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Abstract 
Therapies to limit or reverse fibrosis have thus far proved unsuccessful, highlighting the need for a 

greater understanding of the basic mechanisms driving fibrosis and in particular the link between fibrosis 

and inflammation. Obliterative Bronchiolitis (OB) is the pathological correlate of Bronchiolitis Obliterans 

Syndrome (BOS) a progressive disease that results in the fibrotic obliteration and blockage of the airways. 

Development of OB is strongly associated with elevated fibrotic, transforming growth factor beta 1 (TGF-

β1), and inflammatory, tumour necrosis factor alpha (TNFα) and interleukin 1 beta, mediators; and the 

process of epithelial to mesenchymal transition (EMT) has been proposed as a mechanism of OB 

initiation and progression. 

Previous work in our group has demonstrated that a physiologically relevant dose of TGF-β1 is capable 

of driving EMT in primary human bronchial epithelial cells (PBEC) isolated from lung-transplant recipients, 

an effect that was accentuated by TNFα. It was hypothesized that an unknown synergistic signalling 

cascade may mediate this accentuation, and identifying candidates for this role is the main aim of this 

thesis. 

TGF-β1 and TNFα were used to induce EMT in PBEC cultures; the relative roles of several signalling 

proteins (SMAD3, IKKβ, TAK1, p38, ERK-1/2 and JNK-1/2) in the development of EMT were assessed by 

chemical inhibition and siRNA knockdown along with phosphorylation response, to describe a signalling 

cascade. 

The results describe a mechanism whereby TGF-β1 drives EMT through SMAD3 with a requirement for 

TAK1 and JNK-2. TNFα signals through TAK1, IKKβ and JNK-2 but is not capable of driving EMT alone. 

Upon co-stimulation, TAK1 and JNK-2 display an enhanced activation that leads to an accentuation of 

EMT, possibly through c-Jun activation. JNK-2 sits downstream of TAK1 therefore the results indicate that 

TAK1 activity plays a key role both modulating TGF-β1 SMAD3 driven EMT, and its accentuation by TNFα. 

TAK1 was also shown to be more strongly activated in fibrotic human airway sections compared to 

control, suggesting that the findings have direct disease relevance. 

Much further work into how TAK1 modulates SMAD3 activity after TGF-β1 stimulation and how its 

enhanced activation leads to accentuated EMT is required. Greater understanding of these mechanisms 

may lead to the discovery of novel therapeutic targets for fibrotic and inflammatory disorders. 
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1 Introduction 
1.1 The Lung 
The primary function of the lung is to facilitate gaseous exchange between the circulatory network and 

the outside environment. This is achieved by a branching network of airways; lined with a continuous 

epithelial sheet of varying function, which at the lower levels are intimately associated with the circulatory 

system to facilitate a rapid and efficient uptake of O2 into the blood and expulsion of CO2. This network 

exists within a mechanically, metabolically and immunologically supportive matrix that acts to facilitate 

healthy lung function. 

The airways branch approximately 23 times in a normal healthy lung, transitioning from conducting 

airways into those where gaseous exchange can occur. The conducting zone begins with the trachea 

that divides into the left and right bronchi, which in turn divide into lobar, segmental and sub-segmental 

bronchi before concluding at the terminal bronchioles. This point onwards is known as the respiratory 

zone, with respiratory bronchioles with a few alveoli budding from their walls, passing into the alveolar 

ducts and finally terminating at the alveolar sacs. The distance between the respiratory bronchioles and 

alveolar sacs is small but due to the high number of branching events occurring within this zone, they 

make up the majority of the airway volume. 

 

1.1 .1 Large Airways 
The term large airways is usually used to describe divisions of the bronchial tree from 20 through 25. The 

epithelium of the large airways is pseudo-stratified in nature and consists of three main types of cells, 

basal, goblet and ciliated, which are attached to a basal lamina composed of epithelial derived collagen 

IV and laminin, by hemi-desmosomes. This basal lamina in turn sits on a mature supportive ECM, 

produced by resident mesenchymal cells, composed predominately of collagen 1 fibres, surrounded by a 

protective network of smooth muscle and cartilage. 

Basal cells are usually not exposed to the airway itself due to their more squat morphology, although due 

to the pseudo-stratified nature of the epithelium they are technically on the same plane as the other cells. 

Basal cells are thought to act as the progenitor cell in the upper airway (Rock et al., 2009), a fact which is 

demonstrated upon denudation of the airway, at which point they traverse the wound site, and expand 
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1.1 .2 Small Airways 
Small airways are defined as those between divisions 26 and 222, and as such mark the transition from the 

conductive to the respiratory zone of the lungs. Proximally there is little to distinguish them from the 

larger airways apart from the decreasing calibre of the airway. Progressing distally down the airway the 

cartilage support present in the airway wall decreases until it is no longer present in the smaller airways 

and is replaced instead by more elastic smooth muscle fibres. The respective thickness of the underlying 

ECM also decreases, until at the most distal regions the cells sit directly on the basal lamina closely 

associated with the vascular system with no cartilaginous and very little smooth muscle support. The 

occurrence of goblet cells decreases more distal regions of the lung, and they are replaced by the multi-

functional Clara cell, there is also a transition from the cuboidal pseudo-stratified morphology to a more 

squat regular morphology.  

Due to the small calibre of the airways at this point the surface tension of the fluid coating would be 

sufficient to collapse the airway under exhalation. As such Clara cells secrete a surfactant protein known 

as Clara cell secretory protein (CCSP) which, due to its amphiphilic nature, migrates to the surface of the 

fluid layer, and dramatically reduces the surface tension present (Hawgood and Clements, 1990). These 

Clara cells are although thought to act as the resident progenitor cell in the small airways (Stripp and 

Reynolds, 2008), able to divide into replacement ciliated and non-ciliated cells as required. Towards the 

most distal ends of the airways a squamous epithelium is found with few if any ciliated cells, it is at this 

point that respiratory, as opposed to conductive, features such as the alveolar ducts and sacs appear. 
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proteins which, while distinct in structure, perform the same action as described for CCSP (Hawgood and 

Clements, 1990). In diseases affecting Type II pneumocytes the loss of this surfactant production can 

cause alveolar collapse, with the subsequent reduction in gas exchange. Alveoli also lack any mechanistic 

clearance mechanisms and so are dependent on the activity of alveolar macrophages in association with 

other immune cells to maintain their function.  

Alveolar Type I pneumocytes make up the majority of the surface of the septa, approximately 95%, 

although due to their large flattened shape they only make up approximately 40% of total cell number. 

Type I cells are joined into a continuous sheet by tight junction proteins such as E-cadherin, preventing 

both the transmission of proteins into the alveolar space, and invasion of pathogens into the lung 

interstitium, although macrophages can still pass freely between through these junctions. The flattened 

shape of the Type I pneumocytes is designed to facilitate efficient gas exchange across the basement 

lamina into the associated pulmonary capillaries. 

Type II epithelial cells, are typically found in the junctions between septa and are smaller and rounder 

than the Type I cell, although found in higher numbers. As well as producing surfactant proteins Type II 

cells are thought to act as the progenitor cell population within the alveoli replenishing the frequently 

damaged Type I cells (Evans et al., 1973, 1975), similar to the role of Clara cells found in the small airways. 

Type II cells have also been shown to release inflammatory cytokines in response to injury, thus 

contributing to the immune response (Koyama et al., 1998). Type I pneumocytes were traditionally 

thought to be terminally differentiated and incapable of expansion in culture, however recent advances 

in isolation and culture protocols have demonstrated expansion and de-differentiation capabilities (Wang 

and Hubmayr, 2011) 
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Fibroblasts are generally spindle shaped, and unlike the epithelial cells they underlie are not associated 

into ordered sheets, display no apical-basal polarity and are free to migrate throughout the ECM. 

Damage to the ECM results in the recruitment of surrounding resident fibroblasts in response to stimuli 

such as TGF-β1 (Degryse et al., 2011) which can also induce fibroblasts to proliferate more rapidly 

(Hetzel et al., 2005). These resident fibroblasts may also be supplemented by fibrocytes derived from the 

bone-marrow and recruited from the vasculature by a chemotactic gradient, originating at the damage 

foci (Bucala et al., 1994). Once resident these fibrocytes are hypothesized to transition into an active 

fibroblast state and contribute to ECM repair and renewal (Abe et al., 2001; Lapar et al., 2011). 

Myofibroblasts are typically not seen within the stable ECM, but rather are associated with the wound 

healing process with aggregate myofibroblast foci often associated with fibrotic disorders (Kis et al., 

2011). The primary role of the myofibroblast is to contract an exposed wound site reducing the chances 

of infection. This is achieved by secretion of several ECM proteins including α smooth muscle actin 

(αSMA) in a network with other myofibroblasts around the wound site (Hinz and Gabbiani, 2003). 

Myofibroblasts are thought to differentiate from fibroblasts under conditions of mechanical stress within 

the ECM, and also in response to factors such as TGF-β1 (Ramirez et al., 2006). 

Increased numbers of fibroblasts and myofibroblasts are often implicated in the development of fibrotic 

disorders. Whilst required in normal wound resolution their persistence can lead to excessive deposition 

of disorganized ECM components, often in association with an up-regulation of proteinase inhibitors 

such as the TIMP family. This leads to the gradual loss of structure and function within the organ 

affecting regions that had often suffered no direct injury themselves. Understanding the mechanisms that 

initiate this dysregulated production and persistence of fibroblasts and myofibroblasts is a key area of 

on-going research in many fibrotic disorders. 

 

1.1 .5 Pulmonary Capillaries 
Pulmonary capillaries interweave throughout the majority of the alveolar walls, taking up approximately 

90% of the alveolar wall volume. This high density exists to maximise the occurrence of gas exchange by 

maximising the surface area to volume ratio of the blood present in the lungs. The capillaries themselves 

have a diameter only slightly greater than that of a red blood cell, and the majority of their surface is 

tightly associated with the flattened portions of Type I pneumocytes, forming a fused basement 

membrane over which gas exchange occurs. Exchange of O2 and CO2 is a passive process based on the 
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differences in partial pressures of the two gasses, however diffusion efficiency is also affected by the 

thickness of the fused basement membrane. A thickening of the alveolar wall and hence reduced efficacy 

of gas exchange is often associated with the development of pulmonary fibrosis. 

 

1.1 .6 Resident Immune Cells 
Large numbers of dendritic cells are interspersed throughout the lung, whilst often located underneath 

the basal lamina they are able to sample the airway space by deploying sensory protrusions between 

epithelial cells. Dendritic cells, in association with neighbouring epithelial cells (Upham and Stick, 2006), 

continually probe the airway space and are able to recognize inhaled antigens and present them to 

relevant immune cells, they are also capable of responding to danger signals generated by damage to 

resident cells (Upham and Stick, 2006). 

As previously discussed, the upper airways utilise mechanistic clearance to dispose of particulate matter 

and inactivate prospective pathogens. However, the alveoli have no such measures and instead rely on 

the activity of resident alveolar macrophages as a first line of defence to ingest and clear the 

continuously deposited foreign materials. In homeostasis alveolar macrophages are held close to the 

alveolar wall in a quiescent state, with little phagocytic activity (Holt et al., 1993), consequently supressing 

the response of other immune cells such as the aforementioned dendritic cells (Upham and Stick, 2006). 

The macrophages are held in this state to prevent collateral damage to the delicate Type I pneumocytes 

and associated capillary networks, which may occur in response to continuous low-grade immune 

response. However, upon detection of potentially dangerous antigens or damage, either by themselves 

or through associated epithelial or dendritic cells the macrophages are released from quiescence and 

phagocytic and pro-inflammatory responses are initiated. Macrophages also contribute towards the 

initiation of correct wound resolution (Porcheray et al., 2005), however their presence is deleterious to 

end-stage resolution and so a decrease in macrophage number and activity is required (Martin et al., 

2003). 

Both macrophages and dendritic cells play key roles in the innate and adaptive immune responses of the 

lung. A dysregulation of their response is associated with several diseases such as asthma, where a 

hyper-activated response is associated with over-recruitment of other mediators of the immune system 

and tissue remodelling. Understanding the modulation of recruitment, activity and subsequent dispersal 

therefore receive much attention in the development of fibrotic disorders. 
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1.2 Fibrotic & Inflammatory Lung Disease 
The lung is exposed to numerous mechanical and biological insults, and these insults can often lead to 

the onset and exacerbation of inflammation and fibrosis in the lung. Correspondingly, there is a wide 

range of lung diseases caused by these insults. The location, cause, progression and outcome of lung 

disease varies greatly however they are broadly characterized into two classes. 

Obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD), asthma and 

Bronchiolitis Obliterans Syndrome (BOS) result in increased resistance to airflow caused by some form of 

obstruction, resulting in a decrease in the amount of air that can reach the respiratory zone, decreasing 

the efficiency of gas exchange. Three main mechanisms can cause this obstruction; a build-up of 

material in the airway, as in the chronic bronchitis strand of COPD or BOS, a thickening of the airway wall 

as in asthma or a degradation of the supportive matrix that helps keep the airways open and taut as in 

the emphysematous strand of COPD. Restrictive lung diseases such as Idiopathic Pulmonary Fibrosis (IPF) 

inhibit the ability of the lung to expand and contract during respiration. Restrictive diseases are often the 

result of a change, usually an increase in or thickening of, the supportive ECM. In the case of IPF this can 

be seen by the thickening of the alveolar walls, which is followed by the loss of epithelial covering within 

the alveoli. This increase in ECM makes it difficult to breathe, hence the restrictive terminology, whilst also 

reducing the surface area available for gas exchange. 

The lung relies on structural and mechanical means as a first line of defence, however when a harmful 

object is detected by resident immune cells or the epithelium itself a classic inflammatory response 

ensues. Resident cells produce a cocktail of inflammatory mediators such as TNFα, IFN-γ and IL-1β/8/17, 

which act to recruit other immune cells, and modulate the response of cells already present. If the 

vasculature is breached by injury then factors such as thrombin are also released which are designed to 

facilitate clotting and quick re-constitution of a barrier between the vasculature and outside world. In 

more severe cases, non-resident immune cells are recruited to help with clearance and re-constitution of 

the epithelium. 

Under normal circumstances where the stimulus is removed the inflammatory response is short lived due 

in part to the short lifespan of the released immune mediators and attracted cells , and the release of 

anti-inflammatory mediators such as IL-10, TGF-β1 (Sanjabi et al., 2009) and proteases capable of 

cleaving immune mediators (Gueders et al., 2006). In the development of chronic inflammation this 

clearance does not occur, either as a result of an un-clearable antigen as in allergic responses, a 
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repeating injurious process as with the majority of diseases relating to particulate mediated damage or 

some other factor such as a chronic infection or genetic susceptibility. 

The inflammatory response can often lead to damage of the lung epithelium; under normal conditions 

where this may only affect a small region the damage is usually repaired correctly restoring an intact and 

functional epithelium. However, where inflammation persists one of the common outcomes is the 

development of fibrotic tissue. The immune mediators released by immune cells recruit fibroblasts 

resident in the tissue which repair any damage to the ECM caused by the inflammatory response. If the 

inflammatory response continues then progressively more fibroblasts are activated and encouraged to 

proliferate (Hetzel et al., 2005), circulating fibrocytes may be recruited from the vasculature (Abe et al., 

2001) and induction and survival of myofibroblasts may be increased (Kis et al., 2011). The end result is 

an excess of mesenchymal cells producing a disorganized matrix of ECM proteins such as collagen III 

and fibronectin which can quickly over-run the immediate area, destroying the epithelial structure. Not 

all fibrosis is induced by inflammation as in some instances the causes is unknown, excessive fibroblast 

recruitment and proliferation can also be induced by factors such as TGF-β1 and FGF, all of which may 

be linked to genetic pre-dispositions to fibrosis (Riha et al., 2004). 

 

1.2.1 Wound Repair & Chronic Wounding 
In a healthy individual epithelial injury should repair effectively in a physiological manner returning it to 

functional homeostasis. This repair requires a spatially and temporally orchestrated response from the 

cells of the lung epithelial sheet, the underlying progenitor and supportive cells and resident immune 

cells, as well as those drawn from the circulatory system. This process can be thought of as occurring in 

three overlapping phases: an initial response, a recovery of integrity and a final resolution phase. The 

severity of injury, existing environment and occurrence of prior injury all have a marked effect on the 

efficacy of recovery and can help explain poor recovery and resolution. It is this poor recovery and 

resolution that are the pre-cursors to the development of fibrosis, and there are numerous points at 

which dysregulation can occur. 

Upon wounding numerous factors are released into the airway or alveolar space from the epithelial cells 

themselves, the ECM and the vasculature if breached. These factors recruit non resident immune cells 

such as neutrophils, eosinophils and basophils migrate to the wound area through chemotaxis (Hudson 

et al., 1977), and degrade any cellular debris by phagocytosis and/or neutralizing invading pathogens 
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through an oxidative burst response. The granulocyte count in the wound area peaks rapidly, but is 

followed by an equally rapid decrease in number due to apoptosis and non-inflammatory phagocytosis 

by resident macrophages and responding monocytes. Fibroblasts create a temporary ECM composed of 

factors such as fibronectin and collagen III (Santos et al., 2006) which is more flexible due to a lack of 

cross linking. Larger wounds are contracted through the activity of myofibroblasts (Hinz, 2007) and 

nearby epithelial cells loosen their adherence to each other and the basal lamina and creep across the 

provisional ECM (Farooqui and Fenteany, 2005). This provisional ECM and motile epithelial cells are more 

susceptible to colonisation from opportunistic pathogens such as Pseudomonas aeruginosa (De 

Bentzmann et al., 1996), an effect which may be exacerbated by immuno-suppression in transplant 

recipients, or existing physiological conditions. 

The few remaining macrophages in the wound are thought to transition from a pro-inflammatory form, 

often termed the classically activated macrophage, into one with a pro-resolution character often termed 

the alternatively activated macrophage. These macrophages and monocytes gradually lose their 

inflammatory nature, and take on a more recovery orientated role before eventually leaving the site 

(Bellingan et al., 1996; Porcheray et al., 2005). This allows the epithelium to proliferate and re-mature in 

the best cases regaining full functionality. Alongside this the underlying ECM matures under the control 

of residing fibroblasts which degrade collagen III and fibronectin replacing it with collagen I which can 

then be cross linked. A more in-depth coverage of this event process can be found in my review article 

on the subject (Gardner et al., 2010) 
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Table 1 - Potential anti wound resolution mechanisms  

Anti-resolution factors Mechanism 

Dysregulation at the Response Stage 

Non-clearance of immune cells, counteracted by overactive anti-inflammatory/pro-fibrotic response. 

Repeated initiation of 
immune response: 

Repeated initiation of the wound healing response which prevents resolution and may lead 
to the development of fibrosis: 

 - Allergy Repeated targeting of non-harmful allergens leads to repeated activation of the immune 
response. (Holgate et al., 2010) 

 - Pathogen colonisation A non-clearable pathogenic colonisation symptomatic of several diseases such as Cystic 
Fibrosis, or in immuno-compromised individuals, leads to repeated or constant activation of 
the immune response. (Hafkin and Blumberg, 2009) 

 - Particulate Matter Particulate matter that triggers an immune response directly or damages epithelium thus 
triggering an inflammatory and pro-fibrotic response can be tied to allergy. (Baumgartner et 
al., 1997) 

Non-clearance of 
granulocytes 

Granulocytes are usually only present in the wound site for a short period; longevity in the 
wound can initiate fibrosis. (Riise et al., 1999) 

Dysregulation at the Recovery Stage 
Hyperactive fibrotic response, may. be stimulated by inflammatory mediators 

Fibroblast activity: Over-recruitment or dysregulation of repair mechanisms leading to the development of 
fibrosis. 

 - Overactive resident 
fibroblasts 

Resident fibroblasts proliferate and deposit and re-model ECM in a wound environment. 
Over activation or over proliferation leads to the development of fibrosis. (Hetzel et al., 2005)

 - Excessive fibrocyte 
recruitment 

Circulating fibrocytes can be recruited to assist in wound repair, over-recruitment leads to 
the development of fibrosis. (Lapar et al., 2011) 

 - Too many myofibroblasts Over activation, over recruitment/differentiation or resistance to apoptosis lead to the 
development of fibrosis. (Kis et al., 2011) 

Too 'mesenchymal' 
epithelium 

The transient gain of mesenchymal characteristics by the motile epithelial sheet can become 
dysregulated, with epithelial cells contributing directly to fibrosis. (Willis and Borok, 2007) 

Dysregulation at the Resolution Stage 
Opportunistic colonisation The motile epithelium and provisional ECM are susceptible to colonisation, which can re-

initialize the immune response, leading to further damage in the wound. (De Bentzmann et 
al., 1996) 

Non maturing epithelium The motile epithelium may not mature correctly, making colonisation more likely, or 
contributing to fibrosis directly as above. 

Non stabilising ECM The ECM is remodelled to contain cross-linked collagen I, by fibroblasts and factor release, a 
continuation of this process leads to the development of fibrosis. (Ehrlich and Krummel, 
1996) 

Other Forms of Dysregulation  
Genetic mutations: All of the above occurrences may be purely environmental in origin however; there are 

several fibrotic diseases with a genetic association. This may manifest itself as the over 
expression, or activity of a pro-inflammatory factor or receptor, the under expression or 
activity of a repressor of inflammation or fibrosis; or the activation of differential signalling 
networks in response to 'normal' stimuli. (Riha et al., 2004; Charpidou et al., 2008; Sharma et 
al., 2008; Rogers et al., 2009)  
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The table above outlines several of the mechanisms that can dysregulate a normal wound healing 

response and lead to a chronic wound with the subsequent development of fibrosis. Whilst correct 

resolution and progression through all stages of the wound repair process is vital, it is the origin and 

maintenance of excess or dysregulated fibrogenic cells that is perhaps the most important area to 

investigate in relation to the development of fibrotic disorders. There are several hypotheses as to the 

origins of these cells, and the relationship within a chronic wound environment can play a key role in this 

process. 

 

1.2.2 Origin of Fibrogenic Cells 
There are three prominent hypotheses as to the origin of fibrogenic cells in fibrotic disorders, firstly that 

resident fibroblasts proliferate rapidly and potentially differentiate into myofibroblasts, secondly that 

circulating fibrocytes are recruited from the vasculature and differentiate into fibroblasts and thirdly that 

epithelial cells present in the lung trans-differentiate into fibroblasts. None of these processes are 

innately pathologic, as they all serve important roles in the normal wound healing process so it is likely 

that hyper-activation of or prolongation of the response is key. 

There are many fibroblasts distributed throughout the supportive matrix of the lung and whilst they are 

required in normal wound resolution their persistence and hyper-activation is a key contributor to 

fibrosis. The release of several growth factors such as TGF-β1 and FGF as well as other factors such as 

mechanical stress within the ECM can lead to fibroblast activation. This activation leads to an increase in 

proliferation and the secretion of less mature ECM products such as fibronectin and collagen III (Hetzel 

et al., 2005). In more severe wound events these fibroblasts are often induced into the contractile 

myofibroblast phenotype which associate into foci to facilitate wound closure (Hinz, 2007). These foci 

contain large amounts of fibrotic material required to facilitate the mechanistic closure of the wound, 

and dysregulation of this process, or increased proliferation and resistance to apoptosis of 

myofibroblasts is a hallmark of fibrosis (Kis et al., 2011). 

The theory of circulating fibrocytes contributing to repair of lung epithelial wounds is a relatively new 

concept (Bucala et al., 1994), suggesting that bone marrow-derived fibrocytes can be recruited from the 

vasculature in response to a chemotactic gradient emanating from the wound. These cells differ from 

resident fibroblasts in that they express hematopoietic markers such as CD34, CD45 and CD54 (Quan et 

al., 2004). CD34 was the first marker described for fibrocytes and has therefore been the focus of most 
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research. Expression of these markers has been shown to decrease in vitro, however, it is thought that 

fibrocytes in the wound environment retain this expression profile (Bucala et al., 1994).  

The factors responsible for the chemotactic recruitment of these fibrocytes are not completely 

understood; however, expression of the CCR3, CCR5, CCR7 and CXCR4 receptors have been shown to 

play a role (Abe et al., 2001). Once resident in the wound site, the fibrocytes are capable of producing 

collagen and αSMA, a process that is increased in the presence of TGF-β1 (Abe et al., 2001). While these 

fibrocytes may play a role in physiological wound repair, over-recruitment is associated with numerous 

pulmonary disorders. An increased number of fibrocytes is associated with IPF, with an even greater 

abundance in acute exacerbations (Moeller et al., 2009), although which, if any, of the aforementioned 

factors is responsible for their recruitment is unknown. In asthma, an increased number of fibrocytes are 

present in the hyperplasic airway smooth muscle, although it has not yet been determined if they 

contribute significantly to disease progression or severity, or are attracted by the already hyperplasic 

tissue (Saunders et al., 2009). In obliterative bronchiolitis (OB) elevated levels of fibrocytes are present in 

the lung tissue and in the pulmonary vessels running through this tissue, with both displaying evidence of 

remodelling, although the authors present no evidence about a contribution to obliteration of airways 

themselves (Andersson-Sjöland et al., 2009).  

The third mechanism, trans-differentiation of resident epithelial cells into fibroblasts, termed epithelial to 

mesenchymal transition is the focus of my project and is discussed below.  

 

1.2.3 Plasticity & Epithelial to Mesenchymal Transition 
Epithelial to mesenchymal transition (EMT) describes the loss of epithelial character of a cell, namely tight 

junction adherence to adjacent cells and a basal lamina forming a continuous epithelial sheet with apical-

basal polarity, into a mesenchymal form characterized by increased motility of individual cells and an 

increase in the ability to secrete ECM proteins. EMT has been demonstrated to play an important role at 

numerous stages, firstly in early development when mesodermal cells are formed and internalized at the 

primitive streak. EMT also plays a key role in the wound healing response of the epithelium, in areas 

where the epithelium has been denuded surrounding basal cells move over the wound site secreting a 

new basal lamina as they go, displaying several of the characteristics used to define EMT.  
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EMT is also thought to play a key role in tumorigenesis, with a decrease in E-cadherin expression 

strongly associated with several cancers, which is thought to facilitate metastasis (Chao et al., 2010; Hou 

et al., 2011). The role of TGF-β in the development of cancer is poorly understood; initially described as a 

pro-metastatic factor it has now been shown to display both pro (Dalal et al., 1993) and anti-cancer (Zhu 

et al., 1998) properties in various different models, and even within models (Siegel et al., 2003). This 

multifunctional response is likely due to the ubiquitous expression of both TGF-β and its receptors and 

the pleiotropic nature of TGF-β; so whilst TGF-β is important, it is the modulation of upstream activation 

and downstream effect that is likely to be important as opposed to direct targeting.  

The role of dysregulated inflammatory activity in tumorigenesis is much more widely accepted (Lin and 

Karin, 2007), with factors such as alcoholism and particulate exposure (smoking, asbestos etc.) strongly 

associated with the development of inflammatory mediated liver and lung cancers respectively. However, 

the mechanics of this association is again poorly understood; with the multifaceted response of nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) the main cause of this lack of clarity. NF-

κB was long thought to have purely a tumorigenic role, mediating the expression of anti-apoptotic 

genes (Barkett and Gilmore, 1999), induction of the cell cycle and cell invasiveness (Pahl, 1999). However 

a new role as a tumour suppressor is emerging whereby apoptosis of tumour cells is induced by p53 in 

an NF-κB dependant manner (Rocha et al., 2003). As with TGF-β the multifaceted role of NF-κB means 

that modulation of function rather than direct targeting may produce better therapeutic targets for EMT. 

Since starting my project the consensus view on EMT in fibrosis has shifted considerably. Perhaps due to 

the over-exuberant claims that were initially made, things now seem to have swung the other way 

towards general scepticism of the process, at least in vivo. Early experiments in the kidney (Iwano et al., 

2002), liver (Omenetti et al., 2008) and pancreas (Gershengorn et al., 2004) suggested that EMT may be 

a key conserved role in the development of fibrosis. However later, more robust lineage tracing 

experiments in the same systems failed to re-produce these findings; kidney (Humphreys et al., 2010), 

liver (Scholten et al., 2010) and pancreas (Morton et al., 2007). 

Luckily, the one exception to this to date is the lung, as far as I am currently aware no negative lineage 

tracing studies investigating EMT have been published, although I admit that this alone would not be 

sufficient evidence. A potential end stage of EMT in the human lung was demonstrated Willis et al 

whereby tissue segments isolated from patients with advanced IPF showed co-expression of both Type II 

alveolar epithelial (pro-surfactant protein-B) and myofibroblast (αSMA) markers (Willis et al., 2006). One 

of the potential driving mechanisms for the induction of this transition is the excessive or continuous 
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release of cytokines in the lung, with numerous groups showing that treatment with TGF-β1 can induce 

this change both in vivo (Kim et al., 2006; Tanjore et al., 2009) and ex vivo in rat cells (Willis et al., 2006) 

along with human cell lines (Kasai et al., 2005; Borthwick et al., 2011) and primary cultures (Borthwick et 

al., 2009, 2010; Câmara and Jarai, 2010). The studies by Kim et al (Kim et al., 2006) and Tanjore et al 

(Tanjore et al., 2009) are especially powerful as by utilising transgenic mice with labelled epithelial cells 

they were able to show in vivo that these epithelial cells, or their descendants, began expressing 

mesenchymal markers such as αSMA and vimentin, and a loss of epithelial character in response to 

stimulation with TGF-β1. Tanjore et al went one step further and were able to demonstrate that 

approximately 30% of resident fibroblasts were derived from the labelled epithelium 2 weeks post 

bleomycin injury. 

Perhaps some of the hostility against EMT arises from the lack of clear definition, does it refer to a 

complete switch in character or a more gradual transition across a spectrum with the most highly 

specified cell types at either end, where cells can share display both mesenchymal and epithelial 

character? By using the second definition, it does not seem too difficult to see how EMT could have a 

role to play in fibrotic development. 

Whilst I am focusing on the process of EMT in this thesis, it is likely that all three described mechanisms 

play an important role in the development of fibrosis. 

 

1.2.4 Obliterative Bronchiolitis 
OB, the pathological correlate of BOS is a progressive scarring disease of the small airways, which, along 

with a destruction of the epithelium in the local airway often blocks the airway itself with a plug of fibrotic 

material, mesenchymal and immune cells. There is a strong association of OB in lung transplant 

recipients with approximately 40% of patients displaying evidence of disease 5 years post-transplant 

(Christie et al., 2010). Diagnosis is made based upon the decline in FEV1, a measure of expiratory ability 

within 1 second as a percentage of the total lung capacity, and is often associated with the development 

of dyspnoea and a productive cough (Cooper et al., 1993).  

There are numerous mechanisms which have been proposed as initiators of disease, prime among them 

being the occurrence of tissue rejection with the corresponding development of an inflammatory 

immune reaction (Burton et al., 2009). However other factors such as an increase in acid reflux from the 
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1.3 Signalling Mechanisms 
As described in 1.2 an excessive or prolonged release of inflammatory or pro-fibrotic mediators is often 

a key driver in the development of fibrosis. These factors initiate signalling cascades within receptive 

epithelial, mesenchymal and immune cells. An understanding the mechanisms at play in these cells may 

shed light on the development of fibrosis. 

In order to respond quickly to stimuli cells need a ready supply of signalling capable proteins, however 

they also need to exert control over these pathways. Two mechanisms which can regulate these 

signalling proteins, and that I discuss throughout this thesis are, phosphorylation and ubiquitination. 

Phosphorylation involves the addition of a phosphate group PO4
3- onto a specific residue within a 

protein, which can induce a conformational change of the protein structure, usually resulting in the gain 

or loss of function. This process usually involves a kinase targeting a specific residue, typically serine, 

threonine or tyrosine and transferring a phosphate group from another molecule such as Adenosine-5'-

triphosphate (ATP). Phosphorylation is a reversible procedure, with phosphatases removing phosphate 

groups from the target protein, which can then either cycle through another phosphorylation de-

phosphorylation cycle or be degraded. 

Ubiquitination is the process whereby a small ubiquitin protein or proteins are conjugated to a protein in 

a three step process. The ubiquitin molecule is first activated by an E1 ubiquitin-activating enzyme which, 

as above, is dependent upon ATP mediated activity. This activated ubiquitin molecule is then conjugated 

to the lysine residue of the target protein by an E2 ubiquitin-conjugating enzyme, which is then ligated in 

place by an E3 ubiquitin-ligase enzyme. Again, as above the process is fully reversible under the activity 

of de-ubiquitinating enzymes. It was traditionally thought that ubiquitination was purely a means for a 

cell to target unwanted proteins for degradation in the proteasome mediated by the formation of Lys481 

linked chains of ubiquitin molecules on proteins. However more recently the ability of ubiquitin to form 

Lys63 linked chains has demonstrated a remarkable capacity to affect numerous cell processes. It is now 

thought that these chains can play a key role in maintaining protein stability, assisting in protein-protein 

binding and facilitating conformational changes within target proteins (Adhikari and Chen, 2009). 

Throughout this project I have used phosphorylation as a marker of protein activation in response to 

stimulation. I do not analyze ubiquitination within this system, although its relevance at several key points 

is discussed. By analyzing the phosphorylation response to stimulation, and by measuring the impact of 

                                                 
1 As well as Lys6, 11, 27, 29 and 33. 
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signalling protein inhibition I hope to be able to construct a signalling cascade relevant to fibrosis in the 

lung. 

 

1.3.1 Transforming Growth Factor Beta 1 
The cytokine TGF-β1 was first described in 1983, when it was isolated from platelets in its active form 

(Assoian et al., 1983), and it is now thought that the majority of cells are capable of its expression, 

including in the lung; epithelial (Xu et al., 2003), mesenchymal and immune cells (Zhang et al., 1995). 

Encoded by the TGFB1 gene an initial 75 kDa pro-TGF-β1 protein is created which forms a homodimer. 

This homodimer is then cleaved into an active 48 kDa TGF-β1 dimer, and a 100 kDa latency associated 

protein (LAP) which immediately binds with and inhibits the function of TGF-β1. This LAP protein then 

associates with a latent-TGF-β1 binding protein which localizes the LAP and bound TGF-β1 to the cell 

membrane. The majority of TGF-β1 exists in this form and cleavage from LAP is required before 

signalling can be induced (Annes, 2003; Shi et al., 2011) 

Factors such as MMP-2 and 9 are able to cleave LAP and liberate free TGF-β1 which can then induce the 

canonical mothers against decapentaplegic (SMAD2) signalling response. TGF-β1 binds to a TGF-β 

Receptor 2 (TGF-R2) dimer inducing a conformational change, which allows for the recruitment of two 

TGF-β Receptor 1 (TGF-R1) molecules. The binding of TGF-R1 with TGF-R2 activates the innate kinase 

activity of TGF-R1, and also recruits a chaperone protein such as SMAD anchor for receptor activation 

(SARA) although others have also been described, which holds SMAD3 inactive in the cytoplasm (Xu et 

al., 2000). SARA facilitates the phosphorylation of SMAD3 by TGF-R1, the phosphorylated SMAD3 is then 

released from SARA and is able to form a heterodimer with SMAD4; or a heterotrimer with either 

SMAD2 or another SMAD3 protein, and SMAD4 (Chacko et al., 2001; Wu et al., 2001). This molecule is 

transcriptionally active and is able to translocate to the nucleus (Derynck and Zhang, 2003). 

                                                 
2 A compression of MAD, the Drosophila melanogaster homolog, and SMA, the Caenorhabditis elegans homolog. 
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A similar role for TGF-β1 has been demonstrated in OB as well, with elevated levels of TGF-β detected in 

the airway and lung tissue associated with, and shown to precede the development of OB (El-Gamel et 

al., 1999), as well as increased levels detected in the BAL of patients (Elssner et al., 2000). A similar role 

for SMAD3 has also been described. Using primary fibroblasts isolated from the trachea of either wild-

type or SMAD3 deficient mice, SMAD3 deficient fibroblasts did not up-regulate expression of 

mesenchymal markers in response to TGF-β1 (Ramirez et al., 2006). Previous work performed in our 

laboratory has also described a similar SMAD3 dependant effect on EMT in primary human bronchial 

epithelial cells (Borthwick et al., 2009, 2010). 

 

1.3.2 Tumour Necrosis Factor Alpha 
The inflammatory cytokine TNFα was first described in 1975 and named for its ability to selectively 

induce necrosis in transplanted sarcomas in mice (Carswell et al., 1975). The same paper also postulated 

that the release of TNFα was attributable to macrophages, which was later confirmed in a different paper 

(Matthews, 1978). Although primarily produced in alveolar macrophages in the lung (Nii et al., 1993) 

TNFα is also produced by numerous other cells, including resident fibroblasts (Bashir et al., 2009) (only 

demonstrated in skin fibroblasts) and epithelial cells (Miyazaki et al., 1995). 

Encoded by the gene TNFA TNFα is produced as a 26 kDa membrane bound protein which associates 

into homotrimers. This membrane-associated homotrimer can be cleaved by the activity of TNFα 

converting enzyme (TACE) into a soluble homotrimer composed of 17 kDa molecules. TNFα signals 

through two distinct trans-membrane receptors, TNF Receptor 1 (TNFR1) and TNF Receptor 2 (TNFR2) 

(Locksley et al., 2001). TNFR1 is ubiquitously expressed and can respond to both membrane-bound and 

soluble forms of TNFα whereas TNFR2 is highly regulated in its expression, mainly on immune cells and 

responds, efficiently, only to membrane bound TNFα (Grell et al., 1995). 

The canonical signalling pathway driven by TNFα has been extensively investigated in response to TNF-

R1 activation which induces a signalling cascade through NF-κB. TNF-R1 recruits TNF-receptor-

associated factor 2 (TRAF2) (Rothe et al., 1994) along with E3 ubiquitin-ligases forming a complex which 

polyubiquitinates the receptor interacting protein kinase 1 (RIP1) (Ea et al., 2006) as well as TRAF2 itself in 

a Lys63 dependant manner. This complex then aids phosphorylation of transforming growth factor beta 
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activated kinase 1 (TAK13), again through poly-ubiquitination of TAK1 and associated TAK1 associated 

binding protein (TAB) proteins (Shim et al., 2005; Yang et al., 2011). Activated TAK1 then phosphorylates 

the kinase components of the IκB kinase (IKK) complex which is composed of three subunits, the 

regulatory IKK and the catalytic IKKα and IKKβ (Wang et al., 2001). The IKK complex binds with Iκ-Bα, a 

protein which holds NF-κB in the cytoplasm (Jacobs and Harrison, 1998), phosphorylates it and targets it 

for degradation in the proteasome. The NF-κB dimer, composed from five possible monomers p1054, 

p1005, p656, RelB and c-Rel, is then free to translocate to the nucleus and influence transcription. There 

are numerous levels of processing, activation and regulation that occur throughout this signalling 

cascade which are covered more elegantly in the following review by Perkins (Perkins, 2007). 

  

                                                 
3 MAP3K7 
4 NF-κB1, p105 can be cleaved to p50, but mainly transcribed independently 
5 NF-κB2, p100 cleaved to p52 
6 RelA 
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seeming to refer to the chronic, early onset neutrophilic response, nor provide direct evidence of 

elevated TNFα in the lungs of patients with OB. An inflammatory response is still associated with the later 

onset disease but it is less severe. 

The contribution of inflammation to the development of IPF is still under debate. On the one hand an 

increased number of macrophages are often found in the alveoli of IPF patients and from this it was 

hypothesized that these macrophages were contributing to a non-resolving pro-inflammatory milieu 

(ATS, 2000). As such the current treatment practice is to deliver anti-inflammatory drugs, such as 

corticosteroids, cyclophosphamide, cyclosporine or pirfenidone, to the lung (ATS, 2000). This hypothesis 

was challenged by the lack of strong clinical trials showing a benefit from treatment with any of these 

drugs, although some slight positive trends were observed (Gharaee-Kermani et al., 2007). As well an 

inability to detect inflammatory markers themselves in situ throughout disease progression. It however is 

worth noting that the lack of strong clinical trials may be due to the ethical constraints of offering a 

placebo treatment to patients with a rapidly progressing disease. As such, some people now think of 

inflammation as an effect of IPF and not a driver as such. Conversely, the TNFA-308G>A polymorphism, 

which has previously been reported to produce elevated free TNFα levels in sarcoidosis patients (Sharma 

et al., 2008), was also found to be associated with IPF patients (Riha et al., 2004), suggesting that our 

understanding of the role of inflammation in IPF is still significantly lacking.  
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1.3.3 Interleukin-1 Beta 
The inflammatory cytokine IL-1β was first described in 1972 (Gery et al., 1972) for its ability to activate 

lymphocytes , but it was not until later that it was differentiated from IL-1α as a protein secreted from 

macrophages (March et al., 1985). 

Encoded by the gene IL1B IL-1β is produced as an inactive 31 kDa protein which is converted into an 

active 17 kDa molecule by numerous proteinases. Mast cell chymase and tryptase (Black et al., 1989) 

being the first described although it was later shown IL-1β converting enzyme (ICE) as the primary 

proteinase (Thornberry et al., 1992). Interestingly whilst many cells, such as fibroblasts, are able to 

produce the pre-cursor form of IL-1β they lack the ability to produce the proteinases which activates it 

(Kostura et al., 1989). It is possible for the airway macrophages to secrete proteinases that have been 

shown to cleave inactive IL-1β extracellularly, albeit in a skin and not lung model. IL-1β binds to IL-1 

receptor type 1 (IL-1R1) which recruits IL-1R accessory protein, which is required for transmission of the 

signal (Wang et al., 2010). 

This activation triggers the recruitment of myeloid differentiation primary-response protein 88 (MyD88) 

to the intracellular portion of the receptor complex, which in turn recruits IL-1R-associated kinase 4 

(IRAK4). IRAK4 is then able to recruit and activate ,through phosphorylation, IRAK1; this phosphorylation 

allows for the recruitment of TRAF6, a homolog of the previously described TRAF2, which interacts with 

TAK1 in a similar fashion (Akira and Takeda, 2004). At which point the remaining signalling mechanism is 

conserved with that of TNFα, although evidently there is some form of modulation allowing for the 

occurrence of different signalling events. 



 

 

Figure 

IL-1

sour

facil

rece

Pho

poly

bind

NF-

prot

 

As wit

expres

TGF-β1

reducin

knowle

IPF. Th

patient

elevate

e 9 – IL-1β sig

β is produced

rced from pul

itate signal tra

eptor complex

sphorylated I

yubiqitinated a

ding with the I

κB inactive in 

teasome. This 

h TNFα the

sion of IL-1β

1 and the d

ng the dev

edge, no dat

he only stud

ts, but did d

e the inflam

ignalling mec

d and can be 

monary macro

ansduction wit

x. IRAK4 is recr

IRAK1 recruit

and this stimu

KK group e), a

the cytoplasm

frees NF-κB a

e contributio

βin the epith

evelopment

velopment o

ta has been 

dy which se

demonstrate 

mmatory pot

chanism 

secreted in a

ophages. IL-1β

thin the cell. T

ruited to the r

ts TRAF6 d), 

lates the auto

and activating 

m, phosphoryla

allowing it to t

on of IL-1β

helium of rat

t of fibrosis

of fibrosis i

presented s

eemingly inv

a reduction

tential of IL

an inactive for

β binds to IL-1

his receptor c

receptor comp

 a homolog

ophosphorylat

its kinase abil

ating it and th

ranslocate to t

β to the dev

ts led to sig

(Kolb et al., 

n a mouse

showing elev

vestigates th

n in the prod

-1β (Mikuni

m; it is cleave

1R1 which rec

omplex recrui

plex c), which 

 of TRAF2

ion of TAK1, a

ity, specifically

us targeting it

the nucleus an

velopment 

ns of acute 

2001), with

e bleomycin

vated levels 

his found n

duction of IL

iya et al., 1

ed by the activ

cruits IL-1R acc

ts MyD88 to t

in turn recruit

which can re

activating it as

y that of IKKβ. 

t for ubiquitin 

nd influence tr

of IPF is po

inflammatio

 administrat

n model (Pi

of IL-1β, fro

o increase, 

L-1R1 antago

997). It was

ivity of ICE a),

cessory protei

the intracellula

ts and phosph

ecruit TAK1-T

s a kinase. TAK

IKK binds with

mediated deg

ranscription f)

oorly under

on, followed 

tion of an IL

iguet et al.

om any sour

in IL-1β in 

onist (IL-1R1

s also show

, predominate

n b) in order 

ar portion of th

horylates IRAK

TAB1, TAB1 

K1 is capable 

h Iκ-Bα, holdin

gradation in th

. 

rstood. Tran

by expressio

L-1R1 antag

, 1993). To

rce, in relatio

the BAL o

1A), which w

wn there wa

28 

 

ely 

to 

he 

K1. 

is 

of 

ng 

he 

nsient 

on of 

onist 

o my 

on to 

f IPF 

would 

s no 



 

29 
 

variation in receptor expression between IPF and control patients, and there is the aforementioned poor 

response of IPF to existing anti-inflammatory treatments. More recently, studies have associated 

polymorphisms within IL1RN the gene encoding for IL-1R1A that result in a reduction in mRNA 

expression with IPF. The authors suggesting that drugs such as anakinra that mimics IL-1R1As activity, 

and has previously been used in other inflammatory disorders may be of use in IPF (Korthagen et al., 

2012). 

In OB a significant increase in the levels of IL-1β in the BAL of patients has been described in one study 

(Vanaudenaerde, De Vleeschauwer, et al., 2008), yet confusingly in another study not only was this effect 

not replicated, but an increase in the inhibitory IL-1R1A was described instead (Belperio et al., 2002). 

Although in both cases the authors link their findings with development of disease, in the first instance by 

hypothesising that the increased inflammation would lead to excessive fibrosis, and in the second by 

suggesting the anti-fibrotic effects of the inflammatory response were being blocked. Neither of these 

papers refer to the current debate about the dual forms of OB disease characterisation that may account 

for their differing findings. One study which investigated this effect, albeit with a small sample size, 

described an increase in IL-1β detected in the BAL in the early onset neutrophilic form of OB, with no 

change detected in the late onset form of the disease (Verleden et al., 2011). 

 

1.3.4 Mitogen Activated Protein Kinase Cascade 
The previous sections have described the canonical signalling responses of TGF-β1, TNFα and IL-1β, 

however these molecules also induce other non-canonical signalling responses. One common alternative 

signalling pathway, which can be activated by all three stimuli, is the mitogen activated protein kinase 

(MAPK) cascade. Although describing this cascade as common is perhaps a misnomer due both to the 

breadth of components contained within, and the variety of interactions possible. 

There are several families of MAPKs, and of these there are three that are well described. The 

extracellular signal related kinases (ERK)-1/2 were described first, followed quickly by the c-Jun N-

terminal kinases (JNK)-1/2 and p38 families. Each MAPK is activated by dual phosphorylation of a 

threonine and tyrosine residue separated by a single amino acid. For ERK-1/2 this is glutamate, for JNK-

1/2 a proline and p38 gylcine. Once activated these MAPKs can, through the activity of transcription 

factors such as activating protein 1 (AP-1) or activating transcription factor 1/2 (ATF-1/2), alter gene 

expression. 
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The traditional view of MAPK activation is that a signal induces activation of an upstream MAP3K (MAP 

kinase kinase kinase), which in turn activates a MAP2K and in turn the requisite MAPK. Each MAPK can be 

activated by several MAP2Ks that can in turn be activated by several MAP3Ks that creates a system with 

redundancy built in, whilst also facilitating a wide array of outcomes based on the exact signalling input. 

For example at least four MAP3Ks have been implicated in the activation of JNK-1/2 in response to 

stimulation by TNFα or IL-1β, with some of these same MAP3Ks being involved in the non-canonical 

TGF-β1 response. Adding another layer of complexity is that signalling responses are often not 

conserved between different cell types, for example the MAP3K MEKK1 was required for activation of 

JNK-1/2 by TNFα in embryonic stem cells (Xia, 2000), but not in fibroblasts (Yujiri, 1998). I cover the 

specific activities of each MAPK in more detail in the results chapters dealing with each protein, but the 

review by Rubinfeld et al covers the activation and response of each in more detail (Rubinfeld and Seger, 

2005). 

 

1.3.5 Synergistic Response 
Recently our group and others have shown that TGF-β1 can drive EMT in primary bronchial epithelial 

cells (PBEC)s (Ward et al., 2005; Hackett et al., 2009), and that inflammatory stimuli such as TNFα and IL-

1β can accentuate this effect (Borthwick et al., 2009, 2010; Câmara and Jarai, 2010). However, the 

signalling mechanisms that underpin this synergistic effect are unknown; and a greater understanding of 

their interactions is required. TGF-β1, TNFα and IL-1β are all pleiotropic in nature and they often display 

apparently conflicting effects. 

TGF-β1 has strong pro-fibrotic effects and it can also act as a potent suppressor of the immune response, 

conversely TNFα displays strong inflammatory abilities alongside anti-fibrotic abilities, and yet the 

presence of both is seen as key in OB and implicated in IPF. Evidently, there is some mechanism that is 

overriding the conflicting effects of TGF-β1 and TNFα, and by referring back to the chronic wound 

theory outlined in 1.2.1 it is possible to see how such a mechanism could arise. The immune response 

usually tails off post clearance of the initiating factor, however if this factor is un-clearable for example in 

allergic responses, in response to chronic infection or a repeated injury from industrial particulates then 

this response may be maintained. 

Studies have demonstrated that TNFα is capable of increasing the transcription of TGF-β1, as well as 

stabilising TGF-β1 mRNA in vitro, these findings were confirmed in vivo in a study whereby transient 
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over-expression of TNFα induced an increase in detected TGF-β1 and a subsequent development of 

fibrosis (Sime et al., 1998). However in an alternative study, mice over expressing TNFα in the lung were 

shown to develop less severe pulmonary fibrosis in response to bleomycin, or when TGF-β1 was also 

over-expressed (Fujita et al., 2003). It was then postulated that it may be the type of TNFα present that 

determines whether a fibrotic response is initiated.  

Using transgenic mice it was demonstrated that the membrane bound un-processed form of TNFα could 

generate an inflammatory response in vivo but that a subsequent fibrotic response did not occur, 

whereas the soluble cleaved form of TNFα induced both an in inflammatory and fibrotic response. The 

same study also demonstrated that the source of this soluble TNFα that drove TGF-β1 and fibrosis was 

the airway epithelium itself (Oikonomou et al., 2006). It is not known what type of TNFα was 

predominantly produced in the study which demonstrated TNFα induced bleomycin resistance, as TNFα 

production was not assessed, however previous studies using the same model measured TNFα in the 

BAL by ELISA suggesting that at least some soluble TNFα was produced.  

Other differences between the models include the uses of a transient TNFα expression with a positive 

effect on fibrosis, whereas permanent expression inhibited the development of fibrosis. This may indicate 

that continuous inflammation can inhibit the initiation of fibrosis, whereas pulsed occurrences of TNFα 

accentuate rather than inhibit the already occurring fibrotic response. The detected levels of TNFα also 

differed slightly between the two models with the transient model peaking at approximately 150ng/mL, 

and the permanent model at 90ng/mL of TNFα, although it seems unlikely that such a small variation 

would produce such a difference in response. 

A mechanism whereby TGF-β1 induces the production of TNFα has not been described however, with 

several studies describing the inhibition of TNFα by TGF-β1 (Vaday et al., 2001; Yu et al., 2009). Together 

all these studies demonstrate how poorly understood the interplay between TGF-β1 and TNFα is, and 

demonstrates that a wide variety of other factors play a role in determining what occurs. 
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1.4 Hypothesis, Aims & Objectives 
I propose that the development of fibrosis in OB is at least partially facilitated by a dysregulated wound 

healing response initiated by a non-resolving, but not continuous, pro-inflammatory milieu within the 

airway or alveoli which induces a pro-fibrotic response. That this dysregulated wound response manifests 

itself as EMT, with the airway lining losing its epithelial character and gaining a motile, pro-fibrotic 

mesenchymal character; an effect which is driven by TGF-β1 and accentuated by inflammatory mediators 

such as TNFα. That the accentuative effect of TNFα on TGF-β1 driven EMT in the airway epithelium is 

mediated by a protein (or proteins) which hyper-activates existing signalling pathways or activates a 

novel signalling cascade.  

 

1.4.1 Aims 
 To isolate PBECs from stable lung transplant recipients by bronchial brushing. 

 To culture these cells in a submerged system and use this system to model the fibrotic and 

inflammatory milieu present in OB. 

 To observe and quantify the onset and development of EMT within this system. 

 To unpick the signalling events involved in the onset and development of EMT. 

 

1.4.2 Objectives 
 Utilise previously described PBEC isolation and culture methods to establish sufficient cell stocks. 

 Induce EMT within these cultures by the addition of recombinant human TGF-β1 or TNFα; 

observe the morphological changes and measure the changes in protein expression associated 

with EMT. 

 Disrupt the function of key proteins within the TGF-β1 and TNFα signalling cascades by chemical 

inhibition and siRNA mediated knockdown, and measure the impact of this disruption on EMT. 

 Assess the phosphorylation of proteins within the TGF-β1 and TNFα signalling cascades to 

determine which if any proteins play a key role. 
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2 Materials & Methods 
All experimental procedures were conducted in compliance with Newcastle University and Institute of 

Cellular Medicine Safety Policy according to the Control of Substances Hazardous to Health (COSHH) 

regulations. All tissue culture work was undertaken at Containment Level 2 using standard aseptic 

techniques. 

 

2.1 Materials 
All reagents were sourced directly through the relevant suppliers and COSHH regulations were followed 

throughout their usage. 

 

2.1.1 Cell Lines 
Throughout this project wherever possible I have tried to use primary human cells as due to their un-

transformed nature I feel that they are a more relevant model in which to investigate physiological 

effects. However in some instances due to the requirement for either large cell numbers or a high 

protein yield it has been necessary to use an alternative cell line population. 

 

2.1 .1 . 1 A549 
A549 cells were derived from an explanted lung tumour isolated from a 58 year old male in 1972. They 

were described as having characteristic multilamellar bodies in the cytoplasm and a high level surfactant 

protein synthesis from which it was concluded that they are a good model for type II pneumocyte cells. 

The cell line is predominately hypotriploid with a modal chromosome number of 66 although other 

frequencies do occur (Giard et al., 1973; Lieber et al., 1976).  
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2.1.2 Media  
Reagent Supplier Cat. # Volume (mL)

Dulbeco’s Modified Eagle Medium (DMEM) for A549 Cells 

Dulbeco’s Modified Eagle Medium (DMEM)/F-12 Ham Sigma D6421 500

Foetal Calf Serum Sigma 12133C 50

Penicillin (100 units/mL)/Streptomycin (1mg/mL) Sigma P4333 5

L-Glutamine Sigma G7513 5

Roswell Park Memorial Institute-1640 (RPMI) 

Roswell Park Memorial Institute-1640 Sigma R0883 500

Foetal Calf Serum Sigma 12133C 50

Penicillin (100 units/mL)/Streptomycin (1mg/mL) Sigma P4333 5

L-glutamine Sigma G7513 5

Roswell Park Memorial Institute-1640 (SAGM) 

Small Airway Growth Medium Lonza CC-3119 500

Bovine Pituitary Extract 

Lonza CC-3118 Kit form

Hydrocortisone 

Human Epidermal Growth Factor 

Epinephrine 

Insulin 

Triiodothyronine,  

Transferrin 

Gentamicin/Amphotericin-B 

Retinoic Acid 

Bovine Serum Albumin 

Penicillin (100 units/mL)/Streptomycin (1mg/mL) Sigma P4333 5

Table 2 - Media Composition 
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2.1.3 Solutions 
Reagent Supplier Cat. # Concentration (M)

TBS-Tween (pH 7.6) 

Trizma Base Sigma T1503 0.05

NaCl Sigma S3014 0.15

Polysorbate-20 (Tween-20) Sigma 44112 0.005

-In dH20 

Table 3 - General Solutions 

 

Reagent Supplier Cat. # Concentration (M)

Denaturing Lysis Buffer 

Sodium Dodecyl Sulphate Sigma L3771 0.0034

Ethylenediaminetetraacetic acid Sigma EDS 0.005

β-mercaptoethanol (added just prior to use) Sigma M3148 0.1

- In dH20 

Non-denaturing Lysis Buffer 

Trizma HCL Sigma T3253 0.02

NaCl Sigma S3014 0.140

Glycerol Sigma G5516 0.1

Triton X-100 Sigma T9284 0.01

Ethylenediaminetetraacetic acid Sigma EDS 0.002

- In dH20 

Table 4 - Immuno-precipitation Solutions 

 

Reagent Supplier Cat. # Concentration (M)

Zymography Buffer 1 

Triton-X 100 Sigma T9284 0.025

Zymography Buffer 2 (ph 7.5) 

Trizma Base Sigma T1503 0.05

CaCl2 Sigma C1016 0.005

Table 5 - Zymography Solutions 
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Reagent Supplier Cat. # Concentration (M)

Resolving Buffer (pH 8.8) 

Trizma Base Sigma T1503 1.5

- In dH20 

1x Stacking Buffer (ph 6.8) 

Trizma Base Sigma T1503 0.5

- In dH20 

10x Running Buffer (pH 8.3) 

Trizma Base Sigma T1503 0.25

Glycine Sigma G8898 1.92

Sodium Dodecyl Sulphate Sigma L3771 0.034

- In dH20 

Sample Loading Buffer 

Trizma HCL Sigma T3253 0.0625

Glycerol Sigma G5516 2

Sodium Dodecyl Sulphate Sigma L3771 0.034

Bromophenol Blue Sigma 114391 0.0005

β-mercaptoethanol (added just prior to use) Sigma M3148 0.01

- In dH20 

Table 6 - SDS-PAGE Solutions 

 

Reagent Supplier Cat. # Concentration (M)

Transfer Buffer 

Trizma Base Sigma T1503 0.25

Glycine Sigma G8898 1.92

- In dH20 

Stripping Buffer 

Trizma HCl Sigma T3253 0.0625

Sodium Dodecyl Sulphate Sigma G8898 0.07

β-mercaptoethanol (added just prior to use) Sigma M3148 0.1

Table 7 - Western Blotting Solutions 
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2.1.4 Antibodies 
Target Supplier Cat. # Technique Dilution 

TAK1 Cell-Signalling 4505 
Western Blot 1:1000 
ICC/IHC 1:100 
Immuno-Precipitation 1:87 

pTAK1 (Thr184) Cell-Signalling 4537 
Western Blot 1:1000 
ICC/IHC 1:100 
Indirect ELISA 1:5000 

pTAK1 (Thr187) Cell-Signalling 4536 
Western Blot 1:1000 
ICC/IHC 1:100 
Indirect ELISA 1:5000 

TAB1 Cell-Signalling 3226 Western Blot 1:1000 
TAB2 Cell-Signalling 3745 Western Blot 1:1000 
TAB3 Abcam ab85655 Western Blot 1:1000 

SMAD3 Abcam ab29379 
Western Blot 1:3000 
ICC/IHC 1:100 
Immuno-Precipitation 1:128 

pSMAD3 (Ser423/425) Abcam ab52903 
Western Blot 1:1000 
ICC/IHC 1:100 
Indirect ELISA 1:10000 

JNK-1/2 Cell-Signalling 9252 
Western Blot 1:1000 
ICC/IHC 1:100 
Immuno-Precipitation 1:69 

pJNK-1/2 (Both Thr183/Tyr185) Cell-Signalling 4668 
Western Blot 1:1000 
ICC/IHC 1:100 
Indirect ELISA 1:4000 

c-Jun Cell-Signalling 9165 Western Blot 1:500 
pc-Jun (Ser63) Cell-Signalling 2361 Western Blot 1:250 
p38 Santa-Cruz sc-7149 Western Blot 1:1000 
pp38 (Thr180/Tyr182) Santa-Cruz sc-17852 Western Blot 1:500 
ERK-1/2 Cell-Signalling 4695 Western Blot 1:1000 
pERK-1/2 (Thr202/Tyr204 & Thr185 & 
Tyr187) 

Cell-Signalling 4370 Western Blot 1:500 

IKKα/β Santa-Cruz sc-7607 
Western Blot 1:2000 
Immuno-Precipitation 1:178 

pIKKα/β (Ser176/180 & Ser177/181)  Cell-signalling 2697 
Western Blot 1:1000 
Indirect ELISA 1:5000 

Iκ-Bα Santa-Cruz sc-1643 Western Blot 1:1000 
pIκ-Bα (Ser32 & Ser36) Cell-Signalling 9246 Western Blot 1:500 

Table 8 - Antibodies  
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Target Supplier Cat. # Technique Dilution 

E-cadherin BD Bioscience 610181 
Western Blot 1:3000 
ICC/IHC 1:100 

ZO-1 Santa-Cruz sc-10804 
Western Blot 1:1000 
ICC/IHC 1:100 

Cytokeratin-14 Santa-Cruz sc-6278 
Western Blot 1:2000 
ICC/IHC 1:100 

Cytokeratin-17 Santa-Cruz sc-6278 
Western Blot 1:2000 
ICC/IHC 1:100 

Cytokeratin-19 Santa-Cruz sc-6278 
Western Blot 1:2000 
ICC/IHC 1:100 

CCSP Abcam ab40873 
Western Blot 1:500 
ICC/IHC 1:100 

AQP-4 Abcam ab11026 
Western Blot 1:1000 
ICC/IHC 1:100 

SP-B Abcam ab3282 
Western Blot 

? 
ICC/IHC 

αSMA Abcam ab32575 
Western Blot 1:2000 
ICC/IHC 1:100 

Fibronectin Sigma F3648 
Western Blot 1:4000 
ICC/IHC 1:100 

Vimentin Santa-Cruz sc-6260 
Western Blot 1:500 
ICC/IHC 1:100 

β-actin Sigma A2228 
Western Blot 1:4000 
ICC/IHC 1:100 

Ran Cell-signalling 4462 Western Blot 1:1000 
Pan-IgG Abcam  Immuno-Precipitation 1:84 

Table 8 continued - Antibodies 
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2.1.5 Cytokines & Growth Factors 
Recombinant human cytokines were delivered to cells directly in serum containing media. Effect on EMT 

was assayed by western blot for endpoint markers at 72 hours post stimulation with phosphorylation 

response assayed 30 minutes post stimulation. A dose response curve of for each cytokine and pro-

fibrotic pro-inflammatory combination was performed in A549 cells assaying for cell viability, growth and 

morphology and efficacy of inhibition on EMT. 

Cytokine Source Supplier Cat. # 
Final Concentration (µg/ml of 

media)

TGF-β1 Chinese Hamster Ovary cells Peprotech 100-21C 10ng/mL

TNFα Escherichia coli Invitrogen PHC3011 20ng/mL

IL-1β Escherichia coli Invitrogen PHC0814 20ng/mL

Table 9 - Recombinant Cytokines 

 

2.1.6 Chemical Inhibitors 
Chemical inhibitors were delivered to cells 1 hour prior to stimulation. Efficacy of effect was assayed by 

western blot for EMT endpoint markers at 72 hours post stimulation with phosphorylation response 

assayed 30 minutes post stimulation. A dose response curve of for each chemical inhibitor was 

performed in A549 cells assaying for cell viability, growth and morphology and efficacy of inhibition on 

EMT. 

Target Inhibitor Supplier Cat. # Final Concentration (μM)

SMAD3 Specific Inhibitor of SMAD3 Calbiochem 566405 10

IKKβ IKK-2 Inhibitor IV Calbiochem 401481 5

p38 SB 203580 Calbiochem 559389 10

ERK-1/2 FR180204 Calbiochem 328007 5

JNK-1/2 SAPK Inhibitor II Calbiochem 420119 5

TAK1 (5Z)-7-Oxozeaenol, Curvularia sp. Calbiochem 499610 1

Table 10 - Chemical Inhibitors 
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2.1.7 Small Interfering RNA 
siRNA was delivered to PBECs with HiPerfect lipid transfection reagent (Qiagen: #301705) 24 hours prior 

to stimulation. Efficacy of siRNA knockdown was assessed by probing for the total form of the protein 24, 

48, 72 and 96 hours after transfection, and the impact on detected phosphorylation was also assessed at 

an appropriate time point after stimulation with TGF-β1 and TNFα. 

A scrambled siRNA was used as a negative control in all experiments, the same concentration and dose 

of transfection reagent of the respective siRNA was used in each instance. A dose response curve of 

scramble siRNA only, lipid only and scramble siRNA with lipid was performed when first optimising 

transfection of PBECs assaying for cell viability, growth and morphology.  

Target Sequence Supplier Cat. # Concentration (nM)

SMAD3 ATCAAGGGATTTCCTATGGAA Qiagen SI00082481 5

IKKβ CTGGAGAAGTACAGCGAGCAA Qiagen SI02777376 0.1

JNK-1 GTGGAAAGAATTGATATATAA Qiagen SI02757209 5

JNK-2 GCCGUCCUUUUCAGAACCAT Qiagen SI00300797 10

TAK1 AAGATGGTATATACCAAGTTA Qiagen SI02758763 3

Scramble Proprietary Qiagen SI03650318 As per experiment

Table 11 - siRNAs 
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2.2 Cell Isolation, Culture & Treatment 
2.2.1 A549 Cell Line Culture 
A549 cells were cultured on un-coated plastic tissue culture vessels or un-coated glass coverslips for 

immunocytochemistry, in DMEM media. Cells were passaged upon reaching approximately 90% 

confluence. To passage, cells were washed once with sterile 1x PBS before trypsin (Sigma: #T3924), pre-

warmed to 37°C, was added to the culture vessel. Cells were incubated for approximately 5 minutes until 

the majority had lifted off from the surface, the trypsin was then neutralized with an equal volume of FCS 

containing DMEM media. Cells were pelleted by centrifugation at 250 x g for 4 minutes and the 

supernatant was discarded. The cell pellet re-suspended in fresh DMEM and plated according to 

experimental parameters 

 

2.2.2 Primary Sample Isolation & Culture 
All Human Tissue Act regulations and European Union Tissue and Cells Directives were adhered to. I 

would like to thank Drs Malcolm Brodlie, Laura MacKay, Elizabeth Moisey, Danai Karamanou and Nicola 

Green, as well as Gail Johnson, Kasim Jiwa and Dr Chris Ward and all the transplant staff at the Freeman 

Hospital for taking the time out of their already busy days to consent patients, isolate and prepare 

samples prior to me receiving them. 

2.2.2.1 Clinical Definit ion of BOS 
BOS was diagnosed as per International Society of Heart and Lung Transplantation guidelines (Estenne 

et al., 2002). Briefly, a decrease in FEV1 to between 81 and 90% (averaged over two separate visits) of 

baseline would highlight the potential development of BOS. Further decreases are classified onto a 3-

stage scale with diagnosis confirmed by histological analysis. 

2.2.2.2 Primary Sample Isolation Ethics 
This study was performed in accordance with approval from the Newcastle and North 

Tyneside Local Regional Ethics Committee and informed written consent was obtained from all study 

patients (REC 2001/179). 
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2.2.2.3 PBEC Isolation 
Patient metrics are included in Appendix 8.1. PBECs were isolated by bronchial brushing of the sub-

segmental bronchi in previously consented lung transplant patients, using a protected specimen single-

sheath nylon cytology brush (Olympus: #BC-202D). Cells were dispersed into 5mL of sterile PBS with a 

further addition of 5mL of RPMI media (Forrest et al., 2005).  

 

2.2.2.4 PBEC Culture 
PBECs were cultured on 0.5% collagen I (Nutacon: #5005-B) coated plastic tissue vessels or collagen 

coated glass coverslips for immunocytochemistry, in SAGM. Cells were passaged upon reaching 

approximately 90% confluence, and were not taken beyond five passages to ensure epithelial 

morphology. Very early cultures displayed a morphologically heterogeneous population, however this 

was lost before first passage with all cells displaying a rounded cobblestone like appearance, at high 

(>10) passage PBECs became senescent A confluent T25 flask contained approximately 3-400,000 cells 

and yielded between 100-150µg of total protein. To passage, cells were washed once with sterile 1x PBS 

before trypsin (Lonza: #CC-5012), pre-warmed to 37°C, was added to the culture vessel. Cells were the 

incubated for approximately 5 minutes until the majority of cells had lifted off from the surface, the 

trypsin was then neutralized with an equal volume of trypsin neutralizing solution (Lonza: #CC-5002). 

Cells were pelleted by centrifugation at 250 x g for 4 minutes and the supernatant was discarded. The 

cell pellet re-suspended in fresh SAGM and re-plated at a 1:2-1:3 ratio according to experimental 

parameters. Therefore, from an initial isolation of two T25 flasks it would be possible to generate 8-18 

T25 flasks, or equivalent surface area, by P2. 

 

2.2.2.5 Bronchoalveolar Lavage  
Bronchoalveolar Lavage was collected as part of the normal screening protocol in post-transplant 

patients. Where research permission had been previously provided excess BAL samples after clinical 

diagnostic procedures were carried out were provided for use. Briefly, 60mL aliquots of sterile saline 

solution are introduced into the lung at the level of the sub-segmental bronchi by a bronchoscope, the 

aliquot is aspirated then withdrawn under low pressure to minimise airway collapse. This procedure is 

repeated three times in each patient with the lavage collected as a single sample. 



 

43 
 

2.2.3 Cell Treatments & Stimulations 
All cell treatments were performed using aseptic technique and treatments were made up en masse 

before being aliquoted onto appropriate cells to ensure consistency of treatment.  

 

2.2.3.1 Chemical Inhibit ion 
Experiment appropriate amounts of chemical inhibitors were added to cells in culture 1 hour before 

stimulation with TGF-β1, TNFα or IL-1β, alongside untreated controls. 

 

2.2.3.2 Small Interfering RNA 
siRNA in experiment appropriate amounts was mixed with HiPerfect lipid transfection reagent diluted in 

sterile 1xPBS for 30 minutes at room temperature. Complexes were added to cell culture 24 hours before 

stimulation with TGF-β1, TNFα or IL-1β, alongside untreated and sequence scrambled controls. 

 

2.2.3.3 Cytokines 
Experiment appropriate doses of TGF-β1, TNFα or IL-1β were added to cells after chemical inhibition or 

siRNA knockdown. For the assessment of EMT endpoint markers cells were harvested 72 hours post- 

stimulation. For the assessment of phospho-signalling markers cells were harvested 30 minutes post-

stimulation. 
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2.2.4 Cell Preparation 

2.2.4.1 For Immuno-Cytochemistry 
Cells cultured on glass coverslips were washed 1 time with 1x PBS before fixation in situ with 4% PFA for 

1 hour at room temperature or overnight at 4°C. Cells were then washed with 1mM glycine in dH2O to 

quench the crosslinking action of PFA for 30 minutes at room temperature. Cells were then stored under 

1x PBS at 4°C prior to immuno-staining. 

 

2.2.4.2 For SDS-PAGE & Immuno-Precipitation 
Media was harvested and stored at -80°C for gelatin zymography and Sircol assay. Cells were washed 1 

time with 1x PBS before being harvested by cell scraping into ice cold 1x PBS. Cells were pelleted by 

centrifugation at 1000 x g for 5 minutes at 4°C and stored in PhosphoSafe Extraction Reagent (EMD: 

#71296-3) at -80°C to prevent protease and phosphatase activity. 

 

2.3 Protein Expression & Analysis 
2.3.1 Lysate Fractionation 
Lysates isolated as per 2.2.4.2 were fractionated by reagent based lysis into nuclear and non-nuclear 

fractions (Pierce: #78833) as per manufacturer’s instructions. Briefly proteins are isolated in a two-step 

process; firstly the cell membrane is chemically disrupted and the cytoplasm released, the intact nuclei 

are then pelleted out by centrifugation before being themselves lysed. The cell adhesion protein E-

cadherin and Ras-related Nuclear Protein (Ran), a nuclear specific Ras GTPase (Wennerberg et al., 2005), 

were used as markers to confirm the purity of the respective fractions. 

2.3.2 Bicinchoninic Acid Protein Assay 
Protein concentration was determined by the Bicinchoninic Acid Protein Assay (BCA – Pierce: #23225). 

Prior to assay lysates isolated as in 2.2.4.2 were sonicated in a standard fashion, and centrifuged at 500 x 

g for 1 minute to pellet any remaining cell debris. A standard curve derived from serially diluted 2mg/mL 
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BSA was also prepared. Samples were loaded onto a 96 well plate as per manufacturer’s instruction and 

incubated at 37°C to improve assay sensitivity (Olson and Markwell, 2007). The plate was read at 570nm. 

 

2.3.3 Immuno-Precipitation 
Cells were cultured on 6 well tissue culture plates coated with collagen I, cells were prepared as 

described in 2.2.4.2 prior to Immuno-precipitation. Samples were well mixed and 10μL was removed for 

BCA protein assay as described above. The maximum constant protein concentration available was used 

for all assays, which approximated 20µg. 

The harvested cell suspension was centrifuged at 250 x g for 5 minutes at 4°C to pellet the cells. 250μL of 

ice cold non-denaturing or denaturing lysate buffer mixed with a protease inhibitor cocktail in a 10:1 

ratio was added to the cells. When using non-denaturing lysis buffer the cells were agitated for 30 

minutes at 4°C before being centrifuged at 1200 x g for 20 minutes, the supernatant was kept and the 

pellet discarded. For cells lysates which were denatured the samples were boiled for 5 minutes before 

being quenched with an equal volume of non-denaturing lysis buffer and mechanically agitated through 

a 20G needle. Samples were spun at 12,000 x g for 10 minutes and re-suspended in 250μL of 1x PBST. 

To remove any non-specific IgG binding proteins from the sample 25μL of control IgG antibody was 

incubated with the sample for 1 hour on ice, 25μL of protein G coated magnetic beads were then added 

and incubated for 30 minutes under agitation. Beads were isolated through application of a magnetic 

field and the supernatant collected, beads were re-suspended in 250μL of 1x PBST before being isolated 

again, this supernatant was added to that previously collected, the beads coated with non-specific IgG 

binding proteins were discarded. 

1μg of antibody was added per 100μg of protein in each sample and incubated overnight at 4°C under 

agitation. 25μL of protein G coated magnetic beads were added to each sample and incubated for 30 

minutes at room temperature under agitation. Beads were isolated through application of a magnetic 

field and the supernatant collected. Beads were re-suspended in 250μL of 1x PBST before being isolated 

again, and this supernatant was added to that previously collected. 50μL of sample loading buffer 

(without bromophenol blue for indirect ELISA experiments) was added to the beads and heated at 80°C 

for 10 minutes. The beads were isolated and discarded, with the supernatant ready for further analysis. 
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2.3.4 SDS-PAGE 
A standard concentration of protein as used for all samples on a gel, and each sample was mixed with an 

equal volume of 4x sample loading buffer before being boiled for 5 minutes. This solution was loaded 

onto either a 4-12% Bis-Tris gradient gel (Invitrogen: #NP0322) and run at 100V in 1x Running Buffer; 

with a SeeBlue Plus 2 pre-stained ladder (Invitrogen: #LC5925), for 2 hours on ice.  

 

2.3.5 Zymography 
An 8% resolving gel was made up as described below and loaded into the casting apparatus; the gel was 

covered with an appropriate volume of saturated butanol. A stacking gel made up as described below 

and was layered on top of the resolving gel and left to set at room temperature with an appropriately 

sized comb in place. 

Reagent Supplier Cat. # 8% Resolving (mL) 4% Stacking (mL)

Acrylamide Sigma A3699 4 1.3

1.5M 
Tris(hydroxymethyl)aminomethane 

Sigma 93349 3.75 2.5

1mg/ml Gelatin in dH20 Sigma G2500 6.95 -

dH20 - - - 5.8

10% Sodium Dodecyl Sulfate Sigma L4390 0.15 0.1

10% Ammonium Persulfate Sigma A5508 0.3 0.1

Tetramethylethylenediamine Sigma T9281 0.02 0.02

Table 12 - SDS-PAGE Gel Recipe 

 

The required loading volume of media harvested as per 2.2.4.2 & 2.3.2 is mixed with neat 4x sample 

loading buffer, without β-mercaptoethanol, in a 3:1 ratio. This solution was loaded into the wells and ran 

at 100V for approximately 2 hours in 1x Running Buffer. Gels were washed 2 times for 15 minutes in 

Zymography Buffer 1 prior to 6 quick washes in dH20; gels were then incubated overnight at 37°C in 

Zymography Buffer 2. Gels were stained with Coomassie Blue Stain for around 2 hours before being 

washed in Coomassie destain until distinct bands are visible against the background. Gels were 

photographed on a SynGene G:Box iChemi XL. 
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2.3.6 Western Blotting 
Proteins separated by SDS-PAGE were transferred onto Polyvinylidene Fluoride (PVDF - GE Healthcare: 

#RPN303F) membranes at 50mA per membrane overnight on ice. The membranes were then blocked 

with, either 5% dried milk in 1x TBST; or with 3% BSA for phospho-signalling molecules. Membranes 

were then incubated overnight at 4°C with a primary antibody diluted in blocking solution. Membranes 

were washed 3 times for 10 minutes in 1x TBST before being incubated with isotype and species 

appropriate Horseradish Peroxidase (HRP) conjugated secondary antibodies diluted in blocking solution 

for 2 hours at room temperature. Membranes were then washed 3 times for 10 minutes in 1x TBST 

before being covered with Enhanced Chemiluminescence (ECL – Pierce: #32106) substrate for 2 minutes. 

Membranes were photographed on a SynGene G:Box iChemi XL. For 

 

2.3.7 Band Density Analysis 
Band density of western blots and zymograms was analyzed by Image J software (Abramoff et al., 2004). 

Epithelial marker band intensity was measured relative to controls, with mesenchymal marker expression 

measured relative to TGF-β1 alone stimulations. All EMT endpoint bands were standardized against β-

actin loading controls either co-probed on the same membrane or generated by strip and re-probe of 

the same membrane. Bands for phospho-signalling protein were standardized against the total form of 

the protein, which unless otherwise stated was achieved by re-probing the original membrane. Where 

applicable the mean and Standard Error of the Mean (SEM) were generated and plotted. 

 

2.3.8 Indirect Enzyme Linked Immuno-Sorbent Assay 
To perform and indirect Enzyme Linked Immuno-Sorbent Assay (ELISA) 20μL of immuno-precipitated 

lysate was diluted up to 310μL in 1x PBS, and 100μL of this solution was used to coat 3 wells of a 96 well 

ELISA plate. The plate was sealed and then incubated overnight at 4°C. The plate was washed 3 times 

with 1x PBST before being blocked with 100μL of 1% BSA in 1x PBST for 1 hour at room temperature. 

This was replaced with 100μL of primary antibody diluted in blocking solution and the plate incubated at 

4°C overnight. The plate was washed 3 times with 1x PBST before being incubated with 100μL of isotype 

and species appropriate HRP conjugated secondary antibody diluted in blocking solution for 2 hours at 

room temperature. The plate was washed 3 times with 1x PBST before 100μL of Tetramethylbenzidine 
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(TMB) substrate solution was added and the plate stored in the dark for approximately 20 minutes. 50μL 

of 0.25M sulphuric acid was added to stop the reaction and the plate was read using at 450nm. Patient 

samples were averaged after samples were standardized with un-stimulated 0 minute samples set at 0.1 

relative units. 

 

2.3.9 Bronchoalveolar Lavage Cytokine Assay 
Levels of TNFα and IL-1β in the bronchoalveolar lavage (BAL) sampled from a longitudinal population of 

lung transplant patients were assessed by a Meso Scale Discovery Multi Spot Assay (MSD: #K15025C-2) 

as per manufacturer’s instructions. 20μL of neat BAL per sample was loaded onto the plate in triplicate 

along with an appropriate standard curve. Briefly, the MSD system is comparable to colourimetric 

sandwich ELISAs. A capture antibody is bound to a carbon electrode at the bottom of a proprietary 96 

well plate, which in this instance bind and hold TNFα and IL-1β present in the BAL. A detection antibody 

conjugated with a proprietary electrochemi-luminescent then binds to any captured TNFα or IL-1β; 

which, in the presence of the activated electrode, will emit light at 620nm. Significance was then 

calculated with a two-tailed Mann-Whitney U Test. Significance was then calculated with a two-tailed 

Mann-Whitney U Test. 

 

2.3.10 Sircol Assay 
Media harvested as per 2.2.4.2 was analyzed for collagen I-IV content by the Sircol collagen assay 

(Biocolor: # S1000) as per manufacturer’s instructions. Briefly the assay relies on the binding, and 

colourimetric detection of Sirius Red dye to Gly-X-Y repeats (Ramshaw et al., 1998) present in the helixes 

of acid soluble collagen I-IV in a concentration dependant manner, with concentrations determined 

against a serially diluted standard curve prepared from 20μg/mL collagen I. Significance was then 

calculated with a two-tailed Mann-Whitney U Test. 

 

2.3.11 Immuno-Cytochemistry 
Cells were prepared as described in 2.2.4.1 prior to staining. Cells were permeabilized with 0.1% Triton 

X-100 in 1x PBS for 30 minutes at room temperature and washed 3 times, for 5 minutes each, with 1x 
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PBST. Cells were blocked with 3% BSA in 1x PBST for 1 hour at room temperature prior to incubation 

with primary antibodies diluted in blocking solution overnight at 4°C. Cells were washed 3 times with 1x 

PBST prior to incubation with isotype and species appropriate fluorochrome conjugated secondary 

antibody diluted in blocking solution for 2 hours at room temperature in the dark. Cells were washed 3 

times with 1x PBST followed by 1 wash with 1x PBS, a drop of DAPI (4',6-diamidino-2-phenylindole) 

containing mounting media was placed on a glass slide and the coverslips was gently laid on top. Slides 

were then left in the dark overnight at 4°C before visualization by confocal microscopy. Blank and 

secondary only controls were used in all instances. 

 

2.3.12 Immuno-Histochemistry 
Formalin fixed tissue was embedded in paraffin blocks before being sectioned and placed on a glass 

slide. Paraffin was removed from the slide by washing in 98.5% Xylenes for 5 minutes at room 

temperature followed by 2 washes in 95% ethanol for 5 minutes before being placed in cold dH20 until 

ready for antigen retrieval. Ethylenediaminetetraacetic acid (EDTA) at pH 8.0 was pre-boiled in a 

microwave, slides were placed in a rack then lowered gently into the EDTA which was then boiled for a 

further 10 minutes, before being left to cool at room temperature for 20 minutes. Slides were removed 

and excess EDTA removed with a dry cloth and a hydrophobic barrier was drawn around the tissue 

section with a PAP pen. The staining protocol used is the same as described above for ICC. Blank and 

secondary only controls were used in all instances. 

 

2.3.13 Confocal Microscopy 
All images were acquired on a Leica TCS-SP-2UV confocal microscope at x63 magnification unless 

otherwise stated. Excitation lasers for fluorescein isothiocyanate (FITC) and tetramethyl rhodamine 

isothiocyanate (TRITC) dyes were standardized for each experiment, with DAPI dye set by eye for each 

image as required. Images were taken through the centre of the cell as determined by the presence of 

the most intense DAPI stain.  
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2.3.14 Statistical Analysis 
Due to the small sample sizes a normal distribution could not be assumed, therefore the non-parametric 

Mann-Whitney U test was used to test for statistical significance. However, for clarity of presentation data 

in graphs were displayed as mean + SEM. Western blot band density was not analysed statistically due to 

their semi-quantitative nature. To allow comparison between blots epithelial markers were standardised 

to the untreated control, with mesenchymal markers standardised to TGF-β1 stimulated controls. In each 

case, this value was set at 1 and accordingly lacked error bars when plotted. 

 

2.4 Cell Staining 
2.4.1 Haematoxylin & Eosin 
Cells were prepared as described in 2.2.4.1 prior to staining. Cells were permeabilized with 0.1% Triton 

X-100 in 1x PBS for 5 minutes at room temperature, followed by 2 quick washes with dH20 followed by a 

5 minute was in dH20. Acidified haematoxylin (Thermo Scientific: #6765003) was added to each sample 

for 4 minutes at room temperature, followed by the above wash protocol. Alcoholized eosin (Thermo 

Scientific: #6766007) stain was added to each sample for 30 seconds, followed by the above wash 

protocol. Samples were left inverted to dry before being stored in the dark prior to photography. 

 

2.4.2 Trypan Blue 
For trypan blue exclusion cells were culture on 48 well plates. Media for each treatment was harvested, 

and cells washed once with 1x PBS, which was added to collected media. Cells were then trypsinized, 

with following trypsin neutralization as per 2.2.2.4, and added to collected media and wash. Samples 

were centrifuged at 500 x g for 5 minutes at room temperature, supernatant was discarded and cell 

pellet was re-suspended in 250µL of DMEM media and cells counted. 250µL of 0.4% trypan blue dye was 

added to each sample, mixed thoroughly and incubated for 3 minutes at room temperature. Two counts 

of 50 cells from each sample were performed and the percentage of viable cells excluding trypan blue 

calculated along with the SEM. If the SEM was greater than 5 then a third count of 50 cells was 

performed.  
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3 Primary Samples Display Increased 
Fibrotic and Inflammatory Markers 

Throughout this project I have where possible used primary human cells and samples, isolated from lung 

transplant recipients at the Freeman Hospital in Newcastle-upon-Tyne. The benefits of using these are 

cells are that they are more physiologically relevant to a living human, and hence the disease models 

being investigated; and the association of these cells with tissue and BAL samples isolated from the same 

patients allows for greater integration into a disease model still. 

There are however some downsides, the cells are cultured submerged in media on collagen coated glass 

or plastic, which bears little relationship to their in vivo setting. Their proliferative ability is also somewhat 

limited when compared to a cell line population, although again probably increased over that occurring 

in vivo which means that it is often difficult to generate a sufficient cell number to experiment on. There 

is also perhaps more of a variation in results between patients, however when an effect that is conserved 

between distinct patients is described, it is perhaps more striking than reproducibility within a cell line.  

 

3.1 Cytokine Expression in BOS Patients 
Throughout this study I will be using recombinant TGF-β1, TNFα and IL-1β to stimulate cells mimicking 

the environment that is present in the lung during the development of OB. It is routine for post-

transplant patients at the Freeman to come in for regular assessments, at which point samples, including 

the cells I use, tissue sections and BAL fluid are taken. Over time a longitudinal database of patient 

samples has accrued which in association with clinical notes allows tracking of the environment within a 

patients lung in respect to disease initiation, progression or escalation post-transplant. 

It is well recognized in clinical practice that BOS is often first diagnosed or progresses more rapidly 

following a significant episode of acute inflammation or airway injury. However that association is based 

on the observation that immune cells are increased, therefore facilitating a greater release of immune 

factors, in the lavage and also on histological evidence of inflammation having occurred within the tissue. 

Therefore, it was decided to directly assay BAL samples isolated from post-transplant patients at 

recurring check-ups for the presence or absence of both TNFα and IL-1β.  
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3.1.1 TGF-β1 Expression in BOS Patients 
Due to the availability of several studies (Elssner et al., 2000; Ramirez et al., 2008) demonstrating elevated 

levels of TGF-β1 in the BAL of BOS patients , the scarcity of sample and the expense of custom MSD 

plates it was decided not to assay for TGF-β1. Below is a figure reproduced from the paper by Elssner et 

al. to demonstrate the levels of TGF-β1 present in the BAL of BOS patients. 
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3.1.2 TNFα Expression in BOS Patients 
BAL samples from patients at the Freeman Hospital in Newcastle-upon-Tyne were assessed for the 

presence of TNFα using a Meso Scale Discovery Multi Spot Assay as described in 2.3.9. Values were 

derived from the associated standard curve. In all cases data is presented in two forms, raw and then 

adjusted (all samples adjusted to 100% BAL return) to account for the variation in percentage of BAL 

returned from the lung, which in some instances was as low as 5%. I would like to thank Dr Rahul Mahida 

for collating the clinical samples and linking them with the requisite patient details, and Miss Monika 

Suwara with whom I jointly performed the MSD assay. 

Patients were grouped into those who had a clinical diagnostic of BOS (Stages 1-3 as per ISHLT 

guidelines) (Estenne et al., 2002)), and those without. The BOS group was then further split into samples 

occurring up to 6 months before diagnosis of BOS, up to 3 months before diagnosis, at diagnosis, up to 

3 months post diagnosis and up to 6 months post diagnosis of BOS. Statistical significance was assessed 

by two-tailed Mann-Whitney U Test. 
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3.1.3 IL-1β Expression in BOS Patients 
BAL samples from patients at the Freeman Hospital in Newcastle-upon-Tyne were assessed for the 

presence of IL-1β using a Meso Scale Discovery Multi Spot Assay. Values were derived from the 

associated standard curve. In all cases data is presented in two forms, raw and then adjusted to account 

for the percentage of BAL returned from the lung. 

Patients were grouped into those who had a clinical diagnostic of BOS (Stages 1-3 as per ISHLT 

guidelines) (Estenne et al., 2002)), and those without. The BOS group was then further split into samples 

occurring up to 6 months before diagnosis of BOS, up to 3 months before diagnosis, at diagnosis, up to 

3 months post diagnosis and up to 6 months post diagnosis of BOS. Statistical significance was assessed 

by Mann-Whitney U Test. 
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The mean percentage recovery of BAL was lower in BOS patients (24%) than in post-transplant patients 

without BOS (28%) (p<0.05). Looking at TNFα, correcting for recovery increased the level of significance 

for all groups compared to the without BOS group, induced significance in the 3 and 6 month post 

diagnosis groups, and increased the detected levels of TNFα in the total BOS group so that it was now 

significantly elevated, as opposed to lowered when compared to the without BOS groups. Looking at IL-

1β both non corrected and corrected data were significant, with correction increasing the level of 

significance. Anecdotally the recovery of BAL was lowest in BOS patients just after diagnosis (13% - for 3 

months post diagnosis) which may account for the gain in statistical significance observed in TNFα for 

the post diagnosis groups. In the 3 months leading up to diagnosis with BOS recovery was in line with 

the mean (24%). Unless otherwise specifically mentioned I will be basing my discussions on the corrected 

data set. 

Both TNFα and IL-1β were significantly elevated in the total BOS diagnosed group compared to the 

without BOS group, suggesting that both TNFα and IL-1β play a key role in the development of BOS and 

OB. However the total BOS diagnosed group covered all samples from each diagnosed patient, which in 

some cases could range up to 2 years before diagnosis. To focus on the relevance of TNFα and IL-1β to 

BOS more closely I split the BOS diagnosis into groups containing all samples 6 months before diagnosis, 

3 months before diagnosis, at diagnosis, 3 months post diagnosis and 6 months post diagnosis. Samples 

in the 3 month groups were also counted in the relevant 6 month group.  

Detected TNFα and IL-1β was significantly higher than both the total with BOS and total without BOS 

groups for all samples. Levels of TNFα and IL-1β at diagnosis of BOS were roughly similar to those 6 

months before diagnosis, and there was a drop in levels of both in the 3 and 6 months post diagnosis 

groups. This drop is likely due to an increase in immuno-suppression post diagnosis. Most interestingly 

there was a significant peak in both TNFα and IL-1β 3 months before the diagnosis of BOS, which was 

seemingly not present at or after diagnosis. This acute burst of inflammation may be a key step in the 

development of BOS driving the increase in OB, potentially by interaction with the elevated levels of 

TGF-β1 that others have detected. 

Poor recovery of BAL from the diseased lung is well recognized but there are few guidelines to help 

standardize protocol, or explanations as to why recovery is so poor (Löfdahl et al., 2005; Schildge et al., 

2007). Looking at the pathology of BOS there are several reasons why recovery may be so poor, firstly 

obliterated airways may act as sinks for the lavage fluid, preventing it from being retrieved. Secondly, 

with fibrosis of the airways the count of Clara cell secreting cells may be decreased meaning that the 
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airways are more liable to collapse trapping lavage fluid, although this is likely only to effect the smaller 

airways.  

This has direct relevance to the process of correction, and BOS, not perhaps for IL-1β where both non-

corrected and corrected samples were strongly significant; but for TNFα where significance for the post 

diagnosis samples was only achieved after correction. Are the cytokine levels detected due to the low 

volumes recovered being closely associated with a pro-fibrotic and pro-inflammatory airway plug, which 

when corrected scale upwards significantly, or are they representative of the whole lung? Whilst the 

paper by Schildge et al. attributes no difference in cell and cytokine levels to the recovery rate in various 

diseases (Schildge et al., 2007) , and yet they are using a cut off value of 30% return, which is higher than 

mean recovery for both BOS and non BOS groups. 

The actual level of TNFα, and perhaps IL-1β, present in the lung is likely higher still as by assessing BAL 

only the soluble forms of each protein are being measured. TNFα exists as both an active and 

membrane found trimer and in this assay only the soluble form is being measured, as such any 

contribution to inflammation by the membrane bound isoform is being missed. Once secreted both 

cytokines are not necessarily free within the airway or alveolar space, an unknown proportion become 

bound in the ECM.  

Heparan sulphate (Parish, 2006) is a widely studied mediator of this binding, and it can have a diverse 

role on cytokine mediated signalling. Binding with heparan sulphate can protect cytokines from 

degradation in the extracellular space by masking proteolytic sites, thus prolonging their lifespan (Sadir 

et al., 2004) and has also been implicated in facilitating oligomerization of cytokines, a step as previously 

described which is key for optimal signalling (Hoogewerf et al., 1997). Heparan sulphate in the ECM can 

also effectively mask cytokines or present them more efficiently to receptors depending on how the 

cytokine is bound, effectively acting as a reservoir of cytokines within the lung.  

There are few studies looking at the role of heparan sulphate in the development of lung disease and 

non-specifically looking at the development of BOS. However interestingly one study looking at ROS 

degradation of the ECM mediated by asbestos described a reduced occurrence of inflammation and 

fibrosis, when heparan sulphate was protected from degradation (Kliment et al., 2008).  

There are therefore several ways in which the ECM may be affecting detection of cytokines in the above 

samples and BOS as a whole. The peaked release 3 months before diagnosis may refer to the activation 

or release of cytokines from the ECM, either because of its stimulation or degradation. The hypothesis 
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that soluble TNFα contributes to a more fibrotic and inflammatory response than its membrane bound 

pre-cursor may fit here (Oikonomou et al., 2006), if a large quantity soluble TNFα was being held inactive 

in the ECM then it's release could initiate an inflammatory driven fibrosis upon its release, which may 

correlate with the release seen 3 months before diagnosis. This would require some other factor to 

induce the activation or cleavage of TNFα from the ECM. 

Alternatively cytokines may be being held active and for longer periods within the ECM in BOS patients 

compared to healthy controls. These are just hypotheses and a more detailed study which encompasses 

measurements of BAL, cellular and ECM cytokine levels in both diseased and non-diseased patients 

would be required determine the true physiological levels of cytokines in disease compared to controls. 

The raw data and statistical analysis is included in Appendix 8.2. 
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3.2 Primary Bronchial Epithelial Cells 
Alongside BAL samples, airway brushings are also conducted post-transplant from which it is possible to 

derive and culture airway epithelial cells. The protocol for isolation and culture is described in 2.2.2 and 

in the paper by Forrest et al. (Forrest et al., 2005). It has been observed that isolated PBECs change 

appearance and display a decrease in proliferative ability through passage events. Ideally, upon receipt 

of brushings, PBECs would be dispersed into the required number of culture vessels, and experimented 

upon when confluent without passage. However when cells were split too diffusely there was a significant 

reduction in culture establishment, and those that did establish tended to display excessively 

mesenchymal phenotypes, either due to resident fibroblasts being able to survive and proliferate, or 

stress inducing epithelial cells into a more mesenchymal character. Therefore, to achieve the required 

sample sizes with appropriate cell numbers some passaging must occur. 

The following experiments attempt to describe changes within the cells at the protein level throughout 

culture, and what if any impact this may have on later experiments investigating EMT. 

 

3.2.1 Characterization of Passage Effects in PBECs 
When cells arrive in the lab they are pelleted as described in 2.2.2.3 and plated out as P0 in duplicate 

T25 tissue culture flasks. These cells are then cultured as per 2.2.2.4 until the required number of 

confluent tissue culture vessels can be achieved. Throughout culture the cell morphology changes as the 

cells appear to de-differentiate quickly. In order to characterize this change a series of experiments were 

performed at passage (P) numbers 1 through 4, investigating the expression of various epithelial and 

mesenchymal markers, hypothesizing that cells would gradually lose specialized epithelial marker 

expression such as CCSP, retain general epithelial character and possibly gain some mesenchymal or 

epithelial progenitor characteristics. 
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Fibronectin is an ECM protein that is often released by fibroblasts during the wound healing process to 

form a provisional matrix with other quick release factors such as fibrin and hyaluron allowing for extra 

motility of epithelial and mesenchymal cells to assist resolving the wound (Valenick et al., 2005; Chow et 

al., 2010). As such its expression is often associated with the development of fibrosis, in these pure un-

stimulated epithelial cultures it's low level of expression was to be expected. AQP-5 is typically associated 

with Type I pneumocytes (Funaki et al., 1998) and so its lack of expression was also to be expected. 

E-cadherin (Van Roy and Berx, 2008) and ZO-1 (Fanning and Anderson, 2009) are both tight junction 

proteins responsible for maintaining epithelial sheet integrity, and are not associated with a particular 

differentiated form of epithelial cell. Their loss is associated with a transition into a more motile and 

invasive mesenchymal character as described above. In the wound healing response there is thought to 

be a reduction but not complete loss of expression, as epithelial cells loosen but do not completely 

detach their associations with each other. The consistent expression throughout the above expression 

would suggest that cells are maintaining a generally epithelial character through to at least P4. 

Vimentin is an intermediate filamentous protein and is thought to be expressed in mesenchymal cells 

(Steinert and Roop, 1988). As such it is often used as a marker of EMT (Gilles et al., 1999) for epithelial 

cells that have gained the more motile invasive phenotype of mesenchymal cells. That it is detected 

throughout culture suggests that either a baseline level of vimentin is to be expected in epithelial cells, or 

that in culture PBECs display mesenchymal characteristics, perhaps due to the requirement to move and 

cover the tissue culture surface or due the culture environment itself. A comparison of a long term 

confluent culture with a dividing cells, or with air liquid interface (ALI) cultures would be one way of 

confirming this. 

CCSP and SFP-A are both associated with differentiated epithelial cells, Clara cells and Type II 

pneumocytes respectively. In PBEC cultures I had hypothesized that CCSP would be present and then 

lost as cells de-differentiated in culture, with no SFP-A detected at all. However both forms were present 

throughout all passages. Further reading about SFP-A demonstrated that it was often expressed by both 

Clara cells and, with some evidence of expression in alveolar macrophages (Walker et al., 1986), perhaps 

accounting for the evidence of SFP-A staining seen. This provides an explanation for the detection of 

SFP-A however the maintenance of markers of differentiated cells in vivo is more puzzling. Once again 

however with wider reading evidence of expression outside of these specific cells, and even outside of 

the lung itself has described (Peri et al., 1993; Lacaze-Masmonteil, 1995). This suggests two possibilities, 

most likely is that this is a baseline expression of SFP-A and CCSP in epithelial cells that have already de-
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differentiated, the second being that Clara cells are able to maintain their phenotype within culture and 

continue expressing CCSP and SFP-A, which is difficult to agree with in light of the expression of other 

markers discussed below. 

Cytokeratins-14 and 17 are thought to be markers specific to basal epithelial cells from all tissues, as 

such in the lung they would be associated with the larger airways (Troyanovsky et al., 1989; Purkis et al., 

1990; Ghosh et al., 2011). Therefore I had hypothesized that their expression may increase throughout 

culture as epithelial cells revert to a more de-differentiated state. However this was not the case, 

cytokeratin-14 was initially detected but this detection was lost by western blotting beyond P2, P3 for ICC. 

All cells seemingly displayed cytokeratin-14 at early passage which suggested that either all PBECs are 

capable of its expression in vitro or that early in culture all surviving cells display basal cell characteristics. 

The subsequent loss of expression leads me to favour the second explanation, as a loss of basal cells 

would fit with the concurrent loss of proliferative ability in culture. If attempts were made to immortalize 

these cells it would be interesting to see if cytokeratin-14 expression was maintained. Cytokeratin-17 

mimicked the pattern shown by cytokeratin-14 in ICC, however the quality of the antibody was very poor 

as can be seen in the western blot, and in Appendix 8.3. Due to the inability to confirm antibody 

specificity by western blotting the ICC findings should also be discounted. 

Cytokeratin-19 is also thought to mark proliferative epithelial cells, but it is not associated specifically with 

any epithelial sub-population such as SFP-A, CCSP or cytokeratins-14 and 17 (Stasiak et al., 1989; Michel 

et al., 1996). Whilst not detected by ICC it was detected by western blot at all passage points, with no 

variation in expression. How this correlates with the drop in cytokeratin-14 and 17 expression is not clear. 

It is possible by not being expressed in any particular proliferative cell type that cytokeratin-19 may 

describe an innate proliferative ability, which is maintained in cells throughout culture. A supposition 

which may be reinforced by the association of cytokertain-19 with the development of several cancers 

(Alix-Panabières et al., 2009). 

The myofibroblast marker αSMA (Hinz, 2007) was included as a negative control as I initially 

hypothesized that its expression would only be induced under pro-fibrotic conditions. However, faint 

levels were detected by western blot and ICC in both P3 and P4. This suggests that in culture even when 

un-stimulated that PBEC cultures are gradually differentiating towards a mesenchymal phenotype. 

Interestingly αSMA was dropped from the panel of markers I used to assess EMT as there was no 

detectable variation in expression after any stimulation, with a low baseline level expressed throughout. 

The stimulants used on cells therefore may not be sufficient to drive epithelial cells towards a 



 

67 
 

myofibroblast like phenotype in culture, or this change may require a longer time course than for other 

markers such as fibronectin, vimentin and pro-MMP-9, which would fit with the temporal occurrence of 

myofibroblasts in the wound healing process. 

This mixed bag of results demonstrates that measuring EMT can be difficult and that a variety of markers 

should be assessed. This effect is described in a study by Chai et al. who investigated the expression of 

common epithelial and mesenchymal markers in several epithelial and fibroblast cell lines and found 

significant crossover of expression, concluding that there is no single reliable marker of either an 

epithelial or mesenchymal cell (Chai et al., 2010), which fits well with the idea of EMT being a spectrum.  

My project is predominantly focused on measuring EMT in PBEC cultures, and the relative importance of 

key signalling proteins in driving this transition. As such a viable and proliferative population with a 

strong innate epithelial character would make the ideal point to act as a baseline for EMT experiments. 

Cells proliferated well up until P4 so any time point before that would be suitable to use for 

experimentation. Due to the loss of some epithelial marker expression, and the gain of αSMA expression 

after P2 I chose to not go beyond this passage point with future experiments. Whilst there is still 

evidence of some mesenchymal protein, vimentin, expression before P2 it was present at a steady 

baseline, making it possible to measure transitions from this point. 

 

3.2.2 TGF-β1, TNFα & IL-1β dose response  
With an appropriate time point that provided sufficient PBECs of epithelial character, and with 

proliferative ability and evidence of the role of TGF-β1, TNFα and IL-1β expression detected in the BAL 

of BOS patients. I next investigated the response of PBECs to stimulation with these factors both in 

isolation and together. There have been several previous studies which have described the interplay 

between TGF-β1 and TNFα or IL-1β (Borthwick et al., 2010; Câmara and Jarai, 2010; Yamauchi et al., 

2010), including from within this research group however I felt that it was important to demonstrate that 

appropriate dose response experiments had been carried out in relation to this project. 



 

 

Figure 

a) P

chan

b) 7

5ng/

mor

and 

mor

cadh

c) E

fash

expr

 

e 14 – TGF-β

BECs were sti

nge in viability

72 hours post 

/mL TGF-β1 

rphology, a sim

also induced

rphological ch

herin and fibro

E-cadherin wa

hion by TGF-β

ression was no

1 dose respo

mulated with 

y at any time p

stimulation wi

induced som

milar effect w

d a slightly m

hanges were le

onectin (5µg). 

s present at 

β1. Conversely

ot affected by 

onse time co

TGF-β1 at 5, 

point. 

th TGF-β1 or 

me breaks be

as also observ

more striated 

ess severe tha

high levels in

y fibronectin e

any stimulatio

 

ourse 

10 and 20ng/

TNFα, contro

tween cells b

ved with 10ng

appearance 

an those seen

n un-stimulate

expression wa

on. E-cadherin

/mL doses for

l cells displaye

but there wa

g/mL. The 20n

compared to

n in A549 cells

ed cells, expre

as up-regulate

n and fibronec

 24, 48 and 7

ed a uniform c

s generally n

ng/mL dose in

o un-stimulate

s, examples of

ession was red

ed in a dose 

tin (5µg). 

72 hours (n=2

cobblestone li

no change in

nduced break

ed controls. I

f which are a

duced in a d

dependant m

2). There was n

ike appearanc

 individual ce

ks between ce

n all cases th

lso included. 

ose dependa

manner. β-act

68 

 

no 

ce, 

ell 

ells 

he 

E-

nt 

tin 



 

 

Figure 

a) P

dose

a 5%

b) 7

whic

cell 

mor

c) TN

still 

TNF

seen

 

e 15 – TNFα d

BECs were sti

es of TNFα ha

% drop in viab

72 hours post 

ch was mainta

morphology t

rphology, 20ng

NFα at 5ng/m

no detectable

Fα slightly redu

n with 10ng/m

dose respon

mulated with 

ad no effect on

bility at 24 hou

stimulation wi

ained in the p

to a more stria

g/mL howeve

mL did not red

e change in E-

uced the level

mL. E-cadherin

nse time cou

TNFα at 5, 10

n PBEC viabilit

rs. 

th TGF-β1 or 

resence of 5n

ated appearan

r induced som

uce E-cadheri

-cadherin expr

s of E-cadher

 and fibronect

 

urse 

0 and 20ng/m

ty at any time 

TNFα, contro

g/mL and 10n

nce. In A549 c

me clumping o

n expression o

ression, but a 

rin detected an

tin (5µg). 

mL doses for 2

point. A 20ng

l cells displaye

ng/mL TNFα. 

cells neither 5

of cells. E-cadh

or increase fib

slight increas

nd induced a

4, 48 and 72 

g/mL dose of 

ed a uniform c

20ng/mL TNF

ng/mL or 10n

herin and fibro

bronectin expre

e in fibronecti

slight increase

hours (n=2). 

TNFα induced

cobblestone li

Fα induced a 

ng/mL induced

onectin (5µg). 

ession, at 10n

in was detecte

e in fibronecti

5 and 10ng/m

d approximate

ike appearanc

small change 

d any change 

g/mL there w

ed. At 20ng/m

n similar to th

69 

 

mL 

ely 

ce, 

in 

in 

as 

mL 

at 



 

 

Figure 

a) P

chan

b) 7

all d

fibro

c) A

 

 

e 16 – IL-1β d

PBECs were st

nge in viability

72 hours post 

doses of IL-1β 

onectin (5µg). 

ll doses of IL-1

dose respon

imulated with 

y at any time p

stimulation wi

had no effect

1β had no effe

se time cou

IL-1β at 5, 1

point. 

th TGF-β1 or 

t on this morp

ect on either E

 

rse 

0 and 20ng/m

TNFα, contro

phology, an e

E-cadherin or 

mL doses for 

l cells displaye

ffect which wa

fibronectin ex

24, 48 and 72

ed a uniform c

as replicated i

pression. E-ca

2 hours (n=2)

cobblestone li

in A549 cells. 

adherin and fib

). There was n

ike appearanc

E-cadherin an

bronectin (5µg

70 

 

no 

ce, 

nd 

g). 



 

 

Figure 
a) P
The
TNF
insta

b) 7
5ng/
cell 
of T
TNF
still, 
betw

c) T
fibro
20ng
Both
cadh

e 17 – TGF-β

BECs were sti
re was no ch

Fα induced a 
ances. 

72 hours post 
/mL and 10ng
morphology, 

TGF-β1 and TN
Fα alone, an e

with the high 
ween cell clust

TGF-β1 alone
onectin in a s
g/mL there w
h 10ng/mL an
herin and incr

1 & TNFα do

mulated with 
ange in viabi
small decreas

stimulation wi
g/mL doses o
at 20ng/mL so
NFα induced 
effect that was
 doses of TGF
ters. E-cadheri

e down-regul
imilar fashion

was again a sli
nd 20ng/mL d
ease in fibron

ose respons

TGF-β1 at 5 a
lity for un-stim
se in cell viabi

th TGF-β1 or 
f TGF-β1 indu
ome cells disp
a striated app
s even more a
F-β1 and TNFα
in and fibrone

ated E-cadhe
. TNFα alone 
ght reduction

doses of TNFα
ectin expressio

se 
and 10ng/mL 
mulated cells, 
ility. Upon co

TNFα, contro
uced small bre
played a more
pearance and 
apparent at th
α inducing ext
ectin (5µg). 

erin expressio
induced a sm

 in E-cadherin
α were capabl
on. E-cadherin

or TNFα at 1
or TGF-β1 a

-stimulation th

l cells displaye
eaks between 
striated appe
with larger ce

he higher dose
tremely spindle

on in a dos
mall reduction
n expression, 
le of accentua
n and fibronec

10 and 20ng/m
lone stimulate
his drop in ce

ed a uniform c
cells. At 10ng
arance. Co-st
ell breaks than
es. The effect 
e like cell clust

e-dependent 
n in E-cadheri
along with a 
ating the TGF-
ctin (5µg). 

mL doses for 
ed cells. A 20
ell viability wa

cobblestone li
g/mL TNFα ha
timulation at th
n seen with e
on A549s wa
ters with large

manner and
in expression 
slight increase
-β1 mediated

72 hours (n=2
0ng/mL dose 
s blocked in 

ike appearanc
ad no effect o
he lowest dos
ither TGF-β1 
s more marke

e gaps appare

d up-regulate
at 10ng/mL, 

e in fibronecti
 decrease in 

71 

 

2). 
of 
all 

ce, 
on 
es 
or 
ed 
nt 

ed 
at 
in. 
E-



 

 

Figure 

a) P

The

stim

b) 7

5ng/

mor

mor

deg

c) T

fibro

Co-

fibro

cadh

 

e 18 – TGF-β

BECs were sti

re was no cha

mulation there 

72 hours post 

/mL and 10n

rphology. Upo

rphology. 20n

ree than was s

TGF-β1 alone

onectin in a si

stimulation w

onectin expres

herin and fibro

1 & IL-1β do

mulated with 

ange in viabili

was a slight d

stimulation wi

ng/mL doses 

on co-stimula

g/mL IL-1β ho

seen with TGF

e down-regul

milar fashion. 

with 10ng/mL 

ssion, yet 20n

onectin (5µg). 

ose response

TGF-β1 at 5 

ty for un-stim

ecrease in viab

th TGF-β1 or 

of TGF-β1 i

ation 10ng/mL

owever induce

F-β1 and TNFα

ated E-cadhe

IL-1β alone h

of IL-1β had

g/mL IL-1β ac

 

e 

and 10ng/mL

mulated cells, T

bility in all inst

TNFα, contro

induced smal

L of IL-1β ha

ed a more str

α. E-cadherin a

erin expressio

had no impact

d no effect o

ccentuated the

L or IL-1β at 1

TGF-β1 alone

tances. 

l cells displaye

ll breaks betw

ad no effect 

riated phenoty

and fibronecti

on in a dos

t on E-cadher

on TGF-β1 m

e effect of bo

0 and 20ng/m

or IL-1β alon

ed a uniform c

ween cells. IL

on the TGF-β

ype in both in

n (5µg). 

e-dependent 

in or fibronect

mediated loss 

th 5 and 10ng

mL doses for 

ne stimulated 

cobblestone li

L-1β had no

β1 mediated 

nstances, altho

manner and

ctin expression

of E-cadheri

g/mL TGF-β1 

72 hours (n=2
cells. Upon co

ike appearanc

effect on ce

change in ce

ough to a less

d up-regulate

n at either dos

in and gain 

stimulations. 

72 

 

2). 

o-

ce, 

ell 

ell 

er 

ed 

se. 

of 

E-



 

73 
 

These results demonstrate that EMT in PBECs is driven by TGF-β1, was capable of reducing expression of 

E-cadherin at 5, 10 and 20ng/mL doses whilst simultaneously increasing expression of fibronectin at all 

doses, without impacting on cell viability. There was a clear increase in effect stepping up from 5ng/mL 

to 10ng/mL of TGF-β1 but little detectable difference between 10ng/mL and 20ng/mL treatments at the 

protein level and so it was decided to use a 10ng/mL dose through further experiments. The paper by 

Elssner et al. (see Figure 10) detected a mean of 5ng/mL TGF-β1 in the BAL of BOS patients (Elssner et 

al., 2000), although as discussed this figure may be higher still if ECM bound TGF-β1 was factored in. 

Whilst a 5ng/mL dose of TGF-β1 was capable of driving EMT in vitro I felt that the stronger effects 

demonstrated by the 10ng/mL dose would provide a more consistent mesenchymal shift to investigate. 

TNFα alone only very slightly induced, fibronectin expression at 10ng/mL with, a slight increase in 

expression at 20ng/mL and evidence of a decrease in E-cadherin at this same dose, 5ng/mL having no 

effect on either marker. Cell viability was reduced by approximately 5% 24 hours after stimulation, but 

remained constant after this initial drop. Interestingly IL-1β had no effect on cell viability, morphology or 

expression of E-cadherin and fibronectin at any dose. This suggests that neither TNFα or IL-1β are 

capable of driving fibrosis in our PBEC culture system as the doses use exceed their detected peak in the 

BAL (0.8ng/mL and 5ng/mL 3 months before BOS diagnosis respectively), this may be because they act 

over a longer period than TGF-β1 and we are simply missing the effect, although this becomes difficult 

to assay in cells which are innately losing their epithelial character over time. Another cause may be that 

EMT is not driven by inflammatory mediators, and such factors induce a pro-fibrotic effect by either 

inducing or recruiting other cells than drive fibrosis, or act as intermediaries in driving EMT. 

When used in conjunction with TGF-β1 however the results were more intriguing. TNFα at both 10ng/mL 

and 20ng/mL was capable of strongly accentuating the loss of E-cadherin and gain in fibronectin seen in 

both 5 and 10ng/mL TGF-β1 stimulations. With the largest loss of E-cadherin and gain in fibronectin 

seen when using the highest doses of each. IL-1β at 10ng/mL did not detectably influence the TGF-β1 

driven loss of E-cadherin or gain in fibronectin, yet at 20ng/mL it accentuated the response in both the 5 

and 10ng/mL TGF-β1 stimulations, although to a lesser degree than both TNFα stimulations. These 

results provide clear evidence that inflammatory mediators such as TNFα and IL-1β are capable of acting 

in synergy with TGF-β1 to drive fibrosis by EMT in PBEC cultures. The doses of required to initiate this 

effect are higher than those detected in the BAL of BOS patients before diagnosis, but are within an 

order of magnitude of those figures, and as previously discussed BAL measurements do not account for 

the bound quantities of cytokines. 
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Whilst TNFα had a larger accentuative effect on TGF-β1 than IL-1β it is difficult to directly relate these 

findings to the disease model. Approximately 5 times the amount of IL-1β compared to TNFα was 

detected in BAL samples, therefore it is possible that a 50ng/mL dose of IL-1β would have a comparative 

effect, to that of 10ng/mL TNFα. Other factors may also play an important role such as receptor 

expression, dissociation constant between receptor and ligand, ability of ECM coating to sequester and 

inhibit or assist with oligomerization. Nevertheless, in vitro TNFα produces the largest accentuative effect 

at a reasonable dose and so it was decided that a 20ng/mL dose would be used in future experiments. 

Whilst changes in E-cadherin and fibronectin expression levels were detected by western blotting the 

changes in PBEC morphology in response to stimulation were, whilst detectable, rather conserved. 

Comparable A549 photo-micrographs show a much greater morphological shift from a uniform 

cobblestone appearance to one containing tightly clustered cell foci with a spindle like appearance. This 

may be due to several factors, most obviously A549 cells are cell line of a different cell type, it may be 

that the immortalized nature of A549s makes them more susceptible to EMT, or that the Type II cells that 

they represent are themselves more susceptible. A549 cells also proliferate more rapidly than PBECs, the 

morphological transition may be linked closely to linked to cell cycle and as such the more rapidly 

dividing A549 cells undergo this more rapidly. 

In the introduction, I discussed whether EMT could be viewed as a discrete occurrence, where an 

epithelial cell switches completely to a mesenchymal phenotype; or whether a continuous spectrum of 

marker expression and cell activity was observed. These findings would suggest it is the latter, with 

isolated epithelial cells capable of expressing both epithelial and mesenchymal proteins, mesenchymal 

proteins increasing over time and passage in culture. Differing doses of pro-inflammatory and pro-

fibrotic stimuli also induced differing severities of EMT in cultured cells, again suggesting that cells were 

transitioning over a spectrum rather than switching character directly. 

In summary in this chapter I have demonstrated the epithelial character of isolated PBECs and decided 

upon a maximum passage number from which to best assess EMT. The levels of the pro-fibrotic TGF-β1 

and the inflammatory TNFα and IL-1β were assessed in the BAL of post-transplant patients. A significant 

elevation of TNFα and IL-1β was detected in those diagnosed with BOS compared to those without, with 

a marked increase 3 months before diagnosis. This data was used to determine a suitable dose of TGF-

β1 to drive EMT in vitro in PBEC cultures, and the accentuative effect of TNFα and IL-1β was confirmed 

and a suitable dose of TNFα decided upon.   
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4 TAK-1 Mediates Synergistic Signalling 
I decided to investigate the synergistic signalling between TGF-β1 and TNFα at the intracellular signalling 

level by inhibiting the action of key signalling proteins and observing the effect on EMT and also on the 

phosphorylation of these same proteins.  

In the first instance the function of each protein was chemically inhibited with an appropriate dose 

determined from experiments in A549 cells. EMT was assessed by observing changes in EMT markers, a 

decrease in E-cadherin and cytokeratin-19, an increase in fibronectin and vimentin and an increase in the 

secretion of pro-MMP-9 and collagens I-IV. By assessing the impact of inhibition on EMT and also the 

phosphorylation of signalling proteins it was possible to develop a putative signalling method that 

described the observed synergy between TGF-β1 and TNFα. These findings were then verified where 

possible by using siRNA knockdown of the same signalling proteins. 

 

4.1 Mothers against decapentaplegic-3 
With TGF-β1 driving EMT it was logical to begin investigation of the signalling mechanisms by 

investigating the canonical TGF-β signalling pathway. TGF-β1 signalling forms part of the TGF-β super-

family signalling group along with other factors such as the bone morphogenic proteins (BMP). The 

SMAD family of proteins are the major constituents of TGF-β super-family signalling; of which there are 8 

isoforms. SMADs are typically split into three categories, receptor (r)SMADs (1, 2, 3, 5 and 8), co-

activating (co)SMAD (4) and inhibitory (i)SMADs (6 and 7). All SMADs contain a c-terminal MAD 

homology domain (MH2) region which regulates the binding of SMAD proteins to each other, as well as 

other regulatory proteins. The rSMADs and coSMAD also contain an N-terminal MAD homology domain, 

which facilitates DNA binding and also contains nuclear localization and export signals. The coSMAD and 

iSMADs are conserved for all arms of the TGF-β super-family, with SMAD2 and SMAD3 acting as the 

rSMADs for TGF-β1 signalling. SMAD3, 48 kDa, and SMAD2, 55 kDa, were first described in mammalian 

systems in 1996 (Eppert et al., 1996; Zhang et al., 1996). 

In un-stimulated cells SMAD2/3 are inactivated in two ways, firstly by self-binding between their own 

MH1 and MH2 regions inhibits oligomer formation, nuclear translocation and DNA binding, secondly the 

un-phosphorylated rSMADs are held in the cell membrane by SARA. SARA displays a higher dissociation 

constant with un-phosphorylated rSMAD monomers than they do with each other, and so is capable of 
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limiting random activations. SARA also plays a key role in the activation of SMAD signalling however, 

upon activation of the TGF-R1 kinase by TGF-β1 binding, SARA presents the un-phosphorylated rSMAD 

to the receptor, allowing for the phosphorylation of SMAD2/3.  

Phosphorylation occurs at the C-terminal of the rSMAD proteins, Ser465 and Ser467 for SMAD2 and 

Ser423 and Ser425 for SMAD3, which removes the auto-inhibitory effects of self-binding, and also 

greatly reduces the affinity between the rSMAD and SARA, freeing SMAD2/3 into the cytoplasm. Once 

freed these rSMADs are capable of forming heterodimers with SMAD4, or heterotrimers with SMAD4 

and another rSMAD molecule, mediated by interactions between the MH2 regions. The mechanisms of 

dimer or trimer formation, and the differing impacts are not well understood, but evidence of differing 

transcriptional responses has been described (Inman and Hill, 2002). 

The exposed MH2 region of SMAD2/3 also contains a nuclear localization signal which can facilitate a 

co-SMAD independent localization into the nucleus by associating with importin proteins to pass 

through nuclear pores, which are then cleaved by the actions of RAs-related Nuclear protein (RAN) a 

GTPase. Nuclear translocation can also occur in association with SMAD4 , although it is achieved in an 

importin independent manner through direct interaction with nuclear pore proteins. Although rSMAD 

complexes can translocate to the nucleus without SMAD4 it is thought that they will remain 

transcriptionally inactive in its absence, as although SMAD3, but not SMAD2 (Dennler et al., 1999), is 

capable of binding directly to SMAD binding elements (SBE) within the genome its affinity is low (Shi et 

al., 1998). Other co-factors such as p300, recruited in the presence of SMAD4 (De Caestecker et al., 

2000), are required to stabilise this binding. Activated rSMADs however can form complexes with SMAD4 

in the nucleus (Pierreux et al., 2000), suggesting that nuclear import conditions can provide another level 

of control within the SMAD pathway. 

These co-factors can be transcriptionally active in their own right, and upon association with a SMAD 

oligomer induce an alternative transcriptional event, or they may be transcriptionally inactive and simply 

facilitate a stronger bond between a SMAD oligomer and a SBE (Feng and Derynck, 2005). Whatever 

their mechanism a large number of proteins have been implicated in modulation of SMAD DNA binding, 

and it is this mixture of various SMAD oligomers associated with a wide array of co-factors that allows for 

a wide range of specific responses to an, initially, rather simple appearing signalling pathway. To my 

knowledge there is no evidence of activation of the canonical SMAD pathway by either TNFα or IL-1β, 

although both are capable of indirectly modulating SMAD signalling activity, which I discuss in 1.3.2 and 

1.3.3. 
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After initiating the desired transcriptional event rSMADs are shuttled back to the cytoplasm, SMAD4 

contains a nuclear export signal, however this is masked when in association with rSMADs, and as such is 

thought to be used to cycle itself back into the cytoplasm (Pierreux et al., 2000). Upon de-

phosphorylation by phosphatases such as protein phosphatase 1A (PP1A) rSMADs disassociate from 

SMAD4, which can then cycle back to the cytoplasm independently, and other co-factors; and are 

exported from the nucleus (Lin et al., 2006). Un-phosphorylated rSMADs are exported from the nucleus 

by the same proteins that are capable of importing them (Xu et al., 2002), the exact mechanism that 

defines direction of transit is unknown although it may be due to the self-masking ability of the rSMADs 

or the changes within the C-terminal region. 

It was initially thought that out of SMAD2 and SMAD3, SMAD2 might be the key factor in response to 

TGF-β1 stimulation, with SMAD3 acting as a redundant or modulatory protein as knocking out SMAD2 

(Heyer et al., 1999) but not SMAD3 (Zhu et al., 1998) resulted in an embryo lethal phenotype in mice. 

However later work in fibroblast isolated from knockout mouse embryos suggested that the opposite 

was true, with SMAD3 initiating the response to TGF-β1 stimulation, which could then be modulated by 

SMAD2 (Yang et al., 2003), which added yet another level of regulation to the canonical signalling 

pathway. It has also been shown that SMAD3 may play more of a role in the development of the fibrotic 

response, as in primary hepatic stellate cells SMAD3 overexpression resulted in increased expression of 

mesenchymal markers such as fibronectin and collagen I, compared to the same cells over-expressing 

SMAD2 (Uemura et al., 2005). As such it was decided that SMAD3 rather than SMAD2 would be the 

subject of investigation in our system. 

TGF-β1 is a major driver of fibrosis, and of EMT; and therefore understanding the contribution of its 

canonical signalling pathway to EMT is the logical first step in understanding TGF-β1 driven, TNFα 

accentuated EMT. The following results outline my attempts to understand SMAD3 phosphorylation in 

response to TGF-β1 or TNFα stimulation as well as its role, and importance, in the subsequent 

occurrence of EMT in our OB model system. 

 

4.1.1 Phosphorylation Response of SMAD3 
As discussed in 1.3 phosphorylation is often one of the key steps in protein activation. As such 

understanding of when protein phosphorylation occurs temporally can provide information about order 

of activation within a signalling cascade. The phosphorylation and subsequent activity of SMAD3 has 
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been discussed above. SMAD3 is key mediator of TGF-β1 signalling, with no activity in response to TNFα 

described. I therefore hypothesized that phosphorylation of Ser423 and Ser425 in the carboxyl terminal 

of SMAD3 would occur in response to TGF-β1 alone, with TNFα having no impact either alone or when 

used in conjunction with TGF-β1. 

PBECs were cultured in 6 well collagen coated plates until confluent and stimulated with TGF-β1 or TNFα. 

Cells were harvested at 0, 0.5, 1, 5, 10, 30 and 60 minute time points. Whole cell PBEC lysate was 

immuno-precipitated for total SMAD3, under denaturing conditions, with the resulting lysate probed for 

pSMAD3 (Ser423 and Ser425) by indirect ELISA. Neat lysate from the 30 minute stimulation was analyzed 

by Western blot for both total and phospho forms of SMAD3.  
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TGF-β1 induced a significant phosphorylation of SMAD3 at 30 minutes, which was also the peak 

phosphorylation value an effect which was maintained at 60 minutes, significance was nearly obtained at 

10 minutes (p=0.058). TNFα alone had no impact on SMAD3 phosphorylation at any time point, when 

used in conjunction with TGF-β1. 

These results confirm that in PBECs activation of SMAD3 is purely driven by TGF-β1, with TNFα 

displaying no role in activation. 

 

4.1.2 Chemical Inhibition of SMAD3 
Investigating the phosphorylation of signalling proteins in response to TGF-β1 or TNFα is one means of 

investigating their role in EMT. However, the previous data demonstrates that SMAD3 was activated in 

response to TGF-β1, not that it plays a role in EMT. To investigate relevance to EMT SMAD3 activity was 

chemically inhibited by Specific Inhibitor of SMAD3 (SMADi). SMADi functions by selectively blocking 

phosphorylation of SMAD3, but not SMAD2, thus inhibiting the formation of a transcriptionally active 

complex with SMAD4 (Jinnin et al., 2006) with an IC50 of 3µM determined in primary human fibroblast 

cultures. 

A dose response curve looking at cell viability, morphology and effect on EMT after pre-treatment with 1, 

5, 10 and 20μM doses of SMADi prior to stimulation with TGF-β1 and TNFα for 72 hours was performed 

in triplicate using A549 cells. 
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Inhibition of SMAD3 resulted in a dose dependant decrease in cell viability in all cells, a decrease that 

was perhaps exacerbated upon TNFα alone stimulation. The higher doses of 10µM and 20µM were the 

only doses capable of inhibiting EMT, both morphologically and at the protein level. The 20µM dose 

most strongly inhibited the morphological shift associated with EMT, but did not provide an appreciable 

inhibition EMT at the protein level over the 10µM dose; therefore a dose of 10μM SMADi, which retained 

viability at a higher level, was used in all future experiments. 

 

4.1.2.1 Chemical Inhibit ion of SMAD3, Effect on EMT 
Endpoint 

With an appropriate dose of SMADi decided upon in A549 cells the next step was to observe what effect 

this would have on EMT in PBECs. n=4 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 1 hour pre-treatment with 10μM SMADi. Cell lysate and culture media was 

retained and EMT was assessed using a variety of markers. 
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The results described above provide strong evidence, that SMAD3 activation plays a key role in TGF-β1 

driven EMT. A 10µM dose of SMADi did not affect viability of PBECs compared to untreated controls. 

Pre-treatment with SMADi strongly inhibited the loss of E-cadherin expression, gain in fibronectin 

expression and increase in collagens I-IV secretion in response to TGF-β1, whilst also inducing a small 

reduction in the expression of vimentin and secretion of pro-MMP-9. PBECs pre-treated with SMADi also 

showed reduced levels of EMT in PBECs stimulated with TGF-β1 and TNFα when compared to untreated 

controls, however with the exception of collagen an accentuated response was still observed when 

compared to SMADi treated, TGF-β1 stimulated PBECs. Interestingly SMADi induced a reduction in 

collagen expression for all stimulations beyond that of untreated, un-stimulated controls. 
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4.1.2.2 Chemical Inhibit ion of SMAD3, Effect on 
Phosphorylation 

As seen in Figure 19 SMAD3 is phosphorylated in response to TGF-β1 alone, with no apparent role for 

TNFα. However, it is important to understand if SMAD3 phosphorylation is leading to activation of other 

signalling pathways, therefore I proceeded to investigate the effect of SMADi pre-treatment on the 

phosphorylation of other key signalling proteins 30 minutes after stimulation with TGF-β1 or TNFα. 
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SMAD3 was phosphorylated in response to TGF-β1 with no evidence of phosphorylation in response to 

TNFα alone, or in co-stimulation. There was also no detectable variation in intensity of phosphorylation 

between TGF-β1 alone and co-stimulated cells. SMADi strongly inhibited the phosphorylation of SMAD3 

whilst not affecting total levels. No difference in the phosphorylation of IKKβ, p38 or JNK-1/2 was 

detected in response to pre-treatment with SMADi, suggesting that these pathways operate 

independently or upstream of SMAD3. TAK1 however displayed an increase in phosphorylation in 

response to TGF-β1 alone when PBECs were treated with SMADi. 

 

4.1.3 siRNA Knockdown of SMAD3 
SMAD3 targeting siRNA (SMADsi) was used to knockdown SMAD3 in order to validate the findings 

generated using SMADi. A dose response assay; for cell viability, morphology and effect on EMT after a 

24 hour pre-treatment with 1, 5, and 10nM doses of SMADsi (ATCAAGGGATTTCCTATGGAA), delivered 

through lipid transfection of adherent cultures prior to stimulation with TGF-β1 and TNFα for 72 hours, 

was performed in PBECs. 
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SMAD3 expression was reduced in a dose dependant manner by pre-treatment with SMADsi, with a 

general but shallow decrease in cell viability. The loss of E-cadherin expression in response to TGF-β1 or 

TNFα stimulation was also inhibited in a dose dependant manner, with a 10nM dose of SMADsi capable 

of returning levels to baseline. The gain of fibronectin in response to TGF-β1 or TNFα stimulation was 

weakly inhibited by the 1nM dose of SMADsi, with a strong effect seen at 5nM. The 10nM dose of 

SMADsi increased the detected levels of fibronectin for all stimulations compared with the 5nM 

treatment group. Therefore although the 10nM dose induced the strongest recovery of E-cadherin, a 

5nM dose which inhibited fibronectin expression more efficiently, and without affecting un-stimulated 

expression, was used for all future experiments. 

 

4.1.3.1 siRNA Knockdown of SMAD3, Effect on EMT 
Endpoint 

With an appropriate dose of SMADsi confirmed for use in PBECs I proceeded to investigate what effect 

SMAD3 knockdown had on EMT. n=3 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 24 hour pre-treatment with 5nM SMADsi or a sequence scrambled control. 

Cell lysate and culture media was retained and EMT was assessed using a variety of markers. 
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The data presented above validates the findings described with SMADi in 4.1.2. A 5nM dose of SMADsi 

derived from the screen described in 4.1.3 induced approximately a 75% knockdown in detected total 

SMAD3, with the subsequent loss of detected phospho-SMAD3 without affecting PBEC viability. Pre-

treatment of PBECs with SMADsi strongly inhibited the loss of E-cadherin and the gain of fibronectin and 

vimentin intracellularly, as well as the increase in secretion of pro-MMP-9 and collagens I-IV into the 

media in response to TGF-β1 stimulation, and upon co-stimulation in comparison to untreated controls. 

However, as with SMADi evidence of a residual accentuation was observed when comparing PBECs pre-

treated with SMADsi and stimulated with TGF-β1 and TNFα with equivalent TGF-β1 alone stimulated 

PBECs, confirming that SMAD3 alone does not mediate accentuated EMT. Interestingly SMADsi pre-

treatment also reduced collagen expression for all stimulations beyond that of untreated, un-stimulated 

controls, similarly to the effect observed with SMADi. 

4.1.4 Localization of SMAD3 
Both chemical inhibition and siRNA knockdown of SMAD3 suggested that it plays a key role in EMT, and 

the phosphorylation assays indicate that solely TGF-β1 alone is capable of driving its phosphorylation. 

However as discussed above phosphorylation alone does not constitute transcriptional activity as the 

rSMADs are required to translocate to the nucleus and bind with co-factors to alter transcription. To 

investigate this further I looked at the localization of both total and phospho-SMAD3 30 minutes post 

stimulation with TGF-β1 or TNFα in PBECs. 
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Both ICC and lysate fractionation protocols demonstrated that phospho-SMAD3 localized to the nucleus 

in response to both TGF-β1 alone and TGF-β1 with TNFα stimulations, unlike in Figure 19 there was no 

detectable difference in the level of phosphorylation between TGF-β1 and co-stimulated PBECs. 

However, the results for the total-SMAD3 were conflicting; ICC showed a diffuse level of total-SMAD-3 

throughout the cell, whereas lysate fractionation showed a greater localisation to the cytoplasm. It is 

possible that proteins present in the nuclear fraction are being degraded due to their longer isolation 

protocol and hence longer time in detergent solutions, however I can present no data to support this 

and the protocol is designed to limit protein degradation. Therefore, although the phospho-SMAD3 

results correlate with previous findings the lack of reliable total-SMAD3 data means it is not possible to 

comment on phospho-SMAD3 localization in this system. 

 

4.1.5 SMAD3 Protein Associations 
As discussed previously the binding efficiency of SMAD3 to SBEs is low and often requires SMAD4 

mediated association with a variety of co-factors (Shi et al., 1998; Dennler et al., 1999). It was therefore 

decided to investigate the associations of SMAD3 with other selected proteins, after stimulation, assessed 

as part of this project. 
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Neither total nor phosphorylated forms of TAK1 were associated with SMAD3 30 minutes post-

stimulation. c-Jun was constitutively associated at this time point, however its phosphorylated form was 

not. 

 

4.1.6 SMAD3 Discussion 
The role of SMAD3 in the accentuation of TGF-β1 driven fibrosis by TNFα was investigated first due to its 

well described role in canonical TGF-β1 signalling. To summarize the data presented in the preceding 

sub-chapter: SMAD3 was phosphorylated by TGF-β1 alone peaking towards the later time points of 30 

and 60 minutes, TNFα alone had no effect on phosphorylation. Inhibition and knockdown of SMAD3 

strongly limited TGF-β1 driven EMT although seemingly did not affect the accentuation of TNFα, 

although this was difficult to determine due to the very weak EMT driving effect of TNFα alone.  

SMADsi was also capable of strongly inhibiting TGF-β1 driven EMT, yet in this instance when comparing 

PBECs within the treated group the effects are less clear with a relative reduction in the accentuated 

increase in fibronectin and vimentin expression and pro-MMP-9 secretion. The continued accentuation 

of EMT in chemically inhibited cells may be due to residual un-inhibited SMAD3 signalling providing a 

reduced fibrotic development which TNFα can still accentuate, with a smaller accentuation seen with 

SMADsi due to a stronger inhibitory; based on the lack of detection of any phospho-SMAD3 after 

SMADsi.  

This suggested that SMAD3 does not play a direct role in the accentuation of EMT, acting more as the 

base inducer of fibrosis, with another signalling protein driving the accentuation. However what is not 

known is if this signalling protein is also stimulated by TGF-β1, which may explain the residual EMT seen 

in some instances after TGF-β1 alone stimulation, or after co-stimulation. Another interesting finding, was 

that upon SMAD3 inhibition TAK1 phosphorylation was increased in TGF-β1 alone stimulated PBECs. This 

may indicate that there is some level of redundancy in TGF-β1 signalling, which may be responsible for 

the low levels of EMT detected in inhibited PBECs rather than, or in conjunction with, residual SMAD 

activity. Whilst evidence of redundancy has not previously been described a synergistic mechanism by 

which rSMADs7 and TAK1 act co-operatively through ATF-2 to induce transcription (Sano et al., 1999; 

Monzen et al., 2001). It does however demonstrate the requirement for SMAD3 activity to drive EMT, as 

                                                 
7 Used because one paper utilises TGF-β1 and the other a BMP cocktail, hence different rSMADs were investigated. 
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even though TAK1 and JNK-2 remained active after SMAD3 inhibition they were not capable of strongly 

driving EMT, if at all. 

The exception to this effect of residual EMT after inhibition was collagen I-IV secretion. In un-treated cells 

collagen secretion was increased by TGF-β1 but not by TNFα, which also did not accentuate TGF-β1 

driven secretion upon co-stimulation; with a very slight decrease in secretion actually observed upon co-

stimulation. Both SMADi and SMADsi very strongly inhibited the secretion of collagen beyond the 

baseline levels detected from control cells. These findings would suggest that TGF-β1 canonical signalling 

is the key mediator of collagen secretion, with TNFα playing no role; and also that some form of 

constitutive SMAD3 activation is occurring in PBECs to maintain a baseline of secretion. 

The requirement for a baseline of SMAD3 activity in maintenance of collagen expression in pulmonary 

fibroblasts has previously been described (Luzina et al., 2006), whereby stimulation with chemokine 

CCL18 induced secretion of collagen, but with a requirement for active SMAD3 (Chen et al., 1999, 2000). 

Several other groups have demonstrated that TNFα is capable of inhibiting collagen secretion either 

through NF-κB or the MAPK (Armendariz-Borunda et al., 1992; Verrecchia et al., 2002) with one group 

proposing that p38 may be the key mediator of this effect (Varela-Rey et al., 2002). In their paper Varela-

Rey et al. demonstrate that TNFα inhibits p38 phosphorylation and by mimicking this effect with an 

inhibitor of p38 they were able to limit the production of collagen after TGF-β1 stimulation. They do not 

however directly demonstrate this relationship by co-stimulating cells with TGF-β1 and TNFα (Varela-Rey 

et al., 2002). The mechanisms of SMAD inhibition by TNFα I describe above would also provide a 

mechanism by which TNFα could inhibit the primarily TGF-β1 driven secretion of collagen. 

It is important to point out however that in another study TNFα induced collagen gene expression 

through the less common TNFR2, and not TNFR1, in intestinal myofibroblasts (Theiss et al., 2005). A 

tangential area of research that I performed looked at the role of differing TNFα receptors in 

accentuating EMT 8.7, which demonstrated that PBECs do not express TNFR2. This may explain why no 

accentuation in collagen secretion was observed both in this work and in the other referenced studies 

that do not differentiate between receptor expression. 

As a final comment, in hindsight the very strong blocking of SMAD3 activity by chemical inhibition and 

siRNA knockdown demonstrated its importance as a driver of fibrosis. However, due to the weak effect 

of TNFα alone on driving EMT, it became difficult to determine the relative contributions of TGF-β1 or 
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4.2 IkB kinase Beta 
The IKK family of proteins (IKKα/1, IKKβ/IKK2 and IKKγ/NF-κB essential modulator [NEMO]) play a key 

role in the canonical NF-κB activation pathway by factors such as TNFα and IL-1β. IKKα and β contain 

kinase sites and are responsible primarily for the phosphorylation of Iκ-Bα and subsequent activation of 

NF-κB signalling. IKKγ does not contain a kinase site but is required for IKKα/β kinase activity (Yamaoka 

et al., 1998), recruiting them into a larger IKK complex. 

The exact makeup of this complex is not fully understood, and variations likely demonstrate a level of 

control that is currently not understood. Both IKKα and IKKβ bind to IKKγ through a conserved sequence 

at their C-terminal, to various N-terminal sequences of IKKγ (May et al., 2000; Tegethoff et al., 2003). 

Further experiments demonstrated that IKKβ binds to IKKγ with a higher efficiency, although given the 

conserved C-terminal of IKKα and IKKβ it is not known what mediates this effect (May et al., 2000); 

although weaker co-bindings have been implicated in this effect (Miller and Zandi, 2001). This is also 

balanced somewhat by the demonstration that IKKα and IKKβ preferentially form hetrodimers over 

homodimers in vivo before binding with IKKγ (Huynh et al., 2000). It is thought that IKKγ binds with IKKα 

and IKKβ in a 1:1 ratio, but as mentioned above the exact makeup of the complexes is poorly 

understood, with hexamer8 (Agou et al., 2004) and octamer (Tegethoff et al., 2003) forms proposed, with 

the latter allowing for the binding of two IKKα/β heterodimers.  

In un-stimulated cells IKKα and IKKβ are thought to be inactive due to a lack of phosphorylation in their 

respective activation loops, hiding their kinase site, with activation mediated by activation of IKKγ. Several 

methods of IKKγ activation have been proposed, phosphorylation at Ser85 by Ataxia Telangiectasia 

Mutated (ATM) in the nucleus (Wu et al., 2006), or polyubiquitination of Lys285 (Abbott et al., 2004) and 

Lys399 (Sun et al., 2004) residues by RIP2 and TRAF6 respectively. Whether all these activations are 

required or just examples of control of function depending on stimuli is not known. 

It is thought that the ubiquitination of IKKγ brings the IKK complex into association with other important 

factors in NF-κB signal modulation such as RIP1 (Ea et al., 2006)which is itself polyubiqitinated, or with 

TAK1 associated with polyubiqitinated TAB proteins (Wang et al., 2001). This association allows for the 

phosphorylation of IKKα at Ser176 and Ser180 residues and of IKKβ at Ser177 and Ser181 (Delhase et al., 

1999). The main role of activated IKKβ, over IKKα, is the phosphorylation of Iκ-Bα; which masks the 

nuclear localization signal of active NF-κB dimers, holding them in the cytoplasm (Jacobs and Harrison, 

                                                 
8 Three IKKγ monomers with three IKKα or IKKβ 
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1998). Active IKKβ phosphorylates Iκ-Bα at Ser32 and Ser36 residues (DiDonato et al., 1996) which 

recruits an E3 ubiquitin ligase to Iκ-Bα which is phosphorylated in a Lys48 dependant manner at Lys21 

and Lys22 (Alkalay, 1995) prior to degradation in the proteasome. 

Both IKKα and IKKβ play roles outside of this degradation of Iκ-Bα, with both having roles in NF-κB 

subunit modification. Both p100 and p105 contain residues that match those of Iκ-Bα, and are thought 

to act in a similar way, by inactivating their NF-κB dimer partner in the cytoplasm. It was, and often still is, 

thought that p105 is transcribed from the NFKB1 gene and subsequently cleaved into its active p50 form. 

However it was demonstrated that p50 is actually produced alongside p105 by modifications made 

during translation (Lin et al., 1998). However IKKβ can cleave p105 by phosphorylating Ser927 and 

Ser932 residues of p105 leading to ubiquitination and proteasome processing, which either leads to the 

complete degradation of p105, or the production of p50 (Cohen et al., 2004). Degradation of p105 can 

free the inactive dimer, whereas cleavage of p105 to p50 can produce an already formed active dimer 

pairing, independent of Iκ-Bα activity. Similarly, IKKα is capable of cleaving p100 into its active p52 form, 

although in this instance the majority of p52 is formed by cleavage of p100. IKKα phosphorylates p100 at 

Ser866 and Ser870 which as above leads to ubiquitination and subsequent cleavage of p100 (Senftleben 

et al., 2001). 

Mechanisms for the termination of IKKβ mediated signalling are poorly understood. One proposed 

mechanism is auto-inhibition whereby IKKβ phosphorylated in its activation loop phosphorylates its own 

C-terminal region weakening its association with IKKγ and thus terminate its activation (Delhase et al., 

1999; May et al., 2002). Another is the usage of phosphatases such as PP2A, which have been shown to 

associate with phosphorylated IKK complexes, remove the phosphate groups from the activation loop 

and decrease their kinase activity (Prajapati et al., 2004); or de-ubiquitinating enzymes such as A20 which 

remove the ubiquitin scaffolds that mediate the phosphorylation of signalling components (Wertz et al., 

2004). Increased production of inhibitory proteins has also been implicated, including Iκ-Bα, transcription 

of which is regulated by NF-κB dimers in a negative feedback loop (Scott et al., 1993; Hoffmann et al., 

2002). 

Several studies have demonstrated that of IKKα and IKKβ, IKKβ plays a more important role in canonical 

NF-κB signalling (Hu et al., 1999; Li et al., 1999) and this is now generally accepted to be the case. As 

such I focused my attention on IKKβ over IKKα. TNFα is present at elevated levels before the 

development of BOS, and accentuates TGF-β1 driven EMT in PBECs. As this accentuative activity was not 

controlled by SMAD3 the next logical pathway to investigate was the canonical TNFα cascade utilising 
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NF-κB, with IKKβ being a key kinase regulating its transcriptional activity. The following results outline my 

attempts to understand IKKβ phosphorylation in response to TGF-β1 or TNFα stimulation as well as its 

role, and importance, in the subsequent occurrence of EMT in our OB model system. 

 

4.2.1 Phosphorylation Response of IKKα/β 
PBECs were cultured in 6 well collagen coated plates until confluent and stimulated with TGF-β1 or TNFα. 

Cells were harvested at 0, 0.5, 1, 5, 10, 30 and 60 minute time points. Whole cell PBEC lysate was 

immuno-precipitated for total SMAD3, under denaturing conditions, with the resulting lysate probed for 

pIKKβ (Ser177 and Ser181) by indirect ELISA. Neat lysate from the 30 minute stimulation was analyzed by 

Western blot for both total and phospho forms of IKKβ. 

The antibodies used in this protocol targeted both IKKα and IKKβ, although as demonstrated in 

APPENDIX IKKα was usually only detected via western blots loaded with a very high lysate. Western 

blotting allows for the differentiation of IKK isoforms based on their different electrophoretic mobility, 

however the immuno-precipitation and indirect ELISA protocols allow for no such separation. No IKKα 

was detected by western blotting of the immuno-precipitated lysate, and a single band was observed 

after Coomassie staining of the agarose gel, nevertheless it is likely that there is some contamination of 

lysates with IKKα, which may effect this more sensitive assay. 
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TNFα alone and in combination with TGF-β1 induced significant phosphorylation of IKKα/β from 1 

minute, which peaked at 10 minutes and lasted through to 30 minutes, at 60 minutes levels were 

returned to baseline. Interestingly TGF-β1 alone did not increase phosphorylation at any time-point. 

 

4.2.2 Chemical Inhibition of IKKβ 
As previous experiments have demonstrated that TNFα alone had little if any effect on the development 

of EMT, the focus was on the response to co-stimulation. This was especially true due to the above 

results demonstrating that co-stimulation with TGF-β1 increased TNFα mediated IKKβ phosphorylation, 

whilst not phosphorylating IKK itself. 

IKK-2 (IKKβ) Inhibitor IV (IKKi) is a cell permeable inhibitor of IKKβ isolated from fungi and functions by 

blocking ATP binding sites, and hence kinase activity responsible for phosphorylation of Iκ-Bα . Due to 

the wide range of signalling responses that IKKβ is involved in several papers have previously utilised IKKi 

and accordingly described an IC50. In human monocytes a dose of between 170 and 320nM was capable 

of limiting TNFα production by half (Podolin et al., 2005), whereas in a cell free system, whereby IKKβ was 

immuno-precipitated from human synovial fibroblast cells and used in a kinase assay, an IC50 of 11µM 

was described (Kishore et al., 2003). A dose response curve looking at cell viability, morphology and 

effect on EMT after pre-treatment with 1, 5, 10 and 20μM doses of IKKi prior to stimulation with TGF-β1 

and TNFα for 72 hours was performed in triplicate using A549 cells. 
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IKKi at doses of 5µM and above was capable of strongly inhibiting the loss of E-cadherin expression in 

response to stimulation with TGF-β1 or TNFα with no benefit observed at the higher 10 and 20 µM 

doses. A 5µM dose of IKKi was also capable of inhibiting the gain of fibronectin expression, but to a 

lesser extent than the 10 and 20µM doses. Morphologically only the 20µM dose of IKKi was capable of 

inhibiting EMT, maintaining cells cobblestone like appearance, with the lower doses displaying little if any 

benefit compared to controls. Interestingly all doses of IKKi were, when used in association with TNFα 

alone, capable of inducing a striated mesenchymal like appearance. Based purely on ability to inhibit 

EMT a 20µM dose of IKKi would be used, however at this and the 10µM dose there was a large decrease 

in viability for all stimulations. Therefore in all future experiments a 5μM dose of IKKi was used which was 

capable of inhibiting EMT to a lesser degree but maintained cell viability at more normal levels. 

 

4.2.2.1 Chemical Inhibit ion of IKKβ ,  Effect on EMT Endpoint 

With an appropriate dose of IKKi decided upon in A549 cells the next step was to observe what effect 

this would have on EMT in PBECs. n=4 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 1 hour pre-treatment with 5μM IKKi. Cell lysate and culture media was 

retained and EMT was assessed using a variety of markers. 
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The results above suggest that IKK plays a role in the TNFα mediated accentuation of TGF-β1 driven EMT. 

A 5µM dose of IKKi induced a small decrease in PBEC viability compare to untreated controls, with pre-

treatment strongly inhibiting the accentuated loss of E-cadherin, gain in fibronectin and vimentin, and a 

slight decrease in the accentuated secretion of pro-MMP-9. As collagen I-IV secretion does not display 

an accentuated response normally no reduction in this effect was observed. Interestingly pre-treatment 

with IKKi also inhibited the TGF-β1 driven EMT, albeit relatively weakly for all markers, excepting collagen.  

Collagen I-IV secretion which was usually significantly elevated in response to TGF-β1 stimulation was in 

this instance non-significantly elevated, and it is difficult to discern if IKKi had any impact on this elevation. 

This lack of significance may be due to a degradation of samples which were stored for a longer period 

of time before assay than other experimental groups, however as the baseline level of secretion from the 

un-stimulated cells was similar to that of other experimental groups it seems unlikely to be the case. 

 

4.2.2.2 Chemical Inhibit ion of IKKβ, Effect on 
Phosphorylation 

As seen in Figure 28 IKKβ is phosphorylated in response to TNFα, displaying a slight increase upon co-

stimulation with TGF-β1, with no effect seen with TGF-β1 alone. To investigate possible mechanisms that 

may explain how IKKβ may be phosphorylated differentially upon co-stimulation, I investigated the effect 

of IKKi pre-treatment on the phosphorylation of other key signalling proteins, in this instance with Iκ-Bα 

as a substrate for IKKβ, 30 minutes after stimulation with TGF-β1 or TNFα. 
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IKKβ was phosphorylated in response to TNFα with no evidence TGF-β1 having an impact either alone, 

or in co-stimulation. IKKi did not inhibit the phosphorylation of IKKβ due to its method of action, which is 

to block kinase activity in an ATP competitive manner, but not its activation. To investigate IKKi activity 

understanding of the kinase activity of IKKβ was required. Iκ-Bα, which is phosphorylated by activated 

IKKβ, is one such substrate. In uninhibited PBECs the pattern of Iκ-Bα phosphorylation was the same as 

that of IKKβ, however upon pre-treatment with IKKi this phosphorylation was completely blocked, 

suggesting that IKKβ kinase activity was being inhibited. Interestingly Iκ-Bα was not degraded, as 

previously discussed, post stimulation. 

 

4.2.3 siRNA Knockdown of IKKβ 
IKKβ targeting siRNA (IKKsi) was used to knockdown IKKβ in order to validate the findings generated 

using IKKi. A dose response assay for cell viability, morphology and effect on EMT after a 24 hour pre-

treatment with 0.1, 0.5, and 1nM doses of IKKsi (CTGGAGAAGTACAGCGAGCAA), delivered through lipid 

transfection of adherent cultures, prior to stimulation with TGF-β1 and TNFα for 72 hours was performed 

in PBECs. 
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IKKβ expression was reduced in a dose dependant manner by pre-treatment with IKKsi, with a strong 

decrease in cell viability. The loss of E-cadherin expression and gain of fibronectin expression in response 

to TGF-β1 or TNFα stimulation was also inhibited in a dose dependant manner, with a 5nM dose of IKKsi 

producing the strongest effect. Interestingly at the highest dose of IKKsi along with TNFα stimulation 

induced a larger loss of cell viability, especially evident at the highest dose of 5nM than the other 

stimulations. Therefore although the 1 and 5nM doses most strongly inhibited EMT, a 0.1nM dose which 

still limited EMT, but did not significantly reduce cell viability was used for all future experiments. 

 

4.2.3.1 siRNA Knockdown of IKKβ ,  Effect on EMT Endpoint 

With an appropriate dose of IKKsi confirmed for use in PBECs I proceeded to investigate what effect IKKβ 

knockdown had on EMT. n=3 PBEC cultures from distinct patients were stimulated with TGF-β1 or TNFα 

for 72 hours after a 24 hour pre-treatment with 0.1nM IKKsi or a sequence scrambled control. Cell lysate 

and culture media was retained and EMT was assessed using a variety of markers. 
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The results described above suggest that IKKβ plays a role in the accentuation of TGF-β1 driven EMT. A 

0.1nM dose of IKKsi strongly knocked down levels of IKKβ with the subsequent reduction in detection of 

phosphorylated IKKβ, and reduced the accentuative effect of TNFα in the TGF-β1 driven loss of E-

cadherin, gain of fibronectin and vimentin expression and increase in pro-MMP-9 secretion. IKKsi also 

weakly inhibited the TGF-β1 alone driven loss of E-cadherin with a similar weak effect on other markers 

of EMT. The one exception was the secretion of collagens I-IV that displayed no accentuated response in 

untreated cells with IKKsi not significantly reducing the TGF-β1 driven increase. 

 

4.2.4 IKKβ Discussion 
By previously demonstrating that SMAD3 mediates either all or the majority of TGF-β1 signalling that 

drives EMT, with no evidence of accentuatory activity, if anything a slight inhibitory effect was 

demonstrated, it was next decided to investigate IKKβ, part of the canonical TNFα NF-κB cascade. To 

summarize the data presented in the preceding sub-chapter: IKKβ was phosphorylated by TNFα but not 

TGF-β1 alone, with TGF-β1 having no effect on TNFα driven IKKβ phosphorylation in co-stimulated 

samples. Inhibition and knockdown of IKKβ inhibited the accentuation of EMT by TNFα and in some 

instances inhibited TGF-β1 driven EMT as well, more so after chemical inhibition than siRNA knockdown. 

Inhibition of IKKβ inhibited its phosphorylation of Iκ-Bα and this its functionality. However TAK1 and JNK-

2 were still phosphorylated in response to TNFα stimulation, but did not accentuate EMT suggesting that 

IKKβ is crucial in this role, with TAK1 playing an activating role and JNK-2 either no role or a modulatory 

one. 

The indirect ELISA assays for both IKKα and IKKβ, however IKKα was not usually detected by western blot. 

By looking at later figures such as Figure 53 where a sufficient quantity of lysate was used for IKKα to be 

detected it is possible to see that IKKα follows a similar pattern to IKKβ. However by looking at another 

example blot in this case Figure 39 it is possible in this instance to observe a difference between the 

TNFα alone, and co-stimulated samples. This suggests that TGF-β1 can accentuate IKKβ phosphorylation 

but only to a small degree, a mechanism to facilitate this phosphorylation has been described, using the 

MAPK TAK1 to induce IKK NF-κB signalling (Mao et al., 2011).  

This effect is perhaps more apparent when looking at the effect of inhibiting IKKβ; as was hypothesized 

inhibition reduced TNFα accentuation of TGF-β1 driven EMT. However, there was also a slight inhibition 

of TGF-β1 driven EMT, which was most evident when using E-cadherin as a marker for both IKKi and 
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IKKsi. In general, the effect was more apparent when using IKKi, which raises the possibility of a non-

specific effect, the question being where this non-specific inhibition is occurring. In the studies initially 

describing the effects of IKKi a screen of effect on other signalling proteins was also performed. In one 

instance the next most inhibited molecule was IKKα demonstrating a 20 fold difference between the 

respective IC50 amounts (Podolin et al., 2005); in the other study a 200 fold difference was observed, with 

in this instance the next most inhibited molecule after IKKβ being p38 (Kishore et al., 2003). Interestingly 

the latter paper demonstrated that IKKi had a 5 fold stronger inhibitory effect on an IKKα/IKKβ 

heterodimer than on IKKβ alone. As discussed in 4.2 IKKα and IKKβ preferentially form this heterodimer in 

vivo (Huynh et al., 2000), from this it is possible to speculate that I underestimated the role of IKKα in the 

accentuation of TGF-β1 driven EMT. However, it is also possible that the chemical inhibitor could be 

inhibiting some other signalling protein. 

In the SMAD3 discussion I talk about the seemingly SMAD3 dependant, non-TNFα accentuated up-

regulation of collagen and the findings outlined above would seem to confirm this effect. I hypothesized 

that the production of collagen was mediated purely through SMAD3 and did not involve the as yet 

unknown accentuatory protein, thus preventing TNFα from playing a role. When using the chemical 

inhibitor a significant increase in response to TGF-β1 was not obtained and it was difficult to discern if 

IKKi had any impact, I can present no explanation for this lack off effect as in all other samples tested 

significance was obtained. However, in the IKKsi experiment where a clear significant increase in collagen 

secretion was demonstrated IKKsi had no inhibitory effect, which would lend credence to this hypothesis.  

One interesting observation not linked directly to the study at hand was that IKKi and IKKsi both seemed 

to have a greater effect on PBEC viability than the other chemical inhibitors, most evident with IKKsi. The 

siRNA used to knock down IKKβ was very effacious, able to knockdown approximately 90% of detected 

IKKβ after 24 hours with a 0.1nM dose. At doses beyond this where 100% inhibition, or near to, was 

achieved there was a very rapid decrease in viability. TNFR1 is capable of inducing cell death by 

recruiting alternative proteins into the receptor complex. Instead of the TRAF mediated NF-κB activation, 

Fas-Associated protein with Death Domain (FADD) can be recruited and initiate cell death through the 

caspase cascade; although it is thought that this effect is usually masked by the inhibitory effects of NF-

κB signalling on FADD (Micheau and Tschopp, 2003). By chemically inhibiting IKKβ activity, it is possible 

that I am inducing a block in this protective NF-κB signalling, with a resultant increase in death signalling. 

Looking more specifically at the role of IKKα and IKKβ a similar inhibitory effect was described, in one 

paper siRNA knockdown of IKKα and IKKβ significantly decreased cell viability (Jiang et al., 2010), with 
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4.3 TGF-β activated kinase 1 
As shown in 4.2.2 and 4.2.3 inhibition and siRNA knockdown of IKKβ limited the TNFα mediated 

accentuation of EMT, whilst also slightly inhibiting TGF-β1 driven EMT. A mechanism or protein, which 

facilitated the transference of TGF-β1 signalling through the IKK complex, may therefore be a key player 

in the accentuative process. One potential protein that is receiving much interest is TAK1; a 67 kDa 

serine-threonine kinase which can both activate and is activated by a diverse range of signalling proteins. 

First described as a mediator of non-canonical TGF-β signalling (Yamaguchi et al., 1995) it has now been 

shown that TAK1 can be stimulated by TLR family ligands such as lipopolysaccharide (Ear et al., 2010), 

and other factors such as IL-1β (Fan, Yu, Mao, et al., 2010) and TNFα (Ea et al., 2006). However, the 

mechanisms that facilitate TAK1 activation and its downstream effects remain poorly understood and 

results described in the literature are often conflicting. 

Prior to stimulation with TGF-β1 it is thought that TAK1 exists bound to a TRAF6-TAB2 or TAB3 complex, 

which is itself associated with TGFβR1 (Sorrentino et al., 2008). Upon stimulation with TGF-β1 the hetero-

tetramer complex of TGFβR1 and TGFβR2 proteins as described in 1.3.1 is formed, which facilitates the 

auto-poly-ubiquitination of TRAF6 (Xia et al., 2009) in a Lys63 dependant manner, without the use of 

TGF-R1 kinase activity. This auto-poly-ubiquitination results in the activation of TRAFs E3 ubiquitin ligase 

ability, poly-ubiquitinating TAK1 at the Lys158 (Mao et al., 2011) and Lys34 (Sorrentino et al., 2008) 

residues of which only Lys158 was shown to be required for subsequent activity. Upon ubiquitination 

TAK1 is released from its association with TRAF6, it is unknown if TAB2 or 3 remain associated with TAK1 

at this point, and forms a new complex with TAB1 (Kim et al., 2009). An alternative hypothesis is that 

TAK1-TAB1 interactions and TAK1-TAB2/3 interactions are independent, with TAB2/3 requiring other 

cellular apparatus to induce the auto-phosphorylation of TAK1, whereas TAB1 is capable of achieving 

this effect alone (Scholz et al., 2010). 

Upon binding with TAK1, TAB1 is itself auto-phosphorylated, which in turn facilitates the auto-

phosphorylation of key residues within the hypothesized activation loop of TAK1 such as Thr178, Thr184 

and Thr187 (Singhirunnusorn et al., 2005). Phosphorylation of these key resides is thought to occur 

sequentially, starting with Thr178 which augments auto-phosphorylation followed by phosphorylation of 

Thr184 and Thr187 thought to be required for TAK1 kinase activity. It is thought that constitutive TAB1 

binding is required for maintenance of this activation (Kishimoto et al., 2000). Phosphorylation of Ser192 

has been shown to be required to facilitate TAB1 binding to TAK1, with the subsequent phosphorylation 
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of the other described residues (Scholz et al., 2010). Phosphorylation of other sites not within this 

activation loop have been described during large scale phosphorylation analysis by mass spectrometry 

(Dephoure et al., 2008) but no details of their activity are described in the literature. It is not known 

whether specific phosphorylation events are associated with a particular stimulus, TAB protein, or indeed, 

if co-phosphorylation is required, or improves, kinase activity. 

Activation of TAK1 by TNFα occurs in a similar manner to activation by TGF-β1 albeit with different 

receptor scaffold proteins involved in the recruitment and polyubiquitination of TAK1. As TAK1 is now 

thought to be key in mediating IKK-NF-κB activity I have already described the mechanism of its 

activation in 1.3.2. The same is true of activation by IL-1β stimulation as TAK1 is once again a key factor 

in its downstream signalling; details of this activation are described in 1.3.3. 

It is worth mentioning that as TRAF6 plays an important role in the ubiquitination of TAK1 in both TGFβR 

and IL-1βR signalling that it may itself play an important synergistic role. This is especially true in light of 

its ability to polyubiquitinate different residues of TAK1 depending on which receptor complex it is 

associated with Lys34 (Sorrentino et al., 2008) with TGFβR, Lys209 (Fan, Yu, Mao, et al., 2010) with IL-1βR 

and a seemingly conserved Lys158. As above, it is not known if the varying ubiquitination responses are 

specific to a certain upstream stimuli or interactions with TAB proteins. 

Once activated TAK1 is able to mediate downstream signalling events by its kinase activity. TAK1 has 

been shown to directly phosphorylate both IKKα, IKKβ (4.2) and JNK-1/2 and is also required for the 

activation of p38, ERK, NLK and has been shown to modulate the function of IKKγ (Ohkawara et al., 2004; 

Fan, Yu, Mao, et al., 2010; Fan, Yu, Shi, et al., 2010; Mao et al., 2011; Yang et al., 2011). There is currently 

no evidence in the literature describing any non-kinase activities by TAK1, and TAK1 is thought to be 

localized solely within the cytoplasm. The duration of phosphorylation has also not been described, and 

likely varies depending on stimulation, however at some point TAK1 is de-phosphorylated by the 

phosphatase PP2A. In addition, no data is presented as to whether TAK1 is subsequently degraded or if 

it cycles back into an association with TRAF and TAB proteins, ready for a new signalling event. 

As mentioned in the opening paragraph of this section TAK1 is the very definition of a pleiotropic 

molecule with its ability to respond to a wide variety of stimuli and interact with an equally wide range of 

signalling mediators. From the brief description above it is possible to see several distinct levels where 

modulation of signalling response can occur, namely TAB association, residue ubiquitination and 

phosphorylation and downstream interaction among others, and because of this it is easy to understand 
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why findings are often conflicting and difficult to interpret. However, it also presents a large and 

interesting area to research, and greater understanding of the control mechanisms and outcomes 

relating to TAK1 stimulation, may in the short-term explain the synergy between TGF-β1 and TNFα that I 

am investigating, and in the long-term describe potential therapeutic targets. The following results 

outline my attempts to understand TAK1 phosphorylation in response to TGF-β1 or TNFα as well as its 

role, and importance, in the subsequent occurrence of EMT in our OB model system. 

 

4.3.1 Phosphorylation Response of TAK1 
As with SMAD3 and IKKβ, I investigated the phosphorylation of TAK1 in response to stimulation with 

TGF-β1 or TNFα as an assay for TAK1 activation. In this instance though I attempted to investigate three 

distinct phosphorylation sites located within the activation loop of TAK1 Ser192, Thr184 and Thr187, to 

describe which, if any, responded to stimulation, if there was a differing response between the residues 

or if co-stimulation resulted in accentuated or prolonged activation. Unfortunately, the phospho-TAK1 

(Ser192) antibody failed to demonstrate reproducible results and therefore no assays are shown for this 

residue. 

PBECs were cultured in 6 well collagen coated plates until confluent and stimulated with TGF-β1 or TNFα. 

Cells were harvested at 0, 0.5, 1, 5, 10, 30 and 60 minute time points. Whole cell PBEC lysate was 

immuno-precipitated for total TAK1, under denaturing conditions, with the resulting lysate probed for 

phospho-TAK1 (Thr184 or Thr187) by indirect ELISA. Neat lysate from the 30 minute stimulation was 

analyzed by Western blot for both total and phospho forms of TAK1.  
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The phosphorylation response of the Thr187 residue seems to provide strong evidence for the role of 

TAK1 in the described accentuation of TGF-β1 EMT by TNFα. TGF-β1 stimulation induced a significant 

increase in phosphorylation from 1 minute onwards with a peak at 10 minutes, whereas TNFα induced a 

significant increase in phosphorylation from 10 minutes onwards peaking at 30 minutes. In general, TNFα 

seemed to induce a smaller and delayed increase in phosphorylation of TAK1. Co-stimulation resulted in 

a significant increase in phosphorylation, compared to un-stimulated controls, from 1 minute onwards, 

again peaking at 10 minutes. An accentuative effect was seen from 5 minutes onwards, ascertained by 

simply combining the individual TGF-β1 and TNFα amounts. This accentuation was strongly maintained 

even out to 60 minutes where the individual stimulations were trending back towards baseline. 

In contrast, phosphorylation of Thr184 seemed dependant on TNFα alone. However, it is worth 

considering that TGF-β1 is able to induce a delayed phosphorylation of this residue. TNFα induced 

significant phosphorylation from 1 minute, peaking at 5 minutes and returning to near baseline by 60 

minutes. An accentuative response was only observed at 60 minutes, this seems to be due to the 

declining level of phosphorylation induced by TNFα stimulation alone in comparison to the maintenance 

of phosphorylation due to co-stimulation. 

Whilst these experiments look at the phosphorylation of certain TAK1 residues, they do not describe 

whether co-phosphorylation was occurring on single TAK1 molecules. A better understanding of this 

might describe a mechanism that allows for specificity of function from such a pleiotropic molecule, 

especially in light of the multiple sites of poly-ubiquitination described in the literature. Attempts to assay 

this are described in 4.3.6. However, the findings do confirm that TAK1 Thr187 can respond to TGF-β1 

and TNFα co-stimulation in an accentuated fashion, therefore I next decided to inhibit TAK1 function to 

evaluate its role in EMT, and to elucidate downstream signalling mechanisms.  
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4.3.2 Chemical Inhibition of TAK1 
5Z-7-Oxozeaenol (TAKi) is a cell permeable inhibitor of TAK1 isolated from fungi and functions by 

blocking ATP binding sites, and hence kinase activity, in an irreversible fashion. The initial paper 

describing the effects of TAKi determined that the IC50 in 293-IL-1R19 and mouse embryonic fibroblast 

cells was 8nM (Ninomiya-Tsuji et al., 2003). A dose response curve looking at cell viability, morphology 

and effect on EMT after pre-treatment with 0.1, 0.5, 1 and 5μM doses of TAKi prior to stimulation with 

TGF-β1 and TNFα for 72 hours was performed in triplicate using A549 cells. 

  

                                                 
9 Human embryonic kidney cell line over-expressing IL-1 receptor 1 
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At a 1µM dose of TAKi, cell viability was maintained at approximately 85% for all stimulations. A 1μM 

dose was also capable of strongly inhibiting the morphological shift from a cobblestone like epithelial 

appearance towards a striated mesenchymal phenotype, and inhibited the concurrent decrease in E-

cadherin and increase in fibronectin expression at the protein level without influencing baseline 

expression as seen with the 5μM dose. Therefore, a dose of 1μM TAKi was used in all future experiments. 

 

4.3.2.1 Chemical Inhibit ion of TAK1, Effect on EMT Endpoint 
With an appropriate dose of TAKi decided upon in A549 cells the next step was to observe what effect 

this would have on EMT in PBECs. n=6 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 1 hour pre-treatment with 1μM TAKi. Cell lysate and culture media was 

retained and EMT was assessed using a variety of markers. 
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The results described above provide evidence, that TAK1 activation plays a key role in the subsequent 

occurrence of EMT. Pre-treatment of PBECs with a 1µM dose of TAKi strongly inhibited the loss of E-

cadherin expression and the gain of fibronectin and vimentin expression, as well as the increase in 

secretion of collagens I-IV into the media in response to TGF-β1 stimulation. TAKi also strongly inhibited 

the accentuation of EMT in response to TGF-β1 and TNFα co-stimulation for the markers described 

above. Interestingly TAKi consistently increased the secretion of pro-MMP-9 into the media, with the 

results most apparent in the media from cells treated with TNFα. 

 

4.3.2.2 Chemical Inhibit ion of TAK1, Effect on 
Phosphorylation 

As seen in Figure 35 TAK1 displays an accentuated phosphorylation of its Thr187 residue in response to 

co-stimulation with TGF-β1 and TNFα. I therefore proceeded to investigate the effect of TAKi pre-

treatment on the phosphorylation of other key signalling proteins 30 minutes after stimulation with TGF-

β1 or TNFα, to determine where and how TAK1 mediated signalling activity was being transferred. 
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No difference in the phosphorylation of SMAD3 or p38 following stimulation with TGF-β1 or TNFα in the 

presence of TAKi was demonstrated; however TAK1 phosphorylation was completely inhibited. 

Interestingly phosphorylation of IKKβ and JNK-1/2 in response to stimulation was strongly inhibited, 

suggesting that TAK1 plays a key role in the activation of these proteins, and provides further evidence 

for the potential role of TAK1 as a convergence point for the accentuative effect of TNFα on TGF-β1 

driven EMT. Surprisingly, TAKi inhibited TAK1 phosphorylation, even though its described activity was to 

inhibit ATP binding and hence kinase activity. It is possible that this inhibition of phosphorylation is an 

un-described effect of TAKi or that TAK1 phosphorylation is unstable if not in a complex in a similar 

fashion to that described SMAD3, or inhibits itself in a similar fashion to IKKβ. 

 

4.3.3 siRNA Knockdown of TAK1 
TAK1 targeting siRNA (TAKsi) was used to knockdown TAK1 in order to validate the findings generated 

using TAKi. A dose response assay for cell viability, morphology and effect on EMT after a 24 hour pre-

treatment with 1, 5, and 10nM doses of TAKsi (AAGATGGTATATACCAAGTTA), delivered through lipid 

transfection of adherent cultures, prior to stimulation with TGF-β1 and TNFα for 72 hours was performed 

in PBECs. 
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TAK1 expression was reduced in a dose dependant manner by pre-treatment with TAKsi, with an 

associated decrease in cell viability. The loss of E-cadherin and gain in fibronectin expression in response 

to TGF-β1 or TNFα stimulation was also inhibited in a dose dependant manner up to a 5nM dose, 

beyond which there was no appreciable benefit. Anecdotally it was observed that the higher doses of 

TAKsi, or the requisite higher dose of lipid transfection reagent10, caused large numbers of cells to 

detach from the culture surface. With a 5nM dose this effect was observe at around 72 hours post 

knockdown, whereas with the 10nM dose this was seen at 24 hours. These cells were counted as part of 

the viability assay, and separate counts of the attached and detached populations showed no variation in 

viability. However, their innate characteristics and response may differ from the normal adherent PBEC 

cultures. Therefore, an intermediate dose, which did not induce cell detachment, of 3nM TAKsi was used 

in all future experiments. 

 

4.3.3.1 siRNA Knockdown of TAK1, Effect on EMT Endpoint 
With an appropriate dose of TAKsi confirmed for use in PBECs, I proceeded to investigate what effect 

TAK1 knockdown had on EMT. n=5 PBEC cultures from distinct patients were stimulated with TGF-β1 or 

TNFα for 72 hours after a 24 hour pre-treatment with 3nM TAKsi or a sequence scrambled control. Cell 

lysate and culture media was retained and EMT was assessed using a variety of markers. 

                                                 
10 Although this effect was not seen with an equivalent doses in other siRNA knockdown experiments 
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The data presented above validates the findings described with TAKi in 4.3.2, with the inhibitory effect on 

EMT being even more striking. The 3nM dose of TAKsi derived from the screen outlined in figure 4.3.3 

induced an approximately 80% knockdown in detected TAK1 protein, without significantly affecting cell 

viability. This dose also did not result in a large number of cells detaching from the culture surface, as 

mentioned above, suggesting that the culture as a whole was retaining its “normal” PBEC character. Pre-

treatment of PBECs with TAKsi strongly inhibited the loss of E-cadherin and the gain of fibronectin and 

vimentin intracellularly, as well as the increase in secretion of pro-MMP-9 and collagens I-IV into the 

media in response to TGF-β1 stimulation. TAKsi also strongly inhibited the accentuation of EMT in 

response to TGF-β1 and TNFα co-stimulation for the markers described above. Unlike the TAKi results 

described in figure 4.3.2.1 blocking TAK1 knockdown did not result in increased secretion of pro-MMP-9. 

 

4.3.4 Localization of TAK1 
Both chemical inhibition and siRNA knockdown of TAK1 suggested that it plays a key role in EMT. When 

observing the phosphorylation cascade of key signalling proteins TAK1 displayed an accentuative 

response to co-stimulation with TGF-β1 and TNFα, whilst phosphorylating to a lesser degree upon 

stimulation by either factor. It was also observed that TAK1 might transmit its signal downstream by JNK-

1/2 or IKKβ. To investigate this further I looked at the localization of both total and phospho-TAK1 30 

minutes post stimulation with TGF-β1 or TNFα in PBECs. 
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When assessed by ICC total-TAK1 localization was unchanged under all conditions, maintaining a diffuse 

cytoplasmic stain. However, nuclear localization of phospho-TAK1 was increased following stimulation 

with both TGF-β1 and, to a lesser extent, TNFα compared to control cells. Co-stimulation with TGF-β1 

and TNFα resulted in an accentuated nuclear localisation of phospho-TAK1 compared to either 

stimulation alone. To confirm the observed nuclear translocation of TAK1, nuclear and non-nuclear 

fractions were prepared from PBECs treated with TGF-β1 or TNFα for 30mins. As with SMAD3 attempts 

to confirm these findings using lysate fractionation again generated conflicting results, however, in this 

instance it was with the phosphorylated as opposed to total form of the protein. ICC showed a clear 

preference for TAK1 nuclear localisation with little if any phospho-TAK1 appearing in the cytoplasm (with 

the exception of co-stimulated cells). However, after protein fractionation phospho-TAK1 was detected 

only in the cytoplasm for all stimulations. Therefore, once again it is not possible to comment on TAK1 

localization without further investigations. 

 

4.3.5 TAK1 Tissue Staining 
With TAK1 playing a key role in EMT in my post-transplant cell culture model I next proceeded to assay 

for TAK1 activation and localisation in fibrotic and normal lung sequential tissue sections, isolated from 

patients at the Freeman Hospital.  
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Total TAK1 was located throughout all airway cells and there was no detectable difference in the intensity 

of expression between normal and OB lung tissue. In contrast, levels of phospho-TAK1 were higher in 

epithelial cells in OB tissue compared to normal. It was also noted that phospho-TAK1 displayed 

evidence of nuclear localization that was more pronounced in OB tissue. However, there was significant 

non-specific staining of the ciliated regions of the airway by the anti phospho-TAK1 antibody making it 

difficult to conclude that TAK1 phosphorylation is increased in OB tissue. Attempts were made to nullify 

this effect by blocking samples with antibodies against microtubule proteins such as α and β-tubulin and 

other structural proteins such as β-actin to no avail.  

 

4.3.6 Further Investigations into TAK1 Activity 
In light of the potential nuclear localisation of TAK1 described in Figure 42 and Figure 43 along with the 

fact that TAK1 contains no described nuclear localization signal, but interacts with a wide variety of 

proteins, it was thought that investigating TAK1-protein interactions might help explain this localization 

effect. As discussed above the TAB family of proteins are known to have a strong association with TAK1 

and appear to help modulate its function. As described in previously TAK1 is also capable of inducing 

phosphorylation of other signalling proteins such as JNK-2 and IKKβ, potentially by direct kinase activity. 
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At 30 minutes TAB1 was associated with TAK1 under all stimulations, TAB2 and TAB3 were associated 

only in the presence of TGF-β1. Upon co-stimulation TAK1-TAB2 association was lost. SMAD3 and JNK-1 

did not associate with TAK1 however; JNK-2 and IKKβ were associated under all stimulations. c-Jun was 

detected only upon co-stimulation with TGF-β1 and TNFα. However, this experiment was limited to a 

single time point due to the volume of cells required for immuno-precipitation. 

Attempts were also made to immuno-precipitate proteins using the various anti phospho-TAK1 

antibodies with the aim of investigating the resulting lysates for specific protein associations and the 

occurrence of co-phosphorylation. However, probing neat lysate with phospho-TAK1 antibodies resulted 

in yields greater than that achieved by precipitating with the total form, which suggested that the 

phospho-TAK1 was pulling out non-specific proteins; confirmed by Coomassie staining of SDS-PAGE 

separated lysates, and potentially explain the non-specific effects seen in Figure 43. Performing a two-

step immune-precipitation using total-TAK1 followed by phospho-TAK1 antibodies resulted in a lysate so 

dilute that no bands were detectable by Coomassie staining. 

 

4.3.7 TAK1 Discussion 
Prior investigation had shown that TGF-β1 but not TNFα was capable of inducing the canonical SMAD 

signalling response; with inhibition of SMAD3 limiting TGF-β1 driven EMT, with an unknown activity in 

relation to the accentuative effect of TNFα. Inhibition of IKKβ not only limited the accentuative effect of 

TNFα on EMT but also inhibited the driving effect of TGF-β1, which in conjunction with previously 

detected accentuated TAK1 phosphorylation was the catalyst to look at TAK1 as a potential mediator of 

this signalling crosstalk. 

To summarize the data presented in the preceding sub-chapter: the Thr187 residue of TAK1 is 

phosphorylated in response to both TGF-β1 and TNFα alone, with an accentuated response upon co-

stimulation, whereas Thr184 is phosphorylated only in response to TNFα. Inhibition and knockdown of 

TAK1 limited both TGF-β1 driven EMT and its accentuation by TNFα; and also inhibited the 

phosphorylation of IKKβ and JNK-2 but not SMAD3 further developing the putative signalling mechanism. 

As well as the increased phosphorylation of the Thr187 residue in response to stimulation TAK1 

phosphorylated potentially translocated to the nucleus, although results were conflicting, an effect not 

previously described. A similar effect was also observed in sequential sections taken from normal and OB 

lung, where increased phosphorylation of TAK1 (Thr187) and nuclear localization were observed in OB 
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sections compared to normal lung, although there was strong non-specific binding of the phospho-

TAK1 antibody. TAB1 was shown to associate with TAK1 under all stimulations with a potentially 

accentuated association upon co-stimulation, TAB2 and TAB3 bound only in the presence of TGF-β1 

with TAB2 binding lost upon co-stimulation with TNFα. IKKβ and JNK-2 associated with TAK1 at 30 

minutes after stimulation with TGF-β1 or TNFα, c-Jun was associated only upon co-stimulation. 

The inhibition of TGF-β1 driven EMT by TAKi and TAKsi suggests that TAK1 may play a key role in driving 

EMT. However in 4.1.2.2 it was demonstrated that activated TAK1 was not capable of driving EMT alone, 

as SMAD3 phosphorylation was not inhibited by TAKi this suggests that TAK1 activity is required for TGF-

β1 driven EMT, but is not the actual driver; instead suggesting that TAK1, or its downstream mediators, 

are in some way assisting the activity of SMAD3, possibly by co-factor recruitment or through synergistic 

activity as already discussed in 4.1.6 (Sano et al., 1999; Monzen et al., 2001). As IKKβ is key to the 

accentuation of EMT and is a substrate of TAK1, the lack of IKKβ mediated accentuation after TAK1 

inhibition is un-surprising. From these results, it is possible to hypothesize that TGF-β1 activation of TAK1 

is able to modulate its response to TNFα thus inducing a different, pro-fibrotic, NF-κB transcriptional 

activity leading to the observed accentuation of effect. 

In the introduction to this section I highlighted the multiple levels of control apparent during the 

activation of TAK1, and how these may help describe the accentuative response seen upon co-

stimulation with TGF-β1 and TNFα. I hypothesized that these residues may phosphorylate independently, 

possibly in response to different stimuli, with co-stimulation perhaps inducing pro-longed or accentuated 

phosphorylation. Comparing the intensity of phosphorylation between the residues is not possible using 

with the techniques used as a host of conflicting factors come into play, so any comparison can be based 

only on the trends of response.  

That Thr184 and Thr187 are activated differentially in response to stimuli is very interesting and does 

provide evidence that modulation of TAK1 function may be possible in response to co-stimulation. The 

most elegant way in which to investigate this would be to generate Thr184 or Thr187 mutants and then 

assess TAK1 kinase activity across a range of substrates, along with other downstream markers. This may 

help identify if Thr184 or Thr187 had a preferred substrate or downstream effectors. I attempted to 

investigate this by immuno-precipitating using anti phospho-TAK1 antibodies but as described in 4.3.6 

these attempts were unsuccessful. I also hypothesized that co-phosphorylation may also help explain the 

synergy between TGF-β1 and TNFα but again was unable to develop an assay to investigate this 

properly. 
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The above effect was interesting in relation to understanding underlying cell signalling methods, 

however my project was also firmly based in translating these findings into a disease model. As such the 

accentuated and prolonged phosphorylation of the Thr187 residue upon co-stimulation with TGF-β1 and 

TNFα is perhaps more interesting. With heightened TGF-β1 and TNFα detected in the BAL of OB 

patients, it is possible to see how the Thr187 residue of TAK1 could become hyper or constitutively 

activated. Combined with the later inhibitory experiments that showed the importance of TAK1 in EMT, 

and the presence of phosphorylated TAK1 in OB epithelial cells it is possible to construct a clinically 

relevant hypothesis, whereby increased or altered TAK1 activity is mediating the fibrotic development of 

disease, through alteration of downstream signalling.  

To my knowledge there is no data that associates a particular mutation of TAK1 or any of the TAB 

proteins with a disease, which suggests that whilst TAK1 may mediate disease progression, it is not in 

itself an initiating factor, although of course it is possible that this has simply not been looked at. The 

only result in the literature demonstrates no association of mutated TAK1 with several different cancers 

(Kondo et al., 1998). 

Whilst no data linking mutations of TAK1 or the TAB family have been described, there are numerous 

examples where TAK1 is identified as playing a key role in the development of disease. We have 

described a role for a TAK1 mediated synergy between TGF-β1 and TNFα in OB, however the pro-

fibrotic, pro-inflammatory milieu found in the disease and mimicked in our culture models is not specific 

to just OB. Taken alongside the seemingly ubiquitous expression of TAK1 we propose that this method 

of action may be conserved in other disease states. IPF a disease of unknown aetiology is characterized 

by a progressive, chronic fibrosing of the alveolae. TGF-β1 driven EMT of the resident type II 

pneumocyte progenitor cell population is thought to play a key role in this process (Kim et al., 2006). 

There is some debate as to the role of inflammation in IPF (Behr et al., 2009), which may fit nicely with 

our hypothesis that whilst inflammatory markers are present, they require the pro-fibrotic effects of TGF-

β1 to have a profound impact. 

Other organ and disease models suggest a possible role for our TAK1 mediated synergistic hypothesis; 

in the kidney TGF-β1 has been shown to play an important role in the development of fibrosis by EMT 

(Liu, 2010), alongside this a role for inflammatory mediators secreted from leukocytes has also been 

described (Lange-Sperandio et al., 2007). Similarly within the development of liver fibrosis, a potential 

TGF-β1 driven EMT (Zeisberg et al., 2007) exists within an inflammatory milieu (Connolly et al., 2009), 

although in this instance there is no link between inflammation and EMT. 
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Whilst mutations of TAK1 itself do not seem to associate with the development of lung cancer (Kondo et 

al., 1998), the synergistic phosphorylation in response to TGF-β1 and TNFα may play a key role in 

tumorigenesis. Numerous papers link TAK1 with the development of cancer however, the suggested role 

varies widely. Suppression of TAK1 has demonstrated a ROS driven tumour cell specific apoptotic effect 

(Omori et al., 2010), also activation of TAK1 has been shown to induce NF-κB activation resulting in 

increased production of Iκ-Bα which in turn limited the anti-apotopic effects of NF-κB (Arsura et al., 

2003). Conflictingly TAK1 mRNA levels analyzed from head and neck squamous cell cancer patients were 

reduced in relapsing patients (Honorato et al., 2008). TAK1 has also been shown to have tumour 

suppressive capabilities, mediated by the suppression of IKK (Bettermann et al., 2010), in an NF-κB 

independent fashion. As mentioned previously the role NF-κB in tumorigenesis and cancer maintenance 

is poorly understood; so it seems reasonable that the role of TAK1 as an upstream modulator of NF-κB 

and canonical TGF-β1 signalling may also lack clarity.  

The previously mentioned SnoN has also been described as an important oncogenic protein, up-

regulated in several different cancer cells in that it acts to inhibit the anti-proliferative action of TGF-β 

signalling (dysregulation of which is a key characteristic of certain cancers), facilitating oncogenic 

transformation of effected cells. A non-functional mutant failed to inhibit SMAD transcriptional activity 

and hence blocked this oncogenic transformation. An interaction between TAK1 and the oncogenic Ski-

related novel protein N (SnoN), an inhibitor of SMAD transcriptional activity, would seem to fit well with a 

hyper-activated model whereby TAK1 accentuates EMT leading to cancer progression, however it 

appears that there is currently only a single paper investigating the activity of SnoN and TAK1 in a cancer 

setting; which suggests that whilst SnoN plays a key role in autophagic resistance to anti-cancer 

treatment it did so in a TAK1 independent manner (Smith et al., 2010). 

The potential localization of TAK1 to the nucleus was not expected. Initially I hypothesized that TAK1 

would function in the cytoplasm, modulating other proteins, such as JNK-2 or its downstream effectors, 

which would translocate to the nucleus. However, it became apparent that the nuclear translocation of 

TAK1 has been described previously. TAK1 itself does not contain a described nuclear translocation 

signal, although this does not necessarily mean that it is unable to translocate on its own; also no 

evidence of direct action with the genome has been presented, but this may be because it has not been 

investigated previously. In comparison the localization of ERK-1/2 remained poorly explained until a 

novel translocation method was discovered (Chuderland et al., 2008), and so it is possible that such a 

mechanism may subsequently be described for TAK1. Although the conflicting results raised in Figure 42, 
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and non-specific binding of phospho-TAK1 antibodies in Figure 43 mean further investigations into TAK1 

localisation are required. 

To my knowledge three papers describe a nuclear localization of TAK1; the first describes localization in 

response to IL6 treatment with an increased kinase activity in both cellular compartments (Kojima et al., 

2005). Secondly a more recent paper described the translocation of TAK1 into the nucleus in association 

with the previously mentioned SnoN (Kajino et al., 2007). In this instance, TAK1 is required for the TGF-β 

mediated degradation of SnoN and therefore the activation of SMAD transcriptional activity. In this 

system it is possible that our accentuated activation of TAK1 may result in an even greater inhibition of 

SnoN activity and an increase in resultant SMAD transcriptional activity, facilitating an even stronger 

fibrotic response. 

The final paper has looked at this effect in the most detail and describes TAK1 as existing within both the 

cytoplasm and the nucleus in its un-phosphorylated state, the paper does not look at phosphorylation of 

TAK1 itself. Stimulation with TNFα or LPS had no effect on cellular distribution, nor did blocking nuclear 

export either, suggesting that TAK1 was not being trafficked (Ear et al., 2010). In my system total TAK1 

and phospho-TAK1 were detected in both the nuclear and non-nuclear fractions, in agreement with the 

paper, however I did not block nuclear-trafficking. This raises the important question of how TAK1, if it 

does not traffic between the cytoplasm and the nucleus can become activated in the nucleus? The three 

described papers and my work contribute partially to the understanding of this process; however a more 

in-depth investigation is required to fully understand the mechanism behind, either how translocation is 

achieved or how activation in the nucleus occurs, and the subsequent activity of TAK1 in the nucleus. A 

ChIP assay for TAK1 would be able to describe a DNA binding role for TAK1, however in practice the 

required number of PBECs to perform this assay satisfactorily was prohibitive. In light of the modulatory 

role for TAK1 in SMAD3 driven EMT I hypothesized that TAK1 may be translocating to the nucleus with 

SMAD3 acting as a co-factor to induce or sustain its transcriptional activity. 

By immuno-precipitating TAK1 under non-denaturing conditions I hoped to investigate which if any TAB 

proteins were associated with TAK1 under varying stimulations, as well as identifying downstream TAK1-

protein interactions, such as the above mentioned TAK1-SMAD3 interaction. Confirming its description in 

the literature, TAB1 was constitutively associated with TAK1 at 30 minutes, when stimulated with TGF-β1 

or TNFα, with a potentially accentuative association upon co-stimulation, although a more accurate 

outcome measurement is desirable. Both TAB2 and TAB3 were found to be associated with TAK1 at 30 

minutes after stimulation with TGF-β1, with TNFα alone inducing no association. Upon co-stimulation 
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however the TGF-β1 mediated binding of TAB2 to TAK1 was inhibited, with no effect upon TAB3 binding 

observed. The TGF-β1 mediated association of TAB3 with TAK1, which was maintained under co-

stimulation, may provide a mechanism for the hypothesized alteration of IKKβ and NF-κB transcriptional 

activity in response to co-stimulation although no evidence of altered transcription in response to 

differential TAB binding has been described in the literature. 

It is difficult to draw conclusions from these findings due to the limited time-points sampled, again an 

product of limited cell populations, nevertheless the TAB2 findings in particular demonstrate the interplay 

between TGF-β1 and TNFα. For example after stimulation with TNFα alone TAB1 may be more free to 

induce phosphorylation of the Thr184 residue of TAK1. Does the accentuated association of TAB1 

directly lead to the accentuated phosphorylation of TAK1 Thr187. To understand this more fully a wider 

array of time-points would need to be studied, and most importantly an understanding of whether there 

is competition for binding of TAK1 between the TABs, and if so what affect the absence of a particular 

TAB can have on phosphorylation and downstream signalling. 

The downstream associations of TAK1 are again interesting. TAK1 was not shown to associate with 

SMAD3 at a 30 minute time-point, which suggests that TAK1 is not acting as a co-factor with SMAD3. 

Both IKKβ and JNK-2, but seemingly not JNK-1 are associated with TAK1 at this time point after 

stimulation, although there was no noticeable variation between stimulations. Whilst it is unknown if 

TAK1 is directly binding to IKKβ or JNK-2, as this assay just shows an association it does provide clear 

evidence that TAK1 is in some way inducing their subsequent phosphorylation. Perhaps more 

interestingly is the association of c-Jun with TAK1 only upon co-stimulation. As a component of the AP-1 

transcription factor c-Jun is important in regulating genes involved in many different cell responses, 

including but not limited to cellular differentiation. By displaying an association with TAK1 only upon co-

stimulation this may describe the mechanism whereby the accentuated signalling response is interacting 

with the genome initiating the EMT. 

This binding may also help describe the nuclear localization of TAK1 as IKKβ, JNK-2 and c-Jun are known 

to be able to translocate to the nucleus, and TAK1 may be piggybacking in association with these factors. 

The obvious way to investigate this effect would be to immuno-precipitate the nuclear and cytoplasmic 

fractions, however as with a ChIP assay the number of PBECs required to generate a suitably sized 

nuclear fraction was prohibitive. Once again the above discussion must be couched with the 

understanding that only a single time-point was observed, and results may differ accordingly. 
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In the discussion sections for SMAD3 and IKKβ I constructed a hypothesis of collagen I-IV secretion being 

independent of the then unknown accentuatory protein. With TAK1 potentially filling this role, and due to 

the strong inhibitory effect of both TAKi and TAKsi it is necessary to reconsider this hypothesis. The only 

hypothesis I can construct to fit these new findings is that TAK1 plays some form of modulatory role in 

relation to SMAD3 activity, although not directly due to the lack of detected association, possibly by 

activating co-activating transcription factors in a way which is not affected by TNFα stimulation although 

I can present no data to support this supposition either directly or from the literature. 

TAKi, but not TAKsi, pre-treatment consistently induced an increase in pro-MMP-9 secretion, seemingly 

magnifying the normal response to stimulation with TGF-β1 or TNFα. My initial thoughts were either that; 

in our cell system TAK1 is more involved in the production of TIMPs and hence the suppression of pro-

MMP-9 secretion, or that I was observing an off target effect of the chemical inhibitor. However the only 

references linking TAK1 and pro-MMP-9 secretion in the literature describe a mechanism which follows 

the expected hypothesis, namely that TNFα (Srivastava et al., 2007) and TGF-β1 are capable of increasing 

secretion, with several papers postulating that TAK1 is required for this to occur.  

As discussed in 4.1.6 I investigated the role of the different TNFα receptors in accentuating EMT 8.7, to 

investigate this receptor specific isoforms of TNFα were used, at the same dose for the generic 

recombinant TNFα used throughout my project. As PBECs only expressed TNFαR1 accentuation of EMT 

was only observed with TNFαR1 specific TNFα. Pre-treatment with TAKi strongly reduced this 

accentuation, which then suggested that it was the generic TNFα that was driving the increased secretion 

of pro-MMP-9, as opposed to TAKi. 

The only hypothesis that I can propose to explain this effect presumes non-specific effects from both 

TAKi and TNFα. If the non-receptor specific isoform of TNFα is binding to a receptor other than TNFR1, 

potentially due to the relatively high concentrations used, it may induce a signalling response utilising 

unknown signalling proteins. If we then hypothesized that this unknown pathway was responsible for the 

maintenance of TIMP production, and also contained a protein which was effected by off target effects 

of TAKi, or itself modulated by TAK1, then it is possible to see a mechanism where de-regulated and 

increased pro-MMP-9 secretion could occur. However, I present no evidence to support this supposition. 



 

 

Figure 

TGF

TAK

TAK

that 

tran

 

These 

TNFα, 

not dir

potent

to co-s

and su

potent

comple

 

e 45 - Propos

-β1 signals th

K1 whilst not c

K1 which activa

 TGF-β1 stim

scriptional res

findings hel

although th

rectly associa

tially acting a

stimulation, 

ubsequent N

tial effectors

ete signalling

sed Signallin

rough the can

capable of driv

ates IKKβ sign

mulation of T

sponse, or thro

p identify TA

e mechanism

ate and so m

as co-factor

and the diff

NF-κB activity

s, namely th

g cascade. 

ng Mechanis

nonical SMAD

ving EMT alon

nalling required

TAK1 in some

ough downstre

AK1 as a pot

m of its cont

modulation 

s. The assoc

fering phosp

y may be alt

e MAPK con

 

sm III 

D pathway, util

ne is required

d to accentua

e way alters 

eam effectors

tential contr

trol is unkno

of SMAD3 a

ciations of T

phorylation r

tered to be 

nstituents P

ising SMAD3 

d to facilitate S

ated EMT upo

the IKKβ re

such as the M

oller of the f

own. It was d

activity likely 

AB proteins

responses h

more fibrog

38, ERK-1/2

and induces E

SMAD3 driven

n co-stimulati

sponse induc

MAPK family, p

fibrogenic sy

demonstrate

requires use

, especially T

ighlight how

genic. Howev

 and JNK-1/

EMT, indepen

n EMT. TNFα 

ion. This raise

cing a more 

particularly JNK

ynergy betw

ed that TAK1

e of downst

TAB3 with T

w TAK1 inter

ver, work inv

/2 is require

dently of TNF

signals throug

es the possibili

fibrotic NF-κ

K-1/2. 

ween TGF-β1

1 and SMAD

tream media

TAK1 in resp

raction with 

vestigating o

ed to descri

149 

 

Fα. 

gh 

ity 

κB 

1 and 

D3 do 

ators, 

onse 

IKKβ, 

other 

ibe a 



 

150 
 

5 JNK-2 Modulates TAK-1 Activity 
5.1 MAPK p38 
The MAPK p38 family of 38kDa proteins consists of four members p38α, β, γ and δ displaying 

approximately 60% sequence homology, of which p38α was the first described (Han et al., 1994) 

responding to LPS stimulation. It is now thought that the main role of p38 signalling is to respond to 

stress stimuli. As well as being the first discovered p38, p38α is also the most widely studied in part due 

to its ubiquitous expression with the other family members displaying a more tissue specific expression 

(Cuenda and Rousseau, 2007). p38 and the other MAPKs which I will discuss later share a similar 

structure, consisting of two distinct lobes between which the kinase site sits, with co-phosphorylation of 

threonine and tyrosine residues separated by a single amino acid, which in the case of p38 is Thr180-

Gly-Tyr182, of the activation loop required to allow substrate binding.  

p38 activation sits at the bottom of a multifaceted cascade, directly activated by MAP2Ks which are in 

turn activated by MAP3Ks activation of which is usually receptor coupled but may be as a result of 

intracellular activation. p38 has been shown to be phosphorylated by the following MAP2Ks, MKK3,4 and 

6. MKK3 and 6 are thought to be very selective for p38 over ERK-1/2 and JNK-/1 (Dérijard et al., 1995; 

Raingeaud et al., 1996; Terada et al., 1999) and are also thought to be the main activators of p38, with 

MKK4, which can also activate JNK-1/2, required only in response to certain stresses (Brancho et al., 

2003). The use of MKK3 and MKK6 is itself likely to be cell and stimulus dependant, although with some 

demonstrated overlap (Enslen, 1998), with one study demonstrating that CD4 T cells utilized MKK3 to a 

greater extent than MKK6, whilst T cell progenitors preferentially used MKK6 (Tanaka et al., 2002). 

These MAP2Ks require activation themselves, again by co-phosphorylation of their activation loop, by 

MAP3Ks, at this level there is much greater overlap of function, again covered in more detail in the 

review by Rubinfeld et al (Rubinfeld and Seger, 2005), including ASK1, TAK1, MLK2 and MEKK3 among 

others. Whilst these activations and those of the MAPKs themselves can occur as direct kinase 

interactions, as with the other signalling mechanisms already described the role of scaffold proteins is 

now widely being investigated. The scaffold protein osomosensing scaffold for MEKK3 (OSM) forms a 

scaffold that recruits and facilitates the activation of MEKK3, MKK3 and p38 in a cascade in response to 

osmotic stress (Uhlik et al., 2003), although no mechanism for this recruitment was or has been described, 

so the usage of poly-ubiquitin chains in this system is unknown. 
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This wide variety of activating proteins means that p38 can be activated by numerous different stimuli, of 

direct importance to my study however is its response to TGF-β1 and TNFα, and response to both has 

been demonstrated (Wysk, 1999; Wang et al., 2002). TGF-β1 activation of p38 utilizes the non-canonical 

pathway described in 1.3.4 utilising TRAF6 and TAK1 (Yamashita et al., 2008), although p38 can 

subsequently activate this canonical arm (Furukawa et al., 2003); with TNFα and IL-1β also utilising this 

activatory mechanism (McDermott and O’Neill, 2002; Royuela et al., 2008), although other activating 

pathways are used as well depending on stimuli. The localization and activity of p38 in response to 

stimuli is poorly understood; p38 is thought to reside in the cytoplasm in its un-stimulated state with 

some reports stating that nuclear localization is specifically mediated by DNA damage signals (Wood et 

al., 2009) although others describe phosphorylated p38 in the nucleus in un-stimulated cells (Lu et al., 

2006; Gorog et al., 2009). 

When nuclear localized, the export of p38 is mediated by its downstream substrates such as MAPK 

activated protein kinase (APK)-2 and 5 which both contain nuclear localization and nuclear export signals, 

upon binding with these substrates in the nucleus the localization signal is masked and the complex 

exported (Seternes et al., 2002; Gorog et al., 2009). This led to the hypothesis that mitogen activated 

protein kinase activated protein kinase (MAPKAPK)-2/5 may be responsible for p38 nuclear localization 

as well with signals masked depending on other stimuli, however MAPKAPK-2 knockout experiments 

demonstrated an elevated nuclear localisation of p38 (Gorog et al., 2009). Interestingly TAB1 is capable 

of binding and phosphorylating p38, which leads to a reduction p38 signalling activity and also 

decreases nuclear localization (Lu et al., 2006), from which it is possible to hypothesize that p38 

activating factors such as MKK3 may also act as mediators of localisation, although to date this has not 

been described.  

p38 interacts with a huge variety of substrates including the MAPKAPKs mentioned above as well as 

other factors such as ATF-1, p65, FADD inhibitors and p53, for a more in depth coverage see the review 

by Cargnello et al (Cargnello and Roux, 2011). This wide range of substrates allows p38 to modulate 

several other signalling pathways either directly or indirectly, for example p38 through its substrate 

mitogen and stress activated protein kinase 1 (MSK1) is capable of phosphorylating p65, which important 

in p65 transcriptional activity in response to TNFα (Vermeulen et al., 2003). Alternatively, as well as being 

phosphorylated by TAB1, p38 is itself capable of phosphorylating TAB1 inhibiting it's activation of TAK1 

and the subsequent downstream signalling that it mediates (Cheung et al., 2003). 
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As with all the other areas of this introduction, inactivation of p38 is also poorly understood. Inhibitory 

methods such as those described already through TAB1 mediated inactivation (Lu et al., 2006), and 

potential negative feedback through inhibition of TAK1 activity (Cheung et al., 2003). De-phosphorylation 

of p38 has also been shown to play a key role in the regulation of p38 activity, traditional phosphatases 

such as the previously discussed PP2A which removes singular phosphate groups from the p38 

activation loop. Interestingly de-phosphorylation of Thr180 completely inhibits p38 activity, whereas de-

phosphorylation of Tyr182 leads to a 20 fold reduction in kinase activity (Zhang et al., 2008), which may 

provide a means of tuning p38 response. As well as these more generic phosphatases special MAPK 

phosphatases (MKP)s which can de-phosphorylate both residues of MAPK have been described with 

MKP-1, 4 and 5 having been shown to de-phosphorylate p38 (Owens and Keyse, 2007). 

 

5.1.1 Chemical Inhibition of p38 
Previous assays of phosphorylation in PBECs 4.1.2.2, 4.2.2.2 and 4.3.2.2 had demonstrated that p38 was 

not phosphorylated in response to TGF-β1 or TNFα, but displayed a constant level of phosphorylation 

after stimulations, which was not affected by any inhibitory treatment used so far. Prior to assessing 

phosphorylation across a time course I decided to chemically inhibit its function. SB 203580 (p38i) is a 

well characterized cell-permeable inhibitor of p38 that blocks ATP binding required for kinase function 

(Tong et al., 1997). As with the inhibitor of IKKβ a variety of IC50 doses have been described, with a 50-

100nM dose inhibiting TNFα production in the THP-1 human monocyte cell line, or mechanistically a 

1µM inhibiting platelet aggregation initiated by collagen (Saklatvala et al., 1996). 
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A 10µM dose of p38i was, at the morphological level, capable of slightly inhibiting EMT in response to 

TGF-β1 or TNFα, however the effect was very mild. No dose of p38i inhibited the TGF-β1 driven and 

TNFα accentuated loss of E-cadherin and gain in fibronectin expression significantly. A slight inhibition of 

the accentuated production of fibronectin was observed at 20µM, but conversely this high dose was also 

down-regulating E-cadherin expression in its own right when comparing un-stimulated cells. Due to the 

lack of inhibitory effect, choosing a dose of p38i for future experiments was difficult; nevertheless, a 

10µM dose was chosen and used over the 20µM dose due to its reduced effect on cell viability and 

weaker impact on baseline levels of E-cadherin. 

 

5.1 .1 . 1 Chemical Inhibit ion of p38, Effect on EMT Endpoint 
With an appropriate dose of p38i decided upon in A549 cells the next step was to observe what effect 

this would have on EMT in PBECs. n=3 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 1 hour pre-treatment with 10μM p38i. Cell lysate and culture media was 

retained and EMT was assessed using a variety of markers. 
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The above results demonstrate that along with not phosphorylating in response to TGF-β1 or TNFα 

stimulation, p38 does not appear to play a role in EMT for the assessed markers. Due to this surprising 

outcome it was decided to not investigate the role of p38 further, and to focus on other potential 

downstream mediators of TAK1.  

 

5.1.2 p38 Discussion 
Stimulation with TGF-β1 or TNFα had not induced phosphorylation of p38 in previous experiments, 

therefore I moved straight into chemical inhibition of p38 to confirm this lack of role before initiating 

other more involved experiments. p38i did not limit either TGF-β1 driven EMT or its accentuation by 

TNFα, confirming in our system that it did not play a direct role. 

This finding was somewhat surprising as numerous studies have demonstrated p38 activation in 

response to TGF-β1 (Varela-Rey et al., 2002; Yamashita et al., 2008; Kolosova et al., 2010) and TNF 

(Varela-Rey et al., 2002; Royuela et al., 2008), has been strongly implicated in the development of EMT 

(Kolosova et al., 2010; Lv et al., 2011) and also in OB (Ramirez et al., 2006) with a p38δ inhibitor11 

recently approved for use in treatment of IPF (Moran, 2011). However with the data to hand it is only 

possible to conclude that p38 does not play a role in our system; interestingly our group has previously 

demonstrated this effect in A549 cells, whereby p38 phosphorylation was increased by TNFα stimulation, 

but played no role in the subsequent development of EMT (Borthwick et al., 2011). 

One possibility is that the chemical inhibitor used is not blocking p38 activity, or all p38 activity. It has 

been demonstrated that p38i inhibits p38α and β more strongly than p38γ or δ (Davies et al., 2000). It is 

therefore possible, especially in light of a p38δ inhibitor entering clinical use (Moran, 2011) that we are 

not inhibiting the correct isoform. However in a study investigating the role of p38 in the development of 

EMT in a pulmonary epithelial cell line used half the dose of p38i and strongly inhibited the expression of 

fibronectin and secretion of collagen I (Kolosova et al., 2010). Similarly this does not account for the lack 

of change in phosphorylation seen upon stimulation, using an antibody that can detect all isoforms of 

p38 (Avitzour et al., 2007); also in a previous paper our group has demonstrated a change of p38 

phosphorylation using the same antibodies (Borthwick et al., 2011). Whilst not displaying a lack of effect, 

p38 phosphorylation has been shown to inhibit TGF-β1 driven EMT, protecting against the loss of E-

                                                 
11 Esbriet (Pirfenidone), InterMune 
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cadherin, and gain of vimentin expression by inhibiting TAK1 activity (Strippoli et al., 2010) suggesting 

that the role of p38 may be cell type dependant. 

As with IKKi, p38i does not block the phosphorylation of p38, but rather its kinase activity, as such to 

investigate efficacy of inhibitor a specific p38 substrate is required; due to the often overlapping roles for 

MAPKs it can be difficult to isolate such a substrate. There are several kits available that facilitate a cell 

free kinase/substrate assay using antibodies raised against p38, and other groups have modified p38 to 

allow for a more specific pull down (Szafranska et al., 2005). The transcription factor myocyte-enhancer 

factor 2C is phosphorylated selectively by p38 but not ERK2 or JNK1 (Han et al., 1997), and as such may 

have served as a good target for a cell based system. However, due to the lack of phosphorylation seen 

in previous PBEC experiments, and the poor effect of the inhibitor at doses higher than those described 

in other positive studies (Kolosova et al., 2010; Lv et al., 2011) it was decided to halt investigations into 

p38 at this point.  
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5.2 Extracellular signal-regulated-1/2 
The MAPK ERK family of proteins are encoded for by two genes, MAPK1 and MAPK3 which encode the 

ubiquitously expressed 42 kDa ERK-2 and 44 kDa ERK-1 proteins respectively, and were the first MAPKs 

to be discovered (Boulton et al., 1990) and display approximately 85% sequence homology (Boulton et 

al., 1991). As with p38 both ERK-1 and ERK-2 are formed of two lobes with a catalytic groove running 

between which is activated by co-phosphorylation of threonine and tyrosine residues in the activation 

loop; separated by glutamate in a Thr202-Glu-Tyr204 arrangement for ERK-1 and Thr185-Glu-Tyr187 for 

ERK-2, with tyrosine phosphorylation occurring before threonine (Ferrell Jr., 1997). Some evidence of 

redundancy between ERK-1 and ERK-2 has been demonstrated (Voisin et al., 2010) however several 

non-redundant functions have also been described (Hatano et al., 2003; Li and Johnson, 2006). 

ERK-1/2 signalling follows a broadly similar pattern to that of p38 utilising a similar cascade but with 

different key components. Receptor stimulation, and both TGF-β1 (Lee et al., 2007) and TNFα12 

(Kakiashvili et al., 2011) have been shown to be able to activate ERK-1/2. This leads to the activation of 

small GTPases such as Ras and Rap which are capable of activating MAP3Ks; with the rapidly accelerated 

fibrosarcoma (RAF) family of proteins specifically associated with ERK-1/2 activation (Hagemann and 

Rapp, 1999) and other less specific MAP3Ks such as MEKK1 (Karandikar et al., 2000), also associated with 

JNK activation (Xia, 2000). Downstream of this the MAP2Ks MEK1 and 2 specifically activate ERK-1/2 by 

phosphorylation of its activation loop (Catalanotti et al., 2009). Efficient signal transduction is thought to 

mediated by association of the various components with the scaffold protein kinase suppressor of Ras-1 

(KSR1) (Therrien et al., 1996). 

ERK-1/2 reside in the cytoplasm in their un-stimulated state held in place by several scaffold proteins 

(Tanoue et al., 2000; Perlson et al., 2006), upon phosphorylation within the activation loop they are 

released into the cytoplasm. In this state ERK-1/2 is not capable of nuclear translocation and requires 

further phosphorylation, by unknown means, in a region outside of the activation loop, which allows 

ERK-1/2 to associate with nuclear import proteins and translocate to the nucleus, however it was shown 

that this phosphorylation and not just nuclear import protein association was required for this transition 

(Chuderland et al., 2008). Within the nucleus ERK-1/2 are capable of activating numerous different 

transcription factors including c-Jun13 (Morton et al., 2003), c-Fos (Murphy et al., 2002), NF-κB (Peng et 

                                                 
12 TNFα is proposed to act through epidermal growth factor receptor (EFGR) rather than TNFR. 
13 Differentially to JNK-1/2 mediated phosphorylation. 
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al., 2010) and more exclusively for ERK-1/2 the E twenty-six-like transcription factor 1 (ELK1) (Gille et al., 

1995). 

Although the majority of activated ERK-1/2 translocates to the nucleus a fraction remains in the 

cytoplasm where it is capable of interacting with numerous factors including MAPK-interacting kinase-

1/2 (MNK1, 2) (Waskiewicz et al., 1997) and the ribosomal S6 kinase (RSK) family of proteins (Chen et al., 

1992), although these are also often located in the nucleus as well. In both instances these kinases are 

capable of interacting with other transcription factors for example the RSK2 is capable of 

phosphorylating Iκ-Bα initiating NF-κB signalling in an IKK independent manner (Peng et al., 2010) 

As with p38 deactivation of ERK-1/2 signalling can be achieved through generic phosphatases such as 

PP2A (Kins et al., 2003), with the dual de-phosphorylating MKP-3 showing strong associations with ERK-

1/2 (Kim et al., 2003). 

 

5.2.1 Chemical Inhibition of ERK-1/2 
A reliable phospho-ERK-1/2 antibody was never worked up, hence why it was not used in other 

phosphorylation panels. Example blots are included with the chemical inhibitor data. Due to this lack of 

reliable assay, and with the limited results acquired suggesting that it ERK-1/2 was not phosphorylated 

by TGF-β1 or TNFα it was decided that, as with p38, prior to assessing phosphorylation across a time 

course I would chemically inhibit ERK-1/2 activity. 

FR180204 (ERKi) is a cell-permeable inhibitor of ERK-1/2 which blocks ATP binding required for kinase 

function (Ohori et al., 2005) with the same paper describing an IC50 of 500nM when analyzing the 

phosphorylation of myelin basic protein, a substrate of ERK-1/2 in a cell free system, and a dose of 

3.1µM inhibiting the activation of AP-1 by half in Mv1Lu cells14. 

                                                 
14 Mink lung epithelial cell line 
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ERKi was not capable of inhibiting EMT either morphologically or at the protein level at any dose, with 

higher doses of 10 and 20µM decreasing the baseline level of E-cadherin expression. To verify this lack 

of role in EMT I decided to use a 5µM dose of ERKi and perform the standard screen in PBECs to 

determine if other markers of EMT were also unaffected. 

 

5.2.1 .1 Chemical Inhibit ion of ERK-1/2, Effect on EMT Endpoint 
With an appropriate dose of ERKi decided upon in A549 cells the next step was to observe what effect 

this would have on EMT in PBECs. n=3 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 1 hour pre-treatment with 5μM ERKi. Cell lysate and culture media was 

retained and EMT was assessed using a variety of markers. 
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As with p38 the above results demonstrate that ERK-1/2 does not play a role in either TGF-β1 driven 

EMT, or its accentuation by TNFα for the assessed markers, in the case of vimentin ERKi was increased 

EMT compared to untreated controls. ERKi phosphorylation was difficult to assay, but displayed no 

change upon stimulation, and was not inhibited by ERKi. 

 

5.2.2 ERK-1/2 Discussion 
Stimulation with TGF-β1 or TNFα had not induced phosphorylation of ERK-1/2 in the limited experiments 

where a signal was detected, therefore I moved straight into chemical inhibition of ERK-1/2 to confirm 

this lack of role before initiating other more involved experiments. Similarly to p38i, ERKi did not limit 

either TGF-β1 driven EMT or its accentuation by TNFα, confirming in our system that it did not play a 

direct role. Whilst detection of total ERK-1/2 was feasible and did not vary upon stimulation or inhibition 

detection of the phosphorylated form required the use of excessively high lysate concentrations, 

although again when detectable there was no variation in the level of phosphorylation. 

These results were again surprising as ERK-1/2 has been implicated in EMT (Lee et al., 2007; Strippoli et 

al., 2008; Kakiashvili et al., 2011) and is capable of being activated by TAK1 (Nishimura et al., 2009) 

although it is thought that p38 and JNK-1/2 are more strongly activated by the typical MAP2Ks activated 

TAK1. Alternative splice variants are produced from MAPK1 and MAPK3 (Strausberg et al., 2002) and a 

novel effect from one of these splice variants has been described (Shaul et al., 2009). However this splice 

variant produces a smaller ERK-1 protein which is detectable as a distinct band under the normal ERK-1 

and ERK-2 bands (Aebersold et al., 2004), and was not observed, and there is no data to suggest that 

ERKi would have less of an effect on these variants due to the high degree of homology.  

Therefore the only conclusion to draw is that in this system ERK-1/2 and p38 play little role in the 

development of EMT. The lack of change in phosphorylation upon stimulation or after TAK1 inhibition 

suggests both that TGF-β1 or TNFα are not utilising these pathways in PBECs, and also that activation of 

each is not mediated by TAK1. As discussed in the various introductory sections there are numerous 

other stimuli and MAP3K/MAP2Ks that are capable of activating p38 and ERK-1/2 and it may be that 

these are their preferred cascades in PBECs. The final MAPK I investigated was JNK-1/2 which already 

displayed a phosphorylation response to simulation which was effected by inhibition of TAK1 its 

upstream mediator.  
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5.3 c-Jun N-terminal kinase-1/2 
The JNK family of MAPK proteins consists of three members JNK-1, 2 and 3 encoded for by the JNK1,2 

and 3 genes respectively, with several variants of each capable of being produced. JNK-1 and 2 are 

thought to ubiquitously expressed (Kallunki et al., 1994) whereas JNK-3 (Mohit et al., 1995) is thought to 

be specific to neuronal cells. The main target of JNK-1, 46 kDa, and JNK-2, 55 kDa, is control the AP-1 

transcription factor especially through activation of c-Jun one of its components with JNK-2 displaying a 

higher affinity (Kallunki et al., 1994); although redundancy has been demonstrated in relation to other 

substrates (Kosters et al., 2009). Activation of JNK-1/2 is mediated by the co-phosphorylation of Thr183-

Pro-Tyr185 within the activation loop of each form, which facilitates substrate binding. 

Initiation of JNK-1/2 signalling is thought to be mediated by the usage of GTPases such as RAC-1 and 

RAC-2 when signalling in response to growth factor receptors such as EGFR (Minden et al., 1995); with 

these factors being less important on TNFR and IL-1R mediated JNK-1/2 activation (Minden et al., 1995), 

suggesting that upstream kinases, sometimes termed MAP4Ks, such as the archetypal MAP4K (Su et al., 

1997) playing more of a role. Whatever the means of activation a wide variety of MAP3Ks are capable of 

responding to stimulation including MEKK1 (Xia, 2000) and importantly TAK1 (Wang et al., 2001; Mao et 

al., 2011). At the MAP2K level MKK4 and 7 have been shown to be key non-redundant regulators of 

JNK-1/2 co-phosphorylation required for its efficient activation. MKK4 has been shown to preferentially 

phosphorylate the Tyr185 residue, whereas MKK7 targets Thr183 (Lawler et al., 1998). Phosphorylation of 

Thr183 alone leads to a 10 fold reduction in kinase activity, whereas phosphorylation of Tyr185 alone 

leads to complete inhibition of activity (Khokhlatchev et al., 1997). Activation of JNK-1/2 is once again 

thought to be mediated by associated scaffold proteins such as the JNK-interacting protein (JIP) family of 

proteins which can recruit and activate JNK-1/2 along with its upstream effectors (Matsuguchi et al., 

2003). 

Once activated the main and first described function of JNK-1/2 is to activate the AP-1 transcription 

factor component c-Jun (Hibi et al., 1993), which when dimerized with other AP-1 components such as 

c-Fos can rapidly alter transcription with the dimer composition controlling specificity of interaction with 

DNA (Angel and Karin, 1991), and also interactions with other transcription factors such as SMAD3 

(Verrecchia et al., 2000) and NF-κB (Shyu et al., 2008). Activation of c-Jun is achieved by phosphorylation 

of Ser63 and Ser73 specifically by JNK-1/2 with other proteins such as ERK capable of phosphorylating 

different residues. Phosphorylation of Ser63 and Ser73 is thought to control activation of c-Jun with 

alternative phosphorylation determining its associations (Hibi et al., 1993; Minden et al., 1995).  
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As with previous MAPKs discussed JNK-1/2 signalling can be de-activated through generic phosphatases 

such as PP2A, which can decrease as opposed to completely inhibit activity (Khokhlatchev et al., 1997) as 

well as dual de-phosphorylating MKPs such as MKP1 (Mizuno et al., 2004) and MKP7 (Tanoue et al., 

2001). 

 

5.3.1 Phosphorylation Response of JNK-1/2 
In previous work JNK-1/2 was phosphorylated by both TGF-β1 or TNFα with a possibly accentuated 

response seen upon co-stimulation. To verify this, and also investigate the initiation and duration of 

phosphorylation a time course experiment was performed. 

PBECs were cultured in 6 well collagen coated plates until confluent and stimulated with TGF-β1 or TNFα. 

Cells were harvested at 0, 0.5, 1, 5, 10, 30 and 60 minute time points. Whole cell PBEC lysate was 

immuno-precipitated for total SMAD3, under denaturing conditions, with the resulting lysate probed for 

pJNK-1/2 (both Thr183 and Tyr185) by indirect ELISA. Neat lysate from the 30 minute stimulation was 

analyzed by Western blot for both total and phospho forms of JNK-1/2. 

As with the IKKα/β phospho-time course the antibodies used in this protocol targeted both isoforms of 

JNK. Unlike IKKα/β both isoforms of JNK were strongly detected in total and phosphorylated forms, and 

although JNK-1 phosphorylation was not affected by TGF-β1 or TNFα stimulation its phosphorylation 

was blocked by chemical inhibition of TAK1, therefore separating the relative contributions of JNK-1 or 

JNK-2 to the results below is not possible, although western blots at a 30 minute time point would 

suggest that variation between stimulations was due to JNK-2. 
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Both TGF-β1 and TNFα induced significant phosphorylation of JNK-1/2 from 5 minutes up until 30 

minutes, at 60 minutes levels were returned to near baseline. Co-stimulation however induced a 

significant increase in phosphorylation from 1 minute, which lasted beyond 60 minutes. Most 

interestingly, however was the nature of the response to co-stimulation, an accentuative phosphorylation 

occurred at both 1 and 60 minute time points, with the level of phosphorylation remaining high at all 

time points. 

 

5.3.2 Chemical Inhibition of JNK-1/2 
With previous results demonstrating that TAK1 may phosphorylate JNK-1/2 as a downstream mediator, 

and with JNK-1/2 phosphorylating in response to both TGF-β1 and TNFα investigations into its role in 

EMT were required. 

JNK Inhibitor II (JNKi) is a cell permeable inhibitor of JNK-1/2 and 3 that acts by blocking ATP binding 

sites required for kinase activity. In a cell free kinase assay an of JNK mediated phosphorylation of the 

transcription factor c-Jun an IC50 of 50nM was described with the same paper describing an in vitro IC50 

of 5-10µM when looking at c-Jun phosphorylation in Jurkat cells15 (Bennett et al., 2001).  

A dose response curve looking at cell viability, morphology and effect on EMT after pre-treatment with 1, 

5, 10 and 20μM doses of JNKi prior to stimulation with TGF-β1 and TNFα for 72 hours was performed in 

triplicate using A549 cells. 

 

                                                 
15 T-lymphocyte cell line 
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JNKi strongly inhibits both TGF-β1 driven EMT and its accentuation by TNFα morphologically and at the 

protein level. A 20µM dose inhibited all facets of EMT most efficiently yet induced a large decrease in cell 

viability compared to untreated controls. At the protein level, there was no added benefit at using a 

20µM dose over 10µM, and looking at E-cadherin alone 5µM JNKi inhibited its loss to the same degree 

as 10 and 20µM doses of JNKi. In future experiments a 5μM dose of JNKi was used which was capable of 

strongly inhibiting EMT at the protein level with very little reduction in cell viability. 

 

5.3.2.1 Chemical Inhibit ion of JNK-1/2, Effect on EMT 
Endpoint 

With an appropriate dose of JNKi decided upon in A549 cells the next step was to observe what effect 

this would have on EMT in PBECs. n=4 PBEC cultures from distinct patients were stimulated with TGF-β1 

or TNFα for 72 hours after a 1 hour pre-treatment with 5μM JNKi. Cell lysate and culture media was 

retained and EMT was assessed using a variety of markers. 
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The results described above provide strong evidence, that JNK-1/2 activation plays a key role in the 

subsequent occurrence of EMT. Pre-treatment of PBECs with a 5µM dose of JNKi strongly inhibited the 

loss of E-cadherin expression and the gain of fibronectin and vimentin expression, as well as the increase 

in secretion of collagens I-IV and pro-MMP-9 into the media in response to TGF-β1 stimulation. JNKi also 

strongly limited the accentuative effect of TNFα for all markers of EMT. 

 

5.3.2.2 Chemical Inhibit ion of JNK-1/2, Effect on 
Phosphorylation 

JNK-2 has previously been shown to phosphorylate in response to both TGF-β1 and TNFα, with an 

accentuated and extended phosphorylation of JNK-1/2 in response to co-stimulation. It was also 

demonstrated that JNK-1/2 phosphorylation could be inhibited, by the upstream inhibition of TAK1. To 

verify the proposed location of JNK-1/2 in this signalling cascade I investigated the effect of JNKi pre-

treatment on the phosphorylation of other key signalling proteins, in this instance with the addition of c-

Jun as a substrate of JNK-1/2, 30 minutes after stimulation with TGF-β1 or TNFα. 
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JNK-2 was phosphorylated in response to TGF-β1 or TNFα alone and displayed an accentuated 

phosphorylation upon co-stimulation, phospho-JNK1 was detected in all stimulations with no variation 

between. Due to the described inhibitory activity of JNKi it was thought that phosphorylation would not 

be affected, however surprisingly phosphorylation of both JNK-1 and JNK-2 was blocked by pre-

treatment with JNKi, possibly due to similar mechanisms discussed for TAKi. c-Jun, a substrate of JNK-1/2, 

was phosphorylated by both TGF-β1 or TNFα alone, with an accentuative phosphorylation upon co-

stimulation; upon pre-treatment with JNKi this phosphorylation was completely blocked. This confirms 

that JNK-1/2 sit below TAK1 and with IKKβ and SMAD3 acting independently. 

 

5.3.3 siRNA Knockdown of JNK-1/2 
JNKi inhibited both JNK-1 and JNK-2 phosphorylation, siRNA knockdown of each isoform would help 

better understand the relative importance of JNK-1 and JNK-2 in EMT, whilst also confirming the work 

performed with JNKi. siRNA targeting JNK-1 (JNK1si - GTGGAAAGAATTGATATATAA) or JNK-2 (JNK2si - 

GCCGUCCUUUUCAGAACCAT) were used in a dose response assay for cell viability, morphology and 

effect on EMT after a 24 hour pre-treatment with 1, 5, and 10nM doses of siRNA delivered through lipid 

transfection of adherent cultures, prior to stimulation with TGF-β1 and TNFα for 72 hours. 
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JNK1si knocked down JNK-1 in a dose dependant manner without affecting expression of JNK-2, 

however knockdown of JNK-1 did not inhibit the TGF-β1 driven loss of E-cadherin or gain of fibronectin, 

or the accentuation of this effect by TNFα. There was a trend for decreased viability upon increased dose, 

which was amplified in TNFα alone treated cells especially at the 10nM dose, therefore a dose of 5nM 

JNK1si was used in future experiments. 

JNK2si knocked down JNK-2 in a dose dependant manner without affecting expression of JNK-1. JNK2si 

also inhibited TGF-β1 driven loss of E-cadherin or gain of fibronectin, or the accentuation of this effect 

by TNFα in a dose dependant manner with the greatest effect seen with the 10nM dose. There was a 

very slight trend for decreased viability upon increased dose, and therefore a 10nM dose was used in 

further experiments. 

 

5.3.3.1 siRNA Knockdown of JNK-1/2, Effect on EMT 
Endpoint 

With appropriate doses of JNKsi confirmed for use in PBECs I proceeded to investigate what effect 

knockdown of JNK-1 or JNK-2 had on EMT. n=3 PBEC cultures from distinct patients were stimulated 

with TGF-β1 or TNFα for 72 hours after a 24 hour pre-treatment with 5nM JNK1si, 10nM JNK2si or a 

sequence scrambled control. Cell lysate and culture media was retained and EMT was assessed using a 

variety of markers. 
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The results above confirm that JNK-2 plays a key role in EMT for all of the markers assayed, with 

knockdown of total protein inhibiting the loss of E-cadherin expression, gain in vimentin and fibronectin 

expression and increase in pro-MMP-9 and collagens I-IV secretion. Interestingly knockdown of JNK-1, 

which is not phosphorylated by either TGF-β1 or TNFα, and plays no role in controlling the expression of 

E-cadherin, fibronectin or vimentin was able to strongly inhibit the secretion of pro-MMP-9 and 

collagens I-IV. In the case of collagen secretion JNK1si was actually more effective than JNK2si at 

reducing collagen secretion, increasing levels to below that of baseline un-stimulated cells. 

 

5.3.4 Localization of JNK-1/2 
Both chemical inhibition and siRNA knockdown of JNK-2 suggest that it plays a key role in EMT, and 

siRNA knockdown of JNK-1 implicated it in the control of collagen and protease secretion. JNK-1/2 is 

also known to interact with the c-Jun transcription factor which can translocate to the nucleus, and TAK1 

which we have demonstrated localizes to the nucleus by unknown means. I therefore hypothesized that 

JNK-1/2 may be mediating this localization of TAK1 in association with a transcription factor such as c-

Jun, to investigate this I first looked at localization of both total and phospho-JNK-1/2 30 minutes post 

stimulation with TGF-β1 or TNFα in PBECs. 
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Total-JNK-1/2 localization was unchanged under all conditions as assessed by western blot, located most 

strongly in the cytoplasm with some evidence of nuclear localization. Conflicting results for phospho-

JNK-1/2 were described; ICC demonstrated a pronounced increase in phosphorylation and nuclear 

localization in response to TGF-β1 or TNFα alone, with a potentially accentuated effect upon co-

stimulation. However, western blotting showed that whilst phospho-JNK-1/2 was activated in the 

cytoplasm in the aforementioned pattern, phospho-JNK-1/2 levels in the nucleus did not vary upon 

stimulation, and detected levels were greatly reduced. 

 

5.3.5 Further JNK-1/2 Work 
To validate previous work that showed JNK-1/2 associating with TAK1 and potentially c-Jun, and also to 

demonstrate if c-Jun is indeed activated by JNK-1/2, an investigation into JNK-1/2 protein interactions 

was required. 
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At 30 minutes neither SMAD3 nor IKKβ were associated with JNK-1/2 under any stimulation, c-Jun and 

TAK1 were both associated but there was no variation in strength of association between stimulations. 

Phospho-c-Jun was not associated with JNK-1/2 after stimulation with TGF-β1 or TNFα alone, however 

upon co-stimulation an association was detected. As with the TAK1 investigation before it this 

experiment was limited to a single time-point so it is possible that associations may have varied outside 

of this. 

 

5.3.6 JNK-1/2 Discussion 
Prior investigation had shown that TGF-β1 but not TNFα was capable of inducing the canonical SMAD 

signalling response; with inhibition of SMAD3 limiting TGF-β1 driven EMT, with an unknown activity in 

relation to the accentuative effect of TNFα. Inhibition of IKKβ not only limited the accentuative effect of 

TNFα on EMT but also inhibited the driving effect of TGF-β1, which in conjunction with previously 

detected accentuated TAK1 phosphorylation was the catalyst to look at TAK1 as a potential mediator of 

this signalling crosstalk. 

To summarize the data presented in the preceding sub-chapter: TGF-β1 or TNFα phosphorylate JNK-1/2 

with an accentuated and prolonged phosphorylation upon co-stimulation, with c-Jun displaying a similar 

pattern. Western blots suggested that JNK-2 was being phosphorylated preferentially to JNK-1. Chemical 

inhibition of JNK-1/2 strongly inhibited TGF-β1 driven EMT and its accentuation by TNFα for all markers, 

siRNA knockdown of JNK-2 had a similar effect, whereas knockdown of JNK-1 only inhibited the 

secretion of pro-MMP-9 and collagens I-IV. JNKi inhibited the phosphorylation of JNK-2 and c-Jun 

without altering the phosphorylation of other signalling proteins. JNK-2 displayed some evidence of 

nuclear localisation on phosphorylation but significant levels were also detected in the cytoplasm. TAK1 

and c-Jun were constitutively associated with JNK-1/2, phospho-c-Jun was associated only upon co-

stimulation. 

In 4.2.4 I proposed that IKKβ activity was driving the TNFα mediated accentuation of EMT, with TAK1 

purely playing an activating role, and JNK-2 no role even though activated. In 4.3.7 I revised this 

hypothesis to describe a potential modulation of IKKβ NF-κB activity by TAK1 as a result of differential 

protein associations, and with TAK1 and JNK-2 modulating SMAD3 activity. However in light of the fact 

that inhibition of JNK-1/2 strongly blocks TGF-β1 driven EMT and its accentuation it is now apparent that 

JNK-1/2 most likely through the action of c-Jun is modulating both SMAD3 (Sano et al., 1999; Verrecchia 
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et al., 2001) and NF-κB (Liu et al., 2000; Wang and Sonenshein, 2005) transcriptional activity inducing 

EMT and its accentuation upon co-stimulation. 

JNKi targeted both JNK-1 and JNK-2 and strongly blocked EMT development in all markers, when using 

JNK-1 or JNK-2 specific siRNA JNK-2 was confirmed as playing the key role in this development. JNK1si 

however whilst not affecting E-cadherin, fibronectin or vimentin expression strongly inhibited the 

secretion of pro-MMP-9 and collagens I-IV for all stimulations. That JNK2si was also capable of strongly 

inhibiting this secretion suggests that JNK-1 and JNK-2 are working co-operatively; as far as I am aware a 

single paper has demonstrated a similar effect, whereby JNK-1 phosphorylates JNK-2 before both 

phosphorylating p53 at different activation residues (Oleinik et al., 2007) . However in this instance JNK-1 

displays increased phosphorylation whereas in my results only a basal level was detected, suggesting that 

it is the presence of JNK-1 rather than it's activation that is required. Another group working in primary 

tracheal cells has demonstrated an important role for JNK-1 in mediating TGF-β1 SMAD3 driven EMT, 

especially when looking at collagen I expression (Alcorn et al., 2008; Velden et al., 2011), interestingly 

their results suggested that EMT was independent of JNK-2. Due to the higher efficiencies of JNK-2 

binding with c-Jun (Kallunki et al., 1994) this may suggest than an alternative transcriptional component 

is being activated, although downstream mechanisms were not discussed. 

Total c-Jun was detected at lower levels than in stimulated cells, between which there was no variation, 

this may be explained by the fact that JNK-1/2 activated c-Jun is capable of inducing its own 

transcription in a positive feedback loop (Angel et al., 1988; Minden et al., 1994). With accentuated 

activation of TAK1 and JNK-2, c-Jun phosphorylation is itself accentuated; in an environment whereby 

TAK1 and JNK-2 are constitutively activated, such as that present in OB continued activation of c-Jun 

could lead to excessive activation of JUN, with this excess c-Jun perhaps capable of interacting with NF-

κB and inducing accentuated EMT. 

In our model a I have described a distinct MAPK cascade through TAK1, JNK-2 and c-Jun with no 

evidence of p38 or ERK-1/2 involvement, in the following section I attempt to outline my final signalling 

hypothesis, and areas where I feel further work is required.  
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6 Final Remarks 
I have discussed specific results in their relevant chapters, so this final section is an attempt to briefly 

outline the findings which I think are most important, to discuss areas of the work which, with the benefit 

of hindsight, may have been better undertaken and to briefly discuss where I envisage this work could 

lead. 

Firstly the work performed with Dr Rahul Mahida and Monika Suwara, which is still ongoing, provides 

strong evidence that both TNFα and IL-1β are present in the airway space of the lung, with their 

occurrence appearing to peak before the diagnosis of BO, which complements previous studies looking 

at TGF-β1 (Elssner et al., 2000) in the BAL and inflammatory mediators released from BAL immune cells 

(Hodge et al., 2009). The results I present represent analysis of my contribution to the work, further 

analysis and characterisation of patient samples is underway, which may assist with the debate over 

neutrophilic or non-neutrophilic BOS (Vanaudenaerde, Meyts, et al., 2008), as well as to the treatment of 

lung transplant recipients. 

Secondly I have demonstrated a mechanism by which the accentuation of TGF-β1 driven EMT by TNFα 

may occur. TGF-β1 signals through the canonical SMAD pathway, utilising SMAD3 but requiring TAK1 

and JNK-2 activation, although TAK1 and JNK-2 are not capable of driving EMT themselves. Neither 

TAK1 nor JNK-2 is directly associating with SMAD3 but downstream mediators may be influencing its 

transcriptional efficacy. TNFα signals through TAK1 and activates IKKβ and JNK-2, which without TGF-β1 

stimulation does not strongly induce EMT. IKKβ activation is directly required for the accentuation of 

TGF-β1 driven EMT with JNK-2 modulating this effect. 

Upon co-stimulation TGF-β1 drives EMT through SMAD3 and TNFα accentuates this effect through IKKβ. 

TAK1 and JNK-2 do not directly drive either effect but are required by both, TAK1 and JNK-2 may be 

modulating SMAD3 activity possibly through c-Jun. TAK-1 activates IKKβ and upon co-stimulation with 

TGF-β1 may be initiating a more pro-fibrotic IKKβ NF-κB transcriptional activity, possibly through 

differential phosphorylation or TAB association. Alternatively, as JNK-2 was shown to also facilitate this 

accentuation and c-Jun was shown to be more strongly activated after co-stimulation modulation of NF-

κB activity may also be occurring at this level.  
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If I was to carry on this investigation there are two key points that I would focus in on. Firstly by 

manipulating the phosphorylation of specific TAK1 residues (potentially through the use of blocking 

antibodies or selective mutations within a cell line), as well as TAB protein association and observing the 

effect on NF-κB transcriptional activity it would be possible to demonstrate if the synergistic effect was 

modulated at this level. Similar techniques have been already used to describe the activation mechanism 

of TAK1 (Sakurai et al., 2002; Singhirunnusorn et al., 2005; Yu et al., 2008), by using these techniques it 

may be possible to describe how TAK1 can mediate so many differing outcomes. Secondly I would 

investigate the role of c-Jun on AP-1 (through further IP experiments, ChIP and the use of selective 

mutation of c-Jun), particularly its own transcriptional ability and how its activation can alter SMAD3 

(Sano et al., 1999; Verrecchia et al., 2001) and NF-κB activity (Liu et al., 2000; Wang and Sonenshein, 

2005) in relation to EMT. 

Due to the key role of TAK1, JNK-1 and c-Jun in numerous cell signalling events blanket inhibition of 

their function in vivo would likely do more harm them good. However targeted inhibition, both 

temporally and spatially, of the accentuated phosphorylation in response to pro-fibrotic and pro-

inflammatory factors may help limit the development of fibrosis in OB, and due to the ubiquitous nature 

of these proteins, potentially other disorders with a similar pathophysiology, for example a recent study 

in a mouse kidney fibrosis has described a similar key role for TAK1 in regulation both inflammation and 

fibrosis (Ma et al., 2011) 

6.1 Critiques 
Looking back at the work I have performed for this thesis perhaps the greatest criticism I can make is that 

it alternated between trying to be a basic science project whilst at the same time attempting to directly 

tie findings in with a disease model; and as such may not be as strong as if I had focused specifically on 

one arm. The use of PBECs provided a strong link to diseased tissue, and when used in association with 

other samples isolated from the same patients at the same time point can be very powerful, however the 

only true instance where I leveraged this in my thesis was by observing the phosphorylation of TAK1 in 

lung epithelium of patients with BOS. At the same time, the use of PBECs in several instances limited 

further experiments into the more molecular side of my project, such as ChIP assays, and large-scale 

screens of phospho proteins that would have been more feasible in a cell line. 

As such, I may have been better served to more robustly investigate the mechanistic action in a cell line 

population, before attempting to replicate key findings in PBECs, and then taking this further by linking in 
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with the longitudinal catalogue of patient samples. However following the path that I did necessitated me 

to think laterally and develop alternative assays to cope with limited cell numbers. The immuno-

precipitation and indirect ELISA protocol being the prime example of this, rather cobbled together 

because of trial and error it provided perhaps the most interesting results of my project.  

As well as the A549 (Lieber et al., 1976) cell line that I have discussed there are several other widely used 

human lung epithelial cell lines such as the 16HBE (Viallet et al., 1994) and BEAS-2B (Reddel et al., 1988) 

lines. Both of these lines would have born more resemblance to the primary cells used as they were both 

initially derived from the bronchus as opposed to cultured adenocarcinoma cells. However, as with A549 

cells both display significant abnormalities in chromosome number and in both instances were virally 

immortalized with human papilloma virus E6 and E7, and simian virus 40 early region oncogenes 

respectively.  

It has been postulated that chromosome abnormalities in cells immortalized in this fashion arise due to 

the stresses put on cells by the conflicting actions of natural telomeric shortening, and senescence 

against the virally induced oncogenes maintaining proliferation. Co-expression of telomerase reverse 

transcriptase (TRT) during the generation of cell lines is thought to reduce these stresses and thus the 

generation of cytogenetic abnormalities (Vogelstein and Kinzler, 2004). In order to generate a more 

physiologically relevant population human bronchial cell lines have been generated using the addition of 

TRT and alternative oncogenes that maintain a normal chromosome number, and displayed 

maintenance of pseudo-stratified morphology. However, whilst this technique did extend cell life span it 

was not to the same extent as seen after traditional viral immortalization (Fulcher et al., 2009).  

These attempts to improve the physiological relevance of cells used for investigations could and should 

be carried over into primary cell work, as the culture of PBECs as a submerged monolayer monoculture 

is very removed from their in vivo setting. For example, current PBEC culture protocol stipulates the use 

of collagen I, which as I have discussed in the introduction is often laid down as a provisional matrix after 

wound healing; as opposed to collagen IV that is associated with homeostasis. It is therefore possible 

that epithelial cells cultured on a collagen I matrix are more likely respond to remodelling stimuli and that 

after initial establishment of culture a collagen IV matrix should be introduced. 

Secondly the techniques that I used to pick apart signalling events were rather blunt, by looking at the 

phosphorylation of signalling proteins it was possible to tell that they responded to stimulation and may 

be involved in EMT, with inhibition of these same proteins confirming this involvement. However, what 
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was not demonstrated was the relevant importance of each signalling arm in the contribution to EMT, or 

what if any interplay or redundancy existed between them, such as that discussed for SMAD3 and TAK1. 

Although this process is required to identify proteins that are important, perhaps it would have been 

better to focus in on one specific protein such as TAK1, perhaps carrying out the work outlined in 6, 

rather than attempting to investigate all components equally. 

The temporal activation of the various signalling proteins is an area of particular further interest. 

Activation of specific residues of key proteins was assessed at multiple time points in response to the 

standard panel of TGF-β1 or TNFα (up to 60 minutes); however, their responses to chemical and siRNA-

mediated inhibition were investigated only at 30 minutes. As such, important activations of proteins not 

assessed in detail such as p38 or ERK-1/2 may have been missed. Temporal phosphorylation data in 

inhibited cells would allow stronger conclusions to be drawn about the order of the signalling cascade 

leading to the development of EMT, highlighting areas of particular interest. For example, why is SMAD3, 

identified as key in TAK1 activation, phosphorylated at a later time point? Does the earlier co-activation 

of proteins such as TAK1 (Thr187) prime SMAD3 to respond in a different manner to TGF-β1 leading to 

EMT? How long is activation of proteins such as JNK-1/2 upon co-stimulation maintained for, and is this 

the mechanism that is inducing EMT? 

Alongside this investigations into the different responses of phospho-residues on the same protein both 

due to stimulation and temporally should be performed. The differential regulation of TAK1 Thr184 and 

Thr187 may be mimicked by other proteins such as SMAD3 that contains several other phospho residues 

other than those investigated (Ser423 + Ser425). Perhaps phosphorylation of one of these residues is 

required for the phosphorylation of other molecules such as TAK1, but not in controlling the 

development of EMT. 

Finally, whilst I have described a mechanism that can explain how TNFα accentuates TGF-β1 driven EMT, 

and highlight key areas where dysregulation may occur, I do not describe how this might come about in 

a disease state. It is still not known why the normally conflicting functions of TGF-β1 and TNFα are 

subsumed in this process, and perhaps more importantly still why it is that this occurs only in some 

people.  
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8 Appendixes 
8.1 Patient Details 

BAL Cytokine Assay Non-BOS Patient Details 
Tx # Sex Age at Tx Reason for TX Sample # 
1206 F 21 CF 3 
1231 M 57 FA 3 
1237 M 45 PF 3 
1243 M 54 α1 AD 4 
1244 F 49 COPD 3 
1254 F 20 CF 3 
1263 M 26 CF 5 
1268 M 64 Asbestosis 5 
1272 M 42 CF 3 
1275 M 62 PF 6 
1300 M 54 IPF 3 
1312 M 29 CF 4 
1317 M 45 α1 AD 5 
1327 M 52 PH 4 
1330 M 27 CF 3 
1333 M 57 Emphysema 3 
1323 M 46 FLD 5 
1348 M 25 CF 3 
1374 F 19 CF 3 
1378 M 63 PF 3 
1379 M 26 CF 5 
1459 M 60 Bronchiectasis 3 
1460 F 29 CF 3 
1498 M 46 FLD 4 
1519 M 24 CF 3 
1546 M 28 CF 5 

Appendix Figure 1 – BAL Cytokine Assay Non-BOS Patient Details 

26 patients (5 female, 21 male) with a mean age of 41.2 years and median age of 45 years (19 - 64). All 
patients gave distinct samples. 

CF = Cystic Fibrosis, FA = Fibrosing Alveolitis, PF = Pulmonary Fibrosis, α1 AD = α1 Antitrypsin 
Deficiency, COPD = Chronic Obstructive Piulmonary Disorder, IPF = Idiopathic Pulmonary Fibrosis and 
FLD = Fibrotic Lung Disease. 
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BAL Cytokine Assay BOS Patient Details 
Tx # Sex Age at Tx Reason For Tx BOS Diagnosis Months post Tx Sample # 
1203 M 39 CF 3 3 
1241 M 34 CF 15 4 
1259 F 23 CF 12 4 
1273 M 25 CF 15 4 
1283 M 63 FA 9 6 
1284 M 50 Emphysema 24 7 
1298 F 63 Emphysema 10 4 
1301 M 58 Emphysema 20 5 
1304 M 26 CF 19 9 
1325 F 63 FLD 12 3 
1334 F 33 Emphysema 12 5 
1335 M 54 α1 AD 9 6 
1352 F 54 Emphysema 10 3 
1372 M 43 FLD 13 6 
1383 F 28 CF 12 5 
1384 M 36 Silicosis 26 5 
1399 F 46 COPD 12 8 
1403 M 46 Hystiocytosis X 15 6 
1424 F 30 CF 12 4 
1450 M 40 α1 AD 22 6 
1453 M 47 COPD 3 3 
1475 M 61 FLD 21 3 
1488 M 52 Bronchiectasis 18 3 
1501 M 48 Asthma 18 5 
1510 M 48 COPD 11 5 

Appendix Figure 2 - BAL Cytokine Assay BOS Patient Details 

25 patients (8 female, 17 male) with a mean age of 44.4 years and median age of 46 years (23 - 63), 
mean diagnosis of BOS was 14.1 months (3 – 26). All patients gave distinct samples. 

CF = Cystic Fibrosis, FA = Fibrosing Alveolitis, FLD = Fibrotic Lung Disease, α1 AD = α1 Antitrypsin 
Deficiency, COPD = Chronic Obstructive Piulmonary Disorder. 
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Cultured Primary Cell Patient Details 
TW # Age at Tx Sex Years Post Transplant 
1057 51 F 4 
1065 63 F 4 
1072 64 F 4 
1073 50 M 4 
1078 55 M 4 
1079 51 M 4 
1080 51 F 4 
1081 34 F 4 
1088 33 F 4 
1095 54 M 4 
1099 47 M 4 
1112 63 M 9 
1113 65 M 3 
1121 61 M 3 
1122 54 F 3 
1125 53 M 7 
1130 61 M 4 
1132 60 M 3 
1134 24 F 4 
1135 47 F 3 
1140 56 M 3 
1145 63 M 3 
1150 26 M 3 
1151 27 M 3 
1153 53 F 11 
1158 65 F 3 
1159 24 M 3 
1168 36 F 3 
1172 52 F 3 
1174 44 F 3 
1178 29 F 4 
1184 27 M 3 
1186 27 M 3 
1208 54 F 6 
1213 54 M 3 
1215 30 F 2 
1221 35 F 2 
1222 33 M 3 
1225 44 F 4 
1226 48 F 2 
1232 56 M 2 
1238 50 F 6 
1239 56 F 2 
1243 24 M 3 
1245 51 F 2 
1246 35 F 2 
1247 58 M 2 
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1248 48 F 2 
1256 38 M 2 
1259 62 M 6 
1261 55 M 2 
1273 26 F 2 
1274 53 M 2 
1276 64 F 2 
1278 57 F 2 
1279 51 F 5 
1280 38 M 2 
1282 30 M 2 
1285 55 M 2 
1300 28 M 1 

Appendix Figure 3 – Cultured Primary Cell Patient Details 

60 patients (29 female, 31 male) with a mean age of 46.2 years and median age of 51 years (24 – 65). Of 
the 60 patients 21 underwent surgery for Chronic obstructive piulmonary disorder, 19 for cystic fibrosis, 
11 for idiopathic pulmonary fibrosis, 3 for bronchiectasis, 3 for lymphangioleiomyomatosis, 2 for sarcoid 
and 1 for langerhans cell histiocytosis. 
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8.2 BAL Significance Data 
Green shading indicates significance of p<0.05, red shading indicates significance of p>0.05, tested by 

two-tailed Mann-Whitney U Test. 

TNFα  
Group Mean (pg/mL) S.E.M. Sig. To Non OB Sig to Non OB C. 

OB + 6 C. 129.22 67.56 n/a 0.1639
OB + 6 20.66 9.71 0.7014 n/a
OB + 3 C. 171.60 101.46 n/a 0.1944
OB + 3 26.25 14.64 0.7030 n/a
OB 0 C. 267.46 108.80 n/a 0.0001
OB 0 61.77 33.62 0.0005 n/a
OB - 3 C. 701.12 374.74 n/a 0.0014
OB - 3 105.17 51.37 0.0007 n/a
OB - 6 C. 271.18 139.09 n/a 0.0169
OB - 6 43.86 22.27 0.0343 n/a
OB C. 108.77 46.49 n/a 0.0104
OB 16.86 5.41 0.0407 n/a
Non OB C. 77.95 29.06  
Non OB 24.79 11.75  

Appendix Figure 4 - TNFα statistical significance 

 

IL-1β  
Group Mean (pg/mL) S.E.M. Sig. To Non OB Sig to Non OB C. 

OB + 6 C. 658.26 312.88 n/a 0.0074
OB + 6 105.71 46.01 0.0575 n/a
OB + 3 C. 837.98 463.87 n/a 0.0065
OB + 3 126.23 67.84 0.0503 n/a
OB 0 C. 1831.87 1008.89 n/a 0.0003
OB 0 368.73 208.94 0.0012 n/a
OB - 3 C. 4941.33 3118.07 n/a 0.0025
OB - 3 729.77 459.15 0.0019 n/a
OB - 6 C. 1853.76 1294.58 n/a 0.0316
OB - 6 294.52 212.07 0.0326 n/a
OB C. 483.85 177.14 n/a 0.0004
OB 84.04 23.60 0.0012 n/a
Non OB C. 63.36 14.66  
Non OB 14.95 2.87  

Appendix Figure 5 - IL-1β statistical significance 
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Appendix Figure 9 - siRNA knockdown, effect on phosphorylation 

a) PBECs were pre-treated with 5nM SMAD1si 24 hours before stimulation with TGF-β1 (10ng/mL) or TNFα 

(20ng/mL) for 30 minutes. Approximately 90% knockdown of SMAD3 was achieved by SMAD3 targeting siRNA. 

Neither a sequence scramble control nor the lipid vector had any effect on SMAD3 knockdown, cell viability or 

morphology. This reduction in total SMAD3 also led to a complete loss of detected phospho-SMAD3 with no 

effect on SMAD3 phosphorylation seen with either the lipid vector or sequence scramble control. Total TAK1 or 

phospho-TAK1 were not affected by SMADsi. 

b) PBECs were pre-treated with 0.1nM IKKsi 24 hours before stimulation with TGF-β1 or TNFα for 30 minutes. 

Approximately 90% knockdown of IKKβ was achieved by IKKβ targeting siRNA. Neither a sequence scramble 

control nor the lipid vector had any effect on IKKβ knockdown, cell viability or morphology. This reduction in total 

IKKβ also led to a strong reduction in detected phospho-IKKβ with no effect on IKKβ phosphorylation seen with 

either the lipid vector or sequence scramble control. Total TAK1 and SMAD3 or phospho-TAK1 and SMAD3 were 

not affected by IKKsi. 

c) PBECs were pre-treated with 3nM TAKsi 24 hours before stimulation with TGF-β1 or TNFα for 30 minutes. 

Approximately 80% knockdown of TAK1 was achieved by TAK1 targeting siRNA. Neither a sequence scramble 

control nor the lipid vector had any effect on TAK1 knockdown, cell viability or morphology. This reduction in total 

TAK1 also led to a reduction in the detected levels of phospho-TAK1 with no effect on TAK1 phosphorylation seen 

with either the lipid vector or sequence scramble control. Total SMAD3, JNK-1/2 and IKKβ and phospho-SMAD3 

were not affected by TAKsi. The phosphorylation of IKKβ was inhibited by knockdown of TAK1. 

d) PBECs were pre-treated with 5nM JNK1si or 10nM JNK2si 24 hours before stimulation with TGF-β1 or TNFα for 

30 minutes. Approximately 100% knockdown of JNK-1 was achieved by JNK-1 targeting siRNA, with JNK-2 

targeting siRNA (10nM) mediating a similar knockdown of JNK-2, neither siRNA demonstrated non-specific 

knockdown. Neither a sequence scramble control nor the lipid vector had any effect on JNK-1/2 knockdown, cell 

viability or morphology. This reduction in total JNK-1 or JNK-2 also led to a reduction in the respective levels of 

phospho-JNK-1/2 with no effect on JNK-1/2 phosphorylation seen with either the lipid vector or sequence 

scramble control. JNK2si but not JNK1si reduced the detected amount of c-Jun for all stimulations. 

pSMAD3 (20µg), pIKKβ and pp38 (40µg), pTAK1, pJNK-1/2 and JNK-1/2 (50µg). 

 

Interestingly production of c-Jun was only inhibited by JNK2si and not JNK1si suggesting that as with the 

induction of EMT JNK-2 is more important in this system. 
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8.7 TNF Receptor Work 
As described in 1.3.2 TNFα signals through two distinct trans-membrane receptors, TNFR1 and TNFR2 

(Locksley et al., 2001). TNFR1 is ubiquitously expressed and can respond to both membrane-bound and 

soluble forms of TNFα whereas TNFR2 is highly regulated in its expression, mainly on immune cells and 

responds, efficiently, only to membrane bound TNFα (Grell et al., 1995). Whilst the receptors do provide 

some form of redundancy they are capable of playing independent roles in cell signalling (16, 26).  

It has also been demonstrated that TNFR2 expression over TNFR1 may mediate collagen deposition in 

response to TNFα (Theiss et al., 2005) and its expression is up-regulated on colonic epithelial cells of patients 

with Crohn's disease and ulcerative colitis (Mizoguchi et al., 2002). We therefore hypothesized that PBECs 

from OB patients may express elevated levels of TNFR2 which may mediate the accentuation of TGF-β1 by 

TNFα by the usage of alternative signalling mechanisms. The below work was carried out in conjunction with 

Dr Lee Borthwick who contributed the data and analysis to the first figure shown below. 

n=6 PBEC cultures from distinct patients were stimulated with TGF-β1 or with soluble TNFα (TNFsol), 

membrane bound TNFα (TNFcys), TNFR1 specific mutant (Cys-TNF32W/86T) membrane bound TNF 

(TNFcysR1) or TNFR2 specific mutant (Cys-TNF143N/145R) membrane bound TNF (TNFcysR2) for 72 hours. 

Cell lysate and culture media was retained and EMT was assessed using a variety of markers. 
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8.8 Personal Development 
8.8.1 Presentations 

 November 2009 - Oral Presentation – North East Post-Graduate Research Conference, 
Newcastle University, Newcastle-Upon-Tyne, United Kingdom. “Inflammatory Accentuation of 
EMT in Fibrotic Lung Epithelium via IKK-NF-κB” 
 

 June 2010 - Poster Presentation - Institute of Cellular Medicine Research Day, Newcastle 
University, Newcastle-Upon-Tyne, United Kingdom. “Inflammatory Accentuation of EMT in 
Fibrotic Lung Epithelium” 
 

 March 2010 - Poster Presentation – European Respiratory Society Lung Science Conference, 
Estoril, Portugal. “TNFα accentuates TGF-β1 driven epithelial to mesenchymal transition (EMT) in 
lung epithelium via TNFαReceptor1/TAK-1 dependent signalling” 
* Awarded European Respiratory Society Lung Science Conference Bursary. €550 travel grant. 
 

 December 2010 - Oral Presentation – British Thoracic Society Winter Meeting, London, United 
Kingdom. “The role of Transforming Growth Factor Associated Beta Kinase 1 (TAK1) in the 
development of airway fibrosis” 
 

 January 2011 - Poster Presentation – Keystone Symposia on Epithelial Plasticity and Epithelial to 
Mesenchymal Transition, Vancouver, Canada. “TNFα accentuates TGF-β1 driven Epithelial to 
Mesenchymal Transition in lung epithelium via TGF-β activated kinase-1 (TAK1) dependent 
signalling” 
* Awarded Newcastle University, Graduate Student Travel Award. £600 travel grant. 
 

 March 2011 - Poster Presentation - European Respiratory Society Lung Science Conference, 
Estoril, Portugal. “TNFα accentuates TGF-ß1 driven Epithelial to Mesenchymal Transition (EMT) in 
lung epithelium via TAK1 dependent signalling” 
 

 June 2011 - Oral Presentation – Institute of Cellular Medicine Research Day, Newcastle University, 
Newcastle-Upon-Tyne, United Kingdom. “TNFα accentuates TGF-ß1 driven Epithelial to 
Mesenchymal Transition (EMT) in lung epithelium via TAK1, JNK-1/2 dependent signalling” 
 

 July 2011 – Oral Presentation, Young Investigator Session - British Association of Lung Research 
Summer Meeting, Newcastle-Upon-Tyne, United Kingdom. “TNFα accentuates TGF-β1 driven 
Epithelial to Mesenchymal Transition in lung epithelium via Transforming growth factor β–
activated kinase-1 (TAK1) dependent signalling” 
* Awarded British Association of Lung Research, Best Oral Presentation by a Young Investigator 
2011. £750 travel grant. 
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 November 2011 – Oral Presentation - Newcastle, Edinburgh, Cambridge & Sheffield Lung 
Research Meeting, Cambridge, United Kingdom. “Transforming Growth Factor Beta Activated 
Kinase 1 (TAK1) as a mediator of the fibrogenic synergy between Transforming Growth Factor 
Beta 1 (TGF-β1) and Tumour Necrosis Factor Alpha (TNFα)” 
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8.8.2 Publications 
 Gardner, A., Fisher, A. J., Richer, C., Johnson G. E., Moisey, E. J., Brodlie, M., Ward, C., Krippner-

Heidenreich, A., Mann, D. A., and Borthwick, L. A. (2012). The Critical Role of TAK1 in 
Accentuated Epithelial to Mesenchymal Transition in Obliterative Bronchiolitis after Lung 
Transplantation. The American Journal of Pathology 180 (6), 2293-2308. 
 

 Borthwick, L. A., Gardner, A., De Soyza, A., Mann, D. A., and Fisher, A. J. (2012). Transforming 
Growth Factor-β1 (TGF-β1) Driven Epithelial to Mesenchymal Transition (EMT) is Accentuated by 
Tumour Necrosis Factor α (TNFα) via Crosstalk Between the SMAD and NF-κB Pathways. Cancer 
Microenvironment 5 (1), 45-57. 
 

 Borthwick, L. A., Botha, P., Verdon, B., Brodlie, M. J., Gardner, A., Bourn, D., Johnson, G. E., Gray, 
M. A., and Fisher, A. J. (2011). Is CFTR-delF508 Really Absent from the Apical Membrane of the 
Airway Epithelium? PLoS ONE 6, e23226.  
 

 Gardner, A., Borthwick, L. A., and Fisher, A. J. (2010). Lung epithelial wound healing in health and 
disease. Expert Review of Respiratory Medicine 4, 647-660.   
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8.8.3 Memberships 
 Student member of the British Thoracic Society, 2010 - 

 
 Silver member of the European Respiratory Society, 2011 -  

 
 Student member of the British Association of Lung Research, 2011 - 

* Also acted as webmaster for the BALR Summer Meeting 2011 that was held in Newcastle-
upon-Tyne. 
 

 Member of the North East Post-graduate Research Conference 2010 organising committee, 
responsible for website design and maintenance, abstract submission and marking as well as 
design and production of advertising material and abstract booklet. 
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