
NEW C (\ ~; T LEU N I V E F: SIT Y LIB FUI F: Y

0[:7 1:1.063 ::.
......... - ... - .,., ".,

Decentralised Control Flow

A Computational Model for Distributed Systems

David H. Mundy

University of Newcastle upon Tyne

Computing Laboratory
March 1988

ii

ABSTRACT

This thesis presents two sets of principles for the organisation of
distributed computing systems. Details of models of computation based on
these principles are given, together with proposals for programming
languages based on each model of computation.

The recursive control flow principles are based on the concept of
recursive structuring. A recursive control flow computing system
comprises a group of subordinate computing systems connected together by
a communications medium. Each subordinate computing system may either be
a computing system which consists of a processing unit, a memory
component, and some input/output devices, or is itself a recursive
control flow computing system. The memory components of all the
subordinate computing systems within a recursive control flow computing
system are arranged in a hierarchy. Using suitable addresses, any part
of the hierarchy is accessible to any sequence of instructions which may
be executed by the processing unit of a subordinate computing system.
This global accessibility gives rise to serious difficulties in the
understanding of the meaning of programs written in a programming
language based on the recursive control flow model of computation.
Reasoning about a particular program in isolation is difficult because of
the potential interference between the execution different programs
cannot be ignor ed .

The alternative principles, decentralised control flow, restrict the
global accessibility of the memory components of the subordinate
computing systems. The concept of objects forms the basis of the
principles. Information may flow along unnamed channels between
instances of these objects, this being the only way in which one instance
of an object may communicate with some other instance of an object.
Reasoning about a particular program written in a programming language
based on the decentralised control flow model of computation is easier
since it is guaranteed that there will be no interference between the
execution of different programs.

iii

COHTEHTS

1 INTRODUCTION . 1

2 ARCHITECTURES OF COMPUTING SYSTEM

2.1 von Neumann Computing Systems

2.2 Parallel Computing Systems

2.3 Distributed Computing Systems

2.4 Data Flow Computing Systems

2.5 Reduction Computing Systems

2.6 Array Processors

2.7 Conclusion

3 MODELS OF COMPUTATION
3.1 The von Neumann Model of Computation

3.2 Parallel Control Flow

3.3 Object Oriented

3.4 Logic

3.5 Reduction

3.6 Data Flow
3.7 Conclusion

.

. .
. · · .

. . · ·
· · . .

.

13

• • 16

.

• 24

27

30

33

• 37

40

42

50

54

56

58

64

· 68

· 70

iv

4 TWO ALTERNATIVE DESIGNS · · · · 77

4.1 Recursive Control Flow . · · · · · · · · · . 83

4.1.1 Information Structure 84

4.1.2 Program Representation 85

4.1.3 Program Execution 86

4.1.4 Architecture · · · . 92

4.1.5 Model of Computation 93

4.1.6 Concurrency in the Model of Computation . 99

4.2 Decentralised Control Flow 104

4.2.1 Information Structure 105

4.2.2 Program Representation and Execution 106

4.2.3 Model of Computation · · · · . · · · · III

4.2.4 Concurrency in the Model of Computation · · · · 112

4.3 Concluding Remarks · · · · · · · 115

5 ISSUES OF CONCURRENCY IN DISTRIBUTED COMPUTING SYSTEMS 119

5.1 Integrity and Consistency of Objects 122

5.1.1 Sequential EXecution 126

5.1.2 Concurrent Execution 127

5.2 Interference and Independence · · · · 129

5.2.1 Locks · · · · 132

5.2.2 Timestamps · · · · 137

5.3 Object Histories 138

5.4 Concluding Remarks . . · · 151

v

6 PROGRAMMING LANGUAGES FOR THE TWO NEW DESIGNS

6.1 Related Work

6.1.1 Pascal-m

6.1.2 Argus · · ·
6.1.3 Distributed Path Pascal · · ·
6.1. 4 Occam

6.1.5 PS-Algol

6.1.6 Analysis

6.2 The Basix Programming Language

6.2.1 Overview

6.2.2 Formal Semantics

6.2.3 Informal Semantics

6.2.4 Analysis
6.3 A Decentralised Control Flow Programming Language

6.3.1 Overview

6.3.2 Syntax

6.3.3 Semantics

6.3.4 Analysis

6.4 Concluding Remarks

7 CONCLUSIONS

7.1 Aims

7.2 Achievements

7.3 Future Work

. . . .

. . . · · ·

. .

·
·

·

· . .

. .

.

153

164

164

166

169

173

174

176

182

182

189

193

201

205

205

208

214

220

221

223

225

226

230

vi

ACKNOWLEDGMENTS

The starting pOint for the work reported in this thesis is that of
Treleaven and Hopkins [Treleaven and Hopkins, 1981], and this thesis
forms a contribution to the continuing research work of the Computer
Architecture Group within the Computing Laboratory at the University of
Newcastle upon Tyne. I owe much to the various members of that research
group. In particular, thanks are due to Phil Treleaven, Richard Hopkins,
and Isabel Gouveia Lima with whom I worked closely. The work has
benefitted from technical discussions with different members of the
Computing Laboratory - David Brownbridge, Martin McLauchlan, and Jon
Garnsworthy, to mention but three.

Thanks are also due to those people who, directly or indirectly,
helped me to produce this thesis. Professor Brian Randell and Professor
Peter Lee both read drafts of this thesis and wrote helpful criticisms.
Lesley Mundy suggested simplifications to my complex sentence
construction, and also found most of the typographical errors.

Finally, and by no means least, I am indebted to Professor Brian
Randell for the encouragement to pursue this work in a lively research
environment, and to both the Science and Engineering Research Council of
Great Britain and International Computers Limited for their financial
support as a graduate student and as a research associate.

1 INTRODUCTION

Computing systems have been in widespread use for the past thirty

years but, despite much popular misconception to the contrary, a

radical machine capable of thought has been neither designed nor

built. The first computing systems were seen, by their USers at

least, as nothing more than a further development of electronic

calculators and indeed were first used for this purpose. Another

early use of computing systems was to tabulate the behaviour of

ballistic missiles for the armed services. Much of the interest in

designing

remove the

and building computing systems stemmed from the desire to

tedium and error involved in the production of

mathematical tables. Resources were spent on the design of

algorithms for the solution of existing problems and the subsequent

encoding of these algorithms as sequences of instructions to be

executed by the early computers. The history of the development of

these early computing systems has been amply traced by Randell

[Randell, 1973] and will not be considered in greater detail here.

It was not long before it was appreciated that complex systems

other than those of the mathematician or the scientist could be

modelled by sequences of instructions and executed by the processing

unit of some computing system. Between the late 1950's and early

1960's many financial and accounting programs were written. There

was also a rapid development of programming languages aimed at data

processing applications [Willey, d'Agapeyeff, Tribe, Gibbens, and

- 1 -

Clark, 1961]. However, in that period, no effort was given over to

research in the separate areas of architectures for computing system,

models of computation, and programming languages.

To this day the design principles underlying the architecture of

the first computing system and the first model of computation

dominate computing science. These principles are often referred to

as the von Neumann style [Gouveia Lima, Hopkins, Marshall, Mundy, and

Treleaven, 1983], thereby associating both the architecture and the

model with the pioneering work of von Neumann and his control flow

computing systems [Goldstine, 1972]. These computing systems were

constructed from a memory component, some input/output devices, and a

processing unit. A sequence of instructions was stored in the memory

component, along with the information processed by that sequence of

instructions. The processing unit fetched each instruction of the

sequence in turn from the memory component, along with any

information required, caused the instruction to be executed, and

stored any information generated by the execution of the instruction

back into the memory component. Each instruction performed some

'simple' operation on the global state of the computing system.

Examples of the instructions characteristic of the processing units

found in the von Neumann style architecture would include those used

to perform arithmetic operations on two numeric quantities and those

used to transfer information between the processing unit and the

memory component or input/output devices. The order in which the

instructions were executed was determined by their order in the

- 2 -

sequence. The input/output devices could be used to store

information for longer periods of time, in particular, during the

time when the computing system was not in use.

At the outset, each computing system existed in isolation from all

other computing systems. Therefore, during the execution of a

sequence of instructions, there was neither co-operation nor

communication between different computing systems. The information

stored within one computing system could not be accessed by another

computing system, except by the physical movement between the

computing systems of some portable storage device, such as a magnetic

disc or tape. The use of networking initially through standard

telephone equipment together with modems, and then with various forms

of wide or local area networks, enabled connections to remote

computing systems to be established.

transmitted between computing systems.

not necessarily permit the user to

Information could then be

However, this capability did

write two sequences of

instructions such that one sequence of instructions executed on one

computing system co-operated with the execution of the other sequence

of instructions on a different computing system. Typically, the

co-operation between the different computing systems occured at a low

level, within the control program which controls the behaviour of the

separate computing systems, and could not be exploited by an

individual user.

- 3 -

The von Neumann model of computation is based upon the design of

the von Neumann style architecture of computing systems and is

basically a description of the behaviour of such computing systems.

The essential concepts of the von Neumann model of computation are

the sequence of instructions which are executed individually in

order, and the memory component in which information may be stored.

The close relationship between the design of the von Neumann style

architecture and the von Neumann model of computation is reflected in

the apparent ease with which programming languages based on the von

Neumann model of computation are implemented on a von Neumann style

architecture. For example, both the programming languages Lisp and

Fortran reflect details of the IBM computing systems for which they

were first designed. However, the von Neumann model of computation

has been refined over the years to incorporate several ideas which

have become fundamental to the discipline of computing science. An

example of this refinement process may be traced from the

introduction of high level programming languages such as Algol 60

[Naur, 1963], through the development of structured programming

techniques [Dahl, Dijkstra, and Hoare, 1972] to the concept of

abstract data types [Liskov, Snyder, Atkinson, and Schaffert, 1977].

These developments have been fed back into the design of von Neumann

style computing systems. An example of this process is the ICL 2900

range of computing systems [Buckle, 1978] which was deSigned

explicitly to support efficiently high level programming languages

based on revisions of the von Neumann model of computation.

- 4 -

Thirty years have elapsed since the development of the programming

language Fortran, the first example of a programming language based

on the von Neumann model of computation which is still in widespread

use. Despite this general acceptance of the von Neumann model of

computation, both on the part of the manufacturers of computing

systems and the users, many researchers within the Computing Science

community are re-assessing the usefulness of the von Neumann model of

computation. The uses to which von Neumann architecture computing

systems have been put

introduction of mini- and

have increased

micro-computers

dramatically since

in the 1970's.

the

The

majority of programs for these systems have been written in

programming languages based on the von Neumann model of computation.

By the mid 1970's many Computing Scientists recognised that a crisis

point in the development of software had been reached, in that the

existing programming languages and techniques for the construction of

large complex programs were not sufficient for the production of hig~

quality correct software. One of the drawbacks to programming

languages based on the von Neumann model of computation is the memory

component. The individual cells of the memory component may be

thought of as variables which may be

execution of a program proceeds.

memory component it is difficult

assigned different values as

With this interpretation of the

to reason formally about the

behaviour of programs written in a programming language based on the

von Neumann model of computation [Turner, 1982; Wadge and Ashcroft,

1983]. The meaning of an expression in a program can be changed

through assignment to the variables which appear in that expression.

- 5 -

The other drawback is that many of the programming languages based on

the von Neumann model of computation are defined only informally. In

fact a formal definition of some of these programming languages would

be large, difficult to understand, and, in all probability, of little

practical use [Backus, 1978]. It is these drawbacks which have

motivated two contrasting areas of research.

One group of researchers has

refinements to the von Neumann

concentrated on

model of computation.

introducing

Some have

produced von Neumann style

defined formally [Wulf,

programming languages

London, and Shaw, 1976].

which have been

Typically, these

programming languages support abstraction mechanisms which make

program construction, by stepwise refinement, an easier task. Others

have shown how proofs about programs written in von Neumann style

programming languages may be constructed [Hoare, 1973; Gries, 1981].

A second group proposes that the solution to the software crisis

will come, not through adaptations of the von Neumann model of

computation, but rather through a novel model of computation.

Typically, the novel model of computation will exhibit the

mathematical property of referential transparency. This is the

property whereby an expression refers to, or "denotes", a value, and

the same expression always denotes the same value within the same

scope [Turner, 1982]. This property allows proofs about programs to

be written directly.

- 6 -

This second group of researchers is often at a disadvantage as, to

establish their case firmly, it is important that the implementations

of the programming languages based on these novel models of

computation are readily available for use on existing architectures

of computing systems, of which the von Neumann architecture of

computing system is by far the most dominant. It is often the case

that the novel models of computation cannot be implemented

efficiently, with regard to time and space, on the von Neumann

architecture. As a result, these novel models of computation have

not received widespread acceptance because of the extra costs. In

view of this, development of a novel model of computation has often

led to research into novel architectures of computing systems which

will efficiently support the particular model.

On a different front, developments in recent years in two separate

techno~ogies have caused a third group of researchers to investigate

novel architectures. By the use of communications technology it is

possible for several computing systems to be connected together by a

network. The computing systems may be widely distributed but

connected by a wide area network, or may be locally distributed and

connected by a local area network. Communication between the

different computing systems takes place across the network.

Moreover, the technology of fabricating silicon chips has been

advanced to the point where it is now possible to design and

manufacture chips containing several processing units. Communication

may occur between the different processing units on a single chip, so

- 7 -

that such chips exhibit the

distribution.

characteristics of very local

These technological developments permit computing systems to be

connected together to form structured computing systems composed of

subordinate computing systems. It seems probable that the standard

computing systems of the not too distant future will be composed of

several subordinate computing systems connected together. There are

two interesting aspects to these computing systems. Firstly, the

instructions of a single program may be stored within several

different subordinate computing systems. Thus the execution of the

instructions of the program may be performed concurrently by the

processing units of the different computing systems. Secondly, the

information stored within the memory component of one subordinate

computing system can be made accessible to other subordinate

computing systems. The execution of an instruction on one

subordinate computing system may, therefore, change the information

stored within a different subordinate computing system. Information

will be able to flow freely between the subordinate computing

systems.

To exploit this capability to the full the transfer of information

between subordinate computing systems must be reflected in the models

of computation on which the programming languages used to construct

programs for such distributed computing systems are based. Since the

transfer of information may occur concurrently, the issues which are

- 8 -

associated with concurrency must be considered in the design of

models of computation for the exploitation of these computing

systems.

An obvious first choice for the basis of the new model of

computation for the distributed computing systems is the von Neumann

model of computation. The benefits brought about by the introduction

of structured programming techniques may have lessened the acute

problems facing the designers of large software systems based on the

von Neumann model of computation. The introduction of concurrency

into the von Neumann model of computation such that it can be

exploited by the programmer would increase the problems facing these

designers. It has been argued that the von Neumann model of

computation will be insufficient to allow for the correct description

of computations for execution on concurrent computing systems

[Chamberlin, 1971]. For this reason many researchers in computing

science have turned away from the von Neumann model of computation

and are investigating novel models of computation. Indeed, based as

it is on an architecture which admits neither concurrency of

execution nor communication of information with other computing

systems, the von Neumann model of computation does not appear to be a

suitable basis for a model of computation for distributed computing

systems.

Some of the work of those researchers who are investigating

architectures of computing system and models of computation other

- 9 -

than those based on the von Neumann style is surveyed in chapters two

and three. Two novel designs of architectures of computing system

and models of computation are described in chapter four. It is the

aim of both designs to be suitable for the construction of general

purpose distributed computing systems. Such computing systems might

be constructed from contemporary von Neumann style computing systems,

or from silicon chips each comprising several computing systems

connected together on a single board.

The first of these designs, recursive control flow, originates in

research undertaken at the University of Newcastle upon Tyne which

investigated the use of the technology of chip fabrication to produce

highly parallel computing systems [Treleaven and Hopkins, 1981]. The

formal semantics for the model of computation of this design are

presented. Analysis of the semantics lead to the conclusion that the

recursive control flow model of computation is not necessarily the

most suitable model of computation for general purpose distributed

computing systems.

The second design, decentralised control, is a development of

recursive control flow. It is a new design which is claimed to be

suitable for the construction of general

computing systems. The model of computation

desribed and the formal semantics presented.

- 10 -

purpose

for this

distributed

design is

Since the architecture which underlies each of the proposed models

of computation may well permit concurrent execution of programs, some

of the issues concerned with concurrency are considered in chapter

five. In particular, the notion of the consistency of the

information represented within a distributed computing system is

discussed. It is shown how inconsistencies may arise with the

concurrent execution of instructions. Much of the material in this

chapter is a survey of research in distributed data base management

systems. A new strategy is outlined which ensures that the

consistency of the information in a distributed computing system is

maintained despite the underlying concurrency.

In chapter six, proposals for two programming languages are

presented, one for each of the novel models of computation. The aim

of each programming language is to describe the state of a complete

computing system and not to perpetuate the traditional distinction

between the programming language and the control program which

controls the behaviour of a computing system. Both models of

computation attempt to unify the different concepts of storage found

on computing systems, since a distinction is often made between the

information which is represented within a program and that which is

repesented on the storage media attached to the computing system.

The distinction is between information which lasts for the lifetime

of a program, and that which has a lifetime exceeding that of the

program. The programming language Basix originated in the work

reported in [Gouveia Lima, et al., 1983]. The formal semantics for

- 11 -

the programming language have been constructed and are presented. An

implementation of this programming language has been constructed, and

several demonstration programs executed. This has allowed some

experience of the programming language to be gained. Proposals for

the design of a second programming language are also given, along

with the formal semantics.

- 12 -

2 ARCHITECTURES OF COMPUTING SYSTEM

The von Neumann architecture of computing system mirrors, to a

great extent, the design proposed by Babbage in the nineteenth

century for his "analytic engine", This mechanical device had,

amongst other things, a "mill" in which the processing of numeric

quantities was performed and a "memory" where the results of the

processing could be stored for use in later processing. The whole

device was controlled by a sequence of pre-punched cards which

specified the operations to be performed by the mill. A card would

first be "read" into the device. The specified operation would then

be performed by the mill retrieving quantities from the memory and

returning results to be stored. Then the next card in the sequence

would be read and the whole process repeated until the complete

sequence of cards had been read. At this point the program specified

by the sequence of operations would have been completed and the

result of the program could be read from the memory. Iteration and

conditional branching were provided by a sequencing mechanism which

was also controlled by the pre-punched cards.

The architecture of the first stored program computing systems,

such as the EDSAC, was based upon a processing unit connected to a

memory component. The whole system behaved in a manner similar to

Babbage's analytic engine. A sequence of operations was specified on

a pre-punched paper-tape which was read into the memory component by

a built-in assembler and loader. Instructions were fetched

- 13 -

sequential~y from the memory component and executed by the processing

unit. Results were stored within the memory component. Conditional

branching instructions were supported which made it possible to

construct program loops.

These first generation computing systems were both expensive to

build and difficult to use. The capacity of the memory component

was, by today's standards, extremely limited. The design of the

processing unit was itself quite simple but the technology available

made construction quite difficult. It was not considered feasible to

have more than one processing unit in a computing system.

Since those pioneering days, with the advent of the transistor and

then the integrated circuit, computing systems have become cheaper to

build. Through the use of readily available mini- and

micro-computing systems, computer technology has been put to uses

which were undreamt of in the 1950's and the 1960's. However, the

underlying architecture of the majority of these computing systems

reflects the design principles of the late 1940's and early 1950's.

These include, amongst other things, sequential execution of the

instructions and a sharp distinction between the processing unit and

the memory component.

Advances in the technology from which computing systems are

constructed have allowed changes to be introduced. Some changes are

simply improvements to the existing von Neumann architecture. For

- 14 -

example, the cost of memory devices has decreased whilst, at the same

time, their capacity has increased. The capacity of the memory

component on contemporary computing systems is vastly increased by

comparison with that of systems of the 1970's. Similarly, more

sophisticated circuitry within the proceSSing unit permits a wider

range of more complex instructions to be supported.

Other changes which exploitation of the advances in the technology

permits is the removal of the distinction between the active

processing unit and the passive memory component which is found in

the von Neumann architecture. A possible new architecture of

computing system could be based on a network of homogenous

components. Each component is capable both of executing a program

and storing information.

the individual components.

Information could be transferred between

Again, other changes, whilst maintaining the distinction between

the function of the processing unit and that of the memory component

could be used to produce a new architecture of computing system.

Just as the memory component of a von Neumann computing system may be

made up of several memory devices, so the processing unit may be

replaced by several processing units. The new architecture is based

around a memory component connected to a processing component which

consists of many processing units.

- 15 -

In the following sections, the tentative outlines for the

architectures of computing systems are described in more detail.

2.1 VON NEUMANN COMPUTING SYSTEMS

A von Neumann computing system consists of a single processing

unit connected to a memory component. The program to be executed by

the processing unit is stored within the memory component as a

sequence of instructions. Execution of the program proceeds as each

instruction in turn is fetched from the memory component and

executed. The operands for the instructions will be stored within

the memory component or in the internal registers of the processing

unit. Information is passed between the instructions via the memory

component or the internal registers. The order in which the

instructions are executed is, in general, the order in which they are

stored within the memory component. However, a mechanism is provided

which allows execution to proceed to a different part of the sequence

of instructions.

Speeding up the overall rate at which a sequence of instructions

is executed can be achieved through the use of pipelining. As each

instruction is being executed by the processing unit, the next

instruction in the sequence can be retrieved and some preliminary

decoding of that instruction and its operands performed. Once the

first instruction has been executed, the second instruction, which

has been partially decoded, can be executed. Whilst this second

- 16 -

Processing
Unit

Memory
Component

Input/Output
Devices

Figure 2.1 A Typical von Neumann Computing System

instruction is itself being executed, the third instruction in the

sequence can be retrieved and some preliminary decoding on this

instruction performed. The instructions of the program are still

executed sequentially. However, the time taken to execute one

instruction is overlapped with the time taken to perform some of the

decoding of the next instruction. Such pipelining schemes have been

used to advantage to build fast processing units for powerful

computing systems.

The overall strategy of overlapping the execution of one

instruction with the preliminary decoding of the next instruction can

be extended. It would be possible to overlap the execution of one

instruction with the preliminary decoding of several of the next

instructions in the sequence. However, there are some drawbacks to

the use of pipelining. First and foremost, the scheme cannot be used

when conditional transfers of control are made within the program.

The outcome of a conditional transfer of control instruction depends

- 17 -

upon a Boolean value calculated earlier in the instruction sequence.

Since pipelining overlaps the execution of one instruction with the

preliminary decoding of others, a transfer of control out of the

current sequence of instructions will result in the decoding being

performed unnecessarily for the instructions sequentially following

the conditional transfer of control instruction. Furthermore, the

first few instructions in the sequence to which control has been

transferred will not have been decoded in advance.

Another way by which the throughput of a processing unit may be

increased is by designing the processing unit to support a wider

range of more complex instructions. This improves the performance of

the processing unit by reducing the number of instructions in the

program, and hence the number of ~structions which must fetched and

executed. Additionally, the designer of the processing unit may be

able to take advantage of the internal organisation of the processing

unit in execution these more complex instructions. However, many

processing units provide instructions or addressing modes which the

majority of high level programming languages cannot sensibly use.

For example, in one study, measurements of the object code generated

by one compiler for the IBM 360 range of computing systems have shown

that just 10 instructions out of a possible 139 non-privileged

instructions accounted for 80% of all instructions executed, 16 for

90%, 21 for 95%, and 30 for 99% [Alexander, 1975].

- 18 -

Support of more complex instructions often requires extra control

paths within the processing unit. The existence of these control

paths may actually slow down the execution of the more commonly used

instructions. In some instances, the USe of the extra complexity

introduced into a processing unit may actually be less efficient than

the use of the simpler instruction. For example, the operation

implemented by the instruction "INDEX" on the VAX range of computing

systems has been found to be less efficient than the same operation

implemented explicitly using the simpler instructions of the

processing unit such as "ADD", "MULTIPLY", "COMPARE", and "JUMP LESS

UNSIGNED" [Patterson and Ditzel, 1980].

Furthermore, it is not always easy for the compiler writer to make

use of these complex facilities. For example, the index addressing

mode supported by the processing units of the VAX-1l range of

computing systems may be used as the basis from which complex

addressing modes to be constructed. Typically, the index addressing

mode is used to specify a register which contains the index into some

data structure, whilst the second addressing mode could be a

displacement, relative to the program counter, which specifies the

base address of that data structure. The address of the element

which forms the operand to some instruction is the sum of the base

address and the product of the index and the number of bytes in each

element of the data structure. Thus this combination of addreSsing

modes allows an array access in a high level programming language to

be specified as a single operand to an instruction. However, use of

- 19 -

the index addressing mode with other addressing modes is not

necessarily of general use to the compiler writer. For example, the

index addressing mode together with the autoincrement indirect

addressing mode can be used to specify an operand referenced through

two levels of indirection, with the additional side effect that one

level of indirection is changed as a result of execution of the

instruction containing this compound addressing

immediately apparent how a compiler writer

combination of addressing modes.

mode. It is not

can make use of this

Such processing units may be more complex than is necessary. This

complexity can be reduced in two ways. Firstly, the hardware

structures required of the processing unit in order to support the

chosen high level programming languages can be identified. Since

many processing units are simply developments of those for which the

programming language Fortran was first designed, much of the existing

design is sufficient. The changes made to the processing unit may

include instructions such as those to calculate the address of an

array element from a dope vector. For example, the instruction

"INDEX" found on DEC's VAX-II range of computing systems may be used

to calculate the address of an array element whilst at the same time

checking that the index lies within the bounds specified for the

array.

However, new structures, such as stacks, could be useful to

support the programming language Algol 60 more effectively. The

- 20 -

Burroughs B5000 range of computing systems is an example of a design

aimed at supporting the programming language Algol 60 efficiently.

The instructions supported by the processing unit reflected the need

to evaluate arithmetic expressions. All expressions were evaluated

on a stack using simple "syllabic" instructions. Such instructions

could cause one of the following operations to be performed:

the value of an operand to be loaded onto the top of the stack;

the address of an operand to be loaded onto the top of the stack;

the top two elements of the stack to be removed, an arithmetic

operation performed using them, and the result of that operation

loaded onto the top of the stack.

These enhancements to the design of the processing unit of von

Neumann computing systems, whilst aiming to improve the

implementation of high level programming languages based on the von

Neumann model of computation, amy actually not be beneficial. The

realisation of the design in the available technology may be

difficult because of the complex control and data paths required. An

alternative approach has been to simplify the deSign of the

processing unit. Computing systems built using such processing units

are known as "RISC" (Reduced Instruction Set Computers); in general a

smaller number of Simpler instructions and fewer addressing modes are

supported directly by the processing unit [Patterson and Sequin,

1981; Hennessey, Jouppi, Baskett, and Gill, 1983]. The facilities

which are provided are aimed at being of more general use to the

compiler writer than the assembly language programmer. This

- 21 -

simplification of the processing unit also has important side

effects: the design of the processing unit is typically easier to

test than that for a more complex processing unit, it requires fewer

logic gates for its implementation, and should have fewer design

errors.

One detailed simulation of such a simplified processing unit has

shown conclusively that it outperforms a more complex processing

unit, such as that found in the VAX-ll range of computing systems, in

terms of speed of execution [Patterson and Sequin, 1981]. It is not

obvious that simply using the advances in technology to produce more

complex processing units for von Neumann computing systems is

necessarily the best way to exploit the advances.

Execution of the instructions is always performed sequentially.

Execution of two or more programs by a single processing unit can be

achieved by either of the following two strategies.

The first strategy is straightforward. All the instructions of

one program are executed before execution of the instructions of a

subsequent program is started. The sequential behaviour of the

processing unit is immediately apparent.

The second strategy involves the use of a control program to

control the execution of the different programs. The control program

arranges for groups of instructions from each program to be executed

- 22 -

in turn for a given time period or until some external event occurs.

Some information about the state of the computing system must be

saved after the execution of the group of instructions of one

program. This information must be used to restore the state of the

computing system when the next group of instructions from the same

program is executed.

Depending upon the amount of information about the state of the

computing system which has to be saved and restored, the work done

over and above that of executing the different programs could be

considerable. For example, consider the overheads involved in saving

and restoring the state associated with a processing unit of the

M68000 family. Each processing unit has eight general purpose data

registers, eight address registers, and a status register which

contains information about the state of the processing unit as each

instruction is executed. At the very least, it will be necessary to

save and restore the information represented by the status register.

Additionally, if information is transmitted between the different

groups of instructions of the same program through any of the

registers of the processing unit, the state of those registers must

also be saved and restored for each group of instructions. Failure

to save and restore this information would result in the execution of

one program interfering with the execution of some other program.

This second strategy gives the illusion that the processing unit

can execute the programs concurrently. It is the basis of

- 23 -

multi-access time-sharing control programs. which allow several users

to use a single processing unit 'simultaneously'. Programming

languages which support concurrency have been developed both to make

the construction of these time-sharing control programs easier and

also to enable the programmer to exploit the concurrency provided by

these control programs.

2.2 PARALLEL COMPUTING SYSTEMS

A parallel von Neumann computing system comprises what is

logically a single memory component and two or more processing units.

Each program is stored as a sequence of instructions and each

processing unit executes the instructions sequentially. Since the

memory component is directly accessible to all the processing units,

the problem of interference may arise. Clearly the same memory

location cannot be accessed simultaneously by two or more processing

units if the respective accesses conflict. For example, one

processing unit cannot store information to the same memory location

from which another processing unit is fetching information. This

interference, at the memory location level, can be resolved by the

memory component itself.

If the programs executed by the processing units are completely

independent then there can be no interference between the programs

since no program has any memory location in common with any other

program. However, if the programs have been written as co-operating

- 24 -

Computing
System 1

r
D

I

Global Memory
Component

I I
f

I

Figure 2.2 A Parallel von Neumann Computing System

Computing
System

tasks, the information to be shared between the programs must be

stored within the memory component. All accesses to a shared memory

location issued during the concurrent execution of programs will be

serialised by the memory component. This may lead to the loss of

information. For example, consider the following two sequences of

instructions, both of which have the memory location "BAL" in common:

MOVE.W BAL,DO
ADD.W #lOO,DO
MOVE.W DO,BAL

MOVE.W BAL,DO
ADD.W #lOO,DO
MOVE.W DO,BAL

Execution of each sequence of instructions should increment the value

held within the shared memory location "BAL" by 100. Thus, a correct

ordering of the accesses made during the concurrent execution of the

sequences of instructions will result in the value held within the

shared memory location "BAL" being incremented by 200. However,

there are some orderings of the accesses which will result in the

value being incremented by 100; these orderings are incorrect. Some

additional mechanism is required to force the correct ordering to be

taken.

- 25 -

One such mechanism is based on the concept of a semaphore as found

on conventional railway systems [Dijkstra, 1968]. Associated with

each group of memory locations which are shared between different

programs is a semaphore. The semaphore permits one program to gain

control of the group of memory locations whilst the remaining

programs are excluded. A simple semaphore may "be implemented as a

memory location on which the following operations may be performed:

PROCEDURE P(VAR S : Semaphore);
BEGIN
REPEAT
UNTIL S = FALSE
S := TRUE
END { P };

PROCEDURE V(VAR S
BEGIN
S := FALSE
END { V };

Semaphore);

When the memory location representing the semaphore contains the

value 'TRUE', this indicates that the information shared between the

programs is being accessed by one of the programs. No other program

may access the information whilst the semaphore is set. When the

memory location contains the value 'FALSE', this indicates that any

program which is waiting to access the information may now do so.

The semaphore must then be set to indicate that the information is

currently being accessed. The responsibility for maintaining the

semaphore and obeying the rules outlined above is the task of the

individual program.

For the correct behaviour, the operation 'P' must be atomic. That

is, it must not be possible for the operation 'P' to be started for

- 26 -

one program, and for this invocation to be interrupted during which

time the operation 'P' is invoked for another program using the same

semaphore. To avoid such interference each processing unit must

support an atomic instruction to implement these semaphores. For

example, the M68000 family of processing units has the 'TAS' (test

and set) instruction for this purpose.

2.3 DISTRIBUTED COMPUTING SYSTEMS

The architecture of a distributed computing system consists of

several subordinate computing systems connected together by some

communications medium. Each subordinate computing system is

autonomous and contains the facilities necessary both for processing

information and for storing information.

A distributed computing system may be loosely coupled or tightly

coupled. A loosely coupled distributed computing system is one in

which the connection topology of the subordinate computing system is

dynamic. Subordinate computing systems may be introduced into, and

removed from, an existing distributed computing system. By contrast,

a tightly coupled distributed computing system is one in which the

connection topology is considered to be static, and it is not

possible to introduce subordinate computing systems into, or remove

subordinate computing systems from, an existing distributed computing

system.

- 27 -

Some architectures of distributed computing system are based on a

particular connection topology. The topology is chosen to allow any

subordinate computing system to communicate with another through the

minimum number of other subordinate computing systems. At one

extreme this involves a ring configuration in which each subordinate

computing system is connected to two other subordinate computing

systems and has a worst case path of N - 1, where N is the number of

subordinate computing systems. At the other extreme a cross-bar

configuration occurs in which each subordinate computing system is

directly connected to every other subordinate computing system and

has a worst case path of 1.

Variations on this theme abound. For example the r-n-cube

networks are conceptually arranged as cylinders with n rows of

subordinate computing systems, each row containing rn subordinate

computing systems [Burton and Sleep, 1911]. For any pair of positive

integers n and r, an r-n-cube contains nrn subordinate computing

systems. Each computing system is connected to 2r other computing

systems. The worst

computing system is

path

3n/2.

from

For

one computing system to any other

example, a 4-8-cube has 524,288

subordinate computing systems, each of which is connected to 8 other

subordinate computing systems. The worst path from one subordinate

computing system to any other subordinate computing system is 12.

- 28 -

Corrununications
Medium

Computing
Systems

compu~
Sysl= s

Computing
Systems

Switch

f--

Corrununications
Medium

Corrununications
Medium

Figure 2.3 Various Distributed Computing Systems

2.4 DATA FLOW COMPUTING SYSTEMS

- 29 -

Data flow computing systems are an example of an architecture of
'I .

computing system which has been designed as the result of research

into novel models of computation [Chamberlin, 1971]. This particular

architecture represents an attempt to provide efficient support for

implementations of programming languages such as Val [Ackerman, 1978]

and Id [Arvind, Gostelow, and Plouffe, 1978]. These programming

languages are referentially transparent and support the "declarative"

style of programming.

AS outlined earlier, a program for a von Neumann computing system

is represented as a sequence of instructions. Execution of the

program proceeds as each instruction in the sequence is executed.

For example the expression ax~ + bx + c could be evaluated by the

following instructions for a von Neumann processing unit:

MOVE.W x, DO
MOVE.W x, 01
MULS 01,00
MOVE.W a, 01
MULS 01,00
MOVE.W x, 01
MOVE.W b, 02
MULS 02,01
ADO.W 01,00
ADO.W c, DO

The order in which these instructions are executed by the processing

unit will be that in which they are written. Information is

transmitted between the instructions by reference to globally

accessible memory locations; in the example above the general data

registers of the processing unit have been used for that purpose.

- 30 -

In complete contrast, the instructions of a program written for a

data flow computing system are executed when the operands of the

instruction are available. The same expression could be evaluated by

the following instructions for a data flow computing system:

l. MUL x, x, 2/1
2. MUL ? a, 4/1 · ,
3. MUL b, x, 4/2
4. ADD ? ? 5/1 · , . ,
5. ADD ? c. -/ · ,

The values of the operands a, b, c, and x will be 'placed' into the

instructions as they become available. Once all the operands for a

particular instruction are available that instruction may itself be

executed. As a result of the execution of the instruction further

information may become available for use as operands to other

instructions. In the example given above, the notation '2/1' in an

operand position in the first instruction indicates that the

information gained from execution of the that instruction should be

placed in the first operand position of the second instruction. The

question mark in the first operand position of the second instruction

indicates that the operand will become available as a result of the

execution of some other instruction. The instructions of a program

may be executed concurrently. In the example above, it would be

possible to perform the execution of the first and second

instructions concurrently with that of the third instruction. Since

there are no side-effects permitted in the data flow model of

computation, this concurrency needs no synchronisation of the memory

component.

- 31 -

The information which becomes available as a result of the

execution of an instruction is a value which may be copied into the

operands of other instructions. Whenever an operation is performed

on an operand which is a composite value, for example an array or a

record, the original value is left unchanged and a copy representing

the alteration is created. This copy is then propagated to other

instructions. This is a drawback to the data flow architecture of

computing system. Programs for manipulating large data structures

result in several copies of that data structure being represented

within the memory component.

The architecture of a data flow computing system is typically

based on a simple ring structure, with four different functional

components connected together on this ring:

one or more memory components;

one or more processing units;

a routing network;

some input/output devices.

The memory component is used to store the instructions of the

program. Since all information is represented within the operands of

instructions, it is not possible to update a particular element of a

data structure and allow that change to be visible to all other

instructions. Instructions are fetched from the memory component

when all of its operands are available. There may be several

processing units in the ring each capable of executing a single

instruction at a time. This allows the execution of a program to

- 32 -

proceed concurrently. Since there is no globally updateable memory

component, there is no need for synchronisation between the different

processing units. The results obtained by the execution of the

instructions are passed to a routing network. The routing network

copies the results of the executed instructions into the specified

operands of other instructions. This may then allow these latter

instructions to be fetched from the memory component and executed by

the processing units. Finally there is an interface between the ring

and the input/output devices. This allows the data flow computing

system to be attached to conventional devices or to be a subordinate

part of some larger computing system.

2.5 REDUCTION COMPUTING SYSTEMS

Several functional or applicative programming languages have been

proposed as candidates for the solution of the software crisis. In

their favour is the supposed ease with which a program may be

written. In particular, it has been argued that these programming

languages enable the early production of prototypes of software

systems for appraisal by the users [Henderson and Minkowitz, 1986;

Turner, 1985]. However, implementations of these programming

languages on existing von Neumann architecture computing systems have

not been altogether successful. A common complaint has been that the

programs written in these programming languages are simply not space

or time efficient when they are executed. Programs written in a

functional programming language often take longer to execute and

- 33 -

Input/Output
Devices

Matching
Store

Figure 2.4 A Data Flow Computing System

Memory
Components

Processing
Units

require more space than the equivalent programs written in a von

Neumann style programming language. Despite these serious drawbacks,

functional programming languages are still considered to be useful.

This has directed research into the design of computing systems which

will support an implementation of a functional programming language

as efficiently as an implementation of a von Neumann style

programming language can be supported on a von Neumann computing

system.

~
~

The program to calculate the value of the expression "ax' + bx +

c" can be represented as a graph. Each terminal node represents a

basic operand and each non-terminal node represents an operator. The

program is executed by evaluating the nodes and collapsing the graph

to a single value which denotes the value of the expression. This

process is known as reduction. The instructions shown below are a

linear representation of the graph:

1. ADD 2 c
2. ADD 3 5

- 34 -

3. MUL a 4
4. MUL x x
5. MUL b x

The integers in the operand position of an instruction are a

reference to the sub-graph of instructions which must be reduced in

order to provide the actual value of the operand. For example, the

instruction "MUL a 4" indicates that whilst one of the operands for

the multiplication operation is to be taken from the memory location

associated with the label "a", the other will be obtained by

evaluation of the instruction with the label "4". Once an

instruction has been executed it can be reduced to the value obtained

by the execution of that instruction. Any further reference to that

instruction yields the value and does not cause the instruction to be

executed again.

An architecture for a reduction computing system can be based on a

ring structure similar to that of a data flow computing system. The

instructions which make up the program graph are stored in the memory

component. An instruction can be executed when all of its operands

are available. An operand is available if it is a simple value such

as an integer or a reference to a data structure. An operand which

is a reference to some other instruction is, however, unavailable.

Since the operands are accessed by reference, copies of a large data

structure are not propagated between instructions.

Early designs for reduction machines consisted of a single

processing unit connected to a single memory component [Berkling,

- 35 -

1975; Clarke, Gladstone, MacLean, and Norman, 1980]. The former is a

design for a string reduction computing system, the latter is a

design for a graph reduction computing system.

A more recent design, known as "ALICE" (Applicative Language

Idealised Computing Engine), has been built around a distributed

computing system [Darlington and Reeve, 1981]. This computing system

is comprised of a group of memory components and a group of

processing units connected together by a switching network. The

latter allows any processing unit to access any memory component. A

processing unit fetches from a memory component an instruction which

can be executed. This instruction may require other instructions to

be executed before it can itself be executed. The performance of

this exploratory implementation of a reduction computing system is

far from ideal. Recent figures state that reductions can be

performed at the rate of one thousand per second [Townsend, 1987].

When it is considered that the implementation of this reduction

computing system utilises over one hundred Transputers, it can be

appreciated that the overheads of the reduction architecture are not

insignificant.

The ALICE project has been developed further as the "Flagship"

project [Watson, Sargeant, Watson, and Woods, 1987]. Once again, the

basis of the project is a distributed computing system, but each

memory component is associated with a particular processing unit.

The memory component - processing unit pairs are connected together

- 36 -

Memory
Components

Switch

Processing
Units

Figure 2.5 A Reduction Computing System

by a switching network which allows any processing unit to access any

memory component. However, restraining the processing unit to access

the local memory component is preferable since it reduces the amount

of information transmitted across the switching network. This

thereby increases the overall performance of the computing system.

This restraint can be imposed by ensuring that the information

required by a processing unit is to be found in the local memory

component with which it is associated.

2.6 ARRAY PROCESSORS

An array processor is a specialised computing system suitable for

executing programs which require the manipulation of arrays. Tasks

such as weather forecasting and image processing depend heavily upon

array processing. Many existing von Neumann computing systems cannot

provide the raw computing power to support these tasks adequately.

The problem lies in that execution of an instruction by a von Neumann

- 37 -

processing unit can only affect, at most, a few operands. Array

addition must be expressed as a sequence of instructions which are

executed in turn. For example, the following program performs

addition of two arrays with 64 elements:

FOR i := 1 TO 64
DO C[i] := A[i] + B[i]

The group of instructions to perform the addition of one element must

be executed 64 times. Furthermore, there is an overhead involved in

maintaining the loop control variable.

In contrast, the example of array addition could be performed by

the single ADD instruction on an array processor. The distinction

between the von Neumann processing unit and the array processor lies

in the ability of the latter to execute a single instruction which

affects several groups of operands. There is a single centralised

control unit which is responsible for controlling the parallelism.

An array processor is composed of a group of processing elements

each with its own local memory component. The individual processing

elements can execute instructions which manipulate the information

stored within the local memory component. Also, the processing

elements are all connected to a single control unit which forms an

interface between the host computing system and the processing

elements. The control unit propagates individual instructions to the

processing elements and also routes information between the host

computing system and the processing elements. The processing

- 38 -

elements are themselves connected together by a network which allows

information to flow between them. For example, this network may

connect the processing elements into a square array in which each

processing element is connected to four neighbours. The execution of

a sequence of instructions by each processing unit is synchronised by

the control unit. The interconnection of the processing elements

allows information to be moved directly between adjacent processing

elements. For example, calculations such as the following may be

represented by a single instruction:

FOR i := 1 TO 63
DO A[i] := A[i + 1]

A single "mask" bit in each processing element indicates whether

that particular processing element is disabled or enabled.

Instructions are only executed by those processing elements which are

enabled. Programs such as the following can be represented as a

single instruction by setting the "mask" bit in each processing

element as appropriate:

FOR i := 1 TO 64 DO
IF C[i]

THEN A[i] := B[i]

Array processors can be difficult to program. The vectors and

matrices of a program must be sub-divided into groups of data which

can be mapped onto the individual processing elements, and allocated

to those processing elements so as to take advantage of the

particular interconnection topology of the elements. If there are

- 39 -

too few processing elements in the array processor then parts of the

vector or matrix must be exchanged between the processing elements

and the host computing system. It may prove difficult to minimise

the flow of information between the processing elements.

2.7 CONCLUSION

It has been assumed for the purpose of this thesis that the

general purpose computing systems of the future will consist of

several subordinate computing systems interconnected by some

communications medium. Information may flow freely through the

medium between the subordinate computing systems. It ~ill be

desirable to be able to introduce subordinate computing systems into

an existing distributed computing system and to remove subordinate

computing systems from an existing distributed computing system. To

be useful, these operations should cause the minimum disruption to

the existing distributed computing system.

Some design principles are required to enable distributed

computing systems with the characteristics outlined above to be

constructed. Several architectures of computing system have been

surveyed in this chapter, and the general design principles of each

outlined. No one architecture provides a satisfactory basis on which

the distributed computing systems of the future may be constructed.

- 40 -

The separation of the processing units and the memory components

into distinct groups, as is found in the parallel von Neumann as well

as in some data flow and reduction computing systems, makes it

difficult to introduce or remove subordinate computing systems. This

arises because the memory components are globally accessible to all

the processing units. One refinement of the reduction architecture

of computing system, in which each memory component is paired with a

processing unit, does not relieve this particular problem since, as

before, the memory components are still globally accessible to all of

the processing units.

The use of special topologies, as is found in array processors and

closely coupled distributed computing systems, also makes it

difficult to construct general purpose distributed computing systems

with the characteristics outlined above. Typically, the

interconnection topology of the architecture is static and relies on

the existence of neighbours. The programmer is encouraged to take

advantage of this dependence when writing programs for

architectures.

these

Since none of the architectures surveyed in this chapter fit the

requirements of the future, two new designs of architecture are

proposed. These are outlined in chapter four.

- 41 -

3 MODELS OF COMPUTATION

The growth of interest in models of computation, as discussed

earlier, has been prompted by the software crisis of the 1970's and

the advances made in the technology of chip fabrication. The former

has led to the development of models of computation with rigorous

mathematical definitions. The latter has resulted in the design of

novel architectures of computing system which will support different

models of computation. Many of these models of computation have also

been defined rigorously.

A rigorous definition of a programming language allows the

construction of proofs about the behaviour of programs written in

that language. These proofs, along with the original specification

from which the program was written, make it possible to demonstrate

that the program fulfills the objectives set [Ambler, Good, Browne,

Burger, Cohen, Hoch, and Wells, 1977]. Furthermore, a rigorously

defined programming language can ease the refinement process involved

in the development of a program from an abstract specification. At

each step in the refinement process it is possible to show that

satisfactory progress has been made.

Computing systems may be compared with simple electronic

calculators. To perform a calculation on a calculator the

calculation must be broken down into a sequence of steps. Each step

is a basic operation which can be performed on the calculator.

- 42 -

Knowledge of the nature of the calculation and the calculator are

needed before the calculation can be performed. Furthermore, some

method by which the calculation can be broken down into the sequence

of steps must be known. For example, the value of the expression

:l
'ax + bx + c' could be calculated by the following steps:

CLEAR
ENTER a
ENTER x
MULTIPLY
ENTER b
ADD
ENTER x
MULTIPLY
ENTER c
ADD
DISPLAY

Should it be necessary to perform the calculation on a different type

of calculator, the sequence of steps would probably have to be

rewritten to take account of the operations which could be performed

on the second calculator. For example, the same calculation could be

rewritten as the following steps:

CLEAR
ENTER a
MULTIPLY
ENTER x
ADD
ENTER b
MULTIPLY
ENTER x
ADD
ENTER c
DISPLAY

All that was involved in the transition from the first example to

the second was translation of the calculation from postfix notation

to infix notation. The nature of calculators is such that the

- 43 -

operations which can be performed are based on arithmetic operations.

Consequently the operations are generally well understood and

transferring a calculation from one calculator to a different

calculator is not that complex.

The specification of the behaviour of the calculator can be

expressed in terms of the net effect each operation has when it is

performed; this is the model of computation. The model of

computation specifies what can be done using the calculator. This

specification may be given in natural language or more formally. For

example, a formal specification of the previous example is given

below using VDM [Jones, 1986]:

CLEAR
ext wr Meml, Mem2 : [Real]
post Meml = nil and Mem2 = nil

ENTER (R : Real)
ext wr Meml, Mem2 : [Real]
pre Mem2 = nil
post Meml = R and Mem2 = Meml'

ADD
ext wr Meml, Mern2 : [Real]
pre Meml ;rnil and Mern2;z nil
post Mernl = Meml' + Mern2' and

MULTIPLY
ext wr Meml, Mern2 : [Real]
pre Mernl ... nil and Mem2 ... nil
post Mernl = Meml' * Mern2' and

DISPLAY R REAL
ext wr Meml, Mem2 : [Real]
pre Meml nil

Mern2 = nil

Mern2 = nil

post R = Meml' and Meml = Mem2' and Mem2 = nil

- 44 -

Using this speci~ication it can be shown that the sequence of

instructions for the first calculator will yield the value of the

expression given. Furthermore this specification outlines the

limitations of this particular calculator. It can be seen that there

are only two memory elements associated with the calculator and that

these elements are used as a simple push-down stack. Consequently,

only two operands may be represented within the calculator at anyone

time.

The programming language for the calculator is based upon the

model of computation for that calculator. It defines the "sentences"

which may be written and provides a way of understanding the meaning

of those sentences. Again this definition can be given either

formally or informally. An example of a formal definition is given

below:

Instruction ::= CLEAR
ENTER real
ADD
MULTIPLY
DISPLAY

Program ::= Instruction
Instruction Program

Meaning["CLEAR"] = CLEAR
Meaning["ENTER real"] = ENTER (real)
Meaning [" ADD"] = ADD
Meaning["MULTIPLY"] = MULTIPLY
Meaning [Program] = Meaning[Instruction]; Meaning [program]

The definition consists of two parts. The first part defines the

sentences of the language which are syntactically ~alid. The second

- 45 -

part defines the subset of the sentences which are semantically

valid. For example, the sentence "CLEAR ADD" . ~s syntactically valid,

yet it is not semantically valid because the pre-condition of the

operation "ADD" does not hold.

The processing unit of a computing system executes instructions in

much the same way as operations are performed on a calculator. In a

similar way the model of computation specifies what can be done using

the processing unit. However, the variety of instructions which can

be executed by a processing unit are far greater than the set of

operations which can be performed by a calculator. Furthermore, the

differences between the instruction set of one manufacturer's

processing unit and that of some other manufacturer can be vast. A

model of computation could be based upon the instruction set of a

particular processing unit but there are serious drawbacks to this

approach. Firstly, understanding the complete model of computation

would be beyond the capability of many users. Secondly, transferring

programs from one processing unit to another with a different

instruction set requires the program to be rewritten. Thirdly,

mapping a high-level description of a problem into a sequence of

instructions for the processing unit is tedious and error-prone.

An example of a specification of the behaviour of a single

instruction, MOVE.L, is given below. This instruction, which is

supported by the M68000 family of processing units, moves a 32 bit

quantity from a given source to a given destination. Various

- 46 -

condition flags are set depending upon the value transferred.

Different combinations of the addressing modes may also be used with

this instruction; only the register direct mode is specified below.

MOVE.L OS, DO : { 0 .. 7 }
ext wr DR ~p { 0 .. 7 } to LongWord
ext wr ee ~p{ X, N, Z, V, e } to Bit
post DR = DR' I (DO -> DR'(DS) } and

ee = ee' I { V -> 0,
e -> 0,
N -> if DR'(DS) < 0 then 1 else 0,
Z -> if DR'(DS) = 0 then 1 else 0 }

Even for this trivial instruction with a relatively simple

combination of addressing modes, the specification is far from

transparent. The amount of state infor~tion which must be

considered is large; in this example it constitutes eight data

registers and the five condition bits. A specification of all 74

instructions of the M68000 processing unit with the different

combinations of the ten addressing modes would have to take into

account the complete state of the computing system of which that

processing unit was a part. The state would include not only the

internal registers of the processing unit (eight data registers,

eight address registers, the program counter, the status register)

but also the memory ~p of the computing system. For an idea of the

size that the specification of a processing unit can reach, that for

the IBM 370 requires 446 pages [IBM, 1987].

A model of computation based on the behaviour of ~chine

instructions is not necessarily very useful. Programs are built from

- 47 -

sequences of instructions and groups of these instructions perform

useful tasks. Consequently, a model of computation may describe the

behaviour of these larger groups of instructions but not outline the

behaviour of the individual instructions from which they are built.

Indeed, the model of computation may describe the behaviour of

programs in terms of a computing system which does not exist, but

which has been defined in some formal mathematical sense. This

approach allows the description of the computations to be raised from

the level of the transfer of information between registers of the

processing unit towards mathematical logic. Ultimately these high

level programs must be mapped into the instructions of some existing

architecture of computing system, if they are actually to be used.

This implema~tation maps the abstract details of the model of

computation into the concrete details of the architecture of the

computing system on which the abstract programs are to be executed.

This abstract approach is outlined in [Landin, 1964; Landin, 1965],

where a model of computation based on Church's Lambda notation is

presented. In [Landin, 1964] the SECD "machine" is described; this

has been used as a basis for the programming language Lispkit

[Henderson, 1978].

From the above it is apparent that there can be a total separation

between the concrete details of a particular computing system and the

abstract details of some model of computation. Consequently, a

programming language need not mirror the underlying details of any

particular computing system. Clearly there are advantages and

- 48 -

disadvantages to be considered in the choice between an operational

model of computation and one that reflects more abstract mathematical

concepts. The operational model of computation allows the user to

write programs with the knowledge of the intermediate states through

which the computing system will go in order to execute the

instructions of those programs. This, it could be argued, permits

the maximum performance to be extracted from the computing system.

Alternatively, the mathematically orientated model of computation

allows programs to be written "transparently". The ease of

understanding of such programs exceeds that of currently existing

programs which are expressed in operational models of computation.

Reasoning about the behaviour of the programs is also facilitated.

Once this abstract approach has been adopted it is debatable if

there is one model of computation which is better than any other.

Historically the von Ne~mann model of computation has dominated

Computing Science. This may be purely for pragmatic reasons; it can

be implemented efficiently on the dominant architecture of computing

systems. However, there are now three or four alternative models of

computation challenging its position.

As outlined in chapter one, the impetus to investigate these new

models of computation has come from two directions. The software

crisis of the 1970's has directed research into more formal models of

computation. Similarly, advances in the technology of chip

fabrication have brought about an interest in new architectures of

- 49 -

computing system. The aim of this chapter is to review the different

models of computation and to investigate how concurrency is supported

within them.

3.1 THE VON HEUMANN MODEL OF COMPUTATION

The first programming languages used, those of the early 1950's,

were based directly on the architectures of the available computing

systems. The instructions executed by the processing units of these

computing systems were reflected in the description of the

programming languages used. The model of computation was, in effect,

a description of the behaviour of the underlying computing system.

To write a program the user needed a detailed knowledge of the

architecture of the computing system on which the program was to be

executed. This was a hinderance since once a program had been

written for one particular computing system, it could not easily be

used for other computing systems.

The move away from the architecture of the underlying computing

system as the basis for the model of computation started with the

development of primitive high level programming languages, known in

Britain as "autocodes" [Brooker, 1958]. Rather than write a program

in terms of the architecture of the particular computing system upon

which the program was to be executed, generalised arithmetic

expressions involving integers were used. These expressions were

mechanically translated into sequences of instructions for the

- 50 -

particular computing system on which the program was to be executed.

Each computing system had its own particular autocode but there were

sufficient similarities between them to make translation from one to

another relatively easy [Burnett-Hall, Dresel, and Samet, 1964].

This led to the development of the programming language Fortran

which is of particular interest [Samet, 1969; Knuth and Pardo, 1976].

Machine independence was not initially a primary goal, but it was

deemed important to have a notation which was mathematically concise

and which did not resemble the instructions of any particular

processing unit. Furthermore, it was proposed that the processing

units of future computing systems should be designed to support an

instruction set which would make implementation of this programming

language relatively easy. The model of computation for the

programming language Fortran exhibits many features of the computing

system on which it was first implemented, the IBM 704; examples are:

linear program structures;

linear data structures;

operations on simple data elements (integers and reals)i

sequential execution of programs.

The work of an international committee, which resulted in the

definition of the programming language Algol-60 [Naur, 1963], was

without reference to

existence. It was,

any particular computing

however, dependent upon

system

the von

then in

Neumann

architecture of computing system. Indeed, it has been shown [Landin,

- 51 -

1965a; Landin, 1965b] how some of the semantics of Algol-60 may be

expressed in the Lambda notation of Church and how the SECD "machine"

may be used as an abstract basis for understanding the meaning of

computations written in the programming language Algol-60. The

definition of the model of computation for Algol-60 gave rise to

different implementations of the language on several computing

systems. It was possible, in theory, to transfer programs written in

Algol-60 from one computing system to some other computing system.

The trend of designing models of computation independently from

any specific computing system had now begun. Often the design of a

model of computation encouraged research into computing system

architectures

computation.

which would efficiently support that model of

The basis of the von Neumann model of computation is an

architecture of computing system comprising a single processing unit

with sequential control of operation and a set of resources,

typically memory cells and peripheral devices. A program is written

as a sequence of instructions, the execution of these instructions

being basically sequential, based on the flow of control from one

instruction to the next in the sequence. At any time during the

execution of a program there is a unique point in the sequence of

instructions which identifies the instruction currently being

executed. A mechanism is also provided within the von Neumann model

of computation to enable non-linear programs to be represented. This

- 52 -

mechanism can be thought of as the explicit movement of the unique

point from one instruction to some other instruction. The flow of

control resembles a single thread running through the program. The

thread links together the instructions in the order of their

execution. Since there is a single thread of control, the

instructions may not be executed concurrently.

As the flow of control passes from one instruction to the next

instruction transitions are made in the state of the computing

system. To understand the behaviour of an execution of a program it

is necessary to construct the trace of the state transitions.

The details of the von Neumann model of computation are evident

from the design of the early computing systems. The architecture of

such computing systems as the IBM 704 and the more recent reL 2900

range demonstrate facets of the model at the level of the hardware;

sequential execution of machine instructions, a "program counter" to

represent the unique point of control, a memory component with a

linear address space, and basic operations on words and bytes. Since

the von Neumann architecture of computing system is also known as the

"control flow" architecture, the von Neumann model of computation is

often referred to as the "control flow" model of computation.

- 53 -

3.2 PARALLEL CONTROL FLOW

The control programs for the first computing systems processed the

individual steps of a task sequentially. Each program was executed

to completion before the execution of the next program was started.

As computing systems became more powerful it was both feasible and

desirable to share the resources of these computing systems amongst

several users simultaneously. Time-sharing control programs gave the

illusion that several programs could be executed concurrently by the

processing unit of a von Neumann computing system. Some control

programs even allowed parts of the same program to be executed

concurrently. To take advantage of this parallelism the parallel

control flow model of computation was developed as a generalisation

of the existing von Neumann model of computation.

In the parallel control flow model of computation the flow of

control is not restricted to a single thread. Different parts of a

single program may be executed concurrently. Mechanisms exist for

controlling the concurrency explicitly. To enable information to be

passed between the different parts of the program a globally

accessible memory component is provided. Since the parts of the

program may be executed concurrently the problem of interference must

be addressed. Interference occurs when a data structure which is

held within the globally accessible memory component is subjected to

conflicting operations made on behalf of two or more programs which

are executed concurrently. For example, the following two sequences

- 54 -

of instructions make use of the variable "X" which is stored within

the globally accessible memory component:

a := X; b := X;
X .- f(a) X .- g(b)

Execution of the first instruction of each sequence of instructions

will cause the value represented by the variable "X" to be fetched

from the globally accessible memory component into the local data

space of each sequence. Execution of the second instruction of each

sequence will cause the variable "X" to have some other value

assigned to it. The memory component cannot respond to concurrent

"read" and "write" requests. Consequently, the requests made during

the concurrent execution of the two sequences of instructions given

above will be serialised. Certain orderings of these requests will

result in the apparent loss of some of the requests. Various

strategies have been devised to ensure that the concurrent execution

of the different sequences do not interfere with one another. This

problem is considered in greater detail in chapter five.

Programming languages in the parallel von Neumann style have

allowed the concurrency to be expressed at different levels. At one

extreme the individual statements of a program may be executed

concurrently; at the other extreme individual procedures and

functions may be executed concurrently. In both cases the

concurrency is under the control of the programmer.

- 55 -

3.3 OBJECT ORIENTED

The object oriented model of computation is probably best known

through the programming language Smalltalk [Ingalls, 1978]. The

model of computation is a generalisation of the von Neumann model of

computation. Programs are constructed from instances of a set of

globally accessible objects and each object implements some specific

function which is of general use to the programming community. For

example, an object might implement a symbol table [London, Shaw, and

Wulf, 1978]. The description of this object will not only describe

the variables required to represent the symbol table, but will also

describe the routines which are necessary to manipulate those

variables.

An instance of an object may be created dynamically as a program

is executed; this instance is distinguishable from all other

instances of any object. The instance has a local data space which

contains the variables used to represent the symbol table. This

local data space may only be manipulated by the routines which are

described in the textual description of the object.

Information may be transmitted between different instances of

objects. In this way, one instance of an object may use the

facilities provided by another instance of an object. Two different

approaches to the transmission of information between instances of

objects have been taken by designers of object oriented programming

- 56 -

languages.

One mechanism is based on procedure calls [Ingalls, 1978; Liskov,

Moss, Schaffert, Scheifler, and Snyder, 1978]. An instance of an

object makes a request of some other instance of an object by

invoking one of the routines provided by the second instance.

Control is passed from the instance of the object making the request

to the instance of the object which will satisfy this request. The

routine of the second instance is then executed, and control is

finally returned to the first instance which made the original

request. The instances of objects which comprise a program are not

executed concurrently.

The alternative mechanism is based on messages [Hewitt and Baker,

1977]. An instance of an object sends a message bearing some request

to another instance of an object. The second instance then processes

that request, and may return a message bearing some reply to the

first instance which made the original request. The two instances

are executed concurrently. The strategy based on messages can be

used to build programs where the relationship between an instance of

an object making a request of some other instance of an object cannot

be represented simply as that of client and server. For example,

there is no requirement that the instance of the object which

receives a request should respond directly to the instance which made

that request. The request could be forwarded to some other instance

of an object, and a response generated from this third instance.

- 57 -

The origins of the object oriented model of computation may be

traced through the development of the programming language Simula

[Dahl, et al., 1972] to the work on abstract data types [Liskov, et

al.,1976].

3.4 LOGIC

Natural language as a model of computation would make the

construction of programs an easier task than it is at present using

von Neumann style programming languages. The interests of the user

would be expressed directly in the program rather than in the details

of the underlying computing system on which the program was to be

executed. Even though it is not possible to take the sentences of a

natural language and to translate them into the corresponding

instructions for a computing system, it has been suggested [Kowalski,

1974] that the predicate calculus mirrors rational human thought.

Consequently, a model of computation based on the predicate calculus

would be naturally orientated towards the user. This is the approach

taken by the Japanese Fifth Generation Computing Project [Uchida,

1982].

The Japanese project proposes that the computing systems of the

1990's will be much more high level than contemporary computing

systems. Their long-term goal is to design and produce an

architecture of computing system to support efficiently the logic

model of computation.

- 58 -

One of the results of research by the Artificial Intelligence

community has been the construction of theorem provers for statements

written in the first order predicate calculus. These theorem provers

are, in fact, implementations of the logical model of computation. A

program written in the logic model of computation consists of a

sequence of statements expressed in the predicate calculus. Some of

these statements specify the facts and rules about the problem,

whilst other statements represent various theorems which are to be

proved with respect to the facts and rules. Execution of a program

is the process of proving or refuting these statements.

A program written in the logic model of computation consists of a

set of propositions and a set of queries expressed in a subset of the

first order predicate calculus known as Horn clauses. The set of

propositions represents the knowledge of the world modelled by the

program. This knowledge can be categorised into facts and rules.

A fact describes some property of one or more individual objects

in the external world. For example, the following two statements

represent information about the properties "mortal" and "father", and

the objects "socrates", "john", and "bill":

mortal(socrates) <­

father(john, bill) <-

The first statement may be interpreted as "Socrates is a mortal",

whilst the second statement may be interpreted as "John is the father

of Bill".

- 59 -

A rule describes some relationship between various groups of

objects in the external world. For example, the following two

statements represent information about the rules

"grandfather":

likes(john, X) <- likes(X, john)

grandfather (X, Y) <- father(X, Z), father(Z, Y)

"likes" and

The first statement may be interpreted as "John likes everyone who

likes him", whilst the second statement may be interpreted as

"Somebody is the grandfather of somebody else if there is someone who

has the former as their father and who is himself the father of the

latter" .

The goal statement

<- father(john, bill)

is a query which is satisfied if the statement "father(john, bill)"

has been asserted as a fact.

The goal statement

<- grandfather(john, X)

is a query which is satisfied if at least two statements of the form

"father(john, Y)" and "father(Y, X)" have been asserted as facts,

where the logic variable "y" may be replaced by the same object in

both statements. The logic variables "X" and "y" will be

instantiated to the set of objects for which such pairs of statements

exist.

- 60 -

The logic variables introduced into the clauses and statements of

a logic programming language differ from the variables within a von

Neumann programming language. In a von Neumann programming language

a variable is given a value by one instruction and this can be

changed at will by other instructions. In contrast, a variable in a

logic program is instantiated to a set of values which satisfies all

clauses in the statement. Variables of a statement are considered

local to all clauses of that statement.

Execution of a program written in a logic programming language is

an attempt to prove or refute the goal statements of the program with

respect to the propositions. The goal statement will be a set of

clauses, each of which must be proved if the goal statement is itself

to be proved. The clauses will make reference to the propositions of

the program. Variables appearing within a clause must be

instantiated to the set of values for the corresponding proposition.

Proving or refuting a goal statement can be a complex process.

This process is known as resolution [Robinson, 1965]. Variables

appearing in more than one clause of a goal statement are shared

between the clauses. Once a variable has been instantiated to a

value, that instantiation is visible to all other clauses using that

variable. Should a particular instantiation of the variables refute

the goal statement, then further instantiations may be made. This

process involves backtracking through the propositions of the

program. Quine [Quine, 1974] also gives a rule for the resolution of

- 61 -

statements in logic; he highlights how statements containing

variables may be resolved. Quine's rule only allows boolean

variables within the statements; to permit boolean predicates to

appear within the statements the rule must be extended slightly.

Rather than putting first 'True' and then 'False' for some chosen

variable, the predicate must be replaced by 'True' and 'False'.

Replacing a predicate by 'True' involves determining those arguments

for which the predicate will return 'True'. Similarly, replacing a

predicate by 'False' involves determining those arguments for which

the predicate will return 'False'. It is in the process of

determining these arguments that backtracking occurs.

From the rule for the resolution of statements in the first order

predicate calculus, it is possible to determine how parallelism may

be exploited. Firstly, all parallelism is under the control of the

theorem prover and cannot be exploited by the user. Within that

there are two forms of parallelism which may be exploited; "OR

parallelism" and "AND parallelism". "OR parallelism" may be

exploited when a proposition is given as a set of statements. Each

statement can be resolved concurrently. For example, "OR

parallelism" may be exploited in the resolution of the following

clause:

likes (john, X)

given the proposition

likes(john, X) <- likes (mary, X)
likes(john, X) <- hates(fred, X)

- 62 -

Each proposition will produce a set of values for the logic variable

"x" which satisfy the clause. The union of these two sets produces

the overall result for the goal statement.

"AND parallelism" may be exploited when there is more than one

clause in a goal statement. Each clause of the goal statement is

resolved concurrently. It is necessary to synchronise the

instantiation of any variables which are common to the clauses. "AND

parallelism" may be exploited in the resolution of the following goal

statement:

likes (john, X)

using the proposition

likes(john, X) <- likes (mary, X) , hates(fred, X)

Each clause produces a set of values. The result of the goal clause

is the disjoint union of these sets.

The logic model of computation is good at representing structural

relationships between objects. It has been used to construct

so-called "expert systems" which represent specialist knowledge about

particular subjects. However, it is poor at representing

mathematical relationships. For example, the ubiquitous "Factorial"

function is shown below:

fac(O, 1)
fac(l, 1)
fac(N, R) <- N > 1, sub(N, 1, X), fac(X, Y), mul(N, Y, R)

The arithmetic operators are represented as relations between

numbers.

- 63 -

A programming language based on the logic model of computation is,

strictly speaking, referentially transparent. The set of

propositions which are used for resolving queries should be static.

However, it is often useful to be able to add extra propositions as a

program is executed, or to remove or amend existing propositions.

For this reason extra-logical statements are often added to logic

programming languages. The property of referential transparency is

lost When such statements are introduced into the programming

language.

3 .5 REDUCTION

The reduction model of computation was first formulated in the

late 1950's and early 1960's during the development of the

programming language LISP. LISP is a language for expressing

algorithmic thoughts and is a formalism for reasoning about recursion

equations as a model of computation [Sussmann, 1982]. The core of

the programming language LISP, commonly known as. "pure LISP", is an

example of the reduction model of computation. Pure LISP is a

mathematical programming language which has a formal and complete

description; no such claims are made for the extension of the

language, LISP 1.5, which bears a significant resemblance to a

programming language based on the von Neumann model of computation

[McCarthy, Abrahams, Edwards, Hart, and Levin, 1962]. Within the

reduction model of computation there is no concept of a globally

accessible memory component which may be altered during the execution

- 64 -

of a program! In a reduction programming langu~ge, there are no

assignment statements which could give rise to side-effects; the

reduction model of computation exhibits the property of referential

transparency as outlined in chapter one.

A program written in the reduction model of computation is a

mathematical function. The overall structure of a complex program is

a hierarchy of function applications and each constituent function

within the hierarchy may be regarded as a program in its own right.

Since the reduction model of computation permits no side-effects,

information is transmitted between different parts of a program

through the argument passing mechanism and the result returning

mechanism of function applications.

The hierarchy of function applications which occur during the

execution of a program form a tree. The root of the tree represents

the outermost function application whilst the leaves of the tree

represent the individual variables and constants of the program.

Executing the program is equivalent to 'walking through' the tree.

When a fragment of the tree has been evaluated, that part of the tree

may be replaced by the value. This is known as reduction. It is

safe to perform reduction because of the referential transparency

property of the reduction model of computation.

There are two distinct routes which this walk through the tree may

take applicative order and normal order. Applicative order

- 65 -

reduction is equivalent to a walk through the tree from the leaves to

the root. All of the expressions forming the arguments of a function

application are evaluated before the function itself is applied to

the arguments. If the value of an argument is not used during the

application of the function, then the work performed evaluating that

argument is wasted.

Normal order reduction is equivalent to a walk through the tree

from the root to the leaves. The expressions forming the arguments

to a function application are only evaluated when the application of

the function requires their value. Clearly this could lead to

arguments being evaluated more than once, which is unnecessary since

the model of computation does not permit side-effects. The strategy

of only evaluating at most once those arguments whose value is

required is known as "lazy evaluation" [Henderson and Morris, 1976;

Friedman and Wise, 1979].

The use of lazy evaluation allows programs which manipulate

infinite data structures to be written. Only the part of the

infinite data structure which is actually required for computation

will be constructed. For example, the following definition

"integers", written in the programming language SASL [Turner, 1976],

will form a list of all the positive integers:

def integers = 1 : addl integers

def add1 x = (hd x) + 1 : addl (tl x)

If lazy evaluation was not available, it would not be possible to

- 66 -

write these particular definitions. Neither of the two definitions,

"integers" and "addl", would terminate in an implementation of a

reduction programming language which did not support lazy evaluation.

However, with lazy evaluation, the value of "integers" is a list; the

head of this list is the value '1', whilst the tail of this list

contains a value known as a "closure". This "closure" value may be

used to evaluate successive elements of the list as they are

required.

In passing it is important to recognise that applicative order

reduction and normal order reduction have distinctly different

mathematical properties. Applicative order reduction is strict, or

"bottom preserving", since errors occuring during the evaluation of

any argument will be detected during the evaluation of the function

application. Normal order reduction is not strict, as any error in

the evaluation of an argument will be detected only if the evaluation

of the function application requires the value of that argument.

FP [Backus, 1978; Williams, 1982] is a strict reduction

programming language based on a set of combining forms rather than

the lambda calculus. Lispkit [Henderson, 1978] is a non-strict

language based on the lambda calculus. SASL [Turner, 1976], KRC

[Turner, 1982], and Miranda [Turner, 1984] are non-strict languages

based on combinators.

- 67 -

In an applicative order reduction the arguments to functions may

be evaluated concurrently. Since there are no side-effects there is

no need to synchronise the evaluation. In a normal order reduction

the scope for concurrency is reduced. An argument is evaluated only

if the value it denotes is required. The arguments to the basic

operations such as the arithmetic operators will always need to be

evaluated, but those to user defined functions need not be. The

concurrent evaluation of arguments will be limited to those of the

basic operations.

3.6 DATA FLOW

A data flow program is based on the flow of data between the

individual instructions of the program. Like the reduction model of

computation, the data flow model of computation is referentially

transparent.

Early designs of programming languages for the data flow model of

computation were Single assignment programming languages [Ackermann

and Dennis, 1978], [Arvind, et al., 1978]. A variable could be

assigned to only once and the value remained associated with that

variable throughout the execution of the program. However, these

single assignment programming languages resembled existing von

Neumann programming languages in all other respects. The flow of

control through the program was represented by the order in which the

instructions were written. Thus, unlike the reduction programming

- 68 -

languages, there was an iterative control statement. To avoid

re-assigning to variables within this statement, it was necessary to

distinguish between the different values for each iteration. The

name of a variable could be used to access the current value

associated, or the value associated on the previous iteration.

A more recent development of the data flow model of computation

has been based on the idea of streams of values [Kahn and MacQueen,

1977]. A function produces a stream of values from a given stream of

values; the function can be thought of as a filter. Other functions

are then 'plumbed' onto the input and the output of the function. In

this way a program can be constructed. The programming language

Lucid [Ashcroft and Wadge, 1977; Wadge and Ashcroft, 1983] allows the

programmer to write programs which use streams of values. For

example, the statement

n = 1 fby n + 1

defines the variable lin" to be the sequence of positive integers.

Each function takes streams of values as arguments, and may return as

a stream of values as a result. Programs written in this programming

language consist of a number of statements which define functions and

variables. The order of these statements is strictly immaterial

since there is no concept of control flow within the programming

language.

- 69 -

3.7 CONCLUSION

One of the disadvantages of some of the novel models of

computation is that they are too high level and, therefore, it is

difficult for the user to influence the actual behaviour of the

underlying computing system as a program is executed. In many cases

the programmer should not be concerned about the low level details of

the computing system. However, it must be recognised that

programming is an exercise in good engineering. A well designed

program will be one that, among other things, makes reasonable

demands upon the resources available on the computing system on which

it is executed.

For example, it is easy to write the following program to

implement a sort algorithm in the KRC reduction programming language

[Turner, 1982]:

sort [] = []
sort (a : x) = insert a (sort x)

insert a []
insert a (b

= [a]
x) = a b: x, a <= b

b : insert a x

The program is quite transparent; it implements the insertion sort

algorithm. Many implementations of reduction programming languages

will cause the list which is being sorted to be reconstructed each

time the function 'insert' is applied. The space requirement of this

particular program would be proportional to the square of the number

of items in the list.

- 70 -

The same program can be written . ~n a von Neumann programming

language. In the example below the redundancy in space has been

overcome by the judicious USe of assignment statements:

TYPE Table = ARRAY

PROCEDURE Sort(VAR T
VAR I : INTEGER;

1 100] OF INTEGER;

Table) ;

PROCEDURE Insert(VAR T : Table;
Lwb, Upb : INTEGER);

VAR S : (Scanning, Found, Exhausted);
I, J, X : INTEGER;

BEGIN
S := Scanning;
I := Lwb;
REPEAT

IF I > Upb
THEN S := Exhausted

ELSE IF T[I] > T[Upb]
THEN S := Found

ELSE I := I + 1
UNTIL S <>Scanning;
IF S = Found THEN

BEGIN
X := T[Upb];
FOR J := Upb DOWNTO I + 1

DO T[J] := T[J - 1];
T[I] := X
END

END { Insert };

BEGIN
FOR I := 2 TO 100

DO Insert(T, 1, I)
END { Sort };

No extra space is required by this program except that needed to

represent the auxiliary variables and the return addresses for the

procedure calls.

The first program written in the reduction programming language is

the easier to understand; the declarative style of programming, of

- 71 -

which it is an example, outlines the effect which is required rather

than a procedure by which it may be acquired. However, given the

current state of implementations for reduction programming languages,

it is not sufficient to stop at that point. Too much detail is

hidden by the clarity of expression. The program is a good

abstraction of the problem, but it leaves many of the issues

unresolved. With reference to this example of a sorting algorithm,

Knuth notes that the manufacturers of computing systems have

estimated that over one quarter of the execution time used on their

computing systems is spent in sorting; indeed, there are some

installations where this activity accounts for more than one half of

the total execution time [Knuth, 1973].

Until acceptable implementations of the novel models of

computation are available, programming in the von Neumann style

programming languages will persist. Since the "better" novel models

of computation are referentially transparent, it is possible to

perform transformations on the programs and yet retain the meaning of

the program. This can be used, albeit with limited success, to

transform an 'inefficient' program written in a novel programming

language into a more efficient program written in a von Neumann

programming language. Some of the existing techniques remove certain

forms of recursion and replace it by iteration [Burstall and

Darlington, 1977]. Another technique, known as "memoisation", is

used to reduce the number of times an expression is evaluated

[Hughes, 1985] • A survey of the different techniques is given by

- 72 -

Darlington [Darlington, 1987]. However, many of these techniques are

insufficient to derive the equivalent programs automatically. Thus,

at present, the main practical advantage of the novel models of

computation is their clarity of expression and their referential

transparency. They may be used to write specifications of programs.

These specifications can be refined manually to produce equivalent

programs written in the von Neumann style. At each step of the

refinement process proofs can be constructed about the correctness of

the progress made. Furthermore, at any pOint in the process an

implementation of the novel model of computation may be used to

execute the program. This allows an early prototype of the program

to be demonstrated [Henderson and Minkowitz, 1986; Turner, 1985].

The referentially transparent programming languages also seem

inappropriate for the description of systems which undergo

discernible changes as time progresses. The side effects which a

program has on the real world may be tangible and important. For

example, a software system which controls the behaviour of an

industrial process may be able to change the state of the mechanisms

which physically control that process, and be able to sense changes

in the physical process through those same mechanisms. In a

referentially transparent programming language, such changes may be

modelled by a data structure which represents the state of the real

world. This data structure must be passed as a parameter into every

operation and must be returned as a result of every operation. An

example of this is given in the database program in [Henderson,

- 73 -

Jones, and Jones, 1983]. Furthermore, a program which has some

effect on the real world may have to provide certain stimuli in a

specif ic order. An evaluation mechanism, such as data flow or

reduction, where instructions are executed in a non-deterministic

order, makes it difficult to construct programs to meet this

requirement. Some additional constraints are required to force the

evaluation into the desired order.

In general, it has not been shown that these novel models of

computation are necessarily the best basis on which to build general

purpose programming languages. The usefulness of these programming

languages has been demonstrated in certain selected problem domains.

For example, the programming language Prolog has been used to

construct so-called "expert systems". However, there is little

evidence that these programming

significant problems.

languages are suitable for

Concurrency may be exploited at three distinct levels in the

different models of computation. At the lowest level, the processing

unit may allow the individual micro-instructions to be executed

concurrently. Whether or not this is the case should have no effect

on a particular model of computation.

At the next level the operands to operations in the model of

computation may be evaluated concurrently. The concurrency at this

level cannot be directly controlled by the programmer. For some

- 74 -

models of computation this form of concurrency is inappropriate. For

example, the von Neumann model of computation permits operands to

have side-effects. The order in which the operands are evaluated may

affect the overall behaviour of the program. In models of

computation which have the property of referential transparency the

operands may be evaluated concurrently without affecting the

behaviour of the program.

The degree of concurrency which can be exploited at this second

level is probably quite limited. The average number of operands in

an expression is not high. This sort of concurrency is best suited

to an architecture of computing system in which the processing units

fetch instructions from a pool of available instructions. An

architecture in which one processing unit explicitly requests some

other processing unit to evaluate some of the operands concurrently

may well have a large overhead in communication.

The highest level of concurrency is that at which individual

statements or routines may be executed concurrently. The concurrency

at this level may more reasonably be controlled directly by the user.

Allowing individual statements to be executed concurrently may lead

to inefficient programs. The cost of communicating a request to

execute a statement to another processing unit, together with the

overheads involved in the processing unit requesting the information

accessed in that statement, may far outweigh the cost in terms of

sequential execution of the program.

- 75 -

However, using the routine as the item of concurrency, concurrent

execution can be attractive. If the routines of a program have been

designed to represent distinct entities in the world modelled by the

program, concurrent execution of these routines is a natural outcome.

This is a similar approach to that found within the object

oriented model of computation. In particular, the encapsulation of

the variables required to represent a particular data structure,

together with the routines which are necessary to manipulate these

variables into a single object allows the behaviour of the object to

be described cleanly in isolation from all other objects. This may

be done since the variables of an instance of the object may only be

manipulated by the routines described in the textual description of

the object. This encapsulation has two additional properties. The

representation of structural entities in the real world as objects in

the program which models that world is a useful abstraction technique

[Kerr, 1987]. Furthermore, the independence of the different

instances of objects within a program may permit concurrent execution

of those instances. It is known in advance that no variables are

shared between the different instances of objects. Consequently, it

is not possible for the concurrent execution of the different

instances to result in the variables within one instance of an object

being in an inconsistent state. However, it is possible that the

variables of two or more instances may be inconsistent with respect

to each other.

five.

The issues of consistency are discussed in chapter

- 76 -

, TWO ALTERNATIVE DESIGNS

Different designs for architectures of computing system and models

of computation were outlined in chapters two and three respectively.

In those chapeters it was suggested that these designs would not be

appropriate to encompass the developments of the future. The

computing systems of the not too distant future will consist of a

number of heterogenous computing systems connected together by a

communications medium. Two alternative designs for an architecture

of computing system and the associated model of computation are

presented in this chapter.

The first design, recursive control flow, was produced by

Treleaven and Hopkins at the University of Newcastle upon Tyne and is

described in detail in [Hopkins, 1984]. A formal specification of

the behaviour of the design has been constructed and is presented in

this thesis. The computing systems built using the recursive control

flow principles are recursively structured. Each element of the

structure is either a primitive computing element comprising a

processing unit, a memory component, and a communications capability,

or it may be another structured computing system. The memory

component of each computing element is globally accessible.

The second design, decentralised control flow, is presented for

the first time in this thesis. AnalysiS of the recursive control

flow model of computation has led to a simplification of the design.

- 77 -

D D

COlIUDunications
Interface

Memory
Components

Processing
Units

Figure 4.1 A Recursive Control Flow Computing System

The existence of a globally accessible memory component can influence

the ease with which good quality software can be produced.

Reflection of the globally accessible memory component in the model

of computation on which programming languages are based is liable to

encourage the programmer to exploit the global accessibility to

obtain "efficient" programs. In the decentralised control flow

architecture, the memory component of each computing element may be

accessed only by the programs which are executed by the local

processing unit. This has the distinct advantage that a computing

system can be decomposed into the separate parts which together form

the whole system. Each part can be considered in isolation from all

the other parts. However, the computing systems built from the

decentralised control flow principles are also recursively structured

and comprise the same elements as those found in the recursive

control flow computing systems.

- 78 -

of

D

Communcations
Interfaces

Processing
Units

Memory
Components

Figure 4.2 A Decentralised Control Flow Computing System

The concept which lies behind the two designs is that of a group

connected subordinate computing systems providing various

"services" to the different sequences of instructions which are

executed by the individual processing units of the computing system.

The nature of the service provided by a subordinate computing system

may range from the specific to the general purpose. For example, a

specialist computing system such as an array processor could be

connected as a subordinate computing system. Alternatively, a

subordinate computing system could simply provide a general purpose

computing service to support the execution of any program. The

concept of service is also reflected in the two models of computation

proposed for these architectures. A program which is executed on one

subordinate computing system may request a service to be performed by

a program which is executed on some other subordinate computing

system. On receipt of a request a program may cause the resources

attached to the subordinate computing system on which it is executed

to undergo a change in state.

- 79 -

For a computing system to be a m~er of one of the architectures

proposed in this chapter, it must adhere to a rigorously defined

interface. At the lowest level of communication between a

subordinate computing system and the communications medium a

[Clement, 1987] or X.2S specified interface, such as VMEBus

[Tanenbaum, 1981], must be agreed upon. This will allow information

to be transferred between the different subordinate computing systems

attached to the communications medium. However, some higher level

protocol is also required to permit the transfer of information

between the objects supported in the programming languages

implemented on the different architectures.

The concept of service underlying the two architectures is not

new. It has been in existence at least since the introduction of the

IBM 360 series of computing systems. In these systems a special

purpose processing unit controlled access to the input/output

devices. Commands were received from the central processing unit

which were then executed by the special purpose processing unit. The

result of executing these commands could cause information to be

transferred between the memory component and the input/output

devices. Additionally an indication that some state had been reached

could be signalled to the central processing unit by the transmission

of a message, usually in the form of an interrupt, by the special

purpose processing unit. Clearly, in such computing systems, the

memory component is globally accessible to both the central

processing unit and the special purpose processing unit which

- 80 -

controls the input/output devices. The principles proposed for the

two architectures represent an attempt to generalise this existing

concept by the introduction of objects between which information may

flow.

The motivation for investigating new designs for architectures of

computing system and models of computation arose from the prominence

given to custom designed silicon chips through the publication of

Mead and Conway's book [Mead and Conway, 1980]. It has been

suggested that the technology of chip fabrication could be better

explOited by the use of deSigns with regular structures. Memory

devices are prime candidates since they are constructed from regular

arrays of small devices. Typically, processing units are designed

using irregular structures and it could be difficult to exploit the

technological advances with such deSigns. However, the possibility

of designing a processing unit with a regular structure has been

considered [Treleaven, 1982]. Such a processing unit, together with

some memory devices, could be used as the basis of a computing

system. The current state of the technology of chip fabrication

might only allow the individual components of this computing system

to be constructed from several chips. However, as the integration

levels rise, it might become possible to construct a single chip

which constitutes a complete computing system; it may even become

possible to construct a chip containing several computing systems. A

board or cabinet might contain several of these computing systems

connected together to form a larger computing system.

- 81 -

To take advantage of these possibilities, the principles used for

the construction of the computing systems must permit replication

[Glushkov, Ignatyev, Myasnikov, and Torgashev, 1974; Wilner, 1980].

Replication will allow subordinate computing systems to be connected

together to form a single larger computing system. Use of recursive

principles also ensures that a requirement of the technology is met.

AS integration levels rise, the interconnection paths between

subordinate computing systems will shorten. At each level of

recursion, a group of computing systems is logically connected to one

another. At the lowest level, distinct groups of computing systems

are connected together into a single larger computing system. It is

possible to arrange these groups physically so that the individual

computing systems within each group are physically close thereby

ensuring short interconnection paths. The longest interconnection

paths will be found at the highest level of recursion.

These principles are not restricted solely to the design of

computing system using the technology of chip fabrication. The

principles may also be used as a general structuring tool from which

computing systems may be constructed from other subordinate computing

systems [Randell, 1983]. In particular, the principles of the design

are appropriate for the construction of distributed computing systems

where the subordinate computing systems might be of the conventional

von Neumann style, and the interconnections between the subordinate

computing systems might be a local area network.

- 82 -

DO
Subordinate

Computing Systems

C ommuncations
Interfaces

D
Figure 4.3 A Replicated Computing System

4.1 RECURSIVE CONTROL FLOW

The design of the recursive control flow architecture has been

motivated by the possibility of constructing a general purpose

computing system from replicated computing elements [Treleaven and

Hopkins, 1982]. The computing elements are interconnected to form a

larger computing system. Each computing element comprises a

processing unit, a memory component, and a communications capability.

The communications capability allows different computing systems to

be attached to one another so that a hierarchically structured

computing system may be constructed. Programs may be executed

concurrently by the different processing units of the computing

system and information may be transferred between the programs

through the use of the globally accessible memory component. The

instructions executed by the processing unit of a computing element

are based on a synthesis of the concepts underlying the von Neumann,

the data flow, and the reduction architectures. This synthesis is

- 83 -

reflected in the recursive control flow model of computation

[Treleaven and Hopkins, 1981].

4.1.1 Information Structure

The memory cells of the memory component are hierarchically

organised. Each memory cell represents a delimited string, this

being a value of arbitrary length which may contain other delimited

strings. At the lowest level, the memory cell contains a bit pattern

which represents some basic value such as an integer or a character.

The memory component of each computing element is itself a member of

the total memory structure and each memory cell appears within a

particular context in the overall memory structure. The manner in

which individual cells within the memory structure are addressed

reflects the hierarchic organisation.

An address is a sequence of selectors which identifies a path from

the context in which the address appears to the context in which the

memory cell addressed appears. For example, the delimited string

shown below consists of four subordinate delimited strings. The

outermost delimited string is associated with the identifier "A".

The four subordinate delimited strings are associated with, from left

to right, the identifiers "w", "x", "y", and "zit.

A: (w: 1 x: (2 4) y: 3 z: (4 q: 6»

The delimited string associated with the identifier "w" consists

simply of the integer "1", whilst that associated with the identifier

- 84 -

"x" is itself a delimited string containing the two integers "2" and

"4". The delimited string associated with the identifier "x" may be

accessed using the address "A/X" or the address "A/I". Similarly,

the integer "2" which appears within that delimited string may be

accessed from the context "A/x" by the address "/0".

4.1.2 Program Representation

Programs are also stored within the hierarchically organised

memory structure. An instruction is specified by an operator which

may be followed by a number of operands. A sequence of instructions

is delimited by parentheses. The operator of an instruction may be

specified in one of three ways:

an encoding of one of the primitive operations implemented by the

processing unit;

the address of an object which contains a sequence of

instructions;

a sequence of instructions.

In a similar way the operands of an instruction may be specified in

one of three ways:

a literal data item;

an address of an object which contains a data item;

a sequence of instructions which, when executed, will yield a

data item.

- 85 -

Execution of a sequence of instructions proceeds as follows. At

any point during the execution of a sequence of instructions the

processing unit is associated with a particular object within the

sequence. This is referred to as the locus of control and resembles

the "program counter" register found in von Neumann style processing

units. As execution of the sequence proceeds, the locus of control

is moved from one instruction to the next in the sequence.

For example, the expression "axx + bx + c" may be evaluated by the

execution of the following delimited string:

(+ (* (+ (* a x) b) x) c)

This is perhaps the simplest sequence of instructions which may be

written to evaluate the expression. A more complex sequence of

instructions is given below, and will form the basis of the

discussion of the execution mechanism which follows:

(+:= (* a x) b t
*:= t x .. /10
+ c (»

4.1.3 Program Execution

The manner in which each instruction is executed depends upon the

specification of the operator. An operator specified by an encoding

of a primitive operation is executed directly by the processing unit.

If the operator has operands, subordinate processing units are

associated with the memory cells containing these operands and the

values represented by the operands are transmitted from the

subordinate processing units to the superior processing unit. When

- 86 -

sufficient values have been received by the superior processing unit,

the operation is executed. The subordinate processing units are no

longer required and can terminate their activity. The locus of

control of the superior processing unit is then moved on to the next

instruction in the sequence.

For example, using the sequence of instructions given above, the

locus of control is initially placed at the first element of the

delimited string. The first element is, in this example, the

procedural operator "+:=" which adds its first two operands together,

placing the result of this addition in the delimited string addressed

by its third operand. In the sequence of instructions given above,

this third operand is specified as the address of an element outside

the immediate context of the sequence of instructions. Subordinate

processing units are activated to evaluate the three operands. On

receipt of the values represented by the first two operands, the sum

is formed, and this value is then transmitted to the subordinate

processing unit associated with the third operand. The locus of

control of the superior processing unit is then moved on over the

three operands, to the element containing the operator n*._" .-

In passing it is worth noting that the instruction with the

procedural operator "*:=" has a special form of address as its third

operand. The address /10" specifies the eleventh element of the

context in which the address is written. In this instance, the

address /10 .. specifies the last element of the sequence of

- 87 -

instructions; this element contains the "unknown" value which is

represented as "()".

The subordinate processing units are responsible for retrieving

the operands for an operator and transmitting the values to the

superior processing unit. Some of the operations are classed as

functional and execution of such an operation causes a value to be

returned to the superior processing unit. Other operations are

classed as procedural. Execution of one of these operations causes a

value to be stored in a specified memory component. The value is

transmitted by the superior processing unit to the subordinate

processing unit which has been associated with the result operand.

This subordinate processing unit is responsible for storing the value

in the memory component.

Thus, for example, in the instruction "+:= (* a x) b tIt, the

subordinate processing unit associated with the operand specified by

the address "b", causes the value stored at that address to be

transmitted to the superior processing unit. Correspondingly, the

subordinate processing unit associated with the operand specified by

the address "t" waits until a value is received from the superior

processing unit; this value is then stored at that address.

Operators which are specified as addresses cause a subordinate

processing unit to be associated with the object addressed. This

object should itself be a sequence of instructions. The sequence of

- 88 -

instructions is executed by the subordinate processing unit, the

superior processing unit remaining idle during this time. When the

locus of control of the subordinate processing unit reaches the end

of the sequence of instructions the subordinate processing unit

terminates its activity and the superior processing unit becomes

active again. A value may be transmitted from the subordinate

processing unit to the superior processing unit; this allows a value

to be returned as the result of executing some nested sequence of

instructions. The locus of control of the superior processing unit

is then moved on to the next instruction in the sequence. Arguments

may be passed from the context surrounding the memory cell with which

the superior processing unit is associated to the subordinate

processing unit. These arguments are then used by the subordinate

processing unit during the execution of the nested sequence of

instructions. A special context register, which refers to the locus

of control of the superior processing unit, is initialised in the

subordinate processing unit. Operations executed by the subordinate

processing unit may then access any arguments by addresses relative

to this special context register. The arguments are only evaluated

when they are accessed, thereby giving "call by name" semantics.

An operator may also be specified recursively as a sequence of

instructions. The execution of the sequence of instructions is

performed in precisely the same manner as outlined in the previous

paragraph.

- 89 -

The subordinate processing units used to evaluate the operands of

an operator execute in one of two possible modes. In one mode the

subordinate processing unit is passive whilst waiting to receive

messages from the superior processing unit. These messages may cause

the subordinate processing unit to perform anyone of the following

actions:

'move' to a different memory cell;

store some value at the memory cell with which it is associated;

copy the value at the memory cell with which it is associated

into a message to be sent to the superior processing unit;

execute the contents of the memory cell with which it is

associated as a sequence of instructions.

In the alternative mode the subordinate processing unit is active and

executes the sequence of instructions contained in the memory cell

with which it is associated.

As outlined above, operands are not fetched from memory cells by

the processing unit in the classic von Neumann sense. Rather, the

values they represent are transmitted to the processing unit by

subordinate processing units associated with the memory cell.

Similarly, a value is stored in a memory cell by a subordinate

processing unit whose locus of control is positioned at that

particular memory cell. Retrieving an operand which is specified as

a number causes that number to be transmitted by the subordinate

processing unit to the superior processing unit. An operand

specified as an address causes the locus of control of the

- 90 -

subordinate processing unit to be moved to the memory cell addressed.

If the value stored in the memory cell is to be retrieved, it is

transmitted by the subordinate processing unit to the superior

processing unit. If a value is to be stored in the memory cell, that

value is received from the superior processing unit by the

subordinate processing unit which t~en places it in the addressed

memory cell. The subordinate processing unit then indicates to the

superior processing unit that the value has been successfully stored.

An operand may also be specified recursively as a sequence of

instructions. The locus of control is moved to the first instruction

in, the sequence and then executed. When the sequence of instructions

has been executed, a value may be transmitted by the subordinate

processing unit to the superior processing unit. Finally, an operand

may be specified as the unknown value. The processing unit

associated with a memory cell containing the unknown value must wait

until some other processing unit has replaced the contents of the

memory cell with some other value. The original processing unit may

then resume its activity.

The control flow principles are supported by the sequential

execution of instructions and the globally accessible memory

component. The data flow principles are supported through the use of

the unknown value as an operand to an instruction. The reduction

principles are supported through the use of nested sequences of

instructions and the delayed evaluation of arguments.

- 91 -

above, all In the example of the sequence of instructions given

three varieties of principles are demonstrated. The first two

The first operand of the instructions show the use of control flow.

the first instruction shows the use of reduction, whilst the unknown

value which appears in the second operand of the final instruction

shows how data flow may be simulated.

4.1.4 Architecture

The description of the execution of a sequence of instructions

given above implies that a processing unit could be dynamically

associated with any memory component. Clearly this cannot be the

case since there is a physical static association between a

processing unit and a memory component. The static organisation

proposed for the computing elements of a recursive control flow

computing system is the tree structure [Hopkins, 1984]. A computing

element may consist recursively of other computing elements or may be

primitive, in which case it comprises a processing unit, a memory

component, and a communications capability.

The dynamic association of a processing unit with any memory

component is achieved in the following manner; the activity of a

processing unit on a memory component may be transmitted to the

processing unit statically associated with that memory component. To

enable the migration of activities between processing units, each

computing element must support a standard interface. This interface

- 92 -

allows the following commands to be transmitted

processing units:

change the locus of control of an activity;

between

execute the instructions at the current locus of control;

two

copy the contents of the current locus of control to another

processing unit;

replace the contents of the current locus of control by a value;

terminate the activity.

These commands may be issued at the lowest level, that of the

micro-instructions used to implement the instructions of the

recursive control flow model of computation [Katz, 1984]. Therefore,

all communication between a superior processing unit and a

subordinate processing unit takes place beneath the execution of the

instructions of the model of computation. The only communication

between processing units which can be controlled explicitly by the

programmer occurs through the use of the globally accessible memory

component or by some value being returned as the result of executing

a sequence of instructions.

j.l.S Model of Computation

A very low level model of computation for the recursive control

flow architecture has been outlined [Treleaven and Hopkins, 1981].

The programming language BASIX, described in chapter six, is based on

this model of computation. The semantics for this model of

computation are given below.

- 93 -

The operators described in the specification are PLUS, IF, GOTO,

FORK, and JOIN. The PLUS operator is taken to typify the usual

arithmetic and comparison operations. The IF and GOTO operators

allow the flow of control within a sequence of instructions to be

altered explicitly. The FORK and JOIN operators control the

concurrency exploited by a program.

The type Object in the specification represents the memory

component of a recursive control flow computing system. It may be

thought of as a delimited string. The individual elements of a

delimited string, the memory cells, are represented by the type

Component. This type contains not only the primitlve types such as

Number and Address, but also Object. This recursive type allows the

hierarchical memory component to be represented.

The type State represents the state of the whole recursive control

flow computing system at any point in time. The components Current

and Root of this type represent, respectively, the locus of control

of the sequence of instructions currently being executed and the

locus of control of the special context register. Thus, the

component Root allows arguments to be accessed during the execution

of a sequence of instructions.

- 94 -

Object = seq of Component

Component = Number U Address U OpCode U Object

Address = seq of C NEXT, PRIOR, IN, OUT, ROOT }

OpCode = C PLUS, *PLUS, MINUS, *MINUS, GOTO, FORK, } .. , ..
Path = seq of N1

State .. Memory Object
Current Path
Root Path

Eva1Arg(c Component, s : State) v [Component], S'

if c in Number
[State] =

then v, S' = c, s
else if c in Address

then let p = MakePath(Current(s), Root(s), c)
in v, S' = Fetch(p, Memory(s», s

else if c in Object
then v, S' = Eva1List(1, c, s)

else v, s· = nil, nil

EvalList(n : N1, 0 : Object, s
if not (n in dam 0)

then v, S' = nil, s
else let c = o(n)

in if c in Number

State) v

then if not (n + 1 in dom 0)

then v, S' = c, s

[Component], s I

else v, s' = EvalList(n + 1, 0, s)
else if c in Address

[State]

then let p = MakePath(Current(s) - [n], Root(s), c)
in let sO = mu(s, Current -> p,

Root -> Current(s) - [n])
c = Fetch(p(l .. len p - 1), Memory(s»

in let v1, sl = EvalList(p(len p), c, sO)
in let s2 = mu(s, Memory -> Memory(sl»

in if not (n + 1 in dom 0)

then v, s' v1, s2
else v, s' = EvalList(n + 1, 0, s2)

else if c in Object
then let sO = mu(s, Current -> Current(s) - [n],

Root -> Current(s) - [n])
in let v1, sl = EvalList(l, c, sO)

in let s2 = mu(s, Memory -> Memory(sl»
in if not (n + 1 in dom 0)

then v, s' vl, s2
else v, s· = EvalList(n + 1, 0, s2)

- 95 -

else if e = PLUS
then v, 5' = ExeePLUS(n, 0, 5)

else if e = "PLUS
then v, 5 ' = Exee"PLUS(n, 0, 5)

else ife = GOTO
then v, 5 ' = ExeeGOTO(n, 0, 5)

else if e = FORK
then v, 5' = ExeeFORK(n, 0, 5)

else

ExeePLUS(n : Nl, e : Component,s: State) v : [Component], 5'
let sO = mu(s, Current -> Current(s) - [n + 1])
in let vI, 51 = EvalArg(o(n + 1), sO)

in let 52 = mu(sl, Current -> Current(s) - [n + 2])
in let v2, 53 = EvalArg(o(n + 2), 52)

in let 54 = mu(s, Memory -> Memory(s3»
in if not (n + 3 in dom 0)

then v,s' = (vI + v2), 54
else v,s' = EvalList(n + 3, 0, 54)

Exee"PLUS(n : Nl, e : Component,s: State) v [Component], 5'
let sO = mu(s, Current -> Current(s) - [n + 1])
in let vl, 51 = EvalArg(o(n + 1), sO)

in let 52 = mu(sl, Current -> Current(s) - [n + 2])
in let v2, 53 = EvalArg(o(n + 2), 52)

in let 54 = Assign(n + 3, 0, 53, (vI + v2»
in let 55 = mu(s, Memory -> Memory(s4»

in if not (n + 4 in dom 0)

then v,s' = nil, 55
else v,s' = EvalList(n + 4, 0, 55)

State =

State =

ExeeGOTO(n : Nl, e : Component,s: State) v : [Component], 5' : State =
let p = MakePath(Current(s) - [n + 1], Root(S), o(n + 1»
in let vI, 51 = EvalList(O, Feteh(p, Memory(s», mu(s, Current -> p»

in v,s' = EvalList(n + 2, 0, mu(s, Memory -> MemoryCsl»)

ExeeFORK(n : Nl, e : Component,s: State) v : [Component], 5' : State
let p = MakePath(Current(s) - [n + 1], Root(S), o(n + 1»
in let vl, 51 = EvalList(O, Feteh(p, Memory(s», mu(s, Current -> p»

in v,s' = EvalList(n + 2, 0, mu(s, Memory -> Memory(sl»)

MakePath(ee, re Path, a : Address) p : Path =
if len a = 0
then p = ee
else let eel = if a(l) = NEXT

then Suee(ee)
else if a(l) = PRIOR

then Pred(ee)
else if a(l) = IN

then ee - [0]
else if a(l) = OUT

then ee(l •. len ee - 1)
else if a(l) = ROOT

then re
else ee

in p = MakePath(eel, re, tl a)

- 96 -

Succ(p : Path) p' Path
p' = pel .. len p - 1) - [p(len p) + 1]

pred(p : Path) p' Path =
p' = pel •• len p - 1) - [p(len p) - 1]

Fetch(p : Path, c : Component) c' : Component =
if len p = a
then c' = c
else c' = Fetch(tl p, c(p(l»)

Assign(n : Nl, 0 : Object, s : State, v Component) s' State =
let c = o(n)
in if c in Number

then s' = mu(s, Memory -> Replace(Memory(s), Current(s) - en], v)
else if c in address

then let p = MakePath(Current(s), Root(s), c)
in s' = mu(s, Memory -> Replace(Memory(s), p, v»

else s' = s

Replace(c : Component, p Path, v Component) e'
if len p = 0
then e' = v
else e' = e(l .. pel) - 1) -

[Replace(e(p(l», tl p, v)] -
c(p(l) + 1 .. len e)

- 97 -

Component =

The semantics of the recursive control flow model of computation

given are deficient in one important respect. It has not been

possible to show the concurrency which is supported by the

architecture and which can be expressed in the model of computation.

For example, evaluation of the operands of operators such as PLUS may

be performed concurrently. Any changes in the memory component of

the overall computing system made during the evaluation of one

operand must be visible during the evaluation of the other operand.

The formal specification of the recursive control flow model of

computation given above implies that the evaluation of the operands

is performed serially. Similarly, it has not been possible to

specify the behaviour of the JOIN operator. This operator causes a

subordinate processing unit to terminate its activity. The superior

processing unit which caused that subordinate processing unit to be

activated is notified that one of its subordinate processing units

has indeed terminated its ac~ivity. If the superior processing unit

was waiting for the termination of all of its subordinate processing

units it would now be possible for it to continue its own execution.

This low level description needs the flow of information and control

between the different processing units which are involved in the

execution of a program to be modelled.

- 98 -

4.1.6 Concurrency in the Model of Computation

It would be possible to adapt the existing specification by the

inclusion of more detail. The FORK and JOIN operators may be

modelled by specifying the state of the individual processing units.

The complete state of the computing system may be specified as

follows:

Activity .. Current Path
Root Path
Children seq of ActivityId
Parent ActivityId
Status (Active, InActive }

System .. Activites map ActivityId to Activity
Memory Object

Each processing unit has its o~ state which indicates the status of

that processing unit. It may either be active, which implies that

the processing unit can execute instructions, or it may be inactive

which implies that the processing unit is waiting for the subordinate

processing units which it activated to terminate. Operationally one

processing unit may be selected from the group of processing units in

the system and a single instruction or sequence of instructions

executed. The FORK and JOIN operators may now be specified more

precisely. Execution of the FORK operator causes a new processing

unit to be added to the group of processing units in the system.

Execution of the program of this new processing unit proceeds

concurrently with that of the existing processing units of the

system. This concurrent behaviour is simply modelled by the serial

interleaving of the execution of the instructions of the different

- 99 -

processing units of the group. Execution of the JOIN operator causes

the processing unit to be removed from the group of processing units

in the system. The processing unit which caused this subordinate

processing unit to be activated is notified that the JOIN operator

has been executed by one of its subordinate processing units.

The specification at this level shows how execution of the

processing units may be modelled by serialisation of the execution of

the individual instructions of the processing units. Different

orderings of the individual instructions of a group of processing

units may result in the computing system reaching different states.

For example, consider the concurrent execution of the following

two sequences of instructions:

(:= tl b (:= t2 b
.- b (+ tl 100» := b (+ t2 200»

There are six different orderings of the execution of these

instructions. Only two of these orderings ensure that the value

stored at the delimited string associated with the identifier "b" is

incremented by 300. Of the remaining four orderings, two result in

the value being incremented by 100, whilst the other two result in

the value being incremented by 200.

However, even this more detailed specification does not reflect

the true nature of the recursive control flow architecture and its

model of computation. Modelling the actual behaviour requires

- 100 -

further detail, this time at the level of the micra-instructions of

the recursive control flow architecture. Since the individual

operands of an instruction may be evaluated concurrently, the flow of

information between the subordinate processing unit and the superior

processing unit must be modelled. It is not sufficient to model the

instructions of the recursive control flow architecture atomically.

It is necessary to model the micro-instructions which are used to

implement the instructions of the recursive control flow

architecture. Again the description of the computing system consists

of a group of processing units. Each processing unit may execute a

micro-program

instructions.

which implements the recursive control flow

For example, the PLUS operator will cause the two operands to be

evaluated concurrently by two subordinate processing units.

Execution of the PLUS operator thus takes place in several distinct

stages. Firstly, the subordinate processing units are activated and

each subordinate processing unit evaluates its operand thereby

sending a message to the superior processing unit to indicate the

value of that operand. Then, on the basis of these messages, the

superior processing unit can calculate the value and may then send a

message to some superior processing unit indicating the result of

that calculation. All these processing units may execute

instructions from their micro-programs concurrently.

- 101 -

The model required to specify the behaviour of the recursive

control flow architecture at this low level of detail is somewhat

similar to that required at the higher level. However, ~t is now the

individual micro-instructions which are being modelled. The steps by

which an operator is implemented have become visible. Again,

different orderings of the execution of the micro-instructions of the

group of processing units may lead to the computing system reaching

different states.

For example, consider the following two instructions:

(+:= b 100 b) (+:= b 200 b)

If these two instructions are executed concurrently, then subordinate

processing units will be activiated which executed the microprogram

sequences concurrently. The execution of each instruction given

above requires three subordinate processing units. Two of these

processing units transmit the values of the operands of the

instruction to the superior processing unit, whilst the third

processing unit receives the value to be assigned to the delimited

string associated with the identifier "b". Again, there are six

orderings for the transmission of values between the subordinate

processing units associated with the operands specified by the

address "b" and the superior processing units associated with each

instruction. Two of these orderings will result in thew value stored

at the delimited string associated with the identifier "b" being

incremented by 300, whilst, of the remaining four orderings, two will

cause that value to be incremented by 100, and two will cause it to

- 102 -

be incremented by 200.

To understand the behaviour of the recursive control flow model of

computation completely, this detailed specification must be

constructed. The reason for the complexity of the specification lies

mainly in the existence of the globally accessible memory components.

The model of computation supports both concurrency and a globally

accessible memory component and therefore the order in which

instructions and operands are evaluated can have an effect on the

state of the memory component. The communication between processing

units which occurs at the level of the micro-instruction is visible

at the level of the execution of the individual instructions. The

model of computation seems unnecessarily complex; in practice,

restrictions would need to be introduced into the programming

languages used to write software for the recursive control flow

computing systems in order to restrict the model of computation.

Typically such restrictions would prohibit the combined use of

concurrency and the globally accessible memory component. This would

simplify the specification by hiding the communication between the

processing units which occurs at the level of the micro-instruction.

- 103 -

4.2 DECENTRALISED CONTROL FLOW

The complexity of the recursive control flow model of computation

does not reflect the apparent simplicity of the underlying

principles. The simplicity lies in the recognition that computing

systems can be con~tructed recursively from heterogenous autonomous

computing elements. The complexity arises from the organisation of

these elements into a hierarchical structure in which the memory

components of the individual computing elements

accessible.

are globally

The decentralised control flow architecture and its associated

model of computation are a refinement of the recursive control flow

principles. The important difference is the absence of a globally

accessible memory component and a restriction on the nature of

side-effects within operand execution. The work on abstract data

types and the object oriented model of computation has directed this

refinement process.

The decentralised control flow architecture assumes a network of

subordinate computing systems, each of which is autonomous. Each

subordinate computing system has a memory component which may only be

accessed by the programs which are executed on the processing unit of

that subordinate computing system. This coupling of the memory

component and the processing unit into a single entity reflects both

an abstract data type and the object oriented model of computation.

- 104 -

An abstract data type consists of a description of the variables

required to represent some data structure and a description of the

routines which are necessary to manipulate those variables. An

instance of an abstract data type consists of a local data space for

the representation of the variables, together with the code for the

routines. The variables of an instance may only be manipulated by

the routines of that instance. As suggested in chapter three, the

central concept of the object oriented model of computation, that of

the object, has been taken from the work on abstract data types.

Consequently, the decentralised control flow principles could be used

to support an implementation of an object oriented programming

language. Taking this approach gives a mechanism for constraining

the concurrency; this is outlined in the remainder of this chapter

and is developed in more detail in chapter five.

4.2.1 Information Structure

A general purpose distributed computing system consists of a

number of subordinate computing systems connected together by some

communications medium. The scale of distribution will not affect the

behaviour of the distributed computing system except for certain

details such as the time taken to transmit information across the

communications medium. Each subordinate computing system has

resources attached to it which may be accessed only by those programs

which are executed by the processing unit of the subordinate

computing system. There is no memory component which is accessible

- 105 -

to all the subordinate computing systems. Information may be

transmitted from one subordinate computing system to another

subordinate computing system by the sending and receipt of messages

using the communications medium.

There is no reason why the resources attached to a subordinate

computing system should be limited to a memory component and

input/output devices. A communications medium could itself be an

attached resource. The use of this resource would be controlled by a

program which is executed by the processing unit of the subordinate

computing system. This permits the construction of hierarchically

structured distributed computing systems.

4.2.2 Program Representation and Execution

Each subordinate computing system is capable of executing a

sequence of instructions. These instructions may make references to

the resources which are attached to the subordinate computing system

on which it is executed. A sequence of instructions may be totally

independent of all other sequences. The subordinate computing system

on Which such a sequence of instructions is executed can have no

effect on any other subordinate computing systems nor can it be

effected by any other subordinate computing system. Alternatively, a

group of sequences of instructions may be designed to interact.

However, there is no globally accessible memory component which may

be used for the transfer of information between the execution of

- 106 -

sequences of instructions on different subordinate computing systems.

The communications medium which connects the subordinate computing

systems together into a distributed computing system is used to

transfer information between different subordinate computing systems.

Rather, the information to be transferred between subordinate

computing systems is placed in a message which is transmitted from

one subordinate computing system to another.

The protocol used for the transfer of information between

subordinate computing systems is based on the semantics of the

procedure call as found in programming languages such as Pascal.

Thus the transfer of information is viewed as a two-way process. The

source of the information creates a message containing the

information to be transmitted to the destination. At the

destination, the information is processed and some response is then

transmitted back to the source.

The message transmitted from the source subordinate computing

system to the destination computing system will indicate what sort of

processing is required. Thus the messages transmitted across the

communications medium between the source subordinate computing system

and the destination subordinate computing system consist of the

following two pieces of information:

a field to identify what processing is required;

a field or group of fields which contain the information to be

processed.

- 107 -

Additionally, the communications subsystem will require a field to

identify the destination subordinate computing system, and a field is

also required to identify the source subordinate computing system so

that a response may be made to the message. This response consists

solely of the information to be transferred from the destination

subordinate computing system to the source subordinate computing

system. A tag field is required to distinguish between the two types

of messages which may be transmitted between subordinate computing

systems. The messages are categorised as requests and responses.

The following declaration of a variant record in the programming

language Pascal outlines the format of a message:

TYPE Message = RECORD
Source : SystemIDi
Destination : SystemIDi
CASE Tag : (Request, Response) OF

END

Request: (Action: ActionIDi
RequestValues : ListOfValues)i

Response: lResponseValues : ListOfValues)

Associated with each subordinate computing system is a table of

entries which allows the field identifying the variety of processing

to be mapped into a particular sequence of instructions. On receipt

of a message bearing a request, the specified action is looked up in

the table. If an entry is found, the sequence of instructions

indicated by the entry is executed and a response transmitted.

However, if no entry is found which contains the specified action, a

standard response is transmitted indicating a failure to find the

required action.

- 108 -

In passing it should be noted that the effects of a globally

accessible memory component can be obtained by ensuring that every

subordinate computing system within the distributed computing system

has the actions 'read' and 'write'. Indeed, it would appear that a

recursive control flow computing system is subsumed by a

decentralised control flow computing system. The actions of the

subordinate computing systems of the former may be implemented

explicitly in the latter.

The procedure call semantics enforce the transmission of a

response from the destination subordinate computing system to the

source subordinate computing system. Furthermore, the source

computing system cannot continue execution of the sequence of

instructions which originated the request until the response has been

received. Consequently, the procedure call semantics restrict the

degree of parallelism which may be exploited. This is in sharp

contrast to those distributed computing systems in which the transfer

of information occurs by the sending and receipt of messages. In

such computing systems there is a high degree of parallelism.

The details of the operations actually supported by a particular

subordinate computing system are irrelevant to the other subordinate

computing systems in the distributed computing system since one

subordinate computing system does not have access to another

subordinate computing system

outlined above. Consequently,

except through the transfer mechanism

the actual set of operations

- 109 -

implemented by a particular subordinate computing system can be

special purpose or general purpose. Furthermore, since the resources

attached to a particular subordinate computing system cannot be

accessed except through the agency of the sequence of instructions

executed by that subordinate computing system, the specific details

of these resources can be hidden from all other subordinate computing

systems in the decentralised control flow computing system.

Since the semantics of the transfer mechanism between two

subordinate computing systems are based on those of the procedure

call, there may only be a single thread of control within a program.

Consequently, it is not possible for different parts of a program to

be executed in parallel.

organisation proposed here.

available, the semantics

This is an obvious disadvantage of the

To increase the degree of parallelism

of the transfer mechanism must be

redesigned. The execution of the sequence of instructions by the

source subordinate computing system may proceed rather than be

delayed until a response has been received from the destination

subordinate computing system. Thus there are two distinct threads of

control active simultaneously.

- 110 -

'.2.3 Model of Computation

The formal semantics of the decentralised control flow model of

computation are given below:

System = map SystemId to SubordinateSystem

SubordinateSystem .. Data map Name to Value ..
Operations map Name to seq of Statement
Code seq of Statement
PC N
ConnectedTo set of SystemId

Meaning(S : System, I : SystemId, A : seq of Value)
S' : System, R : map Name to Value

let Instr = Code(S(I»(PC(S(I»)
in case Instr of

Return: S' = S + { I -> mu(S(I), Code -> [], PC -> 0) }
R = Results(Instr)

Call: let Sl, Rl =
Meaning(S +

{ Dest(Instr) ->
mu(S(Dest(Instr»,

Code ->
Operations(S(DestCinstr»

(Op(Instr» ,
PC -> 1) },

Dest(Instr),
Arguments(Instr»

in S', R =
Meaning(Sl +

{ I ->
mu(Sl(I) ,

I,
[])

Data -> Data(Sl(I» + Rl,
PC -> PC(Sl(I» + 1) },

Assign: S', R = Meaning(S +
{ I ->

mu(S(I),

I,

- 111 -

Data ->
Data(S(I» +

{ Name(Instr) ->
ExpressionCInstr) },

PC -> PC (S (I» + 1) },

[])

The formal semantics given above model the behaviour of a

decentralised control flow computing system from the viewpoint of a

single instance of an object which may send requests to instances of

other objects. The semantics show clearly that the variables

associated with an instance are local to that instance, and that only

the routines local to an instance may change the variables of that

instance.

4.2.4 Concurrency in the Model of Computation

The semantics outlined below show the effect of concurrent

execution of the different instances of objects within a

decentralised control flow computing system. It is assumed that an

instance can only respond to a single request at a time.

Consequently, the different requests to an instance are serialised.

System = map SystemId to SubordinateSystem

SubordinateSystem .. Data map Name to Value . .
Operations map Name to seq of
Code
PC
Requests
Results
Status
ConnectTo

Name
SystemId

seq of Statement
N
seq of Request
map SystemId to
(Busy, Waiting
set of SystemId

Request .. Operation
Requester
Arguments seq of Value

Meaning(S : System) S' : System
let I = Choose(dom S)
in if Status(S(I» = Waiting

then S' = S
else if PC(S(I» in dam Code(S(I»

- 112 -

seq
}

Statement

of Value

then 5' = Execute(s, I)
else if len Requests(s(I» = 0

then 5' = 5
else 5' = Execute(s + (I ->

mu(s(I), Code ->
Operations(s(I»

(Operation(Requests(s(I»(l»),
PC -> 1,
Status -> Busy)}, I)

Execute(S : System, I : systemld) 5' : System
let Instr = Code(s(I»(PC(s(I»)
in case Instr of

Return: 5' = 5 +

Call:

Wait:

(I ->

5' = 5 +

mu(s(I) ,
Code -> [],
PC -> 0,
Requests ->

t1 Requests(S(I»),
Requester(Requests(SCI») ->
mu(5(Requester(Requests I 5(I»»,

Results -> Result(Requester(5(I») +

(I -> Resu1ts(Instr) },
5tatus -> Busy) }

(I ->
mu(5(I) ,

PC -> PC(5(r» + 1),
Dest(Instr) ->
mu(5(Dest(Instr»,

Requests ->
Requests(5(Dest(Instr») -

[MakeRequest(Op(Instr),
I,
Arguments(Instr»]J]

if Name(Instr) in dom Results(5(I»
then 5' = 5 +

else 5' = 5

(I ->
mu(5(I),

PC -> PC(5(I» + 1,
5tatus = waiting) }

Assign: 5' = 5 +
(I ->

mu (5 (I) ,
Data ->

Da ta (5 (I » +

- 113 -

(Name(Instr) ->
Expression(Instr)})

It has been easier to specify the behaviour of the decentralised

control flow model of computation than it is for that of the

recursive control flow model of computation. Any part of the

globally accessible memory component in the distributed computing

system built on the recursive control flow principles may be altered

by any of the sequences of instructions which happen to be executed

by the subordinate computing systems. It is not possible to order

these alterations. In contrast, because access to the memory

components of a distributed computing systems constructed on the

basis of the decentralised control flow model is strictly limited to

the sequence of instructions executed by the processing unit of the

subordinate computing system to which the particular memory component

is attached, the various alterations which are made to the memory

components can be ordered. The memory component of a particular

subordinate computing system within a decentralised control flow

computing system is isolated from all the processing units except

that of the subordinate computing system to which it is attached.

Consequently, the memory component is only altered by the sequence of

instructions executed by that processing unit.

- 114 -

4.3 CONCLUDING REMARKS

Two different designs for the construction of distributed

computing systems have been presented in this chapter. Both designs

are based on the concept of recursive structuring. Any component

within a distributed computing system may be atomic in that it cannot

be decomposed into other components, or it is compound in which case

it is composed of other subordinate components. The use of recursion

allows the designs to be applicable to a wide range of distributed

computing systems. At one extreme, a distributed computing system

may be thought of as a subordinate component of some other

distributed computing system. At the other extreme, that same

distributed computing system can be thought of as a group of

individual components connected together by some communications

medium into a single computing system. The deSigns aim to present a

distributed computing system both as a complete computing system and

as a computing system in which components may be freely inserted and

removed.

These two aims have been described, separately, in the literature.

Producing a complete computing system from several distinct

subordinate computing systems has been the objective of several

groups of researchers. For example, the Newcastle Connection

[Brownbridge, Marshall, and Randell, 1983J is a software system which

allows the filestores of several computing systems to be viewed as

single entity. A user of one computing system could access the

- 115 -

filestores of the other computing systems without realising that the

information was actually associated with some other computing system.

This is achieved by extending the names which are valid within each

computing system's filestore to include entries for those of the

other computing systems. In the case of computing systems executing

the Unix operating system, this extension to the files tore is

conceptually simple. Each filestore is arranged as a hierarchy; the

Newcastle Connection presents an enlarged hierarchy to the user which

encloses the filestores of the different computing systems.

At the hardware level, the design for a recursive machine [Wilner,

1980] is based on replicated subordinate computing systems which are

organised into a single computing system. This design has been

proposed as a possible technique to exploit the potentials of the

technology of chip fabrication. However, the structuring principle

proposed, recursion, lends itself to wider application.

The principles of both recursive control flow and decentralised

control flow allow subordinate computing systems to be connected

together into a single computing system. Each design permits

sequences of instructions to be executed in parallel by the

subordinate computing systems and for information to be transferred

between the different subordinate computing systems.

difference between the two designs lies in the

parallelism and the transfer of information.

- 116 -

The essential

nature of the

In the recursive control flow design there is complete freedom in

the exploitation of parellelism through the explicit use of the

primitive operators "FORK" and "JOIN" and implicitly during the

evaluation of operands. Additionally, the memory components of each

subordinate computing system are globally accessible. Recursive

control flow reflects quite clearly the designs of the Newcastle

Connection and the recursive machine. The globally accessible memory

components and the unrestricted parallelism do, however, have certain

drawbacks.

The foremost difficulty is that of producing a formal description

of the behaviour of a recursive control flow computing system. The

description produced earlier in this chapter depends upon detailed

knowledge of the information which is transferred between different

subordinate computing systems as an instruction is executed, or an

operand is evaluated. It has not been possible to describe the

behaviour of the system in terms of the primitive operators alone;

details of the mechanisms required to implement the execution of the

instructions appears in the description.

Secondly, the formal description is difficult to .understand since

it has been impossible to hide the details of recursive control flow

which should be irrelevant at this level of description. It will not

be easy to use the description to reason about the behaviour of

sequences of instructions since there is no abstraction away from the

level of details of recursive control flow. Any reasoning about the

- 117 -

behaviour of a sequence of instructions must be considered in terms

of these low level details.

In contrast, the description of the behaviour of a decentralised

control flow computing system is easier to produce simply because the

individual subordinate computing systems of such a computing system

can be considered in isolation from one another. The interface

between each subordinate computing system is clearly defined, and the

behaviour of the whole distributed computing system is based on this

interface.

- 118 -

5 ISSUES OF CONCURRENCY IN DISTRIBUTED COMPUTING SYSTEMS

The decentralised control flow model of computation uses the

concept of an object as the most basic level of structuring. An

instance of an object encapsulates both the data structures and the

control structures found in programs written in von Neumann style

programming languages. Requests may be sent to an instance of an

object, interpreted by the instance and changes made to the data

structures local to that instance. Such changes made to the data

structures are performed by the control structures local to the

instance. A change in the state of an instance of an object occurs

when some change is made to the data structures of the instance.

This change in the state is "visible", or "discernible", to other

instances of objects if it affects the future behaviour of the

instance.

A large or complex piece of software may require several different

objects. The specification of the software describes the

relationships between these different objects. After each and every

change in the state of any instance of an

that these relationships hold. When

object, it is important

the relationships hold, the

group of instances of objects is said to be in a consistent state.

Should the relationships be found not to hold, the group of instances

of objects has reached an inconsistent state. For example, a group

of objects which represents information about a banking system would

probably have the additional restriction that the sum of money

- 119 -

mode~led by instances of those objects must be invariant.

The majority of models of computation and programming languages

are based on a strictly sequential flow of control in which the

execution of a program occurs in isolation from all other programs.

Any inconsistencies which arise in a program stem from a failure on

the part of the programmer to produce a correct sequence of

instructions. Typically, research into concurrency has been

constrained to those issues arising within a single program. For

example, the programming language Pascal has been extended so as to

permit the concurrent execution of statements [Ben-Ari, 1982J.

However, the resultant programs are considered in isolation from one

another. Similarly the concurrency which may be exploited in control

programs has been restricted to single computing systems. Both are

inappropriate because they assume a centralised computing system as

their basis.

Some of the issues relating to concurrency are discussed in

[Liskov, 1981J. Whilst the concern of that paper is toward

mechanisms to support robust software which will survive failures in

the communications medium, the same mechanisms may be used to ensure

that the group of objects in a computing system remain in a

conSistent state. Much of the work in this area borrows techniques

and solutions from work already undertaken in the area of distributed

databases.

- 120 -

The work on Actors reported by Hewitt and Baker [Hewitt and Baker ,

1977] represents an attempt to introduce some formalism into a model

of computation for distributed computing systems. Their actor theory

is a formalisation of the object oriented model of computation based

on message passing. However, this formalism is not taken

sufficiently far to guarantee the coherency of state for distributed

computing systems.

Schlageter [Schlageter, 1978] outlines some areas in which the

issues of concurrency in database systems are more complex than those

for sequential control programs:

the enormous number of resources to be controlled;

a process may work on a variable number of resources;

the resources may be addressed associatively;

the contents of the resources are connected by arbitrarily

complex consistency constraints;

the set of resources may vary with time.

These issues are, with the exception of associative addressing, also

applicable to distributed computing systems.

In this chapter a method is introduced for ensuring that the group

of objects used by different users is maintained in a consistent

state. Execution of a program which interacts only once with only

one globally accessible object will maintain, in a consistent state,

the computing system of which that object is a part if the following

two conditions hold:

- 121 -

the state of the computing system immediately before the program

interacts with the object;

the state of the computing system immediately after the program

interacts with the object.

Let S(t) represent the state of the computing system at some time

instant t. If that computation C occurs at a time instant i, and

takes k time instants before completion, then the following must hold

if that occurrence of the computation C is to be regarded as safe:

S(i) must be consistent;

S(i+k) must be consistent.

It is assumed that the state S(i+k) has been reached by the

occurrence of the computation C in the state S(i). Furthermore,

repetition of the occurrence of the computation C in the state S(i)

must yield the state S(i+k). Coherence of the state of the computing

system relates to the topics of integrity and consistency in database

theory.

5.1 INTEGRITY AND CONSISTENCY OF OBJECTS

Many of the issues of concurrency have already been resolved

through research into distributed database management systems. In

this section, those issues which are pertinent to distributed

computing systems are introduced.

The valid states of an instance of an object or group of instances

of objects in a computing system may be described by an invariant.

- 122 -

The invariant must hold before the execution of any sequence of

instructions which changes the state of an instance or group of

instances. If it can be guaranteed that execution of the sequence of

instructions will cause a valid state to be reached then it can be

guaranteed that the integrity of the computing system will be

maintained. At some point during the execution of the sequence of

instructions it may be the case that the invariant does not hold. It

is important that such states are purely transient and are not made

visible to other sequences of instructions which may be executed

concurrently.

Many large or complex programs are constructed from a hierarchy of

instances of objects. The effect of executing one of the routines of

one of these instances may allow an instance to reach an inconsistent

state with respect to the group of instances of objects as a whole.

This is often the case in real programs. An object may be designed

to perform a general task which partially transforms the initial

state towards the desired final state. The object will not

necessarily be orientated towards the specific problem domain of the

whole program. However, the overall effect of the execution of a

program must be to take a group of instances of such objects from one

consistent state to some other consistent state. The inconsistent

states which may arise during the execution of the program must not

be visible to other programs. This restriction is necessary to

ensure that some other program is not executed in an initially

inconsistent state. Furthermore, the execution of the program must

- 123 -

be atomic. It must either be executed to completion in order that

the instances of the objects reach a new consistent state, or it must

not execute at all and the instances of the objects should remain in

their initial consistent state. Partial execution is forbidden as it

might lead to a group of instances of objects reaching an

inconsistent state.

Guaranteeing that the execution of a sequence of instructions will

cause a computing system to remain in a valid state can be divided

into two distinct tasks. Potential failures may be detected by

scanning the text of the program to check that the individual

instructions do not violate certain static constraints. For example,

it is possible, given suitable type information, to ensure that the

values assigned to variables within the local data space of an

instance are within a specific range. This form of checking is

performed by most programming language compilers. Unfortunately, a

large set of invalid states may still be reached from a program which

has been statically checked. For example, two or more variables

within the local data space of an instance of an object may be

related by some invariant. It may not be possible to ensure that the

relationship between such variables remains invariant simply by

scanning the textual description of the object. More seriously, a

group of instances of objects may reach an inconsistent state as a

result of the concurrent interactions of requests sent to those

instances. These inconsistent states arise as a result of the

dynamic behaviour of the program. When programs are executed

- 124 -

concurrently and may interact with a group of globally accessible

instances of objects some mechanism is required to ensure that the

group of instances of objects within a computing system remain in a

consistent state.

Consider the two following sequences of instructions:

BEGIN
x := [R Get]
[R Put f(x)]
END

BEGIN
Y := [R Get]
[R Put g(y)]
END

The notation "x := [R Get]" means that the request "Get" is sent to

the instance of an object identified by the local variable "R". The

response to this request is placed within the local variable "x".

The variable "R" will contain a reference to an instance of an object

to which the request "Get" may be sent. It is assumed that the

variable "R" will be assigned that reference when the sequence of

instructions is executed. Similarly, the notation "[R Put f(x)]"

means that the request "Put" is sent to the instance of an object

identified by the variable "R". This request also contains the value

obtained by evaluating the expression "f(x)". It is assumed that the

local variable "R" in each sequence of instructions contains a

reference to the same instance of an object.

Both sequences of instructions interact with the globally

accessible instance of an object referenced through the local

variable "R". The initial state of this instance before the

execution of either sequence of instructions may be represented as

- 125 -

"r". In the following section the concurrent execution of the two

sequences of instructions is considered.

It is assumed that the instance of the object referenced through

the local variable "R" cannot respond to more than one request at any

time. This restriction forces the requests sent to an instance of an

object to be serialised. The requests made of the globally

accessible instance may be arranged as six possible orderings, known

as schedules [Eswaran, Gray, Lorie, and Traiger, 1976]. The six

orderings may be placed into two categories. Each ordering considers

the requests made of the globally accessible instance from the

viewpoint of that instance. Consequently, the requests from one

sequence of instructions may be interleaved with those from the other

sequence of instructions.

5.1.1 Sequential Execution

i
x := [R Get]
[R Put f(x)]
y := [R Get]
[R Put g(y)]

Execution of the first sequence of instructions precedes the

ii

execution of the second sequence.

instance is dependent upon g(f(r».

y := [R Get]
[R Put g(y)]
x := [R Get]
[R Put f(x)]

- 126 -

The final state of the

Execution of the second sequence of instructions precedes the

execution of the first sequence. The final state of the instance

is dependent upon f(g(r».

The execution of the two sequences of instructions has been

serialised . One sequence is executed to completion before execution

of the second sequence is started. This guarantees that the

computing system stays in a consistent state; starting from a

consistent state, each sequence of instructions leaves the computing

system in a consistent state. Both these orderings are known as

"serial schedules". Such schedules always leave the computing system

in a consistent state.

5.1.2 Concurrent Execution

i

ii

x := [R Get]
y := [R Get]
[R Put g(y)]
[R Put f(x)]

Execution of the second sequence of instructions is enclosed by

the execution of the first sequence. The final state of the

instance is dependent upon f(r). Any effect that the execution

of the second sequence had on the instance has been lost.

x := [R Get]
y := [R Get]
[R Put f(x)]
[R Put g(y)]

Execution of the second sequence of instructions overlaps the

- 127 -

iii

iv

execution of the first sequence. The final state of the instance

is dependent upon g(r). Any effect that the execution of the

first sequence of instructions had on the instance has been lost.

y := [R Get]
x := [R Get]
[R Put f(x)]
[R Put g(y)]

Execution of the first sequence of instructions is enclosed by

the execution of the second sequence. The final state of the

instance is dependent upon g(r). Any effect that the execution

of the first sequence of instructions had on the instance has

been lost.

y := [R Get]
x := [R Get]
[R Put g(y)]
[R Put f(x)]

Execution of the first sequence of instructions overlaps the

execution of the second sequence. The final state of the

instance is dependent upon f(r). Any effect that the execution

of the second sequence of instructions had on the instance has

been lost.

Concurrent execution of the two sequences has resulted in the loss

of the effects of one of the executions of one of the sequences.

This, in turn, has led to the computing system being in an

inconsistent state. This has arisen because the two sequences of

instructions interfere when they are executed concurrently. These

orderings are known as "non-serial schedules".

- 128 -

A serial schedule will always cause the computing system to reach

in a consistent state. Additionally, some non-serial schedules are

said to be equivalent to serial schedules in as much as they also

cause the computing system to reach a consistent state. However, the

non-serial schedules given above are not equivalent to serial

schedules, precisely because the two sequences of instructions

interfere when they are executed and thus a consistent state is not

reached.

5.2 INTERFERENCE AND INDEPENDENCE

To maintain the consistency of group of instances in a computing

system, it is sufficient to ensure that the execution of sequences of

instructions do not interfere. The necessary and sufficient

conditions to guarantee that the state of computing system is

consistent despite the concurrent execution of instructions are

outlined by Schlageter [Schlageter, 1978]. In this section the

concepts of interference and independence are explored

particular reference to distributed computing systems.

with

The requests sent to instances of objects during the execution of

a sequence of instructions may be classified as 'update' requests and

'inspect' requests. An update request sent to an instance of an

object causes the state of that instance to be transformed. In

contrast, an inspect request has no effect on the state of the

instance to which it is sent. Associated with every sequence of

- 129 -

instructions are two sets; the inspect set and the update set. The

members of these sets are the names of those instances of objects to

which requests are sent during the execution of the sequence of

instructions. The members of the inspect set are the names of those

instances which are recipients of inspect requests when the sequence

of instructions is executed. The members of the update set are the

names of those instances which are recipients of update requests when

the sequence of instructions is executed. Since a request sent to

one instance may result in a subsidiary request being sent from that

instance to some other instance, and so on, an inspect request which

propagates an update request is classified as an update request. To

ensure that the two sets are diSjoint, the names of any instance

which is a recipient of both an inspect request and an update request

is a member only of the update set.

Two sequences of instructions are independent if the update sets

of both are disjoint, and the inspect set of one sequence does not

contain names in the update set of the other sequence, and vice

versa. If two sequences of instructions are not independent they are

potentially interfering; concurrent execution of the two sequences

may lead to the computing system being left in an inconsistent state.

To ensure that the computing system is left in a consistent state it

is sufficient to restrict the concurrent execution of sequences of

instructions to those which are independent. Such sequences of

instructions will always yield serial schedules. In the next section

different methods of determining the inspect and update sets are

- 130 -

outlined.

Static analysis of the textual description of a sequence of

instructions, perhaps performed by the programming language compiler,

can be used to determine the update and inspect sets of that

particular sequence of instructions. The sets will contain the names

of all those instances of objects which could possibly be recipients

of requests during the execution of the sequence of instructions.

For example, a sequence of instructions which sends inspect requests

to an instance of an object of type "T" would have the names of all

those instances of that object in its inspect set. However, in all

probability, only a small subset of those instances might actually

receive requests when the sequence of instructions is executed.

Clearly, using static analYSis as a basis for determining whether any

two sequences of instructions may be executed concurrently is

unnecessarily restrictive. In the worst case, the inspect and update

sets of each sequence of instructions may contain the name of every

instance in the computing system. The sequences of instructions are

potentially interfering and it will not be possible to execute them

concurrently. It is more probable that each sequence of instructions

will actually send requests to a small number of instances when it is

executed; if the two sequences send requests to different groups of

instances then it may be possible to execute them concurrently.

Consequently, static analysis of the text of a program is a poor

choice since it may eliminate much potential concurrency.

- 131 -

The inspect and update sets may also be determined dynamically as

a sequence of instructions is executed. Initially the sets are both

empty; as requests are sent to different instances of objects the

,sets are enlarged. At any time, the sets contain only the names of

those instances which requests have been recipients of requests.

This ensures that the degree of concurrency which can be exploited is

maximised. However, as the inspect and update sets are enlarged

during the execution of the sequence of instructions, a request may

eventually be sent to an instance of an object which has already

received a request during the execution of some other sequence of

instructions. Consequently, the two sequences of instructions are

now interfering with one another. To ensure that the state of the

computing system remains consistent, this interference must be

detected, and it may be necessary to take some appropriate action

which will return the computing system to a consistent state.

Two different methods have been proposed in the literature to

ensure that the execution of two or more sequences of instructions do

not interfere. Both methods are described below.

5.2.1 Locks

To exclude other executions of sequences of instructions from

interfering, a "lock" may be placed on an instance of an object

during the execution of some sequence of instructions. Before an

inspect or update request may be sent to an instance, it must first

- 132 -

be locked. This may be. achieved by sending a lock request to the

instance. Any requests sent to the locked instance during the

execution of sequences of instructions other than that which

requested the lock are invalid. This guarantees that the execution

of two or more sequences of instructions cannot intefere with respect

to a globally accessible instance of an object. Once a sequence of

instructions has successfully made requests to the instance of an

object, an unlock request should be sent to the instance. This then

allows other sequences of instructions to send requests to that

instance. The details of locks for distributed databases are

presented in [Eswaran, et al., 1976J. The use of locks within a

decentralised control flow computing system is outlined below.

Using the example of the two sequences of instructions given

earlier, these could be rewritten to include explicit lock and unlock

requests of the object addressed through the variable "R":

BEGIN
[R LockJ
x := [R GetJ
[R Put f(x) J
[R unlockJ
END

BEGIN
[R LockJ
y := [R GetJ
[R Put g(y) J
[R UnlockJ
END

The action of locking an object excludes all other programs from

sending requests to that object. The resulting schedules obtained

from executing the two sequences of instructions are serial. Hence

the computing system remains in a consistent state •

. - 133 -

The position of the lock and unlock requests is crucial. One of

the following strategies must be adopted if the consistency of the

computing system is to be maintained:

before the execution of a sequence of instructions is started,

lock requests are sent to all instances of objects which are to

receive requests during the execution of this sequence of

instructions; an "unlock" request may be sent to any instance of

an object provided that no further requests are to be sent to

that instance;

"lock" requests are sent in a predetermined order to the

instances of objects which are to receive requests during the

execution of the sequence of instructions; an "unlock request may

be sent to an instance of an object provided that no further

requests are to be sent to that instance;

"lock" requests are sent in any order to the instances of objects

which are to receive requests during the execution of the

sequence of instructions; an "unlock" request may be sent to an

instance of an object provided that no subsequent "lock" requests

are sent to any instance of any object;

These strategies have different repercussions on the dynamic

behaviour of the execution of a sequence of instructions.

The first strategy, which is also the easiest to implement,

requires all the instances of objects to be locked in a single action

before execution of the sequence of instructions is started. Once

all the instances are locked, execution of the sequence of

- 134 -

instructions may begin. It corresponds to the static analysis

described earlier in which the inspect and update sets of a

particular sequence of instructions are determined in advance of the

execution of that sequence. Locking the instances in advance may

result in a large number of instances being locked unnecessarily.

This arises because it is not always possible to determine in advance

which particular instances are actually required. Consequently, this

strategy may tend to restrict the degree of concurrency which can be

exploited.

The second strategy, which is also relatively simple to implement,

is based on a total ordering of all the instances of objects within

the computing system. The instances of objects which are to receive

requests during the execution of a sequence of instructions must be

locked according to this ordering. Again, as with the first

strategy, it may not be possible to determine in advance those

instances of objects which will actually be required. Consequently,

this strategy will also tend to limit the degree of concurrency which

can be exploited.

The third strategy, which is also the most complex of the three,

enables the number of instances of objects which have to be locked to

be minimised. It corresponds to the dynamic analysis of the inspect

and update sets of a particular sequence of instructions. However,

to ensure that consistency is maintained, certain overheads are

involved. Firstly, a lock request sent during the execution of one

- 135 -

sequence of instructions to an instance of an object which has

already received a lock request on behalf of some other sequence of

instructions causes the execution of the first sequence of

instructions to be "rolled back". "Roll back" involves sending

"unlock" requests to all instances of objects locked on behalf of the

sequence of instructions, and also restoring those instances to the

state which they had before they received the "lock" request during

the execution of the sequence of instructions. The effect of "roll

back" is to undo the work which has been achieved during the

execution of the sequence of instructions. Secondly, an unlock

request cannot be sent to an instance of an object until all the

instances of the objects required during the execution of the

sequence of instructions have been successfully obtained. This means

that an instance of an object may be locked for the duration of the

execution of the sequence of instructions, thereby enforcing a serial

schedule.

There are drawbacks to the use of locks. First and foremost the

degree of concurrency may be limited. As a program is executed the

number of objects locked on its behalf grows during the first phase

until no more objects are locked. During this time there will a

decreasing number of programs which are independent of this program.

This will depend upon the granularity of locking. AS the objects are

unlocked the degree of concurrency may increase. Secondly,

construction of programs from other programs will lead to a hierarchy

of lock-unlock requests. Programs lower in the hierarchy which

- 136 -

unlock should have the changes visible to the higher level programs

but not to other programs outside the hierarchy.

As described here, the locks are exclusive. That is, once a lock

request has been received by an instance of an object from a sequence

of instructions, that instance is inaccessible to all other sequences

of instructions. This exclusivity ensures that a serial schedule is

obtained. However, it also restricts the degree of concurrency which

can be exploited. It is possible for the exclusiveness of the locks

to be relaxed so that several sequences of instructions may share an

instance of an object. Consistency of the instances can still be

guaranteed by application of certain constraints on the sharing

permitted.

5.2.2 Timestamps

Associated with each subordinate computing system is a clock which

generates globally unique timestamps. Each sequence of instructions

is assigned a unique timestamp by the clock local to the processing

unit executing the sequence. Every request made of an object is

accompanied by the timestamp of the sequence making that request.

The task of the object addressed·is to satisfy the requests made of

it in strict timestamp order. To do so will serialise the executions

of the different sequences.

- 137 -

Each object will have to maintain a record of the last timestamp

received and acted upon. Whenever a new request is received the

timestamp of the request must be checked against that recorded by the

object. If the timestamp presented with the request is less than

that stored, the requests received with timestamps exceeding the

current request become invalid, and the sequences of instructions

which issued those requests must be rolled back and restarted.

Conversely, if the timestamp presented exceeds that stored, the

request is satisfied and the presented timestamp with that request is

stored.

Applied strictly, the timestamp mechanism enforces a serial

schedule. However, as with locks, there are certain drawbacks. It

is possible for requests to be received in other than the timestamp

order, and for these requests still to maintain the consistency of

the instance of objects within the computing system.

5.3 OBJECT HISTORIES

In this section the concept of an object history is introduced,

and various properties of object histories are discussed. An object

history gives details of those computations which have occurred and

which objects they have accessed. Each object has an object history

associated with it. The history is an ordered sequence containing

the details of the requests made of an object by different sequences

of instructions.

- 138 -

Associated with each object is a table giving details of the

requests made of that object. The ordering of the table reflects the

order in which the requests were received by the object. Each entry

in the table consists of the following components:

type: the type of request made (inspect or update);

requester: the identity of the sequence of instructions making the

request;

state: the state of the object at the time the request was received.

The table may be used to construct a graph which represents the

requests made by sequences of instructions to any given instance.

Taking the tables of all the objects in a computing system allows a

graph to be built which reflects the behaviour of all the sequences

executed across the distributed computing system as a whole. Some

constraints must be placed on the ordering of the entries in the

tables. This is to ensure that inconsistent states are not reached;

in particular, cycles may not exist in the graph. A cycle could be

found in the graph if either of the following situations arise:

an instance receives two requests from one sequence interleaved

by a request from some other sequence;

two or more instances each receive two requests from two or more

sequences but in a different ordering.

The first situation can be avoided by ensuring that a cycle is not

created in the history of an instance. The second situation is

harder to avoid since it involves potentially constructing the graph

for the whole computing system. This will require not only the

histories of those instances to which a sequence has addressed

- 139 -

requests, but also the history of any instance to which other

sequences have addressed requests if those same sequences have also

addressed requests to the instances addressed by the original

sequence.

Consider the situation where receipt of an update request by an

instance X from the execution of the sequence of instructions P is

denoted in the object history, HX, of the instance X by the value

MakeRequest(Update, P, 5) where 5 represents the state
of the instance X at the time
the update request was receiVed.

Similary, receipt of an inspect request by an instance Y from the

sequence of instructions Q is denoted in the object history, HY, of

the instance Y by the value

MakeRequest(Inspect, Q, 5) where 5 represents the state
of the instance Y at the time
the update request was received.

The progression of time at an instance of an object is related to the

sequence of inspect and update requests received by that instance.

Consider the two sequences of instructions P and Q given below:

P: BEGIN
x := [R Get]
E~

Q: BEGIN
[R Put y]
END

Execution of the sequence of instructions P makes an inspect request

to the instance addressed by the variable R, whilst execution of the

sequence of instructions Q makes an update request of the instance

addressed by the variable R. The object history for the instance

addressed by the variable R will be one of the following:

- 140 -

HR = [MakeRequest(Inspect, P, 51), MakeRequest(Update, Q, 51)]

HR = [MakeRequest(Update, Q, 51), MakeRequest(Inspect, P, 52)]

The first sequence of entries denotes that the inspect request issued

by the execution of the sequence of instructions P was received

before the update request issued by execution of the sequence of

instructions The second sequence of entries denotes that the update

request issued by the execution of the sequence of instructions Q was

received before the inpsect request issued by execution of the

sequence of instructions P.

If a request issued as a result of the execution of some sequence

of instructions P is received before a request issued during the

execution of some other sequence of instructions Q by an instance X,

this is denoted by P <X Q.

Consider the execution of the two sequences of instructions P and

Q given below:

P: BEGIN
x := [R Get]
[R Put f(x)]
E~

Q: BEGIN
Y := [R Get]
[R Put g(y)]
END

These two sequences of instructions are identical to those given in

an earlier section. It was noted there that some orderings of the

requests made during the execution of the two sequences of

instructions led to the lost update problem. The object histories

may be used to determine when an inconsistent state has been reached.

- 141 -

The execution of the two sequences of instructions P and Q are

represented by the following object histories for the instance R.

The execution of the sequence of instructions P precedes the

execution of the sequence of instructions Q. The object history

for the object R is:

HR = [MakeRequest(Inspect, P, 51),
MakeRequest(Update, P, 51),
MakeRequest(Inspect, Q, 52),
MakeRequest(Update, Q, 52)]

hence P <R Q.

The execution of the sequence of instructions Q precedes the

execution of the sequence of instructions P. The object history

for the object R is:

HR = [MakeRequest(Inspect, Q, 51),
MakeRequest(Update, Q, 51),
MakeRequest(Inspect, P, 52),
MakeRequest(Update, P, 52)]

hence Q <R P.

The execution of the two sequence of instructions P and Q are

interleaved in some manner. The overall effect of the execution

is that it appears that the execution of the sequence of

instructions P had not occurred. There are two possible object

histories for the object R which represent the two possible

orderings of the inspect requests made by the two sequences of

instructions:

a.

HR = [MakeRequest(Inspect, P, 51),
MakeRequest(Inspect, Q, 51),
MakeRequest(Update, P, 51),
MakeRequest(Update, Q, 52)]

- 142 -

b.

The inspect request of the sequence of instructions P

precedes the inspect request of the sequence of instructions

Q. Consequently, the execution of the sequence of

instructions Q overlaps the execution of the sequence of

instructions P.

HR = [MakeRequest(Inspect, Q, 51),
MakeRequest(Inspect, P, 51),
MakeRequest(Update, P, 51),
MakeRequest(Update, Q, 52)]

The inspect request of the sequence of instructions Q

precedes the inspect request of the sequence of instructions

P. Conseqently, the execution of the sequence of

instructions P is enclosed by the execution of the sequence

of instructions Q.

The execution of the two sequences of instructions P and Q are

interleaved in some manner. The overall effect of the execution

is that it appears that the execution of the sequence of

instructions Q had not occurred. There are two possible object

histories for the object R which represent the possible orderings

of the inspect requests made by the sequences of instructions.

a.

HR = [MakeRequest(Inspect, Q, 51),
MakeRequest(Inspect, P, 51),
MakeRequest(Update, Q, 51),
MakeRequest(Update, P, 52)]

The inspect request of the sequence of instructions Q

precedes the inspect request of the sequence of instructions

P. Consequently, the execution of the sequence of

- 143 -

b.

instructions P overlaps the execution of the sequence of

instructions Q.

HR = [MakeRequest(Inspect, P, 51),
MakeRequest(Inspect, Q, 51),
MakeRequest(Update, Q, 51),
MakeRequest(Update, P, 52)]

The inspect request of the sequence of instructions P

precedes the inspect request of the sequence of instructions

Q. Consequently, the execution of the sequence of

instructions Q is enclosed by the execution of the sequence

of instructions P.

In the latter two cases of the executions of the two sequences of

instructions P and Q, the inconsistency of the instance of the object

addressed by the variable R may be determined because the history of

the instance cannot be ordered into the form P <R Q or Q <R P. Thus

the existence of the lost update may be determined. In passing it is

worth noting that a lost update is only problematic when the

execution of the sequence of instructions which has been lost changes

the state of some other instance such that this latter change is

visible. Thus an inconsistency is introduced into the group of

instances in a computing system.

The ordering of a group of inspect requests is strictly irrelevant

since such requests do not alter the state of the instance addressed.

Consequently, the two following pairs of object histories are

- 144 -

equivalent:

[MakeRequest(Inspect, P, 51),
MakeRequest(Inspect, Q, 51),
MakeRequest(Update, P, 51),
MakeRequest(Update, Q, 52)]

[MakeRequest(Inspect, P, 51),
MakeRequest(Inspect, Q, 51),
MakeRequest(Update, Q, 51),
MakeRequest(Update, P, 52)]

[MakeRequest(Inspect, Q, 51),
MakeRequest(Inspect, P, 51),
MakeRequest(Update, P, 51),
MakeRequest(Update, Q, 52)]

[MakeRequest(Inspect, Q, 51),
MakeRequest(Inspect, P, 51),
MakeRequest(Update, Q, 51),
MakeRequest(Update, P, 52)]

The example above dealt with the simple case of two sequences of

instructions which updated a single shared instance. This is now

generalised to the case of two sequences of instructions which update

two shared instances.

Consider the two sequence of instructions P and Q given below:

P: BEGIN
a := [Rl Get]
b := [R2 Get]
[Rl Put f(a, b)]
[R2 Put g(a, b)]
E~

Q: BEGIN
x := [Rl Get]
y := [R2 Get]
[Rl Put p(x, y)]
[R2 Put q(x, y)]
E~

Once again, these two sequences of instructions were considered in

an earlier section. The execution of the sequence of instructions P

makes inspect requests on the instances addressed by the variable Rl

and R2 and makes update requests on both those same instances. The

execution of the sequence of instructions Q makes inspect requests on

the instances addressed by the variable Rl and R2 and makes update

requests on both those same instances.

- 145 -

The various orderings of the executions of the two sequences of

instructions are now considered from the viewpoint of the object

histories of the instances addressed by the variables R1 and R2.

There are four possible objects histories for each instance:

P < Q

Q < P

MakeRequest(Inspect, P, 51),
MakeRequest(Update, P, 51),
MakeRequest(Inspect, Q, 52)
MakeRequest(Update, Q, 52)]

MakeRequest(Inspect, Q, 51),
MakeRequest(Update, Q, 51),
MakeRequest(Inspect, P, 52)
MakeRequest(Update, P, 52)]

P encloses Q

[MakeRequest(Inspect, P, 51),
MakeRequest(Inspect, Q, 51),
MakeRequest(Update, Q, 52)
MakeRequest(Update, P, 52)]

Q encloses P

[MakeRequest(Inspect, Q, 51),
MakeRequest(Inspect, P, 51),
MakeRequest(Update, P, 52)
MakeRequest(Update, Q, 52)]

Only the first and second object histories are valid. The third and

fourth object histories must always lead to an inconsistent state.

However, since requests are being made to two independent instances,

it is necessary to consider the ordering relation of both object

histories. If the ordering relation of the two object histories is

different, the group of instances in the computing system will reach

an inconsistent state.

- 146 -

To generalise further, consider the following three sequences of

instructions:

P: BEGIN
x := [A Get]
[A Put f(x)]
y := [B Get]
[B Put g(x, y)]
END

Q: BEGIN
x := [B Get]
[B Put f (x)]
y := [C Get]
[C Put g(x, y)]
END

R: BEGIN
x := [C Get]
[C Put f (x)]
y := [A Get]
[A Put g(x, y)]
END

Once again, there are four possible object histories for each of the

instances addressed by the variables A, B, and C. However, only two

of the possible object histories yield an ordering on the sequences

of instructions in the form p <R q. These orderings are, for the

instances addressed by the variables A, B, and C respectively:

P < R or R < P

P < Q or Q < P

Q < R or R < Q

The combination of these orderings mayor may not result in the

objects A, B, and C being in a consistent state. Of the eight

possible combinations, six are valid:

P < R and P < Q and Q < R => P < Q < R

P < R and P < Q and R < Q => P < R < Q

P < R and Q < P and Q < R => Q < P < R

R < P and P < Q and R < Q => R < P < Q

R < P and Q < P and Q < R => Q < R < P

R < P and Q < P and R < Q => R < Q < P

The other two combinations are both invalid:

P<RandQ<PandR<Q

R < P and P < Q and Q < R

- 147 -

Both of these latter combinations imply that execution of one

sequence of instructions has interfered with that of another sequence

of instructions. For example, the combination P < Rand Q < P and R

< Q signifies that the requests mights have been made of the objects

in the following order:

xP := [A Get]
[A Put f(xP)]

xR := [C Get]
[C Put f(xR)]
yR := [A Get]
[A Put g(xR, yR)]

xQ := [B Get]
[B Put f(xQ)]
yQ := [C Get]
[C Put g(xQ, yQ)]

yP := [B Get]
[B Put g(xP, yP)]

The inconsistency here may arise because the value used in the Put

request made of the object B during the execution of the sequence of

instructions P depends upon the value preserved in the variable x

which is local to that sequence of instructions. This local variable

contains a value received from the object A which has since received

a Put request during the execution of the sequence of instructions R.

The interference outlined in the previous two examples cannot be

detected simply by examination of the object histories of the objects

to which requests have been made during the execution of anyone of

the sequences of instructions. To detect this interference it is

necessary to consider not only the object histories of all the

objects to which requests have been made during the execution of a

- 148 -

sequence of instructions but also the object histories of those

objects which other interfering sequences of instructions have

addressed. From all these object histories it is possible to

construct a graph representing the ordering of the group of

executions of the sequences of instructions. If the graph contains

any cycles, then an inconsistent state will be reached by the group

of objects considered. On detection of the inconsistency, the

sequence of instructions must be rolled back to a point at which no

cycles exist in the graph. At this point the group of objects will

be in a consistent state. In the example given above, all three

sequences of instructions must be rolled back, thereby undoing any

useful work done.

The disadvantage of this strategy lies in the amount of

information which is required to determine if some sequence of

requests has resulted in a group of objects remaining in a consistent

state. Furthermore, the information in the object histories about

the activities of a particular sequence of instructions may need to

be preserved beyond the lifetime of that sequence of instructions.

The information about the sequence of instructions may only be

discarded when it is known that the sequence of instructions will not

need to be rolled back.

Until now the nature of the instances to which requests are made

has not been considered. It has been implicitly assumed that these

instances do not themselves make requests of other instances. In the

- 149 -

decentralised control flow model of computation an instance may make

requests of any other instance. A request made of one instance may

result in a chain of requests emanating from that instance to other

instances. This has an important consequence on the use of the

object histories. Instances which provide

instances will probably have a long life-time.

to retain all the information about the requests

services to other

It may be necessary

made by instances

objects so that future inconsistencies may be resolved.

To constrain the amount of information whixh must be represented

by the object histories, the concept of "transaction" is introduced.

A transaction is any sequence of instructions with the following

three properties:

i. execution of a transaction which starts with the computing system

in a consistent state will always leave the computing system in a

conSistent. state;

ii. during the execution of a transaction inconsistent states may

arise; such state should be invisible to other transactions;

iii.a transaction is executed completely, or not at all.

The changes which have been made to the computing system as a

result of a transaction become permanent on completion of the

transaction. Transactions may be nested; an enclosed transaction and

the enclosing transaction are not subject to the same concurrency

control that exists between independent transactions. In the object

histories, the identification of the sequence of instructions making

- 150 -

a request is replaced by the identification of the hierarchical

transaction structure.

At least one instance of the special transaction object is

required in the computing system. An instance of this object yields,

on request, a unique transaction identifier and is responsible, on

notification that a transaction has terminated, for ensuring that a

consistent state has been reached.

5.4 CONCLUDING REMARKS

to concurrency control, described as object The approach

histories, takes much of the burden away from the user. It is the

user's responsibility to identify the different transactions within a

sequence of instructions, but the underlying run time system is

solely responsible for ensuring that the computing system remains in

a consistent state.

Locks maintain consistency at the expense of parallelism.

Time-stamps require the existence of a global clock to restrict the

requests received by the instances of objects in a computing system

to a serial schedule. The aim behind object histories is to maximise

the parallelism which can be exploited in a distributed computing

system. The obvious disadvantages to this approach are the need to

perfrom roll-back on detection of an inconsistent state and the

amount of information which must be passed between transactions and

- 151 -

instances of objects to maintain the object histories.

- 152 -

6 PROGRAMMING LANGUAGES FOR THE TWO NEW DESIGNS

Two new designs of architecture of computing system have been

outlined in chapter four, together with descriptions of the models of

computation underlying those designs. In this chapter two different

programming languages are described, one for each of the new deSigns.

Neither programming language is presented as the definitive

programming language for distributed computing systems but rather as

a vehicle for further research.

Many models of computation do not permit a computing system to be

described as a single entity. There is a sharp distinction between

the activity of a program written in a particular programming

language and the steps required to enable that program to be executed

on a computing system. The majority of contemporary computing

systems require a layer of specialised software known as the control

program. The complexity of this software varies greatly between one

computing system and another. However, the role of the control

program is essentially the same; it provides an interface between the

underlying components of the computing system and the programs which

may be executed on that computing system. For example, most control

programs organise the storage media which may be attached to the

input/output devices into some form of structure.

The control program also supports a language of its own; the job

control language [Flores, 1971]. This language has semantics which

- 153 -

usually differ from those of the programming languages used to write

software. The job control language is used to control the behaviour

of a program as it is executed. Consequently, a program or group of

programs is executed through the agency of the control program.

Both the programming languages presented in this chapter represen~

an attempt to break down the distinction between the job control

language and the programming language. Two areas of research have

influenced the proposals described here to integrate the programming

language and the job control language. The synthesis of a

programming language and a job control language was first described

in [Stoyand Strachey, 1972]. The ~rogramming language BCPL was used

to implement a small control program for a minicomputing system.

This programming language was also used as both the job control

language in which users controlled the behaviour of the computing

system, and the programming language in which users wrote

applications programs. This enabled the programmers to use the

facilities provided by the control program directly from within their

programs. Furthermore, a user's program could invoke other programs

as routines.

One of the rigid distinctions evident between a programming

language and a job control language is the different treatment given

to the storage capabilites of a computing system. Three distinct

levels of storage may be found within most contemporary computing

systems:

- 154 -

internal registers of the processing unit;

individual cells of the memory component;

storage devices attached to the input/output devices.

The internal registers of the processing unit are used during the

execution of a program to preserve values between the execution of a

few instructions. These registers are implemented using very fast

logic circuitry and, typically, the processing unit has only a small

number of such registers. For example, the Motorola M68000 has one

set of eight general purpose data registers and one set of eight

special purpose address registers.

The memory component of a computing system is used to hold the

instructions of programs and their data as they are executed by the

processing unit. The memory components of contemporary computing

systems range in capacity from thousands of cells to millions of

cells. In many cases, the actual memory component of the computing

system is insufficient to hold all the information representing the

different programs currently being executed by the processing unit.

One of the tasks of the control program may be to move the

information held within the memory component back and forth from the

input/output devices so that each program which is executed has

sufficient cells of the memory component.

The input/output devices are used for longer term storage of

programs and data. An individual storage medium such as a disc pack

may hold some millions of characters. Typically the storage media

- 155 -

are removable, thus permitting an infinite amount of information to

be accessed through the input/output devices.

The flow of information between the internal registers and the

memory component is performed under the control of the programming

language. This ensures that the distinction between the two is not

visible to the users of the programming language. The flow of

information between the memory component and the input/output devices

is under the control of the control program at the request of the

programming language. To access a particular item held on an

input/output device, the programmer must explicitly request that data

to be transferred. The distinction between the input/output devices

and the memory component is visible; an item stored on the

input/output devices may only be used within a program when it has

been transferred from the input/output devices to the memory

component. A further distinction is often made between the

information held within the memory component and that held within the

input/output devices. The former represents the code and data of

programs which may be active and in the process of being executed.

The latter represents the data and perhaps code of programs which are

inactive and cannot be executed. However, since the control program

is responsible for the movement of information back and forth between

the input/output devices and the memory component, this distinction

may be less distinct.

- 156 -

A program is used to model some world of interest to the user. If

the program is executed under the control of a batch processing

control program, input values are given to the program before

execution is started and output values become available once the

program has been executed. All the input values must be available

before the program can be executed. The program may be thought of as

a function from input values to output values. It is often desirable

to use the output values of one program as the input values of some

other program. In a batch processing environment the output values

from one program must be saved on some long-term storage medium so

that they can be used subsequently as input values to the other

program. Typically the values are stored on a magnetic storage

medium such as a disc or tape; such information may be stored for an

indefinite period of time. The interval between the completion of

execution of the first program and the start of execution of the

second program can be of any length. It would not be possible for

the information stored on the magnetic storage medium to be 'lost'.

The output values stored on the magnetic storage medium may be

used as input values to several programs. There is no need to

execute the program which generated the original output values more

than once as the storage medium is used to preserve the output values

for later use. The concept of preserving values for later use is

common to many models of computation. Within a program a variable

may be assigned a value which has been obtained by evaluating an

arbitrarily complex expression. It would be possible to re-evaluate

- 157 -

the expression each time the value it represented was required.

However, it is sufficient to retrieve the value assigned to the

variable, rather than re-evaluate the expression.

In the referentially transparent models of computation a variable

can never have some other value assigned to it. Therefore, to

preserve a succession of output values a new variable is required for

each of the values produced. Whilst this requirement makes symbolic

manipulation of the program text feasible, it may lead to wasted

storage space. Every variable to which no further reference will be

made occupies unuseable storage space. In many implementations of

referentially transparent programming languages a garbage collector

is provided to reclaim such storage space. Other techniques exist to

prevent the unneccessary creation of the wasted storage space in the

first place. In the von Neumann model of computation the succession

of output values can be represented by the re-assignment of values to

existing variables. This allows the space occupied by a value which

will not be accessed again to be re-usedi this form of assignment

represents an optimisation of the use of the memory component. It

depends upon the ability of the user to achieve a correct partial

ordering of the statements of the program, such that a variable is

not re-used until all the statements dependent upon the initial value

aSSigned to the variable have been executed.

A variable within a program allows some value which has been

calculated to be preserved for use at a later occasion. These

- 158 -

variables disappear once the program in which they were created has

been executed. In order to preserve values between executions of

programs, variables must also exist outside of the program but within

the control program. One of the tasks of the control program of a

computing system is to organise the storage of information within the

computing system for differing periods of time.

With the increasing sophistication of control program languages it

is quite often possible to use them to write programs. The

distinction between writing programs and writing job control scripts

to control the behaviour of those programs has become blurred.

Indeed, recent developments have made it even more difficult to

discern the difference between the two activities. For example, the

REXX language [Cowlishaw, 1984] has been designed specifically with

both activities in mind. It can be used to write conventional

programs which are compiled into executable machine code, or job

control scripts may be written to control the execution of programs.

Programming languages such as Pascal and Algol 68 provide a rich

set of data and control structures in which a problem can be

represented. In contrast, many job control languages provide only

rudimentary structures. The control structures are limited to

conditional statements and explicit transfers of control. The data

structures are limited to single memory cells and various

organisations of file such as sequential, indexed sequential and

random. Whilst there has" been a trend towards the formal definition

- 159 -

of programming languages there has been no such development in job

control languages. This

languages as they are not

is of no consequence for many job control

sufficiently powerful to be used as

programming languages. However, as the level of sophistication

increases it is likely to become a problem. For example, the

different UNIX shells support languages which provide many of the

control structures found in conventional programming languages.

Programs written in programming languages such as C may be called as

routines from control programs. It is possible to write quite

complex programs in these languages.

As noted earlier, the only data structuring capablities provided

in many control program environments are those related to the storage

of information on the input/output devices. The methods of

organising the information are usually classified by the access

patterns which each supports. For example, the records stored within

a file organised sequentially may only be accessed sequentially. The

information stored within a file has no intrinsic type associated

with it. Depending upon the underlying structure of the file it may

be a sequence of blocks or a sequence of lines. It is the task of

the users of the information to ensure that the information is

accessed in a sensible manner. The procedures to access the

information operate on the raw information stored on the device.

A read request causes some physical unit of information to be

transferred and it is the responsibility of the user to transform

- 160 -

this physical unit into a logical unit. For example, the read

request may transfer a block of 512 characters from the input/output

device to the memory component. If the information represented is a

sequence of text lines, then it is the responsibility of the users to

determine the beginning and end of the successive lines. This low

level interpretation is no different from the simple requests which

may be made by the processing unit of the memory component. Single

words of information are transferred between the memory component and

the processing unit. However, most programs require a higher level

interpretation of the information held within the memory component,

so that a sequence of adjacent memory cells in interpreted as an

array or a record.

The conflict between the different mechanisms for the storage of

information for differing periods of time is described in [Atkinson,

Chisholm, and Cockshott, 1981]. A programming language usually

provides a set of constructors for the representation of data

structures within a program. Data structures which are to exist

beyond the lifetime of a program must be transmitted to the control

program for storage on some storage medium. Typically, the

constructors for the representation of data structures within a

program do not match those supported by the control program. Some

programming languages have been extended to provide additional

constructors which match those supported by the control program. The

alternative approach, and that taken in the development of the

programming language PS-Algol, supports the constructors of the

- 161 -

programming language on the storage media provided by the control

program.

The seemingly

language and the

artificial distinction

job control language

between the programming

stems partly from the

distinction between programs which are active and data which is

passive. Neither of the programming languages presented in this

chapter supports this divided view. In both programming languages

the distinction between short term storage in the memory component

and long term storage on some storage medium is deliberately blurred.

Within many distributed computing systems, the basic unit which

may be shared between the component computing systems is the file. A

file contains a set of information with which little or no type

information can be associated. To use the contents of the file the

access patterns appropriate to that file must already be known as

must the manner in which the individual items of the file are to be

interpreted. It is quite likely that access routines and routines to

interpret the information in the file will be duplicated both at the

sending computing system and at the receiving computing system.

Moreover, it is not possible for the owner of the information to

control rigidly how the information is used.

The programming language for recursive control flow computing

systems treats both short term storage and long term storage

equivalently. This has been achieved by considering the filestore of

- 162 -

the computing system as an extension to the memory component of the

computing system. A single hierarchy of storage is thus presented to

the programmer. Names beneath a certain point in the hierarchy

identify the cells within the memory component which exist only

during the execution of a program. Names above that point identify

the various files in the filestore which exist beyond the execution

of individual programs.

In contrast, within the programming language for decentralised

control flow computing systems objects are used to represent data

structures both during the execution of a program and outside the

execution of programs. Transfer of objects between short term

storage and long storage is the responsibility of the underlying

software interface between the components of the computing system and

the program. Instances of objects which are passive may be held on

long term storage. When the instance of an object becomes active, as

when it receives a request from some other instance of an object, the

instance is transferred to short term storage so that the control

structures associated with the instance may be executed.

- 163 -

6.1 RELATED WORK

Several programming languages have been designed to address the

issues outlined in this and earlier chapters, such as the expression

of concurrency, the maintenance of consistency, and the perSistence

of data. In this section some of these programming languages are

reviewed. A wider survey of the different programming languages

designed for use in concurrent computing systems has been presented

in [Stotts, 1982].

6 .1.1 Pascal-m

The extensions to the programming language Pascal which have

resulted in Pascal-m [Abramsky and Bornat, 1983] include the addition

of mailboxes, processes, and modules. The programming language is

designed for the construction of programs for networks of loosely

coupled computing systems.

A mailbox represents a named channel through which messages may be

transmitted between processes. When a mailbox is declared within a

process or module, it is given a type by the programmer. This

restricts the messages which may be transmitted through the mailbox

to being values of the defined type. Consequently, run time type

checking of the messages sent through mailboxes is unnecessary.

However, strictly applied compile time type checking restricts the

usefulness of the mailboxes as will be outlined later. Mailbox

- 164 -

identifiers may themselves be transmitted within a message; this

allows the connection topology of a given set of processes to be

changed dynamically. However, reference or pointer values may not be

transmitted within messages. This ensures that the local variables

of one process cannot be manipulated directly by some other process.

Each process has associated with it a thread of control which

allows the execution of the processes within a module to proceed

concurrently. It is not possible for the programmer to control this

concurrency directly. Any number of processes may send messages

through a given mailbox and, correspondingly, the messages sent

through a mailbox may be received by any number of processes. A

process sending a message through a mailbox is delayed until there is

at least one process to receive a message from that mailbox. Indeed,

the transmission of messages through mailboxes is synchronous.

Modules are introduced as a structuring tool to group together the

definitions of a set of processes and to declare the mailboxes which

are required for communication. The mailboxes may be associated with

a particular process either statically, by being explicitly named

within the textual description of the process, or dynamically, by

being passed as a parameter to the process. A process is rather like

a conventional Pascal program; whereas the latter communicates with

its environment through the use of external files, the former does so

through the use of mailboxes. However, processes which communicate

with one another are all declared within a single module. A useful

- 165 -

development of the programming language would be to allow processes

to exist outside a module definition.

construction of general purpose processes.

This would permit the

The strict compile time type checking of mailboxes makes it

impossible to write general purpose processes which can receive

messages of any type. This problem is particularly acute when

attempting to write a process which provides a general service to

users. At the time the process is written, the variety of types

which may appear within the messages it receives from user processes

is, in general, unknown. Some form of mechanism is required to

overcome the strict compile time type checking. This is provided in

the Pascal-m programming language by the special type "ANY" which may

be used to encapsulate any type and allows it to be passed within a

message. The type which is encapsulated may only be decomposed by

the process which originally encapsulated it.

6.1.2 Argus

The preservation of the consistency of data in the presence of

concurrency and hardware failures is addressed by the proposals in

the Argus programming language [Weihl and Liskov, 1983].

Traditionally, the problem of consistency has only been tackled in

database management systems or in file systems. The solution adopted

in this programming language is based on abstract data types with the

additional properties of atomicity and resilience. It is motivated

- 166 -

by the desire to write programs for distributed computing systems

where these issues will undoubtedly arise.

A basic structuring tool within the programming language is the

"guardian". A guardian consists of a collection of data objects and

processes. Associated with each guardian is a thread of control

which allows execution of the different guardians to proceed

concurrently. The processes within a guardian may manipulate the

collection of data objects local to that guardian. Information may

be transmitted between different guardians through the use of the

processes of the particular guardian. There is no globally

accessible memory component.

Certain atomic types are built into the programming language. The

operations of these types are classified as "readers" or "writers"

and concurrent access to data objects of the atomic types are

excluded in the expected manner; several "reader" operations may

proceed concurrently on an object of an atomic type, but any "writer"

operation must have sole control of the object. Locking is provided

to allow the user to obtain serial schedules when appropriate.

It has been recognised that these built-in atomic types limit the

degree of concurrency which may be exploited. To increase the degree

of concurrency, user defined atomic types are supported. The type

"mutex[t]" defines an atomic type, based on the existing type "t",

which provides mutual exclusion to the accesses made to values of

- 167 -

this type. The operation "seize", when applied to an object of such

an atomic type, gains sole possession of that object. A further

operation, "pause", causes the object gained to be released for a

system dependent period of time before it is regained. It is

guaranteed that the object will be regained before execution resumes.

The use of the operation "pause" allows a programmer to implement

conditional critical sections. The operation "seize" is used to gain

control of some object; assuming that the condition has been

fulfilled, the process continues with sole control of the "seized"

object. However, if the condition has not been fulfilled, the

process may use the operation "pause" to release the control of the

"seized" object, and be made to wait for some system dependent period

of time before it regains control of the object; the process may then

check the condition once again.

Two potential problems are not directly addressed. Firstly, it

may be possible that some other process destroys the "seized" object

during the period which some other process has "paused". Secondly,

nesting of the use of the operation "seize" may lead to deadlock; the

effect of the operation "seize" is the same as that of "lock"

discussed in chapter five.

Atomic variants are also introduced into the programming language.

These are not dissimilar to variant records in the programming

language Pascal. An atomic variant is an atomic type. An object of

- 168 -

an atomic variant may be in one of a number of states. Each state is

identified by a particular tag of the atomic variant. Certain

operations are provided to change the state of an object of an atomic

variant type. Such changes are, however, subject to confirmation.

If the process which requested a change to the state of an object of

an atomic variant type aborts, the state of that object is changed

back to that it had before the process requested the change. Once

again, the potential problem of the effect that restoration of a

previous state of an object might have on processes which are

dependent upon the current state of that object is not addressed.

No explicit operations are provided to signify that a process has

aborted or committed the changes it has made to the different data

objects. Rather, the run time support environment of the programming

language must initiate the appropriate action when a process

terminates.

6.1.3 Distributed Path Pascal

Distributed Path Pascal [Campbell, 1983] is an extension to the

"P4" version of the programming language Pascal. The extension

permits data encapsulation, open path expressions, and process

structures.

Data encapsulation is implemented by the introduction of objects

as an additional type constructor to the programming language. An

- 169 -

object may contain the declarations of variables which are local to

each instantiation of the object. Structured types declared within

the object may be exported to the environment surrounding the

description of the object. Routines may be declared within the

object to provide operations which manipulate the variables which are

local to each instantiation of the object. Some of the routines thus

declared may be classified as interface routines; these are

accessible from outside the instantiation of an object.

Initialisation code may be used within the description of an object.

Whenever an instance of an object is created, the initialisation code

is executed.

Since objects have been introduced as type constructors, an object

value may appear wherever a value of a structured type, for example,

record or array, may appear. It is also possible to transmit

reference values of types between different objects. This allows one

object to pass a reference value which denotes a reference to a

variable within the local space of the instantiation to a second

object. Consequently, this second object may manipulate the variable

indirectly.

Open path expressions are used to specify the synchronisation

constraints for a possibly concurrent set of executions. The

description of an object contains a path expression which specifies

the permitted orders of sequential and concurrent execution of the

interface routines of the object. Three kinds of constraint may be

- 170 -

specified:

i. "A; B" specifies that the execution of A must have terminated

before execution of B may commence;

ii .. "n: C)" specifies that there may be at most n concurrent

executions of C;

iii." [C]" specifies that the concurrent executions of Care

unrestricted.

The constraints may be combined to yield arbitrarily complex path

expressions. For example, "1: (get); 1: (put)" specifies that there

may be at most one execution of the routine "get" and one execution

of the routine "put". Furthermore, the routines may not be executed

concurrently.

The combination of objects and path expressions allows the

necessary restrictions on the concurrent access to the objects to be

specified which will enable correct synchronisation of requests to a

common object. However, this synchronisation will only give the weak

consistency outlined in chapter five.

To permit the expression of concurrency within a program,

processes have also been introduced into the programming language.

The process is a structuring unit

thread of control. Surprisingly,

between processes through the use of

which has its own independent

information may be transmitted

a globally accessible memory

component and not solely through the use of the interface routines.

- 171 -

The two structuring techniques introduced into the prograrruning

language are distinct. Processes are long-lived with their own

thread of control. Information is transmitted between processes

using shared memory. In comparison, objects are totally passive.

Control may be passed to an object as the result of a call to an

interface routine, but the thread of control is always passed back to

the process which invoked the routine. Whilst the path expressions

associated with each object will guarantee conSistency in the weak

sense, the introduction of processes into the prograrruning language

makes the problem of maintaining the consistency of the objects that

much harder.

To cater for distributed computing systems, the concept of object

has been broadened to include remote objects. A remote object has

the same semantics as an object. Indeed, the remote procedure call

semantics are used to hide the message passing which presumably takes

place on the underlying communications medium when an interface

routine of a remote object is invoked. Similarly, a remote object is

a passive entity.

Each remote object has an address allocated to it by a system

administrator. This address is unique in the whole network of

computing systems which comprises the distributed computing system.

Association of a particular remote object with a process may occur

statically, by reference to the unique address within the textual

description of the process, or dynamically, by invocation of the

- 172 -

operation "import" which returns a reference t th o e named object. In

either case, the address of the remote object may be specified

explicitly or implicitly. The naming scheme chosen gives a flat view

of the objects within the computing system.

6.1.4 Occam

The programming language Occam [May and Taylor, 1983] has been

designed for writing software for computing systems consisting of

large numbers of interconnected subordinate computing systems.

Typically, these subordinate computing systems will be Transputers.

The aim of the design of the programming language is to be simple.

It is based on concepts of concurrency and communication first

proposed in the programming language CSP [Hoare, 1985].

Additionally, the programming language is also claimed to be its own

formal semantics, and activities such as program transformation are

possible.

The basic unit of structure supported within the programming

language is that of the process. A process is an active entity which

has associated with it a thread of control. Each process has a set

of variables which are local to the instance of the process. These

variables may be manipulated only by the routines declared locally to

the process.

- 173 -

Communication may take place between processes using named

channels. Each channel may transmit a single "word" value from one

process to another process. The channels declared within a program

have no type information associated. Consequently, the messages

transmitted through a channel are not type checked. It is not

possible to have more than one process transmitting information along

a channel, or more than one process receiving information from a

channel. The channels must be named explicitly in the textual

description of the program and so it is not possible to alter the

toplogy of the interconnection between the processes dynamically.

Indeed, it is not possible to create processes dynamically.

Concurrency may be exploited by the programmer at an extremely low

level. The constructor "PAR" is used to denote that two or more

statements may be executed concurrently. The memory locations used

by such statements must be distinct. However, the wider aspect of

consistency is not addressed.

6.1.5 PS-Algo1

An interesting extension to an Algol-like programming language,

S-Algol, has attempted to bridge the gap between programming

languages on the one hand and control programs on the other hand.

The programming language PS-Algol [Atkinson, Bailey, Chisholm,

Cockshott, and Morrison, 1983] has extensions which enable the data

objects manipulated within a program to outlive the lifetime of that

- 174 -

program. The mechanisms to achieve this are those already built into

in the programming language S-Algol.

The persistence of a data object is independent of the way in

which that data object is manipulated by a program. Furthermore, the

expression of what a program does is independent of the persistence

of the data manipulated by that program. With conventional

programming languages, the type information of long-lived data

objects is "lost" between different executions of programs when those

data objects are stored on long term storage media. Typically, the

data objects must be mapped onto one of the different variety of file

organisations which are supported by the control program of the

computing system. This mapping is the responsibility of the user of

the data objects and it is often necessary to write substantial

sections of program to achieve it.

The persistent data objects are represented in a database which is

held on the file system provided by the control program. Maintenance

of this database is the responsibility of the run time support

environment of the PS-Algol programming language. A database is

organised as a table containing entries which denote the persistent

data objects. Each entry of the table is a pair of values consisting

of a key by which the data object may be accessed and a pointer to

the data object itself. Several programs may have the same database

open for reading at the same time, but only one program may have the

database open for writing at anyone time. The same database may be

- 175 -

opened and closed several times during the execution of a program.

However, no other program may make changes to the database during the

intervening period when the first program has closed the database and

has not re-opened it.

The persistent data objects are those data objects which can be

reached from the table. A scanning strategy similar to that found in

traditional "mark scan" garbage collectors is used to identify such

data objects. The changes made to the database must be committed

explicitly using the operation "commit", otherwise all the changes

since the last use of the operation "commit" are lost.

Concurrency may not be exploited by the programmer within a single

program. However, the execution of several programs may be

concurrent. Data objects cannot be shared between the concurrent

execution of these programs since the restriction on the access to

the database containing the data objects will result in a serial

schedule of the programs.

6.1.6 Analysis

None of the programming languages outlined above comes

sufficiently close to the requirements of a programming language

which is designed for the construction of software systems for the

general purpose distributed computing systems described in chapter

four. These requirements are the following:

- 176 -

the instances of objects created as a result of the execution of

a sequence of instructions may exist after execution of that

sequence has terminated;

the relationship between the execution of two sequences of

instructions may be that of client and server;

processes may be executed concurrently;

the instances of objects in a computing system must be maintained

in a consistent state.

These following mechanisms are required within the programming

language if the requirements enumerated above are to be supported:

persistence of data;

communication between different sequences of instructions;

concurrency;

concurrency control.

The following table shows how the different programming languages

outlined above rate on each requirement:

Persistence Communication Concurrency Concurrency
of Data Control

Pascal-m No Yes Yes No

Distributed No Yes Yes Yes
Path Pascal
Argus No Yes Yes Yes

Occam No Yes Yes No

PS-Algol Yes No No Yes

Different mechanisms to support communication between sequences of

h b d · ned These mechanisms instructions and concurrency ave een es~g •

- 177 -

are outlined below.

Two different approaches to communication between sequences of

instructions have been taken by the designers of the programming

languages surveyed above. Since the computing system for which these

programming languages are designed are geographically distributed,

the transmission of information between the different subordinate

computing systems of the distributed computing system takes place

over some communications medium. Typically, these transmissions will

make use of the underlying primitive operations "send" and "receive"

by which messages are transmitted between the subordinate computing

systems.

Programming languages such as Pascal-m and Occam permit the

programmer to use these primitive operations. The use of messages

allows the representation of a very generalised flow of data between

the different processes in a particular computing system. In

particular it supports communication between processes which is

directed through other processes. For example, a client process may

require some service from a server process. Rather than communicate

directly with the server process, the client process may have to

communicate with some "directory" process which routes the messages

to a particular server process. All communication between the client

process and the server process may take place throught the agency of

this directory process. Furthermore, the server process may not

respond immediately to the messages received from the client process;

- 178 -

they may queued awaiting some convenient time when the server process

becomes free to process them.

In contrast, the primitive operations of the underlying

communications medium may be hidden from the programmer. The

semantics of the procedure call has been used to provide a higher

level inter-process communication mechanism - the remote procedure

call. A client process makes a request of a server process as if it

was issuing a procedure call. The client process is made inactive,

and control is passed from the client process to the server process.

The server process becomes active and responds to the request. It

then becomes inactive and control is returned to the client process

which is made active again. Data may flow between the client process

and the server process as control is passed between the two. The

procedure call is good at representing a direct relationship between

the client process and the server process where the server process

responds immediately to the request from the client process.

The use of messages appears to reflect the freedom presented by

the underlying communications medium. A process which transmits a

message to some other process does not need to receive a reply from

that process. Furthermore, messages may be received at any point

during the execution of a process simply by use of the operation

"receive". In contrast, the semantics of the procedure call

restricts this freedom. Every process which receives a request must

make a response to that request at some time in the future.

- 179 -

Furthermore, since the receipt of a request by a process causes a

procedure call to be made to some routine to handle that request, the

requests may only sensibly occur at the top-most level of the

process. Thus, the body of a process is impliCitly a loop which

continually receives messages and discriminates between the different

requests, causing the relevant handling procedure to be invoked. The

differences and similarities between procedure calls and messages

have been discussed in [Stankovic, 1982]. In particular, the effect

that the different mechanisms have on the communication patterns

between sequences of instructions is outlined, and the relevance of

the mechanisms to the exploitation of parallelism is shown.

The programming language Occam is the only one of the five

surveyed to allow the programmer to express concurrency directly.

The other four programming languages all support concurrency at a

coarser level which cannot be controlled directly by the programmer.

In the case of the programming language PS-Algol, this concurrency is

so coarse as to be of little or no interest here. Of the remaining

three programming languages, different processes may be executed

concurrently in each. Giving the programmer the ability to express

concurrency directly does not necessarily yield an efficient program.

From the estimates of the execution speed for the various constructs

given in [INMOS, 1984], an analysis of a program text will determine

when concurrency may actually yield a program which is faster than

its strictly sequential counterpart. Additionally, for concurrency

to be generally useful, either the semantics of the programming

- 180 -

language must be restricted, or constructs to control the concurrency

must be introduced to ensure that the concurrency does not lead to

the kind of problems described in chapter five. For example,

statements which make use of shared variables are not suitable

candidates for concurrent execution.

The concurrency control mechanisms required of a distributed

computing system must ensure that all objects within the computing

sytem are maintained in a consistent state at all times. In

particular, the issues discussed in chapter five must be considered.

The programming languages Argus and Distributed Path Pascal both have

concurrency control mechanisms which will only maintain the

consistency of the objects within a computing system in the weak

sense. As was shown in chapter five, such consistency is not

sufficient. Of the remaining three programming languages surveyed,

neither Occam nor Pascal-m address this particular issue. The

concurrency control mechanisms required must be implemented by the

programmer. The concurrency control mechanism for the programming

language PS-Algol provides a satisfactory solution, but as was noted

earlier, little or no concurrency may exploited within programs

written in that programming language.

- 181 -

6.2 THE BASIX PROGRAMMING LANGUAGE

The BASIX programming language [Gouveia Lima, et al., 1983] was a

first attempt at an implementation of a high level version of the

recursive control flow model of computation and attempts to unify

concepts of programming languages (e.g. BaSic, Lisp) with those

normally associated with control programs (e.g. Unix shell). Within

the BASIX programming language there is a single notion of object

which serves the role of variables, lists, messages, programs, files,

and directories. There are a number of long term goals for the BASIX

programming language:

the programming language

environment such as that

programming language;

should provide a complete programming

found with an object-oriented

the programming language should have control mechanisms for the

management of concurrent processes.

6.2.1 OVerview

The syntax of the Basix programming language is presented more

fully in [Gouveia Lima, 1984]. In what follows, a short description

of the programming language is given. In [Gouveia Lima, 1984] the

semantics of the programming language have been presented very

informally through the use of example programs. In the subsequent

section the attempt to present the semantics more formally is

described.

- 182 -

All users of the BASIX programming language on a particular

computing system share the same information structure and interact

with this structure via the processes which they activate. At any

time a user has access to a particular object within the information

structure. The user may select which object is required by giving

its name. New information entered by the user changes the contents

of the object, but does not cause execution. Commands may be issued

by the user. These are executed and may cause changes to the

information structure of the computing system. Such changes are

visible to all users of the computing system.

Information is represented as a single nested structure which

merges the concepts, found on contemporary computing systems, of

directory, file, array, variable, message, and program. Each is a

named object whose specific semantics are defined by which of the

five system-wide operators (LOAD, STORE, TAKE, PUT, EXECUTE) is

performed on the object. A named object (i.e. the contents of a

memory cell) may be accessed as a "variable", as a "message", or as a

"program".

ways:

Semantics

variables

message

program

These are distinguished in the language in the following

Operation

LOAD
STORE

TAKE
PUT

EXECUTE
EXECUTE

- 183 -

Usage of Name

••. name
name := •••

. •. name [] ..•
name [] := •••

name object
name (••.)

A name consists of one or more selectors "(f}selector(fselector}"

defining a path to the target object. Selectors are interpreted from

left to right, each selector moving the remainder of the name to an

adjacent context. A selector may be:

an alphanumeric character string;

a numeric character string;

a bracketed object whose execution yields the selector;

a character defining one of the four accessible contexts:

Context Character

local

parameters $

non-local

current /

Explanation

local objects of a program

parameters of a called program

non-local objects of a program

current context i.e. the
directory of the program;
this character may optionally
occur at the start of a name.

For example "$" is used to access standard input "$/I", and standard

output "$/0", and the parameters "$/1", "$/2" ••. of a process.

Any program consists of a list of commands separated by control

symbols, this being represented as "command (control command} •.• ".

The control symbols define the order of execution of the two adjacent

commands, which may be sequential ";", pipelined "1" or parallel "&".

They also define how the standard inputs and standard outputs of the

commands are connected together. BASIX accepts commands of the form:

name object

object

- 184 -

The first command is a declaration used to create and label an object

relative to the local context. Both the "name" and the object are

evaluated before the assignment. The second command is then

immediately executed and either returns some value to the user or

makes some change to the information structure. An executable object

is a list of objects separated by blanks where "blank" may be a

sequence of spaces, a comma, or a newline. The leftmost object of

the list defines the task to be performed. There are three types of

executable objects:

BASIX Format Example

procedure call object { object object} ... sort in out

statement keyword { object} .•. ifa<b ...

expression object { operator object} ... c + d

Keyword commands define conditional "if", repetitive "do", and

replicative "for" execution etc. Conditional and repetitive commands

centre on the conditional "object -> object" which specifies that the

second object is only executed if the result of the first object is

"true". The notation for the conditional is taken from [Dijkstra,

1976]. The command "if .•. fi" consists of a list of commands which

execute in turn until a conditional is "true". This command may be

used in the following ways:

Traditional Construct BASIX Format

IF THEN if object -> object fi

IF THEN if object -> object;
ELSE object fi

IF THEN if object -> object; ...
ELIF THEN ... object -> object;

- 185 -

ELSE object fi

The command "do od" consists of a list of commands which execute

repeatedly until a conditional is false. The statement may be used

in the following ways:

Traditional Construct BASIX Format

WHILE ... DO .•. do object -> object od

REPEAT •.. UNTIL object;
do object -> object od

The command "for ••• rof" has the following format:

for alphanumeric = object do object rof

This "for" command evaluates the first "object" and then replicates

the second "object" replacing "alphanumeric" for each component of

the resulting object. By using a "quote object" which returns an

unevaluated object, and a "to" operator, that generates sequences,

the statement may be used in the following ways:

Tradi tional Construct BASIX Format

FOR i IN @a @b @c DO for i = quote (a b c) do
I' .~ := 0 ./(i) := o rof

FOR i := lTO n DO for i = 1 to n do
a[i] := 0 a/(i) := 0 rof

Lastly, an object may be any recognisable construct such as:

Construct Example

expression a + b - c

pathname x/y/1

number 10

data structure (a 10 (11 12»

function call fed, e) or f d e

process (merge a1 a2 a3 a4 a; sort a b)

- 186 -

The object handles both procedure calling and expression evaluation.

AS a final illustration of the BASIX language a recursive

Quicksort program "rquick" is shown below. The essential idea in

Hoare's sorting algorithm is to partition the list of numbers to be

sorted into two sublists. The first sublist will contain all numbers

less than some arbitrary value ("pivot" - the element v[hi], where

the boundary of the list is v[loJ ••• v[hiJ) chosen from the list,

and the second sublist will contain all numbers greater than or equal

to the value. This partitioning is recursively applied in turn to

the two sublists (rquick(lo, i-I), rquick(i + 1, hi) until each

5ublist contains only one element. When all sublists have been

partitioned, the original list of numbers has been sorted.

(* the array to be sorted v[OJ v[lJ ... v[n - IJ *)

v: (512 87 503 61 908 170 897 426
765 275 154 509 612 677 653 703)

(* recursive Quicksort - rquick(10, hi

rquick:
(10 := $/1 & hi := $/2;
if 10 < hi ->

(i := 10 & j := hi;

integer) *)

pivot := v/(j); (* pivot value *)

fi
)

do i < j ->
(do (i < j) and (v/(i) <= pivot) -> i := i + 1 cd
do (j > i) and (v/(j) >= pivot) -> j := j - 1 cd
(* v/(i) and v/(j) are out of order *)

if i < j -> exchange(v/(i), v/(j» fi
)

cd;
(* move pivot to v/(i) *)

exchange v/(i) v/(hi)
rquick i+1 hi & rquick 10 i-I

)

- 187 -

(* call Quicksort "rquick(O, n-l)" *)

rquick 0 15

The Quicksort program shown above may be divided into three

sections: at the top is the declaration of the array "v" to be

sorted, in the middle is the declaration of the program object

"rquick", and at the bottom is the call to "rquick". The array to be

sorted is, in fact, the sixteen numbers, 512 703. The

corresponding implicit address selectors, from the left, are "0 1 2 3

" , alternatively

explicitly:

the selectors could have been declared

v:(0:512 1:087 2:503 3:061 4:908 ... 15:703)

This is necessary when alphanumeric selectors are used. In the

program object "rquick", storage for the variables "10 hi i j pivot"

is created on demand. The first line of rquick initialises "10" and

"hi" from the first and second parameters in the call to "rquick"

10 := $/1 & hi := $/2

The control symbol "&" defines that the two commands are to be

executed in parallel. This is followed by the body of the Quicksort

which contains calls to two procedures: "exchange" which swaps two

elements that are out of order, and the two calls of "rquick" that

sort the subsets in parallel. Two formats for calls are illustrated

in the above program, the traditional syntax " exchange ()" and

the list of objects "exchange " However, the meaning is

identical. It should also be noted that the array elements are

accessed as "v/(i)" and not as "vii".

- 188 -

6.2.2 Formal Semantics

No attempt has been made in the work published to describe the

semantics of the Basix programming language formally. A formal

definition of the semantics of any programming language is useful

since it can be used to determine the meaning of a statement written

in that language. It has, however, proved extremely difficult to

specify the semantics of the Basix programming language formally. An

attempt to do so is described below and the reasons for the

complexity of the semantics and the ultimate failure of the attempt

is outlined.

Intuitively, the operation 'Fetch' which retrieves the value of an

object within the memory component of a distributed computing system

is relatively simple. Given a memory component and a pathname, this

operation yields the value of the object specified by that pathname

in the memory component.

Each object in the memory component may either be atomic or

compound. An atomic object is simply a number. A compound object

consists of a sequence of component objects with which names may be

associated. There is an obvious restriction that a name may not be

associated with a non-existent object.

object = number U composite

composite :: directory
entries

map name to Nl
seq of object

- 189 -

To retrieve an object given a pathname, the selectors in that

pathname must be evaluated in a given context. There are two

possible contexts - the current context and the dynamic context.

state :: current
dynamic
memory

pathname
pathname
object

The operation 'Fetch', given a pathname and an initial state, will

retrieve the object defined by the pathname within the memory

component represented by the state. Additionally the initial state

may be changed since evaluation of the selectors within the pathname

may have side-effects.

Fetch(p : pathname, s : state) 0 : object, s'
let sl, i = Transform(p, s, [])

state =

in 0, s' = Fetch_Object(i, memory(sl»

The operation 'Transform' transforms a pathname, which may include

symbolic names among the selectors, into a sequence of numeric

selectors.

Transform(p : pathname, s : state, i : seq of Nl)
s' : state, i' : seq of Nl =

if len p = 0
then s', i' = s, i
else if hd P IN number
then s', i' = Transform(tl p, s, i - [hd p])
else if hd P IN name
then s', i' = Transform(tl p, s,

i - [Fetch_Object(i, memory(s»(hd
p)])

else
then

else
then
else
then

if hd P IN object
let v, sl = Evaluate(hd p, s)
in s', i' = Transform(tl p, sl, i - [v])
if hd P = dynamic
s', i' = Transform(dynamic(s) - tl p, s,
if hd P = superior
s', i' = Transform(tl p, s, i(l, .. , len

- 190 -

[])

i - 1»

else if hd P = current
then s', i' = Transform(current(s) - tl p, s, [])
else s', i' = s, []

Finally, the operation 'Fetch_Object' retrieves an object given

sequence of numeric selectors.

Fetch_Object(s : seq of N1, 0

if len s = 0
then 0' = 0

object) 0'

else 0' = Fetch_Object(t1 s, o(hs s»

object =

a

These specifications ignore the possibility that a side-effect of

evaluation of a selector may be to remove an object from the memory

component. For example, suppose that the object "0" is the compound

object shown below:

o = make composite«(a -> 1, b -> 3 },
- [9, 12, 15])

In the context of the object "0", the pathname "/b" denotes the

third component object, that is the object with value "15". Removal

of the second component, the object with value "12", changes the

compound object "0" to be that show below:

o = make composite«(a -> 1, b -> 2 },
- [9, 15])

Now consider the case when the third object of the object "0" is

itself some other compound object; that is, the object "0" is the

compound object show below:

o = make composite«(a -> 1, b -> 3 },
- [9, 12, make composite«(x -> 1 },

- [15])])

- 191 -

If the object denoted by the pathname "/b/(rm /2; 1)" is

retrieved, intuitively the object yielded would be that with value

"15". However, that is not the case using the operations described

above. Evaluation of tThe second selector in the pathname has the

side-effect of removing the second component object, that is the

object with value "12". Since the first selector "/b" in the

pathname has already been transformed into a numeric selector, namely

"/3", the operation to retrieve the object will fail to retrieve the

correct object.

One possible solution to this problem is to re-evaluate the

selectors in a pathname as soon as it is known that one selector has

caused a side-effect. However, this solution would result in the

side-effect caused by the evaluation of some earlier selector being

made to happen again. An alternative solution is to associate a

unique identifier with each object in the memory component.

object = number U composite

composite :: directory
entries

map name to address
seq of address

state current
dynamic
memory
root

pathname
pathname
map address to object
address

Fetch(p : pathname, s : state) 0 : object, s'
let 51, a = Transforrn(p, s, root(s»)
in 0, s' = memory(sl) (a), sl

Transform(p : pathname, s : state, a
s' state, a' : address =

if len p = 0
then s', a = s, a
else if hd P IN number

- 192 -

address)

state =

then 5', a' = Transform(tl p, 5, memory(s) (a)(hd p»
else if hd P IN name
then 5', a' = Transform(tl p, 5, memory(s)(a)(directory(hd

p»)
else if hd P IN object
then let v, 51 = Evaluate(hd p, 5)

in 5', a' = Transform(tl p, 51, memory(sl)(a)(v»
else if hd P = dynamic
then 5', a' = Transform(dynamic(s) - tl p, s, root(s»
else if hd P = current
then 5', a' = Transform(current(s) tl p, s, root(s»
else 5', a' = s, NIL

It has been assumed that sequences of selectors in the form

"/a/b/ .. ", where "a" and "b" are arbitrary selectors, have been

reduced to "/a".

The drawback to this specification is that it now requires a

globally unique identifier to be associated with each object in the

distributed computing system. Furthermore, whilst this specification

shows the meaning of retrieval, it does so in isolation from all the

retrievals that might take place simultaneously.

6.2.3 Informal Semantics

Given the difficulty in presenting the semantics of the Basix

programming language formally, the semantics are given informally in

this section. but in more detail than in any of the work already

published.

Commands

The user interacts with the distributed computing system by

issuing commands. These commands are executed and may cause

changes to the state of any subordinate computing system of the

- 193 -

distributed computing system.

I : 0

An unused memory cell is associated with the identifier I in the

current context. The value obtained from evaluation of the

object 0 is stored in this memory cell. An error will result if

the identifier I is already associated with a memory cell in the

current context. No value is returned as the result of

evaluation of this command. There is actually a confusion

between the static and dynamic use of this command. The static

use allows labels to be attached to portions of the program code.

These labels may then be used as the destination of GOTO

statements. The dynamic use allows a name to be associated with

a memory cell as the program is executed.

used here is the latter.

The interpretation

o

The object 0 is evaluated in the current context. The value

obtained through evaluation of the object 0 is not returned.

Objects

Objects are the basic building block of the programming language.

E

The expression E is evaluated in the current context. The

evaluation may cause changes to the state of the computing

system. The value obtained through evaluation of the expression

is returned.

5

The statement 5 is evaluated in the current context. The

- 194 -

evaluation may cause changes to the state of the computing

system. No value is returned.

(01 ... On)

Each object in the list of objects is evaluated concurrently in

The evaluation of any of the objects may the current context.

cauSe changes to the state of the computing system. The order of

the evaluation of the list of objects may be visible. The

evaluation of the whole construct may cause changes to the state

of the computing system. The value returned is a list of values,

each of which corresponds to the value obtained through the

evaluation of the corresponding object.

(Cl ; C2

The command Cl is evaluated in the current context. The

evaluation may cause changes in the state of the computing

system. The command C2 is then evaluated in the new state

obtained through the evaluation of the command Cl. The

evaluation of the command C2 may cause further changes in the

state of the computing system. No value is returned.

(Cl I C2)

The commands Cl and C2 are evaluated concurrently in the current

context. The standard output of the command Cl is attached to

the standard input of the command C2.

evaluations may cause changes to

Either or both of the

the state of the computing

system. The changes made during the evaluation of one command

are visible to the evaluation of the other command and vice

versa. No value is returned.

- 195 -

(Cl & C2)

The commands Cl and C2 are evaluated concurrently in the current

context. Either or both of the evaluations may cause changes to

the state of the computing system. The changes made during the

evaluation of one command are visible to the evaluation of the

other command and vice versa. No value is returned.

Expressions

N

The location associated with the name N is retrieved; the state

of the computing system may be changed.

N []

The value associated with a message variable with name N is

retrieved.

B

The value of the basic value B is returned; the state of the

computing system is not changed.

()

Evaluation is suspended until some other processing activity

causes the undefined value to be over-written with a defined

value.

QUOTE 0

The text of the object 0 is returned; the state of the computing

system is not changed.

01 X 02

The value of evaluating the operator X with the two objects 01

and 02 as operands is returned. The two objects 01 and 02 are

- 196 -

evaluated concurrently in the current context. Either or both of

the evaluations may cause changes to the state of the computing

system. The changes made during the evaluation of ane object are

visible to the evaluation of the other object and vice versa.

Furthermore, the operator X may be the assignment operator , e_' .- .
Evaluation. of the expression '01 := 02' changes the state of the

computing system by causing the value obtained from the

evaluation of the object 02 to be stored at the memory cell

associated with the name gained by evaluation of the object 01.

N
N 01 ... On)

The name N is evaluated, and the value stored at the memory cell

associated with the pathname is taken to be some Basix source

text. The objects 01 On are stored at memory cells

associated with the pathnames $/1 $/n. The evaluation of the

Basix source text occurs in a context in which the arguments are

accessible using the selector '$'.

o 01 ... On

The object 0 is evaluated and the value is taken to be the Basix

source text of some object, perhaps obtained by evaluation of an

expression of the form 'quote 0'. The objects 01 On are

stored at memory cells associated with the pathnames $/1 ... $/n.

The evaluation of the Basix source text occurs in a context in

1 t '$'. which the arguments are accessible using the se ec or

Statements

IF (011 -> 012

- 197 -

FI

Onl ->: On2
Ox

Each of the objects Oil, 0 < i <= n, is evaluated in the current

context until one such Oil is found which evaluates to the

boolean value "true". The corresponding object Oi2 is then

evaluated in the current context. The evaluation of the objects

Oil, 0 < i <= n, may cause changes to the state of the computing

system. Similarly the evaluation of the object Oi2 may cause a

change to the state of the computing system. If no object Oil, 0

< i <= n, is found which evaluates to the boolean value "true",

the object Ox is the evaluated in the current context.

DO (all -> 012

00

Onl -> On2
Ox

Each of the objects Oil, 0 < i <= n, is evaluated in the current

context until one such object is found which evaluates to the

boolean value "true". The corresponding object Oi2 is then

evaluated in the current context. The evaluation of the objects

Oil, 0 < i <= n, may cause changes to the state of the computing

system. Similarly the evaluation of the object Oi2 may cause

changes to the state of the computing system. Once the object

Oi2 has been evaluated, the process is repeated. If no object

Oil, 0 < i <= n, is found which evaluates to the boolean value

"true", then the process stops with the evaluation of the object

Ox in the current context.

FOR I = 01 DO 02 ROF

- 198 -

context. It is The object 01 is evaluated in the current

expected that this evaluation will return a list of values (VI

Vn). The identifier I is then associated with each of the

values Vi, a < i <= n, and the object 02 is evaluated in a

context in which the identifier is accessible. Consequently the

object 02 is evaluated n times with the identifier I bound to a

different value of Vi on each iteration. Each evaluation of the

object 02 may cause changes to the state of the computing system.

GOTO N

The pathname N is evaluated and is expected to refer to some

memory cell which contains Basix source text. Evaluation of the

Basix source text continues from this point.

CD N

The current context in which names are resolved is changed to the

context denoted by the name N. The name N is not evaluated.

RM Nl ••• Nn

Each of the names Ni, 0 < i <= n, is evaluated to refer to some

memory cell. The memory cell thus referenced is then made

inaccessible; any future references to these memory cells will

yield an error.

Pathnames

Pathnames are used to access variables. A pathname consists of a

sequence of selectors which determine a route to a particular

object within the information structure. The first selector of a

pathname determines the starting point for the route; by default

this is the information structure which is locally accessible to

- 199 -

the command being executed.

/PO/Pl/ /Pn

The memory cell referenced is found by evaluating each of the

selectors Pi, 0 < i <= n, in the local context. The memory cell

referenced is that which matches the name starting at the root of

the memory component of the computing system.

$/Pl/ ... /Pn

The list of parameters in the current context are referenced.

The selectors Pi, 0 < i <= n, are each evaluated to determine the

actual parameter to be referenced •

. '/PO/ ..• /Pn

The superior context of the current context is referenced. The

selectors Pi, 0 < i <= n, are evaluated to determine the memory

cell to be referenced •

• /Pl/ •.. /Pn

The current context is referenced.

r/Pl/ ... /Pn

The memory cell associated with the identifier r in the current

context is referenced.

Selectors

A selector identifies a particular object within an information

structure. The information structure reference is that derived

by evaluation of the preceding selectors in

default this is the information structure

the pa thname . By

which is locally

accessible to the pathname when it is evaluated. Named objects

within the information structure may be accessed by using

- 200 -

identifiers. This corresponds to the access of simple variables

or fields of record variables in programming languages such as

Pascal and Algol 68. The equivalent of array element access is

obtained by using a parenthesised object as a selector.

I

The identifier I selects a memory cell in the path context which

has the identifier I associated with it.

The superior context to the path context becomes the path context

for any remaining names in the pathname.

B

The basic constant B is evaluated. It should evaluate to a

number n. The nth item in the path context becomes the path

context for any remaining selectors in the pathname.

(a)

The object a is evaluated in the current context.

evaluate to a number n or an identifier i.

6.2.4 Analysis

It should

Unlike the programming languages surveyed in this chapter, the

Basix programming language represents a very simple approach to the

problem of designing a programming language for the construction of

software for general purpose distributed computing systems.

Restrictions have been introduced into many of the programming

languages designed for this area to enforce some form of order in the

- 201 -

potential chaos. For example, restricting the communication between

processes to named channels, as is found in both Pascal-m and Occam,

restricts the interface between processes. Consequently, when the

processes are executed concurrently, the only interactions which may

occur do so by the sending and receipt of messages through channels.

In contrast, the Basix programming language reflects a total

generalisation of the control flow philosophy. That philosophy is

probably best displayed in the freedom allowed in the programming

language Basic. In that programming language there is a minimum

number of restrictions, but the programming language presents very

few "high-level" features to the programmer. For example, there is

no concept of scope, and the subroutine mechanism is extremely crude,

allowing neither parameters nor recursion. One statement in a

program can have a side-effect which affects statements far away.

Additionally, there may be several threads of control within a

program which, given the simplicity of the programming language,

actually makes it quite difficult to understand what affect a program

will have on the computing system. There are, for example, no

mechanisms in the Basix programming language to enforce a serial

scheduling on the concurrent execution of objects. Execution of an

object may cause, as a side-effect, some non-local change to the

computing system. It is these characteristics which have made it

difficult to define the semantics of the programming language

formally.

- 202 -

The complexity in understanding the semantics of the programming

language Basix arises because of the side effects which may occur

during the evaluation of the different constructs of the programming

language. Firstly, consider an expression of the form "01 X 02",

where 01 and 02 are both objects and X is an operator. The context

in which the objects 01 and 02 are evaluated must be considered, and

it must be determined whether any side effect in the evaluation of

the objects 01 and 02 should be made visible to either evaluation.

Furthermore, the order of evaluation of the objects 01 and 02 may

effect the value of the whole expression. Secondly, consider an

object of the form "C1 & C2", where C1 and C2 are both commands. The

concurrent evaluation of the commands C1 and C2 may result in the

state of the computing system being changed. These changes should be

visible to each evaluation as they are made.

The side effects of the evaluation on one construct of a program

is propogated to all concurrent evaluations of the other constructs

of the program. This has made the production of the formal semantics

for the programming language extremely desirable, yet somewhat

difficult; it is desirable to understand the combination of these

side effects with the concurrent evaluation of the constructs of the

programming language. Furthermore, this difficulty is compounded

since these side effects are not only visible to the user of the

computing system for whom they were made, but also to all other users

of the computing system. Consequently, to construct a proof for a

program, it is not sufficient to consider that program in isolation

- 203 -

from all other programs.

One of the strengths of the Basix programming language is the lack

of restrictions. However, at the same time, this is also one of the

weaknesses of the programming language. It is precisely the lack of

these restrictions which makes it hard to reason about the behaviour

of a program written in the Basix programming language. Another

strength is the total integration of the hierarchical nature of a

distributed computing system into the programming language. For

example, access to a file within the fielstore of a distributed

computing system is no different from access to a program variable.

Yet once again this strength is also an area of weakness. Within a

filestore it is possible to insert new files and to destroy existing

files. These operations can be performed dynamically. Within a

program the conventional way of creating new variables and removing

old var~ables is, respectively, through explicit declaration at block

entry and implicity at block exit. Combining the files of the

files tore and the variables of the programs in this simple

straightforward manner does not seem to be appropriate.

Additionally, the hierarchical structure is globally accessible which

leads to the obvious problems of concurrent sharing.

- 204 -

6.3 A DECENTRALISED CONTROL FLOW PROGRAMMING LANGUAGE

The programming language proposed for the decentralised control

flow computing systems is still under active consideration. In this

section some of the design issues for the proposed programming

language are outlined.

The proposal is to follow the route taken by many other designers;

the programming language Pascal can be used as a core on which

different features may be built. Using the programming language

Pascal as the basis of development also has the advantage that

compilers for the programming language are readily available.

6.3.1 Overview

,
The concept of object on which the decentralised control flow

model of computation is based has played an important role in the

design of the programming language. Objects are used by the

programmer to describe both the data and control characteristics of

various entities. For example, an object may describe both the

underlying data representation of a stack, and the means by which

that data representation may be manipulated to give the behaviour of

a stack. Control structures are associated with the object thereby

describing how the data structures may be accessed. It is argued

that the way in which the data structures are accessed is as an

important part of the description of the whole object as the

- 205 -

representation of the data itself. It is generally accepted that a

data type is not merely a set of values but also a set of operations

which may be used on those values. Abstract data types have played a

significant role in the design of objects. Indeed, the concept of

object can be used to remove the distinction between those entities,

such as files, which conventionally have an existence beyond that of

a program and those entities, such as variables, which exist only

during the execution of a program.

The concept of object which is used to encapsulate data and

control has been stressed in contrast to that of program which

conventionally only represents control. Firstly, what is considered

to be a program today might form only a small part, either statically

or dynamically, of some larger program tomorrow.

desirable to be able

Sometimes what is

to re-use

required

programs,

is the

or parts

inclusion

It is often

of

of

programs.

the data

representation and associated code in some other program so that a

particular data structure can be used in that other program.

Alternatively, access to some pre-existing data structure is

required, the actual one not necessarily being known at the time that

the program was written. It can often be achieved dynamically

through the use of facilities provided by the control program of the

computing system. Such facilities are not described in terms of the

semantics of the programming language.

- 206 -

In some von Neumann programming languages it is difficult to

construct programs from existing programs. For example, in the

programming languages Pascal and Fortran the program is an

independent unit which may only be executed. The program text cannot

be used to form a section of some larger program nor may one program

communicate with some other program. In the programming language

Algol 68 it is possible to use the text of one program within some

other program, but again it is not possible for different programs to

communicate. In the programming language C a program may be invoked

dynamically as a routine of some other program through the use of the

system call "EXEC" . The called program is compiled separately from

the calling program. Both the calling program and the called program

are executed as commands which are active concurrently. The calling

program and the called program may communicate through the use of

pipes and files, facilities which are provided by the control program

rather than by the programming language.

Secondly, the concept of object permits the dynamic

reconfiguration of software systems. Changes may be made to a large

complex system by the construction of a new object to replace an

existing object. Clearly any references to the existing object must

be satisfied until no references remain anywhere throughout the whole

distributed computing system at which point the existing object may

be removed. This is obviously inappropriate for those objects which

provide a basic service to the whole distributed computing system

since it may never be possible to remove all references to such

- 207 -

objects. In those instances it will be necessary to place the

distributed computing system into some quiescent state and then make

the replacement.

Thirdly, association of data structures and control structures

allows the data stored within the computing system to be described

more precisely. That is, rather than simply having an object

represent some data, information about the useful operations which

may be performed on that data is also represented. This information

is associated with the data itself and not with the programs which

use that data as is often the case in conventional computing systems.

6.3.2 Syntax

The textual description of an object consists of three distinct

sections. Firstly, there is the description of the local data space

which will come into existence whenever an instance of the object is

created. Secondly, there is the description of the group of routines

with which the local data space may be manipulated. Thirdly, there

is the description of the additional routines which provide the

interface between an instance of this object and instances of other

objects.

An outline of the syntax for the description of objects is given

below:

OBJECT <identifier>;

- 208 -

<constant declarations>
<type declarations>
<variable declarations>
<routine declaratrions>
INTERFACE

<routine declarations>
BEGIN
<statement list>
END;

The declarations between the reserved words OBJECT and INTERFACE are

used to describe the local data space of an instance of the object

and the group of routines which may be used within the instance of

the object to manipulate the local data space. The scope of the

identifiers introduced in these declarations extends from the point

of declaration up to the reserved word END which encloses the

description of the object. The declarations between the reserved

words INTERFACE and BEGIN are used to describe the additional

routines which define the external interface to an instance of the

object. The nature of these routines is discussed in more detail

below. The scope of the identifiers introduced in these declarations

extends from the point of declaration up to the reserved word END

which encloses the description of the object. The external interface

to the local data space should be be kept independent of the nature

of the local data space. To achieve this it is necessary to restrict

the types of the parameters which may be specified on the interface

routines. Clearly it is not possible for the interface to be defined

in terms of types which are local to the object itself. Furthermore,

it is possible that the type of a parameter is unknown - it depends

upon the use being made of an object.

- 209 -

Provision has been made for the inclusion of initialisation code

within the description of an object. Any statements which appear

between the reserved words BEGIN and END in the definition of an

object are executed as soon as an instance of that object is created.

As mentioned above, to make objects generally useful, the

programming language will need to support polymorphic types. This

allows the programmer to describe the behaviour of a family of

related objects with a single textual description. For example, the

description below could be used to describe the behaviour of a stack

for a particular data representation based on arrays.

OBJECT StackHandler(t : TYPE);
CONST StackSize = 100;
TYPE Stack = RECORD

NrOfEntries
Entries

END;

VAR S : Stack;

PROCEDURE Empty;
BEGIN
S.NrOfEntries := 0
END { Empty };

INTERFACE

PROCEDURE Push(x : t);
BEGIN

o .. StackSize;
ARRAY [1 .. StackSize] OF t

S.NrOfEntries := S.NrOfEntries + 1;
S.Entries[S.NrOfEntries] := x
END { Push };

PROCEDURE Pop;
BEGIN
S.NrOfEntries := S.NrOfEntries - 1
END { Pop };

FUNCTION Top: t;
BEGIN

- 210 -

TOp := S.Entries[S.NrOfEntries]
END (Top };

FUNCTION ISEmpty : Boolean;
BEGIN
IsEmpty := S.NrOfEntries = 0
END (ISEmpty };

FUNCTION IsFull : Boolean;
BEGIN
IsFull := S.NrOfEntries
END (IsEmpty };

BEGIN
Empty
END (StackHandler }

StackSize

The formal parameter "t" t th b' t "s k d " o e 0 Jec tac Han ler may be replaced

by any valid type. The underlying type of the elements of the stack

is only defined when a particular instance of a stack is required.

For example, replacing the formal parameter "t" by the type "char"

defines stacks with elements of type "char". For it to be possible

to pass type information as an actual parameter, the information

about a type must be both available inside and outside of a program

text. Clearly some types, such as "char" and "integer", can be

regarded as built-in types. However, other types will be defined by

the users of the computing system.

It is not possible to use procedures and functions as the

parameters of objects. This restriction has been adopted purely for

pragmatic reasons. It seems unreasonable to expect a procedure or

function to be used a parameter for the following two reasons.

Firstly, the procedure or function must by virtue of the scope rules

be independent of the definitions of the object. Secondly, on

application of the procedure or function control is passed back out

- 211 -

from the instance of the obJ'ect. If th ed e proc ure or function has

side-effects then these will affect the 'called' instance. However,

it is possible to pass a reference to an instance of an object as a

parameter. References to instances of objects may be assigned to

variables in the expected way. For example, the following two lines

declare two variables as references to objects.

VAR 0
s

INSTANCE;
StackHandler(char);

The variable "0" may contain a reference to any object, whilst the

variable "s" may contain a reference to any object which is a member

of the set of "StackHandler" objects with an elements of type "char".

Two alternative strategies have been considered for the

description of the additional routines which describe the external

interface of an object. These strategies reflect the difference

between messages and procedure calls outlined in this chapter. Since

the instances of different objects may reside on different

subordinate computing systems, the external interface between these

instances must be implemented in terms of the underlying primitives

of the communications medium which is used to connect the subordinate

computing systems into a distributed computing system. Consequently,

the external interface could be described by using the primitive

operations which cause individual messages to be sent from one

instance of an object to some other instance of an object. ThuS the

description of an object would include code first to receive a

message from an instance of an object, then to process the request

- 212 -

borne within that message, and finally to send a message bearing a

response to the instance making the request.

Alternatively, this relatively low level approach could be hidden

by adopting the semantics of the remote procedure call. The

semantics of the remote procedure call require that the instance of

an object which makes a request of some other instance of an object

waits until the request has been satisfied. In effect, control is

passed from the requesting instance to the one to which the request

is addressed; when the request has been satisfied, control is

returned to the requesting instance. Naturally this will restrict

the degree of parallelism which may be achieved in comparison to that

which could be exploited using the message passing primitives.

Use of the primitive send and receive operations does allow other

instructions of the instance of the object making the request to be

executed whilst that request is being serviced. This allows both the

instructions of the instance making the request and those of the

instance to which the request is addressed to be executed

concurrently. However, some care must be exercised if this strategy

is adopted. The instructions executed between the sending of the

message making the request and the receipt of the message bearing the

reply must not be dependent upon any information contained in the

reply. It is possible by an analysis of the source program during

compilation to identify those instructions of the programs which may

be executed during the processing of the various requests addressed

- 213 -

to other instances of objects. Some form of data flow graph must be

constructed so that the instructions which may be executed between

the send and receive operations may be identified. Generally, the

send operation should be executed as soon as possible, whilst the

receive operation should be executed as late as possible.

6.3.3 Semantics

The decentralised control flow model of computation is reflected

within the single language which is used both as the control program

of a subordinate computing system and as the programming language

used to write software for that computing system. A user works

within an environment known as the current context consisting of

those objects to which he or she has access. As the user works, new

objects may be created and existing ones destroyed.

The current context is simply an instance of a special variety of

object, a directory, which contains a mapping from names to

references of instances of objects. These instances represent

information which in traditional computing systems would be

classified separately as programs or data. Associated with each

object defined by the user are instances of two other objects. An

instance of the first object is used to represent the textual

description of the object. It corresponds to a text file containing

the source program in a conventional computing system. Various

operations may be performed on an instance of such an object. One

- 214 -

such operation is compilation. Comp;lat; f th . • .on 0 e ~nstance produces

an instance of the second object, an internal representation of the

object which is used by the run-time system to determine the type of

the object and to create new instances of the object.

The definitions of the objects made by a user which are

represented by the instances of these two objects are all entered

into the current context. The message "NEW" when sent to the current

context with the name of an object, together with the actual

arguments required, causes a new instance of that object to be

created. For example, using the description of an object given

earlier, the command "NEW StackHandler(char)" sent to the current

context in which the definition of "StackHandler" is held returns a

reference to an instance of this object.

To enable an instance of an object to use the facil~ties of other

instances a mechanism is required to associate a reference to an

existing instance of an object with a variable within the local data

space of some other instance of an object. Associated with each

instance of an object is a reference to the instance of the directory

object in which the definition of that object is held. Use of this

reference allows other references to instances of objects accessible

from that directory to be obtained. This gives a static name scope.

Alternative scopes may be implemented by transmission of references

to objects. Additionally, an instance of an object can be saved in

an instance of the directory object.

- 215 -

As mentioned earlier, type information is associated with each

object. This information describes the external interface and allows

the requests which instances of other objects may make of an instance

of this object to be checked for type correctness. The type of an

object persists throughout the extent of that object. It must be

available to both the compiler and the run-time system.

The textual description of an object might state precisely the

instances of the various objects with which it will communicate.

Such a description can have strong typing applied to it when it is

compiled.

Alternatively, the textual description of an object might give no

details of those instances of the objects with which it will

communicate. Such a description will require run-time type checking

to be performed. This will be used to ensure that a request made of

an instance of an object is defined.

The need for run-time type checking arises because a reference to

an instance of an object may be sent to some other instance. This

second instance may then make a request of the instance whose

reference was received. That request must be checked for validity.

The ability to send references to instances of objects has the

advantage that it allows the topology of the objects to change

dynamically. A general purpose server object may assume that an

object to which it has a reference has certain properties. For

- 216 -

example, the object which controls a printing device will receive the

references to those objects which are to be printed. The objects to

be printed will be assumed to have a standard operation which will

yield some printable representation of that object.

For example, it may be assumed that the operation "unparse" is

defined for every object. This operation produces a printable

representation of an instance of that object as a sequence of

characters. This sequence of characters may then be displayed on

some suitable output device. When an instance of an object which

controls such an output device receives a request to print an

instance of an object, the operation "unparse" is invoked to yield

the string representation of the instance, and this is then

displayed. Clearly, for this scheme to work, the operation "unparse"

must be defined for all objects which may be printed. The object

controlling the output device will be written without knowledge of

the possible instances of objects which it may receive requests to

print. Consequently, it is possible that the operation "unparse" may

not be defined for a particular object, and some appropriate action

must be taken. The responsibilty of providing some mechanism to

produce a printable representation of an instance of an object thus

lies with the user who provided the definition of that object.

The binding of a reference to an object' to a particular name

within the text of an object must be delayed until run time for

external objects. Compile time binding will make it impossible to

- 217 -

replace objects dynamically since the reference becomes fixed within

the text.

The data structures of an object are local to that instance of the

object. The control structures may be shared among several instances

of different objects. Receipt of a message causes the control

structures of an object to be executed; the execution of these may

cause changes to the data structures.

An instance of an object consists of a local data space and a

group of routines to manipulate this data space. The local data

space of an instance of an object is accessible only to the group of

routines of the same instance of that object. To allow other

instances of objects to gain access to the local data space of an

instance of an object, some additional routines must be provided.

These additional routines define the interface between the instance

of an object and all other instances of objects in the computing

system. Again, it is necessary for type information to be available

outside the textual description of an object so that users of

instances of that object may send requests to those instances.

To ensure that the local data space cannot be accessed or modified

by instances of objects other than the one with which it is

associated, various restrictions have been made on the information

which may be passed between instances of objects.

- 218 -

•

No reference or pointer values may be passed between instances of

objects. This ensures that execution of an instruction of one

instance of an object may not access or modify the local data space

of some other instance of an object indirectly. Clearly there are

other reasons for this restriction beyond that of simply minimising

the effect that a globally accessible memory component has on the

semantics of the programming language. Permitting a reference or

pointer value to migrate from one instance of an object to some other

instance of an object may result in a memory address for one

subordinate computing system of a distributed computing system being

transmitted to some other subordinate computing system. In order to

use the reference value correctly some information about the origin

of that reference value would also be required.

This restriction on the use of reference or pointer values means

that not only can such values not be used as parameters to additional

routines which describe the external interface, but also that the

parameters of these routines must have call by value or call by

value/result semantics. If a request is made to an instance of an

object which requires some modification to be made to a variable

within the local data space of the instance of an object making the

request, then, since the modification can only be made by the

instance of the object associated with the local data space, the new

value of the variable must be sent from the instance of the object to

which the request.

- 219 -

For example, given the following declaration for a routine for an

external interface,

PROCEDURE P(VAR X : INTEGER)

use of this routine might be written as

[X P(A)]

where X is a local variable containing a reference to an instance of

an object for which P is declared as an interface routine, and A is a

variable within the local data space of the instance of the object

making the request. To comply with the restriction that no reference

values may be transmitted between instances of objects, the use of

the routine could be expanded out into the following sequence of

instructions using the primitive send and receive operations of the

underlying communications medium:

Request.RoutineName := "P"
Request.Argument[l] := A
SEND(X, Request)
RECEIVE(X, Reply)
A := Reply.Argument[l]

6.3.4 Analysis

The decentralised control flow programming language has taken the

route of those programming languages surveyed in this chapter. The

programming language is restrictive so that order may be brought out

of potential chaos. In particular, an attempt has been made, as

outlined in chapter five, to address the problem of concurrent access

to an instance of an object from several other instances. The

in a problem is to maintain the different instances of the objects

consistent state in the face of these concurrent requests. In

- 220 -

particular, the requirement is to ensure that a schedule equivalent

to a serial schedule is always achieved. This issue is not addressed

by the progamming languages surveyed. For example, the programming

language PS-Algol assumes that the unit of concurrency will be the

whole memory component. This is too coarse a level for a distributed

computing system. In contrast, the Occam programming language

assumes that all the potential users of a process are known at the

time that the process is written. The programming language Argus

comes the closest to the requirement.

6.4 CONCLUDING REMARKS

When designing a programming language different aims must be kept

in tension. It is essential that the programming language can be

used by programmers without requiring them to be skilled

mathematicians or logicians. To that end a programmer should be able

understand the meaning of a program without recourse to complex

statement in some special calculus. Additionally it is important

that the programming language provides an environment in which the

programmer can get on with the real task of programming and need not

be hindered by low-level concerns. The provision of suitable

abstraction mechanisms which allow the programmer to think in terms

of the problem domain rather than the computing system obviously help

to achieve this aim.

- 221 -

The Basix programming language is perhaps deceptively simple. It

reflects a model in which any operation can be per formed on almost

any object. There are few restrictions in the programming language.

However, it is this seeming simplicity which gives rise to the

complexities in using the Basix programming language. No mechanisms

for controlling concurrency have been provided. The globally

accessible memory component is a hindrance to the understanding of

program.

In contrast, the decentralised control flow programming language,

through its restrictions, is altogether a superior programming

language. The hierarchical structure of the distributed computing

system is reflected through the abstraction of objects. This

abstraction allows the objects defined to have a clear interface and

the behaviour can be described formally.

- 222 -

7 CONCLUSIONS

The advances in the chip fabrication technology and the

communications technology have brought about new possibilities for

the design and construction of computing systems. In particular, the

former has made it possible to design novel architectures of

computing system whilst the latter permits several computing systems

to be connected together to form a single distributed computing

system. Such developments could be used to introduce a new era to

computing science in which concurrency is the norm rather than the

exception.

The design of the majority of contemporary computing systems still

reflects the principles on which the computing systems of the mid

1950's were based. These computing systems existed in isolation from

one another, thus making it difficult to share information between

the different computing systems. Typically such computing systems

comprised a processing unit, a memory component, and some

input/output devices. A program for these computing systems consists

of a sequence of instructions. Each instruction in the sequence is

executed in turn by the processing unit.

The availability of cheap mini- and microcomputing systems has led

to the use of computer technology in an increasing number of new

application areas. The complexity of these tasks has resulted in an

increased complexity in the software systems written for these

- 223 -

applications. By the mid 1970's a crisis in the development of

software systems had been identified. In part this crisis was

attributed to the inappropriate design principles of the computing

systems for which these software systems were written.

To alleviate the problems encountered in the production of large

software systems, novel models of computation have been developed.

These models of computation have a formal mathematical basis which

makes the construction of proofs of the correctness of programs an

easier task than is possible for the von Neumann model of

computation. One of the drawbacks in the use of programming

languages based on these models of computation lies in the overheads

incurred in the implementaions designed for von Neumann architecture

computing systems. To support these novel models of computation more

efficiently, novel architectures of computing system have been

proposed. As yet, these computing systems are still in an embryonic

state.

It has also been proposed that the chip fabrication technology

will advance to the point where several computing systems may be

constructed on a single chip. Such chips are being proposed as the

building blocks of computing systems consisting of many subordinate

computing systems. It will be possible to construct general purpose

distributed computing systems from these smaller computing systems.

Each such distributed computing system consists of a group of

subordinate computing systems connected together by some

- 224 -

communications medium. Information may be transmitted between the

subordinate computing systems and the programs executed on the

different subordinate computing systems may co-operate.

7.1 AIMS

Whilst the work of those researchers investigating novel models of

computation and novel architectures of computing system may well

prove fruitful in the years to come, the possibilities of distributed

computing systems are already here to be exploited. Such computing

systems consist of a number of subordinate computing systems

connected together by a communications medium. Each subordinate

computing system is autonomous executing programs which may

co-operate with the execution of other programs through the

transmission of information across the communications medium. The

availability of cheap, yet powerful, microcomputing systems, such as

those based around the M68000 family of processing units, make the

construction of these distributed computing systems an attractive

prospect. This seems to be an exciting possibility for the

development of the computing systems of the 1990's.

One of the aims of the work reported in this thesis has been to

design a suitable model on which general purpose distributed

computing systems can be built. Various different architectures of

computing systems and models of computations have been analysed in

this thesis. None of these architectures approximated satisfactorily

- 225 -

to the architecture of a general purpose distributed computing system

outlined above. Consequently, none of the models of computation

associated with these architectures appear suitable for the

description of software systems to be executed on the distributed

computing systems proposed.

An additional aim was to design a programming language with which

software for these general purpose distributed computing systems

could be written. Many programming languages proposed in the

literature for this application area have been analysed. Again, it

was found that none of these programming languages provided exactly

what was required.

7.2 ACHI~S

Two models of computation, based on two different architectures of

computing system, have been proposed to take advantage of the

developments outlined above. The recursive control flow architecture

and and its associated model of computation originated in the work of

Treleaven and Hopkins. This work was initiated by the interest in

using VLSI components to build recursive computing systems. A

recursive control flow computing system is composed of a hierarchy of

subordinate computing systems. Each subordinate computing system has

a processing unit, a memory component, and some input/output devices.

Information may be transferred between subordinate computing systems.

A subordinate computing system may be requested by some other

- 226 -

subordinate computing system to retrieve the value of some cell of

the memory component. Thus, whilst the memory components of the

subordinate computing systems are globally accessible, the access to

a particular memory component only occurs through the agency of the

subordinate computing system with which that memory component is

associated. The processing units of the subordinate computing

systems may execute different sequences of instructions concurrently.

The recursive control flow model of computation reflects the

recursive control flow architecture. The memory components are

globally accessible. There may be many threads of control within a

group of instructions. Consequently, problems of inteference and

integrity between the concurrent execution of sequences of

instructions may arise. These issues have not been addressed by the

designers of the model of computation.

The production of the formal semantics for this model of

computation outlines some of the complexities inherent in this

design. In particular, the combination of concurrency and the

globally accessible memory component makes the construction of proofs

of software systems extremely difficult. The level at which the

recursive control flow system must be modelled in the formal

semantics in order to capture the combined effects of the concurrency

and the globally accessible memory component is that of the micro

instruction. It seems unreasonable to expect a user of a recursive

. ed' th' f'ne level of control flow computing system to be ~nterest ~n ~s ~

- 227 -

detail.

Furthermore, since the recursive control flow computing system may

be used by several users concurrently, each of whom may cause changes

to the

to all

overall computing system, these changes must be made visible

other users of the computing system. Consequently, in

constructing a proof of some software system written for a recursive

control flow computing system, it is not sufficient to regard that

software system in isolation from all other software systems. The

complexity of considering how any software system, including those

yet to be designed or constructed, might interact with a particular

computing system is far too great.

Clearly this problem is not confined to the recursive control flow

architecture. Any computing system which can be used to support

concurrency and has a globally accessible memory component leads to

exactly the same problems. To verify that the behaviour of a

software system is correct on such a computing system all other

software systems whose execution could be interleaved with the first

must be considered.

An obvious solution is to restrict the potential interaction or

interference between different software systems. For example, on

many contemporary computing systems the only interaction which may

take place between different software systems is at the level of the

file store maintained by the control program.

- 228 -

The programming language BASIX has been desgined as a sutiable

programming language for the writing of software for distributed

computing systems. It reflects the openness of the underlying

recursive control flow computing system for which it is designed.

The alternative design of architecture proposed in this thesis for

the construction of general purpose distributed computing systems is

decentralised control flow. It has many similarities to recursive

control flow. However, the important distinction is the lack of

global accessibility to the memory components of the subordinate

computing system. The subordinate computing systems still permit the

state of the associated memory components to be examined, but the

distinction is that more control is given to the subordinate

computing system. The model of computation for the decentralised

control flow architecture of computing system reflects this

difference. The sequence of instructions executed by a subordinate

computing system defines more rigorously what may be communicated to

other subordinate computing systems. A clear interface may be

defined between the different subordinate computing system.

Additionally, an attempt has been made to address the issues of

interference and integrity.

The programming language for the decentralised control flow

computing systems uses the concept of an object to represent this

interface. This programming language enforces separation between

different software systems, and different parts of those software

- 229 -

systems.

7.3 FUTURE WORK

As yet no physical hardware system has been constructed which

embodies the principles of the decentralised control flow

architecture. A small test bed system is required. The programming

language proposed for the decentralised control flow computing

systems needs further attention; the formal semantics must be checked

thoroughly, and an implementation of the programming language and the

necessary run time support environment developed for the test bed

system. The two can then be used to develop software systems.

Tools would be developed to investigate the performance of the

decentralised control flow computing systems. Of particular interest

are the degree of parallelism in the computing system, and the amount

of roll-back which occurs. Ways in which the former can be maximised

and the latter minimised would be investigated.

Another interesting area is the implementation of the

decentralised control flow model of computation on the parallel

control flow style computing systems. Such computing systems have a

globally accessible memory component. The implementation of the

decentralised control flow model of computation would be based on

this memory component and not on message passing. This would allow

the same model of computation and the same programming language to be

- 230 -

used for two distinctive styles of computing system. The aim would

be to show that the decentralised control flow model of computation

can be used just as effectively on either style of computing system.

- 231 -

BIBLIOGRAPHY

ABRAMSKY, 5., BORNAT, R. (1983)
Pascal-m: A Language for Loosely Coupled Distributed Systems,
in [Paker and Verjus, 1983], pp. 163-189.

ACKERMAN, W.B., DENNIS, J.B. (1978)
VAL - Prel,iminary Reference Manual,
Laboratory for Computer Science, MIT.

ALEXANDER, W.C., WORTMANN, D.B. (1975)
Static and Dynamic Characteristics of XPL Programs,
Computer, Vol. 8, No. 11, pp. 41-46.

AMBLER, A.L., GOOD, 0.1., BROWNE, J.C., BURGER, W.F.,
COHEN, R.M., HOCH, C.G., WE~LS, R.E. (1977)
Gypsy: A Language for Specification and Implementation of
Verifiable Programs,
SIGPLAN Notices, Vol. 12, No.3, pp. 1-10.

ARVIND, GOSTELOW, K.P., PLOUFFE, W. (1978)
An Asynchronous Programming Language and Computing Machine,
Department of Information and Computer Science,
University of California at Irvine.

ASHCROFT, E.A., WADGE, W.W. (1977)
LUCID, A Nonprocedural Language with Iteration,
Communications of the ACM, Vol. 20, No.7, pp. 519-526.

ATKINSON, M., CHISHOLM, K., COCKSHOTT, P. (1981)
PS-algol: An Algol with a Persistent Heap,
Department of Computer Science, University of Edinburgh.

ATKINSON, M.P., BAILEY, P.J., CHISHOLM, K.J., COCKSHOTT, W.P.,
MORRISON, R. (1983)
PS-Algol Papers,
Department of Computer Science, University of Edinburgh, and
Department of Computational Science, University of St. Andrews.

BACKUS, J. (1978)
Can Programming be Liberated for the von Neumann Style? A

- 232 -

Functional Style and its Algebra of Prorams,
Communications of the ACM, Vol. 21, No.8, pp. 613-641.

BEN-ARI, M. (1982)
principles of Concurrent Programming,
Prentice-Hall.

BERKLING, K. (1975)
Reduction Languages for Reduction Machines,
Proceedings of the Second International Symposium on
Computer Architecture, pp. 133-140.

BROOKER, R.A. (1958)
The Autocode Programs Developed for the Manchester University
Computers,
Computer Journal, Vol. 1, No.1, pp. 15-21.

BUCKLE, J.K. (1978)
The ICL 2900 Series,
London: Macmillan Press.

BURNETT-HALL, D.G., DRESEL, L.A.G., SAMET, P.A. (1964)
Computer Programming and Autocodes,
London: English Universities Press.

BURSTALL, R.M., DARLINGTON, J. (1977)
A Transformation System for Developing Recursive Programs,
Journal of the ACM, Vol. 24, No.1, pp. 44-67.

CAMPBELL, R.H. (1983)
Distributed Path Pascal,
in [Paker and Verjus, 1983], pp. 191-223.

CHAMBERLIN, D.D. (1971)
Parallel Implementation of a Single Assignment Language,
Digital Systems Laboratory, Stanford University.

CLARKE, J.W., GLADSTONE, P.J.S., MACLEAN, C.D.,
NORMAN, A.C. (1980)
SKIM - S, K, I Reduction Machine,
Proceedings of the LISP-80 Conference.

COWL ISHAW, M.F. (1984)
The Design of the REXX Language,
IBM Systems Journal, Vol. 23, No.4, pp. 326-335.

DAHL, O-J., DIJKSTRA, E.W., HOARE, C.A.R. (1972)
Structured Programming,
London: Academic Press.

DARLINGTON, J., REEVE, M. (1981)
ALICE: a Multiprocessor Reduction Machine for the Parallel
Evaluation of Applicative Languages,

- 233 -

Proceedings of the Conference on Functional Languages and
Computer Architecture·.

DARLINGTON, J., HENDERSON, P., TURNER, D. (eds) (1982)
Functional Programming and Its Applications, an Advanced
Course,
cambridge: Cambridge University Press.

DIJKSTRA, E.W. (1976)
A Discipline of Programming,
Prentice-Hall.

ESWARAN, K.P., GRAY, J.N., LORIE, R.A., TRAIGER, I.L. (1976)
The Notions of Consistency and Predicate Locks in a Database
System,
Communications of the ACM, Vol. 19, No. 11, pp. 624-633.

FLORES, I. (1971)
Job Control Language and File Definition,
Englewood Cliffs, N.J.: Prentice-Hall.

FRIEDMAN, D.P., WISE, D.S. (1979)
A Constructor for Applicative Multiprogramming,
Technical Report 80, Computer Science Department,
University of Indiana.

GLUSHKOV, V.M., IGNATYEV, M.B., MYASNIKOV, V.A.,
TORGASHEV, V.A. (1974)
Recursive Machines and Computing Technology,
Proceedings of the IFIP Congress, pp. 65-70.

GOLDSTINE, H.H. (1972)
The Computer from Pascal to von Neumann,
Princeton, N.J.: Princeton University Press.

GOUVEIA LIMA, I., HOPKINS, R.P., MARSHALL, L.F., MUNDY, D.H.,
TRELEAVEN, P.C. (1983)
Decentralised Control Flow - Based on UNIX,
SIGPLAN Notices, Vol. 18, No.6, pp. 192-201.

GOUVEIA LIMA, I. (1984)
Programming Decentralised Computers,
Ph.D. Thesis, University of Newcastle upon Tyne.

GRIES, D. (1981)
The Science of programming,
New York: Springer-Verlag.

HENDERSON, P., MORRIS, J.M. (1976)
A Lazy Evaluator,
Proceedings of the Third Conference on the principles of
Programming Languages, pp. 95-103.

- 234 -

HENDERSON, P. (1978)
Lispkit System, a Software Kit,
Technical Report 129, Computing Laboratory
University of Newcastle upon Tyne. '

HENDERSON, P., JONES, G.A., JONES, S.B. (1983)
The Lispkit Manual,
Programming Research Group, University of Oxford.

HENDERSON, P. MINKOWITZ, C. (1986)
The me too Method of Software Design,
ICL Technical Journal, Yolo 5, No.2, pp. 64-95.

HENNESSY, J., JOUPPI, N., BASKETT, F., GILL, J. (1983)
MIPS, a YLSI Processor Architecture,
Computer Systems Laboratory, Stanford University.

HEWITT, C., BAKER, H. (1977)
Laws for Communicating Parallel Processes,
Proceedings of the IFIP Congress, pp. 987-992.

HIBBARD, P.G., SCHUMAN, S.A. (eds) (1978)
Proceedings of the IFIP Working Conference on
Constructing Quality Software.

HOARE, C.A.R., WIRTH, N. (1973)
An Axiomatic Definition of the Programming Language Pascal,
Acta Informatica, Yolo 2, pp. 335-355.

HOARE, C.A.R. (1985)
Communicating Sequential Processes,
London: Prentice-Hall International.

HOARE, C.A.R., SHEPHERDSON, J.C. (eds) (1985)
Mathematical Logic and programming Languages,
London: Prentice-Hall International.

HOPKINS, R.P. (1984)
General Purpose Decentralised Computer Architecture,
Ph.D. Thesis, University of Newcastle upon Tyne.

INGALLS, D. (1978)
The Smalltalk-76 programming System Design and Implementation,
Proceedings of the Fifth Conference of the principles of
Programming Languages, pp. 9-15.

INMOS, (1984)
IMS T424 Transputer Reference Manual.

INTERNATIONAL BUSINESS MACHINES (1987)
IBM 370/XA, Principles of Operation.

- 235 -

JONES, C.B. (1986)
Systematic Software Development Using VDM,
London: Prentice-Hall International.

KAHN, G., MACQUEEN, D.B. (1977)
Coroutines and Networks of Parallel Processes,
Proceedings of the IFIP Congress.

KATZ, D.G. (1984)
A Machine Organisation for Combining Control Flow, Data Flow,
and Demand Flow,
M.Sc. Dissertation, University of Newcastle upon Tyne.

KERR, R. (1987)
A Materialistic View of the Software "Engineering" Analogy,
SIGPLAN Notices, Vol. 22, No.3, pp. 123-125.

KNUTH, D.E. (1973)
The Art of Computer Programming, Sorting and Searching,
Addison-Wesley.

KNUTH, D.E., PARDO, L.T. (1976)
The Early Development of Programming Languages,
Digital Systems Laboratory, Stanford University.

LANDIN, P.J. (1964)
The Mechanical Evaluation of Expressions,
Computer Journal, Vol. 6, No.4, pp. 308-320.

LANDIN, P.J. (1965)
A Correspondence Between Algol 60 and Church's Lambda Notation,
Communications of the ACM, Vol. 8, No.2, pp. 89~101, and
Vol. 8, No.3, pp. 158-165.

LANDIN, P.J. (1965)
An Abstract Machine for the Designers of Computing Languages,
Proceedings of the IFIP Congress.

LISKOV, B.H., SNYDER, A., ATKINSON, R.R, SCHAFFERT, J.C. (1977)
Abstraction Mechanisms in CLU,
Communications of the ACM, Vol. 20, No.8, pp 564-576.

LISKOV, B., MOSS, E., SCHAFFERT, C., SCHEIFLER, R.,
SNYDER, A. (1978)
The CLU Reference Manual,
Laboratory for Computer Science, MIT.

LONDON, R.L., SHAW, M., WULF, W.A. (1978)
Abstraction and Verification in Alphard, a Symbol Table
Example,
in [Hibbard and Schuman, 1978], pp. 319-351.

- 236 -

MCCARTHY, J., ABRAHAMS, ?W., EDWARDS, D.J., HART, T.P.,
LEVIN, M.I. (1962)
LISP 1.5 Programmer's Manual,
Cambridge, Ma.: MIT Press.

NAUR, P. (ed) (1963)
Revised Report on the Algorithmic Language Algol 60,
Computer Journal, Vol. 5, pp. 349-367.

PAKER, Y., VERJUS, J-P. (eds) (1983)
Distributed Computing Systems: Synchronisation, Control and
Communication,
London: Academic Press.

PATTERSON, D.A., DITZEL, D.R. (·1980)
The Case for the Reduced Instruction Set Computer,
Computer Architecture News, Vol. 8, No.6, pp. 25-32.

PATTERSON, D.A., SEQUIN, C.H. (1981)
RISC 1, a Reduced Instruction Set VLSI Computer,
Proceedings of the Eighth International Symposium on
Computer Architecture, pp. 443-457.

QUINE, W.V. (1974)
Methods of Logic,
Third Edition,
London: Routledge and Kegan Paul.

RANDELL, B. (1973)
The Origins of Digital Computers, Selected Papers,
Berlin: Springer-Verlag.

RANDELL, B. (1983)
The Structuring of Distributed Computing Systems,
Computing Laboratory, University of Newcastle upon Tyne.

ROBINSON, J.A. (1965)
A Machine-oriented Logic Based on the Resolution Principle,
Journal of the ACM, Vol. 12, No.1, pp. 23-41.

SAMET, J.E. (1969)
Programming Languages, History and Fundamentals,
Prentice-Hall.

SCHLAGETER, G. (1978)
Process Synchronisation in Database Systems,
ACM Transactions on Database Systems, Vol. 3, No.3,
pp. 248-271.

- 237 -

STANKOVIC, J.A. (1982)
Software Communication Mechanisms: Procedure Calls Versus
Messages,
Computer Magazine, April, pp. 19-25.

STOY, J.E., STRACHEY, C. (1972)
OS6 - An Experimental Operating System for a Small Computer,
Computer Journal, Vol. 15, NO.2, pp. 117-124, and Vol. 15,
No.3, pp. 195-203.

SUSSMAN, G.J. (1982)
LISP, Programming and Implementation,
in [Darlington, Henderson, and Turner, 1982], pp. 29-71.

TRELEAVEN, P.~., HOPKINS, R.P. (1981)
Decentralised Computation,
Proceedings of the Eighth International Symposium on
Computer Architecture, pp. 279-290.

TRELEAVEN, P.C., HOPKINS, R.P. (1981)
A Recursive (VLSI) Computer Architecture,
Technical Report 161, Computing Laboratory,
University of Newcastle upon Tyne.

TRELEAVEN, P.C., HOPKINS, R.P. (1982)
A Recursive Computer Architecture for VLSI,
Proceedings of the Ninth International Symposium on
Computer Architecture, pp. 229-238 ..

TURNER, D.A. (1976)
SASL Language Manual,
University of St. Andrews.

TURNER, D.A. (1982)
Recursion Equations as a programming, Language,
in [Darlington, Henderson, and Turner, 1982], pp. 1-28.

TURNER, D:A. (1985)
Functional Programs as Executable SpeCifications,
in [Hoare and Shepherdson, 1985], pp. 29-50.

TURNER, D.A. (1986)
An Overview of Miranda,
SIGPLAN Notices, Vol. 21, No. 12, pp. 158-166.

UCHIDA, S. (1982)
Towards a New Generation Computer Architecture.
Technical Report, ICOT, Japan.

WADGE, W.W., ASHCROFT, E.A. (1983)
Why Lucid?
University of Warwick.

- 238 -

WILLEY, E.L., d'AGAPEYEFF, A., TRIBE, M., GIBBENS, B.J.,
CLARKE, M. (1961)
Some Commercial Autocodes, a Comparative Study,
London: Academic Press.

WILLIAMS, J.H. (1982)
Notes on the FP Style of Functional Programming,
in [Darlington, Henderson, and Turner, 1982], pp. 75-101.

WILNER, W. (1980)
Recursive Machines,
Palo Alto Research Centre, XEROX Corporation.

WULF, W.A., LONDON, R.L., SHAW, M. (1976)
An Introduction to the Construction and Verification of
Alphard Programs,
IEEE Transactions on Software Engineering, Vol. 2, No.4,
pp. 253-265.

- 239 -

	381525_0001
	381525_0002
	381525_0003
	381525_0004
	381525_0005
	381525_0006
	381525_0007
	381525_0008
	381525_0009
	381525_0010
	381525_0011
	381525_0012
	381525_0013
	381525_0014
	381525_0015
	381525_0016
	381525_0017
	381525_0018
	381525_0019
	381525_0020
	381525_0021
	381525_0022
	381525_0023
	381525_0024
	381525_0025
	381525_0026
	381525_0027
	381525_0028
	381525_0029
	381525_0030
	381525_0031
	381525_0032
	381525_0033
	381525_0034
	381525_0035
	381525_0036
	381525_0037
	381525_0038
	381525_0039
	381525_0040
	381525_0041
	381525_0042
	381525_0043
	381525_0044
	381525_0045
	381525_0046
	381525_0047
	381525_0048
	381525_0049
	381525_0050
	381525_0051
	381525_0052
	381525_0053
	381525_0054
	381525_0055
	381525_0056
	381525_0057
	381525_0058
	381525_0059
	381525_0060
	381525_0061
	381525_0062
	381525_0063
	381525_0064
	381525_0065
	381525_0066
	381525_0067
	381525_0068
	381525_0069
	381525_0070
	381525_0071
	381525_0072
	381525_0073
	381525_0074
	381525_0075
	381525_0076
	381525_0077
	381525_0078
	381525_0079
	381525_0080
	381525_0081
	381525_0082
	381525_0083
	381525_0084
	381525_0085
	381525_0086
	381525_0087
	381525_0088
	381525_0089
	381525_0090
	381525_0091
	381525_0092
	381525_0093
	381525_0094
	381525_0095
	381525_0096
	381525_0097
	381525_0098
	381525_0099
	381525_0100
	381525_0101
	381525_0102
	381525_0103
	381525_0104
	381525_0105
	381525_0106
	381525_0107
	381525_0108
	381525_0109
	381525_0110
	381525_0111
	381525_0112
	381525_0113
	381525_0114
	381525_0115
	381525_0116
	381525_0117
	381525_0118
	381525_0119
	381525_0120
	381525_0121
	381525_0122
	381525_0123
	381525_0124
	381525_0125
	381525_0126
	381525_0127
	381525_0128
	381525_0129
	381525_0130
	381525_0131
	381525_0132
	381525_0133
	381525_0134
	381525_0135
	381525_0136
	381525_0137
	381525_0138
	381525_0139
	381525_0140
	381525_0141
	381525_0142
	381525_0143
	381525_0144
	381525_0145
	381525_0146
	381525_0147
	381525_0148
	381525_0149
	381525_0150
	381525_0151
	381525_0152
	381525_0153
	381525_0154
	381525_0155
	381525_0156
	381525_0157
	381525_0158
	381525_0159
	381525_0160
	381525_0161
	381525_0162
	381525_0163
	381525_0164
	381525_0165
	381525_0166
	381525_0167
	381525_0168
	381525_0169
	381525_0170
	381525_0171
	381525_0172
	381525_0173
	381525_0174
	381525_0175
	381525_0176
	381525_0177
	381525_0178
	381525_0179
	381525_0180
	381525_0181
	381525_0182
	381525_0183
	381525_0184
	381525_0185
	381525_0186
	381525_0187
	381525_0188
	381525_0189
	381525_0190
	381525_0191
	381525_0192
	381525_0193
	381525_0194
	381525_0195
	381525_0196
	381525_0197
	381525_0198
	381525_0199
	381525_0200
	381525_0201
	381525_0202
	381525_0203
	381525_0204
	381525_0205
	381525_0206
	381525_0207
	381525_0208
	381525_0209
	381525_0210
	381525_0211
	381525_0212
	381525_0213
	381525_0214
	381525_0215
	381525_0216
	381525_0217
	381525_0218
	381525_0219
	381525_0220
	381525_0221
	381525_0222
	381525_0223
	381525_0224
	381525_0225
	381525_0226
	381525_0227
	381525_0228
	381525_0229
	381525_0230
	381525_0231
	381525_0232
	381525_0233
	381525_0234
	381525_0235
	381525_0236
	381525_0237
	381525_0238
	381525_0239
	381525_0240
	381525_0241
	381525_0242
	381525_0243
	381525_0244
	381525_0245

