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Abstract

Abstract

Kidney transplantation is the gold standard renal replacement therapy for patients with
end-stage renal disease. Despite advances in immunosuppressive therapy, chronic
allograft dysfunction remains the commonest cause of renal allograft failure in living
recipients. The typical pathology of this disease includes chronic inflammation with
tubular atrophy and interstitial fibrosis. Although the origin of the excess fibroblasts
and myofibroblasts remains controversial, the process of epithelial to mesenchymal
transition might play a role. This study was designed to test the linked hypotheses that
the immunosuppressive drug, Cyclosporine A and graft infiltrating T cells can induce
allograft pathology by alteration of the bioavailability of fibrogenic TGF-p.

An initial series of experiments examined the induction of mesenchymal transition by
treatment of cultured human renal tubular epithelial cells with immunosuppressive
concentrations of Cyclosporine A. Drug treated cells showed characteristic
morphological changes associated with increased expression of the mesenchymal
marker S100A4 and reduced expression of the epithelial marker E-cadherin; similar
changes were induced by the addition of TGF-B1. The phenotypic change induced by
Cyclosporine A was not the consequence of an increased response to autocrine TGF-f3
and could not be inhibited by specific blockade of the ALK5 component of the TGF-$
receptor. Further studies showed in vitro that contact between activated T cells and
renal tubular epithelial cells could induce mesenchymal transition by a mechanism
that was dependent on activation of the TGF-B receptor complex. A final series of
experiments defined a mechanism by which T cells activate latent TGF-§ allowing
subsequent receptor stimulation leading to either T cell or epithelial cells
differentiation. The latency associated peptide binds to and inhibits native TGF-§ but
can be displaced by both thrombospondin-1 and neuropilin-1, producing active
TGF-B. In this study it was shown that cytoplasmic thrombospondin-1 is exported and
expressed on the surface of activated T cells following brief interaction with renal
tubular epithelial cells; neuropilin-1 was also expressed by a mean 18% of activated
human T cells. Inhibition of these two molecules with a blocking LSKL peptide
sequence inhibited the normal response of activated human T cells to latent TGF-B1.
This study demonstrated that both Cyclosporine A and T cells can induce renal
epithelial to mesenchymal cell transition. However, the former process seems
independent of TGF-P whilst the latter requires TGF- receptor stimulation and might
be regulated in vivo by T cell-mediated activation of latent TGF- within the allograft.
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1.1 History of kidney transplantation

The first successful experimental kidney transplants in animals were reported in 1902 by
Dr. Emmerich Ullmann in Vienna; however, the incidence of rejection was not mentioned
(Druml et al., 2002). Later in 1923, Dr. Carl Williamson firstly examined a failed kidney
transplant and identified the difference between autografted and allografted kidney. In addition,
he introduced the term “rejection” and published the histology of a rejecting kidney (Eedy et al.,
2004).

The first human-to-human kidney transplant was performed in 1933 by Yuri
Voronoy, who transplanted a cadaver kidney into the medial thigh. However, the kidney graft
did not function due to an ABO blood group mismatch (Matevossian et al., 2009). The first
recorded event in which a transplanted kidney functioned was in 1951. David Hume in Boston
performed a series of cadaveric kidney transplants into the thigh of recipient patients. All but one
of these kidneys was rejected within days or weeks; the one exception was a patient in whom the
kidney functioned for nearly 6 months (Hume et al., 1955). This event provided hope for the
future as no immunosuppressive therapy was used in this patient. In 1953, a further advance was
provided by the demonstration that tolerance to an allogeneic skin graft in an adult animal could
be produced by injecting the foetus with donor strain tissue (Billingham et al., 1953).

The modern era of clinical transplantation began on December 1954, when Joseph
Murray and his colleagues at Harvard performed the first kidney transplantation between
identical twin brothers (Murray et al., 1958). Before 1980, the best therapeutic option for patients
with kidney failure was dialysis; however, despite numerous medical and technical advances,
patients with kidney failure who were treated with dialysis mostly experience a poor quality of
life with increased morbidity and mortality. In recent times kidney transplantation has become
the treatment of choice for patients with end-stage renal disease (ESRD). However, limitations
such as an inadequate organ supply and poor long-term graft outcome remain important

problems for kidney transplantation.

1.2 Kidney allograft survival

A successful transplant restores an acceptable quality of life to ESRD patients; this is due
in part to the availability of potent immunosuppressive drugs. Currently, the number of patients
with end-stage renal failure in the USA who might be treated by haemodialysis and
transplantation comprises 350 new patients per million of population (Figure 1.1) (2010 USRD
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annual report). This is consistent with the incidence of ESRD in Thailand, which increased from
30 per million of population in 1997 to 500 per million of population in 2008.

Unfortunately, the supply of kidneys for transplantation is not sufficient to meet demand.
In fact, there is an attempt to expand the supply of donor kidneys by use of living donors,
expanded criteria donors and non-heart beating donors. As a result, the number of kidney
transplant operations has increased. Although the 1-year graft survival has increased to 92-93%
(Figure 1.2 and Table 1.1) and 96% (Figure 1.3 and Table 1.2) for cadaveric and living donor
transplantation respectively, the 10-year graft survival has remained unsatisfactory at
approximately 67-70% for cadaveric donor (Figure 1.2 and Table 1.1) and 72-78% for living
donor organs (Figure 1.3 and Table 1.2).
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Figure 1.1 Incidence of ESRD patients from 1980-2008.
The incidence of ESRD patients has gradually increased since 1980; however, it has

remained stable at around 350 per million population since 2000. These data are obtained from

the 2010 USRD annual report.
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Figure 1.2 Long-term graft survivals in adult recipients for kidney transplant from donors

after brain death. Data are obtained from the transplant activity report 2009-2010, UK.

Year of transplant

% Graft survival

One year Two years Five years Ten years
1996-1998 89 86 79 67
1999-2001 91 &9 82
2002-2004 91 90 83
2005-2008 93
donors after bain death, Data are sbisined from transplant detivity repart 20002010, UR.
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Figure 1.3 Long-term graft survivals in adult recipients for living donor kidney

transplants in the UK. Data are obtained from transplant activity report 2009-2010, UK.

Year of % Graft survival
transplant )
One year Two years Five years Ten years
1996-1998 96 95 87 78
1999-2001 95 94 89
2002-2004 96 94 90
2005-2008 96

Table 1.2 The graft survival for one, two, five and ten years post kidney transplant from

living donors. Data are obtained from transplant activity report 2009-2010, UK.
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1.3 Kidney biology

The kidney is one of the most highly differentiated organs in the body. Its functions
include endocrine functions, regulation of blood pressure and intraglomerular hemodynamics,
solute and water transport, acid-base balance, and the removal of waste or drug metabolites.
Renal development starts when a branch of the ureteric bud invades an aggregate of
mesenchymal cells called the metanephric mesenchyme. The ureteric bud cells differentiate into
the epithelia of the collecting duct, whilst the metanephric mesenchymal cells differentiate into
the epithelia of the rest of the nephron (Oliver et al., 2002). In the adult kidney, epithelial cells
are the most frequent cells; they play a critical role in kidney function. Loss of epithelial integrity
can lead to kidney dysfunction. Other cells which are contained in the kidney include
mesangial, vascular smooth muscle, endothelial, renal medullary interstitial cells,
myofibroblasts, fibroblasts, macrophages, and neurons (Oliver et al., 2002).

The nephron is the functional unit of the kidney. Each human kidney normally contains
approximately 0.6x10° - 1.4x10° nephrons. These nephrons can be divided into two types based

on their origins: cortical nephrons and juxtamedullary nephrons. Each nephron consists of two

main components: the renal corpuscle and the renal tubules.

1.3.1 Renal tubular system
Renal tubules are composed of three main parts: the proximal tubule, the loop of Henle
and the distal tubule (Figure 1.4). The main function of the tubules is maintaining homeostasis of

acid-base, fluid and electrolytes by the mechanisms of secretion and reabsorption.

1.3.1.1 Proximal renal tubule

The proximal tubule is the initial part of the tubular system, connecting to the glomerulus.
This tubule is divided into two parts on the basis of morphology: a proximal convoluted part
(Pars convolute) and a straight part (Pars recta). The most distinctive feature of the proximal
tubule is the presence of microvilli or brush border at the luminal surface. These microvilli
increase the luminal surface area in order to enhance the reabsorptive capacity. Proximal tubular
epithelial cells are also able to produce specific enzymes, including gamma-glutamyl

transpeptidase (GGT) and alkaline phosphatase.

1.3.1.2 Loop of Henle

The loop of Henle is comprised of a thin and thick limb. The thin limb is responsible for

the maintenance of a hypertonic medullary interstitium in order to dilute or concentrate the urine.
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This part of the tubule originates near the corticomedullary junction and is formed by flat and

simple cuboidal epithelial cells.
1.3.1.3 Distal tubule

The distal tubule is composed of three segments: the thick ascending limb of the loop of

Henle, the macula densa and the distal convoluted tubule. The epithelial cells which line the

ascending limb contain large mitochondria for Na" (sodium ion) reabsorption. These cells are
attached to each other by tight junctions and adherens junctions, but desmosomes are absent. The
distal convoluted tubule is lined with a cuboidal epithelium containing numerous mitochondria
and 1s similar to the proximal tubule, except that there is no brush border in the distal tubule. The
macula densa is a specialized region of the thick ascending limb which plays an important role in
volume homeostasis through the rennin-angiotensin-aldosterone system. Following the distal

tubule is the connecting tubule which connects the distal tubule and collecting duct.
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Figure 1.4 Diagram illustrating the renal tubular system. The image is adapted from Brenner

and Rector’s the kidney 8" edition.

1.3.2. Intercellular junctions

The renal tubular epithelium is organized as a contiguous monolayer of cuboidal cells
which are attached to each other by intercellular junctions on the apical side and connected to the
basement membrane on the basal side. The intercellular junctions of the epithelium, which play a
major role in maintaining cell polarity and integrity, comprise three different cell-cell contact

structures: tight junctions, adherens junctions and desmosomes (Xu et al., 2009) (Figure 1.5).
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1.3.2.1 Tight junctions

A tight junction is an intercellular junction structure at the lateral side close to the apical
surface of the epithelial cell. Functions of tight junctions include providing intercellular sealing,
controlling paracellular diffusion and preventing intramembrane diffusion between the apical and
basolateral surfaces. Tight junctions consist of transmembrane proteins, including occludin,
claudins and junctional adhesion molecules, and peripheral membrane proteins such as zonula
occludens (ZO), which interact with each other to form a complex network (Shin et al., 2006).
Occludin and claudins are essential structures of the intercellular tight junction strands. ZO
provides the strength and integrity of tight junctions by interacting with actin filaments (Xu et

al., 2009).

1.3.2.2 Adherens junctions

Adherens junctions are located immediately below the tight junctions on the
basolateral surface of the epithelial cells. Previous studies suggest that the formation of adherens
junctions is essential for the assembly of tight junctions (Troxell et al., 2000); thus, alteration of
the adherens junctions modulates tight junction formation and the epithelial paracellular barrier.
The adherens junctions are important for normal functions of epithelium such as providing
strong adhesive links between cells via homotypic interaction of E-cadherin, and maintaining
apical-base axis and polarity (Baum et al., 2011).

Cadherins are Ca®’-dependent adhesion molecules essential for the induction and
maintenance of the adherens junctions (Angst et al., 2001). The transmembrane adhesion protein
E-cadherin is the major cadherin expressed by epithelial cells, including renal epithelial cells
(Veerasamy et al., 2009). The extracellular domain of E-cadherin interacts with the adjacent cells
through homotypic interactions, whereas the cytoplasmic tail is associated with B-catenin, an
intercellular protein that binds to a-catenin, which interacts with the actin cytoskeleton (Xu et al.,
2009). Loss of E-cadherin expression is recognized as one of the key events of epithelial
transformation (Yang et al., 2001).

B-catenin is also an intracellular signal transduction molecule that mediates signalling in
the Wnt growth factor pathway. Signalling through the canonical Wnt pathway is initiated by
secreted Wnt proteins which bind to a transmembrane receptors encoded by frizzled genes.
Activation of the receptor leads to phosphorylation of dishevelled protein which associates with
axin and this complex prevents glycogen synthase kinase 3B (GSK3) from phosphorylating j3-
catenin (Liu et al., 2010). Unphosphorylated B-catenin escapes E3 ubiquitin ligase-mediated

proteosomal degradation, forms a complex with transcription factors and regulates gene
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expression. The complex of B-catenin with T cell factor (TCF) has been shown in a number of
studies to promote epithelial to mesenchymal transition (EMT) (Liu et al., 2010).
1.3.2.3 Desmosomes

Desmosomes are intercellular adhesion complexes located on the lateral surface of
epithelial cells. A desmosome is characterized by transmembrane proteins and desmosomal
plaque proteins that link the structure to the intermediate filament cytoskeleton (Delva et al.,
2009). Desmogleins and desmocollins are cadherin transmembrane proteins which mediate cell
adhesion by their extracellular domains, whereas the cytoplasmic domains interact with the
plakophilin and plakoglobin proteins, which are also associated with desmosomal plaque protein,

desmoplakin, providing a link to keratin intermediate filaments (Delva et al., 2009).
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Figure 1.5 Schematic demonstrating the main types of intercellular junction in epithelial
cells.

The tight junction contains transmembrane proteins that link to the actin cytoskeleton.
Adherens junctions are formed by homophilic interaction between E-cadherin molecules and are
associated to the actin filament through B and a-catenins. Desmosomes consist of desmosomal
cadherins linked to keratin intermediate filaments and integrate the intermediate filament

network across the epithelial sheet. This image is from Kobielak and Fuchs, 2004.

1.4 Mechanism of T cell activation
T lymphocytes (T cells) play a key role in cell-mediated immune responses, including

cell-mediated rejection following kidney allotransplantation. Most graft-infiltrating T cells

9|Page



Chapter 1: Introduction

during acute renal allograft rejection are effector T cells which are generated by the activation of
naive or cross-reactive memory T cells. This T cell activation involves the recognition of

allogeneic class I and class I MHC antigens on appropriate antigen presenting cells.

1.4.1 Major histocompatibility complex

The major histocompatibility complex (MHC) contains a series of genes which encode
class I MHC antigens which are present on the surface of almost every cell in the human body.
Class II MHC antigens are also encoded by genes in the MHC, but the expression of these
antigens is normally restricted to haematogenous antigen presenting cells. Together these
histocompatibility antigens play an important role in determining the outcome of organ
allotransplantation. When the donor and recipient differ in their histocompatibility antigens, there
is a potential for allograft rejection (Apostolopoulos et al., 2008). The human MHC genes are
present on chromosome 6. In humans, the MHC antigens are called human leukocyte antigens
(HLA). The class I antigens include HLA-A, HLA-B, and HLA-C, and the class II antigens
include HLA-DP, HLA-DQ and HLA-DR (Figure 1.6).

Human HLA complex (chromosome 6)

DP| DQ| DR _ Class Il

HLA Class Il HLA Class |

Figure 1.6 Human leukocyte antigens are encoded on chromosome 6.
1.4.1.1 MHC class I molecules
Class I MHC antigens are composed of a polymorphic glycosylated heavy a chain which

is noncovalently bound to nonpolymorphic light chain B2-microglobulin. The heavy chain
anchors the MHC complex to the cell membrane and contains three extracellular domains (al,
02 and o3), a hydrophobic transmembrane region and a short cytoplasmic tail (Figure 1.7A).
The MHC class I molecules are expressed on the cell surface of almost all nucleated cells. The
foreign antigens presented by MHC class 1 molecules are recognized by host CD8" T cells. In
addition, MHC class I molecules typically bind peptide epitopes derived from proteins in the
cytoplasm of cells, including viral proteins (Apostolopoulos et al., 2008).

1.4.1.2 MHC class II molecules

The class II MHC antigens have a similar overall structure to class I antigens, but are

composed of polymorphic a and B chains (Figure 1.7 B). The class II molecules are normally
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expressed only on professional antigen-presenting cells (APCs), including dendritic cells, B
lymphocytes and macrophages. However, during an inflammatory response, some other cell
types may be induced to express MHC class II proteins by the action of cytokines such as
interferon (IFN)-y (Kimmel et al., 2003). MHC class II molecules typically bind extracellular
peptides.

1.4.2 Minor histocompatibility antigens (miHA)

The observation that T cells recognize peptide epitopes in the context of presentation by
MHC antigens explains why MHC-matched graft tissues can be rejected on the basis of the
expression of minor histocompatibility antigens (miHA). These antigens are now understood to
consist of graft-specific peptides which are presented by MHC antigens. The classical example is
the H-Y antigen which allows female recipients to recognize MHC-matched male cells. This was
first demonstrated in animal models (Barth et al., 1956), but may also play a role in acute

rejection of human kidney allograft tissue (Kim et al., 2009).

A B

B1

B2

Figure 1.7 Structure of MHC class I and class II antigens

(A) MHC class I antigens consists of polymorphic a chains (al, 02 and a3) noncovalently
attached to f2-microglobulin. (B) MHC class II antigens consists of polymorphic a chains (al
and o2) attached to polymorphic B chains (B1 and B2). This image is taken from Alfzali et al.,
2007.

1.4.3 Antigen presenting cells

T cell activation is achieved by specific recognition of a peptide-MHC antigen complex
displayed on the surface of specialized antigen presenting cells. APC can be divided into two
groups: professional APC and non-professional APC. Professional antigen presenting cells are
defined as cells of haematopoietic origin which express costimulatory molecules and MHC class
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I and class II molecules. These cells include dendritic cells (DC), macrophages and B cells, and
are specialized to initiate T cell activation (Resigno, 2010). Among the professional APC,
activated DC are the most potent stimulators of naive T cells due to their high level expression of
MHC class I and class II antigens and costimulatory molecules (Ingulli, 2010). Non-professional
APC include epithelial cells, endothelial cells and stromal cells which normally do not
express MHC class II unless they are stimulated by the proinflammatory cytokine IFN-y
(Resigno et al., 2010). Activation of naive T cells requires two signals delivered by the APC. The
first signal is antigen-specific and delivered by the T cell receptor. The second signal is an
antigen nonspecific signal triggered by the interaction of cell-surface costimulatory molecules on

a professional APC with corresponding receptors on the T cell (Pilat et al., 2011).

1.4.4 Allorecognition

T cells need to be activated in order to proliferate and differentiate to effector T cells.
However, the activation process requires an encounter between T cells and foreign peptide-MHC
complexes on antigen presenting cells. Three pathways of alloantigen recognition have been
described (Safinia et al., 2010): the direct pathway in which recipient T cells recognize intact
allogeneic peptide-MHC complexes expressed on the surface of donor APC (Game et al., 2002),
the indirect pathway in which recipient T cells recognize peptides derived from allogeneic MHC
molecules presented by self APC (Gokman et al., 2008), and the semi-direct pathway in which
recipient DC acquire intact allogeneic antigen-MHC complexes from donor cells and present

these to recipient T cells (Herrera et al., 2004) (Figure 1.8).

1.4.4.1 Direct allorecognition

In order for recipient T cells to directly bind to intact allogeneic peptide-MHC
complexes, donor APC must migrate out of the graft to make direct contact with recipient T cells
within secondary lymphoid tissue. The importance of donor APC in causing graft rejection was
demonstrated by prolonged survival of donor-derived APC-depleted allogeneic thyroid grafts in
the absence of immunosuppression (Lafferty et al., 1976). This result supports the importance of

the direct pathway, as stimulation of recipient T cells is dependent on donor APCs. In addition,
an adoptive transfer experiment in T cell deficient SCID and Rag” mice showed that acute CD4"
T cell-mediated rejection required donor MHC class II molecules. Furthermore, MHC class 1I
deficient mice also rejected grafts when reconstituted with CD4" T cells, suggesting that
direct recognition plays an important role during acute rejection (Pietra et al., 2000). It is

believed that the direct pathway is responsible for early rejection because of the high frequency
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of T cells capable of recognizing allogeneic MHC on donor dendritic cells (DCs) (Caballero et
al., 2006). However, donor DCs are depleted rapidly after engraftment due to apoptosis and

elimination by the recipient immune system (Hornick et al., 1998; Caballero et al., 2006).

1.4.4.2 Indirect allorecognition

In contrast to the direct pathway, the indirect pathway of allorecognition describes
recipient APC presenting donor MHC-derived peptides complexed with self-MHC molecules to
recipient T cells. Foreign antigens can be processed by three mechanisms. Firstly, antigens from
the graft are shed into the circulation and engulfed by recipient DC within secondary
lymphoid tissues. Secondly, donor cells migrate to secondary lymphoid organs and are captured
by recipient DC for antigen processing and presentation. Thirdly, recipient APC migrate into the
graft, take up antigens and then migrate to secondary lymphoid tissues.

Evidence supporting the indirect pathway was provided by MHC class II-deficient skin
grafts which were rejected rapidly by normal recipients (Auchincloss et al., 1993). Importantly,

removal of recipient CD8" cells or CD4" cells showed that CD4" cells were involved in, and

required for, this rapid rejection (Auchincloss et al., 1993). Since the donor grafts lacked class II

MHC molecules, recipient CD4'T cells must recognize donor antigens presented in association

with recipient class II molecules.

1.4.4.3 Semi-direct allorecognition

Recently, a number of publications have shown that intact donor cell-surface molecules,
including MHC, can be transferred to recipient APC leading to activation of T-cells which can

directly recognise allograft cells (Jiang et al., 2004).
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Direct pathway

b Shed donor material
from apoptotic/necrotic cells

Indirect pathway

MHC transferred from donor APC to recipient APC Semidirect pathway
through direct cell—cell contact/exosomes

Figure 1.8 Diagram shows direct, indirect and semi-direct allorecognition pathways.

(A) Direct pathway. Intact foreign MHC on donor APC binds CD4" and CDS8" recipient T cells;
CD4" T cells provide help for the effector function of CD8" T cells. (B) Indirect pathway.

Recipient APCs present processed donor peptides to CD4" T cells. (C) Semi-direct pathway.
Cell-to-cell contact between donor and recipient APC may transfer intact allogeneic MHC

antigens. The image is taken from Safinia et al., 2010.

1.4.5 The immune response

When an alloantigen is recognized by any of the pathways described above, effector T
cells are activated leading to allograft destruction. This alloresponse results from the activation
of either naive T cells or memory T cells. It has been reported that 40-50% of circulating T cells
in humans has a memory phenotype (McFarland et al., 2000). A re-transplant model in mice
demonstrated a more severe immune response resulting from the activation of memory T cells
than from naive T cells (Liang et al., 2010). Activated T cells can generate a range of effector
mechanisms. These include cellular (delayed-type) hypersensitivity (DTH), contact-dependent T-
cell cytotoxicity and humoral (antibody and complement) immunity (Afzali et al., 2007) (Figure
1.9).

Following activation, CD4" T cells secrete interleukin (IL)-2 which induces naive T cells

to become T helper 0 (ThO) cells. Combination of IL-2 with IFN-y and IL-12 or IL-4 causes
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these ThO cells to differentiate into two subsets: T helper 1 (Thl) and T helper 2 (Th2) cells

respectively. Thl cells help CD8'T cell activation and macrophage-dependent DTH responses,

whilst Th2 cells are typically responsible for humoral responses and eosinophil activation (Le

Moine et al., 2002). Following activation, CD8'T cells become cytotoxic and destroy target cells
by two main mechanisms: the release of perforin and granzymes and activation of the Fas-Fas
ligand system.

Naive B cells can be activated in a T cell-dependent and T cell-independent manner
depend on the nature of antigens (Benson et al., 2007). Most alloantigens are T cell-dependent.
Therefore, B cells need to process antigen and present antigen-MHC class II complex to Th2
cells resulting to B cell proliferation, plasma cell differentiation and the production of

allospecific antibodies.

Direct Pathway Indirect Pathway

Allogeneic APC Allogeneic APC.

Allogeneic peptide £
CD4a—}

Activated cytotoxic T-cell * Delayed-type
* * hypersensitivity
Alloantibodies *

Figure 1.9 The central role played by T cell activation in allograft immunity.
CDS8'T cells become activated cytotoxic T cells. Activated CD4'T cells differentiate to T helper
cells and secrete multiple cytokines leading to delayed-type hypersensitivity and alloantibody

responses. This image is obtained from Sayegh, 1999.
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1.5 Banff classification of renal allograft pathology

Kidney allograft biopsy provides essential information for diagnosis among many causes
of acute or chronic allograft dysfunction. Therefore, standardization of renal allograft biopsy
interpretation is necessary for treatment decisions and also for clinical trials. In 1991, a group of
pathologists, nephrologists and transplant surgeons met in Banff, Canada, to formulate the
nomenclature and classification of renal allograft pathology. Since then, a Banff meeting has
been held every two years to review and update the criteria for the diagnosis of renal allograft
pathology. The most recent update of the Banff classification was published in 2009 and is
detailed below (Sis, 2010).

1.5.1 Banff 2009 classification

In order to define the Banff rejection adequate biopsy specimens are required. These must
contain two cores of tissue with cortex containing > 10 glomeruli and > 2 arteries. The pathology
is scored as follows:

1. Normal kidney

2. Antibody-mediated rejection (ABMR)

2.1 C4d deposition and the presence of circulating anti-donor antibodies but
without morphologic evidence of acute rejection.

2.2 Acute ABMR

a. Type I: C4d+, presence of anti-donor antibodies with ATN (acute
tubular necrosis)-like minimal inflammation.

b. Type II: C4d+, presence of anti-donor antibodies and leukocytes in
peritubular capillaries (PTC).

c. Type III: C4d+, presence of anti-donor antibodies with transmural
arteritis.
2.3 Chronic active ABMR: C4d+, presence of anti-donor antibodies with
morphological changes including glomerular double contour, peritubular capillary
basement membrane multilayering, interstitial fibrosis and tubular atrophy
(IF/TA) and arterial fibrous thickening.
3. Borderline changes: tubulitis (mononuclear cell infiltration in tubular epithelial cells)
with minimal interstitial infiltration

4. T cell-mediated rejection (TCMR)
4.1 Acute TCMR
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a. Type IA: interstitial infiltration (>25%) with moderated tubulitis (>4

mononuclear cells/ tubular cross section)

b. Type IB: interstitial infiltration (>25%) with severe tubulitis (>10

mononuclear cells / tubular cross section)

c. Type IIA: mild to moderate intimal arteritis
d. Type IIB: severe intimal arteritis (>25% of lumen occlusion)

e. Type III: transmural arteritis
4.2 Chronic TCMR: arterial intimal fibrosis with mononuclear cell infiltration in
fibrosis (chronic allograft arteriopathy).
5. Interstitial fibrosis and tubular atrophy (IF/TA) without specific causes.

5.1 Grade I: Mild IF/TA (<25% of cortical area)
5.2 Grade II: Moderate IF/TA (26-50% of cortical area)
5.3 Grade III: Severe IF/TA (>50% of cortical area)

6. Other: change not due to rejection

1.6 T-cell mediated rejection (TCMR)

According to the Banff classification (section 1.5.1), TCMR is defined by infiltration of
recipient mononuclear cells into the renal tubules (tubulitis), arterioles (endotheliolitis) and
interstitium (Figure 1.10), followed by functional deterioration of the renal allograft. According
to recent data, 19% of renal allograft fibrosis resulted from TCMR. In addition, 5.8% of this
subgroup eventually progressed to renal allograft loss (El-Zoghby et al., 2009)

1.6.1 Mechanism of leukocyte recruitment

Infiltration of inflammatory cells into the renal allograft tubular epithelium is the
hallmark of the alloimmune response leading to tubular injury, interstitial fibrosis and subsequent
chronic allograft dysfunction. Leukocyte recruitment from the blood into the graft tissues is
essential for development of TCMR. Recruitment of lymphocytes across the vascular

endothelium is a complex process, as described below.
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Figure 1.10 Microscopic analysis demonstrating histology of TCMR.

(A) Periodic acid-Schiff staining showing mononuclear cells infiltrating renal tubules (tubulitis;
white arrow) and the interstitial tissues (black arrow). (B) Periodic acid-Schiff staining showing
subendothelial infiltration with >25% luminal occlusion (severe intimal arteritis). These images

were obtained from Dr Helen Robertson, personal communication.

1.6.1.1 Leukocyte tethering and rolling

The first steps of T cell recruitment include leukocyte tethering and rolling along the
vessel wall, which is mediated primarily by interactions between selectin and selectin ligands.
The selectins are a calcium-dependent, type I transmembrane glycoproteins. Three selectins have
been identified: E-selectin, P-selectin and L-selectin which were originally discovered in
endothelial cells, platelets and leukocytes respectively (Kelly et al., 2007). The selectins are
upregulated on the surface of endothelial cells by inflammatory cytokines such as tumor necrosis

factor (TNF)-a and IL-1B (Thurman, 2007).

1.6.1.2 Leukocyte adhesion

Chemoattractant cytokines or chemokines are responsible increasing leukocyte adhesion
to the apical surface of endothelial cells. Chemokines induce specific leukocyte recruitment to
the affected area during inflammation. In the early phase after transplantation, the
proinflammatory cytokines TNF-a and IL-1 are released by allograft endothelial cells and renal
epithelial cells as a consequence of ischemia/reperfusion injury and tissue trauma (Thurman et
al., 2006). Subsequently, proinflammatory cytokines induce local chemokine secretion. Several
chemokines have been observed in renal allograft biopsies during acute rejection and chronic
allograft nephropathy, including CCL-2 (MCP-1), CCL-3 (MIP-1a)), CCL-4 (MIP-1B), CCL-5
(RANTES) (Robertson et al., 2000), CCL-13 (MCP-4) (Chakravorty et al., 2001), CCL-20 (MIP-
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3a) (Woltman et al., 2005), CXCL-5 (ENA-78) (Schmouder et al., 1995), CXCL-8 (IL-8)
(Sibbring et al., 1998), CXCL-10 (Lazzeri et al., 2005), MIF (Lan et al., 1998) and CX3CL1
(Gao et al., 2006).

Proinflammatory cytokines and chemokines activate integrin expression by leukocytes
and also increase integrin adhesion. Critical adhesion molecules on leukocytes include the
integrins leukocyte function associated molecule-1 (LFA-1) and very late antigen-4 (VLA-4).
Endothelial counter-receptors for these adhesion molecules are intercellular adhesion molecules
(ICAM)-1 and ICAM-2, and vascular cell adhesion molecule-1 (VCAM-1) respectively; these
are also up-regulated by cytokine stimulation (Kelly et al., 2007), leading to firm adhesion

between recipient leukocytes and allograft endothelial cells.

1.6.1.3 Intraluminal crawling

This is a step in which leukocytes move from the primary adhesion site to the nearest

endothelial cell junction in order to begin diapedesis (Schenkel et al., 2004).

1.6.1.4 Leukocyte transendothelial migration

This is a final step in which leukocytes cross the endothelial wall and enter the
interstitium. This process can occur by two different pathways: paracellular or transcellular
migration. Paracellular diapedesis is a process by which leukocytes and endothelial cells co-
ordinately disassemble endothelial cell-cell junctions leading to a gap formation between
endothelial cells. However, transcellular diapedesis is the process by which leukocytes migrate
directly through individual endothelial cells via a transcellular pore without disrupting the

endothelial cell-cell junction (Carman, 2009).

1.62 CD103°CDS8" T cells: a predominant T cell population in renal tubulitis
A characteristic of TCMR is deterioration of the renal allograft associated with interstitial
infiltration by mononuclear cells and penetration of T lymphocytes through the tubular basement
membrane to contact the epithelial cells (Racusen et al., 1999). It has long been recognized that
CD8" T cells are the predominant intratubular T cell population (Robertson et al., 1996).
Previous studies have shown the expression of CD8 mRNA by T cells in urine during acute renal
allograft rejection (Vasconcellos et al., 1998; Yannaraki et al., 2006), suggesting a role for these
cells during graft rejection. Although CD8" T cells are a main population of graft infiltrating T
cells, CD8 blockade could not abolish graft rejection whilst blockade of CD4 did reduce the
severity of rejection (Lee et al., 1994; Pietra et al., 2000). It remains unclear whether CD4" T
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cells provide help for a CD8" T cell effector response or CD4" T cells play a key role in the
effector phase of an immune response.

Previous studies have shown that the aE(CD103)B; integrin (termed CD103) defines a
subset of largely intratubular CD8" effector T cells during renal allograft rejection (Hadley et al.,
1997). This integrin was first identified by its expression on T cells in the gut mucosa where it is
expressed by >95% of intestinal intraepithelial lymphocytes and [#0% of lymphocytes in the
lamina propia (Cerf-Bensussan et al., 1987). In addition, it has been shown that E-cadherin is the
adhesive counter-receptor for CD103. The majority of CD103"" mice accept islet cell allografts,
suggesting a potential role for CD103 in CD8-mediated allograft destruction.

In humans, CD103 is expressed by only a small number (2%) of circulating T cells (Cerf-
Bensussan et al., 1987), but it is strikingly up-regulated on intratubular T cells during allograft
rejection (Hadley et al., 1997). It has been demonstrated in vitro that TGF- can induce the
expression of CD103 by activated human T cells (Wong et al., 2003). In addition, CD8" T cells
expressing a dominant-negative TGF-B receptor showed little CD103 expression following
migration into the allograft, suggesting a role of TGF-B as a key factor in the regulation of

CD103 (Wang et al., 2005).

1.6.3 The role of CD103°CDS8" T cells in renal allograft rejection

Normally, cytotoxic T lymphocytes (CTL), which include predominantly CD8 and some
of CD4 T cells, mediate lysis of target cells by two main mechanisms: exocytsis of cytotoxic
granules and receptor-ligand binding between Fas and Fas ligand (Groscurth et al., 1998).
Cytotoxic granules contain perforin and granzymes; perforin is a pore-forming protein which is
inserted into target cell membranes leading to pore formation, granzymes are serine proteases
which enter the target cell via a perforin pore leading to apoptotic cell death. T cells expressing
mRNA encoding perforin have been identified within the tubules during renal allograft rejection
(Robertson et al., 1996). Following antigen recognition, CTL also express Fas ligand (FasL) on
their cell surface either by de novo synthesis or transformation of inactive FasL to an active form
(Groscurth et al., 1998). The FasL binds to its receptor expressed on surface of target cells
resulting in caspase activation and target cell apoptosis. This is consistent with cytotoxic profile
found in rejecting graft biopsies (Robertson et al., 1996; Einecke et al., 2005). Both of these
processes require adhesive interaction between T cells and their target. During tubulitis this
adhesion could be stabilised by interaction between the CD103 integrin and E-cadherin.

Recent studies have suggested that CD103 is not essential for tubular damage following

kidney transplantation since CD103"" recipient mice develop similar histological lesions to wild-
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type mice (Einecke et al., 2006). It has also been shown that expression of the CD103 receptor,
E-cadherin is reduced during allograft rejection, indicating a reduced potential for tubular
epithelial cells to bind CD103+ T cells (Einecke et al., 2006). Interestingly, the extent of tubulitis
and tubular damage was unchanged in mice lacking perforin, granzymes and CD103, suggesting
a cell contact-dependent cytotoxic mechanism is not required for graft destruction (Einecke et
al., 2006). However, the Fas/FasL interaction and CD4" T cell-mediated delayed-type

hypersensitivity could still contribute to graft failure in this system.

1.6.4 The role of T cells in renal fibrosis

It has been reported that tubulointerstitial fibrosis is associated with renal infiltration by
inflammatory cells such as T cells and macrophages in human and experimental kidney diseases
(Strutz et al., 1994). This suggests a role for immune cells in the development of fibrosis. A
recent study showed evidence to support a direct role for CD4" T cell in renal fibrosis (Tapmeier
et al., 2010). Depletion of CD4" T cells reduced interstitial expansion and collagen deposition
following unilateral ureteric obstruction (UUO). In addition, RAG” mice, which are T cell
deficient, showed a reduction of interstitial collagen deposition in the UUO model. This
protective effect was decreased after reconstitution by CD4" T cells (Tapmeier et al., 2010).
Interestingly, the expression of TGF-B was similar in both RAG™ mice and after CD4" T cells
reconstitution. However the expression of TGF-B does not reflect TGF-B activity. It is possible
that latent TGF-B might be activated in CD4" T cell reconstitution mice more than in RAG™
mice.

A previous study showed a close association between intratubular T cells and epithelial
cells showing characteristics associated with early EMT in human renal allograft biopsy sections.
This study also demonstrated in vitro that a model intraepithelial T-cell line could induce EMT
by a TGF-B-dependent mechanism (Robertson et al., 2004). However, it is not clear whether
these T cells secreted active TGF- or activated latent TGF-f that was already generated in the

cell culture model.

1.7 Specific causes of renal allograft loss

The reason for the lack of improvement in long-term outcome of kidney transplantation
remains unclear but is likely to be multifactorial. A recent longitudinal study, mainly of living
donor kidney allograft recipients (72.5%), has identified specific causes of late kidney graft loss
(El-Zoghby et al., 2009). According to this study, death with a functioning graft is the leading
cause of late renal allograft loss (43.4%). The causes of graft loss not due to patient death differ
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between living and cadaveric donors. Following live donation, most grafts are lost as a
consequence of glomerular diseases (40%) and interstitial fibrosis and tubular atrophy (IF/TA)
(24%), whereas for cadaveric donors, IF/TA (43%) and glomerular diseases (32%) are the most
common causes of graft failure (Figure 1.11). Although the once common term “chronic allograft
nephropathy” has now been changed in order to identify the specific causes of renal allograft

fibrosis, it is clear that graft fibrosis remains a major problem following kidney transplantation.
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Figure 1.11 Causes of loss of functioning grafts in recipients of allogeneic kidneys from
living donors (open bars) or deceased donors (black bar). This image is from EL-Zoghby et
al., 20009.

1.7.1 Causes of renal allograft loss due to interstitial fibrosis and tubular

atrophy (IF/TA).

In the subgroup of graft loss due to fibrosis, rejection (predominantly cell-mediated
rejection), is the leading cause of failure; this is followed by BK virus nephropathy (Figure 1.12).
Interestingly, the incidence of calcineurin inhibitor nephrotoxicity observed in this study was
very low compared to a previous study performed using kidney graft biopsies from patients who
received kidney-pancreas transplants during the period 1987-2000 (Nankivell et al., 2003). Most
of the patients in this earlier study received Cyclosporine-based immunosuppression (77.5%

Cyclosporine, 22.5% Tacrolimus) and 98.6% of this cohort showed some evidence of calcineurin
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inhibitor nephrotoxicity after 10 years. Cyclosporine-induced nephrotoxicity will be discussed in

chapter 3.
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Figure 1.12 Bar graph demonstrating the specific causes of renal allograft loss due to

interstitial fibrosis and tubular atrophy. This image is adapted from El-Zoghby et al., 2009.

1.8 Interstitial fibrosis and tubular atrophy (IF/TA)

In kidney allograft biopsies, the extent of renal IF/TA is one of the most important
prognostic factors of graft failure (Miiller et al., 2000). Protocol biopsies studied between 1998
and 2004 showed that the prevalence of moderate to severe fibrosis was 13% at 1 year and 17%
at 5 years. In addition, mild fibrosis at 1 year progressed to severe fibrosis at 5 years in 23% of
allografts (Stegall et al., 2011). These results demonstrate that interstitial fibrosis remains a major
problem in the current era of transplantation.

Fibrosis is part of the kidney’s normal response to injury. This wound healing process is
normally resolved with restoration of renal architecture and the recovery of function. However,
in some circumstances this process can lead to irreversible loss of tissue function. Fibrosis

involves an excessive accumulation of extracellular matrix (ECM), primarily collagen type
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I, in response to sustained inflammation after injury, and usually results in loss of function when
normal tissue is replaced with scar tissue (Wynn et al., 2007). Previously, it was believed that the
fibrogenesis process resulted from an imbalance between collagen synthesis and degradation and
that a reduction in protease activity can result in fibrosis. However, it is now clear that fibrosis is
a multifactorial process of which abnormal matrix synthesis is only a part. An experimental study
has shown that abnormal collagen synthesis in kidneys is transient whilst the density of the
matrix can continue to increase (Hewitson et al., 1998). Some studies have also shown that
whilst the matrix metalloproteinases (MMP) are responsible for ECM degradation, knockout
mice do not have a fibrotic phenotype (Ronco et al., 2007). Additionally, overexpression of
MMP?2 can induce fibrosis (Cheng et al., 2006). Despite the controversial role for MMPs in the
pathogenesis of fibrosis, MMP expression has often presented in experimental models (Lovett et

al., 1992) of human renal disease (Shiau et al., 2006).

1.8.1 Origin of the fibroblast

Mesenchymal cells are the principle ECM-producing cells involved in fibrosis (Becker et
al., 2001). In kidney fibrosis, the interstitial fibroblasts activate glomerular mesangial cells and
vascular smooth muscle cells which are associated with interstitial fibrosis, glomerulosclerosis
and vascular sclerosis (Becker et al., 2001). However, the interstitial fibroblasts are more crucial
for IF/TA in progressive renal diseases than other cell types. Fibroblasts can be derived from
several sources. These include local proliferation of resident fibroblasts (Hewitson et al., 1995),
recruitment of blood-borne precursors (Grimm et al., 2001), transformation of renal tubular
epithelial and endothelial cells by epithelial to mesenchymal transition (EMT) (Liu et al., 2004)
and endothelial to mesenchymal transition (Zeisberg et al., 2008) respectively, and migration of

precursors from the perivascular region (Humphrey et al., 2010) (Figure 1.13).

1.8.1.1 Local interstitial fibroblasts

Initial data concerning the origin of fibroblasts was obtained from experiments using
parabiotic rats which suggested that fibroblasts were unlikely to derive from hematogenous
precursors but from resident interstitial fibroblast (Ross et al., 1970). More recent data using a
murine unilateral ureteric obstruction (UUO) model demonstrated during the first day following
UUO that resident peritubular fibroblasts also differentiate into myofibroblasts (Picard et al.,
2008).

1.8.1.2 Bone marrow-derived fibroblasts
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A study using bone marrow transgenic mice demonstrated that after myocardial ischemia,
24% of all myofibroblasts involved in scar formation are derived from the bone marrow (van
Amerongen et al., 2008). Furthermore, a recent study using the UUO model of renal fibrosis
demonstrated that stressed renal tubular epithelial cells induced expression of the chemokine
CXCLI16, leading the recruitment of bone marrow-derive fibroblast precursors (Chen et al.,

2011).

1.8.1.3 Endothelial mesenchymal transition (EndoMT)

It has been reported that endothelial cells can transform to fibroblasts and contribute to
renal fibrosis. Zeisberg and colleagues observed that 30-50% of fibroblasts co-expressed the
endothelial marker CD31 and markers of fibroblasts and myofibroblasts, including S100A4 and
a-SMA, in three different models of renal fibrosis (Zeisberg et al., 2008). A transgenic,
endothelial cell fate-tracing technique also confirmed the presence of EndoMT in fibrotic

kidneys (Zeisberg et al., 2008).

1.8.1.4 Transition from epithelial cells

Evidence of epithelial to mesenchymal transition (EMT) was first provided in 1995 by
the cloning of fibroblast specific protein-1 (FSP-1 or, more generally, S100A4), a member of the
S100 protein family (Strutz et al., 1995). The promoter/enhancer region driving this gene is
active in fibroblasts but not in epithelium, mesangial cells or embryonic endoderm, indicating
that FSP-1 is a specific marker for fibroblasts (Strutz et al., 1995). A landmark study supporting
the existence of EMT was performed by Iwano and colleagues who used genetic mapping to
investigate EMT in vivo (Iwano et al., 2002). This study used the GGT-Cre driver to label
proximal tubular cells and the Rosa26 reporter (R26R) with the bacterial LacZ gene as a marker
of cell fate. Following UUO-induced renal fibrosis, approximately 38% of S100A4-positive cells
expressed LacZ staining, suggesting that many interstitial fibroblasts were derived from GGT-
labelled tubular epithelial cells (Iwano et al., 2002). Most in vitro studies support a role for EMT
in fibrogenesis, however a recent in vivo fate-tracing study has raised some doubt by
demonstrating that pericytes are a major source of interstitial fibroblasts during renal fibrosis

(Humphrey et al., 2010).

1.8.1.5 Pericytes or perivascular fibroblasts
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A recent study used transgenic mice with three different cre-driver lines: Six2-cre
labelled all epithelial cells except those of the collecting duct, Hoxb7-cre labelled epithelial cells
from the collecting duct and FoxDl-cre labelled renal pericytes or perivascular fibroblasts.
Following UUO injury there was no evidence that any a-SMA-positive cells expressed LacZ
staining, suggesting that no myofibroblast was derived from renal epithelial cells. In contrast,
FoxD1-cre labelled cells expressed a-SMA predominantly in the interstitial area. This suggests
that FoxD1-labelled cells or pericytes were converted into myofibroblasts in this model of UUO-
induced renal fibrosis (Humphrey et al., 2010).

Although the origin of renal interstitial fibroblast in renal fibrosis remains controversial,
numerous previous papers and ongoing studies have supported the existence of EMT in vitro.

The details of EMT will be discussed in section 1.8.

N

N

/ Matrix-producing cell

Figure 1.13 Potential origins of matrix-producing cells causing renal allograft fibrosis. The

image is obtained from Strutz et al., 2006.

1.9 Epithelial to mesenchymal Transition (EMT)
EMT is a biological process that allows a mature epithelial cell to undergo the

biochemical changes required to produce a mesenchymal cell. These include: enhanced
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migratory capacity, invasiveness, elevated resistance to apoptosis, and increased production of
ECM components (Yang J and Liu Y, 2001). Multiple processes are required in order to complete
EMT. These include activation of transcription factors, expression of specific cell-surface
proteins, reorganization and expression of cytoskeletal proteins, production of ECM-degrading
enzymes, and changes in the expression of specific microRNAs, for example miR-200a and

miR-141 which are known to prevent renal fibrosis (Wang et al., 2011).

1.9.1 Characteristics of EMT
Four key steps at the cellular level are essential for EMT (Figure 1.14):

1.9.1.1 Loss of the epithelial intercellular junction

Tubular epithelial cells are normally polygonal in shape and tightly attached to each
other, forming an epithelial sheet through cell adhesion mechanisms. One of the first changes in
epithelial cell transformation is the suppression of E-cadherin expression (Yang J and Liu Y,
2001). E-cadherin, a transmembrane glycoprotein predominantly located in adherens junctions,
is considered a marker of differentiated epithelial phenotype by several studies (Zeisberg et al.,
2003; Arias et al., 2001); E-cadherin is essential for maintaining epithelial polarity and tight
junction development (Tunggal et al., 2005). The cytoplasmic domain of E-cadherin associates
with the actin cytoskeleton through B-catenin molecules (section 1.3.2). Disassembly of the E-
cadherin/catenin interaction leads to epithelial disruption, phenotypic alteration and enhanced
cell proliferation (section 1.3.2.2). Although several papers have suggested that loss of E-
cadherin results in EMT, a recent paper showed that E-cadherin reduction may not always lead to
this transition as a consequence of the activation of an antagonistic BMP-7 signalling pathway

(Veerasamy et al., 2009).

1.9.1.2 De novo expression of mesenchymal markers

One of the important features of EMT is the acquisition of fibroblast or myofibroblast
markers by cells which retain a recognizable epithelial phenotype. This is termed intermediate
stage EMT. Several molecules have been used to identify fibroblasts in both in vivo and in vitro
studies; these include S100A4, 0-SMA, vimentin and HSP47.
1.9.1.2.1 S100A4/FSP-1

Fibroblast specific protein 1 (FSP-1) in mouse or SI00A4 in human was identified as a
gene specifically expressed in fibroblasts by subtractive and differential mRNA hybridization
(Strutz et al., 1995). S100A4 belongs to the S100 superfamily of cytoplasmic calcium-binding
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proteins (Garrett et al., 2006). The S1004 protein monomer has a molecular weight of 10-12 kDa
but generally forms homodimers or heterodimers within cells (Marenholz et al., 2006). SI00A4
is localized in the nucleus, cytoplasm, and the extracellular space. However cytoplasmic
expression is observed in the majority of SI00A4-expressing cells. SI00A4 protein plays a role
in the regulation of a wide range of biological effects including cell motility, contractility,

differentiation and survival (Schneider et al., 2008).

S100A4 has both intracellular and extracellular effects which are likely to involve
different mechanisms. It has been shown that intracellular S100A4 interacts with cytoskeletal
proteins such as actin and myosin leading to increased cell motility (Tarabykina et al., 2007). It
has also been shown that SI00A4 protein is released from several cell types (Schmidt-Hansen et
al., 2004; Cabezon et al. 2007). The paracrine effects of S100A4 can be divided into 3 groups:
firstly, increasing cell motility by a direct effect on cytoskeletal gene expression (Belot et al.,
2002) and by increasing the expression of matrix metalloproteinases (MMPs) which degrade
extracellular matrix proteins allowing cell migration (Schmidt-Hansen et al., 2004); secondly,
increasing cell proliferation and differentiation, at least in neurons and cardiac myocytes (Fang et
al., 2006; Schneider et al., 2007); and thirdly, preventing apoptotic cell death (Schneider et al.,
2007).

S100A4 was first introduced as a marker for epithelial cells undergoing EMT in kidney
fibrosis in 1995 (Strutz et al., 1995). However, the use of S100A4 expression to define all
fibroblasts produced by EMT is now debatable since it has been observed that the interstitium of
kidney contains fibroblasts which do not express SI00A4 (Le Hir et al., 2005). It has also been
reported that myofibroblasts do not express S100A4 (Picard et al., 2008). Furthermore, several
studies have reported the expression of S100A4 by various normal human cells, including
monocytes (Cabezon et al., 2007), macrophages (Osterreicher et al., 2011), T lymphocytes
(Cabezon et al., 2007), neutrophilic granulocytes (Cabezon et al., 2007), and endothelial cells
(Semov et al., 2005).

1.9.1.2.2 Vimentin

Vimentin is an intermediate filament protein which forms one of the components of the
cytoskeleton. It is normally expressed by mesenchymal cells (Steinert et al., 1988). However, a
study of human kidney biopsies has reported the presence of vimentin staining in normal
glomerular epithelial cells (Essawy et al., 1997). In addition, adult epithelial cells transiently

express vimentin in response to various insults (Witzgall et al., 1994). Furthermore, in vivo
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studies have demonstrated that vimentin is commonly expressed in injured tubular cells (Grone
et al.,, 1987). Damaged renal tubular cells, which express vimentin, can retain an epithelioid

basolateral border (Witzgall et al., 1994; Zhu et al., 1996).

1.9.1.2.3 a-smooth muscle actin (a-SMA)

Alpha-smooth muscle actin (a-SMA) is the characteristic actin isoform found in several
cell types, including vascular smooth muscle cells, pericytes, lens epithelial cells, mesengial
cells, and myofibroblasts. However, a-SMA has not been recognized in nomal tubular epithelial
cells (Gabbiani et al., 1981; Skalli et al., 1989). The expression of a-SMA is an excellent marker
of myofibroblasts (Desmouliere et al., 1992). The role of a-SMA expression is to upregulate the
contractility of cells, and increased expression of a-SMA directly correlates with increased force
generation by myofibroblasts (Hinz et al., 2001). a-SMA expression is upregulated by several
growth factors, including fibroblast growth factor (FGF)-2, angiotensin II and TGF-B1;
conversely, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) can
inhibit a-SMA expression (Barrientos et al., 2008).

1.9.1.2.4 Heat shock protein 47 (HSP47)

HSP47 is a member of the serpin superfamily of serine proteinase inhibitors. This protein
is thought to be a molecular chaperone involved in the synthesis of collagen molecules.
Expression of HSP47 in injured tubules has been used as a marker for collagen synthesis in
EMT. However, HSP47 is not specific for collagen type I (Nagata et al., 2003), which is
commonly found in fibrotic tissue, but is also associated with collagen type IV which is present

in the normal tubular basement membrane.

1.9.1.3 Disruption of the tubular basement membrane (TBM)

The renal tubular basement membrane contains an abundance of collagen type IV.
Integrity of the TBM is required for the maintenance of a polarized epithelial phenotype, with the
disruption of type IV collagen leading to EMT (Zeisberg et al., 2001). It has been reported that
infiltrating mononuclear cells and interstitial fibroblasts secrete MMP-2 and MMP-14 which
specifically cleave collagen type IV and laminin in the basement membrane. This facilitates
degradation of the tubular basement membrane and enhances EMT (Yang et al., 2001; Zeisberg
et al., 2004). Furthermore, in vitro studies demonstrate that, without TGF-, MMP-2 alone is

capable of inducing renal tubular epithelial cell transformation (Cheng et al., 2003).
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1.9.1.4. Enhanced migration and the invasive capacity of transformed cells

Disruption of the TBM is of fundamental importance for clearing a path for transformed
renal tubular epithelial cells to migrate towards the interstitium. In addition, reorganization of the
actin cytoskeleton and induction of a-SMA expression provides the potential for these cells to
acquire the capacity for contractility, leading to migration and invasion (Yang et al., 2001).

Furthermore, transformed epithelial cells acquire S100A4, which also promotes motility.
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Figure 1.14 Diagram showing four key steps during tubular epithelial to mesenchymal
transition.

EMT is a multi-step process which includes: 1) loss of epithelial adhesion properties, 2) de novo
expression of a-SMA and actin reorganization, 3) disruption of the TBM, and 4) enhanced

migration and invasive capacity of the transformed cells. This image is obtained from Yang et al.,

2001.

1.9.2 Classification of EMT
Since March 2008, EMT has been categorized into three subtypes based on the biological

process and biomarker expression (Figure 1.15).

1.9.2.1 Type 1 EMT
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EMT type I is associated with implantation, embryo formation and organ development
processes which are organized in order to produce diverse cell types with mesenchymal
phenotypes (Zeisberg et al., 2009). Type 1EMT normally does not cause fibrosis or induce an
invasive phenotype but transforms primitive epithelial cells into mesenchymal cells (primary
mesenchyme) required for gastrulation, organogenesis and subsequent development of secondary

epithelia.

1.9.2.2 Type 2 EMT

This type of EMT initially starts as a part of a normal wound healing process which
produces fibroblasts in order to repair damaged tissue following injury. However, type II EMT
can be associated with chronic inflammation which prolongs the process leading to excessive
fibrosis and damage of the tissue architecture. This process might be relevant to the chronic renal

allograft dysfunction associated with IF/TA (Robertson et al., 2004).

1.9.2.3 Type 3 EMT

This type of EMT occurs in epithelial cancer cells that have previously undergone genetic
and epigenetic changes which lead to the development of tumours. Cells generated by type 3

EMT may invade and metastasize via the circulation or lymphatic system.

1.9.3 Mediators of type 2 EMT

EMT can be induced or regulated by various growth and differentiation factors, including
TGF-B, fibroblast growth factor (FGF)-2, hepatocyte growth factor (HGF) and PDGF (Zavadil et
al., 2005). Among these, TGF- is a major inducer of EMT during embryogenesis, cancer
progression and fibrosis. The molecular pathways activated by TGF-B during the development of

type 2 EMT in renal tubular epithelial cells are complex and may not be the same in different cell

types (Fan et al., 1999; Okada et al., 1997).
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Figure 1.15 Diagram shows different types of EMT.

Type 1 EMT is seen when primitive epithelial cells transition into mesenchymal cells that form
the diaspora of the basic body plan, following gastrulation or neural crest migration. This
primary mesenchyme can be re-induced to form secondary epithelia by an MET. Type 2 EMT is
seen when secondary epithelial cells populate interstitial spaces with resident or inflammation-
induced fibroblasts. Type 2 EMT can occur over extended periods of time and can eventually
destroy an affected organ if the primary insult is not removed or attenuated. Type 3 EMT is seen
when secondary epithelial cells transform into cancer cells that later undergo the EMT with

migration and invasive capacity. This image is taken from Zeisberg et al., 2009.

1.9.3.1 Transforming growth factor p (TGF-B)

TGF-B is a multifunctional cytokine that exerts a variety of biological activities
depending on the target cell type. It is well known that TGF-f is central to the induction of
fibrosis in many tissues, including the kidney. TGF-B-induced EMT was first recognized by
modelling in vitro. Following addition of TGF-B, the morphology of mouse mammary epithelial
cells changed from cuboidal to an elongated spindle shape. In addition, these TGF-B-treated cells
showed increased expression of the mesenchymal markers fibronectin and vimentin and
decreased expression of the epithelial markers E-cadherin, ZO-1 and desmoplakin (Miettinen et
al., 1994). All isoforms of TGF-p (TGF-B1, TGF-B2 and TGF-B3) share the capacity to induce
EMT in epithelial cells (Miettinen et al., 1994; Valcourt et al., 2005).
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Several observations have indicated that activation of the Smad signalling pathway is
strongly associated with EMT. An in vitro study using transfected murine mammary epithelial
cells showed that increased ectopic expression of Smad2 or Smad3 with Smad4 induces EMT
whereas a dominant-negative Smad2, Smad3 and Smad4 blocked TGF-B-induced EMT (Valcourt
et al.,, 2005). Moreover, a study in human proximal tubular cells demonstrated that inhibitory

RNA against Smad2/3 can block TGF-B-induced EMT in vitro (Phanish et al., 2006).

1.9.3.2 Connective tissue growth factor (CTGF)

CTGF is a matrix-associated, heparin-binding protein which was originally isolated from
the conditioned medium of human umbilical vein endothelial cells (Bradham et al., 1991). CTGF
plays an important role in the regulation of cell proliferation, apoptosis, embryogenesis,
differentiation, and wound healing and is expressed in various human tissues, including the
kidney (Goldschmeding et al., 2000).

It has been reported that CTGF functions as a downstream mediator of TGF-p, acting
specifically on connective tissue cells (Grotendorst et al., 1997). Blockade of CTGF partially
inhibits TGF-B induced EMT in vitro and in vivo (Burns et al., 2007; Burns et al., 2006). In
addition, blocking CTGF by using CTGF antisense oligonucleotides can decrease the expression
of fibronectin, collagen type I and a-SMA gene expression and also reduces the development of
interstitial fibrosis areas in the UUO model, despite the sustained expression of TGF-B (Yokoi et
al., 2004).

1.9.3.3 Integrin-linked kinase (ILK)

ILK is a serine/threonine kinase that regulates various cellular processes including
adhesion, migration, differentiation and survival (Wu et al., 2001). It has been reported that the
induction of ILK plays a role in TGF-B1 and CTGF-mediated EMT (Liu et al., 2008). In
addition, TGF-p can induce ILK expression in renal tubular epithelial cells by a mechanism that

is dependent on intracellular Smads (Li et al., 2003) and CTGF (Liu et al., 2007).

1.10 Transforming growth factor-f

TGF-pB is a ubiquitously expressed and multifunctional cytokine that not only plays a
central role in EMT regulation, but also regulates the development, differentiation, and survival
of most cell types and tissues (Blobe et al., 2000).

The TGF-B superfamily contains two subfamilies defined by structural similarity and

their specific signalling pathway: firstly, the TGF-f, Activin and Nodal subfamily and secondly,
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the BMP (bone morphogenetic protein), GDF (growth and differentiation factor) and MIS
(muellerian inhibiting substance) subfamily. Members of the TGF-f superfamily play crucial
roles in biological and immunological functions through activation of complex signalling
pathways. Disturbance of their signalling has been implicated in several developmental disorders
and in various human diseases including cancer, fibrosis and auto-immune diseases (Blobe et al.,
2000).

There are three isoforms of TGF-B termed TGF-1, TGF-B2, and TGF-B3, which all act
through an intracellular signalling cascade of Smad family proteins via ligand-induced activation
of TGF- B receptor kinases (Bottinger et al., 2002). The three TGF-f isoforms TGF- 1, TGF-f2
and TGF-B3 have different functions which do not overlap. For example, TGF-B1 knockout mice
develop severe autoimmune-like inflammatory diseases (Kullkarni et al., 1993). TGF-B2
deficient mice suffer from perinatal mortality and a wide range of developmental defects
including cardiac, lung, craniofacial, limb, spinal cord, eye, inner ear and urogenital defects
(Sandford et al., 1997). TGF-B3 null mice have cleft palates and delayed lung development due
to defects in branching morphogenesis and cell differentiation (Kaartinen et al., 1995). This
suggests that a large number of TGF-f functions cannot be compensated for by other family

members.

1.10.1 Latent TGF-p

Normally, almost all TGF-B isoforms are secreted as an inactive latent complex called
small latent complex (SLC), which contains the C-terminal mature TGF-f (molecular weight
25kDa) and the N-terminal latency associated peptide (LAP) (molecular weight 75-80kDa)
(Annes et al., 2003). Before secretion, mature TGF-f is cleaved from the LAP by a furin-like
endoproteinase in the Golgi apparatus (Dubois et al., 1995). However, the LAP remains
associated with the TGF-B dimer by non-covalent interactions (Annes et al., 2003), and this
interaction inhibits the activity of TGF-B (Figure 1.16). The LAP domain contains three N-
glycosylated asparagine residues and three cysteine residues which are essential for dimerization
of LAP monomers (Lawrence et al., 2001). Mutation of these cysteines prevents the association
of LAP and mature TGF-f, leading to active TGF-f secretion (Lawrence et al., 2001). In addition
to conferring latency, LAP is essential for the folding and secretion of the TGF-B precursor. In
most cells, the SLC is bound to a large glycoprotein, latent TGF-p binding protein (LTBP) via
disulphide bonds between LAP and LTBP. This complex is called the large latent complex (LLC)
which was first discovered in platelets in 1988 (Miyazono et al., 1988; Wakefield et al., 1988).
Most cells secrete TGF-f in the form of the large latent complex (LLC) (Koli et al., 2001).

34|Page



Chapter 1: Introduction

LTBP-1 plays a central role in the processing and secretion of TGF-fs (Miyazono et al.,
1992), and LTBP-1 is co-expressed with TGF-B1 in the kidney (Taipale et al., 1994; Koski et al.,
1999). A study using a phorbol ester-stimulated human erythroleukemia cell line showed that the
small latent TGF-B complex is secreted very slowly with the majority retained in the Golgi
apparatus (Miyazono et al., 1991). However, LTBPs are secreted rapidly, and association with the
SLC enhances the secretion of latent TGF- (Taipale et al., 1994; Miyazono et al., 1991). LTBPs
also have a role in targeting latent TGF-B to the extracellular matrix (Saharinen et al.,
1998). Interaction between growth factors and ECM molecules is a major mechanism for
regulation of growth factor activity. Fibronectin is required for the assembly of LTBP-1 to ECM
(Dallas et al., 2005). This interaction is mediated by heparan sulphate proteoglycan through the
heparin binding sites on both fibronectin and LTBP-1 (Chen et al., 2007). Mature TGF-p needs
to be released from the latent complex in order to bind to TGF-B receptor and subsequently

trigger biological responses. The detail of latent TGF-p activation is in section 1.10.

1.10.2 TGF-P receptors

TGF-PBs transduce their signals across the cell membrane into the nucleus through type I
(TBR-I) and type II (TPR-II) serine/threonine kinase receptors (Derynck and Zhang, 2003). To
date, five type II receptors and seven type I receptors (Activin-receptor-like kinases, ALKs) have
been identified in humans. At least two type II receptors and two type I receptors are needed for
signalling (Luo and Lodish, 1996). Both type I and type II receptor kinases are organized
sequentially into an N-terminal extracellular ligand binding domain, a transmembrane region,
and a C-terminal serine/threonine kinase domain. Besides type I and type II receptors, TGF-3
ligands can bind to type III receptors (Betaglycans). Betaglycan is the most abundant TGF-3
receptor on the cell surface where it functions as an accessory receptor that binds and presents
TGF-B to its signalling receptors (Derynck and Zhang, 2003). The type III receptor can bind all
three TGF-B isoforms, though it has a higher affinity for TGF-f2 than TGF-B1 and TGF-B3
(Chiefetz and Massague, 1991).
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Figure 1.16 Structure of the small and large latent TGF- complexes.
TGF-B is synthesized as a precursor molecule consisting of the C-terminal mature TGF-f and N-
terminal LAP. TGF-p is cleaved from its propeptide by furin-like endoproteinase during
secretion; however, mature TGF-f remains associated with LAP by non-covalent binding,

forming the small latent complex. The large latent complex contains the small latent complex

which is covalently bound to an LTBP. This image is taken from Hyytidinen et al., 2004.

1.10.2 TGF-p receptors

TGF-Bs transduce their signals across the cell membrane into the nucleus through type I
(TBR-I) and type II (TPR-II) serine/threonine kinase receptors (Derynck and Zhang, 2003). To
date, five type Il receptors and seven type I receptors (Activin-receptor-like kinases, ALKs) have
been identified in humans. At least two type II receptors and two type I receptors are needed for
signalling (Luo and Lodish, 1996). Both type I and type II receptor kinases are organized
sequentially into an N-terminal extracellular ligand binding domain, a transmembrane region,
and a C-terminal serine/threonine kinase domain. Besides type I and type 1l receptors, TGF-f3
ligands can bind to type III receptors (Betaglycans). Betaglycan is the most abundant TGF-3
receptor on the cell surface where it functions as an accessory receptor that binds and presents

TGF-B to its signalling receptors (Derynck and Zhang, 2003). The type III receptor can bind all

36| Page



Chapter 1: Introduction

three TGF-B isoforms, though it has a higher affinity for TGF-f2 than TGF-f1 and TGF-33
(Chiefetz and Massague, 1991).

1.10.3 Smads

Smads are a group of transcription factors that interact with and modulate the activity of
the TGF-B receptor complex. The Smad proteins are homologues of the drosophila protein,
mothers against decapentaplegic (MAD) and the C. elegans protein SMA. The name is a
combination of these two. The Smad proteins are a family of transcription factors found in
vertebrates, insects and nematodes (Heldin et al., 1997). The Smad family can be divided into

three subfamilies:

1.10.3.1 Receptor-regulated (R)-Smads
R-Smads are directly phosphorylated by type 1 TGF-B receptors through their

intracellular kinase domain, leading to R-Smad activation. R-Smads include Smad2 and Smad3,
which are normally activated by TGF-B (Figure 1.20), activin and nodal signalling, except in
endothelial cells in which TGF- signalling can also activate Smadl and Smad5 (Miyazawa et

al., 2002). Smadl, Smad5 and Smad§8 are normally activated by the BMP/GDP subfamily.

1.10.3.2 Common partner (Co)-Smads

Smad4 is the only known mammalian Co-Smad. Smad4 binds to the activated R-

Smads and facilitates translocation of the heterotrimeric complex into the nucleus.
1.10.3 Inhibitory (I)-Smads

Smad6 and Smad7 function by inhibiting the downstream signal from type I
TGF-p receptors, thereby acting as negative regulators of signalling mediated by the TGF-3

superfamily of ligands.

1.10.4 The TGF-B/Smad signalling pathway
A TGF- ligand initiates signalling by binding the type II receptor on the cell surface.

This interaction allows type II receptors to recruit the type I receptor to form a hetero-tetrameric
complex with the ligand. Upon recruitment, the type Il receptor phosphorylates the type I
receptor on a specific GS domain which contains a series of glycine-serine repeats. The activated
type I receptor then propagates the signal inside the cell through phosphorylation of the R-Smads
(Smad2 and Smad3) which then form a heteromeric complex with the Co-Smad (Smad4) to
facilitate translocation into the nucleus, where they associate and cooperate with transcription
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factors to activate or repress target gene transcription (Figure 1.17) (Feng and Derynck,
2005). For regulation, there are I-Smads (Smad6 and Smad7) which negatively regulate TGF-f
signalling. Smad7 competes with R-Smad to bind to the type I receptor, whereas Smad6 prevents

the R-Smad from binding to the Co-Smad by interacting with Smad4.

1.10.5 Non-Smad signalling-mediated EMT

Although most studies report that Smads are necessary for the development of TGF-f-
dependent EMT in tubular epithelial cells, activation of non-Smad pathways such as the RhoA
(RHOA; Ras homologue gene family, member A), MAPK and PI3K signalling cascades
(Derynck and Zhang, 2003) can also contribute to development and progression of the epithelial
transition (Zhang et al., 2009).
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Figure 1.17 Diagram showing the intracellular signaling mechanism of the TGF-p/Smad
pathway.

(a) TGF-B binds to TPR-II with the aid of TPR-III. After the binding, TPRII recruits and
phosphorylates TPR-I, resulting in the phosphorylation (P) of Smad2 and Smad3.
Phosphorylated Smad2 and Smad 3 then form a heteromeric complex with Smad4 and

translocate to the nucleus. This Smad complex regulates gene transcription with the association

38| Page



Chapter 1: Introduction

of transcription factors, co-activators and co-repressors. (b) Smad6 and Smad7 bind to the

receptor and inhibit phosphorylation. The image is taken from Heldin et al., 1997.
1.11 Latent TGF-p activation

Increased TGF-B expression is seen in conditions including fibrotic diseases and
neoplastic disorders, and often correlates with clinical disease severity (Wang et al., 2005).
However, increased expression of TGF-f is not sufficient to increase TGF- activity, because all
three TGF-B isoforms are expressed in tissues as inactive latent precursors. The extracellular
activity of TGF-f is regulated by the conversion of latent TGF-f to active TGF-. This activation

can occur through physical processes and biological activation.

1.11.1 Physical activation of latent TGF-p

1.11.1.1 Activation by pH

Many studies have shown that latent TGF-B is activated by acid (Lyons et al., 1988;
Miyazono et al., 1988; Brown et al., 1990). This probably results from denaturation of the LAP
protein, which disturbs the interaction between LAP and TGF-B. Previous studies of the
activation of latent TGF-B in a fibroblast-conditioned medium have demonstrated that a small
fraction of total TGF- was active over the range of pH 4-5 (Lyons et al., 1988). Another study
of the activation of purified human platelet-derived latent TGF-f1 by pH suggested that no
activation was observed above pH 3.5 (Miyazono et al., 1988). More recently it was shown that

latent TGF-P3 was activated both below pH 3.1 and above pH 11.9 (Brown et al., 1990).

1.11.1.2 Heat activation
Heating is an effective method for activating latent TGF-p. According to an in vitro study,
heat activation of latent TGF-f generates greater activity than acid activation (Brown et al.,

1990). The optimal temperature is 70-80°C for 10 minutes; thermal denaturation of mature TGF-
B occurs above 80°C (Brown et al., 1990).

1.11.1.3 Activation by reactive oxygen species (ROS)

It has been shown that latent TGF-B1can be activated by ROS both in vitro by ionizing
radiation or using a metal-catalyzed ascorbate system, and in vivo by irradiation, (Barcellos-Hoff
et al.,, 1996). It has been suggested that hydroxyl radicals induce modifications which disable

LAP binding, leading to exposure of the active growth factor.

1.11.2 Activation of TGF-p by integrins
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Integrins are a large family of cell adhesion and signalling receptors. Individual integrins
comprise an o and B subunit in non-covalent interaction; there are 18 a subunits and 8 B subunits
that can form at least 24 different heterodimeric transmembrane receptors. These transmembrane
receptors provide a structural and functional bridge between the extracellular matrix and the
intracellular cytoskeleton. In addition, they can transfer information from the ECM to the cell
interior or vice versa and are also involved in cell adhesion, maintenance of morphology,
migration, proliferation, survival, differentiation, and invasion (Hynes, 2004). Four integrins,
including avp3 (Asano et al., 2005), avB5 (Asano et al., 2006), avp6 (Munger et al., 1999) and
avB8 (Mu et al., 2002) have been shown to bind latent TGF-B in vitro via an integrin-binding
RGD amino acid sequence motif present in the LAP region of the latent complex.

A study in mice carrying a mutation in the RGD integrin-binding motif (Tgfbl *“¥/RE
mice) demonstrated a similar phenotype to TgfbI”" mice (Yang et al., 2007). This finding
suggests that integrin-mediated activation of latent TGF-B1 is absolutely essential for TGF-B1 to
function during development and to control the immune system in vivo. However, as the
integrin-binding RGD motif is present in the latent forms of TGF-1 and TGF-3, but not TGF-
B2, it seems that an alternative mechanism must be responsible for the activation of latent TGF-
B2.

Besides the B subunit, the av integrins are also important in TGF-$ activation. Mice
lacking a functional integrin av gene (ltgav’ mice) develop identical abnormalities in

vasculogenesis and cleft palate as seen in Tgfbl " and Tgfb3~ mice (Dickson et al., 1995;
Kaartinen et al., 1995). This suggests av integrins are necessary for the activation of TGF-§ in

vivo.

1.11.2.1 avp3 and avpS integrins

avB3 and avBS integrins can be expressed by many different cell types. Mice lacking
either avB3 or avp5 do not show any defect associated with decreased TGF-f activation (Huang
et al., 2000; Reynolds et al., 2002). However, evidence suggests that both avp3 and avp5 can
activate latent TGF-PB expressed by fibroblastic cells. Dermal fibroblasts from patients with the
autoimmune disease scleroderma show enhanced expression of avp3 and avp5, and increased
TGF-P activation; this was inhibited by antibodies against the avp3 and avp5 integrins (Asano et
al., 2006; Wipff et al., 2007). The expression of avBf5 by dermal fibroblast results in
transformation to a myofibroblastic phenotype as a consequence of increased TGF-B activity
(Asano et al., 2006). Moreover, avB5 integrin-mediated activation of TGF-B produces lung

fibroblast to myofibroblast differentiation during pulmonary fibrosis (Scotton et al., 2009).
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However, this area remains controversial as recent data have shown that mice lacking both the
avB3 and avp5 integrins are not protected from bleomycin-induced pulmonary fibrosis (Atabai et

al., 2009).

1.11.2.2 avp6 integrin

The avP6 integrin is predominantly expressed by activated epithelial cells. This integrin

is thought to be important for localized activation of latent TGF-p on the epithelial surface
(Munger et al., 1999). Study of /tgh6~ mice demonstrated a mild inflammatory phenotype which
was limited to the skin and lung (Huang et al., 1996). Additionally, macrophages from Itgh6 "'

mice showed defects in lung phospholipid clearance, resulting from reduced avfB6 integrin-

mediated activation of TGF-B (Koth et al., 2007). Furthermore, [tgb67/ ~ mice developed
periodontal disease due to reduced TGF- activation by avp6 integrin-expressing oral epithelial
cells (Ghannad et al., 2007). Thus, avp6-mediated TGF-B activation seems important for
controlling the functions of this cytokine at epithelial barriers. Normally, basal expression of the
avp6 integrin is low, but expression of this integrin is increased when tissue injury occurs. The
avB6 integrin has been implicated in the pathology of several different models of disease
resulting from tissue damage. Studies using integrin /tgh6 "' mice, or blocking antibodies against
avp6 show protection from pulmonary fibrosis (Munger et al., 1999), renal fibrosis (Hahm et al.,

2007) and liver fibrosis (Patsenker et al., 2006; Wang et al., 2007).

1.11.2.3 avp8 integrin

The avB8 integrin is expressed by many different cell types, including neurons and
neuroepithelial cells (Proctor et al., 2005), astrocytes (Cambier et al., 2005), airway epithelial
cells and fibroblasts (Araya et al., 2006; Neurohr et al., 2006), and dendritic cells and CD4" T-
cells of the immune system (Travis et al., 2007). Expression of the avp8 integrin and avp8-
mediated TGF- activation by astrocytes is important in controlling brain angiogenesis, with
activated TGF-B acting upon endothelial cells (Cambier et al., 2005). TGF- activation by the
avp8 integrin is also required to regulate neurovascular homeostasis in the adult brain (Su et al.,
2010). These findings suggest an essential role for avp8 integrin-mediated TGF-f} activation in
regulating brain vascular development and function in health and disease. J1gh8” mice show cleft
palate, as occurred in 7 gfb3'/ ‘mice, and defects in yolk sac vasculogenesis similar to 7gfb/ ” mice
(Dickson et al., 1995; Kaartinen et al., 1995). Interestingly, mice that express a non-integrin-

responsive TGF-Bl and lack TGF-B3 (TgfbI®“*R°E; Tgfb3”) have abnormal vascular
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morphogenesis identical to Jzgh8” mice, as well as the expected abnormalities of the single TGF-
B null mice (Cambier et al., 2000). Expression of the avp8 integrin has also been reported for
some dendritic cells. Failure of the expression of this integrin by dendritic cells allows
autoimmune colitis to develop in mice, suggesting a specific role for TGF-f activation by avp8
integrin expressing dendritic cells in the development of immunoregulatory T cells (Travis et al.,

2007).

1.11.2.4 The mechanism of integrin-mediated TGF-§ activation
As described above, almost all latent forms of TGF-f interact with integrins via an RGD
integrin-binding motif in the LAP region of the latent complex. However, evidence suggests that

different integrins can activate TGF-3 by two different methods.

1.11.2.4.1 Mechanical induction of active TGF-§ by integrins

Cell culture models have shown that activation of the latent TGF-3 complex by the avf5
(Wipffet al., 2007) and avB6 (Munger et al., 1999) integrins is not prevented by protease
inhibitors, indicating that cleavage of latent TGF-B is not required. Furthermore, active
TGF-B is not released into the culture medium from cells expressing the avp6 integrin (Munger
et al., 1999), leading to the hypothesis that integrin binding to the latent complex induces a
conformational change to allow active but still complex-bound TGF-B to bind to its specific
receptor. Evidence now points to a role for cell contraction in the activation of TGF-§ via the
avB5 and avp6 integrins. An intact actin cytoskeleton is required for TGF-3 activation by these
integrins, as TGF-B activation is reduced by treatment with the actin polymerization inhibitor
cytochalasin D (Munger et al., 1999; Wipff et al., 2007), whereas cell contraction stimulating
agents such as thrombin, angiotensin-II and endothelin-1, can enhance TGF- activation by the
avB5 integrin (Wipff et al.,, 2007). Stimulation of the protease-activated receptor-1 (PARI1)
pathway in lung epithelial cells by thrombin or other PAR1 agonists enhances TGF-3 activation
by the avp6 integrin (Jenkins, 2006) (Figure 1.18). This enhancement requires signalling via the
Rho kinase (ROCK) signalling pathway (Jenkins et al., 2006), which is important in actin—
myosin cell contractility.

These data suggest that activation of TGF-} via avB5 and avfB6 integrins requires: (i) the
binding between LAP and integrin on the outside of the cell, which allows generation of a force
by the actin cytoskeleton connected to the cytoplasmic domain of the integrin, and (ii) binding

between LTBP-1 and the ECM which creates an opposing holding force. Applying both of these
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forces to the LLC may lead to a conformational change in the complex that allows TGF-f to bind

to its receptor.

avR6 integrin
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Figure 1.18 The association between thrombin and the avB6 integrin in latent TGF-§
activation.

Platelets release thrombin which acts on epithelial PARI1, leading to RhoA-induced actin
polymerization and cytoskeletal contraction against the cytoplasmic domain of the f6 subunit of
the avp6 integrin. This interaction results in conformational changes in the integrin-latent TGF-f
complex which allow active TGF-B to bind to its specific receptor. This image is taken from

Jenkins, 2008.

1.11.2.4.2 Protease-mediated activation of TGF-p by avp8 integrins

It has been observed that not all integrins activate latent TGF-f by inducing a
conformational change. The cytoplasmic domain of the avB8 integrin does not connect to the
actin cytoskeleton, suggesting that actin-mediated cell contraction does not play a major role in
TGF-p activation by this integrin (Mu et al., 2002). It has been observed that proteolytic cleavage
of LAP by the cell surface MMP14 or transmembrane matrix-metalloprotease-1 (MT-MMP1) is
crucial in the generation of active TGF-f in avp8-expressing cells (Mu et al., 2002).
Furthermore, a study using a co-culture model of foetal tracheal epithelial cells and fibroblasts

showed a high level of active TGF-3, which was significantly inhibited by anti-MMP and anti-
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avp8 (Araya et al., 2006). A further study using human bronchial epithelial cells suggested that
IL-1B may have a role in avp8-mediated TGF-f activation by an MMP14 dependent mechanism
(Araya et al., 2007). The transcription factors SP1 and SP3, and the activating transcription
factor 2 (ATF2) have been identified as key promoters of B8 integrin transcription (Markovic et
al., 2010). A study in fibroblasts using SP3 knockdown showed a reduction in avB8 expression.
Furthermore, the avp8 integrin may function by presenting latent TGF-B to MMP14, which
causes proteolytic cleavage LAP and releases active TGF-B (Figure 1.19). However, the
particular stimuli that enhance B8 integrin and MMP14 expression in different cell types leading
to avp8-mediated TGF- activation are unknown.

The activation of TGF-B by the avp8 integrin releases active TGF-B from the latent
complex. However, the role of MMP14 in avp8-mediated TGF-f activation has only been tested
in cells originating from the lungs and airways (Mu et al., 2002; Araya et al., 2007) and the

generality of this mechanism remains to be established.

ST RGD

Figure 1.19 Role of MMP14 in avB8-mediated latent TGF-f activation.

The avp8 integrin binds the RGD sequence on latent TGF-f. The avp8 integrin then presents the
latent TGF-B to MMP14, which proteolytically digests LAP and allows the active TGF-8

molecule to bind with the receptor. This image is obtained from Jenkins et al., 2006.
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1.11.3 Activation of TGF- by Thrombospondin-1

Thrombospondin-1 (TSP-1) is a matricellular glycoprotein which is expressed in
conditions such as wound healing, angiogenesis and neoplasia (Bornstein, 2001). It has been
shown in vitro that TSP-1 expression is regulated by growth factors including PDGF, FGF-2 and
TGF-B (Soula-Rothhut et al., 2005).

A previous study comparing TSP-1 null mice with TGF-B1 null mice demonstrated a
similarity of organ pathology, in particular in the lung and pancreas (Crawford et al., 1998).
Moreover, administration of a TSP-1 inhibitor to wild type mice showed similar pathology to
TGF-B null mice (Crawford et al., 1998). It has also been shown that TSP-1 activates latent
TGFB by forming a direct interaction with the latent TGF-B complex which induces a
conformational rearrangement which exposes active TGF-B. The mechanism of TSP-1-induced

latent TGF-B activation is discussed in chapter 5.

1.12 Evidence of latent TGF-B activation during kidney allograft rejection

A number of reports have demonstrated increased expression of TGF-f mRNA and
protein associated with the tubules after kidney transplantation (Robertson et al., 2001; Ozdemir
et al., 2005). However it is also clear that the biological response to this growth factor is

dependent on activation of the latent growth factor within the kidney.

1.12.1 The role of the avp6 integrin in kidney transplantation

The avB6 integrin has been implicated in the pathogenesis of several kidney diseases,
including chronic fibrosis after transplantation. The normal adult kidney expresses only low
levels of the avP6 integrin but it has been suggested that this integrin is expressed by tubular
epithelial cells of the proximal tubule, loop of Henle and collecting duct during kidney
development (Arend et al., 2000).

A recent study of gene expression in renal allograft biopsy specimens has demonstrated
that increased expression of a set of genes is prognostic of late graft failure (Einecke et al., 2007)
Importantly, the gene with the fourth greatest prognostic value in this study encoded the 6
integrin chain, suggesting an important role for activation of latent TGF-f in the progression of
this disease. It is notable that increased expression of the B3 integrin chain (see section 1.10.2.1)
was also prognostic of graft fa