
ROBUST DATA STORAGE IN A NETWORK OF COMPUTER SYSTEMS

Josephine A. Anyanwu

Ph.D. Thesis

Computing Laboratory
University of Newcastle Upon Tyne, England

November 1984

- ii -

CONTENTS

1.0 Introduction .••••.•...•.....•••.•.•...••...•....••.••. 1
1.1 Introduction 1
1.2 Aim of Thesis 4
1.3 Summary of Approach 6

2.0 Data Consistency in Distributed Systems ••..•..•...•.. lO
2.1 Introduction•............................. 10
2.2 Distributed Systems 12
2.3 Causes of Data Inconsistency 13
2.3.1 update Interference 13

:- The Lost Update
:- Retrieval of Intermediate Data

2.3.2 Component Faults 17
. Storage Faults

Processor Faults
Communication Faults
Software Faults
User Faults

2.3.3 Unsynchronised Update of Replicated Data 22
2.4 Measures for Maintaining Data Consistency 23
2.4.1 Shared Data Access Control 23
2.4.2 Software Approaches for TOlerating

Component Faults 25
2.4.2.1 Fault Tolerance Strategies 25

:- Forward Error Recovery
:- Backward Error Recovery

2.4.2.2 Fault Tolerance Mechanisms 27
Recovery Block Scheme

:- N-Version Programming
:- Atomic Transactions

2.4.3 Maintaining Mutual Consistency of Replicas ... 31
2.5 Conclusion 32

- iii -

3.0 A Reliable Stable Storage System ••.••..•............. 33
3.1 Introduction 33
3.2 Overview of the System 37
3.3 Reliability Issues 41
3.4 Concept s and Notation 43
3.4.1 Notation 44
3.4.2 Implementation of Notation 47

3.5 Stable Storage Implementation 48
3.5.1 Stable Files 49
3.5.2 Stable Operations 57
3.5.2.1 Transient Layer Implementation 57
3.5.2.2 Stable Layer Implementation 59
3.5.2.3 Other Stable Operations 64

3.6 Performance 65
3.7 An Alternative Approach 68
3.8 Conclusion 69

4.0 A Crash Resistant UNIX File System ••••..•..••...••... 70
4.1 Introduction 70
4.2 General Description of the UNIX File System 73
4.2.1 The Block I/O System 75

4.3 The Crash Resistant System 77
4.3.1 Disk Level: Implementation of Stable Disks ... 79
4.3.2 File Level: Implementation of Crash Resistant

File Operations 82
4.3.3 Crash Recovery 82

4.4 Performance 83
4.4.1 Single-User Environments 84
4.4.2 Multi-user Environments 88

4.5 Extensions 91
4.6 Conclusion 93

- iv -

5.0 CRES (Crash-resistant, Replicated and Stable)

6.0

Storage •••••.••••.•••.•••.•.••.•..•...••...••..•.•. 95
5.1 Introduction•.......................... 95
5.2 Previous Work 100
5.2.1 Weak Consistency Algorithrns lOO
5.2.2 Strong Consistency Algorithrns lOl

:- Voting Schemes and Primary Site Algorithms
5.2.3 Conflict Detection and Resolution

Algor i thms 104
5.3 Partitioned Processing l06
5.3.1 A Partitioned Update Algorithrn l07
5.3.2 A Network Merge Algorithm lll

5. 4 Implementation I s sues 115
5.4.1 File Creation and Placement 116
5.4.2 File Access 117
5.4.3 Replication Transparency 119
5.4.4 Data Structure Implementation 121

5.5 Performance 122
5.6 An Extension 124
5.7 Conclusion 125

Areas for Future Work and Conclusion
6.1 Summary 127
6.2 Areas for Future Work 128
6.3 Achievements and Conclusion 132

References ..•.....•.••••..•.•...••••..........•......••••. 134
Appendix•.•..•.•.••.•..•.•.•...............•.•... 146

- v -

ABSTRACT

Robustness of data in this thesis is taken to mean reliable

storage of data and also high availability of data .objects in spite

of the occurrence of faults. Algorithms and data structures which

can be used to provide such robustness in the presence of various

disk, processor and communication network failures are described.

Reliable storage of data at individual nodes in a network of

computer systems is based on the use of a stable storage mechanism

combined with strategies which are used to help ensure crash resis­

tance of file operations in spite of the use of buffering mechan­

isms by operating systems. High availability of data in the net­

work is maintained by replicating data on different computers and

mutual consistency between replicas is ensured in spite of network

parti tioning.

A stable storage system which provides atomicity for more com­

plex data structures instead of the usual fixed size page has been

designed and implemented and its performance evaluated. A crash

resistant file system has also been implemented and evaluated.

Many of the techniques presented here are used in the design

of what we call CRES (Crash-resistant, Replicated and Stable)

storage. CRES storage provides fault tolerance facilities for

various disk and processor faults. It also provides fault tolerance

- vi -

facilities for network partitioning through the provision of an

algorithm for the update and merge of a partitioned data storage

system.

- vii -

ACKHOWLEDGEMElfT

I would like to thank Dr. T. Anderson, my supervisor, and Pro­

fessor B. Randell for their encouragement and highly constructive

criticisms and suggestions during my Ph.D. study. I would like to

thank them for their critical reading of my reports and early

drafts of this thesis. I consider myself extremely lucky to have

been given the opportunity to benefit from their vast experience.

My special thanks are due to 'Dr. S. K. Shrivastava whose

invaluable advice influenced some of the ideas presented in this

thesis.

I would also like to thank Dr. L. F. Marshall for his advice

during the implementation of the crash resistant UNIX file system.

My initial tour of the UNIX kernel benefited greatly from his

knowledge of that system.

1. INTRODUCTION

1.1. INTRODUCTION

As more and more computers are used in the automation of

various essential services, the reliability of computer systems

has become increasingly important. Most of the results of the

processing which is carried out by computer systems are stored

in some form of storage medium. Many computer programs get

their input data from such media. A fault in any part of a

computer system could easily be manifested as an error in the

stored data at some point in the computation process. (We will

rely on the intuitive meaning of faults, errors and failures in

this introductory part of the thesis. A definition of these

concepts which conforms to normal computer usage is given in

the next chapter.)

Since programs often share data, an error in a single data

item can be propagated throughout a computer system. Correct

programs using such erroneous data could produce erroneous

results. Users of computer systems expect that the data which

is stored by such systems will be reliably stored. By this we

mean that users who have entrusted their data to a computer

system expect to be able to get that data when they want it.

- 2 -

Moreover, they also expect to get exactly the same data which

they entrusted to the computer system and not a mutilated ver­

sion of that data. Where such assurances cannot be given, users

lose confidence in the computer system and could prefer to

store their data in a more primitive but reliable and trusted

medium. Hoare[Hoare75] described an error in a data bank to be

potentially as catastrophic as an error in an ordinary bank

which keeps money for its clients. The reliability of computer

systems clearly depends heavily on the reliability of the data

which are stored by these systems.

There are two complementary approaches to the provision of

reliable computer systems. Avizienis[Avizienis75] calls these

two approaches fault-tolerance and fault-intolerance. The

fault intolerant approach aims at avoiding faults, and tries to

eliminate all sources of unreliability from a computer system.

It requires that efforts be spent in perfecting a computer sys­

tem (hardware and software) before such a system is put into

use. Hardware systems based on this approach use the most

expensive high quality circuits in the construction of comput­

ers. There is no guarantee, however, that these circuits will

never fail.

Software systems which use the fault intolerant approach

aim at exhaustive testing of software modules so as to elim-

- 3 -

inate all errors. Program verification methods can also be used

with the aim of proving programs correct. A program which has

been proven correct is expected to behave always as specified.

There has been reasonable progress in the area of program

verification and correctness proofs. However, proofs can be

faulty and even rigorously proven programs are executed on

hardware systems which have not been proven correct. It is

therefore difficult to ensure that such programs will always

produce correct results. Likewise, extensive testing of

software modules cannot guarantee the absence of errors except

in very special situations. Fault intolerant approaches may

therefore not be sufficient for the provision of highly reli­

able computer systems. There is the need to consider fault

tolerant approaches as a complementary, rather than an alterna­

tive, method for providing high reliability.

Fault tolerance is based on the use of redundancy. Such

redundancy is used to detect the causes of unreliability in

computer systems and to counteract their adverse effects. The

causes of unreliability are expected to be present but reliable

computing is achieved in spite of their existence. Redundancy

in fault tolerant systems can be classified as (1) masking

redundancy and (2) dynamic redundancy. In masking redundancy,

redundant components are incorporated into a system in such a

way that the effects of component faults are not visible to the

- 4 -

environment of the component. Dynamic redundancy on the other

hand is used for detecting the existence of errors in a system

so that an appropriate form of error recovery can be invoked.

The combined use of masking and dynamic redundancy enables the

detection of errors in computer systems and the provision of

continued service in the presence of faults.

1.2. AIM OF THESIS

This thesis is concerned with the provision of fault

tolerance facilities in a decentralised computer system. It

considers the problem of providing reliable storage of data in

distributed environments so that the integrity of data is main­

tained and there is high availability of stored data. Specifi­

cally, it considers the problem of providing disk storage

facilities that can tolerate various types of disk and proces­

sor faults and using these facilities as the basis for con­

structing highly reliable file systems. Our data storage sys­

tem is designed to be used by a set of computers connected by a

communications network. This thesis therefore also considers

the problem of ensuring that the availability of files in the

network is high in spite of various node and network failures.

Our emphasis is on how to make file systems reliable as

opposed to the design of file systems per se. This is because

there are many file systems already in existence and the design

- 5 -

of such systems is much better understood than the problem of

making these systems reliable.

There are now many distributed systems in which user data

is accessible throughout a network irrespective of location.

Examples of such systems are UNIX

INGRES[Stonebraker76], XDFS[Sturgis80]

United[Brownbridge82],

and SDD-l[Rothnie80].

Our experiments were carried out in a UNIX United distributed

system. A UNIX United system joins together several individual

UNIX systems so as to give the illusion of a single UNIX sys­

tem. Users in any UNIX system within the UNIX United framework

can access data in the other UNIX systems as though the remote

data were part of the user's own local system. An overview of

the UNIX United system and its naming scheme is given in

chapter 3.

Node and network failures have been recognised as major

impediments to the provision of reliable storage in distributed

systems. In addition, transient hardware faults and decay

phenomena of disk storage devices could affect the integrity of

stored data. Various solutions to some of these problems have

been proposed. In chapter 2 we shall discuss some of the pro­

posed solutions.

A mechanism known as stable storage [Lampson79] has been

advocated as a useful paradigm for the construction of reliable

- 6 -

data storage systems. This thesis investigates the use of the

stable storage mechanism and its associated crash recovery

facilities to help ensure that the probability of losing data

which is stored on disk storage devices is negligible.

The provision of such a facility would be sufficient for

the construction of a reliable data storage system if there

were no need to provide reliable management of stable objects

created by a stable storage system, and if such objects were

always available. These problems lead us to extend the concept

of stable storage to what we call CRES (Crash-resistant, Repli­

cated and Stable) storage. CRES storage addresses the problem

of maintaining the consistency of data as well as the manage­

ment and availability of data objects. The next section sum­

marises our approach to the construction of CRES storage.

1.3. SUMMARY OF APPROACH

Our approach to reliable data storage construction

proceeds in three stages. Figure 1 shows the relationship

between these three stages.

- 7 -

CRES Storage
(Crash-resistant, Replicated and Stable Storage)

1
-------------------------1------------------------------
Crash-resistant Crash-resistant Crash-resistant

File System File System File System
(on computer 1) (on computer 2) (on computer 3)

1 1 1
--------1----------------1-----------------1------------

Stable Disk Stable Disk Stable Disk
(on computer 1) (on computer 2) (on computer 3)

1 1 1
--------1----------------1-----------------1------------

/ \ / \ / \
/ \ / \ / \

Physical
Disk

Physical
Disk

Physical Physical
Disk Disk

Physical Physical
Disk Disk

Figure 1: Levels of Abstraction for CRES Storage

The first stage, which is described in chapter 3, provides

virtual disks (called stable disks) that are much more reliable

than their real counterparts. The abstraction of stable disks

is used to maintain the consistency of data which is stored on

disk storage devices in spite of transient I/O faults, decay of

the storage medium and some effects of processor crashes. A

novel algorithm for supporting more complex data structures

instead of ordinary pages in stable storage design is proposed.

This algorithm provides atomic objects of variable length

instead of the usual fixed size pages. A stable storage system

utilising this algorithm has been implemented and its perfor-

mance characteristics evaluated.

- 8 -

The consistency of a stable storage system does not

guarantee the consistency of a file system which uses it

because of some faults that can arise from certain file manage­

ment activities. The second stage of our experiment, which is

described in chapter 4, is thus concerned with the reliable

management of data stored on stable disks. This stage imple­

ments a crash resistant file system by ensuring that the use of

data management facilities (such as buffering mechanisms

employed by file systems) do not result in data inconsistency

when a processor crash occurs. A crash resistant UNIX file sys­

tem which is based on the abstraction of stable storage has

been implemented by making modifications to the UNIX kernel.

An evaluation of the performance of this implementation has

also been carried out.

A reliable data storage system should ensure that data

items are accessible in spite of node and network failures.

The third stage of this work, which is the subject of chapter

5, replicates the reliable files which are implemented by the

second stage on different computers so as to increase the avai­

lability of these files. The use of data replication requires

that the mutual consistency of replicas be maintained. Network

partitioning resulting from the failure of the communication

network could interfere with the preservation of such con­

sistency. We present an algorithm for the update and merge of a

- 9 -

partitioned data storage system which differs from work done by

others in this area. Algorithms which provide a merge of par­

titioned networks require that either the semantics of all

operations on data are known or that application programs

declare their readset and writeset in advance. (The readset

and writeset of an application program are those data items

which the program reads from or writes to.) Other algorithms

depend on the ability to obtain a global serialisable schedule

of the combined set of transactions from all partitions in a

network[Wright83]. In contrast, our algorithm dynamically

determines the readset and writeset of each partition, so that

conflicting update operations can be detected. Its merge proto­

col enables resolution of conflicts before an actual merge

operation is carried out.

Before we proceed with the discussion of reliable data

storage construction, we survey in chapter 2 the various faults

which affect the consistency of data and measures and mechan­

isms for maintaining data consistency in distributed systems.

The three stages in our data storage construction will be

presented in chapters 3, 4 and 5 respectively. Chapter 6 sug­

gests areas for future study and presents some concluding

remarks.

- 10 -

2. DATA CONSISTENCY IN DISTRIBUTIID SYSTEMS

2.1. INTRODUCTION

Systems which store data usually have a set of constraints

which must be maintained. Data stored by such systems are con­

sidered to be consistent if the set of predicates which

prescribe the systems constraints are satisfied. In order to

discuss data consistency therefore, it is important to examine

the faults which could violate these constraints.

Our concepts of faults, errors and failures are based on

the definitions by Randell[RandeI178] and Anderson[Anderson81].

We consider a system to be a set of interacting components

which is designed to provide a specified service. In providing

this service, a system makes state transitions from an initial

state to a final state. A sequence of state transitions which

takes a system from an initial state to a final state so as to

provide the specified service will be referred to as a correct

sequence of transitions.

A failure occurs when a system does not provide its speci-

fied service. A system is said to contain an error when it

makes an incorrect state transition such that subsequent state

transitions cannot lead to the provision of the specified

- 11 -

service. A fault is the underlying cause of an error.

We follow the model of errors in[Lampson79] and classify

errors as either expected or unexpected. A system is in a nor-

mal state if it contains no errors otherwise it is in an

erroneous state.

System
I \

I \
Normal
State

Erroneous
State
I \

I \
Expected Unexpected
Errors errors

Figure 2: System State Classifications

Figure 2 gives a pictorial representation of system states

based on this classification of errors. We consider a fault

which affects data to be any event which makes stored data

irretrievable or which alters the contents of stored data to a

state which is different from that specified by the user as

stated in the system constraints.

Recovery of data objects aims at restoring data in a sys-

tern to a usable state by eliminating errors. Concurrency con-

trol mechanisms are used to ensure that interference between

user update operations do not result in data inconsistency.

Discussion of recovery techniques can be found in [Verhofs-

- 12 -

tad78], [Gray81], [Kohler81], [Haerder83]. In [Bernstein81]

Bernstein presents a survey of concurrency control schemes.

This chapter surveys the general area of data consistency, of

which recovery and concurrency control form a part. It examines

data consistency with respect to

(1) Consistency in the presence of concurrent access

to shared data.

(2) Consistency in the presence of component faults

(3) Mutual consistency between replicated resources.

This method of survey has the advantage of giving a uni­

fied approach to concurrency, recovery and replication issues

with respect to their roles in the maintenance of data con­

sistency.

The organisation of this chapter is as follows. The next

section introduces distributed systems concepts and problems.

Section 2.3 discusses the causes of inconsistency in stored

data. In section 2.4 measures which are used to maintain the

consistency of data in spite of faults are discussed. Section

2.5 presents some concluding remarks.

2.2. DISTRIBUTED SYSTEMS

The subject of distributed computing systems is relatively

- 13 -

new and there are several definitions of such systems. We con­

sider a computing system to be distributed if it consists of a

collection of computers (loosely or tightly synchronised) which

communicate by means of a communication network and in which

there is no shared memory among individual computers. Some of

the problems which arise in distributed systems are due to the

physical separation of the components and the possibility of

heterogeneity among such components. Some of these problems are

concerned with providing a uniform naming scheme for objects,

implementing an interprocessor communications scheme, syn­

chronising the activities of the various computers and provid­

ing a mechanism to handle new sources of errors which might

arise due to the distribution of processes and data. For ease

of discussion we shall consider data items in a distributed

system to be grouped into objects, and activities which manipu­

late data will be referred to as tasks.

2.3. CAUSES OF DATA INCONSISTENCY

This section discusses the major causes of inconsistency

in stored data, namely update interference, component faults

and causes of mutual inconsistency between replicated data.

2.3.1. update Interference

Interference between concurrent update operations is a

- 14 -

fault arising from interaction between tasks in a computer sys­

tem. If tasks are correctly carried out separately one at a

time, then in the absence of faults, the output produced by

each task will be consistent with the user's specification.

However, if several tasks are performed concurrently and make

use of common resources there is the possibility that the

activities of various tasks on shared data could interfere in

such a way that outputs are produced which do not conform to

specification. Concurrency control schemes such as those

presented in [Bernstein8l], [Rosenkrantz78] are used to prevent

such interference between tasks. Bernstein and Goodman [Bern­

stein8l] illustrated the concurrency control problem by giving

examples of anomalies which could arise in on-line electronic

fund transfer systems. In such systems, a customer is allowed

to read data, perform some computations and then write the

results in the data storage system. The lost update problem

and the retrieval of intermediate data are examples of problems

which could arise in these systems.

Example 1: The Lost Update

Suppose that two customers A and B are accessing a bank

account X at the same time. Suppose that account X contains one

thousand dollars (SlOOO). Let A and B execute the following

algorithms:

- 15 -

A'S Algorithm

Read X into XAi
1* X = 1000*/

Add 10 to XAi
/* X = 1000*1

Write XA into Xi
1* X = 1010*1

B'S Algorithm

Read X into XBi
/* X = 1000*/

Add 100 to XB i
/* X = 1000*/

Write XB into Xi
/* X = 1100*/

Figure 3: The Lost Update

Let us assume that the instructions on the same line are

carried out in parallel. Since A and B have deposited $10 and

$100 respectively into account X, the expected final value of X

should be $1110 which would reflect both update operations.

From figure 3, it can be seen that only one update operation

will actually be reflected (either A's or B's update opera-

tion). The other operation is lost. Concurrency control mechan-

isms are used to ensure that such user interference do not

result in a data storage system having a state which is incon-

sistent with the user specification.

Example 2: Retrieval of Intermediate Data

A problem can also arise when data which is in an inter-

mediate state is retrieved by a user. Suppose that a customer

maintains two accounts, a deposit account 5 and a current

account Y which contain $1000 and $200 respectively. If a user

A is transferring $100 from the deposit to the current account

while a user B is printing the total balance in the bank

- 16 -

account (the sum of the amounts in the deposit and current

accounts), the algorithm executed by A and B could be the fol-

lowing:

A's Algorithm

Read 5 into SA;
/* 5 = 1000*1

Subtract 100 from SA;
/* 5 = 1000*1

Write SA into 5;
/* 5 = 900*1

Read Y into YA;
/* Y = 200*1

Add 100 to YA;
1* Y = 200*1

Write YA into Y;
1* Y = 300*1

B'S Algorithm

Read 5 into SBi
1* 5 = 900*1

Read Y into YBi
1* Y = 200*1

Print sum of SB and YBi
1* sum = 1100*/

Figure 4: Intermediate Data Retrieval

Let us again assume that instructions on the same line are

carried out in parallel. From figure 4 it can be seen that

user B read the contents of the bank account while A's fund

transfer was still in progress and before it was completed.

User B therefore retrieved an erroneous version of the contents

of the account even though the final value placed into the bank

account by A was correct.

There are many circumstances in which interference between

user update operations could occur. The examples given here

simply illustrate two of the many situations which could arise.

- 17 -

User interference due to concurrent update operations could

leave stored data in an inconsistent state or give an incorrect

view of data to the user. The use of proper concurrency control

mechanisms help eliminate such anomalies.

2.3.2. Component Faults

We consider a distributed system to consist of five basic

components namely storage, processors, communication, software

and users. This section discusses faults which affect these

components and how component faults affect stored data.

Storage Faults

By storage, we mean secondary storage such as disk storage

devices. (Volatile storage will be considered to be part of a

processor.) Typical commands to a disk storage device would be

to (1) read data from disk and (2) write data onto disk. There

are also the issues of addressing and locating data on disk

storage devices.

Unfortunately, it is not always possible for operations on

disk storage devices to succeed. The physical storage medium

could decay, making retrieval of data impossible. A disk could

suffer a head crash caused by mechanical or electromagnetic

faults in a disk arm or drive, thereby destroying user data.

Transient errors caused by electromagnetic fluctuation could

- 18 -

temporarily alter the state of stored data. These faults make

disk storage insufficiently reliable for storing critical data.

A mechanism which provides tolerance for storage faults is dis­

cussed in chapter 3.

Processor Faults

Faults in a processor lead to processor failures. A pro­

cessor may fail in two ways. The first is often referred to as

a processor crash. When a processor crash occurs, the processor

stops processing and the contents of volatile storage are lost.

The loss of information in volatile storage could lead to

inconsistency in long term data which is stored on disk storage

devices. Consider our electronic fund transfer example of fig­

ure 4. In A's algorithm, a processor crash could occur after

the "write SA into S" instruction and before the "write YA into

Y' instruction is executed. The system could attempt to

naively recover from the processor crash without ever executing

the rest of the bank transfer statements. The value of the bank

account which is stored on disk would then be erroneous.

The other mode of processor failure is often regarded as

malicious failure of a processor. In this case, the processor

does not stop but continues operation although its behaviour is

unpredictable and could be malicious in the sense that faulty

components within the processor continue to provide unspecified

- 19 -

service. Such malicious behaviour could destroy stored data by

writing invalid data to storage or overwriting already stored

data. NMR schemes such as the triple-modular redundancy

scheme[Lyons62] can be used to mask such malicious hardware

failures. This approach involves the use of several replicated

hardware modules and voting on their results so that the major-

ity result can be chosen. Schneider [Schneider83] also

describes an abstraction called "fail-stop" processor which

provides tolerance for such processor failures.

Communication Faults

The communication subsystem delivers messages between

users. There are two standard operations on messages namely,

"send" and "receive". Figure 5 shows the various possible out-

comes when messages are sent.

Message Sent
1

1---------------------------1
Delivered Not Delivered

1 1
1------------1 1--------------1

Correctly Incorrectly Lost Undeliverable
1

1
1-----------1
1 1

Corrupted Duplicated

1
1

1----------1--------1
1 1 1
1 1 1

Network Receiver
Partitioned Crashed

Message
Refused

Figure 5: Possible Outcomes for Messages

- 20 -

The effect on stored data of incorrectly delivered mes­

sages or undelivered messages is that either bad data is writ­

ten into storage or data which is expected to be written into

storage is not written. Unless such faults are detected, stored

data will be left in an inconsistent state. Remote procedure

call mechanisms and similar protocols are used to ensure that

messages are properly delivered. Algorithms for error detection

and message retransmission schemes are also used to tolerate

some adverse effects of communication failures. The failure of

the communications network, followed by continued processing in

multiple partitions makes it difficult to maintain the mutual

consistency of replicated copies of resources in a distributed

system. Communication failure also prevents the completion of

distributed tasks by making it impossible for the various parts

of a distributed task running on different machines to be prop­

erly synchronised. Algorithms for handling network partitioning

address these issues.

Software Faults

Software constitutes a major proportion of the complexity

in computer systems. Thus although it is usually assumed

(rightly or wrongly) that the hardware is correctly designed it

is extremely difficult to guarantee that a complex software

system does not contain design faults. Such a guarantee

- 21 -

requires the ability to enumerate all possible failures modes

(if any) of the software modules and all possible interactions

of such modules. This is very difficult even for a reasonably

small software subsystem. In the presence of software faults,

the behaviour of a computing system is unpredictable and data

can be damaged. Fault tolerance for unexpected software faults

is difficult to provide. The problem, as Randell[RandelI78]

pOinted out, is "how to tolerate faults which are unanticipated

and unanticipatable". Two approaches, namely the recovery block

scheme and N-version programming, have been developed for pro­

viding tolerance for such faults. These schemes will be dis­

cussed later.

User Faults

It can be said that human beings constitute the most

unpredictable component of a computer system. However, the user

faults which we are concerned with are those related to the

submission of wrong input data and operator faults (such as

mounting the wrong tape on a tape drive). When wrong data is

not detected, a computer system makes correct state transitions

but produces outputs which are not consistent with the system

specification. This is because the system started in an errone­

ous initial state.

Error detection mechanisms can sometimes detect invalid

- 22 -

data at the interface between two interacting components. This

is often referred to as interface checking. There is no guaran­

tee that wrong input data can always be detected by such

checks. Propagation of such data could result in wrong data

being written into a data storage system and thereby lead to

overall system failure. By this we mean that the system of

which the computer and the user are components, fails.

2.3.3. Unsynchronised Update of Replicated Data

Technological advances in communication network deSign

have led to the development of operating systems in which user

data is distributed around a network. In such systems, it is

not unusual for a user in one machine to access data on other

machines in the network or to have a task distributed among

several machines. However data required by a user may not be

accessible due to a network failure. To cope with this prob­

lem, many systems replicate data on different machines, so that

if the machine which stores the original copy of user data is

not available due to node or network failure, any accessible

replica can be used instead.

However, the replication of data could result in mutual

inconsistency between replicated objects. It is necessary that

the mutual consistency of replicas be maintained. Some algo­

rithms designed for this purpose are described in [Ellis77],

- 23 -

[Mullery75], [Thomas78]. However, maintaining such consistency

in the presence of network failures is difficult due to the

inability to synchronise the autonomous update operations on

replicated objects in non-communicating sites. Mutual incon­

sistency between replicas could result in users obtaining a

view of data which is not consistent with the system specifica­

tion.

2.4. MEASURES FOR MAINTAINING DATA CONSISTENCY

This section discusses some software fault tolerance meas­

ures and techniques which are used to maintain the conSistency

of data in spite of the sources of unreliability which have

been discussed in the previous sections. Measures and mechan­

isms which are used to maintain data conSistency in the pres­

ence of (1) Concurrent accesses to shared data, (2) Component

Faults, and (3) Replicated Data will be discussed.

2.4.1. Shared Data Access Control

One of the techniques used in maintaining the consistency

of data is the control of access to shared data. Many algo­

rithms exist for synchronising accesses to such data so as to

avoid interference between user updates. Most of these algo­

rithms have been proposed as concurrency control schemes [Bern­

stein81], [Rosenkrantz78], [Papadimitiou84], [Bhargava82].

- 24 -

Concurrency control is concerned with ensuring that poten­

tially interfering user accesses do not leave stored data in an

inconsistent state. Bhargava[Bhargava82] outlined the three

basic approaches to the design of concurrency control algo­

rithms as:

(1) The use of the "wait" synchronization technique. This

requires that a task needing to access a resource has first to

acquire it exclusively. All other tasks which need the resource

wait until the resource is released. One approach to implement­

ing a "wait" synchronization method is to implement a locking

scheme [Eswaran76], [Schlageter76], [Stonebraker79]. A lock­

ing scheme locks any resource in use by a task and releases it

when it is no longer needed by the task. There are various dif­

ferent locking strategies, one of the best known being two­

phase locking (2PL). The major disadvantages of locking stra­

tegies are the bottlenecks created by tasks waiting for

resources and the reduction in concurrency resulting from the

use of such schemes.

(2) The use of timestamps, circulating tokens and tickets

[LeLann78], [Bernstein80] are approaches which can be mapped

onto locking strategies. These approaches order the activities

of a system by allowing only the task which has the highest (or

lowest) timestamp, or which is in possession of the ticket or

- 25 -

token, to access shared resources. These schemes differ from

locking strategies in their method of ordering activities.

(3) The use of backout strategies is often referred to as

the optimistic approach to concurrency control[Kung82]. Tasks

are allowed to proceed

shared data despite

freely with

the risk of

respect

errors

to accesses to

being introduced.

Before update operations are committed, conflicts are detected

and resolved. In resolving conflicts, recovery strategies such

as those which are discussed in the next section are used. The

operations of some tasks may have to be undone in this resolu­

tion process.

2.4.2. Software Approaches for Tolerating Component Faults

This section discusses some software approaches for

tolerating component faults. It does not deal with each com­

ponent fault individually but instead discusses general stra­

tegies and mechanisms which can be used to tolerate such

faults. Recovery from errors constitutes the major approach to

the maintenance of the consistency of data. Different stra­

tegies are used depending on whether faults are anticipated or

unanticipated.

2.4.2.1. Fault Tolerance Strategies

Forward and backward error recovery schemes constitute the

- 26 -

two main software fault tolerance approaches for tolerating

anticipated and unanticipated faults, respectively.

Forward Error Recovery

Fault tolerance for anticipated software faults is gen­

erally provided by the use of forward error recovery tech­

niques, such as exception handling schemes [Goodenough75],

[Cristian82]. These schemes aim at detecting and correcting

errors before these errors can cause extensive damage to data.

They provide efficient and specialised recovery facilities.

Such scheme are not deSigned to work when unexpected faults

occur.

Reliability in software systems requires that programs

give a well-defined response to all requests for service.

Detecting and coping with unusual conditions (even though

expected) makes programs complicated and unreadable. An excep­

tion handling mechanism provides a linguistic facility which

permits a more organised method of detecting and coping with

errors. Let us refer to the processing which should be carried

out when an expected error (such as overflow in an arithmetic

computation) occurs as abnormal processing. Exception handling

mechanisms provide a clear separation between the normal and

abnormal processing performed by a software component, thereby

making the system Simpler, more readable and therefore more

- 27 -

reliable. A number of recent systems (such as [Liskov79],

[DefenceSO], [LiskovS3]) incorporate exception handling facil­

ities.

Backward Error Recovery

Fault tolerance for unanticipated software faults usually

aims at restoring a faulty system to an earlier state which is

presumed to be "error-free". It does not aim at detecting

specific errors, since it does not know what faults to expect

and hence what errors might have been generated. It only needs

to know that something has gone wrong.

One of the ways of coping with such faults is the use of

backward error recovery schemes. This approach requires that

state information (recovery data) be saved periodically. In the

event of an error, a system is restored to a previous error­

free state and restarted from that state in the hope that the

state preceded the occurrence of the fault. A thorough survey

of recovery techniques which are based on the use of state res­

toration has been carried out by Verhofstad [Verhofstad7S].

2.4.2.2. Fault Tolerance Mechanisms

This section discusses some of the mechanisms which are

used in software systems for fault tolerance purposes.

- 28 -

Recovery Block Scheme

The recovery block scheme [Horning74], [RandeI175] pro­

vides a means of error detection and recovery for unanticipated

software errors. It uses redundant software modules such that

when one module fails, control is passed to an "alternate".

Errors are detected by the use of an acceptance test which

tests the outputs produced by a module with respect to the sys­

tem specification. In the event of an error, a system is

restored to a previous "error-free" state (recovery point)

before control is passed to an alternate module. The modules in

a recovery block scheme should ideally not be "fault related".

By this we mean that such modules are expected to be indepen­

dently developed so as to minimise the risk of common faults.

This scheme provides an effective means of handling unantici­

pated software errors and for providing continued service in

the presence of such errors.

H-Version Programming

Another mechanism which can be used to tolerate unantici­

pated faults in software systems is the use of N-Version

programming[Avizienis77]. In this scheme, H different versions

of a program are executed at the same time. Their results are

compared and the result which is submitted by the majority of

the versions is chosen. This scheme can tolerate any

- 29 -

unanticipated fault which does not violate the N-Version con-

trol structure. However, if the majority of the program ver­

sions are in error, the erroneous result will be chosen.

Atomic Transactions

I

Gray[Gray81~ .•.] defines a transaction as a set of Read

and Write commands with the following properties:

(i) Consistency: Transactions only make correct state

transitions.

(ii) Atomicity: Either all of a transaction's commands

are carried out or none is.

(iii) Durability: The effects of a completed transaction

cannot be abrogated.

Transactions can be used as units of consistency and

recovery. The atomic property of transactions is used to keep

stored data consistent. Maintenance of data conSistency by

transactions is based on the use of backward error recovery. A

transaction aims at carrying out all update operations or none

of them. It therefore provides UNDO capabilities so as to elim-

inate the effects of partially completed operations. Transac-

tion mechanisms are typically provided for database systems,

but the concept can apply to any form of data storage system.

- 30 -

A transaction transforms an already consistent database to

a consistent database since the effects of uncompleted opera­

tions are undone. One of the limitations of the transaction

scheme is that a considerable amount of work might have to be

undone if the transaction cannot be completed. This is partic­

ularly undesirable in long-lived transactions where days or

possibly months of work might be undone.

Transactions and other schemes which use backward error

recovery can be combined with forward error recovery schemes so

as to provide a highly reliable and consistent computer system.

The use of forward error recovery helps minimise the probabil­

ity of system failures by providing fault tolerance for

specific faults. This in turn reduces the frequency of "UNOO"

operations required in a system.

The construction of a stable storage system is an example

of the use of forward error recovery and a limited form of

backward error recovery to provide a disk storage system which

is resilient to (it is hoped) all faults affecting disk

storage. It specifically tolerates anticipated disk faults and

provides a crash recovery routine which restores a disk storage

system to a consistent state after a processor crash. The use

of such a crash recovery routine can be regarded as the use of

a limited form of backward error recovery. The design and

- 31 -

implementation of a stable storage system will be discussed in

detail in chapter 3.

2.4.3. Maintaining Mutual ConSistency of Replicas

The last two sections discussed measures and mechanisms

for maintaining the consistency of data in the presence of con­

current access to shared data and component faults. This sec­

tion considers the use of mutual consistency algorithms to

maintain the consistency of stored data. Mutual consistency

algorithms aim at providing tolerance for faults which arise

due to the use of data replication. Algorithms for detecting

mutual inconSistency among replicas in the presence of network

partitioning are described in [Parker83], [Brereton83]. These

papers discuss resolution of inconsistency only for simple

files whose operation semantics are known, such as directories

and mail-boxes. Assuming that inconsistencies have been

detected, Wright[Wright83] presents an algorithm for merging a

partitioned database for the general object type. However this

algorithm requires that the readset and writeset of an applica­

tion be known beforehand so that the activities of an applica-

tion can be grouped into transaction classes. It could be dif-

ficult to use such a scheme for applications which do not know

a priori all their resource requirements. A more detailed dis-

cussion of these issues is given in chapter 5. That chapter

- 32 -

also presents an algorithm which handles the detection and

resolution of inconsistencies among replicates in a partitioned

data storage system.

2.5. CONCLUSION

This chapter has discussed the major causes of data incon­

sistency in distributed systems and summarised the approaches

which are used to maintain consistency in the presence of

faults. It classified methods for maintaining the consistency

of data as consisting of three basic approaches, namely,

methods for maintaining consistency in the presence of

(i) Concurrent accesses to shared data

(ii) Faults and errors

(iii) Replicated resources.

It discussed various strategies, abstractions and mechanisms

which are used to keep stored data consistent.

- 33 -

3. A RELIABLE STABLE STORAGE SYSTEM FOR UNIX

3.1. INTRODUCTION

This chapter describes the first of the three stages in

our data storage construction. It describes the implementation

of a stable storage system which converts several fallible disk

stores into a reliable device for storing data. It provides

reliable reading and writing of data in a UNIX environment in

spite of various types of hardware faults. The implementation

makes available to UNIX users a convenient way of uSing the

facilities of a stable storage system by providing the abstrac­

tion of stable files and by maintaining the standard UNIX sys­

tem call interface. Internally the implementation systemati­

cally handles abnormal situations by separating normal and

exceptional processing in both the system description and

implementation. This is achieved through the use of a fault

tolerance design notation for the description of the system and

the implementation of that notation using an exception handling

package.

The problem of tolerating faults in a distributed system

is made more difficult by individual site crashes which may

- 34 -

leave information stored locally in each processor, or globally

within the distributed system, in an inconsistent state.

Unreliable disk storage devices, which can suffer from physical

decays, also threaten the reliability of stored data. The use

of a so-called stable storage system [Lampson79] is now

accepted as one of the ways of maintaining the internal con­

sistency of data which is stored on disk storage devices in the

presence of hardware failures. Such a system makes use of

replicated physical hardware and carefully designed fault

tolerance strategies in order to provide an abstract store for

which the probability of failure can be regarded as negligible.

Our implementation uses the stable storage mechanism to provide

a reliable repository for data which tolerates disk faults

through the provision of stable disks. It also provides crash

recovery facilities for the data which is stored on such disks.

Stable disks have the same actions as ordinary disk storage but

with the property that, to a very high degree of probability,

no anticipated adverse events occur. As yet, there has been

only limited experience with the implementation, use and

evaluation of stable storage systems. Our implementation is

partially an exercise in that direction. The implementation

described here provides a simple way of providing the facili­

ties of a stable storage system as an independent facility

(which is not embedded in an operating system) by implementing

- 35 -

such a system as a collection of user processes. (An alterna­

tive approach is described in section 3.7.) The implementation

which is described here addresses the problems of providing

fault tolerance facilities in response to:

(i) processor crashes

(ii) random decays of phYSical storage devices, and

(iii) transient input/output faults

It tolerates disk crashes by the use of two disks which are not

"fault-related"

the other. This

in such a way that each acts as a backup for

implementation differs from other stable

storage systems in its provision of the abstraction of UNIX­

like stable files rather than simple disk storage areas and in

the way its internal design is based on a scheme for systematic

handling of abnormal situations arising from the use of disk

storage devices. We are not aware of any other stable storage

implementation that provides the abstraction of stable files

which allows atomic reading and writing of variable length

stable objects. In contrast to our approach most stable

storage systems provide fixed size stable pages [Lampson79],

[Svoboda8l), [Sturgis80). In these systems, operations of the

stable storage system are atomic only if they involve just a

single read/write operation on a fixed size page. However,

- 36 -

users often have the need to write blocks of data of varying

sizes atomically. Our implementation supports atomic reading

and writing of variable length objects and our prOVision of the

abstraction of stable files instead of stable pages gives the

stable storage system an interface which is fully familiar to

the UNIX user.

The stable storage system has been implemented on a UNIX­

based distributed system called UNIX United [Brownbridge82]

which consists of a number of PDP/II computer systems connected

by a Cambridge Ring local area network. The facilities

described in this chapter are part of a prototype reliability

subsystem associated with the Newcastle Connection software of

our UNIX United system. The implementation technique used has

been inspired by the system design methodology for fault

tolerant systems developed by Cristian[Cristian83]. An excep­

tion handling software package described by Lee[Lee83] is used

for handling detected exception occurrences.

In the following section we give an overview of the system

of which the stable storage system is a part. In section 3.3

we describe the reliability issues which the stable storage

system addresses. Section 3.4

design notation which is used to

presents the fault tolerance

structure the standard and

exceptional processing performed by a software component. It

- 37 -

also describes the exception handling package which is used to

implement that notation. The stable storage implementation is

presented in section 3.5 and section 3.6 contains some perfor­

mance measurements. In section 3.7 we discuss an alternative

approach for implementing stable files in UNIX. Section 3.8

provides some concluding remarks. (An example of how the fault

tolerance design notation was implemented is given in an appen­

dix to this thesis.)

3.2. OVERVIEW OF THE SYSTEM

This section gives a brief overview of the UNIX United

distributed system[Brownbridge82] and describes how the stable

storage system has been integrated into it. A UNIX United sys­

tem is usually made up of a (possibly large) set of standard

UNIX systems interconnected by a communication network. The

naming scheme used by such a system joins together the naming

structures of the individual UNIX systems into a Single naming

tree such that these component systems appear as directories in

that naming tree. Such a system enables a legitimate user on

any of the UNIX systems to access files or devices of any other

component system within the UNIX United framework as though

these devices were part of the user's own system. Depending on

the need of a computing environment, some of the computers in a

UNIX United system could be used as "stable servers" which pro-

- 38 -

vide the services of a stable storage system. (Each computer

could in fact provide both stable and ordinary disk storage

facilities.) Figure 6 shows a possible position of a stable

storage system in a UNIX United naming tree containing five

UNIX systems UI, U2, U3, U4, US.

(base)
/ \

/ \
UI U4

/ \
/ \

/ \

/
U2

/ \
/ \

/

U3
/ \

\

\
\
US(system providing
/ \ stable storage)

/ \
sf sf

(stable files)

Figure 6. An Example of a UNIX United Naming Tree

Following normal UNIX naming convention, names starting with

"/" indicate that the name starts at a root directory and the

symbol " .• " is used to indicate a parent directory. The root of

any process is at the UNIX system in which the user "logged in"

unless the process changes its root with a "change root" com-

mand. From figure 6 it follows that a user process logged on

to UNIX system U4 can access files in the stable storage system

as "/US/sf". A user on U2 can access these files as

"/ .. / .. /U4/US/sf". This implies that a user can access the

stable storage system using standard UNIX system calls with the

file-name being interpreted as a route through a naming tree,

- 39 -

each element specifying the next branch to be taken. If a leaf

corresponding to a stable file is reached, the appropriate

stable operations will be invoked rather than the normal UNIX

operations.

The UNIX United naming scheme is implemented by means of

communication links and the inclusion of a software subsystem

called the Newcastle Connection in each of the individual UNIX

systems. This software subsystem is located between the UNIX

kernel and the rest of the operating system and user programs.

It intercepts system calls and determines which of the calls

are local and which are for remote UNIX systems. It also incor­

porates UNIX servers which accept calls that have been re­

directed to it from other systems. Communication between the

Connection layers in the individual UNIX systems is performed

by a remote procedure call mechanism[Shrivastava82].

The Newcastle Connection software sends any file access

requests to the UNIX server in the appropriate UNIX system. In

our present prototype implementation of stable storage for

UNIX, it is, for convenience, the UNIX server in each system

that distinguishes between ordinary files and stable files and

invokes the corresponding operations. Once the stable storage

system is invoked by the UNIX server, it assumes that the files

to be accessed are legitimate stable files. If those files are

- 40 -

not in fact stable files, the invocation will terminate abnor­

mally by raising exceptions. This UNIX server is presently

invoked only for remote file accesses. Thus each machine which

contains our prototype stable storage system is regarded as

functioning just as a "server machine" for the other component

UNIX systems. It is not intended to be used by local user

processes. An alternative method of incorporating the stable

storage mechanism into a component UNIX system would allow

processes in that system, as well as remote processes, to use

stable storage. This would involve local as well as remote

file accesses being checked to distinguish between ordinary and

stable files. This check would have to be incorporated in the

"interception code" within each Newcastle Connection layer

rather than in the UNIX servers. A fully general implementa­

tion would allow each component UNIX system to provide (local

and remote) users with a mixture of conventional and stable

storage. However our aim was to investigate the design of

stable storage systems themselves and to provide a stable

storage server facility for computers in a UNIX United system.

The stable storage system sits on top of the UNIX kernel

and is regarded as a user process by the kernel. The relation­

ship between the stable storage system, the Connection subsys­

tem and the UNIX kernel is shown schematically in figure 7.

- 41 -

luser programs, non I luser programs, non I
I resident UNIX software I I resident UNIX software I
I I I I
I----------------------Iremote I I
INewcastle Connection I<------------>I;~~~~~~~~-~~~~~~~~~--I
I ·--------------Iprocedure calli .--------------1
I I stable storage I 1 I stable storagel
1----------------------1 1----------------------1
I I I 1
I UNIX Kernel I I UNIX Kernel I
I I I I

UNIXI UNIX2

Figure 7: Software Subsystem Relationship

3 .3. REL IABIL ITY ISSUES

Various faults can prevent a disk storage system from pro-

viding reliable service. A physical disk storage system is

regarded as consisting of contiguous blocks of data. Access to

the disk storage is provided by two functions: READ and WRITE.

The actions performed by these operations are as follows: a

successful read operation would read data from a disk, and also

return the number of data bytes read. A successful write

operation would change the existing disk state by writing the

desired block of data on the specified disk. Unfortunately,

due to processor crashes and physical decays of a disk storage

system, read/write operations will not always succeed.

(i) By a processor crash we mean any event which causes a

- 42 -

processor to lose the contents of its main store. The

processor is also expected to stop its processing

activities.

(ii) We will say that there is a decay at an address on

disk if we can not read from or write to that

address. We will say that there is a transient decay,

td, at some address, if initial attempts to read from

and write to that address fail but a successful

read/write operation is achieved within a predefined

number of read/write retries.

In addition to such processor crashes and decays there are

other abnormal input/output situations to deal with. Most of

the troublesome problems are associated with the write opera-

tion. For disks without read-after-write capability, there is

no assurance that the data has been correctly written. For

example

(i) A write operation which returns successfully

without changing the state of the disk is often

not detected.

(ii) There is the problem of a write operation which

writes to the wrong address.

(iii) A write operation which writes the wrong data to

- 43 -

the disk also presents a problem.

(iv) There is also the possibility of a read/write

operation which signals failure when the disk is

not faulty. This failure is often due to transient

I/O faults such as transient decays of disk

storage devices.

These are some of the issues which our implementation addresses

to provide reliable storage of data.

3.4. CONCEPTS AND NOTATION

The need to provide well-structured and effective fault

tolerance facilities [Anderson8l] led to our separation of the

standard and exceptional processing performed by a software

component in both the system description and implementation. We

use a fault tolerance notation to describe the stable storage

system and an exception handling software package to implement

that notation. This section describes some of the concepts used

in this chapter including the fault tolerance notation and its

implementation.

Our concept of an exception occurrence is based on those

of Melliar-Smith and Randell [Melliar-Smith77]

Cristian[Cristian82]. The service which a procedure or com­

ponent is intended to provide is implemented by a sequence of

- 44 -

internal state transitions. This intended service can be speci­

fied by a binary relation INV over the initial and final

states. If the final internal state s is the intended outcome

of activating a component c in the initial state s·, then we

say that

(s', s) ~ INV

An exception is said to have occurred if a procedure, when

started in an initial state s', terminates in some final state

s, such that

(s ., s) t INV.

A procedure either terminates normally or it terminates by sig­

nalling an exception. Once an exception is signalled, a handler

associated with that exception is invoked, if such a handler

has been provided. If no handler was provided, the exception

is propagated to the the enclosing exception context, and then

up the call-chain, until either a handler for the exception is

found or the highest exception context is reached. The highest

context will either handle the named exception, or it will

indicate to its caller the failure of the software component by

converting the exception into a "failure" exception.

- 45 -

The notation which we use to describe the stable

system is an adaptation of the notation

storage

used by

Cristian[Cristian83]. Suppose c is a command or procedure

which may signal a set E of exceptions. Then one can give the

declaration:

proc c SIGNALS E (PD)

This is the procedure declaration construct, PD. It simply

indicates that c has two exit points: a standard one and an

exceptional one. If c is invoked in an initial state s' and

terminates in a final state s such that (s' ,s) ~ INV then one

can say that c terminates using the normal exit point otherwise

c will be said to terminate using the exceptional exit point

and an exception in E will be signalled. Only exceptions which

appear after a "SIGNALS" clause are visible outside a pro­

cedure. All other exceptions are internal exceptions which are

detected and handled within the procedure itself.

The next construct is the exceptional continuation construct,

EX. Let H be a set of handlers associated with E. The con­

struct

c[E: :H] (EX)

says that if any invocation of c detects an exception in E,

then the standard continuation of c is to be replaced by an

- 46 -

exceptional continuation by invoking a handler in H. A handler

in H may be a (possibly empty) sequence of operations and may

itself signal an exception.

The R (repetition) construct

(N)C[OTHERS::OH; E::H] (R)

will be used as an abbreviation of the n-depth repetition

c[OTHERS::OH; E::c[•.. c[OTHERS::OH; E::H]]]

The semantics of the R construct are as follows: Suppose there

is a special exception called OTHERS which is an element of E,

and a handler OH in H, which is associated with OTHERS. Let N

be an integer constant with value N ~ 1. Then if any invoca­

tion of c signals the exception OTHERS, the handler OH is

immediately called. However, if the invocation of c signals an

exception in E which is not OTHERS, then the handler action

will consist of invoking c again. This repetition is continued

until N successive c invocations persistently signal exceptions

in E (that is not OTHERS), at which point a handler in H asso­

ciated with that exception is invoked. Otherwise, if for some

i, l~i~, an invocation of c terminates normally, then (R) ter­

minates without further handler action being initiated and

hence, without further retries. Although OTHERS is an element

of E, it demands special treatment when detected, namely, that

- 47 -

the repetition loop be exited. This enables us to deal with

exceptions which, when detected, indicate that further retries

will be futile and that a handler is to be invoked without com-

pleting the repetition loop.

3.4.2. Implementation of Notation

The fault tolerance notation was implemented using the

exception software package described by Lee[Lee83]. This pack-

age is actually a set of macros for the C language. The basic

structure of a program using the exception package is shown in

Figure 8.

BEGIN /* beginning of an exception context*/

if condition-true then
exc-raise«exception name»

/*normal code*/

EXCEPTION /* beginning of exception handlers*/
WHEN«exception name»

WHEN«exception name»

END /* end of exception context*/

Fig. 8.

The notation [E::H] establishes an exception context and is

implemented by the BEGIN and END primitives of the exception

package. The EXCEPTION and END clauses of the exception pack­

age indicate the beginning and ending respectively of the

- 48 -

handlers in H which are associated with an exception context.

After executing BEGIN, and if no exceptions are raised, the

exception context is exited and control passes to the code fol­

lowing the END statement. If an exception is raised between the

BEGIN and EXCEPTION statements, control passes to the appropri­

ate WHEN clause, and the associated handling code is executed,

at the end of which control passes to the END statement. The

interested reader is referred to[Lee83], which describes the

package fully.

3 • 5 • STABLE STORAGE IMPLEMENTATION

Several physical disk storage devices which, we assume,

are characterised by inherent unreliability due to electrical

and mechanical interferences, can be converted into a reliable

device for storing data by the implementation of a stable

storage system. The stable storage system we have implemented

is intended to provide the abstraction of reliable virtual dev­

ices with the property that transient input/output faults and

decays are not visible to the user. This is achieved by imple­

menting stable files and providing reliable atomic variable

length read/write operations for accessing these files instead

of the usual read/write operations for a disk storage device

whose atomicity is guaranteed only if they operate on fixed

size pages.

- 49 -

The operations that constitute the interface to the stable

storage system are organised as a set of server processes.

These server processes are structured as two successive levels

of abstraction, each level eliminating the effects of some set

of undesired events associated with the disk storage. The first

layer, called the transient layer, masks transient I/O faults.

The second layer is the stable layer, which uses the virtual

devices produced by the transient layer to construct a better

behaved set of devices by providing facilities for tolerating

decays and crashes. The following section presents the basic

information structure used by the stable storage system, namely

stable files, and the stable operations which use these files.

3.5.1. Stable Files

A stable file looks to the user just like an ordinary UNIX

file. It is physically represented by an ordered pair of UNIX

files held on two different disk storage devices. (The pair of

files could have been stored on the same disk storage device if

there were any means of ensuring that the files are not "decay

related"). A stable file in our environment is read and written

using standard UNIX system calls. A stable read operation

reads from the first file and if that read operation is not

successful, it reads from the second file. A stable write

operation writes to each of the pair of files. The details of

- 50 -

these operations are given in section 3.5.2.

The problem we addressed was to provide the user with

variable length atomic read/write operations which can be used

to access data blocks of varying Sizes and which incorporate

crash recovery facilities for these variable length objects.

Disk storage devices provide a weak atomicity property for

fixed size pages such that a write operation to these pages is

either written completely or not at all, unless a failure

occurs while the disk's write head is turned on. If such a

failure occurs, the data on the disk will be detectably bad and

error detecting codes which are written with every disk page

will reveal this fault when the page is read. Such physical

hardware does not however guarantee atomicity of read/write

operations on variable length blocks of data. To provide this

facility we implemented the abstraction of stable files, and

provided a means of crash recovery for these files. It is the

means of crash recovery that dictated the structure of the

stable file.

In a fixed page environment, a stable page is usually

represented by two fixed size pages. If a failure should occur

during a write operation to the pair of pages, we assume that

the pages will be in one of the following states:

(i) Both pages contain valid data (even though the data

- 51 -

might be different).

(ii) One of the pages is detectab1y bad and the other is

accessible and contains valid data.

In case (i) if the contents of the two pages are different,

crash recovery would consist of copying one of the pages to the

other. The preference is usually to copy the first page to the

other page so that the most recent update is reflected. In

case (ii) the good page is copied to the detectably bad page.

Unlike the fixed page Situation, a variable length write

operation can be interrupted by a crash resulting in only a

part of an object being written. It is usually not known which

object was being written when a crash occurred. After a proces­

sor crash, in a variable length environment, the pair of

objects forming a stable object will be assumed to be in one of

the following states.

(i) Both objects have valid data (which may be dif­

ferent).

(ii) One of the objects has valid data and the other is

detectably bad.

(iii) One of the objects is valid and the other is

invalid but it is not known which object contains

- 52 -

valid data.

In case (ii) a crash occurred while the disk write heads were

turned on thereby corrupting the data which is stored on the

disk. The data is detectably bad and the error correcting codes

will reveal this fault when the data is read. In case (iii), a

write operation to one of the two objects was interrupted by a

crash resulting in only part of the data being written. The

data on the disk is not detectably bad though the data is in an

inconsistent state. Since it is not known which object was

being written when a crash occurred, it follows that we do not

know which object contains inconsistent data. This is unlike

the fixed page environment where we assume that the data on the

disk is either consistent or is detectably bad. In the vari­

able length situation it is therefore necessary to determine,

for purposes of crash recovery, the consistency status of each

of the two objects that represent a stable object. The fixed

page solution which copies anyone of the pages to the other

page when it is determined that the pages are not detectably

bad is not suitable in environments where variable length

objects need to be written atomically. If we do not know which

of the objects is consistent, copying one of the objects to the

other could mean copying the inconsistent object to the con­

sistent object thereby making both objects inconsistent.

- 53 -

TO solve this problem, we considered times tamping each

write operation. A timestamp would indicate to us the write

operations that belong together but will not necessarily enable

us to determine which write operation was completed and which

was interrupted. One approach to timestamping every update

operation would mean having timestamps scattered in the file.

We decided that this was undesirable since we regard a file to

be a data entity which has a meaning to the user. Alterna­

tively, these time stamps could be kept transparent to the user

by storing them in another file which in turn has to be made

stable. This would increase the number of accesses to a disk

storage device and hence the time spent in carrying out each

stable operation. The overhead was considered to be excessive

so this approach was not pursued further. Another possibility

involved circulating a token between the two files of a stable

file such that only the consistent file holds the token. This

scheme was found unsuitable for our purposes because sometimes

the two files representing a stable file are both consistent

and the file which does not hold the token may be falsely con­

sidered inconsistent.

We used instead what we called a "moving tag" to solve

this problem. A "moving tag" is a concatenation of any small

set of characters such that the resulting string is assumed (as

is the case with "end of file characters") not to occur

- 54 -

naturally in the user's file. Each logical write operation

writes a tag onto a stable file after the successful completion

of its operation. A subsequent write operation would overwrite

the tag written by the previous write operation while writing

its data. The tag is therefore in effect removed by each I09i-

cal write operation and always reinstated at the end of file.

It was the removal and reinstatement of the tag that led to the

name "the moving tag". This scheme has the desirable property

that at any given time, only one tag is found on a stable file

and this tag is located at the end of the file, as opposed to

having timestamps on every block of data. The stable read rou-

tine keeps the tag transparent to the user. A user therefore

sees a stable file as an ordinary UNIX file. After a processor

crash, a stable file which is inconsistent with respect to a

user's request would contain no tag. In such a case, the crash

recovery routine would be called to restore the consistency of

the stable file.

A:-----------------------------
al a2 a3 a4
.------------1-----------1---1-----------1---1
1 1 1 1 1 1
1 data 1 data Itagl Itagl
1 1 1 1 1 1
1------------1-----------1---1-----------1---1

bl b2 b3
B:--------------------

Figure 9: Two logical write requests.

- 55 -

The stable storage system sometimes has to carry out

several physical write operations in order to satisfy a user's

single (variable length) logical write request. Each such phy­

sical write operation writes only fixed size blocks and the

atomicity of these operations is guaranteed by the disk

hardware. Figure 9 shows two write system calls issued by a

user. The first request, which we call the A-write, is to

write the set of bytes starting at al and ending at a3. The

stable storage system splits this request into three physical

write operations (aI, a2), (a2, a3) and (a3, a4). The opera-

tion which writes (a3,a4) constitutes the writing of the tag.

The second write request (called the B-write) is to write the

set of bytes starting at bl and ending at b2. In order to

satisfy this request, the stable storage system carries out two

physical write operations (bl, b2) and (b2, b3). The B-write

overwrites the tag written by the A-write by starting its write

operation at a3 instead of a4.

Let us consider the effects on figure 9 of a fault such as

a processor crash which could interrupt a write operation. The

problem is to ensure that the A-write and the B-write, which

are variable length stable write operations, are atomic. The

following are the various scenarios when the operations in fig­

ure 9 are interrupted by a crash. A crash can occur after a2,

a3, a4, b2 or b3. A crash is not expected to occur between ai

- 56 -

and aj nor between bi and bj (where j = i + 1), since these

operations are guaranteed to be written atomically by hardware.

If a crash occurs after a2, a3 or b2, the stable file must be

considered inconsistent since either a logical write operation

has been started but not yet completed or a tag has not yet

been written to confirm its completion. The inconsistency will

be clearly indicated by the absence of the tag. In such a

case, the crash recovery routine (which is invoked by the sys­

tem manager after a crash) will restore the consistency of the

stable file. If a crash occurs before al or after a4 or b3, the

stable file will be considered consistent since each logical

write operation has either not been started or has been com­

pleted. In all cases, the atomicity of the variable length

stable write operation is always guaranteed. How the crash

recovery routine restores the consistency of a stable file is

described in section 3.5.2.2.

This scheme is most efficient when the stable file is an

append-only data structure. supporting random access write

operations would require writing the data at a specified

address and then writing the tag at the end of the file. This

extension is trivial but would increase the time which is spent

in carrying out a write operation. Another observation is that

most disk hardware systems do not write across block boun­

daries. Consequently the writing of the tag will in effect

- 57 -

constitute the writing of one physical block which is then

overwritten by the next write operation.

3.5.2. Stable Operations

We shall now describe the implementation of stable opera-

tions using the notation of section 3.4.1. An example of how

this notation was implemented using the exception handling

package described in section 3.4.2 is given in an appendix to

this thesis. The stable operations are organised as two levels

of abstraction called the Transient and Stable layers.

3.5.2.1. Transient Layer Implementation

The transient layer implements the server processes which

constitute the first level of abstraction of the stable storage

system. This layer masks transient I/O faults. It consists of

two procedures, Tread and Twrite. The operations on this layer

use the primitives provided by the UNIX kernel to produce a

better behaved set of operations by performing read-retries and

by providing a read-after-write capability for their write

operations. The procedures Tread and Twrite are invoked by the

stable layer and are not intended to be invoked directly by

users.

- 58 -

Proc Tread(fd:inti buf:array[.•.] of chari nbytes:int) SIGNALS

RD-FAIL, DISKERR, OTHERS:exceptioni
var fd: inti
begin

RD-FAILi

(N)read(fd,buf,nbytes) [OTHERS::SIGNAL RD-FAILi
DISKERR::report,SIGNAL RD-FAIL]i

end.

Procedure Tread masks transient read errors. The meaning of

the read statement in the procedure Tread is the following. If

a read operation fails, Tread would perform read-retries until

a read operation succeeds, up to a maximum of N read-retries.

The value chosen for N is determined by previous observation of

the average latency period for transient faults on disks. If

any of the read operations fails due to a fault that is not a

disk fault (that is, if an OTHERS exception is detected), Tread

terminates by signalling the read-failure exception, RD-FAIL,

without making further read-retries. If all its retry attempts

persistently detect a disk fault (DISKERR) , then Tread writes

an error report (intended for the maintenance engineer) and

then signals read-failure.

Proc Twrite(fd:inti buf:array[...] of chari nbytes:int)SIGNALS
WRT-FAIL;

OTHERS,DISKERR,WRT-FAIL:exceptioni
var fd: inti
begin

end

(N)write read(fd,buf,nbytes)[OTHERS::SIGNAL WRT-FAILi
DISKERR::report,
SIGNAL WRT-FAIL];

- 59 -

Procedure Twrite masks the effects of transient write errors.

It repeatedly performs a write followed by a read until

(i) the value read is equal to the value written, thereby

confirming that the data was written successfully, or

(ii) until it has attempted N write-read retries.

This provides a read-after-write capability for disks that do

not have this facility. It masks the effects of bad writes,

i.e. those which write wrong values to the disk. It detects

write operations which write to the wrong address and write

errors which do not change the disk state. If any of its

write-followed-by-read operations fail due to a fault that is

not a disk fault then Twrite will terminate by signalling the

write-fail exception, WRT-FAIL. Furthermore, if all its retry

attempts fail, it writes a report (intended for the maintenance

engineer) and terminates exceptionally by signalling a write­

fail exception.

3.5.2.2. Stable Layer Implementation

The stable layer implements the second level of abstrac­

tion of the stable storage system. It provides fault tolerance

facilities for decays and processor crashes by using file

replication. It also provides file replication transparency so

as to conform to a uniform interface with UNIX system calls.

- 60 -

The stable layer uses the better behaved operations provided by

the transient layer instead of the ordinary operations provided

by the UNIX kernel. It consists of the routines Sread, Swrite

and Crec. Sread and Swrite are the routines which are used to

read from and write to stable files on behalf of the user.

These two routines are normally invoked by the user. However,

in our environment, the stable storage system is kept tran-

sparent to the user. The user invokes what he thinks is the

UNIX read/write operation which in fact is the Newcastle Con-

nection read/write operation. This operation activates the file

server in the appropriate UNIX system which then invokes the

appropriate Sread and Swrite operation of the stable storage

system.

Proc Sread(fdp:int; buf:array[...] of char; nbytes:int)SIGNALS
SRD-FAIL;

SRO-FAIL,OISKl-BAO,OISK2-BAO:exception;
var fdl,fd2:int;
begin

end

Tread(fdl, buf, nbytes) [OISKl-BAO::Tread(fd2, buf, nbytes)
[OISK2-BAD::SIGNAL SRD-FAIL]];

The procedure Sread reads from the first disk by using the

file descriptor fdl. If this is unsuccessful, it reads from the

second disk using the file descriptor fd2. If the read from

the second disk fails, Sread terminates by signalling a

stable-read-fail exception, SRD-FAIL. As we shall see later,

the activities of the crash recovery routine ensure that

- 61 -

failures of the stable read/write operations rarely occur.

Proc Swrite(fdp:int;buf:array[] of char;nbytes:int)SIGNALS

SWRT-FAIL; DISK1-BAD, DISK2-BAD: exception;
var fd1,fd2: inti
begin

SWRT-FAIL;

Twrite(fd1, buf, nbytes) [DISK1-BAD::SIGNAL SWRT-FAIL];
Twrite(fd2, buf, nbytes)[DISK2-BAD::report];

end.

The procedure Swrite writes to the two disks, which have

file descriptors fdl, fd2. If the write operation to the first

disk fails however, the write operation to the second disk is

not initiated and Swrite terminates exceptionally by signalling

a stable-write-fai1 exception, SWRT-FAIL. This helps ensure

that not more than one disk can be damaged following a crash

which occurs during a write operation. However, care must be

taken to ensure that when a stable write operation returns, the

data has actually been written to the disk and not buffered by

the operating system. This is achieved by either communicating

directly with the disk in "raw mode"[Ritchie79] or by forcing

the system write buffers to be flushed after each write opera-

tion. Flushing the system write buffers was found to be expen-

sive and therefore undesirable. Our approach involves using

disks which can be divided into several virtual disks. These

virtual disks are treated as real devices by the operating sys-

tern and as files by the stable storage system. This enables us

to obtain several files on one physical disk while retaining

- 62 -

the capability to address these files in "raw mode" by

transferring information between the user's core image and the

device without the use of the UNIX buffering mechanism.

Proc Crec(fdl,fd2:int) SIGNALS DI-LOST,D2-LOST,ALL-LOST;
DI-LOST, D2-LOST, ALL-LOST,WRT-FAIL,RD-FAIL:exception;
fdl,fd2,nbytes: inti
sl, s2: boolean initially false; /*decay switches*/
ctagl, ctag2: boolean initially false;

/*consistency status indicator*/
bufl,buf2: array[..•] of char;
begin

/*check for conSistency tag */
if filel contains a consistency tag, set ctagl True;
if file2 contains a consistency tag, set ctag2 True;
if (ctagl and ctag2) then

/*both files good: upon reading if you encounter
detectably bad file, copy good to bad*/

repeat
Tread(fdl, bufl, nbytes)[RD-FAIL:: sl];
Tread(fd2, buf2, nbytes)[RD-FAIL:: s2];
if sl /*filel is detectably bad*/
then Twrite(fdl, buf2, nbytes)[WRT-FAIL:: ALL-LOST]
else Twrite(fd2, bufl, nbytes)[WRT-FAIL::ALL-LOST];

until eof

/*note that we assume that both disks will
not be bad at the same time*/

else if ctagl then /*first file good; read from the first
file, write to the second */

repeat
Tread(fdl, bufl, nbytes)[RD-FAIL::SIGNAL ALL-LOST];
Twrite(fd2, bufl, nbytes) [WRT-FAIL::SIGNAL D2-LOST];

until eof

else if ctag2 then
repeat

Tread(fd2, buf2, nbytes)[RD-FAIL:: SIGNAL ALL-LOST];
Twrite(fdl, buf2, nbytes) [WRT-FAIL:: SIGNAL DI-LOST];

until eof;
end

The crash recovery routine Crec implements the crash

- 63 -

recovery facilities of the stable storage system. It is invoked

by the system manager to restore the consistency of stable

files. Its action is applied to each file on a disk after a

crash, before the system restarts normal operation. The system

manager also invokes this routine periodically after every time

interval Tu, for maintenance purposes. The determination of Tu

depends on previous observation of the system, which will indi­

cate approximately how often a decay is expected to occur on a

disk. To perform crash recovery, Crec first determines the

consistency status of each file by searching for the con­

sistency tag at the end of a file. If a stable file is found

to be inconsistent (which means that one of the two files

representing a stable file does not have a tag) this routine

copies the consistent file (with a tag) to the inconsistent

file. If each of the two files contains a consistency tag, the

crash recovery routine will try to copy all readable blocks of

data from the first file to the second file. This copying of

one consistent file to another is for maintenance purposes, and

helps to ensure that all blocks of data on the two files are

readable. If a block of data from the first file is not read­

able (i.e. is detectably bad) then the crash recovery routine

would copy the block of data from the second file to the first

file and vice versa. If Crec can not complete its operations

due to the existence of permanent decays, appropriate reports

- 64 -

are issued to the maintenance engineer who, we hope, initiates

repair operations on the affected disk.

Our fault assumptions are that there will be no more than

one decay on the same disk within a time interval Tu and that

no more than one of the disks is bad at the same time. If we

can assume that necessary repairs will be effected within time

Tu of detection of faults, then the stable storage system can

be said to provide "failure-free" disks. This is because once

one disk becomes bad, the second disk can not (by our assump­

tion) become bad within a time interval Tu. Within this time

interval, the crash recovery routine Crec would have been

invoked by the system manager to correct any damage due to

transient decays and crashes, and repairs would have been

effected by the maintenance engineer. The practicality of the

assumption that repairs can be effected within a suitable time

interval Tu can certainly be questioned. However it might not

be unreasonable in certain environments.

3.5.2.3. Other Stable Operations

We also found it necessary to implement a stable version

of some other operations that use disk storage. The existence

of these stable operations is however transparent to the user.

The following routines were implemented:

- 65 -

Stable-Open, Stable-Close, Stable-Lseek, Stable-Creat.

These routines are called by the stable storage system in

response to the users' open, close, lseek, and creat system

calls. Interested

documents [Ritchie79]

readers

for more

are referred

information on

to

these

calls. The stable storage system requires that pairs of

UNIX

system

disks

should be mounted for stable operations. If this requirement is

not met stable operations would fail.

3.6. PERFORMANCE MEASUREMENTS

Some initial tests were carried out to assess the perfor­

mance of the stable storage system. These tests were performed

on a PDP-ll/45 running V7 UNIX and using RK05 and RLOl disks.

The aim was to compare the disk access times for ordinary disk

storage and stable storage. The time spent in reading and

writing SOk bytes of data from an ordinary file and from a

stable file were recorded and compared. Data blocks of varying

sizes ranging from 64 to 2048 bytes were used. The UNIX "time"

facility was used to obtain time measurements to the nearest

millisecond. Table I contains the results from these perfor­

mance tests. The figures in table I are averages calculated

from the results of several experiments.

- 66 -

I UNIX I stable I UNIX I stable Iblock sizel total no. I
I read I read I write I write lin bytes I of bytes I
I (sec) I (sec) I (sec) I (sec) I I I
1-------1--------1--------1--------1----------1------------1
120.40 I 20.60 I 20.40 I 84.880 I 64 I 50k I
1-------1--------1--------1--------1----------1------------1
110.60 I 10.80 I 10.80 I 44.740 I 128 I 50k 1
1-------1--------1--------1--------1----------1------------1
I 5.60 I 5.80 I 5.80 I 24.600 I 256 I 50k 1
1-------1--------1--------1--------1----------1------------1
I 2.580 I 2.60 I 2.600 I 13.620 I 512 I 50k 1
1-------1--------1--------1--------1----------1------------1
1 1.340 1 1.360 1 1.360 1 13.120 I 1024 I 50k I
1-------1--------1--------1--------1----------1------------1
10.720 I 0.740 I 0.720112.680 I 2048 I 50k I

Table I

Data Access Times for UNIX and Stable read/write Operations

We observed that the time required by the stable read

operation is approximately equal to the time required by the

UNIX read operation when exceptions are not encountered (the

average overhead was roughly 2%). For the write operation, the

access time ratio of the stable write operation to the UNIX

write operation is approximately 1:4 for block sizes up to 512

bytes. The 1:4 ratio is due largely to the fact that the

stable write operation uses a better behaved write operation

provided by the transient layer instead of the ordinary UNIX

kernel primitive. This provides the facility for writing atomi-

cally variable length stable objects and a read-after-write

capability for each write operation to the two files that make

- 67 -

up a stable file. Fragmentation of larger blocks of data into

512 byte blocks by the transient layer also makes the stable

write operation much slower than the ordinary UNIX write opera­

tion when block sizes which are larger than 512 bytes are used.

The 1:4 ratio is generally maintained if the transient layer

operations read and write larger blocks of data. In our

environment, a weak atomicity of operations which write 512

byte blocks is provided by the operating system therefore

blocks which were larger than 512 bytes were fragmented so as

to use this atomicity facility.

From these figures it can be seen that applications which

perform mostly read operations pay a very small price for using

the stable storage system. On the other hand, for applications

which are writing most of the time, using the stable storage

system could account for a substantial increase in overheads.

Accurate figures on the ratio of read to write system calls are

not presently available, so it is difficult to estimate how

large an overhead the general use of the stable storage system

would impose. Wyeth [Wyeth73], in his simulation of a recursive

cache mechanism, analysed the references to shared resources in

a set of sequential programs and his figures showed that read

operations occurred about three times as frequently as write

operations. Applying his results to disk storage would suggest

that the proportion of read accesses will generally be fairly

- 68 -

high. Figures from table I indicate that there would be a

minimal performance degradation of about 80% when the stable

storage system is used. This applies to tasks which perform

only read and write operations. However, systems differ greatly

in the extent to which disk operations dominate the average

workload. For most applications where disk operations do not

dominate the workload the use of the stable storage system will

rarely be noticed on the user level.

3.7. AN ALTERNATIVE APPROACH

This implementation avoided a direct use of the UNIX file

system by implementing stable files as virtual disks which are

treated as devices by the operating system. Our aim was to

provide a stable storage server as an independent facility

which is not embedded in the operating system. An alternative

approach would be to provide robustness while using the UNIX

file system by making the UNIX file system itself crash resis­

tant. This would require kernel modifications in order that

system file management information (such as i-nodes) can be

accessed and made stable. We would also then have to deal with

the problems posed by the use of the UNIX buffering mechanism

which forms the block-device interface. Such an implementation

would have the advantages of utilising fully the facilities

provided by the UNIX file system. The next chapter addresses

- 69 -

these issues and discusses the implementation of a crash resis­

tant file system.

3.8. CONCLUSION

This prototype stable storage implementation has provided

a facility which helps maintain the consistency of data stored

on disk storage devices. Through the use of systematic han­

dling of abnormal situations it has provided Simple, reliable

and efficient stable operations which can be used to build

arbitrarily large atomic actions needed at the application

level. The provision of the abstraction of stable files

extends the domain of reliability facilities available to the

UNIX user.

- 70 -

4. A CRASH RESISTANT UNIX FILE SYSTEM

4.1. INTRODUCTION

This chapter describes the second stage in our approach to

the construction of a reliable data storage system. It

describes the modifications which were made to the UNIX kernel

to support a crash resistant file system and the associated

recovery facilities for maintaining the internal consistency of

files despite the failure of the host processor, transient

hardware failures and decay of the storage medium.

Chapter 3 described a stable storage system which provided

stable disks as an independent facility which was not embedded

in an operating system. The stable storage system was imple­

mented as a set of user processes which meant that there were

no modifications to the UNIX kernel. The aim of that implemen­

tation was to provide reliable disks for storing user data.

The client of such an implementation is the user. However,

there is also a need to make the operating system a client to a

reliable disk storage system. By this we mean that, as with

the user, the operating system has a need to store system

information on reliable storage. There is the need, for

instance, to make file management information (such as i-nodes

- 71 -

in UNIX) crash resistant. In environments where there is the

need to provide reliable disk storage facilities which can be

used by both the user and the operating system, a crash resis­

tant UNIX file system will have to be implemented.

Various faults could harm the integrity of the data which

is stored by a file system. A processor crash is an example of

a system failure which could affect the consistency of stored

data. Such a failure could lead to the loss of information

which was available before the failure occurred. This loss of

information would make the data which is stored by the file

system inconsistent. Consider the problem of an operating sys­

tem whose I/O subsystem employs a buffering mechanism so as to

reduce the amount of physical I/O operations on disk storage

devices. The use of such a mechanism may give rise to delayed

write operations. If a processor crash should occur, there

could be logically complete but physically incomplete I/O

requests in the buffers. These buffered I/O requests will be

destroyed. The inconsistency in the file system arises due to

the fact that the user's view of the disk is different from the

actual disk state. Section 3.7 of the previous chapter com-

mented on the need for a crash resistant file system which is

capable of providing reliable file service despite the use of a

buffering mechanism by a file system. This chapter describes

the implementation of such a crash resistant file system on

- 72 -

stable disks. By a crash resistant file system we mean a sys­

tem whose operations are such that

(i) their effects would survive a crash and

(ii) the effects of an uncompleted crash resistant opera­

tion will be undone by a recovery routine.

In order to provide a crash resistant file system it is

necessary to provide stable disks as well as to ensure that the

activities which are involved in managing files do not intro­

duce data inconsistency. The consistency of a stable storage

system does not imply the consistency of a file system which is

implemented on it. As has already been observed, the use of a

buffering mechanism by a file system could introduce data

inconsistency if buffered I/O requests are lost during a pro­

cessor crash. Some system file management information is not

accessible to user processes. Kernel modifications are there­

fore necessary in order to make such information crash resis­

tant and to ensure that the kernel invokes crash resistant

operations for both system and user functions. The implementa­

tion described here addresses these issues and makes the neces­

sary kernel modifications needed to make the UNIX file system

crash resistant. It also uses a numbering scheme to avoid

replication of disks which store short lived data for which

crash resistance is not desired, such as swapping devices.

- 73 -

Although the idea of using crash resistant files is

attractive, there have not been many accounts describing how to

make an already existing file system crash resistant. The

proper placement of reliability facilities in an existing sys­

tem so as to provide effective fault tolerance is not usually

clear. The UNIX operating system is widely used for research

in operating systems and the use of stable storage is advocated

by many workers [Lampson79], [Svoboda8l], [Cristian83]. We

therefore believe that the implementation of a crash resistant

UNIX file system which is based on the use of the abstraction

of stable storage will be of interest to people in the area of

reliable computing.

Section 4.2 gives a general description of the UNIX file

system and its associated I/O subsystem. It examines UNIX file

operations and their reliability problems. Section 4.3

describes the implementation of the crash resistant system.

Performance measurements and analysis are given in section 4.4

and section 4.5 presents some desired extensions. Concluding

remarks are given in section 4.6.

4.2. GENERAL DESCRIPTION OF THE UNIX FILE SYSTEM

Our intention is to implement the UNIX file system on

stable disks and to make it crash resistant. This section

therefore gives a brief description of that file system and its

- 74 -

associated I/O subsystem. A reader who is interested in a

deeper understanding of the UNIX file system would find the

presentation in[Thompson78] on the "UNIX File System Implemen­

tation" helpful.

The basic function of a file system is to divide disk

storage into units which we call files. Unlike many operating

systems which provide flat file systems, UNIX provides a tree­

structured hierarchical file system. The nodes in the tree are

directories and the leaves are files. A file in UNIX is an

unstructured finite sequence of characters. A directory is a

file which contains a list of file names and a set of numbers

used to access system information on files. Directories are

used to impose a hierarchical structure on the file name space

since every file or directory (except root) appears in some

directory. The base of this tree structure is the root direc­

tory.

Files are named in the form of a path name which is a

sequence of directory names separated by "j" and ending in a

file name. If a name begins with a "/" a search for the file

begins in the root directory otherwise the search begins in the

user's current working directory_ For example, the name

"/jo/doc/myfile" requires that the root directory be searched

for a directory named "jo" and "jo" is to be searched for the

- 75 -

directory "doc". The directory "doc" is then searched for a

file which is called "myfile".

A UNIX user sees the file system as a hierarchical struc-

ture. However, below this hierarchy of directories is a flat

file system implemented by the list of file definitions (i-

nodes). These file definitions contain most of the information

about files such as the location of a file, length of a file,

access mode, owner and creation date. Below the flat file sys-

tern is the block I/O system which carries out physical I/O

operations on devices. After this comes the physical hardware.

Fig. 10 shows the relationship between the various subsystems.

Hierarchical File system

Flat File System

Block and Character I/O System

Physical Hardware

Figure 10: I/O Subsystems

Most of the reliability problems which we will be discuss-

ing occur at the interface between the block I/O system and the

flat file system.

4.2.1. The Block I/O System

The block I/O system refers to devices that can be

addressed in blocks of 512 bytes (or 1024 bytes in some

- 76 -

versions of UNIX). This applies mostly to disk and tape dev­

ices. Devices that do not fall into the block I/O category

such as communication lines and line printers belong to the

character I/O system.

The block devices use a buffering mechanism which enables

the kernel to reduce physical I/O traffic to these devices.

The buffers act as a data cache and are searched whenever a

read request is issued. If the desired block is available in

the buffers, the data is made available to the user without

phYSical I/O being performed. Blocks which are frequently

accessed are retained in the buffers to reduce I/O traffic. A

write operation involves acquiring a buffer, filling it with

data and carrying out the physical transfer of data between the

buffer and the device. The transfer of data between the buffer

and the device need not be done in the same order as that in

which the requests were issued by the user. System efficiency

considerations may also require that this transfer be deferred.

The phYSical transfer of data is then carried out at a later

time by the file system. A return from a write system call may

therefore take place before the physical I/O operation is car­

ried out.

The asynchronous nature of the algorithms in the block I/O

interface make error reporting and error handling difficult.

- 77 -

Secondly, altering the physical I/O sequence from that of the

logical I/O sequence requested by the user could sometimes

result in data being written in the wrong order. The adverse

effects of processor crashes on the write operation which is

implemented by this interface has already been mentioned.

These problems led to a desire to implement crash resistant

file operations which use redundant disk hardware (i.e. stable

disks) to provide a more reliable file service.

4.3. THE CRASH RESISTANT SYSTEM

A number of changes were made to the UNIX kernel to sup­

port crash resistant file operations.

(i) The device driver software was modified to incor­

porate management of replicated disks in the form

of stable disks.

(ii) The UNIX buffering mechanism was modified so as to

provide a more reliable write operation and

(iii) A crash recovery routine is provided on the user

level

The aim was to implement file operations such that the

effects of a completed operation would always survive a crash.

In a reliable file system, the acknowledgement that a user

- 78 -

would expect for a write request is that the data has been

received and has been safely stored (in stable storage). This

is in contrast to an ordinary file system which could simply

acknowledge the receipt of the data. Such a response might not

be adequate for a user of a reliable file system. Rather,

there is a need to know that the request has been acted upon.

To achieve these objectives, each operation once started must

wait for the physical Ilo to be completed before returning to

the caller. Replication of disks is used to ensure that if an

operation is interrupted by a crash, an earlier consistent disk

state will be available for crash recovery purposes. The crash

recovery routine is invoked to restore the consistency of disk

data structures before the system restarts normal operation

after a processor crash had occurred.

The operations of the crash resistant file system are

implemented on three levels of abstraction: the disk level, the

file level and the user level. The disk and file levels are

embedded in the UNIX kernel. The disk level implements the

abstraction of stable disks. The second level, namely the file

level, implements the UNIX file system concepts (with its asso­

ciated i-nodes and directory system) on the stable disks pro­

vided by the disk level. A crash recovery operation is provided

on the user level. The following subsections discuss the

details of each of the three levels.

- 79 -

4.3.1. Disk Level: Implementation of Stable Disks

The description of a stable storage system has been given

in chapter 3. That chapter described an implementation of the

stable storage system as a set of user processes. This section

describes how the stable storage mechanism was reimplemented in

the UNIX kernel. It was necessary to first provide stable

operations in the kernel and then to interface the UNIX file

system with stable disks so as to provide a crash resistant

file system. Unlike the implementation in chapter 3 the prOVi­

sion of these facilities in the kernel ensures that these

operations will be invoked by the kernel for both user data and

system management information thereby providing stability for

both types of data. Provision of these facilities required ker­

nel modifications. The operations implemented by a user-level

stable storage system such as those of chapter 3 are not

expected to be invoked by the kernel when writing system data.

The aim there was to provide stability for user data only and

no kernel modification was necessary. Also, the provision of a

stable storage system is only a part of what is needed in order

to support a crash resistant file system.

Each stable disk which is implemented by the disk level

consists of a pair of conventional disks which are numbered by

a sequential pair of even and odd integers. Operations on this

- 80 -

level are atomic. This means that they are either successfully

completed or the effects of such operations are undone by a

crash recovery routine. A write operation to a stable disk

first writes the information to the even numbered disk and then

to the odd numbered disk. The following program implements

read and write operations for the disk level.

Writed (
begin

acquire a free buffer;
if buffer pointer is pointing to even device then
write to even device and to the next odd device
else write to odd device only;

end.

Readd (
begin

acquire a free buffer;
read from the even device;
if the even device is unreadable
read from the next odd device;

end.

We have omitted error reporting aspects of the read and

write routines for the purposes of readability. Both of these

routines write error reports to say which disks can not be read

or written. Also, if the write operation to the even numbered

device was not successful, the write operation to the odd num-

bered device would not be initiated. In such circumstances,

error reports would be written and crash recovery would be

invoked. From the program it can be seen that once an even

numbered device is written the associated odd numbered device

- 81 -

will also be written with the same information. If the pointer

is already pointing to an odd numbered device (this is the case

with non stable disks, example, swapping devices), only that

device is written. All disks which do not require crash resis­

tant capability are treated as odd numbered devices. Once such

a device is written, there is no write operation to a second

disk. The modifications to the read operation were to enable a

read action from a second disk when an attempt to read from the

first disk fails. It also incorporates a more comprehensive

error reporting capability.

The actual modification to existing kernel code and the

addition of new statements constituted less than a page of C

programming language statements. Basically, we used the rou­

tines which were already available. We substituted existing

routines whose behaviour had characteristics which we found

desirable for routines which we did not consider suitable for

our needs. For example, a write routine which waited for phy­

sical I/O to be completed before returning was substituted for

write routines which carried out asynchronous I/O and which did

not wait for the completion of phYSical I/O. In order to incor­

porate the management of replicated disks, modification to

existing statements was required. However, there is no substan­

tial difference in size between the modified file system and

the standard UNIX file system.

- 82 -

4.3.2. Pile Level: Implementation of Crash Resistant Pile

Operations

The previous level implements stable disks as uninter­

preted streams of bytes. The concept of a file is not known on

that level. The file level implements the UNIX file concepts,

utilising stable disks. Thus, a crash resistant file system

would be constructed from a set of ordered pairs of "even, odd"

disk storage devices numbered «evenl, oddl>, <even2, odd2>,

...). The aim of this level is to help ensure that the activi­

ties involved in managing a file system do not introduce data

inconsistency. The UNIX file location and file accessing

mechanisms were not modified. The main modifications made on

this level were to ensure that physical I/O operations on

behalf of a file are carried out before a return from a write

system call is made. This is to ensure that a processor crash

would not distort a users' view of the disk and that such a

view would be consistent with the actual disk state. This

level also interfaces file operations to those of a stable disk

so that all files are automatically replicated on the two disks

that make up a stable disk.

4.3.3. Crash Recovery

It is assumed that both disks that make up a stable disk

will not be damaged at the same time. The file system

- 83 -

therefore ensures that the crash recovery routine is invoked

more frequently than the estimated mean time between failure

(MTBF) of an individual disk. Unlike chapter 3, the crash

resistant file system has error reporting schemes inside the

kernel so as to enable the crash recovery routine to know which

disk was being written when a crash occurred. Crash recovery

here consists of copying one of the disks to the other. The

preference is to copy the first disk to the second disk so that

the most recent update can be reflected. If the first disk is

not readable or was being written when a crash occurred the

second disk is copied to the first.

4.4. PERFORMANCE

Initial tests were carried out so as to gain some insight

into the performance characteristics of the crash resistant

file system. Our goal was to measure and compare its perfor­

mance with that of the conventional UNIX file system. Such

measurements would enable us to know the kind of overhead a

user incurs when using crash resistant data. Our discussion

will concentrate on the write operation since that operation is

most affected by our modifications. Four kinds of experiments

were carried out. The measurements were again performed on a

PDP-II/4S machine running V7 UNIX and RL02 disks were used.

The "time" and "times" facility of UNIX were used to obtain

- 84 -

timing measurements. The first two sets of experiments were

designed to measure the effects on a file system when crash

resistance facilities are incorporated. They were therefore

carried out in single-user environments so as to avoid multi-

user interference. The last two sets of experiments attempt to

measure the same effects but in the face of multi-user interac-

tion.

4.4.1. Single-User Environments

The first set of experiments measured the rate at which

each file system wrote 6k bytes of data from and to user files.

Several measurements were performed using different block

sizes. The results of the experiments are shown in figure 11.

Transfer Rates
(kb ytes/sec)

14 !
!
! ~ ~

12

10

8 I
1

Conventi anal System

_I.. ldsh
Syst

R esistant
em

1------ ----- ------ ------ ---------->
512 1024 1536 2048 Block s~ze ~n bytes

Figure 11: Data Transfer Rates for Write Operation

Measurements indicate a minimum transfer rate of about

eight kilobytes for each of the two file systems. The transfer

- 85 -

rate increases as the block size increases. This is because

less time is spent in making system calls when larger block

sizes are used than when smaller block sizes are used to write

the same amount of data.

The crash resistant file system writes to two disks so a

50% degradation might be expected. However, effective placement

of fault tolerance facilities has enabled this to be kept to

between 10% to 25%. Suppose that we represent the time which

is spent during a write operation by Wop = Wr + Ov. ("Wr" is

the time which is spent on actual phYSical write operation and

"Ov" is the time which is spent on calculating disk space allo­

cations, carrying out required swapping activities, transfer­

ring data from user buffer to system buffer and carrying out

any other file management activities that are necessary). The

"Wr" factor is usually small compared with the "Ov" factor.

Since a crash resistant operation writes to two disks, it could

be expected that the time spent in carrying out a write opera­

tion would be Wres = 2Wr + 20v. However, our implementation

avoided a recalculation of disk space allocation and other file

management activities so that Wres = 2Wr + Ov. A repetition of

the "Ov" factor which is responsible for most of the overhead

in a write operation was avoided. Instead the same calculated

parameters are used to write to both disks thereby resulting in

a significant reduction in the expected performance

- 86 -

degradation. Some performance degradation should in our opin-

ion, be acceptable if high reliability is required.

A second set of experiments used a task which represents

an important class of typical UNIX file system activity (such

as a task with more read than write requests). The speed of

the file systems was measured by executing this typical UNIX

task on the benchmarked file systems and measuring the time

which was used to complete the task for different file sizes.

Again based on the results of the analysis which were made by

wyeth [Wyeth73] we chose a task with a 3:1 ratio of read to

write operations. The results of the measurements were used to

calculate the slowdown measure of the modified file system by

Slowdown Measure =

Time spent by Our System - Time spent by ordinary UNIX
--

Time spent by ordinary UNIX

- 87 -

Slowdown Measure

0.30 l
0.25 1

l -.....-.
"-0.20

0.15 1 '" l ~
i , 0.10

0.05
1

0.00 1------ ------ ------ ------

2 4 6 8
------->File Size

(Kilobytes)

Figure 12: Slowdown Measure for Typical UNIX Task

As the file Slze increases, the number of I/O operations

required to access the entire file increases. In such cir-

cumstances, the read operation would usually dominate the I/O

accesses and the slowdown measure will decrease as can be seen

in the graph of figure 12. A typical application could thus be

expected to run with not more than 25% performance degradation

on the average when the crash resistant UNIX file system is

used. As would be expected, this implementation has a better

performance characteristic than the stable storage implementa-

tion of chapter 3. This is because unlike that implementation,

the management of replicated disks was controlled from within

the kernel by this implementation. As has already been

observed, this resulted in the reduction of the nOv" factor.

- 88 -

4.4.2. Multi-User Environments

The tests described so far were carried out for single-

user environments. The results indicate that performance

degradation is acceptable. It is desirable, however, to know

the performance of this file system in the presence of multi­

user interactions. The third and fourth set of tests were

designed for this purpose.

When users interact, there is the possibility that the

operating system would carry out asynchronous I/O on behalf of

the users. The "elapsed" time for user A say, might include the

time which is spent in carrying out part of user S's request.

The third set of tests were designed to measure the actual time

(exclusive of asynchronous I/O times for other processes) spent

by each file system in writing a specified number of bytes to a

user file. The "user" and "sys" times, which represent the

time spent outside and inside the kernel, respectively, on

behalf of a user process, were measured. Three users were

allowed to write Sk bytes of data to user files and time meas­

urements were recorded. Figure 13 shows the result of six test

runs.

- 89 -

I User1 II User2 II User3 II Total Time
1--- --1------11------1------1 1------1------1 1------1------1
I UNIX ICrash I I UNIX ICrash I I UNIX ICrash II UNIX ICrash I
I Resistntl Resistntl Resistntl ** Resistnt
I I II I II I II I ** I
1------1------11------1------1 1------1------1 1------1------1
I 0.08 I 0.06 II 0.04 I 0.04 II 0.06 I 0.06 II 0.18 I 0.16 I
I 0.04 I 0.04 II 0.06 I 0.10 II 0.04 I 0.06 II 0.14 I 0.20 I
I 0.06 I 0.06 II 0.10 I 0.08 II 0.08 I 0.04 II 0.24 I 0.18 I
I 0.08 I 0.06 II 0.12 I 0.08 II 0.06 I 0.06 II 0.26 I 0.20 I
I 0.06 I 0.04 II 0.04 I 0.06 II 0.06 I 0.10 II 0.16 I 0.20 I
I 0.04 I 0.06 II 0.04 I 0.04 II 0.02 I 0.04 II 0.10 I 0.14 I
1------1------11------1------1 1------1------1 1------1------1
Figure 13: Multiple Users Processing Time: Write Operation

Time measurements given for each user in figure 13 are the

sum of the "user" and "sys" times. The figures in the starred

columns are not measured values. They are calculated by sum-

ming the appropriate values in each row. Taking the average of

the six runs in these figures, it can be seen that the operat-

ing system spends a total of about 0.18 seconds for the three

users in each of the two file systems. (It is relevant to

point out that measurements for "user" and "sys" times in UNIX

are highly approximate.) However, overheads were sufficiently

small as not to affect these measurements.

Though the operating systems spent approximately the same

time for a task in both file systems, the user process in the

crash resistant file system is blocked until acknowledgement

from a write operation is received. This is to ensure that the

effects of a completed operation can not be abrogated by a

- 90 -

processor crash. It would be useful to know the kind of delays

which a user of a crash resistant file system would expect in a

mUlti-user environment. However, measurements to determine

process "blocked times" are very unreliable since they depend

heavily on the load on the computer system at any particular

time. Elapsed time measurements for file access rates in such

environments are sometimes difficult to account for. Unlike

the previous measurements, such measurements would include time

spent for' other processes in an asynchronous I/O environment.

Memory contention experienced by the processor and swapping

activities are some of the determining factors.

Some experiments were carried out for a three user system.

Since the results which are obtained from such measurements are

highly load dependent, figures are not very meaningful. How-

ever, the results show between a 3:1 to 5:1 ratio in UNIX:

crash resistant file system performance as measured by the

"elapsed time". This is in contrast to a single user system

which showed a negligible difference in performance. The use

of a crash resistant file system in a multi-user environment

could therefore contribute to a substantial overhead depending

on the load on a computer system. Some ways of reducing this

overhead are discussed in the next section.

- 91 -

4.5. EXTENSIONS

Some optimisation to the existing algorithms can be made.

A desirable refinement would be to help reduce process "blocked

times" when a crash resistant file system is used in a multi­

user environment. The major cause of the "apparent" (not real

with respect to overall processor and disk utilisation) perfor­

mance degradation is the requirement that an acknowledgement

for a write operation must be delayed until physical I/O is

completed. In transaction-based systems it might not be neces­

sary to ensure the crash resistance of operations until commit

time. If a crash occurs, only uncommitted updates will be lost

and this would be acceptable. File operations in such environ­

ments should support fault tolerance facilities for storage

decays, disk crashes and transient I/O faults but not against

processor crashes. A "make-cr" (make crash resistant) primitive

could be provided to be invoked at transaction commit time.

This primitive would ensure that all outstanding write opera­

tions on behalf of a user process are written to stable storage

before file operations are committed. There has been a lot of

work in making transaction based systems reliable. Some

approaches and strategies for such systems can be found in

[Eliot83], [Moss81'], [Paxton79].

The above approach would only apply in transaction-based

- 92 -

environments. In other environments it would be necessary for

file operations to be resistant to processor crashes since

there is no transaction or file commit operation. One approach

which could be appropriate in some circumstances (in both tran­

saction and non-transaction systems) involves the use of two

processors, say pI and p2, in an implementation of stable

storage. It is reasonable to assume that these two processors

are not crash-related. A write operation will write to the two

processors and asynchronous I/O in 'each processor will be per­

formed as in an ordinary file system. If pI crashes, only buf­

fered data in that machine will be lost, for we assume that p2

will complete its write operation. A return from either pI or

p2 is sufficient to ensure crash resistance of the stored data.

This would eliminate the blocking of user processes which use a

crash resistant file system in a multi-user environment. This

approach would be similar to the Tandem[Borr81] approach to the

provision of reliable storage except that in a Tandem system

not only disk drives and processors would be replicated but

also I/O channels, interprocessor buses, power supply units and

so on in order to provide a non-stop service.

Another extension concerns the method of crash recovery.

It would be desirable to implement a more selective crash

recovery scheme which would avoid recovering the entire disk

after a crash has occurred. It might be sufficient in many

- 93 -

environments to recover only the files that were being written

when a crash occurred. One approach would require recording

the identity of the file that is being written so that only

that file is recovered by the crash recovery routine. However,

in environments such as ours, where the crash recovery routine

is invoked at regular intervals for maintenance purposes, it is

desirable to recover the entire disk during each crash recovery

operation. This would enable the crash recovery routine to

check the status of the entire disk as a maintenance action.

4.6. CONCLUSION

The UNIX file system has been implemented on stable disks

so as to provide a crash resistant file system. Unlike the

implementation of a stable storage system in chapter 3 which

provided reliable disks for storing user data, this chapter has

provided reliable disks for storing both user and system infor-

mation. Modifications were made to the kernel to incorporate

the management of replicated disks. It was also necessary to

ensure that file management activities (such as the use of

buffering mechanisms~ do not introduce data inconsistency into

the file system. This necessitated limited modifications to the

UNIX file system code. Our approach has made it possible to

make both user data and system file management information

(such as i-nodes in UNIX) crash resistant. This has resulted in

- 94 -

a UNIX file system which contains sufficient redundancy to

enable easy recovery from transient hardware malfunctions,

decay of storage media and processor crashes.

- 95 -

5. CRASH-RESISTANT, REPLICATED and STABLE S'l'ORAGE

5.1. INTRODUCTION

A reliable data storage system is expected both to safe­

guard the data that is entrusted to it and also to ensure that

data objects are accessible in spite of the occurrence of

failures. In a centralised system, it might be sufficient

(with respect to accessibility of data) to record the value of

an entity only once. In a distributed system, data entities

can be made more readily acceSSible by replicating them on dif­

ferent machines so as to keep them nearer to where they are

being used. Replication also enables many nodes to service

requests for the same information in parallel. However, one of

the main reasons for replicating data in a distributed system

is to provide resiliency with respect to node and network

failures. Failure of the machine storing the only copy (or

copies) of some data will prevent the completion of any task

which needs that data. In a distributed environment this could

prevent the completion of a distributed task even though many

of its sub-tasks running on other machines have been success­

fully completed. The provision of replicas on different

machines means that any task (whether or not distributed) which

- 96 -

needs the replicated data has a chance to proceed as long as

there is a copy on a working node.

The previous chapters used the duplication of data within

the same processor to help provide fault tolerance capabilities

in the face of various disk and processor failures. This

chapter uses the replication of data on different machines in a

distributed system to increase the availability of stored data

despite the failure of the communication network. Here we are

concerned only with faults which occur in a distributed system

due to the replication of data on different machines. In par­

ticular, we aim at ensuring that such replication of data does

not result in the mutual inconsistency of data when the network

partitions.

This chapter in fact describes the final stage in our data

storage construction. It describes the construction of what we

call CRES (Crash-resistant, Replicated and Stable) storage.

This combines the use of data replication with the fault toler­

ance capabilities provided by the stable storage mechanism and

the crash resistant file system of chapter 4 to produce a data

storage system which is resilient to many of the faults which

affect disk storage devices as well as to processor crashes and

network failures. Such storage provides a higher degree of data

reliability and availability than conventional data storage

- 97 -

systems.

CRES storage replicates the crash resistant files which

are implemented by the previous chapters on different machines

in a distributed system. Our model of CRES storage is a col­

lection of logical files. Each logical file F, is made up of

multiple crash resistant files located on different computers

such that F = (fl, f2, ... , fm} where each fi is a crash resis­

tant file on computer i. Each crash resistant file fi is in

turn represented by a set of stable objects which reside on

stable disks associated with computer i. (Recall that a stable

object is an atomic entity that reliably stores data and with

the attribute that any update operation on it either occurs

completely or not at all.)

The use of multiple copies of data requires that mutual

consistency of the copies be maintained. A user should not be

allowed to access a resource which is in an inconsistent state.

However, network partitioning could interfere with the mainte­

nance of such consistency. Network partitioning occurs when a

distributed system is divided into subsystems such that the

sites in the different subsystems cannot communicate. This is

usually brought about by a failure of the communications net­

work. The non communicating subsystems are referred to as par­

titions. Many solutions have been proposed for maintaining the

- 98 -

mutual consistency of resources [Alsberg76], [Ellis77], [Tho­

mas78], [Stonebraker79], [Gifford79], [Eager,83]. However,

these have not directly addressed the problem of resolving

inconsistencies that can arise among replicated resources after

a network had been partitioned. One drastic "solution" to the

inconsistency problem resulting from network partitioning is to

cease all operations in the distributed system until the net­

work is fully reconnected. Another conventional solution is to

allow processing to continue only in one partition. It is

often desirable though, to keep individual sites or partitions

operational when a distributed data storage system partitions.

Such autonomous operation by various partitions could clearly

result in mutual inconsistency among multiple copies of

resources. It is therefore necessary that when the network

reconnects, individual partitions should compare their update

operations, detect conflicts and resolve them before partitions

are allowed to merge.

This chapter presents an algorithm which addresses some of

these issues. We address the problem of detecting and resolv­

ing mutual inconsistency among replicated data entities before

the merge of a partitioned data storage system. It is usually

accepted that automatic resolution of mutual inconsistency

among replicated entities is not generally possible except when

the semantics of operations on the entities are known a priori

- 99 -

[Walker83], [Brereton83], [Wright83]. These algorithms require

a declaration of the readset and writeset of a task. (Recall

that the readset and writeset of a task refer to those data

objects which a task reads from or writes to.)

In contrast our algorithm combines conflict detection and

resolution in such a way as to allow automatic conflict resolu­

tion without requiring that the readset and writeset of an

application be declared beforehand. Another desirable property

is that the update operations which have already been applied

to a majority of the replicates are not undone when a conflict

is detected.

Before going into the details of our proposal for a parti­

tioned update and merge algorithm, it may be helpful to present

in the next section a brief survey of previous work on replica­

tion and network partitioning. Section 5.3 presents our pro­

posed algorithm for the update and merge of a partitioned data

storage system. Section 5.4 considers the implementation of the

proposed algorithm in a UNIX United system. It discusses a

method for achieving replication transparency as well as the

creation, reading and writing of replicated files in such an

environment. Section 5.5 considers the performance charac-

teristics of the proposed algorithm. In section 5.6 we present

an extension to the merge algorithm. Section 5.7 gives some

- 100 -

concluding remarks.

5.2. PREVIOUS WORK

This section gives a brief survey of replication and net­

work partitioning algorithms. These algorithms can be classi­

fied as those requiring (1) weak consistency and (2) strong

consistency.

5.2.1. Weak Consistency Algorithms

Weak consistency algorithms do not require that all copies

of a replicated data item contain the same information at all

times. Instead, the requirement is that all replicas contain

the same values when update operations on a data item cease.

In these algorithms update operations on replicas are performed

in isolation (without consulting other replicas). The update

requests are sent to other nodes with the hope that eventually

all nodes will receive and carry out these update operations.

Weak consistency algorithms depend on a highly reliable network

which is expected to deliver all messages.

Arguments in support of maintaining only weak consistency

are based on the need for increased availability. These algo­

rithms are usually designed for such applications as mail sys­

tems and name servers which do not require strong consistency.

(For example, take a simplified mail service which allows

- 101 -

clients to add mail messages only at the end of the mail-box.

Various copies of the mail-box may at times contain different

messages as long as all copies of the mail-box contain the same

set of messages when update operations on the mail-box ceases.)

The degree of inconsistency allowed would depend on the appli­

cation requirements. Weak consistency algorithms allow pro­

cessing while a network is partitioned, but these algorithms

are only suitable for a limited set of applications.

5.2.2. Strong Consistency Algorithms

Many algorithms which insist on strong consistency require

that all copies or a majority

before update operations can be

[Ellis77], [Thomas78], [Mullery75].

of the copies be accessible

performed on a data item

When a network partitions, there are three processing pos­

sibilities (i) no part of the system can continue proceSSing,

(ii) only one part of the system can continue processing or

(iii) two or more parts of the system can continue processing.

Voting schemes are often used to determine whether or not pro­

cessing (particularly update operations) can be carried out.

There are however other algorithms such as control token algo­

rithms [Alsberg76], [LeLann78], [Minoura82] which do not use

voting solutions but instead insist that a primary site must be

contacted before update operations can be performed.

- 102 -

Voting Schemes and Primary Site Algorithms

In voting solutions, update operations are carried out

only if all sites that store replicas have agreed to carry out

the update operations. In this approach, mutual consistency of

replicas is maintained by having all sites perform the same

update operations in parallel. Usually, an initiating site

broadcasts update requests to all sites. A "reject" or "accept"

acknowledgement is returned from each site. Having received

votes from all site, the initiating site broadcasts an "update"

or "abort" message to all sites depending on the outcome of the

voting. Sites have some criteria for accepting or rejecting an

update request. A two phase commit [Gray78], [Lampson79] or

similar protocol is used to obtain agreement among sites which

store replicas.

The majority consensus algorithm[Thomas78] requires only

that a majority of the sites return "accept" acknowledgements.

The weighted voting scheme described by Gifford[Gifford79] pro­

vides a biased method of election in favour of application

requirements. In that scheme, the democratic "one man, one

vote" election criterion is not strictly adhered to. Replicas

are assigned votes based on reliability, performance and avai­

lability requirements. If reliability is required for instance,

replicas on reliable nodes are assigned more votes so that a

- 103 -

consensus (permission to write to a replicated file) is

obtained when such nodes vote.

Voting schemes which require that all replicas be accessi­

ble before an update operation can be carried out will of

course be unable to access all replicas when a network parti­

tions. Consequently, no replica will be updated. Majority con­

sensus and weighted voting algorithms seem better suited for

network partitioning since they do not demand that all replicas

be accessible. It could therefore be possible at least for one

partition to continue processing. However, a network could

still partition in such a way that obtaining a majority con­

sensus will not be possible.

Primary site algorithms do not seek consensus among repli­

cas but require that a primary site be contacted before update

operations can be performed. Various algorithms are used to

determine a primary site. Control token algorithms allocate a

control privilege temporarily to one site which then acts as

the primary site. Other algorithms induce a total ordering of

sites and then take the site with the highest sequence number

as the primary site. In these algorithms, network partitioning

might make the primary site inaccessible. However, the parti­

tion containing the primary site (possibly consisting of the

primary site alone) will always be able to continue processing.

- 104 -

The major pitfall of the primary site approach is that it

unduly restricts processing during both normal and partitioned

processing since the accessibility of replicated data depends

on a particular node being accessible.

5.2.3. Conflict Detection and Resolution Algorithms

The strong conSistency algorithms are not resilient to

network partitioning. By this we mean that they do not allow

s'eparated parts of a system to carry out autonomous processing

on replicates when a network partitions. They do not, there­

fore, need to provide schemes for resolving the mutual incon­

sistency among replicates which could result from such parti­

tioned operations.

In many circumstances a desirable solution is to allow

autonomous operations in the various partitions and then detect

and resolve conflicts when two or more partitions are merged.

Algorithms for detecting mutual inconsistency among replicated

objects are presented in [Parker83], [Brereton83]. However,

these discuss resolution of inconsistency only for special file

types such as directories and mail-boxes for which the seman­

tics of operations are simple and, more importantly, known.

Conflict resolution algorithms are similar to optimistic con­

currency strategies [Kung82] since they do not try to mask or

prevent faults from occurring but instead aim at resolving the

- 105 -

conflicts which may arise.

A merge algorithm is presented in[Wright83CL •••.]. This

algorithm is based on obtaining a global serial schedule of the

combined set of transactions from all partitions. Each parti­

tion maintains a record of the order in which transactions in

that partition are committed. A history of the readsets and

writesets of transactions in each partition are also kept using

some appropriate scheme. A survey of techniques for storing

update histories and recovery data can be found

in[Verhofstad78]. When a network reconnects, each partition

derives a serial schedule of all transactions which have com­

mitted in that partition since the partition was formed. These

individual serial schedules are used to obtain a global serial

schedule by backing out a subset of transactions. This algo­

rithm, which uses a graph-theoretic approach, guarantees that

it can be determined in polynomial time which transactions must

be backed out so as to keep the combined set of transactions

serializable. One approach to determining the order of tran­

sactions in a network would require a reasonable amount of syn­

chronisation among clocks in the individual sites. (Clock

synchronisation [Lamport78] in a distributed system is in itself

a difficult problem.)

Another merge algorithm is described by Wright[Wright83].

- 106 -

This algorithm does not consider the problem of detecting

inconsistencies. However assuming that inconsistencies can be

detected, the method requires that the activities of an appli­

cation program be grouped a priori into transaction classes. It

might not always be possible to determine beforehand all the

resource requirements of an application so as to group applica­

tion programs into classes. Consider database applications

where records to be read or written might depend on the value

of fields in other database records. It would be difficult to

know beforehand the complete set of resources which such an

application program requires. In such circumstances, it might

be necessary to declare the entire database as the readset and

writeset of the application program.

A more desirable solution is to allow application programs

to acquire necessary resources as the need arises. Our proposed

algorithm (which is discussed in the next section) permits

autonomous operations in the various partitions of a network

and dynamically determines the writeset of an application pro­

gram. It also provides a merge scheme for the general object

type as opposed to a scheme for special file types whose opera­

tion semantics are known.

5.3. PARTITIONED PROCESSING

The following discussion applies only to replicated files.

- 107 -

For non-replicated files, the update and merge protocols are

not invoked since partitioned processing is invoked only for

replicated files. Our system differentiates between replicated

and non-replicated files. A technique for detecting replication

and keeping it transparent to the user is discussed later in

this chapter.

A set of sites which are in communication with each other

constitute a partition. It might be helpful to think of a par­

tition as a single logical node consisting of a set of communi­

cating nodes. The universal node unode(f) for a file f will be

used to refer to the set of all sites in a distributed system

which store copies of the file f. The majority partition

Majp(f) for a file f will refer to the sites which store copies

of f and which are in communication with a majority (absolute

majority) of the sites in unode(f). Any partition which is not

the majority partition will be referred to as a minority parti­

tion Minp(f). (The concept of majority partition is file depen­

dent. A partition is a majority partition with respect to a

specific file or a set of files.)

5.3.1. A Partitioned Update Algorithm

The algorithm presented here allows update activities in

all partitions when a network partitions. However, only the

update operations of the partition which has a majority of file

- 108 -

replicates (majority partition) are reflected in the actual

file copy. The update operations of a minority partition are

delayed so as to be incorporated into the actual file copy

after that partition has rejoined the majority partition. (The

actual file copy refers to the file copy which is stored by

each site in the majority partition.) We assume the existence

of a mechanism for obtaining majority consensus. The use of a

majority updating scheme ensures mutual consistency between the

majority of the copies of a file (namely, those copies which

are stored by the majority partition). It also ensures that

the update operations which have been applied to the majority

of the file copies are not undone during a merge operation

since only the operations of the minority partition are undone.

The merge algorithm is discussed in the next section. In order

to allow minority updating and to be able to resolve conflicts

which might arise, we use the following data structures:

An entity list is an ordered set of integers (El, E2, ... ,

Em). It contains the identification numbers of all objects

which are modified by a partition since the partition was

formed. This data structure is maintained by every node in a

partition.

A stable update set is a collection of records where each

record contains the following:

- 109 -

N: node identifier
f: file identifier
ob: object number
u: update request = (read, write)
d: data to be written

An update set is similar to an intentions list

in[Lampson79] except that instead of identifying a transaction,

it identifies a node which is involved in an update operation.

We shall make the following assumptions about the activities of

a minority partition:

ASl: The update operations of a minority partition are

assumed to be initiated at the time when that par-

tition rejoins the majority.

AS2: Objects which are updated by a minority partition

are not accessible to users until after that par-

tition has merged with the majority partition. All

access requests for such objects fail giving

appropriate error reports.

Each site can determine whether it is part of a majority

or minority partition by executing a majority consensus algo-

rithm. The details of how this is carried out will be discussed

later when considering implementation issues. The algorithm

for updating objects is as follows: Each site in a minority

partition maintains a stable update set for each file which it

- 110 -

desires to update and stores its update requests in that set.

A stable update set serves as an audit trail which is used to

record requested operations on objects by nodes in a minority

partition. This allows a file to be left in the state it was in

when the partitioning occurred, and enabling subsequent update

requests to be carried out later during a merge operation as

long as no conflict is detected. It is possible to allow local

processes to make use of (locally) updated values by making the

contents of the stable update set accessible to local

processes. It would then be necessary to address the problem of

results being allowed to leave the computer system from a

minority partition. Our present algorithm does not address this

issue.

Sites in the majority partition apply their update opera­

tions to their local file copies after an agreement to perform

the update operations has been obtained from every site in the

majority partition. This is not difficult since sites in the

majority partition are in communication with each other. If

agreement is not obtained, the update request is rejected.

Each partition maintains an entity list and records in it the

identification numbers of objects that are modified in that

partition. The use of an entity list enables the update and

merge protocol to determine dynamically the update class of

each partition and thus enable easy conflict detection. It is

- 111 -

not necessary that a task declares its update class a priori

(as in[Wright83] for example). Conflict detection is carried

out when a site in the minority partition requests a merge.

The next section discusses how a merge operation is initiated

and carried out.

5.3.2. A Network Merge Algorithm

When a site in a minority partition determines (by execut­

ing a majority consensus algorithm) that it has resumed commun­

ication with the majority partition, it initiates a merge

operation by sending a merge request to all sites. The major­

ity consensus scheme which is applied to update requests by the

majority partition is used to process a merge request. A merge

request is accepted either conditionally or unconditionally.

Unconditional acceptance is given when the update classes of

the majority and minority partitions do not conflict; otherwise

a conditional acceptance is given. In order that the opera­

tions of the two partitions may be considered conflict-free, it

is usually required that the invariant

INV: Wil\ Rj

hold (Here i and j are the majority and minority partitions

respectively; Ri and Wi are the readset and writeset of parti­

tion i). However, because of assumptions ASl and AS2, the

- 112 -

activities of the minority partition cannot influence the data

which is read by the majority partition. We can therefore

remove the first two requirements of the invariant INV and

require only that Wil\Wj = 0 holds. The activities of two par­

titions can therefore be considered to conflict if their asso­

ciated entity lists have one or more entries in common. If no

conflict is detected, and the merge request is unconditionally

accepted, the stable update set of the minority partition would

be applied to the majority partition file copy and the entity

list of the minority partition would be added to that of the

majority partition. Conditional acceptance of a merge request

requires that the affected minority partition discards its

update set and entity list before rejoining the majority parti­

tion. After a successful merge operation, a minority partition

initialises its file copy and entity list from the (merged)

file copy and entity list of the majority partition. This

algorithm is applied independently for each file which is modi­

fied by a minority partition.

Figure 14 gives an example of what happens during a merge

operation in the case of a file f which is replicated on five

machines Ul, U2, U3, U4 and us.

- 113 -

Unode(f) [Ul,U2,U3,U4,US]
/ \

/ \
,j. ..

Minp(f) [U3,US] Majp(f) [Ul,U2,U4]
(EL = El) (EL = E3,E14,E20,E22)
/ \

/ \
~ ~

Minp(f) [U3] Minp(f) [US]
(EL = El,E14) (EL = El,E6,Ell)

-I '4
••• to Majp(f) [Ul,U2,U4,US]

(EL = El,E3,E6,Ell,E14,E20,E22)

Figure 14: Merge Graph

In figure 14, the universal node Unode(f} consists of the

five nodes which store copies of the file f. The entity list

"EL" is used to record the identification numbers of updated

objects in a partition. Stable update sets are used to store

the update requests and data which is associated with such

requests. Sub-partitions inherit the entity lists and stable

update sets of their parent partition. An entity list for a

partition would be empty only if no update operations were car-

ried out in that partition. Each partition can determine

whether or not it is part of a majority partition by executing

a majority consensus algorithm. From figure 14, it can be seen

that the minority partitions Minp(f) [U3, US], Minp(f)[U3] and

Minp(f)[US] each carried out update operations since their

- 114 -

entity lists are not empty. It can also be seen that the

update operation carried out by Minp(f) [U3, US] on object 1 as

reflected in "El" was inherited by the sub-partitions

Minp(f)[U3] and Minp(f)[US].

Suppose now that the minority partition Minp(f) [US]

requests a merge with the majority partition Majp(f)[Ul, U2,

U4]. The entity lists of the two partitions will be compared.

From figure 14 it can be seen that these two entity lists have

no entry in common which means that there is no conflict

between the update operations of those two partitions. The

merge request will therefore be accepted unconditionally. The

contents of the stable update set of the minority partition

Minp(f)[US] will be applied to the majority file copy and sites

which were in Minp(f) [US] will reinitialise their entity lists

from that of the majority partition's (merged) entity list.

Now consider a merge request by the minority partition

Minp(f) [U3] with the Majp(f)[Ul, U2, U4]. The entity lists of

this partition and that of the majority partition have an entry

in common namely, "El4". This means that a conflict exists. A

conditional acceptance to the merge request will be given.

Minp(f) [U3] will be required to discard its update set before

rejoining the majority partition. It will also reinitialise its

entity list from the entity list of the majority partition.

- 115 -

Notice that the majority partition does not maintain a stable

update set, since its operations are applied directly on the

majority file copy and such operations are not undone during a

merge operation. An extension to the merge algorithm presented

here which allows the merging of minority partitions is given

in section 5.6

5.4. IMPLEMENTATION ISSUES

This section considers the implementation of the proposed

algorithm in a UNIX United distributed system. The architecture

of a UNIX United system has been described in chapter 3. The

replication layer can be conveniently placed between the user

and the Newcastle Connection software as portrayed in Figure

15.

1 User
1-------------------------
1 Replication Layer
1--------------------------

.
1
1

1

1

1 Newcastle Connection 1

1----------------------------1
1 Kernel 1

Figure 15: Position of the Replication Layer

The aim is to support file replication facilities while

maintaining the standard UNIX system interface. This is

achieved by making replication transparent to the user so that

- 116 -

a replicated file can be accessed and updated with the same

system calls as an ordinary UNIX file. However, the creation of

a replicated file is not transparent to the user since we

believe that a user should be aware of the fact that he is

creating a replicated file. A new system call is provided by

this algorithm for the creation of replicated files. (An alter­

native would be, as with stable files, to provide directories

within which all files are automatically replicated.)

5.4.1. File Creation and Placement

To create replicated files a user would invoke a "mkrep"

primitive. These files are created as special objects. The

"mkrep" primitive marks these files to ensure that they are

detectable as replicated objects. Each site has an ordered set

of sites (related sites) on which it stores its file copies.

The "mkrep" primitive takes an argument which indicates the

number of replicas required. It creates a "first" file copy on

its node and replicas on related nodes until the required

number of replicas have been created. Entries are made in an RN

(related node) table stored at each node to record the identity

of nodes where a site stores replicas. Each entry in the RN

table consists of an ordered set of node names which indicate

the order in which related nodes should be contacted. The first

entry in each table is referred to as the first related node,

- 117 -

the second as the second related node and so on.

Ul: (U2)
U2: (Ul, U3, U4)
U3: (U2, U4)

Figure 16: RN (related node) Table

Figure 16 shows that computer U1 stores its file copies in

computer U2. Computer U2 stores file copies in computers U1, U3

and U4. Computer U3 stores its file copies on computers U2 and

U4. Each computer maintains a separate replication directory

"REP" on behalf of each node for which it stores file copies.

These file copies are stored in the respective "REP" directory.

Looking at figure 16, since computer U2 stores file replicates

on behalf of computer U1 and U3, computer U2 will maintain

directories "REP1" and "REP3" which will contain file repli-

cates from U1 and U3 respectively.

5.4.2. File Access

File access is the same for replicated files as for ordi-

nary UNIX files. A user calls the operations of the replica-

tion layer in order to open, read and write files. Replication

is made transparent to the user. The replication layer inter-

cepts all system calls so as to detect access requests to

replicated files. This layer is also responsible for obtaining

majority consensus. In accessing a file which is replicated on

- 118 -

N machines, this layer would map the user's single access

request into N requests (to all copies) in the case of a write

request and one request (to any accessible copy belonging to

the majority partition) in the case of a read request. We

assume the existence of a facility to enable a site to execute

a majority consensus algorithm by sending messages to all nodes

in order that it can determine whether or not it is part of a

majority partition. The number of acknowledgements received in

response to such messages would enable a site to determine

whether it is in communication with the majority of the sites

in the network. When this has been determined, the replication

layer then issues requests to all sites in the partition to

write to their local file copy or stable update set depending

on whether or not a site belongs to the majority or minority

partition respectively. A read request is first directed to

the local file copy, if a copy is available at the user's node

otherwise it is directed to the "first" file copy. If this is

not successful, the related nodes are searched for replicas

starting with the first related node. Whether a site seeks

majority consensus for each separate access or at periodic

intervals would depend on the consistency requirements of the

application. If an application seeks majority consensus period­

ically, it has to assume that it is part of a minority parti­

tion until such consensus is sought and obtained.

- 119 -

Our'file access strategy requires that if for any reason

(network partitioning or node failure) the "first" file copy

is not accessible, the replication layer is to search the RN

table to determine where the file is replicated. The replica­

tion layer then tries to access the file replica in the first

related node of the RN table. This is continued until a replica

is accessed or all related nodes have been tried. If the file

is not a replicated file, all file access requests to related

nodes would fail, otherwise a replica will be accessed. The

replication layer makes file copies belonging to minority par­

titions inaccessible to remote nodes. All requests for such

files fail giving appropriate error reports. The replication

layer passes all accesses to remote nodes to the Newcastle Con­

nection software which handles remote accesses in a UNIX United

system.

5.4.3. Replication Transparency

There are various methods which can be used to obtain

replication transparency. One approach would be to use a cen­

tralised name resolution scheme for replicated files. In such a

scheme, a particular site would be consulted for resolution of

name references for the entire network or for a subset of the

nodes in the network. It would then be possible to determine

that a file is replicated by consulting such a node and to make

- 120 -

such name resolution transparent to the user. The use of a

current synchronization site[Walker83] and the total resource

directory[Lunn82] are examples of such schemes. This approach

introduces a centralised source of unreliability because of the

potential failure of such a vital node.

A preferable solution would be the implementation of a

distributed name resolution scheme. Such a scheme will be

capable of using information which is locally available to

determine that a file is replicated and will be able to give

information on its related nodes. One approach would be to tag

pathnames to files so that replication can always be detected

by inspecting the pathname to a file. Implementing such a

scheme in a hierarchical system requires storing not only file

names but also the contexts in which those names appear. The

existence of a hierarchical structure imposes a context rela­

tive naming scheme. Consequently, names do not make sense

except when interpreted within a context. In a hierarchical

files tore implemented by a network of computer systems, there

are numerous pathnames to a file depending on where a name

reference starts. It would therefore be prohibitive in terms

of storage space requirements to store all possible pathnames

to a file.

However, these problems can be avoided by tagging files at

- 121 -

creation time. Since the "mkrep" primitive creates a repli­

cated file as a special object, the replication layer sees such

a file as one requiring special processing. Further investiga­

tion into the "specialness" of such a file can reveal that the

file is a replicated file and not a "special file" in UNIX

terms. (Special files in UNIX are usually associated with dev­

ices.) When it has been determined that a file is replicated,

the file access strategy which was described in the last sec­

tion would then be invoked.

The replication layer intercepts all system calls and can

therefore control the contents of the information which a user

sees. This layer ensures that a user sees a replicated file as

an ordinary UNIX file. Replication transparency could thus be

achieved without modifying the UNIX kernel.

5.4.4. Data Structure Implementation

The two main data structures which are used by this algo­

rithm have a straightforward implementation in UNIX as crash

resistant files. A stable update set can be implemented as a

sequence of 512 byte blocks within a file, where each block

constitutes an object. Each disk block would contain the "N", "

fit, "ob" and "u" parameters which identify the node and file to

which a block of data belongs. A sufficient number of disk

blocks within a file would be used to store the data which is

- 122 -

contained in the "d" parameter. The entity matrix can be

implemented as a file of integers.

5.5. PERFORMANCE

In order to estimate the overhead incurred when this algo­

rithm is used, let us define a few parameters:

(i) There are n file replicates for each file in the

data storage system.

(ii) The time required to write a local copy is w

(iii) The time required to read a local copy is r.

(iv) Let e represent the delay in searching for a

replica in one node. The delay in searching for an

accessible replica when a copy is not available

locally is d < ne.

(v) The time required for obtaining majority consensus

is c.

We assume that computing times and times for making remote

procedure calls are negligible. Storage overheads are also

negligible since update sets are discarded after successful

merge operations and therefore do not become very large. In

order to avoid having large entity lists, all entity lists can

- 123 -

be initialised to empty when a merge operation results in

Majp(f) = Unode(f). (That is when the network is fully recon­

nected and all nodes are in communication with each other. In

such a situation, it would not be necessary to maintain entity

lists.) The overhead in reading and writing replicated files

would be:

Read-overhead d + c

Write-overhead (n - l)w + c

The "d" parameter may be negligible if a copy is available

locally or if the first related node is accessible. The "w"

parameter may be small since all accessible nodes will carry

out their update operations on an object in parallel, each on

its local copy. The major overhead might be in getting majority

consensus or the use of agreement protocol in order to obtain

consensus from replicas on the course of action to be taken

during an update operation. If a particular implementation

decides to seek majority consensus periodically rather than for

each update operation, the "c" overhead would be reduced.

However, we believe that in appropriate circumstances the

enhancement in reliability obtained by replicating resources

could outweigh these performance costs. Suppose that each of

the replicates has a probability p of being accessible. A sys-

- 124 -

tern consisting of n replicates would have

s = 1 - (1 - p)**n

probability of being accessible. As n increases, the probabil­

ity of such a system being accessible approaches 1 thereby pro­

viding a very high degree of data availability. However, if

network partitioning and update conflicts are frequent the pro­

bability "p" of accessing a replica will be small.

5.6. AN EXTENSION

The only merge operation allowed by the merge algorithm

presented in this chapter is a merge between a majority and a

minority partition. However, a network could partition in such

a way that there would be no majority partition though one

could come into existence again through the merging of minority

parti tions. An extension to this algorithm which would allow

the merge of minority partitions is generally not difficult.

One approach would be to merge minority partitions by com­

bining their stable update sets and entity lists so that each

site in the merged partitions contains the same information in

these two data structures. This will be done after the entity

lists of the two minority partitions have been compared so as

to ensure that there is no conflict between the operations of

the two partitions. If a conflict is detected, the operations

- 125 -

of the partition which carried out the least number of update

operations will be backed out by discarding its update set.

The partition which was backed out would then initialise its

entity list and stable update set from those of the partition

with which it has been merged. Then a majority consensus algo­

rithm would be executed to determine if the newly merged parti­

tion has formed a majority partition. Each site knows the

number of sites in Unode(f) so it is easy to determine if a

partition constitutes the majority partition. If the newly

merged partition contains a majority of the nodes in Unode(f)

then that partition constitutes the majority partition, in

which case its update set would be applied to the local file

copy of each site in that partition. The update set would then

be discarded since majority partitions do not maintain stable

update sets. On the other hand if the newly merged partition

does not form a majority partition, it would remain as a minor­

ity partition and would continue to follow minority processing

procedures. There can not be more than one majority partition

in a network at the same time since any site which is in com­

munication with a site in the majority partition is itself part

of that partition.

5.7 • CONCLUSION

The problem of maintaining the consistency of data in a

- 126 -

distributed data storage system which supports replicated

resources has been considered. An algorithm for detecting and

resolving mutual inconsistencies among replicates in the pres­

ence of network partitioning was presented. The algorithm pro­

vides a merge scheme for the general object type instead of for

special types of objects whose operation semantics are known.

Implementation of this algorithm in a UNIX based distributed

system was discussed (although unlike the techniques of

chapters 3 and 4 this algorithm has not been implemented). 'The

algorithm also discusses a simple method of implementing repli­

cation transparency in a distributed hierarchical file store.

- 127 -

6. CONCLUSION

6.1. SUMMARY

We have considered the general problem of constructing

robust data storage in a distributed computer system. Our

approach to the construction of such a system involves provid­

ing reliable storage of data and also ensuring that data

objects are made accessible in spite of the existence of node

and network failures. In particular we investigated the

integration of the stable storage mechanism with data replica­

tion on different computers as a basis for the construction of

reliable distributed file storage systems.

The investigation was carried out in the environment pro­

vided by UNIX United which is a UNIX based distributed system

implementing a global hierarchical file store. Such a system

was considered highly appropriate for the construction of reli­

able file systems because of the convenient features which it

provides such as expandability and distribution transparency.

A survey of the causes of data inconsistency and tech­

niques for maintaining data consistency in distributed systems

has been discussed. The design and implementation of a stable

storage system was presented. This system implemented stable

- 128 -

disks which provide fault tolerance facilities for faults which

affect disk storage devices, such as decay of the storage

medium, transient I/O faults and some effects of processor

crashes.

An implementation of a crash resistant UNIX file system

which is based on the use of the stable storage mechanism has

been described. Performance evaluation of the stable storage

system and the crash resistant Unix file system has also been

carried out. Replication of resources can be an aid to both

performance and reliability in distributed file store deSign.

An algorithm for detecting conflicts among replicated objects

and a merge protocol for a partitioned data storage system was

presented. Implementation of these algorithms in a UNIX United

system was discussed.

6.2. AREAS FOR FUTURE WORK

Some extensions to the presented algorithms have already

been mentioned in the individual chapters. This section

highlights some of these extensions and makes further sugges­

tions as to areas where more work could be useful.

Obviously it would be desirable to carry the ideas

presented in chapter 5 on network partitioning through to

implementation so that the actual overheads and efficiency of

- 129 -

the scheme, could be assessed. This will however require access

to quite a large distributed system.

Another interesting area for investigation would be the

provision of user-level (application dependent) fault tolerance

facilities on top of the facilities which we have provided. The

main aim would be to ensure that, if all automatic fault toler­

ance facilities fail, an end-user who knows the semantics of

the application should be given control before extensive "UNDO"

operations are initiated. Such a user would be in a position to

(i) accept all the results of processing as produced,

(ii) or accept only part of the results,

(iii) or reject all results and calIon the computer

system to initiate "UNDO" processing.

It would of course be even more desirable to have a full and

preferably rigorous specification of an application's require­

ments, so that the computing system can make decisions (i),

(ii) and (iii) above automatically.

Another area which requires further investigation is the

use of forward error recovery techniques for the resolution of

inconsistency between replicated objects in a distributed sys­

tem. Most existing schemes use backout strategies for conflict

- 130 -

resolution. Using forward error recovery would again require a

knowledge of the semantics of the application so that conflicts

could be resolved appropriately. A mechanism which is suffi-

ciently general to support

recovery strategies would be

both forward and backward error

highly desirable. Interesting

discussions on the general use of forward error recovery in

computer systems can be found in [Cristian82], [CampbeI183].

We have already mentioned the need to provide robustness

of file systems in the presence of buffering. To solve this

problem we had suggested as an extension to our algorithms the

use of two processors instead of one in the implementation of

stable storage systems. We could generalise this extension

further so as to be able to tolerate a bounded number of pro­

cessor crashes by the use of a specified number of processors.

An efficient solution which uses this technique and whose cost

can be justified would also be of interest. However such an

extension would be taking us toward the situation where one

could be using N-modular redundancy techniques, based on redun­

dancy at the level of complete computer systems. Thus it would

be necessary to investigate the relative merits of the two

approaches.

The provision of robust processes can be considered to be

a possible step forward after the provision of stable storage

- 131 -

facilities. Such robust processes would be resilient to proces­

sor crashes. These processes would store their states in stable

storage so as to be restarted from the saved state after a pro­

cessor crash or service interruption. This idea has already

been suggested in[Lampson79]. A specific way of looking at the

implementation of such a scheme is as follows:

An operating system creates processes which carry out work

on behalf of the computer system and the user. We shall con­

sider these processes to be part of the processor state. The

processes which are part of (owned by) the current processor

state we will refer to as "own" processes. Processes whose

states have been saved in stable storage, and which need to be

restarted, would have to be considered "adopted" processes

since they do not belong to the current processor state but

instead belong to a previous (crashed) processor state. The

problem then is to integrate these adopted processes into the

current processor state.

In summary, we have investigated various related

approaches to achieving high reliability and availability based

mainly on the extensive use of storage replication. It would be

very useful to have some means of estimating the relative costs

and benefits of these and other approaches for a given type of

environment and use, so as to be able to choose an optimum sys-

- 132 -

tem design in each case. This however would be a major

research project in its own right.

6.3. ACHIEVEMENTS AND CONCLUSION

Previous work on stable storage systems provided atomic

fixed size pages for storing data. This thesis investigated the

design and construction of a more flexible stable storage sys­

tem which provides atomicity for more complex data structures

instead of the usual fixed size pages. An algorithm for pro­

viding such a facility has been presented and implemented and

its performance reported on.

The thesis has also demonstrated how the stable storage

mechanism can be interfaced with an existing file system and

how such a file system can be made crash resistant. This

required constrained modifications to an existing operating

system kernel. We consider the success of that investigation

and the subsequent implementation of our ideas rewarding, since

it is usually not easy to incorporate fault tolerance facili­

ties in an already existing system. The proper placement of

such facilities so as to provide effective fault tolerance is

not clear.

Another contribution of this thesis is in the area of net­

work partitioning. We have presented a novel algorithm for the

- 133 -

update and merge of a partitioned data

algorithm has some highly desirable

storage system. This

properties. It allows

autonomous processing in all partitions of a data storage sys­

tem whilst it is partitioned. Its protocol for the merge of a

partioned data storage system ensures that conflicting update

operations are detected and resolved before a merge operation

is allowed to proceed. It uses the contents of its stable

update set to carry out operations of a minority partition for

which no conflict is detected. In the event of the detection of

an error, it ensures that update operations which have already

been applied to the majority of replicas of an object are not

undone.

Our approach combined the stable storage concept with

facilities for providing crash resistance in file systems and

replication of data objects on different machines to provide a

data storage system which is highly reliable and highly avail­

able. In conclusion, we would like to believe that we have

explored a particular subject area and thrown some light on

some concepts and aspects of that area through survey, design

and implementation. On a personal level, it has provided me

with a deeper knowledge of computing systems and their relia­

bility problems, and yielded the satisfaction of participating

in their solution (even in a small way).

- 134 -

References

Alsberg76.

P. A. Alsberg and J. D. Day, "A Principle for Resilient

Sharing of Distributed Resources," IEEE Proc. Second Int.

Conf. on Softw. Eng., pp. 562 570, San Francisco,

Oct. 1976 .

Anderson81.

T. Anderson and P. A. Lee, Fault Tolerance: Principles and

Practice, Prentice-Hall, 1981.

Avizienis75.

Avizienis, "Fault-Tolerance and Fault-Intolerance: Comple­

mentary Approaches to Reliable Computing," Proc. Int.

Conf. on Reliable Software, pp. 458 - 464, Los Angeles,

California, April 1975.

Avizienis77 .

A. Avizienis and L. Chen, "On the Implementation of N­

Version Programming for Software Fault-Tolerance During

Execution," COMPSAC 77, pp. 149

November 1977.

Bernstein80.

155, Chicago(IL),

P. A. Bernstein, D. W. Shipman, and J. B. Rothnie, "Con-

- 135 -

currency Control in a System for Distributed Databases

(SDD-l)," ACM Trans. on Database Systems, vol. 5, no. 1,

pp. 18 - 25, March 1980.

Bernstein81.

P. A. Bernstein, "Concurrency Control in Distributed Data­

base Systems," Computing Surveys, vol. 13, no. 2, pp. 185

- 221, June 1981.

Bhargava82.

B. Bhargava, "Resiliency Features of the Optimistic Con­

currency Control Approach for Distributed Database Sys­

tems," Second ~. on Reliability in Distr. Softw. and

Database Systems, pp. 19 - 32, July 1982.

Borr81.

A . J. Borr, "Transaction Monitoring in Encompass[TM]:

Reliable Distributed Transaction Processing," Proc.

Seventh Int. Conf. On Very Large Databases, pp. 155 - 165,

Cannes, France, Sept. 1981.

Brereton83.

P. Brereton, "Detection and Resolution of Inconsistencies

among Distributed Replicates of Files," ACM Operating Sys­

tems Review, vol. 17, no. 1, pp. 10 - 15, Jan. 1983.

Brownbridge82.

- 136 -

D. R. Brownbridge, L. F. Marshall, and B. Randell, "The

Newcastle Connection," Software Practice and Experience,

vol. 12, no. 12, pp. 1147 - 1162, Dec. 1982.

Campbell 83 •

R. H. Campbell and B. Randell, "Error Recovery in Asyn­

chronous systems," Technical Report 186, Computing Lab.

University of Newcastle Upon Tyne, July 1983.

Cristian82.

F. Cristian, "Exception Handling and Software Fault Toler­

ance," IEEE Trans. On Computers, vol. C-31, no. 6, pp. 531

- 540, June 1982.

Cristian83.

F. Cristian, "A Rigorous Approach To Fault-Tolerant System

Development," Report RJ3754, IBM San Jose, California,

January 1983.

Defence80.

U. S. A. Department of Defence, Reference Manual for the

ADA Programming Language, 1980.

Eager,83.

D. L. Eager, and K. C. Sevcik, "Achieving Robustness in

Distributed Database Systems," ACM Trans. on Database Sys­

tems, vol. 8, no. 3, pp. 354 - 381, Sept. 1983.

- 137 -

Eliot83.

J. E. Eliot, "Checkpoint and Restart in Distributed Tran­

saction Systems, " Proc. Third ~. Q!! Reliability in

Distr. Softw. and Database Systems, pp. 85 - 89, October

1983.

Ellis77 •

C. A. Ellis, "A Robust Algorithm for Updating Duplicate

Databases, " Proc. S,econd Berkley Workshop on Distr. Data

Management and Computer Networks, 1977.

Eswaran76.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger,

"The Notions of Consistency and Predicate Locks in a Data­

base System," CACM, vol. 19, no. 11, pp. 624 - 633, Nov.

1976.

Gifford79.

D. K. Gifford, "Weighted voting for Replicated Data,"

Proc. ACM Seventh ~. on Operating System Principles,

pp. 150 - 162, Pacific Grove, California, Dec. 1979.

Goodenough75.

J. B. Goodenough, "Exception Handling: Issues and a Pro­

posed Notation," CACM, vol. 18, no. 12, pp. 683 - 696,

Dec. 1975.

- 138 -

Gray78.

J. N. Gray, "Notes on Database Operating Systems," Lecture

Notes In Computer Science: An Advanced Course, pp. 393 -

481, Springer Verlag, New York, 1978.

Gray81.

J. N. Gray, "The Recovery Manager of System R Database

Manager," Computing Surveys, vol. 13, no. 2, pp. 223 -

242, June 1981.

.
Gray81q"..

J. N. Gray, "The Transaction Concept: Virtues and Limita-

tions," Proc. Seventh Int. Con!. on Very Large Databases,

pp. 144 - 153, Cannes, France, Sept. 1981.

Haerder83.

T. Haerder, "Principles of Transaction Oriented Database

Recovery," Computing Surveys, vol. 15, no. 4, pp. 287 -

317, Dec. 1983.

Hoare75.

C. A. R. Hoare, "Data Reliability," Int. Conf. on Reliable

Software, pp. 528 - 533, Los Angeles, California, April

1975.

Horning74.

J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B.

- 139 -

Randell, "A Program Structure for Error Detection and

Recovery," Proc. Conf. Operating Systems: Theoretical and

Practical Aspects: IRIA, pp. 177 - 193, Rocquencourt,

April 1974.

Kohler81.

W. H. Kohler, "A Survey of Techniques for Synchronization

and Recovery in Decentralised Computer Systems," Computing

Surveys, vol. 13, no. 2, pp. 149 - 182, June 1981.

Kung82.

K. T. Kung and J. T. Robinson, "Optimistic Methods for

Concurrency Control," ACM Trans. on Database Systems, vol.

6, no. 2, pp. 213 - 226, June 1982.

Lamport78.

L. Lamport, "Time, Clocks and the Ordering of Events in a

Distributed System," CACM, vol. 21, no. 7, pp. 558 - 565,

July 1978.

Lampson79.

B. W. Lampson and H. E. Sturgis, "Crash Recovery in a Dis­

tributed Data Storage System," Xerox PARC Report, Palo

Alto, California, April 1979.

LeLann78.

G. LeLann, "Algorithms for Distributed Data-Sharing

- 140 -

Systems which use Tickets," Proc. Third Berkley Workshop

on Distr. Data Management and Computer Networks, pp. 259 _

272, Aug. 1978.

Lee83.P. A. Lee, "Exception Handling in C Programs," Software

Practice and Experience, vol. 13, no. 5, pp. 389 - 405,

May 1983.

Liskov83.

B. Liskov, "Preliminary Argus Reference Manual," M. I. T.

Programming Methodology Group Memo 39, October 1983.

Liskov79.

B. H. Liskov and A. Snyder, "Exception Handling in CLU,"

IEEE Trans. on Software Engineering, vol. SE-5, no. 6, pp.

546 - 558, November 1979.

Lunn82.

K. Lunn, "Reliable File Storage in a Distributed Computing

System," Ph. D Thesis, Keele University, March 1982.

Lyons62.

R. E. Lyons and W. Vanderkulk, "The Use of Triple-Modular

Redundancy to Improve Computer Reliability," I. B. M.

Journal of Research and Development, vol. 6, no. 2, pp.

200 - 209, April 1962.

- 141 -

Melliar-Smith77.

P. M. Melliar-Smith and B. Randell, "Software Reliability:

The Role of Programmed Exception Handling," SIGPLAN

Notices, vol. 12, no. 3, pp. 95 - 100, March 1977.

Minoura82.

Toshimi Minoura, "Resilient Extented True-Copy Token

Scheme for a Distributed Database System," IEEE Trans. on

Softw. Eng., vol. SE-8, no. 3, pp. 173 - 188, May 1982.

Moss8l.

J. E. B. Moss, "Nested Transactions: An Approach to Reli­

able Distributed Computing," Ph.d Dissertation, Laboratory

for Computer Science, M. I. T., Mass., April 1981.

Mullery75.

A. P. Mullery, "The Distributed Control of Multiple Copies

of Data," Report RC 5782, IBM T. J. Watson Research

Center, Yorktown Heights, N. Y., August 1975.

Papadimitiou84.

C. H. Papadimitiou and P. C. Kanellakis, "On Concurrency

Control by Multiple Versions," ACM Trans. on Database Sys­

tems, vol. 9, no. 1, pp. 89 - 99, March 1984.

Parker83.

D. Stott Parker, G. J. Popek, G. Rudisin, A. Stoughton, B.

- 142 -

J. Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser,

and C. Kline, "Detection of Mutual Inconsistency in Dis­

tributed Systems," IEEE Trans. on Softw. Eng., vol. SE-9,

no. 3, pp. 240 - 247, May 1983.

Paxton79.

W. H. Paxton, "A Client-Based Transaction System to Main­

tain Data Integrity," Proc. Seventh~. on Operating

Syst~ Principles, pp. 18

December 1979.

Rande1l75.

23, Asilomar, California,

B. Randell, "System Structure for Software Fault Toler­

ance," IEEE Trans. on Softw. Eng., vol. SE-1, no. 2, pp.

220 - 232, June 1975.

Rande1l78.

B. Randell, "Reliable Computing Systems," Lecture Notes in

Computer Science: Operating Systems, pp. 282 391,

Springer Verlag, N. Y., 1978.

Ritchie79.

D. M. Ritchie, "The UNIX I/O System," UNIX Programmer's

Manual, Seventh Edition, Jan. 1979.

Rosenkrantz78.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II,

- 143 -

"System Level Concurrency Control for Distributed Database

Systems," ACM Trans. on Database Systems, vol. 3, no. 2,

pp. 178 - 198, June 1978.

Rothnie80.

J. B. Rothnie, "Introduction to a System for Distributed

Databases (SDD-l)," ACM Trans. Database Systems, vol. 5,

no. 1, pp. 1 - 17, March 1980.

Schlageter76.

G. Schlageter, "The problem of Lock by Value in Large

Databases," Comput. ~., vol. 19, no. 1, pp. 17 - 20, Feb.

1976.

Schneider83.

F. B. Schneider, "Fail-Stop Processors: An Approach to

Designing Fault-Tolerant Computing Systems," ACM Trans. on

Computing Systems, vol. 1, no. 3, pp. 222 238, August

1983.

Shrivastava82.

S. K. Shrivastava and F. Panzieri, "The Design of a Reli­

able Remote procedure Call Mechanism," IEEE Trans. On Com­

puters, vol. C-31, no. 7, pp. 692 - 697, July 1982.

Stonebraker76.

M. Stonebraker, "The Design and Implementation of INGRES,"

- 144 -

Trans. On Database Systems, vol. 2, no. 3, Sept. 1976.

Stonebraker79.

M. Stonebraker, "Concurrency Control and Consistency of

Multiple Copies of Data in Distributed INGRES," IEEE

Trans. on Softw. Eng., vol. SE-5, no. 3, pp. 188 194,

May 1979.

Sturgis80.

, H. Sturgis, J. Mitchell, and J. Israel, "Issues in the

Design and use of a Distributed File System," ACM Operat­

ing System Review, vol. 14, no. 3, July 1980.

Svoboda81.

L. Svoboda, "A Reliable Object-Oriented Repository for a

Distributed Computer System," Proc. ACM Eigth ~. on

Operating Systems Principles, pp. 47 - 58, Pacific Grove,

California, Dec. 1981.

Thomas78.

R. H. Thomas, "A Solution to the Concurrency Control Prob­

lem for Multiple Copy Databases," IEEE COMPCON, pp. 56

-62, San Francisco, Spring 1978.

Thompson78.

K. Thompson, "UNIX Implementation," Bell System Technical

Journal, vol. 57, no. 6, pp. 1931 - 1946, July 1978.

Verhofstad78.

J. S. M. Verhofstad,

Systems, " Computing

195, June 1978.

Walker83.

- 145 -

"Recovery Techniques for Database

Surveys, vol. 10, no. 2, pp. 167 -

Bruce Walker, G. Popek, R. English, C. Kline, and G.

Thiel, "The LOCUS Distributed Operating System," Operating

Systems Review, vol. 17, no. 5, pp. 49 - 70, Oct. 1983.

Wright83,.('L .

D. D. Wright and D. Skeen, "Merging Partitioned Data­

bases," Report TR83-547, Dept. of Computer Science, Cor­

nell University, Ithaca N. Y., April 1983.

Wright83.

D. D. Wright, "Managing Distributed Databases in Parti­

tioned Networks," Report TR83-572, Dept. Computer Science,

Cornell University, Ithaca, N. Y., Sept. 1983.

Wyeth73.

D. Wyeth, "Estimates for the Size of the Recursive Cache,"

Internal Memorandum SRM/71, Computing Laboratory, Univer­

sity of Newcastle Upon Tyne, Dec. 1973.

- 146 -

APPENDIX

Implementation of the Fault Tolerance Notation

This section shows how the fault tolerance notation of

chapter 3 was implemented using the exception package described

in section 3.4.2. This is done by presenting the implementation

of the procedures of the transient layer, procedures Tread and

Twrite, using this package and a Pascal-like language for reada-

bility. The exception handling package does not allow the use

of break or return statements within an exception context. How­

ever, we have used break and return statements below whenever we

found that they improved readability. Exc-signal statements are

used to indicate exceptional return of a procedure and Return

statements are used to indicate normal return.

- 147 -

Proc Tread(fd: inti buf: array[••.] of char;
const bufsize = 512; /*size of buffer */
type answer = (goodread,diskerror, .•.);

bufsize: int)

var result: answer;
retryno, maxtry:int;
BAD-DISK,OTHERS,OP-FAIL:exception;
begin

end.

BEGIN
repeat

/*beginning of exception context*/

result = read(fd,buf,bufsize);
if result = goodread then break /*exit from loop*/
else

if result = diskerror /*disk error detected*/
then exc-raise(BAD-DISK)

else exc-raise(OTHERS); /*error not disk error*/
EXCEPTION
WHEN(BAD-DISK)

retryno = retryno + 1;
WHEN(OTHERS)

write reports, "error not disk error";
break;

END /*end of context */
until retryno >= maxtry;
if result = goodread then return(result)
else exc-signal(OP-FAIL);

- 148 -

Proc Twrite(fd: inti buf: array[.•.] of char; bufsize- int)
const bufsize = 512; -
type answer = (goodread,goodwrt,diskerror, •.•);
var resultw,resultr: answer;
ok-wrt: boolean initially False;
BAD-DISK,BAD-RAW,OP-FAIL,OTHERS:exception·
begin '

BEGIN /*beginning of context*/
repeat

resultw write(fd,bufl,bufsize);
if resultw = goodwrt then

end.

/*do the read-after-write*/
begin

end

seek to beginning-of-block;
resultr = read(fd,buf2,bufsize);
if resultr < > goodread
then exc-raise(BAD-DISK);

/*can't read written values*/
if bufl = buf2 then
begin ok-wrt = True;

break;
end
else exc-raise(BAD-RAW);

/*detects good write that
writes wrong values*/

else if resultw = diskerror then exc-raise(BAD-DISK)
else exc-raise(OTHERS);

EXCEPTION
WHEN(BAD-DISK)

retryno = retryno + 1;
WHEN (BAD-RAW) /*bad read-after-write*/

retryno = retryno + 1;
lseek to beginning of block /*necessary since write

operation was successful*/
WHEN(OTHERS)

write reports "not disk error";
break;

END /* end of context*/
until retryno >= maxtry;
if ok-wrt then return(resultw)
else exc-signal(OP-FAIL);

One of the difficulties encountered in separating normal

- 149 -

and exceptional processing in this implementation was that the

fault tolerance notation is not amenable to a direct implementa­

tion by the exception handling package. We also always have the

need to return a result object both during normal and excep­

tional termination since the caller of a function in our

environment quite often interrogates and uses this returned

value. The concept of a procedure terminating in more than one

way and returning result objects differing in number and type is

not addressed by the exception handling package. One of the

reasons for this is that the ADA language exception handling

model on which this exception package is based does not have

parameterised exceptions, through which exceptional result

objects can be returned (as in the CLU language, for example).

Another difficulty was the use of exception contexts,

within which a designer is allowed to terminate the execution of

a block by raising exceptions but not allowed to terminate nor­

mally by issuing a return statement. Despite these difficulties,

we found that the separation of normal and exceptional process­

ing and the clean control structure which the exception package

gives, greatly enhances the reliability of our implementation.

	351714_0001
	351714_0002
	351714_0003
	351714_0004
	351714_0005
	351714_0006
	351714_0007
	351714_0008
	351714_0009
	351714_0010
	351714_0011
	351714_0012
	351714_0013
	351714_0014
	351714_0015
	351714_0016
	351714_0017
	351714_0018
	351714_0019
	351714_0020
	351714_0021
	351714_0022
	351714_0023
	351714_0024
	351714_0025
	351714_0026
	351714_0027
	351714_0028
	351714_0029
	351714_0030
	351714_0031
	351714_0032
	351714_0033
	351714_0034
	351714_0035
	351714_0036
	351714_0037
	351714_0038
	351714_0039
	351714_0040
	351714_0041
	351714_0042
	351714_0043
	351714_0044
	351714_0045
	351714_0046
	351714_0047
	351714_0048
	351714_0049
	351714_0050
	351714_0051
	351714_0052
	351714_0053
	351714_0054
	351714_0055
	351714_0056
	351714_0057
	351714_0058
	351714_0059
	351714_0060
	351714_0061
	351714_0062
	351714_0063
	351714_0064
	351714_0065
	351714_0066
	351714_0067
	351714_0068
	351714_0069
	351714_0070
	351714_0071
	351714_0072
	351714_0073
	351714_0074
	351714_0075
	351714_0076
	351714_0077
	351714_0078
	351714_0079
	351714_0080
	351714_0081
	351714_0082
	351714_0083
	351714_0084
	351714_0085
	351714_0086
	351714_0087
	351714_0088
	351714_0089
	351714_0090
	351714_0091
	351714_0092
	351714_0093
	351714_0094
	351714_0095
	351714_0096
	351714_0097
	351714_0098
	351714_0099
	351714_0100
	351714_0101
	351714_0102
	351714_0103
	351714_0104
	351714_0105
	351714_0106
	351714_0107
	351714_0108
	351714_0109
	351714_0110
	351714_0111
	351714_0112
	351714_0113
	351714_0114
	351714_0115
	351714_0116
	351714_0117
	351714_0118
	351714_0119
	351714_0120
	351714_0121
	351714_0122
	351714_0123
	351714_0124
	351714_0125
	351714_0126
	351714_0127
	351714_0128
	351714_0129
	351714_0130
	351714_0131
	351714_0132
	351714_0133
	351714_0134
	351714_0135
	351714_0136
	351714_0137
	351714_0138
	351714_0139
	351714_0140
	351714_0141
	351714_0142
	351714_0143
	351714_0144
	351714_0145
	351714_0146
	351714_0147
	351714_0148
	351714_0149
	351714_0150
	351714_0151
	351714_0152
	351714_0153
	351714_0154
	351714_0155
	351714_0156

