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Abstract 

This thesis is aimed at enhancing the existing set of techniques for building 

distributed systems, specifically from the point of view of fault-tolerant com

puting. 

Reliability is of fundamental importance in the design and operation of dis

tributed systems, as an increasing number of computers are employed in the 

automation of various essential services. In the past decade, much research 

effort has been concerned with the object-based methodology for the design 

and implementation of reliable distributed systems. 

This thesis describes three contributions to this effort. First, it is shown 

that object-based programming features can in fact be introduced into pro

cedural languages provided that these languages are endowed with certain 

facilities. Then, work is discussed which illustrates the relationship 

between distributed object-based architectures and an apparently different 

form of distributed architectures based on processes. This work puts the 

notion of object-based architectures into a new perspective, which shows 

that the object-based philosophy and the process-based philosophy are the 

dual of each other. 

Finally, an important aspect of the design of an object-based distributed 

architecture is investigated, that of automatic garbage collection. A distri

buted garbage collection scheme is described that handles fault tolerance by 

an extension of the technique commonly employed to detect unwanted com

putations in distributed architectures. The scheme proposed can also be 

seen as yet a further illustration of the link between object-based and 

process-based architectures. 
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Chapter 1 

Introduction 

Technical advances in large scale integration and in interconnection media 

have made distributed processing economically feasible. Technological and 

economic factors have combined to make distributed systems the most 

attractive and effective solutions for a large variety of applications. From 

relatively simple applications, in which a main computer makes the most 

important decisions, to more sophisticated applications, in which functional

ity is more uniformly dispersed, the notion of distributed systems is so 

appealing that it is often hard to justify alternative approaches. 

Distributed systems and communication services are increasingly moving 

from a supportive role to an essential one in many commercial, industrial, 

educational and research organizations. It is widely recognized that the 

present trend towards distributed systems will also continue in the future. 

Taking advantage of continuing improvements in hardware cost and perfor

mance, there will be a continued tendency to put even more processing and 

storage power locally, and to interconnect machines with one another and 

with specialized servers to form large scale distributed systems. 

However, in spite of the relatively long history of distributed systems (at 

least in computing terms), and the many successful (and unsuccessful) 
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Introduction 

systems that have been built, there remain fundamental research issues 

that seem to be very resistant to solution. Many of the fundamental 

unresolved issues can be characterized as operating systems issues, as they 

deal with traditional operating system problems such as resource manage

ment and virtualization of machine characteristics into more convenient or 

understandable forms. For example, a particularly difficult problem for dis

tributed systems is to ensure that the system conforms to the specification of 

its behaviour, or at least approximates its specification with some predict

able degree of success. Obviously, one should try to make systems as correct 

as possible, but even perfect software will not act properly if the hardware 

refuses to work - note that the greater the number of computers in a distri

buted system, the higher the probability that one of them has crashed. As 

more and more computers are used in the automation of various essential 

services, the reliability of distributed systems becomes increasingly impor

tant, and efforts must be made to provide for a system reliability level 

significantly greater than that of the probability of all hardware behaving 

in a non-faulty fashion. 

Many research projects have been using an object-based methodology for the 

design of reliable distributed systems. The work in this thesis employs the 

object-based model too, and covers many aspects of distributed system 

design including operating systems and programming languages. In each of 

these areas, the relationships to other programming methodologies is 

explored with the intention to put the notion of object-based system into a 

new perspective. The rest of this introductory chapter describes the object-
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based programming methodology and the notion of distributed architecture. 

1.1. Object· based programming 

Making software correct is easier said than done since, unfortunately, 

Dijkstra's prophecy has not yet come true ([Dijkstra72], p. 863): 

"As a matter of fact, I think that we have learned so much that within a 

few years programming can be an activity vastly different from what it 

has been up till now, so different that we had better prepare ourselves for 

the shock. . .. The vision is that, well before the seventies have run to 

completion, we shall be able to design and implement the kind of systems 

that are now straining our programming ability at the expense of only a 

few percent in man-years of what they cost us now, and that besides that, 

these systems will be virtually free of bugs." 

Managing the complexity of software systems is still regarded as one of the 

key problems in Computer Science. The computer industry is still facing a 

software crisis - ambitions regarding quality and sophistication of systems, 

are continuing to outstrip the ability to design, implement, modify and 

enhance complex software systems in a reliable and cost-effective fashion. 

Nowadays, therefore, a crucial issue for the computer industry is the 

development of architectures that support, in a cost-effective fashion, the 

design, implementation, maintenance and evolution of complex systems. 

A design methodology, known as object-based, has become popular in recent 

years. Object-based architectures are regarded by many as holding the solu-
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tion of this problem in that they promote a new way for system developers 

to work together, resulting in an effective means of tackling complex issues 

along with providing potentiality for new software tools. 

The fundamental characteristic of object-based architectures is that the enti

ties that are manipulated at run-time by programs are objects, where an 

object is an encapsulation of some data together with the set of operations 

that are permitted on that data. At the programming language level, the 

mechanism for providing this encapsulation is an abstract data type 

mechanism [Liskov77], where the abstract data type describes the structure 

of objects of that type, or class, together with the set of operations appropri

ate to those objects. Objects can be defined as extensions of existing ones by 

a mechanism called inheritance. The specification 'B inherits A' in the 

definition of object B means that B contains the data and operations defined 

for A in addition to those specifically defined for B. Inheritance may be 

viewed as an abbreviation mechanism that avoids redefining the attributes 

of an already introduced object in the definition of another. 

One advantage of using object-based programming languages is that they 

facilitate the creation of software modules that closely match the problem 

domain, an important feature for building understandable programs. Con

ventional languages, such as Pascal, often lead to program structures radi

cally different from the structure of the problem domain. The reason is that 

in such languages there are two kinds of entities: data items, which are 

passive and represent the information of the program, and procedures, 

which manipulate the data. The programmer in a conventional language 
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can either map the problem domain into a set of procedures, or can map the 

problem domain to the data, and then define procedures that transform the 

input data to the output data. By contrast, object-based programming 

allows the programmer to concentrate on the abstractions to be manipulated 

- procedures and data can be treated as indivisible aspects of objects in the 

problem domain. Many programs can be designed by straightforwardly 

identifying the objects in the problem domain, and deciding how to imple

ment the objects' behaviour. 

The term architecture, mentioned above, is used in a broader meaning than 

just hardware organization. Today's architecture must include software as 

much as hardware, since developments on both fronts may be necessary to 

achieve the most useful and cost-effective systems for the end users. 

1.2. Distributed architectures 

An architecture may be termed distributed when the discrete elements of 

the overall processing activity may be located in more than one component, 

at more than one geographical location. The components forming a distri

buted architecture do not share primary memory, and so communication and 

coordination via shared memory techniques is generally not applicable. 

Instead, message-passing in one form or another is employed. This thesis 

will focus on distributed architectures composed of a number of autonomous 

workstations or personal computers (nodes) communicating via a local area 

network. A node in such a network will typically contain various processes 

providing services, for example data retention, that can be used by local and 
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remote processes. 

In the following, the major advantages of distributed architectures in the 

areas of reliability, security and performance are discussed. In a distributed 

architecture, individual nodes are physically independent from each other. 

Regions affected by a failure have well-defined physical boundaries - a 

hardware failure in one node usually has no direct impact on others. This 

feature makes recovery and reconfiguration possible. In addition, distribu

tion allows security to be based on the existence of physical domains 

between which communication can be strictly controlled, rather than on log

ical barriers. Distributed architectures can also offer increased power 

through parallel processing, provided one has decomposed the overall task 

into parallel subtasks with minimum communication requirements. 

Despite all these advantages, however, a number of difficult issues are still 

latent. Many of these are related to component (node) failures and to slow 

communications, and have important implications for the distributed 

system's reliability. While the increased number of interconnected nodes 

may remove the single point of failure of a centralized architecture, compu

tations will become susceptible to remote node crashes and communication 

failures. Therefore any well-engineered distributed system should strive to 

cope with situations where the system is partly running and partly crashed. 

Dependencies between individual components should be minimized and dis

tributed error detection and recovery should be favoured by providing each 

component with local mechanisms without relying on the well-functioning of 

the rest of the architecture. Moreover, since communication between 
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components of a distributed architecture are typically orders of magnitude 

slower than in a centralized one, distribution requires the optimization of 

communication between nodes, and the grouping together of applications 

which need high communication rates. 

Many research projects have employed the object-based methodology for the 

design of reliable distributed architectures, such as Eden [Almes85], Argus 

[Liskov87], and Arjuna [Shrivastava88a]. It appears that this methodology 

offers significant advantages for the design and implementation of such 

architectures. For example, the modularity afforded by an object-based 

architecture simplifies the implementation of recovery from failure, and 

reconfiguration; and the inheritance mechanism can provide a controlled 

means of introducing recovery within objects, as shown in [Dixon87, 

Shrivastava88a]. A further advantage of the object-based methodology is 

protection. This facility is usually provided to constrain the way information 

is used and changed. In object-based architectures, physical domains (nodes) 

can be decomposed further into logical domains (objects). The only way the 

user can act upon an object is by operation invocation, so a straightforward 

technique for constraining arbitrary manipulation of an object is to con

strain the ability to perform operations on that object. 

However, distributed object-based architectures are affected by a number of 

new problems related in particular to storage management. In object-based 

architectures, a new object is allocated explicitly, but there is no explicit 

construct that causes an object to be deallocated. Such a construct would be 

unsafe, because it could be employed to deallocate an object even though the 
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object was still in use. The use of references to deallocated objects would be 

likely to cause inconsistent behaviour. Because there is no explicit dealloca

tion in many object-based architectures, the storage manager must identify 

objects that have become inaccessible and deallocate them automatically. 

This task is known as garbage collection. Various problems arise in distri

buted object-based architectures relate to garbage collection. One problem 

is that it is impractical, if not impossible, to stop the entire system while 

collecting unused objects. Another problem that occurs in these architec

tures is that objects may be retained for a long period of time. That means 

the total number of objects may grow extremely large in relation to the pro

cessing power available to collect unused storage. An incremental garbage 

collection scheme, which allows some garbage to be collected without exa

mining the entire system storage, is essential when the time required to 

access every object in the system would be prohibitive. Once again the issue 

of reliability becomes important. The collection scheme must be able to 

tolerate component failures. It should be possible to continue the collection 

after a failure without incorrectly de allocating or reallocating storage for 

objects in use, and all unused objects should be ultimately collected. 

This thesis explores the problems to be solved for achieving reliable object

based computing in the face of node and communication failures, and also 

presents a garbage collection scheme that is suitable for use in a distributed 

unreliable system. 
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1.3. Structure and aims of the thesis 

This thesis concentrates on the provision of support for one particular pro

perty of distributed systems, the property of reliability. Most projects which 

are addressing this area of research have concentrated on producing new 

languages or operating systems that provide the necessary support, and 

much research effort has been concerned with the use of object-based metho

dology. It is not the aim of this thesis to design a new programming 

language or operating system, but rather to put the current research effort 

into a new perspective, which shows that work on object-based architectures 

can also have relevance to more conventional architectures. 

The thesis is organized as follows. Chapter 2 expands on the background to 

the work described in this thesis. In order to discuss the similarities and 

differences among the variety of approaches to object-based programming, 

the terminology employed in this thesis will be introduced in Chapter 2 and 

related to other work. The most relevant features of object-based program

ming will be characterized, and various programming methodologies worthy 

of special study will be identified. 

In Chapter 3, two techniques will be presented which can be employed to 

introduce object-based features, such as the sub-classing form of inheritance 

provided by Smalltalk and Simula, into a procedure-based language. 

Although the object-based and procedure-based approaches are apparently 

dissimilar, a family of procedure-based languages will be described which 

allow the programmer to profit from object-based ideas. 
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Chapter 4 discusses reliability issues concerning the design of distributed 

architectures. In particular, this chapter concentrates on the main causes of 

unreliability, illustrating these with some general solutions and examples. 

Among the issues considered are communication failures and node crashes. 

Chapter 5 examines the structure of distributed architectures incorporating 

error recovery, and proposes their partitioning into two broad categories. 

Two canonical models, each representing a particular category of architec

tures will be constructed. The first model, called object-based, incorporates 

objects as the entities for program construction while the second model, 

called process-based, employs communicating processes. Arguments and 

examples will be presented to show that the object-based model and the 

process-based model are the dual of each other. As a consequence of the 

duality, techniques and mechanisms which have been developed within the 

domain of just one of the models can be mapped and applied to the other 

model. This point will be illustrated by mapping some well-known object 

replication techniques developed within the context of the object-based 

model to the process-based model thereby revealing some interesting process 

replication techniques. 

The techniques described in Chapter 3 also allow the creation of objects at 

run-time and require, as most object-based architectures do, an automatic 

garbage collection facility for storage management. A distributed garbage 

collection facility will be needed for such architectures, if they permit access 

to remote objects. Chapter 6 describes in detail the design and implementa

tion of a novel garbage collection scheme for distributed architectures. The 
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proposed scheme achieves its task despite the occurrence of commonly 

encountered failures in distributed systems (such as lost messages and node 

crashes), performs in parallel with the other system activities, and is capa

ble of dealing with both volatile and stable objects. 

Chapter 7 concludes this thesis by reviewing its objectives, providing some 

concluding remarks, and discussing possible future developments of the 

work that has been presented. 
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Chapter 2 

Object-Based and Object-Oriented Programming 

Despite the fact th~t a large computing community is working with object

based and object-oriented programming systems and languages, there is still 

a fair amount of confusion over what the terms mean and what terminology 

to use. To quote the report of the discussion sessions of the European 

Workshop on Object-Oriented Programming ([Wegner88], p. 21): 

"The discussion clearly demonstrated differences of perspective and 

exposed a lack of precision in the definition and use of some fundamental 

concepts in object-oriented programming." 

Therefore, it is appropriate to give here the present definitions, and to dis

cuss the similarities and differences among the variety of approaches to 

object-based programming. 

A tremendous amount has been written about object-based programming, 

some of the better surveys being [Cardelli85, Wegner87a, Stroustrup88]. 

The aim of this chapter is to avoid going over too much of the material that 

is readily available, but to provide a somewhat different survey. The survey 

that follows can be contrasted with those mentioned above by virtue of the 

much simpler classification that it uses; specifically the classification 

presented brings out the most important issues and concentrates on just 
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three topics: encapsulation, abstraction and inheritance. 

2.1. Definitions and examples 

The following properties are considered to characterize the relevant features 

of object-based programming: encapsulation, abstraction, and inheritance. 

Encapsulation is the strict enforcement of the principle of information hid

ing advocated by Parnas [Parnas72]. Encapsulation allows software com

ponents to be implemented and reimplemented independently, and is impor

tant for supporting modifiability and reliability of software architectures by 

controlling and constraining the way software components can interact. At 

the programming language level, encapsulation can be provided by means of 

a data abstraction mechanism [Hoare72, Liskov771 Besides encapsulating 

data and operations into abstract data types, it is further possible to organ

ize abstractions into a hierarchy [Dah172]. This hierarchy serves to relate 

similar abstractions by an inheritance relationship [Snyder86a]. Inheri

tance allows an abstraction to inherit various (or all) characteristics from 

another abstraction higher in the hierarchy. 

In the following subsections, the above features of the object-based architec

tures will be discussed, and the terminology used in the rest of this thesis 

will be introduced. 

2.1.1. Objects and classes 

Following a standard terminology [Jones78], an object IS an entity out of 

- 13 -



Object-Based and Object-Oriented Programming 

which a structural model of a system is built. The important feature of an 

object is that no other object within the same system has any means of 

finding out what is <inside'. The key concept here is encapsulation. Gen

erally, an object encapsulates some state together with the set of operations 

that are the only means by which that state can be manipulated. The result 

of invoking an operation of an object depends on the object state as well as 

on the operation arguments. 

A system will often contain many similar objects. For example, a window 

management system may have several windows which, with the exception 

of their location and size, exhibit identical behaviour. Dahl, Dijkstra, and 

Hoare asserted in their book ([DahI72], p. 177): 

"Any useful concept has some degree of generality, i.e. it is a class of spe

cialized instances. In other words one tries to group phenomena occur

ring in a dynamic system into classes of phenomena and describe each 

class by a single piece of program." 

At the programming language level, the implementation of similar objects 

can be collectively defined by declaring a class. A class is a description of 

the common features of similar objects from which an individual object may 

be created. This notion of class applies to what is termed cluster in CLU 

[Liskov81], type in Trellis/Owl [Schaffert86], and class in Smalltalk [Gold

berg83], Simula [DahI70], and C++ [Stroustrup86]. A class characterizes 

the behaviour of its objects by defining the only operations that can manipu

late the state of its objects. 
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An operation has access to several kinds of variables which contain the 

object state, but which differ in terms of how widely they are available and 

how long they persist. These various kinds of variables can be divided in (1) 

instance variables, which are private variables accessible only to a single 

object, and (2) class variables, which are shared by all the objects of a single 

class. 

Although the terminology just introduced is among the most popular in the 

current literature on object-based programming, there are some well-known 

systems that employ different terms for the same basic concepts. In C++ 

[Stroustrup86], for example, the operations that can manipulate the objects 

of a class are termed public member functions, the instance variables are 

termed private member variables, and the class variables are termed static 

member variables. In Small talk, objects are also known as instances of their 

classes, operations defined on objects are called methods, and objects are 

manipulated by applying methods to them. The only way to apply a method 

to an object in Smalltalk is to send a message containing the method name 

and the parameters to that object. The object responds to the message by 

possibly changing its state and by returning a result object. It is worthwhile 

to note that although the concept of message passing appears to be radically 

different from the conventional concept of procedure call, the difference is 

more pedagogical than semantic. Message passing emphasizes the caller's 

lack of knowledge of the code body which will be executed. However, any 

procedure call can be viewed as a message send, and vice versa. Examples 

of object-based programming languages whose authors describe them using 
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notions of procedure-calling rather than message-passing are: Simula-67 

[Dah170], Trellis/Owl [Schaffert86], and C++ [Stroustrup86]. 

To illustrate the use of objects and classes, consider an outline of a program 

for displaying rectangular regions on a display screen. Figure 2.1 gives a 

class definition for the class Box, using a syntax similar to that of 

Smalltalk, though simpler. The first four instance variables store the coordi

nate and size information of a box, and the last instance variable records 

the shade which fills that box. The origin of a box in the coordinate system 

is determined by the instance variables xOrigin and yOrigin (the use of 

upper-case letters in the middle of a word is part of the established 

Smalltalk style), and the default origin of objects of this class is defined as 

(100, 200). The size of a box is determined by instance variables xLength 

and yLength and the default size is 10 x 30. Operations on a box include 

moving it to a new origin, changing its size, displaying it, and changing the 

shading inside the box. The bodies of the operations, which for the sake of 

brevity have been omitted, are assumed to follow the operation headers. 

Messages define an interface for interacting with boxes. Some examples of 

such an interaction are also shown at the bottom of Figure 2.1. Syntacti

cally a message is composed out of an object name, followed by a :selector 

indicating the required operation, followed by any further arguments, and 

terminated by a period. For example, objects of the class Box are created by 

sending Box a new message, and an object can be moved by sending it a 

move message. Users can only manipulate a box by the relevant operations 

- they do not need to know the implementation of a box in terms of the 
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class Box 

class operations 

new; 

instance variables 

xLength 10; 
yLength 30; 
xOrigin 100; 
yOrigin 200; 
defaultS hade white; 

instance operations 

Object-Based and Object-Oriented Programming 

0/0 changes origin in the display 0/0 
move: newXOrigin, new YOrigin; 

0/0 changes the location and axes o{the box 0/0 
reshape: newXOrigin, newYOrigin, newXLength, newYlength; 

0/0 fills the inside of the box with a new shade 0/0 
shade: newShade; 

0/0 displays the box % 
draw 

0/0 move a box at the outmost level in the screen % 
top: originX, originY, lengthX, lengthY; 

end class 

Objects of class Box can be created and manipulated as follows. 

bl - Box :new. 
b2 -Box :new. 
bl :move 15 25. 
b2 :reshape 10 102020. 

Figure 2.1: Example of class and objects. 

instance variables and their manipulations. 

2.1.2. Sub-classes and inheritance 

So far it has been seen that each object belongs to exactly one class. In 

some cases, it would be convenient if objects of one class could also be used 
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as objects of another class. Such sharing of objects among classes can be 

achieved by employing a sub-classing mechanism. One class may be a sub

class of another (its super-class), with the implication that if B is a sub-class 

of A, an object of class B may be used wherever an object of class A can. In 

other words, objects of class B can also be seen as object of class A. 

Connected with sub-classes is the concept of inheritance. A class may share 

or inherit various characteristics of its super-class, and may have its opera

tions inherited by sub-classes. The inherited characteristics may include 

the operations and instance variables of the super-class, and these charac

teristics may be extended or restricted in the sub-class. If an operation is to 

be executed on an object, the search for the operation definition begins in 

the class of the object and if unsuccessful there proceeds to the super-class of 

that class, and so on. The first definition of the operation that is found is 

executed. Hence, an operation defined in a sub-class hides an operation of 

the same name in the super-class. This hiding mechanism allows a sub

class to customize the more general characteristics of its super-class. The 

sub-class in turn may pass on its own or inherited characteristics to its sub

classes. It can be seen that this is in the tradition introduced in Algol-60 

for the scope of local and non-local identifiers [Randell641 

The inheritance structure discussed above is strictly hierarchical since it 

allows a class to have one super-class only, and specifies that objects of a 

sub-class can be used as objects of the super-class. This approach was first 

followed in Simula-67, and was adopted in the first version of Smalltalk-80. 
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As an example of sub-class in the window manager system, suppose that one 

wants to define windows that display text. These new windows would be 

objects of a sub-class of the ordinary class Box. The new class, called 

TextBox in Figure 2.2, adds a new instance variable to keep the font of the 

text, and redefines the operations inherited from Box. 

class TextBox 
superclass Box 

instance variables 

{ont roman; 

instance operations 

0/0 display a TextBox % 
draw 

super :draw; 
printText; 

private operations 

0/0 display the text in the proper {ont % 
printText; 

end class 

Figure 2.2: Example of sub-class. 

For example, the draw operation of TextBox first draws a box, and then 

uses the font information to display the text on the screen. 

One problem with almost all inheritance mechanisms is that they comprom

ise encapsulation to an extent. An inheritance mechanism establishes a 

second sort of user of a class C - the inheriting users, namely C's sub

classes, alongside the instantiating users, who create objects of the class and 

use the C's objects by calling the operations only. While the instantiating 
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users do not see the representation of the objects they manipulate, C's sub

classes are typically permitted to violate encapsulation. For example, 

Smalltalk makes every characteristic of class C public to its sub-classes _ 

the code in the operation of a class may directly access even those instance 

variables that were defined in the super-class. On the one hand, permitting 

access to instance variables defined by super-classes can compromise the 

benefits of encapsulation - a change to a class can affect all its sub-classes. 

On the other hand, to be able to take full advantage of the sharing of the 

implementation code, it can be argued that a sub-class programmer should 

have the same privileges as the person who originally wrote the super-class 

code, and hence should be allowed access to the internal structure of the 

super-class. 

Some architectures have recognized that an alternative to the Smalltalk 

approach is required, and have provided separate interfaces to inheriting 

and instantiating users - sub-classes can access the super-class through a 

well-defined interface, but they may employ operations not available to 

instantiating users. For example, in Trellis/Owl, a characteristic of a class 

declared to be subtype-visible is visible to all its sub-classes in the inheri

tance hierarchy but invisible to instantiating users. A comprehensive dis

cussion of this issue is given in [Snyder86a], where it is suggested that 

instance variables should be protected from direct access by requiring the 

use of explicit access operations, as in Trellis/Owl. 

A generalization of the single inheritance hierarchy, where a class can have 

only a single super-class, is to allow a class to have multiple super-classes. 
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This feature is called multiple inheritance. Multiple inheritance allows a 

given class to inherit characteristics from one or more classes. Trellis/Owl 

and Traits [Curry84] are examples of programming languages incorporating 

a class hierarchy with multiple inheritance. Multiple inheritance appears 

to be important in situations where a class can be created out of a combina

tion of independent super-classes. In the window management example, the 

programmer could define the class TextBox as inheriting both from the class 

Box and from the class InputOutput, as shown in the lattice of Figure 2.3. 

Figure 2.3: Example of multiple inheritance. 

In this way, the' implementation of the class TextBox can be further 

simplified. For example, the implementation of the printText operation of 

class TextBox can reuse the relevant operations of class InputOutput. 

As yet, there is no agreement about the semantics of multiple inheritance, 

and various multiple inheritance schemes are being examined and weighed 

against the complications they add to the implementation of an architec-
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ture. One basic issue concerns the rules for resolving the conflict among the 

super-classes, where instance variables or operation names inherited from 

more than one super-class 'collide', that is have the same name. The way 

this conflict is resolved in most object-based architectures leads to a viola

tion of encapsulation. For example, in Extended Smalltalk [Borning82], a 

version of Smalltalk-80 with multiple inheritance, it is an error if a collision 

occurs. This compromises encapsulation since a change in a class could 

cause sub-classes to become illegal. For example, considering the inheri

tance lattice in Figure 2.3, if an instance variable in class Box is renamed, 

it may cause sub-class TextBox to become illegal if class TextBox also inher

its from class InputOutput an instance variable with the same name as the 

renamed variable in Box. In Trellis/Owl, the programmer of the sub-class 

must resolve explicitly such a conflict by specifying which variables he 

wants to inherit. This leads to similar problems with encapsulation as in 

Extended Smalltalk, since renaming instance variables of a class may be 

visible to the programmer of the sub-class, that is he may be required to 

resolve new collisions that may arise. 

Another basic issue with multiple inheritance concerns multiple occurrences 

of a super-class along different inheritance paths. Several possibilities of 

handling such a situation have been proposed. For example, suppose a class 

A inherits from classes Band C which both inherit from a class D: in the 

approach adopted by C++ and Trellis/Owl the class D is inherited just 

once; in a second approach adopted by CommonObjects [Snyder86b] and 

ThingLab [Borning81] a copy of D is inherited along each path; in a third 

- 22 -



Object-Based and Object-Oriented Programming 

approach adopted by Flavors [Moon86] and CLOS [Bobrow87] the classes 

A,B,C, and D are interposed so that the hierarchy is linearized and the class 

D is inherited once. 

This section has presented the main features and relevant issues of object

based architectures, and has discussed similarities and differences among 

the most popular approaches to object-based programming. The next section 

attempts a classification by grouping together similar object-based architec

tures and by relating the relevant features of each group. 

2.2. A classification 

In this section, object-based architectures are characterized in terms of the 

notions of object, class and inheritance. Various families worthy of special 

study are identified. Figure 2.4 shows some of the most popular members 

for each of the families considered. 

In this thesis the term encapsulation-based architecture is used to mean a 

software architecture which provides facilities that makes it possible (rea

sonably easy, safe, and efficient) to use encapsulation. The encapsulation

based architectures include all architectures which support objects, like Ada 

[DoD80], Actors [Agha86], Modula 2 [Wirth83], and PS-Algol [Atkinson87]. 

An encapsulation-based architecture is termed here class-based if each 

object has a class which characterizes its behaviour; and an encapsulation

based architecture is inheritance-based if it supports objects and inheri

tance. Previously, inheritance has been defined as a mechanism for sharing 
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characteristics in class hierarchies. However, there are various architec

tures which provide a variety of other forms for sharing characteristics. For 

example, Self [Ungar87] and ThingLab [Borning81] do not include classes; 

instead every object is regarded as a prototype for object creation [Born

ing86], and a form of inheritance among objects is provided. In the litera

ture, the term inheritance is sometimes loosely employed to denote a variety 

of sharing techniques [Cook88], and sometimes the term delegation is used 

[Lieberman86, Stein87]. In the context of inheritance-based architectures, 

the term inheritance is used here to mean a more general class-independent 

term for sharing, which allows one implementation of an object to be related 

to another hierarchically. 

In this thesis, an encapsulation-based architecture is termed object-based if 

its objects belong to classes, and the classes themselves can be related by an 

inheritance mechanism and organized into a class hierarchy. According to 

the above terminology the family of object-based architectures is smaller 

than the family of encapsulation-based architectures, since object-based 

architectures exclude architectures like Ada, and CLU but include architec

tures like Smalltalk, Trellis/Owl, and Simula. 

As shown in Figure 2.4, class-based architectures such as CLU, and 

inheritance-based architectures such as Self and ThingLab, are also 

encapsulation-based architectures. Ada is an example of an encapsulation

based architecture that is neither class-based nor inheritance-based. Ada 

does not fully support an inheritance mechanism. Although it does provide 

subtypes and derived types, these are only means of restricting a general 
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type, to some specific range or purpose. Ada does not make it possible to 

extend a pre-existing type by adding additional variables and operations. 

Moreover, although Ada provides an encapsulation mechanism by allowing 

the definition of a package, Ada packages are just program units and cannot 

be considered classes, as argued in [Wegner83]. On the other hand, CLU is 

a class-based architecture, which allows a perfect match between the syntac

tic concept of a cluster, and the semantic concept of a class. However, CLU 

does not have an inheritance mechanism for defining hierarchical relations 

between classes, and is therefore an example of a class-based architecture 

that is not object-based. 

Incidentally, it should be noted that Figure 2.4 may also be seen as 

representing an example of an object-based hierarchy. In the lattice shown, 

extant architectures may be regarded as objects (e.g. Ada, Simula, etc.), and 

programming methodologies that group together architectures with common 

features may be thought of as classes (e.g. Encapsulation-based, Object

based, etc.). An inheritance mechanism allows the organization of the four 

programming methodologies into a hierarchy. For example, class Class

based may be defined as a sub-class of class Encapsulation-based, since 

Class-based can inherit the definition of object from Encapsulation-based. 

Moreover, class Object-based illustrates an example of multiple inheritance 

- Object-based inherits the definition of class from Class-based, of inheri

tance from Inheritance-based, and of object from Encapsulation-based. 

In the literature is also common to encounter the term object-oriented in 

addition and/or in contrast to the term 'object-based'. Sometimes, the term 

- 26 -



Object-Based and Object-Oriented Programming 

(object-oriented' is considered equivalent to (object-based', as In 

[Stroustrup88, Liskov88]. Sometimes, programming languages such as Ada 

or Modula-2 are considered to be (object-based' even though they do not pos

sess all the properties of objects in Smalltalk or Simula, and the term 

(object-oriented' is thought of as stronger than 'object-based', and is used to 

denote programming languages with additional features, as for example in 

[Hendler86, Wegner87b]. 

In this thesis, the architectures that provide the linguistic features of object, 

class, and inheritance are called 'object-based'. However, when considering 

the implementation features of object-based architectures, it could be some

times convenient to make a further distinction. Let us consider, for exam

ple, the object-based extension of the C programming language [Ker

nighan78], that is C++. The current implementation of C++ cannot be 

regarded as object-based, because some of the underlying C features, for 

example the standard types (integer, etc.), which C++ takes in as part of 

its implementation, are not object-based. So if one has those features in an 

architecture together with the object-based constructs then the architecture 

as a whole cannot be considered truly object-based. Of course, one could 

implement in C++ a library of classes which redefines all the standard C 

types according to the object-based methodology. It is thus useful to distin

guish C++ from other architectures where everything is implemented as 

objects. In this respect, we feel that C++ may be regarded as object

oriented, because is 'orienting' the programmer in the right direction, while 

architectures like Smalltalk may be regarded as object-based, that is the 
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term !object-oriented' may be thought of as weaker than !object-based'. This 

distinction, though useful, is out of the scope of the above classification, and 

will not be explored further. 

2.3. Concluding remarks 

A characterization of the relevant features of the object-based programming 

methodology has been discussed. Based on their dependence relations four 

approaches have been identified. These approaches include the object-based 

methodology where objects, that is encapsulation of data and operations, are 

grouped into classes through which the concept of abstract data types is pro

vided. The classes themselves can be organized into a class hierarchy. Such 

hierarchies allow similar classes to be related together in such a way that 

the code implementing the behaviour of one class can be automatically re

used (inherited) by classes lower in the hierarchy, which simplifies the 

implementation of those lower-level classes. 

Throughout this chapter, we have been talking about object-based program

ming as though it can only be done with special programming languages. 

In fact, one of the avenues that has been explored in the present research 

has been the use of object-based programming techniques in a procedure

based language. This work, that will be described in the next chapter, arose 

from particular work on distributed systems and in particular garbage col

lection in distributed systems. These two later topics are deferred until sub

sequent chapters. 
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Chapter 3 

Object-Based versus Procedure-Based Programming Languages 

This chapter addresses the possibilities of exploiting procedure-based 

languages to allow an object-based style of programming. Although the two 

approaches are apparently dissimilar, a family of procedure-based languages 

is considered which allows the development of techniques which enable an 

efficient implementation of object-based features. 

The techniques provided allow one to obtain the benefits of object-based pro

gramming, such as the sub-classing form of inheritance provided by 

Smalltalk and Simula, while preserving the static binding and strong type

checking features of the language. In particular, it will be discussed how 

class can be defined in procedure-based languages, how sub-classes can spe

cialize their super-classes and how the association of operation names and 

routines is affected. 

The arguments devised can also be seen as addressing the issue of whether 

and to what extent procedure-based languages limit the ability of program

mers to adopt an object-based style of programming with a class hierarchy 

structure. 
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3.1. Motivations 

The techniques, whose design and implementation are described in this 

chapter, are intended to provide an adequate support for programming large 

systems. The various motivations that led to the development of these tech

niques can be traced back to the author's earlier experiences in the design 

and implementation of distributed object-based systems. 

In early work on object-based systems, the author was involved in the 

implementation of the Fault-tolerant Distributed Garbage Collection 

(FDGC) mechanism described in [Mancini87] for the Flex system. The Flex 

system [Foster82] is a computer architecture which has been developed at 

the Royal Signals and Radar Establishment (RSRE) of the U.K. Ministry of 

Defence and is available in the Computing Laboratory on the ICL Perq 2. 

The development of the FDGC was completed successfully, employing the 

RS Algol-68 compiler [Woodward83] provided by the Flex system - a com

piler which supports a version of Algol-68 extended with first-class higher

order procedures. However, during the implementation, it became clear 

that the use of object-based programming techniques would be advantageous 

and a way was found of achieving, through disciplined use of RS Algol-68, 

what was in effect object-based programming in a non object-based program

ming language. 

In the light of this experience, the author set out to investigate the design 

and implementation of techniques to enable an efficient implementation of 

object-based features. Since Flex has been used in the Computing 
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Laboratory for experiments in distributed object-based computing, the 

implementations were studied in the context of the Flex system. 

Thus, the techniques reported in this chapter were developed, one of which 

has also been described in [Mancini88a]. These techniques proved to be an 

improvement on standard Algol-68, and a useful tool for constructing large 

programs. In particular, they provided a convenient base for the colleagues 

at RSRE to develop experimental versions of a new graphical user interface 

for the Flex system. The RS Algol-68 compiler supported by the Flex sys

tem has been used to experiment these ideas, although the techniques pro

posed are applicable to every procedure-based language. What follows illus

trates them using the ML language [Milner84], because of the wider 

knowledge that exists of this language than RS Algol-68. 

This chapter is organized as follows. Section 3.2 examines different ways of 

providing data abstraction and encapsulation. Section 3.3 discusses various 

issues about providing sub-classing in a procedure-based language. In Sec

tion 3.4 a first technique for sub-classing is presented in detail - it exploits 

polymorphic procedures and requires some run-time lookup. In Section 3.5 

a second technique is presented - all bindings are established at the time 

objects are created and run-time lookups are avoided. Performance con

siderations and conclusions from this study are discussed in the final sec

tions. 
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3.2. Class definition 

This section explores how classes can be defined in procedure-based 

languages so as to provide encapsulation and data abstraction. A 

procedure-based language with the following characteristics will be 

employed to express the techniques proposed: polymorphism, first-class 

higher-order procedures, static binding, and strong type-checking. 

There are several kinds of polymorphism investigated in the literature [Car

de11i85]. In this chapter a language is considered to be polymorphic if some 

of its expressions and variables may have more than one type, and a pro

cedure can work uniformly on a range of types; these types normally exhibit 

some common structure. Polymorphism is desirable in modern program

ming languages because it enables the writing of extremely general-purpose 

programs in a transparent manner - the bare algorithm and no superfluity, 

as argued in [Harland84]. 

Traditionally, procedures have been included in programming languages as 

denotations, not as proper values. By first-class higher-order procedures 

[Abelson85], it is meant procedures that can be treated just as any other 

value in the language. First-class higher-order procedures can be accepted 

as arguments to other procedures, stored in variables, and returned in the 

results of a procedure. As it will be shown in the following, first-class 

higher-order procedures provide an alternative mechanism for implementing 

encapsulation to the selective exporting of local names, let alone an 

increased uniformity in the language. 
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In the language considered, variables are bound statically, that is, a free 

variable in a procedure gets its value from the environment in which the 

procedure is defined. This means that the binding of a variable in a program 

is determined by the static structure of the program, not by its run time 

behaviour. The language is further assumed to be strongly typed, that is it 

is guaranteed that programs will execute without type errors - the type com

patibility of all expressions and variables can be determined from the static 

program representation at compile-time. While the advantages of the static 

binding are in terms of higher efficiency by comparison with solutions 

employing dynamic binding, the strong type-checking helps to recognize 

sources of error early and therefore increases the degrees of correctness, tes

tability, and maintainability of programs. 

In some object-based languages (for instance, Smalltalk) a class is itself an 

object, and creating objects of the abstract data type represented by that 

class involves applying a create operation (new in Smalltalk) to that class 

object. A similar way of providing encapsulation is by means of procedural 

abstractions. As has been pointed out in [Horning76], the advantages and 

aims of procedural and data abstraction are similar. Just as a procedure 

separates the implementation of a function from its use, so the abstract data 

type separates the representation of an object from its use. Indeed if pro

cedures are first-class entities, the mechanism for both abstractions can be 

the same - that of procedures. In languages providing first-class higher

order procedures, a class description can be given by declaring a procedure 

which, when executed, creates an object, and returns the set of procedures 
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(operations) which can be applied to that object. (A detailed presentation of 

techniques for providing data abstraction and encapsulation through the use 

of higher-order procedures can be found in [Abelson85], although techniques 

for handling sub-classes and inheritance are not covered.) 

In what follows, the example of the window management system of Chapter 

2 will be reconsidered, in order to illustrate the similarities between the 

object-based and procedure-based approaches. The same encapsulation 

features of the object-based languages can be achieved in procedure-based 

languages by suitable use of first class higher-order procedures. For exam

ple, the dual of the program for the class Box in Figure 2.1 is shown by the 

ML program of Figure 3.1 - the procedure makeBox creates an object of the 

class Box hiding the five instance variables behind the procedural interface 

composed of the five operations to manipulate them. Suitable functions 

must be defined in order to select and invoke one of the five operations of 

the tuple returned by makeBox. It is worthwhile to note that such selector 

functions are polymorphic, for example, moveOF in Figure 3.1 can return a 

value of different types at different times depending on the type of the first 

component of the tuple passed as actual parameter. 

This simple example shows that the encapsulation features of both 

approaches are similar. In particular, it could be pointed out that: 

In both types of languages, objects may be created dynamically at run

time. This can be achieved in the object-based approach by sending a 

message new to the class Box, and in the procedure-based language by 

- 34 -



% creates an object of type Box and returns the operations to manipulate it % 
val makeBox = fun 0 ~ 

let 

in 

% instance variables % 
valxLength = ref 10; 
val yLength = ref 30 ; 
val xOrigin = ref 100 ; 
valyOrigin = ref 200; 
val defaultShade = ref white; 

% returned instance operations% 
( fun newXOrigin, newYOrigin: int ~ ... , 

fun newXOrigin, newYOrigin, newXLength, newYlength: int ~ ... , 
fun newS hade: shading ~ ... , 
fun 0 ~ ... , 
fun originX, originY, lengthX, lengthY: int ~ ... 

end; 

Given the following declarations: 

val moveOF = fun (move, reshape, shade, draw, top) ~ move; 
val reshapeOF = fun (move, reshape, shade, draw, top) ~ reshape; 

Boxes can be created and manipulated as follows. 

val bl = makeBox; 
val b2 = makeB ox ; 
moveOF bl (15, 25) ; 
reshapeOF b2 (10, 10, 20, 20) ; 

topOF b2 (10,10,20,20) ; 

Figure 3.1: Definition of Box written in ML using first-class higher-order procedures. 
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calling the procedure makeBox. 

This programming discipline for procedure-based languages allows the 

use of procedures employing a style of programming equivalent to that 

of the object-based approach. Instead of passing objects to operation rou

tines, objects are required to perform operations on themselves. The 

code of the routines can be factored out into the procedure which 

represents the class. For example, the code of procedure makeBox con

tains the routines move, reshape, shade, draw, and top which are 

referred to by the class objects bl and b2 in order to manipulate their 

own instance variables. 

Many object-based languages, such as Smalltalk, perform run-time type 

checking, while in the case of procedure-based language compile-time 

checking is possible. 

3.3. Sub-classes and inheritance 

As mentioned in Chapter 2, another common property of the object-based 

approach is that it allows a set of classes to be organized as a class hierar

chy. The class structure as described so far does not permit one class to 

inherit characteristics from another class. 

To clarify this idea, reconsider the example of the class Box of of Figure 3.1. 

Suppose that another kind of box, BorderedBox, is required with a visible 

border that frames it on the display. Objects of class BorderedBox would be 
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essentially an object of Box but with a border. This overlap of characteris

tics suggests that it would be desirable to be able to exploit inheritance to 

obtain the main characteristics of BorderedBox by specializing the class 

defini tion of Box. 

The example in Figure 3.2, where the keyword class has been substituted 

for proc for clarity, shows the class BorderedBox defined as a sub-class of the 

class Box. Class Box contains basically the same operation definitions as in 

the program of Figure 3.1. In class BorderedBox, which inherits operations 

from class Box through the superclass declaration, four operations are added 

together with a new instance variable for recording the border size. The first 

operation of BorderedBox, reshape, is a specialization of the operation of the 

class Box. This specialization is required because the border needs to be 

redrawn when a box is increased in size. The reshape operation of Bordered

Box also needs to use the reshape operation of its super-class, and achieves 

this behaviour through the use of the pseudo-variable super. The specialized 

reshape of BorderedBox also invokes the operations draw and erase, local to 

BorderedBox, to draw and erase the border. These operations are for inter

nal use, while the setBorder operation is part of the external interface. 

Procedure top in class Box also illustrates an additional requirement. It is 

assumed that top requires a reshape operation to be executed, and that class 

BorderedBox inherits the operation top from the super-class Box. The ques

tion arises as to how top can invoke reshape, differentiating between that 

defined in class Box and that in class BorderedBox. This is where the use of 

the pseudo-variable self comes in. By referring to 'reshape of self', the 
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class Box; 
begin 

instance variables 
intxLength = 10; 
intyLength = 30; 
intxOrigin = 100; 
intyOrigin = 200; 
shading defaultShade = white; 

instance operations 
proc move (int newXOrigin, newYOrigin) .•• ; 
proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength) .•• ; 
proc shade (shading newShade) ••• ; 
procdraw ..• ; 
proc top (int originX, originY, lengthX, lengthY): 
begin 

reshape of self(m, n, p, q); 

end 
end Box; 

class BorderedBox; 
superclass Box; 
begin 

instance variable 
int borderSize = 2; 

instance operations 

% width of the border % 

proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength): 
begin 

eraseBorder; % erase old border % 
% now reshape box as before % 

reshape of super (newXOrigin, newYOrigin, newXLength, newYlength); 
drawBorder % draw new border % 

end; 
proc setBorder (int newBorderSize) ..• ; %set a new border size% 

private operations 
proc eraseBorder •.. ; 
proc drawBorder ... ; 

end BorderedBox; 

Bordered boxes can be created and manipulated as follows. 

BorderedBox bbl : = new; 
BorderedBox bb2 : = new; 
setBorder of bbl (3); 
move of bbl (15,25); 
reshape of bb2 (10,10,20,20); 
top of bb2 (10, 10, 20, 20); 

Figure 3.2: Example of class hierarchy. 
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search operation for the reshape operation begins in the class of the object 

on which the top operation was originally invoked, not in the class in which 

the code for top is declared. 

At the end of Figure 3.2, a possible use of these class descriptions is shown. 

Two objects, bbl and bb2, of the class BorderedBox are created. The border 

of bbl is first enlarged, by <setBorder of bb1(3)', and then is moved, by <move 

of bbl(15, 25)'. Similarly, object bb2 is first reshaped using the specialized 

reshape, and then is brought to the top. It is worth noting that the last 

operation requires the invocation of top defined in the class Box, and that 

operation reshape called in the body of top has to be bound to the procedure 

defined in class BorderedBox regardless of the fact that a reshape procedure 

is present in Box - the reshape defined in Box cannot handle BorderedBox. 

In the next sections, two possible implementation of the sub-classing 

mechanism in a procedure-based language will be shown. The issues that 

will be discussed include: 

Compile time errors. 

For example, because of the strong type-checking feature of the 

language the compiler will complain about the instruction <move of 

bbl(15, 25)' in Figure 3.2 - move is not declared among the procedures 

of the class BorderedBox. Moreover, a treatment of the syntactical 

sugar added is required, such as the new keywords (class, superclass, 

etc.). 
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Pseudo-variable super. 

For example, the reshape in the class BorderedBox is a specialization of 

the reshape of the class Box, this requires binding the call 'reshape of 

super' to the right code in the super-class. Because only static binding 

is assumed, the treatment of the pseudo-variable super must be pro

vided. 

Pseudo-variable self. 

In the example discussed, 'reshape of self' in operation top of class Box 

may deal with objects of class Box and BorderedBox - top is defined in 

Box and is inherited by class BorderedBox. This requires binding the 

call 'reshape of self' with the right code in the relevant object's class, 

i.e. the treatment of pseudo-variable self is needed. 

In the following section two techniques will be presented to solve these 

issues. 

3.4. Sub-classing implementation exploiting polymorphic procedures 

The technique presented in this section exploits the polymorphic features of 

the procedure-based language considered. The technique is based upon the 

use of a new type called Dispatcher, which is a procedure type which takes 

as arguments a string of characters and a polymorphic type, and returns a 

polymorphic type as its result. In particular, a procedure of type Dispatcher 

takes the name denoting an operation as parameter, and returns either the 

results of the execution of that operation or a failure in the case the opera

tion does not exist. In the implementation presented, every procedure which 
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defines a class takes as its argument a procedure to access the new bindings 

defined by the calling environment, and returns an object of type 

Dispatcher. For example, object bbl of the class BorderedBox is created by 

the command: 

Dispatcher bbl : = borderedBox(fail); 

where procedure fail specifies that no new bindings are defined, and is called 

when failures occur in binding an operation invoked upon bbl. 

An example of inheritance implemented in procedure-based languages by 

means of the polymorphic type Dispatcher is illustrated by the programs of 

Figure 3.3 and Figure 3.4. The class BorderedBox is implemented by pro

cedure borderedBox. Procedure borderedBox returns procedure dispatch 

which implements the dispatching strategy for BorderedBox, taking the 

name of the required operation as its argument. When executed, the body of 

procedure dispatch compares its argument with the names of the operations 

declared locally. When a match occurs the relevant procedure is called with 

the appropriate parameters; otherwise the dispatch procedure of the super

class is invoked with the same parameter. That is, at run time the search 

for an operation begins at the class of the invoked object, and proceeds to 

the top of the hierarchy - returning the first occurrence of the operation that 

is found. It is worthwhile to note that the code of borderedBox includes an 

object of class Box called super which allows the sharing of operations 

between a class and its super-class. This represents the implementation of 

the pseudo-variable super, and provides support for specialization within 
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% type of an operation % 
type method = struct ( string 

poly 

% the type of class protocol % 

name, 
arguments ); 

type Dispatcher = proc (method)returns poly; 

proc borderedBox = (Dispatcher bind) Dispatcher: 
begin 

% superclass % 
Dispatcher super = box (newBinding); 

% instance variable % 
int borderSize = 2; 

% instance operations % 

proc reshape = (int newXOrigin, newYOrigin, newXLength, newYlength): 
begin 

eraseBorder; 
super ("reshape", (newXOrigin, newYOrigin, newXLength, newYlength)); 
drawBorder 

end; 
proc setBorder = (int newBorderSize) ..• ; % set a new border size % 

% private operations % 
proc eraseBorder = ... ; 
proc drawBorder = ... ; 
% new bindings required % 
proc newBinding = (method operation) poly: 
begin 

case bind(operation) in 
(fail): if nameofoperation = "reshape" then reshape (argumentsofoperation) 

else fail % binding not here % 
out skip esac 

end; 

% declaration of the class protocol % 
proc dispatch = (method wanted) poly: 
begin 

if nameofwanted = "reshape" then reshape (argumentsofwanted) 
elifnameofwanted = "setBorder" then setBorder (argumentsofwanted) 
else super (wanted) 
fi 

end; 

% return the class protocol % 
return dispatch 

end. 

Examples of creation and manipulation of instances of BorderedBox follow. 

Dispatcher bbl : = borderedBox (fail); 
Dispatcher bb2 : = borderedBox (fail); 
bbl ("setBorder", 3); 
bbl ("move", (15,25)); 
bb2 ("reshape", (10,10,20,20)); 
bb2 ("top", (10,10,20,20)); 

Figure 3.3: Dispatching in class BorderedBox. 
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sub-classes, as can be appreciated by looking at the code of the procedure 

reshape in Figure 3.3. 

For example, consider the command: 

bbl ("move", (15,25)); 

The dispatch procedure of borderedBox is invoked (via bbl) first with the 

string ((move" and arguments (15,25) as its parameter. After having looked 

up the move operation among its local procedures and failed to find it, bbl 

calls the dispatcher of the super-class with the same parameter. This time 

the move operation is found (in class Box; see Figure 3.4), and applied to the 

parameters (15,25). (Note that in this code, no attempt has been made to 

optimize the run-time speed of the lookup in procedure dispatch, and a sim

ple string search has been shown to emphasize the work of this procedure.) 

The implementation for pseudo-variable self will be explained considering 

the execution of the command at the bottom of Figure 3.3 

bb2 C(top", (10,10,20,20)); 

The search for operation top begins via procedure dispatch in class Bor

deredBox. The operation is not found in BorderedBox, so the search contin

ues by looking in the super-class Box. An operation named top is found in 

Box (Figure 3.4); this operation contains in its body a case statement which 

causes the execution of procedure newBinding in BorderedBox with argu

ment the operation name reshape - newBinding is the actual parameter of 

procedure box which is invoked in the code of BorderedBox to create object 
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% type of an operation % 
type method = struct ( string name, 

poly arguments); 

% the type of class protocol % 
type Dispatcher = proc (method)returns poly; 

% box creates an instance of Box and returns the class protocol for the object % 
proc box = (Dispatcher bind) Dispatcher: 
begin 

% instance variable % 
intxLength = 10; 
intyLength = 30; 
int xOrigin = 100; 
intyOrigin = 200; 
shading defaultS hade = white; 

% instance operations % 
proc move = (int newXOrigin, new YO rigin) ... ; 
proc reshape = (int newXOrigin, newYOrigin, newXLength, newYlength) ... ; 
proc shade = (shading newS hade) ... ; 
procdraw = '" 
proc top = .... 
begin 

case bind Creshape",(m,n,p,q)) in 
(fail): reshape (m,n,p,q) 

out skip esac; 

end; 

% declaration of the class protocol % 
proc dispatch = (method wanted) poly; 
begin 

if nameofwanted = "move" 
elifnameofwanted = "reshape" 
elifnameofwanted = "shade" 
elifnameofwanted = "draw" 
elif nameofwanted = "top" 
else fail % unknown operation % 
fi 

end; 

return dispatch 

end. 

then move (argumentsofwanted) 
then reshape (argumentsofwanted) 
then shade (argumentsofwanted) 
then draw (argumentsofwanted) 
then top (argumentsofwanted) 

Examples of creation and manipulation of instances of Box follow. 
Dispatcher bi:= box (fail); 
Dispatcher b2: = box (fail); 
bi ("move", (15,25)); 
b2 ("reshape", (10,10,20,20)); 

Figure 3.4: Dispatching in class Box. 
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super. The search for the reshape operation, therefore, begins in class Bor

deredBox. After that the call to procedure bind in newBinding fails (when 

object bb2 was created, the actual parameter for bind was procedure fail), 

the relevant branch of the case statement (labelled by fail in Figure 3.3) is 

chosen, and an operation for reshaping is found and executed. It should be 

noted that this technique for implementing the pseudo-variable self adopts a 

depth-first search, that is first the class hierarchy is descended, and then the 

classes are visited proceeding to the top and searching for the first 

occurrence of the relevant operation. 

In Figure 3.4, the procedure box for creating objects of the class Box is 

shown. Since the class Box has been declared without any super-class, pro

cedure newBinding is missing, and a failure is caused by procedure dispatch 

if the operation being searched for is not present. 

The technique discussed provides run-time support for sub-classing, and also 

solves the other issues discussed in the previous section. 

3.5. Sub-classing implementation at objects creation-time 

Unlike the technique in the previous section that binds operation names of 

an object at run-time, the technique presented in this section establishes all 

bindings at the outset during the object's creation; this is achieved by a 

careful use of procedure values and procedure variables. In the scheme 

presented below, every procedure which defines a class, say C, takes as its 

argument a parameter which holds the bindings redefined by the calling 
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environment, and returns the set of operations to manipulate an object of 

class C. For example, object bbl of the class BorderedBox is created by the 

command: 

BorderedBox bbl : = borderedBox (unbound); 

where unbound specifies that no new bindings are defined for object bbl, 

and is a variable of type BorderedBoxBind with the field bound set to false. 

An example of inheritance implemented by exploiting this technique is 

illustrated by the programs of Figure 3.5 and Figure 3.6. The class Bor

deredBox is implemented by procedure borderedBox in Figure 3.5. The code 

of borderedBox includes an object of class Box called super which allows the 

inheritance of operations between a class and its super-class. 

Procedure borderedBox returns together with the operations defined expli

citly in class BorderedBox the object super. The invocation of an operation 

inherited by BorderedBox is achieved by prefixing the object name with the 

structure selector super. For example, the execution of the command 

move of super of bbl (15, 25); 

causes the procedure denoted by move in the field super of the structure bbl 

to be invoked and to be applied to the parameters (15,25). In other words, 

the operation move defined in class Box is executed on object bbl of class 

BorderedBox. The inclusion in the sub-classes of an object of the super

classes can be considered as the implementation of the pseudo-variable 

super, and provides support for specialization within sub-classes, as can be 
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type BorderedBox = struct (proc(int,int,int,int) void 
proc(int) void 
Box 

% redefined bindings for type BorderedBox % 

reshape, 
setBorder 
super ); 

type BorderedBoxBind = struct ( bool bound, 
proc(int,int,int,int) void reshape); 

% borderedBox creates objects of class BorderedBox % 
proc borderedBox (BorderedBoxBind sub) BorderedBox: 
begin 

% pass the redefined bindings to the superclass % 
BoxBind newBinding ; 
newBinding: = (true, if boundofsub then reshapeofsub else reshape ti); 

% superclass % 
Box super: = box (newBinding); 

% instanc:J variable % 
int borderSize = 2; 

% instance operations % 
proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength): 
begin 

eraseBorder; 
reshape of super (newXOrigin, new YOrigin, newXLength, new Ylength); 
drawBorder 

end; 
proc setBorder (in t newBorderSize) ••• ; % set a new border size % 

% private operations % 
proc eraseBorder ••• ; 
proc drawBorder .•• ; 

% return the class and the superclass protocol % 
return (reshape, setBorder, super) 

end. 

Examples of creation and manipulation of instances of BorderedBox follow. 
BorderedBox bbl : = borderedBox (unbound); 
BorderedBox bb2 : = borderedBox (unbound); 

setBorder of bbl (3); 
move of super of bbl (15, 25); 
reshape of bb2 (10, 10, 20, 20); 
top of super of bb2 (10,10,20,20); 

Figure 3.5: Implementation of class BorderedBox. 
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appreciated by looking at the code of the operation reshape in Figure 3.5. 

The implementation for pseudo-variable self is based upon the use of a 

structure type having name of the form < class name> Bind, e.g. Bordered

BoxBind. The first field of this type is a boolean and indicates whether the 

remaining fields have been bound to values. The remaining fields specify 

the operations which in the declaration of a class or of its super-classes 

appear to be invoked via the pseudo-variable self. For example the type Bor

deredBoxBind is defined as: 

type BorderedBoxBind = struct( bool bound, 

proc(int,int,int,int)void reshape); 

Since the pseudo-variable self has not been used in the code of borderedBox, 

BorderedBoxBind contains the same operation of BoxBind. 

The operations invoked via pseudo-variable self are implemented by employ

ing procedure variables. This approach allows the binding of the operations 

invoked via self with the relevant procedure bodies at the time objects are 

created. For example, the call of the reshape operation by the top operation 

declared in Box can be bound to the code which is able to manipulate objects 

of class BorderedBox at the time such objects are created. Let us explain 

how this is achieved by considering the execution of the command: 

BorderedBox bb2 : = borderedBox (unbound); 

To set up all the bindings for object bb2, the execution of procedure bor

deredBox and of procedure box is required. During the execution of 
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procedure borderedBox, which is shown in Figure 3.5, first the tuple (true, 

reshape), where the name reshape denotes the reshape procedure declared in 

borderedBox, is assigned to the variable newBinding, and second the result 

of the execution of the procedure box with argument newBinding is assigned 

to variable super. This second assignment also causes the execution of pro

cedure box which, as can be appreciate by looking at the code in Figure 3.6, 

binds the operation to reshape objects of class BorderedBox to the procedure 

variable denoted by reshapeOFself This binding will be used at run-time to 

call the operation relevant to manipulate the object bb2. 

In order to show that all the bindings established for object bb2 are 

sufficient to support sub-classing, consider the execution of the command at 

the bottom of Figure 3.5 

top of super of bb2 (10, 10, 20, 20); 

The operation top in class Box (Figure 3.6) is executed with argument 

(10,10,20,20). This operation contains in its body a procedure variable, 

denoted by reshapeOFself, which causes the execution of operation reshape 

in BorderedBox - the operation to reshape BorderedBox has been passed as 

actual parameter to procedure box and has been assigned to procedure vari

able reshapeOFself when the object bb2 was created. It is worthwhile to 

note that this implementation for the pseudo-variable self does not rely 

upon any run-time lookup - the bindings for operation names of an object 

can be established at the outset during object's creation and do not need to 

be modified during the object's lifetime. 
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type Box = struct ( proc(int,int) void move, 
proc(int,int,int,int) void reshape, 
proc(shading) void shade, 
proc void draw 
proc(int,int,int,int) void top ); 

% redefined bindings for type Box % 
type BoxBind = struct ( bool bound, 

proc(int,int,int,int) void reshape); 

% box creates an instance of Box and returns the operations to manipulate it % 
proc box (BoxBind sub) Box: 
begin 

% instance variable % 
int xLength = 10; 
intyLength = 30; 
intxOrigin = 100; 
intyOrigin = 200; 
shading defaultS hade = white; 

% instance operations % 
proc move (int newXOrigin, newYOrigin) .•• ; 

% procedure to reshape boxes % 
proc reshape (int newXOrigin, newYOrigin, newXLength, newYlength) •.. ; 

proc shade (shading newShade) ••• ; 
procdraw ... ; 

% variable declaration to hold the procedure reshape redefined by the sub-class % 
proc(int,int,int,int) void reshapeOFself; 
reshapeOFself; = if boundofsub then reshapeofsub else reshape fi; 

proc top ••. : 
begin 

... reshapeOFself(m,n,p,q); ..• 
end; 

return (move, reshape, shade, draw, top) 

end. 

Examples of creation and manipulation of objects of Box follow. 

Box bl : = box(unbound); 
Box b2: = box(unbound); 

move ~f bl (15,25); 
reshape of b2 (10, 10, 20, 20); 
top of b2 (10,10,20,20); 

Figure 3.6: Implementation of class Box. 
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In Figure 3.6, the procedure box for creating objects of the class Box is 

shown. Some examples of box manipulations are also shown. This time the 

invocation of the top operation, that is 

top of b2 (10, 10, 20, 20); 

causes the execution of the code to reshape objects of class Box. When b2 is 

created, the argument of procedure box is unbound (a variable of type Box

Bind with the field bound set to false), and the procedure reshape declared 

in box is assigned to the procedure variable reshapeOFself by the command 

reshapeOFself: = if bound of sub then reshape of sub else reshape fi; 

This simple mechanism allows the binding of operation reshape 

differentiating between the code defined in class Box and that defined in 

class BorderedBox. It must be emphasized that because the class Box has 

been declared without any super-class, procedure box does not include an 

object denoted by super among the values returned as results. 

3.6. Preprocessor specification 

The techniques discussed above for implementing sub-classing in a 

procedure-based language permit the writing of object-based programs. 

However, although they allow class hierarchy and inheritance to be imple

mented, most object-based constructs are hidden behind procedure manipu

lations. 

A further step towards providing a more convenient programming context 
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would be to implement a preprocessor which deals with a program contain

ing explicit class and sub-class declarations and produces the code for the 

procedure-based compiler. Note that such a preprocessor is not required for 

the enforcement of any specific discipline, but only to make the syntax more 

convenient. This represents a major difference with respect to other 

approaches which implement a class hierarchy and inheritance as a set of 

extensions to a procedural language. For example, the C++ preprocessor 

implements object encapsulation, while the approach in this chapter pro

vides object encapsulation by exploiting first-class higher-order procedures, 

which is a feature of the base language. 

In the case of the technique presented in Section 3.4 such a preprocessor 

could take a program in the notation of Figure 3.2 and transform it to that 

of Figure 3.3 and Figure 3.4. As can be appreciated by comparing these 

figures, the preprocessor should perform the following steps: 

1. Fix the syntactical discrepancies, namely substituting the keywords 

proc for class, and the occurrences of the type Dispatcher for any class 

types. 

2. Modify the program to deal with pseudo-variables super and self. The 

actions to be carried out in this step include appending to each class 

description the code for procedure dispatch and for procedure newBind

ing, and for returning dispatch as a value. The code for dispatch and 

newBinding can be generated automatically by parsing the declaration 

of the structure of the operations the classes should return. 
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3. Identify the type of the formal polymorphic parameter of the procedure 

dispatch for each class C. This type can be modelled as the union of the 

types of the formal parameters of all the operations declared in C and 

in its super-classes. Besides, dispatch may also return values of a type 

which is the union of the types of the results of the operations declared 

in C and in its super-classes. These unions can be computed during the 

parsing of the operation declarations in phase 2. 

4. Change all the procedure calls of the kind 'idl of id2(parameter-list)' 

where id2 is a class identifier in the command 'id2(idl, (parameter

list))' . 

In the implementation for the Flex system, the identification of the unions 

in phase 3 was not needed. The Flex architecture provides specific machine 

instructions which have been exploited for the treatment of the polymorphic 

parameter of the dispatch procedure. Note also that the preprocessor dis

cussed can convert operation names into some representation that can be 

compared efficiently to avoid the string comparison overhead in the body of 

the dispatch and newBinding procedures. 

In the case of the technique presented in Section 3.5, as can be appreciated 

by comparing Figure 3.2 with Figure 3.5 and Figure 3.6, the steps the 

preprocessor should perform include: 

1. Modify the program to deal with pseudo-variables super and self. The 

actions to be carried out in this step include declaring in each class 
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with a super-class definition the object super, returning it as a value, 

and declaring a procedure variable for each operation invoked via self. 

2. Identify for each class C the type of the formal parameter, called 

< C > Bind, and the type of the value returned (the class operations 

exported) by the procedure defining C. The code for the declarations of 

these types can be generated automatically for each class by parsing 

the declaration of the structure of the operations following the keyword 

instance operations. 

3. Insert in every operation call the right sequence of super. In order to 

minimize the overhead needed to compile the operation calls, it is con

venient for the preprocessor to maintain a table recording for each 

operation the distance between the class inheriting it and that defining 

it. This data structure can be initialized during the parsing of the 

operation declarations in phase 2. 

If the definition of compilation units, or packages [DoD80], is supported by 

the compiler, the data structure at step 3 can also be exploited to minimize 

the number of packages to be recompiled after an update of the class hierar

chy. When a class, say C, is updated, the preprocessor can trace the pack

ages which contain invocations to C's operations and need to be recompiled. 

Keeping the code of each operation in separated packages is a good strategy 

to minimize the recompilation overhead. Incidentally, it should be noted 

that any type errors in the operation calls will be detected at compile-time. 
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3.7. Performance considerations 

Measurements have been made of the overhead caused by these schemes. 

The measurements were made on an ICL Perq workstation running the Flex 

system, and have been carried out for a null body operation call. The aver

age time has been measured for such a call to be completed. 

With respect to the technique of Section 3.4, it was found that the results of 

the measurements have a very close approximation to the following expres

sion: 

n * (time for dispatch call) + (time for operation call) 

where n is the number of the classes visited to find the relevant operation. 

The invocation of an operation not inherited is composed of two procedure 

calls: a call to the dispatch procedure, and a local call (internal to the class 

and invoked by the dispatch procedure). In general, to call an inherited 

operation, the time needed to execute the dispatch procedure has to be mul

tiply by the number of classes visited. 

The performance degradation due to the scheme of Section 3.4 for n equal to 

one (operation not inherited) is of the order of 35%. This performance degra

dation is by comparison with an operation call involving a reference to a 

class object. The call of any operation of class Box, as defined in Figure 3.1, 

involves a reference to a variable (e.g. bl); such an indirect call of an opera

tion (via a variable holding the class object) is needed for data abstraction 

regardless of the inheritance scheme proposed. Although the degradation 
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increases linearly with the distance of the inherited operations (as shown by 

the above expression), given that an object-based program can be expected 

to spend only a modest fraction of its time actually invoking operations, the 

overall performance degradation should be at the very most of the order 

mentioned above. The search down the hierarchy for supporting the imple

mentation of the pseudo-variable self has the same cost: a linear number of 

calls to procedure bind plus a local call. 

The performance degradation due to the scheme of Section 3.5 for calling an 

inherited operation from a direct super-class is of the order of 1 %. This per

formance degradation is by comparison with a non-inherited operation, and 

is caused by the indirection in calling an inherited operation, namely via 

the variable super holding the super-class object. The implementation of 

the pseudo-variable self has a smaller cost - regardless of the distance of the 

operation definition, its call is performed via a procedure variable involving 

one level of indirection only. 

3.8. Concluding remarks 

Two general techniques have been presented for implementing the sub

classing form of inheritance as a set of extensions to a high-level language. 

The first technique exploits the polymorphic features of the language to 

implement the operations inheritance of a class hierarchy, while the second 

technique exploits first-class procedures. 

To a certain extent, the choice between these techniques depends on what 
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object-based programming is being used for. If interest is essentially in 

quick prototyping and experimentation, the first approach may be the best 

to adapt. Keeping the dispatching scheme during execution makes it easier 

to change the class hierarchy in order to correct errors, improve the system, 

or experiment with new facilities - there is no need on each occasion to go 

through a complete compilation of other classes in the hierarchy. On the 

other hand, if the concern is for correctness, robustness and efficiency, then 

the second approach, which constructs most of the bindings at compile-time, 

is obviously required. For example, correctness requires that one knows 

what the system is before one executes it; if the system can be changed dur

ing its execution, there is little hope that one can guarantee any of its pro

perties. 

The merits of these two techniques include: (1) they are useful as a discip

line for achieving object-based programming in a non object-based program

ming language, (2) they suffice for providing run-time support for sub

classing in procedure-based languages, and (3) they preserve the static bind

ing and the strong type-checking features of the languages, hence obtaining 

- with high degrees of correctness, testability, and maintainability - the 

benefits of inheritance discussed in Chapter 2. Moreover, the techniques 

proposed in this chapter show that there is no need to always adopt run

time lookup to provide sub-classing, although such strategy is employed by 

many object-based languages, such as Smalltalk-80. Instead high level 

languages with static binding and strong type-checking can be exploited. 

Other approaches to adding sub-classing to a procedural base language 
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include Objective C [Cox86], and Extended Pascal [Jacky87]. Both of these 

approaches are based upon a message-passing mechanism. In Objective C, 

the message mechanism is centralized in a single function called the mes

sager. Objects contribute a dispatch table that the messaging routine 

searches to determine how this kind of object implements its operations. 

This table is built when the object is defined, and is looked up dynamically. 

It identifies every operation that this object knows how to perform, and a 

pointer to a procedure whereby this object implements that operation. This 

procedure is a compiled C function body. 

In Jacky's approach [Jacky87], operations are invoked through messages 

passed by placing them on a last-in-first-out message stack. The dispatcher 

mechanism in this case examines the top message on the stack, determines 

which class of object it is being sent to, and calls an invoke procedure that 

includes the operations for that class. This methodology provides inheritance 

in a very limited sense only. 

An interesting conclusion to be drawn from this study is that the family of 

languages considered allows high degrees of freedom in programming and 

does not restrain the programmer within the procedure-based approach. An 

object-based style of programming is also possible, and although procedure

based languages do not constrain one to this programming discipline, 

thanks to the proposed technique, there appears to be no inherent reasons 

for the programmer of such languages to prefer one approach over the other. 

The rest of this thesis will only be concerned with object-based program-
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ming, whether this is achieved with an explicit language or by means of the 

techniques for using procedure-based languages described in this chapter. 

In particular, in the following chapter, the applications of the object-based 

methodology to the design and implementation of distributed architectures 

will be reviewed. 
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Chapter 4 

Distributed Object·Based Architectures 

In recent years a great deal of interest has developed in distributed object

based systems and architectures. Distribution gives rise to some issues that 

do not exist in a centralized design, or that exist in a less complex form. 

For example, distribution forces high costs on the sharing of data and code, 

and fault tolerance techniques for a centralized system (which is either run

ning or crashed) are simple by comparison to those of a distributed system 

(which may be partly running and partly crashed). 

Many of the issues concerning the design and implementation of distributed 

architectures, whether object-based or not, are issues to do with reliability. 

This chapter, tries and summarizes what these issues are, in particular and 

whenever possible describing them in terms of object-based programming 

ideas. Problems that cause distributed architectures to be unreliable are 

pointed out, and different approaches that have been proposed for attaining 

reliable distributed processing are reviewed. 

4.1. Distribution issues 

Object-based architectures can be described as a set of classes, each of which 

- 60 -



Distributed Object-Based Architectures 

can be thought of as representing a kind of resource. Some resources may 

have a direct physical realization, such as I/O device. Others may have a 

logical realization, such as processes, mailboxes (for communication between 

processes), and files. With object-based architectures, each individual 

resource is an object; thus an object encapsulates the resource implementa

tion and provides a set of operations, these operations being the only means 

by which the object can be manipulated. In most distributed object-based 

architecture (see [Liskov82, Svobodova84, Almes85, Birman85, Tanen

baum86, Shrivastava88a] for a representative sample), an operation is per

formed by invoking an operation of the object with a remote procedure call 

(RPC), which passes value parameters to the object and returns the results 

of the operation to the caller. 

Before analyzing the features of distributed object-based architectures, let us 

focus on the issues caused by distribution. The key to understanding distri

bution issues is an appreciation of the logical and physical partitioning of 

components within a distributed architecture. The very essence of a distri

buted architecture consists of physical partitioning at some level, possibly of 

several components partitioned around a computer room and connected by a 

local area network, or across a continent and connected by a wide area net

work. All logical partitionings will be motivated by or will have to take 

into account this physical partitioning. In other words, the concept of parti

tioning forces the system designer to answer two questions. The first is how 

should the effects of partitioning be reflected in the applications. Indeed, 

partitioning requires: (1) explicit communications between interacting com-
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ponents, since no storage is shared, and (2) global management strategies 

and policies. The second question is how should the partitioning be 

exploited to achieve desirable quality attributes. Partition may be exploited 

to provide: (1) isolation as a method of enforcing security and safety policies; 

(2) tolerance of independent component faults and recovery from such faults 

without disruption of the whole system; (3) truly parallel execution; and (4) 

incremental growth or contraction of a system, through the addition or sub

traction of discrete components. 

Most designers believe that the effects of partitioning should be transparent 

to applications. Tanenbaum suggests that a distributed architecture should 

appear to be a virtual uniprocessor rather than a collection of individual 

computers [Tanenbaum85]. If this ideal is achieved in practice, an architec

ture may be described as having distribution transparency. Such a distri

buted architecture conceals the consequences of distribution from applica

tions and users; that is, the architecture is perceived as a whole rather than 

a collection of independent resources - users need not be aware of which 

component executes their programs or stores their files. Amoeba [Tanen

baum81] is an example of such distributed architectures. 

Distribution transparency groups together various strategies, abstractions 

and mechanisms, which can be better understood, if the specific aspects of 

transparency are discriminated. Below, some basic forms of transparency 

are briefly presented; for a more thorough treatment, see [ANSA87]. 

Access transparency 

Access transparency conceals the communications services from users, 
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such that invocations on objects are semantically and syntactically 

identical whether the objects are local or remote. 

Failure transparency 

Failure transparency is the property of an architecture that enables the 

full concealment of faults despite the failure of components. In most 

distributed object-based architectures, this feature is obtained by exe

cuting programs which operate on objects as atomic actions with respect 

to failures [Gray78]. The failure atomicity property of the atomic 

actions ensures that a computation can either be terminated normally, 

producing the intended results, or be aborted producing no results. This 

property may be obtained by appropriate use of backward error 

recovery, which is invoked whenever a failure that cannot be masked 

occurs. It is also convenient that once an atomic action terminates nor-

mally, the results produced are not destroyed by subsequent node 

crashes. This property, called permanence of effect, ensures that state 

changes produced are recorded on stable storage which can survive node 

crashes with a high probability of success. A two-phase commit proto

col is required during the termination of an action to ensure that either 

all the objects updated within the action have their new states recorded 

on stable storage (normal termination), or no updates get recorded 

(abnormal termination). 

Concurrency transparency 

Concurrency transparency allows parallel use of an object without the 

concomitant emergence of inconsistent views of that object. Concurrent 
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executions of object operations are free from interference if the serial

izability property is ensured - a concurrent execution can be shown to be 

equivalent to some serial order of execution [Eswaren76, Best81]. A 

variety of concurrency control techniques to enforce the serializability 

property have been reported in the literature [Bernstein87]. A very 

simple and widely used approach is to regard all operations on objects 

to be of type read or write, which must follow the well-known locking 

rule permitting concurrent reads but only exclusive writes. 

Migration transparency 

Migration transparency allows the movement of objects without making 

such transfers apparent to other objects. This functionality leads 

towards strategies for global optimization. For example, it can be 

exploited to reconfigure the distributed architecture to optimize perfor

mance, or to restart after failures. 

In the following sections, the basic issues related to the provision of the four 

forms of distributed transparency presented above will be discussed, thus 

identifying the software mechanisms for controlling and exploiting distribu

tion. 

4.2. Access issues 

One widely discussed framework for communication is the ISO OSI refer

ence model, which has seven protocol layers [Zimmerman80]. By using this 

model it is possible to connect heterogeneous networks composed of comput

ers running widely different operating systems. Unfortunately, the 
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overhead created by all these layers is substantial. In a distributed archi

tecture consisting primarily of computers connected by slow leased lines, the 

overhead might be tolerable. Plenty of computing capacity would be avail

able for running complex protocols, and the narrow bandwidth available 

implies that close coupling between the nodes would be impossible anyway. 

On the other hand, in a distributed architecture consisting of identical 

microcomputers connected by a lO-megabyte per second or faster local net

work, the price of the ISO model is generally too high without special 

hardware support. 

The model favoured by most researchers for distributed architectures is the 

client-server model in which a client process requiring some service sends a 

request message to the server and then waits for a reply message. The 

basic primitives in the simplest form of client-server model are send and 

receive. The send primitive specifies the destination and provides a message 

to be sent; the receive primitive specifies the source of the message and pro

vides a buffer where the incoming message is to be stored. 

A more structured form of communication is achieved by distinguishing 

requests from replies. As will be discussed in the next subsection, with this 

approach, communication in message-passing systems appears very similar 

to a traditional procedure call from the client to the server. 

4.2.1. Remote procedure calls 

The remote procedure call (RPC) model [Nelson81, Birre1l84] has become an 

accepted method, mainly because of its distribution transparency and 
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straightforward translation into client-server interactions. The idea is to 

make the syntax and semantics of internode communication as similar as 

possible to local procedure calls within the application program's high-level 

language, because such procedure calls are familiar and well understood , 

and have proved their worth over the years as abstraction tools. 

To a first approximation, an RPC scheme works in the following way: the 

client (caller) and the server (callee) modules are programmed as if they 

were intended to be linked together. A description of the server interface, 

that is, the names of the procedures and the types of arguments the server 

implements, is processed yielding two stubs, where the stubs deal with 

translating procedure calls into appropriate message interchanges. The 

client stub is linked with the client; to the client this stub looks like the 

server. The server stub is linked with the server; to the server this stub 

looks like the client. The stubs shield the client and server from the details 

of communication. In an RPC execution: the client issues a normal pro

cedure call on its node with the intention of invoking a procedure of the 

server. It actually issues a call to the client stub running on its own node, 

as shown in Figure 4.1. The client stub collects the parameters and packs 

them into a message which is then sent to the server stub at the remote 

node. Afterwards, the client stub blocks, waiting for a reply. The server 

stub, on receiving a request message, unpacks the parameters and invokes a 

local procedure call on the server. The results of the local procedure call fol

low an analogous path in the reverse direction. 

This approach is attractive in many ways. For example, it achieves access 
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transparency. The client need not know anything about the fact that the 

server is remote - it just issues an ordinary procedure call with the parame

ters passed in the usual way, such as on the stack. Similarly, the server is 

called by a local procedure according to local calling and parameter passing 

conventions. However, a number of reliability-related problems hide under 

the surface. Many of these have important implications for the system's 

overall reliability. 

In general, the ideal of having the semantics of an RPC identical to that of 

a local procedure call is hard to achieve, if communication and node crashes 

occur. In the interest of reliability, a client process may retransmit its 

request message whenever the loss of that message is suspected. As a 

result, it is possible for a server occasionally to receive multiple request 

messages for a single invocation by the client. Therefore, unless preventive 

measures are employed, the server could carry out the same request several 

times. These superfluous and undesirable executions are referred to as 

orphan executions [Nelson81]. Orphan executions can sometimes cause 

problems of reliability and consistency. For example, if a bank server has to 

transfer a large amount of money to a Swiss bank account, someone would 

prefer that operation not be executed by accident a second time. Operations 

that can be carried out multiple times without harm, such as reading a 

block of some file, are said to be idempotent. Unfortunately, most operations 

that cause actions to occur in the outside world, and involve communication 

or I/O operations, are not idempotent. Various mechanisms to detect and 

prevent orphan executions will be discussed in the next section. 
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4.3. Failure issues 

A major concern in the design of distributed architectures is to provide con

tinuous service of the system as a whole in spite of node crashes and com

munication failures. This section considers these sources of unreliable 

behaviour in distributed architectures, focusing in particular on node 

crashes, due either to hardware or software. 

In the previous section, it has been shown that unreliable communications 

can cause orphan executions. Another possibility of orphan executions can 

arise with node crashes. To appreciate this, consider the following situation: 

a computation running at node B issues an RPC to some object at node A 

and then node B crashes, leaving an orphan computation running at node A. 

If the client process at B resumes that call, after recovery, by reissuing it, 

the concurrency that might arise between the post-crash call of B and the 

orphan computation at A should be regarded as undesirable, since it is 

expected that the execution of a sequential program should give rise to a 

sequential computation characterized by a single flow of control. Therefore, 

in the presence of client failures, an RPC mechanism ought to guarantee 

also that the executions of all post-crash calls of the client follow all pre

crash ones. What is required, at least, is that node A should detect and 

abort the orphan before executing the post-crash call from node B. Nested 

RPCs make the scenario more complex - see [Panzieri85] for a detailed dis

cussion of the issue. It should be noted that the orphan execution as in the 

discussed example might arise even if messages are never lost. 
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Various methods have been proposed for dealing with orphans [Nelson81, 

McKendry85, Panzieri88]. One obvious and unacceptable method is to kill 

off all processes in the entire distributed system when any node crashes. 

This is, of course, unacceptable, but it is just what many conventional 

implementations do when a vital process fails. 

Several methods of killing orphans have been proposed in [Nelson81]. One 

of them exploits clock synchronization. If the nodes have synchronized 

clocks, then orphans can be killed simply by establishing a time limit on 

each RPC. More precisely, an expiration time is associated with each pro

cess. Servers inherit their expiration times from their clients. In this way, 

the caller sets the time limit for all its servers. Whenever a process reaches 

its expiration time and is still executing, it is declared an orphan and 

promptly aborted. 

The method presented in [McKendry85] also uses an expiration-based 

mechanism to eliminate orphans created by crashes and aborts. The method 

is based on clocks local to each node, but it performs best when clocks are 

synchronized. 

The orphan treatment method proposed in [Panzieri88] employs local, 

crash-proof, clocks. In addition to a deadline mechanism that resembles the 

Nelson's expiration time, every node maintains a variable crashcount which 

is the local clock value at the time the node was rebooted after a crash. A 

node also maintains crashcount values of clients which have made calls to 

it. A newly created server checks the client-supplied crashcount value 
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against the corresponding value maintained at the node; if the former is the 

greater, then this indicates that the caller has experienced a crash, in which 

case there could be orphans on the node. The server then aborts all other 

servers created by that client. To cope with a failed client that does not 

recover, every node runs a terminator process. Such a process regularly con

structs a list of potential orphans (that is, servers that do not receive 

requests for a few minutes) on its node and calls relevant clients to see if 

they are still running. If a client is not running its correspondent server 

processes are aborted. 

So far, the reliability problems caused mainly by clients and communication 

failures have been considered. In general, servers also can fail, hence pro

ducing an interruption of the service provided. The provision of continuous 

service is achievable by the use of redundant components. In distributed 

architectures there is an opportunity to keep redundant copies and to pro

vide surplus processing resources. 

One common way of classifying the redundancy employed in distributed 

architectures is to differentiate active redundancy from passive redundancy. 

Redundancy may be active in the sense that all the redundant components 

are operating simultaneously. Alternatively redundancy may be passive in 

the sense that only one component is in service and the others are in stand

by mode. 

A well-known paSSIve redundancy technique is backward error recovery. 

The objective of backward error recovery is to restore a computation to a 
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state prior to the manifestation of a fault [Anderson81a]. As backward 

error recovery restores a presumably valid prior state of a program, it is an 

attractive technique that can be used to provide recovery after all types of 

faults, even unanticipated faults in the software design. Thus, backward 

error recovery is often used to meet the failure atomicity requirements of 

the operations in object-based systems. 

There are several situations in which the passive redundancy approach 

clearly does not suffice, and active redundancy is required. These include 

situations where the frequency and duration of recovery time are unaccept

able, or where the continuity of correct I/O behaviour must be ensured, such 

as in flight control systems. Active redundancy techniques include the 

canonical N-Modular Redundancy [Wensley78, Mancini86a], where the 

client always sends call requests to all replicated servers, and performs 

majority voting on the results. So long as the majority of the servers is 

non-faulty the correct result will be chosen. In such a scheme all the non

faulty servers must be kept in the same state. This requirement is particu

larly hard to meet in distributed architectures, and its violation can lead to 

the so-called sequencing failures, as discussed in [Mancini86b]. Active 

redundancy can also be employed to tolerate unanticipated faults in the 

software, as shown by the N-version programming technique [Avizienis84]. 

With this technique, N different versions of a program are executed at the 

same time. Their results are compared and the result which is submitted by 

the majority of the versions is chosen. 

T,e topic of fault tolerance in distributed architectures will be expanded in 
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Chapter 5, where it will be shown that fault-tolerant schemes which happen 

to have been developed within the domain of object-based architectures can 

be mapped and applied with profit to more conventional architectures. 

4.4. Concurrency issues 

One of the reason for choosing a distributed architecture is to take advan

tage of the potential concurrency in an application, thereby increasing 

efficiency and decreasing response time. 

The concurrent use of objects requires control mechanisms in order to 

prevent the emergence of non-serializable executions. Despite the fact that 

many different techniques which regulate the use of shared objects have 

been proposed, most new distributed systems, such as Argus [Liskov87], use 

locking as concurrency control mechanism. A lock is a serialization 

mechanism which ensures that only one operation accesses the object at a 

time. It has the effect of notifying others that the object is busy, and of pro

tecting the lock holder from modifications of others. A simple lock protocol 

associates a lock with each object. Whenever an object is used, the client 

follows a two-phase locking policy to overcome the problem of non

serializable executions [Eswaren76]. The idea is to divide the acquisition 

and release of locks into two distinct phases. During the first phase, termed 

the growing phase, locks can only be acquired and not released. In the 

second phase, the shrinking phase, locks may only be released and new ones 

may not be acquired. In addition, in order to avoid the problem of cascade 

aborts, it is necessary to make the shrinking phase instantaneous. That is, 
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suppose that an action in its shrinking phase is to be aborted, and that some 

updated objects have been released. If some of these objects have been 

locked by other actions, the abortion of the action will require these actions 

to be aborted as well. 

However, the two-phase locking concurrency control can restrict the degree 

of permissible concurrency in an application. It is typical for an application 

to require nested invocation of operations. In such a case, locks on objects 

acquired by inner operation are retained by the outermost operation until 

the outermost operation is itself committed. This means that objects can 

remain unavailable to other clients for a long time, thus introducing a 

potential performance problem. What is required is a controlled means of 

introducing internal concurrency, i.e. concurrency inside an object. 

Several research projects have been studying the design and implementation 

of distributed object-based architectures from the point of view of introduc

ing internal concurrency. The most relevant among them include: Argus 

[Liskov87], Actors [Agha86], and ABCLIl [Yonezawa86]. 

Although different terminology is used, these three architectures share 

several properties. All of them are based on objects, though these are called 

guardians in Argus and actors in Actors, which provide several approaches 

to concurrency. Concurrent processing among objects is supported via non

blocking invocation of objects. Moreover, there are opportunities for con

currency internal to an object. When an operation of an object is invoked, it 

causes an independent thread of control (e.g. a lightweight process) to be 
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activated within the invoked object. The details of process activation, and 

the degree of and control over concurrency within an object differs for each 

of the three architectures mentioned above. The differences in internal con

currency can be described in terms of a model, where each object employs 

one or more servers to process a queue of invocation requests. 

In Argus, the abstraction of an unbounded number of servers for each object 

is provided. Requests are serviced (i.e. servers are created) immediately and 

there actually is no queue. Synchronization and control (e.g. server block

ing and serialization) are accomplished via locks which are shared by all of 

an object's servers. 

An Actors object can also have an unbounded number of servers, but its 

servers are controlled quite differently. Initially, an actor has a single 

server, which processes a single message and dies. Sometimes during its 

lifetime, it creates a successor to process the next request on the queue. 

Early creation of successors is permitted and this allows the use of multiple 

servers. There are no locks, there is no data sharing between servers, and 

each server can have different semantics. 

An ABCLIl object employs a priority interrupt single server. The process

ing of a request can be interrupted to handle a high priority request, or the 

next message on the queue. Interrupt processing and persistent variables 

allow multiple requests to share the environment of a single server. 

Argus, Actors, and ABCLIl represent different approaches to the use of 

objects to facilitate the design and implementation of concurrent systems. 
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Some of the differences are dramatic - compare a action-based, heavyweight, 

multi-threaded object such as a guardian in Argus, to a short-lived, light

weight object running on one processor in a massively parallel computer. 

Each approach has engineered the object-based methodology to solve a 

rather different problem, each with its own performance, resource sharing, 

and expressibility trade-offs. Indeed, it appears that good engineering is the 

dominant theme in the design of concurrent and distributed architectures , 

and that objects are a useful tool for this engineering process. 

4.5. Migration and reconfiguration 

An important reason for wanting a distributed implementation is its poten

tiality for adding and reconfiguring hardware resources to increase process

ing power, decrease response time, or increase availability of data. It is also 

important to move software components in order to provide recovery from 

failure, to balance the load across the nodes, and/or to improve the efficiency 

of a particular application. For example, if a client sends several requests 

to the same remote object, the overhead of transmitting messages may 

become high. It might be better to move the object from the remote node to 

the local node so that future operation invocations would occur locally. 

It is then fundamental to implement distributed architectures that support 

software migration. Migration allows systems to be reconfigured dynami

cally, by adding and removing components, or by moving components from 

one node to another while the system continue to operate. To minimize the 

impact of moving objects, the method used to invoke operations must be 
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location independent. Mechanisms are required to determine if an object 

exists on a node, and if so to provide its address. 

Several research have focused particularly on the problem of migration of 

objects within a network of computer nodes, for example the Emerald sys

tem [Black86]. The location protocol employed in the Emerald system for 

translating addresses when an object moves is discussed in [Fowler85]. A 

survey of the most innovative approaches for migration transparency is 

presented in [Smith88]. 

4.6. Concluding remarks 

Distributed architectures are characterized by the physical partitioning of 

their components. This partitioning, which requires explicit communica

tions between different physical components, introduces a number of funda

mental issues concerning the visibility of distribution. 

Various forms of distribu tion transparency ha ve been iden tified in 

[ANSA87]. They can be regarded both as problems to be solved in order to 

conceal the partitioning of architectural components, and as features to be 

exploited to take advantage of the partitioning in order to achieve particu

lar levels of security, reliability, and performance. This chapter has carried 

on from the analysis in [ANSA87] to discuss various strategies, abstractions, 

and mechanisms required for controlling and exploiting distribution in 

object-based architectures. 

Just as Chapter 2 on object-based programming was followed with a chapter 
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illustrating a means of achieving the same effects without using an explicit 

object-based programming language, so the next chapter will go on to dis

cuss work which illustrates the relationship between distributed object

based architectures and an apparently different form of distributed architec

tures, based on processes. 
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Object-Based versus Process-Based Distributed Architectures 

The many approaches to fault-tolerant systems incorporating error recovery 

reveal various similarities and differencies. In this chapter, two canonical 

architectures for distributed fault-tolerant computing are constructed and 

shown to be duals of each other. One architecture incorporates objects and 

actions as the entities for program construction while the second architec

ture employs communicating processes with checkpoints. As a consequence 

of the duality, techniques which have been developed within the domain of 

just one of the architectures can be mapped and applied to the other. 

In the following sections, the essential aspects of object-based and process

based architectures are first described. Next, the arguments intended to 

establish the duality are pointed out. Finally, the usefulness of the fault

tolerance duality concept are illustrated, by mapping some well-known 

object replication techniques developed within the context of the objects and 

actions architecture to the communicating process architecture thereby 

revealing some interesting process replication techniques. 
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5.1. The canonical architectures 

An investigation of fault tolerance techniques employed in a variety of sys

tems reveals a partitioning into two broad classes. Two canonical architec

tures are proposed, each embodying the major characteristics of the 

corresponding class of systems. The first architecture incorporates objects as 

the entities for program construction while the second architecture employs 

communicating processes. One widely used technique of introducing fault 

tolerance - particularly in distributed systems - is based on the use of atomic 

actions (atomic transactions) for structuring programs [Gray78]. An atomic 

action possesses the properties of serializability, failure atomicity and per

manence of effect. Atomic actions operate on objects. The class of applica

tions where such an Object Model (OM) has found usage include banking, 

office information, and database systems. A number of other applications -

typically concerned with real time control - are structured as concurrent 

processes communicating via messages. Some examples are process control, 

avionics and telephone switching systems. Fault tolerance in such systems 

is introduced through a controlled use of checkpoints by processes. This way 

of constructing an application will be referred to as employing the Process 

Model (PM). 

This chapter, which is a revised and extended version of work reported ear

lier in [Shrivastava88b, Mancini89], claims that the OM and PM approaches 

to the provision of fault tolerance are duals of each other and presents argu

ments and examples to substantiate the claim. As a result of this observa

tion, it can be stated that there is no inherent reason for favouring one 
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approach over the other; rather the choice is largely dictated by the archi

tectural features of the underlying layer. Indeed, one would now claim that 

the differences between the two approaches are basically a matter of 

viewpoint and terminology. The investigations presented have been 

influenced by the well-known duality paper of Lauer and Needham 

[Lauer78] which puts forward the notion that within the context of operat

ing systems, procedure-based systems and message-based systems are duals 

of each other. Lauer and Needham observed that (1) a program or subsys

tem constructed strictly according to the primitives defined by one architec

ture can be mapped directly into a dual program or subsystem which fits the 

other architecture; (2) the dual programs or subsystems are logically identi

cal to each other, and they can also be made textually very similar; and (3) 

the performance of a program or subsystem from one architecture will be 

identical to its counterpart. The present work may be considered as an 

extension of the ideas put forward in that paper with regard to fault toler-

ance. 

5.1.1. The object-based architecture 

One of the most important aspects of the OM architecture is that objects and 

actions are the two primary entities from which an application program is 

constructed. Any atomic action can be viewed at a lower level as con

structed out of more primitive atomic actions - this is illustrated in Figure 

5.1 which also introduces the action diagram which will be used in this 

chapter, this notation is based on that used by Davies [Davies73]. Accord

ing to Figure 5.1, action B's constituents are actions Bl, B2, B3 and B4. A 
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directed arc from an action (e.g. A) to some other action (e.g. B) indicates 

that B uses objects released by A. 

c 

X,Y,z 

Y,z 

D 

----..... time 

Figure 5.1: Action diagram. 

Optionally, an arc can be labelled, namlllg the objects used by the action. 

In Figure 5.1, B uses objects x,y and z, and C uses object x which has been 

released by B. Actions such as B2 and B3 are executed concurrently. Nested 

actions give rise to nested recovery. Suppose time has advanced up to the 

point shown by the vertical arrow, and an error is detected in B3 causing it 

to be aborted. What happens after B3'S recovery? The question must be 

resolved within the scope of B - the enclosing action. B can provide a 

specific exception handler to deal with this particular eventuality, such 

exception handling techniques have been discussed by Taylor [Taylor86]. If 

no handler is available, then a failure of B3 causes B to be aborted. 
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Any implementation of actions and objects will require processes (clients 

and servers) for carrying out the required functions. However, the role 

played by processes is hidden at the application level. Similarly, there is no 

explicit use of message passing between entities, since RPCs hide the details 

of message interactions between clients and servers. For example, in the 

Argus programming system [Liskov82], the implementation of guardians 

(objects) requires a number of processes for receiving and executing calls 

from clients - but processes are not visible entities to be used explicitly by 

an application program. Taylor [Taylor86] describes a number of ways of 

implementing atomic actions using different process structures. In the OM 

architecture, objects are long lived entities and are the main repositories for 

holding system states, while actions are short lived entities. 

5.1.2. The process-based architecture 

In contrast to the OM architecture, where processes and messages playa 

secondary role, the PM architecture uses them as the primary entities for 

structuring programs. An application is structured out of a number of con

current and interacting processes. 

The PM architecture will be assumed to have the following characteristics: 

(1) processes do not share memory, at least explicitly, and communicate via 

messages sent over the underlying communication medium; (2) appropriate 

communication protocols ensure that processes can send messages reliably 

such that they reach their intended destinations uncorrupted and in the 

sent order; (3) a process can take a checkpoint to save its current state on 
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some reliable storage medium (stable storage). If a process fails, it IS 

recovered back to its latest checkpoint. 

In a system of interacting processes, the recovery of one process to its check

point can create an inconsistent global state, unless some other relevant 

processes are recovered as well. This leads to the notion of a consistent set 

of checkpoints or a recovery line [Rande1l78]: a set of checkpoints, one from 

each process, is consistent if the saved states form a consistent global state. 

Figure 5.2 illustrates the notions of consistent and inconsistent sets of 

checkpoints where opening square brackets on process axes indicate check

points and sloping arrows represent messages. Suppose process p fails at 

the point indicated by the vertical arrow and is recovered back to its latest 

checkpoint. The global state of the system as represented by the set of 

checkpoints on the cut C2 is inconsistent since the checkpoint of r has 

recorded a message which has not yet been sent by p; the set of checkpoints 

on recovery line Cl is however consistent. Thus a failure of p can cause a 

cascade recovery of all the four processes - this is the domino effect men

tioned in [RandeIl75]. The dynamic determination of a recovery line is a 

surprisingly hard task; the reader should consult [Wood81, Koo87] for a 

clear exposition. 

The domino effect can be avoided if processes coordinate the checkpointing 

of their states. A well-known scheme of coordinated checkpoints is the 

conversation scheme [RandeIl75, Banatre78, Wood81, Koo87]. The set of 

processes which participate in a conversation may communicate freely 

between each other but with no other processes. Processes may enter the 
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conversation at different times but, on entry, each must establish a check

point (see Figure 5.3). In Figure 5.3, a closing bracket indicates that all 

participating processes must exit at the same time after taking fresh check

points (brackets will not be explicitly drawn in the subsequent diagrams). 

If a process within a conversation fails then all the participating processes 

are recovered back to the respective checkpoints established at the start of 

the conversation. Conversations can be nested, as indicated in the figure. 

Conversations provide a convenient structuring concept for introducing fault 

tolerance in a large class of real time systems [Anderson81bJ. The need to 

respond promptly to changes in the external environment dictates that most 

real time systems have an iterative nature. The PM architecture provides a 

natural way of expressing such systems in the form of interacting cyclic 

processes with synchronization points usually associated with timing con

straints. A study of real time system structure for avionic systems by 

Anderson and Knight [Anderson81b] indicated that synchronization of 

processes in such a system stems from the need to synchronize with the 

events in the external environment, rather than from any inherent needs of 

processes themselves. 

The most important aspects of the PM architecture relevant to the duality 

mapping are summarized below. An application is programmed in terms of 

a number of processes interacting via message passing. If processes estab

lish checkpoints in an arbitrary manner then there can be a danger of cas

cade recovery, which is usually undesirable. Conversations provide a coordi

nated means of managing checkpoints to avoid the danger of such a cascade 
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recovery. However, a conversation requires the participating processes to 

synchronize such that they exit from the conversation simultaneously. A 

large class of applications, typically concerned with process control or real 

time control, traditionally employs the PM architecture for structuring 

applications. Conversations can be imposed on such applications by exploit

ing naturally occurring synchronization points among interacting processes. 

In the PM architecture, processes are long lived entities and main reposi

tories for holding system states, while conversations are short lived entities. 

5.2. The duality argument 

The canonical architectures discussed in the previous sections are represen

tative of the corresponding class of fault-tolerant systems. Given a descrip

tion of any fault-tolerant system, it is usually straightforward to work out 

its representative architecture, despite the fact that the terminology used 

for the description may even differ some what from that used here. The 

duality between the OM and PM architectures can be established by consid

ering objects and actions to be the duals of processes and conversations 

respectively. Further, object invocations can be considered duals of message 

interactions [Lauer78]. A given conversation diagram (e.g. Figure 5.4a), 

can be translated into an action diagram quite simply (e.g. Figure 5.4b) by 

replacing each conversation Ci with a corresponding action Ai, and adding 

an arrow from Ai to Aj if Ci and Cj have at least one process in common and 

that process enters Cj after exiting from Ci. An arc from one action to the 

other is labelled with the objects representing the processes common to the 
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Figure 5.4: Conversations and actions. 

(b) 

corresponding conversations. A reverse mapping is possible by replacing 

distinct objects named in the action diagram by processes. An action is 

replaced by the corresponding conversation determined by the set of objects 

named in all the incoming and outgoing arcs of the action. 

In order to support the hypothesis, it will be discussed the way in which 

three major properties of a fault-tolerant computation, namely, (1) freedom 

from interference, (2) backward recovery capability, and (3) crash resistance, 

are embodied in the OM and PM architectures. 

1. Freedom from interference. In the OM architecture, this requirement is 

ensured by the serializabili ty property of actions and enforced by some 

concurrency control technique, such as two-phase locking. In the PM 

architecture, freedom from interference between multiprocess computa

tions structured as conversations is ensured by the two conversation 

rules, (i) a process can only communicate with those processes that are 
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in the same conversation; and (ii) a process can only be inside a single 

conversation at a time (this rule can be relaxed under certain condi

tions, see later). The two-phase locking discipline for actions 

corresponds to entering a conversation (growing phase) and leaving a 

conversation (shrinking phase). 

2. Backward recovery capability. An action in progress can be aborted 

(recovered) without affecting any other ongoing actions. This recovery 

property of an action is enforced in conjunction with the concurrency 

control technique in use. In the case of two-phase locking, this means 

that all the held locks are released simultaneously. This corresponds to 

the synchronized (simultaneous) exit from a conversation which is 

required from all the participating processes. The act of taking check

points at the start of a conversation has its dual in the OM architec

ture, and consists of the requirement of maintaining recovery data for 

objects used within an action. It was indicated earlier that the serializa

bility property of actions can be maintained even if - for two-phase lock

ing - locks are released gradually (rather than simultaneously) during 

the shrinking phase of locking; however this has the danger of cascade 

aborts (recovery of an action can cause some other actions to be aborted 

as well). A similar observation can be made for conversations: the syn

chronized exit requirement is necessary to prevent cascade aborts. Fig

ure 5.5 illustrates that if ~conversations' Cl and C2 do not observe the 

rule of synchronized exit, and if time has advanced up to the point 

shown by the vertical arrow, and Cl is to be aborted, then C2 will have 
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to be aborted as well. 

3. Crash resistance. A two-phase commit protocol is employed in OM to 

ensure that despite the presence of failures such as node crashes, an 

action terminates either normally, with all the updated objects made 

stable to their new states, or abnormally with no state changes. A 

similar protocol will be required to ensure that the states of all the 

processes participating in a conversation are made stable. 

A striking benefit of establishing the duality is that the body of knowledge 

and techniques developed for one architecture can be mapped and applied to 

the other architecture. This is illustrated with the help of the following two 

examples. 

Read only requests 

A number of optimizations are possible if an action uses some or all of its 

objects in read only mode. Read locks can be released during the shrinking 

phase and need not be held till the end of the action, without the danger of 

cascade aborts. Further, no recovery data need be maintained for read only 

objects and they need not be involved in the two-phase commit protocol 

since they do not change state. Such optimization strategies have been stu

died extensively within the context of database systems, see for example 

[Mohan83]. However, no such strategies have been studied for conversa

tions, although they can be developed quite easily. Essentially, processes 

inside a conversation that do not update their states need not synchronize 

their exit from the conversation, nor do they need to take checkpoints at the 
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start of the conversation. Consider a simple example. An action performs 

the following computation: x: = y + z. Here y and z will be read locked; the 

commit protocol will involve only making object x stable to its new state 

and the action need generate no recovery data for y and z. Figure 5.6 shows 

a possible conversation to perform the same computation. In this particular 

case it is only necessary for process x to establish a checkpoint. Message ml 

(m2) is a request to y (z) for some value, and message m3 (m4) contains the 

value sent by y (z). 

Note that even though there is a two way exchange of messages between x 

and y (z), x can recover without affecting y (z), since message ml (m2) is a 

read request. Indeed, y and z can take part in other conversations, while 

still in Cl, provided those conversations also involve only read requests 

directed to y and z. This is obviously the dual of the shared read lock mode 

rule applicable in the OM architecture. It is worthwhile to note that, just 

as locking can cause deadlocks among actions, similar problems can occur in 

conversations. 

Programmed exception handling 

So far the duality has been examined from the point of view of backward 

error recovery, which involves abandoning the current state for a prior 

state. In contrast, forward error recovery involves selective corrections to 

the current state to obtain an acceptable state [Rande1l78]. Programmed 

exception handling is a means of incorporating this form of forward 

recovery. A widely accepted exception handling strategy is as follows: if 

during the execution of a computation an error is detected (an exception is 
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detected) for which a specifically programmed handler is available, then 

that handler is invoked; if there is no programmer-provided handler avail

able then a default handler is invoked whose function is to invoke backward 

recovery. Thus, exception handling can provide a uniform means of incor

porating both forward and backward error recovery strategies [Anderson81a, 

Cristian82]. A recent paper [Campbell86] proposes an exception handling 

strategy for concurrent processes with conversations and describes how 

processes can resolve concurrent exceptions through the use of exception 

trees. It is worthwhile to note here that these exception handling ideas, 

although developed using the PM architecture, have since been applied by 

Taylor [Taylor86] to the OM architecture. 

A summary of the various characteristics of the two architectures for which 

duality has been established is presented in Figure 5.7. 

5.3. Some examples 

This section contains two further examples, one taken from the database 

area and normally programmed using objects and actions and the other 

taken from the process control area and normally programmed using 

processes and conversations. It will be shown that programs written using 

the primitives of one architecture have duals in the other. Simple and self

explanatory notation will be used for program description. 
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Banking application 

An example often used to illustrate the properties of an action concerns 

transferring a sum of money from one bank account to another. The failure 

atomicity property will ensure that either the sum of money is debited from 

one account and credited to the other, or no state changes are produced. For 

the sake of illustration, the application has been structured to invoke nested 

actions, even though simpler, non-nested solutions are clearly possible. 

Two classes of objects will be assumed: Standing-order, and Credit-debit. 

Their definitions are given by the program of Figure 5.8, which also shows 

the creation of objects order, acc1 and acc2. 

An invocation of 'transfer of orderC ... )' will give rise to a nested computation 

as shown in Figure 5.9. Any exceptions during the execution of transfer 

will cause that action to be aborted. 

The same program can be recoded quite easily in terms of communicating 

processes, as shown in Figure 5.10. A transfer conversation can be initiated 

by sending a message to the order process. The transfer conversation is 

shown in Figure 5.11. 

Process control application 

The second example is taken from a process control application in the coal 

mining industry [Sloman87]. A pump installation is used to pump mine

water collected in the sump at the shaft bottom to the surface. The pump is 

enabled by a command from the control room. Once enabled, it works 
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class Standing-order; 

- - object variables - -

action transfer (credit-debit to, from; dollars amount) 
cobegin 

end action 

authority (to, from); 
credit of to (amount); 
debit of from (amount) 
coend 

- - other actions, e.g. authority - -

end Standing-order; 

class Credit-debit; 

- - current account variables - -

action credit (dollars amount) 
- - add amount - -

end action 

action debit (dollars amount) 
- - subtract amount - -

end action 

- - other actions - -

end Credit-debit; 

Standing-order order; 
Credit-debit acc1, acc2; 

Figure 5.8: Example of banking program in OM. 

order, 
accl, acc2 

Figure 5.9: A bank action. 

order, 
accl,acc2 



task type Standing-order; 

- - process variables - -

select 

conversation transfer (credit-debit to, from; dollars amount) 
cobegin 
send (self, authority, to, from); 
send (to, credit, amount); 
send (from, debit, amount) 
coend 

end conversation 

- - other selections, e.g. authority - -

end select 
end Standing-order; 

task type Credit-debit; 

- - current account variables - -

select 

conversation credit (dollars amount) 
- - add amount - -

end conversation 

- - other selections, e.g. debit - -

end select 
end Credit-debit; 

Standing-order order; 
Credit-debit acc1, acc2; 

Figure 5.10: Example of banking program in PM. 

r----------------------------------· 
I r--------------------, 

order : : authority : 
I I 

I I I L ____ ~ L ____________________ ~ 

r--------------------, 
: credit : aeel 
I I 
I I L ____________________ ~ 

r--------------------, 

I I 
: debit : aee2 
I I L ____________________ ~ 

----------------------------~ 

Figure 5.11: A bank conversation. 
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automatically, controlled by water level sensors; detection of a high level 

causes the pump to run until a low level is indicated. For safety reasons, 

the pump must not run if the percentage of methane exceeds a certain 

safety limit. Some other parameters of the environment are also monitored 

by the monitoring station. 

The control software can be structured as five communicating processes, 

namely: Pump-controller, Surface, Level, Pump and Monitor. Some sketchy 

details are given here for the Pump-controller. 

The functions of the Pump-controller process are to receive start/stop com

mand from the Surface process (representing the control room), receive 

water level reports from the Level process and to receive an alarm signal 

from the Monitor process. The Pump-controller process can send start/stop 

commands to the Pump process which controls the pump. 

A study of process structure discussed in [Sloman87] reveals that the overall 

behaviour of the other processes have a similar structure to the Pump

controller, either receiving requests to carry out certain functions and/or 

sending messages to other processes to request certain functions to be per

formed. These interactions can be organized as conversations. A simplified 

program fragment for the Pump-controller is given in Figure 5.12. 

A command to enable or disable the pump from the Surface process starts a 

conversation containing the Pump-controller and the Pump process: if the 

conversation terminates normally, the pump will have changed state accord

ingly. It is fairly easy to reprogram this example in terms of objects and 
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Process Model 

task type Pump-controller; 

- - process uariables - -

select 

conversation onloff(...} 
send start/stop command 
to the pump process 

end conversation 

- - - other selections - - -

end select 
end Pump-controller; 

Object Model 

class Pump-controller; 

- - object uariables - -

action onloff(. .. } 
call start/stop command 
of the pump object 

end action 

- - - other actions - - -

end Pump-controller; 

Figure 5.12: Pump-controller example. 

actions, with the five processes replaced by the corresponding objects. For 

the sake of illustration, the program for the Pump-controller class is also 

shown in Figure 5.12. 

These examples provide further empirical support to the duality claim by 

illustrating that close similarity exists between the two classes of programs. 

Given a program constructed from the primitives defined by one architec

ture, it can be mapped directly into a dual program of the second architec-

ture. 

5.4. An application of the duality mapping 

By realizing the duality between the OM and PM approaches to fault 
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tolerance, it is possible to map techniques developed within the context of 

one architecture to the other architecture. Section 5.2 showed how optimi

zation techniques for read only actions can be applied to conversations. In 

the rest of this chapter, replicated process management techniques will be 

developed from replicated object management techniques. More precisely, 

the following problem is considered. Given is a set of concurrent processes 

interacting via message passing. It is assumed that a subset of these 

processes (server processes) provide various services to the remaining 

processes (client processes) and these services have to be made available 

despite a bounded number of server node crashes. Thus it is necessary to 

replicate servers on different nodes. Algorithms for implementing such a 

system where client processes interact with replicated servers within the 

framework of conversations have not been studied before. Here it will be 

shown how such algorithms can be developed easily by applying the duality 

mapping to object replication techniques which have been studied exten

sively. 

5.5. A review of object replication techniques 

In a system where nodes never fail, replicated objects can easily be 

managed. It is sufficient to perform any operation of an object x on all 

copies of x. Unfortunately, this approach is impractical in systems where 

nodes can fail and recover. For example, this approach requires that each 

operation be performed on all copies of x, even if some have failed. Since 

there will be times when some copies of x are down, the system will not 
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always be able to perform the required operation on all copies of x at the 

time it receives the request. If the system were to adhere to this approach, 

it would have to delay processing the operation until it could access all 

copies of x. 

Such a delay is obviously unsatisfactory. If any copy of x fails, then no 

action that invokes x can execute to completion. The more the copies of x, 

the higher the probability that one of them is down. In this case, replica

tion actually makes the system less fault-tolerant. 

Several techniques have been proposed to manage replicated objects. To be 

specific two well-known techniques will be considered: the available copies 

[Bernstein84] and the primary copy schemes [Alsberg76, Stonebraker79]. In 

the following, these techniques will be briefly described. It is assumed that 

nodes fail in a fail-silent manner (that is, a node is either operational or 

down, it does not suffer byzantine failures), and that all operational nodes 

can communicate with each other. Therefore, each operational node can 

independently determine which nodes are down, simply by attempting to 

communicate with them. If a node does not respond to a message within 

some timeout period, then it is assumed to be down. 

5.5.1. The available copies scheme 

As stated earlier, an object provides a set of operations, some of which can 

modify the state of the object (e.g. push and pop operations of a stack object). 

Initially, it will be assumed that a node does not recover after a failure. 
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The available copies scheme does not require an action to update all copies 

of each object. An action should send every operation request to all of the 

copies that it can, but it may ignore any copies that are down. After send

ing an operation request to all copies of object x, an action may receive 

rejections from some nodes (if the operation is conflicting with some other 

action), positive response from others (meaning the operation has been 

accepted and performed), and no response from others (those that have 

failed). Operation requests for which no responses are received are called 

missing. If any rejection is received or if all operation requests to x's copies 

are missing, then the whole operation is rejected and the action must abort. 

Otherwise, the whole operation is successful. Since a fail-silent behaviour of 

the nodes is assumed, anyone of the positive responses can be taken as the 

result of the operation invocation. 

5.5.2. Recovery 

So far it has been assumed that a failed node does not recover; it is also pos

sible to provide the system with some reconfiguration mechanism, in order 

to support the recovery of a copy from a failure, and in general the creation 

and removal of copies of an object. To achieve reconfiguration after a node 

crash, the set of nodes holding the available copies of an object must be 

dynamically established. 

A solution is to employ directories to record for each object x the set of x's 

copies that are available. Like any other object, a directory may be repli

cated, that is, it may be implemented as a set of directory copies at different 
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nodes. In the following discussion, it is assumed that there is a fixed set of 

copies for each directory, known to every node. That is, new directory copies 

are never created - the method for creating new object copies can be easily 

extended to create new directory copies. 

Directories recording available object copies are manipulated by two special 

actions, Join for creating new object copies, and Disjoin for deleting unavail

able object copies. When a node N containing a copy of x, say x[N], recovers 

from a failure, the system runs an action Join(x[NJ). Join(x[NJ) brings the 

state of x[N] up-to-date by: (1) finding a directory copy d listing the set of 

copies of x; (2) reading d to find an available copy of x, say x[M]; (3) copying 

x[M],s state into x[N]; (4) declaring x[N] to be available by making an entry 

for x[N] in each available copy of the directory d. 

When a node fails, some client that tries to invoke an object operation at 

that node observes the failure. The system, then, runs a Disjoin action for 

each copy stored at the failed node. Disjoin declares the relevant object copy 

to be unavailable by removing the entry for this copy from every available 

copy of the directory. 

To process an operation with this recovery scheme, the system reads a copy 

of a directory and issues the operation for every copy of the object x that the 

directory says is available. If the system discovers that any copy that the 

directory says is available is actually unavailable, the system runs a 

Disjoin(x) action. Because a recovering node uses a Join action for bringing 

the states of its replicated objects up-to-date, there is no need for such 
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objects to use stable storage. 

5.5.3. Read optimization 

Optimizations are possible with the available copies scheme if the semantics 

of the operations is taken into account. For example, the operations 

exported by each object may be partitioned into two classes: Write, which 

comprises the operations that modify the state of the object, and Read, 

which comprises the operations that do not alter the state of the object. 

The operations of Read do not need to be invoked on all available copies of 

an object but just to one, while the operation requests of Write need to be 

sent to all available copies of an object. For example, in the case of the 

stack object, the operation top, which returns the value at the top of the 

stack without modifying the stack, can be invoked just on any available 

copy of the stack. The operations push and pop are of class Write, and must 

be sent to all available copies of the stack. 

A distributed two-phase locking scheme can be employed for concurrency 

control. The following rule is required: whenever an operation of Read is 

invoked on an object, the action must first acquire a read lock (if not already 

acquired) on any available copy of the object; for a write operation, the 

action must first acquire write locks (if not already acquired) on all the 

available copies of the object. 

With such an optimization, the available copies scheme may lead to prob

lems of correctness. There will be times when some copies of an object x do 
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not reflect the most up-to-date state of x. An action that uses an out-of-date 

copy of x can create an incorrect, i.e. non-serializable, execution, even if only 

failures, but not recoveries occur. To avoid this well-known problem (see 

[Bernstein87] for details), a validation protocol is required. An action's vali

dation protocol starts after its operations on copies have been acknowledged 

or timed out. At that time the action knows all the copies it has actually 

accessed. The validation protocol makes sure that all copies that were una

vailable (available) are still unavailable (available). 

The read optimization with validation protocol scheme suffers from the limi

tation that in certain situations an action has to be aborted if a failure 

occurs. As has been discussed previously, without read optimization the 

completion of an action can be guaranteed in the presence of a specified 

number of node failures, by distributing operation requests to all available 

copies. Distributing information about read requests, and in particular 

about read locks, may seem unreasonably expensive. However, in [Bir

man85], a scheme for lazy propagation of read locks is mentioned which 

guarantees that read lock information is delivered to a node before any 

action that requires this information is executed. 

The Join and Disjoin actions discussed previously are still required to sup

port recovery with read optimization. In the subsequent discussions, the 

term pure available copy scheme will be used to refer to the particular 

scheme without read optimization. 
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5.5.4. The primary copy scheme 

With the primary copy scheme, executing actions use a non-replicated view 

of the system. That is, for each object that the actions access, the operations 

are carried out on the same copy of the object, called the primary copy. The 

distribution of the operations to other backup copies is delayed until the 

action has terminated and is ready to commit. It is necessary therefore to 

maintain an intentions list of deferred operations. During the termination 

of an action, the appropriate portion of the intentions list has to be sent to 

each node that contains backup copies of the relevant objects. Alternatively, 

the primary copy of an object can send its new state in place of the inten

tions list. If the primary copy fails then the executing action is aborted and 

can be resubmitted to use a different copy that will take over as primary. 

In order to support recovery after a failure of a primary copy, it is necessary 

to elect a backup copy as the new primary. A simple scheme, that does not 

involve additional communication, is to determine a priori the order of 

selecting the copy to use next. An alternative is to run a consensus protocol 

among the backup copies - the election of the new primary copy can be 

based on the current load on the system. The level of availability can be 

maintained after a failure by running an action to create a new backup 

copy. 

With the primary copy scheme, it is possible to put all deferred operation 

requests destined for the same node in a single message. This tends to 

minimize the number of messages required to execute an action. By con

trast, with the available copies scheme, the action sends operation requests 
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to replicated copies while it executes. Thus the available copies scheme 

tends to use more messages than the primary copy scheme. Another advan

tages of the primary copy scheme is that aborts often cost less compared 

with the available copies scheme. In the available copies scheme, when an 

action aborts, it is likely that many of the action's operations have already 

been distributed to replicated copies. Not only are these operations wasted, 

but they must also be undone. With primary copy, the distribution of those 

operations are delayed until termination time making abortion cheaper. 

Fast aborts in the primary copy scheme are at the expense of commits which 

can be more time consuming than in the available copies scheme. This is 

because during the first phase of the commit protocol a node may be asked 

to process a potentially large number of deferred operations on backups. 

With the primary copy scheme, read optimization is possible - the intentions 

lists of only write operations need be distributed to backup copies when the 

executing action is ready to commit. 

The most important aspects of the object replication techniques relevant to 

this discussion are summarized below. The pure available copies scheme 

provides k-object-resiliency, meaning that out of k copies of an object, all the 

k copies have to become unavailable before the action using it is forced to 

abort. With read optimization, k-object-resiliency is not always reachable; 

this is the price paid for obtaining higher efficiency. The primary copy 

scheme does not provide k-object-resiliency in the sense mentioned above; 

the executing action has to be aborted if the primary fails. The action can 

be resubmitted once a secondary is elected to be the primary. 

- 107 -



Object-Based versus Process-Based Distributed Architectures 

5.6. Process replication techniques 

Process replication techniques take advantage of the existence of multiple 

processors by replicating critical processes on two or more nodes. 

A terminology commonly used for classifying the redundancy employed in 

PM is to differentiate active redundancy from passive redundancy. With an 

active redundancy scheme, a given computation is executed simultaneously 

on a number of processes, while with a passive redundancy scheme, if the 

process running the computation fails then a designated backup process 

takes over. Not surprisingly, active redundancy techniques correspond to 

the available copy schemes and passive redundancy techniques to the pri

mary copy schemes. 

The duality mapping between object and process replication schemes is 

shown in Figure 5.13. 

5.6.1. The available processes scheme 

The dual of the available copy scheme results in an approach where repli

cated processes behave like a single process. Interactions with a replicated 

process implies interactions with all of its replicas. A copy of a request to a 

replicated process is sent to all replicas, and all replicas execute each 

request. In case a reply is required, all replicas generate replies; only the 

first reply received is considered, and the others are discarded (since the 

replies from all working replicas should be identical under the fail-silent 

assumption on processor behaviour). A reconfiguration strategy for the 
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available processes scheme can be designed by adopting the directory based 

scheme. Note that replicated processes need not record their checkpoints on 

stable storage (see Section 5.5.2). 

5.6.2. Read optimization 

Read optimization can be achieved in PM using the approach employed in 

OM. Assume that processes receive message via message ports which are 

data structures capable of holding messages of a certain class. Message 

ports can be of class Read, capable of receiving messages whose processing 

does not alter the state of the receiver process, and Write, capable of receiv

ing messages whose processing can alter the state of the process. A message 

intended for a read port of a process need not be sent to all available copies 

of that process. 

Read optimization in PM results in weakening of the conversation rule. 

Instead of having all the copies of a replicated process participating in only 

one conversation at a time, a replicated process can take part in more then 

one conversation, if only requests of Read are being served. 

This optimization may lead to problems of consistency similar to those 

encountered in OM, as can be appreciated by considering the process 

diagram of Figure 5.14. Here a system with non-replicated processes p and 

q and replicated processes x (copies x[A], x[B]) and y (copies y[C], y[D]) is 

considered. Suppose that within the conversation Cl, p reads the state of x 

and updates the state of y, denoted by rex) and w(y) respectively, and that, 

within the conversation C2, q reads the state of y and updates the state of x, 
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denoted by r(y) and w(x). 

Conversation CI begins by reading from x[A], and conversation C2 begins by 

reading from y[D]. After p and q complete their reads, processes x[A] and 

y[D] fail. Then p and q perform their writes. Since y[D] is down, y[C] is the 

only available copy of y. So CI'S w(y) is invoked only on y[C]. Similarly, 

since x[A] is down, C2'S w(x) is invoked only on x[B]. 

The execution above does not violate the conversation rule for read optimi

zation (just as in OM, the two-phase locking rule will not be violated). 

However, this execution is not equivalent to any serial execution. A serial 

execution of CI and C2 on a non-replicated system would have either CI 

reading the value of x written by C2, or C2 reading the value of y written by 

CI - in the example neither conversation reads the data written by the 

other. 

The dual of the validation protocol is required at the end of conversations to 

ensure correctness. The aim of the validation protocol in the PM is to make 

sure that all processes found unavailable (available) during the execution of 

a conversation are still unavailable (available). 

5.6.3. The primary process scheme 

With the primary process scheme, the same copy of a replicated process, 

called primary process, takes part in conversations. A replicated process is 

provided with backup processes on different nodes (in particular, just one 

backup process might be employed). Request messages are sent to the pri-
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mary process, which handles the requests. The distribution of requests to 

other backup processes is delayed until the end of the conversations. At 

that time, the primary copy sends the list of requests served during the 

conversation to the other backup processes. Alternatively, the primary pro

cess can send a checkpoint of its new state to the backup processes. In the 

event of a primary process failure, the executing conversation is recovered 

to the beginning and restarted with a backup process which takes over and 

become primary. The dual of the election scheme mentioned earlier will be 

required to select the new primary process. 

5.7. Some existing process replication schemes 

Schemes following the available processes approach have been proposed in 

the literature independent of the data replication techniques [Schneider87, 

Cmelik88]. In [Schneider87], a general approach is proposed for coordinat

ing copies of replicated processes so that each copy executes the same 

sequence of process interactions. This is achieved by the implementation of 

the abstractions of agreement and order. A similar approach is adopted in 

[Cmelik88], where client processes send request messages to all the copies of 

a replicated server, and a distributed consensus protocol for every request is 

employed to enable each copy of the server to process requests from different 

clients in the same order. However, these papers do not describe how aborts 

are performed and domino effect avoided if a client recovers back. Further

more, reconfiguration mechanisms have not been proposed, nor any con

currency control techniques described in [Cmelik88J, 
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The available process scheme discussed in Section 5.6.1 provides a complete 

solution to these problems. Conversations can be exploited for reducing the 

frequency of the distributed consensus protocol. In particular, once a repli

cated process has agreed to participate in a conversation with a client , 

request messages can be served without further agreement until the end of 

the conversation. 

A technique resembling the primary copy scheme has been described by 

Borg et al. [Borg83]. Whenever a message is sent to a process, the same 

message is forwarded to the backup process. The system ensures that both 

the processes cannot continue running until it has been verified that both 

have correctly received the message. Thus, if one process crashes because of 

any hardware fault, the other one can continue. Furthermore, the remain

ing process can then clone itself, making a new backup to maintain the 

fault-tolerance capability. 

One disadvantage of Borg's approach is that, if processes exchange messages 

at a high rate, a considerable amount of CPU time may go into keeping the 

processes synchronized at each exchange. This disadvantage can be miti

gated by adopting the scheme discussed by Powell and Presotto [Powe1l83l 

The system described in that paper puts almost no additional load on the 

processes being backed up. All messages sent on the network are recorded 

by a special recorder process. From time to time, each process checkpoints 

itself onto a remote disk. If a process crashes, recovery is carried out by 

sending the most recent checkpoint to an idle process which starts running. 

The recorder process then sends to the newly created process all the 
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messages that the original process received between the checkpoint and the 

crash. The primary process scheme developed here to work in conjunction 

with conversations reduces the need for frequent message exchanges by 

employing the dual of the deferred update technique used in the primary 

copy scheme. 

5.S. Concluding remarks 

After examining the structure of a variety of systems, two canonical archi

tectures of fault-tolerant systems were developed, one of which is represen

tative of the techniques and terminology used within the database systems 

community, the other of which is more closely allied to the real time and 

process control applications area. These architectures were shown to be 

duals of each other. Although, in retrospect, this may not appear to be a 

surprising conclusion, particularly given the Lauer and Needham paper, it 

has not been realized before how direct and complete the relationship 

between the two architectures was, and there is not any earlier literature 

explaining and exploiting this duality. Instead, one finds that fault-tolerant 

systems are constructed and described using the concepts and terminology 

applicable to just one of the two architectures, with no apparent realization 

of the potential relevance of systems and the literature describing them 

which make use of the other architecture. However, it has to be recognized 

that the duality previously discussed is sometimes obscured by the fact that 

many process control applications are structured as a small and fixed 

number of processes, whereas it is more usual to find object-based systems 

- 114 -



Object-Based versus Process-Based Distributed Architectures 

which contain a large and dynamically varying number of objects. 

The arguments to support the duality claim were based on an examination 

of three properties of a fault-tolerant computation, namely; freedom from 

interference, backward recovery capability and crash resistance. It was 

shown that mechanisms employed to implement a given property in one 

architecture have duals in the other. Similarly, any particular behaviour 

observed in one architecture has its dual in the other. Examples presented 

in this chapter show that programs developed using the primitives of one 

architecture can be mapped easily to the programs of the other architecture. 

Indeed, it could be claimed that the differences between the two architec

tures are principally a matter of viewpoint and terminology. 

The establishment of the equivalence between the two approaches to fault 

tolerance has several interesting implications, some of which are 

enumerated here. 

1. There seems to be no inherent reason with respect to fault tolerance for 

favouring one approach over the other. For example, there is no obvi

ous reason why a real time system must be designed using the primi

tives of the PM architecture. In fact, one is led to state that the choice 

for a given system should not be dictated by the application area but by 

the architectural features of the layer over which the system is to be 

built. 

2. It can also be stated that a single system based on either architecture 

can in principle, support both classes of applications. 
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3. It may further be speculated that, were sufficient representative sys

tems of each kind available for detailed evaluation and comparison, it 

would be found that the observation made in [Lauer78] regarding the 

invariance of operating system performance under two classes of sys

tems also applies to this fault-tolerance duality. 

4. Techniques and mechanisms which happen to have been developed 

within the domain of just one of the architectures can be mapped and 

applied to the other architecture. Several examples were presented to 

illustrate this observation. It was shown that optimization techniques 

developed for read operations of actions can be applied to optimize 

conversations. A second example indicated that the exception handling 

framework developed for the PM architecture can be applied to the OM 

architecture. Finally, by making use of the duality mapping proposed, 

interesting techniques for replicated process management were 

developed. Some existing process replication techniques were also 

described to show that they are special cases of the schemes derived 

here. 

5. The ideas from this chapter can be used for the design of fault-tolerant 

systems with minimum set of compatible concepts, thus allowing 

several degrees of freedom in the design process to be eliminated, lead

ing to well structured systems. 

6. Finally, given that, as discussed in [Dobson86], there is the prospect of 

using certain kinds of fault-tolerance techniques to provide increased 

security and not just increased reliability, it appears that the duality 
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mappmg presented here can be extended and applied to clarify and 

illuminate at least some of the literature discussing various approaches 

to building multi-level secure systems. 

Another important issue in distributed systems, whether they are built as 

object-based or process-based, is that of garbage collection. The following 

chapter will address specifically the notion of distributed garbage collection, 

and for convenience the terminology used will be object-based. 
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Chapter 6 

An Example of Object-Based Distributed System Design: 

Fault-Tolerant Garbage Collection 

The function of a garbage collector in a computer system is to reclaim 

storage that is not needed any more. Developing a garbage collector for a 

distributed system composed of autonomous computers (nodes) connected by 

a communication network poses a challenging problem: optimizing perfor

mance whilst achieving fault tolerance. This chapter presents the design 

and implementation of a reference-count garbage collection scheme which is 

both efficient and fault-tolerant. A distributed object-based system is con

sidered where there can be inter-node object references, and operations on 

remote objects are invoked via remote procedure calls. The orphan treat

ment scheme associated with remote procedure calls has been enhanced to 

enable the collection of garbage arising from node crashes. 

First, this chapter contains a brief review of existing work on distributed 

garbage collection. Next, it gives an overview of an RPC mechanism with 

an orphan detection and killing facility designed and built at Newcastle. 

Finally, the enhancements necessary will be described. This chapter is a 

revised and extended version of work reported earlier [Mancini88b]. 
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6.1. Notes on garbage collection 

The function of a garbage collection scheme is to automatically reclaim 

storage that is no longer in use by computations. This automatic collection 

of storage frees the programmer from dealing with the complexity of dynam

ically determining which objects are needed and which are not at any par

ticular time. Storage for objects is allocated from a heap. In simple systems 

the heap is kept in the primary store, so objects are volatile. An object is 

defined to be accessible if it is reachable from a fixed object called the root. 

The two main garbage collection schemes are (1) mark-scan, and (2) 

reference-count. 

1. A great majority of garbage collectors for non-distributed systems 

employ the mark-scan technique [Knuth72]. Mark-scan garbage collec

tion needs to be invoked only when there is no free storage available; 

otherwise it imposes no performance penalty. When the collector is 

invoked, all other computations are stopped and storage for objects that 

are not accessible is collected for reuse. Starting from the root, the first 

phase (mark) causes all references to be traced and every object actually 

in use to be marked. The scan phase examines the mark on every 

object; unmarked objects are free and their storage spaces are collected 

together for reuse. 

A major objection to the mark-scan technique is that all of the ongoing 

computations must be halted when the collector is invoked. This has 
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the effect of making an application suddenly unresponsive while the 

collection is taking place. Such unpredictable and often lengthy interr

uptions are unacceptable in real time applications. In a distributed sys

tem the problem is even more serious since work on all nodes must be 

halted for a global search to take place when anyone processor runs out 

of memory. Another disadvantage is that all objects must be scanned 

(no matter how many are free), so the cost of this technique is propor

tional to the total number of objects in the system. 

A number of proposals have been made to circumvent these problems. 

Although versions of mark-scan have been developed which operate in 

parallel with normal processing [Dijkstra78], the garbage collection is 

still global in the sense that the entire system needs to be searched. 

2. A simple way to automatically collect unused storage is to associate 

with each object a reference-count field recording the number of refer

ences to that object. The reference-count is incremented each time a 

new reference is created by an object and decremented each time an old 

reference is removed by an object. When the count falls to zero, no 

references remain and the storage block can be deallocated [Cohen81]. 

Reference counting, unlike mark-scan, does not require that application 

processes be halted during collection. The overhead due to the algo

rithm is spread across object manipulations, which makes this tech

nique suitable for real-time and interactive programming environ

ments, as shown in [Eckart87]. Moreover, reference counting is local-
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ized, an object can be collected without examining the state of the 

whole storage. So this technique appears to be suitable for implement

ing garbage collection in a distributed system. The major objection 

raised to this scheme is that it cannot collect cyclic linked data struc

tures. An unused cyclic list will not be reclaimed - each individual cell 

in the list will have a non zero reference-count, although the list as a 

whole is no longer needed. Several algorithms to solve this problem 

whilst retaining most of the advantages of reference-count over mark

scan garbage collection have been proposed [Bobrow80, Brownbridge85, 

Vesta187]. 

Garbage collection of a single storage heap has been widely discussed for 

many years; this chapter is concerned with garbage collection in distributed, 

unreliable systems. In such systems, 'the heap' turns out to be distributed 

among the nodes of the system. Such a distributed heap can be viewed as a 

heap whose root is distributed and consists of the union of the roots at all 

nodes. In such an environment, an object is accessible if it is accessible from 

one of the roots. Several algorithms to perform distributed garbage collec

tion have been published recently [Hudak82, Ali84, Wiseman89]. 

Hudak's collection scheme is based on performing a global mark-scan collec

tion beginning at a unique, system-wide root object [Hudak82]. Each object, 

beginning with the root, first checks if it has been marked. If not, it marks 

itself, sends a mark message to each object that it references, and awaits 

replies from all these objects. This may be viewed as each object containing 

a mark procedure that recursively calls the mark procedures of all objects 
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reachable from it. The collection terminates when the root procedure 

returns. 

Ali describes a number of algorithms for use in a distributed system [A1i84]. 

The most advanced of his algorithms adopts a technique similar to 

[Baker78], and does not require any sort of synchronized global collection - a 

collector only examines a portion of the total space each time. This tech

nique also permits the collector to perform in parallel with other processes. 

However, his algorithm cannot collect cycles that span more than one node. 

Another method has been proposed in [Wiseman89]. Here, a mark-scan 

algorithm is presented to collect a recursively structured heap, which is par

titioned into disjoint (logical) areas. The areas may themselves be parti

tioned further into more areas, which are collected in parallel exploiting the 

traditional technique of divide and conquer - the mark-scan of an area is 

effected by combining the results of the lower level mark-scans rather than 

with extra phases. If the various areas are located at separated processors 

of a distributed systems, an additional phase to detect the distributed termi

nation of the mark-scan process is required to prevent accessible objects 

being marked inaccessible. This method permits the collection of all inac

cessible objects, and in particular of those forming circular structures. 

None of the methods discussed so far have addressed the problem of fault

tolerant garbage collection in distributed systems. This topic, although 

important, has not received much attention. The author is only aware of 

two papers [Liskov86, Vesta187] which address this issue. 
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The scheme presented in [Liskov86] exploits a reliable central service to 

store information about inter-node references. The nodes communicate with 

the central service periodically, to inform it about their references to objects 

at other sites, and to inquire about the accessibility of any local objects that 

might be referred to at other sites. Having a central service which deals 

with inter-node references reduces the problem of distributed garbage collec

tion to a local one, hence allowing the use of standard garbage collection 

techniques. This approach requires the central service to use a large 

amount of storage to record the map of the distributed heap - in the worst 

case such a storage might be as large as the whole distributed heap. 

In [VestaI87], two fault-tolerant garbage collection algorithms for object

based distributed systems are presented. The first algorithm combines 

reference-count with an algorithm to collect circular object structures. 

Vestal's solution maintains a separate reference-count, called local 

reference-count, in every node that contains any references for a gIven 

object. The object itself contains a list of nodes that have local reference

counts for it. An object obtains the actual reference-count by summing all 

the local reference-counts. These local reference-counts will continually 

experience creation, change, and deletion during the operation of the sys

tem. The problem then arises of computing a single global reference-count 

for an object in parallel with other processes. A solution is proposed requir

ing the synchronization of the physical clocks and the execution of certain 

procedures atomically with respect to failures. The failure atomicity pro

perty is also exploited to guarantee reliable copy of a remote reference 
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among nodes. The second of Vestal's algorithm uses a parallel mark-scan 

collector based on the algorithm presented in [Dijkstra78]. It resembles the 

solution in [Ali84], but can collect cycles that span more than one node with 

high probability. 

The scheme presented by Liskov and Ladin is different from the one 

presented in this chapter in that it employs a centralized (replicated) service 

for recording object references whereas the latter does not employ such a 

service. The first of Vestal's solutions has the drawback that to collect a 

cycle the algorithm needs to start at an inaccessible object lying within the 

cycle. Finding an effective heuristic for choosing such an object is not sim

ple, and requires research into the exact behaviour of the particular system. 

The second of Vestal's solutions does not guarantee the collection of inacces

sible cyclic structures. This is because it is possible, though quite unlikely, 

that cyclic structures of inaccessible objects will be moved round a ring of 

nodes, each node attempting to localize the garbage by passing it on to the 

next. Vestal does suggest possible ways of reducing the probability of such 

an event occurring, but these effectively cause the garbage collectors at 

different nodes to synchronize, which nullifies the benefits of independent 

garbage collection of nodes. 

The next section briefly introduces the model of computation and the termi

nology employed in the rest of the chapter. 
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6.2. Object-based garbage collection and reliability requirements 

In order to present the garbage collection scheme, a typical implementation 

of object-based systems is considered. In such an implementation, each 

object is associated with a unique name - a capability - which is used to con

trol access to the object. A capability is context-independent in that, regard

less of where the capability is stored in the system, it always refers to the 

same object. To emphasize the distributed nature of the system, capabilities 

for remote objects are referred to as remote capabilities (RCs). The 

existence of some method is assumed for locating objects efficiently, given 

these objects' RCs. In such a capability system, an object is treated as gar

bage, if no capabilities for it exist. 

In a distributed object-based system, an operation on a remote object is typi

cally performed by invoking the operation of the object via an RPC with the 

RC for the object as one of the arguments. Below, the terminology employed 

is introduced, and illustrated with the help of Figure 6.1, which shows an 

object x at node B holding an RC for an object y at node A (this is indicated 

by the dashed line). The node where an object is located is called the owner 

of the object; the object is local to that node. An object will be termed public 

if its owner has sent its capability to some other node (so y is a public 

object). A local object that is not public will be termed private. Some 

mechanism is required to allow that RCs for remote objects appear the same 

abstraction as local object capabilities. One such mechanism is illustrated 

in Figure 6.1, where object x holds an RC for remote object y. Each node 

maintains two objects called the export list and the import list. The export 

- 125 -



NodeB 

---

Node A 

Figure 6.1: Object x holds an RC for object y. 



Fault-Tolerant Garbage Collection 

list of a node maintains a list of all public objects of that node, whilst the 

import list maintains all the RCs of that node. Specific details of how 

objects come to hold RCs for other objects are not directly relevant for the 

discussions, so will be glossed over. It will, however, be assumed that 

objects are capable of transferring (copying) their RCs to other objects. 

A distributed computation is performed by client and server processes. The 

invocation of an operation on y by x will be carried out as follows: a client 

process at node B obtains RC j for y from the local import list and sends a 

call request containing j to a server process at A. The server process at A 

uses the RC j received to get the address of object y from the export list; it 

then performs the requested operation on y and sends the results back to 

the client. It will be assumed that a server process can be used for serving a 

sequence of calls from a given client. Servers and clients are created by the 

RPC mechanism as the need arises. 

It will be assumed that a crash of a node causes volatile objects to be des

troyed; in addition a crash also destroys all the processes of that node. A 

node can also own stable objects which are not destroyed by a crash. There 

are thus three possible kinds of object-based systems from the point of view 

of fault tolerance: 

1. All objects are volatile (temporary) and are lost with crashes. In such a 

system, if node B crashes, then x, the client process, the export and 

import lists of B and therefore the RC for y at node B vanish and the 

server on A will become an orphan computation. Assuming that only x 
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held an RC for y, then y will become garbage. It will be assumed that 

lifetimes of volatile objects do not exceed that of computations which 

created them; thus, a volatile public object will always have one or 

more server processes associated with it. 

2. All objects are stable (persistent): objects, including import and export 

lists, survive crashes. The lifetime of stable objects can exceed the life

time of the computations which manipulate them. In this case, x, the 

import list and therefore the RC for y survive a crash of B. It is worth 

noting that such a crash will cause the server process to become an 

orphan computation, but y will not become garbage. A distributed sys

tem with stable objects will typically need to structure its computations 

as atomic transactions [Gray78] in order to maintain consistency. How

ever, such a provision is orthogonal to the garbage collection scheme. 

3. A subset of the objects is stable and the remaining part is volatile. 

Naturally, only the volatile objects of a node will vanish because of a 

crash with the possibility of creating garbage on other nodes. 

An RC will be called stable if it is held by a stable object, and volatile if it 

is held by a volatile object. A crash of a node may cause some remote public 

objects to become garbage. Consider the system shown in Figure 6.2. Sup

pose that x deletes its RC for y at node A and then a crash of node C occurs; 

in this case, y becomes garbage and must be reclaimed by the garbage col

lection system. There is also a second case where node crashes may cause 

dangling references. For example, a crash of node D in Figure 6.2 will 
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cause x and w to hold RCs for z which no longer exists. As such, an invoca

tion of some operation on z by x or w may well cause a run-time exception 

whose treatment should be orthogonal to the functioning of the garbage col

lection system. Such dangling references can be detected simply by record

ing the time at which a node is initialized. This time is made part of all 

RCs to objects stored in the node. When an RC is used, a check is made to 

see if the time in the RC is the same as the time when the node was initial

ized. If not, the node must have crashed and so the RC is invalidated. The 

following sections will concentrate in particular on developing a distributed 

garbage collector capable of dealing with the first undesirable situation. 

The requirements that a distributed garbage collector for an object-based 

system should meet are given below. 

• The collection scheme should be capable of handling both volatile and 

stable objects of varying size. 

• The scheme should be applicable to both real-time and interactive pro

gramming environments. For example, a scheme which required stop

ping all ongoing computations in the entire system while performing 

garbage collection would be unacceptable. 

• The scheme should be fault-tolerant to failures that occur during collec

tion. In a distributed system, part of the system can fail while other 

parts still function. This behaviour imposes various reliability-related 

requirements on garbage collection. For example, collection of garbage 
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created by node crashes should be guaranteed at non-crashed nodes, and 

the collection mechanism should be able to cope with the transfer of 

Res among nodes in the presence of failures. 

• In most distributed systems, sending a message from one process to 

some remote process is a relatively slow operation (consuming anything 

from a few to several milliseconds of time), so the garbage collection 

scheme should strive to minimize network communication require

ments. 

The distributed garbage collection scheme presented here has several 

interesting features: (1) it is tolerant to the following types of failures: node 

crashes (fail-silent behaviour will be assumed, that is, a crashed node com

pletely ceases to function), and lost, duplicated, delayed and out-of-order 

messages; (2) it does not require elaborate facilities such as failure-atomic 

procedures or synchronized clocks; (3) individual nodes in the system are 

free to choose any local garbage collection technique; (4) the design can rely 

on a close integration with the orphan detection scheme of a remote pro

cedure call mechanism, thus enabling the exploitation of existing fault

tolerance facilities. 

In the scheme presented in this chapter, relevant information about inter

node references is stored at each node using a technique based on the 

reference-count method. There are two correctness requirements for a refer

ence counting garbage collector: 
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SAF: if the reference-count of an object is zero, then there are no references 

for that object; 

LIV: if there are n (n 2 0) references in the system for an object, then that 

object will eventually have its reference-count equal to n. 

Bearing in mind that in a reference counting scheme an object is collected if 

and only if its reference-count is zero, these two requirements can be seen as 

the statements of safety and liveness properties. The first requirement, SAF, 

states the safety property that nothing bad happens (viz. referred objects do 

not get collected), but it does not ensure that something good happens: the 

garbage collector might leave all objects with positive reference-counts (viz. 

never collect any objects) and still satisfy SAF. The liveness property LIV is 

therefore needed to guarantee that actual progress does take place. The live

ness property requires the updating of reference-counts. 

In the next section, the orphan detection method that will be used as a basis 

for the fault-tolerant reference-count service will be briefly presented. 

6.3. RPCs and orphan detection and killing 

Orphans are unwanted executions that can manifest themselves due to com

munication or node failures [Nelson81]. In the following it is assumed an 

exactly-once semantics for RPCs: a normal termination (the client receives a 

reply from the called server) implies exactly one execution. An abnormal 

termination can mean zero, partial or one execution at the called server. A 

call is said to terminate abnormally if the termination occurs because no 
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reply message is received from the called server. Network protocols typically 

employ timeouts to prevent a process waiting for a message from being held 

up indefinitely. Based on the client-server model, Panzieri and Shrivastava 

[Panzieri88] have recently developed an efficient technique for orphan treat

ment for RPCs with exactly-once semantics. There are three mechanisms 

used for treating orphans: 

(i) Every call contains a deadline, indicating to the server the maximum 

time available for execution. If the deadline expires, then the server 

aborts the execution and the call terminates abnormally. It is 

worthwhile to note that if there are no node crashes in the system, then 

this mechanism will be enough to cope with orphans. The remaining 

two mechanisms cope with crashes. 

(ii) Every node maintains a variable - called the crashcount - which is ini

tialized to the current value of the local stable clock immediately after 

a node recovers from a crash. A node also maintains a table of crash

count values for clients that have made calls to it. A call request con

tains the client's crashcount value - if this value is greater than the one 

stored in the table at the called server node, then there could be 

orphans at the server node which are first aborted before proceeding 

with the call. 

(iii) Every node has a terminator process that occasionally checks the crash

count values of other nodes - by sending messages to them and receiv

ing replies from those that are up - and aborts any orphans when it 

detects any crashes. 
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These mechanisms have been optimized to provide a cheap orphan treat

ment system. In particular, no stable storage is required (other than the 

stable clock which is available in most computers anyway) and there is no 

need to keep clocks synchronized. Further, the terminator based mechanism 

has been optimized as follows: a server that has not received calls from a 

client for a while marks itself as a potential orphan. The terminator need 

only perform its checks for potential orphans. Finally, the RPC mechanism 

copes with message failures (lost, duplicated and delayed messages) by 

employing well-known protocol-related techniques which will not be dis

cussed here. 

Given that each node has an orphan detection facility, it seems natural to 

embellish it for garbage detection. Referring to the example discussed pre

viously, a crash of a node B can leave garbage at node A, which can be 

detected by node A while detecting orphans. Such an integrated orphan 

detection and garbage collection mechanism is the main subject of the sub

sequent sections. In particular, what follows will describe enhancements 

made to the mechanisms (ii) and (iii) above to provide garbage collection. 

6.4. Fault-tolerant garbage collection 

The main features of a distributed fault-tolerant garbage collection scheme 

exploiting the above orphan treatment system will be presented in the fol

lowing sections. Section 6.4.1 presents a simple fault-tolerant scheme for 

volatile objects to be used when transferring of RCs is not permitted. In Sec

tion 6.4.2 the refinements required to cope with RC transfers will be 
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discussed. Only the mechanisms (ii) and (iii) of the orphan detection scheme 

discussed in the previous section will be exploited, namely every node is 

required to maintain a crashcount and to run a terminator process occasion

ally. Note that mechanism (i) is not considered, because reclaiming garbage 

in the presence of node and communication failures is the central topic of 

this scheme. Section 6.4.3 discusses how the scheme can be extended to 

cope with stable objects. Since the scheme presented here is based on the 

reference-count technique, it suffers from the well-known limitation that it 

is incapable of collecting objects if inter-node references form a cycle. How

ever, it will be shown in Section 6.4.4 that this limitation can be removed 

by extending the design. 

6.4.1. Treatment of node failures 

N odes are responsible for doing local garbage collection. Only private objects 

are candidates for garbage collection at a node. Each local garbage collector 

treats the objects not accessible from the local root as garbage. Since the 

export list is always accessible from the local root, all the public objects not 

accessible through the export list become private. Therefore the problem of 

designing a fault-tolerant distributed garbage collector reduces to the design 

of a protocol to keep the exports lists consistent with the import lists 

throughout the distributed system. Note that public objects may be used 

locally as well; these objects will be collected only when neither local nor 

remote capabilities exist for them. 

At each node there is a reference-count service, integrated into the RPC 
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mechanism, which is responsible for determining the accessibility of public 

objects. The reference-count service of a node achieves its aims by updating 

the export and import lists mentioned earlier. An entry is added to the 

export list the first time a capability for a local object is sent to another 

node (i.e. when a private object becomes public). This entry includes a 

reference-count field indicating the number of objects that hold RCs for this 

public object. The export list provides the local garbage collector with the 

information necessary for detecting objects that are no longer public (an 

object whose reference-count field in the export list reaches zero becomes 

private and therefore a candidate for garbage collection if no local references 

exist). 

The objects listed in the export list may be a superset of those actually used 

by other nodes. For example, referring to Figure 6.1, suppose that x at node 

B holds the only RC for y at node A, and that x is deleted at B. Object y is 

no longer accessible, yet there will be a positive reference-count in A's 

export list until some further action is taken at A. 

During local garbage collection, the collector is required to construct a junk 

list of all the imported Res deleted, and then update the import list after 

finishing the local garbage collection. The reference-count service of a node 

is responsible for distributing the junk list to other nodes. Thus the receiv

ing nodes are provided with the information necessary to update their 

export list in order to assess the accessibility of their public objects. The 

junk list need not be kept stable because the garbage due to node crashes is 

detected by the orphan detection mechanism. Each node does its garbage 

- 136 -



Fault-Tolerant Garbage Collection 

collection independently of other nodes, usmg an algorithm of its choice. 

The algorithm must however be extended slightly to take account of the 

export, import and junk lists. It is worth noting that the construction of the 

junk list can be performed without any additional scan of the storage. 

A data structure referred to as client list, which is a list of ClientElem 

records (see Figure 6.3), is maintained by the RPC orphan detection scheme 

at a node and contains information about all the client nodes that have 

made calls to this particular node [Panzieri88]. An entry of type RClist is 

required for garbage detection purposes. 

type ClientElem = struct ( Name clientNode % client node address % 
Real crashCount % crash count value of the clientNode % 

% list of servers created for the clientNode % 
ServerList serverList 

% list of the public objects used by the clientNode % 
RClist rcList ); 

Figure 6.3: Client list data structure. 

The RClist lists the public objects capabilities that have been used by the 

client whose name is recorded in the clientNode. The server List field con

tains the names of local servers which have been created for the clientN ode. 

The client list and export list of a node are initialized to be empty at the 

node startup time. 

The protocol followed at each node in order to support the distributed gar

bage collection service will now be discussed. 
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When a capability for a local object at some node A is to be exported to some 

other node B as a result of a call request invoked by a client process at node 

B, the called server process running on node A performs the following steps: 

(1) If the export list at node A contains an entry for the capability being 

exported, then its reference-count value is incremented by one, other

wise a new element is added to the export list, with the reference-count 

field initialized to one; 

(2) The capability being exported is inserted in the rcList field of the entry 

for node B in the client list at node A. 

Whenever an orphan server is aborted at node A because a crash of node B 

is detected, either by some server at node A or by the terminator of node A 

(respectively mechanism (ii) and (iii), Section 6.3), the following steps are 

performed at node A: 

(1) All the public objects recorded in the rcList field of the client list entry 

for node B get their reference-count values in the export list at node A 

decremented by one. Entries with reference-count field containing zeros 

are deleted from the export list thus making the relevant objects 

private; 

(2) The entry for node B is removed from the client list. Thus ensuring that 

the previous step is performed only once. 

- 138 -



Fault-Tolerant Garbage Collection 

A node, say B, periodically sends its junk list to other nodes. Upon receiving 

this list every node performs the following operations for each RC in the 

junk list sent by node B: 

(1) It checks if the RCs sent by B correspond to any public object in the 

rcList field of the entry for node B in the client list, and if so, 

(2) It deletes the relevant public object capability from rcList and decre

ments the appropriate reference-count field of the export list by one. If 

the field is zero then that entry is deleted as stated earlier. 

It is worth noting that inaccessible cyclic structures of RCs can be collected 

if a crash of a node breaks the cycle. In this case orphan servers of that node 

will be detected on at least one other node forming the cycle thus causing 

the storage for the cyclic structure to be reclaimed. 

The above mentioned operations represent minor modifications to the exist

ing orphan detection and killing system whose design has been analyzed 

and shown correct in a formal setting in [Pappalard088l It is worth noting 

that the scheme presented so far ensures SAF and LIV requirements in the 

absence of RC transfers. SAF, which requires that only those objects for 

which no RCs exist (viz. those objects with reference-count equal to zero) 

become private, is ensured because the objects listed in the export list are 

always a superset of those actually needed by other nodes. The reference

count of a public object, say y, is decremented only after either (1) some 

node holding an RC for y crashed causing the RC to vanish, or (2) some 

- 139 -



Fault-Tolerant Garbage Collection 

node sent a junk list containing the RC for y. LIV is ensured in the presence 

of crashes because orphan servers will eventually be aborted, thus causing 

the updating of the relevant reference-counts. 

Inconsistencies can arise due to crash of nodes during the transfer of RCs. In 

this case the scheme presented so far does not ensure that only objects 

without RCs for them will have reference-counts equal to zero. In the fol

lowing section this and other issues will be discussed. 

6.4.2. Reliable transfer of remote capabilities 

One additional mechanism is required to transfer RCs reliably while 

preserving SAF and LIV. Consider the following example. Node A is the 

owner of a public object and node B holds an RC for that object. B now 

transfers this RC to some node C as a result of a request by C. Inconsisten

cies can arise if B crashes (causing its RC to vanish) after sending its RC to 

C, but before informing A about the RC transfer. In this case SAF may be 

violated - because the public object owned by A can be garbage collected, 

leaving C to hold an RC for a non-existing object. In order to satisfy SAF, 

the RC transfer should only be regarded as completed normally if the export 

list of A and its client list have been updated properly. Consider then the 

following protocol. Whenever a server discovers that it is transferring an 

RC as a part of its RPC reply message, it first informs (see the inform mes

sage in Figure 6.4, where numbers indicate the sequence in which the mes

sages are sent) the owner of the relevant object so that the owner can 

update the export list and make an entry in the client list (for C in this 
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2 In orm 

done 

Figure 6.4: An RC transfer. 

case). Only after receiving the done message does the server send the reply 

message transfer with the RC. Referring to the example, if the call by C to 

acquire the RC from B terminates normally, it is ensured that the export 

list and client list at A have been updated. Thus the protocol guarnntee~ 

the SAF requirement. 

Now consider situations where the LIV requirement can be violated. With 

reference to Figure 6.4, suppose that B crashes after informing A but before 

sending the transfer message to C. In this case LIV may be violated - the 

object reference-count in A may be higher than the number of RCs in the 

system. The terminator and potential orphan mechanism mentioned in the 

previous section can be suitably modified to cope with such situation~. The 

potential orphan mechanism operating at A makes sure that if no calls are 

received from B or C for a long time, then enquiry messages will be sent to 

them to detect crashes. This mechanism can be enhanced to take care of 
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unused objects, that is public objects that are listed in the client list, and 

that remain unused for a long time. In the situation presented above, even

tually A will send an enquiry message to e and will be able to adjust its 

relevant entries since e does not holds the Re. It should be noted that the 

protocol discussed can be seen as a technique for A to cope with crashes of 

B; crashes of e are dealt with by A in the same manner. 

To summarize, nodes are periodically required to exchange three types of 

information: (i) lists of potential orphans, (ii) lists of unused objects, and (iii) 

junk lists. The first type of information is required for orphan detection, and 

the remaining two for garbage detection. A simple optimization is for a node 

to construct a single message containing all the three components for distri

bution. 

6.4.3. Treatment of stable objects 

The scheme presented so far deals with the treatment of volatile objects. 

This section will discuss enhancements of two kinds: to cope with stable 

objects (i.e. objects are persistent and survive crashes), and to cope with the 

mixed approach where both stable and volatile objects are permitted. 

In order to implement the abstraction of a stable heap, all the bookkeeping 

information about stable objects must also be kept stable, therefore each 

node must maintain its export, import, and junk lists on stable storage. 

Since these data structures are kept stable, node crashes cannot produce 

garbage on other nodes. The protocols discussed in Section 6.4.1 need only 

one modification: the updating of the export list when orphan servers are 
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detected is no longer required - the export list of a node is updated only 

when a junk list is received. However, the mechanism discussed in Section 

6.4.2 for preserving SAF and LIV is still required for transferring RCs 

between nodes, as the following example illustrates. Suppose the transfer 

protocol is not employed, then the following situation is possible (Figure 

6.4): B deletes its RC after sending it to C and then crashes before inform

ing A about the transfer. If garbage collection is done at A using post-crash 

information from B (note that the junk lists are kept stable while the infor

mation about the RC transfers are not), the object referred by the RC at C 

might be collected by mistake. An alternative to our solution for solving 

the above possible inconsistency is to keep also a stable log of all in-transit 

references [Liskov86]. 

N ow consider the provision of garbage collection in distributed systems 

where both volatile and stable objects are supported. In such a system vola

tile and stable RCs for the same object are permitted (e.g. RCs to y in Fig

ure 6.2). An example of such an environment could be a network of nodes 

some of which are diskless workstations. In such a system RCs held by disk

less workstations are volatile and if such workstations crash garbage might 

be created in other nodes. 

In order to implement such a mixed scheme, it is necessary to record the 

type of RCs a node holds; this can be performed in the client list (see Figure 

6.3) by requiring each element of the rcList in the client list to contain two 

fields - the RC offered to the client node, and in addition a flag indicating 

whether the RC is stable or not. The bookkeeping information regarding 
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objects (export, and import lists, and the junk list) can also be split in two 

parts with lists on volatile store recording information about volatile objects 

and stable lists recording information about stable objects. Naturally, a pub

lic object will become private only when its reference-count becomes zero on 

both the export lists. Given this organization, the garbage collection 

schemes presented for volatile and stable objects can coexist - whenever 

orphan servers are aborted at a node, reference-counts of only those RCs 

which are recorded as volatile in the client list are decremented in the vola

tile export list. This mixed approach continues to satisfy both SAF and LIV 

properties. For example, if C crashes (refer to Figure 6.2) then the 

reference-count of y will be decremented by one when that crash is detected 

at A; however, y will not be deleted because there still exists a stable RC 

naming y at B. 

The scheme presented here has similar functionality to that given In 

[Liskov86] with the following differences: (i) there is no need to keep in

transit references on stable storage; any inconsistencies caused by crashes 

during an RC transfer are detected and removed by the enhanced orphan 

detection scheme discussed; (ii) the scheme provides a uniform way of treat

ing both volatile and stable objects. 

6.4.4. Inter-node cycles 

If inter-node references form an acyclic graph, then, when an object of that 

acyclic graph is collected, all the garbage objects reachable from that object 

will eventually be deleted. However, if some inaccessible inter-node refer-
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ences form a cycle, inaccessible objects will never be deleted in the scheme 

proposed so far, as indeed in any pure reference counting scheme. For 

example, suppose object x at node A has a reference to object y at node B 

and y has a reference to object x, as shown in Figure 6.5. 

Node A 
Node B 

------------------- ------oy 
-------

---

------ ---------------------

Figure 6.5: An inter-node cycle. 

The inter-node references for x and y form a cycle that spans node boun

daries. Even though x and yare both locally inaccessible, they appear to be 

globally accessible and therefore are not reclaimed by the local garbage col

lector at their nodes. They are also not recognized as inaccessible with the 

scheme presented in the preceding sections. In the following, two possible 

approaches will be shown to remove this limitation by extending the design 

with the ideas reported respectively in [Wiseman89] and in [VestaI87, 

Brownbridge85 ]. 

One way to devise a cycle-tracing scheme is to employ, for example, the dis

tributed mark-scan garbage collection proposed by Wiseman [Wiseman89]. 
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In order to perform a global marking of the storage, each node in the Wise

man scheme helds a list which records the marking information for the pub

lic objects which are remotely referenced by other nodes. The mark field 

can take the values: not found, found, and scanned. Initially all objects are 

marked as not found. When an object is first found to be accessible its mark 

is changed to found. Once all the references reachable from the object 

marked as found have been examined, the object is marked as scanned. The 

global marking phase terminates once no found objects remain. At this 

point, all the objects which are marked as scanned must be kept, but the 

objects marked as not found are known to be inaccessible and so can be col

lected. This collection takes place during the final scanning phase, which is 

local to the nodes. It should be noted that the objects marked as not found 

include those forming inter-node cycles, for example object x and y in Figure 

6.5 will still be marked as not found at the end of the global marking phase. 

In order to employ the Wiseman scheme to achieve a fault-tolerant cycle

tracing algorithm, the problem of detecting the termination of the marking 

phase must be solved. Consider the situation depicted in Figure 6.6, where 

the marking information has been included in the entry of the export list at 

each node. In such a situation, if node A crashes, the remote objects y and 

w at node B will remain marked as not found until A recovers. During such 

time, B could wrongly collect object w. In general, B cannot know whether 

an object marked as not found is still needed. For example, although 

objects wand yare marked as not found, object w is still accessible, while 

object y is part of an inaccessible inter-node cycle. 
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The solution chosen for this problem is to mark as found all the objects 

being referred to by a crashed node. As previously discussed, the scheme 

presented in this chapter discovers when a node crashes. To complete the 

marking phase each node should lookup its local client list (see Section 

6.4.1) and mark as found all the objects used by the crashed nodes. In the 

example of Figure 6.7, when node A crashes, objects wand y will be marked 

as found. After the marking phase terminates, the scanning phase will col

lect the inter-node cycles through all non-faulty nodes. 

This distributed cycle-tracing scheme, therefore, will collect only part of the 

inaccessible inter-node cycles, and there is the question of whether this can 

cause the entire system to stop, because of shortage of storage. For exam

ple, with reference to Figure 6.7, in the case that only node A crashes, the 

inter-node cycle spanning node Band C will be collected, that is objects 0 

and q, while the inter-node cycle between A and B will not be collected, at 

least while A remains crashed. However, it is worth noting that the 

number of inaccessible inter-node cycles cannot increase. A crashed node 

which prevents the collection of a cycle also prevents the creation of an 

additional cycle, because since the node is crashed another cycle cannot be 

made through it. 

The cycle-tracing algorithm presented above can be optimized when inter

node cycles include volatile objects. For example, if object x at node A in 

Figure 6.6 is volatile, and A crashes, then object y at node B can be col

lected without waiting until the end of the cycle-tracing algorithm. This 

speeds up termination of the cycle-tracing algorithm and allows early 
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Figure 6.6: Cycle tracing initialization. 
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collection of volatile objects forming inter-node cycles spanning through 

crashed nodes. 

An alternative approach to a global mark-scan algorithm, is to perform a 

local scan for deleting inaccessible objects when it is believed that a cycle 

has formed. Various algorithms of this kind have been proposed in the 

literature [VestaI87, Brownbridge851 For example, Vestal proposes an 

algorithm that, when started at an inaccessible object lying in a cycle, will 

collect the entire cycle. This algorithm requires a suitable heuristic for 

selecting the starting object, otherwise the collection of the cycle cannot be 

guaranteed. Vestal's algorithm is simple and can be easily integrated in the 

reference counting scheme discussed previously. The only problem with 

Vestal's solution is to provide an effective heuristic to detect possible cycles. 

This can be achieved in the following way. 

As discussed previously, every node has a terminator process such that 

when an object remains unused for a long time that process sends enquiry 

messages to the clients to make sure they are still running. The terminator 

process can be suitably enhanced to provide an effective heuristic for 

Vestal's algorithm. If an unused object, say x at node A in Figure 6.6, is 

lying in a cycle, then a message, sent by the terminator process of node A to 

enquire about the remote clients of object x, will come back to node A after 

propagation through the nodes in the cycle. Therefore object x can be 

chosen to start executing Vestal's algorithm. It should be noted that the 

terminator process, on receiving back its enquiry message for object x, can 

only deduce that x lies in a cycle, but not that x is an inaccessible object. 
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Both the schemes discussed above require a crashed node to recover in order 

to collect inter-node cycles going through that node. This should not be a 

cause of any increase in the number of cycles, because the number of cycles 

though a crashed node remains fixed during the down-time of that node. 

However, in order to assess which scheme performs better, a further 

analysis is required to establish the relationships between the rate of collec

tion and the rate of production of inter-node cycles. Developing an appropri

ate statistical model is a demanding task, because of the large number of 

parameters that need estimation. Those involve the number of collectors , 

the relative priorities between collectors and users processes, as well as pat

terns of usage like locality of references. 

6.4.5. Performances 

A prototype version of the basic design presented has been implemented on 

a network of Flex object-based systems [Foster82] running on ICL Perq 

workstations connected by an Ethernet. The implemented prototype did not 

need to cater for cycles of inaccessible objects, because these cannot be 

formed in the Flex system. To the extent it could be tested, the distributed 

garbage collection scheme worked as specified, in particular it collected gar

bage objects in the presence of node crashes and communication failures. 

Measurements of the overhead caused by the scheme have been made. The 

measurements were made on a lightly loaded Ethernet. The Ethernet had a 

raw data rate of 10 megabits per second and was shared with other users. 

The measurements have been carried out for procedure calls performed by a 
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client process to a remote existing server, which returns a new RC at each 

call. The average time taken for such a call to complete was measured. This 

time interval includes the time spent by the client looking up the import 

list and inserting in the import list the newly created RC when the call 

returns, plus the time the server spends updating the export list and client 

list. The average time per call (averaged over 1000 calls) was 51 mil

liseconds, while the same call without any provisions for orphan-detection 

and garbage collection took 44 milliseconds on average. The performance 

degradation due to this scheme is thus of the order of 16%. 

By running various distributed programs, it was also noted that, of the vola

tile garbage created in the entire distributed system, less then 1% was glo

bal. This result is consistent with the experiments reported for a similar 

system in [Wiseman89]. Therefore it is expected that the memory utiliza

tion should not change sensibly because of node failures. In particular, a 

negligible variation was noted in the percentage of garbage collected by the 

local garbage collectors in a system without failures, and a system where 

node crashes where caused. 

The influence of the rate for the distribution of the junk lists on perfor

mance was not measured. By empirical observations, it appears that the 

collection of public objects could be done at intervals of the order of several 

minutes without affecting the overall performance of the system. The local 

garbage collection of every node runs at a much higher rate and is capable 

of providing the required storage for ongoing computations. 
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6.5. Concluding remarks 

The topic of fault-tolerant garbage collection in distributed systems, 

although important, has not received much attention. A practical solution 

has been presented in this chapter. 

The distributed garbage collection discussed here handles fault tolerance by 

an extension of orphan killing techniques, and this in fact is yet another 

illustration of the duality between process-based and object-based architec

tures. Because orphans are essentially garbage processes, it is perhaps not 

surprising that the orphan detection schemes can be extended to deal with 

garbage objects. However, somehow embarrassingly, the author has to 

admit that this facet of the duality argument was not as readily clear at the 

outset of the development as now is. 

The garbage collection scheme presented involves small modifications to an 

efficient orphan treatment scheme implemented at Newcastle [Panzieri88], 

so there is every reason to believe that the technique is of practical value. 

The performance figures presented bear out this observation. Some of the 

advantages of the distributed garbage collection scheme presented here are 

gi ven below: 

1. Collection takes place asynchronously with respect to other activities, 

including local garbage collection, and creation and deletion of private 

and public objects; 

2. It is independent of the local garbage collection schemes employed at 

various nodes; 
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3. It is tolerant to node crashes and communication failures that occur 

during collection; 

4. It is capable of treating both volatile and stable objects; 

5. It does not require elaborate facilities such as failure-atomic procedures 

or synchronized clocks. 

The scheme as described here has been developed for an object-based archi

tecture with RPC. However, there is no reason why the reference-count ser

vice could not be implemented on its own for process-based architectures, 

though process-based architectures are usually tailored for much smaller 

numbers of objects, whose garbage collection is not likely to be as serious a 

problem as in a typical object-based architecture. 
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Chapter 7 

Conclusions 

This thesis has concentrated on the development of techniques for reliable 

distributed architectures, and has argued that work on object-based archi

tectures can also have relevance to more conventional architectures. This 

final chapter summarizes the material that has been presented and indi

cates some of the possible areas for future research. 

7.1. Summary of the thesis 

The current literature ascribes many merits to the object-based program

ming methodology, see for example [DahI70, Birtwhistle73, Goldberg83, 

Almes85]. However, there is a considerable confusion in the literature 

about exactly what the terms (object-based', and (object-oriented' mean. For 

example, MacLennan employs the term 'object-oriented' to give a definition 

of Computer Science ([MacLennan82], p. 75): 

"It might not be unreasonable to call computer science objectified 

mathematics, or object-oriented mathematics" 

while Pascoe begins one of his recent papers saying [Pascoe86]: 

"There are as many different views of what object-oriented programming 

is as there are computer scientists and programmers" 
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It is difficult to give a succinct definition, except at a gross level, since there 

are many subtle flavours of behaviour which combine to give the overall pic

ture. Therefore, this thesis started by giving, in Chapter 2, a precise char

acterization of the relevant features of the object-based programming metho

dology. Based on their dependence relations, four approaches have been 

identified. One of these approaches is the object-based methodology where 

objects, that is encapsulation of some data together with the set of opera

tions on that data, are grouped into classes through which the concept of 

abstract data types is provided. The classes themselves can be organized 

into a class hierarchy. Such hierarchies allow similar classes to be related 

together in such a way that the code implementing the behaviour of one 

class can be automatically re-used (inherited) by classes lower in the hierar

chy, thus simplifying the implementation of those lower-level classes. 

Most of the literature regards object-based programming as though it can 

only be done with special programming languages. One of the avenues that 

has been explored in the present research has been the use of object-based 

programming techniques in a procedure-based language. This work, that 

has been described in Chapter 3, arose from particular work on garbage col

lection in distributed systems, which has also been reported in Chapter 6. 

In Chapter 3, two general techniques have been presented for implementing 

the sub-classing form of inheritance as a set of extensions to a procedure

based language. Both techniques exploit first-class procedures. The first 

technique requires some run-time lookup, while the second technique estab

lishes all the bindings at the time objects are created. These two solutions 
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provide different characteristics and advantages. If one is essentially 

interested in quick prototyping and experimentation, the first approach may 

be better adapted. Keeping the dispatching scheme during execution makes 

it easier to change the class hierarchy on the spot in order to correct errors , 

improve the system, or experiment with new facilities since it is not neces

sary to go through a complete compilation of other classes in the hierarchy 

on each occasion. On the other hand, if one is concerned about correctness , 

robustness and efficiency, then the second approach, which constructs most 

of the bindings at compile-time, is obviously required. 

The subsequent chapters of this thesis have therefore considered object

based programming, whether this is done with an explicit language or by 

means of the techniques described in Chapter 3. In particular, Chapter 4 

has reviewed some applications of the object-based methodology to the 

design and implementation of distributed architectures. 

Distributed architectures are characterized by the physical partitioning of 

their components. This partitioning, which requires explicit communica

tions between different physical components, introduces a number of funda

mental issues concerning the visibility of distribution. Various forms of dis

tribution transparency have been identified in [ANSA87]. They can be 

regarded both as problems to be solved in order to conceal the partitioning 

of architectural components, and as features to be exploited to take advan

tage of the partitioning in order to achieve particular levels of security, reli

ability, and performance. Chapter 4 has started from the analysis in 

[ANSA87] to discuss various strategies, abstractions, and mechanisms 
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required for controlling and exploiting distribution in object-based architec

tures. 

Just as Chapter 3 has illustrated a means of applying object-based metho

dologies without using an explicit object-based programming language, 

Chapter 5 has discussed work which illustrates the relationship between 

distributed object-based architectures and an apparently different form of 

distributed architectures, based on processes. After examining the structure 

of a variety of systems, two canonical architectures of fault-tolerant systems 

were developed, one encompassing the techniques and terminology used 

within the database and office information systems community, the other 

being more closely allied to the real time and process control applications 

area. These architectures were shown to be duals of each other. 

Although, in retrospect, this may not appear to be a surprising conclusion, 

particularly given the Lauer and Needham paper, it has not been realized 

before how direct and complete the relationship between the two architec

tures was, and there is not any earlier literature explaining and exploiting 

this duality. Instead, one finds that fault-tolerant systems are constructed 

and described using the concepts and terminology applicable to just one of 

the two architectures, with no apparent realization of how useful the metho

dologies devised for one approach could prove for the other. 

The arguments to support the duality claim were based on an examination 

of three properties of a fault-tolerant computation, namely: freedom from 

interference, backward recovery capability and crash resistance. It was 
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shown that mechanisms employed to implement a given property in one 

architecture have duals in the other. Similarly, any particular behaviour 

observed in one architecture has its dual in the other. Examples presented 

in Chapter 5 show that programs developed using the primitives of one 

architecture can be mapped easily to the programs of the other architecture. 

Indeed, it could be claimed that the differences between the two architec

tures are principally a matter of view point and terminology. The establish

ment of the equivalence between the two approaches to fault tolerance has 

several interesting implications, some of which have also been analyzed in 

Chapter 5. 

Another important issue in distributed systems, whether they are built as 

object-based or process-based, is that of garbage collection. The topic of 

fault-tolerant garbage collection in distributed systems has not received 

much attention. Chapter 6 has addressed to the notion of distributed gar

bage collection, specifically from the point of view of fault tolerance comput

ing, and has presented a practical solution which is both cheap and efficient. 

The distributed garbage collection discussed in Chapter 6 is tolerant to node 

crashes and communication failures that occur during collection, is capable 

of treating both volatile and stable objects, and is asynchronous with respect 

to other activities, including local garbage collection, and creation and dele

tion of private and public objects. 

It should be noted that the proposed garbage collection scheme handles fault 

tolerance by extending the techniques commonly employed for killing 
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orphan processes, and this is yet a further illustration of the duality 

between process-based and object-based architectures. Because orphans are 

essentially garbage processes, it is perhaps not surprising that orphan detec

tion schemes can be extended to deal with garbage objects. 

7.2. Future work 

The design of distributed architectures offers considerable scope for further 

investigation. Some particular areas of the thesis which could benefit from 

further research will now be considered. 

In Chapter 3, two techniques for sub-classing where developed for the Flex 

system [Foster82]. Unfortunately, the Flex environment does not provide a 

suitable interface for exploiting the full benefit of such techniques. One of 

the major problems that programmers face in Flex to the difficulty of finding 

reusable software components, once such components have been produced. 

Another related problem is how a user can understand the structure of an 

application, especially if that user was not the creator of that software. 

In order to provide a more convenient use of object-based techniques in the 

Flex system, the question arises of what kinds of tools might help to solve 

these problems. Many researchers and developers are already addressing 

these issues in the context of object-based architectures, where the answer is 

typically couched in terms of finding classes or operations that have specific 

properties or functions, and of understanding the class hierarchy. Since the 

Flex environment is mainly procedure-based, one could think of developing 
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the work presented in Chapter 3, in order to adopt the tools designed within 

the context of object-based architectures. 

The work at DEC on an environment for the Trellis/Owl object-based 

language [0 'Brien87] appears to be relevant for this purpose. The Trellis 

environment addresses the problem of how to find relevant software com

ponents when the programmer is not familiar with the entire svstem and . , 

also keeps track of static inconsistencies and does incremental recompilation 

automatically. 

Chapter 5 has discussed the duality between object-based and process-ba:,:;ed 

systems from an essentially empirical point of view. An interesting area for 

further research would be that of providing a more formal treatment of this 

duality. This would, of course, improve the duality arguments, but would 

also shed light on formal methods for specification and verification of object

based systems. In fact, the insights gained with the duality argument could 

help in building the dual model of some well-established formalism for 

studying process-based systems, such as the one presented in [Hoare85]. 

Such a dual model could be used as the basis of an appropriate formal 

theory for object-based systems. 

One of the results of the research described in this thesis has been the 

development and implementation of a fault-tolerant garbage collector for 

distributed systems. In order to improve the performance of the present 

implementation, another area of future work might concern specific meas

urements about how such systems will actually be used. Some of the meas-
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urements that would be interesting to evaluate, in particular with respect to 

distributed object-based systems, are: the percentage of references on a node 

to objects on another node, the rate at which references are transferred from 

one node to another, and the percentage of objects that are never referred on 

another node throughout their entire lifetime. Such measurements will of 

course be strongly influenced by the applications and the usage profile of the 

system. However, given such measurements, there are various possible 

trade-off decisions which would be evaluated more carefully, such as the 

relative priorities between collectors and users processes. 

An interesting work would be validating the distributed garbage collection 

scheme presented in Chapter 6. This requires research into the area of for

mal specification and verification for real-time programs, since for most 

applications a basic rate of collection must be met. 
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