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Abstract 

The alternative pathway (AP) of complement activation is implicated in several renal 

pathologies. These include membranoproliferative glomerulonephritis (MPGN) type II and 

atypical haemolytic uraemic syndrome (aHUS). Factor H (FH), comprised of 20 short consensus 

repeats (SCRs), is the primary regulator of the AP at the glomerular basement membrane 

(GBM) as evidenced by the fact that impaired factor H function is linked to both diseases. The 

current treatment options for MPGN type II and aHUS are limited and patients ultimately 

develop renal failure. There is a clear need for kidney targeted therapeutics to control AP 

dysregulation. I sought to generate novel recombinant FH fusion proteins to replace 

dysfunctional FH and to deliver the complement regulatory domain of factor H (SCRs 1-5) to 

the GBM. A protein containing the regulatory SCRs (FH1-5) and one containing the regulatory 

and cell-surface binding SCRs (FH1-5/18-20) was generated and expressed in a eukaryotic 

expression system. C3b binding and full complement regulatory function of FH1-5 and FH1-

5/18-20 was confirmed by in vitro assays. To target the GBM a B cell hybridoma (mAb3) was 

obtained which secretes an antibody that binds to the NC1 domains of collagen type IV alpha-3 

chain, expressed predominately in the GBM. The mAb3 variable regions (Fv) were successfully 

cloned after elimination of an abundantly expressed endogenous light chain transcript. A 

mAb3 single chain FV (scFv) was cloned downstream of FH1-5 creating a FH1-5/mAb3 scFv 

fusion protein. As an alternative a fusion protein incorporating the scFv of the 1G6 monoclonal 

antibody (FH1-5/1G6 scFv) was generated. Low expression levels of the FH1-5/scFv proteins 

limited the functional analysis. Binding of both proteins to C3b and binding of FH1-5/1G6 scFv 

but not FH1-5/mAb3 scFv to bovine and murine NC1 domains was demonstrated using cell 

culture supernatants. These reagents remain in the early stage of development but have 

potential to be attractive alternatives for the treatment of aHUS and MPGN type II. In addition 

to MPGN type II, FH1-5/scFv may find application in the treatment or prevention of anti-GBM 

nephritis and renal ischaemia-reperfusion injury.  
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Abbreviations 

aHUS  Atypical Haemolytic Uraemic Syndrome 

AMD  Age-related Macular Degeneration 

AMI  Acute Myocardial Infarction 

AP   Alternative Pathway 

APC  Antigen Presenting Cell 

 

BCR  B Cell Receptor 

BLAST  Basic Local Alignment Tool  

bp  Base pair 

BSA  Bovine Serum Albumin 

 

C3NeF  C3 Nephritic Factor 

CD59  Cluster of Differentiation 59 

cDNA  Complementary DNA 

CFHL-1  Complement Factor H Like protein 1 

CFHR-1-5 Complement Factor H Related proteins 1-5 

CHO cells Chinese Hamster Ovary cells 

CKD  Chronic Kidney Disease 

CP  Classical Pathway 

CR1  Complement Receptor type 1 

CR2  Complement Receptor type 2 

 

DAB  Diaminobenzidine 

DAF  Decay Accelerating Factor 

DDD  Dense Deposit Disease 

DMSO  Dimethyl sulphoxide 

DNA  Deoxyribonucleic Acid 

 

EDTA  Ethylenediaminetetraacetic Acid 

EGTA  Ethylene Glycol Tetraacetic Acid 

ELISA  Enzyme-Linked Immunosorbent Assay 

 

FB  Factor B 

FC  Crystallisable Fragment 

FCRn  Neonatal Fc Receptor 

FCS  Fetal Calf Serum 

FH  Factor H 

FI  Factor I 

FITC  Fluorescein Isothiocyanate 

 

GBM  Glomerular Basement Membrane 

GVB  Veronal Buffer with Gelatine 

 

HAE  Hereditary Angioedema 
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HEL  Hen Egg Lysozyme 

HRPO  Horseradish Peroxidase 

 

Ig  Immunoglobulin 

IgG  Immunoglobulin G 

Ile  Isoleucine 

 

kb  Kilo base pair 

kDa  Kilo Dalton 

LB medium Lysogeny Broth / Luria-Bertani broth 

LP  Lectin Pathway 

 

mAB  Monoclonal Antibody 

MAC  Membrane Attack Complex 

MASP-1  Mannose-Associated Serine Protease 1 

MASP-2  Mannose-Associated Serine Protease 2 

MBL  Mannan-Binding Lectin 

MCP  Membrane Cofactor Protein 

MHC  Major Histocompatibility Complex 

MPGN type II Membranoproliferative Glomerulonephritis type II 

 

NHS  National Health Service 

 

PBS  Phosphate Buffered Saline 

PCR  Polymerase Chain Reaction 

PEG  Polyethylene Glycol 

 

RE  Rabbit Erythrocytes 

Rpm  Rotations per minute 

RT  Room Temperature 

RU  Resonance Units 

 

SCR  Short Consensus Repeat 

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SLE  Systemic lupus erythematosus 

SOC  Super Optimal broth with Catabolite repression 

SOB  Super optimal broth 

SPR  Surface Plasmon Resonance  

 

TCR  T cell receptor 

TMB  3,3’,5,5’-Tetramethylbenzidine 

 

UUO  Unilateral Uretal Obstruction  

UV  Ultraviolet  

 

Val  Valine 
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VB  Veronal Buffer 

VH  Heavy chain variable region 

VL  Light chain variable region 
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1.1 The complement system 

1.1.1 A brief historical background 

Complement is an ancient system of proteins that forms part of innate immunity. The origin of 

the complement system dates much further back than that of the adaptive immune system. 

Key constituents of adaptive immunity, like antibodies, can be traced back to sharks and higher 

vertebrates and may only be about 600 million years old (Kasahara et al., 1997, Nonaka and 

Kimura, 2006). However, homologues of complement component C3 and complement factor B 

(FB) are found in sea urchins and may be more than 1000 million years old (Smith et al., 1999, 

Nonaka and Kimura, 2006). The “anti-bacterial” property of serum was first described by Hans 

Buchner in 1889, who named the component alexine (Buchner, 1889). In 1895 Jules Bordet 

then demonstrated the presence of a heat-stabile (antibodies) and a heat-labile (alexine or 

complement) anti-bacterial component in serum (Bordet, 1909). The term complement was 

coined by Paul Ehrlich since he described alexine as a component that complements the 

function of antibodies (Ehrlich, 1899). Further complement components were identified in the 

following years, but the alternative pathway and the lectin pathway were only described in 

latter part of the 20th century (Pillemer et al., 1954, Super et al., 1989).  

1.1.2 Emerging roles of complement beyond pathogen defence 

The complement system is now known to comprise more than 50 serum and cell-surface 

proteins. Their role has traditionally been described as the first line of defence against invading 

pathogens through the opsonisation of pathogens to enhance phagocytosis, lysis of 

microorganisms and induction of inflammatory responses through generation of 

proinflammatory anaphylatoxins (Trouw and Daha, 2011). However, many new roles for 

complement have emerged over the past two decades. In addition to mediation of innate 

immunity and inflammation, complement coordinates the adaptive immune response by 

regulation of B cell and T cell effector functions (Fearon and Locksley, 1996, Heeger and 

Kemper, 2012). Evidence of the involvement in blood coagulation, apoptosis, tissue 

regeneration and lipid metabolism implicates complement as a mediator of homeostasis 

(Rutkowski et al., 2010, Ehrnthaller et al., 2011, Amara et al., 2008) Three pathways that 

activate the complement cascade have been described (Figure 1); the classical pathway (CP), 

lectin pathway (LP) and the alternative pathway (AP) (Trouw and Daha, 2011). The pathways 

share formation of a C3 convertase and a C5 convertase and ultimately result in formation of 

the membrane attack complex and cell lysis (Trouw and Daha, 2011). 
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Figure 1: The complement system – activation and regulation 
 
The C1 complex of the classical pathway and the MBL-MASP complexes of the lectin pathway 
mediate cleavage of C4 into C4a and C4b and C2 into C2a and C2b. C4b and C2a form a C3 convertase 
(C4b2a). Spontaneous hydrolysis of C3 (“tick over”) initiates the AP. Hydrolysed C3 (C3(H2O)) 
associates with factor B (FB) which is cleaved by factor D (FD) to form the AP C3 convertase C3Bb. 
Both convertases cleave C3 into C3a and C3b. C3b is used to form the classical and alternative 
pathway C5 convertases (C4b2a3b and C3bC3bBb) but also to amplify the AP by generation of further 
C3 convertases. The C5 convertases cleave C5 into C5a and C5b, the latter initiates the formation of 
the MAC by association with C6, C7, C8 and several C9 molecules. C1-INH controls activation of the 
classical and lectin pathway, whilst FH and FI are the principal regulators of AP activation and the AP 
C3 convertase. FI, DAF, MCP and CR1 control both pathways at the C3 convertase level.  Formation of 
the MAC is inhibited by CD59, vitronectin and clusterin. 

 

Vitronectin 

Clusterin 
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1.1.3 Classical pathway 

Classical and lectin activation pathways are very similar and share the same C3 convertase. To 

activate the complement cascade the classical pathway requires an antibody bound to an 

antigen, e.g. a pathogen (Kojouharova et al., 2010). The initiation molecules in this pathway 

are C1q, C1r and C1s which form the C1 complex (one C1q, two C1r and C1s). Initiation takes 

place when several C1q molecules (which bind to the Fc portion of an antigen associated 

antibody) as part of the C1 complex aggregate on a pathogen surface. Notably, antibody 

independent activation can occur on surfaces that bind C1q directly. These include viruses, 

gram-negative bacteria and DNA (Kojouharova et al., 2010). This causes self-activation of C1r 

which in turn activates C1s. C1s is a serine protease that cleaves C2 and C4 to generate C2a 

and C4b. Both fragments associate to form a C3 convertase which cleaves C3 into the 

anaphylatoxin C3a and C3b. The latter is deposited on the pathogen surface and forms the C5 

convertase by binding C4b and C2a. The C5 convertase cleaves C5 into C5b and the 

anaphylatoxin C5a. C5b is the first component of the membrane attack complex (MAC). C5b 

binds to the pathogen surface and associates with C6, C7 and C8. This complex then allows 

binding of C9 which inserts into the cell membrane and polymerises to form a lytic pore (MAC). 

The formation of several MACs ultimately results in the lysis of the pathogen (Trouw and Daha, 

2011). 

1.1.4 Lectin pathway 

The lectin in the lectin pathway serves the same function as C1q in the classical pathway as it 

forms a complex with three proteases: MASP-1, MASP-2 and MASP-3. Upon binding of the 

complex to a pathogen surface, the proteases are activated and generate C4b and C2a by 

cleavage of C4 and C2. The subsequent steps are the same as described for the classical 

pathway (Degn et al., 2007). 

1.1.5 Alternative pathway 

The AP is a rapid and potent activation pathway that can be initiated by a range of pathogens, 

including bacteria, fungi and viruses (Pangburn and Muller-Eberhard, 1984). Rapid activation of 

the AP is facilitated by the spontaneous and continuous hydrolysis of small amounts of C3, a 

process also described as “tick over” (Lachmann and Halbwachs, 1975, Pangburn et al., 1981, 

Pangburn and Muller-Eberhard, 1983). Hydrolysis of C3 results in a conformational change 

which allows association with FB. FB bound to C3b is cleaved by factor D (FD) to Bb, forming 

the specific AP C3 convertase (C3Bb) (Fearon et al., 1973). C3b generated by this initial 

convertase can form further C3 convertases which, stabilised by binding of properdin can 

result in a positive amplification loop (Schwaeble and Reid, 1999). The AP C5 convertase is 

formed by association of a second C3b molecule to the AP C3 convertase (C3bBbC3b). The 
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subsequent steps leading to formation of the MAC are identical to the other pathways. In the 

absence of an activating surface, C3b is usually deactivated by hydrolysis but may be deposited 

on host cells. Effective regulation of the AP and differentiation between pathogen and host cell 

surface are therefore paramount to avoid damage to the host.  

1.1.6 Regulation of complement 

As described previously, the complement system provides potent measures to defend the host 

against invading pathogens. To protect the host from complement-mediated damage a 

number of regulatory molecules are employed in the fluid-phase and on host cell-surfaces 

(Zipfel and Skerka, 2009). The cell-surface regulators are widely expressed on all cell-types, 

with some exceptions. Complement receptor type 1 (CR1, CD35) and decay accelerating factor 

(DAF, CD55) are cell-surface bound and bind C3b when bound to a host-cell surface and can 

dissociate Bb from the AP C3 convertase (Zipfel and Skerka, 2009). CR1 also functions as a co-

factor for FI. The function of the decay accelerating factor (DAF, CD55) is in its name – it 

accelerates the decay of both classical and AP C3 convertases. CD59 inhibits MAC formation by 

preventing binding of C8 to C9. Properdin is the best described positive regulator of the 

complement system. It binds to and stabilises the AP C3 convertase (Schwaeble and Reid, 

1999). The classical and MBL pathways are regulated early by the fluid-phase inhibitor of C1 

(C1-INH) which blocks function of both the C1 complex and MASP-1 and MASP-2. The 

anaphylatoxins C3a and C5a can be inactivated by carboxypeptidase N; vitronectin and 

clusterin prevent insertion of the MAC into the cell membrane. FI is a fluid-phase serine 

protease which can use membrane co-factor protein (MCP, CD46), factor H (FH), CR1 and C4b 

binding protein (C4bp) to cleave the α-chains of C3b and C4b (Sim et al., 1993). In addition to 

its FI co-factor activity FH can by itself bind C3b in a similar way as CR1 and DAF. It regulates in 

the fluid-phase and selectively on host cell-surfaces as it exerts a higher affinity for C3b in the 

context of heparin and sialic acid residues (Fearon, 1978a).  

1.1.7 Complement factor H 

1.1.7.1 FH protein family 

The human factor H gene (CFH) is located on chromosome 1 within the regulators of 

complement activation (RCA) gene cluster in 1q32 (Rodriguez de Cordoba et al., 1999, Diaz-

Guillen et al., 1999). FH is mainly produced in the liver but other cell types, including proximal 

tubular epithelial cells in the kidney, produce FH (Gerritsma et al., 1997). It is the most 

abundant member of a family of related proteins that include complement factor H-like 

protein 1 (FHL-1) and five complement factor H related proteins (FHR1-5) (Zipfel and Skerka, 

1994). CFH, CFHL-1 and the five CFHRs are located within the same group of genes. FH and 
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FHL-1, comprised of the first seven SCRs of FH with additional C-terminal amino acid residues, 

are located on the same gene and generated by alternative splicing (Schwaeble et al., 1987, 

Friese et al., 1999). 

1.1.7.2 FH structure and function 

FH (Figure 2) is a 155 kDa protein which is comprised of 20 SCRs of approximately 60 amino 

acids each (Kristensen and Tack, 1986). Each of these globular domains contains four cysteine 

residues that form two disulphide bonds (the first and third, second and fourth cysteine pair 

up) (Kristensen and Tack, 1986). Further conserved residues add to structure and stability of 

each SCR unit (Zipfel and Skerka, 1994). FH has two principal functional domains located at the 

N- and C-terminal. The N-terminal SCRs 1-4 contain the complement regulatory functions. The 

AP is regulated by FH in three distinct ways. Formation of the AP C3 convertase (C3bBb) is 

controlled by competition with FB for binding to C3b (Weiler et al., 1976, Whaley and Ruddy, 

1976). FH accelerates decay of both the AP C3 convertase and the AP C5 convertase 

(C3bBbC3b) by dissociating FB from the complex (decay acceleration activity). FH also serves as 

cofactor for the serine protease FI that mediates cleavage of C3b (cofactor activity) (Weiler et 

al., 1976). C-terminal SCRs 19-20 bear the cell-binding domain. The specificity of FH for C3b on 

non-activating surfaces was first described by Fearon and colleagues. They observed that FH 

and FI cannot access pathogen associated C3b and that specificity of FH for C3b deposited on 

non-activating surfaces is mediated through polyanions (Fearon, 1978b, Pangburn and Muller-

Eberhard, 1978, Fearon and Austen, 1977). Polyanions are molecules with negative charges at 

several sites; Examples are heparin and sialic acid. Heparin is a highly-sulphated 

glycosaminoglycan and has the highest negative charge density known. Sialic acids are a 

diverse family of monosaccharides with a number of different functions including stabilisation 

of cell membranes and proteins. Interaction sites of FH with heparin have been located in SCR7 

and SCR13 (Blackmore et al., 1996, Sharma and Pangburn, 1996). The heparin binding site 

SCR19 and SCR20 engage with both heparin and sialic acid residues and exert the highest 

affinity and have therefore been attributed a particularly important role (Blackmore et al., 

1998, Ram et al., 1998). Functionally the presence of polyanions enables FH to compete with 

FB for C3b and to subsequently dissociate FB from the AP C3 convertase (Pangburn and 

Muller-Eberhard, 1978, Pangburn and Muller-Eberhard, 1986, Weiler et al., 1976, Whaley and 

Ruddy, 1976). FI requires the presence of a cofactor to cleave C3b to the inactive iC3b. FH, 

CR1, and MCP (Lublin and Atkinson, 1990, Seya et al., 1986, Weiler et al., 1976) can act as 

cofactors and need to be associated with C3b. Linker sequences, on average four amino acids 

long, connect individual SCRs. 
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Figure 2: Factor H structure and interaction with C3b 
 
(A) Factor H is comprised of 20 SCRs and has several functional domains. The principal C3b binding 
site, which confers decay acceleration and FI cofactor activity, is located at the N-terminal. FH also 
binds C3b and C3d via the C-terminal SCRs 19 and 20. SCRs 12-14 interact weakly with C3b. SCRs 7 
and 19-20 strongly bind heparin / sialic acid. The heparin binding domain in SCRs 12-14 is debated 
since a SCR 12-14 fragment does not interact with heparin. (B) Co-crystallisation of FH SCRs 1-5 with 
C3b allowed the mapping of functional interfaces. FH SCR2 (CCP2) directly interacts with MG7 and 
MG6 on C3b and forms the interface involved in C3b binding and decay acceleration. SCR3 on FH and 
CUB and MG2 of C3b form the interface required for FI-mediated cleavage of C3b. The thioester 
domain (TED) of C3b allows binding of C3b with target surfaces.  
Adapted from: (Wu et al., 2009). 
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These inter-SCR linkers provide the degree of flexibility required for the interaction with 

multiple ligands but create problems for structural studies using X-ray crystallography and 

nuclear magnetic resonance (NMR) spectroscopy (Perkins et al., 2002). Solution scattering and 

electron microscopy suggest that full length FH is not a linear structure but folded-back on 

itself (Perkins et al., 1991, DiScipio, 1992, Aslam and Perkins, 2001). Studies of individual SCRs 

and fragments and in particular solution structures of SCRs 1-5 and 16-20 provided further 

evidence for the folded back conformation (Barlow et al., 1992, Hocking et al., 2008, 

Okemefuna et al., 2008). X-ray crystallography studies of FH SCRs 1-5 in complex with C3b and 

FH SCRs 19-20 in complex with C3d have shown that FH can engage a cell surface associated 

C3b molecule simultaneously with the N- and C-terminal (Wu et al., 2009, Morgan et al., 2011). 

The SCRs that are not involved in C3b binding form a tight loop but the functional role of this 

large portion of FH is currently not fully understood (Schmidt et al., 2010). The current models 

place the apex of the loop, i.e. SCRs 11-13, and the heparin binding SCR7 close to the cell 

surface. The ability of SCR 13 to bind heparin has been subject to debate. A study by Schmidt 

et al found fragments comprising SCRs 11-14, 13-15, 10-15 or 8-15 only exerted low or no 

affinity for heparin (Schmidt et al., 2008b). 

In summary, FH can discriminate effectively against pathogen surfaces and exerts its function 

by three main mechanisms; C3b capture, acceleration of AP C3 convertase decay and FI 

cofactor activity. With several regulators and discriminating molecules present there seems to 

be a high degree of redundancy. However, all these molecules are required to act in concert to 

provide efficient protection which becomes apparent considering the effects of point 

mutations in individual regulators. 

1.1.7.3 Complement C3 and FH 

C3 is a 185 kDa protein that is present in plasma at approximately 1 mg/ml (Lambris, 1988). C3 

has 13 domains, including eight macroglobulin domains (MGs), a thioester domain (TED) and a 

CUB domain (Wu et al., 2009). Its central role in the complement system involves the 

interaction with several other components. The conformational changes required for these 

interactions are achieved by number of proteolytic cleavage steps. The initial step in the AP is 

the “tick over” in which the hydrolytic cleavage of the thioester in TED produces an active form 

of C3, C3(H2O) which can bind FB to form a fluid-phase C3 convertase (Pangburn et al., 1981). 

The C3 convertases of the CP and AP catalyze cleavage of C3 into C3b (177 kDa) and C3a (9 

kDa). This cleavage also induces a conformational change in the TED domain of C3b, enabling 

interaction with target surfaces (Janssen and Gros, 2006, Janssen and Gros, 2007). Further 

cleavage of the C3b α-chain is mediated by FI, forming iC3b and C3f. Under reducing conditions 

the cleavage of FI at two sites becomes apparent – in addition to the intact β-chain fragments 
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of 68, 43 and 3 kDa can be observed (see Figure 3). Presence of CR1 causes further cleavage of 

iC3b (or the 68 kDa α-chain fragment) into C3c (27 kDa) and C3dg (41 kDa). Recent 

crystallography studies have revealed detailed information about C3 and the conformational 

changes that occur to mediate interaction with other proteins and surfaces (Janssen et al., 

2005, Janssen and Gros, 2007, Gros et al., 2008, Rooijakkers et al., 2009, Wu et al., 2009). Co-

crystallisation of FH SCRs 1-5 and C3b allowed the mapping of four key interfaces, as shown in 

Figure 2 (Wu et al., 2009). Decay accelerating activity has been attributed to SCR1 and SCR2 

which interact mainly through hydrophobic areas in MG6 and MG7 on C3b, respectively.  

These interactions contribute largely to dissociation of Bb from the AP C3 convertase. SCR3 

and SCR4 (via TED domain and MG1) have been assigned a supportive role in C3b binding, 

although the interface between SCR3 and MG2 and CUB also forms FI cleavage sites (Wu et al., 

2009).  
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Figure 3: Factor I mediated cleavage of C3b 
 
C3b is generated by cleavage of C3 by the C3 convertase (C3bBb). There are three FI cleavage sites on 
the C3b α-chain. In the presence of the cofactors FH, MCP and CR1 the α-chain is cleaved at FI (1) and 
F (2). Fragments of 68 kDa, 43 kDa and 3 kDa are generated. In the presence of CR1 FI can cleave the 
α-chain at FI (3). This cleaves the 68 kDa fragment into a 27 kDa fragment and a 41 kDa fragment 
(C3dg). Disulphide bonds are shown as black lines. 
Schematic adapted from (Harris, 2000). 
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1.2 Alternative pathway mediated renal disease 

1.2.1 Renal anatomy and function 

The kidney eliminates waste products from the body in the form of urine and is a central 

homeostatic organ. It regulates the composition of the extracellular fluid (ECF) which includes 

the plasma, interstitial and transcellular fluids to ensure normal physiological function of the 

cells in the body (Valtin, 1994). Volume, osmolality, pH and ionic composition of the ECF are 

regulated by the kidneys. The composition of the ECF ultimately dictates the composition of 

intracellular fluids (ICF) (Valtin, 1994). The kidneys are part of the urinary tract that is 

comprised of the kidneys, ureters, bladder and the urethra (Figure 4). Urine produced by the 

kidneys drains into the renal pelvis and is transported to the bladder via the ureters. The 

bladder is emptied via the urethra. The two functional tissues, the inner medulla and outer 

cortex, contain more than 1 million functional units called nephrons. Each nephron consists of 

a glomerulus which is encased by the Bowman’s capsule, the proximal tubule, the loop of 

Henle, the distal tubule and the collecting duct (O'Callaghan, 2006). The unfiltered blood is 

supplied to the glomerulus by the afferent arteriole which branches out to form the 

glomerular capillary and converges to form the efferent arteriole to return filtered blood to the 

main circulation (Figure 5). Urine is the product of ultrafiltration that takes place in the kidney  

(O'Callaghan, 2006). This process involves the filtration of small metabolites and other 

substances across selective barriers based on their size, shape and charge (Figure 5). The three 

components of the glomerular filtration barrier are the glomerular endothelium (including the 

glycocalyx), the glomerular basement membrane and the podocytes which are the specialised 

visceral endothelium of the Bowman’s capsule (Miner, 2012). The blood first encounters the 

endothelial glycocalyx, a thick, dynamic layer of proteoglycans, glycoproteins and 

glycosaminoglycans (GAGs). Part of the glycocalyx components are derived from and anchored 

to the endothelium and part are sourced from the circulating plasma (Figure 5). The most 

prevalent GAGs in the glycocalyx of vascular endothelium are heparan sulphate, chondroitin 

sulphate and hyaluronic acid (Esko JD, 2009). Up to 90% of the proteoglycans are associated 

with heparan sulphate. The negative charge of the glycocalyx functions as the first barrier by 

repelling serum proteins. Substances that pass through the glycocalyx reach the fenestrated 

endothelium which contains numerous pores of approximately 60 nM in diameter. The 

glomerular endothelium is directly attached to the GBM which is comprised of three layers, 

the lamina rara externa, lamina densa and lamina internal (Miner, 2012). The lamina externa 

are densely covered by heparan sulphate and the lamina densa is mainly comprised of type IV 

collagen.  
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Figure 4: Anatomy of the urinary tract and nephron 
 
(A) The nephrons are located in the cortex and medulla (containing the renal pyramids) of each 
kidney. Urine produced is collected into the renal pelvis and transported to the bladder via the 
ureters. The bladder is emptied via the urethra. (B) The afferent arteriole supplies blood to the 
glomerulus and the efferent arteriole transports the filtered blood, via the peritubular arteries, to 
a vein. The urine leaves the glomerulus via the proximal tubule and is transported to the distal 
convoluted tubule via the descending and ascending limbs of the loop of Henle.  
Adapted from: (Mariam-Webbster, 2012) and (Ganesh, 2012) 
 

A 

B 



- 13 - 
 

 

 

 

 

 

 

 

 

 

  

Figure 5: Structures of the glomerulus and the filtration barrier 
 
The glomerulus, encased by the Bowman’s capsule, is the central site of blood filtration. Blood 
enters the glomerulus, a cluster of capillaries, via the afferent arteriole and exits via the efferent 
arteriole. The glomerular capillary wall is comprised of three layers as indicated by the cross-
section. Fenestrated endothelial cells and their glycocalyx, the GBM and podocytes with filtration 
slits form the filtration barrier that allows passage of proteins and other molecules based on their 
size, shape and charge. The filtrate that is formed at this barrier is urine.  
Adapted from: (Cummings, 2001) and (Miner, 2008) 
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The GBM forms an important barrier against water by contributing to the resistance to filtrate 

flow and selectively filters molecules based on their charge and size (Miner, 2008).  

1.2.2 Complement and the kidney 

Multiple mechanisms are in place to effectively protect host cells from damage, yet there are 

diseases in which defective regulation of the AP in particular is implicated. Certain sites are 

deficient in surface bound regulators. In the kidney for example all regulators named above 

are expressed (Timmerman et al., 1996, Zipfel and Skerka, 2009, Ichida et al., 1994). However, 

the GBM is mainly dependent on FH. The high density of heparin sulphate and sialic acid at the 

GBM provides a good environment for FH to deposit as shown by co-localisation of FH and 

type IV collagen at the GBM (Miner, 2012, Licht et al., 2007). DAF and MCP, the other two 

regulators of the C3 convertase, are absent. In healthy individuals this is not a problem 

because FH is sufficient in its function. If FH is dysfunctional or deficient there is an increased 

risk of complement-mediated damage to the GBM. 

1.2.3 Thrombotic microangiopathies 

1.2.3.1 Shiga toxin associated haemolytic uraemic syndrome 

Typical HUS is distinguished from the atypical form by both the clinical presentation and 

pathogenesis. It is caused by E. coli serotypes O157:H7 and O104:H4 which produce two very 

similar exotoxins (Shiga toxins Stx1 and Stx2) (Noris et al., 2012). Particular susceptibility of the 

glomerular endothelium to these toxins results from the presence of high concentrations of 

the cell-surface glycosphingolipid Gb3 (globotriosyl ceramide) (Keir et al., 2012). The toxins 

enter the cell by binding Gb3 via the B subunits. The toxic A subunit can then exert toxicity 

within the cell (Keir et al., 2012).  

1.2.3.2 Atypical haemolytic uraemic syndrome 

Atypical HUS is a thrombotic microangiopathy that is characterised by haemolytic anaemia, 

thrombocytopenia, progressive loss of renal function and ultimately renal failure (Kavanagh 

and Goodship, 2011). Extensive involvement of the complement system in these patients is 

indicated by low levels of serum C3 and FB but high levels of the C3 breakdown fragment C3d 

(Benz and Amann, 2009b). There is a strong genetic component in aHUS with loss-of-function 

mutations that affect the complement regulators FH, FI and MCP (Geerdink et al., 2012, Jozsi 

et al., 2006, Fang et al., 2008, Kavanagh et al., 2008, Richards et al., 2003). More than 60 

mutations have been described for FH alone. Mutations in the C-terminal SCRs 19 and 20 in FH 

are particularly associated with aHUS (Jozsi et al., 2006). Gain-of-function mutations have been 

described for C3 and FB (Fremeaux-Bacchi et al., 2008, Goicoechea de Jorge et al., 2007). 

Reports also describe a small number of patients with autoantibodies against FH and FI (Zipfel 
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et al., 2006, Pickering and Cook, 2008b, Strobel et al., 2010, Kavanagh et al., 2012). Although 

many aspects of the pathogenesis of aHUS remain unclear, it is known that complement attack 

on the renal endothelium disrupts the cell membrane integrity which results in exposure of 

collagen. Von Willebrandt factor (vWf) binds to the exposed collagen resulting in platelet 

binding and further steps of the coagulation cascade (Desch and Motto, 2007). It is clear that 

aHUS is a complex, multi-factorial condition. Patients presenting with aHUS usually have rare 

mutations in complement proteins and carry at-risk genetic variants (like 

polynucleomorphisms) commonly found in the population. Further, a trigger like infection or 

pregnancy is required to precipitate disease (Kavanagh and Goodship, 2011). There are also 

sporadic cases of aHUS in which the development of aHUS is acquired and secondary to 

external events (drug induced, infection). For example infection with S. pneumoniae may cause 

aHUS by increasing susceptibility of endothelial cells to complement-mediated damage. This 

may be achieved by reduction of the endothelial cell glycocalyx and “hijacking” of FH 

(Copelovitch and Kaplan, 2008). Endothelial cells are protected from complement attack in 

different ways. The cell-surface complement regulators DAF, MCP and CD59 are widely 

expressed, FH and FI are available in the fluid-phase. The glycocalyx provides a further means 

of protection. The negative charge of this layer prevents binding of circulating serum proteins, 

but FH would bind to the highly negative heparin and sialic acid residues. Dysfunction of the C-

terminal domain of FH underlines the importance of this interaction.  

1.2.3.3 Animal models for aHUS 

Animal models, in particular mice deficient in complement regulators, have proven a valuable 

tool to understand the pathogenesis of aHUS. There are knockout mice for several murine 

complement regulators. The first mouse model to resemble human aHUS was generated by a 

deletion of SCRs 16-20 in Cfh (Pickering et al., 2007). Mutations in FH that result in aHUS are 

primarily located at the C-terminal (Sanchez-Corral et al., 2002, de Cordoba and de Jorge, 

2008). It was therefore anticipated that deletion of the C-terminal SCRs would greatly reduce 

protection of renal endothelial cells whilst retaining complement regulatory function in the 

fluid-phase. The CfhΔ16-20 mice showed better fluid-phase regulation than the Cfh-/- mice, 

indicated by higher serum C3 levels and mesangial deposition of C3 rather than GBM 

deposition as seen in Cfh-/- mice (Pickering et al., 2007). The histological findings also closely 

resemble those found in human aHUS. The terminal complement pathway plays a central role 

in the pathogenesis as CfhΔ16-20 mice crossed on a C5-/- background are protected from 

spontaneous aHUS and less susceptible to induced renal injury (de Jorge et al., 2011). Overall 

the data derived from the CfhΔ16-20 mice suggest that therapy of aHUS should aim to restore 

complement regulation at the endothelial cell surface. The finding that administration of 
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human FH reverses complement deposition in Cfh-/- mice supports this and implies FH 

replacement as a suitable therapeutic approach (Fakhouri et al., 2010). An autoantibody 

induced murine model for aHUS was recently described (Miwa, 2012). Wild-type mice that 

were injected with an anti-FH SCRs 19-20 monoclonal antibody that blocks cell binding of FH 

showed impaired renal function, aHUS like injury was achieved by injecting this antibody into 

DAF -/- mice (Miwa, 2012).  

1.2.3.4 Treatment of aHUS 

In aHUS, plasma exchange (PEX) and plasma infusion (PI) are the default therapy and aim to 

replace deficient or defective regulators (Barz et al., 2002, von Baeyer, 2002, Taylor et al., 

2010). PEX offers the simultaneous removal of defective proteins and autoantibodies. This 

approach is not effective in all patients and the underlying defect in regulation appears to 

influence the outcome. Whilst patients with mutations in FH generally respond well to plasma 

therapy, patients with FI or FB mutations do not appear to benefit (Davin et al., 2008, Stratton 

and Warwicker, 2002, Gerber et al., 2003). There are also risks associated with the 

administration of blood products (Burnouf, 2007). Patients that repeatedly receive plasma can 

suffer hypersensitivity reactions and develop resistance to therapy, possibly as a result of 

autoantibody formation (Nathanson et al., 2006). Renal transplants are not recommended in 

patients that have progressed to end-stage renal disease because disease recurrence in the 

graft is approximately 50%. Graft survival is good in patients with MCP mutations, however in 

patients with FH and FI mutations graft survival is very poor with graft loss occurring within 

two years in 80% of patients (Bresin et al., 2006, Taylor et al., Caprioli and Remuzzi, 2007, 

Sellier-Leclerc et al., 2007). Transplantation of patients with FH autoantibodies appears to 

offer a longer term solution (Kwon et al., 2008, Waters et al., 2010). Liver transplantation, in 

patients with moderate kidney damage, and liver-kidney transplantation have been successful 

in patients with FH/FI mutations (Saland et al., 2009). A new therapeutic, Eculizumab, has been 

successfully used in several aHUS patients (Nurnberger et al., 2009, Gruppo and Rother, 2009, 

Hadaya et al., 2011, Al-Akash et al., 2010). The anti-C5 monoclonal antibody blocks formation 

of the terminal membrane attack complex and therefore protects the glomerular endothelial 

cells (Rother et al., 2007). Eculizumab has been approved in the U.S.A. and Europe for the 

treatment of aHUS, further clinical trials are ongoing. However, considering the high cost of 

Eculizumab, it may not be funded in the UK (England) for routine use.  

1.2.4 Glomerulonephritis 

The term glomerulonephritis covers a range of inflammatory pathologies that concern the 

glomerulus and is one of the main causes of chronic kidney disease. Glomerulonephritis can 

occur in the presence or absence of antibodies. Immune complex mediated disease presents 
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as anti-GBM nephritis (Goodpasture’s syndrome), post-infectious glomerulonephritis, IgA 

nephropathy, type I membranoproliferative glomerulonephritis (MPGN) and also occurs in the 

in the context of systemic lupus erythematosus (SLE, lupus nephritis) (Couser, 2012). 

Complement activation, via the CP, AP but also the LP, has been attributed a significant role in 

several of these conditions (Heeringa and Cohen, 2012). In MPGN type II immune-complexes 

are absent and the condition is thought to be driven by uncontrolled activation of the AP (Benz 

and Amann, 2009b). 

1.2.4.1 Anti-GBM nephritis 

Anti-GBM nephritis or Goodpasture’s syndrome is a pulmonary and renal disease that is 

characterised by rapid progression of glomerulonephritis and lung haemorrhage (Borza et al., 

2003, Lahmer and Heemann, 2012). The condition is mediated by anti-GBM antibodies and 

responds to treatment by plasma exchange, cyclophosphamide and steroids. The specific 

antigen of the autoantibodies has been identified as the α3-chain of type IV collagen which is 

found primarily in alveolar and glomerular basement membranes (Hellmark et al., 1999, 

Pedchenko et al., 2011, Kalluri et al., 1995, Weber and Pullig, 1992). The disease is commonly 

modelled in rodents by injection of GBM extracts or NC1 domains of the α3 chain of type IV 

collagen (experimental autoimmune glomerulonephritis) or by injection of a heterologous 

antiserum raised against GBM extract (nephrotoxic nephritis). In nephrotoxic nephritis the 

initial injury results from binding of the heterologous antibodies to the GBM and is 

perpetuated by the immune response to the heterologous antibodies (autologous phase). 

Complement dependence of this model was demonstrated by the protective effect of C3 and 

C4 deficiency and disease exacerbation by regulator deficiency (Sheerin et al., 1997, Sogabe et 

al., 2001, Robson et al., 2001). The AP drives pathology during the autologous phase of the 

model (Thurman et al., 2012).  

1.2.4.2 Post-infectious glomerulonephritis 

Infection with group-A haemolytic streptococci can be followed by post-infectious 

glomerulonephritis several weeks after the initial infection. It is characterised by mesangial C3 

deposition and leucocyte infiltration. Normal serum C4 levels in patients suggest that the 

pathology is likely driven by the AP (Nasr et al., 2013). 

1.2.4.3 IgA nephropathy 

IgA nephropathy is marked by mesangial staining for IgA, C3 and MAC. Although the serum 

levels of complement are normal animal models suggest a role for both the LP and the AP 

(Scivittaro et al., 1993, Emancipator, 1994, Emancipator, 2011, Ohsawa et al., 2012). 
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1.2.4.4 Lupus nephritis 

Deficiency of complement components C1q, C4 and C2 predisposes to SLE by impaired 

clearance of apoptotic materials (Robson and Walport, 2001). SLE is a very complex systemic 

condition and is characterised by the presence of anti-DNA auto-antibodies that form immune-

complexes with nucleosomes. These complexes can deposit in the glomeruli and initiate 

activation of the CP and followed by AP activation result in lupus nephritis (Saxena et al., 

2011).  

1.2.4.5 Membranoproliferative glomerulonephritis type II 

MPGN type II is histologically defined by strong proliferation of mesangial cells and thickening 

of the GBM (Sethi and Fervenza, 2012). Loss of renal function is progressive. In these patients 

FH is often defective or deficient and serum C3 and FB levels low (Thompson and Winterborn, 

1981, Wyatt et al., 1982, Levy et al., 1986, Fijen et al., 1996, Vogt et al., 1995, Ault, 2000). FH 

function may also be impaired by autoantibodies (Goodship et al., 2012). A gain of function 

mutation of C3 that causes resistance to fluid-phase regulation by FH has been described in 

the context of the MPGN type II (Martinez-Barricarte et al., 2010). Approximately 80% of 

patients present with a C3 nephritic factor (C3NeF), an antibody that binds to and stabilises the 

C3 convertase allowing increased turnover of C3 (Spitzer et al., 1969, Daha et al., 1976, Smith 

et al., 2011). The ongoing AP activation results in the generation of C3 metabolites that deposit 

along the GBM. The dense deposits along the GBM give this disorder the alternative name 

“Dense Deposit Disease” (DDD) (Benz and Amann, 2009a, Pickering and Cook, 2008a). The 

structure of the GBM and absence of surface bound regulators provide clues to understanding 

the pathogenesis of MPGN type II. FH is the prime complement regulator of the GBM and in its 

absence C3 metabolites are constantly produced in the fluid-phase and deposited along the 

unprotected membrane. The GBM cannot undergo lysis or apoptosis. Subsequently the 

complement-coated material is not cleared and further AP activation occurs.  

Animals deficient in FH have provided invaluable insight into the pathogenesis of MPGN type 

II. Complete deficiency of FH in mice and pigs results in MPGN type II like disease (Hogasen et 

al., 1995, Pickering et al., 2002). The deposits along the GBM contain iC3b, C5, C6, MAC in pigs 

and C9 in mice, with C3 metabolites appearing first (Jansen, 1993, Pickering et al., 2002). 

Deposition of MAC, besides C5 and C9, along the GBM has also been shown in human MPGN 

type II (Levy et al., 1986, Falk et al., 1983, West et al., 2001). It has been suggested that the 

MAC may be formed in the fluid-phase since Cfh-/- mice show C5 activation in plasma and renal 

disease is ameliorated by inhibition of C5 with an anti-C5 mAb (Pickering et al., 2006). An 

important role of fluid-phase complement activation to generate C3 metabolites for deposition 

along the GBM is implicated by the fact that Cfi-/- do not develop DDD (Rose et al., 2008). 
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Studies of the Cfh-/- and Cfi-/- therefore strongly imply that, opposed to aHUS, treatment of 

DDD should aim to restore fluid-phase regulation to ultimately prevent deposition of C3 

metabolites at the GBM. Some MPGN II patients respond to treatment with anti-platelet 

agents, for others plasma infusion presents an option. For patients presenting with C3NeF 

plasmapheresis can alleviate progression (Licht et al., 2005). As for aHUS, transplantation is an 

option that requires careful consideration. Disease recurs in 50% of patients and graft survival 

is generally poor (Smith et al., 2007, Smith, 2008, Neumann et al., 2003). The current 

treatment options for MPGN type II are not satisfactory and there is a need for new therapies 

that target the uncontrolled AP activation. 

1.2.5 The AP in renal ischaemia-reperfusion injury 

There are several clinical settings in which the circulation of an organ or tissue is interrupted 

for an extended period of time and subsequently reperfused. These include organ 

transplantation, coronary bypass surgery and thrombolytic therapy (Eltzschig and Eckle, 2011, 

Eltzschig and Collard, 2004). Ischaemia-reperfusion is recognised as key factor in graft survival 

after transplantation and the tubulointerstitial space is the main site of injury (Troppmann et 

al., 1995). In a hypoxic tissue the production of ATP is interrupted which impacts on the 

function of ion-pumps and ultimately leads to the influx of water and certain ions. As a result 

the cells swell and are very susceptible to external stress. A number of complex processes are 

initiated in the cells and gene expression profiles change dramatically (Vieyra and Heeger, 

2010, Correa-Costa et al., 2012). Generally the cells enter a proinflammatory state with 

increased expression of cell adhesion molecules, cytokines and complement components. 

Complement plays an early role in the pathogenesis of renal ischaemia-reperfusion injury. The 

anaphylatoxins C3a and, in particular, C5a facilitate pathogenesis in a number ways, including 

neutrophil attraction, stimulation of local chemokine secretion and mediation of T cell 

responses (de Vries et al., 2003a, Thurman, 2007, Peng et al., 2012). A primary role for the AP 

and terminal pathway components has been demonstrated by the use of knock-out mice for 

several complement components. C3-/-, C5-/-, C6-/- and fB-/- but not C4-/- mice are protected 

from injury to some extent when subjected to renal ischaemia-reperfusion (Zhou et al., 2000, 

Thurman et al., 2003, Thurman et al., 2006a, Thurman et al., 2007). Deficiency of regulators on 

the other hand, exacerbates injury (Yamada et al., 2004, Turnberg et al., 2004). Murine 

proximal tubular epithelial cells secrete FH but express only Crry on their basolateral side and 

no surface regulators on the luminal side (Gerritsma et al., 1997). Ischaemia-reperfusion alters 

the expression of Crry and thus renders the tubular epithelium susceptible to damage 

(Thurman et al., 2006a). Renner et al. established a protective role for surface bound FH in 

wild-type mice subjected to ischaemia-reperfusion (Renner et al., 2010, Renner et al., 2011). 
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They further showed protection of tubular epithelial cells from AP-mediated lysis in the 

presence of super physiologic concentrations of FH in vitro and prevention of injury after 

ischaemia-reperfusion by administration of a CR2-FH fusion protein (Renner et al., 2011). This 

and several other studies have demonstrated that complement is a valid therapeutic target in 

renal ischaemia-reperfusion injury (Pratt et al., 2003, Arumugam et al., 2003, de Vries et al., 

2003b, Woodruff et al., 2003). 
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1.3 Therapeutic potential of the complement system 

The complement system participates in numerous functions of the body and dysfunction is 

unsurprisingly implicated in a wide array of pathologies. The therapeutic potential of the 

complement system has been explored extensively in the last decade resulting in the 

identification of numerous attractive targets and potential agents (Ricklin and Lambris, 2007a, 

Wagner and Frank, 2010). The small number of approved therapeutic agents suggests that 

modulation of complement activity is a challenging undertaking. Some promising agents have 

failed at the clinical development stage as they do not satisfy the criteria of an “ideal drug” and 

fail to deliver high efficacy and specificity alongside minimal side-effects and low production 

cost. This may reflect on the complexity of the cross-talk between complement and other 

physiological systems but also on the insufficient understanding of the mechanisms involved in 

complement-mediated conditions. Undesired activation of complement can be modulated by 

inhibition of pathway components or replacement of dysfunctional components. The key 

targets are the central components C3 and C5 (see Tables 1 and 2). The majority of agents 

under development are biologicals or biopharmaceuticals, a newer class of drugs that is largely 

based on proteins and that has been expanding significantly over the past decade (Bristow et 

al., 2006, Reichert, 2010, Page et al., 2012). Native or recombinant proteins, fusion proteins, 

monoclonal antibodies, small peptides and serine protease inhibitors comprise the range of 

potential therapeutics. Tables 1 and 2 provide a summary of therapeutics that are approved, in 

clinical trials or currently undergoing preclinical development. Examples of advanced reagents 

that are of particular relevance for this project because they find application in AP-mediated 

conditions are POT-4 / ALP-1, Eculizumab and Mirococept. Compstatin, and its analogue POT-4 

/ ALP-1, is a small cyclic peptide (13 amino acids) that effectively inhibits the turnover of C3 by 

both C3 convertases and binds several C3 metabolites including hydrolysed C3, C3b, iC3b and 

C3c (Sahu et al., 1996, Ricklin and Lambris, 2008). It is currently undergoing clinical testing in 

phase II trials for age-related macular degeneration (AMD) but there are reports of successful 

application in animal models of other conditions, including sepsis (Silasi-Mansat et al., 2010). 

Mirococept controls, similar to POT-4, the metabolism of C3 and is the latest of several CR1-

based approaches. The soluble CR1 receptor (sCR1/TP10) yielded promising results in several 

animal models but clinical evaluation revealed TP10 did not affect the outcome for female 

subjects undergoing bypass surgery for acute myocardial infarction (AMI) and trials of TP10 for 

AMI have been discontinued (Weisman et al., 1990, Couser et al., 1995, Lazar et al., 2004, 

Lazar et al., 2007). Full size soluble CR1 is nevertheless the focus of many studies.  
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Table 1: Therapeutic mAbs and recombinant proteins to target complement 

 

Agent  Description Development 
stage 

Company 

Th
e

ra
p

eu
ti

c 
an

ti
b

o
d

ie
s 

Eculizumab / Soliris Humanised anti-C5 
mAb 

Approved for PNH; 
phase II for aHUS; 
phase I for DDD 

Alexion 
Pharmaceuticals 

Pexelizumab Humanised anti-C5 
mAb 

Phase III for AMI and 
CABG 

Alexion 
Pharmaceuticals 

Ofatumumab / 
Arzerra 

Humanised anti-
CD20 

Approved for CLL; 
phase III for 
lymphomas and RA 

Genmab A/S 

HuMax-CD38 Humanised anti-
CD38 

Preclinical, for 
multiple myeloma 

Genmab A/S 

TNX-234 Humanised anti-FD 
mAb 

Latest: phase I wet 
AMD? 

Tanox / Genentech 

TNX-558 Humanised anti-C5a 
mAb 

Preclinical? Tanox / Genentech 

TA106 Humanised anti-FB 
mAb Fab fragment 

Preclinical, for AMD Alexion 

Neutrazumab Anti-C5aR mAb Phase I (2008) for RA 
and psoriasis 

G2 therapeutics 

Anti-properdin Humanised anti-
properdin mAb 

Preclinical, for RA Novelmed 
therapeutics 

MEDI7814 Human anti-C5 
antibody 

Phase I (safety in 
healthy volunteers) 

MedImmune LLC 

R
e

co
m

b
in

an
t 

re
gu

la
to

rs
 /

 c
o

m
p

o
n

e
n

ts
 

sCR1 / TP10 / 
CDX1135 

Soluble CR1 Phase II for CABG; 
phase I fro DDD 

Avant 
Immunotherapeutics; 
Celldex 

sCR1-sLe
x
 / TP20 Soluble CR1 targeted 

to inflammation site 
Preclinical, for stroke 
and AMI 

Avant 
Immunotherapeutics 

Mirococept Soluble CR1 with 
lipopeptide 
membrane linker 

Phase II for 
ischaemia-
reperfusion in 
cadaveric renal 
allograft 

King’s College London 

TT30 CR2/FH fusion 
protein, targeting to 
site of inflammation 

Phase 1 for PNH Alexion 

CAB-2 / MLN-2222 DAF/MCP fusion 
protein 

Phase 1 for CABG (?) Millenium 
therapeutics / Xoma 

rhMBL Recombinant human 
MBL 

Programme 
terminated after 
phase I trials for 
infection in liver 
transplant / multiple 
myeloma patients 

Enzon 
Pharmaceuticals 

Adapted from: (Wagner and Frank, 2010) and (Ricklin and Lambris, 2013) 
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Table 2: Small peptides and serine protease inhibitors to target complement 
 

Agent  Description Developm
ent stage 

Company 
Sm

al
l p

ep
ti

d
e

s 

Compstatin / POT-4 / 
APL-1 

Small peptide C3 
inhibitor 

Phase II for AMD Apellis; Alcon / 
Novartis 

PMX-53 Small peptide C5aR 
antagonist 

Phase II for RA 
and psoriasis 

Arana / Cephalon / 
Teva Pharmaceuticals 

ARC1905 RNA aptamer, C5 
inhibitor  

Phase I for AMD Ophthotech 
Corporation 

JPE-1375 / JSM-7717 Small peptide C5aR 
inhibitors 

Preclinical? Jerini AG / Shire 

Se
ri

n
e 

p
ro

te
as

e 

in
h

ib
it

o
rs

 

C1-INH Purified from plasma Approved for 
HAE; phase I for 
AMI, CABG, 
renal 
transplantation 

CSL Behring 
 

Rhucin / rhC1INH Recombinant human 
C1-INH 

Phase III for HAE 
completed 

Pharming 
Technologies B.V. 

Adapted from: (Wagner and Frank, 2010) and (Ricklin and Lambris, 2013) 
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Celldex are currently investigating the use of TP10, under the name CDX-1135, for MPGN type 

II in phase I trials. A further variant is the sLex linked TP10 which targets to E- and P-selectins 

displayed on endothelial cells for use in stroke and AMI (Rittershaus et al., 1999, Picard et al., 

2000, Thomas et al., 2004). Mirococept targets the first three SCRs of CR1 to the epithelial and 

endothelial cell surface via a fatty acid tail that can incorporate into the cell membrane. 

Perfusion of rat kidneys prior to transplantation was shown to improve ischaemia-reperfusion 

injury even after prolonged storage (Pratt et al., 2003, Patel et al., 2006). Mirococept is 

currently undergoing testing in clinical phase IIb trials. Other cell-surface regulators have been 

produced in soluble forms sMCP and sDAF have been shown to be less active than their 

physiological counterparts (Wagner and Frank, 2010).  

C5, its metabolite C5a and the C5a receptor (C5aR) are appealing targets for therapeutic 

intervention (Table 1). The most successful candidate to date is the humanised anti-C5 mAb 

that was developed by Alexion for the treatment of paroxysmal nocturnal haemoglobinuria 

(PNH) (Thomas et al., 1996, Rother et al., 2007). PNH is a rare but severe complement-

mediated haemolytic anaemia. Eculizumab was shown to effectively reduce haemolysis in PNH 

patients and consequently reduce the requirement for blood transfusion (Hillmen et al., 2004, 

Hill, 2005, Parker, 2009). As discussed in section 1.2.3.4, Eculizumab has been successfully used 

in a small number of aHUS patients (Nurnberger et al., 2009, Gruppo and Rother, 2009, Hadaya 

et al., 2011, Al-Akash et al., 2010). The clinical phase II trials for the treatment of aHUS with 

Eculizumab are to conclude in December 2012. There are several reports that demonstrate 

that Eculizumab can have a beneficial effect in a number of other complement-mediated 

conditions. These include MPGN type II, SLE and rheumatoid arthritis (Bomback et al., 2012, 

Herlitz et al., 2012, Hadaya et al., 2011, Wang et al., 1995). Clinical trials for the use of 

Eculizumab in MPGN type II and renal transplantation are underway. Eculizumab and POT-4 

offer very effective systemic inhibition of the complement system which is desirable in the 

acute setting as a life-saving intervention.  

The effect of long-term suppression of the complement system is not known. Undoubtedly it 

results in an increased risk for infection. A key concern is the potential effect of complement 

modulation on innate and adaptive immune responses and other functions of complement. 

Drugs that target pathway activation or C3/C5 convertase activity may exert adverse immune-

compromising effects but would still be suitable for acute phase treatment (Ricklin and 

Lambris, 2007b). The currently approved agents target the classical and lectin activation 

pathways or the common lytic pathway leading up to formation of the MAC and fall into this 

category. Targeting to the site of complement activation or tissue injury has become a new 

focus in the development of these agents. It offers solutions to problems associated with 
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systemic drug administration such as immunosuppressive effects, negative effects on other 

homeostatic functions of complement, dose requirements and half-life (Holers et al., 2013). 

Recombinant regulators are specific, can be targeted and would probably not greatly interfere 

with normal immunity. These agents are therefore ideal candidates for the treatment of 

chronic conditions and/or conditions with underlying regulator deficiency or dysfunction. 

There are several recombinant regulators under development. Mirococept, as discussed 

above, is a promising candidate that has so far progressed well through the clinical trials. TNX-

234 (Tanox, now Genetech) is a humanised monoclonal antibody against Factor D and is 

currently undergoing testing in Phase I trials for AMD.  

The most extensively studied targeting mechanism to the site of complement activation is 

complement receptor type 2 (CR2 or CD21) (reviewed in detail by (Holers et al., 2013). CR2 

binds to the C3 fragments C3dg, C3d and iC3b which are generated and deposited at the site of 

complement activation (van den Elsen and Isenman, 2011). Fusion of the C3 binding domain of 

CR2 (SCRs 1-4) to a complement regulator thus provides a means of targeting this regulator to 

the site of complement activation. CR2 fusion proteins that have been tested include CR2-DAF 

and CR2-CD59 but CR2-Crry is the best characterised example (Song et al., 2003, Atkinson et 

al., 2005, Holers et al., 2013). CR2-Crry has been tested in a wide array of murine models of 

conditions in which the complement system is implicated and has demonstrated several 

benefits of site-specific complement inhibition. The studies included several models of 

ischaemia-reperfusion injury, lupus nephritis, AMD and arthritis (Atkinson et al., 2005, 

Atkinson et al., 2008, Song et al., 2007, Sekine et al., 2011a, Sekine et al., 2011b). In a murine 

model of intestinal ischaemia-reperfusion injury, CR2-Crry had an increased half-life and 

provided better protection than an untargeted version of the construct (Crry-Ig) (Atkinson et 

al., 2005). Unlike the untargeted Crry-Ig, CR2-Crry did not increase susceptibility to 

experimental sepsis (Atkinson et al., 2005). Targeted complement inhibition thus avoids the 

adverse effect of systemic complement inhibition. This was further illustrated in MRL/lpr mice 

which develop spontaneous lupus. CR2-Crry did not affect complement-mediated clearance of 

immune-complexes, whilst treatment with Crry-Ig resulted in an increase in circulating 

immune complexes (Bao et al., 2003). To address the emerging evidence of AP involvement in 

many conditions an AP-specific version of CR2-Crry, CR2-fH, was developed and again tested in 

several models (Holers et al., 2013). These include models of intestinal and renal ischaemia-

reperfusion injury, collagen-induced arthritis and spontaneous lupus (Huang et al., 2008, 

Renner et al., 2011, Banda et al., 2009, Sekine et al., 2011a). CR2-fH has so far not been tested 

in Cfh-/- or Cfh-/-
.Δ16-20 mice. The successful application of CR2-fH in murine disease models 

encouraged the development of a human equivalent, TT30 (Fridkis-Hareli et al., 2011). In the 
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treatment of PNH erythrocytes TT30 displayed superior therapeutic properties compared to 

Eculizumab which systemically blocks C5 activation but allows continued C3 metabolism 

(Risitano et al., 2012). TT30 has also been demonstrated to effectively reduce pathology in a 

murine model of AMD (Rohrer et al., 2012). TA106 (Taligen) is a further CR2 fusion protein 

comprising SCRs 1-4 of human CR2 and an anti-Factor D antibody fragment. Both TT30 and 

TA106 are undergoing preclinical testing for the treatment of aHUS and AMD and have yielded 

encouraging in vitro and ex vivo data.  

The wide-ranging studies of CR2-Crry and CR2-fH / CR2-FH have certainly provided a strong 

case to move away from systemic inhibition of central complement components to site-

specific targeting of complement regulators. Mirococept and sCR1-sLex / TP20 are further 

examples of complement regulators targeted to a specific site by means of a sophisticated 

targeting mechanism. The identification of suitable targets is challenging, but the advances in 

antibody engineering have opened up new possibilities to exploit the binding properties of 

monoclonal antibodies to create novel targeted fusion proteins.  
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1.4 Monoclonal antibodies for drug targeting 

1.4.1 Origin of monoclonal antibodies 

B cells are a central cell of adaptive immunity and are distinguished from other lymphocytes by 

the presence of the B cell receptor (BCR) and molecules like CD19. The three key functions of B 

cells include the secretion of antibodies (soluble BCR) against specific antigens, development 

of immunological memory by formation of memory B cells and the presentation of antigen via 

MHC class I and II molecules (Vaughan et al., 2011). The principal of clonal selection is central 

for the development of a specific adaptive immune response. Lymphoid progenitor cells 

produce large numbers of T and B cells, each displaying different antigen specificities. Central 

and peripheral tolerance mechanisms induce and maintain tolerance by deletion of self-

reactive cells (Melchers and Rolink, 2006, Meffre, 2011). Activation of a T or B cell occurs after 

it is presented with its specific antigen and results in proliferation of that specific cell (clonal 

expansion). An adaptive immune response is initiated when an antigen presenting cell (APC) 

presents a specific antigen to a naïve T cell in a lymphoid organ. The cell becomes activated 

and proliferates. Engagement of the BCR is required for a B cell to become activated. B cells 

can be activated through freely circulating antigen, in particular by antigen associated with C3d 

or C3dg which will result in co-ligation of BCR and CD19 and lower the activation threshold 

10,000-fold (Dempsey et al., 1996). Activation of a B cell usually requires help by activated T 

helper cells. Antigen is captured by the BCR, internalised and displayed by MHC class II 

molecules on the cell surface. An activated T cell associates the displayed antigen with its T cell 

receptor (TCR) and provides co-stimulation by binding of CD40L with CD40 on the B cell surface 

(Frauwirth and Thompson, 2002). This results in secretion of IL-4, IL-5 and IL-6 by the T cell and 

leads to further activation and proliferation of the B cell (Mosmann, 2000). The expanding B 

cell clones, now plasma cells, secrete large amounts of antibodies which can act to neutralise 

and opsonise pathogens and can mediate activation of the classical pathway of complement 

activation (Calame et al., 2003).  

1.4.2 Antibody structure and function 

Antibodies are soluble immunoglobulins (Ig) that are secreted by plasma cells in response to 

specific antigen. The five Ig classes include IgG, IgA, IgM, IgD and IgE. Each class has a distinct 

heavy chain (γ, α, μ, δ, and ε). IgG and IgA have further subclasses (IgG1, IgG2, IgG3, IgG4; IgA1 

and IgA2) (Janeway, 2001). Regardless of class, every antibody is comprised of four polypeptide 

chains. Two heavy chains (~ 50 kDa each) are joined by two disulphide bonds in the hinge 

region. Each heavy chain associates with a light chain (~ 25 kDa each) via disulphide bonds in 

the constant regions (Cohen, 1975). Both heavy and light chains have distinct functional, 

globular domains of approximately 110 amino acids (Figure 6).   
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Figure 6: General antibody structure 
 
An antibody is comprised of four polypeptide chains, two identical heavy chains and two 
identical light chains. The heavy chain has four globular domains: the heavy chain variable 
domain (VH) and three heavy chain constant domains (CH1, CH2, CH3). The flexible hinge 
domain connects the CH1 and CH2 and also connects the heavy chains via disulphide bonds. 
The light chain consists of two globular domains: the light chain variable domain (VL) and the 
light chain constant domain (CL). Each light chain is associated with a heavy chain via 
disulphide bonds in the CL and CH1. VL and VH bear the antigen binding site.  
Diagram adapted from: (Kalsi et al., 1999, Miner, 2008) 
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Four such domains, one variable heavy chain domain (VH) and three heavy chain constant 

domains (CH1, CH2 and CH3), are present in the heavy chain (Janeway, 2001). A flexible linker, 

the hinge region, is located between CH1 and CH2. The light chain is comprised of the light 

chain variable domain (VL) and the light chain constant region (CL). Antibodies can have one of 

two light chains, either lambda (λ) or kappa (κ). The amino acid sequences of the N-terminal 

variable domains, which form the antigen binding site, vary greatly between antibodies 

(Stewart and Schwartz, 1994). Although each VH and VL is unique it contains conserved, less 

varied segments called the framework regions. These regions are designated FR1, FR2, FR3 and 

FR4. The hypervariable or complementarity determining regions (HV1, HV2, HV3 or CDR1, 

CDR2, CDR3) are located in between the framework regions with HV3/CDR3 showing the 

highest degree of variability. CDRs of the VH and VL form an antigen binding that is 

complementary to the surface of a specific antigen (Stewart and Schwartz, 1994). CH2 and CH3 

form the Fc (Fragment, crystallisable) region. Three key functions of the Fc region have been 

described. Firstly, it mediates antibody binding to Fc receptors on the cell surface of immune 

cells including macrophages and neutrophils. Secondly, the classical pathway component C1q 

can bind to the Fc region of an antibody in complex with an antigen resulting in activation of 

the complement system. Thirdly, engagement of the Fc with the neonatal Fc receptor (FcRn) 

facilitates transport of antibodies across certain membranes and body compartments (e.g. the 

placenta) (Abbas, 2007).  

1.4.3 Mechanisms of antigenic diversity 

Diversity of the primary antibody repertoire is generated by somatic recombination in the 

bone marrow (Schatz et al., 1992). The genes for variable and constant regions of antibodies 

are in greater proximity in B cells than in other cells types, allowing for rearrangement of these 

genes by somatic recombination. The genetic loci of the heavy chain and the λ and κ light 

chains contain multiple copies of for the V (up to 40) and J (up to 6) genes (Figure 7). In the 

case of the λ light chain there are several C genes (up to 5) and the heavy chain locus contains 

several D gene segments (up to 23) and gene segments for each of the immunoglobulin 

classes, including their respective subclasses (Figure 7) (Abbas, 2007). The VL is comprised of 

two different gene segments. The V (variable) gene segment and the J (joining) gene segment 

form the VL exon. Joining of the VL region to the leader sequence and constant region is 

achieved by splicing of introns that separate these gene segments. The VH contains a third 

gene segment, the D (diversity) gene segment in addition of the V and J segments. V(D)J-gene 

rearrangement creates diversity by recombination of different VL gene segments (Figure 8) 

and adds a further level of diversity at the junctions of joined gene segments by addition and 

subtraction of nucleotides (Abbas, 2007).  
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Figure 7: Immunoglobulin heavy and light chain gene structure 
 
The λ light chain has approximately 30 Vλ gene segments, each with its own promoter (yellow 
circle) and leader sequence, and up to five Jλ and Cλ gene segments. The κ light chain has 
approximately 38 Vκ gene segments but only one constant region segment. The γ heavy chain 
gene contains around 40 variable region segments, 23 D and five J gene segments. There is a 
functional constant region segment for each subclass, each containing segments for CH1, the 
hinge region, CH2 and CH3.  
Diagram adapted from: (Maizels, 2005) 
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Figure 8: V(D)J rearrangement  
 
The variable regions of antibody light and heavy chains are constructed by rearrangement of the V, D 
and J gene segments (somatic recombination). One of several V and J segments comprise the exon for 
a light chain V-region. The rearranged DNA is transcribed into tRNA which is spliced to form the mRNA 
ready for translation. For the heavy chain a D and a J segment are joined before addition of a V gene 
segment. As for the light chain, the rearranged DNA is transcribed in to RNA, spliced and translated. 
Diagram adapted from: (Maizels, 2005) 
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In addition to these gene rearrangements in the germline DNA, the antibody repertoire can be 

further diversified in the mature B cell. Three mechanisms have been described. Somatic 

supermutations are point mutations that occur in the variable region and alter affinity of the 

secreted antibody. These mutations form the basis of affinity maturation which serves the 

selection of clones with a higher affinity for a specific antigen. The specificity of the antibody 

can be altered by introduction of VL fragments derived from pseudogenes. The mechanism of 

class switching involves the irreversible replacement of the default μ heavy chain with either a 

γ, α or ε heavy chain (Kracker and Durandy, 2011). Class switching is initiated by cytokines and 

does not affect the variable regions. These three processes aim to enhance the function of the 

secreted Ig either with respect to antigen binding or the Fc-mediated effector functions and 

add to the overall diversity of the available Ig repertoire (Abbas, 2007).  

1.4.4 Genetic engineering of antibodies 

The technology for the production of monoclonal antibodies was invented by Georges Köhler 

and Cesar Milstein in 1975 (Kohler and Milstein, 1975). They established a method to 

immortalise a plasma cell by fusion with a tumour cell to create a monoclonal hybridoma cell 

line that produces a single type of antibody – a monoclonal antibody (mAb). This key 

development in the area of antibody research revolutionised the application of antibodies in 

the research and diagnostic setting within a short period of time and was honoured with a 

Nobel Prize in 1984. The advantages of this new technology were very soon utilised to develop 

novel therapeutics. In 1986 the first therapeutic mAb, OKT3, was approved by the Food and 

Drug Administration (FDA) in the U.S.A.. OKT3 targets the CD3 receptor on T cells and is given 

to treat acute rejection of kidney, liver and heart transplants in patients that fail to respond to 

steroid treatment (Goldstein et al., 1986, Sevmis et al., 2005). The key disadvantage of the 

early therapeutic mAbs was their immunogenicity. The so called human anti-mouse antibody 

(HAMA) response impacts on half-life and therefore efficacy but can also increase toxicity in 

the patient. Developments in the field of molecular biology, in particular recombinant DNA 

technology, provided the methods for antibody engineering to address the problem of the 

HAMA response. Chimerisation of antibodies involved the genetic replacement of the murine 

constant region with human constant regions (Morrison et al., 1984, Neuberger et al., 1984). 

To humanise an antibody the CDRs are lifted from the murine template into a human 

backbone comprising human framework and constant regions (Jones et al., 1986, Queen et al., 

1989). Prominent examples of the first chimeric and humanised therapeutic mAbs are 

Rituximab (Rituxan, Biogen Idec / Genentech, 1997) and Alemtuzumab (Campath, Genzyme, 

2001), respectively. Advances in the generation of transgenic mice ultimately facilitated the 

production of human mAbs (Taylor et al., 1992, Lonberg et al., 1994, Green et al., 1994). 
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Special PCR techniques to clone variable regions, e.g. rapid amplification of cDNA (RACE), 

allowed the establishment of murine and human VH/VL libraries with up to 109 specificities 

(Frohman et al., 1988, Orlandi et al., 1989, Ohara et al., 1989, Loh et al., 1989). The tool to fully 

exploit the value of such libraries, phage display of antibody fragments, was developed by 

Clackson and co-workers (Clackson et al., 1991). This technology does not require the 

establishment of hybridoma cell lines and requires the immunisation of fewer, if any, animals. 

The PCR-derived library is cloned into a phagemid plasmid, in-frame with a viral capsid protein 

and used to transform bacteria. The bacterial culture supernatant contains the phages that 

display the Fvs. The selection process (panning) involves binding of phages displaying high 

affinity Fvs to immobilised antigen (e.g. microtitre plate), washing of unbound or weakly 

bound phages and elution of the strong binders for transformation of bacteria to repeat the 

process. Each round of panning selects the phages based on the binding properties of the 

displayed protein and, at the same time, takes forward the according DNA sequence. Panning 

is a time-saving, efficient process that can be automated and scaled up for high-throughput 

screening. More than 30 therapeutic mAbs, most humanised or human, are approved for use 

in Europe and the United States. A similar number is undergoing testing in Phase III clinical 

trials and several hundred are undergoing pre-clinical testing (Li and Zhu, 2010). 

1.4.5 Natural and genetically engineered antibody formats 

Affinity, valency (avidity) and size are properties of an antibody that can now be engineered at 

a molecular level. In addition, functional properties can be modulated. Smaller antibody 

fragments offer the advantage of better tissue penetration, relevant for cancer therapeutics in 

particular, and may be easier to produce (Jain, 1990, Yokota et al., 1992). Reduction of the 

antibody to its antigen binding domains, however, greatly impacts on its half-life (Cumber and 

Wawrzynczak, 1992). The first alternative antibody formats were fragments produced by 

proteolytic cleavage using either pepsin or papain which will generate Fab or F(ab’)2 

fragments, respectively (Porter, 1959, Nisonoff et al., 1960). Alternative formats also occur 

naturally. E.g. it has been shown for heavy chain dimers found in camels and sharks and 

recombinant single-domain antibodies that these molecules are capable of antigen recognition 

in absence of a light chain (Greenberg et al., 1995). A wide array of individual, fused or linked 

antibody formats with differing properties have been designed (Figure 9).The currently most 

successful formats in pre-clinical and clinical testing include Fab fragments, scFv fragments and 

single domain antibodies. Abciximab (Reopro, anti-GPIIb/IIIa receptor), Ranibizumab (Lucentis, 

anti-VEGF) and Certolizumab (Cimzia, anti-TNFα) are approved therapeutic Fab fragments. 

Lucentis is the modified Fab of the humanised mAb Avastin (Presta et al, 1997; Chen et al, 

1999).  
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Figure 9: Natural and engineered antibody formats 
 
Antibodies can be engineered to a variety of formats. For some applications a small fragment 
like a Fab fragment, a single chain antibody, variable fragment (Fv) or scFv may be desired.  
Multiple Fab fragments, minibodies or scFv dimers ((scFv)2) can be bispecific. Fusion proteins of 
e.g. a scFv and a drug or other protein components are an attractive format for targeting of a 
drug to a specific cell type.  
Adapted from: (Liu et al., 2008) 
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1.5 Hypothesis and project aims 

The AP is a very potent activation pathway of complement and requires tight regulation to 

protect host cells from damage. Dysfunctional or overwhelmed AP regulation is implicated in 

several renal pathologies, including aHUS, MPGN type II, anti-GBM nephritis and ischaemia-

reperfusion injury (Sethi and Fervenza, 2012, de Cordoba and de Jorge, 2008, Borza et al., 

2003, Chowdhury et al., 2003). Currently only very few therapeutics address the dysregulation 

of the AP directly. FH is a central regulator of the AP and plays a particularly important role in 

the protection of the kidney, especially the glomerulus, from AP-mediated damage (Ault, 2000, 

Licht and Fremeaux-Bacchi, 2009). The objective of this project was to generate and 

functionally assess recombinant FH-based therapeutics that are either targeted to 

glycosaminoglycans at the host cell surface or the NC1 domains of the collagen type IV α3-

chain in the glomerular basement membrane.  

Hypothesis 1:  

FH is a large glycoprotein that is difficult to produce in therapeutically relevant quantities. I 

hypothesise that a recombinant FH protein comprised of the regulatory domain (SCRs 1-5) or 

the regulatory domain and the cell-binding domain (SCRs 1-5 and SCRs 18-20) will have 

comparable functional characteristics as native FH. Production of these lower molecular 

weight proteins is also anticipated to be easier compared to the full length protein. The 

specific aims are therefore: 

1. Generate two recombinant FH proteins, one incorporating SCRs 1-5 and the other SCRs 

1-5 and 18-20 (FH1-5 and FH1-5/18-20) to allow C3b and cell-surface binding. 

2. Assess the complement regulatory function of FH1-5 and FH1-5/18-20 using in vitro 

assays. 

Hypothesis 2: 

Treatment of Cfh-/- mice with serum-derived human or murine FH has been shown to restore 

serum C3 levels and alters glomerular deposition of C3 fragments (Paixao-Cavalcante et al., 

2009, Fakhouri et al., 2010). The advantages of targeting of FH to the site of complement 

activation (CR2-FH/TT30) have been demonstrated in numerous studies (Huang et al., 2008, 

Rohrer et al., 2010, Fridkis-Hareli et al., 2011). I hypothesise that fusion of the regulatory 

domain of FH to an antibody fragment (scFv) against a glomerular antigen (collagen type IV) 

will provide a useful means to target FH to the site of complement activation and deposition. 

To achieve this, the specific aims were to: 
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3. Characterise the binding properties of the candidate antibodies for targeting, mAb3 

and 1G6. 

4. Clone the variable regions of mAb3. 

5. Generate FH1-5 and mAb3 scFv / 1G6 scFv fusion proteins 

6. Assess antigen binding function of the FH1-5/scFv fusion proteins 
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2.1 General reagents, materials and equipment 

2.1.1 Chemicals 

General laboratory chemicals were purchased from Sigma-Aldrich (Dorset, UK) or Fisher 

Scientific (Loughborough, UK) and were analytical or comparable grade.  

2.1.2 Laboratory equipment 

For DNA electrophoresis agarose gels were run in the gel tank system from Cleaver Scientific 

(London, UK) and ethidium bromide staining was visualised using the Alpha Innotech Imager 

(Santa Clara, USA). The Mighty Small II Gel System (Amersham, Little Chalfont, UK) was used 

for SDS-PAGE. Transfer of protein from polyacrylamide gels to nitrocellulose was carried out in 

a water-cooled transfer system from Amersham (Little Chalfont, USA). PCR reactions were 

carried out using the PTC-200 DNA Engine Thermal Cycler (MJ Research, USA). Tubes up to 2 

ml volume were centrifuged using the Mini Eppendorf 5424 bench top centrifuge (Hamburg, 

Germany). Volumes between 2 ml and 50 ml were centrifuged using the Sanyo Harrier 18/80 

(Osaka, Japan) or the Thermo Scientific Sorvall Legend RT (Massachusetts, USA). High speed 

centrifugation were performed on the Beckman Coulter Avanti J-25 (Brea, USA) using the 

appropriate rotor. The Äkta Prime System (GE Healthcare) was used for protein purifications. 

The absorbance was measured at the appropriate wavelengths on the Labsystems Multiskan 

Spectrum microplate spectrophotometer (Thermo, USA) or the SpectraMAX 190 microplate 

reader (Molecular Devices, USA).  

2.1.3 Vectors and bacterial strains 

The mammalian expression vector pDEF (originally named pDR2EF1α) was used for expression 

of the recombinant proteins in CHO cells. Both ampicillin and hygromycin resistance genes are 

contained in pDEF to allow for selection in bacterial and mammalian cell culture, respectively. 

For molecular cloning E. coli strains TOP10 (Invitrogen, UK) or DH5α (NEB, USA) were 

transformed with plasmid DNA or ligation reactions.  
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Figure 10: pDEF (nMCS) vector map 
 
pDEF (nMCS) is a mammalian expression vector that contains ampicillin and hygromycin B 
resistance genes for bacterial and eukaryotic selection, respectively. The multiple cloning site is 
located downstream of the EF1a promoter. 
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2.1.4 Mammalian cell lines 

Chinese hamster ovary (CHO) cells, wild-type K1 were obtained from CACC. OX24 was gifted by 

B. Spiller, Cardiff and the mAb3 hybridoma cell line was obtained from Jörgen Wieslander, 

Lund. 

 

2.1.5 Enzymes 

All DNA restriction enzymes (SalI, NheI, KpnI, XbaI, BciVI) and the appropriate restriction 

buffers were purchased from New England Biolabs.  

2.1.6 Antibodies 

All commercially available antibodies and those generated in-house are listed in the table 

below. 

Table 3: Monoclonal and polyclonal antibodies 
Antibody Manufacturer Western blot   ELISA  

Goat anti-human FH 
Comptech, concentration 

not specified 
1/5000 

1/5000 
(detection) 

OX24, mouse anti-
human FH 

In house, 1 mg/ml 1/1000 
10 µg/ml 

(capture/coat) 

Bovine anti-goat Ig, 
HRPO conjugated 

Jackson, concentration not 
specified 

1/1000 1/2000 

Goat anti-rabbit Ig, 
FITC conjugated 

Jackson, concentration not 
specified 

n/a n/a 

Goat anti-mouse IgG 
Jackson, concentration not 

specified 
1/1000 n/a 

Sheep anti-
mouse Ig 

Jackson, 
concentration not 

specified 
1/2000 1/5000 

 

2.1.7 Proteins 

Table 4: Human complement proteins  
Name Manufacturer Stock concentration 

Human factor H Comptech, USA 1 mg/ml 

Human C3b “ 1 mg/ml 

Human C3 In house purification 0.8 mg/ml 

Human FI Comptech, USA 0.1 mg/ml 

Human factor D “ 0.1 mg/ml 

Human factor B “ 1 mg/ml 

 

2.1.8 Sequencing, gene synthesis and primer design 

Eurofins MWG Operon (Ebersberg, Germany) was used for DNA sequencing and synthesis of 

genes and oligonucleotide primers. All primers used for the project are listed in Table 5. The 

sequences of all recombinant genes that were generated and the genes that were 

commercially synthesized (mAb3 and 1G6 scFv) are in Appendix B.  
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Table 5: Oligonucleotides  

Primer Name Sequence (5’ to 3’) Template / application 

T7 TAATACGACTCACTATAGGG Sequencing pCR4 (TOPO cloning) 

T3 ATTAACCCTCACTAAAGGGA “ 

pDEF NF CTCAAGCCTCAGACAGTGGTGC 
Sequencing / colony PCR pDEF 
MCS 

pDEF NR CTGCATTCTAGTTGTGGTTTGTCC “ 

SCRIkozspSalI ATAGCTGTCGACGCCACCATGAGACTTCTAGCAA FH SCRs 1-5 SalI Kozak forward 

SCR5hisKpnI           
CAGTCGATGGTACCATGATGATGATGATGATGTTTCAAG
GTACATCTC 

FH SCRs 1-5 Histag KpnI site 
reverse 

F327fwd ACATATGGTACCACCTCCTGTGTGAATCC FH SCRs 18-20 KpnI forward 

F327rev TGTTATGCTAGCTTATCTTTTTGCACAAGTTGG FH SCRs 18-20 NheI reverse 

1G6fwdKpnI ATATGAAGGTACCCTGGTGAAGCCTGGGGCTT 
Forward primer PCR 1G6 scFv from 
PCR2, introducing KpnI 

1G6revNheI TAGACTGGCTAGCTTATTTTATTTCCAGCTTG 
Reverse primer PCR 1G6 scFv from 
PCR2, introducing NheI 

RACEMOG1^ TATGCAAGGCTTACAACCACA cDNA synthesis mAb3 heavy chain 

CKFOR^ CTCATTCCTGTTGAAGCTCTTGAC cDNA synthesis mAb3 light chain 

MOCG12FOR^ CTCAATTTTCTTGTCCACCTTGGTGC 
Reverse primer 5’ RACE mAb3 
heavy chain  

CKMOsp^ CTCATTCCTGTTGAAGCTCTTGACAATGGG 
Reverse primer 5’ RACE mAb3 light 
chain  

Light RT* CGCGGATCCGAAGATAGGATGGAGCTGG 
Alternative primer cDNA synthesis 
mAb3 light chain 

Heavy RT*              GTCCACCGTGGTGCTGCTGGC 
Alternative primer cDNA synthesis 
mAb3 heavy chain 

MKVP1* ATGGAGWCAGACACACTCCTGYTATGGGT 
Mouse kappa light chain leader 
sequence 

MKVP2* ATGAAGTTGCCTGTTAGGCTGTTGGTGCTG “ 

MKVP6* ATGAGGTKCYYTGYTSAGYTYCTGRGG “ 

MKVP8* ATGTGGGGAYCTKTTTYCMMTTTTTCAATTG “ 

MKVP11* ATGGAAGCCCCAGCTCAGCTTCTCTTCC “ 

VL-IIA*                GATGTTKTGATGACCCAAACT Mouse kappa light chain FR1 

mAb3VHfKpnI CATCATCATGGTACCCAGGTGCAGCTGCAGCAGTC 
PCR mAb3 heavy chain forward, 
introducing KpnI 

mAb3VHrlinker 
GGAGCCGCCGCCGCCAGAACCACCACCACCTGAGGAGA
CTGTGAGAGTGGGTGCCT 

PCR mAb3 heavy chain reverse, 
introducing (G4S)3 linker 

mAb3VLflinker 
GGCGGCGGCGGCTCCGGTGGTGGTGGATCCGACATTGT
GATGACCCAAACTC 

PCR mAb3 light chain forward, 
introducing (G4S)3 linker 

mAb3VLrNheI GCTAGCTTATTTTATTTCCAGCTTGGTCCCC 
PCR mAb3 light chain reverse, 
introducing NheI 

mAb3CDR2rev GACTCCACTGTACCGGTAGGATGCCAG 
Reverse primers for 5’ RACE of 
specific mAb3 light chain cDNA 

mAb3CDR3rev CGTGAGAGGATAGCTGTTATATTGCTG 
Synthesis of specific light chain 
cDNA from mAb3 mRNA 

mAb3 0312VHfwd CCGCAAGCGGTACCCAGGT 
Amplification of synthesized mAb3 
gene from pCR2 

mAb3 0312VLrev GCCGCAGGTGCTAGCTTATT “ 

^ As described in (Kontermann and Dübel, 2010) 
* As described in (Debat et al., 2001) 
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2.2 DNA manipulation and cloning 

2.2.1 Site-directed mutagenesis 

Mutagenesis primers were designed to change Val62 to isoleucine by site-directed 

mutagenesis in FH1-5 in the pDEF expression vector: 

Eva1 fwd 5'-TATAGATCTCTTGGAAATATAATAATGGTATGCAGGAAG-3' 

Eva1 rev 5'-CTTCCTGCATACCATTATTATATTTCCAAGAGATCTATA-3' 

Site-directed mutagenesis was performed as described in the manufacturer’s manual 

(Quikchange II XL, Stratagene). XL-10 gold cells were transformed with control plasmids 

(pWhitescript and pUC18) and grown on LB-ampicillin plates supplemented topically with 20 

mg/ml X-gal substrate and 20 mM IPTG. XL-10 gold cells transformed with the mutated pDEF 

DNA were grown on LB-ampicillin plates. Introduction of the point-mutation was confirmed by 

DNA sequencing.  

2.2.2 DNA ligation 

To generate the recombinant DNA constructs, restriction digested DNA inserts (PCR products, 

synthetic DNA fragments or fragments derived from other plasmids) were ligated with vector 

DNA that was digested with the same restriction enzymes using a T4 DNA ligase. The 

concentration of purified insert / vector DNA was determined by spectrophotometry at 260 

nM (Nandrop; Thermo Scientific, UK). A range of molar ratios of insert and vector (100 ng) 

were used for each ligation (1:1, 3:1 and 10:1). To calculate the correct ratios the following 

formula was used: 

 

             
                        

           
             

 

For each ligation reaction the appropriate amounts of vector and insert were mixed with 1 μl 

T4 DNA ligase buffer, 1 μl T4 DNA ligase. H2O was added to bring the final reaction volume to 

10 μl, if required. 

2.2.3 Plasmid transformation and DNA purification  

Aliquots of TOP10 (Invitrogen, UK) or DH5α (New England Biolabs) were transformed with 

plasmid DNA (~ 100 ng) or ligation reaction (5 μl) by incubating cells and DNA for 30 min on ice 

before heat-shocking for 45 s at 42 °C. The heat-shock was followed by 10 min incubation on 
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ice. After addition of 500 μl super optimal broth (SOB) supplemented with glucose (SOC 

medium) the cells were allowed to recover for 1 h at 37 °C at 220 rpm.  

SOB 
 
2% Bacto-tryptone  
0.5% Yeast extract 
8.56 mM NaCl  
2.5mM KCl  
H2O to 1000 mL 

SOC 

SOB supplemented with: 

10mM MgCl2  
20mM glucose 
 

2.2.4 Restriction enzyme digest 

Restriction digests of plasmid DNA or PCR amplified DNA fragments were performed for 

verification of plasmid DNA or to prepare DNA for ligation. Restriction was carried out 

according to enzyme manufacturer’s instructions (NEB), in 10 µl or 20 µl reaction volumes 

using 1-5 μg of DNA obtained using plasmid preparation kits (Qiagen). To minimize the self-

circularisation of digested plasmid DNA the 5’ phosphate groups were removed by treatment 

with Antarctic Phosphatase (NEB, UK). Usually 10 units of Antarctic phosphatase and 2 μl of 

reaction buffer were added to 1 μg of purified, digested plasmid DNA in a final reaction volume 

of 20 μl. The reaction was incubated for 20 min at 37 °C and the enzyme heat-inactivated for 5 

min at 65 °C. 

2.2.5 RNA preparation and cDNA synthesis 

Messenger RNA (mRNA) was prepared from mAb3 hybridoma cells using the GenElute Direct 

mRNA Mini-prep kit (Sigma). The synthesis of the first-strand cDNA of the mAb3 heavy and 

light chain mRNA was either carried out using the Roche 5’ RACE kit or M-MLV RT, RT buffer 

and RNAsin from Promega. In brief, 1 μg of mRNA was heated at 65 °C for 5 min and then 

added to the following components as described in Table 6. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Tryptone
http://en.wikipedia.org/wiki/NaCl
http://en.wikipedia.org/wiki/KCl
http://en.wikipedia.org/wiki/Purified_water#Double_distillation
http://en.wikipedia.org/wiki/Magnesium_chloride
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Table 6: Typical reaction for cDNA synthesis 
Volume Component 

5.0 μl (1 μg) mRNA  
5.0 μl RT buffer (5x) 
0.6 μl (25U) RNAsin 
6.0 μl (0.5 μg) RACEMOG1 or Heavy RT / CKFOR L or Light RT  
2.5 μl (10 mM each) dNTPs 
4.9 μl Nuclease-free water 

24.0 μl Total volume 

 

This mixture was warmed to 42 °C for 3-4 min before addition of 1 μl of M-MLV reverse 

transcriptase (200 U). The incubation was continued for 60 min followed by heat-inactivation 

of the reverse transcriptase for 10 min at 70 °C. 

2.2.6 Polymerase chain reaction  

Polymerase chain reaction (PCR) was performed to amplify DNA fragments from plasmid DNA 

either for downstream cloning or to confirm presence of an insert of the correct size in 

transformed bacterial clones (colony PCR) (Saiki et al., 1992). Standard PCR was also used to 

amplify heavy and light chain variable region from first strand cDNA. A Taq polymerase 

(Standard Taq, NEB) was used for colony PCR. A proof-reading Pfu polymerase (Phusion Taq, 

NEB) or a blend of proof-reading polymerases (Expand High Fidelty PCR System, Roche) was 

used for amplification of DNA destined for downstream cloning. The composition of a typical 

50 μl PCR reaction is shown in Table 7 and the standard cycling parameters are shown in Table 

8.  

Table 7: Composition of a typical PCR reaction  
Ingredients 50 μl reaction 

10x reaction buffer 5.0 μl 

MgCl2 5.0 μl 

dNTPs (25 mM) each 1.0 μl 

Forward primer 1.0 μl (5 pmol) 

Reverse primer 1.0 μl (5 pmol) 

DNA polymerase 0.5 μl 

dH2O 36.5 μl 

  

 

Table 8: Standard PCR cycling parameters  
Step Temperature Duration (min) No. of cycles 

Initial melting 95 °C 5 1 

Melting 95 °C 1 

35 Annealing 58 °C 1 

Extension 72 °C 1-2 min / kb 

Final extension 72 °C 10 1 

Storage 4 °C ∞ 1 
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2.2.7 Screening of colonies 

Bacterial colonies were screened for the presence of the transformed plasmid and an insert of 

the correct size by colony PCR (as described in 2.2.6). For this each colony was picked off the 

LB plate with a sterile pipette tip and suspended in 20 μl sterile water in a 0.2 ml tube. The 

suspended bacterial material was boiled for 5min and then centrifuged for 5 min at 1000 x g to 

separate the DNA from the denatured protein. 5 μl of the supernatant was used as template 

for the colony PCR. To amplify any DNA inserted into the multiple cloning site (MCS) of pDEF, 

primers upstream (pDEF NF) and downstream (pDEF NR) of the MCS were used.  

2.2.8 Rapid amplification of 5’ cDNA ends (5’ RACE) 

To amplify the unknown 5’ ends of the heavy and light chain variable regions 5’ RACE (Rapid 

Amplification of cDNA Ends) was used (Frohman et al., 1988). The principle of this type of 

anchor PCR is explained in Figure 11. Amplification of mAb3 variable domains from the first 

strand cDNA was carried out using a 5’ RACE kit (Roche). For the heavy chain the gene-specific 

primer primes at the end of the heavy chain constant region 1 (MOCG12), for the light chain at 

the end of the constant region (CKMOsp). For all PCR reactions of the heavy and light chain 

cDNA the anchor primer provided in the 5’ RACE kit and a proof-reading polymerase was used.  
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Figure 11: Rapid amplification of 5’ cDNA ends (5’ RACE) 
 
In the first step the first strand cDNA is synthesised from mRNA or total RNA using a gene specific primer 
(GSP1) reverse transcriptase. An RNAse mix is added in the second step to degrade the mRNA / RNA. In 
the third step a homopolymeric dCTP tail is added to the 3’ end of the first strand cDNA using a terminal 
deoxynucleotidyl transferase (TdT) to allow amplification of the unknown 5’ end. The poly-dCTP tail 
serves as priming site for the anchor primer which is used with a second gene specific primer (GSP2) to 
amplify the area of interest, including the complete 5’ region by PCR.  
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2.2.9 Agarose gel electrophoresis 

Plasmid DNA and PCR products were analysed by agarose gel electrophoresis. Depending on 

the size of the DNA fragments, 0.8-1.5% agarose gels were prepared with TAE buffer. After 

cooling ethidium bromide was added to a final concentration of 0.5 μg/ml into the melted 

agarose for visualisation of the DNA under ultraviolet (UV) light. The set gels were run in TAE 

buffer after samples were loaded (with loading dye, 6x from NEB). Each gel was run at 100-120 

V for approximately an hour or until the dye front had migrated approximately half way 

through the gel. The DNA was visualised using the Alpha Innotech gel imaging system (Santa 

Clara, USA). For gel purification of DNA fragments, the band of the corresponding size was 

excised using a scalpel and processed with a gel purification kit (Qiagen). 

Tris-acetic acid ethylenediamine tetraacetic acid (TAE, pH 7.2) 
40 mM Tris base 
40 mM Glacial Acetic acid 
10 mM EDTA 
 
DNA sample buffer (6x) 
60 mM Tris-HCl (pH 7.6) 
0.15% Orange G 
60% Glycerol 
60 mM EDTA 
 

2.2.10 Bacterial cell culture 

E. coli cultures were grown in 5 ml cultures in LB medium (Fisher Scientific) or on LB-agar 

(Fisher Scientific) plates supplemented with 100 µg/ml ampicillin.  Plasmid DNA was isolated 

using Qiagen Mini Plasmid Prep kits.  
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2.3 Mammalian cell culture 

2.3.1 Maintenance of cells 

All cells were maintained in humidified incubator with 5% CO2 supply at 37 °C. Cells were 

grown in standard plastic cell culture plates (6, 12, 24 or 96 wells) or flasks (25, 75 or 175 cm2) 

from Greiner Bio-one, Germany. Cells were counted using a haemocytometer (Neubauer, 

Germany). Adherent cell lines were split when they reached confluence, cell lines expressing 

recombinant proteins were left to grow and secrete protein for 10 days or until significant cell 

death was observed. Adherent cells were detached with trypsin / EDTA (PAA) or 0.01% EDTA 

only after washing with PBS. After successful detachment of the cells the trypsin was 

neutralised by addition of culture medium. The cells were centrifuged for 3 min at 300 x g, 

resuspended in culture medium and a fraction (usually 10%) returned to the flask containing 

fresh culture medium. Suspension cell lines were split every 3-4 days by centrifugation as 

above, usually 10% of the cells were returned to culture flask.  

 

Wild-type CHO 

CHO cells were maintained in Ham’s F-12 medium, supplemented with 10% fetal calf serum, 2 

mM L-glutamine, 0.1 units/ml penicillin and 0.1 mg/ml streptomycin (all PAA).  

 

Stably transfected CHO cell lines 

Stably transfected CHO cell lines were maintained like the wild-type cells with addition of 200-

300 μg/ml hygromycin B. 

 

Hybridomas 

Hybridoma cell lines (OX24, mAb3) were cultured in RPMI supplemented with 10% low 

immunoglobulin fetal calf serum, 2 mM L-glutamine, 0.1 units/ml penicillin, 0.1 mg/ml 

streptomycin, 1 mM non-essential amino acids, 1 mM sodium pyruvate (all PAA) and 50 µM β-

mercaptethanol (Sigma-Aldrich).  

 

2.3.2 Liquid nitrogen storage of cells 

For storage cells were washed and resuspended in FCS with 10% DMSO and transferred into 

cryovials. Cells were frozen at -70 °C before transfer to liquid nitrogen storage. For recovery of 

cells from liquid nitrogen storage the vials were thawed rapidly in a 37 °C water bath and 

added to 15 ml of pre-warmed culture medium. After centrifugation for 3 min at 300 x g the 

cell pellet was resuspended in medium and transferred to a 25 cm2 culture flask. 
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2.3.3 Stable transfection 

CHO cells were transfected using the jetPRIME transfection reagent (PolyPlus) according to the 

manufacturer’s instructions. In brief, 1x105 cells were seeded in the wells of a 6-well plate in 

2ml of wild-type growth medium 24 h before transfection. The transfection reagents were 

then combined with 2 µg plasmid DNA and added to the cells. A control well treated with the 

transfection reagent only was included in each transfection experiment. After 24 h the growth 

medium was replaced with growth medium containing 500 µg/ml hygromycin B and 

exchanged every two days. The concentration of hygromycin was determined by preparation 

of a kill curve (Figure 12). After 7-10 days colonies of drug-resistant clones were visible and 

individual colonies isolated using cloning discs (Sigma-Aldrich). For this, colonies were marked 

on the well bottom with a pen, the cells then carefully washed wish PBS and the cloning discs 

(soaked in trypsin-EDTA) layed over each colony. After 3-5 minutes the cloning discs were 

removed and placed in 24 well plates containing 300 µl selective growth medium. Protein 

expression levels of each clone were tested by enzyme-linked immune-sorbent assay (ELISA) 

when the cells were confluent. The selected clones were scaled up in larger cell culture flasks 

and aliquots stored in liquid nitrogen. During collection of supernatant for purification of 

recombinant protein the culture medium was supplemented with 200 μg/ml hygromycin B.  

2.3.4 Antibiotic killing curve wild-type CHO cells (hygromycin B) 

To determine the lowest concentration of hygromycin B that effectively kills all wild-type CHO 

cells an antibiotic killing experiment was carried out in 24-well plates. 8x104 cells were seeded 

in wells of a 24-well plate and grown overnight in the absence of antibiotic. On the following 

day the medium was changed for medium supplemented with hygromycin B at 100-1000 

μg/ml. The medium was changed every two days over a period of 10 days. On day 10 survival 

of the cells was assessed. For this the cells were detached with trypsin-EDTA and after addition 

of 1 ml of culture medium transferred to a 15 ml tube for centrifugation. The cell pellet was 

resuspended in PBS and the concentration of each sample adjusted to 106 cells/ml. The sample 

was mixed at a 1:1 ratio with trypan blue (0.4% w/v) and counted with a haemocytometer. The 

viable, unstained cells and stained dead cells were counted separately and the percentage of 

viable cells determined using the formula below: 
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Figure 12: Wild-type CHO hygromycin B kill curve 
 
Survival of wild-type CHO cells in the presence of different concentrations of hygromycin B was assessed 
at day 10. Cell were removed from the culture flask and cell death assessed by trypan blue staining using 
a haemocytometer.  
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2.4 Biochemical techniques 

2.4.1 Sandwich ELISA 

For enzyme linked immunosorbent assay (ELISA) 96-well plates were used (Nunc Maxisorp). 

The plates were coated with the capture antibody or protein at 5-10 µg/ml in 200 mM 

carbonate buffer or PBS and incubated overnight at 4 °C. After three washes with wash buffer 

(PBS, 0.1% Tween-20) to remove unbound protein the wells were blocked with block solution 

(PBS, 0.1% Tween 20, 1% BSA) for 2 h, followed by three washes. Each sample (100 μl) was 

then added to the wells and diluted with block solution as required and incubated room-

temperature for 1-2 h. For detection of recombinant protein expression in cell culture 

supernatants wild-type cell culture supernatant was included as negative control. After three 

washes the detection antibody, diluted in block solution, was added and the plate incubated 

for 1 h at RT. Following three washes the HRPO-conjugated secondary antibody, diluted in 

block solution, was added and the plate incubated for 30 min at room-temperature. After five 

washes with wash buffer and two washes with PBS, 100 µl of TMB substrate was added and 

colour was allowed to develop for up to 10 min. The reaction was stopped by addition of 10% 

H2SO4 and the absorbance measured at 450 nm. The ELISA data was usually presented as the 

mean ± standard deviation of duplicate or triplicate wells after subtraction of the secondary 

only control reading. 

For the heparin binding ELISA Nunc Maxisorp 96-well plates were coated overnight with poly-

L-lysine (MW 30 – 150 kDa, Sigma 81339) at 50 µg/ml in H2O at 4 °C. On the next day, the plate 

was washed twice with wash buffer 100 μl of 25 µg/ml heparin (Sigma, 4784) in H2O were 

added to each well and incubated for 2 h at RT. After washing the wells were blocked as 

described previously and following a further wash the FH proteins were added at 0-100 nM 

and incubated at room temperature for 1 h. Bound FH was detected as described previously.  

Coating buffer (Carbonate buffer pH 9.6) 
24 mM NaHCO3 
13.5 mM Na2CO3 
 
Wash buffer 
PBS, 0.05% Tween20 
 
Block buffer 
PBS, 0.05% Tween20 + 1% BSA  
 
TMB substrate solution 
For 10 ml of 3,3,5,5-tetramethylbenzidine (TMB) substrate solution were freshly 9.9 ml 
phosphate-Citrate buffer, 100 μl TMB stock [10 mg/ml in dimethylsulfoxide 
(DMSO)] and 3 μl 30% H2O2 were mixed freshly for each experiment. 
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Phosphate-Citrate buffer pH 5.0 
51.4 mM Na2HPO4 
24.3 mM Citrate (anhydrous citric acid) 
 
Stop solution 
10% H2SO4 
 

2.4.2 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was carried based on 

the method described by Laemmli (Laemmli, 1970).  Samples were mixed with non-reducing or 

reducing sample-buffer and boiled for 5 min at 95 °C. Freshly prepared 10% resolving gels and 

4% stacking gels were used for all experiments, with the exception of the decay acceleration 

assay in which 5% resolving gels were used. A stained broad range protein ladder (Page Ruler 

plus, Fermentas) was used as size standard. Gels were electrophoresed in running buffer at a 

maximum voltage of 300 V and constant 30 mA per gel. Coomassie blue staining was carried 

out for 10 min and destaining as required.  

Table 9: Composition of SDS-PAGE gels 
 4% stacking gel 10% resolving gel 5% resolving gel 

1 M Tris pH 6.8 0.5 ml - - 

1.5 M Tris pH 8.8 - 2.5 ml 2.5 ml 

30% bis/acrylamide 0.67 ml 3.3 ml 1.7 ml 

dH2O 2.4 ml 4.1 ml 5.7 ml 

10% SDS 40 μl 100 μl 100 μl 

10% APS 30 μl 50 μl 50 μl 

TEMED 5 μl 10  μl 10 μl 

Total volume 3.6 ml 10 ml 10 ml 

 

Cell lysis buffer 
1% NP40 (Fluka Biochemika, Buchs, Switzerland) 
150 mM NaCl 
50 mM Tris pH 8.0 
Supplemented with Roche Complete Protease Inhibitor Tablet (Basel, 
Switzerland) immediately before use 
 
Protein non-reducing sample buffer (2x) 
0.01% bromophenol blue 
125 mM Tris-HCl pH 6.8 
4% SDS 
20% Glycerol 
 
2x protein reducing sample buffer  
Non-reducing sample buffer as above and 5% 2-mercaptoethanol. 
 
Gel buffers 
Stacking gel buffer: 1 M Tris pH 6.8 
Separating gel buffer: 1.5 M Tris pH 8.8 
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Running buffer (pH 8.3) 
25 mM Tris base 
192 mM Glycine 
0.1% SDS 
 
Coomassie blue staining solution (1 L) 
2.5 g Coomassie brilliant blue 
500 ml Methanol 
425 ml H2O 
75 ml Glacial Acetic acid 
 
Destain solution (1 L) 
100 ml Methanol 
100 ml Glacial Acetic acid 
800 ml H2O 
 

2.4.3 Immunoblotting 

Immunoblotting was carried out according to the method described by Towbin et al, with 

several modifications (Towbin et al., 1979). To transfer protein from the SDS-PAGE gels to 

nitrocellulose the transfer cassette was assembled (sponge, 3MM blotting paper, gel, 

nitrocellulose, 3MM blotting paper, sponge). The cassette was immersed in transfer buffer in a 

transfer tank and transferred at 100 V for 1.5 h. The transfer tank was cooled with circulating 

cold water. After transfer nitrocellulose membranes were blocked in block solution (5% milk / 

PBS) for a minimum of 30 min at room temperature whilst agitated. Primary antibody was 

diluted in block solution and incubated for 60 min at room temperature. Following three 

washes in wash buffer (PBS / 0.05% Tween 20) membranes were blocked again and then 

incubated with secondary antibody added diluted in block solution for 30-60 min at room 

temperature. The membranes were finally washed three times for 5 min. Detection was 

carried out by chemiluminescence. For this the washed nitrocellulose membranes were 

covered in ECL reagent for immunoblotting (Pierce, UK), placed in an X-ray cassette and 

covered with overhead projector film. Autoradiography film (Kodak) was used to capture the 

signal. The films were developed manually or using an automated developer.  

Transfer buffer 
25 mM Tris base 
192 mM Glycine 
20% Methanol 
 
Phosphate Buffered Saline (PBS, pH 6.8) 
8.1 mM Na2HPO4 
1.5 mM KH2PO4 
137 mM NaCl 
2.7 mM KCl 
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Wash buffer 
PBS, 0.05% Tween20 
 
Block buffer 
PBS, 0.05% Tween20 + 5% fat free milk (w/v) 
 

2.4.4 Chromatography 

All protein purification steps were carried out according to manufacturer’s manuals (GE 

Healthcare) or as outlined for each type of purification below. Samples were applied by means 

of a peristaltic pump whilst wash and elution steps were carried out using an Äkta Prime 

system (GE Healthcare). The protein concentration of collected fractions was measured by 

spectrometry (Nanodrop, 280 nm) and samples were then analysed by SDS-PAGE. Selected 

fractions were subsequently pooled and buffer-exchanged into PBS with 0.1% NaN3 either by 

dialysis overnight using dialysis tubing (Sigma), spin columns (Sartorius, Vivaspin) with 

appropriate molecular weight cut-off or by use of desalting columns (5 ml Desalting column, 

GE Healthcare). 

2.4.4.1 Monoclonal antibody purification 

Both mAbs (mAb3 and OX24) were purified on 5 ml Protein G columns (GE Healthcare) 

according to manufacturer’s instructions. In brief, hybridoma cell culture supernatants were 

collected, centrifuged at 2000 x g and diluted to 50% in 2x PBS and filtered through a 0.2 μm 

filter. The column was prepared by replacing the storage solution (20% ethanol) with at last 20 

ml sterile-filtered H2O to avoid precipitation of buffer salts.  The column was then equilibrated 

with 20-30 ml PBS. The diluted cell culture supernatant was applied to the column at flow rates 

of up to 1 ml/min. Unbound protein was removed from the column by application of 10-20 ml 

of PBS at 1 ml/min. Bound mAb was eluted from the column with low pH elution buffer and 

collected into 80 μl of neutralising buffer. Collected fractions were analysed by SDS-PAGE 

followed by Coomassie blue staining and immunoblotting. The purified antibody was buffer 

exchanged into PBS with 0.01% NaNa3 and stored at 4 °C or stored at -20 °C after addition of 

glycerol to 50%. 

2x Phosphate Buffered Saline (PBS, pH 6.8) 
16.2 mM Na2HPO4 
3 mM KH2PO4 
174  mM NaCl 
5.4  mM KCl 

 
Elution buffer 

0.1 M glycine, pH 7.2 
 
Neutralisation buffer 

1 M Tris HCl 
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2.4.4.2 Immobilised metal ion chromatography (IMAC) 

Histidine-tagged proteins were purified on 5 ml HiTrap chelating columns (GE Healthcare) 

according to the method by Hewitt with modifications as described below (Hewitt et al., 1997). 

CHO cell culture supernatants containing secreted histidine-tagged protein was collected, 

centrifuged at 2000 x g and diluted to 50% in binding buffer and filtered through a 0.2 μm 

filter. The column was prepared by replacing the storage solution (20% ethanol) with at last 20 

ml sterile-filtered H2O to avoid precipitation of buffer salts.  The column was then charged with 

Ni2+ ions by application of 5 ml of 0.1 M NiSO4 to the column, followed by equilibration with 

20-30 ml binding buffer. The diluted cell culture supernatant was applied to the column at flow 

rates of up to 1 ml/min. Unbound protein and weakly bound non-specific proteins were 

washed from the column with 10-20 ml of binding buffer at 1 ml/min. The specifically bound 

protein was eluted from the column by application of an imidazole gradient (0-500 mM). The 

gradient was achieved by gradual mixing of binding and elution buffers over a total volume of 

10 or 20 ml at 1 ml/min by the automated purification system. Presence of the protein of 

interest in the elution fractions was established by SDS-PAGE followed by Coomassie blue 

staining and immunoblotting. 

 

Binding buffer 
0.5 M NaCl 
0.1 M Tris-HCl 
 40 mM imidazole 

Elution buffer 
0.5 M NaCl 
0.1 M Tris-HCl 

            500 mM imidazole 
 

2.4.4.3 Purification of C3 from human plasma 

Human C3 was required for the fluid-phase C3 convertase assay and purified from human 

plasma by fractional precipitation using polyethylene glycol (PEG) followed by two 

chromatography steps. This method is described in detail by Harris et al (Harris, 2000). 

20 ml of whole blood derived from a healthy donor was collected into 1 ml of 100 mM EDTA, 

mixed and centrifuged for 20 min at 2000 x g. The plasma was removed and diluted 1/10 in 

PBS containing 5 mM EDTA and 4% PEG6000 to final volume of 25 ml. Four tubes containing 25 

ml were centrifuged for 30 min at 10,000 x g. The supernatant was then carefully removed and 

30% PEG6000 in PBS/5 mM EDTA was added to a final concentration of 10%. The tubes were 

again centrifuged for 30 min at 10,000 x g. The supernatant was discarded and the resulting 

pellet resuspended in binding buffer for the anion exchange column (20 mM Tris, 5 mM EDTA, 

pH 8.9) by vortexing and pipetting.  
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The anion exchange column (HiTrap Q HP, GE Healthcare) was equilibrated with binding buffer 

and the resuspended serum fraction containing C3 was applied to the column in batches of 5 

ml. After application of the suspension to the column, the column was washed with binding 

buffer and eluted using a 20 ml linear NaCl gradient from 0 mM to 500 mM. The collected 

fractions were analysed by SDS-PAGE and immunoblotting to identify fractions containing C3.  

Fractions containing C3 were pooled and applied to a gel filtration column (HiPrep Sephacryl 

16/60 S100, GE Healthcare) to allow buffer exchange into PBS and separation of contaminating 

lower molecular weight bands. 

2.4.5 Immunofluorescence  

To assess in vivo binding of mAb3 female Balb/c mice were injected with 20 µg of antibody 

(mAb3, 8D1, HEL) in 100 µl sterile saline or saline only via the tail vein and sacrificed after 1 h. 

8D1 (kind gift from Prof D.-B. Borza, Vanderbilt University) is an isotype-matched positive 

control antibody that recognises the same antigen as mAb3, i.e. the NC1 domain of type IV 

collagen (Zent et al., 2006). HEL is a high affinity hen-egg lysozyme antibody (IgG1, kindly 

donated by Dr A. Knight, Newcastle University) and was included as isotype control. Kidneys, 

spleen, liver and lung were removed, frozen in isopentane and transferred to liquid nitrogen. 

Cryosections of OCT mounted kidneys were produced at -20 °C and sections stored at -80 °C. 

For visualisation of bound antibody a FITC-conjugated rabbit anti-mouse Ig antibody was used 

as described below. 

To assess in vitro binding, kidney sections of the PBS control mouse were used. For staining the 

slides were warmed at room-temperature for 30 min and fixed in ice-cold acetone for 5 min. 

After air-drying the sections were encircled with a liquid block pen and washed twice for 2 min 

in PBS. Sections were then blocked for 1 h in 20% rabbit serum/PBS. The primary antibodies at 

3 µg/ml (mAb3, 8D1, HEL) or PBS only were added and slides incubated for 1 h at RT. After 

three 5 min washes in PBS a FITC-conjugated rabbit anti-mouse Ig polyclonal antibody (Jackson 

Immuno Research) was added at 1/500 and the slides incubated for 1 h at RT, in the dark. After 

three 5 min washes in PBS coverslips were mounted in anti-fade mounting medium 

(Flouromount, Sigma) and allowed to set overnight at 4 °C.  
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2.5 Assays of complement regulator function 

2.5.1 Calculation of the extinction coefficient 

The molar extinction coefficient is an estimate of how much light a protein absorbs at a given 

wavelength and can be used to accurately determine the concentration of a purified protein at 

280 nm. This coefficient can be derived from the amino acid sequence because it depends on 

the number of aromatic residues present. The equation (see below) therefore takes into 

account the specific extinction coefficients of tyrosine, tryptophan and cystine (Gill and von 

Hippel, 1989). Cystine, two cysteine residues dimerised by disulphide bonds, has an extinction 

coefficient of 125. The formula below therefore assumes all disulphide bonds in the protein of 

interest are oxidised. The coefficients of tyrosine and tryptophan are 1490 and 5500, 

respectively. The molar extinction coefficient (E) of a given protein is the sum of the 

multiplication products of the number (X) of tyrosine, tryptophan or cystine residues with their 

respective coefficients: 

                                                                 

 

2.5.2 Factor I cofactor assay 

The ability of the recombinant FH proteins to serve as cofactor for the FI-mediated cleavage of 

C3b was tested in a fluid-phase assay according to the protocol described by Pechtl et al. 

(Pechtl et al., 2011). Human serum-purified C3b, FI and were purchased from Complement 

Technology. For the negative control 3 μg of C3b was mixed with 0.045 μg FI in a total reaction 

volume of 20 μl. The recombinant proteins and for the positive control full length FH was 

added at concentrations ranging from 0.02-0.5 μM. Equimolar concentrations were 

determined using absorption coefficients based on confirmed or theoretical molecular weights 

(see Table 10). The reactions were incubated for 20 min at 37 °C, mixed with 2x reducing SDS-

PAGE sample buffer and analysed by SDS-PAGE on 10% gels followed by Coomassie blue 

staining of the gels. 

2.5.3 Solid phase decay acceleration assay 

FH1-5 mediated accelerated decay of the AP C3 convertase was measured by surface Plasmon 

resonance as described in Schmidt et al, 2011 with some modifications (Schmidt et al, 2011). 

First C3b (Complement Technology) was immobilised on an S-carboxymethylated dextran chip 

(CM5, GE Healthcare) by amine coupling. For this 0.5 mg/ml C3b in 50 mM acetate buffer was 

coupled to the chip using a coupling kit (Amine Coupling Kit, GE Healthcare). C3b was flowed 

over the chip until about 130 resonance units were achieved. A reference chip was treated in 
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exactly the same way but in the absence of protein. All proteins were gel-filtrated into running 

buffer (HEPES-buffered saline, 1 mM MgCl2, 0.05% surfactant P20). The convertase was formed 

on the C3 coated chip by flowing over a mixture of FB (0.5 μM) and FD (60 nM) for 120 s at 10 

μl/min. The C3 convertase was allowed to decay for 210 s before injection of FH1-5 or the 

control proteins FH1-4, FH1-4 R83S and FH19-20 (produced by E. Wong, Newcastle University) 

at 0.5 μM and 0.17 μM for 60 s. FH19-20 was used at 1 μM. After each injection the chip 

surface was regenerated for 45 s with 1 μM full length FH (Complement Technology) followed 

by 1 M NaCl for 45 s. The extinction coefficient used to calculate accurate molar 

concentrations is listed in Table 10.  

Table 10: Recombinant FH proteins and extinction coefficients 
Protein name Extinction coefficient 

FH1-5 59580 

FH1-4  47870 

FH19-20 27430 

FH1-4 R83S 47870 

Full length FH 246800 

C3b 176700 

 

2.5.4 Fluid-phase C3 convertase assay 

The effect of the recombinant FH proteins on the activity of the AP C3 convertase was tested in 

a fluid-phase assay as described by Wiesmann et al (Wiesmann et al., 2006). For this 0.4 μM C3 

(purified in house) and 0.02–0.5 μM of the recombinant FH proteins or full length FH 

(Complement Technology) for the positive control were mixed in PBS in a volume of 20 μl. For 

the negative control no decay accelerator was added and the volume replaced by PBS only. 

The mixes were incubated for 15 min at 37 °C before addition of FB and FD (both Complement 

Technology) to final concentrations of 0.4 μM and 0.04 μM, respectively, in a final reaction 

volume of 30 μl. The FB/FD mix was supplemented with Mg2+/EGTA to give a final 

concentration of 33 mM. The incubation at 37 °C was continued for a further 30 min and 

stopped by addition of 30 μl 2x reducing SDS-PAGE buffer. To analyse the C3 cleavage pattern 

the samples were subjected to SDS-PAGE on 5% polyacrylamide gels followed by 

immunoblotting. C3 fragments were detected with a rabbit polyclonal anti-human C3 

antiserum and a HRP-conjugated goat anti-rabbit Ig polyclonal antiserum. 

2.5.5 Haemolytic assay 

The haemolytic assay used is a basic assay to determine the ability of the recombinant FH 

proteins to protect sheep or rabbit erythrocytes from complement-mediated lysis (Harris, 

2000). For each reaction (total volume 200 μl), 60 μl (0, 20, 40, 80 and 100 µl for standard 

curve) fresh normal human serum (diluted to 1/25 in Mg-EGTA) was mixed with 20 µl BSA, 
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FH1-5 or FH1-5/18-20 (in Mg-EGTA) to final concentrations of 0-100 nM. 20 µl of Mg-EGTA was 

added to each reaction or to final volume of 100 µl for the standard curve. Rabbit erythrocytes 

in Mg-EGTA (100 μl, 1*106) were then added and the 96-well plate incubated in a 37 °C water 

bath for 30 min. Controls were included for spontaneous lysis (100 μl Mg-EGTA, 100 μl rabbit 

erythrocytes) and 100 % lysis (100 μl H2O, 100 μl rabbit erythrocytes). After incubation, 100 μl 

ice cold saline was added to all reactions (H2O to 100% lysis control) and unlysed cells were 

pelleted by centrifugation of the plates at 400 x g. 100 μl of the supernatants were then 

carefully aspirated with a pipette and transferred to a 96-well microtitre plate and the 

absorbance measured at 414 nm. Percentage lysis was calculated as shown: 

 

         
                                             

                                                         
 

 

100 mM EGTA:  
38.04 g EGTA in 0.5 L water,  
1 M NaOH added slowly until EGTA dissolved and pH was 7.5,  
H2O added to a final volume of 1L 
 
5x VB (veronal buffered saline):  
 
Either from Oxoid complement fixation tablets or: 
 
85 g NaCl and 3.75 g barbitone in 1 L H2O 
5.75 g barbituric acid in 600 ml hot water 
Two buffers were mixed and the volume brought to 2 L with H2O 
pH 7.4-7.6 
 
10% (w/v) gelatine: 
Dissolve 10 g gelatine in 100 ml hot water. 
 
GBV (isotonic veronal buffered saline with gelatine): 
10 ml 10% (w/v) gelatine was dissolved in boiling water bath 
Added to 200ml 5x VB 
Volume brought to 1 litre with H2O 
 
Mg-EGTA (0.5 L):  
50 ml 100 mM EGTA 
35 ml 100 mM MgCl2 
104 ml GVB 
311 ml 5% (w/v) D glucose 
pH 7.4-7.6 
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3 Generation and functional testing of FH1-5 and FH1-5/18-20 
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3.1 Introduction 

Mutations or autoantibodies affecting the N-terminal regulatory domain or the cell binding 

domain at the C-terminal are implicated in the development of MPGN type II and aHUS, 

respectively (de Cordoba and de Jorge, 2008, Jozsi et al., 2007, Goodship et al., 2012, Benz and 

Amann, 2009b). The therapies currently available to treat these conditions are limited. There 

are few therapies in use that specifically address the dysregulation of complement. Evaluation 

of murine models of aHUS and MPGN type II has allowed invaluable insights into the 

pathogenesis of the conditions and provided rationale for the development of therapeutics. 

Mice deficient in Cfh develop renal disease that resembles human MPGN type II (Pickering et 

al., 2002). Serum C3 is depleted and the GBM stains strongly for C3. Deposition of C3 is an 

early pathological feature and deficiency of Cfi protects Cfh-/- mice from developing disease 

(Rose et al., 2008). These findings confirmed that the pathophysiology of MPGN type II 

depends primarily on increased fluid-phase metabolism of C3. This is in agreement with the 

findings in patients – C3 nephritic factor, gain of function mutations in FB/C3 and CFH 

mutations that cause dysfunction of regulatory domains or deficiency of CFH all affect fluid-

phase regulation and therefore C3 metabolism (Zhang et al., 2012). Therapy of patients with a 

definite defect in fluid-phase regulation, e.g. C3 nephritic factor, should therefore aim to 

restore fluid-phase regulation of the AP. Mice that lack the N-terminal SCRs of Cfh (Cfh-/-.Δ16-

20) develop renal disease that resembles human aHUS (Pickering et al., 2007). Cfh-/-.Δ16-20 

show higher serum C3 levels than Cfh-/- mice and mesangial C3 deposition. The terminal 

pathway appears to play a more distinct role in the pathogenesis of aHUS than MPGN type II 

since C5 deficiency protects Cfh-/-.Δ16-20 mice from developing disease (de Jorge et al., 2011). 

Absence of a functional cell binding domain at the C-terminal is central to pathogenesis of 

aHUS. Therapy of aHUS should therefore aim to restore protection of the renal endothelium 

from C3 deposition and / or MAC formation. 

To test the implications of these animal studies the relevant reagents have to be generated. 

Previous studies have demonstrated that the SCRs 1-4 of FH are sufficient for fluid-phase 

regulation of C3 metabolism (Schmidt et al., 2008a). The N-terminal of FH bears both the C3b 

binding site for decay acceleration function and CFI cofactor activity (Figure 13). Therefore a 

recombinant protein comprised of SCRs 1-5 of FH, FH1-5, was designed as fluid-phase 

regulator of the AP. A second protein, FH1-5/18-20, contains the regulatory SCRs 1-5 and SCRs 

18-20, that interact with C3b and GAGs on cell surfaces. SCRs 5 and 18 serve as extension of 

the hexa histidine linker. The histidine tag allows purification of the construct from cell culture 

supernatants. Inclusion of SCR5 also allows detection with the monoclonal antibody OX24. 

Current models of FH in complex with cell surface-bound C3b suggest a “folded-back” 
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conformation (Aslam and Perkins, 2001, Okemefuna et al., 2008). N-terminal SCRs (1-4) bind 

C3b and C-terminal SCRs (19-20) of FH engage both C3b and GAGs (Figure 13). The remaining 

SCRs (5-18) form a tight loop that allows SCRs 6-8 to interact with the cell surface (Figure 13) 

(Schmidt et al., 2010). Fusion of SCRs 18-20 directly downstream of SCR 5, linked by a hexa 

histidine-tag, is supported by the structural data available. 

 

 

Figure 13: Schematic of FH bound to C3b and proposed recombinant FH proteins 
As shown on the left side, native full length FH binds to surface bound C3b via the N-terminal SCRs 1-4 
and the C-terminal SCRs 19-20. At the same time the C-terminal and SCR7 can bind to heparin displayed 
on host cell surfaces. FH1-5 incorporates the first 5 SCRs, bearing cofactor and decay acceleration 
function, of the full length protein. In FH1-5/18-20 the C-terminal cell binding domain is fused to SCR 5 
via a hexa histidine tag. 
 
 
 

This chapter has two key aims: 

1. Generate two recombinant FH proteins, FH1-5 and FH1-5/18-20. 

2. Assess the in vitro AP regulatory function of both proteins. 
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3.2 Results 

3.2.1 Generation of FH1-5 and FH1-5_Ile62 expression vectors 

The DNA construct for expression of FH1-5 was generated by K.J. Marchbank. For this the 

sequence encoding SCRs 1-5, including the native signal peptide, were amplified by PCR from 

the full length sequence of FH (in pBluescript) and inserted into the mammalian expression 

vector pDEF. The resulting construct was named S21. A disease-protective polymorphism of FH 

has been described that changes valine at position 62 to isoleucine (Hageman et al., 2006, 

Tortajada et al., 2009). Functionally the Ile62 variant exerts higher affinity for C3b than the 

Val62 variant and enhanced cofactor activity. Site-directed mutagenesis was used to introduce 

this amino acid change (Figure 14). In the subsequent progression of the project this construct 

was not utilised any further due to time constraints. 

3.2.2 Generation of the FH1-5/18-20 expression vector 

The S21 construct (FH1-5) was used to generate the FH1-5/18-20 expression vector (cloning 

strategy Figure 15). The generation of the F3 plasmid used for cloning of FH1-5/18-20 is dealt 

with in chapter 5. SCRs 18-20 were amplified by PCR with primers introducing a KpnI restriction 

site at the 5’ end and a stop codon and NheI restriction site at the 3’ end. A single band of the 

correct size (575 bp) was obtained (Figure 16.A). The PCR product was purified and digested 

with KpnI and NheI restriction enzymes. The expression vector pDEF (F3, Chapter 5), containing 

SCRs 1-5 of FH fused to an antibody fragment via a hexa histidine tag, was also digested with 

KpnI and NheI. This allowed replacement of the antibody fragment with SCRs 18-20 

downstream of SCRs 1-5 and the histidine-tag. The digested PCR product and vector were 

subjected to gel electrophoresis, followed by gel extraction. Vector and DNA insert were 

ligated using a T4 ligase. Chemically competent cells were transformed with the ligation 

reaction and grown on selective LB-agar plates (ampicillin). The transformants were screened 

for presence of the correct insert by colony PCR with primers flanking the multiple cloning site 

(Figure 16.B). Two of the 11 colonies screened revealed a band of the correct size (~1800 bp). 

These two colonies were grown up and the DNA isolated. To confirm the correct sequence of 

the two clones (designated P5 and P6), DNA was sequenced (Eurofins DNA Operon, Germany) 

using the same flanking primers as used for the colony PCR. At this point the S21 plasmid DNA 

was also checked by DNA sequencing. The forward and reverse sequencing reactions returned 

the correct, in-frame sequence for P5, P6 and S21 (see Appendix A). P5 and S21 were 

subsequently used for transfection of CHO cells. 

  



- 64 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C 

Figure 14: Generation of the FH1-5_Ile62 DNA construct 
 
(A) Introduction of a point-mutation by site-directed mutagenesis requires the design of a pair 
of long mutagenesis primers which bind to the template DNA and contain a single base pair 
change in the centre of the primer sequence. In the mutagenesis PCR reaction, the primers 
hybridise to the template and the entire plasmid is synthesised. Template DNA is methylated 
and can be degraded with DpnI. E. coli can then be transformed with the mutated plasmid. (B) 
Lane 1 shows the product of the pDEF S21 mutagenesis PCR and lane 2 the reaction using the 
smaller control plasmid pWSK. (C) The DNA of three clones transformed with the pDEF S21 
mutagenesis PCR mix was sequenced and confirmed in two clones. To exemplify the sequence 
alignment of one clone is shown.  
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Figure 15: Cloning scheme pDEF P5 (FH1-5/18-20) 
 
To generate FH1-5/18-20 pDEF F3 was digested with KpnI and NheI to remove the 1G6 
scFv fragment. FH SCRs 18-20 were amplified with primers introducing a KpnI site at 
the 5’ end and a stop codon and NheI site at the 3’ end. The PCR product was digested 
with KpnI and NheI and ligated with the KpnI/NheI digested pDEF F3 to form construct 
P (correct DNA sequence of clone P5 was confirmed later). 
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Figure 16: Amplification of FH SCRs 18-20 and colony screen of FH1-5/18-20 
 
(A) SCRs 18-20 were amplified by PCR (lane 1). The forward primer (F327fwd) was designed 
to introduce a KpnI restriction site and the reverse primer (F327R) a stop codon and NheI 
restriction site. (B) The KpnI/NheI digested PCR fragment (SCRs 18-20) was ligated with the 
gel-purified KpnI/NheI digested pDEF F3 containing FH SCRs 1-5 and the histidine-tag. 
Colonies that resulted from transformation of competent E. coli were analysed by colony 
PCR using forward and reverse primers that flank the pDEF multiple cloning site (pDEF NF 
and pDEF NR). Only lanes clones 5 and 6 produced a product of the correct size, the other 
bands are non-specific. L = ladder.  
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3.2.3 Expression of FH1-5 and FH1-5/18-20 in CHO cells 

For production of FH1-5 and FH1-5/18-20, CHO cells were transfected with plasmid DNA. Cells 

were subjected to selective pressure with hygromycin and individual clones isolated using 

cloning discs and grown in 12-well plates. Expression of the proteins was tested by 

immunoblotting and ELISA (Figures 17.A and 17.B). Immunoblotting of cell culture supernatant 

of confluent cells (transfectant pool) revealed bands of the correct size for both proteins 

(Figure 17.A). FH1-5 (S21) and FH1-5/18-20 (P5) have a predicted molecular weight of 36kDa 

and 56 kDa, respectively. SDS-PAGE was performed under reducing conditions. SCRs 1-5 

contain 10 disulphide bonds and SCRs 18-20 a further 6. Intact disulphide bonds cause the 

proteins to have a tighter conformation. This allows faster migration through the gel. In the 

ELISA (Figure 17.B) clones S21.5 and P5.1 showed high expression levels and culture of these 

clones was scaled up to allow collection of supernatant for histidine-tag purification. 

3.2.4 Histidine-tag purification of FH1-5 and FH1-5/18-20 

A hexa histidine-tag was introduced to both proteins to allow purification by immobilised 

metal ion chromatography (IMAC). In FH1-5 the histidine-tag is located at the C-terminal, in 

FH1-5/18-20 it serves as a linker between SCRs 1-5 and SCRs 18-20 and is thus an internal 

histidine-tag. Location of the histidine tag can affect the affinity of the tag for nickel and the 

two proteins may therefore require different binding and elution conditions. In the absence of 

imidazole in the binding and wash buffers significant non-specific binding of protein from the 

CHO cell culture supernatant occurs. This has been established in previous work in the 

laboratory and therefore binding conditions (40 mM imidazole in binding buffer), used 

routinely for purification of recombinant proteins from CHO cell culture supernatant, were 

used. The cell culture supernatant was diluted to 50% with binding buffer, adjusting salt and 

imidazole concentration to that of the binding and wash buffer (0.5 M NaCl, 40 mM imidazole). 

Under these conditions both proteins bound well to the nickel-charged column but eluted at 

different imidazole concentrations with little contaminating protein (Figure 18 and Figure 19). 

FH1-5 required approximately 100% of the gradient (equivalent to 0.5 M imidazole). FH1-5/18-

20 eluted at approximately 80% of the gradient (equivalent to 0.4 M imidazole) and showed 

more contaminating protein than FH1-5. Contaminating protein derived from the CHO cells or 

FCS was removed by desalting of the collected fractions and reapplication of the pooled 

fraction to a nickel charged column (data not shown). 
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Figure 17: Expression screen of CHO cell clones transfected with FH1-5 and FH1-5/18-
20 
 
(A) Supernatant of the P5 and S21 transfectant pools were analysed by non-reducing SDS-PAGE 
followed by immunoblotting (anti-human FH and HRPO-conjugated donkey anti-goat IgG). (B) 
After selection of individual clones, expression levels were checked using supernatants of 
confluent flasks. Five clones transfected with S21 (FH1-5) and six clones transfected with P5 
(FH1-5/18-20) were analysed by sandwich ELISA. Proteins were captured with OX24 and 
detected with a polyclonal anti-human FH polyserum and HRPO-conjugated donkey anti-goat Ig 
secondary. Wild-type CHO cell supernatant was included as negative control and full length FH as 
positive control. Supernatants from the S21 and P5 transfectant pools were included to allow 
comparison with selected clones.  
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Figure 18: Histidine-tag purification of S21.5 (FH1-5) from CHO cell culture supernatant 
 
(A) FH1-5 was purified from CHO cell culture supernatant by application to and elution from a 
nickel charged column. The elution gradient (green line) was increased from 40 mM to 0.5 M 
imidazole over the first ten fractions. Two absorbance peaks occurred within the gradient, 
between fractions 6 and 14. This chromatography trace is representative of several purifications. 
(B) These fractions were analysed by reducing SDS-PAGE followed by Coomassie blue staining.  
Under reducing conditions FH1-5 migrates to its predicted molecular weight of 36 kDa. (C) The 
identity of the 36 kDa band was confirmed by immunoblotting (anti-human FH and HRPO-
conjugated donkey anti-goat IgG). 
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Figure 19: Histidine-tag purification of FH1-5/18-20 from cell culture supernatant 
 
(A) FH1-5/18-20 was purified from CHO cell culture supernatant by application to and elution from a 
nickel charged column. The elution gradient (green line) was increased from 40 mM to 0.5 M 
imidazole over the first 12 fractions. A single absorbance peaks occurred within the gradient, 
between fractions 7 and 11. This purification is representative of several purifications carried out. (B) 
These, and fractions before and after, were analysed by reducing SDS-PAGE followed by Coomassie 
blue staining. Under reducing conditions FH1-5/18-20 migrates to its predicted molecular weight of 
~57 kDa. (C) The identity of the 57 kDa band was confirmed by immunoblotting (anti-human FH and 
HRPO-conjugated donkey anti-goat Ig). 
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3.2.5 Binding to C3b and heparin  

As initial functional screen the ligand binding of the recombinant proteins was established by 

sandwich-ELISA (Figure 20). Both proteins are expected to bind to C3b. C3b was coated on 

microtitre plates and binding of the purified proteins detected with a polyclonal anti-human 

FH polyclonal antiserum (Figure 20.A). Full length FH was included as positive control. All three 

proteins bound to C3b, with decreasing avidity in the order full length FH, FH1-5/18-20 and 

FH1-5. To test function of the cell binding domain of FH1-5/18-20, heparin was used as model 

ligand. For the assay heparin was applied to polylysine-L coated microtitre plates. The purified 

proteins were added and binding detected as for the C3b binding ELISA (Figure 20.B). FH1-5 

has no cell binding domain and was therefore included as negative control. 

3.2.6 Purification of C3 from human serum 

Human C3 was required for the fluid-phase C3 convertase assay. It was purified from serum of 

a healthy donor by fractional precipitation (see methods) and two chromatography steps 

(Figure 21). The C3 containing precipitation fraction was first applied to an anion-exchange 

column and C3 was eluted with a NaCl gradient (Figure 21.A).  The collected elution fractions 

were analysed by SDS-PAGE analysis followed by Coomassie blue staining or immunoblotting 

to identify C3 containing fractions (Figure 21.B). Fractions 13 and 14 contained the most C3 as 

indicated by a high molecular weight band under non-reducing conditions (180 kDa) and two 

bands for the α-chain (~110 kDa) and the β-chain (~68 kDa) under reducing conditions (Figure 

21.B). The positively identified fractions were subjected to gel filtration to separate intact C3 

from cleavage products present in the same fraction (Figure 21.C). C3 was then stored at -70 °C 

until use in the assay.  

3.2.7 Fluid-phase FI cofactor assay 

FI requires a cofactor like FH to mediate cleavage of the C3b α-chain. The ability of FH1-5 and 

FH1-5/18-20 to serve as cofactor for FI was tested in a standard fluid-phase cofactor assay 

(Pechtl et al., 2011). C3b, FI and a cofactor (full length FH, FH1-5 or FH1-5/18-20) were 

incubated and cleavage of the C3 α-chain analysed by reducing SDS-PAGE of samples. Proteins 

were visualised by Coomassie-blue staining of the gels. Both proteins exert cofactor activity 

comparable to that of full-length FH (Figure 22.A).  
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Figure 20: Binding of FH1-5 and FH1-5/18-20 to C3b and heparin 
 
(A) Binding of FH1-5 and FH1-5/18-20 (0-100 nM) to C3b coated on microtitre plates was 
detected with a polyclonal anti-human FH antiserum and a HRPO-conjugated donkey anti-
goat Ig. Full length FH was included as positive control and BSA as negative control. Samples 
were applied in triplicates. Shown is one representative experiment of three. 3. (B) GAG 
binding of FH1-5/18-20 was tested by detecting binding to heparin coated on microtitre 
plates. Full length FH was included as positive control, FH1-5 as negative control. Detection 
was carried out as for the C3b binding. Samples were applied in triplicates. Shown is one 
representative experiment of three. 
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Figure 21: Purification of C3 from normal human serum 
 
(A) The C3 containing fraction, obtained by precipitation of human serum, was applied to an anion-
exchanger column and eluted with a linear salt gradient (% gradient = green line; % conductivity = light 
blue line). Several protein containing peaks were recorded. (B) The protein containing fractions 9-17 
were analysed by reducing and non-reducing SDS-PAGE (upper left and right panel). The majority of C3 
(encircled in white) was present in fractions 13 and 14. (C) Immunoblotting of the fractions with a rabbit 
anti-human C3 polyserum was carried out to confirm the identity of the bands (lower left and right 
panel). A number of proteolytic fragment of C3 were detected. 
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Figure 22: Factor I cofactor and anti-C3 convertase activity of FH1-5 and FH1-5/18-20 
 
(A) Cofactor of FH1-5 and FH1-5/18-20 was demonstrated in a fluid-phase assay. In the absence of a 
cofactor (-) the C3 α-chain remains intact. Presence of a cofactor results in cleavage of the α-chain. Full 
length FH (positive control), FH1-5 and FH1-5/18-20 were included at concentrations ranging from 0.5-
0.04 μM. Shown is one of four representative experiments. n = 4. (B) C3 convertase activity was also 
assessed in a fluid-phase assay. In the absence of a regulator (0 µM) spontaneous formation of the C3 
convertase allows generation of C3b. The C3b α-chain is ~8 Da smaller than the C3 α-chain. In the 
presence of a regulator, formation of C3 convertases is inhibited and formation of C3b prevented, as 
indicated by decreasing amount of C3b α-chain with increasing concentration of regulator. Full length 
FH (positive control), FH1-5 and FH1-5/18-20 were included at concentrations ranging from 0.5-0.04 
μM. n = 2.   
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3.2.8 Fluid-phase C3 convertase assay 

FH prevents formation and accelerates decay of the AP convertase C3bBb by binding to C3b 

and displacing Bb. This function of the recombinant FH proteins were was assessed in a fluid-

phase assay (Figure 22.B). The assay used relies on the spontaneous formation of C3(H2O) 

which can, in the absence of a regulator, participate in the formation of C3 convertases and 

consequently cleave C3 to C3a and C3b. For the fluid-phase assay C3 was first mixed with full 

length FH, FH1-5 or FH1-5/18-20. FB and FD were then added to allow formation of the AP 

convertase from spontaneously hydrolysed C3. The samples were subjected to SDS-PAGE and 

immunoblotting to detect the relative amounts of C3 α-chain (~110 kDa) and C3 α’-chain (~102 

kDa, C3b α-chain). All three proteins prevented formation of the AP C3 convertase in a 

concentration-dependent manner (Figure 22.B). The negative control shows mainly C3 α’-chain 

and only little C3 α-chain, indicating unhindered formation of the C3 convertase and cleavage 

of C3 into C3b and C3a in the absence of a regulator. 

3.2.9 Solid-phase decay acceleration assay (SPR) 

The ability of FH1-5 to accelerate decay of existing AP C3 convertases was assessed by SPR 

(Figure 23). When the opportunity for this experiment in collaboration with Dr D. Kavanagh 

(Newcastle University) arose, FH1-5/18-20 was not available in sufficient quantity to be 

included. The C3 convertases were formed by flowing FB and FD over C3b immobilised on a 

chip surface. Two negative control proteins were included – FH19-20 which lacks any decay 

acceleration function and a R83S mutant of FH1-4 (FH1-4 R83S) which was expected to show 

impaired decay acceleration function (negative control proteins prepared by Edwin Wong, 

Newcastle upon Tyne). Wild-type FH1-4, known to exert good decay acceleration function, was 

included as positive control (positive control generated by Edwin Wong, Newcastle upon 

Tyne). For each protein the chip was regenerated and new C3 convertase formed. The 

convertases were allowed to decay naturally before injection of the proteins (Figure 23). FH19-

20 did not accelerate decay of the convertases while FH1-4 R83S showed a limited deviation 

from the dissociation profile for natural decay. Both FH1-5 and the positive control FH1-4 

resulted in marked acceleration of convertase decay with FH1-5 showing better decay 

acceleration than FH1-4 as indicated by lower response units.  

3.2.10 Haemolytic assay 

The ability of FH1-5 and FH1-5/18-20 to protect erythrocytes from AP-mediated damage was 

assessed in haemolytic assays. Rabbit erythrocytes are particularly susceptible to AP-mediated 

lysis by human serum and sheep erythrocytes are less susceptible (Aminoff et al., 1976, Fearon 

and Austen, 1977). The reason for this difference is that human factor H has a higher affinity 

for C3b deposited on sheep erythrocytes than for C3b deposited on rabbit erythrocytes 
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because sheep erythrocytes display more GAGs on the surface. For the functional assessment 

of FH-5 and FH1-5/18-20 rabbit erythrocytes were hence used to assess fluid-phase regulation 

and sheep erythrocytes to test the cell-targeting domain of FH1-5/18-20. The cells were 

exposed to 1% human serum, as determined by a serum titration (Figure 24.A) in the presence 

of equimolar concentrations of full length FH (FH1-20), FH1-5, FH1-5/18-20 or BSA. BSA was 

included as negative control for protein buffering effect that may protect cells from 

haemolysis. As shown in Figure 24.B, addition of FH1-5/18-20 at 12.5 nM reduced lysis to 

~60%, FH1-5 and FH1-20 reduce lysis to ~90% at this concentration. However this is similar to 

the BSA control. At 25 nM, FH1-5 and FH1-5/18-20 reduce lysis to less than 40% and FH1-20 

reduced lysis ~60%. At higher concentrations all three proteins provide a comparable degree 

of fluid-phase protection. To test the cell surface-targeted FH1-5/18-20 sheep erythrocytes 

were treated exactly the same as the rabbit erythrocytes (Figure 24.C). Addition of 12.5 nM 

FH1-5/18-20 and FH1-20 reduced lysis to ~20%, while FH1-5 reduced lysis to ~70% which is 

comparable to the BSA control. At 25 nM FH1-5/18-20 and FH1-20 reduced lysis to ~18%, while 

FH1-5 reduced lysis to ~30%. 
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Figure 23: Decay acceleration activity of FH1-5 assessed by SPR 
 
Decay acceleration activity of FH1-5 was assessed by surface Plasmon resonance. Alternative 
pathway C3 convertases were generated by flowing FD and FB across immobilised C3b (C3bBb 
assembly). The convertases were allowed to gradually decay (natural decay of C3bBb) before 
FH1-5 and the control proteins were injected in separate runs. Accelerated decay is evident 
from a steeper dissociation profile from the point of injection. FH SCRs 19-20 (FH 19-20) and a 
R83S mutant of FH SCRs 1-4 (R83S FH 1-4) were included as negative controls. The wild-type FH 
SCRs 1-4 (FH 1-4) were included as positive controls. Response units are shown on the y-axis, 
time in seconds on the x-axis. n = 1 
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Figure 24: Haemolytic assays with rabbit and sheep erythrocytes 
 

(A) Lysis of rabbit and sheep erythrocytes by human serum was titrated. Percentage 
lysis was calculated from a complete lysis control (= 100%). A serum concentration 
of 1% was used for testing protective function of the recombinant FH proteins. (B) 
Rabbit erythrocytes were exposed to human serum in the presence of FH1-20, FH1-
5, FH1-5/18-20 or BSA at equimolar concentrations. (C) Sheep erythrocytes were 
exposed to human serum in the presence of FH1-20, FH1-5, FH1-5/18-20 or BSA at 
equimolar concentrations. Shown are average values of triplicate wells from one 
representative experiment of two.  
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3.3 Discussion 

3.3.1 Expression of FH1-5 and FH1-5/18-20 in CHO cells 

Complement FH is implicated in renal pathologies like aHUS and MPGN type II. The direct 

connection between FH deficiency or dysfunction and pathology has been clearly 

demonstrated in Cfh knockout mice (Pickering et al., 2002, Pickering et al., 2007). Recombinant 

FH proteins present an attractive alternative to current treatment options for these conditions. 

FH is a large glycoprotein with eight confirmed N-glycosylation sites and 40 disulphide bonds 

(Fenaille et al., 2007). Several attempts have been made to produce the full length protein. 

However, expression in insect cells, the mammalian cell line COS7 and plant cells failed to 

reach levels of therapeutic relevance (Sharma and Pangburn, 1994, Sanchez-Corral et al., 2002, 

Buttner-Mainik et al., 2011). The design of the proteins for this study, informed by current 

conformational models, reduced the 20 SCRs of full length FH to the SCRs required for 

regulation and cell binding. The resulting lower molecular weight (36 kDa and 54 kDa) was 

expected to address expression issues raised in previous studies and is also feasible for 

development of the two recombinant FH proteins, FH1-5 and FH1-5/18-20, as therapeutics.  

The expression host was required to produce the relevant posttranslational modifications for 

secretion of biologically active protein. Although deglycosylation appears not to impact on the 

regulatory capacity of FH, the two disulphide bonds in each SCR are essential for structural 

integrity and stability (Jouvin et al., 1984, Kristensen and Tack, 1986). E. coli is a popular 

expression host for recombinant proteins due to low cost and high yields. Although most 

expression strains of E. coli are not able to form disulphide bonds, functional recombinant 

forms of MCP and a truncated version of CR1 have been successfully expressed in E. coli. 

(Fraser et al., 2002, Fremeaux-Bacchi et al., 2008). A disadvantage of expression in E. coli is 

that the harsh conditions required to retrieve of recombinant protein from inclusion bodies 

necessitates a refolding step in suitable buffers. Expression of recombinant proteins in yeasts 

such as Pichia pastoris offers the advantages of bacterial expression systems and the ability to 

synthesise all mammalian posttranslational modifications (Cregg et al., 2000). Several 

complement proteins have been expressed in P. pastoris (He et al., 1997, Pechtl et al., 2011, 

Herbert et al., 2012). Expression in P. pastoris can require complex optimisation of growth 

conditions or induction of expression and occasionally glycosylation may deviate from the 

native patterns with potential impact on function.  

There are several mammalian cell lines that are suited for expression of secreted recombinant 

proteins (Wurm, 2004). CHO cells are the most prominent example and are currently used for 

the production of approximately 70% of all therapeutic proteins  (Walsh and Jefferis, 2006). 
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Although not a low cost alternative to bacterial and yeast expression systems, CHO cells are 

very resilient and show high viability for extended periods of cultivation. Posttranslational 

modifications in CHO cells closely resemble those of native human proteins. For this study CHO 

cells were successfully used as expression host. This was demonstrated by ELISA and 

immunoblotting of the cell culture supernatant (Figure 17). Selection of the high expressing 

clones S21.5 (FH1-5) and P5 (FH1-5/18-20) significantly improved expression levels in 

comparison to the transfection pool (Figure 17.B). Yields for FH1-5 and FH1-5/18-20 were 

usually around 2 mg/L and 4 mg/L, respectively. Further rounds of transfection and selection 

of clones may have resulted in better expression levels. For the objectives of this study the 

established expression levels and protein yields were sufficient. Both cell lines allowed the 

purification of sufficient amounts for the in vitro functional testing and will provide sufficient 

amounts for use in animal studies. Genetically modified CHO cell strains and optimised 

expression protocols used in the industrial setting should allow large scale production of the 

proteins. The standard yield for the expression of recombinant protein in CHO cells is 50 mg/L 

in the industrial setting (Wurm, 2004).The histidine-tag incorporated in the constructs allowed 

IMAC purification. This worked well for both proteins under standard conditions (Figures 18 

and 19). Addition of 40 mM imidazole effectively prevented binding of endogenous CHO cell 

proteins (Figures 18 and 19). Functional testing, discussed below, suggests that the proteins 

are functional. CHO cells are therefore a good expression host for FH1-5 and FH1-5/18-20.  

3.3.2 FH1-5 and FH1-5/18-20 retain regulatory function comparable to native FH 

The second aim of this chapter was to test the AP regulatory function of the proteins. FH fulfils 

three distinct functions in the regulation of the AP – C3b binding to prevent C3 convertase 

formation, FI cofactor activity and decay acceleration of the C3 convertase. The two principal 

C3b binding sites are located in SCR1-4 and SCR19-20, the latter also bearing the important C-

terminal heparin binding site. Firstly, binding of FH1-5 and FH1-5/18-20 to C3b was assessed by 

ELISA. FH1-5 and FH1-5/18-20 both bound C3b with the anticipated differences in affinity 

(Figure 20.A). Full length FH, included as a positive control, showed a higher affinity than the 

two recombinant proteins, likely due to the presence of three C3b binding sites. FH1-5/18-20 

showed a higher affinity than FH1-5 due to the presence of an additional C3b binding site in 

SCRs 19/20. This result allows two conclusions. Firstly it shows that SCR5, the hexa histidine-

tag and SCR 18 provide a sufficient linker between the two binding sites to allow simultaneous 

engagement with C3b. While it is not possible to tell whether this simultaneous engagement is 

on the same or two neighbouring molecules, it is in accordance with the current model of FH 

binding to surface-bound C3b. The “folded-back” conformation of cell-surface associated FH is 

widely accepted and supported by recent structural characterisation of the central SCRs 10-15 
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(Aslam and Perkins, 2001, Okemefuna et al., 2008, Schmidt et al., 2010). Secondly, the findings 

imply that SCRs 6-17 may not be required for SCRs 1-5 and 18-20 to associate with C3b bound 

on a cell surface. An exact functional role of SCRs 8-17 has not been determined yet. A mere 

structural function for this large portion of FH is unlikely. In addition to C3b, C3d and heparin 

FH binds to CRP (via SCRs 7 and 20) and aggregates in the presence of high concentrations of 

zinc via SCR 7 (Okemefuna et al., 2008, Perkins et al., 1991, Perkins et al., 2010). It is therefore 

likely that one or more yet unidentified ligands exist that bind in this area of the protein. A 

third heparin binding site in SCR 13 is disputed after fragments comprising central SCRs of FH 

failed to bind to heparin. The ability of FH1-5 and FH1-5/18-20 to bind heparin was assessed by 

ELISA (Figure 20.B). As expected, FH1-5 did not bind to heparin and full length FH bound better 

than FH1-5/18-20, likely because of the presence of at least one additional heparin binding 

site. A heparin binding site in SCR 13 may only be functional in the context of the full length 

protein.  

The fluid-phase activation of the AP is effectively controlled FI and FH by cleavage of the C3b 

α-chain. Protection of CfH-/- CfI-/- mice from renal disease clearly emphasised this relationship 

(Rose et al., 2008). Cofactor activity of FH1-5 and FH1-5/18-20 was tested in a fluid-phase 

assay. Both proteins function as a cofactor to a similar degree as full length FH (Figure 22.A). 

Fusion of SCRs 18-20 downstream of FH1-5 appears not to impair cofactor function in SCRs 1-5. 

FH also controls the activation of the AP by preventing formation of AP C3 convertases and by 

accelerating decay of the AP C3 convertase. A fluid-phase assay was employed to test the 

ability of FH1-5 and FH1-5/18-20 to prevent formation of C3 convertases from spontaneously 

hydrolysed C3. Both proteins were able to inhibit the formation of C3 convertases in a 

concentration dependent manner (Figure 22.B). The level of inhibition is comparable to that of 

the native full length protein. The ability of FH1-5 to accelerate the decay of preformed C3 

convertases was further assessed by SPR (Figure 23). For this C3b was immobilised on a chip 

and the C3 convertases generated by addition of FB and FD. FH1-5 showed higher decay 

acceleration activity in this experiment than FH1-4 (Figure 23). Both concentrations of FH1-5 

reduced the RU reading to the same level, suggesting saturation of the system. This 

experiment was only performed once and should therefore be repeated in the future to 

confirm the findings.  

Function of both proteins was further demonstrated in haemolytic assays. Protection of rabbit 

erythrocytes from AP-mediated lysis by FH1-5 and FH1-5/18-20 is due to fluid-phase regulation 

of AP activation and is comparable to full length FH (Figure 24.B). Compared to rabbit 

erythrocytes, FH has a higher affinity for C3b deposited on sheep erythrocytes (Aminoff et al., 

1976, Fearon and Austen, 1977). FH1-5/18-20 and full length FH protected sheep erythrocytes 
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to a similar degree, whereas FH1-5 protected these cells to a lesser degree (Figure 24.C). There 

are several aspects of the haemolytic assays that should be addressed in future experiments. 

The relative protective effects of FH1-5 and FH1-5/18-20 compared native FH on rabbit and 

sheep erythrocytes would be more distinct if FH depleted serum was used in the assay. The 

use of a wider range of the recombinant proteins is also anticipated to accentuate the relative 

effects. C7/FH depleted serum could be included as an additional negative control to 

equimolar BSA to demonstrate the protective effect is mediated by control of the terminal 

pathway initiation. Similarly, it is of interest to ascertain AP-specific inhibition. This can be 

achieved by using FB/FH depleted serum. 

Overall the functional analysis is comparable to the recent findings of Schmidt et al. and 

Hebecker et al., who have both generated similar “mini-FH” proteins and found decay 

acceleration and cofactor activity of their respective constructs were comparable to native FH 

(Schmidt et al., 2012, Hebecker et al., 2012). Schmidt et al. included SCRs 1-4 and 19-20 and 

linked them with a sophisticated linker based on structural modelling; Hebecker et al. did not 

include an additional peptide linking SCRs 1-4 and 19-20. Schmidt et al. tested the ability of 

their construct to protect erythrocytes from PNH patients from AP-mediated lysis and found it 

provided better protection than native FH. The FH1-5/18-20 generated in the present work did 

not perform better in the sheep cell haemolytic assay that was performed. However, 

modification of the haemolytic assay as discussed above may reveal such effect.  

3.3.3 Therapeutic potential of FH1-5 and FH1-5/18-20 

The treatment options for aHUS and MPGN type II are limited. Successful treatment of aHUS 

patients with the therapeutic anti-C5 mAb Eculizumab is encouraging for the immediate 

patient outcome. However, Eculizumab suppresses the terminal pathway of complement and 

the many important roles of C5 fragments in mediating inflammatory processes. This results in 

an increased risk of infection. Any further adverse effects of long-term suppression of the 

complement system are not known. Ideally, treatment of aHUS should aim to restore AP 

regulation of the glomerular endothelium. FH1-5/18-20 is the ideal candidate to replace 

dysfunctional FH in this condition. Fakhouri et al showed that administration of human FH to 

Cfh-/- mice reverses the deposition of C3 metabolites in the glomerulus (Fakhouri et al., 2010). 

This supports the treatment of MPGN type II patients with plasma exchange and infusion but 

also implicates administration of recombinant FH may present as viable treatment alternative. 

Depending on the nature of the regulatory defect, FH1-5 or FH1-5/18-20 can find application in 

the treatment of MPGN type II. 
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FH1-5 and FH1-5/18-20 both display fluid-phase AP regulatory activity that is comparable to 

the full length protein in a number of assays. FH1-5/18-20 protects cells at the cell surface. The 

functional data generated in this study justifies future in vivo studies. The two reagents are 

useful tools to modulate disease development and progression in murine models of MPGN and 

aHUS (Pickering et al., 2002, Pickering et al., 2007). Application of FH1-5 and FH1-5/18-20 in 

these models will test their potential as therapeutics in these conditions. In Cfh-/- mice both 

proteins are expected to restore fluid-phase activation of the AP resulting in normal serum C3 

levels and reduced GBM deposition of C3 metabolites. Without a cell binding domain FH1-5 

may “downgrade” the MPGN type II like phenotype of the Cfh-/- mice to the aHUS like 

phenotype of the Cfh-/-.Δ16-20 mice. Disease resolution and protection is therefore only 

expected for FH1-5/18-20, not FH1-5.  

A newly identified ligand of FH, malondialdehyde (MDA), may be of interest for targeting FH to 

the site of tubular injury after ischaemia-reperfusion. MDA is a product of lipid peroxidation, a 

process that causes damage to the cell membrane through oxidative stress and is dramatically 

increased after renal ischaemia-reperfusion (Gueraud et al., 2010, Paller et al., 1984). 

Weisman et al characterised binding of FH to MDA on apoptotic and necrotic cells in the 

context of age-related macular degeneration AMD) (Weismann et al., 2011). They mapped the 

interactions sites of MDA with FH to SCRs 7 and 20. The binding site on SCR7 is of particular 

importance since the H402 variant of FH, associated with approximately 50% of AMD cases, 

shows markedly reduced binding to MDA (Thakkinstian et al., 2006, Weismann et al., 2011). A 

recombinant FH protein that contains SCRs 1-7 therefore presents a further alternative 

construct.  

In conclusion, two recombinant FH proteins were successfully expressed in CHO cells and their 

ability to inhibit amplification of the AP of complement was demonstrated using several 

assays. In some conditions, e.g. anti-GBM nephritis, targeting of the site of complement 

activation/deposition is feasible. The GBM was identified as attractive target and the suitability 

of two mAbs to provide a targeting domain explored in the next chapter. 
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4.1 Introduction 

In the previous chapter the generation of two recombinant FH proteins was discussed.  

Dysregulation or inappropriate activation of the AP of complement plays a role in pivotal role 

in aHUS and MPGN type II (see sections 1.2.3.2 and 1.2.4.5). The AP also plays an important 

role in renal ischaemia-reperfusion injury as well as immune-complex mediated nephritis by 

amplification of initial CP activation. In the context of these pathologies targeting of FH1-5 

directly to the kidney may present an attractive alternative to the cell surface-targeted FH1-

5/18-20. Targeting of a drug decreases dose requirements and possibly limits side-effects 

(Holers et al., 2013). A specific targeting mechanism would also provide a useful platform to 

deliver other / additional therapeutic molecules to the kidney. The GBM forms the interface 

between endothelial cells and podocytes, which together perform the separation of the filtrate 

from the blood. It is comprised of three layers with type IV collagen and laminin as the major 

constituent (Miner, 2012). The lamina rara externa and interna are covered in heparan 

sulphate. Several studies have illustrated the susceptibility of the GBM to complement-

mediated damage in certain scenarios (Williams et al., 1984, Zipfel, 2006). In the human 

kidney, all AP regulators are expressed to varying degrees on different cell types (Ichida et al., 

1994, Zipfel, 2006). The GBM lacks surface-bound regulators, but FH can be detected at the 

GBM in the normal human kidney, most likely associated with heparan sulphate, as shown by 

co-localisation of FH and type IV collagen (Licht et al., 2007). Deficiency of FH in mice causes 

deposition of C3 metabolites along the glomerular capillary walls (Pickering et al., 2002). In 

mice deficient in FH and FI C3 is only detected in the mesangium, demonstrating a 

fundamental role of FH for protection of the GBM from C3 deposition. The GBM may therefore 

present a suitable target for delivery of FH1-5.  

I have designed scFv fusion proteins that will target FH1-5 to the glomerular basement 

membrane. Successful targeting of complement regulators to the site of complement 

activation or specific tissues and cell types has been demonstrated in several studies (Huang et 

al., 2008, Song et al., 2012, Spitzer et al., 2004). To target recombinant FH1-5 to the kidney I 

obtained the mAb3 hybridoma which secretes a mouse mAb (IgG1) with specificity to the NC1 

domains of the α3-chain of type IV collagen (Johansson et al., 1993). The structure and 

assembly of type IV collagen is illustrated in Figure 25. For generation of mAb3 the mice were 

immunised with bovine NC1 domains but mAb3 cross-reacts with both murine and human NC1 

domains. The NC1 domain of the α3-chain, also known as the “Goodpasture’s antigen” is a 

well-characterised glomerular antigen (Borza and Hudson, 2003, Pedchenko et al., 2011). To 

exploit the binding properties of mAb3, the unknown sequence of the heavy and light chain 
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variable region had to be determined. It was also necessary to establish the in vivo availability 

of the antigen and specific binding to the kidney.  

 

 

Figure 25: Structure of type IV collagen 
 
Each individual α-chain of type IV collagen contains a 7S domain, a large triple helix and an NC1 domain. 
The NC1 domains of three α-chains initiate formation of a protomer, e.g. the α3,4,5 protomer. The NC1 
trimers of two protomers dimerise and each dimer forms tetramers via the 7S domains. Many tetramers 
form the collagen IV meshwork. Diagram reprinted by permission from Macmillan Publishers Ltd: Nature 
Reviews Cancer; Kalluri, A.: Volume 3(6), 2003 (Kalluri, 2003). 

 

The aims of this chapter were therefore: 

1. Characterise the in vitro and in vivo binding properties of mAb3 (and 1G6) 

2. Clone the correct mAb3 heavy and light chain variable regions 
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4.2 Results 

4.2.1 Purification of mAb3 

To allow characterisation of the binding properties of mAb3, the hybridoma was obtained 

(Johansson et al., 1993). The antibody purified from the hybridoma cell culture supernatant by 

affinity chromatography using a protein G column. The antibody was eluted from the column 

using a low pH buffer and 1 ml fractions collected (Figure 26.A). The fractions were analysed by 

SDS-PAGE to identify immunoglobulin containing fractions and to assess purity of the batch 

(Figure 26.B). The gel revealed a band of the expected size (~150 kDa) under non-reducing 

conditions and two bands of the expected size under reducing conditions. There was a double 

band at the expected molecular weight of the heavy chain. Elution of IgG in these fractions was 

further confirmed by immunoblotting with an anti-mouse IgG antibody (Figure 26.C). 

4.2.2 Binding of mAb3 to bovine and murine type IV collagen NC1 domains 

Bovine collagen type IV α3-chain NC1 domains were used to immunise the mice to generate 

mAb3 which was subsequently shown to cross-react with murine and human NC1 domains 

(Johansson et al., 1993). To verify that the IgG secreted by the hybridoma is mAb3, binding of 

the purified IgG to bovine and murine renal collagen type IV NC1 domains (Chondrex) was 

tested by sandwich ELISA. The antigen was coated to microtitre plates and binding of different 

concentrations of the purified IgG detected with an HRP-conjugated anti-mouse IgG antibody 

(Figure 27.A). To confirm specificity for the α3-chain, collagen type IV derived from the 

Engelbrecht-Holm-Schwarm (EHS) tumour which lacks the α3-chain, was included as negative 

control (Danielson et al., 1992). Binding of mAb3 to bovine NC1 domains and to a lesser degree 

to murine NC1 domains but not to EHS tumour collagen type IV was demonstrated. After 

significant difficulties were encountered during cloning of the mAb3 light chain variable region, 

as discussed later, an alternative mAb with similar specificity was sought. The alternative type 

IV collagen specific mAb was 1G6 (Zhang et al., 2008). Purified 1G6, an IgM, was not available 

for testing as the original cell line reportedly stopped secreting; a small amount of cell culture 

supernatants was provided by Dr M. Foster (Duke University, U.S.A.) for testing in the ELISA. 

The ELISA was carried out as for mAb3, the supernatant was serial-diluted across the plate, 

starting with undiluted supernatant (Figure 27.B). 1G6 bound to bovine and murine NC1 

domains to a similar extent and showed some cross-reactivity with the control type IV collagen 

(EHS collagen type IV).  
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Figure 26: Purification and detection of mAb3: 
 
(A) The chromatography trace shows elution of mAb3 from a protein G column with a low pH buffer. 
Absorbance units are shown on the y-axis and fraction numbers on the x-axis. (B) Protein containing 
fractions (5-10) were analysed by non-reducing and reducing SDS-PAGE and Coomassie blue staining. 
A single band of ~130 kDa was revealed under non-reducing conditions and three bands of ~25 kDa, 
~55 kD and ~60 kDa were revealed under reducing conditions. (C) Immunoblotting of the fractions 
after non-reducing SDS-PAGE was carried out with a HRP-conjugated sheep anti-mouse Ig antibody. A 
single band of ~130 kDa was detected.  
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Figure 27: Binding of mAb3 and 1G6 to collagen type IV NC1 domains 
 
(A) Binding of mAb3 to bovine and murine collagen type IV NC1 domains was tested by ELISA. Bovine 
and murine NC1 domains were coated microtitre plates and binding of mAb3 detected with a sheep 
anti-mouse Ig antibody. Type IV collagen from the Engelbreth-Holm-Schwarm (EHS) mouse tumour cell 
line, lacking the α3-chain, was included as negative control alongside uncoated wells (no coat). (B) For 
binding of 1G6 to bovine and murine NC1 domains the same experiment was carried out. Only cell 
culture supernatant was available for analysis, this was serial-diluted across the plate. Shown is one 
representative experiment of two. 
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4.2.3 In vitro and in vivo binding of mAb3 to mouse kidney  

To further characterise mAb3, binding to normal mouse and human kidney sections was 

detected with a FITC-conjugated anti-mouse IgG antibody (Figure 28). In this in vitro 

experiment mAb3 stains the glomerular and tubular basement membranes. Binding of mAb3 

to murine and human kidney sections has been shown previously (Johansson et al., 1993, Wei 

et al., 2006); however no study has demonstrated the in vivo binding properties of mAb3. To 

assess availability of the antigen in vivo, 20 µg of mAb3, 8D1 (positive control), isotype control 

(anti-Hen egg lysozyme) or PBS only were injected into mice via the tail vein. 8D1 is an isotype 

matched collagen type IV specific mAb3. Binding of 8D1 to murine glomerular basement 

membrane was previously shown in vitro and in vivo (Luo et al., 2010). The animals were 

sacrificed after 1 h and the kidneys, lungs, livers and spleens harvested. Binding of mAb3 was 

detected by staining cryosections of the kidneys and control organs with a FITC-conjugated 

anti-mouse IgG antibody (Figure 28). In vivo, mAb3 is only detected at the GBM as the tubular 

basement membrane is not accessible. 

4.2.4 Cloning the mAb3 heavy and light chain variable regions 

To exploit the binding properties of mAb3 to target FH1-5 to the GBM, the variable domains of 

the mAb3 heavy and light chains were cloned. For this mRNA was extracted from the 

hybridoma cells and heavy and light chain cDNA synthesised using degenerate primers that 

bind in the hinge region and kappa constant region, respectively (see methods). The highly 

variable 5’ end of both chains only offers the leader sequence and framework 1 region for 5’ 

end primer design (Figure 29). However, it is desirable to obtain the leader sequence for later 

alignment and expression. To allow for cloning of the variable domains including the leader 

sequence, 5’ RACE was chosen for amplification. 5’ RACE (rapid amplification of cDNA ends) is 

a PCR technique which is routinely used to amplify genes with unknown 5’ (or 3’) ends 

(Frohman et al., 1988). 

4.2.4.1 Cloning of the heavy chain variable region by 5’ RACE 

To obtain the heavy chain variable region cDNA synthesised using an oligonucleotide priming 

in the hinge region, was used as a template for 5’ RACE (Figure 29). The PCR product obtained 

was TA cloned and the DNA of several clones sequenced. The DNA sequence obtained was 

aligned with several sequences of functional heavy chain variable regions (Figure 30). There 

are no reports of contaminating IgG heavy chain mRNA transcripts and the sequence obtained 

matched that obtained previously with different primers (K.J. Marchbank), there was little 

doubt that the sequence obtained in several clones was that of the mAb3 heavy chain. 
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Figure 29: 5’ RACE of mAb3 heavy and kappa light chain cDNA 
 
5’ RACE was used to amplify mAb3 heavy and light chain cDNA. The mock tailed (lane 1) 
or poly-C tailed (lane 2) heavy chain cDNA was amplified with the 5’ anchor primer and 
MOCG12, priming in CH1 region. The mock tailed (lane 3) or poly-C tailed (lane 4) light 
chain cDNA was amplified with the 5’ anchor primer and CKMosp, priming at the start of 
the light chain constant region.  
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4.2.4.2 5’ RACE of the light chain cDNA favours amplification of an endogenous transcript 

Cloning of the light chain variable region had been attempted previously in the lab (K.J. 

Marchbank). However, expression difficulties and inability of the construct to bind its antigen 

prompted further analysis of the obtained sequence using the Basic Local Alignment Search 

tool (BLAST, National Centre for Biotechnology). The search returned a match with the 

sequence of an aberrant kappa light chain (JL0073). The mAb3 hybridoma was generated using 

SP2/0 cells as fusion partner, which is derived from the MOPC21 myeloma cell line (Carroll et 

al., 1988). This cell line produces an aberrant kappa light chain transcript which is often 

present in excess of the desired light chain and preferentially amplified (Carroll et al., 1988). A 

number of ways to eliminate the aberrant transcript have been reported in the literature. 

The first approach to obtain the correct mAb3 kappa light chain entailed the standard 5’ RACE 

that was successfully used for cloning of the heavy chain variable region. Anecdotal reports 

suggested that if a sufficient number of clones are analysed, a kappa light chain sequence 

different to the aberrant transcript can be obtained. 5’ RACE was performed, the PCR product 

obtained TA cloned and the DNA of 25 clones sequenced. Of these clones, 22 contained the 

aberrant transcript, 2 reactions failed and 1 sequence obtained revealed only vector sequence 

(see Table 11). Due to the uncertainty of this method it was not pursued further. 

 

Table 11: Sequencing results 5' RACE mAb3 kappa light chain 

5’ + 3’ primer No. of clones 
sequenced 

Failed Aberrant transcript Other result (not 
immunoglobulin) 

MKVP2+CKMOsp 4 1 3 0 

MKVP11+CKMOsp 6 1 4 1 

MKVP2+”Andy rev” 4 0 4 0 

MKVP11+”Andy rev” 6 0 6 0 

MKVP2+Light chain 
back BamHI 

5 0 5 0 

Total 25 2 22 1 

 

The digestion of the aberrant transcript mRNA, hybridised with a specific antisense-

oligonucleotide, by RNAse H, was attempted next (Ostermeier and Michel, 1996). However, 

the low working temperature of the enzyme appeared to allow non-specific annealing of the 

antisense-oligonucleotide resulting in degradation of all mRNA since there was no 

amplification of the treated mRNA (data not shown). This approach was also found not to work 

by a different member of the lab using a different template. 

4.2.4.3 Leader specific primers and restriction digest to amplify the specific transcript 

Next, a panel of degenerate primers, designed to prime in kappa light chain signal peptides, 

was tested. These primers (MKVP1, MKVP6, MKVP8, MKVP11) were designed to be different 
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from the signal peptide of the aberrant transcript (Delbat et al., 2001). A primer specific for the 

aberrant transcript (MKVP2) was included as control. The mAb3 light chain cDNA was first 

amplified by standard PCR using this panel of primers (Figure 31.A). Only MKVP2, the primer 

specific for the aberrant transcript, produced a band at the expected size. The PCR product 

was TA cloned and the DNA of several clones sequenced. As expected, all sequences obtained 

using MKVP2 matched the aberrant transcript. To test the primer panel on a different 

template, it was used to amplify the variable region of an irrelevant kappa light chain (Figure 

31.D). MKPV1 and MKVP8 generated a product in addition to MKVP2. Sequencing of these 

products (carried out by Dr A. Knight) revealed that both MKVP1 and MKVP8 amplified a kappa 

light chain sequence different to the aberrant one. This demonstrated that the primer panel 

was working in discriminating against the aberrant transcript. The absence of amplification 

products for the mAb3 cDNA was either due to presence of only a relatively small amount of 

specific template in the synthesised cDNA or due the primers in the panel failing to bind the 

specific template DNA.  

There was a possibility that a small amount of the correct light chain was present in the 5’ 

RACE reaction. This was explored by using the 5’ RACE reaction mixture as template for 

standard PCR with the same primer panel used above. As shown in Figure 31.B and 31.C, 

primer MKVP11 yielded a product with two different reverse primers. This product was TA 

cloned and sequencing again revealed the aberrant light chain sequence. The PCR product 

obtained with MKVP11 was further analysed by restriction digest. Juste et al. identified several 

restriction enzyme sites in the aberrant sequence that occur only at a low frequency in 

functional kappa light chains (Juste et al., 2006b). The MKVP2 and MKVP11 PCR products were 

subjected to restriction enzyme digest with Bci VI, one of the enzymes identified by Juste et al. 

(Figure 32.A). As shown, both PCR products are digested with Bci VI but show a different 

restriction pattern. This suggests a different sequence was amplified by MKVP11 but 

contradicts the sequencing result. To ensure the sequencing result was not due to a sample 

mix up, the MKVP11 PCR product was cloned three times and the DNA of several clones 

analysed. The sequencing result consistently showed the aberrant sequence.  

The abundance of the endogenous transcript reportedly varies between SP2/0 derived 

hybridoma cell lines. Up to this point it was not possible to obtain the specific light chain 

sequence. This encouraged assessment of the endogenous transcript amount present in the 

mAb3 hybridoma in comparison with SP2/0 and NS0 cells which are both derived from the 

MOPC21 tumour. As shown in Figure 32.B the amplification levels of the mAb3 cDNA with 

MKVP2 greatly exceeded the levels obtained for the SP2/0 and NS0 cDNA. 
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Figure 31: Amplification of mAb3 light chain cDNA leader sequence specific primers 
 
A panel of leader sequence specific degenerate primers (1 = MKVP1, 2 = MKVP2, 3 = MKVP6, 4 
= MKVP8, 5 = MKVP11) was employed to amplify the correct mAb3 kappa light chain. MKVP2 is 
a control primer designed to bind to the endogenous light chain leader sequence. Panel A 
shows amplification of mAb3 light chain cDNA with the primer panel and the “CKMOsp” 
reverse primer by standard PCR. Panel B shows nested amplification of a 5’ RACE reaction (as 
shown in Figure 29) with the primer panel and “CKMOsp”. The 5’ reaction was amplified with 
an alternative reverse primer “Andy rev” as shown in panel C. Panel D shows amplification of 
control light chain cDNA, derived from a monoclonal antibody with irrelevant specificity, with 
the primer panel and CKMOsp by standard PCR. L = DNA ladder. 
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Figure 32: BciVI restriction digestion of the MKVP2 and MKVP11 PCR products 
 
(A) The products obtained by amplification of the mAb3 light chain 5’ RACE reaction with 
MKVP2 or MKVP11 were subjected to digestion with BciIV. A control reaction in absence of 
the enzyme was included (-). (B) SP2/0, NS-0 or mAb3 cDNA was amplified with MKVP2. 
Two amounts of template cDNA was used, with the left lane containing half the amount of 
template cDNA than the right lane (for SP2/0 the reverse is the case).  
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4.2.4.4 Combining FR1 specific primers and 5’ RACE to amplify the specific transcript 

Next, a degenerate primer for the framework region 1 was tested. This primer had previously 

been shown not to amplify the aberrant transcript (Delbat et al., 2001). Amplification with this 

primer yielded a clear single band of the correct size (Figure 33). The product was purified, TA 

cloned and plasmid DNA of several clones sequenced. All successfully sequenced clones (12 in 

total) revealed the same sequence, distinct from the aberrant light chain. Alignment of the 

obtained sequence (BLAST) confirmed a murine kappa light chain sequence. There was some 

variation in the framework region 1 due to the degenerate nature of the primer and no 

information about the signal peptide was obtained. To confirm the 5’ end of the mAb3 kappa 

light chain, mAb3 specific primers were designed. One primer hybridised to the CDR3 region to 

allow for specific synthesis of the mAb3 kappa light chain cDNA. The specific cDNA was then 

amplified by 5’ RACE using a mAb3 specific reverse primer hybridising to the CDR2 region and a 

single product was obtained (Figure 33). Sequencing of 8 clones revealed the same sequence 

for the leader peptide and confirmed the framework region 1. 
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Figure 33: PCR of the light chain cDNA (FR1 primer) and 5’ RACE (CDR2 primer) 
 
(A) The mAb3 light chain cDNA was amplified with a FR1 specific degenerate primer (VL-IIA) 
by standard PCR using the “CKMOsp” reverse primer. (B) Specific mAb3 cDNA, synthesised 
with a CDR3 specific primer based on the sequence derived from the VL-IIA PCR product, was 
amplified by 5’ RACE using the anchor primer and a CDR2 specific primer.   
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4.3 Discussion 

Since the technology to establish B cell hybridomas to produce monoclonal antibodies (mAbs) 

was introduced, developments in the area of molecular cloning (e.g. rapid amplification of 

cDNA ends, phage display technology) have greatly advanced the engineering of antibodies 

(Kohler and Milstein, 1975, Nissim and Chernajovsky, 2008, Liu et al., 2008, Teillaud, 2012). It is 

now possible to produce small functional antibody molecules like single chain variable 

fragments (scFv) that only bear the antigen binding domains. These molecules are attractive 

molecules for use as therapeutics because of their small size (25kDa) which also make them 

suitable as fusion partner to other functional molecules. The majority of therapeutic scFvs 

under development find application in the treatment of cancer, mainly by targeting tumour 

cell surface antigens (Accardi and Di Bonito, 2010, Ahmad et al., 2012). Several studies have 

demonstrated the targeting of the AP regulators DAF and CD59 to a specific cell type by means 

of a scFv (Zhang et al., 2001, Spitzer et al., 2004, Song et al., 2012). This study aimed to 

characterise the binding properties of two candidate antibodies, mAb3 and 1G6, and to 

determine the sequence of the heavy and light chain variable regions of mAb3 to allow 

generation of type IV collagen specific FH1-5/scFv fusion proteins. 

4.3.1 Binding characteristics of mAb3 and 1G6 

The in vitro binding of mAb3 and 1G6 to bovine, murine and, in the case of mAb3, human type 

IV collagen has been described previously (Johansson et al., 1993, Zhang et al., 2008). Whilst 

mAb3 specifically bound bovine and murine NC1 domains but not the EHS control type IV 

collagen, 1G6 showed some cross-reactivity with the control collagen (Figure 27). 1G6 may 

therefore be less suited than mAb3 to deliver FH1-5 specifically to the kidney. No published 

data describes the in vivo binding properties of mAb3. The antigen for Goodpasture’s disease is 

located within the NC1 domain hexamer of collagen type IV, which are cross-linked by 

sulphilimine bonds (Vanacore et al., 2009, Pedchenko et al., 2011). In a recent study, Luo et al 

investigated the suitability of mice as model for passive transfer of autoimmunity by 

immunisation with patient antibodies (Luo et al., 2010). For this they compared cryptic antigen 

(Goodpasture’s (GP) auto-antibodies) with accessible antigen (Alport allo-antibodies). In vitro, 

no binding of GP auto-antibodies to native NC1 hexamers was detected whilst reactivity to 

dissociated hexamer subunits or acid-urea treated tissue was comparable to the Alport allo-

antibodies which reacted under both conditions. This study encouraged the question, whether 

the antigen for mAb3 would be available in an in vivo setting. The reported binding pattern of 

mAb3 to the glomerulus was confirmed by staining normal mouse kidney cryosections with 

mAb3. Type IV collagen of the glomerular and tubular basement membrane was detected by 

mAb3 (Figure 28). To establish in vivo binding of mAb3, C57BL/6 mice were injected with 20 µg 
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of mAb3, the control antibodies 8D1 and anti-HEL or PBS only. Cryosections of the harvested 

kidneys were stained with the same FITC-conjugated secondary antibody as used for the in 

vitro sections. As expected, binding of mAb was only detected at the GBM, since the basement 

membrane of intact tubuli is not exposed to mAb3 (Figure 28). This confirms that the NC1 

domains of type IV collagen, in C57BL/6 mice, are not disguised by additional sulphilimine 

cross-links. The data also shows, that mAb3 can penetrate the glomerular endothelium and at 

least partially the GBM. 

The reactivity of mAb3 with collagen IV in tissues other than kidney was also determined. 

Collagen IV is a general constituent of basement membranes and the six chains (α1-α6) appear 

in three different protomers. In addition to GBM and renal tubule the α3.α4.α5(IV) protomer is 

found in the eye and in alveolar, testicular, cochlear and placental basement membranes. It 

was shown that mAb3 weakly binds NC1 domains derived from bovine lens, but not human 

placental NC1 domains (Johansson et al., 1993). Binding affinities of mAb3 appear to differ 

between tissues, in accordance with variation of relative quantities of α3.α4.α5(IV) and 

interestingly the degree of cross-linkage of NC1 dimers (Langeveld et al., 1988, Pullig, 1992, 

Khoshnoodi et al., 2008). Lungs, livers and spleens were collected from the mice and no 

binding of mAb3 or control antibodies was detected (data not shown). 

4.3.2 Overcoming an overexpressed endogenous kappa light chain  

The cloning of the mAb3 hybridoma variable regions presented two challenges. The highly 

variable 5’ end of both chains only offers the leader sequence and framework 1 region for 5’ 

end primer design. However, it is desirable to obtain the leader sequence for later alignment 

and expression. To allow for cloning of the variable domains including the leader sequence, 5’ 

RACE was chosen for amplification. The heavy chain was successfully amplified with this 

method (Figure 29). Alignment with several functional heavy chain variable regions sequences 

suggested that a heavy chain (Figure 30) was cloned. The mAb3 hybridoma was generated 

using SP2/0 cells as fusion partner, which is derived from the MOPC21 myeloma cell line 

(Johansson et al., 1993). This cell line produces an aberrant kappa light chain transcript which 

is often present in excess of the specific light chain (Carroll et al., 1988). When attempting to 

clone the specific kappa chain the majority of clones obtained will contain the aberrant 

transcript but not the specific kappa chain. A number of approaches have been developed to 

evade the aberrant transcript (Michel, 1996, Delbat et al., 2001, Yuan et al., 2004, Juste et al., 

2006a). We have combined several of these methods in an attempt to achieve successful 

amplification of the mAb3 kappa light chain. 

The digest of the aberrant transcript mRNA, hybridised with a specific antisense-

oligonucleotide, by RNAse H, presented a simple but seemingly unspecific solution to the 
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problem (Michel, 1996). The low working temperature of the enzyme appeared to allow non-

specific annealing of the antisense-oligonucleotide resulting in degradation of all mRNA (data 

not shown).  

Delbat et al. deemed the use of 5’ RACE as disadvantageous and resorted to a panel of highly 

degenerate leader sequence primers used against a primer specific for the aberrant transcript 

(Delbat et al., 2001). This allowed identification of a primer that does not amplify the aberrant 

transcript based on the amount of amplification obtained. This panel of four highly degenerate 

kappa leader sequence primers (MKVP1, MKVP6, MKVP8, MKVP11) and a primer known to 

amplify the aberrant transcript (MKVP2) were used to amplify the mAb3 light chain variable 

regions. Only MKVP2 yielded a product (Figure 31.A). This may be because neither of the other 

primers recognises the specific transcript or could reflect the relative abundance of the 

aberrant transcript. A nested PCR of the 5’RACE product using the degenerate primer panel 

and two different reverse primers (Figure 31.C and 31.D) again yielded good amplification with 

MKVP2, but also MKVP11 generated a single product. Based on the amplification levels, these 

results suggest that MKVP11 has specifically amplified the desired transcript. However, 

sequencing revealed that the sequence of the amplified DNA is that of the aberrant light chain.  

To further test this, the PCR products were digested with BciVI (Figure 32.A). The restriction 

sites on the aberrant transcript were mapped and the frequency of the identified restriction 

sites in functional full length kappa light chains determined (Juste et al., 2006a). Three 

restriction sites with a frequency of less than 20% were identified, with BciVI occurring in only 

4.19% of sequences. Restriction digest with these enzymes could thus be utilised to digest 

usual PCR or 5’RACE products to separate both transcripts or to exclude amplification of the 

aberrant transcript. Both the MKVP2 product and the MKVP11 product were digested by BciVI 

but showed restriction fragments of different sizes. This again indicated that the sequence of 

the MKVP11 amplified DNA has a difference sequence than the aberrant transcript. Cloning of 

the wrong PCR product presented a possible explanation for the results obtained. However, 

repeats of the same procedure yielded the same sequencing result. There is no plausible 

explanation for the somewhat contradictory findings obtained with the leader sequence 

primers and the BciVI digests. 

Delbat et al. used further primers, hybridising to the framework region 1, to confirm the 

results obtained with the first primer panel. One of the primers identified to amplify only the 

specific kappa light chain (VII-A) was used to amplify the mAb3 light chain cDNA. The single 

band that was obtained with this primer (Figure 33) was TA cloned and the DNA of several 

clones sequenced. Analysis of the sequences obtained revealed the same kappa light chain 

sequence in all clones, very distinct from the aberrant kappa light chain sequence (Figure 34). 

The degenerate nature of the VII-A and fact that it hybridises in the FR1 region did not allow 



- 104 - 
 

cloning of the leader sequence and resulted in some variation in the FR1 region between the 

DNA clones obtained. To confirm the FR1 region and to obtain the leader sequence gene-

specific primers hybridising in the CDR3 and CDR2 region were designed for synthesis of 

specific cDNA and subsequent 5’ RACE (Figure 33.B). The completed mAb3 light chain 

sequence was aligned to several other functional kappa light chain sequences (Figure 34).  

 

In this project several methods were adopted to retrieve the type IV collagen specific mAb3 

kappa light chain sequence. Ultimately PCR with highly degenerate FR1 region primers 

followed by 5’ RACE with gene specific primers allowed cloning of the correct light chain, 

including the signal sequence. The findings suggest that combination of these published 

methods presents a feasible, relatively simple approach. The degenerate primers panels can be 

used to identify a light chain sequence different from the endogenous light chain (Delbat et al., 

2001). The obtained sequence, which may lack part of the 5’ sequence, can then be used to 

design gene-specific primers for use in 5’ RACE to obtain the entire sequence.  

The difficulties encountered whilst cloning the mAb3 light chain variable regions prompt 

discussion of the approach chosen to generate an antibody fragment specific for type IV 

collagen. In principle there are two ways to generate a scFv. If a hybridoma that secretes an 

antibody of the desired specificity is available, the variable regions can be cloned directly from 

the cell line. The potential disadvantages of this approach are, as demonstrated in this study, 

the presence of contaminating endogenous transcripts that may be preferentially amplified. 

Depending on the position of the antigen binding site the folding of the resulting scFv may be 

incorrect and result in less or no binding of the antigen. Although there are several examples 

of functional scFv that were cloned from a parent antibody, the majority of scFvs reported in 

the literature were generated by phage display technology. A general or pre-selected scFv 

phage display library allows simultaneous selection of several candidate scFvs based on affinity 

of the folded protein. Later folding issues and loss of affinity can largely be prevented. Fusion 

of the scFv to a fluorescent tag, like GFP, could greatly facilitate the further functional analysis. 

For this project, it may well be worth pursuing this approach as humanised libraries can be 

used that may have a lower risk of immunogenicity in comparison to the murine scFvs 

generated.  

Despite the problems encountered, the sequence of a kappa light chain was cloned from mAb3 

cDNA and the alternative mAb 1G6 was established as possible alternative. The next challenge 

was to assemble the variable regions of mAb3 and 1G6 in a format suitable for fusion to FH1-5 

to utilise the binding properties of the parent antibodies.   
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5 Generation of type IV collagen specific FH1-5/scFv proteins 
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5.1 Introduction 

This chapter will combine the reagents generated in chapter 3 and the sequence information 

obtained in chapter 4 to generate a FH1-5 molecule that is targeted to the glomerulus by 

means of a collagen type IV specific antibody fragment. In chapter 3 the FH1-5 protein was 

expressed, purified and its complement regulatory function established in in vitro assays. 

Chapter 4 dealt with the characterisation of the binding properties of the monoclonal 

antibodies, 1G6 and mAb3. The sequence of the 1G6 variable regions was known, for mAb3 

the variable regions were cloned and the sequence information obtained. The scFv format was 

chosen to exploit the binding properties of these two antibodies.  

 

 

 

 

 

 

 

The site of complement activation and the resulting tissue damage is often restricted to a 

particular organ in complement-mediated conditions. Targeting of a complement inhibitor 

enables concentration of the therapeutic molecule at the site of complement activation and 

prevents systemic inhibition of complement and its diverse functions.  

 

The aims of this chapter were therefore to: 

1. Generate FH1-5/1G6 scFv and FH1-5/mAb3 scFv DNA constructs 

2. Express and purify both fusion proteins 

3. Characterise the binding properties of the two functional domains of the fusion 

protein 

  

Figure 35: GBM-targeted FH1-5/scFv fusion proteins 

Fusion of FH1-5 to a scFv antibody fragment specific for the NC1 domains of the type IV collagen α3-
chain allows targeting of the regulator to the relatively unprotected GBM. FH1-5 can exert decay 
accelerating and FI cofactor activity locally at the GBM. 
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5.2 Results 

5.2.1 Generation of the FH1-5/1G6 scFv expression vector 

The sequence for the 1G6 variable regions was published and the scFv was therefore 

synthesised (see Appendix B) by MWG (Zhang et al., 2008, Sackey, 2008) The synthesised gene 

was provided in a plasmid (CR2.1 1G6 scFv) and the scFv DNA could thus be obtained by 

transformation of competent cells with the plasmid DNA, followed by plasmid preparation and 

restriction digests or by amplification of the scFv by PCR. The latter option was chosen since it 

allowed introduction of alternative restriction sites for downstream cloning of the fragment.  

The cloning strategy for this construct is depicted in Figure 36. In brief, the two DNA fragments 

for the fusion protein were amplified by standard PCR from the according plasmid DNA. The 

primers were designed to introduce a SalI site at the 5’ end and a histidine tag (His6) and KpnI 

site at the 3’ end of FH1-5 and a 5’ KpnI site and 3’ stop codon and NheI site for the 1G6 scFv. 

The two fragments (shown in Figure 37.A) were purified and ligated using a T4 ligase. The 

ligation product was amplified by PCR using the 5’ primers for FH1-5 and the 3’ primer for the 

scFv (see Figure 37.A). The resulting fragment was digested with SalI and NheI and the gel-

purified insert ligated with the SalI/NheI digested pDEF N2.30. Colonies resulting from the 

transformation of competent cells with this ligation reaction were screened by colony PCR 

using primers flanking the multiple cloning site of pDEF (Figure 37.B).  

Of these screened colonies, two clones were chosen to transfect CHO cells clones A7 and A8). 

Untransfected cells were eliminated from the transfection pool by antibiotic selection 

(hygromycin B). The resistant cells were allowed to grow to confluence and supernatant 

analysed by ELISA and immunoblotting (Figure 38.A). The A8 supernatant was analysed by 

sandwich ELISA. In neat supernatant a very low level of OX24 captured FH1-5/1G6 scFv was 

detected with a polyclonal anti-FH antiserum. Detection levels of A8 were increased by 

concentration of the protein in supernatant using spin-columns or nickel-NTA resin. Wild-type 

CHO cell culture supernatant was used as negative control. Culture supernatant of a histidine-

tagged FH protein (Ba1) was included as positive control for the nickel-NTS resin enrichment. 

No protein was detected by immunoblotting and intracellular retention of the protein 

excluded by including cell lysates (Figure 38.B). Since the nickel-NTA resin allowed enrichment 

of the protein from the supernatant, purification of a small batch of protein was attempted 

using a nickel-charged chelating column (Figure 38. C). The collected fractions were analysed 

by SDS-PAGE followed by immunoblotting (Figure 38.D).  
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 Figure 36: Cloning strategy FH1-5/1G6 scFv 
 
(1) SCRs 1-5 were amplified from pBluescript containing the full length FH cDNA. The primers 
were designed to introduce a SalI restriction site at the 5’ and a histidine-tag and KpnI site at 
the 3’ end. The synthesised 1G6 scFv gene was amplified from PCR2.1 with primers 
introducing a 5’ KpnI site and a stop codon and NheI site at the 3’ end. (2) Both PCR products 
were KpnI digested and ligated. (3, 4) The ligated DNA fragments were amplified by PCR with 
the external primers and cloned into pDEF N2.30. 
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Figure 37: PCR assembly and cloning of FH1-5/1G6 into pDEF N2.30 
 
(A) The PCR fragments for the FH1-5/1G6 scFv fusion construct were amplified individually by 
standard PCR and appropriate restriction sites introduced. Two different concentrations of 
template DNA were used and a band of approximately 1000 bp obtained for FH1-5 and a band of 
approximately 650 bp was obtained for the 1G6 scFv fragment. After ligation of the KpnI digested 
PCR fragments, the ligated DNA was amplified using the flanking primers. The resulting PCR 
product (approximately 1686) was purified and digested with SalI and NheI and ligated with the 
SalI/NheI digested pDEF N2.30 mammalian expression vector. (B) E. coli DH5alpha competent 
cells were transformed with the ligation mixture and colonies screened by colony PCR using 
primers flanking the pDEF multiple cloning site. 
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Figure 38: Detection of FH1-5/1G6 scFv expression in transfection pools  
 
The expression levels of CHO cells (transfection pool) transfected with either FH1-5/1G6 scFv DNA 
clone A7 or A8 were assessed by ELISA and / or immunoblotting. (A) To assess A8 expression by 
ELISA, plates were coated with OX24, and bound FH proteins in neat A8 supernatant (A8), 20-fold 
concentrated A8 supernatant (A8 20x) or A8 protein enriched with Ni-NTA resin (A8 Ni-NTA) 
detected using a polyclonal anti-human FH antiserum. Supernatant containing a histidine-tagged 
control protein was used as positive control (Ba1; Ba1 Ni-NTA) for the Ni-NTA resin concentration. 
Neat FH1-5 supernatant was included as a positive control. Supernatant from wild-type CHO cells 
was used as negative control, either neat (CHO w/t) or 20-fold concentrated (CHO w/t 20x). (B) 
Neat supernatants (A7, A8, FH1-5 or Ba1) or cell lysates (A7, A8) were analysed by SDS-PAGE 
followed by immunoblotting using the same detection antibody as for the ELISA. (C) 75ml of A8 
supernatant from the transfection pool was purified using a nickel-coated metal chelating column 
and eluted with a imidazole gradient (0-0.5M). (D) The fractions were analysed by SDS-PAGE and 
immunoblotting as for (C).  

 

 

m
A

U
 

Fraction no. 



- 111 - 
 

The main elution peak contained primarily non-specifically bound proteins; the later fractions 

(7-9) showed a faint band of approximately the expected size (~52 kDa under non-reducing 

conditions). More prominent bands in fractions 8-15 were two bands of ~25 kDa in size. These 

correspond to FH1-5 fragments. The low expression level prompted further analysis of the 

sequence. An additional leader sequence was identified upstream of the SalI site used to clone 

FH1-5 into N2.30. Since this could have contributed to low expression of the protein, the insert 

was removed from N2.30 and ligated with S21 as outlined in Figure 39. The correct DNA 

sequence of clones 3 and 4 was confirmed by sequencing. These two clones were 

subsequently named F3 and F4 and taken forward for transfection. 

5.2.2 Generation of the FH1-5/mAb3 scFv expression vector 

The initial strategy for generation of the FH1-5/mAb3 scFv expression vector is outlined in 

Figure 40. The VH and VL fragments were amplified by standard PCR (Figure 41.A). A 5’ KpnI 

site and a 3’ overhang for the (G4S)3 linker (adapted from (Kontermann and Dübel, 2010) were 

introduced in the VH fragment and a 5’ linker overhang and 3’ stop codon and NheI site in the 

VL fragment. The scFv was assembled by extension overlap PCR, in which the compatible linker 

overhangs serve as primers to link the two fragments but the favoured product is produced by 

the VH 5’ primer and the VL 3’ primer (Figure 41.A). The FH1-5 fragment and mAb3 scFv were, 

as for the FH1-5/1G6 scFv above, assembled by restriction digest followed by ligation and PCR 

with the flanking 5’ and 3’ primers. The resulting DNA fragment (Figure 41.B) was cloned into 

S21 using the SalI and NheI restriction sites and the DNA of several clones analysed by 

sequencing. The sequencing results consistently showed extensive mismatching in the region 

of the (G4S)3 linker (example shown in Figure 42). Due to time constraints, optimisation of this 

approach with regards to annealing temperature and template concentration was not feasible. 

Instead, the mAb3 scFv was synthesised (Eurofins DNA Operon, Munich) and the cloning 

strategy adapted accordingly (Figure 43.A1 and 43.A2). The DNA sequence of the mAb3 scFv is 

shown in Appendix B. To propagate the plasmid containing the synthesised mAb3 scFv gene, 

competent cells were transformed and the plasmid DNA (pCR2.1 mAb3 scFv) purified. The 

pCR2.1 mAb3 scFv plasmid DNA was amplified, digested with KpnI and NheI, purified and 

ligated with the KpnI/NheI digested, purified F3 plasmid (FH1-5 1G6 scFv) (Figure 43.B). 

Competent cells were transformed with the ligation mixture and resulting colonies screened 

by colony PCR (Figure 43.C). PCR of clones 1, 13 and 15 yielded a band of the expected size for 

FH1-5 and the mAb3 scFv. These clones were taken forward for sequence analysis. All three 

clones contained the correct sequence; clone 13 was taken forward for transfection of 

mammalian cells.   
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Figure 39: Transfer of FH1-5/1G6 scFv from N2.30 (A7) to pDEF S21 
 
(A.1) To transfer the FH1-5/1G6 insert from the A7 pDEF N2.30 vector to pDEF S21 (which lacks 
the CD33 signal peptide) A7 was digested with SalI and NheI (A.2) and ligated with the SalI/NheI 
digested pDEF S21 to form pDEF F3 (A.3). (B) Competent cells were transformed with the ligation 
mixture and resulting colonies screened by colony PCR using primers flanking the pDEF multiple 
cloning site.  

 

 

A.1 

A.3 

A.2 

B 



- 113 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Cloning strategy FH1-5/mAb3 scFv 
 
To assemble the FH1-5/mAb3 scFv fusion protein, the three individual genes were amplified by 
PCR to introduce restriction sites and overhangs for downstream cloning. (1) The mAb3 VH and 
VL were amplified from the PCR4-TOPO clones with confirmed sequence. A 5’ KpnI site and 3’ 
overhang for the glycine serine linker were introduced in the VH and a 5’ partly complementary 
linker overhang and 3’ stop codon and NheI site in the VL. (2) The FH1-5 DNA was amplified by 
PCR and a SalI site and histidine-tag / KpnI site introduced at the 5’ and 3’ ends, respectively. The 
VH and VL DNA was fused by overlap extension PCR. The partly complementary linker served to 
prime the two fragments and external primers were used for amplification. (3) The amplified 
FH1-5 DNA and the product of the overlap extension PCR were purified, KpnI digested and 
ligated. (4) The ligation mixture was then used as a template to amplify ligated DNA fragments. 
(5) The resulting PCR product was digested with SalI and NheI and ligated with the SalI/NheI 
digested pDEF S21 vector to obtain the final expression vector (6).  
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Figure 41: Assembly of the FH1-5/mAb3 scFv by PCR 
 
(A) The mAb3 VH (394 bp) and VL (341 bp) were first amplified individually by PCR using two 
different amounts of template DNA each. The scFv DNA (735 bp) was then assembled by overlap 
extension PCR using a range of different concentrations. (B) PCR was then used to amplify the 
ligation reaction of FH1-5 and the mAb3 scFv using three different DNA ratios. The product 
obtained was then SalI/NheI digested and ligated with the SalI/NheI digested pDEF S21. (C) 
Colonies resulting from transformation of competent cells with the ligation mixture were 
analysed for the presence of insert by colony PCR using primers flanking the pDEF multiple 
cloning site.  
 

 



- 115 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Mismatched linker after the mAb3 scFv overlap extension PCR 
 
Sequencing of all clones generated using overlap extension PCR for assembly of the 
mAb3 scFv showed extensive mismatching and deletions in the linker region. The 
sequence shown is representative of 10 clones that were sequenced from two 
independent cloning experiments.  
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Figure 43: Cloning of FH1-5/mAb3 scFv vector from synthesised mAb3 scFv 
 
(A.1) The mAb3 scFv was amplified from the synthesised gene in pCR2.1 by PCR using 
primers that introduce a KpnI site and stop codon / NheI site at the 5’ and 3’ ends, 
respectively. (A.2) The fragment generated was ligated with the KpnI/NheI restricted 
pDEF F3 (Fh1-5/1G6 scFv) resulting in FH1-5/mAb3 scFv (“L”). (B) Amplification of the 
synthesised mAb3 scFv from PCR2.1. (C) Colony PCR of the “L” transformed E. coli 
colonies.  
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5.2.3 Expression of the FH1-5/scFv fusion proteins in CHO cells 

CHO cells were chosen as expression host for both FH1-5/scFv constructs. These cells provided 

satisfactory protein yield for the FH1-5 and FH1-5/18-20 constructs. Wild-type CHO cells were 

transfected with F3, F4 (1G6 scFv) or L13 (mAb3 scFv) plasmid DNA using the jetPRIME 

transfection reagent (as described in the methods sections). After selection with hygromycin, 

individual colonies were isolated with cloning discs and protein expression tested by 

immunoblotting which served to test integrity of the proteins at the same time (Figure 44). For 

the L13 transfections five clones were isolated, of which all but L13.1 showed expression of the 

fusion protein as indicated by detection of a band of the correct size (~62 kDa) by 

immunoblotting with a polyclonal anti-human FH antiserum (Figure 44.A). The protein runs 

lower under non-reducing conditions due to the presence of 12 disulphide bonds, ten in FH1-5 

and two in the scFv part. The expression levels of the clones analysed were similar, with L13.2 

showing slightly higher expression. For the F3 and F4 transfections, four and five clones were 

isolated, respectively. For all clones, except F3.2 and F4.1 a band of the correct size was 

detected. The predicted molecular weight of the FH1-5/1G6 scFv is ~62 kDa. Of the expressing 

clones, F3.3 and F4.2 showed the highest levels of expression. However, all clones showed two 

bands in addition to the band of the presumed intact protein. These lower molecular weight 

bands were likely the FH1-5 fragment of the fusion protein with different degrees of reduction. 

Analysis of the proteolytic cleavage sites in the protein sequence of FH1-5/1G6 scFv using 

online tools (Appendix C) did not reveal a unique site near the linker region of the fusion 

protein (PeptideCutter, ExPASy; (Walker et al., 2005). The temperature dependence of the 

cleavage of was tested by storage of fresh, sterile-filtered supernatant at 37 °C, 4 °C or -20 °C 

for 24 hours. Supernatants of F3.3 and L13.2 were included and the samples analysed by non-

reducing SDS-PAGE followed by immunoblotting with OX24 and the polyclonal anti-human CFH 

antiserum (Figure 44.B and 44.C). The results indicate that storage at different temperatures 

does not affect the fragmentation of F3.3 or L13.2. 
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Figure 44: Expression screen and effect of temperature on stability 
 
(A) Cell culture supernatant of five F3 clones (F3.1, F3.2, F3.3, F3.4, F3.5), four F4 clones (F4.1, 
F4.2, F4.3, F4.4) and five L13 clones (L13.1, L.13.2, L13.3, L13.4, L13.5) was analysed by SDS-
PAGE followed by immunoblotting. Recombinant proteins were detected with a polyclonal goat 
anti-human FH antiserum, followed by a HRP-conjugated donkey anti-goat Ig antibody. FH1-5 
was included as positive control (+), wild-type CHO cell supernatant as negative control (-).  
(B) Stability of FH1-5/1G6 scFv at different storage temperatures (37, 4 or -20 °C) was assessed 
SDS-PAGE and immunoblotting. Proteins were detected with OX24 followed by a HRP-
conjugated sheep anti-mouse Ig antibody. (C) Alternatively membranes were probed with a 
polyclonal anti-human FH antiserum as in (A). 



- 119 - 
 

5.2.4 Purification of the FH1-5/scFv fusion proteins 

For purification of the FH1-5/scFv fusion proteins a hexa histidine-tag was included between 

the FH SCRs and the scFv. First the same conditions (40 mM imidazole in the binding buffer) 

were used as for purification of FH1-5 and FH1-5/18-20. However, no or very little protein was 

eluted under these conditions and for the fragmented FH1-5/1G6 scFv the FH1-5 fragment 

bound stronger as suggested by the later elution in Figure 35. Binding and elution of FH1-

5/mAb3 scFv was therefore tested using a range of imidazole concentrations (Figure 45). The 

chromatography traces show decreasing elution peak size with increasing concentration of 

imidazole. The highest amount of eluted FH1-5/mAb3 scFv is eluted in the presence of 10 mM 

imidazole as detected by immunoblotting (Figure 45.E). This concentration of imidazole was 

therefore used to purify the fusion proteins from the cell culture supernatant (Figures 46 and 

47). For the purification of FH1-5/1G6 shown in Figure 46 1 L of cell culture supernatant was 

applied to the column. The bound protein eluted in a main peak followed by a small peak. 

Immunoblotting of the collected fractions after non-reducing SDS-PAGE revealed several bands 

(Figure 46.B). Fractions 7-9 contain three main bands. The band at ~45 kDa corresponds to the 

intact FH1-5/1G6 scFv and the band at over 55 kDa corresponds to migration distance of 

reduced FH1-5/1G6 but may, like the band at ~100 kDa, be aggregated or multimerised 

protein. Additional lower molecular weight bands appear in fractions 10-12. These bands at 

~25 kDa and ~30 kDa correspond to the size of FH1-5 fragments separated from the scFv. The 

number of bands shown under non-reducing conditions is reduced to two clear bands under 

reducing conditions as shown in Figure 46.C. The band at ~ 36 KDa corresponds to FH1-5 and 

the band of approximately 62 kDa corresponds to the intact FH1-5/1G6 fusion protein. The 

FH1-5/mAb3 fusion protein was purified and analysed in the same way (Figure 47). For the 

purification shown 500 ml of cell culture supernatant were applied to the column in the 

presence of 10 mM imidazole and bound protein eluted in a single peak (Figure 47.A). The 

Coomassie blue stained SDS-PAGE gel shows a band of the correct size (below 55 kDa under 

reducing conditions, 62 kDa under non-reducing conditions) in lanes 9 and 10 in addition to 

several contaminating protein bands (Figure 47.B). The identity of these bands was confirmed 

by immunoblotting; a single band of the correct size was detected in fractions 7-11 (Figure 

47.C). Both fusion proteins were concentrated and buffer exchanged using concentrator spin-

columns with a 10 kDa molecular weight cut-off. However, no or very little protein was 

detected in the concentrate by SDS-PAGE followed by Coomassie blue staining or 

immunoblotting. This suggests that the protein may have precipitated or strongly interacted 

with the spin-column filter.  
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Figure 45: Optimisation histidine tag purification L13.2 
 
(A-D) Binding of L13.2 to the nickel-coated chelating column was tested in the presence of 10, 
20, 30 or 40 mM imidazole (A-D). Protein bound to the column was eluted with an imidazole 
gradient (0-0.5 M, green line) and 12 1 ml fractions collected (x-axis). Absorbance of the eluted 
protein is given in mAU (y-axis). (E) The peak fraction of each elution was analysed by 
immunoblotting after SDS-PAGE under non-reducing conditions (anti- human FH polyclonal 
antiserum). The amount of eluted protein decreases the higher the imidizaole concentration in 
the binding buffer. 
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Figure 46: Histidine tag purification of FH1-5/1G6 scFv 
 
(A) FH1-5/1G6 scFv was purified from CHO cell culture supernatant using IMAC. Protein bound 
to the column in the presence of 10 mM imidazole was eluted with a imidazole gradient (0-0.5 
M, green line) and 20 1 ml fractions collected (x-axis). Absorbance of the eluted protein is given 
in mAU (y-axis). (B) Fractions 6-12 and pre and post column samples were analysed by 
immunoblotting after SDS-PAGE under non-reducing conditions (anti- human FH polyclonal 
antiserum). Identified bands are indicated by arrows. (C) Fractions 10 and 11 were analysed by 
SDS-PAGE under reducing conditions, followed by Coomassie blue staining or immunoblotting 
(anti-human FH polyclonal antiserum). Identified bands are indicated by arrows.  
The data shown is representative of several independent experiments. 
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Figure 47: Histidine tag purification of FH1-5/mAb3 scFv 
 
(A) FH1-5/mAb3 scFv was purified from CHO cell culture supernatant using IMAC. Protein 
bound to the column in the presence of 10 mM imidazole was eluted with a imidazole 
gradient (0-0.5 M, green line) and 13 1 ml fractions collected (x-axis). Absorbance of the 
eluted protein is given in mAU (y-axis). (B) Fractions 1 and 6-13 were analysed by SDS-PAGE 
under non-reducing conditions followed by Coomassie blue staining. The band for FH1-5 / 
mAb3 scFv is indicated by an arrow. (C) The fractions were also analysed by immunoblotting 
(anti- human FH polyclonal antiserum). Identified bands are indicated by an arrow. 
The data shown is representative of several independent experiments. 
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The histidine-tag purification did not work as well as for FH1-5 and FH1-5/18-20. The low 

concentration of imidazole in the binding buffer allowed binding and co-elution of non-specific 

proteins along the relatively small amount of fusion protein. An alternative affinity method 

was therefore used in an attempt to improve purity. OX24 is a mAb against FH and binds in 

SCR 5. As described in the methods section, an OX24 column was prepared by coupling of the 

mAb to the NHS-activated sepharose matrix of a 1 ml column (GE Healthcare). For the 

purifications shown in Figure 48.A (FH1-5/1G6 scFv) and 48.B (FH1-5/mAb3 scFv) 500ml of 

CHO cell culture supernatant was applied to the column and the protein eluted with a low pH 

glycine buffer (pH 2.5). Elution is expected to occur when the conductivity drops, i.e. when the 

PBS used to wash the column after application of the supernatant is replaced with the elution 

buffer. For FH1-5/1G6 scFv an elution peak of approximately 800 mAU was recorded (Figure 

48.A). The four collected fractions were analysed by SDS-PAGE followed by immunoblotting 

(Figure 48.A). A main band of ~36 kDa was detected. This indicates almost complete 

fragmentation of the fusion protein, possibly due to the low pH of the elution buffer. For FH1-

5/mAb3 scFv no elution peak was observed and the fractions therefore not further analysed 

(Figure 48.B). Purification of the fusion proteins was further attempted using protein L 

columns. Protein L is a bacterial protein that binds most human and some murine kappa light 

chain subtypes of all antibody subclasses. It is suitable for purification of scFvs and importantly 

does not bind bovine immunoglobulins. 200 ml of cell culture supernatant was applied to the 

protein L columns for each fusion protein and eluted with a low pH buffer as for the OX24 

column. As shown in Figure 48.C no peak was recorded for FH1-5/1G6 scFv and a peak of ~20 

mAU was recorded for FH1-5/mAb3 scFv (Figure 48.D).  
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Figure 48: OX24 and protein L purification of FH1-5/1G6 scFv and FH1-5/mAb3 scFv 
 
(A) FH1-5/1G6 scFv CHO cell culture supernatant was applied to an OX24 column and bound 
protein eluted using a low pH buffer (conductivity shown as light blue line). Fraction 1 and 2 were 
analysed by reducing SDS-PAGE followed by immunoblotting (anti-human FH polyclonal 
antiserum). (B) CHO cell culture supernatant was applied to an OX24 column and eluted with a 
low pH buffer. Due to the low absorbance reading the fractions were not further analysed. (C) / 
(D) FH1-5/1G6 scFv supernatant and FH1-5/mAb3 scFv supernatant was applied to a protein L 
column and elution performed with a low pH buffer (conductivity shown as light blue line). Due to 
the low absorbance reading the fractions were not further analysed.  
Shown are representative elution profiles from several experiments. 
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5.2.5 Binding of FH1-5/1G6 scFv and FH1-5/ mAb3 scFv to C3b and type IV collagen 

No intact, pure protein was obtained for functional analysis of the FH1-5/scFv fusion proteins 

due to low expression levels and difficulties purifying the protein from the cell culture 

supernatant. The ligand binding was therefore carried out by sandwich ELISA using cell culture 

supernatant. To assess the antigen-binding function of the scFvs, type IV collagen NC1 domains 

isolated from bovine and murine renal GBM (Chondrex Inc.) were used as model antigen. 

Collagen type IV from the murine Engelbreth-Holm-Swarm tumour cell line lacks the α3-chain 

and was included as negative control. The NC1 domains and control collagen were coated on 

microtitre plates and binding of the fusion proteins contained in the cell culture supernatant 

was detected in the same way as binding to C3b. FH1-5/mAb3 scFv showed no binding to 

bovine, murine or EHS collagen (Figure 49.A, B and C). FH1-5/1G6 scFv bound to bovine and 

murine NC1 domains and showed some reactivity with the EHS collagen type IV (Figure 49.A, B 

and C). No non-specific binding was detected for the wild-type CHO cell supernatant, BSA or 

the irrelevant fusion protein (C3d-Fc). Binding of FH1-5/1G6 scFv and FH1-5/mAb3 scFv to C3b 

was also tested. C3b was coated on 96-well microtitre plates and incubated with the cell 

culture supernatants which were serial-diluted across the plate. Wild-type CHO cell culture 

supernatant was included to control for non-specific binding of endogenous CHO cell proteins 

or bovine proteins derived from the FCS. In addition BSA and C3d-Fc were included as controls 

for non-specific binding. Binding of the protein to C3b was detected with a polyclonal anti-

human FH antiserum. As shown in Figure 49.D binding of FH1-5/1G6 scFv to C3b was detected, 

the signal for FH1-5/mAb3 scFv was only marginally above the background. This probably 

reflects on the expression levels of this construct. FH1-5/mAb3 scFv was therefore transiently 

expressed in HEK293t cells and as shown in Figure 50.A expression levels improved. Using this 

supernatant it was possible to demonstrate C3b binding (Figure 50.B), however binding to 

bovine and murine NC1 domains was still low (Figure 50.C, D). 
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5.3 Discussion 

5.3.1 Generation of FH1-5/scFv fusion proteins 

Two FH1-5/scFv fusion proteins were generated. The 1G6 scFv was synthesised directly and 

the mAb3 scFv was synthesised after several attempts to assemble the scFv by overlap 

extension PCR failed (Figures 41 and 42). The scFv were joined downstream of FH1-5 by PCR 

assembly (Figures 37 and 43). Expression of FH1-5 and FH1-5/18-20 in CHO cells was 

successful; this expression host was therefore also used for the fusion proteins. In the cell-

surface targeted FH1-5/18-20 construct the histidine tag is located between SCRs 5 and 18. 

Purification of this protein in presence of 40 mM imidazole to reduce non-specific binding 

worked very well. For both FH1-5/scFv construct the internal position of the histidine tag is not 

feasible. Both fusion proteins do not tolerate imidazole concentrations higher than 10 mM for 

binding which results in significant binding of non-specific proteins (Figure 45). This problem is 

easily addressed by placing the histidine-tag to at the N-terminus of the protein. The “linking” 

histidine tag can either remain or be replaced with an alternative linker. Attempts to purify the 

fusion proteins by other affinity methods (OX24, L-protein) were not successful. Further, small 

amounts that were purified were lost on concentrator spin columns. This may be due to 

adsorption of the protein to the filter membrane. Loss of some protein due to such non-

specific interaction is not unusual, however may be detrimental when dealing with a small 

amount of protein. 

In addition, fragmentation of the FH1-5/1G6 scFv is a great concern. Analysis of proteolytic 

cleavage sites in the sequence with online tools returned no unique cleavage site in the area of 

concern (between histidine tag and start of the heavy chain variable region). The 

fragmentation could be addressed by grafting of the CDRs from the 1G6 scFv into the mAb3 

scFv framework. To address expression levels it would be necessary to repeat the transfection 

of CHO cells and screen a larger number of clones to identify higher expressing clones. The 

expression host may be the limiting factor for these constructs, although similar constructs 

have previously been successfully produced in CHO cells. Alternative expression hosts are 

human embryonic kidney (HEK) cells and SP2/0 cells. As discussed in the general introduction, 

expression in a yeast strain like P. pastoris may present an alternative to increase protein 

yields. For this the sequence of both genes would have to be codon-optimised and transferred 

into a suitable expression vector. Once expression problems are solved the constructs should 

be characterised functionally.  
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5.3.2 Functional analysis of the FH1-5/scFv fusion proteins 

Low expression levels and purification difficulties limited the functional analysis of the 

constructs. Cell culture supernatants were therefore used to assess binding to C3b and 

collagen type IV NC1 domains by sandwich ELISA. Both proteins bind to C3b (Figure 49.D and 

50.B), differences in binding likely reflect on the slightly higher expression of the FH1-5/1G6 

scFv expressed in CHO cells. This is also the construct that undergoes fragmentation. It is 

therefore not possible to say to what extent the observed binding is due to intact FH1-5/1G6 

scFv or the fragmented FH1-5.  

Binding of the constructs to bovine or murine collagen IV NC1 domains was tested by sandwich 

ELISA (Figure 49.A, B and C). The binding pattern of FH1-5/1G6 scFv to murine and bovine NC1 

domains and the control collagen are similar to that of the parent antibody (Figure 27.B). This 

suggests that the 1G6 scFv has retained its ability to bind to the α3-chain NC1 domains of type 

IV collagen. This construct is very unstable and due to its broader binding pattern is not worth 

pursuing further. No significant binding of the FH1-5/mAb3 scFv to NC1 domains was detected 

(Figure 49.A, B). Although transient expression in HEK293t cells improved the expression levels 

for this construct no antigen binding was detected (Figure 50.C, D). This suggests that the scFv 

has either lost the ability to bind the antigen or that the conditions used did not allow 

detection of binding. An early ELISA showed binding of this construct to bovine NC1 domains, 

however this was not replicated in several repeat experiments. The bovine and murine NC1 

domains used contain a mixture of α3, α4 and α5 NC1 domains. If mAb3 bound more 

specifically to the α3 than 1G6, there would be a lower antigen concentration coated for mAb3 

in each ELISA than for 1G6. This, combined with lower expression levels may provide a possible 

explanation for the failure to detect antigen binding of this construct. It may be useful to 

produce recombinant NC1 domains. This would allow production of the specific chain and 

would make economic sense. 

The next step would be to detect glomerular binding to human, murine and bovine kidney 

sections. For this study monomeric NC1 domains derived from bovine or murine GBM extract 

were used as model antigen in the sandwich ELISA (Figure 49.C and 49.D). In the GBM the NC1 

domains are present in hexamers and cross-linked with sulphilimine bonds. Binding of the 

mAb3 and 1G6 scFv to the antigen in its native confirmation should be confirmed. After 

establishing in vitro binding of the constructs, the in vivo binding should be established as for 

the parent antibody mAb3 (Figure 28). Purified 1G6 was not available for testing in this study 

and may not be available in the future. In vivo binding of 1G6 was therefore not established. If 

1G6 is a multimeric IgM, its ability to penetrate and bind to the GBM in vivo may be restricted 

by its size. 



- 130 - 
 

5.3.3 When is targeting of FH1-5 to the GBM useful? 

The more obvious case for targeting of an AP regulator to GBM is to treat the 

glomerulonephritides with direct involvement of the GBM. In anti-GBM nephritis the GBM is 

the site of complement activation and targeting of FH1-5 would effectively regulate the AP and 

could ameliorate damage. In MPGN type II C3 metabolites, resulting from insufficient fluid-

phase regulation of the AP, deposit along the GBM (Smith et al., 2011). Targeting of FH1-5 to 

this site may be beneficial and aid clearance of C3 fragments, but will not restore normal C3 

levels in the serum. FH1-5 (for patients with C3NeF) and FH1-5/18-20 (for patients with FH 

deficiency) would achieve exactly this and therefore present more attractive options for 

treatment of MPGN type II than the GBM targeted constructs. As discussed earlier, aHUS 

patients with mutations in the C-terminal have sufficient fluid-phase control of the AP and 

complement attack is mainly directed against the glomerular endothelium (Pickering et al., 

2007, de Cordoba and de Jorge, 2008). Arguably a therapeutic AP regulator should therefore 

be able to interact with the endothelial cell surface (e.g. FH1-5/18-20). The vicinity of the GBM 

may be sufficient to provide adequate “local regulation” of the AP by type IV collagen-

anchored FH1-5. 

The case for targeting FH1-5 to the GBM in the context of renal ischaemia-reperfusion injury is 

less clear-cut. The contribution of the AP to renal ischaemia-reperfusion injury has been 

demonstrated in several studies using animals deficient in complement activators and 

regulators (Lien et al., 2003, Vieyra and Heeger, 2010). The primary site of injury after renal 

ischaemia-reperfusion is the tubular epithelialium. The endothelial surface layer and glycocalyx 

contribute to the permselectivity of the filtration barrier (Friden et al., 2011, Salmon et al., 

2012). Mild ischaemia-reperfusion injury causes remarkable changes in the glycocalyx and 

possibly the GBM that result in severe proteinuria even before cellular changes become 

evident (Andersson et al., 2007). The tubular epithelium itself can activate the AP and FH is an 

important regulator for this cell type (Renner et al., 2010, Renner et al., 2011). While the 

epithelial cells are rendered vulnerable as a result of the hypoxic conditions, the proteinuria 

resulting from the altered filtration barrier allows leakage of serum proteins, including albumin 

and complement components (Eddy and Giachelli, 1995). The protein load impairs binding of 

FH to the TEC surface and the conditions are favourable for complement activation (Buelli et 

al., 2009).  

FH has a clear role for protection of renal endothelium and epithelium and administration of 

additional FH may be beneficial during renal reperfusion. Systemic inhibition of complement 

by administration of soluble CR1, an anti-C5 mAb or an anti-C5aR antagonist improved the 

outcome of renal allografts in mice and rats (Pratt et al., 1996, de Vries et al., 2003a, de Vries 
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et al., 2003b, Lewis et al., 2008). For reasons discussed previously targeted approaches have 

several advantages. In an attempt to block local complement activation cell or tissue targeted 

approaches were developed. These include the sLex linked TP10 (TP20) targeted to endothelial 

cells and Mirococept, targeted to epithelial and endothelial cells via a fatty acid tail 

(Rittershaus et al., 1999, Pratt et al., 2003, Picard et al., 2000, Patel et al., 2006). FH1-5, 

targeted to the GBM (or FH1-5/18-20) may exert similar protective effect as the agent 

generated by Pushpakumar and colleagues. They used lipid vesicles to target the vaccinia virus 

control protein (VCP) to the renal endothelium and demonstrated markedly reduced renal 

injury following reperfusion (Pushpakumar et al., 2011). 

Although the FH1-5/scFv fusion proteins generated in this project remain in the early stages of 

development, they have potential to find application in a range of AP-mediated renal 

pathologies.  
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6.1 Summary 

The alternative pathway of complement activation is a potent and effective first line of 

defence against invading pathogens. A number of cell-surface and fluid-phase regulatory 

proteins are in place to tightly control the AP and protect the host cells from AP-mediated 

damage. FH is, alongside FI, the principal fluid-phase regulator of the AP and has a particular 

role in protecting the glomerular endothelium, the GBM and tubular epithelial cells from AP-

mediated damage. These roles have been demonstrated in Cfh-/- mice and mice that express 

FH that lacks the C-terminal SCRs 16-20 (Cfh-/-.Δ16-20) which develop renal pathology that 

resembles human MPGN type II and aHUS, respectively (Pickering et al, 2002 and 2007). In 

other conditions, including other types of nephritis and ischaemia-reperfusion injury, 

regulation of the AP can be overwhelmed and complement activation ensues. Therapeutic 

intervention in these conditions with regards to the involvement of the complement system is 

currently mainly limited to the anti-C5 mAb Eculizumab. The complement system offers 

several therapeutic targets and several promising agents are undergoing testing in preclinical 

and clinical development (Wagner and Frank, 2010, Ricklin and Lambris, 2007a). C3 and C5 are 

popular targets but blocking their function is associated with adverse effects such as 

immunosuppression and effects on other functions of complement, e.g. the clearance of 

immune-complexes. Over the past decade complement has emerged a mediator of several 

physiological processes that is finely balanced. Long-term inhibition of individual components 

may therefore entail further adverse effects than those known to date (Holers et al., 2013). 

Regulator based therapeutics like Mirococept (membrane-targeted soluble CR1) and TT30 

(human CR2-FH fusion protein) are promising agents currently in clinical trials (Wagner and 

Frank, 2010). The use of recombinant complement regulators, especially targeted ones, has 

shown promising results in several models of complement-mediated disease states (Holers et 

al., 2013). 

The objective of this project was to generate and functionally assess recombinant FH proteins, 

targeted to the cell-surface and to type IV collagen in the GBM, as potential therapeutics to 

target uncontrolled AP activation in the kidney. Four such proteins were generated: 

 FH1-5 and FH1-5/18-20 were expressed in CHO cells and the in vitro functional analysis 

completed. Both constructs retained the capacity to regulate the AP in the fluid-phase. 

FH1-5/18-20 regulates the AP in the fluid-phase and on a cell-surface. 

 To target FH1-5 to the glomerulus, the variable regions of the monoclonal antibody 

mAb3 were cloned after successful elimination of a contaminating endogenous light 

chain transcript.  
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 Two type IV collagen specific FH1-5/scFv fusion proteins were produced. One based on 

the published sequence of mAb 1G6 and the other based on the mAb3 derived 

variable regions. Binding of FH1-5/1G6 scFv to C3b and bovine and murine NC1 

domains was demonstrated by ELISA. No significant antigen binding was established 

for FH1-5/mAb3 scFv and some binding to C3b was demonstrated.   

6.2 Production of recombinant FH proteins 

Biological therapeutics have emerged as a very successful class of drugs. Monoclonal 

antibodies comprise the majority of approved agents, however the development of bi-

functional or bi-specific fusion proteins takes this class of drugs to a new level. The possibilities 

of such multi-functional proteins seem endless; however practical hurdles limit their 

realisation. Initial attempts to produce full length FH did not yield therapeutically relevant 

quantities (Buttner-Mainik et al., 2011). Recently, Schmidt et al achieved the expression of 

large amounts of recombinant full length FH in P. pastoris (Schmidt et al., 2011). The CFH gene 

was optimised for the preferred codon-usage of P. pastoris but also with respect to repeated 

or rare codons in CFH that may have resulted in low yields in previous attempts (Schmidt et al., 

2011). The binding properties of the type IV collagen specific mAb3 (Figures 27 and 28) were to 

be exploited as targeting mechanism of FH1-5 to the GBM. The strategy for this entailed 

cloning of the mAb3 variable regions and construction of a FH1-5/scFv fusion construct. MOP-C 

derived hybridoma fusion partner cell lines like SP2/0 produce, occasionally vast amounts, of 

an endogenous aberrant kappa light chain (Carroll et al., 1988). The endogenous light chain 

mRNA can greatly impact on the success of V-region cloning from hybridoma cell lines that 

were generated on a MOP-C background. The mAb3 hybridoma was generated with SP2/0 as 

fusion partner and excessive expression of the aberrant transcript prevented cloning by 

standard 5’ RACE. A number of approaches to discriminate against the aberrant transcript are 

described in the literature. These range from simple anti-sense nucleotide directed RNAse H 

mediated cleavage of the aberrant transcript mRNA to much more complex ribozyme 

mediated elimination of the mRNA in the hybridoma cells. 

6.3 Recombinant FH proteins for AP-mediated renal pathologies 

In the present work novel recombinant FH proteins were generated and are proposed as new 

treatment options for a range of AP-mediated renal pathologies. Since no in vivo work was 

carried out with these proteins, theoretical application of the agents generated (FH1-5, FH1-

5/18-20, FH1-5/scFv) in the treatment of aHUS, MPGN type II, anti-GBM nephritis and renal 

ischaemia-reperfusion injury will be discussed (Figures 51 and 52).  
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Figure 51: Application of recombinant FH proteins in aHUS and MPGN type II 
 
(A) In the normal state FH protects the glomerular endothelium from complement attack by binding 
and inactivating deposited C3b. If the cell-binding domain of FH is rendered dysfunctional by mutation 
or autoantibodies, C3b is not activated. Complement activation ensues and the endothelial cells are 
ultimately damaged by formation of the MAC. The damaged cells can bind vWF which initiates the 
formation of thrombi, resulting in haemolysis and renal dysfunction. Recombinant FH 1-5/18-20 would 
effectively replace dysfunctional FH and protect the renal endothelium. GBM targeted FH1-5/scFv may 
protect the endothelium by controlling complement activation locally. 
(B) FH is essential for fluid-phase regulation of the AP and exerts this role with FI. If FH cannot 
effectively control the AP because of mutation of the regulatory domain or the presence of C3NeF, C3 is 
activated and its metabolites are deposited along the GBM, resulting in MPGN type II. Recombinant 
FH1-5/18-20 and FH1-5 would restore fluid-phase regulation of the AP. GBM-targeted FH1-5/scFv 
would aid the clearance of deposited C3 metabolites. 

A) Recombinant FH proteins suitable for treatment of aHUS 

B) Recombinant FH proteins suitable for treatment of MPGN type II 

Normal state Cell-binding dysfunction of FH 
in aHUS 

Application of recombinant 
FH proteins 

Normal state Fluid-phase dysregulation of 
the AP in MPGN type II 

Application of recombinant 
FH proteins 
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Figure 52: Recombinant FH proteins in anti-GBM nephritis and ischaemia-reperfusion 

 
(A) In the pathogenesis of anti-GBM nephritis with complement involvement the AP is activated 
secondary to the CP which is initiated by anti-GBM Ig. GBM targeted FH1-5/scFv would control local 
AP activation and stop the inflammatory response.  
(B) Ischemic stress renders tubular epithelial cells (TECs) susceptible complement mediated damage 
upon reperfusion and induces C3 secretion by TECs which contributes to complement activation and 
attraction of inflammatory cells. MAC insertion triggers upregulation of type IV collagen secretion. 
Early changes at the GBM permeability allows leakage of serum proteins, including complement. The 
protein load further encourages complement activation by interfering with effective binding of FH. 
Malondialdehyde (MDA), a marker of hypoxic stress, binds FH via SCR 7. GBM-targeted FH1-5/scFv 
may ameliorate reperfusion injury by moderation of GBM changes at the early stage or could 
alternatively bind to exposed collagen IV. A recombinant FH protein (SCRs 1-7) may be targeted to 
the site of hypoxic stress upon reperfusion via its interaction with MDA. FH1-5/18-20 may also be 
beneficial in controlling complement activation in this scenario.  

A) Recombinant FH proteins suitable for treatment of anti-GBM nephritis 

B) Recombinant FH proteins with potential application in renal ischaemia-reperfusion injury  

Complement activation in 
anti-GBM nephritis 

Application of FH1-5/scFv in 
anti-GBM nephritis 

Effects of complement activation in renal 
ischaemia-reperfusion injury 

Possible therapeutic application of 
recombinant FH proteins 
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The important role of FH for protection of the glomerular endothelium from AP-mediated 

damage has been clearly demonstrated in Cfh-/-.Δ16-20 mice (Pickering et al., 2007). Without a 

functional cell binding domain mice spontaneously develop aHUS-like renal disease. The 

pathology in Cfh-/-.Δ16-20 mice, compared to MPGN type II-like disease in Cfh-/- mice, depends 

more on the terminal pathway (de Jorge et al., 2011). This explains the successful treatment of 

aHUS patients with the anti-C5 mAb Eculizumab (Mache et al., 2009). The current treatment 

options include plasma infusion or exchange, haemodialysis and transplantation (Taylor et al., 

2010). In the present study FH1-5/18-20 and FH1-5/scFv were generated and are proposed as 

new treatment options for aHUS. FH1-5/18-20 could be used as replacement therapy for the 

partially dysfunctional native FH as it bears the essential functional domains of FH. Its ability to 

protect from AP-mediated lysis by binding C3b on a cell surface was demonstrated in sheep 

erythrocytes (Figure 49.C).  

FH1-5/scFv would localise at the GBM and may provide protection by controlling AP activation 

in the vicinity of the endothelial cells. Importantly, both agents may offer a reduced level of 

immunosuppression. Use of FH1-5/18-20 in an individual with circulating FH sufficient fluid-

phase regulatory activity may cause some degree of immunosuppression. The extent will 

depend on the dosage necessary to achieve protection in the glomerulus. The advantage of 

FH1-5/scFv over FH1-5/18-20 is therefore the GBM targeting, which would address the 

problem of systemic inhibition. Whether FH1-5/scFv at the GBM is in sufficient proximity to 

protect the endothelial cells has be determined in vivo.  MPGN type II is, like aHUS associated 

with dysfunctional regulation or over-activation of the AP. It is the deficit in fluid-phase 

regulation that drives uncontrolled C3 turnover and results in deposition of C3 metabolites 

along the GBM (Figure 51.B). The complement system, the AP in particular, is therefore a valid 

target. The therapeutic benefit of FH replacement has been demonstrated in Cfh-/- mice and 

there are reports that Eculizumab is effective in treating some MPGN type II patients (Fakhouri 

et al., 2010, Bomback et al., 2012, Herlitz et al., 2012). Compstatin/POT4 appears to be a 

suitable agent to correct the over-activation of C3. However, systemic inhibition is likely 

associated with immunosuppression and other effects on functions of the complement 

system. FH1-5/18-20 and FH1-5 are proposed as new treatment options for the treatment of 

MPGN type II (Figure 51.B).  

Based on the in vitro functional data generated in the present work, both proteins would 

effectively regulate the fluid-phase metabolism of C3. FH1-5/18-20 would be suited for 

patients with mutations in the regulatory domain of FH (SCRs 1-4). Administration of FH1-5 to 

these patients would likely “downgrade” pathology of MPGN type II to aHUS, as fluid-phase 

regulation may be restored but still ineffective at the endothelial cell surface. FH1-5 may be 
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suited to treat patients with normal circulating levels of functional FH in which C3 metabolism 

is driven by the presence of C3NeF that stabilises the C3 convertase or gain of function 

mutations in C3 or FB. Restoration of serum C3 levels is the long-term aim for treatment of 

MPGN type II; long-term administration of FH1-5/scFv or similarly TT30 may not be beneficial. 

However, it might be useful to apply this protein as short-term treatment to aid clearance of 

the GBM from deposited C3.  

The situation in anti-GBM nephritis is very different to MPGN type II. Here the GBM is the site 

of complement activation and deposition and makes the ideal target for drug-targeting. 

Although deposition of Ig against a glomerular antigen initially triggers activation of the CP, the 

cascade is dramatically amplified by the AP (Figure 52.A). FH1-5, anchored in the GBM via an 

anti-collagen IV moiety, would likely intercept AP activation and reduce pathology. The AP also 

contributed to tubular injury in renal ischaemia-reperfusion injury and selective inhibition of 

the AP with an anti-FB mAb protects the tubular epithelium from AP-mediated damage 

(Thurman et al., 2003, Thurman et al., 2005, Thurman et al., 2006b). The pathology in renal 

ischaemia-reperfusion injury is complex (Figure 52.A illustrates some of the roles of 

complement). Importantly, TECs contribute to injury by secretion of C3 and can readily activate 

the AP on their cell surface. MAC deposition results in increased production of type IV collagen 

whereas changes of endothelial glycocalyx and GBM alter permeability early on after 

reperfusion and allow leakage of serum proteins. The leaked proteins include complement 

proteins and contribute to further complement activation whilst preventing FH from binding to 

the TECs. Several attempts have been made to address the activation of complement 

therapeutically. Pratt et al. have demonstrated that treatment of rat kidneys with a cell-

surface targeted soluble CR1 effectively reduced ischaemia-reperfusion injury after 

transplantation (Pratt et al., 1996, Pratt et al., 2003). Mirococept (APT070) binds to glomerular 

and tubular cells and provides protection at all sites targeted by complement activation. Figure 

52.B illustrates how FH1-5/18-20 and FH1-5/scFv could be applied to modify AP activation 

during renal ischaemia-reperfusion injury.  
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6.4 Conclusion and future work 

Given more time several aspect of this project could be continued and improved and 

alternative approaches to generating a type IV collagen specific antibody fragment explored. 

6.4.1 FH1-5 and FH1-5/18-20 

The experiments presented in this work imply great potential for FH1-5/18-20 as therapeutic 

for different AP-mediated renal pathologies. There are several areas of improvement for the 

haemolytic assay which should be addressed. The relative protective effects of FH1-5 and FH1-

5/18-20 compared native FH on rabbit and sheep erythrocytes would be more distinct if FH 

depleted serum was used in the assay. The use of a wider range of the recombinant proteins is 

also anticipated to accentuate the relative effects. C7/FH depleted serum could be included as 

an additional negative control to equimolar BSA to demonstrate the protective effect is 

mediated by control of the terminal pathway initiation. Similarly, it is of interest to ascertain 

AP-specific inhibition. This can be achieved by using FB/FH depleted serum. It would be useful 

to confirm the decay acceleration of immobilised C3b (SPR) by FH1-5 and to include FH1-5/18-

20 in repeat experiments. The findings of the heparin ELISA could be confirmed by detecting 

binding of FH1-5/18-20 to human umbilical vein endothelial cells (HUVECs) or to CHO cells 

(compared to a GAG deficient CHO cell line) by flow cytometry or immunocytochemistry. 

Importantly the expression levels of FH1-5 and FH1-5/18-20 allow production of sufficient 

protein to study the effect of the protein in vivo. Here the first objective is to test the effect of 

FH1-5 and FH1-5/18-20 on serum C3 levels and glomerular C3 deposition in Cfh-/- mice. 

6.4.2 FH1-5/scFv fusion proteins  

Although the FH1-5/1G6 fusion protein replicates the binding properties of the parent 

antibody 1G6, the binding is not exclusive to the α3 NC1 domains. This makes therapeutic 

application questionable. It may be worth to use the construct on normal human and mouse 

kidney sections to check how the ELISA result translates into tissue distribution. 

The FH1-5/mAb3 scFv fusion protein showed low expression levels which made functional 

analysis difficult. The first step to address this problem would be to test an alternative 

expression host like HEK 293t cells which are known to give good expression levels in transient 

expression. This may provide an opportunity to assess binding to C3b and NC1 domains by 

ELISA. No human type IV collagen α3 chain NC1 domains were available for use in this study 

and the bovine and murine NC1 domains are expensive. It would therefore also be necessary 

to produce these proteins recombinantly. An affinity column prepared by coupling of mAb3 to 

the matrix would allow production of highly pure antigen. 
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If further attempts to detect binding fail it may be necessary to explore other antibody formats 

such as single-domain antibody or “minibody”. A further possibility to obtain an antibody 

fragment of the desired specificity is phage display. Synthetic and naturally derived human 

scFv and single domain antibody libraries are commercially available that could be employed 

to identify strong binders.   
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7.1 Appendix A 

 

FH1-5 (S21) DNA and amino acid sequence 
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FH1-5/18-20 (P5) DNA and amino acid sequence 
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7.2 Appendix B 

 
FH1-5/1G6 scFv DNA and amino acid sequence 
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FH1-5/mAb3 scFv DNA and amino acid sequence 
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7.3 Appendix C 

These enzymes cleave the sequence:  

Name of enzyme 
No. of 

cleavages 
Positions of cleavage sites 

Arg-C proteinase  23 
2 27 28 53 57 67 78 83 127 166 175 232 246 257 281 285 295 303 319 419 
462 468 509 

Asp-N endopeptidase  25 
19 38 89 129 131 136 164 186 193 194 213 247 267 275 287 351 393 402 
409 410 427 473 517 528 529 

Asp-N endopeptidase + 
N-terminal Glu  

57 

18 19 22 30 38 43 69 89 104 115 122 127 129 131 136 141 152 162 164 
166 184 186 187 188 193 194 200 206 213 228 230 241 244 247 252 262 
263 267 275 287 288 351 366 393 402 409 410 427 470 473 517 526 527 
528 529 540 552 

BNPS-Skatole  11 13 37 71 134 198 256 314 357 368 430 483 

CNBr  12 1 11 64 162 190 239 341 355 402 481 526 533 

Chymotrypsin-high 
specificity (C-term to 
[FYW], not before P)  

58 

13 37 50 56 71 93 96 104 106 112 118 126 134 168 170 176 182 197 198 
227 233 235 241 243 256 271 277 292 298 314 348 350 353 354 357 368 
375 381 385 401 409 415 416 422 425 429 430 476 480 483 484 497 510 
519 534 535 544 546 

Chymotrypsin-low 
specificity (C-term to 
[FYWML], not before P)  

106 

1 3 4 10 11 12 13 33 37 50 56 59 64 71 74 77 93 96 98 104 106 112 118 
120 121 126 134 162 168 169 170 176 182 190 191 197 198 227 233 235 
239 241 243 256 271 277 280 284 292 298 314 322 324 325 326 327 328 
329 332 341 348 350 353 354 355 357 362 366 368 375 381 385 391 401 
402 404 407 409 415 416 422 424 425 427 429 430 436 455 459 476 480 
481 483 484 494 495 497 510 519 521 526 534 535 544 546 552 

Clostripain  23 
2 27 28 53 57 67 78 83 127 166 175 232 246 257 281 285 295 303 319 419 
462 468 509 

Formic acid  25 
20 39 90 130 132 137 165 187 194 195 214 248 268 276 288 352 394 403 
410 411 428 474 518 529 530 

Glutamyl endopeptidase  32 
19 23 31 44 70 105 116 123 128 142 153 163 167 185 188 189 201 207 229 
231 242 245 253 263 264 289 367 471 527 528 541 553 

Hydroxylamine 5 154 217 274 296 376 

Iodosobenzoic acid  11 13 37 71 134 198 256 314 357 368 430 483 

LysC  35 
6 51 68 79 82 109 145 156 183 200 202 204 211 224 228 236 265 283 308 
323 334 340 344 349 359 364 384 386 388 395 487 493 540 551 555 

LysN  35 
5 50 67 78 81 108 144 155 182 199 201 203 210 223 227 235 264 282 307 
322 333 339 343 348 358 363 383 385 387 394 486 492 539 550 554 

NTCB (2-nitro-5-
thiocyanobenzoic acid)  

26 
8 15 20 51 65 79 84 113 128 140 145 177 191 204 209 236 250 261 266 
293 308 319 342 416 466 535 

Pepsin (pH1.3)  137 

3 3 9 10 11 12 12 13 32 33 36 37 42 49 50 56 58 71 73 76 92 95 96 97 98 
103 104 105 106 112 117 118 119 120 120 121 125 126 133 134 167 169 
170 176 181 182 196 197 197 198 227 233 235 240 241 242 243 255 270 
276 279 291 292 299 313 322 332 347 348 349 350 352 353 353 354 356 
357 365 367 368 374 380 381 384 385 391 400 401 403 404 406 407 408 
409 414 415 415 416 424 425 427 428 429 429 430 435 436 454 455 458 
459 475 476 479 480 482 483 483 484 494 494 496 497 510 518 519 520 
521 533 534 534 535 543 545 546 551 552 

Pepsin (pH>2)  67 

3 3 9 10 11 12 32 33 58 73 76 92 95 96 97 98 103 104 119 120 120 121 169 
170 176 196 197 233 279 322 332 349 350 365 384 385 391 403 404 406 
407 408 409 427 435 436 454 455 458 459 479 480 483 484 494 494 510 
518 519 520 521 534 535 545 546 551 552 

Proline-endopeptidase 8 54 84 88 203 258 335 488 525 

http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#ArgC
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#AspN
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#AspGluN
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#AspGluN
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#BNPS
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#CNBr
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Ch_hi
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Ch_hi
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Ch_hi
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Ch_lo
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Ch_lo
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Ch_lo
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Clost
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#HCOOH
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Glu
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Hydro
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Iodo
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#LysC
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#LysN
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#NTCB
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#NTCB
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Pn1.3
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Pn2
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Pro
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[*]  

Proteinase K  206 

3 4 5 7 8 10 12 13 14 15 17 18 24 30 32 33 34 37 41 42 46 48 49 50 56 59 
62 63 65 71 72 73 74 77 91 93 95 96 97 98 99 103 104 106 108 110 111 
112 113 118 120 121 124 126 131 134 135 138 140 143 144 147 149 150 
151 157 158 161 168 170 173 174 176 177 182 184 197 198 206 208 215 
216 221 225 226 227 233 235 241 243 249 250 252 256 259 271 272 277 
280 282 286 290 291 292 298 299 301 302 306 307 310 312 314 315 317 
321 322 331 332 333 337 339 345 348 350 351 353 354 357 358 366 368 
369 371 372 375 379 381 385 389 390 391 392 393 399 400 401 404 407 
408 409 413 414 415 416 418 422 425 427 429 430 434 435 436 437 438 
455 456 457 459 463 464 465 469 473 476 478 479 480 483 484 494 495 
496 497 498 499 506 508 510 517 519 521 523 531 532 534 535 539 542 
544 545 546 550 552 554 

Staphylococcal 
peptidase I  

29 
19 23 31 44 70 105 116 123 128 142 153 163 167 185 188 201 207 229 231 
242 245 253 263 289 367 471 527 541 553 

Thermolysin  115 

2 3 4 6 7 9 10 11 13 14 16 17 32 47 48 58 61 62 63 64 71 72 73 76 92 95 97 
102 103 107 109 110 119 120 139 143 148 156 157 160 161 169 172 173 
175 176 183 196 205 215 220 224 225 232 238 249 279 281 297 300 306 
321 331 332 336 338 340 344 349 354 357 365 368 370 371 384 388 390 
392 399 401 406 408 412 413 417 426 435 437 454 455 456 458 462 464 
468 472 477 479 480 483 493 494 495 498 507 509 520 522 525 531 532 
534 545 551 

Trypsin  50 
2 6 27 28 51 57 68 78 79 82 109 127 145 156 166 175 183 200 204 211 224 
228 232 236 246 265 281 283 285 295 303 308 319 323 340 344 349 359 
364 384 386 388 395 462 468 493 509 540 551 555 

 

  

http://web.expasy.org/cgi-bin/peptide_cutter/peptidecutter.pl#[*] pro_note
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#ProtK
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Staph
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Staph
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Therm
http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html#Tryps
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