establishment of the U.K. Ministry of Defence, and from

the Italian Consiglio N azionale delle Ricerche.

Declaration

I declare that no part of this thesis has previously been submitted for any

other degree or qualifications. Some material presented in this thesis has

been published as detailed in the reference list.

Table of Contents

1. Introduction ... 1

1.1. Object-based programming 3

1.2. Distributed architectures. .. 5

1.3. Structure and aims of the thesis 9

2. Object-Based and Object-Oriented Programming 12

2.1. Definitions and examples " 13

2.1.1. Objects and classes 13

2.1.2. Sub-classes and inheritance 17

2.2. A classification ... 23

2.3. Concluding remarks .. 28

3. Object-Based versus Procedure-Based Programming Languages. 29

3.1. Motivations .. 30

3.2. Class definition .. 32

3.3. Sub-classes and inheritance 36

3.4. Sub-classing implementation exploiting polymorphic procedures 40

3.5. Sub-classing implementation at objects creation-time 45

3.6. Preprocessor specification 51

3.7. Performance considerations 55

3.8. Concluding remarks .. 56

4. Distributed Object-Based Architectures 60

4.1. Distribution issues ... 60

4.2. Access issues ... 64

4.2.1. Remote procedure calls 65

4.3. Failure issues .. 69

4.4. Concurrency issues ... 73

4.5. Migration and reconfiguration 76

4.6. Concluding remarks .. 77

5. Object-Based versus Process-Based Distributed Architectures ... 79

5.1. The canonical architectures 80

5.1.1. The object-based architecture 81

5.1.2. The process-based architecture 83

5.2. The duality argument. .. 87

5.3. Some examples ... 95

5.4. An application of the duality mapping 99

5.5. A review of object replication techniques 100

5.5.1. The available copies scheme 101

5.5.2. Recovery ... 102

5.5.3. Read optimization 104

5.5.4. The primary copy scheme 106

5.6. Process replication techniques 108

5.6.1. The available processes scheme..... 110

5.6.2. Read optimization 110

5.6.3. The primary process scheme 111

5.7. Some existing process replication schemes 112

5.8. Concluding remarks 114

6. An Example of Object-Based Distributed System Design:

Fault-Tolerant Garbage Collection 118

6.1. Notes on garbage collection 119

6.2. Object-based garbage collection and reliability requirements. .. 125

6.3. RPCs and orphan detection and killing 132

6.4. Fault-tolerant garbage collection 134

6.4.1. Treatment of node failures 135

6.4.2. Reliable transfer of remote capabilities 140

6.4.3. Treatment of stable objects 142

6.4.4. Inter-node cycles 144

6.4.5. Performances 150

6.5. Concluding remarks 152

7. Conclusions .. 154

7.1. Summary of the thesis 154

7.2. Future work .. 159

References .. 162

Chapter 1

Introduction

Technical advances in large scale integration and in interconnection media

have made distributed processing economically feasible. Technological and

economic factors have combined to make distributed systems the most

attractive and effective solutions for a large variety of applications. From

relatively simple applications, in which a main computer makes the most

important decisions, to more sophisticated applications, in which functional

ity is more uniformly dispersed, the notion of distributed systems is so

appealing that it is often hard to justify alternative approaches.

Distributed systems and communication services are increasingly moving

from a supportive role to an essential one in many commercial, industrial,

educational and research organizations. It is widely recognized that the

present trend towards distributed systems will also continue in the future.

Taking advantage of continuing improvements in hardware cost and perfor

mance, there will be a continued tendency to put even more processing and

storage power locally, and to interconnect machines with one another and

with specialized servers to form large scale distributed systems.

However, in spite of the relatively long history of distributed systems (at

least in computing terms), and the many successful (and unsuccessful)

- 1 -

Introduction

systems that have been built, there remain fundamental research issues

that seem to be very resistant to solution. Many of the fundamental

unresolved issues can be characterized as operating systems issues, as they

deal with traditional operating system problems such as resource manage

ment and virtualization of machine characteristics into more convenient or

understandable forms. For example, a particularly difficult problem for dis

tributed systems is to ensure that the system conforms to the specification of

its behaviour, or at least approximates its specification with some predict

able degree of success. Obviously, one should try to make systems as correct

as possible, but even perfect software will not act properly if the hardware

refuses to work - note that the greater the number of computers in a distri

buted system, the higher the probability that one of them has crashed. As

more and more computers are used in the automation of various essential

services, the reliability of distributed systems becomes increasingly impor

tant, and efforts must be made to provide for a system reliability level

significantly greater than that of the probability of all hardware behaving

in a non-faulty fashion.

Many research projects have been using an object-based methodology for the

design of reliable distributed systems. The work in this thesis employs the

object-based model too, and covers many aspects of distributed system

design including operating systems and programming languages. In each of

these areas, the relationships to other programming methodologies is

explored with the intention to put the notion of object-based system into a

new perspective. The rest of this introductory chapter describes the object-

- 2 -

Introduction

based programming methodology and the notion of distributed architecture.

1.1. Object· based programming

Making software correct is easier said than done since, unfortunately,

Dijkstra's prophecy has not yet come true ([Dijkstra72], p. 863):

"As a matter of fact, I think that we have learned so much that within a

few years programming can be an activity vastly different from what it

has been up till now, so different that we had better prepare ourselves for

the shock. . .. The vision is that, well before the seventies have run to

completion, we shall be able to design and implement the kind of systems

that are now straining our programming ability at the expense of only a

few percent in man-years of what they cost us now, and that besides that,

these systems will be virtually free of bugs."

Managing the complexity of software systems is still regarded as one of the

key problems in Computer Science. The computer industry is still facing a

software crisis - ambitions regarding quality and sophistication of systems,

are continuing to outstrip the ability to design, implement, modify and

enhance complex software systems in a reliable and cost-effective fashion.

Nowadays, therefore, a crucial issue for the computer industry is the

development of architectures that support, in a cost-effective fashion, the

design, implementation, maintenance and evolution of complex systems.

A design methodology, known as object-based, has become popular in recent

years. Object-based architectures are regarded by many as holding the solu-

- 3 -

I ntroductio n

tion of this problem in that they promote a new way for system developers

to work together, resulting in an effective means of tackling complex issues

along with providing potentiality for new software tools.

The fundamental characteristic of object-based architectures is that the enti

ties that are manipulated at run-time by programs are objects, where an

object is an encapsulation of some data together with the set of operations

that are permitted on that data. At the programming language level, the

mechanism for providing this encapsulation is an abstract data type

mechanism [Liskov77], where the abstract data type describes the structure

of objects of that type, or class, together with the set of operations appropri

ate to those objects. Objects can be defined as extensions of existing ones by

a mechanism called inheritance. The specification 'B inherits A' in the

definition of object B means that B contains the data and operations defined

for A in addition to those specifically defined for B. Inheritance may be

viewed as an abbreviation mechanism that avoids redefining the attributes

of an already introduced object in the definition of another.

One advantage of using object-based programming languages is that they

facilitate the creation of software modules that closely match the problem

domain, an important feature for building understandable programs. Con

ventional languages, such as Pascal, often lead to program structures radi

cally different from the structure of the problem domain. The reason is that

in such languages there are two kinds of entities: data items, which are

passive and represent the information of the program, and procedures,

which manipulate the data. The programmer in a conventional language

- 4 -

Introduction

can either map the problem domain into a set of procedures, or can map the

problem domain to the data, and then define procedures that transform the

input data to the output data. By contrast, object-based programming

allows the programmer to concentrate on the abstractions to be manipulated

- procedures and data can be treated as indivisible aspects of objects in the

problem domain. Many programs can be designed by straightforwardly

identifying the objects in the problem domain, and deciding how to imple

ment the objects' behaviour.

The term architecture, mentioned above, is used in a broader meaning than

just hardware organization. Today's architecture must include software as

much as hardware, since developments on both fronts may be necessary to

achieve the most useful and cost-effective systems for the end users.

1.2. Distributed architectures

An architecture may be termed distributed when the discrete elements of

the overall processing activity may be located in more than one component,

at more than one geographical location. The components forming a distri

buted architecture do not share primary memory, and so communication and

coordination via shared memory techniques is generally not applicable.

Instead, message-passing in one form or another is employed. This thesis

will focus on distributed architectures composed of a number of autonomous

workstations or personal computers (nodes) communicating via a local area

network. A node in such a network will typically contain various processes

providing services, for example data retention, that can be used by local and

- 5 -

Introduction

remote processes.

In the following, the major advantages of distributed architectures in the

areas of reliability, security and performance are discussed. In a distributed

architecture, individual nodes are physically independent from each other.

Regions affected by a failure have well-defined physical boundaries - a

hardware failure in one node usually has no direct impact on others. This

feature makes recovery and reconfiguration possible. In addition, distribu

tion allows security to be based on the existence of physical domains

between which communication can be strictly controlled, rather than on log

ical barriers. Distributed architectures can also offer increased power

through parallel processing, provided one has decomposed the overall task

into parallel subtasks with minimum communication requirements.

Despite all these advantages, however, a number of difficult issues are still

latent. Many of these are related to component (node) failures and to slow

communications, and have important implications for the distributed

system's reliability. While the increased number of interconnected nodes

may remove the single point of failure of a centralized architecture, compu

tations will become susceptible to remote node crashes and communication

failures. Therefore any well-engineered distributed system should strive to

cope with situations where the system is partly running and partly crashed.

Dependencies between individual components should be minimized and dis

tributed error detection and recovery should be favoured by providing each

component with local mechanisms without relying on the well-functioning of

the rest of the architecture. Moreover, since communication between

- 6 -

Introduction

components of a distributed architecture are typically orders of magnitude

slower than in a centralized one, distribution requires the optimization of

communication between nodes, and the grouping together of applications

which need high communication rates.

Many research projects have employed the object-based methodology for the

design of reliable distributed architectures, such as Eden [Almes85], Argus

[Liskov87], and Arjuna [Shrivastava88a]. It appears that this methodology

offers significant advantages for the design and implementation of such

architectures. For example, the modularity afforded by an object-based

architecture simplifies the implementation of recovery from failure, and

reconfiguration; and the inheritance mechanism can provide a controlled

means of introducing recovery within objects, as shown in [Dixon87,

Shrivastava88a]. A further advantage of the object-based methodology is

protection. This facility is usually provided to constrain the way information

is used and changed. In object-based architectures, physical domains (nodes)

can be decomposed further into logical domains (objects). The only way the

user can act upon an object is by operation invocation, so a straightforward

technique for constraining arbitrary manipulation of an object is to con

strain the ability to perform operations on that object.

However, distributed object-based architectures are affected by a number of

new problems related in particular to storage management. In object-based

architectures, a new object is allocated explicitly, but there is no explicit

construct that causes an object to be deallocated. Such a construct would be

unsafe, because it could be employed to deallocate an object even though the

- 7 -

Introduction

object was still in use. The use of references to deallocated objects would be

likely to cause inconsistent behaviour. Because there is no explicit dealloca

tion in many object-based architectures, the storage manager must identify

objects that have become inaccessible and deallocate them automatically.

This task is known as garbage collection. Various problems arise in distri

buted object-based architectures relate to garbage collection. One problem

is that it is impractical, if not impossible, to stop the entire system while

collecting unused objects. Another problem that occurs in these architec

tures is that objects may be retained for a long period of time. That means

the total number of objects may grow extremely large in relation to the pro

cessing power available to collect unused storage. An incremental garbage

collection scheme, which allows some garbage to be collected without exa

mining the entire system storage, is essential when the time required to

access every object in the system would be prohibitive. Once again the issue

of reliability becomes important. The collection scheme must be able to

tolerate component failures. It should be possible to continue the collection

after a failure without incorrectly de allocating or reallocating storage for

objects in use, and all unused objects should be ultimately collected.

This thesis explores the problems to be solved for achieving reliable object

based computing in the face of node and communication failures, and also

presents a garbage collection scheme that is suitable for use in a distributed

unreliable system.

- 8 -

Introduction

1.3. Structure and aims of the thesis

This thesis concentrates on the provision of support for one particular pro

perty of distributed systems, the property of reliability. Most projects which

are addressing this area of research have concentrated on producing new

languages or operating systems that provide the necessary support, and

much research effort has been concerned with the use of object-based metho

dology. It is not the aim of this thesis to design a new programming

language or operating system, but rather to put the current research effort

into a new perspective, which shows that work on object-based architectures

can also have relevance to more conventional architectures.

The thesis is organized as follows. Chapter 2 expands on the background to

the work described in this thesis. In order to discuss the similarities and

differences among the variety of approaches to object-based programming,

the terminology employed in this thesis will be introduced in Chapter 2 and

related to other work. The most relevant features of object-based program

ming will be characterized, and various programming methodologies worthy

of special study will be identified.

In Chapter 3, two techniques will be presented which can be employed to

introduce object-based features, such as the sub-classing form of inheritance

provided by Smalltalk and Simula, into a procedure-based language.

Although the object-based and procedure-based approaches are apparently

dissimilar, a family of procedure-based languages will be described which

allow the programmer to profit from object-based ideas.

- 9 -

Introduction

Chapter 4 discusses reliability issues concerning the design of distributed

architectures. In particular, this chapter concentrates on the main causes of

unreliability, illustrating these with some general solutions and examples.

Among the issues considered are communication failures and node crashes.

Chapter 5 examines the structure of distributed architectures incorporating

error recovery, and proposes their partitioning into two broad categories.

Two canonical models, each representing a particular category of architec

tures will be constructed. The first model, called object-based, incorporates

objects as the entities for program construction while the second model,

called process-based, employs communicating processes. Arguments and

examples will be presented to show that the object-based model and the

process-based model are the dual of each other. As a consequence of the

duality, techniques and mechanisms which have been developed within the

domain of just one of the models can be mapped and applied to the other

model. This point will be illustrated by mapping some well-known object

replication techniques developed within the context of the object-based

model to the process-based model thereby revealing some interesting process

replication techniques.

The techniques described in Chapter 3 also allow the creation of objects at

run-time and require, as most object-based architectures do, an automatic

garbage collection facility for storage management. A distributed garbage

collection facility will be needed for such architectures, if they permit access

to remote objects. Chapter 6 describes in detail the design and implementa

tion of a novel garbage collection scheme for distributed architectures. The

- 10 -

Introduction

proposed scheme achieves its task despite the occurrence of commonly

encountered failures in distributed systems (such as lost messages and node

crashes), performs in parallel with the other system activities, and is capa

ble of dealing with both volatile and stable objects.

Chapter 7 concludes this thesis by reviewing its objectives, providing some

concluding remarks, and discussing possible future developments of the

work that has been presented.

- 11 -

Chapter 2

Object-Based and Object-Oriented Programming

Despite the fact th~t a large computing community is working with object

based and object-oriented programming systems and languages, there is still

a fair amount of confusion over what the terms mean and what terminology

to use. To quote the report of the discussion sessions of the European

Workshop on Object-Oriented Programming ([Wegner88], p. 21):

"The discussion clearly demonstrated differences of perspective and

exposed a lack of precision in the definition and use of some fundamental

concepts in object-oriented programming."

Therefore, it is appropriate to give here the present definitions, and to dis

cuss the similarities and differences among the variety of approaches to

object-based programming.

A tremendous amount has been written about object-based programming,

some of the better surveys being [Cardelli85, Wegner87a, Stroustrup88].

The aim of this chapter is to avoid going over too much of the material that

is readily available, but to provide a somewhat different survey. The survey

that follows can be contrasted with those mentioned above by virtue of the

much simpler classification that it uses; specifically the classification

presented brings out the most important issues and concentrates on just

- 12 -

Object-Based and Object-Oriented Programming

three topics: encapsulation, abstraction and inheritance.

2.1. Definitions and examples

The following properties are considered to characterize the relevant features

of object-based programming: encapsulation, abstraction, and inheritance.

Encapsulation is the strict enforcement of the principle of information hid

ing advocated by Parnas [Parnas72]. Encapsulation allows software com

ponents to be implemented and reimplemented independently, and is impor

tant for supporting modifiability and reliability of software architectures by

controlling and constraining the way software components can interact. At

the programming language level, encapsulation can be provided by means of

a data abstraction mechanism [Hoare72, Liskov771 Besides encapsulating

data and operations into abstract data types, it is further possible to organ

ize abstractions into a hierarchy [Dah172]. This hierarchy serves to relate

similar abstractions by an inheritance relationship [Snyder86a]. Inheri

tance allows an abstraction to inherit various (or all) characteristics from

another abstraction higher in the hierarchy.

In the following subsections, the above features of the object-based architec

tures will be discussed, and the terminology used in the rest of this thesis

will be introduced.

2.1.1. Objects and classes

Following a standard terminology [Jones78], an object IS an entity out of

- 13 -

Object-Based and Object-Oriented Programming

which a structural model of a system is built. The important feature of an

object is that no other object within the same system has any means of

finding out what is <inside'. The key concept here is encapsulation. Gen

erally, an object encapsulates some state together with the set of operations

that are the only means by which that state can be manipulated. The result

of invoking an operation of an object depends on the object state as well as

on the operation arguments.

A system will often contain many similar objects. For example, a window

management system may have several windows which, with the exception

of their location and size, exhibit identical behaviour. Dahl, Dijkstra, and

Hoare asserted in their book ([DahI72], p. 177):

"Any useful concept has some degree of generality, i.e. it is a class of spe

cialized instances. In other words one tries to group phenomena occur

ring in a dynamic system into classes of phenomena and describe each

class by a single piece of program."

At the programming language level, the implementation of similar objects

can be collectively defined by declaring a class. A class is a description of

the common features of similar objects from which an individual object may

be created. This notion of class applies to what is termed cluster in CLU

[Liskov81], type in Trellis/Owl [Schaffert86], and class in Smalltalk [Gold

berg83], Simula [DahI70], and C++ [Stroustrup86]. A class characterizes

the behaviour of its objects by defining the only operations that can manipu

late the state of its objects.

- 14 -

Object-Based and Object-Oriented Programming

An operation has access to several kinds of variables which contain the

object state, but which differ in terms of how widely they are available and

how long they persist. These various kinds of variables can be divided in (1)

instance variables, which are private variables accessible only to a single

object, and (2) class variables, which are shared by all the objects of a single

class.

Although the terminology just introduced is among the most popular in the

current literature on object-based programming, there are some well-known

systems that employ different terms for the same basic concepts. In C++

[Stroustrup86], for example, the operations that can manipulate the objects

of a class are termed public member functions, the instance variables are

termed private member variables, and the class variables are termed static

member variables. In Small talk, objects are also known as instances of their

classes, operations defined on objects are called methods, and objects are

manipulated by applying methods to them. The only way to apply a method

to an object in Smalltalk is to send a message containing the method name

and the parameters to that object. The object responds to the message by

possibly changing its state and by returning a result object. It is worthwhile

to note that although the concept of message passing appears to be radically

different from the conventional concept of procedure call, the difference is

more pedagogical than semantic. Message passing emphasizes the caller's

lack of knowledge of the code body which will be executed. However, any

procedure call can be viewed as a message send, and vice versa. Examples

of object-based programming languages whose authors describe them using

- 15 -

Object-Based and Object-Oriented Programming

notions of procedure-calling rather than message-passing are: Simula-67

[Dah170], Trellis/Owl [Schaffert86], and C++ [Stroustrup86].

To illustrate the use of objects and classes, consider an outline of a program

for displaying rectangular regions on a display screen. Figure 2.1 gives a

class definition for the class Box, using a syntax similar to that of

Smalltalk, though simpler. The first four instance variables store the coordi

nate and size information of a box, and the last instance variable records

the shade which fills that box. The origin of a box in the coordinate system

is determined by the instance variables xOrigin and yOrigin (the use of

upper-case letters in the middle of a word is part of the established

Smalltalk style), and the default origin of objects of this class is defined as

(100, 200). The size of a box is determined by instance variables xLength

and yLength and the default size is 10 x 30. Operations on a box include

moving it to a new origin, changing its size, displaying it, and changing the

shading inside the box. The bodies of the operations, which for the sake of

brevity have been omitted, are assumed to follow the operation headers.

Messages define an interface for interacting with boxes. Some examples of

such an interaction are also shown at the bottom of Figure 2.1. Syntacti

cally a message is composed out of an object name, followed by a :selector

indicating the required operation, followed by any further arguments, and

terminated by a period. For example, objects of the class Box are created by

sending Box a new message, and an object can be moved by sending it a

move message. Users can only manipulate a box by the relevant operations

- they do not need to know the implementation of a box in terms of the

- 16 -

class Box

class operations

new;

instance variables

xLength 10;
yLength 30;
xOrigin 100;
yOrigin 200;
defaultS hade white;

instance operations

Object-Based and Object-Oriented Programming

0/0 changes origin in the display 0/0
move: newXOrigin, new YOrigin;

0/0 changes the location and axes o{the box 0/0
reshape: newXOrigin, newYOrigin, newXLength, newYlength;

0/0 fills the inside of the box with a new shade 0/0
shade: newShade;

0/0 displays the box %
draw

0/0 move a box at the outmost level in the screen %
top: originX, originY, lengthX, lengthY;

end class

Objects of class Box can be created and manipulated as follows.

bl - Box :new.
b2 -Box :new.
bl :move 15 25.
b2 :reshape 10 102020.

Figure 2.1: Example of class and objects.

instance variables and their manipulations.

2.1.2. Sub-classes and inheritance

So far it has been seen that each object belongs to exactly one class. In

some cases, it would be convenient if objects of one class could also be used

- 17 -

Object-Based and Object-Oriented Programming

as objects of another class. Such sharing of objects among classes can be

achieved by employing a sub-classing mechanism. One class may be a sub

class of another (its super-class), with the implication that if B is a sub-class

of A, an object of class B may be used wherever an object of class A can. In

other words, objects of class B can also be seen as object of class A.

Connected with sub-classes is the concept of inheritance. A class may share

or inherit various characteristics of its super-class, and may have its opera

tions inherited by sub-classes. The inherited characteristics may include

the operations and instance variables of the super-class, and these charac

teristics may be extended or restricted in the sub-class. If an operation is to

be executed on an object, the search for the operation definition begins in

the class of the object and if unsuccessful there proceeds to the super-class of

that class, and so on. The first definition of the operation that is found is

executed. Hence, an operation defined in a sub-class hides an operation of

the same name in the super-class. This hiding mechanism allows a sub

class to customize the more general characteristics of its super-class. The

sub-class in turn may pass on its own or inherited characteristics to its sub

classes. It can be seen that this is in the tradition introduced in Algol-60

for the scope of local and non-local identifiers [Randell641

The inheritance structure discussed above is strictly hierarchical since it

allows a class to have one super-class only, and specifies that objects of a

sub-class can be used as objects of the super-class. This approach was first

followed in Simula-67, and was adopted in the first version of Smalltalk-80.

- 18 -

Object-Based and Object-Oriented Programming

As an example of sub-class in the window manager system, suppose that one

wants to define windows that display text. These new windows would be

objects of a sub-class of the ordinary class Box. The new class, called

TextBox in Figure 2.2, adds a new instance variable to keep the font of the

text, and redefines the operations inherited from Box.

class TextBox
superclass Box

instance variables

{ont roman;

instance operations

0/0 display a TextBox %
draw

super :draw;
printText;

private operations

0/0 display the text in the proper {ont %
printText;

end class

Figure 2.2: Example of sub-class.

For example, the draw operation of TextBox first draws a box, and then

uses the font information to display the text on the screen.

One problem with almost all inheritance mechanisms is that they comprom

ise encapsulation to an extent. An inheritance mechanism establishes a

second sort of user of a class C - the inheriting users, namely C's sub

classes, alongside the instantiating users, who create objects of the class and

use the C's objects by calling the operations only. While the instantiating

- 19 -

Object-Based and Object-Oriented Programming

users do not see the representation of the objects they manipulate, C's sub

classes are typically permitted to violate encapsulation. For example,

Smalltalk makes every characteristic of class C public to its sub-classes _

the code in the operation of a class may directly access even those instance

variables that were defined in the super-class. On the one hand, permitting

access to instance variables defined by super-classes can compromise the

benefits of encapsulation - a change to a class can affect all its sub-classes.

On the other hand, to be able to take full advantage of the sharing of the

implementation code, it can be argued that a sub-class programmer should

have the same privileges as the person who originally wrote the super-class

code, and hence should be allowed access to the internal structure of the

super-class.

Some architectures have recognized that an alternative to the Smalltalk

approach is required, and have provided separate interfaces to inheriting

and instantiating users - sub-classes can access the super-class through a

well-defined interface, but they may employ operations not available to

instantiating users. For example, in Trellis/Owl, a characteristic of a class

declared to be subtype-visible is visible to all its sub-classes in the inheri

tance hierarchy but invisible to instantiating users. A comprehensive dis

cussion of this issue is given in [Snyder86a], where it is suggested that

instance variables should be protected from direct access by requiring the

use of explicit access operations, as in Trellis/Owl.

A generalization of the single inheritance hierarchy, where a class can have

only a single super-class, is to allow a class to have multiple super-classes.

- 20 -

Object-Based and Object-Oriented Programming

This feature is called multiple inheritance. Multiple inheritance allows a

given class to inherit characteristics from one or more classes. Trellis/Owl

and Traits [Curry84] are examples of programming languages incorporating

a class hierarchy with multiple inheritance. Multiple inheritance appears

to be important in situations where a class can be created out of a combina

tion of independent super-classes. In the window management example, the

programmer could define the class TextBox as inheriting both from the class

Box and from the class InputOutput, as shown in the lattice of Figure 2.3.

Figure 2.3: Example of multiple inheritance.

In this way, the' implementation of the class TextBox can be further

simplified. For example, the implementation of the printText operation of

class TextBox can reuse the relevant operations of class InputOutput.

As yet, there is no agreement about the semantics of multiple inheritance,

and various multiple inheritance schemes are being examined and weighed

against the complications they add to the implementation of an architec-

- 21 -

Object-Based and Object-Oriented Programming

ture. One basic issue concerns the rules for resolving the conflict among the

super-classes, where instance variables or operation names inherited from

more than one super-class 'collide', that is have the same name. The way

this conflict is resolved in most object-based architectures leads to a viola

tion of encapsulation. For example, in Extended Smalltalk [Borning82], a

version of Smalltalk-80 with multiple inheritance, it is an error if a collision

occurs. This compromises encapsulation since a change in a class could

cause sub-classes to become illegal. For example, considering the inheri

tance lattice in Figure 2.3, if an instance variable in class Box is renamed,

it may cause sub-class TextBox to become illegal if class TextBox also inher

its from class InputOutput an instance variable with the same name as the

renamed variable in Box. In Trellis/Owl, the programmer of the sub-class

must resolve explicitly such a conflict by specifying which variables he

wants to inherit. This leads to similar problems with encapsulation as in

Extended Smalltalk, since renaming instance variables of a class may be

visible to the programmer of the sub-class, that is he may be required to

resolve new collisions that may arise.

Another basic issue with multiple inheritance concerns multiple occurrences

of a super-class along different inheritance paths. Several possibilities of

handling such a situation have been proposed. For example, suppose a class

A inherits from classes Band C which both inherit from a class D: in the

approach adopted by C++ and Trellis/Owl the class D is inherited just

once; in a second approach adopted by CommonObjects [Snyder86b] and

ThingLab [Borning81] a copy of D is inherited along each path; in a third

- 22 -

Object-Based and Object-Oriented Programming

approach adopted by Flavors [Moon86] and CLOS [Bobrow87] the classes

A,B,C, and D are interposed so that the hierarchy is linearized and the class

D is inherited once.

This section has presented the main features and relevant issues of object

based architectures, and has discussed similarities and differences among

the most popular approaches to object-based programming. The next section

attempts a classification by grouping together similar object-based architec

tures and by relating the relevant features of each group.

2.2. A classification

In this section, object-based architectures are characterized in terms of the

notions of object, class and inheritance. Various families worthy of special

study are identified. Figure 2.4 shows some of the most popular members

for each of the families considered.

In this thesis the term encapsulation-based architecture is used to mean a

software architecture which provides facilities that makes it possible (rea

sonably easy, safe, and efficient) to use encapsulation. The encapsulation

based architectures include all architectures which support objects, like Ada

[DoD80], Actors [Agha86], Modula 2 [Wirth83], and PS-Algol [Atkinson87].

An encapsulation-based architecture is termed here class-based if each

object has a class which characterizes its behaviour; and an encapsulation

based architecture is inheritance-based if it supports objects and inheri

tance. Previously, inheritance has been defined as a mechanism for sharing

- 23 -

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CLU

I
I
I
I
I

I I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

Ada I
I

I
I

I
I

I
I

I
I

I

Trellis/Owl

11\\
I I 1\

I I \ \
/ , \ \

/ I I \
I I I ,

I I \ \
I I I \

I I \ \
I I I

,
I I \

I I I
I

I I \
I I I

I \
I I
I \
I I
I ,
I \
I \
I \
I \
I I

Simula C++

hierarchy relation

- - - - - - - member of

II
II
I I
I \
I I
I I

I I I
I I I
I I
I I I
I \ \
I I I
I I I
I \ \
I I I
I I I
\ I I
I I \
I I \
\ I \

\ \ \

\ I
\
\ \ I \ \ \ \ \ \ I \ \ I , \ \ , \ I , I , , I , \ , Modula2 I

\ \ , \ , I , \ ,
I , , I , I

\ I

\ \

Smalltalk ThingLab

Figure 2.4: Lattice of object-based programming.

\
\
I
I
I
\
\

\
\

\
\
I
\
\
\

Self

Object-Based and Object-Oriented Programming

characteristics in class hierarchies. However, there are various architec

tures which provide a variety of other forms for sharing characteristics. For

example, Self [Ungar87] and ThingLab [Borning81] do not include classes;

instead every object is regarded as a prototype for object creation [Born

ing86], and a form of inheritance among objects is provided. In the litera

ture, the term inheritance is sometimes loosely employed to denote a variety

of sharing techniques [Cook88], and sometimes the term delegation is used

[Lieberman86, Stein87]. In the context of inheritance-based architectures,

the term inheritance is used here to mean a more general class-independent

term for sharing, which allows one implementation of an object to be related

to another hierarchically.

In this thesis, an encapsulation-based architecture is termed object-based if

its objects belong to classes, and the classes themselves can be related by an

inheritance mechanism and organized into a class hierarchy. According to

the above terminology the family of object-based architectures is smaller

than the family of encapsulation-based architectures, since object-based

architectures exclude architectures like Ada, and CLU but include architec

tures like Smalltalk, Trellis/Owl, and Simula.

As shown in Figure 2.4, class-based architectures such as CLU, and

inheritance-based architectures such as Self and ThingLab, are also

encapsulation-based architectures. Ada is an example of an encapsulation

based architecture that is neither class-based nor inheritance-based. Ada

does not fully support an inheritance mechanism. Although it does provide

subtypes and derived types, these are only means of restricting a general

- 25 -

Object-Based and Object-Oriented Programming

type, to some specific range or purpose. Ada does not make it possible to

extend a pre-existing type by adding additional variables and operations.

Moreover, although Ada provides an encapsulation mechanism by allowing

the definition of a package, Ada packages are just program units and cannot

be considered classes, as argued in [Wegner83]. On the other hand, CLU is

a class-based architecture, which allows a perfect match between the syntac

tic concept of a cluster, and the semantic concept of a class. However, CLU

does not have an inheritance mechanism for defining hierarchical relations

between classes, and is therefore an example of a class-based architecture

that is not object-based.

Incidentally, it should be noted that Figure 2.4 may also be seen as

representing an example of an object-based hierarchy. In the lattice shown,

extant architectures may be regarded as objects (e.g. Ada, Simula, etc.), and

programming methodologies that group together architectures with common

features may be thought of as classes (e.g. Encapsulation-based, Object

based, etc.). An inheritance mechanism allows the organization of the four

programming methodologies into a hierarchy. For example, class Class

based may be defined as a sub-class of class Encapsulation-based, since

Class-based can inherit the definition of object from Encapsulation-based.

Moreover, class Object-based illustrates an example of multiple inheritance

- Object-based inherits the definition of class from Class-based, of inheri

tance from Inheritance-based, and of object from Encapsulation-based.

In the literature is also common to encounter the term object-oriented in

addition and/or in contrast to the term 'object-based'. Sometimes, the term

- 26 -

Object-Based and Object-Oriented Programming

(object-oriented' is considered equivalent to (object-based', as In

[Stroustrup88, Liskov88]. Sometimes, programming languages such as Ada

or Modula-2 are considered to be (object-based' even though they do not pos

sess all the properties of objects in Smalltalk or Simula, and the term

(object-oriented' is thought of as stronger than 'object-based', and is used to

denote programming languages with additional features, as for example in

[Hendler86, Wegner87b].

In this thesis, the architectures that provide the linguistic features of object,

class, and inheritance are called 'object-based'. However, when considering

the implementation features of object-based architectures, it could be some

times convenient to make a further distinction. Let us consider, for exam

ple, the object-based extension of the C programming language [Ker

nighan78], that is C++. The current implementation of C++ cannot be

regarded as object-based, because some of the underlying C features, for

example the standard types (integer, etc.), which C++ takes in as part of

its implementation, are not object-based. So if one has those features in an

architecture together with the object-based constructs then the architecture

as a whole cannot be considered truly object-based. Of course, one could

implement in C++ a library of classes which redefines all the standard C

types according to the object-based methodology. It is thus useful to distin

guish C++ from other architectures where everything is implemented as

objects. In this respect, we feel that C++ may be regarded as object

oriented, because is 'orienting' the programmer in the right direction, while

architectures like Smalltalk may be regarded as object-based, that is the

- 27 -

Object-Based and Object-Oriented Programming

term !object-oriented' may be thought of as weaker than !object-based'. This

distinction, though useful, is out of the scope of the above classification, and

will not be explored further.

2.3. Concluding remarks

A characterization of the relevant features of the object-based programming

methodology has been discussed. Based on their dependence relations four

approaches have been identified. These approaches include the object-based

methodology where objects, that is encapsulation of data and operations, are

grouped into classes through which the concept of abstract data types is pro

vided. The classes themselves can be organized into a class hierarchy. Such

hierarchies allow similar classes to be related together in such a way that

the code implementing the behaviour of one class can be automatically re

used (inherited) by classes lower in the hierarchy, which simplifies the

implementation of those lower-level classes.

Throughout this chapter, we have been talking about object-based program

ming as though it can only be done with special programming languages.

In fact, one of the avenues that has been explored in the present research

has been the use of object-based programming techniques in a procedure

based language. This work, that will be described in the next chapter, arose

from particular work on distributed systems and in particular garbage col

lection in distributed systems. These two later topics are deferred until sub

sequent chapters.

- 28 -

Chapter 3

Object-Based versus Procedure-Based Programming Languages

This chapter addresses the possibilities of exploiting procedure-based

languages to allow an object-based style of programming. Although the two

approaches are apparently dissimilar, a family of procedure-based languages

is considered which allows the development of techniques which enable an

efficient implementation of object-based features.

The techniques provided allow one to obtain the benefits of object-based pro

gramming, such as the sub-classing form of inheritance provided by

Smalltalk and Simula, while preserving the static binding and strong type

checking features of the language. In particular, it will be discussed how

class can be defined in procedure-based languages, how sub-classes can spe

cialize their super-classes and how the association of operation names and

routines is affected.

The arguments devised can also be seen as addressing the issue of whether

and to what extent procedure-based languages limit the ability of program

mers to adopt an object-based style of programming with a class hierarchy

structure.

- 29 -

Object-Based versus Procedure-Based Languages

3.1. Motivations

The techniques, whose design and implementation are described in this

chapter, are intended to provide an adequate support for programming large

systems. The various motivations that led to the development of these tech

niques can be traced back to the author's earlier experiences in the design

and implementation of distributed object-based systems.

In early work on object-based systems, the author was involved in the

implementation of the Fault-tolerant Distributed Garbage Collection

(FDGC) mechanism described in [Mancini87] for the Flex system. The Flex

system [Foster82] is a computer architecture which has been developed at

the Royal Signals and Radar Establishment (RSRE) of the U.K. Ministry of

Defence and is available in the Computing Laboratory on the ICL Perq 2.

The development of the FDGC was completed successfully, employing the

RS Algol-68 compiler [Woodward83] provided by the Flex system - a com

piler which supports a version of Algol-68 extended with first-class higher

order procedures. However, during the implementation, it became clear

that the use of object-based programming techniques would be advantageous

and a way was found of achieving, through disciplined use of RS Algol-68,

what was in effect object-based programming in a non object-based program

ming language.

In the light of this experience, the author set out to investigate the design

and implementation of techniques to enable an efficient implementation of

object-based features. Since Flex has been used in the Computing

- 30 -

Object-Based versus Procedure-Based Languages

Laboratory for experiments in distributed object-based computing, the

implementations were studied in the context of the Flex system.

Thus, the techniques reported in this chapter were developed, one of which

has also been described in [Mancini88a]. These techniques proved to be an

improvement on standard Algol-68, and a useful tool for constructing large

programs. In particular, they provided a convenient base for the colleagues

at RSRE to develop experimental versions of a new graphical user interface

for the Flex system. The RS Algol-68 compiler supported by the Flex sys

tem has been used to experiment these ideas, although the techniques pro

posed are applicable to every procedure-based language. What follows illus

trates them using the ML language [Milner84], because of the wider

knowledge that exists of this language than RS Algol-68.

This chapter is organized as follows. Section 3.2 examines different ways of

providing data abstraction and encapsulation. Section 3.3 discusses various

issues about providing sub-classing in a procedure-based language. In Sec

tion 3.4 a first technique for sub-classing is presented in detail - it exploits

polymorphic procedures and requires some run-time lookup. In Section 3.5

a second technique is presented - all bindings are established at the time

objects are created and run-time lookups are avoided. Performance con

siderations and conclusions from this study are discussed in the final sec

tions.

- 31 -

Object-Based versus Procedure-Based Languages

3.2. Class definition

This section explores how classes can be defined in procedure-based

languages so as to provide encapsulation and data abstraction. A

procedure-based language with the following characteristics will be

employed to express the techniques proposed: polymorphism, first-class

higher-order procedures, static binding, and strong type-checking.

There are several kinds of polymorphism investigated in the literature [Car

de11i85]. In this chapter a language is considered to be polymorphic if some

of its expressions and variables may have more than one type, and a pro

cedure can work uniformly on a range of types; these types normally exhibit

some common structure. Polymorphism is desirable in modern program

ming languages because it enables the writing of extremely general-purpose

programs in a transparent manner - the bare algorithm and no superfluity,

as argued in [Harland84].

Traditionally, procedures have been included in programming languages as

denotations, not as proper values. By first-class higher-order procedures

[Abelson85], it is meant procedures that can be treated just as any other

value in the language. First-class higher-order procedures can be accepted

as arguments to other procedures, stored in variables, and returned in the

results of a procedure. As it will be shown in the following, first-class

higher-order procedures provide an alternative mechanism for implementing

encapsulation to the selective exporting of local names, let alone an

increased uniformity in the language.

- 32 -

Object-Based versus Procedure-Based Languages

In the language considered, variables are bound statically, that is, a free

variable in a procedure gets its value from the environment in which the

procedure is defined. This means that the binding of a variable in a program

is determined by the static structure of the program, not by its run time

behaviour. The language is further assumed to be strongly typed, that is it

is guaranteed that programs will execute without type errors - the type com

patibility of all expressions and variables can be determined from the static

program representation at compile-time. While the advantages of the static

binding are in terms of higher efficiency by comparison with solutions

employing dynamic binding, the strong type-checking helps to recognize

sources of error early and therefore increases the degrees of correctness, tes

tability, and maintainability of programs.

In some object-based languages (for instance, Smalltalk) a class is itself an

object, and creating objects of the abstract data type represented by that

class involves applying a create operation (new in Smalltalk) to that class

object. A similar way of providing encapsulation is by means of procedural

abstractions. As has been pointed out in [Horning76], the advantages and

aims of procedural and data abstraction are similar. Just as a procedure

separates the implementation of a function from its use, so the abstract data

type separates the representation of an object from its use. Indeed if pro

cedures are first-class entities, the mechanism for both abstractions can be

the same - that of procedures. In languages providing first-class higher

order procedures, a class description can be given by declaring a procedure

which, when executed, creates an object, and returns the set of procedures

- 33 -

Object-Based versus Procedure-Based Languages

(operations) which can be applied to that object. (A detailed presentation of

techniques for providing data abstraction and encapsulation through the use

of higher-order procedures can be found in [Abelson85], although techniques

for handling sub-classes and inheritance are not covered.)

In what follows, the example of the window management system of Chapter

2 will be reconsidered, in order to illustrate the similarities between the

object-based and procedure-based approaches. The same encapsulation

features of the object-based languages can be achieved in procedure-based

languages by suitable use of first class higher-order procedures. For exam

ple, the dual of the program for the class Box in Figure 2.1 is shown by the

ML program of Figure 3.1 - the procedure makeBox creates an object of the

class Box hiding the five instance variables behind the procedural interface

composed of the five operations to manipulate them. Suitable functions

must be defined in order to select and invoke one of the five operations of

the tuple returned by makeBox. It is worthwhile to note that such selector

functions are polymorphic, for example, moveOF in Figure 3.1 can return a

value of different types at different times depending on the type of the first

component of the tuple passed as actual parameter.

This simple example shows that the encapsulation features of both

approaches are similar. In particular, it could be pointed out that:

In both types of languages, objects may be created dynamically at run

time. This can be achieved in the object-based approach by sending a

message new to the class Box, and in the procedure-based language by

- 34 -

% creates an object of type Box and returns the operations to manipulate it %
val makeBox = fun 0 ~

let

in

% instance variables %
valxLength = ref 10;
val yLength = ref 30 ;
val xOrigin = ref 100 ;
valyOrigin = ref 200;
val defaultShade = ref white;

% returned instance operations%
(fun newXOrigin, newYOrigin: int ~ ... ,

fun newXOrigin, newYOrigin, newXLength, newYlength: int ~ ... ,
fun newS hade: shading ~ ... ,
fun 0 ~ ... ,
fun originX, originY, lengthX, lengthY: int ~ ...

end;

Given the following declarations:

val moveOF = fun (move, reshape, shade, draw, top) ~ move;
val reshapeOF = fun (move, reshape, shade, draw, top) ~ reshape;

Boxes can be created and manipulated as follows.

val bl = makeBox;
val b2 = makeB ox ;
moveOF bl (15, 25) ;
reshapeOF b2 (10, 10, 20, 20) ;

topOF b2 (10,10,20,20) ;

Figure 3.1: Definition of Box written in ML using first-class higher-order procedures.

Object-Based versus Procedure-Based Languages

calling the procedure makeBox.

This programming discipline for procedure-based languages allows the

use of procedures employing a style of programming equivalent to that

of the object-based approach. Instead of passing objects to operation rou

tines, objects are required to perform operations on themselves. The

code of the routines can be factored out into the procedure which

represents the class. For example, the code of procedure makeBox con

tains the routines move, reshape, shade, draw, and top which are

referred to by the class objects bl and b2 in order to manipulate their

own instance variables.

Many object-based languages, such as Smalltalk, perform run-time type

checking, while in the case of procedure-based language compile-time

checking is possible.

3.3. Sub-classes and inheritance

As mentioned in Chapter 2, another common property of the object-based

approach is that it allows a set of classes to be organized as a class hierar

chy. The class structure as described so far does not permit one class to

inherit characteristics from another class.

To clarify this idea, reconsider the example of the class Box of of Figure 3.1.

Suppose that another kind of box, BorderedBox, is required with a visible

border that frames it on the display. Objects of class BorderedBox would be

- 36 -

Object-Based versus Procedure-Based Languages

essentially an object of Box but with a border. This overlap of characteris

tics suggests that it would be desirable to be able to exploit inheritance to

obtain the main characteristics of BorderedBox by specializing the class

defini tion of Box.

The example in Figure 3.2, where the keyword class has been substituted

for proc for clarity, shows the class BorderedBox defined as a sub-class of the

class Box. Class Box contains basically the same operation definitions as in

the program of Figure 3.1. In class BorderedBox, which inherits operations

from class Box through the superclass declaration, four operations are added

together with a new instance variable for recording the border size. The first

operation of BorderedBox, reshape, is a specialization of the operation of the

class Box. This specialization is required because the border needs to be

redrawn when a box is increased in size. The reshape operation of Bordered

Box also needs to use the reshape operation of its super-class, and achieves

this behaviour through the use of the pseudo-variable super. The specialized

reshape of BorderedBox also invokes the operations draw and erase, local to

BorderedBox, to draw and erase the border. These operations are for inter

nal use, while the setBorder operation is part of the external interface.

Procedure top in class Box also illustrates an additional requirement. It is

assumed that top requires a reshape operation to be executed, and that class

BorderedBox inherits the operation top from the super-class Box. The ques

tion arises as to how top can invoke reshape, differentiating between that

defined in class Box and that in class BorderedBox. This is where the use of

the pseudo-variable self comes in. By referring to 'reshape of self', the

- 37 -

class Box;
begin

instance variables
intxLength = 10;
intyLength = 30;
intxOrigin = 100;
intyOrigin = 200;
shading defaultShade = white;

instance operations
proc move (int newXOrigin, newYOrigin) .•• ;
proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength) .•• ;
proc shade (shading newShade) ••• ;
procdraw ..• ;
proc top (int originX, originY, lengthX, lengthY):
begin

reshape of self(m, n, p, q);

end
end Box;

class BorderedBox;
superclass Box;
begin

instance variable
int borderSize = 2;

instance operations

% width of the border %

proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength):
begin

eraseBorder; % erase old border %
% now reshape box as before %

reshape of super (newXOrigin, newYOrigin, newXLength, newYlength);
drawBorder % draw new border %

end;
proc setBorder (int newBorderSize) ..• ; %set a new border size%

private operations
proc eraseBorder •.. ;
proc drawBorder ... ;

end BorderedBox;

Bordered boxes can be created and manipulated as follows.

BorderedBox bbl : = new;
BorderedBox bb2 : = new;
setBorder of bbl (3);
move of bbl (15,25);
reshape of bb2 (10,10,20,20);
top of bb2 (10, 10, 20, 20);

Figure 3.2: Example of class hierarchy.

Object-Based versus Procedure-Based Languages

search operation for the reshape operation begins in the class of the object

on which the top operation was originally invoked, not in the class in which

the code for top is declared.

At the end of Figure 3.2, a possible use of these class descriptions is shown.

Two objects, bbl and bb2, of the class BorderedBox are created. The border

of bbl is first enlarged, by <setBorder of bb1(3)', and then is moved, by <move

of bbl(15, 25)'. Similarly, object bb2 is first reshaped using the specialized

reshape, and then is brought to the top. It is worth noting that the last

operation requires the invocation of top defined in the class Box, and that

operation reshape called in the body of top has to be bound to the procedure

defined in class BorderedBox regardless of the fact that a reshape procedure

is present in Box - the reshape defined in Box cannot handle BorderedBox.

In the next sections, two possible implementation of the sub-classing

mechanism in a procedure-based language will be shown. The issues that

will be discussed include:

Compile time errors.

For example, because of the strong type-checking feature of the

language the compiler will complain about the instruction <move of

bbl(15, 25)' in Figure 3.2 - move is not declared among the procedures

of the class BorderedBox. Moreover, a treatment of the syntactical

sugar added is required, such as the new keywords (class, superclass,

etc.).

- 39 -

Object-Based versus Procedure-Based Languages

Pseudo-variable super.

For example, the reshape in the class BorderedBox is a specialization of

the reshape of the class Box, this requires binding the call 'reshape of

super' to the right code in the super-class. Because only static binding

is assumed, the treatment of the pseudo-variable super must be pro

vided.

Pseudo-variable self.

In the example discussed, 'reshape of self' in operation top of class Box

may deal with objects of class Box and BorderedBox - top is defined in

Box and is inherited by class BorderedBox. This requires binding the

call 'reshape of self' with the right code in the relevant object's class,

i.e. the treatment of pseudo-variable self is needed.

In the following section two techniques will be presented to solve these

issues.

3.4. Sub-classing implementation exploiting polymorphic procedures

The technique presented in this section exploits the polymorphic features of

the procedure-based language considered. The technique is based upon the

use of a new type called Dispatcher, which is a procedure type which takes

as arguments a string of characters and a polymorphic type, and returns a

polymorphic type as its result. In particular, a procedure of type Dispatcher

takes the name denoting an operation as parameter, and returns either the

results of the execution of that operation or a failure in the case the opera

tion does not exist. In the implementation presented, every procedure which

- 40 -

Object-Based versus Procedure-Based Languages

defines a class takes as its argument a procedure to access the new bindings

defined by the calling environment, and returns an object of type

Dispatcher. For example, object bbl of the class BorderedBox is created by

the command:

Dispatcher bbl : = borderedBox(fail);

where procedure fail specifies that no new bindings are defined, and is called

when failures occur in binding an operation invoked upon bbl.

An example of inheritance implemented in procedure-based languages by

means of the polymorphic type Dispatcher is illustrated by the programs of

Figure 3.3 and Figure 3.4. The class BorderedBox is implemented by pro

cedure borderedBox. Procedure borderedBox returns procedure dispatch

which implements the dispatching strategy for BorderedBox, taking the

name of the required operation as its argument. When executed, the body of

procedure dispatch compares its argument with the names of the operations

declared locally. When a match occurs the relevant procedure is called with

the appropriate parameters; otherwise the dispatch procedure of the super

class is invoked with the same parameter. That is, at run time the search

for an operation begins at the class of the invoked object, and proceeds to

the top of the hierarchy - returning the first occurrence of the operation that

is found. It is worthwhile to note that the code of borderedBox includes an

object of class Box called super which allows the sharing of operations

between a class and its super-class. This represents the implementation of

the pseudo-variable super, and provides support for specialization within

- 41 -

% type of an operation %
type method = struct (string

poly

% the type of class protocol %

name,
arguments);

type Dispatcher = proc (method)returns poly;

proc borderedBox = (Dispatcher bind) Dispatcher:
begin

% superclass %
Dispatcher super = box (newBinding);

% instance variable %
int borderSize = 2;

% instance operations %

proc reshape = (int newXOrigin, newYOrigin, newXLength, newYlength):
begin

eraseBorder;
super ("reshape", (newXOrigin, newYOrigin, newXLength, newYlength));
drawBorder

end;
proc setBorder = (int newBorderSize) ..• ; % set a new border size %

% private operations %
proc eraseBorder = ... ;
proc drawBorder = ... ;
% new bindings required %
proc newBinding = (method operation) poly:
begin

case bind(operation) in
(fail): if nameofoperation = "reshape" then reshape (argumentsofoperation)

else fail % binding not here %
out skip esac

end;

% declaration of the class protocol %
proc dispatch = (method wanted) poly:
begin

if nameofwanted = "reshape" then reshape (argumentsofwanted)
elifnameofwanted = "setBorder" then setBorder (argumentsofwanted)
else super (wanted)
fi

end;

% return the class protocol %
return dispatch

end.

Examples of creation and manipulation of instances of BorderedBox follow.

Dispatcher bbl : = borderedBox (fail);
Dispatcher bb2 : = borderedBox (fail);
bbl ("setBorder", 3);
bbl ("move", (15,25));
bb2 ("reshape", (10,10,20,20));
bb2 ("top", (10,10,20,20));

Figure 3.3: Dispatching in class BorderedBox.

Object-Based versus Procedure-Based Languages

sub-classes, as can be appreciated by looking at the code of the procedure

reshape in Figure 3.3.

For example, consider the command:

bbl ("move", (15,25));

The dispatch procedure of borderedBox is invoked (via bbl) first with the

string ((move" and arguments (15,25) as its parameter. After having looked

up the move operation among its local procedures and failed to find it, bbl

calls the dispatcher of the super-class with the same parameter. This time

the move operation is found (in class Box; see Figure 3.4), and applied to the

parameters (15,25). (Note that in this code, no attempt has been made to

optimize the run-time speed of the lookup in procedure dispatch, and a sim

ple string search has been shown to emphasize the work of this procedure.)

The implementation for pseudo-variable self will be explained considering

the execution of the command at the bottom of Figure 3.3

bb2 C(top", (10,10,20,20));

The search for operation top begins via procedure dispatch in class Bor

deredBox. The operation is not found in BorderedBox, so the search contin

ues by looking in the super-class Box. An operation named top is found in

Box (Figure 3.4); this operation contains in its body a case statement which

causes the execution of procedure newBinding in BorderedBox with argu

ment the operation name reshape - newBinding is the actual parameter of

procedure box which is invoked in the code of BorderedBox to create object

- 43 -

% type of an operation %
type method = struct (string name,

poly arguments);

% the type of class protocol %
type Dispatcher = proc (method)returns poly;

% box creates an instance of Box and returns the class protocol for the object %
proc box = (Dispatcher bind) Dispatcher:
begin

% instance variable %
intxLength = 10;
intyLength = 30;
int xOrigin = 100;
intyOrigin = 200;
shading defaultS hade = white;

% instance operations %
proc move = (int newXOrigin, new YO rigin) ... ;
proc reshape = (int newXOrigin, newYOrigin, newXLength, newYlength) ... ;
proc shade = (shading newS hade) ... ;
procdraw = '"
proc top =
begin

case bind Creshape",(m,n,p,q)) in
(fail): reshape (m,n,p,q)

out skip esac;

end;

% declaration of the class protocol %
proc dispatch = (method wanted) poly;
begin

if nameofwanted = "move"
elifnameofwanted = "reshape"
elifnameofwanted = "shade"
elifnameofwanted = "draw"
elif nameofwanted = "top"
else fail % unknown operation %
fi

end;

return dispatch

end.

then move (argumentsofwanted)
then reshape (argumentsofwanted)
then shade (argumentsofwanted)
then draw (argumentsofwanted)
then top (argumentsofwanted)

Examples of creation and manipulation of instances of Box follow.
Dispatcher bi:= box (fail);
Dispatcher b2: = box (fail);
bi ("move", (15,25));
b2 ("reshape", (10,10,20,20));

Figure 3.4: Dispatching in class Box.

Object-Based versus Procedure-Based Languages

super. The search for the reshape operation, therefore, begins in class Bor

deredBox. After that the call to procedure bind in newBinding fails (when

object bb2 was created, the actual parameter for bind was procedure fail),

the relevant branch of the case statement (labelled by fail in Figure 3.3) is

chosen, and an operation for reshaping is found and executed. It should be

noted that this technique for implementing the pseudo-variable self adopts a

depth-first search, that is first the class hierarchy is descended, and then the

classes are visited proceeding to the top and searching for the first

occurrence of the relevant operation.

In Figure 3.4, the procedure box for creating objects of the class Box is

shown. Since the class Box has been declared without any super-class, pro

cedure newBinding is missing, and a failure is caused by procedure dispatch

if the operation being searched for is not present.

The technique discussed provides run-time support for sub-classing, and also

solves the other issues discussed in the previous section.

3.5. Sub-classing implementation at objects creation-time

Unlike the technique in the previous section that binds operation names of

an object at run-time, the technique presented in this section establishes all

bindings at the outset during the object's creation; this is achieved by a

careful use of procedure values and procedure variables. In the scheme

presented below, every procedure which defines a class, say C, takes as its

argument a parameter which holds the bindings redefined by the calling

- 45 -

Object-Based versus Procedure-Based Languages

environment, and returns the set of operations to manipulate an object of

class C. For example, object bbl of the class BorderedBox is created by the

command:

BorderedBox bbl : = borderedBox (unbound);

where unbound specifies that no new bindings are defined for object bbl,

and is a variable of type BorderedBoxBind with the field bound set to false.

An example of inheritance implemented by exploiting this technique is

illustrated by the programs of Figure 3.5 and Figure 3.6. The class Bor

deredBox is implemented by procedure borderedBox in Figure 3.5. The code

of borderedBox includes an object of class Box called super which allows the

inheritance of operations between a class and its super-class.

Procedure borderedBox returns together with the operations defined expli

citly in class BorderedBox the object super. The invocation of an operation

inherited by BorderedBox is achieved by prefixing the object name with the

structure selector super. For example, the execution of the command

move of super of bbl (15, 25);

causes the procedure denoted by move in the field super of the structure bbl

to be invoked and to be applied to the parameters (15,25). In other words,

the operation move defined in class Box is executed on object bbl of class

BorderedBox. The inclusion in the sub-classes of an object of the super

classes can be considered as the implementation of the pseudo-variable

super, and provides support for specialization within sub-classes, as can be

- 46 -

type BorderedBox = struct (proc(int,int,int,int) void
proc(int) void
Box

% redefined bindings for type BorderedBox %

reshape,
setBorder
super);

type BorderedBoxBind = struct (bool bound,
proc(int,int,int,int) void reshape);

% borderedBox creates objects of class BorderedBox %
proc borderedBox (BorderedBoxBind sub) BorderedBox:
begin

% pass the redefined bindings to the superclass %
BoxBind newBinding ;
newBinding: = (true, if boundofsub then reshapeofsub else reshape ti);

% superclass %
Box super: = box (newBinding);

% instanc:J variable %
int borderSize = 2;

% instance operations %
proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength):
begin

eraseBorder;
reshape of super (newXOrigin, new YOrigin, newXLength, new Ylength);
drawBorder

end;
proc setBorder (in t newBorderSize) ••• ; % set a new border size %

% private operations %
proc eraseBorder ••• ;
proc drawBorder .•• ;

% return the class and the superclass protocol %
return (reshape, setBorder, super)

end.

Examples of creation and manipulation of instances of BorderedBox follow.
BorderedBox bbl : = borderedBox (unbound);
BorderedBox bb2 : = borderedBox (unbound);

setBorder of bbl (3);
move of super of bbl (15, 25);
reshape of bb2 (10, 10, 20, 20);
top of super of bb2 (10,10,20,20);

Figure 3.5: Implementation of class BorderedBox.

Object-Based versus Procedure-Based Languages

appreciated by looking at the code of the operation reshape in Figure 3.5.

The implementation for pseudo-variable self is based upon the use of a

structure type having name of the form < class name> Bind, e.g. Bordered

BoxBind. The first field of this type is a boolean and indicates whether the

remaining fields have been bound to values. The remaining fields specify

the operations which in the declaration of a class or of its super-classes

appear to be invoked via the pseudo-variable self. For example the type Bor

deredBoxBind is defined as:

type BorderedBoxBind = struct(bool bound,

proc(int,int,int,int)void reshape);

Since the pseudo-variable self has not been used in the code of borderedBox,

BorderedBoxBind contains the same operation of BoxBind.

The operations invoked via pseudo-variable self are implemented by employ

ing procedure variables. This approach allows the binding of the operations

invoked via self with the relevant procedure bodies at the time objects are

created. For example, the call of the reshape operation by the top operation

declared in Box can be bound to the code which is able to manipulate objects

of class BorderedBox at the time such objects are created. Let us explain

how this is achieved by considering the execution of the command:

BorderedBox bb2 : = borderedBox (unbound);

To set up all the bindings for object bb2, the execution of procedure bor

deredBox and of procedure box is required. During the execution of

- 48 -

Object-Based versus Procedure-Based Languages

procedure borderedBox, which is shown in Figure 3.5, first the tuple (true,

reshape), where the name reshape denotes the reshape procedure declared in

borderedBox, is assigned to the variable newBinding, and second the result

of the execution of the procedure box with argument newBinding is assigned

to variable super. This second assignment also causes the execution of pro

cedure box which, as can be appreciate by looking at the code in Figure 3.6,

binds the operation to reshape objects of class BorderedBox to the procedure

variable denoted by reshapeOFself This binding will be used at run-time to

call the operation relevant to manipulate the object bb2.

In order to show that all the bindings established for object bb2 are

sufficient to support sub-classing, consider the execution of the command at

the bottom of Figure 3.5

top of super of bb2 (10, 10, 20, 20);

The operation top in class Box (Figure 3.6) is executed with argument

(10,10,20,20). This operation contains in its body a procedure variable,

denoted by reshapeOFself, which causes the execution of operation reshape

in BorderedBox - the operation to reshape BorderedBox has been passed as

actual parameter to procedure box and has been assigned to procedure vari

able reshapeOFself when the object bb2 was created. It is worthwhile to

note that this implementation for the pseudo-variable self does not rely

upon any run-time lookup - the bindings for operation names of an object

can be established at the outset during object's creation and do not need to

be modified during the object's lifetime.

- 49 -

type Box = struct (proc(int,int) void move,
proc(int,int,int,int) void reshape,
proc(shading) void shade,
proc void draw
proc(int,int,int,int) void top);

% redefined bindings for type Box %
type BoxBind = struct (bool bound,

proc(int,int,int,int) void reshape);

% box creates an instance of Box and returns the operations to manipulate it %
proc box (BoxBind sub) Box:
begin

% instance variable %
int xLength = 10;
intyLength = 30;
intxOrigin = 100;
intyOrigin = 200;
shading defaultS hade = white;

% instance operations %
proc move (int newXOrigin, newYOrigin) .•• ;

% procedure to reshape boxes %
proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength) •.. ;

proc shade (shading newShade) ••• ;
procdraw ... ;

% variable declaration to hold the procedure reshape redefined by the sub-class %
proc(int,int,int,int) void reshapeOFself;
reshapeOFself; = if boundofsub then reshapeofsub else reshape fi;

proc top ••. :
begin

... reshapeOFself(m,n,p,q); ..•
end;

return (move, reshape, shade, draw, top)

end.

Examples of creation and manipulation of objects of Box follow.

Box bl : = box(unbound);
Box b2: = box(unbound);

move ~f bl (15,25);
reshape of b2 (10, 10, 20, 20);
top of b2 (10,10,20,20);

Figure 3.6: Implementation of class Box.

Object-Based versus Procedure-Based Languages

In Figure 3.6, the procedure box for creating objects of the class Box is

shown. Some examples of box manipulations are also shown. This time the

invocation of the top operation, that is

top of b2 (10, 10, 20, 20);

causes the execution of the code to reshape objects of class Box. When b2 is

created, the argument of procedure box is unbound (a variable of type Box

Bind with the field bound set to false), and the procedure reshape declared

in box is assigned to the procedure variable reshapeOFself by the command

reshapeOFself: = if bound of sub then reshape of sub else reshape fi;

This simple mechanism allows the binding of operation reshape

differentiating between the code defined in class Box and that defined in

class BorderedBox. It must be emphasized that because the class Box has

been declared without any super-class, procedure box does not include an

object denoted by super among the values returned as results.

3.6. Preprocessor specification

The techniques discussed above for implementing sub-classing in a

procedure-based language permit the writing of object-based programs.

However, although they allow class hierarchy and inheritance to be imple

mented, most object-based constructs are hidden behind procedure manipu

lations.

A further step towards providing a more convenient programming context

- 51 -

Object-Based versus Procedure-Based Languages

would be to implement a preprocessor which deals with a program contain

ing explicit class and sub-class declarations and produces the code for the

procedure-based compiler. Note that such a preprocessor is not required for

the enforcement of any specific discipline, but only to make the syntax more

convenient. This represents a major difference with respect to other

approaches which implement a class hierarchy and inheritance as a set of

extensions to a procedural language. For example, the C++ preprocessor

implements object encapsulation, while the approach in this chapter pro

vides object encapsulation by exploiting first-class higher-order procedures,

which is a feature of the base language.

In the case of the technique presented in Section 3.4 such a preprocessor

could take a program in the notation of Figure 3.2 and transform it to that

of Figure 3.3 and Figure 3.4. As can be appreciated by comparing these

figures, the preprocessor should perform the following steps:

1. Fix the syntactical discrepancies, namely substituting the keywords

proc for class, and the occurrences of the type Dispatcher for any class

types.

2. Modify the program to deal with pseudo-variables super and self. The

actions to be carried out in this step include appending to each class

description the code for procedure dispatch and for procedure newBind

ing, and for returning dispatch as a value. The code for dispatch and

newBinding can be generated automatically by parsing the declaration

of the structure of the operations the classes should return.

- 52 -

Object-Based versus Procedure-Based Languages

3. Identify the type of the formal polymorphic parameter of the procedure

dispatch for each class C. This type can be modelled as the union of the

types of the formal parameters of all the operations declared in C and

in its super-classes. Besides, dispatch may also return values of a type

which is the union of the types of the results of the operations declared

in C and in its super-classes. These unions can be computed during the

parsing of the operation declarations in phase 2.

4. Change all the procedure calls of the kind 'idl of id2(parameter-list)'

where id2 is a class identifier in the command 'id2(idl, (parameter

list))' .

In the implementation for the Flex system, the identification of the unions

in phase 3 was not needed. The Flex architecture provides specific machine

instructions which have been exploited for the treatment of the polymorphic

parameter of the dispatch procedure. Note also that the preprocessor dis

cussed can convert operation names into some representation that can be

compared efficiently to avoid the string comparison overhead in the body of

the dispatch and newBinding procedures.

In the case of the technique presented in Section 3.5, as can be appreciated

by comparing Figure 3.2 with Figure 3.5 and Figure 3.6, the steps the

preprocessor should perform include:

1. Modify the program to deal with pseudo-variables super and self. The

actions to be carried out in this step include declaring in each class

- 53 -

Object-Based versus Procedure-Based Languages

with a super-class definition the object super, returning it as a value,

and declaring a procedure variable for each operation invoked via self.

2. Identify for each class C the type of the formal parameter, called

< C > Bind, and the type of the value returned (the class operations

exported) by the procedure defining C. The code for the declarations of

these types can be generated automatically for each class by parsing

the declaration of the structure of the operations following the keyword

instance operations.

3. Insert in every operation call the right sequence of super. In order to

minimize the overhead needed to compile the operation calls, it is con

venient for the preprocessor to maintain a table recording for each

operation the distance between the class inheriting it and that defining

it. This data structure can be initialized during the parsing of the

operation declarations in phase 2.

If the definition of compilation units, or packages [DoD80], is supported by

the compiler, the data structure at step 3 can also be exploited to minimize

the number of packages to be recompiled after an update of the class hierar

chy. When a class, say C, is updated, the preprocessor can trace the pack

ages which contain invocations to C's operations and need to be recompiled.

Keeping the code of each operation in separated packages is a good strategy

to minimize the recompilation overhead. Incidentally, it should be noted

that any type errors in the operation calls will be detected at compile-time.

- 54 -

Object-Based versus Procedure-Based Languages

3.7. Performance considerations

Measurements have been made of the overhead caused by these schemes.

The measurements were made on an ICL Perq workstation running the Flex

system, and have been carried out for a null body operation call. The aver

age time has been measured for such a call to be completed.

With respect to the technique of Section 3.4, it was found that the results of

the measurements have a very close approximation to the following expres

sion:

n * (time for dispatch call) + (time for operation call)

where n is the number of the classes visited to find the relevant operation.

The invocation of an operation not inherited is composed of two procedure

calls: a call to the dispatch procedure, and a local call (internal to the class

and invoked by the dispatch procedure). In general, to call an inherited

operation, the time needed to execute the dispatch procedure has to be mul

tiply by the number of classes visited.

The performance degradation due to the scheme of Section 3.4 for n equal to

one (operation not inherited) is of the order of 35%. This performance degra

dation is by comparison with an operation call involving a reference to a

class object. The call of any operation of class Box, as defined in Figure 3.1,

involves a reference to a variable (e.g. bl); such an indirect call of an opera

tion (via a variable holding the class object) is needed for data abstraction

regardless of the inheritance scheme proposed. Although the degradation

- 55 -

Object-Based versus Procedure-Based Languages

increases linearly with the distance of the inherited operations (as shown by

the above expression), given that an object-based program can be expected

to spend only a modest fraction of its time actually invoking operations, the

overall performance degradation should be at the very most of the order

mentioned above. The search down the hierarchy for supporting the imple

mentation of the pseudo-variable self has the same cost: a linear number of

calls to procedure bind plus a local call.

The performance degradation due to the scheme of Section 3.5 for calling an

inherited operation from a direct super-class is of the order of 1 %. This per

formance degradation is by comparison with a non-inherited operation, and

is caused by the indirection in calling an inherited operation, namely via

the variable super holding the super-class object. The implementation of

the pseudo-variable self has a smaller cost - regardless of the distance of the

operation definition, its call is performed via a procedure variable involving

one level of indirection only.

3.8. Concluding remarks

Two general techniques have been presented for implementing the sub

classing form of inheritance as a set of extensions to a high-level language.

The first technique exploits the polymorphic features of the language to

implement the operations inheritance of a class hierarchy, while the second

technique exploits first-class procedures.

To a certain extent, the choice between these techniques depends on what

- 56 -

Object-Based versus Procedure-Based Languages

object-based programming is being used for. If interest is essentially in

quick prototyping and experimentation, the first approach may be the best

to adapt. Keeping the dispatching scheme during execution makes it easier

to change the class hierarchy in order to correct errors, improve the system,

or experiment with new facilities - there is no need on each occasion to go

through a complete compilation of other classes in the hierarchy. On the

other hand, if the concern is for correctness, robustness and efficiency, then

the second approach, which constructs most of the bindings at compile-time,

is obviously required. For example, correctness requires that one knows

what the system is before one executes it; if the system can be changed dur

ing its execution, there is little hope that one can guarantee any of its pro

perties.

The merits of these two techniques include: (1) they are useful as a discip

line for achieving object-based programming in a non object-based program

ming language, (2) they suffice for providing run-time support for sub

classing in procedure-based languages, and (3) they preserve the static bind

ing and the strong type-checking features of the languages, hence obtaining

- with high degrees of correctness, testability, and maintainability - the

benefits of inheritance discussed in Chapter 2. Moreover, the techniques

proposed in this chapter show that there is no need to always adopt run

time lookup to provide sub-classing, although such strategy is employed by

many object-based languages, such as Smalltalk-80. Instead high level

languages with static binding and strong type-checking can be exploited.

Other approaches to adding sub-classing to a procedural base language

- 57 -

Object-Based versus Procedure-Based Languages

include Objective C [Cox86], and Extended Pascal [Jacky87]. Both of these

approaches are based upon a message-passing mechanism. In Objective C,

the message mechanism is centralized in a single function called the mes

sager. Objects contribute a dispatch table that the messaging routine

searches to determine how this kind of object implements its operations.

This table is built when the object is defined, and is looked up dynamically.

It identifies every operation that this object knows how to perform, and a

pointer to a procedure whereby this object implements that operation. This

procedure is a compiled C function body.

In Jacky's approach [Jacky87], operations are invoked through messages

passed by placing them on a last-in-first-out message stack. The dispatcher

mechanism in this case examines the top message on the stack, determines

which class of object it is being sent to, and calls an invoke procedure that

includes the operations for that class. This methodology provides inheritance

in a very limited sense only.

An interesting conclusion to be drawn from this study is that the family of

languages considered allows high degrees of freedom in programming and

does not restrain the programmer within the procedure-based approach. An

object-based style of programming is also possible, and although procedure

based languages do not constrain one to this programming discipline,

thanks to the proposed technique, there appears to be no inherent reasons

for the programmer of such languages to prefer one approach over the other.

The rest of this thesis will only be concerned with object-based program-

- 58 -

Object-Based versus Procedure-Based Languages

ming, whether this is achieved with an explicit language or by means of the

techniques for using procedure-based languages described in this chapter.

In particular, in the following chapter, the applications of the object-based

methodology to the design and implementation of distributed architectures

will be reviewed.

- 59 -

Chapter 4

Distributed Object·Based Architectures

In recent years a great deal of interest has developed in distributed object

based systems and architectures. Distribution gives rise to some issues that

do not exist in a centralized design, or that exist in a less complex form.

For example, distribution forces high costs on the sharing of data and code,

and fault tolerance techniques for a centralized system (which is either run

ning or crashed) are simple by comparison to those of a distributed system

(which may be partly running and partly crashed).

Many of the issues concerning the design and implementation of distributed

architectures, whether object-based or not, are issues to do with reliability.

This chapter, tries and summarizes what these issues are, in particular and

whenever possible describing them in terms of object-based programming

ideas. Problems that cause distributed architectures to be unreliable are

pointed out, and different approaches that have been proposed for attaining

reliable distributed processing are reviewed.

4.1. Distribution issues

Object-based architectures can be described as a set of classes, each of which

- 60 -

Distributed Object-Based Architectures

can be thought of as representing a kind of resource. Some resources may

have a direct physical realization, such as I/O device. Others may have a

logical realization, such as processes, mailboxes (for communication between

processes), and files. With object-based architectures, each individual

resource is an object; thus an object encapsulates the resource implementa

tion and provides a set of operations, these operations being the only means

by which the object can be manipulated. In most distributed object-based

architecture (see [Liskov82, Svobodova84, Almes85, Birman85, Tanen

baum86, Shrivastava88a] for a representative sample), an operation is per

formed by invoking an operation of the object with a remote procedure call

(RPC), which passes value parameters to the object and returns the results

of the operation to the caller.

Before analyzing the features of distributed object-based architectures, let us

focus on the issues caused by distribution. The key to understanding distri

bution issues is an appreciation of the logical and physical partitioning of

components within a distributed architecture. The very essence of a distri

buted architecture consists of physical partitioning at some level, possibly of

several components partitioned around a computer room and connected by a

local area network, or across a continent and connected by a wide area net

work. All logical partitionings will be motivated by or will have to take

into account this physical partitioning. In other words, the concept of parti

tioning forces the system designer to answer two questions. The first is how

should the effects of partitioning be reflected in the applications. Indeed,

partitioning requires: (1) explicit communications between interacting com-

- 61 -

Distributed Object-Based Architectures

ponents, since no storage is shared, and (2) global management strategies

and policies. The second question is how should the partitioning be

exploited to achieve desirable quality attributes. Partition may be exploited

to provide: (1) isolation as a method of enforcing security and safety policies;

(2) tolerance of independent component faults and recovery from such faults

without disruption of the whole system; (3) truly parallel execution; and (4)

incremental growth or contraction of a system, through the addition or sub

traction of discrete components.

Most designers believe that the effects of partitioning should be transparent

to applications. Tanenbaum suggests that a distributed architecture should

appear to be a virtual uniprocessor rather than a collection of individual

computers [Tanenbaum85]. If this ideal is achieved in practice, an architec

ture may be described as having distribution transparency. Such a distri

buted architecture conceals the consequences of distribution from applica

tions and users; that is, the architecture is perceived as a whole rather than

a collection of independent resources - users need not be aware of which

component executes their programs or stores their files. Amoeba [Tanen

baum81] is an example of such distributed architectures.

Distribution transparency groups together various strategies, abstractions

and mechanisms, which can be better understood, if the specific aspects of

transparency are discriminated. Below, some basic forms of transparency

are briefly presented; for a more thorough treatment, see [ANSA87].

Access transparency

Access transparency conceals the communications services from users,

- 62 -

Distributed Object-Based Architectures

such that invocations on objects are semantically and syntactically

identical whether the objects are local or remote.

Failure transparency

Failure transparency is the property of an architecture that enables the

full concealment of faults despite the failure of components. In most

distributed object-based architectures, this feature is obtained by exe

cuting programs which operate on objects as atomic actions with respect

to failures [Gray78]. The failure atomicity property of the atomic

actions ensures that a computation can either be terminated normally,

producing the intended results, or be aborted producing no results. This

property may be obtained by appropriate use of backward error

recovery, which is invoked whenever a failure that cannot be masked

occurs. It is also convenient that once an atomic action terminates nor-

mally, the results produced are not destroyed by subsequent node

crashes. This property, called permanence of effect, ensures that state

changes produced are recorded on stable storage which can survive node

crashes with a high probability of success. A two-phase commit proto

col is required during the termination of an action to ensure that either

all the objects updated within the action have their new states recorded

on stable storage (normal termination), or no updates get recorded

(abnormal termination).

Concurrency transparency

Concurrency transparency allows parallel use of an object without the

concomitant emergence of inconsistent views of that object. Concurrent

- 63 -

Distributed Object-Based Architectures

executions of object operations are free from interference if the serial

izability property is ensured - a concurrent execution can be shown to be

equivalent to some serial order of execution [Eswaren76, Best81]. A

variety of concurrency control techniques to enforce the serializability

property have been reported in the literature [Bernstein87]. A very

simple and widely used approach is to regard all operations on objects

to be of type read or write, which must follow the well-known locking

rule permitting concurrent reads but only exclusive writes.

Migration transparency

Migration transparency allows the movement of objects without making

such transfers apparent to other objects. This functionality leads

towards strategies for global optimization. For example, it can be

exploited to reconfigure the distributed architecture to optimize perfor

mance, or to restart after failures.

In the following sections, the basic issues related to the provision of the four

forms of distributed transparency presented above will be discussed, thus

identifying the software mechanisms for controlling and exploiting distribu

tion.

4.2. Access issues

One widely discussed framework for communication is the ISO OSI refer

ence model, which has seven protocol layers [Zimmerman80]. By using this

model it is possible to connect heterogeneous networks composed of comput

ers running widely different operating systems. Unfortunately, the

- 64 -

Distributed Object-Based Architectures

overhead created by all these layers is substantial. In a distributed archi

tecture consisting primarily of computers connected by slow leased lines, the

overhead might be tolerable. Plenty of computing capacity would be avail

able for running complex protocols, and the narrow bandwidth available

implies that close coupling between the nodes would be impossible anyway.

On the other hand, in a distributed architecture consisting of identical

microcomputers connected by a lO-megabyte per second or faster local net

work, the price of the ISO model is generally too high without special

hardware support.

The model favoured by most researchers for distributed architectures is the

client-server model in which a client process requiring some service sends a

request message to the server and then waits for a reply message. The

basic primitives in the simplest form of client-server model are send and

receive. The send primitive specifies the destination and provides a message

to be sent; the receive primitive specifies the source of the message and pro

vides a buffer where the incoming message is to be stored.

A more structured form of communication is achieved by distinguishing

requests from replies. As will be discussed in the next subsection, with this

approach, communication in message-passing systems appears very similar

to a traditional procedure call from the client to the server.

4.2.1. Remote procedure calls

The remote procedure call (RPC) model [Nelson81, Birre1l84] has become an

accepted method, mainly because of its distribution transparency and

- 65 -

Distributed Object-Based Architectures

straightforward translation into client-server interactions. The idea is to

make the syntax and semantics of internode communication as similar as

possible to local procedure calls within the application program's high-level

language, because such procedure calls are familiar and well understood ,

and have proved their worth over the years as abstraction tools.

To a first approximation, an RPC scheme works in the following way: the

client (caller) and the server (callee) modules are programmed as if they

were intended to be linked together. A description of the server interface,

that is, the names of the procedures and the types of arguments the server

implements, is processed yielding two stubs, where the stubs deal with

translating procedure calls into appropriate message interchanges. The

client stub is linked with the client; to the client this stub looks like the

server. The server stub is linked with the server; to the server this stub

looks like the client. The stubs shield the client and server from the details

of communication. In an RPC execution: the client issues a normal pro

cedure call on its node with the intention of invoking a procedure of the

server. It actually issues a call to the client stub running on its own node,

as shown in Figure 4.1. The client stub collects the parameters and packs

them into a message which is then sent to the server stub at the remote

node. Afterwards, the client stub blocks, waiting for a reply. The server

stub, on receiving a request message, unpacks the parameters and invokes a

local procedure call on the server. The results of the local procedure call fol

low an analogous path in the reverse direction.

This approach is attractive in many ways. For example, it achieves access

- 66 -

RPC
call

Client Node

Client

Client stub

Transport

RPC
return

RPC message

RPC
call

~ Transport Control Data

Figure 4.1: Remote procedure call.

Server Node

Server

Server stub

Transport

I~

RPC
return

Distributed Object-Based Architectures

transparency. The client need not know anything about the fact that the

server is remote - it just issues an ordinary procedure call with the parame

ters passed in the usual way, such as on the stack. Similarly, the server is

called by a local procedure according to local calling and parameter passing

conventions. However, a number of reliability-related problems hide under

the surface. Many of these have important implications for the system's

overall reliability.

In general, the ideal of having the semantics of an RPC identical to that of

a local procedure call is hard to achieve, if communication and node crashes

occur. In the interest of reliability, a client process may retransmit its

request message whenever the loss of that message is suspected. As a

result, it is possible for a server occasionally to receive multiple request

messages for a single invocation by the client. Therefore, unless preventive

measures are employed, the server could carry out the same request several

times. These superfluous and undesirable executions are referred to as

orphan executions [Nelson81]. Orphan executions can sometimes cause

problems of reliability and consistency. For example, if a bank server has to

transfer a large amount of money to a Swiss bank account, someone would

prefer that operation not be executed by accident a second time. Operations

that can be carried out multiple times without harm, such as reading a

block of some file, are said to be idempotent. Unfortunately, most operations

that cause actions to occur in the outside world, and involve communication

or I/O operations, are not idempotent. Various mechanisms to detect and

prevent orphan executions will be discussed in the next section.

- 68 -

Distributed Object-Based Architectures

4.3. Failure issues

A major concern in the design of distributed architectures is to provide con

tinuous service of the system as a whole in spite of node crashes and com

munication failures. This section considers these sources of unreliable

behaviour in distributed architectures, focusing in particular on node

crashes, due either to hardware or software.

In the previous section, it has been shown that unreliable communications

can cause orphan executions. Another possibility of orphan executions can

arise with node crashes. To appreciate this, consider the following situation:

a computation running at node B issues an RPC to some object at node A

and then node B crashes, leaving an orphan computation running at node A.

If the client process at B resumes that call, after recovery, by reissuing it,

the concurrency that might arise between the post-crash call of B and the

orphan computation at A should be regarded as undesirable, since it is

expected that the execution of a sequential program should give rise to a

sequential computation characterized by a single flow of control. Therefore,

in the presence of client failures, an RPC mechanism ought to guarantee

also that the executions of all post-crash calls of the client follow all pre

crash ones. What is required, at least, is that node A should detect and

abort the orphan before executing the post-crash call from node B. Nested

RPCs make the scenario more complex - see [Panzieri85] for a detailed dis

cussion of the issue. It should be noted that the orphan execution as in the

discussed example might arise even if messages are never lost.

- 69 -

Distributed Object-Based Architectures

Various methods have been proposed for dealing with orphans [Nelson81,

McKendry85, Panzieri88]. One obvious and unacceptable method is to kill

off all processes in the entire distributed system when any node crashes.

This is, of course, unacceptable, but it is just what many conventional

implementations do when a vital process fails.

Several methods of killing orphans have been proposed in [Nelson81]. One

of them exploits clock synchronization. If the nodes have synchronized

clocks, then orphans can be killed simply by establishing a time limit on

each RPC. More precisely, an expiration time is associated with each pro

cess. Servers inherit their expiration times from their clients. In this way,

the caller sets the time limit for all its servers. Whenever a process reaches

its expiration time and is still executing, it is declared an orphan and

promptly aborted.

The method presented in [McKendry85] also uses an expiration-based

mechanism to eliminate orphans created by crashes and aborts. The method

is based on clocks local to each node, but it performs best when clocks are

synchronized.

The orphan treatment method proposed in [Panzieri88] employs local,

crash-proof, clocks. In addition to a deadline mechanism that resembles the

Nelson's expiration time, every node maintains a variable crashcount which

is the local clock value at the time the node was rebooted after a crash. A

node also maintains crashcount values of clients which have made calls to

it. A newly created server checks the client-supplied crashcount value

- 70 -

Distributed Object-Based Architectures

against the corresponding value maintained at the node; if the former is the

greater, then this indicates that the caller has experienced a crash, in which

case there could be orphans on the node. The server then aborts all other

servers created by that client. To cope with a failed client that does not

recover, every node runs a terminator process. Such a process regularly con

structs a list of potential orphans (that is, servers that do not receive

requests for a few minutes) on its node and calls relevant clients to see if

they are still running. If a client is not running its correspondent server

processes are aborted.

So far, the reliability problems caused mainly by clients and communication

failures have been considered. In general, servers also can fail, hence pro

ducing an interruption of the service provided. The provision of continuous

service is achievable by the use of redundant components. In distributed

architectures there is an opportunity to keep redundant copies and to pro

vide surplus processing resources.

One common way of classifying the redundancy employed in distributed

architectures is to differentiate active redundancy from passive redundancy.

Redundancy may be active in the sense that all the redundant components

are operating simultaneously. Alternatively redundancy may be passive in

the sense that only one component is in service and the others are in stand

by mode.

A well-known paSSIve redundancy technique is backward error recovery.

The objective of backward error recovery is to restore a computation to a

- 71 -

Distributed Object-Based Architectures

state prior to the manifestation of a fault [Anderson81a]. As backward

error recovery restores a presumably valid prior state of a program, it is an

attractive technique that can be used to provide recovery after all types of

faults, even unanticipated faults in the software design. Thus, backward

error recovery is often used to meet the failure atomicity requirements of

the operations in object-based systems.

There are several situations in which the passive redundancy approach

clearly does not suffice, and active redundancy is required. These include

situations where the frequency and duration of recovery time are unaccept

able, or where the continuity of correct I/O behaviour must be ensured, such

as in flight control systems. Active redundancy techniques include the

canonical N-Modular Redundancy [Wensley78, Mancini86a], where the

client always sends call requests to all replicated servers, and performs

majority voting on the results. So long as the majority of the servers is

non-faulty the correct result will be chosen. In such a scheme all the non

faulty servers must be kept in the same state. This requirement is particu

larly hard to meet in distributed architectures, and its violation can lead to

the so-called sequencing failures, as discussed in [Mancini86b]. Active

redundancy can also be employed to tolerate unanticipated faults in the

software, as shown by the N-version programming technique [Avizienis84].

With this technique, N different versions of a program are executed at the

same time. Their results are compared and the result which is submitted by

the majority of the versions is chosen.

T,e topic of fault tolerance in distributed architectures will be expanded in

- 72 -

Distributed Object-Based Architectures

Chapter 5, where it will be shown that fault-tolerant schemes which happen

to have been developed within the domain of object-based architectures can

be mapped and applied with profit to more conventional architectures.

4.4. Concurrency issues

One of the reason for choosing a distributed architecture is to take advan

tage of the potential concurrency in an application, thereby increasing

efficiency and decreasing response time.

The concurrent use of objects requires control mechanisms in order to

prevent the emergence of non-serializable executions. Despite the fact that

many different techniques which regulate the use of shared objects have

been proposed, most new distributed systems, such as Argus [Liskov87], use

locking as concurrency control mechanism. A lock is a serialization

mechanism which ensures that only one operation accesses the object at a

time. It has the effect of notifying others that the object is busy, and of pro

tecting the lock holder from modifications of others. A simple lock protocol

associates a lock with each object. Whenever an object is used, the client

follows a two-phase locking policy to overcome the problem of non

serializable executions [Eswaren76]. The idea is to divide the acquisition

and release of locks into two distinct phases. During the first phase, termed

the growing phase, locks can only be acquired and not released. In the

second phase, the shrinking phase, locks may only be released and new ones

may not be acquired. In addition, in order to avoid the problem of cascade

aborts, it is necessary to make the shrinking phase instantaneous. That is,

- 73 -

Distributed Object-Based Architectures

suppose that an action in its shrinking phase is to be aborted, and that some

updated objects have been released. If some of these objects have been

locked by other actions, the abortion of the action will require these actions

to be aborted as well.

However, the two-phase locking concurrency control can restrict the degree

of permissible concurrency in an application. It is typical for an application

to require nested invocation of operations. In such a case, locks on objects

acquired by inner operation are retained by the outermost operation until

the outermost operation is itself committed. This means that objects can

remain unavailable to other clients for a long time, thus introducing a

potential performance problem. What is required is a controlled means of

introducing internal concurrency, i.e. concurrency inside an object.

Several research projects have been studying the design and implementation

of distributed object-based architectures from the point of view of introduc

ing internal concurrency. The most relevant among them include: Argus

[Liskov87], Actors [Agha86], and ABCLIl [Yonezawa86].

Although different terminology is used, these three architectures share

several properties. All of them are based on objects, though these are called

guardians in Argus and actors in Actors, which provide several approaches

to concurrency. Concurrent processing among objects is supported via non

blocking invocation of objects. Moreover, there are opportunities for con

currency internal to an object. When an operation of an object is invoked, it

causes an independent thread of control (e.g. a lightweight process) to be

- 74 -

Distributed Object-Based Architectures

activated within the invoked object. The details of process activation, and

the degree of and control over concurrency within an object differs for each

of the three architectures mentioned above. The differences in internal con

currency can be described in terms of a model, where each object employs

one or more servers to process a queue of invocation requests.

In Argus, the abstraction of an unbounded number of servers for each object

is provided. Requests are serviced (i.e. servers are created) immediately and

there actually is no queue. Synchronization and control (e.g. server block

ing and serialization) are accomplished via locks which are shared by all of

an object's servers.

An Actors object can also have an unbounded number of servers, but its

servers are controlled quite differently. Initially, an actor has a single

server, which processes a single message and dies. Sometimes during its

lifetime, it creates a successor to process the next request on the queue.

Early creation of successors is permitted and this allows the use of multiple

servers. There are no locks, there is no data sharing between servers, and

each server can have different semantics.

An ABCLIl object employs a priority interrupt single server. The process

ing of a request can be interrupted to handle a high priority request, or the

next message on the queue. Interrupt processing and persistent variables

allow multiple requests to share the environment of a single server.

Argus, Actors, and ABCLIl represent different approaches to the use of

objects to facilitate the design and implementation of concurrent systems.

- 75 -

Distributed Object-Based Architectures

Some of the differences are dramatic - compare a action-based, heavyweight,

multi-threaded object such as a guardian in Argus, to a short-lived, light

weight object running on one processor in a massively parallel computer.

Each approach has engineered the object-based methodology to solve a

rather different problem, each with its own performance, resource sharing,

and expressibility trade-offs. Indeed, it appears that good engineering is the

dominant theme in the design of concurrent and distributed architectures ,

and that objects are a useful tool for this engineering process.

4.5. Migration and reconfiguration

An important reason for wanting a distributed implementation is its poten

tiality for adding and reconfiguring hardware resources to increase process

ing power, decrease response time, or increase availability of data. It is also

important to move software components in order to provide recovery from

failure, to balance the load across the nodes, and/or to improve the efficiency

of a particular application. For example, if a client sends several requests

to the same remote object, the overhead of transmitting messages may

become high. It might be better to move the object from the remote node to

the local node so that future operation invocations would occur locally.

It is then fundamental to implement distributed architectures that support

software migration. Migration allows systems to be reconfigured dynami

cally, by adding and removing components, or by moving components from

one node to another while the system continue to operate. To minimize the

impact of moving objects, the method used to invoke operations must be

- 76 -

Distributed Object-Based Architectures

location independent. Mechanisms are required to determine if an object

exists on a node, and if so to provide its address.

Several research have focused particularly on the problem of migration of

objects within a network of computer nodes, for example the Emerald sys

tem [Black86]. The location protocol employed in the Emerald system for

translating addresses when an object moves is discussed in [Fowler85]. A

survey of the most innovative approaches for migration transparency is

presented in [Smith88].

4.6. Concluding remarks

Distributed architectures are characterized by the physical partitioning of

their components. This partitioning, which requires explicit communica

tions between different physical components, introduces a number of funda

mental issues concerning the visibility of distribution.

Various forms of distribu tion transparency ha ve been iden tified in

[ANSA87]. They can be regarded both as problems to be solved in order to

conceal the partitioning of architectural components, and as features to be

exploited to take advantage of the partitioning in order to achieve particu

lar levels of security, reliability, and performance. This chapter has carried

on from the analysis in [ANSA87] to discuss various strategies, abstractions,

and mechanisms required for controlling and exploiting distribution in

object-based architectures.

Just as Chapter 2 on object-based programming was followed with a chapter

- 77 -

Distributed Object-Based Architectures

illustrating a means of achieving the same effects without using an explicit

object-based programming language, so the next chapter will go on to dis

cuss work which illustrates the relationship between distributed object

based architectures and an apparently different form of distributed architec

tures, based on processes.

- 78 -

Chapter 5

Object-Based versus Process-Based Distributed Architectures

The many approaches to fault-tolerant systems incorporating error recovery

reveal various similarities and differencies. In this chapter, two canonical

architectures for distributed fault-tolerant computing are constructed and

shown to be duals of each other. One architecture incorporates objects and

actions as the entities for program construction while the second architec

ture employs communicating processes with checkpoints. As a consequence

of the duality, techniques which have been developed within the domain of

just one of the architectures can be mapped and applied to the other.

In the following sections, the essential aspects of object-based and process

based architectures are first described. Next, the arguments intended to

establish the duality are pointed out. Finally, the usefulness of the fault

tolerance duality concept are illustrated, by mapping some well-known

object replication techniques developed within the context of the objects and

actions architecture to the communicating process architecture thereby

revealing some interesting process replication techniques.

- 79 -

Object-Based versus Process-Based Distributed Architectures

5.1. The canonical architectures

An investigation of fault tolerance techniques employed in a variety of sys

tems reveals a partitioning into two broad classes. Two canonical architec

tures are proposed, each embodying the major characteristics of the

corresponding class of systems. The first architecture incorporates objects as

the entities for program construction while the second architecture employs

communicating processes. One widely used technique of introducing fault

tolerance - particularly in distributed systems - is based on the use of atomic

actions (atomic transactions) for structuring programs [Gray78]. An atomic

action possesses the properties of serializability, failure atomicity and per

manence of effect. Atomic actions operate on objects. The class of applica

tions where such an Object Model (OM) has found usage include banking,

office information, and database systems. A number of other applications -

typically concerned with real time control - are structured as concurrent

processes communicating via messages. Some examples are process control,

avionics and telephone switching systems. Fault tolerance in such systems

is introduced through a controlled use of checkpoints by processes. This way

of constructing an application will be referred to as employing the Process

Model (PM).

This chapter, which is a revised and extended version of work reported ear

lier in [Shrivastava88b, Mancini89], claims that the OM and PM approaches

to the provision of fault tolerance are duals of each other and presents argu

ments and examples to substantiate the claim. As a result of this observa

tion, it can be stated that there is no inherent reason for favouring one

- 80 -

Object-Based versus Process-Based Distributed Architectures

approach over the other; rather the choice is largely dictated by the archi

tectural features of the underlying layer. Indeed, one would now claim that

the differences between the two approaches are basically a matter of

viewpoint and terminology. The investigations presented have been

influenced by the well-known duality paper of Lauer and Needham

[Lauer78] which puts forward the notion that within the context of operat

ing systems, procedure-based systems and message-based systems are duals

of each other. Lauer and Needham observed that (1) a program or subsys

tem constructed strictly according to the primitives defined by one architec

ture can be mapped directly into a dual program or subsystem which fits the

other architecture; (2) the dual programs or subsystems are logically identi

cal to each other, and they can also be made textually very similar; and (3)

the performance of a program or subsystem from one architecture will be

identical to its counterpart. The present work may be considered as an

extension of the ideas put forward in that paper with regard to fault toler-

ance.

5.1.1. The object-based architecture

One of the most important aspects of the OM architecture is that objects and

actions are the two primary entities from which an application program is

constructed. Any atomic action can be viewed at a lower level as con

structed out of more primitive atomic actions - this is illustrated in Figure

5.1 which also introduces the action diagram which will be used in this

chapter, this notation is based on that used by Davies [Davies73]. Accord

ing to Figure 5.1, action B's constituents are actions Bl, B2, B3 and B4. A

- 81 -

Object-Based versus Process-Based Distributed Architectures

directed arc from an action (e.g. A) to some other action (e.g. B) indicates

that B uses objects released by A.

c

X,Y,z

Y,z

D

----..... time

Figure 5.1: Action diagram.

Optionally, an arc can be labelled, namlllg the objects used by the action.

In Figure 5.1, B uses objects x,y and z, and C uses object x which has been

released by B. Actions such as B2 and B3 are executed concurrently. Nested

actions give rise to nested recovery. Suppose time has advanced up to the

point shown by the vertical arrow, and an error is detected in B3 causing it

to be aborted. What happens after B3'S recovery? The question must be

resolved within the scope of B - the enclosing action. B can provide a

specific exception handler to deal with this particular eventuality, such

exception handling techniques have been discussed by Taylor [Taylor86]. If

no handler is available, then a failure of B3 causes B to be aborted.

- 82 -

Object-Based versus Process-Based Distributed Architectures

Any implementation of actions and objects will require processes (clients

and servers) for carrying out the required functions. However, the role

played by processes is hidden at the application level. Similarly, there is no

explicit use of message passing between entities, since RPCs hide the details

of message interactions between clients and servers. For example, in the

Argus programming system [Liskov82], the implementation of guardians

(objects) requires a number of processes for receiving and executing calls

from clients - but processes are not visible entities to be used explicitly by

an application program. Taylor [Taylor86] describes a number of ways of

implementing atomic actions using different process structures. In the OM

architecture, objects are long lived entities and are the main repositories for

holding system states, while actions are short lived entities.

5.1.2. The process-based architecture

In contrast to the OM architecture, where processes and messages playa

secondary role, the PM architecture uses them as the primary entities for

structuring programs. An application is structured out of a number of con

current and interacting processes.

The PM architecture will be assumed to have the following characteristics:

(1) processes do not share memory, at least explicitly, and communicate via

messages sent over the underlying communication medium; (2) appropriate

communication protocols ensure that processes can send messages reliably

such that they reach their intended destinations uncorrupted and in the

sent order; (3) a process can take a checkpoint to save its current state on

- 83 -

Object-Based versus Process-Based Distributed Architectures

some reliable storage medium (stable storage). If a process fails, it IS

recovered back to its latest checkpoint.

In a system of interacting processes, the recovery of one process to its check

point can create an inconsistent global state, unless some other relevant

processes are recovered as well. This leads to the notion of a consistent set

of checkpoints or a recovery line [Rande1l78]: a set of checkpoints, one from

each process, is consistent if the saved states form a consistent global state.

Figure 5.2 illustrates the notions of consistent and inconsistent sets of

checkpoints where opening square brackets on process axes indicate check

points and sloping arrows represent messages. Suppose process p fails at

the point indicated by the vertical arrow and is recovered back to its latest

checkpoint. The global state of the system as represented by the set of

checkpoints on the cut C2 is inconsistent since the checkpoint of r has

recorded a message which has not yet been sent by p; the set of checkpoints

on recovery line Cl is however consistent. Thus a failure of p can cause a

cascade recovery of all the four processes - this is the domino effect men

tioned in [RandeIl75]. The dynamic determination of a recovery line is a

surprisingly hard task; the reader should consult [Wood81, Koo87] for a

clear exposition.

The domino effect can be avoided if processes coordinate the checkpointing

of their states. A well-known scheme of coordinated checkpoints is the

conversation scheme [RandeIl75, Banatre78, Wood81, Koo87]. The set of

processes which participate in a conversation may communicate freely

between each other but with no other processes. Processes may enter the

- 84 -

p

q

r

s

p

q

r

s

~ fail

- time

\

Figure 5.2: Consistent and inconsistent sets of checkpoints.

r--,

I L ________ ,

I
I
I
I
I
I
I
I

I
I
I

r-------------....,
I
I
I
I

r------- J

I
I
I
I
I

I
I
I

I

conversation

between q and r

I I
I I l _______ , L _________________ ~

I
I
I
I
I

conversation between p,q, rand s

I I
I I
I I L ____________________________________ ~

Figure 5.3: Conversations.

time -

Object-Based versus Process-Based Distributed Architectures

conversation at different times but, on entry, each must establish a check

point (see Figure 5.3). In Figure 5.3, a closing bracket indicates that all

participating processes must exit at the same time after taking fresh check

points (brackets will not be explicitly drawn in the subsequent diagrams).

If a process within a conversation fails then all the participating processes

are recovered back to the respective checkpoints established at the start of

the conversation. Conversations can be nested, as indicated in the figure.

Conversations provide a convenient structuring concept for introducing fault

tolerance in a large class of real time systems [Anderson81bJ. The need to

respond promptly to changes in the external environment dictates that most

real time systems have an iterative nature. The PM architecture provides a

natural way of expressing such systems in the form of interacting cyclic

processes with synchronization points usually associated with timing con

straints. A study of real time system structure for avionic systems by

Anderson and Knight [Anderson81b] indicated that synchronization of

processes in such a system stems from the need to synchronize with the

events in the external environment, rather than from any inherent needs of

processes themselves.

The most important aspects of the PM architecture relevant to the duality

mapping are summarized below. An application is programmed in terms of

a number of processes interacting via message passing. If processes estab

lish checkpoints in an arbitrary manner then there can be a danger of cas

cade recovery, which is usually undesirable. Conversations provide a coordi

nated means of managing checkpoints to avoid the danger of such a cascade

- 86 -

Object-Based versus Process-Based Distributed Architectures

recovery. However, a conversation requires the participating processes to

synchronize such that they exit from the conversation simultaneously. A

large class of applications, typically concerned with process control or real

time control, traditionally employs the PM architecture for structuring

applications. Conversations can be imposed on such applications by exploit

ing naturally occurring synchronization points among interacting processes.

In the PM architecture, processes are long lived entities and main reposi

tories for holding system states, while conversations are short lived entities.

5.2. The duality argument

The canonical architectures discussed in the previous sections are represen

tative of the corresponding class of fault-tolerant systems. Given a descrip

tion of any fault-tolerant system, it is usually straightforward to work out

its representative architecture, despite the fact that the terminology used

for the description may even differ some what from that used here. The

duality between the OM and PM architectures can be established by consid

ering objects and actions to be the duals of processes and conversations

respectively. Further, object invocations can be considered duals of message

interactions [Lauer78]. A given conversation diagram (e.g. Figure 5.4a),

can be translated into an action diagram quite simply (e.g. Figure 5.4b) by

replacing each conversation Ci with a corresponding action Ai, and adding

an arrow from Ai to Aj if Ci and Cj have at least one process in common and

that process enters Cj after exiting from Ci. An arc from one action to the

other is labelled with the objects representing the processes common to the

- 87 -

p

q

r

s

Object-Based versus Process-Based Distributed Architectures

r----------,
I I

L, :
I Cl I
I I
I I
I I L ________ ~

r--------,
I I
I I
I I
I C2 I
I I

: I
I I
L ________ .J

r--------,
I L_,

: C3
I
I
I

..... _.J
I
I
I '- ________ J

(a)

r-----'
Ii"
L, :

I C4 I
I I
, ')r
I I
I I L ____ J

Figure 5.4: Conversations and actions.

(b)

corresponding conversations. A reverse mapping is possible by replacing

distinct objects named in the action diagram by processes. An action is

replaced by the corresponding conversation determined by the set of objects

named in all the incoming and outgoing arcs of the action.

In order to support the hypothesis, it will be discussed the way in which

three major properties of a fault-tolerant computation, namely, (1) freedom

from interference, (2) backward recovery capability, and (3) crash resistance,

are embodied in the OM and PM architectures.

1. Freedom from interference. In the OM architecture, this requirement is

ensured by the serializabili ty property of actions and enforced by some

concurrency control technique, such as two-phase locking. In the PM

architecture, freedom from interference between multiprocess computa

tions structured as conversations is ensured by the two conversation

rules, (i) a process can only communicate with those processes that are

- 88 -

Object-Based versus Process-Based Distributed Architectures

in the same conversation; and (ii) a process can only be inside a single

conversation at a time (this rule can be relaxed under certain condi

tions, see later). The two-phase locking discipline for actions

corresponds to entering a conversation (growing phase) and leaving a

conversation (shrinking phase).

2. Backward recovery capability. An action in progress can be aborted

(recovered) without affecting any other ongoing actions. This recovery

property of an action is enforced in conjunction with the concurrency

control technique in use. In the case of two-phase locking, this means

that all the held locks are released simultaneously. This corresponds to

the synchronized (simultaneous) exit from a conversation which is

required from all the participating processes. The act of taking check

points at the start of a conversation has its dual in the OM architec

ture, and consists of the requirement of maintaining recovery data for

objects used within an action. It was indicated earlier that the serializa

bility property of actions can be maintained even if - for two-phase lock

ing - locks are released gradually (rather than simultaneously) during

the shrinking phase of locking; however this has the danger of cascade

aborts (recovery of an action can cause some other actions to be aborted

as well). A similar observation can be made for conversations: the syn

chronized exit requirement is necessary to prevent cascade aborts. Fig

ure 5.5 illustrates that if ~conversations' Cl and C2 do not observe the

rule of synchronized exit, and if time has advanced up to the point

shown by the vertical arrow, and Cl is to be aborted, then C2 will have

- 89 -

Object-Based versus Process-Based Distributed Architectures

to be aborted as well.

3. Crash resistance. A two-phase commit protocol is employed in OM to

ensure that despite the presence of failures such as node crashes, an

action terminates either normally, with all the updated objects made

stable to their new states, or abnormally with no state changes. A

similar protocol will be required to ensure that the states of all the

processes participating in a conversation are made stable.

A striking benefit of establishing the duality is that the body of knowledge

and techniques developed for one architecture can be mapped and applied to

the other architecture. This is illustrated with the help of the following two

examples.

Read only requests

A number of optimizations are possible if an action uses some or all of its

objects in read only mode. Read locks can be released during the shrinking

phase and need not be held till the end of the action, without the danger of

cascade aborts. Further, no recovery data need be maintained for read only

objects and they need not be involved in the two-phase commit protocol

since they do not change state. Such optimization strategies have been stu

died extensively within the context of database systems, see for example

[Mohan83]. However, no such strategies have been studied for conversa

tions, although they can be developed quite easily. Essentially, processes

inside a conversation that do not update their states need not synchronize

their exit from the conversation, nor do they need to take checkpoints at the

- 90 -

p

q

r

x

y

z

r---------------,
I I
I I
I I

l ____ .,

,..---------
I

I
I

r---.I
I C2
I
I
I
I L ___________ _

I
I
I
I
I

L. _____________ _

Figure 5.5: Cascade aborts.

r--'
I I
I I
I I

L ____ ,

I
I
I
I

r---------..J
I
I
I

I L ___ ,

I
I
I
I
I

I
I
I L __________________________________
J

Figure 5.6: Read only requests.

Object-Based versus Process-Based Distributed Architectures

start of the conversation. Consider a simple example. An action performs

the following computation: x: = y + z. Here y and z will be read locked; the

commit protocol will involve only making object x stable to its new state

and the action need generate no recovery data for y and z. Figure 5.6 shows

a possible conversation to perform the same computation. In this particular

case it is only necessary for process x to establish a checkpoint. Message ml

(m2) is a request to y (z) for some value, and message m3 (m4) contains the

value sent by y (z).

Note that even though there is a two way exchange of messages between x

and y (z), x can recover without affecting y (z), since message ml (m2) is a

read request. Indeed, y and z can take part in other conversations, while

still in Cl, provided those conversations also involve only read requests

directed to y and z. This is obviously the dual of the shared read lock mode

rule applicable in the OM architecture. It is worthwhile to note that, just

as locking can cause deadlocks among actions, similar problems can occur in

conversations.

Programmed exception handling

So far the duality has been examined from the point of view of backward

error recovery, which involves abandoning the current state for a prior

state. In contrast, forward error recovery involves selective corrections to

the current state to obtain an acceptable state [Rande1l78]. Programmed

exception handling is a means of incorporating this form of forward

recovery. A widely accepted exception handling strategy is as follows: if

during the execution of a computation an error is detected (an exception is

- 92 -

Object-Based versus Process-Based Distributed Architectures

detected) for which a specifically programmed handler is available, then

that handler is invoked; if there is no programmer-provided handler avail

able then a default handler is invoked whose function is to invoke backward

recovery. Thus, exception handling can provide a uniform means of incor

porating both forward and backward error recovery strategies [Anderson81a,

Cristian82]. A recent paper [Campbell86] proposes an exception handling

strategy for concurrent processes with conversations and describes how

processes can resolve concurrent exceptions through the use of exception

trees. It is worthwhile to note here that these exception handling ideas,

although developed using the PM architecture, have since been applied by

Taylor [Taylor86] to the OM architecture.

A summary of the various characteristics of the two architectures for which

duality has been established is presented in Figure 5.7.

5.3. Some examples

This section contains two further examples, one taken from the database

area and normally programmed using objects and actions and the other

taken from the process control area and normally programmed using

processes and conversations. It will be shown that programs written using

the primitives of one architecture have duals in the other. Simple and self

explanatory notation will be used for program description.

- 93 -

Process Model Object Model

Processes Objects

Conversations Actions

Message interactions Object invocations

Conversation rules Concurrency

preventing no outside control for

communication serializability

Stable processes Stable objects

Processes entering a Growing phase

con versa tion (two-phase locking)

Processes leaving a Shrinking phase

conversation (two-phase locking)

Read only request messages Read locks

Figure 5.7: Duality mapping.

Object-Based versus Process-Based Distributed Architectures

Banking application

An example often used to illustrate the properties of an action concerns

transferring a sum of money from one bank account to another. The failure

atomicity property will ensure that either the sum of money is debited from

one account and credited to the other, or no state changes are produced. For

the sake of illustration, the application has been structured to invoke nested

actions, even though simpler, non-nested solutions are clearly possible.

Two classes of objects will be assumed: Standing-order, and Credit-debit.

Their definitions are given by the program of Figure 5.8, which also shows

the creation of objects order, acc1 and acc2.

An invocation of 'transfer of orderC ...)' will give rise to a nested computation

as shown in Figure 5.9. Any exceptions during the execution of transfer

will cause that action to be aborted.

The same program can be recoded quite easily in terms of communicating

processes, as shown in Figure 5.10. A transfer conversation can be initiated

by sending a message to the order process. The transfer conversation is

shown in Figure 5.11.

Process control application

The second example is taken from a process control application in the coal

mining industry [Sloman87]. A pump installation is used to pump mine

water collected in the sump at the shaft bottom to the surface. The pump is

enabled by a command from the control room. Once enabled, it works

- 95 -

class Standing-order;

- - object variables - -

action transfer (credit-debit to, from; dollars amount)
cobegin

end action

authority (to, from);
credit of to (amount);
debit of from (amount)
coend

- - other actions, e.g. authority - -

end Standing-order;

class Credit-debit;

- - current account variables - -

action credit (dollars amount)
- - add amount - -

end action

action debit (dollars amount)
- - subtract amount - -

end action

- - other actions - -

end Credit-debit;

Standing-order order;
Credit-debit acc1, acc2;

Figure 5.8: Example of banking program in OM.

order,
accl, acc2

Figure 5.9: A bank action.

order,
accl,acc2

task type Standing-order;

- - process variables - -

select

conversation transfer (credit-debit to, from; dollars amount)
cobegin
send (self, authority, to, from);
send (to, credit, amount);
send (from, debit, amount)
coend

end conversation

- - other selections, e.g. authority - -

end select
end Standing-order;

task type Credit-debit;

- - current account variables - -

select

conversation credit (dollars amount)
- - add amount - -

end conversation

- - other selections, e.g. debit - -

end select
end Credit-debit;

Standing-order order;
Credit-debit acc1, acc2;

Figure 5.10: Example of banking program in PM.

r----------------------------------·
I r--------------------,

order : : authority :
I I

I I I L ____ ~ L ____________________ ~

r--------------------,
: credit : aeel
I I
I I L ____________________ ~

r--------------------,

I I
: debit : aee2
I I L ____________________ ~

----------------------------~

Figure 5.11: A bank conversation.

Object-Based versus Process-Based Distributed Architectures

automatically, controlled by water level sensors; detection of a high level

causes the pump to run until a low level is indicated. For safety reasons,

the pump must not run if the percentage of methane exceeds a certain

safety limit. Some other parameters of the environment are also monitored

by the monitoring station.

The control software can be structured as five communicating processes,

namely: Pump-controller, Surface, Level, Pump and Monitor. Some sketchy

details are given here for the Pump-controller.

The functions of the Pump-controller process are to receive start/stop com

mand from the Surface process (representing the control room), receive

water level reports from the Level process and to receive an alarm signal

from the Monitor process. The Pump-controller process can send start/stop

commands to the Pump process which controls the pump.

A study of process structure discussed in [Sloman87] reveals that the overall

behaviour of the other processes have a similar structure to the Pump

controller, either receiving requests to carry out certain functions and/or

sending messages to other processes to request certain functions to be per

formed. These interactions can be organized as conversations. A simplified

program fragment for the Pump-controller is given in Figure 5.12.

A command to enable or disable the pump from the Surface process starts a

conversation containing the Pump-controller and the Pump process: if the

conversation terminates normally, the pump will have changed state accord

ingly. It is fairly easy to reprogram this example in terms of objects and

- 98 -

Object-Based versus Process-Based Distributed Architectures

Process Model

task type Pump-controller;

- - process uariables - -

select

conversation onloff(...}
send start/stop command
to the pump process

end conversation

- - - other selections - - -

end select
end Pump-controller;

Object Model

class Pump-controller;

- - object uariables - -

action onloff(. .. }
call start/stop command
of the pump object

end action

- - - other actions - - -

end Pump-controller;

Figure 5.12: Pump-controller example.

actions, with the five processes replaced by the corresponding objects. For

the sake of illustration, the program for the Pump-controller class is also

shown in Figure 5.12.

These examples provide further empirical support to the duality claim by

illustrating that close similarity exists between the two classes of programs.

Given a program constructed from the primitives defined by one architec

ture, it can be mapped directly into a dual program of the second architec-

ture.

5.4. An application of the duality mapping

By realizing the duality between the OM and PM approaches to fault

- 99 -

Object-Based versus Process-Based Distributed Architectures

tolerance, it is possible to map techniques developed within the context of

one architecture to the other architecture. Section 5.2 showed how optimi

zation techniques for read only actions can be applied to conversations. In

the rest of this chapter, replicated process management techniques will be

developed from replicated object management techniques. More precisely,

the following problem is considered. Given is a set of concurrent processes

interacting via message passing. It is assumed that a subset of these

processes (server processes) provide various services to the remaining

processes (client processes) and these services have to be made available

despite a bounded number of server node crashes. Thus it is necessary to

replicate servers on different nodes. Algorithms for implementing such a

system where client processes interact with replicated servers within the

framework of conversations have not been studied before. Here it will be

shown how such algorithms can be developed easily by applying the duality

mapping to object replication techniques which have been studied exten

sively.

5.5. A review of object replication techniques

In a system where nodes never fail, replicated objects can easily be

managed. It is sufficient to perform any operation of an object x on all

copies of x. Unfortunately, this approach is impractical in systems where

nodes can fail and recover. For example, this approach requires that each

operation be performed on all copies of x, even if some have failed. Since

there will be times when some copies of x are down, the system will not

- 100 -

Object-Based versus Process-Based Distributed Architectures

always be able to perform the required operation on all copies of x at the

time it receives the request. If the system were to adhere to this approach,

it would have to delay processing the operation until it could access all

copies of x.

Such a delay is obviously unsatisfactory. If any copy of x fails, then no

action that invokes x can execute to completion. The more the copies of x,

the higher the probability that one of them is down. In this case, replica

tion actually makes the system less fault-tolerant.

Several techniques have been proposed to manage replicated objects. To be

specific two well-known techniques will be considered: the available copies

[Bernstein84] and the primary copy schemes [Alsberg76, Stonebraker79]. In

the following, these techniques will be briefly described. It is assumed that

nodes fail in a fail-silent manner (that is, a node is either operational or

down, it does not suffer byzantine failures), and that all operational nodes

can communicate with each other. Therefore, each operational node can

independently determine which nodes are down, simply by attempting to

communicate with them. If a node does not respond to a message within

some timeout period, then it is assumed to be down.

5.5.1. The available copies scheme

As stated earlier, an object provides a set of operations, some of which can

modify the state of the object (e.g. push and pop operations of a stack object).

Initially, it will be assumed that a node does not recover after a failure.

- 101 -

Object-Based versus Process-Based Distributed Architectures

The available copies scheme does not require an action to update all copies

of each object. An action should send every operation request to all of the

copies that it can, but it may ignore any copies that are down. After send

ing an operation request to all copies of object x, an action may receive

rejections from some nodes (if the operation is conflicting with some other

action), positive response from others (meaning the operation has been

accepted and performed), and no response from others (those that have

failed). Operation requests for which no responses are received are called

missing. If any rejection is received or if all operation requests to x's copies

are missing, then the whole operation is rejected and the action must abort.

Otherwise, the whole operation is successful. Since a fail-silent behaviour of

the nodes is assumed, anyone of the positive responses can be taken as the

result of the operation invocation.

5.5.2. Recovery

So far it has been assumed that a failed node does not recover; it is also pos

sible to provide the system with some reconfiguration mechanism, in order

to support the recovery of a copy from a failure, and in general the creation

and removal of copies of an object. To achieve reconfiguration after a node

crash, the set of nodes holding the available copies of an object must be

dynamically established.

A solution is to employ directories to record for each object x the set of x's

copies that are available. Like any other object, a directory may be repli

cated, that is, it may be implemented as a set of directory copies at different

- 102 -

Object-Based versus Process-Based Distributed Architectures

nodes. In the following discussion, it is assumed that there is a fixed set of

copies for each directory, known to every node. That is, new directory copies

are never created - the method for creating new object copies can be easily

extended to create new directory copies.

Directories recording available object copies are manipulated by two special

actions, Join for creating new object copies, and Disjoin for deleting unavail

able object copies. When a node N containing a copy of x, say x[N], recovers

from a failure, the system runs an action Join(x[NJ). Join(x[NJ) brings the

state of x[N] up-to-date by: (1) finding a directory copy d listing the set of

copies of x; (2) reading d to find an available copy of x, say x[M]; (3) copying

x[M],s state into x[N]; (4) declaring x[N] to be available by making an entry

for x[N] in each available copy of the directory d.

When a node fails, some client that tries to invoke an object operation at

that node observes the failure. The system, then, runs a Disjoin action for

each copy stored at the failed node. Disjoin declares the relevant object copy

to be unavailable by removing the entry for this copy from every available

copy of the directory.

To process an operation with this recovery scheme, the system reads a copy

of a directory and issues the operation for every copy of the object x that the

directory says is available. If the system discovers that any copy that the

directory says is available is actually unavailable, the system runs a

Disjoin(x) action. Because a recovering node uses a Join action for bringing

the states of its replicated objects up-to-date, there is no need for such

- 103 -

Object-Based versus Process-Based Distributed Architectures

objects to use stable storage.

5.5.3. Read optimization

Optimizations are possible with the available copies scheme if the semantics

of the operations is taken into account. For example, the operations

exported by each object may be partitioned into two classes: Write, which

comprises the operations that modify the state of the object, and Read,

which comprises the operations that do not alter the state of the object.

The operations of Read do not need to be invoked on all available copies of

an object but just to one, while the operation requests of Write need to be

sent to all available copies of an object. For example, in the case of the

stack object, the operation top, which returns the value at the top of the

stack without modifying the stack, can be invoked just on any available

copy of the stack. The operations push and pop are of class Write, and must

be sent to all available copies of the stack.

A distributed two-phase locking scheme can be employed for concurrency

control. The following rule is required: whenever an operation of Read is

invoked on an object, the action must first acquire a read lock (if not already

acquired) on any available copy of the object; for a write operation, the

action must first acquire write locks (if not already acquired) on all the

available copies of the object.

With such an optimization, the available copies scheme may lead to prob

lems of correctness. There will be times when some copies of an object x do

- 104 -

Object-Based versus Process-Based Distributed Architectures

not reflect the most up-to-date state of x. An action that uses an out-of-date

copy of x can create an incorrect, i.e. non-serializable, execution, even if only

failures, but not recoveries occur. To avoid this well-known problem (see

[Bernstein87] for details), a validation protocol is required. An action's vali

dation protocol starts after its operations on copies have been acknowledged

or timed out. At that time the action knows all the copies it has actually

accessed. The validation protocol makes sure that all copies that were una

vailable (available) are still unavailable (available).

The read optimization with validation protocol scheme suffers from the limi

tation that in certain situations an action has to be aborted if a failure

occurs. As has been discussed previously, without read optimization the

completion of an action can be guaranteed in the presence of a specified

number of node failures, by distributing operation requests to all available

copies. Distributing information about read requests, and in particular

about read locks, may seem unreasonably expensive. However, in [Bir

man85], a scheme for lazy propagation of read locks is mentioned which

guarantees that read lock information is delivered to a node before any

action that requires this information is executed.

The Join and Disjoin actions discussed previously are still required to sup

port recovery with read optimization. In the subsequent discussions, the

term pure available copy scheme will be used to refer to the particular

scheme without read optimization.

- 105 -

Object-Based versus Process-Based Distributed Architectures

5.5.4. The primary copy scheme

With the primary copy scheme, executing actions use a non-replicated view

of the system. That is, for each object that the actions access, the operations

are carried out on the same copy of the object, called the primary copy. The

distribution of the operations to other backup copies is delayed until the

action has terminated and is ready to commit. It is necessary therefore to

maintain an intentions list of deferred operations. During the termination

of an action, the appropriate portion of the intentions list has to be sent to

each node that contains backup copies of the relevant objects. Alternatively,

the primary copy of an object can send its new state in place of the inten

tions list. If the primary copy fails then the executing action is aborted and

can be resubmitted to use a different copy that will take over as primary.

In order to support recovery after a failure of a primary copy, it is necessary

to elect a backup copy as the new primary. A simple scheme, that does not

involve additional communication, is to determine a priori the order of

selecting the copy to use next. An alternative is to run a consensus protocol

among the backup copies - the election of the new primary copy can be

based on the current load on the system. The level of availability can be

maintained after a failure by running an action to create a new backup

copy.

With the primary copy scheme, it is possible to put all deferred operation

requests destined for the same node in a single message. This tends to

minimize the number of messages required to execute an action. By con

trast, with the available copies scheme, the action sends operation requests

- 106 -

Object-Based versus Process-Based Distributed Architectures

to replicated copies while it executes. Thus the available copies scheme

tends to use more messages than the primary copy scheme. Another advan

tages of the primary copy scheme is that aborts often cost less compared

with the available copies scheme. In the available copies scheme, when an

action aborts, it is likely that many of the action's operations have already

been distributed to replicated copies. Not only are these operations wasted,

but they must also be undone. With primary copy, the distribution of those

operations are delayed until termination time making abortion cheaper.

Fast aborts in the primary copy scheme are at the expense of commits which

can be more time consuming than in the available copies scheme. This is

because during the first phase of the commit protocol a node may be asked

to process a potentially large number of deferred operations on backups.

With the primary copy scheme, read optimization is possible - the intentions

lists of only write operations need be distributed to backup copies when the

executing action is ready to commit.

The most important aspects of the object replication techniques relevant to

this discussion are summarized below. The pure available copies scheme

provides k-object-resiliency, meaning that out of k copies of an object, all the

k copies have to become unavailable before the action using it is forced to

abort. With read optimization, k-object-resiliency is not always reachable;

this is the price paid for obtaining higher efficiency. The primary copy

scheme does not provide k-object-resiliency in the sense mentioned above;

the executing action has to be aborted if the primary fails. The action can

be resubmitted once a secondary is elected to be the primary.

- 107 -

Object-Based versus Process-Based Distributed Architectures

5.6. Process replication techniques

Process replication techniques take advantage of the existence of multiple

processors by replicating critical processes on two or more nodes.

A terminology commonly used for classifying the redundancy employed in

PM is to differentiate active redundancy from passive redundancy. With an

active redundancy scheme, a given computation is executed simultaneously

on a number of processes, while with a passive redundancy scheme, if the

process running the computation fails then a designated backup process

takes over. Not surprisingly, active redundancy techniques correspond to

the available copy schemes and passive redundancy techniques to the pri

mary copy schemes.

The duality mapping between object and process replication schemes is

shown in Figure 5.13.

5.6.1. The available processes scheme

The dual of the available copy scheme results in an approach where repli

cated processes behave like a single process. Interactions with a replicated

process implies interactions with all of its replicas. A copy of a request to a

replicated process is sent to all replicas, and all replicas execute each

request. In case a reply is required, all replicas generate replies; only the

first reply received is considered, and the others are discarded (since the

replies from all working replicas should be identical under the fail-silent

assumption on processor behaviour). A reconfiguration strategy for the

- 108 -

Object
replication

Process
replication

p

x[A]

y[C]

x[B]

y[D]

q

Active replication Passive replication

pure form
read

pure form recovery optimization recovery

available available available primary primary
copy copy+join copy + copy copy +

validation election

available available available primary primary
process process + process + process process +

join validation election

Figure 5.13: Object and process replication.

r------------------------------------~ I

rex) Cl w(y)

I
I
I
I
I
I
I
I
I

read
optimization

only writes
in intentions

list

only state
changes in
intentions

list

____ +-____ -L __ ~C·Ig§~---------------- -----t------------

L ____________________________________ ~

i------------------------------------i

------+----T--~crash----------------------

w(x)

I
I
I -r----------
I
I
I
I
I
I
I
I
I

I

~------------------------------------~

Figure 5.14: Incorrect execution.

Object-Based versus Process-Based Distributed Architectures

available processes scheme can be designed by adopting the directory based

scheme. Note that replicated processes need not record their checkpoints on

stable storage (see Section 5.5.2).

5.6.2. Read optimization

Read optimization can be achieved in PM using the approach employed in

OM. Assume that processes receive message via message ports which are

data structures capable of holding messages of a certain class. Message

ports can be of class Read, capable of receiving messages whose processing

does not alter the state of the receiver process, and Write, capable of receiv

ing messages whose processing can alter the state of the process. A message

intended for a read port of a process need not be sent to all available copies

of that process.

Read optimization in PM results in weakening of the conversation rule.

Instead of having all the copies of a replicated process participating in only

one conversation at a time, a replicated process can take part in more then

one conversation, if only requests of Read are being served.

This optimization may lead to problems of consistency similar to those

encountered in OM, as can be appreciated by considering the process

diagram of Figure 5.14. Here a system with non-replicated processes p and

q and replicated processes x (copies x[A], x[B]) and y (copies y[C], y[D]) is

considered. Suppose that within the conversation Cl, p reads the state of x

and updates the state of y, denoted by rex) and w(y) respectively, and that,

within the conversation C2, q reads the state of y and updates the state of x,

- 110 -

Object-Based versus Process-Based Distributed Architectures

denoted by r(y) and w(x).

Conversation CI begins by reading from x[A], and conversation C2 begins by

reading from y[D]. After p and q complete their reads, processes x[A] and

y[D] fail. Then p and q perform their writes. Since y[D] is down, y[C] is the

only available copy of y. So CI'S w(y) is invoked only on y[C]. Similarly,

since x[A] is down, C2'S w(x) is invoked only on x[B].

The execution above does not violate the conversation rule for read optimi

zation (just as in OM, the two-phase locking rule will not be violated).

However, this execution is not equivalent to any serial execution. A serial

execution of CI and C2 on a non-replicated system would have either CI

reading the value of x written by C2, or C2 reading the value of y written by

CI - in the example neither conversation reads the data written by the

other.

The dual of the validation protocol is required at the end of conversations to

ensure correctness. The aim of the validation protocol in the PM is to make

sure that all processes found unavailable (available) during the execution of

a conversation are still unavailable (available).

5.6.3. The primary process scheme

With the primary process scheme, the same copy of a replicated process,

called primary process, takes part in conversations. A replicated process is

provided with backup processes on different nodes (in particular, just one

backup process might be employed). Request messages are sent to the pri-

- 111 -

Object-Based versus Process-Based Distributed Architectures

mary process, which handles the requests. The distribution of requests to

other backup processes is delayed until the end of the conversations. At

that time, the primary copy sends the list of requests served during the

conversation to the other backup processes. Alternatively, the primary pro

cess can send a checkpoint of its new state to the backup processes. In the

event of a primary process failure, the executing conversation is recovered

to the beginning and restarted with a backup process which takes over and

become primary. The dual of the election scheme mentioned earlier will be

required to select the new primary process.

5.7. Some existing process replication schemes

Schemes following the available processes approach have been proposed in

the literature independent of the data replication techniques [Schneider87,

Cmelik88]. In [Schneider87], a general approach is proposed for coordinat

ing copies of replicated processes so that each copy executes the same

sequence of process interactions. This is achieved by the implementation of

the abstractions of agreement and order. A similar approach is adopted in

[Cmelik88], where client processes send request messages to all the copies of

a replicated server, and a distributed consensus protocol for every request is

employed to enable each copy of the server to process requests from different

clients in the same order. However, these papers do not describe how aborts

are performed and domino effect avoided if a client recovers back. Further

more, reconfiguration mechanisms have not been proposed, nor any con

currency control techniques described in [Cmelik88J,

- 112 -

Object-Based versus Process-Based Distributed Architectures

The available process scheme discussed in Section 5.6.1 provides a complete

solution to these problems. Conversations can be exploited for reducing the

frequency of the distributed consensus protocol. In particular, once a repli

cated process has agreed to participate in a conversation with a client ,

request messages can be served without further agreement until the end of

the conversation.

A technique resembling the primary copy scheme has been described by

Borg et al. [Borg83]. Whenever a message is sent to a process, the same

message is forwarded to the backup process. The system ensures that both

the processes cannot continue running until it has been verified that both

have correctly received the message. Thus, if one process crashes because of

any hardware fault, the other one can continue. Furthermore, the remain

ing process can then clone itself, making a new backup to maintain the

fault-tolerance capability.

One disadvantage of Borg's approach is that, if processes exchange messages

at a high rate, a considerable amount of CPU time may go into keeping the

processes synchronized at each exchange. This disadvantage can be miti

gated by adopting the scheme discussed by Powell and Presotto [Powe1l83l

The system described in that paper puts almost no additional load on the

processes being backed up. All messages sent on the network are recorded

by a special recorder process. From time to time, each process checkpoints

itself onto a remote disk. If a process crashes, recovery is carried out by

sending the most recent checkpoint to an idle process which starts running.

The recorder process then sends to the newly created process all the

- 113 -

Object-Based versus Process-Based Distributed Architectures

messages that the original process received between the checkpoint and the

crash. The primary process scheme developed here to work in conjunction

with conversations reduces the need for frequent message exchanges by

employing the dual of the deferred update technique used in the primary

copy scheme.

5.S. Concluding remarks

After examining the structure of a variety of systems, two canonical archi

tectures of fault-tolerant systems were developed, one of which is represen

tative of the techniques and terminology used within the database systems

community, the other of which is more closely allied to the real time and

process control applications area. These architectures were shown to be

duals of each other. Although, in retrospect, this may not appear to be a

surprising conclusion, particularly given the Lauer and Needham paper, it

has not been realized before how direct and complete the relationship

between the two architectures was, and there is not any earlier literature

explaining and exploiting this duality. Instead, one finds that fault-tolerant

systems are constructed and described using the concepts and terminology

applicable to just one of the two architectures, with no apparent realization

of the potential relevance of systems and the literature describing them

which make use of the other architecture. However, it has to be recognized

that the duality previously discussed is sometimes obscured by the fact that

many process control applications are structured as a small and fixed

number of processes, whereas it is more usual to find object-based systems

- 114 -

Object-Based versus Process-Based Distributed Architectures

which contain a large and dynamically varying number of objects.

The arguments to support the duality claim were based on an examination

of three properties of a fault-tolerant computation, namely; freedom from

interference, backward recovery capability and crash resistance. It was

shown that mechanisms employed to implement a given property in one

architecture have duals in the other. Similarly, any particular behaviour

observed in one architecture has its dual in the other. Examples presented

in this chapter show that programs developed using the primitives of one

architecture can be mapped easily to the programs of the other architecture.

Indeed, it could be claimed that the differences between the two architec

tures are principally a matter of viewpoint and terminology.

The establishment of the equivalence between the two approaches to fault

tolerance has several interesting implications, some of which are

enumerated here.

1. There seems to be no inherent reason with respect to fault tolerance for

favouring one approach over the other. For example, there is no obvi

ous reason why a real time system must be designed using the primi

tives of the PM architecture. In fact, one is led to state that the choice

for a given system should not be dictated by the application area but by

the architectural features of the layer over which the system is to be

built.

2. It can also be stated that a single system based on either architecture

can in principle, support both classes of applications.

- 115 -

Object-Based versus Process-Based Distributed Architectures

3. It may further be speculated that, were sufficient representative sys

tems of each kind available for detailed evaluation and comparison, it

would be found that the observation made in [Lauer78] regarding the

invariance of operating system performance under two classes of sys

tems also applies to this fault-tolerance duality.

4. Techniques and mechanisms which happen to have been developed

within the domain of just one of the architectures can be mapped and

applied to the other architecture. Several examples were presented to

illustrate this observation. It was shown that optimization techniques

developed for read operations of actions can be applied to optimize

conversations. A second example indicated that the exception handling

framework developed for the PM architecture can be applied to the OM

architecture. Finally, by making use of the duality mapping proposed,

interesting techniques for replicated process management were

developed. Some existing process replication techniques were also

described to show that they are special cases of the schemes derived

here.

5. The ideas from this chapter can be used for the design of fault-tolerant

systems with minimum set of compatible concepts, thus allowing

several degrees of freedom in the design process to be eliminated, lead

ing to well structured systems.

6. Finally, given that, as discussed in [Dobson86], there is the prospect of

using certain kinds of fault-tolerance techniques to provide increased

security and not just increased reliability, it appears that the duality

- 116 -

Object-Based versus Process-Based Distributed Architectures

mappmg presented here can be extended and applied to clarify and

illuminate at least some of the literature discussing various approaches

to building multi-level secure systems.

Another important issue in distributed systems, whether they are built as

object-based or process-based, is that of garbage collection. The following

chapter will address specifically the notion of distributed garbage collection,

and for convenience the terminology used will be object-based.

- 117 -

Chapter 6

An Example of Object-Based Distributed System Design:

Fault-Tolerant Garbage Collection

The function of a garbage collector in a computer system is to reclaim

storage that is not needed any more. Developing a garbage collector for a

distributed system composed of autonomous computers (nodes) connected by

a communication network poses a challenging problem: optimizing perfor

mance whilst achieving fault tolerance. This chapter presents the design

and implementation of a reference-count garbage collection scheme which is

both efficient and fault-tolerant. A distributed object-based system is con

sidered where there can be inter-node object references, and operations on

remote objects are invoked via remote procedure calls. The orphan treat

ment scheme associated with remote procedure calls has been enhanced to

enable the collection of garbage arising from node crashes.

First, this chapter contains a brief review of existing work on distributed

garbage collection. Next, it gives an overview of an RPC mechanism with

an orphan detection and killing facility designed and built at Newcastle.

Finally, the enhancements necessary will be described. This chapter is a

revised and extended version of work reported earlier [Mancini88b].

- 118 -

Fault-Tolerant Garbage Collection

6.1. Notes on garbage collection

The function of a garbage collection scheme is to automatically reclaim

storage that is no longer in use by computations. This automatic collection

of storage frees the programmer from dealing with the complexity of dynam

ically determining which objects are needed and which are not at any par

ticular time. Storage for objects is allocated from a heap. In simple systems

the heap is kept in the primary store, so objects are volatile. An object is

defined to be accessible if it is reachable from a fixed object called the root.

The two main garbage collection schemes are (1) mark-scan, and (2)

reference-count.

1. A great majority of garbage collectors for non-distributed systems

employ the mark-scan technique [Knuth72]. Mark-scan garbage collec

tion needs to be invoked only when there is no free storage available;

otherwise it imposes no performance penalty. When the collector is

invoked, all other computations are stopped and storage for objects that

are not accessible is collected for reuse. Starting from the root, the first

phase (mark) causes all references to be traced and every object actually

in use to be marked. The scan phase examines the mark on every

object; unmarked objects are free and their storage spaces are collected

together for reuse.

A major objection to the mark-scan technique is that all of the ongoing

computations must be halted when the collector is invoked. This has

- 119 -

Fault-Tolerant Garbage Collection

the effect of making an application suddenly unresponsive while the

collection is taking place. Such unpredictable and often lengthy interr

uptions are unacceptable in real time applications. In a distributed sys

tem the problem is even more serious since work on all nodes must be

halted for a global search to take place when anyone processor runs out

of memory. Another disadvantage is that all objects must be scanned

(no matter how many are free), so the cost of this technique is propor

tional to the total number of objects in the system.

A number of proposals have been made to circumvent these problems.

Although versions of mark-scan have been developed which operate in

parallel with normal processing [Dijkstra78], the garbage collection is

still global in the sense that the entire system needs to be searched.

2. A simple way to automatically collect unused storage is to associate

with each object a reference-count field recording the number of refer

ences to that object. The reference-count is incremented each time a

new reference is created by an object and decremented each time an old

reference is removed by an object. When the count falls to zero, no

references remain and the storage block can be deallocated [Cohen81].

Reference counting, unlike mark-scan, does not require that application

processes be halted during collection. The overhead due to the algo

rithm is spread across object manipulations, which makes this tech

nique suitable for real-time and interactive programming environ

ments, as shown in [Eckart87]. Moreover, reference counting is local-

- 120 -

Fault-Tolerant Garbage Collection

ized, an object can be collected without examining the state of the

whole storage. So this technique appears to be suitable for implement

ing garbage collection in a distributed system. The major objection

raised to this scheme is that it cannot collect cyclic linked data struc

tures. An unused cyclic list will not be reclaimed - each individual cell

in the list will have a non zero reference-count, although the list as a

whole is no longer needed. Several algorithms to solve this problem

whilst retaining most of the advantages of reference-count over mark

scan garbage collection have been proposed [Bobrow80, Brownbridge85,

Vesta187].

Garbage collection of a single storage heap has been widely discussed for

many years; this chapter is concerned with garbage collection in distributed,

unreliable systems. In such systems, 'the heap' turns out to be distributed

among the nodes of the system. Such a distributed heap can be viewed as a

heap whose root is distributed and consists of the union of the roots at all

nodes. In such an environment, an object is accessible if it is accessible from

one of the roots. Several algorithms to perform distributed garbage collec

tion have been published recently [Hudak82, Ali84, Wiseman89].

Hudak's collection scheme is based on performing a global mark-scan collec

tion beginning at a unique, system-wide root object [Hudak82]. Each object,

beginning with the root, first checks if it has been marked. If not, it marks

itself, sends a mark message to each object that it references, and awaits

replies from all these objects. This may be viewed as each object containing

a mark procedure that recursively calls the mark procedures of all objects

- 121 -

Fault-Tolerant Garbage Collection

reachable from it. The collection terminates when the root procedure

returns.

Ali describes a number of algorithms for use in a distributed system [A1i84].

The most advanced of his algorithms adopts a technique similar to

[Baker78], and does not require any sort of synchronized global collection - a

collector only examines a portion of the total space each time. This tech

nique also permits the collector to perform in parallel with other processes.

However, his algorithm cannot collect cycles that span more than one node.

Another method has been proposed in [Wiseman89]. Here, a mark-scan

algorithm is presented to collect a recursively structured heap, which is par

titioned into disjoint (logical) areas. The areas may themselves be parti

tioned further into more areas, which are collected in parallel exploiting the

traditional technique of divide and conquer - the mark-scan of an area is

effected by combining the results of the lower level mark-scans rather than

with extra phases. If the various areas are located at separated processors

of a distributed systems, an additional phase to detect the distributed termi

nation of the mark-scan process is required to prevent accessible objects

being marked inaccessible. This method permits the collection of all inac

cessible objects, and in particular of those forming circular structures.

None of the methods discussed so far have addressed the problem of fault

tolerant garbage collection in distributed systems. This topic, although

important, has not received much attention. The author is only aware of

two papers [Liskov86, Vesta187] which address this issue.

- 122 -

Fault-Tolerant Garbage Collection

The scheme presented in [Liskov86] exploits a reliable central service to

store information about inter-node references. The nodes communicate with

the central service periodically, to inform it about their references to objects

at other sites, and to inquire about the accessibility of any local objects that

might be referred to at other sites. Having a central service which deals

with inter-node references reduces the problem of distributed garbage collec

tion to a local one, hence allowing the use of standard garbage collection

techniques. This approach requires the central service to use a large

amount of storage to record the map of the distributed heap - in the worst

case such a storage might be as large as the whole distributed heap.

In [VestaI87], two fault-tolerant garbage collection algorithms for object

based distributed systems are presented. The first algorithm combines

reference-count with an algorithm to collect circular object structures.

Vestal's solution maintains a separate reference-count, called local

reference-count, in every node that contains any references for a gIven

object. The object itself contains a list of nodes that have local reference

counts for it. An object obtains the actual reference-count by summing all

the local reference-counts. These local reference-counts will continually

experience creation, change, and deletion during the operation of the sys

tem. The problem then arises of computing a single global reference-count

for an object in parallel with other processes. A solution is proposed requir

ing the synchronization of the physical clocks and the execution of certain

procedures atomically with respect to failures. The failure atomicity pro

perty is also exploited to guarantee reliable copy of a remote reference

- 123 -

Fault-Tolerant Garbage Collection

among nodes. The second of Vestal's algorithm uses a parallel mark-scan

collector based on the algorithm presented in [Dijkstra78]. It resembles the

solution in [Ali84], but can collect cycles that span more than one node with

high probability.

The scheme presented by Liskov and Ladin is different from the one

presented in this chapter in that it employs a centralized (replicated) service

for recording object references whereas the latter does not employ such a

service. The first of Vestal's solutions has the drawback that to collect a

cycle the algorithm needs to start at an inaccessible object lying within the

cycle. Finding an effective heuristic for choosing such an object is not sim

ple, and requires research into the exact behaviour of the particular system.

The second of Vestal's solutions does not guarantee the collection of inacces

sible cyclic structures. This is because it is possible, though quite unlikely,

that cyclic structures of inaccessible objects will be moved round a ring of

nodes, each node attempting to localize the garbage by passing it on to the

next. Vestal does suggest possible ways of reducing the probability of such

an event occurring, but these effectively cause the garbage collectors at

different nodes to synchronize, which nullifies the benefits of independent

garbage collection of nodes.

The next section briefly introduces the model of computation and the termi

nology employed in the rest of the chapter.

- 124 -

Fault-Tolerant Garbage Collection

6.2. Object-based garbage collection and reliability requirements

In order to present the garbage collection scheme, a typical implementation

of object-based systems is considered. In such an implementation, each

object is associated with a unique name - a capability - which is used to con

trol access to the object. A capability is context-independent in that, regard

less of where the capability is stored in the system, it always refers to the

same object. To emphasize the distributed nature of the system, capabilities

for remote objects are referred to as remote capabilities (RCs). The

existence of some method is assumed for locating objects efficiently, given

these objects' RCs. In such a capability system, an object is treated as gar

bage, if no capabilities for it exist.

In a distributed object-based system, an operation on a remote object is typi

cally performed by invoking the operation of the object via an RPC with the

RC for the object as one of the arguments. Below, the terminology employed

is introduced, and illustrated with the help of Figure 6.1, which shows an

object x at node B holding an RC for an object y at node A (this is indicated

by the dashed line). The node where an object is located is called the owner

of the object; the object is local to that node. An object will be termed public

if its owner has sent its capability to some other node (so y is a public

object). A local object that is not public will be termed private. Some

mechanism is required to allow that RCs for remote objects appear the same

abstraction as local object capabilities. One such mechanism is illustrated

in Figure 6.1, where object x holds an RC for remote object y. Each node

maintains two objects called the export list and the import list. The export

- 125 -

NodeB

Node A

Figure 6.1: Object x holds an RC for object y.

Fault-Tolerant Garbage Collection

list of a node maintains a list of all public objects of that node, whilst the

import list maintains all the RCs of that node. Specific details of how

objects come to hold RCs for other objects are not directly relevant for the

discussions, so will be glossed over. It will, however, be assumed that

objects are capable of transferring (copying) their RCs to other objects.

A distributed computation is performed by client and server processes. The

invocation of an operation on y by x will be carried out as follows: a client

process at node B obtains RC j for y from the local import list and sends a

call request containing j to a server process at A. The server process at A

uses the RC j received to get the address of object y from the export list; it

then performs the requested operation on y and sends the results back to

the client. It will be assumed that a server process can be used for serving a

sequence of calls from a given client. Servers and clients are created by the

RPC mechanism as the need arises.

It will be assumed that a crash of a node causes volatile objects to be des

troyed; in addition a crash also destroys all the processes of that node. A

node can also own stable objects which are not destroyed by a crash. There

are thus three possible kinds of object-based systems from the point of view

of fault tolerance:

1. All objects are volatile (temporary) and are lost with crashes. In such a

system, if node B crashes, then x, the client process, the export and

import lists of B and therefore the RC for y at node B vanish and the

server on A will become an orphan computation. Assuming that only x

- 127 -

Fault-Tolerant Garbage Collection

held an RC for y, then y will become garbage. It will be assumed that

lifetimes of volatile objects do not exceed that of computations which

created them; thus, a volatile public object will always have one or

more server processes associated with it.

2. All objects are stable (persistent): objects, including import and export

lists, survive crashes. The lifetime of stable objects can exceed the life

time of the computations which manipulate them. In this case, x, the

import list and therefore the RC for y survive a crash of B. It is worth

noting that such a crash will cause the server process to become an

orphan computation, but y will not become garbage. A distributed sys

tem with stable objects will typically need to structure its computations

as atomic transactions [Gray78] in order to maintain consistency. How

ever, such a provision is orthogonal to the garbage collection scheme.

3. A subset of the objects is stable and the remaining part is volatile.

Naturally, only the volatile objects of a node will vanish because of a

crash with the possibility of creating garbage on other nodes.

An RC will be called stable if it is held by a stable object, and volatile if it

is held by a volatile object. A crash of a node may cause some remote public

objects to become garbage. Consider the system shown in Figure 6.2. Sup

pose that x deletes its RC for y at node A and then a crash of node C occurs;

in this case, y becomes garbage and must be reclaimed by the garbage col

lection system. There is also a second case where node crashes may cause

dangling references. For example, a crash of node D in Figure 6.2 will

- 128 -

NodeB NodeC

volatile stable volatile stable

0 0 I , \ , I , \ ,
I , \

I \ , \ I \
I \ ,

\
I \ I \

I \ , \
I \ , \

I \ I \
I \ I \ I \

I \ I \
I \ I \
I \ I \

I \ , \
I \ I I
I \ , I
I \ I I
I \ I \
I \ I \ ,

\ I \
I \ I 1 I \ I 1 I \ I I I \ I I I \ I I I \ I I I \ I

\ I I I
\ I I 1 \ I I \ ,

I I \ \ I I I ,
I I \ I I ,

I I
\ ' I I)r I I , I
I / , I

Node A
I / ,

NodeD I I / , / / ,
I· / , :1
I; / "-

volatile r stable volatile stable / , ,
/ "- /.

~ / "- ,;
;\ / "- I:

0
/ "-

0' .,- '-

Figure 6.2: Stable and volatile objects and Res.

Fault-Tolerant Garbage Collection

cause x and w to hold RCs for z which no longer exists. As such, an invoca

tion of some operation on z by x or w may well cause a run-time exception

whose treatment should be orthogonal to the functioning of the garbage col

lection system. Such dangling references can be detected simply by record

ing the time at which a node is initialized. This time is made part of all

RCs to objects stored in the node. When an RC is used, a check is made to

see if the time in the RC is the same as the time when the node was initial

ized. If not, the node must have crashed and so the RC is invalidated. The

following sections will concentrate in particular on developing a distributed

garbage collector capable of dealing with the first undesirable situation.

The requirements that a distributed garbage collector for an object-based

system should meet are given below.

• The collection scheme should be capable of handling both volatile and

stable objects of varying size.

• The scheme should be applicable to both real-time and interactive pro

gramming environments. For example, a scheme which required stop

ping all ongoing computations in the entire system while performing

garbage collection would be unacceptable.

• The scheme should be fault-tolerant to failures that occur during collec

tion. In a distributed system, part of the system can fail while other

parts still function. This behaviour imposes various reliability-related

requirements on garbage collection. For example, collection of garbage

- 130 -

Fault-Tolerant Garbage Collection

created by node crashes should be guaranteed at non-crashed nodes, and

the collection mechanism should be able to cope with the transfer of

Res among nodes in the presence of failures.

• In most distributed systems, sending a message from one process to

some remote process is a relatively slow operation (consuming anything

from a few to several milliseconds of time), so the garbage collection

scheme should strive to minimize network communication require

ments.

The distributed garbage collection scheme presented here has several

interesting features: (1) it is tolerant to the following types of failures: node

crashes (fail-silent behaviour will be assumed, that is, a crashed node com

pletely ceases to function), and lost, duplicated, delayed and out-of-order

messages; (2) it does not require elaborate facilities such as failure-atomic

procedures or synchronized clocks; (3) individual nodes in the system are

free to choose any local garbage collection technique; (4) the design can rely

on a close integration with the orphan detection scheme of a remote pro

cedure call mechanism, thus enabling the exploitation of existing fault

tolerance facilities.

In the scheme presented in this chapter, relevant information about inter

node references is stored at each node using a technique based on the

reference-count method. There are two correctness requirements for a refer

ence counting garbage collector:

- 131 -

Fault-Tolerant Garbage Collection

SAF: if the reference-count of an object is zero, then there are no references

for that object;

LIV: if there are n (n 2 0) references in the system for an object, then that

object will eventually have its reference-count equal to n.

Bearing in mind that in a reference counting scheme an object is collected if

and only if its reference-count is zero, these two requirements can be seen as

the statements of safety and liveness properties. The first requirement, SAF,

states the safety property that nothing bad happens (viz. referred objects do

not get collected), but it does not ensure that something good happens: the

garbage collector might leave all objects with positive reference-counts (viz.

never collect any objects) and still satisfy SAF. The liveness property LIV is

therefore needed to guarantee that actual progress does take place. The live

ness property requires the updating of reference-counts.

In the next section, the orphan detection method that will be used as a basis

for the fault-tolerant reference-count service will be briefly presented.

6.3. RPCs and orphan detection and killing

Orphans are unwanted executions that can manifest themselves due to com

munication or node failures [Nelson81]. In the following it is assumed an

exactly-once semantics for RPCs: a normal termination (the client receives a

reply from the called server) implies exactly one execution. An abnormal

termination can mean zero, partial or one execution at the called server. A

call is said to terminate abnormally if the termination occurs because no

- 132 -

Fault-Tolerant Garbage Collection

reply message is received from the called server. Network protocols typically

employ timeouts to prevent a process waiting for a message from being held

up indefinitely. Based on the client-server model, Panzieri and Shrivastava

[Panzieri88] have recently developed an efficient technique for orphan treat

ment for RPCs with exactly-once semantics. There are three mechanisms

used for treating orphans:

(i) Every call contains a deadline, indicating to the server the maximum

time available for execution. If the deadline expires, then the server

aborts the execution and the call terminates abnormally. It is

worthwhile to note that if there are no node crashes in the system, then

this mechanism will be enough to cope with orphans. The remaining

two mechanisms cope with crashes.

(ii) Every node maintains a variable - called the crashcount - which is ini

tialized to the current value of the local stable clock immediately after

a node recovers from a crash. A node also maintains a table of crash

count values for clients that have made calls to it. A call request con

tains the client's crashcount value - if this value is greater than the one

stored in the table at the called server node, then there could be

orphans at the server node which are first aborted before proceeding

with the call.

(iii) Every node has a terminator process that occasionally checks the crash

count values of other nodes - by sending messages to them and receiv

ing replies from those that are up - and aborts any orphans when it

detects any crashes.

- 133 -

Fault-Tolerant Garbage Collection

These mechanisms have been optimized to provide a cheap orphan treat

ment system. In particular, no stable storage is required (other than the

stable clock which is available in most computers anyway) and there is no

need to keep clocks synchronized. Further, the terminator based mechanism

has been optimized as follows: a server that has not received calls from a

client for a while marks itself as a potential orphan. The terminator need

only perform its checks for potential orphans. Finally, the RPC mechanism

copes with message failures (lost, duplicated and delayed messages) by

employing well-known protocol-related techniques which will not be dis

cussed here.

Given that each node has an orphan detection facility, it seems natural to

embellish it for garbage detection. Referring to the example discussed pre

viously, a crash of a node B can leave garbage at node A, which can be

detected by node A while detecting orphans. Such an integrated orphan

detection and garbage collection mechanism is the main subject of the sub

sequent sections. In particular, what follows will describe enhancements

made to the mechanisms (ii) and (iii) above to provide garbage collection.

6.4. Fault-tolerant garbage collection

The main features of a distributed fault-tolerant garbage collection scheme

exploiting the above orphan treatment system will be presented in the fol

lowing sections. Section 6.4.1 presents a simple fault-tolerant scheme for

volatile objects to be used when transferring of RCs is not permitted. In Sec

tion 6.4.2 the refinements required to cope with RC transfers will be

- 134 -

Fault-Tolerant Garbage Collection

discussed. Only the mechanisms (ii) and (iii) of the orphan detection scheme

discussed in the previous section will be exploited, namely every node is

required to maintain a crashcount and to run a terminator process occasion

ally. Note that mechanism (i) is not considered, because reclaiming garbage

in the presence of node and communication failures is the central topic of

this scheme. Section 6.4.3 discusses how the scheme can be extended to

cope with stable objects. Since the scheme presented here is based on the

reference-count technique, it suffers from the well-known limitation that it

is incapable of collecting objects if inter-node references form a cycle. How

ever, it will be shown in Section 6.4.4 that this limitation can be removed

by extending the design.

6.4.1. Treatment of node failures

N odes are responsible for doing local garbage collection. Only private objects

are candidates for garbage collection at a node. Each local garbage collector

treats the objects not accessible from the local root as garbage. Since the

export list is always accessible from the local root, all the public objects not

accessible through the export list become private. Therefore the problem of

designing a fault-tolerant distributed garbage collector reduces to the design

of a protocol to keep the exports lists consistent with the import lists

throughout the distributed system. Note that public objects may be used

locally as well; these objects will be collected only when neither local nor

remote capabilities exist for them.

At each node there is a reference-count service, integrated into the RPC

- 135 -

Fault-Tolerant Garbage Collection

mechanism, which is responsible for determining the accessibility of public

objects. The reference-count service of a node achieves its aims by updating

the export and import lists mentioned earlier. An entry is added to the

export list the first time a capability for a local object is sent to another

node (i.e. when a private object becomes public). This entry includes a

reference-count field indicating the number of objects that hold RCs for this

public object. The export list provides the local garbage collector with the

information necessary for detecting objects that are no longer public (an

object whose reference-count field in the export list reaches zero becomes

private and therefore a candidate for garbage collection if no local references

exist).

The objects listed in the export list may be a superset of those actually used

by other nodes. For example, referring to Figure 6.1, suppose that x at node

B holds the only RC for y at node A, and that x is deleted at B. Object y is

no longer accessible, yet there will be a positive reference-count in A's

export list until some further action is taken at A.

During local garbage collection, the collector is required to construct a junk

list of all the imported Res deleted, and then update the import list after

finishing the local garbage collection. The reference-count service of a node

is responsible for distributing the junk list to other nodes. Thus the receiv

ing nodes are provided with the information necessary to update their

export list in order to assess the accessibility of their public objects. The

junk list need not be kept stable because the garbage due to node crashes is

detected by the orphan detection mechanism. Each node does its garbage

- 136 -

Fault-Tolerant Garbage Collection

collection independently of other nodes, usmg an algorithm of its choice.

The algorithm must however be extended slightly to take account of the

export, import and junk lists. It is worth noting that the construction of the

junk list can be performed without any additional scan of the storage.

A data structure referred to as client list, which is a list of ClientElem

records (see Figure 6.3), is maintained by the RPC orphan detection scheme

at a node and contains information about all the client nodes that have

made calls to this particular node [Panzieri88]. An entry of type RClist is

required for garbage detection purposes.

type ClientElem = struct (Name clientNode % client node address %
Real crashCount % crash count value of the clientNode %

% list of servers created for the clientNode %
ServerList serverList

% list of the public objects used by the clientNode %
RClist rcList);

Figure 6.3: Client list data structure.

The RClist lists the public objects capabilities that have been used by the

client whose name is recorded in the clientNode. The server List field con

tains the names of local servers which have been created for the clientN ode.

The client list and export list of a node are initialized to be empty at the

node startup time.

The protocol followed at each node in order to support the distributed gar

bage collection service will now be discussed.

- 137 -

Fault-Tolerant Garbage Collection

When a capability for a local object at some node A is to be exported to some

other node B as a result of a call request invoked by a client process at node

B, the called server process running on node A performs the following steps:

(1) If the export list at node A contains an entry for the capability being

exported, then its reference-count value is incremented by one, other

wise a new element is added to the export list, with the reference-count

field initialized to one;

(2) The capability being exported is inserted in the rcList field of the entry

for node B in the client list at node A.

Whenever an orphan server is aborted at node A because a crash of node B

is detected, either by some server at node A or by the terminator of node A

(respectively mechanism (ii) and (iii), Section 6.3), the following steps are

performed at node A:

(1) All the public objects recorded in the rcList field of the client list entry

for node B get their reference-count values in the export list at node A

decremented by one. Entries with reference-count field containing zeros

are deleted from the export list thus making the relevant objects

private;

(2) The entry for node B is removed from the client list. Thus ensuring that

the previous step is performed only once.

- 138 -

Fault-Tolerant Garbage Collection

A node, say B, periodically sends its junk list to other nodes. Upon receiving

this list every node performs the following operations for each RC in the

junk list sent by node B:

(1) It checks if the RCs sent by B correspond to any public object in the

rcList field of the entry for node B in the client list, and if so,

(2) It deletes the relevant public object capability from rcList and decre

ments the appropriate reference-count field of the export list by one. If

the field is zero then that entry is deleted as stated earlier.

It is worth noting that inaccessible cyclic structures of RCs can be collected

if a crash of a node breaks the cycle. In this case orphan servers of that node

will be detected on at least one other node forming the cycle thus causing

the storage for the cyclic structure to be reclaimed.

The above mentioned operations represent minor modifications to the exist

ing orphan detection and killing system whose design has been analyzed

and shown correct in a formal setting in [Pappalard088l It is worth noting

that the scheme presented so far ensures SAF and LIV requirements in the

absence of RC transfers. SAF, which requires that only those objects for

which no RCs exist (viz. those objects with reference-count equal to zero)

become private, is ensured because the objects listed in the export list are

always a superset of those actually needed by other nodes. The reference

count of a public object, say y, is decremented only after either (1) some

node holding an RC for y crashed causing the RC to vanish, or (2) some

- 139 -

Fault-Tolerant Garbage Collection

node sent a junk list containing the RC for y. LIV is ensured in the presence

of crashes because orphan servers will eventually be aborted, thus causing

the updating of the relevant reference-counts.

Inconsistencies can arise due to crash of nodes during the transfer of RCs. In

this case the scheme presented so far does not ensure that only objects

without RCs for them will have reference-counts equal to zero. In the fol

lowing section this and other issues will be discussed.

6.4.2. Reliable transfer of remote capabilities

One additional mechanism is required to transfer RCs reliably while

preserving SAF and LIV. Consider the following example. Node A is the

owner of a public object and node B holds an RC for that object. B now

transfers this RC to some node C as a result of a request by C. Inconsisten

cies can arise if B crashes (causing its RC to vanish) after sending its RC to

C, but before informing A about the RC transfer. In this case SAF may be

violated - because the public object owned by A can be garbage collected,

leaving C to hold an RC for a non-existing object. In order to satisfy SAF,

the RC transfer should only be regarded as completed normally if the export

list of A and its client list have been updated properly. Consider then the

following protocol. Whenever a server discovers that it is transferring an

RC as a part of its RPC reply message, it first informs (see the inform mes

sage in Figure 6.4, where numbers indicate the sequence in which the mes

sages are sent) the owner of the relevant object so that the owner can

update the export list and make an entry in the client list (for C in this

- 140 -

Fault-Tolerant Garbage Collection

2 In orm

done

Figure 6.4: An RC transfer.

case). Only after receiving the done message does the server send the reply

message transfer with the RC. Referring to the example, if the call by C to

acquire the RC from B terminates normally, it is ensured that the export

list and client list at A have been updated. Thus the protocol guarnntee~

the SAF requirement.

Now consider situations where the LIV requirement can be violated. With

reference to Figure 6.4, suppose that B crashes after informing A but before

sending the transfer message to C. In this case LIV may be violated - the

object reference-count in A may be higher than the number of RCs in the

system. The terminator and potential orphan mechanism mentioned in the

previous section can be suitably modified to cope with such situation~. The

potential orphan mechanism operating at A makes sure that if no calls are

received from B or C for a long time, then enquiry messages will be sent to

them to detect crashes. This mechanism can be enhanced to take care of

- 141 -

Fault-Tolerant Garbage Collection

unused objects, that is public objects that are listed in the client list, and

that remain unused for a long time. In the situation presented above, even

tually A will send an enquiry message to e and will be able to adjust its

relevant entries since e does not holds the Re. It should be noted that the

protocol discussed can be seen as a technique for A to cope with crashes of

B; crashes of e are dealt with by A in the same manner.

To summarize, nodes are periodically required to exchange three types of

information: (i) lists of potential orphans, (ii) lists of unused objects, and (iii)

junk lists. The first type of information is required for orphan detection, and

the remaining two for garbage detection. A simple optimization is for a node

to construct a single message containing all the three components for distri

bution.

6.4.3. Treatment of stable objects

The scheme presented so far deals with the treatment of volatile objects.

This section will discuss enhancements of two kinds: to cope with stable

objects (i.e. objects are persistent and survive crashes), and to cope with the

mixed approach where both stable and volatile objects are permitted.

In order to implement the abstraction of a stable heap, all the bookkeeping

information about stable objects must also be kept stable, therefore each

node must maintain its export, import, and junk lists on stable storage.

Since these data structures are kept stable, node crashes cannot produce

garbage on other nodes. The protocols discussed in Section 6.4.1 need only

one modification: the updating of the export list when orphan servers are

- 142 -

Fault-Tolerant Garbage Collection

detected is no longer required - the export list of a node is updated only

when a junk list is received. However, the mechanism discussed in Section

6.4.2 for preserving SAF and LIV is still required for transferring RCs

between nodes, as the following example illustrates. Suppose the transfer

protocol is not employed, then the following situation is possible (Figure

6.4): B deletes its RC after sending it to C and then crashes before inform

ing A about the transfer. If garbage collection is done at A using post-crash

information from B (note that the junk lists are kept stable while the infor

mation about the RC transfers are not), the object referred by the RC at C

might be collected by mistake. An alternative to our solution for solving

the above possible inconsistency is to keep also a stable log of all in-transit

references [Liskov86].

N ow consider the provision of garbage collection in distributed systems

where both volatile and stable objects are supported. In such a system vola

tile and stable RCs for the same object are permitted (e.g. RCs to y in Fig

ure 6.2). An example of such an environment could be a network of nodes

some of which are diskless workstations. In such a system RCs held by disk

less workstations are volatile and if such workstations crash garbage might

be created in other nodes.

In order to implement such a mixed scheme, it is necessary to record the

type of RCs a node holds; this can be performed in the client list (see Figure

6.3) by requiring each element of the rcList in the client list to contain two

fields - the RC offered to the client node, and in addition a flag indicating

whether the RC is stable or not. The bookkeeping information regarding

- 143 -

Fault-Tolerant Garbage Collection

objects (export, and import lists, and the junk list) can also be split in two

parts with lists on volatile store recording information about volatile objects

and stable lists recording information about stable objects. Naturally, a pub

lic object will become private only when its reference-count becomes zero on

both the export lists. Given this organization, the garbage collection

schemes presented for volatile and stable objects can coexist - whenever

orphan servers are aborted at a node, reference-counts of only those RCs

which are recorded as volatile in the client list are decremented in the vola

tile export list. This mixed approach continues to satisfy both SAF and LIV

properties. For example, if C crashes (refer to Figure 6.2) then the

reference-count of y will be decremented by one when that crash is detected

at A; however, y will not be deleted because there still exists a stable RC

naming y at B.

The scheme presented here has similar functionality to that given In

[Liskov86] with the following differences: (i) there is no need to keep in

transit references on stable storage; any inconsistencies caused by crashes

during an RC transfer are detected and removed by the enhanced orphan

detection scheme discussed; (ii) the scheme provides a uniform way of treat

ing both volatile and stable objects.

6.4.4. Inter-node cycles

If inter-node references form an acyclic graph, then, when an object of that

acyclic graph is collected, all the garbage objects reachable from that object

will eventually be deleted. However, if some inaccessible inter-node refer-

- 144 -

Fault-Tolerant Garbage Collection

ences form a cycle, inaccessible objects will never be deleted in the scheme

proposed so far, as indeed in any pure reference counting scheme. For

example, suppose object x at node A has a reference to object y at node B

and y has a reference to object x, as shown in Figure 6.5.

Node A
Node B

------------------- ------oy

------ ---------------------

Figure 6.5: An inter-node cycle.

The inter-node references for x and y form a cycle that spans node boun

daries. Even though x and yare both locally inaccessible, they appear to be

globally accessible and therefore are not reclaimed by the local garbage col

lector at their nodes. They are also not recognized as inaccessible with the

scheme presented in the preceding sections. In the following, two possible

approaches will be shown to remove this limitation by extending the design

with the ideas reported respectively in [Wiseman89] and in [VestaI87,

Brownbridge85].

One way to devise a cycle-tracing scheme is to employ, for example, the dis

tributed mark-scan garbage collection proposed by Wiseman [Wiseman89].

- 145 -

Fault-Tolerant Garbage Collection

In order to perform a global marking of the storage, each node in the Wise

man scheme helds a list which records the marking information for the pub

lic objects which are remotely referenced by other nodes. The mark field

can take the values: not found, found, and scanned. Initially all objects are

marked as not found. When an object is first found to be accessible its mark

is changed to found. Once all the references reachable from the object

marked as found have been examined, the object is marked as scanned. The

global marking phase terminates once no found objects remain. At this

point, all the objects which are marked as scanned must be kept, but the

objects marked as not found are known to be inaccessible and so can be col

lected. This collection takes place during the final scanning phase, which is

local to the nodes. It should be noted that the objects marked as not found

include those forming inter-node cycles, for example object x and y in Figure

6.5 will still be marked as not found at the end of the global marking phase.

In order to employ the Wiseman scheme to achieve a fault-tolerant cycle

tracing algorithm, the problem of detecting the termination of the marking

phase must be solved. Consider the situation depicted in Figure 6.6, where

the marking information has been included in the entry of the export list at

each node. In such a situation, if node A crashes, the remote objects y and

w at node B will remain marked as not found until A recovers. During such

time, B could wrongly collect object w. In general, B cannot know whether

an object marked as not found is still needed. For example, although

objects wand yare marked as not found, object w is still accessible, while

object y is part of an inaccessible inter-node cycle.

- 146 -

Fault-Tolerant Garbage Collection

The solution chosen for this problem is to mark as found all the objects

being referred to by a crashed node. As previously discussed, the scheme

presented in this chapter discovers when a node crashes. To complete the

marking phase each node should lookup its local client list (see Section

6.4.1) and mark as found all the objects used by the crashed nodes. In the

example of Figure 6.7, when node A crashes, objects wand y will be marked

as found. After the marking phase terminates, the scanning phase will col

lect the inter-node cycles through all non-faulty nodes.

This distributed cycle-tracing scheme, therefore, will collect only part of the

inaccessible inter-node cycles, and there is the question of whether this can

cause the entire system to stop, because of shortage of storage. For exam

ple, with reference to Figure 6.7, in the case that only node A crashes, the

inter-node cycle spanning node Band C will be collected, that is objects 0

and q, while the inter-node cycle between A and B will not be collected, at

least while A remains crashed. However, it is worth noting that the

number of inaccessible inter-node cycles cannot increase. A crashed node

which prevents the collection of a cycle also prevents the creation of an

additional cycle, because since the node is crashed another cycle cannot be

made through it.

The cycle-tracing algorithm presented above can be optimized when inter

node cycles include volatile objects. For example, if object x at node A in

Figure 6.6 is volatile, and A crashes, then object y at node B can be col

lected without waiting until the end of the cycle-tracing algorithm. This

speeds up termination of the cycle-tracing algorithm and allows early

- 147 -

Node A NodeB

.... '

---- ------------- ------ ----

- -- --- ------------------------------

Node A

Figure 6.6: Cycle tracing initialization.

I
I
I
I
I
I
I

NodeC

\
\
\

\
\

" "

~----------------I -

I
I
I

" " " " , ,

---
....

....

NodeB

' ... r----:--,
not found

..1--------------n----------l ----
~ I

-- found

found

'-J----i~ -L_ H : ---------
I
I

--------------- ----

Figure 6.7: Marking after node A crashes.

--,,-

\
\

\
\

\
\
\
\
\
\
\
\
I

Fault-Tolerant Garbage Collection

collection of volatile objects forming inter-node cycles spanning through

crashed nodes.

An alternative approach to a global mark-scan algorithm, is to perform a

local scan for deleting inaccessible objects when it is believed that a cycle

has formed. Various algorithms of this kind have been proposed in the

literature [VestaI87, Brownbridge851 For example, Vestal proposes an

algorithm that, when started at an inaccessible object lying in a cycle, will

collect the entire cycle. This algorithm requires a suitable heuristic for

selecting the starting object, otherwise the collection of the cycle cannot be

guaranteed. Vestal's algorithm is simple and can be easily integrated in the

reference counting scheme discussed previously. The only problem with

Vestal's solution is to provide an effective heuristic to detect possible cycles.

This can be achieved in the following way.

As discussed previously, every node has a terminator process such that

when an object remains unused for a long time that process sends enquiry

messages to the clients to make sure they are still running. The terminator

process can be suitably enhanced to provide an effective heuristic for

Vestal's algorithm. If an unused object, say x at node A in Figure 6.6, is

lying in a cycle, then a message, sent by the terminator process of node A to

enquire about the remote clients of object x, will come back to node A after

propagation through the nodes in the cycle. Therefore object x can be

chosen to start executing Vestal's algorithm. It should be noted that the

terminator process, on receiving back its enquiry message for object x, can

only deduce that x lies in a cycle, but not that x is an inaccessible object.

- 149 -

Fault-Tolerant Garbage Collection

Both the schemes discussed above require a crashed node to recover in order

to collect inter-node cycles going through that node. This should not be a

cause of any increase in the number of cycles, because the number of cycles

though a crashed node remains fixed during the down-time of that node.

However, in order to assess which scheme performs better, a further

analysis is required to establish the relationships between the rate of collec

tion and the rate of production of inter-node cycles. Developing an appropri

ate statistical model is a demanding task, because of the large number of

parameters that need estimation. Those involve the number of collectors ,

the relative priorities between collectors and users processes, as well as pat

terns of usage like locality of references.

6.4.5. Performances

A prototype version of the basic design presented has been implemented on

a network of Flex object-based systems [Foster82] running on ICL Perq

workstations connected by an Ethernet. The implemented prototype did not

need to cater for cycles of inaccessible objects, because these cannot be

formed in the Flex system. To the extent it could be tested, the distributed

garbage collection scheme worked as specified, in particular it collected gar

bage objects in the presence of node crashes and communication failures.

Measurements of the overhead caused by the scheme have been made. The

measurements were made on a lightly loaded Ethernet. The Ethernet had a

raw data rate of 10 megabits per second and was shared with other users.

The measurements have been carried out for procedure calls performed by a

- 150 -

Fault-Tolerant Garbage Collection

client process to a remote existing server, which returns a new RC at each

call. The average time taken for such a call to complete was measured. This

time interval includes the time spent by the client looking up the import

list and inserting in the import list the newly created RC when the call

returns, plus the time the server spends updating the export list and client

list. The average time per call (averaged over 1000 calls) was 51 mil

liseconds, while the same call without any provisions for orphan-detection

and garbage collection took 44 milliseconds on average. The performance

degradation due to this scheme is thus of the order of 16%.

By running various distributed programs, it was also noted that, of the vola

tile garbage created in the entire distributed system, less then 1% was glo

bal. This result is consistent with the experiments reported for a similar

system in [Wiseman89]. Therefore it is expected that the memory utiliza

tion should not change sensibly because of node failures. In particular, a

negligible variation was noted in the percentage of garbage collected by the

local garbage collectors in a system without failures, and a system where

node crashes where caused.

The influence of the rate for the distribution of the junk lists on perfor

mance was not measured. By empirical observations, it appears that the

collection of public objects could be done at intervals of the order of several

minutes without affecting the overall performance of the system. The local

garbage collection of every node runs at a much higher rate and is capable

of providing the required storage for ongoing computations.

- 151 -

Fault-Tolerant Garbage Collection

6.5. Concluding remarks

The topic of fault-tolerant garbage collection in distributed systems,

although important, has not received much attention. A practical solution

has been presented in this chapter.

The distributed garbage collection discussed here handles fault tolerance by

an extension of orphan killing techniques, and this in fact is yet another

illustration of the duality between process-based and object-based architec

tures. Because orphans are essentially garbage processes, it is perhaps not

surprising that the orphan detection schemes can be extended to deal with

garbage objects. However, somehow embarrassingly, the author has to

admit that this facet of the duality argument was not as readily clear at the

outset of the development as now is.

The garbage collection scheme presented involves small modifications to an

efficient orphan treatment scheme implemented at Newcastle [Panzieri88],

so there is every reason to believe that the technique is of practical value.

The performance figures presented bear out this observation. Some of the

advantages of the distributed garbage collection scheme presented here are

gi ven below:

1. Collection takes place asynchronously with respect to other activities,

including local garbage collection, and creation and deletion of private

and public objects;

2. It is independent of the local garbage collection schemes employed at

various nodes;

- 152 -

Fault-Tolerant Garbage Collection

3. It is tolerant to node crashes and communication failures that occur

during collection;

4. It is capable of treating both volatile and stable objects;

5. It does not require elaborate facilities such as failure-atomic procedures

or synchronized clocks.

The scheme as described here has been developed for an object-based archi

tecture with RPC. However, there is no reason why the reference-count ser

vice could not be implemented on its own for process-based architectures,

though process-based architectures are usually tailored for much smaller

numbers of objects, whose garbage collection is not likely to be as serious a

problem as in a typical object-based architecture.

- 153 -

Chapter 7

Conclusions

This thesis has concentrated on the development of techniques for reliable

distributed architectures, and has argued that work on object-based archi

tectures can also have relevance to more conventional architectures. This

final chapter summarizes the material that has been presented and indi

cates some of the possible areas for future research.

7.1. Summary of the thesis

The current literature ascribes many merits to the object-based program

ming methodology, see for example [DahI70, Birtwhistle73, Goldberg83,

Almes85]. However, there is a considerable confusion in the literature

about exactly what the terms (object-based', and (object-oriented' mean. For

example, MacLennan employs the term 'object-oriented' to give a definition

of Computer Science ([MacLennan82], p. 75):

"It might not be unreasonable to call computer science objectified

mathematics, or object-oriented mathematics"

while Pascoe begins one of his recent papers saying [Pascoe86]:

"There are as many different views of what object-oriented programming

is as there are computer scientists and programmers"

- 154 -

Conclusions

It is difficult to give a succinct definition, except at a gross level, since there

are many subtle flavours of behaviour which combine to give the overall pic

ture. Therefore, this thesis started by giving, in Chapter 2, a precise char

acterization of the relevant features of the object-based programming metho

dology. Based on their dependence relations, four approaches have been

identified. One of these approaches is the object-based methodology where

objects, that is encapsulation of some data together with the set of opera

tions on that data, are grouped into classes through which the concept of

abstract data types is provided. The classes themselves can be organized

into a class hierarchy. Such hierarchies allow similar classes to be related

together in such a way that the code implementing the behaviour of one

class can be automatically re-used (inherited) by classes lower in the hierar

chy, thus simplifying the implementation of those lower-level classes.

Most of the literature regards object-based programming as though it can

only be done with special programming languages. One of the avenues that

has been explored in the present research has been the use of object-based

programming techniques in a procedure-based language. This work, that

has been described in Chapter 3, arose from particular work on garbage col

lection in distributed systems, which has also been reported in Chapter 6.

In Chapter 3, two general techniques have been presented for implementing

the sub-classing form of inheritance as a set of extensions to a procedure

based language. Both techniques exploit first-class procedures. The first

technique requires some run-time lookup, while the second technique estab

lishes all the bindings at the time objects are created. These two solutions

- 155 -

Conclusions

provide different characteristics and advantages. If one is essentially

interested in quick prototyping and experimentation, the first approach may

be better adapted. Keeping the dispatching scheme during execution makes

it easier to change the class hierarchy on the spot in order to correct errors ,

improve the system, or experiment with new facilities since it is not neces

sary to go through a complete compilation of other classes in the hierarchy

on each occasion. On the other hand, if one is concerned about correctness ,

robustness and efficiency, then the second approach, which constructs most

of the bindings at compile-time, is obviously required.

The subsequent chapters of this thesis have therefore considered object

based programming, whether this is done with an explicit language or by

means of the techniques described in Chapter 3. In particular, Chapter 4

has reviewed some applications of the object-based methodology to the

design and implementation of distributed architectures.

Distributed architectures are characterized by the physical partitioning of

their components. This partitioning, which requires explicit communica

tions between different physical components, introduces a number of funda

mental issues concerning the visibility of distribution. Various forms of dis

tribution transparency have been identified in [ANSA87]. They can be

regarded both as problems to be solved in order to conceal the partitioning

of architectural components, and as features to be exploited to take advan

tage of the partitioning in order to achieve particular levels of security, reli

ability, and performance. Chapter 4 has started from the analysis in

[ANSA87] to discuss various strategies, abstractions, and mechanisms

- 156 -

Conclusions

required for controlling and exploiting distribution in object-based architec

tures.

Just as Chapter 3 has illustrated a means of applying object-based metho

dologies without using an explicit object-based programming language,

Chapter 5 has discussed work which illustrates the relationship between

distributed object-based architectures and an apparently different form of

distributed architectures, based on processes. After examining the structure

of a variety of systems, two canonical architectures of fault-tolerant systems

were developed, one encompassing the techniques and terminology used

within the database and office information systems community, the other

being more closely allied to the real time and process control applications

area. These architectures were shown to be duals of each other.

Although, in retrospect, this may not appear to be a surprising conclusion,

particularly given the Lauer and Needham paper, it has not been realized

before how direct and complete the relationship between the two architec

tures was, and there is not any earlier literature explaining and exploiting

this duality. Instead, one finds that fault-tolerant systems are constructed

and described using the concepts and terminology applicable to just one of

the two architectures, with no apparent realization of how useful the metho

dologies devised for one approach could prove for the other.

The arguments to support the duality claim were based on an examination

of three properties of a fault-tolerant computation, namely: freedom from

interference, backward recovery capability and crash resistance. It was

- 157 -

Conclusions

shown that mechanisms employed to implement a given property in one

architecture have duals in the other. Similarly, any particular behaviour

observed in one architecture has its dual in the other. Examples presented

in Chapter 5 show that programs developed using the primitives of one

architecture can be mapped easily to the programs of the other architecture.

Indeed, it could be claimed that the differences between the two architec

tures are principally a matter of view point and terminology. The establish

ment of the equivalence between the two approaches to fault tolerance has

several interesting implications, some of which have also been analyzed in

Chapter 5.

Another important issue in distributed systems, whether they are built as

object-based or process-based, is that of garbage collection. The topic of

fault-tolerant garbage collection in distributed systems has not received

much attention. Chapter 6 has addressed to the notion of distributed gar

bage collection, specifically from the point of view of fault tolerance comput

ing, and has presented a practical solution which is both cheap and efficient.

The distributed garbage collection discussed in Chapter 6 is tolerant to node

crashes and communication failures that occur during collection, is capable

of treating both volatile and stable objects, and is asynchronous with respect

to other activities, including local garbage collection, and creation and dele

tion of private and public objects.

It should be noted that the proposed garbage collection scheme handles fault

tolerance by extending the techniques commonly employed for killing

- 158 -

Conclusions

orphan processes, and this is yet a further illustration of the duality

between process-based and object-based architectures. Because orphans are

essentially garbage processes, it is perhaps not surprising that orphan detec

tion schemes can be extended to deal with garbage objects.

7.2. Future work

The design of distributed architectures offers considerable scope for further

investigation. Some particular areas of the thesis which could benefit from

further research will now be considered.

In Chapter 3, two techniques for sub-classing where developed for the Flex

system [Foster82]. Unfortunately, the Flex environment does not provide a

suitable interface for exploiting the full benefit of such techniques. One of

the major problems that programmers face in Flex to the difficulty of finding

reusable software components, once such components have been produced.

Another related problem is how a user can understand the structure of an

application, especially if that user was not the creator of that software.

In order to provide a more convenient use of object-based techniques in the

Flex system, the question arises of what kinds of tools might help to solve

these problems. Many researchers and developers are already addressing

these issues in the context of object-based architectures, where the answer is

typically couched in terms of finding classes or operations that have specific

properties or functions, and of understanding the class hierarchy. Since the

Flex environment is mainly procedure-based, one could think of developing

- 159 -

Conclusions

the work presented in Chapter 3, in order to adopt the tools designed within

the context of object-based architectures.

The work at DEC on an environment for the Trellis/Owl object-based

language [0 'Brien87] appears to be relevant for this purpose. The Trellis

environment addresses the problem of how to find relevant software com

ponents when the programmer is not familiar with the entire svstem and . ,

also keeps track of static inconsistencies and does incremental recompilation

automatically.

Chapter 5 has discussed the duality between object-based and process-ba:,:;ed

systems from an essentially empirical point of view. An interesting area for

further research would be that of providing a more formal treatment of this

duality. This would, of course, improve the duality arguments, but would

also shed light on formal methods for specification and verification of object

based systems. In fact, the insights gained with the duality argument could

help in building the dual model of some well-established formalism for

studying process-based systems, such as the one presented in [Hoare85].

Such a dual model could be used as the basis of an appropriate formal

theory for object-based systems.

One of the results of the research described in this thesis has been the

development and implementation of a fault-tolerant garbage collector for

distributed systems. In order to improve the performance of the present

implementation, another area of future work might concern specific meas

urements about how such systems will actually be used. Some of the meas-

- 160 -

Conclusions

urements that would be interesting to evaluate, in particular with respect to

distributed object-based systems, are: the percentage of references on a node

to objects on another node, the rate at which references are transferred from

one node to another, and the percentage of objects that are never referred on

another node throughout their entire lifetime. Such measurements will of

course be strongly influenced by the applications and the usage profile of the

system. However, given such measurements, there are various possible

trade-off decisions which would be evaluated more carefully, such as the

relative priorities between collectors and users processes.

An interesting work would be validating the distributed garbage collection

scheme presented in Chapter 6. This requires research into the area of for

mal specification and verification for real-time programs, since for most

applications a basic rate of collection must be met.

- 161 -

References

Abelson85.

Abelson, H. and Sussman, G.J., Structure and interpretation of computer

programs, The MIT Press/McGraw-Hill Book Company, Cambridge,

Massachusetts, 1985.

Agha86.

Agha, G., Actors, MIT Press, 1986.

Ali84.

Ali, K.A.H.M., HObject-oriented storage management and garbage col

lection in distributed processing systems," PhD Thesis, Royal Institute

of Technology, Stockholm, Sweden, December 1984.

Almes85.

Almes, G.T., Black, A.P., Lazowska, E.D., and Noe, J.D., (The Eden sys

tem: a technical review," IEEE Trans. on Software Engineering, vol. 11,

no. 1, pp. 43-59, January 1985.

Alsberg76.

Alsberg, P.A. and Day, J.D., ((A principle for resilient sharing of distri

buted resources," Proceedings of the 2nd International Conference on

Software Engineering, pp. 562-570, IEEE, San Francisco, October 1976.

Anderson81a.

Anderson, T. and Lee, P.A., Fault Tolerance: principles and practice,

Prentice-Hall, 1981.

Anderson81b.

Anderson, T. and Knight, J. C., HPractical software fault tolerance for

- 162 -

real-time systems," Technical Report TR169, Computing Laboratory,

University of Newcastle upon Tyne, August 1981.

ANSA87.

ANSA, «The ANSA reference manual," ed. A.J. Herbert and J. Monk,

June 1987.

Atkinson87.

Atkinson, M.P. and Buneman, O.P., HTypes and persistence in database

programming languages," ACM Computing Surveys, vol. 19, no. 2, pp.

105-190, June 1987.

A vizienis84.

Avizienis, A. and Kelly, J.K.J., HFault tolerance by design diversity:

concepts and experiments," IEEE Computer, vol. 17, no. 8, pp. 67-80,

August 1984.

Baker78.

Baker, H.G., HList-processing in real time on a serial computer," Comm.

ACM, vol. 21, no. 4, pp. 280-294, April 1978.

Banatre78.

Banatre, J.-P. and Shrivastava, S.K., HReliable resource allocation

between unreliable processes," IEEE Transactions on Software

Engineering, vol. SE-4, no. 3, pp. 230-241, May 1978.

Bernstein84.

Bernstein, P.A. and Goodman, N., HAn algorithm for concurrency con-

trol and recovery in replicated distributed databases," ACM Trans. on

Database Systems, vol. 9, no. 4, pp. 596-615, December 1984.

- 163 -

Bernstein87.

Bernstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency control

and recovery in database systems, Addison-Wesley, Reading, Mas

sachussetts, 1987.

Best8l.

Best, E. and Randell, B., ((A formal model of atomicity in asynchronous

systems," Acta Informatica, vol. 16, pp. 93-124, 1981.

Birman85.

Birman, K.P., Joseph, T.J., Raeuchle, T., and Abbadi, A. El, HImple

menting fault-tolerant distributed objects," IEEE Transactions on

Software Engineering, vol. SE-11, no. 6, pp. 502-508, June 1985.

Birre1l84.

Birrell, A.D. and Nelson, B.J., ((Implementing remote procedure calls,"

ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39-59, Febru

ary 1984.

Birtwhistle73.

Birtwhistle, G. M., Dahl, O-J., Myhrhaug, B., and Nygaard, K., Simula

begin, Academic Press, 1973.

Black86.

Black, A., Hutchinson, N., Jul, E., and Levy, H., HObject structure in

the Emerald system," ACM SIGPLAN Notices (OOPSLA '86 Proceed

ings), vol. 21, no. 11, pp. 78-86, November 1986.

Bobrow80.

Bobrow, D.G., HManaging reentrant structures using reference counts,"

- 164 -

ACM Transactions on Programming Languages and Systems, vol. 2, no.

3, pp. 269-273, July 1980.

Bobrow87.

Bobrow, D.G. et al., "Common Lisp Object System specification," ANSI

X3J13 Document 87-002, American National Standards Institute ,

Washington, DC, 1987.

Borg83.

Borg, A., Baumback, J., and Glazer, S., "A message system supporting

fault tolerance," ACM Operating Systems Review, vol. 17, no. 5, pp. 90-

99, October 1983.

Borning81.

Borning, A.H., "The programming language aspects of ThingLab: a

constraint-oriented simulation laboratory," ACM Trans. on Program

ming Languages and Systems, vol. 3, no. 4, pp. 353-387, October 1981.

Borning82.

Borning, A.H. and Ingalls, D.H., "Multiple inheritance in Smalltalk

80," Proc. of the National Conference in Artificial Intelligence, American

Association of Artificial Intelligence, Pittsburgh, Pennsylvania, August

1982.

Borning86.

Borning, A.H., CCClasses versus prototypes in object-oriented languages,"

ACMIIEEE Fall Joint Computer Conference, pp. 36-40, Dallas, TX,

November 1986.

- 165 -

Brownbridge85.

Brownbridge, D.R, HCyclic reference counting for combinator

machines," Lecture Notes in Computer Science 201, pp. 273-288,

Springer Verlag, Berlin, September 1985.

Campbe1l86.

Campbell, RH. and Randell, B., "Error recovery in asynchronous sys

tems," IEEE Trans. on Software Engineering, vol. SE-12, no. 8, pp.

811-826, August 1986.

Cardelli85.

Cardelli, 1. and Wegner, P., HOn understanding types, data abstraction,

and polymorphism," ACM Computing Surveys, vol. 17, no. 4, pp. 471-

522, December 1985.

Cmelik88.

Cmelik, R, Gehani, N.H., and Roome, W.D., HFault-tolerant concurrent

C: a tool for writing fault-tolerant distributed programs," 18th Int.

Symposium on Fault-Tolerant Computing" pp. 56-61, Tokyo, Japan,

June 1988.

Cohen81.

Cohen, J., !!Garbage collection of linked data structures," ACM Comput

ing Surveys, vol. 13, no. 3, pp. 341-367, September 1981.

Cook88.

Cook, S., HVarieties of inheritance," ACM SIGPLAN Notices (OOPSLA

'87 Proceedings Addendum), vol. 23, no. 5, pp. 35-40, May 1988.

- 166 -

Cox86.

Cox, B.J., Object-oriented programming - an evolutionary approach,

Addison-Wesley, Reading, Massachusetts, 1986.

Cristian82.

Cristian, F., ~~Exception handling and software fault tolerance," IEEE

Transactions On Computers, vol. C-31, no. 6, pp. 531-540, June 1982.

Curry84.

Curry, G.A. and Ayers, R.M., HExperience with Traits in the Xerox Star

workstation," IEEE Trans. on Software Engineering, vol. SE-10, no. 5,

pp. 519-527, September 1984.

Dah170.

Dahl, O-J., Myhrhaug, B., and Nygaard, K., "Common base language,"

Technical Report S-22, Norwegian Computing Center, Oslo, Norway,

October 1970.

Dah172.

Dahl, O-J., Dijkstra, E.W., and Hoare, C.A.R., Structured programming,

Academic Press, 1972.

Davies73.

Davies, C.T., ~~Recovery semantics for a DB/DC system," Proceedings of

the ACM National Conference, pp. 136-141, Atlanta, Georgia, August

1973.

Dijkstra72.

Dijkstra, E.W., HThe humble programmer," Comm. ACM, vol. 15, no.

10, pp. 859-866, October 1972.

- 167 -

Dijkstra78.

Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S, and Steffens,

E.F.M., "On the fly garbage collection," Communications of the ACJf.

vol. 21, no. 11, pp. 966-975, November 1978.

Dixon87.

Dixon, G.D. and Shrivastava, S.K., "Exploiting type-inheritance facili

ties to implement recoverability in object-based systems," Proc. of the

6th Symposium on Reliability in Distributed Software and Database

Systems, pp. 107-114, Williamsburg, March 1987.

Dobson86.

Dobson, J.E. and Randell, B., "Building reliable secure systems out of

unreliable insecure components," in Proceedings Conference on Security

and Privacy, IEEE, Oakland, April 1986.

DoD80.

DoD, Reference manual for the ADA programming language, 1980.

Eckart87.

Eckart, J.D. and LeBlanc, R.J., "Distributed garbage collection," ACM

SIGPLAN Notices, vol. 22, no. 7, pp. 264-273, July 1987.

Eswaren76.

Eswaren, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L., "The notions

of consistency and predicate locks in a database system," Communica

tions of the ACM, vol. 19, no. 11, pp. 624-633, November 1976.

Foster82.

Foster, J.M., Currie, I.F., and Edwards, P.W., "Flex: a working

- 168 -

computer with an architecture based on procedure values," Proc. of

International Workshop on High-Level Architecture, pp. 181-185, Fort

Lauderdale, Florida, December 1982.

Fowler85.

Fowler, R.J., ~~Decentralized object finding using forwarding addresses,"

PhD Thesis 85-12-1, Dept. of Computer Science, University of Washing

ton, Seattle, December 1985.

Goldberg83.

Goldberg, A. and Robson, D., Smalltalk-80 The Language and its Imple

mentation, Addison-Wesley, 1983.

Gray78.

Gray, J.N., "Notes on data base operating systems," in Operating Sys

tems: An Advanced Course, ed. R. Bayer, R.M. Graham and G. Seeg

mueller, pp. 393-481, Springer, New York, 1978. (Lecture Notes in

Computer Science 60)

Harland84.

Harland, D.M., Polymorphic programming languages: design and imple-

mentation, John Wiley & Sons, Chichester, U.K., 1984.

Hendler86.

Hendler, J. and Wegner, P., "Viewing object-oriented programming as

an enhancement of data abstraction methodology," Proc. of the Hawaii

Conference on System Sciences, January 1986.

Hoare72.

Hoare, C.A.R., "Proof of correctness of data representations," Acta

- 169 -

Informatica, vol. 1, no. 4, pp. 271-281, 1972.

Hoare85.

Hoare, C.A.R., Communicating sequential processes, Prentice-Hall, Lon

don, 1985.

Horning76.

Horning, J.J., "Some desirable properties of data abstraction facilities,"

ACM SIGPLAN Notices, vol. 11, Special Issue, pp. 60-62, 1976.

Hudak82.

Hudak, P. and Keller, R.M., "Garbage collection and task deletion in

distributed applicative processing systems," Proc. ACM Symposium on

Lisp and Functional Languages, pp. 168-178, Pittsburgh, Pennsylvania,

August 1982.

Jacky87.

Jacky, J.P. and Kalet, I.J., "An object-oriented programming discipline

for Standard Pascal," Comm. ACM, vol. 30, no. 9, pp. 772-776, Sep

tember 1987.

Jones78.

Jones, A.K., «The Object Model: a conceptual tool for structuring

software," in Lecture Notes in Computer Science 60, ed. R. Bayer, R.M.

Graham and G. Seegmueller, pp. 8-16, Springer, Berlin, 1978.

Kernighan 78.

Kernighan, B. W. and Ritchie, D. M., The C Programming Language,

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

- 170 -

Knuth72.

Knuth, D.E., The art of computer programming, vol. 1: fundamental

algorithms, Addison-Wesley, Reading, Massachusetts, 1972.

Koo87.

Koo, R. and Toueg, S., ~~Checkpointing and rollback recovery for distri

buted systems," IEEE Trans. on Software Engineering, vol. SE-13, no.

1, pp. 23-31, January 1987.

Lauer78.

Lauer, H.C. and Needham, R.M., "On the duality of operating system

structures," Proceedings 2nd International Symposium on Operating

Systems, IRIA, October 1978. (Reprinted in Operating Systems Review,

vol. 13, no. 2, pp. 3-19, April 1979.)

Lieberman86.

Lieberman, H., ~~Using prototypical objects to implement shared

behaviour in object-oriented systems," ACM SIGPLAN Notices

(OOPSLA '87 Proceedings), vol. 21, no. 11, pp. 214-223, November 1986.

Liskov77.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., "Abstraction

mechanisms in CLU," Comm. ACM, vol. 20, no. 8, pp. 564-576, August

1977.

Liskov81.

Liskov, B. et al., "CLU reference manual," Lecture Notes in Computer

Science 114, Springer Verlag, Berlin, 1981.

- 171 -

Liskov82.

Liskov, B. and Scheifier, R., "Guardians and actions: linguistic support

for robust, distributed programs," Proceedings of the 9th Annual Sympo

sium on Principles of Programming Languages, pp. 7-19, Albuquerque,

New Mexico, January 1982.

Liskov86.

Liskov, B. and Ladin, R., ~~Highly available distributed services and

fault-tolerant distributed garbage collection," Proc. 5th ACM Sympo

sium on Principles of Distributed Computing, pp. 29-39, Calgary,

Alberta, Canada, August 1986.

Liskov87.

Liskov, B. et al., ~1mplementation of Argus," Proc. 11th ACM Sympo

sium on Operating Systems Principles, pp. 111-122, Austin, Texas,

November 1987.

Liskov88.

Liskov, B., ~~Data abstraction and hierarchy," ACM SIGPLAN Notices

(OOPSLA '87 Proceedings Addendum), vol. 23, no. 5, pp. 17-34, May

1988.

MacLennan82.

MacLennan, B.J., ~~Values and objects in programming languages,"

ACM SIGPLAN Notices, pp. 70-79, December 1982.

Mancini86a.

Mancini, L.V., "Modular redundancy in a message passing system,"

IEEE Trans. Software Engineering, vol. SE-12, no. 1, pp. 79-86, Janu-

- 172 -

ary 1986. (Also Technical Report TR209, Computing Laboratory,

University of Newcastle upon Tyne, November 1985)

Mancini86b.

Mancini, L.V. and Shrivastava, S.K., lOException handling in replicated

systems with voting," 16th Int. Conf on Fault Tolerant Computing, pp.

384-389, Vienna, Austria, July 1986. (Also Technical Report TR217,

Computing Laboratory, University of Newcastle upon Tyne, May 1986)

Mancini87.

Mancini, L.V. and Shrivastava, S.K., lOCollecting garbage while detect

ing orphans in distributed system is both cheap and efficient," System

Research Memorandum SRM/452, Computing Laboratory, University of

Newcastle upon Tyne, January 1987.

Mancini88a.

Mancini, L.V., lOA Technique for subclassing and its implementation

exploiting polymorphic procedures," Software Practice & Experience, vol.

18, no. 4, pp. 287·300, April 1988.

Mancini88b.

Mancini, L.V. and Shrivastava, S.K., "Fault-tolerant reference counting

for garbage collection in distributed systems," Technical Report TR/260,

Computing Laboratory, University of Newcastle upon Tyne, June 1988.

Mancini89.

Mancini, L.V. and Shrivastava, S.K., "Object and process replication: a

case study in fault tolerance duality," 19th Int. Conf on Fault Tolerant

Computing, Chicago, Illinois, June 1989. (To appear. Also System

- 173 .

Research Memorandum SRM/471, Computing Laboratory, University of

Newcastle upon Tyne, December 1988)

McKendry85.

McKendry, M.S. and Herlihy, M., "Time-driven orphan elimination,"

CMU-CS-85-138, Dept. of Computer Science, Carnegie-Mellon Univer

sity, July 1985.

Milner84.

Milner, R., "A proposal for standard ML," ACM Symposium on Lisp and

Functional Programming, pp. 184-197, 1984.

Mohan83.

Mohan, C. and Lindsay, B., cCEfficient commit protocols for the tree of

processes model of distributed transactions," Proceedings of the 2nd

Annual ACM Symposium on Principles of Distributed Computing, pp.

76-88, Montreal, August 1983.

Moon86.

Moon, D.A., "Object-oriented programming with Flavors," ACM SIG

PLAN Notices (OOPSLA '86 Proceedings), vol. 21, no. 11, pp. 1-8,

November 1986.

Nelson81.

Nelson, B.J., cCRemote procedure call," PhD Thesis, CMU-CS-81-119,

Dept of Computer Science, Carnegie-Mellon University, Pittsburgh,

1981.

O'Brien87.

O'Brien, P.D., Halbert, D.C., and Kilian, M.F., "The Trellis

- 174 -

programming environment," ACM SIGPLAN Notices (OOPSLA '87

Proceedings), vol. 22, no. 12, pp. 91-102, December 1987.

Panzieri85.

Panzieri, F., "Design and development of communication protocols for

local area networks," Technical Report TR197, Computing Laboratory,

University of Newcastle upon Tyne, March 1985.

Panzieri88.

Panzieri, F. and Shrivastava, S.K., "Rajdoot: a remote procedure call

mechanism supporting orphan detection and killing," IEEE Trans. on

Software Engineering, vol. 14, no. 1, pp. 30-37, January 1988.

Pappalardo88.

Pappalardo, G. and Shrivastava, S.K., "A formal treatment of interfer

ence in remote procedure calls," in Lecture Notes in Computer Science

331, ed. M. Joseph, pp. 209-227, Springer Verlag, Berlin, 1988.

Parnas72.

Parnas, D.L., ~~On criteria to be used for decomposing systems into

modules," Communications of the ACM, vol. 15, no. 12, p. 1053,

December 1972.

Pascoe86.

Pascoe, G.A., "Elements of object-oriented programming," Byte maga-

zine, pp. 139-144, August 1986.

Powe1l83.

Powell, M.L. and Presotto, D.L., "Publishing: a reliable broadcast com-

munication mechanism," Proceeding 9th ACM Symposium on Operating

- 175 -

Systems Principles, pp. 100 - 109, October 1983. (Operating Systems

Review, vol. 17, no. 5)

Rande1l64.

Randell, B. and Russell, L.J., Algol 60 implementation, Academic Press,

New York, 1964.

Rande1l75.

Randell, B., "System structure for software fault tolerance" IEEE ,

Transactions on Software Engineering, vol. SE-1, no. 2, pp. 220-232,

June 1975.

Rande1l78.

Randell, B., Lee, P.A., and Treleaven, P.C., "Reliability issues in com

puting system design," ACM Computing Surveys, vol. 10, no. 2, pp.

123-165, June 1978.

Schaffert86.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M.F., and Wilpolt, C., "An

introduction to Trellis/Owl," ACM SIGPLAN Notices (OOPSLA '86

Proceedings), vol. 21, no. 11, pp. 8-16, November 1986.

Schneider8 7.

Schneider, F.D., "The state machine approach: a tutorial," Technical

Report 86-800, Dept. of Computer Science, Cornell University, June

1987.

Shrivastava88a.

Shrivastava, S.K., Dixon, G.D., Hedayati, F., Parrington, G.D., and

Wheater, S.M., "A technical overview of Arjuna: a system for reliable

- 176 -

distributed computing," lEE U.K. IT 88 Conference, pp. 601-605, Swan

sea, Wales, July 1988.

Shrivastava88b.

Shrivastava, S.K., Mancini, L.V., and Randell, B., "On the duality of

fault tolerant system structures," in Lecture Notes in Computer Science

309, ed. J. Nehmer, pp. 19-37, Springer Verlag, Berlin, 1988.

Sloman87.

Sloman, M. and Kramer, J., Distributed systems and computer networks,

Prentice-Hall, London, 1987.

Smith88.

Smith, J.M., "A survey of process migration mechanisms," ACM Operat-

ing Systems Review, vol. 22, no. 3, pp. 28-40, July 1988.

Snyder86a.

Snyder, A., "Encapsulation and inheritance in object-oriented program-

ming languages," ACM SIGPLAN Notices (OOPSLA '86 Proceedings),

vol. 21, no. 11, pp. 38-45, November 1986.

Snyder86b.

Snyder, A., ttCommonObjects: an overview," ACM SIGPLAN Notices,

vol. 21, no. 10, pp. 19-28, October 1986.

Stein87.

Stein, L.A., ttDelegation is inheritance," ACM SIGPLAN Notices

(OOPSLA '87 Proceedings), vol. 22, no. 12, pp. 138-146, December 1987.

Stonebraker79.

Stonebraker, M., ttConcurrency control and consistency of multiple

- 177 -

copies of data in distributed INGRES," IEEE Transactions on Software

Engineering, vol. SE·5, no. 3, pp. 188·194, May 1979.

Stroustrup86.

Stroustrup, B., The C+ + programming language, Addison.Wesley,

Reading, Massachusetts, 1986.

Stroustrup88.

Stroustrup, B., "What is object·oriented programming?," IEEE Software,

vol. 5, no. 3, pp. 10·20, May 1988.

Svobodova84.

Svobodova, L., "Resilient distributed computing," IEEE Transactions on

Software Engineering, vol. SE·10, no. 3, pp. 257·267, May 1984.

Tanenbaum81.

Tanenbaum, A.S. and Mullender, S.J., "An overview of the Amoeba dis

tributed operating system," ACM Operating Systems Review, vol. 15, no.

3, pp. 51-64, July 1981.

Tanenbaum85.

Tanenbaum, A.S. and Renesse, R. Van, "Distributed operating sys

tems," ACM Computing Surveys, vol. 17, no. 4, pp. 419·469, December

1985.

Tanenbaum86.

Tanenbaum, A.S. and Mullender, S.J., "The design of a capability-based

distributed operating system," The Computer Journal, vol. 29, no. 4, pp.

289·300, 1986.

- 178 -

Taylor86.

Taylor, D.J., ~~Concurrency and forward recovery in atomic actions,"

IEEE Trans. on Software Engineering, vol. SE-12, no. 1, pp. 69-78,

January 1986.

Ungar87.

Ungar, D. and Smith, R.B., ~~Self: the power of simplicity," ACM SIG

PLAN Notices (OOPSLA '87 Proceedings), vol. 22, no. 12, pp. 227-242,

December 1987.

Vesta187.

Vestal, S.C., ~~Garbage collection: an exercise In distributed fault

tolerant programming," PhD Thesis, Dept. of Computer Science,

University of Washington, Seattle, 1987.

Wegner83.

Wegner, P., HOn the unification of data and program abstraction in

Ada," Proc. of the 10th ACM Symposium on Principles of Programming

Languages, pp. 256-264, 1983.

Wegner87a.

Wegner, P., HThe object-oriented classification paradigm," in Research

Directions in Object-Oriented Programming, ed. B. Shriver, P. Wegner,

pp. 479-560, MIT Press, 1987.

Wegner87b.

Wegner, P., ~~Dimensions of object-based language design," ACM SIG-

PLAN Notices (OOPSLA '87 Proceedings), vol. 22, no. 12, pp. 168-182,

December 1987.

- 179 -

Wegner88.

Wegner, P., HDiscussion sessions of the workshop on object-oriented pro

gramming," ACM SIGPLAN Notices, vol. 23, no. 1, pp. 16-37, January

1988.

Wensley78.

Wensley, J. et al., ((SIFT: design and analysis of a fault-tolerant com

puter for aircraft control," Proc. of the IEEE, vol. 60, pp. 1240-1254,

October 1978.

Wirth83.

Wirth, N., Programming in Modula-2, Springer, Second Edition, 1983.

Wiseman89.

Wiseman, S.R., ((Garbage collection in distributed systems," PhD

Thesis, Computing Laboratory, University of Newcastle upon Tyne,

1989.

Wood81.

Wood, W.G., ((A decentralised recovery control protocol," Digest of

Papers FTCS-ll: Eleventh Annual International Symposium on Fault

Tolerant Computing, pp. 159-164, Portland, June 1981.

Woodward83.

Woodward, P.M. and Bond, S.G., Guide to Algol-68 for users of RS sys-

tems, Edward Arnold Ltd., London, U.K., 1983.

Yonezawa86.

Yonezawa, A. et al., ((Object-oriented concurrent programming in

ABCLl1," ACM SIGPLAN Notices (OOPSLA '86 Proceedings), vol. 21,

- 180 -

no. 11, pp. 258-268, November 1986.

Zimmerman80.

Zimmerman, H., "OSI Reference Model - The ISO Model of Architecture

for Open Systems Interconnection," IEEE Transactions on Communica

tons, vol. COM-28, pp. 425-432, April 1980.

- 181 -

	282939_0001
	282939_0002
	282939_0003
	282939_0004
	282939_0005
	282939_0006
	282939_0007
	282939_0008
	282939_0009
	282939_0010
	282939_0011
	282939_0012
	282939_0013
	282939_0014
	282939_0015
	282939_0016
	282939_0017
	282939_0018
	282939_0019
	282939_0020
	282939_0021
	282939_0022
	282939_0023
	282939_0024
	282939_0025
	282939_0026
	282939_0027
	282939_0028
	282939_0029
	282939_0030
	282939_0031
	282939_0032
	282939_0033
	282939_0034
	282939_0035
	282939_0036
	282939_0037
	282939_0038
	282939_0039
	282939_0040
	282939_0041
	282939_0042
	282939_0043
	282939_0044
	282939_0045
	282939_0046
	282939_0047
	282939_0048
	282939_0049
	282939_0050
	282939_0051
	282939_0052
	282939_0053
	282939_0054
	282939_0055
	282939_0056
	282939_0057
	282939_0058
	282939_0059
	282939_0060
	282939_0061
	282939_0062
	282939_0063
	282939_0064
	282939_0065
	282939_0066
	282939_0067
	282939_0068
	282939_0069
	282939_0070
	282939_0071
	282939_0072
	282939_0073
	282939_0074
	282939_0075
	282939_0076
	282939_0077
	282939_0078
	282939_0079
	282939_0080
	282939_0081
	282939_0082
	282939_0083
	282939_0084
	282939_0085
	282939_0086
	282939_0087
	282939_0088
	282939_0089
	282939_0090
	282939_0091
	282939_0092
	282939_0093
	282939_0094
	282939_0095
	282939_0096
	282939_0097
	282939_0098
	282939_0099
	282939_0100
	282939_0101
	282939_0102
	282939_0103
	282939_0104
	282939_0105
	282939_0106
	282939_0107
	282939_0108
	282939_0109
	282939_0110
	282939_0111
	282939_0112
	282939_0113
	282939_0114
	282939_0115
	282939_0116
	282939_0117
	282939_0118
	282939_0119
	282939_0120
	282939_0121
	282939_0122
	282939_0123
	282939_0124
	282939_0125
	282939_0126
	282939_0127
	282939_0128
	282939_0129
	282939_0130
	282939_0131
	282939_0132
	282939_0133
	282939_0134
	282939_0135
	282939_0136
	282939_0137
	282939_0138
	282939_0139
	282939_0140
	282939_0141
	282939_0142
	282939_0143
	282939_0144
	282939_0145
	282939_0146
	282939_0147
	282939_0148
	282939_0149
	282939_0150
	282939_0151
	282939_0152
	282939_0153
	282939_0154
	282939_0155
	282939_0156
	282939_0157
	282939_0158
	282939_0159
	282939_0160
	282939_0161
	282939_0162
	282939_0163
	282939_0164
	282939_0165
	282939_0166
	282939_0167
	282939_0168
	282939_0169
	282939_0170
	282939_0171
	282939_0172
	282939_0173
	282939_0174
	282939_0175
	282939_0176
	282939_0177
	282939_0178
	282939_0179
	282939_0180
	282939_0181
	282939_0182
	282939_0183
	282939_0184
	282939_0185
	282939_0186
	282939_0187

