INTERACTIVE USE OF A COMPUTER IN THE

PREPARATION OF STRUCTURED PROGRAMS

R.A. SNOWDON

Ph.D Thesis April 1974

University of Newcastle Upon Tyne

'~ BEST COPY
. AVAILABLE

- Veiriable print quality

Acknowledgements

I gratefully acknowledge the encouragement given to me by many
colleagues during the course of this work. 1In particular, I should
like to thank Professor B. Randell for his supervision and for his
critical reading of my manuscripts. Professor J.J. Horning must
also be acknowledged for suggesting the acronym ''Pearl'.

I would also like to thank Miss Moira Dearden for being a
most efficlent typist and for her patience in waiting for the
thesis in its final form.

Finally, thanks must also go to my wife for her understanding,
particularly during the period of preparation of this thesis.

The research described here was supported by the Science

Research Council.

ABSTRACT

An experimental system providing assistance in the task of
program construction, validation and description is presented. This
system (Pearl) encourages a particular top-down approach to programming
such that programs so developed exhibit a multi-level, hierarchical
structure.

Amongst several tools provided by the system is one which
enables programs to be exercised even though they may be exvressed
in terms of abstract operations and data types.

The whole system is designed to be used in an interactive
environment. Programs are developed by the programmer with appropriate
assistance and guidance from the computer.

Contemporary programming tools and methods are surveyed and
their reievance to the development of high quality software is discussed.
In particular attention is given to programming methodolcgies, .'esign
representations and issues of program correctness.

The practicality of the system is demonstrated in a number of

examples,

Contents

Chapter Introduction
Chapter Basic Elements of Programming
2.1. A view of programming: the basic elements
2.2. Program construction as a preblowm sclving
activity
2.2.1. Method
2.2.2. Some '"human' aspects
2.3. Understanding problems and design
2,3.1. Problem specification
2.3.2. Design and documentation
2.3.3. Some tools used in program design
2.4, Programming languages
2.4.1, Programming language influences
2.4.2. Programming language design
Chgpter Structure in Represgntation and Method
3.1. Levels of description
3.1.1. Characterization of a level of description
3.1.2. Related levels of description
3,1.3. Density of a set of related levels of
description
3.1.4, Levels of description and programming
languages
3.2. Methods for constructing programs
3.2.1. Relationship with levels of description
3.2.2. A discussion of methods
3.3. Conclusions

12
16
19
19
20
23
28
30
32

39

44

46

50

51
34
55

59

70

Correctness, debugging and other considerations

4.1, What is meant by correctness, and redundancy
4.2, The text of a program

4.2.1, The meaning of a program text

4.2.2. Expressing the intention of a program
4.2.3, Proving a given program correct

4.2.4., Partial proofs and some effects of proof

techniques

4.2.5. Constructive use of assertions

4.3, Information from program execution

4.3.1. Writing programs to be tested

4e3.2. The information fed back to the programmer
4.3.3. Program testing as part of program design
bab. Some further machine aids and influences
Gebol, Interactive systems

be4.2. Generation of syntactically correct programs
4.4.3, Program skeletons

bebad, Automatic error correction by a translato:
4.5. Summary: Towards a Program Building System
Chapter Basic Construction of programs using Pearl
5.1. Bases

5.2, Constructing a program (using the *build

command)

5.2.1, The specification of a machine

5.2.2. Describing the action of a machine

5.2.3. The environment of a machine

5.2.4. Elaboration of operational concepts

54245, Elaboration of data types

5.2.6. Correctness considerations

73

76

76

78

78

83

89

94

94

97

100

101

102

104

104

105

109

109

114

114

115

117

119

123

129

5.2.6.1.

Assertions etc.

5.2,6.2. Meanings of conceptual operations
5.2.6.3. States
5¢2.6.4. Pre- and post-conditions upon programs
5.3. Supplementing the design with a new machin-=
Sebe Discussion of the notation
5.4.1. Omissions
5.4.2. Generalization of control structure elen~otr
5.4.3. States, values and generalized constants
5.5. Some comparisons with other programming
notations
5.6, Summary
Chapter Extended Facilities of Pearl
6.1, Modification of the design
6.1.1. Replacement
6.1.2. Deletion of machines
6.2. Interrogation of the design
6.3. Design evaluation - nrogwan siecuiion
6.3.1. The basic executlon process
6.3.2. Simulation or temporary machines
6.3.3. Programmer assistance
6.3.4. Using operation meaniugs
6.3.5. The use of meanings and states
6.3.6. Rules for the use of operation neaniags
in the execution of incomplete prograns
6.3.7. Error reporting and debugging facilities
6.4. Summary

143

144

150
154

(3
i

L
160
1€
161

164

167

170

172

Discussion and Conclusions

7.1.1.
7.1.2,
7.1.3,
7.1.4,
7.1.5,
7.1.6.

7.1.7,

7.2,
7.3,

7.4,

Appendices

References

Some deficiences and limitations of Pearl
Machines and levels of description
Machine environments and design strategies
Extended notion of states

The "vary" mechanism

The assignment operator

Human engineering

Miscellaneous

The fallibility of Pearl - an example
Relationship with other tools and techniques

Conclusions and summary

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Appendix F

-1 -

Chagter 1:

Introduction

The tools and techniques used in the construction of computer programs
have evolved rapidly during the short history of computers, This rapid
evolution has resulted in the current position whereby there is a great
variety of such tools and techniques in use, each morg or less suited

to particular programming activities. 1t has become increasingly apparent

that this variety is not itself sufficient to enable the construction

of programs which will allow computers to perform the ever more complex
tasks demanded o¢f them (e.gs Naur and Randell 1969, Buxton and Randell
1970), 1In society, the reliance that is placed ppon the correct functioning
of computer systems is increasing at a great rate (e,g. air-traffic

control systems, banking systems etc.). It is true, therefore, that society,

and particularly the individual within society, will become more
vulnerable unless a higher degree of confidence can be placed in the
correct functioning of such systems. Thus it is crucial tlat ways are

discovered by which computer systems may be constructed in order that

such confidence may be justifiably expressed,
This thesis is concerned with an investigation into a number of
aspects of programming which have a direct bearing upon the quality of

the software component of a computer system. There are undoubtedly

problems concerning the reliable function of computer hardware.
Such problems, however, are left to other workers.

The research reported in subsequent chapters follows closely many of
the ideas of "structured programming" as illustrated by Dijkstra in a
number of papers, but primarily in Dijkstra (1972a), In order to
demonstrate why we believe that the programming techniques which are

subsumed by the general term "structured programming" are so important, it

-2 -

is necessary to appreciate what is involved in the task of writing a
computer program. Indeed, as Dijkstra (1972b) points out se clearly,

it is essential that we realize that programming is an extremely difficult
task. A very succinct analysis is given by Ershov (1972).

Computer programming may be regarded as a complex problem solving
activity. Simon (1969), Hormann (1970) and Koestler (1964) are amongst
several writers who have attempted to describe the problems of complexity
and how human beings can overcome them.

Much of the recent work on how complex programs are developed has
stressed the importance of hierarchies and levels. (Zurcher and Randell

1968, Wirth 1971b, Woodger 1971, Dijkstra 1968b and 1972a), These ideas

accord well with those of those authors mentioned above concerning
more general complexity.
Confidence in the trustworthiness of a program comes ultimately from

its observed behaviour when executed by a computer. This fact has long

been recognized and has spawned many of the tools used by jrogrammers
at present (e.g. debugging tools, testing procedures, etc.)., Ihe
usefulness of such tools should not be overlooked in the development
of a program, despite the fact that their use cannot guarantee the
absolute worth of complex software.

Program proof methods represent further attempts at generating
confidence in a program. Floyd (1967a) and Naur (1966) describe methods
by which the properties of a program can be checked against assertions
representing the intention of that program. Tools have been described
(King 1969, Good 1970, Deutsch 1973) whjch assist the programmer in the
generation of such proofs.

Program proof methods may also be used during the development of

a program to ensure that it is correctly constructed (Naur 1969,

-3 -
Hoare 1971a, Allen and Jones 1973). Floyd (1971) describes how a tool
might be constructed to assist in this process. Less formal methods
may also be applied during the development of a program to make it
more likely that the program will exhibit the appropriate properties.
Zurcher and Randell (1968), Mills (1971) and Baker (?972) all describe
how program development may be aided by the use of tools based upon
such methods.

A major goal of the present research has been tp codpine and
analyse these and other somewhat separate ideas and to use them as a
basis for a coherent design methodology which is explicit enough to be
embodied in a tool to assist the complete programming task. This tool
takes the form of a (prototype) computer system which acts as a dat:
base for the design of programs. Programs may be developed by the
programmer by entering textual information which represents additions
to the incomplete design. The form of this information is based upon a
notation which encourages the representation of programs in a highly
structured, hierarchical manner. In addition the prozramier 1> acceuragad
to follow a particular development method so as ta gain full! Laratit
from the system during the early stages of his desiyu. Tha svstes rrovides
the programmer with a number of explicit facilities, each aiuzd at
improving his understanding of the program as it is leveloped. These
include aids in checking the logical consistency of input information,
execution of partially developed programs, certain debugging facilities
and a number of interrogation mechanisms. The system has been designed
and implemented as an online, conversational system.

The following chapters form two distinct parts. The reader who is
only interested in details of the implemented system is recommended to

omit Chapters 2,3 and 4. These describe and discuss certain aspects of

-4 -
program construction, and techniques and tools presently available to
assist the programmer.
In Chapter 2 a simple view of programming is taken. This is
described in terms of three elements.
(1) problem
(ii) man
(i1i) machine
Each of these elements is considered in turn, althouszh most
attention is given to "man'" and to the interfaces between maa and
problem and man and machine.
Attention is paid, in Chapter 3, to the ideas of structure and

method in the representation and development of a program. An informal

notion of a level of description is given whereby a program nay lLe

represented in terms of concepts which capture some essential property

of the problem or the programming language, but not necessarily all such
properties. A program may be represented it a number of di“fereant

levels of description related according to their various mtval
interpretations. Different methods of developing a yrouran are Jescribed
and discussed using the notion of representation at many 'avels of
description.

Chapter 4 presents a discussion of various tools and tachniques
to do with establishing the correctness of computer prosra:6. These
range from proof techniques (applied both to a given program and to
the development of a program), to program testing tools and other

mechanical aids which may help the programmer to increase the level

of confidence he may have in his program.

-5 -

Chapters 5 and 6 give details of the experimental system referred
to above. Chapter 5 serves to introduce the system and to describe
how it enables a programmer to build up a program according to a
particular design method. Chapter 6 describes the more extensive
features of the system enabling design evaluation, interrogation and
re-appraisal. A number of examples of the system in use are given in
these chapters. Further, and more complete examples are to te found
in appendices D,E and F.

The experimental nature of the system has generated a number of

interesting points of discussion. These are grouped together in
Chapter 7. Here, also, are presented some conclusions on the

relevance of such systems as an aid to the programming activity. These
are, of course, to a certain extent limited by the prototypical nature
of the implemented system. However, we feel that mast of them are

valid in a wider sense.

-6 -

Chapter 2:

Basic Elements of Programming

There are at least three elements which are basic in programming.
One is the machine for which the program is being writtan, the second
1s the problem (or task) which is the reason for the program and the
third is the programmer (or programmers) whose job it is to construct
the program from an understanding of the problem and the properties
of the machine. The job of the programmer is, (Dijkstra 1972b, Ershov
1972) very difficult and represents a significant intellectual challenge.
Amongst reasons for this are the inherent complexity of the tasks for
which computers are used and of the computers themselves, and also the
requirements of the program as being amongst other things, precise,
adaptable, extendable, well-documented and correct.

In this chapter we study the effect on programming of tlase
three basic elements in order to give some Insight intc the a-t-al
sources of complexity and of ways by which the difficultiss can be
reduced, 1In particular we discuss programming as being a prohlen
solving activity in order to relate wider observations of creative
human activity (e.g. Polya 1945, Koestler 1964, Simon 1969, Hormann 1970)
to the construction of programs. Such a discussion allows a number of
observations to be made as to the appropriateness of certain tools which
are often used in program construction (e.g. flowcharts, decision tables,
particular programming languages). The observations we make in this
chapter are mainly of a critical nature. A more constructive approach

is taken in later chapters.

-7 -

2.1 A view of programming: the basic elements

problem/man man/machine
interface interface
— —
_—>‘
, : problem program
Real . g;:zz%ication man » > mgchine

1
£
- of

R a e e e e
understanding of v understanding of man/machine
problem ’knowledge interface
’

experience etc.
Figure 2.1

Figure 2.1 represents a simplified view of the programming activity.
The central element is the programmer. He has two interfaces. One,
the problem/man interface is with the outside world; the other, the
man/machine interface, is with the computer (the machine).

The programmer accepts (understands) the specification of a problem
in the outside world. His task is to develop a solution in the sense
of describing, in a program, the process which the machine must carry
out to generate the answer to the problem. This process we shall call

the solution process. (We have not made figure 2.1 complete but only

included those concepts which are appropriate for the discussions of this
chaptef. iWe have not, for example, shown how the results of a progran
execution can influence the programmer. We describe some extensions
in this direction in Chapter 4).

The interface which the programmer has with the outside world
is hard to characterize. We intend that this interface should include
all methods by which the programmer obtains information about the

probiem. Problem specification is a difficult task itself and thus it is

-8 -

hard’to state more exactly what form this interface takes. A short
discussion of how information about problems is supplied and understood
is given in section 2.3.1. Of course it is often the case that details
of problems are only uncovered as part of the development of the program.
‘Thus it is not in practice the case that the problem/man interface

is divorced from the actual design activity. A part of this interface,
therefore, represents interactions arising during the task of program

construction.

The program which describes the solution process is generally
written in some notation representing concepts which have no direct
physical existence in the hardware of the machine. This notation, the
programming language, therefore acts as the interface between the

‘programmer and the machine. The influence that this interface has upon
-the construction of programs and other discussion is given in sections
2.3.2, 2.3.3, and 2.4,

2.2 Program construction as a problem solving activity

Figure 2.1 may be interpreted to cover the development of solution
processes to problems which do not require the construction of a compuCef
program. The '"machine" need not be a computer but could be any processing
device, even g.human being. The man/machine interface will then not be
characterized by a programming language in the accepted sense, but more
generally as some medium for communication.

examples:

(a) A theorem to be proved in mathematics is a problem.
The mathematician who solves this problem responds
to the stimulus of the statement of the theorem
by developing a proof written in some mathematical
system. This proof describes the ''solution process"
to be followed whereby the truth of the original
theorem may be accepted. A machine which carries
out this "solution process" might be a colleague
or perhaps the reader of a book.

(b) An architect may be asked to design a building
according to some specification as to its purpose,
its location and its estimated cost., The architect
accepts this specification and draws up an
appropriate design. This design is a solution
process for his probleme The "machine" which reacts
to the design may be the builder or perhaps the client’
who wishes to appraise the architect's work before
finally committing himself.

There are, thus, parallels which can be drawn between computer
programming and other design activities. More generally, as Ross

(1967) points out:

"design is a special term for some ill-defined
type of problem solving'".

Problem solving is generally thought of as being some process by
which possible solutions to a problem are tested for their adequacy.

Corisider the following problem:

"Find those numbers, whose absolute value is a
natural number smaller than 100, whose square is 36m,

A way of finding the solution to this problem would be to comsider
“ every number and test it to see if it had the stated properties. The

solution would then be the set of numbers found to satisfy this test.

- 10 -

In this context, the process of solving a problem is taken to mean that
the qctual numbers should be determined and displayed. 1t is, however,
also necessary to determine whether or not the "solution process" by
which the results are determined is itself adequate.

The solution process described above is of the form:

"Pick a number from the set of all numbers. If this

. number has an absolute value smaller than 100 and a
square of 36, then accept it, otherwise reject it.
Repeat this process for all numbers'.

Clearly this solution process is itself inadequate and should
not be acceptede It is necessary, therefore, that, from amongst the
set of solution processes for this problem, a better one be chosen.
Problem solving may be thought of as being a process of examining
the various solﬁtion processes themselves for being acceptable. Although
one of the criteria of acceptance should, of course, be that the solution
process will, indeed, produce the required solution to the stated
problem, this is by no means the only one which should be applicd. As
we discuss more fully in Chapter 4, it is, in fact, a critcrion which
is very difficult to apply with confidence in computer programming.

It is possible to identify two (at least) separate problem solving

activities in programming. Both parallel the views of problem solving
described above.

The first is the task of choosing a particular representation within

a programming language to fulfill a function whose properties are understood
by the programmer, Such a situation can easily arise when a programmer

recognizes a problem for which he knows an acceptable solution process,

- 11 -
but which is represented interms different from those of the language in

which he must write his program.

examples:
(a) Algorithms published in the literature are often
written in Algol whereas, for one reason or another,

the programmer must write his program in FORTRAN.

(b) Algorithms expressed in a descriptive manner using
natural language (e.g. Knuth 1968),

This is a problem solving activity by which the programmer makes
a choice from amongst the features of the programming language. In
particular the programmer must generally apply some judgement as to

whether one representation is more suitable than another.

The second problem solving activity which we identify in
.programming is that of the derivation of the solution process itself
from the statement of the problem. If it is required to construct, for
example, an airline seat reservation system, then it is necessary to
decide which computations must be carried out before encoding thea
in a programming language. Of course, a programmer in this situation
will use his knowledge of the properties of any hardware or programning
language he may use, as a guide in the overall design. However, the
activity which is being followed is separate from that of encoding a
solution process which has already been derived. It requires, as in
the example above, that different possible solution processes must be
examined until one which is adequate is accepted. We believe that this
latter viewpoint of problem solving in programming is the most important

as, in general, it includes the representation problem.

- 12 -
2. 2.1 Method

A primitive notion of problem solving is that it is a process of casting
‘throggh a set of possible solutioﬁs until one is discovered which is
acceptable for the problem under investigation. This notion requires further
elaboration in the context of programming (and probably in any other
" non-trivial problem domain).
| In the example given in the previous section where the problem
is to find certain numbers, the space of possible solutions has an accebted
répresentation which allows each possible solution (a number) to be
identifieds Further, the properties of the members of the solution space
allow of the possibility of some scheme whereby individual "solutions" can

be chosen methodically (i.e. the ordering properties of numbers). As is

described below a knowledge of such properties is almost essential in the
~ derivation of an acceptable solution process to this problem. In programming,
the space of possible solutions has a less well-understood representation
and has properties which are often too complex for programmers to appreciate.
Even if the problem is merely that of choosing a representation for a
solution process otherwise described, few programmers would claim that
the representation they have chosen was the best. It is apparent, as we
shall describe in a little more detail in section 2.4.2, that the very
power of programming languages in some cases adds to the complexity of
programming, rather than reducing it.
In the derivation of a program as a solution process, there is a
difficulty in the identification of individual elements from the
_space of possible solution processes (.e. the space of all programs). .
hhat a programmer does, of course, is to use properties he requires in
order to derive possible programs wﬁich he may then examine. However, the

properties he may require of a program are often poorly understood owing to

- 13 -
a lack of a clear and complete specification of the problem (see section 2.3.1)
and also because of his lack of knowledge of the properties of the programming
language. Thus it is difficult for a programmer to know what he is |
deriving, and also when he has a program which satisfies his requirementé.
Nevertheless the notion of searching allows a basis for a discussion .
of how complex problems may be tackleds A complex problem may have many
possible solutions, all of which ought to be examined. However, it is
impossible to do this in a reasonable time. Ways must be sought by which
‘the space to be searched can be drastically reduced in order to focus
attention upon an afea where an acceptable solution is most likely to be
found.
Consider the following steps in the derivation of an acceptable

solution process for the numbers problem of the previous section.

1. The set of "possible solutions' may be divided into the real
numbers and the complex numbers. From the properties of

complex numbers it can be seen that an acceptablé solution

" process need only consider members of the set of real

numbers.

2. Only the set of integers {-99, .+ .. +99]
need be‘considered because of the definition of absolute
‘value.

3. The set {-99, o o o +99} may be partitioned into

{99, « v +» =1} and {0, . . ., 499} . The solution

process need only consider the set {0, « s e +99}
and, for any solution found in this set (different from 0),
select also the corresponding negative value of this solution

from {-99, ¢ o s -1} as a solutione.

- 14 -

4e An acceptable solution process may be described over the set
{0, e o o +99} which searches from 0 in increasing
magnitude of number and which terminates as soon as a
number is found whose square is greater than or equal to 36

(as (x+1)2> x2 forxe{o, v o6 +99}).

At each step, the set of possible solutions is further limited until,

at stage 4, a solution process can be described which, we suggest, is
acceptable. There are other solution processes which could equally have

been suggested at stage 4 (eeg... one which commenced with +99 and then
continued with 98 etc.). Thus, even in this derivation, there is a choice
'd solution processes.(0f course further analysis of the set of possible
solutions can, in this example, reduce the set of possible solutions
from the positive integers to a single element).
The process of the analysis of information contained in the problem
statement and of known properties of the space of possible solutions is
a means for reducing the set of possible solutions that need be considered.
~ In this example the steps of methodical reduction can be clearly expressed
because of the well-formed nature of the problem and because ti~ properties
of the solution space are well-understood. However, even in sdving problems
which are ill-formed or whose solution spaces are incompletely understood
by the proslem solver, the value of a methodical step-wise investigatioﬁ
" has been stressed by severai writers (e.g. Polya 1945, Alexander 1966,
Mannheim 1966, Simon 1969, Hormann 1970). In programming, also, a similar

“appreciation has found expression in such ideas as "'structured programming'

(Dijkstra 1972a) and “'step-wise refinement" (Wirth 1971b). We discuss these

ideas further in Chapter 3.

-15-

In general, the methods suggested by these writers may be characterized
as the decomposition of a problem into smaller problems for which,

individually, there is a greater likelihood of an acceptable solution being

discovered.

example:
In the derivation given for the numbers problem above,
it may be seen that each step represented a decomposition

of ‘the stated problem into problems of conceptually less
complexity,

The decision to decompose a problem in a particular way is based

upon some expectancy of where solutions are to be found or, alternatively,

of where solutions are not expected to be found.

example:
At step 1 above, the decomposition is based upon the

"ease of solution' of the problem of finding complex
numbers whose square is 36.

In taking these decisions, the problem solver must carry out
some form of analysis., In many complex problem solving situations,
" the validity of such analysis is often not decidable at the time the
~decision must be taken. It may be only at a much later stage in the
problem soiving activity that decisions taken earlier are found to
be valid or invalid, Whether or not such information can then be used
to turn the search for an acceptable solution in other directions
depends upon the ease with which a éhange of direction can be made. In
programming a particular decomposition of a problem is often reflected
in the modular structure of the program. Each decision concerning the

. decomposition is therefore embedded in program code. According to the

- 16 -

way iﬁ which the structure of the program is represented in the code, it may
be a difficult task to alter the program even though the decomposition is
demonstrably unsuitable. This phenomenon is, of course, closely related
to the forms available for representing the design of a program. This is
discussed further in sections 2.3 and 2.4 and also in Chapter 3.

The comments we have made concerning the difficulties to be faced
in tackling complex tasks are related more closely to the development
.of programs in Chapter 3, Our intention at this time has been to.
déaw attention to the fact that programming is a complex and difficult
task, but that man has been faced with such tasks before and has
developed mechanisms for overcoming them. An insight into what these
mechanisms involve can only be of help in deciding how programming

should be carried out.

2.2.2 Some ''human aspects"

The natural abilities of an individual human being as a problem
solver will have a great influence upon the success of that individual
when faced with problems of great complexity. Although the means by
which cémplex problems can be tackled may be well appreciated, it is
still necessary that the appropriate feats of intellect are accomplished.

It is surely necessary for a programmer to be creative. The
sheer immensity of the task of constructing a program requires an
individual flair for assimilating apparently unrelated information or for
taking the "right decision' even when there is little substantiating
evidence. Koestler (1964) describes a possible mechanism to account for the
"flasﬁ of inspiration" and the "moment of insight'" which are so necessary
in the task of iackling complex problems. Hormann (1970) characterizes the
application of knowledge and experience in problem solving and relates

these to an individual's creative abilities in a particular task. The

- 17 -

characterization which he gives is expressed in terms of ''prepared" and
. "unprepared conditons'. 'Prepared conditions' represent situations
recognizable Py an individual from his experience. Hormann uses these
characterizat;ons to explain a number of observations concerning the ways
in which problems may be overcome by a human being. In particular, he
discusses the'possiﬁlity that an individual can solve a problem which he
has not previously encountered by'meahs of a mismatch between some prepared
condition (representing an earlier experience) and the given problem.

Such mismatches can occur if the given problem is, in some sense, similar
to the previous experience. A danger here is that a gross mismatch
between a problem and some prepared condition may be undetected and lead
to the acceptance of incorrect solutions to problems. Unfortunately, a
programmer who is pressed to attain production schedules is more likely
t§ commit such errors than a programmer who has time to consider his task
with care.

Both Koestler and Hormann attempt to give explanations for an
individual's problem solving ability. It is interesting to remark that

Polya (1945), in giving rules to follow in solving problems, suggests that
a person should consciously try and match his past experience to any
problem with which he is faced. Polya states that one should always

ask oneself whether the problem has been solved before, and failing an
‘affirmative answer, ask whether any similar problem has been solved before.
There is an obvious similarity between these suggestions and the mechanism

described by Hormann.

- 18 =

Creativity 1s, therefore, one characteristic which we believe is
essential in a programmer. Weinberg (1971) discusses a number of others.
Amongst these is humility. A good illustration of the need for humility
" 1is given by the phenomenon of "ownership" described by both Weinberg and
Ershov (1972). A programmer is likely to develop protective instincts
;owards his program because it represents a large intellectual effort
on his part. As a result, a programmer may even jealously guard his work,
whether or not it is of any worth, The consequences of such an attituae,

particularly within a programming team, may be imagined and prompted

Weinberg to promote the concept of "egoless programming'. Under this

approach, a program is written, not by an individual but by a group of
people such thatno one person feels responsible for it. The success

of such a policy depends upon the readiness of all programmers to accept
the suggestions of others fér the overall good of the program. Such

a requirement may, in fact, make it a difficult policy to adopt, but
‘the arguments upon which it 1s based cannot be questioned. When an
individual is working alone on a program, it would still sccm to be a

.- wise policy for him to remember that he is fallible and therclore likely
to produce a program which may need correction or improvement.

" A programmer also needs to be both suspicious and trusting. He
should always be wafy of possible difficulties and inconsistencies in
the task hé is required to do and yet must have confidence in his own

.ability to produce a satisfactory program.

There are, of course, many other aspects of human nature which are
relevant iﬁ a consideration of programming. A programmer must be able to
arrange his work in a methodical manﬁer,~be able to organize the
information with which he is faced and even overcome boredom induced by

the tedium of encoding familiar constructions. An extensive discussion

- 19 -

is given by Weinberg (1971).

2.3 Understanding problems and design

How a programmer understands the problem he is to tackle, the
form the programming language takes and the tools which he may use in
programyconstruction will play a large part in shaping the eventual programe
In the next few sections we discuss some of the issues involved and consider
.some of the tools which are available to the programmer to use -as he
designs a prégram. At this time we are considering only tcols which may be
thought of as design aids. Others tools, which, though affecting tﬁe
programming activity are. more concerned with program testing or
validation are discussed in Chapter 4.

2.3.1 Problem specification

The specification of a problem can and does take various forms.
Rarely is the specification of a complex problem sufficlent in itself.,
The programmer will, therefore, find that he needs to discover answers

to questions about the problem which arise as part of the development of
his program. Thedifficulty is natural and may occur for a number of reasons.

We suggestvthree, although there are probably many more.
(1) The form of problem specification is incomplete or open
.to a number of different interpretatiomns.
(i1) The problem itself may be changing with time.
(iii) The problem is so complex that it cannot be expressed
succinctly in a sufficiently rigorous manner.

The specification of problems may take many forms. Natural language
and jargon are often used, with the danger of misunderstanding or
incompleteness. A number of workers (e.g. Rose 1966, Kolsky 1969,

Falkoff 19i0) advocate the use of a subsidiary programming language (APL)

to specify or describe programs. It may be possible to apply these tgchniques

- 20 -
_more generally to the specification of problems. Some discussion of the
use of particular languages for problem specification is given in Naur
and Randell (1969). Parnas (1972) gives a technique for specifying
modules in a program design in terms of functions which describe the purpose
of a module., This technique appears promising in those cases where it has
_ beeﬂ tried.

It is, however, probably true to say that no one technique or language
can be sufficient. It is 1ikely that there will always be a need for

explanatory material in addition to any formal description of a problem

(eeg. an exposition of terminology, a language manual etc,.).

One comment which we venture to make is that the form of the problem
specification can be suggestive as to the form the solution might take.
Notation and other devices used in the design of a program play their
part in the form of that program, so it is likely that this observation
extends also to the manrier of the problem specification.

oo
iexamples
A programming problem might be described by a "proccdural
specification' intended to illustrate a flow of. information.
Such a specification can colour a programmer!s thinking to

a greater extent than if the problem was described in a
mon-procedural' manner.

2.3.2 Design and documentation

Apart from the programming language, the influences most likely to

bear upon the design of a program are the tools and techniques used.

21 -

"By the use of various notations or other design aids, the programmer may
learn more about a problem, and some of its peculiarities as well as
'experiment with possible solutions.

Many‘of these notations can be used in documents describing either
the purpose of the program or its design. Documentation plays an

'important role in program construction. Most programs which are intended

for more than "one-off" jobs need some description in terms more amenable

to a human teader than that afforded by the code of the program itself.
P;tential users. of the program will require knowledge of the purpose of
the program, the format of the input data and control records, and the
output they may expect. Other programmers may require more detailed
descriptions of the program code so that they may maintain the program or
modify it to local requirements. Such documentation can conceivably be
written after the program itself has been written, though there may
be some good arguments why this could be bad practice. For example,
‘'in many cases such documentation is generally provided by the programmer
himself., Apart from the fact that programmers are not nece;sarily good
at writing documentation (as pointed out by Weinberg 1971), interest in
a program can naturally lessen when the creative phase has bcen completed.
The programmer may even move on to other projects and leave the documentation
to be completed by his successor, if it is ever properly completed.

It may, therefore,be a good idea to produce documentation directly
from the program text using such techniques as automatic flow-charting
or by other methods (e.g. Mills 1970). |

Documentation of a design itself, made as the design is carricd out,

is particularly necessary in computer programming (see Naur and Randell

1969 p90, for example). In a project involving numbers of people it

. is essential. Several massive systems have been constructed (Brown 1970,

- 22 -

Falla and Burns 1973, Pearson 1973) to provide support for information on,
for example, design specifications, program methods and progress. Baker.
(1972) describes how a programming secretary with machine assistance can
_ play a central role in the maintenance of information. For small groups
of programmers, a filing cabinet or even a notebook may be sufficient,
Af its value is fully appreciated.

~The form of documentation used or required can influence the work

of a programmer.

example:
It is very much easier to document a program in terms
of separately describable modules with few cross-references

than one which makes use of intricate relationships
amongst a large number of variables and functions.

This influence is likely whether there are many people involved or
only one. Being forced to describe a program leads one to appreciate its
shortcomings.

‘As a progrém is developed it should be documented so that the decisions
t;ken during development and the reasoning behind these decisions will be

available later. The development process may well be based upon such informatione.

examples:

If, in a particular development, the designers maintain a
diary of progress made, then they are well equipped to use
"such information to influence their work. In the absence
of such documentation it is likely that future decisions
will be ill-considered or invalid with respect to earlier,
undocumented and hence forgotten, decisions.

It is likely that wellwconsidered programs are the result of

well-documented designs. The converse, that badly documented designs

- 23 -

result in badly considered programs is likely to be an understatement.

Selig:
"With the rapid proliferation of computer languages,
subroutines and programs, and the tremendous effort
they represent, meticulous documentation is becoming
essential, not just to save money but to prevent chaos'.

(Naur and Randell 1969 p116)

Before we consider a few tools and notations used in the design of
a program, it must be stressed that documentation is something which is
for the benefit of a human reader. Its purpose is to enable a human being
to come to an understanding of the program or design being documented.
When the documentation is purely descriptive then this need should normally

“be achievable: However, documentation which is precise is also a requisite

in‘programming anq it also should be comprehensible. The method of Parnas
(1972) for describing the function of program modules or the use of
subsidiary programming languages to describe a program (Rosc 1966,

Kolsky 1969, Falkoff 1970) are of relevance in this direction.

2.3.3 Some tools used in program design

There are a number of tools available to a programmer for usec during

program design. Many of these are notational or graphical and facilitate
the representation of ideas on paper. We also include a short discussion
on machine-assisted tools, but only in the sense of special purpose
computer-aided design systems. Machine assistance in the form of
.compilers, debugging systems or interactive programming systems is

dealt with in Chapter 4. The discussion of programming languages at this

time is also restricted to their use in design, rather than as being a

definition of the interface between man and the computer. Programming

- 24 -

languages are discussed from this latter viewpoint in section 2.4.

- Decision tables represent a method of describing the logical connections

inherent in a problem (or in any process). 1In particular they provide

" o o o a means by which the work required to understand and
define a problem, develop and program a solution and provide
documentation, is substantially reduced".

(Schmidt and Kavanagh 1970).

However, decision tables alone do not provide a basis for the solution
of complex problems. The derivation of a solution in terms of a decision
table implies a good understanding of the problem so that the logical:

: conngétions are correctly established between the various components of
the problem,
'Once the necessary logical connections are established, decision
tables may prove of value in determining such properties as logical
completeness, They can also be used to describe the solution process for

a problem in a way which may be automatically translated into a representation

"in a programming language (see, for example, several papers in McDaniel 1970).
. It is possible to use decision tables to give many-levelled descriptions
~of a probiem or a solution process. (A discussion of 'levels" is given
in Chapter 3). The derivation of such descriptions is determined solely
by the programmer himself, with the properties of decision tables only

acting in a passive role.

- 25 -

Flow charts may be used in similér ways to decision tables. They
refer, however, to the flow of action or information, rather than.to fixed
logical relationships. As the actions may be determined as a result of
previous actions described in the flow chart, the generality of flow
chart descriptions may be difficult to understand.

It is possible to code directly from a flow chart into a progrémming
language possessing similar primitives to the primitive flow chart
symbols (e.ge labels, goto's, funetions, tests).
. Flow charts may ﬁe used, like decision tables, to represent a
many-leQelled description of a problem or solution process. 1In this case,

however, each level represents a description of a flow of control, rather

than of levels of logical connection. If flow charts are used in this way
to describe processes, the programmer must himself. have a conception of the
different levels of control flow and ensure that these are faithfully

represented by the description he gives.

Various textual notations are often useful during thc design of programs.

Natural language is a common method of description. It ofifers a means

of communication wita other people (in either written or spoken form) which

is essential if the various facets of a complex problem are to be appreciated.
The use of natural language in an unrestricted way is always open to the
danger of misinterpretation, but "jargonized" forms can be very helpful
whilst avoiding the implications of specialized notations such as

programming languages. It is quite possible to describe algorithms in

this way (as Knuth 1968 demonstrates so well), provided the texrms used

are unlikely to be misinterpreted.

- 26 -

Programmers often make use of a "bastardized" form of a programming

language in the development of programs. Such a notation retains much

of the flavour of the programming language but, as‘there are no
stringent grammatical rules to follow (the programmer is, in effect,
devising the language as required) the programmer can express himself
as he pleases. The use of such language forms is likely to be beneficial
in bri&ging'the gap‘between the language of the problem statement and the
programming languagg to be used to express the solution process (see also
section 3.2.2.)s

| On a similar theme, any simplifications to the precision of a
programming language are likely to be helpful in a notation whose primary

use is for the expression of ideas. An example is an expression of

non-determinism. Programming languages are, by nature, deterministic. Yet
many programs are describing non-deterministic concepts., These programs

.are often'characterized by a "choice" of a particular indeterminate value

with appropriate backtracking provisions if the choice was, in fact, the

' wrong one. It may be helpful to the programmer if he could write his program
using non-deterministic constructions whgre applicable, but without the

need to give full details of how the backtracking mechanism should be
incorpératéd. Floyd (1967b) and Johansen (1967) describe how programs

- which use non-deterministic constructions may be expanded iﬁ an automatic
way so that the necessary backtracking mechanisms are incorporated.
(Unfortunately, the generality of such schemes necessities the inclusion
of much inefficient and often unnecessary computation. This can, of course,

.be removed by "hand‘tuning" the program, although this may be a non-

trivial and error-prome task).

- 27 -

There are doubtless many other concepts whose expression in a
_programming language is complek, but whose basic notion is well-understooé
and 1s easily expressed ih a textual manner. Their use by the programmer
~in documenting his program design is likely to be beneficial. If they
are.easily mapped into "real" programming language constructs then the

task of program development 1s again simplified.

The ultimate notation available to the programmer is, of course,

the programming language itself, This we will discuss in detail in
sectionv2.4 and alsq in Chapter 3, We believe that its usefulness in the
design of the program is more by its influence then by its use as a
primary design notation. Indeed, we believe that the use of the programming
language itself early in the design process can be bad practice, as it
represents a committment to a particular solution process at a time when
much of the information which the programmer may be able to find out

about his problem is likely to be undiscovered.

In some cases it may be possible to call upon machinc (computer)

assistance in the design process. The amount of assistance a computer

may give varies through special purpose ''computer-aided design systems"

such as the.LOGOS scheme (Glaser 1971) whereby the problem itseif is
represented in the computer system and the design of its solution aided
and maintained also by the system, the AED approach to computer-aided
design (Ross 1967) whereby various design packages, a programming language
and a "cglture" all act to assist the programmer, to systems

giving purely clerical assistance. The work at Stanford (Engelbart and

English 1968) on a computer system for the augmentation of human intellect,

- 28 =

and that represented by MATHLAB (Engelman 1968) are good examples of this
latter form of computer aid. We could also include systems which are

more oriented to the production of computer programs (e.g. APL).

These systems are also discussed in Chapter 4. We see computer-aided
design tools primarily as a means of reducing the intellectual effort

required of a human being for tasks which are mainly mechanical but still

absolutely essential (e.g. representation, organization and presentation

of information)e The unique ability of the human being in a creative role

is crucial to any design or problem solving activity. Design aids which
allow the human being to concentrate his abilities on this role are

bound to be of use in extending the human capability for undertaking difficult
- tasks, such as program construction, with greater confidence.

244 Programming Languages

We have suggested that a programming language characterizes the
man/machine interface, It is the aim of the programmer to describe
a solution process in terms of a programming language, rather than in terms
of the physical concepts of the computer. The programming language,
therefore, has a very great effect upon the programming activity.
Programming languages should be designed with some care in order that it be
as straightforward as possible for the programmer to develop a representation
for even coﬁplex solution processes.

The development of programming languages has tended to recognize
this obligation, although we believe there is still a long way to go.
Early computers were programmed in machine code and subsequently in a
symbolic form of machine code. The man/machine interface was, at that time,
only slightly removed from the machine and the programmer required a large

intellectual effort to achieve a suitable encoding of his program. Later efforts

- 29 -

(e.g. FORTRAN, Algol, COBOL, etc.) were further removed from particular
machines and paid a greater concern to the expression of problem
solutions in a form more closely related to problems themselves. Nowa&ays,

high ~level languages have been devised for many of the more common computer

applications (Sammet 1969).

Most recent language developments have recognized that the programmer
will benefit greatly if he has to adapt the problem less to the pecuharlties

of a machine and is therefore able to concentrate more on the development

of the solution process. -A human being solving a complex problem has
ample opportunity for error. The lessening of the problems of communication
with the computer should allow more freedom to concentrate on the real
difficulties,

The development of languages represents a steady process of
movement away from the concept of a specific form of computer, and more

to the general representation of problem. concepts and algorithms. A
logical conclusion to this development process would appear to be the

use of natural language to communicate with the computer. Thére are many

difflculties with this 1dea, and even were it practical from the point of

view of implementation, it is likely to be a source of much
misunderstanding. The '"heaviness' of legal English should act as a
warning that it is very difficult to write unambigious statements in
natural language (Hill 1972). What would appear more appropriate is a

language that takes due account of both man and machine, with little explicit

emphasis on the latter and more attention given to the former. One way in
which this may be possible can be seen in the concepts of extensible languages

which allow the programmer to add to the basic language of the machinev

- 30 -
interface as he thinks fit,
However, it should be stressed that our present concern is to
study the role of programming languages in program development. WeAdo

" not wish to be concerned with arguments about the form new programming

languages should take.

2.4.,1 Programming language influences

The choice of a particular programming lamguage by a programmer
'theoretically acts as a constraint upon the number of actual solutions
f}om amongst which he may choose for his particular task. However, any
reduction is unlikely to be noticed unless the choice rules out
particularly‘appropriate representations for the problem in hand.

The decision to use a certain language may not always be made
on the basis of the merits of the language itself. Other criteria,
often based on pragmatic. arguments, can play a large part. Programmers
may have to make do with ill-conceived language constructions and the
likelihood of difficulties later simply because there is a "good"
implementaﬁion of the language which generates "efficient' machine code
and which is well supported by a large library of useful functions. Mass
usage of such languages encourages their continued existence to the likely
detriment of other concepts in programming which may, in thc long term,
offer great benefits. The blame does not lie with individual programmers
as they are often given little choice in what programming language to usc.
.Their organizations will make this choice for them, having considéred (or
tried to consider) factors other than that of the language itself.
Compatibility and transferability of both programs and programmers are
Jjust two examples.

For whatever reasons a particular language may be chosen, it will have

a considerable influence upon the way in which a program is developed and

- 31 -
possibly contribute to the difficulties.
Even with contemporary high-level languages which are described
as being general purpose, the concepts directly describable are limited.
In order to make use of a programming language to represent a solution
p;ocess,'the programmer has to create mappings from the concepts of the
- problem to those of'the programming language. It is natural for a program
lto,be developed along the lines nggested by the programming language as
these‘mappings‘are thent more easily appreciated.
example:
If APL is chosen as the programming language, then a
programmer is encouraged to think in terms of matrices
and to consider his problem in such terms. Again, if
a string processing language is chosen, a programmer

is immediately encouraged to think in the particular
terms that the language suggests. '

In some circumstances the particular concepts of a programming
lanéuage are well-suited for a given programming task (e.g. RPG for the
construction and printing of tables of data). 1In general this is not true
and thus a part of the programming effort is the choice of suitable
repfesentations for problem-oriented concepts in terms of the limited
concepts provided in any one programming language. One way of reducing
the effort required in this task would be the use of more powerful
programming languages. However there is some danger in this approach,
namely tﬂat the more powerful a programming language is, the more difficult
it is for a programmer to appreciate its properties. If a language spans
a large set of concepts then the difficulty of choosing the most appropriate
representatibn increases, because there is a potentially larger set of
‘candidates. Conversely, a language which is very restricted and so does
not have this problem has, of course, Aifficulties of its own. A progrém?er

may conceivably have a complete understanding of the properties of such a

- 32 -
language, but, for any given problem, it is unlikely that there exists
any obvious, direct representation. The programmer has, therefore; to
create one, which may be a non-trivial task. Thus, a programming language
which is over restrictive is likely to lead to programming problems,
whilst one which provides a vast set of concepts and functions is likely
also to cause problems through difficulties in understanding. Extensible
languages may prove to be a solution to this particular difficulty,-
p?o§ided that the mechanisms of extension are themselves non-complex
whilst being sufficiently general.

If a programmer is free to choose from amongst a set of alternative
languages then there is likely to be some advantage if the final decision
- is delayeds The process of developing a program allows a programmer
time to learn about the problém and its difficulties. If he makes no
coﬁmittmenttn a particular language during the early stages of
development then hg is likely to be better placed to make a wise choice.
-The set of possible languages will probably be small (for reasons separate
from the task in hand) and so the programmer should be well able to
judge which language is best suited to his particular situation.

2.4.2 Programming language design

The problems for which computers are used are generally complex.
The various properties and concepts of computers are complex. The
interface between these two sources of complexity is the programming
1angu$ge. One function of a programming language should, therefore,
be to offer means of simplifying both. This function is carried out
by the various languages available with differing degrees of success as
illustrated by some of the examples given below.

The number of languages with procedure or subroutine mechanisms which

- 33 -
may be used easily are good examples. The worth of such a concept (and more
particularly the use of libraries of subroutines) is obvious when we recall
the discussion of man's requirements for solving problems (i.e. the breaking
up of the design, the recognition of situations etc.’. Indeed, theré may be
“a considerable effect upon the program design itself:
(1) The programmer is spared intellectual effort.
- (i1) A program may be designed in a particular way to incorporate

an existing subroutine.

examples
In the solution of a boundary value problem of ordinary
differential equations, the existence of a subroutine
which solves initial value problems might encourage

the programmer to use the "shooting method" (Keller 1968)
rather than develop his own solution directly.

The presentation of the language itself can be a powerful simplifying
agent. Flow charts may be described as programming languages, and they
certainly allow for the concept of a subroutine call mechanism., Yet we
do not normally consider flow charts as being suitable for the detailed
representation of programs to be input to some machine. One reason of course,
is that computers do not possess input devices capable of accepting such
graphical information. Textual representation, however, offers a much

-more concise form for transmitting information and, because of education,

is naturally acceptable to the human programmer. On the assumption that

programs are to be understood by human readers, the actual symbols of the
1anguage,‘the relationships that may exist between these symbols, and the
meaning to be attached to the symbols should be chosen so as to assume as
little infellectualleffort as possible from the reader. A programming

language is likely to be more acceptabe if it satisfies this property of

- 34 -

"readability", at least to the extent that comprehension of a program

is not obscur;d by the constructs of the language itself,

~ example:

A language such as PL360 (Wirth 1968) has some appeal

when compared to the assembly language of the 360 computers;
(IBM 1969). '

To a certain extent, the clarity of individual programs depends
L]

upon the problem and on the ability of the programmer, not simply as

a coder, but also as a problem solver and designer. However, as a

brief survey will show, there are certain constructs présent in current
.high-level programming languages which are extremely complex and liable,
themselves, to lead to much misunderstanding. Even in well designed
‘programs theilr use will obscure the basic design, whilst in badly designed
programs, their use can make it almost impossible for the human reader to
discover how the program works. Unfortunately the use of some of these
" constructs is often necessary. The programmer must then exercise discipline
over himself to see that any complexity is reduced to a minimum. We

discuss some of the points in the illustrations which follow.

(a) Input/output handling.

Undoubtedly, input/output handling can be a complex problem, but it

rarely appears to receive the attention that it warrants in a language.

Indeed in some languages, the handling of input and output is regarded as

an "add on" feature to be determined by individual implementations. We
do not advocate any.particular approach for the specification of input/output,

but certain methods seem to be more appealing than others.

- 35 -

example:

The idea of a '"picture'" of the required output being
given by the user (as in COBOL for example).

One feature commonly encountered is that of referring to devices
by a number, instead of using a more meaningful name; such a technique
is surely indicative of the half-hearted approach that seems to be taken

in so many cases.

(b) "goto" statements

There has been much discussion in the literature regarding the
efficaéy of using "goto" statements in programs. (Dijkstra 1968c,
Rice 1968, Wulf 1972, Leavonworth 1972, Hopkins 1972). The arguments
for and against are well-known and we will not discuss them further

here, though we will return to the ''goto' statement briefly in Chapter 3.

(c) the ALTER verb in COBOL

COBOL, as many other high level languages, possesses a ''goto"
 statement. However, it also allows what we may call a '"variable
destination goto" statement. The destination of a jump may be altered
during the program execution. Thus the text of the program may be

changed dynémically. It can no longer be read with ease by a human recader.
The prospect of a program with many uncontrolled jumps whose destination

is unknown, except during the actual execution of.the program, makes

‘oné marvel at the debugging ability of those programmers who write

such COBOL programs.

- 36 -

(d) The CASE statement
(see for example Algol W, PL360, XPL, Algol 68).
The case statement may be considered as a generalization of the

alternative statement (if). We can describe its syntax by the following.

case (integer expression) of

{(statement-l) H

{statement-2> ;

<statement-n>}

The value of the <integer expression> determines which, if any,
of the n statements will be executed. The ordering of the individual
_ statements is vital to the correct functioning of the whole statement.
‘If one statement is omigtea (a card is lost), or some get out of order
(the cards are dropped), then the whole statement is liable to be erroncous.
~Yet it may still be meaningful to the reader and acceptable to the language
processor. The solution to this difficulty is shown by Wirth (1971a)
-in the ianguage PASCAL. Each of the n statements is given a label and
the <iﬁt:'eger expression) is replaced by an (expression> which will

evaluate to one of the n labels.

- 37 -

example:
Suppose "pointer" is a variable of a certain type yielding

the values described as 'east", "west'", "north" and “south'".
We may writes~

case pointer of

east: e o o
west o o »
: norths .« o e
south: « o .

The 6rdering of the four possible statements is immaterial and
a number of other checks are possible to prevent errors.

(e) Implicif declarations

Weinberg (1971) and Palme (1972) are among many who have written
about the dangers of languages where declarations are made implicitly.
"New'" variables are liable to be introduced through misspelling of
variable names without any indication of fault by thellanguagg processor.
Explicit declarations are useful to a reader in that he is given a full
description of what attributes he may assume for the individual variable

names (see also Chapter &4 section 4.1).

There are many other instances of error-prone constructions being
provided in programming languages (see for example Weinberg 1971). The

general point which they illustrate is that it is extremely simple to

- 38 -

introduce con%iexity into a language design whereas the aim should be
]

e

simplicity. ie suggest, therefore, that language designers should pay'

a greater heed than is generally apparent to the fact that a programmer
- is fallible and finds complexity difficult to overcome. 1In the
design of a program, the programmer is learning about his problem.

I1f he can express himself clearly and easily, then his appreciation

" of his task is likely to grow. However, if he has to struggle with
complex language constructions, then much of his effort will be

diverted and he may miss opportunities in the discovery of acceptable

solutions.‘

-39 -

Chapter 3:

Structure in Representation and Method

In the previous chapter, a number of the requirements of man for
tackling compfex tasks were noted. In particular it was suggested that
a methodical approach was essential and that themr must be a means of
representing and organizing the information concerned with the job being
tackleds These needs are closely related. Method relies upon the ‘
availability of information, whilst any representation or organization
of information will ﬁot be helpful if it obstructs the method. One of the
most powerful ways 6f organizing information for describing complex

systems is the hierarchy. Simon (1969) says:

", .. 1if there are any important systems in the world that
are complex without being hierarchic, they may, to a comsiderable
extent, escape our observation and understanding''.

‘Further support is given by Whyte (1969):

", ., . hierarchical classification is the most powerful method
used by the human brain in ordering experience, observation,
entities and information'.

| A recent paper (Belady and Lehman 1971) analyses the structure of
programs from the point of view of its effect upon the economic lifetime
of a program. (The economic lifetime of a program describes that period
of time during which useful work can, with confidence, be achieved with
that program. It ends when errors or malfunctions of the program occurring

as a result of modifications or misconceptions incorporated earlier cannot be

- 40 -

removed without adding further errors which will themselves prevent useful-
work and whiéh also cannot be removed). Amongst the conclusions reached
in this papeé is that the structure of a program should allow hierarchicail
representatizn.

Programming methods which accord with the philosophy of "divide and
rule'" can lead to programs which exhibit a hierarchic structure. An example
éf such methods has been given in Chapter 2 in terms of problem
decomposition.

Simon (1969) gives a telling illustration of the power of hierarchic

~design and development methods. This illustration compares two approaches

to the construction of a complex mechanism. The first approach, which we

will describe as the "single-unit" approach represents a method which
is not based upon hierarchic notions. The various primitive elements
" which form components of the total mechanism are assembled in no particular
order and are not recognizable as being correctly in position until the last
priﬁitive element is assembled. The second approach is based upon the
method of bu%lding recognizable sub-components which may themselves be used
to form furtﬁer recognizable sub-components until the total mechanism is
constructed.: In this second approach, the existence of completed sub-

!
components represents the state of the construction activity at any given
time. This information can be used with advantage during the construction
activity and allows, for example, for the activity to be interrupted or
for the course of the activity to be influenced. The "single-unit" approach
offers none of these possibilities. Any interruption of the comstruction
activity will, almost certainly, necessitate the complete recommencement of

the task as no information is available to describe the current state of the

activity.

This illustration can be translated into programming terms without losing

any effect. 1If a program is constructed from components and sub-structures

S At

- 41 -
which can be;recognized as such because of the representation of the program,
then the proé%ammerlis well placed to decide what he must do next and what
relationship %his has to his previous work. On the other hand, if a program A
18 constructed without any definite method such that the properties of that
program cannot (except in the most trivial cases) be appreciated, then the
programmers task is hopeless.
Programming languages are, as discussed in Chapter 2, much too

restrictive to allow the representation of components in a form

sufficiently related to the problem to be useful in a general way.

examplet
Programming languages generally have a limited domain
of data types or structures which they can express.
Thus, in any representation of a program in a programming

" language, all objects manipulated by that program must
be expressed in terms of these types or structures.

As we described in Chapter 2, programmers tend to use other
notations to represent their program at various stages of its development.
Thus Qatural language may be used to express an overview of a program
which is presented to the computer in a programming language.

The various representations of a program can be structured
hierarchicaily according to the forms of notation used. 1In this way the
aggregation of properties given in one representation can be appreciated
in terms of some other "higher level" representation. Other structurings
might be applied but, following our comments above on hierachies, we
wish to base our further discussion of programming upon methods and
representations founded upon the ideas of problem decomposition and
hiérarchically ordered description.

In this chapter we will illustrate relationships between different

- 42 -

representations of a program by the device of a "level of description".

!

A program may /be represented at a "level of description” according to a
set of concepts whose meaning is understood at that level. The same program
~may also be represented at another level of description by its expression in

terms of other concepts understood at this second level. Various hierarchical

relationships can be described which relate representations given at

different levels.

Programming methods can be described following the notion of
hierarchically organized representations. Various methods have been
described (e.ge "top-down", 'bottom-up"), all of which are based upon the
philosophy of ''divide and rule", The different methods are best
ghéracterized according to the ordering they suggest for the development
of the program. We will describe several methods in terms of the
representation scheme afforded by "levels of description'" and discuss s
some particular issues concerning the practical application of programming
methods using contemporary programming tools.

3.1 Levels of description

Consider the following pieces of text. Both describe a solution

_process for the same task.

Text A) "Read 10 input cards and, for each card, make a test to
determine whether each of the first 9 values of that card
is within acceptable limits and further, whether the 10th
value is a valid check sum of the other 9 and is also within

acceptable limits".

- 43 -
Text B) integer array values (1:9);

integer check; integer i, j;

for i: = 1 until 10 do
begin for j: = 1 uptil 9 do

begin read (values (j));
if = acceptable (values (j)) Egggfwritefror 1)
end;
read (check);
if - checked (values, check) then writerror (2);
if = acceptable (check) then writerror (3)

end

Although both text A and text B represent (essentially) the same
solution process for the same problem, the terms in which they are expressed
are different, The difference is that each may be understood according to
an interpretation attached to the particular set of concepts used. It is
clear that the interpretation of the concepts used in text A is not dependent
upon the iqterpretation of the concepts used in text B and vicc versa. The
reader may have been able to better understand B having read A because

of the expressed relationship between text A and text B. However, B

is understandable separately from A.
We will say that information may be represented at differing

levels of description according to the set of concepts, and their

assoclated interpretation, used in that representation. Informatien

represented at a number of different levels of description may be related

by an explanation of how concepts at one level of description can be expressecd
in terms of concepts of another level of description.

Woodger (1971) makes similar observations about "levels of language'.

- 44 -

In particular he stresses that a language (a set of concepts together with

an interpretation) should be capable of interpretation independently of

any other level of language.

3.1.1 Characterization of a level of description

We characterize a level of description in terms of the primitive

concepts which that level provides. These we describe in terms of

four sets, }

The first is the set of objects. It is sufficient to name only

the type of objects which may be described rather than enumerating them

individually. 1In examples and further discussion, this set will be
denotgd by D.
The second characterizing set is the set of operations which may
be performed upon objects described by the set D. By an operation we
vmean to include not only operations in the normal sense, but also predicates
and functiong which take objects as operands. We do not regard identification

as an operation, This set of operations will be &enoted by F.
Operations may be combined by elements of the third characterizing

set which we denote by C. The set C contains, therefore, those elcments

of a level of description describing permissible orderings of operatiomns.

example:

A particular level of description might be capable of
expressing ordering in such terms as:

Yand", "then", M"after".

A level of description such as provided by a programming
language contains terms like

ngw "if . .. then o « o else « « "

- 45 -

Finally, objects may be grouped together in certain ways expressed

in terms of data structuring primitives.

examples:

a'deck" or a '"sequence"

We include in this final set (denoted by S), means of identifying
élements of '"data structures'.

We will adopt the convention of subscripting the set identifiers D,

F, C and 8 in order to distinguish levels of description. We now give two
examples of different levels of description.
Example 1

The level of description provided by a simple, conventional programming

language (which we call SPL) may be characterized as follows:-

: DSPL = {integers, booleans}
FSPL = {+: - =<, & |, ==}
CSPL = {; ’ i._f_..-then...else..., Whileooni(lona}
S = {arra s subscription}

SPL
Example 2
| Consider the following problem described in natural language.
"A bunch of bananas is hanging just out of reach above a monkey. The
monkey wants the bananas. Nearby there is a large box which the
monkey can move and onto which the monkey may climb. How can the

monkey reach the bananas?"

- 46 -

The solution to this problem is, of course, obvious assuming a
reasonably intelligent monkey. The characterization of the level of

'description at which this solution could be given is:-

DM'.B = {monkey, box, bananas}
FMB = { (monkey) ﬁove (box),
(monkey) climb on (box),
' (monkey) take (bananas)}
CMB = {first, then}
SMB = {bunch }

The characterization of a level of description as given above is
not intended to be the basis for any rigorous treatment of language
relaéionships. It is merely for the purpose of separating certain concepts
which are frequently used in the expression of programs and which
conveniently allow different descriptions of the same Ehing.

3,1.2 Related levels of description

If the interpretation of concepts of one level of description may
be expressed in terms of the interpretation of concepts of a second level
of description, then there exists a relationship between these levels of
‘description.

Such a relationship may take the form of an explicit statement that
the meaning of a particular concept (or set of concepts) at one level is
equivalent to the meaning of an expression understood in terms of concepts

of the Second level.

=8

w

- 47 -

é

example&
Suppose that there is an operation " f' understood at level
1. SBuppose some expression is given at level 2 whose
meaning will be understood according to the concepts of that
level. 1If this meaning is understood to be equivalent

to the meaning of the operation " £", at level 1, then there
is a relationship between levels 1 and 2.

Alte;nativelya such a relationship between two levels may exist
becéuse a description of a piece of information is given at both levels.
The fact that it is the same information which is described implies that
the interpretation of the concepts of one level can be expressed according

to the interpretation of the concepts of the second level.

example:

The two representations of the one program given in section
3.1 imply a relationship between the two levels of
description used.

We will describe this relationship between two levols of description

in terms of the notion of height. A level of description is said to be

higher than another if the concepts of the first level are understood by

expressions described using the concepts of the second level. It is not

useful to define this notion more closely. 1In particular we do not wish

to indicate whether or not the height relationship may be defined
cyclically,

1f there is some level of description which is con;idered never
to bé higher than any other level of description, then this level is
known as the base level. It will normally be the level of description

of the programming language.

- 48 -

It is intended that the measure of the height of one level with

respect to another be connoted with the relative M"closeness" of concepts

of each level,

‘ example:
1f one level of description contains the notion of "matrix"
whilst another provides the concept of "array", then these

levels can be described as being closer together than if

the second level provided only the concept of a linear
address space.

However, it must be noted that we do not attempt to give any
quantification of height and further, that for any two levels which have

an explicit height relationship, it is always possible to interpose
a third level between them provided that we have a sufficiently
inventive idea of what is meant by "concept'.

Information (including the particulaf case of programs) may be
represented at a number of different levels of description. These
various representations can exhibit a hierarchic structure reflecting
the actual relationships that exist amongst the set of levels of
description. Simon (1969) describes hierarchic structures by the
property of 'mear~decomposability'. A set of variables representing
certain information can be compounded into groups, each of which may
be studied more or less independently of the interactions between the
groups. Relations between the groups may themselves be studied more
or less independently of their individual element-wise composition. Related
levels of description can exhibit such a property according to the
expression by which they are related. |

An abstraction is a particular relationship between the representations

" of some information at two separate levels of description, such that the terms

- 49 -

of the lower level are used to express one concept of one of the
characterizing sets of the higher level. Between any two levels there may,
of course, be more than one abstraction.
We may identify four separate abstractions according to the particular
set to which the concept in the higher level belongs.
(i) Representational abstraction (the set D).
(ii) Operational abstraction (the sét F).
(iii) Sequential abstraction (the set C).
(iv) Structural abstraction (the set S).
Any of the elements of the lower level may, of course, be used

to express any particular abstraction.

exaﬁplez

An object at one level may be '"represented" by a
particular set of operations. An abstraction
from this set of operations may be considered as
a member of the set D at a higher level and hence
be a representational abstraction.

Abstraction represents the aggregation of properties and interactions
of concepts from the lower level to be interpreted as a single concept
. at the higher level. The inverse of this process we call claboration.
Elaboration details an interpretation of an aggregate property in terms

of properties and interactions of a set of concepts.

example:

A program might be described at one level of description in
terms of a "stack" using operations '"pop an element" and ''push
an element". At a lower level, the notion of a stack might be
elaborated in terms of an "array" and a '"pointer' into the array
to represent the top of the '"stack". Elaborations would also be
given for the "“stack" operations as being operations upon arrays
and pointers. The program described using a 'stack" could
equally be described in terms of these elaborations. :

- 50 -

3.1.3 Densicy of a set of related levels of description

5

One of?;he major reasons for giving representations of a program at
a number of diffe;ent levels of description is that there should, as a
result, be an increase in the comprehensibility of that program in terms of
" the relationships that exist between the concepts of the problem area and
the primitives of the programming language. Whether or not this goal
can be achieved depends considerably upon the ease with which the actual

relationships existing between the various levels of d:.cription can be

understood. Even if these relationships can be described according to
abstractioh, comprehension is not necessarily assured. This can be true
if the process of understanding individual relationships between levels
is very difficult. In this case any measure of the height of two related
" levels will be large and the number of different levels used will be
small. Alternatively, it may be a relatively easy matter to understand
the individual relationships between levels, but, because of the large
number of such relationships, understanding the whole is difficult.

There is, in general, some point where the nuabor of reclated levels
is large enough such that it is possible to comprehend tii- fr.m of the
relationships existing between individual levels, but noi »o0 lacge that

the number of relationships itself is a barrier to compreli:usion. This

number will not be constant, even for a particular problem or a

particular programmer. We will describe a set of leveis of description

which satisfy this necessarily vague criterion as being sufficiently dense.

' In any discussion which follows we will further assume that a sufficiently

dense set of levels of description will be related by abstractioms.

-~ 51 -

3.1.4 Levels of description and programming languages

The primitive concepts of a programming language form a level of
description. In addition most programming languages provide well-defined
mechanisms by which a programmer can give a representation of a program
- at levels aﬁove the base level of the language itself (e.g. procedures,
data structures, macros).

A procedure is a method of aggregating the properties of operations
combined in a certain way in order to provide a "higher lcvel" operation.
Procedures, therefore, providé a means of describing operational abstraction.
The use of a procedure allows the programmer to abstract from the details
of the expression describing how a certain operation is implemented to an
unde;standing of effect denoted by the name of the procedure.

Data structuring facilities in a programming language can be used
to abstract from a set of relationships amongst data to the notion of a
structured object possessing certain properties. Hoare (1972a) stresses

the iﬁportance of this role in describing and understanding programs

and lists a comprehensive set of structures. Many of these are found
in the language PASCAL (Wirth 1971a).

In most programming languages, however, there is only a limited
provision for deriving a new level of deséription by representational
abstraction. Algol 60, for example, allows arrays to appear as
parameters ‘to procedures, but does not allow an array to be used as a
primitive in a further array. (Of course, multi-dimensional arrays
may be used, but these do not express the appropriate conceptual properties
of arrays of arrays).

Extensible languages provide more general facilities for the
representation of programs at several levels of description. Algol 68

(van Wijngaarden 1969) allows the expression of both operational and

- 52 -
representational abstractions to provide concepts which may be used

to represent a program.

example:

A level of description containing rational numbers may be
described in Algol 68 by,

~mode ‘rational = struct (int numerator, denominator);
n = (rational r) int : numerator of rj
d (rational r) int ¢ denominator of rj

j8ke

together with operations (for example)

op sign (rxational r) int : sign n r;
op whole = (rational r) bool : d r = 1

example taken from Lindsey and van der Meulen 1971)

SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968) also provides similar

facllities by the class concepte

example:

Rational numbers, as above, can be provided by:

class rational;
begin integer numerator, denominator;

integer procedurec sign; sign := if numerator<O then -1 else 1

boolean procedure whole; whole:= denominator = 1;

end;
The extensible language ECL (Wegbreit 1971), in addition to
providing means for both operational and representational abstraction,

has a facility for sequential abstraction.

’

- 53 -

In order that a program expressed at a number of levels may be
easily undérstood, it should be possible for these levels to be described
as being sufficiently dense, Certain structuring primitives of programming
languages can make ﬁhis difficult if they are not used in restricted ways.
A pointer is often used to represent relationships amongst elements

of data., In most programming languages where the pointer is available,

there is little restriction upon the complexity of the rclationships that
can be so expressed. If the use of a pointer in a program describes relationships
which are difficult to.understand according to any abstraction, then it
will not be possible to represent that program at levels of description
which are sufficiently dense.

The goto statement has properties which are similar to those of the
pointer except that it represents relationships which describe the flow
of control in a program. It is possible to use the goto to describe
relationships which are so complex as to preclude the representation of
a program at a sufficiently dense set of levels of description.

Wulf and Shaw (1973) have described the global variable in a similar
light. |

Each of these constructions can, of course, be used and still allow

a program to be represented at a set of levels of description which may

be described as being sufficiently dense. However, it is necessary

that some discipline of use be adopted. This introduces a dilemma for

language design as to whether or not it would be better to omit such
constructs. It is the author's opinion that it should not be left to
the individual programmer to impart his own discipline, for who is he
to judge what should form a sufficiently dense set of levels of description

and what should not? It is part of human nature to be fascinated by ingenuity

- 54

to the detriment, in many cases, of clarity, simplicity and understanding.

1f programmers are given the freedom to hang themselves, then many of them
will probably try.

The development of certain programming languages lends support to the
idea of providing a reasonably powerful set of structuring primitives
- whilst imposing restrictions upon the programmer.

The language BLISS (Wulf, Russell and Habermann 1971), for example,
does not have an explicit §oto statement. Instead, specialist usages of
the goto are retained in the form of exits from loops, blocks and procedures.'
The language developed as part of the SUE project (Clark and Horning 1971)
includes mechanisms (e.g. CONTEXT, DATA and PROGRAM blocks) specifically
designed to encourage the programmer to represent his program according
to a hierarchical structure.

It’is, however, probably true to say that there arc many obstacles
to be overcome and technical advances to be made before.languages
possessing'such properties as mentioned earlier are widely accepted.

3.2 Methods for constructing programs

.As Simon (1969) suggests, and as was described in tlie previous chapter,
one‘of the most powerful ways of tackling a complex problcﬁ is to reduce
it to a set of "smaller" (i.e. less complex) problems. Each of these
problems may in turn be reduced to sets of smaller problems thereby
developing.é hierarchy of "problems'. Those which are .cast complex will
be found at the extreme points of this hierarchy (i.e. if the structure
is thought of as a tree, then the leaves of this tree stand for those

problems which are least complex). Eventually the division process

ceases when a problem is so "simple" that its solution can be expressed
with ease and confidence. The solution to the whole (original) problem

may then be found by a composition process, the solutions to a set of

- 55 -
" of sub-problems being composed to express a solution to the problem from
- which they were derived. Thus, the total solution may be expressed.
However, a simple recognition of the power of problem decomposition is
~ no more than a guide to how probiems may be solved or how computer
programs may be written. What is missing is a method, or way of
proceeding.

Various programming methods have been described which are based
upon this principle of decomposiﬁion. Terms such as "structured programing",
"step-wise refinement", '"top-down", and "bottom-up'" have become
increasingly familiar in the literature. According to each of these
methods, programs are constructed in a piecemeal manner. Individual
"parts of a program are identified and constructed as separate activities,
in a ménner similar to the problem decomposition process described above.
'Tﬁe various methods differ in the emphasis each places upon the separate
tasks which together form the total programming activity. In particular,

varying emphasis is placed upon the ordering of the development itself

(see section 3.2.2. below).

The structuring of the program development process in these ways
can be described, with advantage, in terms of levels of description,
abstraction and elaboration. Indeed, many of the methods which are
discussed in more detail in section 3.2.2., are based upon notions which
are equivaient to the development of a program by its expression at
a number of related levels of description.

3.2.1 Relationship with levels of description

The development of a program by methods based upon problem
decomposition generates a certain structure amongst the information
which describes such a development. This information and this structure

may be represented using the notions of levels of description, abstraction

- 56 -

and elaboration. This 1s best illustrated by an example. Any ordering

of the development process which is apparent in this example should, at this

thne,'bé taken as merely incidental.
Consider the following problem. (See also section 3.1).

" '"Write a program which reads 10 input cards and tests these same
10 input cards for the following conditions. Each of the first
9 values on each card should be within certain limits. The 10th
value should also be within these limits and, further, should be
a check upon the preceding 9 values on that card".

The first stage in writing such a program is to analyse the problem
statement to decide what major concepts require to be reprcsented.

Such an analysis might well suggest that this program could be written

as a loop, with each pass of the loop first reading a single card and

then testing this card to see whether it possesses the required properties.

A pfogram to do this can be represented as:

"Do the following 10 times:
Read an input card and then test it".

This analysis decomposes the original "problem" into five problems.
Pieces of program must be written to represent (a) looping ("'do the
following 10 times"), (b) carrying out a sequence of operations ("and'chen”),
(c) reading an input card, (d) testing an input card and (e) storing information
about an input card in order that, once read, it can be tested. These .
five concepts are just those concepts which characterize the level of

deséription at which the program is represented above. If we denote

- 57 -

‘this by level "1", then:-

'D1 = {?nput card} -
F1 = {read (input card), test (input card)}
01 = {do e« o o 10 times, and then}

s, = {1}

As the next stage in developing the program one of these five

concepts is chosen and analysed in order to decide how it may be
decomposed.

Suppose that it is decided to develop further the operation
Mtest (input card)ﬁ by separating the operation of actually checking the
card from the operation of reporting whether or not a card is satisfactory.
_Thus "test (input card)" is decomposed into operations which we might call
"check (input card)" and "report (result)". If the total program is to be
expressed in terms of these concepts, then the level of description at-
which such an expression is given will contain '"check (input card)'" and
"report (result)'" as operational concepts. Notice, also, that a new
concept has been introduced, that of "result'". Some means of communication
between the action of "check (input card)" and "report (result)" must
be found. Thus, although the decomposition of a '"problem'" at one level

of description may be carried out according to the properties required

of that 'problem'" regard must be paid as to how that decomposition may be
expressed in the context of lower level concepts. 1In this case, we

expect that it will be an easy matter to implement the necessary communication
and so decompose "test (input card)" as described. In general, however, it

may not be possible to evaluate a decomposition of a problem with any

- 58 -

great confidence because of a lack of knowledge either of the properties
required of the high-level "problem' or of the relationships that such a
decomposition will require at some lower level.

1f a levelyof description is characterized on the basis of the
decomposition of."test (input card)" suggested above, then this level
(denoted as level 2) is related to level 1. The operation "test (input card)"
at level 1 is elaborated at level 2 by an expression involving operations
"check (input card)" and '"report (result)". This elaboration may be
represented as a piece of program at level 2.

Suppose that the next "problem" chosen is that of deciding what information

to retain about an "input card". An analysis of the properties of an

‘"1nput card" and the requirements of the communication between 'read (input -
card)" and ''check (input card)" suggests that it is necessary to retain

all 10 "valueé" of any input card. Each of these 10 values must be
identifiaﬁle separately and in thé proper order. Thus the problem of
retaining an "input card" may be decomposed into the problems of retaining

a "value" and of structuring several "walues" into an ordered ''sequence'.
Notice now that, if the total program was represented at a level of description
reflecting this decomposition then it is not sufficient merely to incorporate
an expression of an "input card" as being "a sequence of 10 values". In

" addition expressions are required which describe how the operations

“'read (input card)" and "check (input card)" are carried out in respect of the
‘decision faken as to the representation of an input card. Thus, in order to
give a meaningful representation of the program at this new level of

description (denoted as level 3) decompositions must also.be given for

read (input card)" and "check (input card)" in terms of, for imstance,

"read (value)'" and 'theck (value)". 1In order to undérstand the program at

- 59 -

level 3, therefore, it is necessary to understand several individual elaborations,
although each may be described hierarchically.

The development of the program may continue in a manner similar to
. that described above. A choice is made from amongst a set of possible
"problems' that remain. An analysis of the properties required of the
chosen problem suggests a decomposition of that problem into a set of
"sub-problems'. This decomposition forms the basis for a level of
descripﬁion at which the program (or a part of the program) may be expressed.
However, this expression may require further concepts or decompositions
before‘it can be understood to satisfy the properties required of the problem.
'Altegnatively, the ordering of the separate tasks may be different as we
discuss below. ‘However, the notions of decomposition, expression and choice
are relevant whatever ordering is followed.

3,242 A discussion of methods

The relationship between approaches to program construction based upon
a &ecomposition of the overall task and the ideas of levels of description
N discussed in the previous section draws attention to a number of factors.
The programmer must choose a particular.“problem" to investigate further.
When he has made a choice, he must decide on a suitable decomposition of that
" problem and how the piece of program for that problem will be expressed in
terms of this decomposition. The influences upon his choice and his
determination of a suitable decomposition and expression are, to a large
extent, based on any actual method he may be following. A number of well
known methods are discussed below. This discussion is itself based upon
two observations concerning program construction. The first is that the
order in which a progrém is developed plays a crucial part in the form
it eventually takes. A simple example is only an illustration of this

observatione.

- 60 -

example:

At an early stage in the development of a program it is
realized that certain data must be retained and made
available during subsequent processing. If a decision

is taken at an early stage as to how this data is
retained (.e. according to a particular mapping between
the abstract data structure and actual storage according
to an expression in a programming language) then this
decision determines to a considerable degree how operations
upon this data are implemented. At the time the decision
is taken the full extent of such operations will, most
likely, be unknown. If the decision is delayed until as
much information as possible is available about how the
data will be used, then a more appropriate representation
might be achieved, »

The second observation concerns the evaluation of decisions and

expressions made by the programmer. Although Chapter 4 is devoted to a
consideration of program correctness and testing, the necessity of evaluating
a program at various stages in its development has an extremely powerful

effect upon the practical application of certain programming methods

and therefore warrants comment at this time. If a particular method allows
the programmer to obtain information about the worth of his work then this
can act as a means of guiding his future work in particular dircctions.
Mannheim (1966) describes a "method" for the design of highway routes which
is'based almost completely upon the idea of repeated evaluations. The
method depends upon the designer providing ''cost estimates' applicable

to design choices at a particular level of description, and then uses
Bayesian decision theory to suggest the chgapest route on the basis of

these estimates. Although the actual mechanism of evaluation might not

be practical in a programming situation there are techniques which have

a similar background and which can be used. A number of these are

- 61 -
described below.

It is interesting, before considering programming methods in detail,
to note the work of Alexander (1966).

Alexander seeks to derive a method
of design which we may describe as being determined from a direct
consideration of properties of the problem.

His technique is based upon
the formation (by the designer) of a matrix of values to represent the

relationships between all of those properties which are not acceptable in

any solution to the problem under investigation. (In Alexander's particulaf

independent of the remainder.

case, he was interested in problems of envirommental planning). Certain
properties have a strong inter-relationship whilst being relatively

relationships.

Alexander proposes that the set of unacceptable
properties may be grouped according to the strength of their mutual

the groups themselves.

There will then be certain relationships existing between
These groups can therefore be aggregated into
larger groups and the process repeated until all unacceptable properties
are categorized into one single group.
hierarchical structure.

the problem.

These various groupings form a
The designer uses this structure and the properties
of the individual groups to form his complete design for the solution to

Thus the only problem facing the designer is the expression
of this solution in appropriate terms.

Whilst such an approach has a
certain appeal, there are, however, a number of difficulties which

restrict its applicability in a practical situation such as programming.

Randell (1971) points out a number of these. In particular there is the

problem of comstructing the matrix of values relating unacceptable prope

rties.

This requires that the problem being tackled is well-specified and that the

e
T

programmer is able to appreciate, more completely than is usual at the

1

outset of any programming activity, the way in which the concepts of the

- 62 -

problem are related to the primitives of the programming language.
Alexander's method appears to disallow, to a considerable extent, the

freedom for a designer to reappraise his design on the basis of the way
that design is developing and in the light of a better appreciation of
the task with which he is confronted. This may be satisfactory in certain

desigri Situations where problems are well-specified and where there is

no difficulty in representing the final design. However, these are two

aspects of design in general which are not characteristic of programming.

A programming method needs to allow the programmer the opportunity to

learn about his task as he carries it out. Thus any ordering of the

development cannot and should not be determined precisely at an early stage.
The programming methods which we now discuss rely on an ordering of

the development of a program, but not one which has the inflexibility
apparent in Alexander's method. Rather, they may be described generally

as trying to balance the need for some ordering of the programmer's
intellectual effort against the usefulness that information gained during

the development process can have upon the way in which that development

proceeds.

The essence of bottom-up programming is the construction of concepts,
which are éxpected to be of use, from others which have less immediate
attraction or applicability. The construction process is represented by a
decision to provide a certain concept which will enable a representation
to Ee given of a program (or piece of a program) in terms which are more
closely related to the problem than are those of any available level of
description. This decision is followed by an activity in which the appropriate

elements of some already defined level of description (e.g. a programming

- 63 -
language) are combined in some way to represent the implementation of the
new concept., This basic construction process is repeated, building
further concepts in a hierarchical fashion until a set of cbncepts is
constructed which is sufficient to allow the representation of the

program for the overall problem at a level of description close to

that at which the problem is described and understood.
A design ordering which is purely bottom-up is unlikely to be of any
practical use becau§e it takes no account of the posed problem to limit the

v

space of concepts which are provided at each stage. However, it is more

often the case that bottom-up programming forms part of a wider design
method in which an initial design stage is carried out. This will take
thé form of a problem analysis process which decomposes the overall
programming task into a hierarchy of sub-components. This hierarchy may
then be implemented in a bottom-up manner to construct the total program.
Methods similar to this have been used in programming a number of large
systems (e.ge Scherr 1973).

.As a program which is constructed in a bottom-up manner can always
be represented at the level of a programming language, use can bc made
of the underlying hardware at any stage of the development for the purposes
of évaiuation and testing. It is possible to derive physical measures

of resource utilization (e.g. execution time, storage requirements) during

the developﬁent process and to demonstrate certain properties of pieces
ok program. It is, however, not possible to relate any individual
measures to those which constrain the total program because this can
only be achieved when the whole program is complete.

Bottom-up program construction is clearly exemplified in the
‘description of the T.H.E. operating system given by Dijkstra (1968b).

Each level of the design is built from the one beneath it, masking out

- 64 -

unwanted features and constructing others which are required.

Most coﬁtemporary programming languages, and particularly
extensible languages encourage a bottom-up progrémming style by the
provision éf mechanisms such as procedures and data structures (see
section 3.1.4 above) and compilers which enable programs to be tested
on hardware. The use of separately compiled procedures is often
helpful in testing programs at higher levels of description. Many of the
publications concerned with SIMULA 67 include examples of bottom-up
construction, (e.g. Dahl, Myhrhaug and Nygaard 1968, Dahl and Hoare
‘1972, Birtwistle 1973).

Amongét other reports exemplifying this approach is a paper
by Naur (i969). This describes the idea of an M"action cluster"
whereby a representation is made for the innermost loops of a program
before the remainder of the program is constructed.

It would appear that the construction of a program following

bottom-up techniques is always likely to involve a compromise.

The problem analysis phase cannot pay sufficient attention to the
specific difficulties which will occur during the later implementation

of the éoncepts specified during that phase. Thus problems will arise
during implementation which would be best resolved by a furthar
consideration of.the overall design. It is often the case, howcver,

that it is not possible to carry out the necessary redesign because of
the effort which has already been invested. 1In this case, any
implementation problems must be overcome in some unsatisfactory manner so
that the original design is maintaingd. It may even be the case that it
is not possible to meet the original design specifications but equally it

is not possible to change these specifications. A program constructed

under such conditions will not, therefore, be likely to meet its overall

- 65 -
design specifications.

Top-down programming is an ordering of the development of a program
whereby the derivation of a suitable decomposition proceeds together with
the determination and representation of an appropriate piece of program.

Design commences with a description of the problem at some level of

descriptione. Using the concepts of this level a solution process may be

dgscribed. These concepts are programming problems because they will not,
in general, be directly representable in a programming language. The
development of the program proceeds by considering these various problems
in turn. Solutions for each may be expressed in terms of lower level
concepts (which will not generally be those of a programming language)

following an analysis and decomposition of the properties required.

example:

A solution process may be described using the operation 'test
an input card". The problem of constructing a represeuntation
for the operation in terms of a programming language is
tackled by analysing the required properiies of the operation,
decomposing it into the lower level operations ''check an
input card" and ''report results' and giving an cxpression

of how these operations may be combined to fuliill the

action of the operation "test an input card" (i.e.

"check an input card and then report results'.)

The érocess continues until the representation of solutions to
all problems can be given (by composition) in terms of the programming
language.

E#;h decomposition is an invention of a new level of description’
enabling a description of the progfam (or part of the program) to be
represented. Successive levels of description are related by elaboration

until, finally, the "invented" level coincides exactly with the program@i?g

- 66 ~
language.

There have been numerous reports which discuss top-down program
construction (e.ge Zurcher and Randell 1968, Mills 1971, Wirth 1971b,
Baker 1972). Of particular interest is the report on "structured

programming' (Dijkstra 1972a). This report introduces the concept

of a "pearl" as a unit of program development. A pearl encapsulates
many of the notions of a level of description together with the
representation of elaborations of higher concepts.

The process of top-down programming differs from methods based
upon a bottom-up ordering by the stress placed upon solving the problem

of giving a representation to a program or piece of program. Just as a
blind bottom-up design and encoding method is unhelpful because it takes
ﬁo account of knowledge of the original problem, so a blind top-down
approach is impractical because it cannot take account of the requirements
of aﬁy actual programming language.

A particularly obvious manner by which the properties of the
programming language can influence the development at higher lcvels is
through notation. The programming language provides & level of description
F

which may be characterized by sets DP C_. and SPL' Fach level of

L’ "PL* “PL

description derived during the construction process may be characterized

by sets as Dipe Frp Cop and 5 (for instance). One approach is to

restrict the relationships between the sets of level PL and those of
various levels LD in certain ways. For example, the following relationships

could be maintained.

- 67 =
Lo = CoL

Stp = SpL
Dp > Dy

, FLD ~ FPL

By DLD:> DPL etc. we mean that the data concepts of the programming

language are available at all levels of description LD, although other

' éoncepts of data may be present at levels other than that of the programming

language. Other interpretations could be placed upon this relationship,

either limiting or expanding the set of concepts available at various levels,

If, in addition, other characteristics of the programming language

‘ (i.e. its textual nature, its particular syntactic forms) are suitably
generalized and applied to the notations used at higher levels, then the

flavour of the base language will permeate the design process and
encourage the program to be developed in a consistent manner towards a

given programming language.
Baker (1972) describes a top-down approach based upon a similar
scheme, with the further constraint that the mechanisms uscd to relate

the various levels of description (i.e. the expressions of solutions

at each level) should be those mechanisms of the programming language

which structure concepts hierarchically. 1In his scheme, DLD = DPL’.

C = D_. and SL = L for all LD and the base language 1is PL/1.

LD PL D SP
The more general scheme described above is recognizable as the

generalized or "bastard" programming language often used by programmers

during program development (see Chapter 2, section 2.3.3.).

- 68 -

Most programming languages can be used in a restricted manner
to provide a number of levels of description derived top-down.

The use of such notations purely as representational devices is almost

neutral as to the ordering of the development (see section 3.1.4. above).

ekample:
A program can be represented in a programming language
as merely a sequence of calls to procedures which have

. not been developeds Mills (1971) and Baker (1972) use
an approach similar to this (see below).

Design evaluation in a top-down method cannot rely upon

knowledge of the eventual form of the program in a programming language

until the program is almost complete. Thus the only measures of the
"correctness" (or suitability) of a particular program development

which can be determined in the early stages are relative to the programmer!'s
intention for high-level concepts. Equally, no measures can be given of the
ﬁtiliza;ion of actual hardware resources when the program is represented in
terms of abstract concepts divorced from considerations of exccution spceds
.or storage requirements.

However, though these observations are generally true of top-down

development methods, it is possible to improve on this situation if certain

restrictions are made. The method described by Mills (1971) and Baker (1972)

is an example. The programmer is allowed only to represent his program:
at levels of description which are derivable within a given programming

language. He may represent his program in terms of procedures which are

not implemented, for example. Because the program is still represented in

the programming language, it may be presented to a compiler and executed

- 69 -

with ""dummy' procedure bodies providing suitable support for the yet
to be designed procedures. Thus, a certain amount of program evaluatiom
céﬁ be done with mechanical assistance.

More generally, it is possible to make use of simulation techniques
to overcome problems of design evaluation in top-down developments.

Simulation can be used to model the typical behaviour of processes

without actually creating a representation for them. This possibility
was recognized in papers by Parnas and Darringer (1967) and Zurcher and
Randell (1968), 1In the latter case, the term "multi-level modelling"

is introduced to describe the particular design method advocated. At

‘any particular time during its development, a program may be represented
in terms of concepts which are not those of the base programming language.
Simulation techniques may be used to model these concepts and thereby

allow‘useful design evaluation to be carried out.

According to the multi-level modelling design method (and also that
described by Parnas and Darringer) such simulations form the basis for
program development. Initially the highest level of design is «imulated
_in order that it may be evaluated. The concepts simulated at this level
are then implemented in terms of lower level coacepts. These concepts

are in turn simulated to provide a mechanism for evaluation. When this
evaluation is completed, the cycle is repeateds Multi~level modelling

has received further attention in papers by Aslanian and Bennett

(1971) and Graham, Clancy and DeVaney (1973).
This discussion of programmiﬁg methods has stressed particularly
the role played by the ordering of the development activity. As both

Gill (1969) and Naur (1972) point out, a strict adherence to either a top-dowm

- 70 -
_or a bottom-up ordering is neither natural nor practical. As we described

above, however, the separation of the task of analysing a problem from
the task of embedding the appropriate concepts in a program can lead

to programs which may not meet their specifications or which are unnecessarily
complex. There would seem, therefore, to be an attraction in the parallel

development of these tasks so that each may influence the other and allow
a closer assimilation of the program text with its purpose. 1In order that
this be possible without the need for constant redesign or reimplementation,
| we believe that it is necessary that programming methods be used which are
based upon a top~dcwn ordering. This is not generally the case at present.
We suggest thdt this is primarily because the tools available to a programmer
encourége him to encodé his design in a programming language at a vefy early
stages The subject of later chapters is to describe certain programming
aids which take an opposite point of view.
3.3 Conclusions

This chap;e; has been concerned largely with the way programs are
developed. The Easic premise was that program design and development
is an extremely complex problem solving activity involving the
representation of complex information in specialized notations. Our thesis
has been that design must proceed in well-disciplined ways and that 2
‘hierarchical structuring of the representation of the program and of the

development process were aims to be achieved. To these ends we introduced
the notions of a level of description and of abstraction and elaboration

relating such levels.

- 71 -

We believe that programming methods based upon a top-down
L
ordering of the development have several advantages over other methods.
This orde?ing combines both the derivation of suitable decompositions
of a programming task and the expression of the program in terms of
these decompositions within a single development structure. This
allows full use to be made of information gained from such expressions

in the evaluation of design decisions in order to influence future

"development. The use of simulation techniques enables usciul information
to be obtained about the properties of a program, even though this

prograﬁ may not be completely developed and represented in its

fiﬁal form in a programming language.

-72 -

Chapter 4:

Correctness, debugging and other considerations

In the previous chapters, programming has been considered from the
general standpoint as being a special form of problem solving activity. |
We have discussed many of the issues involved in the deriation of a
program as a piece of text representing a set of computational processes
from this point of view., However, little attention has Leen given to the
problem of ascertaining whether a program will, in fact, fulfill the
expectations of the programmer. We mentioned, briefly, some related
ideas in discussing ways by which designs may be evaluated. 1In this
chapter we describe some of the diffiéulties that have to be faced if
a programmer wishes to be certain (or at least have a justifiably
high degree of confidence) that a program is '"correct'". Often, as will
be seen, a major problem is that of defining what is meant by '"correct".
We do not attempt to give a formal definition, but rather we discuss the
specific difficulties inherent in describing, or even ascertaining, the
relationship between a statement of a problem and a progyram written in
response to that problem. We discuss various techniques whercby the
programmer can demonstrate confidence in a program. These tcchniques
include program proofs, constructive programming techniques, debugging
and prograﬁ testing and various other mechanical tools which are available.
A major aim of these discussions is to draw attention to the influence
that an overt concern for program correctness can have on the programming

activity and to suggest the form of useful programming aids.

- 73 =

4.1 What is meant by correctness, and redundancy

It is very difficult to define precisely what is meant by the
"correctness' of a computer program. We may sometimes say that a program
is correct because we can "see" from its text that it obviously solves
- the given problem. This is equivalent to proving a theorem in mathematics
by the axiom, '"obvious", and has similar dangers. If we claim that we can
see that a program solves some problem then we are making two very
powerful assumptions. One is that we have completely understood the problem
and the second is that we understand fully how the various programming
constructions are related and represent a process to carry out the
solution to the problem. In the previous chapters we have described some
. of tﬂé difficulties associated with such understandings. Except perhaps for
the case of extremely simple programs solving trivial problems, the
techniqﬁe of "seeing" the correctness of a program is bound to be
unsuccessful. In real world problems and programming situations, it is
often the case that the problem is only fully appreciated by an attempt
to write a program for it.

The correctness of a program is defined ultimately by whether or not
the results of its execution are always those desired and expected.
(Whether or not this includes all intermediate results is dependent upon the
form of any actual definition of correctness which may be adopted),. One way
in which Such a criterion may be checked is by running the program under all
éossible inputé and under all possible conditions. Even if we disallow the
possibility of such things as asynchronous interrupts, then clearly it is
likely to be necessary to run the program an extremely large number of times.
Mo;eover, this approach becomes completely uneconomic when we realise that
whenever a ﬁodification is made to the program, many of the previous tests

have to be re-run. Wellastructured programs can help reduce the number of

- 74 -

test-cases required (Dijkstra 1970), but that is all. Even the choice Qf
the test-cases themselves may be an almost impossible task, the very

. complexity of a design making it difficult to ascertain whether or not
certain program paths have been'rigorously tested. Hetzel (1975) lists
some approaches which have been followed in the field of automatic
‘generation of test data. However, if a satisfactory '"proof" of a program
is required, then examining the executions it invokes is ncver likely to be

a Success.

""Program testing can be used to show the presence of
bugs, but never their absence'.

-Dijkstra (1970)

If we wish to ascertain absolutely that a program does what we believe it
should, then we must‘rely on the program text alone. If it is possible to
 give a "proof" that the processes defined by a program will always produce
an effect which can bg recognized as being what is required, then we have
indeed managed to provide some degree of confidence in the program, However,
as we shall see it is by no means an easy matter to give such a "proof", and
even then, the '"'proof'" may be based upon a number of assumptions, some of whic
are quite likely to be invalid. Thus there is likely to be a continued
requiremeﬁt for program testing techniques in order to improve program
comprehension and increase confidence levels.

As is probably clear, establishing that a progam is correct is
likely to require a considerable effort from the programmer. Much of this
effort is expended in supplying redundant information which can act as
checks within the program. In many current programming languages the

programmer must provide information which is strictly redundant. The

- 75 -

declaration of variables as being of a particular type is an example. Checks

S

can be made (e.g. type checks of operands and parameters) on the program text,
which would not otherwise be possible, because the necessary information
is available. Likewise, if it is desired to construct a proof of the
correctness of a program from its text, then additional information must be
supplied tp specify the purpose of the program and against which the proof
may be constructed. Program testing relies on the availability of redundant
information, If this was not the case, then there would be no criteria by
which to judge the results of such tests. We will give examples of such
redundancy in the course of this chapter.
| Of course, as human beings, we rely heavily on redundancy to allow
us to achieve a better understanding of complexity. Many of the points we
made in Chapters 2 and 3 concerning the design and representation of solutions
are ultimately founded upon this idea. Hierarchical structures represent
redundant information. The processes of abstraction and elaboration are
exploitations of this fact.

Unfortunately, the provision of redundant information is not always
acceptable to the programmer. If he is unable to see how he may gain from
it or if it involves him in a considerable amount of additional work, then
his natural inclination will be to refuse the task. For similar reasons,
documentatiop is often badly done, or not done at all. The programmer
himself considers he will get no benefit from it, or coertainly that
he will get no return worth the effort involved. However, if he can be
given tangible benefits from such extra work in proportion to the work he
expends, then he may be attracted. A reasonable aim, therefore, should be
the provision of an environment in which a programmer is rewarded for his
extra effort in supplying information in order that a higher degree of

confidence can be placed in his programs. At the present time, the satisfacto:

-76 -

achievement of this aim would seem to be some time in the future. 1In the
remainder of this chapter we investigate some of the questions which arise

and how these questions are related to specific programming methods and‘toolé.

442 The text of a program

In this section we will describe some approaches that have been made
for the verification of the behaviour of a program by consideration of its
text rather than from any properties which may be deduced from executing

the program on a machine with particular test data.

4,2,1 The meaning of a program text

There are two obvious fequirements to be met before we can prove
the correctness of a program from its text. One is that there should be some
means by which an exact understanding may be gained of what processcs are
represented and what are the effects of such processes. The other is that
there should be some means for specifying those processes which the program
text should represent (i.e. what is the intent of the programmer in writing
the program). The latter requirement is dealt with in section 4.2.2.

A significant amount of work has been carried out attempting to define
the meanings of the elements of programming languages and theivr ccabination
into programs (see Steel 1966, de Bakker 1969 for example). Many workers have
expressed the meaning of programs in terms of an interpretation on abstract,
formal machines (e.g. van Wijngaarden 1966, McCarthy 1966, Lucas, Lauer and
Stigleitnef 1968). Such methods do not, in general, allow a single
interpretation to be given for a program text which encompasses all processes
which that text can represent. This is because it is necessary to specify
ari initial state of the abstract machine for any interpretation which thereby
allows a meaning to be assigned to a program text only in the context of

a particular set of input data.

- 77 -

Another approach to the derivation of the meaning of a program text
is by the use of axioms and rules of inference. Hoare (1969) describes how
axiomatic schema can be given which define primitive elements of programming
1anguages‘by ér;nsformations of predicates over the variables of a program,

and suggests a possible notation.

example:
the axiom of assignment
Feo { xt = £}p
where f is an expression,
x is a variable identifier,

and Po, P are predicates, Po being obtained from P by
systematically replacing occurrences of x by f.

It is generally the case that the meaning derived for a program text
by the use of such a scheme will be conditional upon a separate determination
of the property of program termination. However, the fact that a meaning

can be derived which is independent of particular values of input data

(being expressed in terms of predicates relating the properiies of the

input and output variables ol the program) gives the axiomati. approach a

considerable attraction.

Hoare and Wirth (1972) give an axiomatic definition for a major purt
of the language PASCAL (Wirth 1971a). Dijkstra (1973) uscs an axiomatic
basis to define predicate transformations exhibiting certain properties

in order to derive equivalent programming language primitives possessing

similar properties.

- 78 -

4.2.2 Expressing the intention of a program

We may be able to derive a meaning for a program by consideration of
its text by the approaches described in section 4.2.1. However, in order to
ascertain whether or not this derived meaning satisfies the purpose for which
the program was written, it is necessary to have a means by which the
programmer can express his intent or understanding of his programe. One obvious
way in which this can be done is by the programmer stati: @ that, whenever &
process which is represented by the program, terminatewv, tlien certain values
Wili have been produced. As a trivial extension to this ’'cai, the programmer
may express his understanding of parts of the program by stniements which
declare that, at particular points in any such process, cortain intermediate
values will have been produced. These various statements arc known as
assertions. The use of assertions in the proof of the correctness of a
program was suggested independently by Naur (1966) and Floyd (1967a),
although the idea of an assertion is much older and may be secen in writings
from the early days of modern computer programming (Goldstine and

‘von Neumann 1947, Turing 1949).

4,2.3 Proving a given program correct

Naur (1966) and Tloyd (19679 both proposc that tho usc of assertions
provides the basis for a technique by which progrsas may be "proved to be
correct'. The techhique requires that at specific points within a program,
the programmer makes assertions about the current values ¢f the program
variables. Each assertion is that, when the program cxecution reaches these
points, then the named program variables will have the stated values. In
particular, the assertion at the end of the program represents the expected
resﬁlt of the execution, whilst an assertion at the start of the progranm

specifies the conditions under which the program will achieve this

- 79 -

desired result., Using a certain minimum set of such assertions and some
/suitable scheme for defining the semantics of the programming language,
the program can then be checked statically to see if these assertions will
actually hold. Notice that it is also necessary to prove that the program
execution will actually reach those parts of the program annotated with
assertions, in particular that it terminates.
There is, as we have stated, a minimum set of assertions required

for this process to be carried out. It has been shown (\ljvg 1969) that it
is‘sufficient if every loop of the program contains at least one assertiom.

It should be noted that this technique may also be applied to programs

which are interesting even though they loop (e.g. some processes in operating

systems). The technique is used simply to demonstrate that, when a process
reaches a certain point in the program describing it, then certain conditions»
apply with respect to the program variables. Terminating programs are merely
a particularly interesting special case.

It is important to appreciate the role of redundancy in this
technique, and also its fallibility. The provision of a sufficient set of

assertions is no more than a second writing of the progrum. T .icod there is

a strong requirement that the '"ausertive program' uses a similar notation to
the program itself as they need to be checked against each other. As
usually the same person who writes the program also surplics the assertions,
there is ground for believing that any misconceptions he may have had when
writing the program will also find their place as similar misconceptions in
the assertions.

Another difficulty is the question of what to do when an inconsistency
is dis;overed. Basically what the technique does is to compare two
representations of the same object. When a mismatch occurs, all that may be

concluded is that there is probably an error in one of the two versions.

- 80 -

.Provided it is possible to decide in which version the error is, then progress
may be made. It could be that the error occurs in an assertion. 1If so; then
the programmer has an incomplete understanding of his program and his
intention and so he should improve this understanding by trying to.correct
" the éSSertion. If the error is in the program, then the programmer has also
leétnt something; namely that the program does not do what he thought it did,
and again he has to discover what it does.

Finally there is one important point to be made - ut assertions.
1f a complete check is made between the program and the set of assertions,
then this does not mean that the program is correct. All that may be
ﬁroperly claimed is that it is correct "relative to the assertions that
were applied", and also "on the assumption that the model assumed for the
programming language semantics was correct'. The program might still féil
to solve the problem.

The basic technique outlined above has been applied by several
workers and considerable experience has been gained.London (1972) and
Elspas, Levitt, Waldinger and Waksman (1972) both give lengthy surveys.
The experience gained has not been confined solely to proprams using omly
integers or other particulérly well-understood concepts for which axioms
can be derived without excessive difficulty. Hull, Enright and Sedgwick (1972
apply similar principles to the problems of the correcincss of numerical
algorithmé. In addition Clint (1970) demonstrates that assertions can be
used to prove properties about programs which use floating point arithmetic.
Ashcroft and Manna (1971) and Lauer (1972) have recently investigated ways
of extending Floyd's original approach to the problems of co-operating
sequential processes.

A number of practical difficulties have arisen, not the least being

the complexity of the proof of the theorems which arise. A theorem needs to

- 81 -

be proved for each path in the program which is bounded by assertions. These
theorems are generated by '"pushing" an assertion through the program,
modifying it in accordance with the semantic definition of the programming

" constructions used, until another assertion is encountered. It is then
necessary to prove a theorem concerning the compatibility of the modified
assertion with the one encountereds Such theorems are generally known as

verification conditions.

It is obvious that the form these verification conditions take is
dependent upon the form of the assertions applied. Whilst it is unlikely that
there will be much choice in the form of the assertions at the beginning and

end of a program, the assertions made within the program arc dependent upon

the techniques employed in the program. Therefore, the programmer has some

control over the complexity of the verification conditions by suitable
choice of program and assertions. However, we believe that the programmer

"is unlikely to have sufficient understanding of his problem to usc this as an
absolute criterion governing the design of his program. It is still a useful
exercise, however, to anticipate a requirement for a program precof during
program construction. This is likely to have some affect upon a design.

Another difficulty that can arise is in the formation of the
assertiogs to apply to a given program. This is particularly apparent in the
case of assertions which are within a loop of the program. In some sense
these assertions represent the meaning of the loop itself. It has been pointed
out (King 1969, Good 1970) that there is an analogy between loop assertions
and inductive hypotheses in mathematics. Elspas, Green, Levitt and Waldinger
(1972) have suggested that difference equations might be used to establish
léop assertions. Otherwise, it would appear that they must be supplied

solely on the basis of a programmer's intuition. In view of the important roles

- 82 -
that the choice and form of assertions play in the generation of verification
conditions, there is an argument for guidance being availabple to a programmer

so that the assertions he makes are suitable.

)

k!
Machine -assistance may offer a solution to many of the problems described

In theory it is possible to reduce the complexity of the verification
conditions by supplying more assertions. This has, however, the effect of
~ increasing the number of theorems to be proved. King (1969) describes'
a system which, given a program annotated with assertions, will generate the
verification'conditions'and use an automatic theorem prover to prove their
correctness., However, the program must be written in a special language
which is, of.necessity, limited., The basis of this limitation is the need
to be able to describe the semantics of the language in a way that ailows
a theorem prover to be able to generate the necessary proofs. An interactive
system is described by Deutsch (1973). Deutsch claims that this system
is more powerful than King's, due largely to advances in the techniques of
automaticvtheorem proving. He does, however, remark that the set of programs
which can be automatically proved by his system also appears to be limited.
Elspas, Levitg, Waldingef and Waksman (1972) describe many of the difficulties
: whi;h have to be overcome in the design of a theorem prover suitable for
proving the theorems which are generated in proofs of correctness of programs.
It has been conjectured (Elspas, Green, Levitt and Waldinger (1972)) that it
is unlikely that a resolution based theorem prover will ever be capable of
proving such theorems. They suggest that a deductive theorem prover working
interactively might offer the best approach.

- Good (1970) describes a system which makes use of the human being to cam
out the proofs whilst employing the computer in those places where it can
be of great assistance at little cost. His scheme does not employ an
automatic theorem prover and hence is capable of a wider application. There

1s no need to limit the form of the assertions to a particular system, and

- 83 -~

in fact Good's scheme allows assertions to be writtem in a free form. The
machine assistance provided is in the construction and simplification of the
verification conditions and the maintenance of clerical information indicating
which theorems have been proved (by the programmer) and which theorems

still remain to be proved.

The "free form" assertion does have the advantage that it allows °
tﬁe programmef more scope in formulating assertions, but the danger is that
“there is then no restriction on its abuse.

Various other automatic systems have been proposed, several of which
have been constructed (see London 1972) - systems which produce verification
"conditions alone are popular. We believe that such systems are useful in
that the production of verification conditions provides an illustration
of the complexity of a program and may suggest ways in which improvements

may be made tothe program or how more appropriate assertions may be provided.

4244 ' Partial proofs and some effects of proof techniques

Although it may not be practical to prove the correctness of a
complete program, the same techniques may be applied in order to prove
(again in a relativ; sense) that a program satisfies some particular function.
For example, it ﬁay be possible to prove that a program does do something,
whether or not it is practical to prove that it does all that is required
of it. We may call such a proof, a partial proof of correctncss.

example:

It may be critical that a real time system always
produces, correctly, a certain set of values. The
program may, in fact, produce other results but
these are irrelevant if we can place no confidence
in the values of the critical results. Proving
that the program does generate these properly may be
feasible (and thus desirable) whereas proving that
the program generates all of its results may not.

Even if it is not feasible to prove the correctness of a program

completely or even partially as suggested above, then it is very often’

- 84 -

a usefui exercise for the programmer to try to formulate assertions about
his program, and possibly to comstruct proofs about properties of some
of the more complex parts. In doing this, the programmer is forced to
write down, in a semi-formal way, what he thinks his program does. It is

the author's experience that such an exercise can lead to a better

appreciation of the real essence of a difficulty, and thus to a more
reliable program.
To illustrate, we give two examples, neither of which offers
a formal proof, but rather some arguments taken from particular cases.
Example 1:
This exan‘\ple arises from a piece of program that was to assign
to a yariable "OK'" the value true or false according to a set
of conditions. The program was of the following form. We

have added two assertions (P1 and PZ) for later discussion.

assertion P, = = = = = = >

OK = (i # op);
while i # 0 and OK do

OK = (i # op)}

}
}s

assertion P2 R R

- 85 -

The variable "OK'" is only set to false if a particular value (op)
of 1 is foun& and both pf and pd are non zero.

The meaning of this piece of program can be defined in terms of
two assertions P1 and P, (The actual form of P, and P, is immaterial to

. this discussion). As such the complete piece of program is well-defined.

However,'the conditional statement
if pf # O then . ..

does not have a meaning of its own. In order to give any meaning to it,

it 18 necessary to include the preceding statement:

As given above, it is not too difficult to prove that the program

1

problems arose when the program was modified to cater for a wider class of

1s consistent with appropriate assertions P, and Pz. However, in practice

possibilities. These modifications entailed additional statements and,
unfortunately, tﬂese were added between the "MOK $= true'" and the

"if pf # O then . . .'" statements. Proving the modified piece of
program was now much more difficult, as what had previously been a unit
of meaning; was now separated into two sections. As a result an error
was committed and was not uncovered by the informal attempt at proving
the modifications. When, subsequently, the error was detected, the true

meaning of the original statements was fully appreciated and was then

better expressed in the following indivisible form:

- 86 -

assertion P - - >

[N

f pf # O then

{ f pd # O then

0K '= (i # op);

while 1 # 0 and OK do

OK 3= (i # op)}

elle OK = true }

else OK %= true

assertion P2 - - -§>

In this.form, the meaning of the piece of program between
. assertions P1 and Pz is that of an indivisible unit. The moral
of this example is that where a piece of program is complex, then
it shoﬁld |

(a) be given a meaning by the use of assertions

~and (b) be indivisible in a syntactic sense.

Example 2:

| This example serves to discuss the relative merits of
two common language constructions for expressing iteration,
namely while « « + do « « « and repeat . . . until . « .
The former allows zero or more iteratioms, whilst the latter
will carry out the iteration at least once. Figures 4.1(a)
and 4.1(b) describe these constructions in typical flowchart

form, They have been annotated with some general assertions.

- 87 -

- — — =X

Figure 4.1(a) while b do §

L. - — — Qor (Y and not b)

false
— — — (Y and not b)

Figure 4.1(b) repeat S until b

- 88 -

The Important assertions that describe the meaning of the
iterations are those immediately preceding the body of the
. loop, (i.e. %mmediately preceding 8) which we call the loop
assertion and those expressing the result of the terminated
iterations (at the exit from the loop). |

In the case of while « « « do « . . the loop assertion

always implies the truth of the condition governing the

loope.

i.e. (P or X) and b = b

This is not true for repeat . . . until. Only after
one iteration has been carried out does the assertion need

to contain any reference to the controlling condition.
i.e. Q or (Y and not b) # not b

This special case treatment for the repeat . . . until
iteration appears (certainly from the author's experience)
to make it harder to specify the actual intention of the
loop via the loop assertion. It is quite possible to
execute the body of a repeat . . . until . . . iteration
with' the términating condition already realised. As a
resulf it can be more difficult to specify what the loop
assertion should be, because this assertion does not
necessarily follow from the condition controlling the

loop.

- 89 -

These two examples represent abstractions from particular instances
in the author's experience where a concern for a proof of a plece of
program led to .certain styles of programming. It would be difficult to
give actual cases in detail because of their complexity. Equally,
simple contrived examples do not suffice because their very simplicity tends
to hide the problems they are supposed to illustrate. Thus, an appeal is

‘made to the reader to relate these abstract examples to his own experience.

4.2,5 Constructive use of assertions
We introduced the notion of assertions from the point of view

of giving a method by which the programmer's understanding of a program

"cogld be expressed. The flavour that we hope has been impartéd is one of
"write your program, then prove it is correct'.,

If care is not taken it is likely that the principles of proving
correctness will be divorced from the major problems of program comstruction.
There does not seem to be anything particularly sensible in designing and
writing a large piece of software, and only then proving (or, morc

disastrously disproving) its correctness. As Dijkstra has said (Dijkstra

1968a, 1972a), what we should really strive for is a way of maintaining
torrectness rather than of obtaining it. A concern for a later proof may
have an effect on the way a program is written, but this is different from

constructing a program and proving that this construction process is

correct,
We may make use of assertions as a means of expressing an intent.
Indeed, we have already noted that it is possible to view a set of assertions

. e
as a program. While we do not agree that this is a particularly appropriate

- 91 -

result in theorems that cannot be proved, in a program construction

situation it may simply result in a program which is significantly

different from that which was intended.

example:

Hoare (1971a) describes the construction of a program
called FIND. Hoare ''proves the correctness' of the
derivation of this program without making use of one
particular assertion. This specifies that the

. vector constructed by the program must be a
permutation of the input vector. In the derivation,
Hoare uses his own knowledge of this fact without
explicitly writing it down. If this assertion
was not' included in the set of assertions describing
what such a program should do, then the program
derived by, for instance, an automatic program
synthesizer might well be different to that
anticipated. It would, of course, be perfectly
correct with respect to the information given by the
programmer.

What is missing from the use of assertions in this manner is

the necessary redundancy of information which enables checks to be made
regarding the properties of the program.-

Assertional methods can, however, play an important role during
the develoﬁmént of a program. This role is particularly related to the
approaches to program design discussed in Chapter 3. Recall that
assertions allow an expression of the programmer's intent. Used as
such assertions can represent a decision to develop a program along
particular lines without the actual program being written. From such
assertions the programmer may be able to evaluate different possible
decisions,. Having made some particular decision, as represented by some
set of assertions, he may then proceed to construct a piece of program

which he can prove will satiSfy his intent as expressed by this same

- 92 -

set 6f assertions. Such techniques are to bé seen in a number of papers,
particularly in the ""action clusters' of Naur (1969), in programs
déveloped by Dijkstra (1968a, 1972a) and by Wirth (1971b), and in the
. techniques described by Mills (1971) and Baker (1972). 1In all of the
cited references, the "statements of intent" are given in an informal
manner. The justification of their correctness and the proof that the
piece of program satisfies the intention are often given as a discursive
argument embedded in the program design documentation. Hoare (1971a) and
Allen and Jones (1973) give examples of a similar nature except that the.
statements of intent are given in a formal notation (e.g. predicate
calculus, set theory) which allow rigorous proofs to be made. Indeed,
in the case of Allen and Jones, the whole development process is
carried out in such a system. An actual programming language is only
used to represent an algorithm which has been otherwise completely
deveioped.

Hoare introduces the idea of an "invariant" into the process of
program development, His technique is describable in terms of levels

of description. At a particular level of description his program makes

use of certain properties of concepts from that level of description.
(e.g. properties of a data type, or properties of a control structure).
These properties are described in terms of invariants at that level of
description. When, at a lower level of description, an elaboration is
given for a concept so described, it is a necessary part of the process
of justifying the correctness of this elaboration that these invariant_'
properties are proved to be maintained.

Unfortunately, theére is one non-trivial drawback to a more
formal de&élopment of programs. This is that there is a not

inconsiderable dependency upon the programmer's ability to prove the

-93 - |

theorems and lemmas which occur in the justification process. It is perhaps

useful to illustrate this hoint by comparing the develoéments of the

algorithm FIND given by Allen and Jones (1973) and by Hoare (1971a).

A program has to be written whose purpose (Hoare 1961) is to find
the element of an array A[1:N] whose value is fth in order of magnitude,
and to rearrange the array such that this element is placed in A[£f] and
further, that all eiements with subscripts lower than f havé lesser values .
" than this element and all elements with subscripts greater than f have
‘greater values than this element.

: In both cases, the program which is evolved represents about

30 lines of a high~level programming language. However, in Hoare's
development 18 separate lemmas must be proved. Allen and Jones require
the proof of some 16 theorems and a number of lemmas in a development
which is described in approximately 40 pages of manuscript. Of course,

"in both cases a number of proofs are trivial, but some are not. It is
apparent that the form these theorems take depends upon the development
process chosen. Man-machine systems may be an answer for the trivial proofs,
but whether we are prepared to allow ease of proving theorems to have a
considerable effect upon the actual development of a program is a debatable
question. If possible we would expect that the proof of the mecessary
theorems was something that could be left on one side during each stage
of the development, to be taken up as and when the programmer felt that

‘
formal justification was necessary.

It is, however, the author's belief that a suitable grafting of some
of the above ideas for expressing intention and criteria relating to the
correctness of programs onto the design methods described in Chapter 3 is
likely to be of significant worth., The difficulty lies in deciding how much

of such a facility should be provided, and the form it might take. .

-9 -

In Chapters 5 and 6 we describe one possible approach.

4.3 Information from Program Execution

The traditionally accepted methods of evaluating a program are
based upon exercising it under a set of data values known as test cases.
Although'sugh exercises cannot hope to be exhaustive, it is possible to
use these techniques to the point where a high degree of confidence in the
beha;iour of a program can be gained. If this was not the case, then the
rapid growth in the use of computers that has occurred over the last
twenty years would not have been possible. It is probably true to say
that at this time at least 99% of programs being written will be
evaluated by the use of techniques based on test case execution. We
should, therefore, investigate some of these techniques, their limitations
and their influence on programming methods. |

4.3.1 Writing programs to be tested

It is important that any information generated by the execution
of a program can be easily related to the actual text of that program,
A single program text will, in general, map onto a number of differerit
computational pr&cesses dependent upon the input data. However, even
-with a knowledge of the input data, the mapping from a given process

onto the describing program text is generally ill-defined.

example: .
When, for example, a FORTRAN program fails, in many
systems it is a difficult task to find out where
this failure occurred.

Even if it is possible to relate information from a process to a

particular line of program text, this is likely to be insufficient. Scveral

events in a process will often be related to the same line in a program.

- 95 -

. example:

A statement in the body of a loop will be 'Mused" in
the process several times.

In order to be helpful it is ne;essary to identify an event in
the execution of a program uniquely. 1In order to do this more information
is needed (e.g. trace information). It will be obvious that to relate
information about events in a process to the program text in a manner
which is useful to the programmer, tlien it is necessary to start from
a point where the exact relationship between text and process is known.
In general, this point will be the beginning of the program. This says,
therefore, that the programmer can only relate an arbitrary event in the
execugion of a program to the program text by knowing the sequence of
events that have occurred since execution commenced. This is, in
general, unacceptable because of the sheer amount of information that
.this represents. Dijkstra (1968c) has suggested that, if the program is
structured in a particular way, then the necessary information could be
maintained by use of a simple stack. The particular structuring is
consistent with our earlier discussions of well-structured program design,
in that it is necessary that the relationships that may be exhibited
amongst the control structures of the program must follow a hierarchical

.discipline. Much has been made of the fact that this requirement does
not allow the uncontrolled use of 'goto! statements (e.g. Rice 1968).
.Vhat we feel is important to stress is that the relationships between
the program text and the computational processes it represents are
particulady important ones from the point of view of the comprehension of

the program by a human béing. The way in which Dijkstra demonstrates how

- 96 -

such relationships could be obscured by the use of uncontrolled jumps, serves
as an illustration of several of the points we made about hierarchies
and relationships in Chapter 3.

Consideration for relating run-time information to the program text
has led to other programming methods. Amongst these the simplest may be
described as "defensive" programming. Additional tests on the values of
program variables are placed in the program to give a close relationship
between text and process., It may be that a rigorous examination of the
program text would reveal that such tests will always be satisfied. However,
the programmer m#y have neither the desire, nor even, in general, tlie ability,
to carry out this rigorous check. The simple expedient of inserting a
test ensures that when the program is run, the knowledge that it has pgssed.
- (or failled) the test should be available, whereas without the .test this
"~ kriowledge is less likely to be easily obtainable.

The sheer size and complexity of large programs haé led to such
notions as modular programming (see ICL (1971) for example). By
‘ decomposing a program into separable units, each of which may, initially,
se partially tested in isolatiom, a higher degree of confidence can be
placed in the total program., Of course, the choice of a particular
modularization may not be made solely on the grounds of ease of testing.
The fact that a set of modules may have been well-tested individually does
not guarantee that they will work together as a group. However, we believe that,
1f, during the design of a program, due consideration is paid to the requirements
‘of program testing, then modular techniques can be of some help in
increasing the reliability of that program.

As a general philosophy, it is probably useful to appreciate, at

the time a piece of program is designed and written, when tests will

- 97 -
be necessary to exercise it. As a program is designed, various decisions

are taken. The testing of the program is an aid to ensuring that these

decisions are actually reflected in the program code written down. The

obvious time to design those tests which pertain to a particular piece
of program is when the decision is made and the piece of program written.
There is, of course, an even greater attraction in carrying out these

tests then as well, but this may'not be generally possible.

" 443.2 The information fed back to the programmer
| There are essentially two sources from which the programmer can
expect information about the progress of the execution of his program.

One is from explicit statements in the program itself. At selected points
in the program, the programmer may insert statements which will print

out information such as the fact that execution actually reached this
statement or a di§p1ay of the contents of selected program variables.

‘Such a method can be attractive if it is relatively easy for the
programmer to insert these statements without making alterations to the
program under investigation. They must usually be removed once the
programmer is satiséied with the way the program behaves during execution.
(This, in itself can sometimes be a source of errors. It is not unknown
for‘simple testing statements to mask out bugs which then appear when the
statements are removed). A number of high-level languages cater specifically
for these methods with special language forms (e.g. the AT statement ofr
FORfRAN,'dynamic tracing facilities using subroutine calls,
programmer controlled exception handling in PL/1). By using such facilities
the programmer may include testing statements which can be invoked by
suitable ipput‘data. The statements do not, therefore, have to be removed.
(Another example is described by Satterthwaite (1972). We will say

more of this below).

- 98 -

The other source of information is the machine which is executing

the program. 1In figure 4.2 we extend the figure of Chapter 2 (figure
2.1) to include the transfer of information from an executing program

to the progfammer.

knowledge, experience

understanding of etc. understanding of man/machine
problem _ A interface
. o=s-e====- i B el 2
' v .V X
1 U
VA v
—3] : J!Wmachine
1 ' understandable
: problem program
. ——9)
Real : specification _ form
world man
=
messages from
<
machine
messages from
<
~
program
Figure 4.2

What we believe is a characteristic of mény contemporary
programming systems is that the man/machine interface is divided
into at least two parts. One is the interface which accepts information
from the programmer and transmits it to the machine. The other is the
Interface which accepts mess#ges from the machine (in a form>appropriate

to it) and transmits these to the programmer. All too often it would seem

- 90 -

that this interface serves only as a relay station doing little to interpret
the messages to the progfammer's view of his program written in a particular
programming ianguage. Barron (1971) gives several examples.

A further reference to figure 4.2 may be helpful to explain the
problems to be overcome. When a program is writtenm in a particular language
(distinct from the order code of the machine), there is some mechanism
which physically represents the interface between man and machine. If this
mechanism is a translator ther the actual executing machine is conceptually
separate from the interface. The original program is translated from its
form in fhe programming language to a form understandable to the
executing ﬁachine. Thus the executing machine has no knowledge itself
of the original form of the program. 1It, therefore, cannot phrase messages
to the programmer in terms of the original programming language. If a
suitable interface is created to intercept these messages and make use
‘of the original translator then it is possible to translate messages from
the machine back into a form related to the original program (i.e.
“source?language debugging'). This mechanism can be seen in the Alcor
Illinois 7090/7094 post mortem dump system (Bayer, Gries, Paul and
Wiehle 1967) and other debugging systems (see for example Evans and Darley .
1966, Balzer 1969, Satterthwaite 1972).

0f course, if the man/machine interface is very closely tied to the
actual exeéution machine (as for example, in the case of a software
interpreper), then it is an easier matter to relate information about a
program execution to the original source language form.

It is also important to c;nsider what information should
be made available to the programmer and when. It is obvious that ome
time when information is required is when the executing machine is

asked to perform some function which it cannot do.

- 100 -

It is hoped that the executing machine will at least report this fact to the
programmer. However, it is useful if the machine gives a little more
information regarding the possible cause of the error and the current state
of the execution process. Most contemporary programming and computer
gystems provide some such feature, though those which relate this information
to the source language form of the program are less numerous.

There are other océasioné when it is useful to supply the programmer
with information. The tracing facilities of several high-level languages
(COBOL, FORTRAN, PL/1) are examples.

It 1s also useful for the programmer to be given some statistics
regarding salient features of a program execution. The evaluation of a
program design is not simply a case of finding as many 'bugs' as possible.

Satterthwaite (1972) describes a system which generates a "profile"
of a program execution in terms of frequency counts of the executions of
various portions of the program. In Satterthwaite's system this information

is neatly related back to the original program text, thus enabling the
programmer to se; where the bulk of the work is being performed. He
can theﬁ pinpoint areas where it would be useful to improve the design.
In such ways, program evaluation may be extended beyond the realms of

being merely '"correct" to allow comparisons between different versions of

a "correct" program.
We will return briefly to some other aspects of debugging systems
in section 4.4,

4e3.3 Program Testing as part of program design

Whilst a programmer cannot hope to test a program completely through

observation of its behaviour under all conditions, observation of its

- 101 -

behaviour in particular c&ses can be instructive. Very few people are
willing to accept their comprehension of a program purely from its
text because of the immensé intellectual effort required to appreciate the
effect of the processes the program describes. Few people, therefore, will
ha&e complete confidence in their program without‘testing ite We believe
" that it is unlikely that the techniques of static program proofs will
ever completely remove the need for test runs and evaluations. There is,
therefore, a place to be found for tools which improve the information given
to a programmer when a program is being tested. There is, indeed, a place
for such facilities throughout the design process. The problems that are
' to be faced in appreciating a program from its text alone are equally likely
to be encountered at any time in the design process. Thus any assistance
‘which a programmer can obtain from experimental evaluations of partial designs
will be invaluable. , He is then able to obtain information about his design
in terms of the process he is describing at the current level of description.

Experiments can be made in '"real' situations and designs may be tested as they

are formulated rather than when they are ultimately realised in a conventional

' progfamming language. It may even be possible to make observations pertaining

to program efficiency if the tools are sufficiently powerful. As we
described in Chapter 3 (section 3.2.2.), in a design methodology based upon
levels of description the céncepts of nulti-level modelling (Zurcher and
Randell 1968) have an obvious application.

4.4 'Some further machine aids and influences

In this section we will look briefly at a few other machine-based
tools which can help the programmer in the construction of a program and

which may enable him to have more confidence in his work.

- 102 -

bebel Interactive systems

A feature of the recent growth of time-shared terminal systeﬁs has

been the rise in popularity of languages and other facilities which make

specific use of the fact that a human being is physically in communicaﬁion
with a prbgfam during its execution. Such systems range from interactive
debugging schemes to complete programming systems such as BASIC and APL.

One of the particular characteristicé of such interactive systems is
the ability of the programmer to continuously monitor the executioﬁ of a
program. It therefore becomes even more essential that the form of
communication between the programmer and the machine is easily related
to the program text. In online debugging systems for programs written
in 1anguages:which are not specifically classified as '"interactive
languages' there is often a question of efficiency to be taken into account
‘(see Balzer 1969 for some further discussion on this point). Approaches
akin to thé scheme described by Satterthwaite (1972) whereby use is made of
efficient ﬁachine code wherever possible with source language interpreters
being“invoked if needed, would seem to have some attraction. Mitchell (1970)
describes a system based upon the technique of incremental compilation which
is similar,

Geﬂerally, interactive programming systems (e.g. BASIC, APL) make use
of an interpreter for program executions. Such a system is therefore able
to maintain overall control of program executions and communicate with the
user about such executions in terms of the source program. By choosing
to use such a system, a programmer deliberately sacrifices some of the power
(e.g. execution speed, storage and input/output facilities) of the
unde;lfing hardware which could otherwise be obtained through a more
conventional programming language system. However, in many circumstances,

this sacrifice is more than outweighed by the benefits to be gained through

- 103 -

interactions between programmer and program executions.

The PILOT system (Teitelman 1970) was designed to allow particularly
close co-operation between the user and his programs written in LISP. The
user can direct PILOT as to what actions to take when error conditions
arise (e.g. a spelling corrector). He is able to interact with PILOT
as part of any error correction activity that may be undertaken. Other
facilitiés are available which allow the programmef to give directions about
the operation of his program. |

It is the author's belief that, although the simple fact of having
vthe.programmer so closely involved with his program will not in itself

_guarantee better programs, it can help because of the increased understanding
that is likely to accrue.

In order that such benefits may be achieved, an interactive system
must possess certain properties. These we may classify generally under the

‘heading of human engineering. Potential human users must not be distracted

from obtaining the benefits of machine assistance because it is awkward.
“The well thought out design of the notation used in APL is a good example.
This notation 1s extremely easy to use following some experience, and concise
enough to be attractive for a human being at a typewriter terminal. Whilst
it may have some drawbacks from the point of view of representing solution
processes, as a means of immediate man to machine communication it can have
few peers. The human engineering aspects of interactive systems are not
spécific to interactive programming systems. As Engelman (1968) points out,
computers are very good at doing certain things which human beings find
difficult. This ability is heightened in an interactive environment ?f the
computer can do what is required just when it is required and particularly
if such use 1s convenient.

Human engineering has received considerable attention in several .

- 104 -

man-machine systems (e.g. that described by Engelbart and: English (1968),
MATHLAB (Engelman 1968), Hansen (1971a, 1971b), Mitche115(1970)). The
interested réader is referred particularly to Hansen (1971b), or to
Mitchell (19§0) which 1s more relevant to the design of interactive
programming systems.
‘4-4.2 Generation of syntactically correct programs

Hansen (;971a) describes how a programmer can be guided to construct
only programs which are at least syntactically correct. He demonstrates
how a text handling system based on hierarchical relation; between pieces
of text can be tailored to accept only text satisfying certain predefined
rules. 1In particglar he uses the production rules of PL/1,

The rules are applied in a constructive manner. The system (called
- EMILY) displays the current text (or portion of it) and advises the
pfogrammer which syntactic form of text string he may use to replace a
non-terminal symbol present in the text displayed. The text which is
constructed is certain to satisfy the syntax of the programming language,
élthough logical errors may be present.

4e4 03 Program skeletons

Systems have been described (for example Bequaert 1968, Dutton and
Minto 1971) in which programs are written by adding code to pieces

‘of pre-written code called program skeletons. These program skeletons

carry out various commonplace processing functions which are not specific
to any particular application. This differs from the normal practice

of programming such functions individually as required.

example:

Many data processing systems require functions for data
input, data updating and data retrieval.

- 105 -
It is possible that a programmer, by incorporating code which is
already written in a general fashion and specializing it to suit his
own requirements will produce more reliable programs in a shorter time.
He will, for example, be able to concentrate more fully upon those design
points which are relevant to the job in hand.

. The method whereby the program skeletons are actually used in the
construction of a program varies. 1In the system described by Dutton and
Minto (1971), the skeletons are written in COBOL and éach skeleton has
+ exit points where the programmer can supply further statements (also in
.COBOL) which are épecific to his purpose. Bequaert (1968) describes how
the program skeletons can be specialized for particular applications on the
basis of the programmer's response to questions generated by the system.

The way in which programs are developed using such systems is
obviously dependent upon the availability and form of skeletons. These
'_factdrs will exert an influence over the actual design of programs in a
- way wﬁich is similar to that exerted by a programming language. 1In
" applications areas where there are likely to be many programs requiring
similar functions these systems should prove to be of some worth. There

still remains, of course, the task of designing the total program and of
constructing the necessary code to interface in a suitable manner with
the skeletons.

4.4e4 Automatic error correction by a translator

Language proéessors are generally unconstructive when they detect
errors in programs gubmitted to them. Usually an error message is supplied
which gives the context of the error and some indication of what specific
error has been found. It is rare that anyaction is taken to suggest how the
error might be removed. The PL/C system (see, for example, Conway and

Gries 1973) constructed at Cornell University, however, goes one stage

- 106 -

further than this by attempting to automatically "correct" program errors
discovered at compiiation. Whilst a large number of punctuation errors can
‘be corrected with confidence, the correction of many other syntactic and
semantié'errors is unlikely to recreate the progrémmer's intention. 1t is
claimed by the system designers that even in these latter cases, the effect‘
is to allow the provision of further diagnostic information which will‘increase
’fhe programmer's chances of removing errors from his program.

A dgnger of the approach of automatic error correction would appear

‘ to.bé the likely encouragement of sloppy habits in a programmer. He will

omit semi-colons because he believes that the system will insert them in

the right places. Of course, system corrections should be checked by the
programmer because no guarantee can be given that all such corrections
maintain the original intention. The author conjectures that, unless there

is some explicit mechanism to motivate a programmer to check all corrections
- carefully, then a number of erroneous “corrections' will not be appreciated

as such, Even if the proportion of such misconceptions is small, it is

surely worthwhile to demand some additional work on behalf of the programmer
to make it more likely that he appreciates exactly what processes are
represented by the program he has written. Unfortunately, it might be
difficult to design a mechanlsm which would provide the desired effect.

4.5 Summary: Towards a Program Building System

The major question we have discussed in this chapter has been that
.of establishing the correctness of computer programs. We introduced this in
terms of a requirement to increase a programmer's confidence in the worth of
a particular program, or piece of program, as a solution to some problem.
This ;nvolves the programmer in the comprehension of what he has written

down (the text of his program) as a Speéification of a computational process.

~ 107 -
We have discussed how it is possible,using the program text
and suitable information regarding the meaning of programming language
;onstructions, to obtain a high degree of confidence in a program. Many
of the techniques employed in this appreciation centre around the provision
of redundant information in the form of assertions, declarations etc. We
alsg described how such information may be used in a constructive manner

" thereby ensuring a high degree of confidence in a program arising from the
methods used in its construction.

In a similar way we have seen how we may improve the understanding
we have of a program by observing its execution. Whilst this method
canﬁot hope to give complete certainty as to how a program will behave it
is possible to use testing criteria to aid in the process of program
development.,

Oﬁ a number of occasions in the course of the above discussions

. we encountered situations where the co-operation of man and machine was
likely to be useful. As examples we cite program proving systems (Good 1970,
Elspas, Green, Levitt and Waldinger 1972), interactive debugging systems
(e.g. Balzer 1969), interactive programming systems (e.g. APL,

BASIC), interactive program construction (Hansen 1971a) or other non-programming .
.ehdeav0urs‘(Enge1man 1968, Engelbart and English 1968).

| A natural successor to these schemes would be a single system

concerned with providing a set of computer-aided tools to help a programmer
in the development of a program. In addition to some of the particular

- techniques we have described, such a system would provide clerical aids
organizing the information of the design development for the programmer. It

would also impart the necessary discipline upon the programmer so as to affect

-~ 108 -

the overall structure of the final program.
The remainder of this thesis describes one particular such

~ interactive "program building system" which the author has designed

and implemented.

This system, in fact, concentrates primarily on providing facilities
for program design rather than on testing or proving completed programs.
~This emphasis is only as a result of the particular emphasis it was
tﬂought desirable to demonstrate in an actual implementation. Thus;

for example, whilst the evaluation of actual programs by execution on

test data can be a powerful technique, it has already received a

significant amount of attention elsewhere. It was thoughtmore appropriate
to concentrate atténtion on those facilities which could guide the
programmer in the development of a well-considered program, reflecting

the care taken in its design, and exhibiting a good, elegant and appropriate
structure. Because of the experimental nature of the implemented system,
ﬁhefe are, of course, a number of deficiences and limitations. In the

. déscription which follows, these will be explained and their remedies,

" where appropriate, described. The actual system can act, therefore

as a study of the feasibility of some of the ideas that have been

discussed in Chapters 2-4.

- 109 -

Chapter 53

Basic construction of programs using Pearl

In this chapter we will describe the basic ideas behind the Pearl
(Program Elaborati&n and Refinement Language) program building system.
This will entail a demonstration of how a program design may be built'
up into a complete program using the concepts of levels of description
and of a particular design strategy. (see Chapter 3). 1In Chapter 6 we
describe other features provided by the system in the form of machine
assistance in the maintenance of the design and in its evaluation. 1In
both Chapter 5 and Chapter 6 we will incorporate discussion on particular
polnts as appropriate. More general discussion concerned with experience
gained from using the system will be found in Chapter 7. 1In no sense
will these ch#pters attempt to be definitive. Appendix B contains a
vsummary of system facilities whilst appendix A gives a formal description
of the syntax of the notation used to represent designs. Appendix C
© glves a few notes on system implementation. A number of examples are
given in the following chapters; complete texts from which thesc were
drawn may be found in appendices D, E and F.

5.1 Bases

The Pearl system acts as a specialized management system for a
particular set of information; namely a program design. The system
acéepts texts in a particular notation representing parts of a program
design. Each new piece of information is first checked in a number of
‘ways before being incorporated into the total design. This ensures
that the new information is itself reasonable and that it is consistent
with the design already present. A number of conventional data base
facilities are provided in Pearl to allow access and manipulation of

design information (see Chapter 6).

- 110 -

The basic notion behind the system is that of describing processes
to solve sub-problems in terms of varying levels of description. A program
at a particular level of description is thought of as representing the
action to be invoked on a hypothetical "machine" possessing attributes
which characterize that level of description. The word "machine",
although not intended to have all of its more generally assumed connotations,
1s chosen advisedly. 1In the current context a machine is an abstract entity
capable of performing some action described by a program indicating the
sequence of operations that define that action. A machine is considered
to possess (or to understand) certain attributes and to operate within
some enviromment. These attributes relate to the functions that the
machine is capable of performing, or the types of objects to which it
can apply these functions. The reader will appreciate that these machines
have much in common with Dijkstrat's "pearls". (Dijkstra 1972a).

Pearl provides a generalized programming language to be applied in
any such machine. The programmer may specify an ideal machirn~ for his
purpose by particularizing this general language. The design task then
becomes one of implementing those features introduced by the programmer
which are non-primitive in the underlying actual machine&(the base
machine). This task may be carried out by the introduction of further
ideal machines each suited to a particular purpose.

Each machine is considered to exist in an environment of other machines
according to its purpose in the design. This environment provides a
partial particularization of the generalized programming language and
augments the set of concepts available within a machine. A description
of the form the environment takes is given in section 5.2.3 whilst a
discussion of the implications of particular environments can be found

in Chapter 7. It should be noted that the rules describing what

e -

- 111 -
enviromment 1s available to a particular machine are closely tied to the
desire to encourage top-down development of programs. It is not impossible
to follow a bottom-up method, but in general the user will find this a
devious thing to attempt.
| Each machine introduced by the programmer represents a decision.
A machine is limited to carry out one and only one program. Machines
" therefore differ from Dijkstra's pearls in this respect. (Further discussion
relgéed to this point is given in Chapter 7).

We have described one relationship that may exist between a pair
of machines (i.e. one machine implements a feature introduced by another
machine). This relationship suggests that the set of machines used in a
4program development may be represented as a tree. However, as will be
described in'succeeding sections, other relationships are also allowed
amongst machines. These tend to structure the set of machines into a

‘directed graph rather than a tree.

The representation of a developing program using a generalized
piograﬁming’language is related to the concepts of extensible programming
languages (c.ge SIMULA 67, Dahl, Myhrhaug and Nygaard 1968), Alupol 08
(van Wijngaarden 1969), ECL (Wegbreit 1971). However, therc are diffcrences
as we hope will become apparent. In particular, in Pearl emphasis is
plaéed on the way in which programs are constructed. From this point

of view the actual syntactic forms of the Pearl notation may be

considered immaterial. From others, however, (e.g. readability,

comprehensibility) they are important and have been designed following
the discussions of Chapters 2 and 3. Additionally, features of the
notation allow the description of redundant information which.is then
available for certain checks to be made concerning the '"correctness'

of programs. Several of these have been outlined in Chapter 4.

- 112 -

The ggneralized language is based upon a particular programming
language. Tﬂis programming language (the base’language) provides a level
of description whose characterizing concepts are considered primitive.

By this we mean that this set of concepts is understandable to an
existing machine in much the same way as the concepts of Algol are
understandable to an Algol machine. In any program development all other
levelg of description will be higher than the level of the.base language.

The concepts of the base language are available in all machines

introduced by the pfogrammer (i.e. they are "pushed through' the various

levels of description characterized by programmer introduced machines).

These concepts are as follows:-

1. Data types - ‘integer, string
2. Operations
(i) upon integer o o0ty o=y ¥/, =,<,>’ &, | 50
>=, (:, - =
(11) between strings « « « |l (catenate)

1 A substring selection
(iii% some i/o operations . « « readint (integer),
writeint (integer),
nlcr,

prsym (integer)

(iv) declaration
(v) assignment (:=) is available between instances

of similar data types.

- 113 -

3. Control structures
(1) seduence o o s1; s2
(11i) alternative o . if E then S1 else S2
(iii) conditional e o o if E then S1
(i&) repetition . oo while E do S

repeat S until E

S, 51,52 are statements and E is an integer
valued expression. The value 1 is taken to
be "true", any other value as "false",

be Data structures ., . . vector (together with subscription).

A definition of the language is included in Appendix A.

Programmey conﬁrolled generalizations of the base language are
confined to data types and operations.
The concept of a data type is generalized to allow any data type
the programmer wishes to identify. The concepts of declaration, subscription
and assignment are all generalized in the obvious ways. The assignment
operator (:=) is used to represent all assignments, with the restriction that
- its opérands must both be of the same data type. The mecaning implied by this
operation is that an application serves to make the value of the left-hand
'.operand the same as the value of the right-hand operand.
| The concept of an operatibn is generalized by providing a standard
form in which operations may be written. This is in prefix form:-
<(namé>(operand 1, operand 2, '+ . ., operand n)
or, if thére are no operands to be named, simply
| Game> (e.g. nler)
The generalizations allowed correspond to the notions of

representational abstraction and operational abstraction as described in

Chapter 3.

- 114 -

5.2 Constructing a program (using the *build command)

The nature of the Pearl system is that it is driven by commands issued
by the user at an online terminal. One of these commands allows tﬁe
user to build up a complete description of a machine and add it to the data
base describing his developing program. This command is the "*build" command.
For the remainder of this chapter we will describe and discuss how the
user 'builds a machine'", what assistance he can obtain and what restrictions
are imposed to encourage the structuring that we héve described.‘

5.2.,1 The specification of a machine

‘Each machine introduced by the programmer is given a name. This name
serves to label the machine as a complete unit, covering both its specification
and its action.

Machines are introduced to carry out a particular function. They tilus
represent a conscious design decision made by the programmer. Provision
is made for the programmer to document this decision in the form of a comment.
Together with the machine name and some punctuation this serves as a heading

for a machine.

example:

cardprocessor: ‘'read each card and then process ic?

The identification of the particular concepts understood by this machine
now follows. A new data concept may be introduced by a type statcment, and
a new operation concept by an operation statement.

examples:

type cardimage

operation print (cardimage c)

- 115 -

It is worth stressing that in both of these cases no indication is
_given of eithef how a cardimage is to be represented, or how the print
‘operation is to be carried out. The names given to the concepts will no
"doubt have a meaning for the programmer.

The form of the operation statement is not unlike a procedure heading
iﬁ'Algol-like languages. Each formal operand may optionally be specified

as "vary". Only operands so specified are subject to a change of value

-as a result of the action of the operation.

example:

operation read (cardimage c vary)

This mechanism will be further described in section 5.2.6.1.

5.2.2 Describing the action of a machine

The specification of a machine and its environment serve to describe
a particular programming language. The desired action of the machine may
‘ be described by writing a program for the machine in this programming
"language.

Figure 5.1 gives an example of a machine which processes cardimages.

This machine represents the first stage in the process of constructing

a program to solve the problem we described in Chapter 3. As this
problem will be used as an example throughout this chapter, it is

répeated here.

"Write a program which reads 10 input cards and tests
these same 10 input cards for the following conditions.
Each of the first 9 values on each card should be
within certain limits. The 10th value should also be
within these limits and, further, should be a check
upon the preceding 9 values on that card.

- 116 -

biiild
:ardprocessor:t*read each card and then process it?
legin type cardimage;
operation read(cardimage c vary);
.operation. process (cardimage c);

yrogram:
declare cardimage c;
declare integer i;
i:=0;
while i<10 do
(i:=i+1; '
read (c) ;
process (c)). .
and
8D OF .CHECKING
80O TRRORS WERE DETECTED. ,

Figure 5.1

- 117 -

Most of the features shown in Figure 5.1 have been described. Of
those that have not, only one requires extensive discussion. ("program").

The name '"program" expresses the function carried out by the machine
as an elaboration of a concept introduced by some other machine. The .
concept ''‘program' is’provided by the system and is thus the standard
"starting point" for any design.

The labelling of the program part may appear to make the machine
"name redundant. In a completed program this is probably true. However,
the use of separate machine names allows a greater flexibility both from
the point of view of the user as a reference mechanism, and also to
‘enable alternative machines to be described elaborating the same concept.
(In the‘present implementation of Pearl this is not allowed, but it is
. mﬁch more in the spirit of Dijkstra's 'necklace of pearls'. (Dijkstra
1972#). Some discussion of this idea appears in Chapter 7).

.342¢3. The environment of & machine

The environment within which a machine may be defined is specified
in terms of the operations and types that are available to it. The rules
' governing the introduction of machines and therefore the introduction of

operations and types are framed to accord with the philosophy of top-down
program construction.

Machineg are introduced in a specific time sequence. At the
commencemeﬁt of a program construction (i.e. at the time the concept
"program" is unelaborated) the set of operations available in the
environﬁent is that provided by the base language. Each machine introduced
.by the programmer may modify the environment, and this modified

.environment is then available for subsequent machines. Thus the set.of
operations and typés is considered global to all machines subject to

one or two restrictions which are explained below.

- 118 -

A machine may augment the environmment by the introduction of data
types and operations not already present. It may modify the environment
by elaborating a concept that exists within the enviromment but which is
not already elaborated. A machine may not elaborate a concept introduced
in that machine. 1If a machine elaborates a data type then this data type
is subsequently removed from the environmment (see also section 5.2.5).
Thus programmer elaborated data types are unavailable later in the
construction sequence. Some discussion on the effect that this particular
rule has had is given in Chapter 7.

The above rules encourage top-down program construction. It 1s a
reasonably simple matter to envisage different rules governing the
environment which would encourage other construction strategies.

(see, for example, section 7.1.2). The rules chosen are extremely
simple and have proved to be quite satisfactory once their devotion to
a top-down philosophy is appreciated.

Tt will be noticed that use of concepts introduced into the environment
will, in general, destroy a purely hierarchical arrangement of machines.
It would of course, be possible to describe rules which would not allow this.
Such a scheme, if enforced rigidly, would bar such notions as concept
sharing between machines of different sub-trees in the hierarchy. One
possible relaxation of this would be to use machine names themselves to
make concepts available. This last suggestion is similar to the
referencing of block attributes in SIMULA 67. (Dahl, Myhrhaug and
Nygaard 1968),

For the purposes of the present system, however, it was considered
that the simple approach implemented offered a reasonable degree of power

with only an occasional frustration.

- 119 -

5.2.4, Elaboration of an Qpérational concept -

A conceptual operation is added to the environment by an oﬁeration
sﬁatement. As pointed out above, this introduction corresponds closely to a
" procedure heading. We continue the analogy in describing how such a concept
is subsequently elaborated by another machine. V

The action part of a machine is associated with a particular
operational concept by labelling it with the name of that operation. This
may be seen as physically linking the text of the procedure heading to the
text of the procedure body. Thus each may appear at the appropriate time
in the construction process. |

Figure 5.2 (part of the card processing program) gives a sequence
of Operation'elaborations. It extends Figure 5.1 by a further 2 machines.

The program describing how an operation is carried out wiil normally
reference ité‘operands. Thus the label that is applied to the action
parpvof the elaborating machine should display these operands. If it was
"allowed to use the name of the operation alone (which is sufficien?), then
un&erstanding the elaboration of the operétion is likely to involve the

human reader in considerable cross-checking between machine descriptions.

example:
In a machine A an operation 'swap' is introduced as:-
operation swap (integer x vary, integer y vary).
At some later stage in the construction, machine B
is introduced to elaborate swap. It is sufficient
to write:-

swap: declare integer z;

z: = X} X3 = Y3 y:r = Ze

- 120 -

+*puild
cardprocessor:‘read each card and then process it!
begin type cardimage;

operation read(cardimage c vary);

operation process(cardimage c);

program:
declare cardimage c;
declare integer i;
i:=0;
while i<10 do
{(i:=i+1;
read (c) ;
process (c)). .
end
END OF CHECKING
NO EFRRORS WERE DETECTED.

+*puild

processor:‘check the values and the check'

begin operation checkcard (cardimage c, integexr ok vary);
operation rejectmessage;
operation writeout (cardimage c);

process (cardimage c):
declare integer ok;
checkcard{c, ok);
if -ok then rejectmessage;
writeout (¢) .

end

END OF CHECKING

NO ERRORS WERE DETECTED. .

+*build

checker:*check the values, then and only thgn, the check’

begin operation checkvalidity(cardimage c, integer ok vary):
operation checkcheck {(cardimage c, integer ok vary):

checkcard (cardimage c, integer ok vary):
checkvalidity(c, ok):
if ok then checkcheck(c, o©ok).

end

END OF CHECKING

NO FPRRORS WERE LCETECTED. .

Figure 5.2

- 121 -

However, when confronted by this piece of text, what meaning should
a reader associate with the variables x and y?

The actual implementation does, in fact, include a mechanism for
supplying the programmer with the original operands if necessary. (An
~example is’shown in'Figure 5.3).

It is possible to introduce a conceptual operation without using
the operation statement. The symbol ":=" is used to denote assignment
of the value of_one variable to another variable irrespective of the
type of these variables but provided the two variables are of the same
types If this type is primitive (i.e. not programmer introduced) then
the operation denoted is also primitive. If, however, the type is not
- brimiﬁive, then the operation denoted is conceptual. As such it will
require further elaboration when the data type in question is elaborated.

When the symbol ":=" is used (in a machine) to denote a conceptual
* assignment operation it is considered exactly as if an operation statement
‘had'been used to introduce if. A system generated name is used to denote

the operation together with some formal operands.

example:
If in a machine we have the following:
‘declare value (templ, temp@;
templ: = temp2;
then the ':="' represents a conceptual operation of assignment
of a "value". The system treats this exactly as if the
programmer had explicitly stated:

* operation value _assign (value valuel vary, value value2).

- 122 -

+*build

checker: 'check the values, then and only then, the check®

begin operation checkvalidity(cardimage c, integer ok vary);
operation checkcheck (cardimage c, integer ok vary):

checkcard:
*%% WARNIKRG, CRIGINAL HAD PARAMETERS
WILL USE ORIGINAL PARAMETERS AS FOLLCHS
CARDIMAGE C
INTEGER OK VARY

checkvalidity(c,ok) ;

e, o o

Figure 5.3

- 123 -
“This méchanism allows the user to properly label the elaboration
Sf the assignment operator acting between operands of a conceptual ty?e.
This particular approach was chosen for its simplicity. Some further

discussion on the whole problem of the generalized assignment operator is

given in section 7.1.5.

5.2.5. Elaboration of data typesv

Machines may be introduced, not only to indicate how an operation
is carried out, but also to give a representation of a conceptual data

types The two functions are similar.

Instances of a particular data type are created Qsing a declaraton.

" Thus
declare integer i

allocates a certain amount of a resource (called memory) and marks it
. as an integer to be referenced by the name "i'.

. In exactly the same way

declare cardimage c
\

may be considered as allocating a certain amount of memory which will be
~ considered as a cardimage and be referenced by the name "c". In both of
“these examples, the effect of the declaration is an allocation of a
"certain amount of memory" together with a reference to its type and
name. The actual amount of memory is dependent upon the representation
of thé data type in terms of the memory elements themselves.

In the case of the primitive data types, the repre;entation is

-defined. For conceptual types, the amount allocated will depend upon

- 124 -

the structure subsequently given to the data concept by the programmer.

The ‘introduction of a new conceptual data type can beithought of as
the introduction of an unelaborated Operétion upon memory. The two
. primitive types are thus primitive operations on memory. The creation of
an instance of a data type is thus a call upon the relevant operation. The
elaboration of a conceptual data type is thus similar to the elaboration
of a conceptual operation.

Figure 5.4 shows a further machine from the cardprocessing program
‘elabprating the data concept "cardimage".

Instances of a data type may be initialized by incorporating the
necessary operétions in the program of the machine elaborating ghat data

type. Figure 5.5 shows this in a modification of machine ''cardrep" of

" figure 5.4. The variable "i" is local to the inner block. The names of
variables declared in the outermost block of a program elaborating a

da;a type are avallable to machines elaborating operations having operands
‘of that data type.

Pearl enforces a rule that such operations must be elaborated

immediately the data type 1s elaborated (see also section 5.2.6.3). This
rule is a recognitiqﬁ of the strong relationship that exists between a
_data type and operations upon instances of that data type. Once the
:necessary machines have been entered, the elaborated data type is
removed from the enviroﬁment thus disallowing the recursive definition
of data types. This is aimed at encouraging top-down program development.
The sequence of machines shown in figure 5.6 is an illustration
of the elaboration of operations related to an elaborated data type.
| The data type "cardimage" has previously been introduced together
with the operations '"read", "Qriteout", vcheckvalidity" and ''checkcheck™,

éach having an operand of type "cardimage' and still being unelaborated.

- 125 -

+*build

cardrep:*a card is 9 data values and a check!
begin type value;

cardimage: declare vector (9) value data;

declare value check. ,
end

END OF CHECKING
NO ERRORS WERE DETECTED.

Figure 5.4

- 126 -

+*puild .
cardrep:'a card is 9 data values and a check!
begin type value;

operation clear (value v vary):;

cardimage:

declare vector (9) value data;
declare value check;

{ declare integer i;

i:=0; .

while i<9 do

(i:=i+17;

clear (data(i)));
- clear {(check)).,

end :
END OF CHECKING
NO ERRORS %ERE CETECTED.,

.,
.,

Figure 5.5

- 127 -

+*puild

cardrep:'a card is 9 data. values and a check'
begin type value;

cardimage: declare vector (9) value data;
declare value check. .

end

END OF CHECKING

KO TRRORS ¥ERE LETECTED. .

+*build
cardreader:'reads in the 10 values"®
begin operation readvalue(value v vary);

read.(cardimage c vary):
declare integer i;
i:=0;
while i<9 do
(i:=1i4+1;
readvalue(data (i) of ¢));
readvalue (check of c}.
end
END OF CHECKING
NO FRRORS WERE DETECTED. ,

+*build
cardwriter:'writes out values anyway®
begin operation writevalue (value V);

writeout (cardimage c):
declare integer i
i:=0;
while i<9 do
(i:=1i+1;
writevalue (data (i) of c¢))3
writevalue (check of c).
end
ERD OF CHECKING
NO FRRORS WERE DETECTED.

Figure 5.6

- 128 -

+*puild
validity check:'checks the 9 values'
begin operation checkvalue (value v, integer ok vary);

checkvalidity (cardimage C, integer ok vary)
‘ declare integer i; .
i:=0; ok:=true;
while i<9 & ok do
(i:=i%1;
checkvalue (data (i) of c, ok))..
end
END OF CHECKING
NO FRRORS WERE DETECTED. .

+*huild
checker:'make sure check is ok!
begin operation combine (value v vary, value w);
operation comparevalue (value (u,v), integer ok vary);

checkcheck (cardimage ¢, integer ok vary):
declare value temp;
declare integer ij;
i:=1; temp:=data(l) of c;
while i<9 do
(i:=i+17;
combine (temp, data (i) of ¢));
. comparevalue (temp, check of c, ok)..
end’ : :
- END. OF CHECKING
NO TRRORS WERE DETECTED. .,

Figure 5.6 (continued)

- 129 -

Machine "cardrep" is defined giving a representation for the type
"cardimage" in terms of the type "value". Once this machine has been
accepted by Pearl, the programmer is constrained as to what he may
éubsequently enter. He may only enter machines which elaborate
operations having an operand of type ""cardimage'" until such time as
no such operations remain unelaborated. Thus the set of machines
ﬁcérdreader", "cardwriter", 'validitycheck" and "checker" (in any
ogder decided by fhe progrgmmer) must be entered before a machine which
elaborates some other concept either of operation or of type. (e.g.
the type '"value"). Only when this particular set of machines has been
. accepted is the type ﬁcardimage" no longer available in the environment.

A special operator (of) allows reference to particular elements
of the eiaboration of a data type during the elaboration of the related
operations.

The enforcement of this strategy calls for a few comments. However,
beyond noticing that the set of machines providing the representation of
the data type and the elaborations of all related operations has much
in common with the class concept of SIMULA 67 (Dahl, Myhrhaug and
Nygaard 1968) we postpone discussion until Chapter 7. .

5.2.6, Correctness considerations

In addition to what we have described above, there are a number of
features provided by the system which allow the programmer to increase
the confidence he is willing to place in what he has written down.

We saw in Chapter 4 that the provision of redundant information is
-a powerful method of increasing the understanding that may be gained of
a progfam. The various features to be described allow the programmer
using fearl a number of ways of saying what he understands by what he

has written in his program, or what he intends to write. As a by-product

- 130 -
of this, there are a number of occasions when the redundancy can be checked
by the system in an automatic or semi-automatic fashion.

. There are two main areas of interest. Firstly, because the actiomns
of machines are described by programs, then these programs are subject
,‘to‘problems of comprehension much as traditional programs are. Secondly,
in a dgvelopment of a program in multi-level fashion there is a requirement

to ensure that descriptions given at different levels of description are

mutually consistent.

There are several features provided which are best classified
vaé being of a miscellaneous nature.
An "assert expression" is provided as part of the base language.

example:

assert x =a & y =Db before . . .

Aésertions may be made about the state of a computation at any
point within an individual program for a machine. In the system as
implemented; these assertions are not used to generate verification
conditions or for the automatic proof of program correctness, but rather
act as run-time checks.

As an aid towards maintaining the correctness of an elaboration,
SOmé restrictions are applied to the mechanism used in parameter
passing. This mechanism is known as "call by reference". (Note,
there is nothing equivalent to a global variable common to several
machines). Operations acﬁ upon their operands. This effect, when seen
in prodedures in high level languages, is often known as side effect in
that it is possible, by a procedure call, to alter the value of a variable

without explicitly making use of an assignment statement. Indeed it is

- 131 -

- possible for a single procedure call to change the value of many program’
" variables. 1In several current languages those parameters of a procedure
‘ whose value may be changed by calling that procedure are not distinguished
‘syntagtically. In Pearl, the vary attribute is provided. In the elaboratic
. of an operation, only such operands (or their components) as have been
given the attribute vary may appear on the left-side of an assignment
 operator, or as an actual operand which itself has the vary attribute.
Thus, when an operation is introduced, the programmer must specify
which of its operands will be changed in value by that operation.
The system'will ensure that his specifications are not violated by later
constructions. The vary attribute partitions the operands of an
operation into two groups in a manner similar to that described by Hoare
. (1971b). Further discussion on the vary mechanism is given in section
Telube

There are also some restrictions which prevent the programmer from

.doing things which may be considered unreasonable.

example:
It is not possible to change the value of any (non-
local) variable as part of the evaluation of a

logical expression despite the fact that the base
language is an 'expression language'.

Finally, all operands of operations are checked to ensure that they
are of the type specified in the introduction of the operation or in the
base language.

5.2.6,2 Meanings of conceptual operations

In section 5.2.1 we introduced the operation statement whereby new
operations could be introduced. In order to allow the programmer to

indicate the effect that an abstract operation has upon its operands wiihou

- 132 -

describing how the effect is achieved, the operation statement is extendedr
to express the "meaning" of the operation being introduced. This takes
the form of a pre-condition and a post-condition described by assertions
over the operands of the operation. Thus the syntax of the operation

statement may take the extended form:-

operation <name> {operand list)

provided {pre-condition>
- ylelds {post~conditiony omnexit

- Both the pre-condition and the post-condition are logical expressioms,
but certain restrictions apply to the latter in order that the meaning of
the operation may be deterministic. A discussion of some of the implication
of this restriction is to be seen in Chapter 7, whilst an argument for its
presence in the current system may be found in Chapter 6. To ensure a
fully deterministic meaning for an operation in a fairly trivial manner,
logical disjunction is disallowed in the post-condition. Also in the
posf-qbnditign the usual symbol for logical conjunction (&) is replaced
by a comma so that the post=condition can be expressed as an atomic
list of assertions about the operands using a comma to separate the

elements.

example =
operation swap (integer (x,y) vary, integer (a,b))
provided x=a& y=>b yiclds

x=b, y=a onexit

- 133 -

5.2.6.3. States

To enable the expression of assertions about variables of non-primitiwve
type, a further concept is introduced; that of '"state", States are a means
of iﬁdicating(a condition in which an instance of a data type may be found.
They are derived directly from the need to express the result of an operatior
on a conceptual . data type. However, they may also be used in conjunction
with the primitive types integer and string.

States for a type may be introduced at any time that an operation
ﬁsihg an operand of that type may be introduced. Their introduction is
_part of the maéhine specification and is effected by the states statement.
The form of this statement is similar in form to an operation statement,

but without a meaning part.

" example:

states empty (queue a)

Once a state is introduced, it may be used to define the meaning

of an operation,

examples
operation clear (queue a vary)

provided - empty (a) yields

empty (a) onexit

States may also be used as logical functions which may be tested

in a program.

- 134 -

ekample:

vhile — empty (a) do

A state may be undecidable in addition to being either true or falsé.

States may be elaborated in a similar fashion to the elaboration
of operations, and the restrictions which apply following thé elaboration
of a.conceptual data type are extended to cover the elaboration of states
of that data type. (see section 5.2,5).

- Two ways in‘which elaborations of states may be used are given below.
Both exemplify a different stress applied in the derivation of a design.

If a state is used to express the meaning of a partiCular operation,
then the elaboration of the state may serve as a check on the elaboration
.of that operation. This is illustrated in figure 5.7. The machines presente«
ghere are taken from a modified development for the checking problem used
-earlier ih this chapter (see figure 5.2).

| An additional operation "initial' is introduced to ensure that the
variable "c" is in the correct state for the first 'read" operation. The
operation "process'" is defined to yield a cardimage in the state
"brocessed". However, from its elaboration in the machine 'processor2",
it is seen that, as a result of the application of the "writeout™" opcration,
the cardimage Qill, in fact, be in the state 'written'. The elaboration
of the staté "processed' as meaning "written" restores the correctness of
the_program.

From a different point of view, states may be used to specify a
program development. A program may be defined by giving the states
necessary to fulfill the requirements of the program. The program

‘development takes the form of defining an operation which satisfies

- 135 -

+*build
cardprocessor2:*as. cardprocessor, plus states for checking®
begin type cardimage;
states readin(cardimage c),
processed (cardimage c);
operation initial (cardimage c)
provided true yields processed (c) onexit'
operation read (cardimage c vary)
provided processed{c) yields readin(c) onexit;
operation process (cardimage c)
provided readin(c) yields processed (c) onexit;

program:
declare cardimage c;
declare integer i;
1:=0; initial (i);
while i<10 do
(i:=i+1;
read{c);
process(c))..
end
END OF CHECKING
NO FRRORS WERE DETECTED.
+*build
processor2:'as processor plus states!
begin states passed (cardimage c), written (cardimage c);
operation checkcard(cardimage ¢, integer ok vary)
provided readin (c) yields passed(c) onexit;
operation writeout (cardimage c)
provided passed(c) yields written (c) omexit;
operation rejectmessage;

process (cardimage ¢):
declare integer ok;
checkcard (c,0k) ;
if -~ok then rejectmessage;
writeout (c) .,

ena

END OF CHECKING

NO TRRORS WERE CETECTED.

+*build

staterel:'explain processed versus written?

begin

processed (cardimage c):
written(c).

end

END OF CHECKING

NO FRRORS WERE LTTECTED.

Figure 5.7

- 136 -
these states. Subsequent elaboration of the states thereby provides
further specifications to be met by elaboration of the operations introduced

to satisfy given state transitions.

examplet
. A program might require that an object of a data type "t"

satisfies some predicate "pl". An operation to express
this would be introduced as:-

. ' operation opl (t x vary)
provided true yields pi(x) onexit
Next the predicate pl is elaborated as being some relationship
rel between two other predicates p2 and p3.
Thus |
pl (t x) = p2 (x) zrel p3 (x)

In order to satisfy this relationship two further operations
could be introduced.

operation op2 (t x vary)
provided o+ o o« « . yields p2 (x) onexit,
operation op3 (t' x vary)

provided « « « yields p3 (x) onexit

These are then used to elaborate opl so that the relationship
between pl, p2 and p3 is met.

Thus -the elabor&tion of states may be used either to drive the
bfogram design process, or be caused as a result of the design process.
The particular stress applied is dependent upon the programmer himself
and the problem he is solving.

 3e2.644. _Pre- and post-conditions upon programs

When an operation is elaborated, this elaboration may be given pre-
and post-conditions. In the same way that pre- and post-conditions given

at the time of an operation introduction may be considered as giving a ~

- 137 -

meaning to the concept of the operation, so the pre~ and posteconditions
applied to an elaboration may be considered as expressing the meaning of the
actual implementation of the operation. A check between the two sets of
conditions is provided as an aid towards correct elaboration. Such checking
takes the‘form of a message to the programmer who can take action as‘necessar&
as no automatic theorem prover is implemented within the system.

The conditions applied to the elaboration part are in fact assertions

although the syntax takes a slightly different form.

examples
Supposé that an operation is introduced.

operation opl (. . o)

provided P(. . .) yields Q (. . .) omexit
Subsequently opl. is elaborated.

opl (o » .‘):

provided R (« « «) then

assert S (« « o) omexit

The programmer is reminded that the following conditions
should hold:

P(o.o)l? R(o'o)
and S (e eo) = Q (e

5«3 Supplementing the design with a new machine

Under the control of the *build command, the programmer can enter the
text for a new machine into the system. Once this text has been satisfactor:
~ checked the new machine is added to the program design. This necessitates

modificatiéns to the current enviromment as described in section 5.2.3, .

- 138 -

In addition certain relationships are noted as to the plgce of the
new machine within the total design structure. These relationships are
"expressed between the machines representing the design.
’ For the purposes of later‘discussionAwe introduce the notion of a
machine being "dependent upon the existence of" another machine.
- A new machine M1 is dependent upon the existgnce of another macﬁine
| M2, present in the design structure, if:-

(1) M2 introduced the concept type, operation or state elaborated
b}' Mi, :

(11) M2 introduced some concept which is used anywhere within Mi,
: ‘+ge declaring an instance of a type, invoking an operation
or using a state).
(11i) M2 elaborated a data type and M1 gives an elaboration for
an operation or state upon that data type. (In this case
Ml may make use of the representation of the data type
as given in M2).
As a point of interest it should be stressed that relationships’

. are expressed between machines only, and not between machines (or parts
of machines) and individual concepts. Further discussion on the
implications of this decision is given in Chapter 6, sections 6.1.1.
and 6.1.2,

Se4 Discussion of the notation

. There are a number of issues which require discussion with regard to the
contents of this chapter. At this time we will deal only with those specific‘
to the notation used to Specif§ machines and their programs., Other discussion

s ‘1eft until Chapter 7.
Q.Aﬂi_ oﬁissions
Whilst we cannot hope to give a cogplete list of those things which
migh; reasonably be expected to appear in the Pearl notation but which do

not, an attempt is made to cover the most glaring omissions.

- 139 -
(a) procedures or subroutines.

The procedure or subroutine is a most important structuring feature
of most contemporary high-level languages. In a limited way the notion
of an operation in Pearl serves a similar purpose whilst
restricting the more general concept in a number of ways. By viewing a
procedure purely as a particular form of control structure there would
seem to be no strong argument for its omission. However, it was felt
that its inclusion as such would add an unnecessary additional complexity

. to the description of the program of a machine as well as possibly allowing

the programmer to build potentially large machines representing a set of -

design decisions instead of the one decision intended.

(b) functions

The notion of a function is almost entirely absent. A state covers a
limited set of those conventionally available to a programmer. (Namely,
boolean functions of a single argument). The omission is most noticeable
when there is a need to express a relationship between a number of variables
as a boolean function of n arguments. Such functions occur naturally as

(for example) the conditions in alternative or iterative control structures,

It was expected that the expression language nature of the base language

would make unnecessary an explicit provision for such relationships. However,

in our opinion the use of such concepts as 'block expressions' detracts

quickly from the clarity of programs and is, in general, a poor construction.
From experience, it is probable that there is a strong argument for

the inclusion of explicit boolean functions of more than one argument.

HOQever, the further generalization to n-place functions of any type is of

more doubtful value. The same effect can be obtained by an extension of the

- 140 -

function into an operation by an additional assignment to a vary operand. In
these cases there appears to be no syntactic argument against such a

“construction.

(c) data types and structuring facilites

The two primitive types (integer and string) were chosen for their

general usefulness and for thé fact that the concepts they represent are
reésonably well understood. It may be considered that lower level, more
basic types should have been chosen in view of the fact that all data
concepts must eventually find a representation in terms of the system
prdvidedltypesf However, 1f the base level is chosen too low, then it is
less reasonable to ignore such complications as storage management primitives.
In the current system the storage allocation is handled within the base level
machine and the programmer has no way of altering the mecﬁanism.

Experience has suggested that a further primitive type (the boolean
or logical) should have been provided. The control structures which
cbnventionally rely upon boolean expressions (e.g. the altcrnative and
iterative constructions) instead use integer exprcssions using the value 1
as beirig equivalent to true and any other value as false. Similarly the
relational operators (= <, >, etc.) and "boolean" operators (&, [, =)
take integer operands and produce integer results. Such use of the integer
type is nof, of course, uniques (It is to be seen in APL and XPL for
example).. It is acceptable until we consider the definition of the
6perators &, | and—. In order to give a definition for these
operators over all (éossible) integer values, it is necessary to assume a
representation for integers. That chosen for the system as implemented 1is
16-bit 2's complement as the interpreter was to use half-word

arithmetic on an IBM System /360 machine.

- 141 -

examples:

-2 & 5

i
~

Thus the base language is itseif making assumptions about how one of
. 1ts concepts is represented. It does not, therefore, truly represenﬁ a
.single level of conception. ,Wi;h hindsight, it is preferable to
intréduce the type boolean as a primitive type.
| There are two structuring relationships that may be expressed amongst
data elements.,

‘One is that represented by the elaboration of a data type into é
set of components. This relatioﬂship represents an abstraction relationship
between two distinct levels of description used in the design.

The other rélationship is that provided by the vector form. This
serves to exemplify one of many possible such relationships which may

be formed, which do not necessarily characterize a different level of

description. Other possibilities including arrays, powersets and scguences

- are suggested by Hoare (1972a) of which several are available in the
language PASCAL (Wirth 1971a). Whilst the provision of a single example
of such é structuring relationship was considered sufficient for the
purposes of the current work, it is likely that any practical system would.

require such other examples as we have suggested.

(d) control structures
The control structures represent a simple, self-contained sct of
elements to describe the sequential flow of program control. They do not

allow the complexity of the for statements of Algol or the connectivity

- 142 -

presented by the goto., No attempt was made to include facilities for the

description of either parallelism or co-routines.

(e) Operations
Given the choice of basic data types, the set of operations provided
is representative of the set of possibilities, whilst allowing useful

coricepts to be described at the base level for the purposes of exemplifiction.

(f) Correctness facilipies

The requirement that the definition of operation meanings be deterministic
is a particulag limitation. Additionally, as states are purely one place
predicates, there is no way of specifying meanings as abstract relations.
Further discussion on these points is'given in Chapter 7 for consideration
in possible extensions..

The system provides no automatic scheme for proving the correctness
of either an individual program for an ideal machine or of the consistency
of the overall design., The relevant sections of Chapter 4 deal with this
point. One possibility that could have been implemented is thec automatic
generation of verification conditions. This was not done, purely for reasons
of time and not because of the lack of belief in the practical utility of
such a tool, -

Likewise, there are undoubtedly several other ad hoc features that

could be included to catch possible program errors.

examples

It is possible to check, in some cases, that the logical
expression controlling a loop may not be altered by
computation within the loop.

- 143 -

The usefulness.of such checks is of doubtful general worth and, again,

time precluded any investigation.

5.4026 Generalization of control structure elements

The base language of Pearl is an "expression language" (see Wirth and
Weber 1966, for example). Statements of the language potentially have
values and may be used as operands in the formation of expressions. In
some ways this allows a simplification of the concepts of the programming

'lahguage and so should reduce its inherent complexity thereby increasing

"the. chance of comprehension by the programmer.

examples:
(1) The well-known conditional expression
a: = if E then b else ¢ is derived from the
use of the general alternative control structure
element of the language as the right operand of the’
assignment operator.
(2) It is possible (as in CPL for example, Barron, Buxton,
, Hartley, Nixon and Strachey 1964) to write
, (if E then b else c) : = a where the same

alternative control structure is used as the lecft
operand of the assignment operator. (The parcatheses
are needed to achieve the correct precedence ol
alternative over assignment).

(3) The semi-colon may also be used in this way.

a: = x+y+z; a/2

has the value a/2

Unfortunately it seems to be the case that such generalization allows
the programmer too much freedom and can lead to unnecessary complexity. Indeed
it may well be that it encourages the programmer to attempt devious program
constructions. It is not an impossible task to conjure up programs that

ﬁhgn unravelled are quite sensible, and yet are textually insanely complex.

- 144 =

A conclusion which may be reached is that elements of a programming
language whose purpose is to express a flow of control should in general be
distinguished from elements whose purpose is to identify particular actions
to be carried out. As Wilkes (1968) has suggested, there are benefits to be
achieved if it is possible to separate the notions of control flow from
considerétioﬁ of particular operations or data types, although this may
be a difficult task.

54443 States, values and géneralized constants

The idea of a state was introduced to allow the programmer to express
the result of an operation.
There is a very close analogy between the notion of a state and the

abstraction of a value, or set of values.

example:
The state "even(i)" where i is an integer, represents the
abstraction from all possible integer constants which are

evene.

States may be considered as representing conceptual values

'of conceptual data types.

- example:
Given the data type ''queue" the state "empty (queue q)"

may be thought of as expressing one particular value that
a queue may take.

However, such analogies, whilst useful, do not express the full
intention of the general notion of states in the present experimental system.
It is possible to define an operation which changes the state of one of its

operdnds even though that operand does not possess the attribute vary.

- 145 -

examples
operation print (cardimage c)

provided = printed (c) yields printed (c) onexit

This example serves to illustrate the intended use of states in
allowing the programmer a formal means of expreésing his intention without
nécéssarily committing himself to particular implementations of that intent.
The operation introduction expreéses a clear intent. The operation "print"
will not change the value (in a primitive sense) of the operand, but its
;pplication is an event with significance which is to be recorded. This
use of a stgte has proved to be of benefit In expressing the use of a
vadable (see for ekample the development given in Appendix D).
| 1t is possible that the additional insight given by an investigation
of the application of 'invariants' for a data structure will suggest better
‘ how a state is related to the various notions discussed above.

As was described earlier, (section 5.2.6.3.) it is possible to conceive
.0f the definition and elaboration of states as driving the program design.

If is interesting to speculate whether it is more helpful to think of a
program being developed in terms of the operations and data structures
necessary to describe the required process (with states being used to

validate thg program so developed) or whether in fact states are indeed the
way in which the necessary operations and structures are determined. The view
taken by Schwartz (1970), that there are various advantages to be gained when
a éystem is built through consideration of its data, would seem to support the

latter approach.

5.5. Some comparisons with other programming notations

There is some similarity between the scheme presented above

and extensible programming languages. However the extension

mechanism is unusual. In ECL (Wegbreit 1971) or Algol 68 (van Wijngaarden 1969),
the extension is made outwards from the actual objects present in the base
language. It is necessary when introducing a new concept, to give its

representation. 1In Pearl, the extensibility is based upon a generalization of a

progr;mming language together with a separate mechanism for relating concepts .
to a representation in the base language. This allows.a greater freedom of
expression and, in general (although not in Pearl as implemented), the
.p§ssibility of a‘variety of design strategies (inciuding bottom~up for example).
SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968), whilst also exhibiting an
extension mechanism which is primarily bottom-up, does provide a neat
encapsulation of the relationship between a data concept and the set of operations
associated with thaf data concept. The language itself probably suffers,
however, from its historical derivations and resultant overall complexity.
W; have earlier discussed the role of SIMULA in the context of the
.representation of program designs on many 1eveis (see Chapter 3),
Pearl is unusual in its enforcement of a particular design discipline.
We have earlier discussed how programming notations influence program
"development. In the design of Pearl an attempt has been made to take
~advantage of this fact in order to encourage design in particular ways. By
way of contrast, although the AED-Q language (Ross 1969) and the AED
philosophy itself (Ross 1967) are based upon a similar recognition, the
.programmer‘is’given immense freedom and facility to build models and designs.
This freedOm‘allows the careful programmer a wide range of expression, but in
doing so opens the Qay to unbridled complexity. The Pearl philosophy may be
‘stated more in terms of giving the programmer enough rope to do something
qonsfructive, but not enoQgh to hang himself. Whether it would be possible
to maintain this philosophy if additional power was added (e.g. in the number

of conceptual relationships that could be represented) is an open question.

It is the author's belief thét it would, provided the additional complexity
was constrained to be used in particular ways which did not result in the
connectivity of substantially different concepts being increased.beyond some
reasonably low bound.

In its provisions for the specification and maintenance of correctness
criteria, Pearl is by no mean; unique. An equivalent form of assert expression
is to be seen in, for example, some implementations of Algol W (Algol W 1972)
and in the language Nucleus (Good and Ragland 1973). The provision of a means
of giving meanings to conceptual operations is less common. There is a
similarity with assertional languages such as ABSET. (Elcock, Foster, Gray,
McGregor and Murray, 1971).

5.6 Summary
| In this chapter we have concentrated on one particular feature of the
Pearl system; namely the manner in which it assists in the actual construction
of a program. This necessarily entailed a description of the bases of the
system for describing and ;hecking a multi-level design using one design
strategy in particular. In the next chapter we will describe the other
facilities provided by the system for the editing, interxrogation and interpretation

of the information contained within the data base of the program design.

- 148 -

Chapter 6

Extended Facilities of Pearl

In this chapter we describe the facilities provided by the Pearl
system which allow the programmer to carry out design modification and
design evaluation, and to request information about the state of a
design.

Chapter 5 described how the programmer can construct a program
using a particular notation together with some machine assistance. One
important aspect of the assistance provided is the construction of a
data base representing the evolving design. It is not difficult to
visualize the programmer developing his design in the way described,
using the machine to check each piece in much the same way as a
conventional compiler might do, but not making use of the machine to
maintain the design at all, The medium in which the design is stored
may then be represented as a pile of paper.

PR T R

example!

It is possible to develop a program written in Algol in a

similarly structured manner. Each individual Algol text may

be checked by an Algol compiler, but the relationships

existing between individual texts will not be recognized and
stored by anyone other than the individual programmer.

The drawbacks of such a medium are obvious when consideration is
given to the functions which may be applied to discover information
pertaining to any particular level of description. One effect of the
awkwardness of information retrieval is that errors are "corrected
by patching those texts which are easily available (generally the base

level program) rather than by a proper modification to the design at the

- 149 -
appropriate level.

‘"it is the patching of partially correct programs that makes them
obscure'.

(Henderson and Snowdon 1972).

In the Pearl system, the computer itself is used to maintain the-
information representing the design as a data base and facilities are
provided to enable easy access to this information so that
proper modifications can be made.

Other tools may obviously be provided to act upon the information
in ehe data base. One such is an interpreter enabling the run-time
evaluation of the program under development. In the current implementation,
this interpreter is limited in the facilities it provides. For example,
the primitive type string has not been implemented whilst error checking
and reporting facilities, whilst being available, are not as extensive
as some ef those described in Chapter 4. Other tools which could be

'previded iﬁ an extension of the currentVSystem readily suggest themselves.
We give as examples:-
- automatic or semi-automatic program prover.
- an automatic means of checking for correct
construction.
- powerful debugging aids.
- translator into an existing language or- to
machine code.

The system is used interactively from a terminal (although it can

be used in batch mode) with the various tools being invoked by a set of

commands., The *build command was introduced in the previous chapter. The

- 120V -

majority of the remaining commands will be irtroduced in the following
sections. (For a complete list, see appendix B). Examples will be used
vhere appropriate. Several of these are taken from the program
developmenté shown in appendices D, E and F.

6.1, Modification of the Design

There are two commands which allow the programmer to modify an
existing designe These both usé a "machine" as the unit of editing.
Modification may be carried out locally by a replacement command, whilst
more drastic alterations may be carried out by invocation of a
deletion command.

- 641.1, Replacement

The *replace command is designed to allow the replacement of a
single named machine by another machine. (As an extension we might
consider the replacement of a set of connected machines by a different
set of connected machines),

The replacement of a machine is not dissimilar to the original
introduction of a machine using *build. However, it is necessary to

(a) re-construct the enviromment of the machine being rcplaced,.
and (b) impose certain additional restrictions upon the replacement

machine so as not to violate the currently existing
environment or its development.

It is a reasonably trivial matter to ensure that condition (a)
can be achieved, whilst use is made of the dependency relationships that

are ﬂefined between machines (see Chapter 5, section 5.3) to construct the
necessary restrictions in (b).
In particular it is required that the specification part of the

replacement machine should include the specification part of the machine

- 151 -

being replaced to the extent that individual concepts are re-introduced.
This requirement is imposed because no means are provided (except for
exhaustive search) within the system by which to ascertain whether or not
an individual concept introduced in one machine has been used by any other
machine., A different implementation would ease this requrement. (Appendix
B contains a complete definition of the restrictions).

Operation meanings may be changed provided the programmer accepts
that the new meaning implies the old meaning. This is an instance of the
fact mentioned above that it is non-trivial (although possible) to discover
whether a particular operation meaning may have been made use of in some
machine.

Figure 6.1 illustrates a part of a Pearl session in which a machine
is replaced by another, and operation meanings are checked. It is based
upon the development given in appendix D.

It will be appreciated that the action provided by the replacement
command is limited. Figures 6.2 and 6.3 may help to clarifyv the command
further in view of the restrictions given.

Figure 6.2 shows a design built from 5 related machines M1, M2, M3,
M4, M5. Each machine is represented as a node. The full limes linking
two machines represent the elaboration of a concept introduced by the
machine nearer the root by the machine further from the root. The labels
on these lines identify particular concepts. Thus the concept c is
introduced by M1 and elaborated by M2. The dashed lines between machines
represent other dependency relationships. Thus M5 is dependent upon M2

through use of the concept d introduced in M2,

- 152 -

+*puild
liner1:'wve print an image by printing its lines®
begin
states lineprinted(line 1),linebuilt(line 1)
operation lineprint(line 1)
provided linebuilt (l) yields lineprinted(l) omexit;

print{image i) :
declare integer j;
J:=21;
while j>1 do
(j:=3-1; lineprint (1 (§) of i))..
end
EXD OF CHECKING
NO ERRORS WERE DETECTED. .

o
L]

+*replace liner1
liper11:%ve print an image by printing its lines’
begin
states lineprinted (line 1),linebuilt(line 1),
lineempty(line 1);
operation lineprint (line 1)
provided linebuilt (1) | lineempty (1)
yields lineprinted (1) onexit;

? DCTS

LINFBOILT (L)

IMNPLY

LINFBUILT (L) | LIRNEEMPTY (L)

yes

2 Te

LINFPRINTEL (L)

IMPLIED BY

LINEPRINTEL (L)

yes

print (image. i):

declare integer j;

.
L]

°

Figure 6,1

- 153 -

M2

. . use of d

Figure 6,2

Suppose that a decision is taken to replace M2, The replacement
machine must fityinto the position occupied by M2 in the structure of

figure 6.2. Figure 6.3 shows the structure that is left if M2 is removed.

Figure 6.3

- 154 -

" Thus the replacement machine must
(1) elaborate the concept c introduced in Mi, and
(ii) étovide (introduce) concepts d, e and f.

The replacement command is intended to illustrate how the programmer can
make slight perturbations to a design without discarding previous work.
Obviously, other similar-tools could be provided, whilst different implementations
of theAsystem could relax the restrictions that apply.

The replacement of a machine which elaborates a data ﬁype imposes an
additional constraipt upon how design may pfoceed. Following such a
successful replacement, the programmer must provide replacements for machines
. which give elaborations for operations and states which use an instance of
fhis data type as an operand or parameter. (This constraint is equivalent
to that imposed when a machine giving a representation of a data type is first
entered; see section 5.2.4.). 1In this way the programmer is protected from
overlooking the consequences of a different representation of a data type.

‘ Figure 6.4 shows an example where this restriction applies. (Taken
from the example of appendix D).

The machine ''longrep' gives a representation for the type "line'.
Machine "longrepl" elaborates the operation "lineprint" using this
representation. Subsequently a different representation for a "line'" is
thought more appropriate. The machine "shortrep'" replaces '"longrep' to carry
out this change. The programmer is now constrained to give a replacement
for "longrep?' reflecting the altered representation of a line. This he does
using machine "“shortrepl'.

(A facility is provided to circumvent this constraint. Thé
programmer may indicate that he wishes to "leave" the original machine).

6.1.2, Deletion of machines

By using the command *delete, the programmer may remove a named -

- 155 -

+*build
longrep:'a line is simply a vector of 20 sysbols (integers)’
begin

lipe: declare vector(20)integer symb.
end

END OF CHECKING

NO ERRORS WERE TETECTED.
+*build

longrep1:°print a line by using prsym®
begin

lineprint (line 1):
declare integer j;
Jj:=0;
while j<20 do
(Jz=3+1; prsym(symb(j) of 1));
nlcr.
end
END OF CHECKING
NO TRRORS WERE DETECTED.

t*replace longrep
shortrep: *include a count of symbols to be printed with line!
begin

line: declare integer f;
declare vector (20) integer symb.

end

END OF CHECKING

NO FRRORS WERE LETECTED.
+*replace longregp!?

shortrepl:*print f symbols using prsyn’
begin

lineprint(line 1):
declare integer j;
j2=0;
while j<f of 1 do
{ J:=j+1; prsym(symb(j) of 1))
nlcr.
end
END OF CHECKING
NO FRRORS WERE DRTECTED.

Figure 6.4

- 156 -

machine from the data base completely. The net effect is to leave the design
as if the machine had never existed. To achieve this, the command is more
powerful'thah it might at first appear.

| If a machine is deleted, then all of the data types, operations and
states whiéh are introduced by that machine are also deleted. 1t ig necessary,
therefore, to delete, in addition, all those machines which depend upon the
‘existénce of a machine being deleted. Deletion of these machines causes
deletion of further dependentvmachines and so on. In a highly connected
system of machines, it is easy to see that the explicit deletion of omne
machine can have a drastic effect upon the remainder of the structure. Of
course, as the data base represents a set of machines which must all be
connected directly or indirectly to the initial ideal machine elaborating

the "program" concept, it is a trivial matter to delete the whole program
design. ‘Tﬁe delete éommand should obviously be treated with care.

Figure‘6.5 offers an illustration

program

e

. C31

. use of C22

Figure 6.5

- 157 -

1f the commaﬁd
*delete M8
"is issued, then only machine M8 will be removed.
1f the command
*delete M2
is issued, then this will cause deletion of machines M2, M7, M5, M6, M8, M3.

6.2 Interrogation of the design

A command is available (*list) by which information may be
retrieved from the data base and presented in readable form to the
user., The command may be parameterized according to simple rules
s0 that'the user can request that specific information is displayed. A
full list of the options available is given in appendix B.

Figure 6.6 shows an example of the use of the *list command
based upon the program development of appendix D. This particular example
iliustrates the formatting feature provided for the display of text.
Any formatting information present when text is input to the system is
destroyeds Standard formatting is applied when text is displayed by
the system for the user, thereby making textual input a less laborious
task than might otherwise be the case.

6.3 Design evaluation = program execution

The *execute command invokes an interpreter to execute the program
under design. This interpreter has a number of features. Perhaps most
interesting is its ability to execute a program which is not complete.

. This allows some evaluation of a program design at any stage in its

- 158 -

+*puild

jscanner:'setmarks. put each of the 40 marks into image?
begin operation addmark (integer j, image i vary)
provided j>0 &8 j<=40 yields true onexit;
setmarks{image i vary):

declare integer j;

j:=0;

wvhile 3j<40 do

(je=j+1; addmark {j,i)).,

end

END OF CHECKING

NO FRRORS WERE DETECTED, ,
+*1ist jscanner

JSCANNER IS A MACHINE

JSCANNER: Y SETMARKS. PUT EACH OF THE 40 MARKS INTO IMAGE®
BEGIN

OPERATION ADDMARK(INTEGER J, IMAGF I VARY)

PROVIDED J>08J<=40 YIELDS TRUE ONEXIT;
SETMARKS (IFPAGE. I VARY):

DECLRRE INTEGER J;

J:=0;
WHILE J<40 DO
(J:=J+1;

ACDMARK (J, I)). .
END

Figure 6.6

- 159 -

construction. The interpreter also allows a limited amount of interaction
between the executing program and the programmer sitting at a terminal.

Some provision is made for error checking and error reporting, the latter in
a language appropriate to the error condition encountered.

For a number of reasons, but mainly that of time, the interpreter
provided in the current implementation is incomplete and experimental. It
was considered desirable for some form of interpreter to be provided within
the system, particularly to demonstrate the feasibility of carrying out
séme program design evaluation before the level of the base machine had
been encountered. Thus an interpreter providing soﬁe of the more unusual
features was developed, whilst those features of a more mundane ngture
were é;ther omitted or not developed completely.

The form of the command is:-

*execute machinename

The action invoked may be considered as '"switching on the power"
to the named machine. This machine will then carry out the action
described by its program part, in general involving the invocation
~of other machines to carry out elabofations of any concepts it requires.
(Recursive invocations of machines are handled in the obvious manncr;

" recall that recursive definition of data types is not allowed). As
implemented, the machine named in the command must be the initial
ideal machine elaborating the "program' concept, although an obvious
and'attractive extension is to allow the command to apply to any
machine. There would then, of course, be a need for some form of
initialization of any operands.

6.3.1., The basic execution process

In a completely elaborated program, execution flow is similar to
the flow of a program written in a contemporary programming language

“equipped with a procedure mechanism (e.g. Algol 60). As described in °

- 160 -

gection 5.2.5 the declare statements are regarded in a similar fashioﬁ to

opérations whose concern is the allocation and formatting of memory. -

'If an operation is defined with a pre-condition or a post-condition these

are checked prior to execution of the elaboration and after it respectively.
We will deal in more detail with the execution of programs when not

all of the necessary machines have been designed and entered by the.

programmer. Three possible approaches are considered.

6:3.2. _ Simulation or temporary machines

A straightforward approach is one which clearly parallels the ideas
of multi-level modelling QZurcher and Randell 1968). The programmer
includes in his design, "dummy' machines which merely simulate the
necessary effect4to produce acceptable results. Then, as design proceeds,
each simulating machine is replaced by a proper machine designed to overcome
the difficulty being simulated. Of course, this may involve the use of
further dummy machines simulating the new set of primitive notions. The
simulating machines can, of course, be powerful making use of any information
which may be available, Aslanian and Bennett (1971) describe a system
which provides a comprehensive set of simulation concepts which
substantially increase the descriptive power available to the programmer.

No such concepts are provided in Pearl.

However, the facilities provided in Pearl make it a reasonably
simple matter‘to develop a program using dummy machines to allow test
executions early in the development.

6.3.3. Programmer assistance

By reason of the interactive, online nature of Pearl, it is possible
to make use of the programmer to supply values as the result of
unelaborated operations. Use is made of such information as the type of

the operands and whether they are vary or not before deciding whether.

- 161 -

programmer assistance can be invoked. Figure 6.7 gives a short illustration.
The ;echnique has a number of advantages and disadvantages. Among

the advantages is the reduction in the amount of text that must be

entered by the programmer in order to test a program. He does not have to

explicitly code and enter machines (even "dummy'" machines) to provide

an “implementation" of operations which he has not properly designed.

However, experience suggests that the programmer sitting at a terminal

réquires information about the state of a computation when prompted for

values and is often surprised by what he is asked to do. This difficulty

is, of course, closely tied to the problem of relating a program text to

the actual program execution. It may be that better human engineering

could alleviate the difficulties somewhat but there appear

to be limitations to this interactive approach.

6344, Using operation meanings

Consider the two machines described in figure 6.8. (It is assumed
that no other machines exist). The obvious intention of the programmer
_is to construct aprogramwhich yields, as its result an object namcd
"page" of type "image', which is in the state "printed". (This is the
assertion supplied as the result of the initial machine "compfirst').

The command

*execute compfirst

ac:ivates “"eompfirst'.

An object of type "image" with name 'page' is created. As no
representation is given, a standard one is used. Control now moves to
carry out the operation "build" upon the conceptual object 'page'. First,

the pre-condition is checked and found true. 'Clearfirst" is now activated

- 162 -

+*¥build
display:*display values of a function of integers 0-9*
begin operation f(integer x,integer y vary) ;

program:
declare integer (x,y):
x:=0;
while x<10 do
(£(x,7)3
writeint (y);
X:=x+1).
end
END OF CHECKIRG
NO FRRORS WERE DETECTED.
t+*execute program
*%% UNELABORATEL OPERATION
F (INTEGER X,INTEGER Y VARY)
BEFORE OPERATION
X WAS O
Y WAS O
PLEASE PROVIDE VALUES FOR
Y
72
72
**% UNELABORATED OPERATION

Figure 6.7

- 163 -

+xbuild
compfirst:'store image of page before printing®
begin type image;
states built (image i), printed(image i):
operation
build (image i vary)
provided true yields built (i) onexit,
print (image. i)
provided built (i) yields printed (i) onexit;

program:
declare image page;
build (page); print (page). .

assert printed(page) onexit
end
END OF CHECKING
NO FRRORS WERE DETECTED.
+*build
clearfirst:'expand build.ve will empty the image first!
begin states blank(image i);
operation
clear (image. i vary)
provided true yields blank (i) onexit,
setmarks(image i vary)
provided blank (i) yields built (i) onexit;

build (image i vary):
clear(i) ; setmarks(i)..

end

END OF CHECKING

NO TRRORS WERE LETECTED.

t*execute compfirst

EXECUTIORN SUCCESSFOL

Figure 6.8

- 164 -

to carry out the elaboration for '"build". The first acgion is to '"clear™
’the object "page'. ?he'preécondition is satisfied, but there is no machine
available to carry out the operation. Thus it is performed symbolically
' using the pdst-condition of the definition of "clear'" as the statement of the
result of the operation. As a result the object '"page" is deeﬁed to_éatisfy
the predicate

| Yblank (page)'.
and the pre-condition of the next action, the operation "setmarks" is mete.
In a similar manner, there being no machine eiaborating "setmarks', the
object "page' will subsequently satisfy the predicate

| "built (page)'.

The action of "clearfirst" thus being completed, "compfirst" is
resumed, A check is made that the elaboration of '"build" was carried out
successfully by evaluating the post-condition given in the definition
of "build". The "print" operation is carried out in a similar, conceptual
fashion. As a result it is determined that the object "page" is 'printed"
and thus the final assertion is met.

This example indicates how incomplete programs may be executed in a
meaningful way with some expectation of discovering inconsistencies.
Obviously there are limitations. Some are described in the next few sections,
whilst others, possibly more far-reaching, are discussed in Chapter 7.

6.3.5. The use of meanings and states

-In the example of section 6.3.4 we described how the post-condition
‘of an operation definition could be used as a statement of its result.
:In the cases given, the actual post-conditions consisted of a single state.
States are the only elements of post-conditions which may be used in this
maﬁner. Figure 6.9 illustrates one reason for this. (This figure is

hypothetical for illustrative purposes);

- 165 -

+*puild
n1z' ooq '
begin
operation makezerc(integer i vary)
provided true yields i=0 onexit;
operation generalop({integer i,integer {j,k) vary)
provided i=0 yields i>j,j>k,k>i onexit;

program:
declare integer (a,b,c);
makezero(a); generalopi{a,b,c).
end

+*axecute nl

Figure 6.9

- 166 -

When "ni" is activated, it will follow its program and declare three
integer variables a,b and c¢. An application of the "makezero" operation
follows. Suppose that, ag it is unelaborated, we make use of the post-
condition to act as a statement of the result, Thus the integer variable
a is given the value zero and execution of "ni" continues. The precondition
of "generalop” is saﬁisfied and an attempt is made to fulfill the post-
condition.' One possibility is to use the known value of a to determine
a value for b so as to satisfy a>» b. Thus if b is assigned the value
-1, then this condition will be met. The second condition now requires
-1:> ¢, and thus ¢ is assigned the value -2. This results in the obvious
contradiction -2:> 0 from the final condition. Of course it is not possible
to choose a set of integer values to satisfy these conditions because of the
theorem

1>3 & >k = i>k

Unfortunately it would require an automatic theorem prover to
discover whether a giveﬁ post-condition could be satisfied at all.

The restriction of the use of post-conditions in this manner
only to those post-conditions which are states, offers a partial solution
to this problem. However, there are still a number of rules to be observed.
The first we have hipted at above. If the post-condition of an unelaborated
operation consists of more than one element, then the list of elements is

processed left to right.

- 167 -

example:
if an operation has a post-condition as

e o « yields s(x), - s(x) onexit,

then this would be treated as if it was

e o o ylelds = s(x) onexit

despite its obvious contradictory nature.

The other rules are less trivial. The next section is devoted to a
discussion of them.

" 643464 Rules for the use of operation meanings in the execution

of incomplete programs

(i) The pre-condition of an operation meaning is always a test.
- (ii) The post-condition of an operation meaning is used either as a
test, or as a statement expressing a result. The only element
-possessing this duality is the state. Whether a state is
ﬁsed as a test or as a statement is dependent upon whether
or not the operation itself is elaborated (e) or unclaborated
(u), and also whether the state itself is elaborated (e) or
unelaborated (u). Figure 6.10 gives a table showing which
particular use a state is put to. The table is described

‘in terms of an operation b and a state bd where

operation b (e« «)

provided e o . yields bd (. . .) onexit

- 168 -

b bd Test or
statement
Case 1 u e test
Case 2 ' u u statement
Case 3 e e test
" Case 4 e u statement
. , " Figure 6.10

Neither case 2 nor case 3 from this table call for much comment..
1f both the operation b and the state bd are unelaborated, then the
state acts as a statement; if both are elaborated the state is a test
* dpon the consistency of the elaborations.

In case 1 the programmer has provided an elaboration of the state
but not of the operation. Presumably the ultimate elaboration of b
will reflect the giveﬁ elaboration of bd. If the execution process
was to interpret bd as a statement then, because bd has becen claborated,
it would be nccessary to emsure that the claboration of bd was also
.true. It {s not difficult to see how this could lead to either

non-deterministic or contradictory situations.

~ 169 -

example:

In section 6.3.5. an example was discussed to show why only
states may exhibit the dual role of statement and test.
This example is exactly similar to the situation we are
now discussing when viewed as follows. Suppose a data type
D is introduced together with a state S. §.is used to
define an operation F as:-

.operation F (D x) provided . . . yields S(x) onexit

Subsequently D is elaborated as having 3 integers components
i, j, k, whilst 8§ is elaborated as:-

- t S(D x):
(1 of x> 3 of © & (5 of x> k of x)

& (k of x> i of x)

An execution of a program invoking the unelaborated operation
F(x) must not use the state S(x) as a statement because the
elaboration of S(x) cannot possibly be satisfied.

In the absence of a tool able to resolve inconsistencies of the
nature of the example, the obvious course is taken of insisting that
an elaborated state always implies a test.

Case 4 of figure 6.10 arises when the operation has been elaborated
but its meaning is still expressed at the higher, unelaborated leve!l of
aescription. It is therefore meaningless to test the state, as it should
not have been changed as a result of the action caused by the operation
elaboration. The state is thus interpreted as a statement.

Bdth'case 1 and case 4 are good illustrations of the ''close"
conceptual relationship that exists between operations and states.

(see section 5.2.6.3). These two cases are examples of the difficulties
that are liable to arise if an operation is described at a different level
to the state which defines it (or which is defined by it). The

relationship between an operation and the states used to define its

- 170 -

" meaning is similar to that which exists between a data type and the operations
allowed upon instances of it., It will be appreciated, therefore, that
individual machines do not represent individual levels of description;
there will generally be several machines within that single level. Tﬁe
cases we have discussed above therefore represent not only the execution of
a program not éompletely defined in terms of the base language, buﬁ also a
view of such an execution even when closely related concepts of th; program
are themselves developed to differing degrees of detail.

6.3.74 Error reporting and debugging facilities

The structural nature of the set of machines enables the occurrence
of'any.run-tiﬁe errors to be meaningfully related to the original prograﬁ
text as described in Chapter 4. In the current implementation of the
interpreter there are a few automatic checks carried out at run ﬁime.

These include subscript checking and arithmetic overflow but not such featurds
as-enéuring_a variable has been assigned before its value is used. In addition.
a number of features of the notation enable the programmer to specify

explicitly that checks be made. (e.g. assert expressions, pro- and post-
conditions on operations and elaborations etc.).

When an error is detected, the execution process provides ccriain
information to the programmer. This consists of a message appropriate to the
failt, followed by material indicating in which machine it eccusved and at
which point in its program. This is given in the form of a source listing
with a pointer. Next the programmer is given a trace of machine activations
'150 that he has some additionél contextual material upon which to basc his
investigations. Finallythe values of any pertinent variables are»listcd.
Figure 6.11 shows an example.

The trace of machine activations and the textual pointer referencing a

failing machine are particularly related to the structure of programs

- 171 -

++build
ipsert:'insert an integer value into a list®
begin type integerlist;
operation insertvalue (integerlist s vary,integer i);

program: ’
. declare integerlist s;
declare integer i;
i:=0; .
while i<10 do
(i:=i+1;
" insertvalue(s,i)) .,
end -
ERD OF CHECKING
NO TRRORS WERE DETECTED.,
+%build
listrep:'a list has 9 elements'
begin :

integerlist:
declare vector (9) integer element;
_declare integer count;
countz=0. . '
" end
EWD OF CHECKING
NO TRRORS WERE LETECTED. ,
+*puila .
listinsert:'insert according to vector representation'
begin

insertvalue(integerlist s vary,integer i):
count of s:=count of s+1;

element (count of s) of s:=i.
end

END OF CHECKING

NO TRRORS WERE TETECTED.

t*execute program

*%% TRROR: SUBSCRIPT ERROR

CURRENT MACHINE IS LISTINSERT EXECUTING OPERATION INSTLRTVALUZ
ERRNR AT:

COUNT OF S := COUNT OF S+1;

ELEYENT (COUNT OF S) OF S == I.

I .
LISTINSERT WAS. CALLED FROM INSERT EXECUTING OPERATICN PRCGFRAY
VALUE OF INDEX IS 10
DECIARED SIZE IS S

Figure 6.11

- 172 -

written'in Pearl. The implementation does not provide either frequency
counts (Satterthwaite 1972) or a complete correlation between the static
and dynamic representations of a program. (Dijkstra 1968c). Both would be
worthwhile and, probably, non-complex additions.

The system does not, as implemented, include the more attractive
features of online debugging systems such as the interrogation of named
variables or the program counters of machines. As is described in Chapter 4,
features such as these can increase the understanding that a programmer
has for é program and thereby raise his confidence in it.

Further comments related to possible extensions to thc current Pearl
implementation (and thereby to similar systems) are given in the next chapter.
6.4 Summary

This chapter has- described those facilities of the Pearl system
which enable modification, interrogation and evaluation of program designs.

Pearl represents an attempt to provide a unified environment for the
development of computer programs. This environment is provided by mcans of
a design notation in which a aeveloping program may be described, together
with a set of tools to help the programmer to a realization of a program
in which he can place a high degree of confidence. Many of these tools are
already available in contemporary computing systems, but Pearl additicnally
provides some which are unusual as well as exerting & particular influence
over tﬁe coﬁplete design process. This influence may be traced from the,
earliest conception of a program design throughout, and even beyond, the-

normal life of the program itself., Pearl is able to do this because

- 173 -

it represents an information system for the total design process.
There are a number of points of discussion that the design of
Pearl raises. It has deficiencies and weaknesses of its own besides
being based upon some philosophies about program design that are,
to say the least, the subject of considerable discussion. In the next
chapter we attempt to give an evaluation of the experimental system
including suggestions as to how noted deficiencies could nossibly be
corrected and the power of systems like Pearl extended. Alsc we
discuss how Pearl as a system relates to contemporary programming

systems.

- 174 -
Chapter 7:

Discussion and Conclusions

’ Experience in the use of Pearl has shed some light upon the
contribution that such systems may make to the programming activity.
We will discuss some points in this chapter, particularly those which we
see as relevant in the light of likely future developments.

In this context, it is important to relate Pearl to certain other
taols and techniques that are currently available to the pfogrammcr, or
which have been proposed.

Finally we give some indication of the success of the current
investigation. Several points of argument are raised, even in the

_ underlying design philosophies, It is an important result of this

‘work to decide whether decisions taken on the basis of these philosophies

have been substantiated.

7.1 Some deficiencies and limitations of Pearl
‘ In Chépter 5 (section 5.4) we described certain omissions and
deficiencies in the notation of Pearl. We have said little about
equivalent inadequacies in the system as a whole. Some of tl.cse huve
been recognized from the outset in that certain influences upon il
design of the system (e.g. human engineering) were not catercd flor
specifically, or that the experimental nature of the implementation
made it impossible to include several desirable features. Other

deficiencies have been revcaled by use of the system.

7.1.1 Machines and levels of description

In Chapter 3 we developed the idea of a level of description being
characterized by four sets of concepts (D,F,C and S). Pearl is built
around the notion of allowing the representation of a program at a levei of

déscription chosen by the programmer. This freedom is provided by the .

- 175 -

mechanism of the 'ideal' machine whereby the programmer specifies elements

"for the characterizing sets. There is, therefore, a very close correspondence

between an ideal machine and a level of description. However, this

corresporidence is not .omne to one. A single machine (together with its

environment) need not completely represent a single level of description.
This is‘a natural result of the concept of a machine as carrying out a
.single elaboration. The specification part of each machirne thereby
introduces only those concepts necessary to carry out tﬁis elaboration,
whether or not these concepts characterize a complete level of description
in the sense that all related concepts are introduced.
It is arguable whether or not it would have been better to have made
a one to one correspondence between machines and levels of description. For
a number of reasons it was decided not to do this.
1. A machine represents a single design decision,
2. A machine was chosen as the basic unit of information in the system.
- As such it should be neither textually unwieldy
or potentially complex. The uniform nature of all machines as
the only building block was considered important.
3. At any stage of design, the programmer should rot nced tc vpecify
more than is necessary to represent a particular decision.

4. The system could take care of the need to gather together u set of
>machines representing a complete level of description.
Unfortunately, it is often the case that a programmer finds it

necessary to introduce machines of not inconsiderable complexity (scc
for example the development shown in appendix E). Stoy and Strachey (1972)
have remarked that in programming there is a certain requ}rement for a
. conjunction of autonomy and hierarchy. This is apparently reflected by the

complexity of certain individual machines.

- 176 -

However, we believe that the concept of a machine is satisfactory in
én env;ronment such as Pearl, although it is possible that a smaller unit
of information might be desirable. It would then be possible to re-investigate
the relationships between the idea of a machine and the characterization of
levels of description with a view to obtaining a closer correspondence.
There is a not inconsiderable problem here of course. The concept of
; machine does provide a useful, self-contained, structural unit of design
Iwhich enables the imposition upon the programmer of a significant design
discipline. Smaller information units, whilst arguably having some
advantages, have some potential dangers. It would be necessary to
vrépresent more relationships amongst such units than is the case with a
‘machines The programmer would have to be aware of these and the imposition
of a satisfactory design discipline becomes a more difficult problem.
Naturally this raises the question once more of how much
freedom the pfogrammer should be allowed. It must be said, however, that
it is tﬁe author's belief that it is better to err on the side of too much
restriction than too little, for programmers will generally abuse it if

they are given too much.

71,2, Machine environments and design strategics

At any time in the development of a program, the environment
available in a machine represents the information contained in the
design as it has been developed to that point. A subsequent inspection of
the environment will indicate that the design has progressed, but without
indicating exactly how it has progressed. Thus a notion of progressive
dgsign is available from an inspection of the changing environment.

<The strategy for desién progress provided in Pearl is only one
of a number of possibilities. In Chapter 3 (section 3.2.2.) we discussed

a number of basic design strategies and concluded that one which allowed the

- 177 -
programmer to develop his program starting from the level of the problem

description would have most advantages. The rules representing the

"~ design strategy of program development in Pearl are based upon this
conclusion. Thus the environment available to a new machine represents the
total design as developed and there are rules dictating how a new machine

can interpret and modify this representation. The particular representation

and set of rules has proved to be adequate.in the context of the design
strategy they encourage.

' The particularly rigid discipline enforced by Pearl has proved to be
of benefit in the programming task in that it has led to a better appreciation
of difficulties inherent in the problem being tackled rather than problems
of choice amongst possible representations in some programminy language.

As a‘result, the programmer is encouraged to try to understand what he is
really trying to do, before he does it, rather than the more commonly
' encountered situation of the programmer trying to understand why be has domne
~something already.

On occasion it has been found that the discipline is too rigid.
In Pearl the level of the base language is fixed and all progroms wust be
elaborated down to this level. There is no reasonable way by which he
programmer can, even in a consistent fashion, raise the level of the base

. language concepts (i.e. a bottom-up strategy). Perhaps a system such as
Pearl should be neutral as to the direction in which design proceeds.
However, it should be noted that such a relaxation introduces a further

degree of freedom into the design process, with consequent methodoiogical
{ssues raised. 1In Pearl it was decided to take a particularly rigid
viewpoint and limit this freedom quite extensively. It will be appreciated that

even in Pearl, there are situations where the programmer still has considerable

- 178 -

freedom of design.

example:

the number of operands in an operation, in particular the
freedom to define an operation which alters the values of
any number of its operands.

As alternatives which could be implemented in a system based upon -

Pearl the following are suggested for consideration.

1,

Program development may additionally proceed in a bottomQup
fashion, This is allowed by a relaxation of the rule that a
machine may only elaborate a concept that was present in the

environment before the machine was defined.

example:

A machine X could both introduce and elaborate a new concept Y.

1f this extension is to discipline the programmer to a puic buliom-up
development, then the elaboration of the concept Y must only wikn

use of concepts which have a definite representation in the base

llanguage. This is probably an unnatural restriction. Tt would aypear

more reasonable to allow elaboration in terms of concepts which .y or

"may not have a definite base language representation. The programmer

may then develop programs, not only from the top or from the bott-a,

but also from the "middle' (up or down).

2.

- 179 -

In suggestion 1, the design is still represented by a single
erivironment. It is possible to change the representation of a

design by adding structure to the environment. We can envisage a

structure based upon scope rules for machines, so that only a sub-set

of the total set of design concepts is available to any one new machine.

example:

Suppose there is a concept c present in the total
environment. A new machine N may not wish to be told

of this concept so that, although it has a requirement:
of a concept with the properties of ¢, it can, for
instance, introduce a concept ¢ with similar properties.
Of course, the design may be such that the now machine

N should not know of the existence of c¢. Such situations
may arise in programs being developed by several peoople
where the single, global enviromnment of Pearl could have
some disadvantages. Individual designers should be able
to derive their own parts of the program in a manner
which is unimpeded by others.

As an exterision of 2, different representations of the same concept

could be allowed to co-exist in the design. This could be of use as

a means of archiving the development process, or for the impionencation
of versions developed by two or more programmers each influcnced by their
own design requirements, or of versions developed to cope with cxpected

variations for program use, or to cater for program portability.

examples:

(a) It may be possible to develop a compiler such that by
changing the representation of the concepts of_codc
generation new compilers could be produced easily for
different machines.

- 180 -

(b) Some decisions made during development of a program may
be based upon predictions of input load. Versions
allow different representations to be developed according
to a set of differing predictions.

Such a scheme is suggested by Dijkstra (1972a) with the notion that
a program is constructed by making a necklace of pearls chosen from amongst
a set of potentially useful péarls. The ultimate extension to such a scheme
is to allow the choice of a particular version of a representation to be left
u;til thé program is actually executing.

Experimentation with the 3 alternatives suggested (and others) may well
be anvinteresting exercise. However, such experimentation is likely to be
subjective‘according to individual programmers and situations and thereby

be difficult to evaluate.

Tele3. . Extended notion of states

The cdncept of state as described in chapters 5 and 6 has proved to be
a useful tool in the expression of the meanings of a conceptual operation.
A state allows the programmer a means of writing down his intentions in a
formal yet descriptive terminology which relies heavily upon an interpretation
from natural language. The rigid nature of the syntax imposes a requiremant
for careful expression and contributes to considered design in much the sume
way as does the construction of assertions about a program (see Chapter 4).

The very usefulness of the technique draws particular attention to its
other limitations and restrictions. There is therefore an attraction in
'investigating how these restrictions may be relaxed.

.The basis for the restrictions lies in the desire to use operation
meaningsAto define the effect of unelaborated operations at run time. The
‘two main restrictions ares-

(1) Meanings should be completely deterministic, and

- 181 -

(ii) it is not possible to use states (reasonably) to express a

relationship between operands of an operation.

Relaxation of restriction (i) introduces, in theory, combinatorial
’prbblems, as an operation may produce a number of different results, each
of which must be considered in a state test of a program. Henderson
and Quarendon (1974) describe some work in this area. Figure 7.1 however,
gives an example of the additional power of expression which can be gained
if the potential combinatorial explosion can be overcome.

The operation '"read" has a result which is determinable only when
supplied with additional information. The program illustrated in the figure
is one which occurs frequently in practical programming situations and yet
‘tﬂere is no way ofvrepresenping it in Pearl without including a dcterministic
mechanism explicitly in the form of flags or other testable relationships.

Figure 7.2 illustrates the difficulties to be overcome if rclationships
‘between variablés are to be represented. The specific problem is to determine
whether or not the final assertion is satisfied. If not, then what
relationship does hold between the cards a and b? On the other hand if the
assertion is satisfied, then how is such a relationship maintained ov,
perhapg of greater importance, how can it be detected that some
relationships cannot possibly be maintained? It is the auiho:?s belief that
a programmer should be able to write down such things as non-deterministic
?esults, or regults which are relationships. In many cases there is no
.reason why this should not be possible provided the programmer is in full
control of what he is déing. The difficulties arise because it is nccessary
to take precautions to warn a programmer when he has lost sight of his
- purpose. Again, it is a matter of deciding how much freedom programmers

should be allowed.

- 182 -

type card;
type cardreader;
states readin(card. c), eof (cardreader r);
operation read{card ¢ vary,. cardreader r)
provided ... yields readin (c)
or eof (r) onexit;

program: declare cardreader r, card c;

read (c,Tr)

while ~eof(rj do

{ can.

read{c,r))

© vo

Figure 7.1

type card;
relation samecard(card(a,b));
operation read(card c vary):
operation copycard(card a vary, card b)
provided readin(b) yields samecard(a,l)
onexit;
program: declare card(a,b,c);
read(aj ;
ccpycard (b,a) ;
assert samecardia,b) before
read (c) ;
copycari(b,c);
assert samecard (a,C) oo,

Figure 7.2

- 183 -~

Telebs The "wary' mechanism

One concept that has been found wanting is the "vary" mechanism
applicable to the operands of an operation. (see section 5.2.6.1).
The idea of an "invariant" as suggested by Hoare (1972b)
- has a great attract%on as a more powerful mechanism which serves a
similar purpose. The invariant allows the actual representation of a data
object to change without affecting the abstraction of the object as used at
a higher level of description. The vary mechanism prevents any such changes,.
'wﬁether or ﬁot they are visible to the higher level. It is not possible,.
therefore, to change the representation in any helpful manner during
- program execution (the 'benevolent side effect' Hoare 1972b).
In order to allow an invariant to apply to a data object, it is
necessary to provide a meané for variable initialization. The condition
of the invariant is then established before any operations may be carried out.
This may be done by an extension of the type statement as illustrated

‘below. The example is based on one from Hoare (1972b).

type smallintset invar limited;

states limited (smallintset s);

The state "limited" is intended to refer to a bound on the number of
elements inla "smallintset". The invar clause is equivalent to the post-
condition of an operation statement. If an instance of a “smallintsct" is
declared in a machine program, then this instance should invariably satisfy
the condition of béing "limited". If an elaboration is given for "smallintset',

then it is the responsibility of this elaboration to correctly ensure that the

- 184 -

‘ appropriate operations are carried out so that instances of "smallintset"
"will be initialized to the state "limited". A check that this has been done

" may be carried out during execution in a straight forward way by using the
invar clause as a test. For this test to be meaningful, it would be expected
that the terms occurring in an invar clause would also be-elaborated. Thus,
"smallintset' might be elaborated as:

smallintset: declare wvector(100) integer A;

. declare integer m;
m: = 0,
‘and "limited" as:
limited (smaiiintset s): m of s>= 0 & mof s<= 100.
The test of the correct initialization of "smallintset" is thus
~ expressed in terms of the elements of its representation.
If an elaboration of '"smallintset' is not given, executions of
. programs declaring instances of ''smallintset may still be carried out by
‘'using the invar clause as a statement as is possible with the post-condition
.of an operation statement.

7.1.5. The assignment operator

The operation of the assignmenﬁ of a value to a variable is a basic
one in a wide class of contemporary programming languages. The tase language
of Pearl is a member of this class. It is fitting that this should be so due to
,the‘widespréad use of languages of this class. The generalized use of the
oper#tion in Pearl and the way in which it is handled calls for a few comments.
| Although the scheme that has been implemented is satisfactory (see
section'5.2.4) it has drawn attention to a number of points. Firstly, the
assignment operator symbol is unique amongst other operator symbols, in that
| its functional representation is cdntext dependent. This can be defended on the.

grounds of familiarity of use and its common purpose, which is context.

- 185 -

independent. This suggests that assignment should be treated as a well
understood operation of the base language, much like subscription.
Assigmment is a much more complex operation than subscription (which
we mdy view as an operation on a type "address'). How an assigmment is
carried out is depéndent upon the representation of its operands. This may
not be sufficient information however. We can envisage situations where
fufther information might be necessary, particularly if the notion of a tyﬁe

is parameterized in a manner equivalent to the parameterization of classes

in SIMULA 67.

example:
table (integer n):

declare integer sizej;

declare vector (n) line 1;

size: = n.

It is thﬁs reasonable to allow the programmer to give elaborations for
‘.any assignment operator used between operands of a conceptual type. Thus the
operation of assignment should, in general, be viewed as a conceplual oboration
just as any other introduced by the programmer.
In the implementation of Pearl the programmer may use the cormon
symbol (:=) for all assignments, but must also pfovide elaborations for any
assignment which may be invoked between operands which are not of a primitive
type. This has led to a number of difficulties, particularly in the coniext
of a program modification using the commands *replace or *delete. The
usefulness of the flexible viewpoint has not been confirmed in practice and
‘it is doubtful that any significant benefit was derived from the additional

_engineering effort required in the implementation.

- 186 -

7.1.6. 'Human Engineering

It is important that, in any system incorporating a human element, the
interfaces between that human element and other parts of the system are well
engineered. In an interactive system such as Pearl, potential users must not
be deterred because of the form of their contact with the system. 1In the
current implementation, whilst not disregarding this issue completely, it has not
been explored to any depth. This was done consciously in the interests of
limiting the task of implementation. Where‘possible some attempt has been made
Atd’make the system easy to use but on occasion human engineering has been
neglectede This has had the effect that there are a number of examples where,
Ain an'environﬁent other than one which is purely experimental, potential users
might well at first find the system unattractive.

‘Ihe notation itself is one such example. It was chosen for its
simplicity and readability. The similarity between it and other high level
languages is not coincidental. Many of the concepts we believe to be
desirable are to be found in contemporary languages and it is thus appropriate
to take advantage of well understood syntax. Unfortunately, such syntax
can be verbose for a human being sitting at a terminal. The requircment for
unique names leads to the invention of long identifiers (not in itsclf a bad
thing) thereby adding to the overall textual length of programs.
| It may well be that we should develop a language offering two different
representations*, One representation is that used for program input (e.g. from
a‘terminal), the other being used when the programmer wishes to inspecct his
program. Each representation would be derivable from the other in an
automgtic fashion.

The handling of errors discovered as a machine definition is entercd Is

*This idea was first communicated to the author by J.D. Ichbiah.

- 187 -

another source of frustration for the user of the current system. In an

1ncera;tive syséem, it is particularly attractive to the user to be able to
correcf immediately errors discovered by the compiler. Because of the
parsing method employed by the syntax checking routines of Pearl, this is
no£ pospible (see appendix C)s 1Indeed it has been found most appropriate
to terminate the checking of input completely once a non-trivial error

has been encountered. Naturally this can be extremely frustrating for the
- user.

- In order to make systems such as Pearl more attractive there are
facilities‘which‘could be considered in addition to the removal of the
sources of frustration noted above. Pre-eminent amongst these is an
‘éditing system allowing the user to edit existing machines in a microscopic
fashion (in comparison to *replace or *delete), so that the large amount
of textual input currently necessary may be reduced.

| There are obviously many issues involved when the human engineering
of an interactive systém is considered (e.g. positioning of keys, type of
function provided automatically etc). An appreciation of these may be gained

from the work of Hansen~(197ia, 1971b) or Mitchell (1970).

'7.1.7. Miscellaneous

We close this discussion with a section on some other possible
extensions to the current systeme.

Aﬂ additional method of passing information between cxecuting macuines
would 6ften be useful. As a candidate for this we suggest a sct of global
variables, perhaps organized in subsets according to machines, with access
controlled in a similar fashion to the access of operation, state or type
names. However, it is necessary that the use of such global variables
be obvious and restricted (maybe read only) to disallow obscure and

complex relationships amongst machines. The class concept of SIMULA 67

.= 188 -

could afford a possible solution. Unfortunately the scope rules of that

- language suffer from their development from those of Algol 60 which can be
the source of much devious program constructions The named common areas of
FORTRAN may be more appropriate, provided that additional restrictions are
imposed to pfevent misuse. A possible approach would be to use an explicit
named set of variables (implemented by some machine) together with a
statement of an invariant to hold over these variables.

It may be possible to develop an extension to Pearl which has a
substantially different base'langdagg (e.g. one providing storage
management primitives) or one which allowed generalization of the control
;tructure elements in addition to operation and type.

The elements of the system itself can be expanded to provide, for
instance further interrogation facilities or (as suggested earlier) editing
and formal.broving tools. Arguments can easily be made for any of these, but
it is necessary to beware of allowing the system to become too large or too
complex., One answer to this could possibly lie in making the system itself
extendable so that a user could build up more complex facilities to satisfy
‘his own requirements. This is a mechanism often seen in the commantd languages
of interactive systems, particularly those of text editing systems. (van Dam
and Rice 1971).

The s&stem could also fruitfully be extended to include a mechanism
for constructing efficient machine code programs to take full advantage of
hatdware., Indeed, this could possibly be combined with the interpretation
techniques currenﬁly used as the basis of the program testing tools proQided
by the system. The testing and debugging system described by Satterthwaite
(1972) is based upon the use of machine code rather tham interpretation, whilst
the incremental compilation techniques described by Mitchell (1970) are of

obvious relevance.

- 189 -

Hopkins (1970) has suggested that, because of the redundancy of the
information available in a structured development of a program, it may be
poésiﬁle to carry out a substantial amount of optimization when producing
the executable code for the completed program. No work has been carried out
on tﬁese lines within the implementation of Pearl.

7.2 The fallibility of Pearl - an example

It is appropriate to illustrate that even simple programming errors
. can be made and may pass undetected when using Peafl. This comment is
péssibly too strongly worded as the error which we shall describe was
' eventuaily discovered and certainly could have been discovered earlier,
- although for reasons we give below the programmer may be discouraged from
‘making this possible.

In appendix E is shown an example of the design of a program to solve

the eight queens problem as posed by Wirth (1971b). The relevant portions of
. this design are repeated in figure 7.3.

The concept behind the design of the program is that of moving a "pointer“
over a "board" and testing the squares pointed at by the pointer. In machine M4,
tﬁe poinger is represented by two integers, one to point at rows, .rd ond to point
at columns. The crucial error has bcen made by this choice of representation
in terms of base language concepts, but more of that below. In M4G, the operation
Mregress" is elaborated in terms of this representation of a pointer. This
‘invoives the two operations "findqueen" and ''removequcen', both of which
use integer operands ﬁo identify the relevant square on the board. During the
Original design of this machine, the use of one of these operations was specified
wrongly insofar as the logical correctness of the program was concerned. In fact

,the row and column pointers became interchanged. When the program was run it
did not, of course, perform satisfactorily. Eventually the error was found

by inspection and corrected.

- 190 -

pl:"now a pointer points to a column and a row!
begin

pointer: declare integer (row,col}.
end

mtg:'we regress by using old information!

begin
operation findqueen (board g, integer row vary,integer col);
operation removequeen (board g vary,integer row,integer col);

regress(board g vary,pointer p vary):
declare integer (i,]);
j:=col of p;
J:=3-13
if j>0 then
(findqueen(q,i,Jj);
removegueen (q,i,j) :
if i=8 then
(3:=3-13
if 37>0 thren
(findqueen {(q,1i,3);
removequeen (q,i,j))))
col of p:=3j;
row cf p:=i+1,
end

Figure 7.3

- 191 -

However, the error need never have occurred if the pointer had not ﬂeen
..represented by two objects of the same type. 1If a poiriter had been
represented as a "rowpointer' and a "columnpointer", then any interchanged
use would have been discovered by reason of the stringent type checking.
There is however a disincentive to carrying out the design in this way
“which it is particularly instructive to describe. 1If the design had been
carried out.according to the second alternative we described, than the two
" types ''rowpointer" and '"columnpointer" would each have separately required
elaboration. Suppose a rowpointer was represented as an integer. Then.the
~operation "findqueen" for example, which has both a columnpointer and a
rowpointer as an operaﬁd will require elaboration before a columnpointer can
be elaborated. The programmer must introduce a new operation (which we might
call "newfindqueen') which now has a columnpointer and an integer as operands,
Once he has done this for any similar operations he may give a representatién
for a columnpointer as an integer and elaborate '"newfindqueen' etc. into
operations having two integers as operands. The intermediate operations
'Servg no purpose other than transforming one operand of the original set of
operations in the next level of representation as a step towards tie
- transformation of the complete set of operands. At each intermediate level,
ﬂowever; it is possible to perform a check upon what is written down although
even at the lowest level there is an operation which has two integers as
operands.aﬁd so the error can be repeated. Hopefully the programmer will have
a better undersfanding of what he is doing however. The notatisn will help as
well, as one of these two operands should always appear in the context of the
of oﬁerator.
The.unfortunate disincentive is the large aﬁount of text which needs to

be input to prevent such errors occurring. As a human being carrying out the

_programming task, the author (who was the programmer at fault) was notpr?PaWd

- 192 -

to accept this additional work in return for such (seemingly) meagre benefit.
. The pénalty was paid in full.
The moral is, of course, that no matter what tools are provided,

the human'user may be guaranteed to misuse them or to fail to appreciate

their true worth.

7.3, Relationship with other tools and techniques

The Pearl system has much in common with other tool$ and techniques
currently available,'some of which have been already noted. This is to be
expected as we do not claim.to propose any new or startling techniqué to be
applied in the programming task. What has been done is to look at the different
“tasks involved in programming and to select those approaches which are considered
likely to make the whole programming task more comprehensible. The words whole
and more in the last sentence are stressed because we have taken the view that
programmiﬁg covers more than the initial creation of a definitive picce of text.
ﬁather, programming is an activity which encompasses the life of a program, from
.1ts conception to that time when all physical trace has been lost.

The Pearl scheme is very closely related to the ideas of "structured
programming'* as described by Dijkstra (1972a). However, Pcarl is more rigid
in the form that development may take, whilst the use of the computer aiiows
not only a means of enforcing the discipline, but also a wvay of providing a
powerful set of tools to actively assist the programmer during (and after)
the development. Thus there is some reward for the programmer who follows the
design discipline imposed upon him.

in Chaptef 5 we discussed both SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968)
and ECL (Wegbfeit 1971) as extensible languages. It would, of course, be possible
to build a system similar to Pearl around a given extemnsible language encouraging
the necessary design discipline that we regard as lacking in such languages.

However, it is the author's belief that the necessary restrictions to apply such

- 193 -

a.diécipline would have a drastic effect upon the language.

In Chapter 6 we described how Pearl is related to the work
of Zurcher and Randell in providing a scheme for the‘evaluation of incomélete
pfogram designs by test executions. Use has also been made of the notions of
assertions about programs although more in the manner of maintaining or driving
“the program design than in generating verification conditions to be proved by
an automatic theorem prover.

Although Pearl is designed specifically for the development of one
progrém by a single programmer, it has several similarities with systems
aimed at the ﬁroblems of a team of people constructing a larg; piece of
software. Pearson (1973) and Falla and Burns (1973) give outline
descriptions of §uch systems. Both of these systems and Pearl rely upon
the construction of a data base to represent a developing program. However,
Pearl differs particularly in its emphasis upon the methodology of program
construction. Both of the other cited systems are principally concerned
with ﬁroject control, although attention is paid to the structure of the
xééulting software at the level of individual module relationships.

‘The LC2 system (Mitchell, Perlis and van Zoeren 1968) was designed to
see how the computer could be of assistance in the top-down design of programs.
It is an interactive system using program execution as the main source of
design infofmation. The programmer may enter program text in the form of
"parts" which may be likened to procedures. If a "part" is discovered to
" be missing'when execution takes place, the execution process gives the
programmer the opportunity to enter the necessary text before resuming.

However, LC2 gives no other assistance in the enforcement or cncouragement
of 4 discipline for design. The programmer has complete freedom to construct
programs as he iikes and there is, therefore, an equivalent methodological

difficulcy. LC2 provides no mechanism at all for the testing of incomplete

- 194 -

{
i
H
}
§

programs. If he wishes to do this, then the programmer must provide,

explicitly, executable temporary code to implement "parts" which are missing.

(This is equivalent to a programmer in Pearl entering ''dummy" machines as

described in section 6.3.2.).

In a paper given at the I.F.I.P. conference in 1971 (Floyd 1971) there

appeafs an example of a hypothetical man-machine interaction to construct a
compdter program. Floyd calls for the usual tools of syntax checker, code
generator, program executor, prompter and file handler. 1In addition he suggests
that the machine might continually check the consistency of the program against !
a set of specifications. This would involve a proof of the semantic correctness
of the program, a proof of the termination of iteration, and counter-examples to
incorrect programs. Of particular note in his example is the apparent hierarchical
design strategy and the need for intelligible interaction between man and
machine. The interactive program verifier described by Deutsch (1973) is

_ based upon some of Floyd's proposals.

A further proposal is made by Freeman (1973). Freeman describes the’

" tools and techniques that his system will provide as follows:

", . . an integrated programming enviromment . . . in which all the
tools needed to develop a program are immediately available at the
same level of control: editors, filing systems, compilers, debugging
systems, 1/O facilities; such a system is usually interactive'.

Freeman takes functional programming (Freeman and Newell 1971) as.the
basis for program design. This scheme is again hierarchical in nature.
Conspicuous by its absence in the list presented by Freeman is any tool

. concerned with checking the logical correctness of a program or part
thereof from the text alone.

The implemented Pearl system is much closer to Freeman's proposals than

- 195 -~

to Floyd's in that they both lack a complete logic checking tool. Pearl
does;}however, offer some such capability through the design éf the notation
and the sﬁatic checks that are possible. It does not, however, go to such
lengths with the debugging facilities as suggested by Freenman, ﬁlthough there
‘is no reason why future developments should restrict themselves in this
’direction.

| These proposals together with the systems described by Pearson (1973)
and Falla and Burns (1973) are of particular interest in that they indicate
that a unified approach to the pr;cess of program writing, development and
maintenance is being more widely appreciated and also that there is considerable
conmon ground.

744, Conclusions and summary

In the introduction to this thesis (Chapter 1) we expressed concern
over the reliability of contemporary software produced using the tools and
and techniques generally available. We have tried to investigate some of the
' causes of.difficulty that arise in the programming task. At the bottom of
-many difficulties is the inherent lack of comprehension due to the complexity
of both the problems to be solved and of the tools available for their solution.
The average programmer is unlikely to be able to obtain a suiiicient
grasp over both the problem and the available programming languages so as to be
able to choose the best way of using the machine to solve the problem. Each
individual programmer will develop his own way of doing things dependent upon
his own experience, ability and environment. Unfortunately his natural
resources tend to possess transients and so when he returns to a particular
problem at a later date, he is often unable to recall how his program works.
It is not really surprising that others subsequently have even greater

difficulty.

Y

- 196 -

. The desire for powerful constructions is a major source of complexity
in programming languages. In view of the cost of hardware this is to be
expecteds If the programming 1énguage removes much of the power‘of the
hardwafe then it is likely that there will be questions of economics to be

answered. Notwithstanding this point of view, we have suggested that the

-complexity of programming 1anéuages must be reduced., It does mot follow

that there will be a commensurate reduction in the power of the language; the

- opposite may even be true.

Although we may be able to lessen the impact of complex programming
language constructions, there still remain the difficulties posed in the
comprehension of real world problems and the evolution of satisfactory solutioms.
These are two pfoceéses which cannot be truly separated: Indeed programming
is a particular form of problem solution. An understanding of the process of

problem solving can act as a guide to how programs may be developed. We

 described the use of a generalized notation and particular design strategies to

‘constrain and assist the program designer, using the ideas of a '"level of

deécription" and the relationships of "abstraction' and "elaboration'.
Many of the conclusions at which we‘have arrived are, of necessity,
subjective., However we believe that the arguments and suggestions
put forward are well-founded as basic philosophies to be held abcut program
development and design; only experience can show whether this is truly the case.
Abpar:icularly important requirement of these philosophies is that of

restriction. We have already made a similar point about programming languages,

‘but it is equally important that the programmer has only a limited set of

things he can write down at any time in the program development. It should

then be possible to understand program designs and to follow a constructive

design strategy. This restriction must not be too oppressive or the

programmer will find his natural inventiveness and creativity is hampered,

- 197 -

but it must not be too lax or else the programmer will tend to introduce
complexity into his design through a lack of appreciation for the true .
source of difficulty. We have suggested that a hierarchic program
structure, developed basically via a top-down strategy is a reasonable
way for a design to be represented, whilst imposing a sufficient restriction
to limit the. degree of complexity. As the appropriate discussion has |
indicated, this may well be an over-cautious discipline. However, we must
take care if we introduce any relaxations.

E We have also suggested that the necessary restrictions are best imposed
ﬁpon the programmér rather than being self-imposed. Thismay again be wrong
in partiéular cases, but not, we believe, in general. How many programmers
take as much care in the documentation and.description of the design of
a program as 1s seen in a recent paper by Naur (1972)? We suspect the
number is very few. Yet this is the degree of discipline which is
necessary and which, if not imposed by external means, must come from
the programmer himself.

Pearl is a scheme which imposes a discipline throughout the design of
.a program. Although much of its worth comes from its attention to the textual
development of a program in a well-structured way, this is only a part
of the process of program development. The unification of many tcol.s and
techniques in a single environment is aimed at making the whole task of the

Cémprehension of complexity in program design easier for the human being,

bé he the programmer or any other interested person. We have been able to
combine in a single scheme, many techniques, ranging from the hicrarchical
development and representation of a program, schemes for specifying the
intention and understanding of a programmer, facilities for programmer
interrogatioﬁ of designs and proposals, machine assistance in the maintenance

of such information and means for checking its consistency, through to the

- 198 -

simple expedient of program development in a interactive system. However,

it must be stressed that whilst all of these may make their own individual
contribution, they are worth less if the total scheme is not based upon the
philosophy of comprehension through simplicity, clarity and ease of use,

We certainly do not claim to have found the panacea for the problems

of writing highly reliable software. Indeed the examples given may have

been just as easily developedin a conventional way, or would they? Certainly
in Pearl, the programmer is provided with means by which he can convey a
large amount of information about his program and its design. Whether such

a scheme is practical on a large scale program development can only be the
subject of speculation. However, it is our hope and belief that most, if not
ali, of what has been said would apply and be applied with suitable
modification in such circumstances.

Further research on the lines suggested by work with Pearl is now

being carried out at Newcastle University under a grant from the

Science Research Council. The major aim of this continued work is the
construction of a further program building system which will additionally
incorporate features whiéh received little attention in Pearl. 1In particular,
some effort is being devoted to the human engineering aspects of tho new
‘system to enable a closer evaluation of the acceptability of such systems

to the programming community than was possible with Pearl.

P

- 199 -

APPENDICES

Appendices A,B and C conﬁain details of the Pearl system.
Appendix A gives a definition in B.N.F. of the Pearl notation. Appendix
B details the various commands which a user may invoke, whilst
Apperidix C gives some notes on system implementation.

Appendices D,E and F show programs developed using Pearl. 1In
éach'appendix, only the set of machines and a sample execution are
included. The actual development of programs such as these additionally

involves numerous other interactions between the programmer and Pearl.

Text in lower case is entered by the user, whilst that in upper case
is written by the system. The system invites the user to enter a

‘cpmmand by typing a '"4" sign.

- 200 -

Appendix A: Syntax of machine descriptions

The syntax of the notation used for describing machines is given below
in B’ackus Naur Form. Any character or character string not enclosed in angular

_ brackets (< >) is a terminal symbol. 1In addition <identifer> s

< type name> s <number> and <string> are terminal symbols. 4n <identifie>

and a {type name> are character sequences containing between 1 and 255 characters
inclusiyé. The first character must be eithel; a letter or one of the symbols__# .
The remainder may be thosen from these characters plus the digits 0-9. A

<number> is a sequence of decimal digits whose value is an integer in the range
0 to 64035. A <string> is a'sequence of characters (any characters) enclosed.

. in single quotation marks. A quotation mark within a string is represented by

two such marks. The sequence must not contain more than 255 characters.

References are made in the follow definition to notes which follow it.

. PRODUCTION "NOTES
<pachine> ::= <machine heading> <decision step>
<pachine beading> ::= <identifier> : <string> 1
ddecision step> ::= begin <decision optiond> end

<decision option> ::= <op elab>
| <machine definition> <op elab>

<pachine definition> ::= <machine statement> <;>
| Smachine definition> <machine statementd> <;>

NN

<machine statement> ::= <type introduction>
| <operation 1list>
] <states list>

Stype introduction> ::= type <id spec>

{id spec> ::= <identifier>

] <identifier list> <identifier>)

i T AT

- 201 -

PRODUCTION

<identifier list> ::= (
| <identifier 1list> <identifier> ,

<operation 1list> ::= <operation start> <op specif>
|<operation list> , <op specif>

<operation start> ::= operation

<op specif> ::= <operation>
| <operation> <provided> <valued expression>
<result>

= <identifier>

<operation> ::
] <identifier> <parameter list>

<parameter list> ::= <parameter head>
<{parameter element>)

<parameter head> ::= (

| <paraneter head> <parameter element> ,
<parameter element> ::= <typing element>
| <typing element> vary

<typing element> ::= <t name> <id spec>
] vector <t name> <id spec>
| <head> <size> <t name> <id spec>

N
%}
[N
N
[
v
(L]

= <valued expression>)

<t name> ::= <type name>

<provided> ::= provided

<result> ::= <yields> <valued expression> onexit
<yields> ::= yields
] assert
{states list> ::= <states> <op specif>

| <states list> , <op specif>
{states> ::= states

<op elab> ::

<descrip>

= <pre-tlock>.
| <descrip>

<pre-block> . <result>

[YNY]

NOTES

14

W

14

14

- 202 -

PRODUCTION

<descrip> ::= <operation>
] <type name>

<block>

<pre-block> ::=
| <entry> <block>

<entry> ::= <provided> <valued expression> then
<block> ::= <expression>

| <expression> <;> <block>
3> 1=

<expressicn> ::= <valued expression>
| <valueless statement>

<valueless statementd> ::= <declaration>
| <repeat head> <valued expression>
| <while head> <expression>
| <if clause> <expression>

{declaration> ::= <declare> <typing element>
| <declaration> , <typing element>

<declare> ::= declare
<repeat head> ::= <repeat> <expression> until
{repeat> ::= repeat
<while head> ::= <while> <valued expression> do
<while> ::= while
<valued expression> ::= <logical expression>
| <logical expression> := <valued exrression>
| <if clause> <true part> <valued expression>

<if clause> ::= <if> <valued expression> then

<if> ::= i

h

{true part> ::= <valued expression> else

<logical expressior> ::= <logical factor>
| <logical expression> | <logical factor>

<logical factor> ::= <logical primary>)
| <logical factor> <conop> <logical primary>

14

12
12,14

12

14

10,12
11,12

4

12

- 203 -

PRODUCTION

<conop> ::= &
1
<logical primary> ::= <string expression>
{ <string expression <relation>
<string expression>
] -~<lcgical primary>
| tTue
] false

<relation> ::

d VAVA
I

o

!
1
|
|
]

<string expression> ::= <arithmetic expression>
| <string expression>||{<arithmetic expression>

arithmetic expression> ::= <tern>
| <arithmetic expression> - <term>
] <arithmetic expression> + <term>
| - <teru>
] + <term>
<term> ::= <primary>
| <term> * <primary>
] <term> / <primary>

{primary> ::= <basic primary>
i <assertion> <basic primary>

<assertion® ::= <assert><valued expression>before

<assert> ::= assert

<basic primary> ::= <variabled
| <(> <block>)
j <constant>
<O = |
<constant> ::= <number>
] <string>
<variable> ::= <name>

] <qualifier> <name>

<qualifier> ::= <name> of

NOTES

12
12

12,14

- 204 -
PRODUCTION NOTES
<pape> ::= <identifier>
| <subscript head> <valued expression>) 12,13,14

<subscript head> ::= <identifier> <{>
| <subscript head> <valued expression> ,

Notes:
([
1. Any errors made up to this point are recoverable.
2,- There are certain additional non-terminals which are necessary for

code emission purposes. The code emitted by the compiler (called
% way code) is interpreted both for listing and for execution.

3.+ A <yping elemenﬁ} of this form must not be used in a <§eclaratio@> .

b A yping elementy of this form must not be used in a <@araméter element) .

5. -This form of <yield$ is used when giving the post-condition for a

{pre-block> .
6 The elaboration of states also takes this form.

T, | 1f the operation or state being elaborated was introduced with parameters
different.from thosé given, the system will make the correction or inscrtion
arid inform the user.

8. There is a particular problem following the elaboration of a data type

.concerning'the names used for the components of that data type. It is

possible that there may be a clash between these and a name of a formal

parameter of an operation or state which is elaborated as a result of the
elaboration of the data type. This is only discovered when the operation
or state is elaborated. It is necessary to change the name of the formal

parameter.

- 205 -

9. The scope of variable names is the block in which they are
declared except in the case when a data type is elaborated. In
this last case, the names of variables declared in the outermost
block are available to machines elaborating any operations or states
upon the elaborated data type.
10. The type of the <@ogica1 expressio@> and the <&alued expressio§>
must be the same and not "undefined" (i.e. the type should be
either a primitive type or a user defined conceptual type.
An "undefined" type covers all other cases),
11. The type of the <@rue par€> and the <&a1ued expressio@)
must be identical. This type is the type of the whole alternative
valued expression and may be '"undefined".
12. In post-conditions for operation definitions there are a number
of restrictions.
(i) Conjunction is specified by , rather than &.
(i1) Parentheses for blocks may only be used within either
arithmetic or string expressions.

(iii) The following may not be used.

3 repeat while declare
= if | assert

(iv) Operations may not be invoked.
13. Subscripts start from 1.
14, In these <valued expression:> 's assignments (or use of operaticns
with vary parameters) may only apply to variables local to the

<&a1ued expression> .

Appendix B:

- 206 -

Commands

Theré'are 7 commands available.

(1)

(11)

'(111)

*initialize

This command initializes the

Initialization consists of a

the following data types and

- Data types:

Operations:
program
writeint (integer i)

nler

prsym (integer i)

readint (integer i vary)

substr (string s vary,
string t, integer {(i,j))

*build

data base representing a program.
machine called "system' plus

operations.

integer, string

an unelaborated operation.
to write the value of 1i.

to give new line and carriage return
character to output device.

print a symbol corresponding to the
byte value of i on the next available

character position of the output device.

read an integer value into i.

assign to s characters i to j
inclusive from t (i,j > = 1).

This command invokes the routines which enable the input of a

new machine. The description of the machine follows the command.

*replace <ﬁnachine nan€>

This command replaces the machine named with the machine whose

description follows. In addition to the form required by *build

there are other restrictions on replacement machines.

(a) All of the concepts introduced by the original machine must be

re-introduced, at least in name. New operations and states may

also be introduced but not (in the current implemgntation),

new types.

- 207 -

(b) The formal parameters of a re-introduced operation must
agree both in number and in type (by position) with the
formal parameters of the original. It is possible to
change the identifier of a formal parameter. It is also
possible for an operand of a re-introduced opeiatiqn to be
given the attribute vary, even though this attribute
was not present in the original. Removal of the vary
attribute for an operand is not allowed. The meaning
part of re-introduced operations may also be changed.
However, the old meaning should imply the new meaning.
The system will request confirmation of this if not in
batch mode. Meanings may be added where they were not
previously present. |

(c) The formal parameter of a re-introduced state should
agree in type with the original.

'(d) The en&ironment of the replacement machine will be the sanie
as for the machine being replaced. However, additional
restrictions are imposed on the choice of names for new
concepts to prevent clashes with names present in. any
later environment.

(e) The concept elaborated by the replacement machine must be

the same as that elaborated by the original.

1f the concept elaborated is a data concept, then the system will
immediately require replacements for all machines which were originally
dependent upon the original representation of this data concepte.

If desired, it is possible to replace a machine by itself. Instead of

prbviding a replacement machine, the word "leave' may be used.

*replace X

leave

- 208 -

(iv) *delete <3nachine namé)
This command causes the deletion of the named machine and of all machines

which are'dependent upon it and upon them etc.

(v) *list <§ptio§>
This command provides means for the retrieval of information from the

data-base according to the stated option.

Qption>

= <@1as§>
<§dentifie€>

| all

| choice

{class type>

{class type> full

Lelass

{class type> = machines

| operations
l tvpes

| states

Listing a <class typ@) results in a summary of thoéc oL jects present
in the data-base of the named <class type> . If the keyworc full is
appended, complete listings are given. The *list <identifier)

option gives a "full" listing of information about the named object

if such an object is present in the data-base.

The optionigll is equivalent to requests to list each <class

typ€> without full.

The user can discover if his choice of elaborations is limited in any
way following elaboration of a data type (or replacement of a machine
elaborating a data type) by the command *list choice.

A full listing of a machine or elaborated concept uses an automatic

.

(vi)

(vii)

- 209 -

indentation algorithm to lay out a program in a neat manner. This can

"be useful as the layout used on the program input is therefore immaterial.,

*execute < option)

This command causes the execution of a program.

<option> :: = <machine name>

| program

It is necessary that the{nachine nan@>némes the machine which elaborates
the concept "program'.
A description of the execution mechanism is givern in Chapter 6.

*quit

- This command terminates the session for the user. Any relevant
information is written to the data-base andheld on backing store
' to enable continuation at a later date.

-In addition to these commands, an interrupt function is available

which will terminate action of any command at an appropriate moment
consistent with non-violation of data-base information.

Abbreviated forms of these commands are allowed (e.g. *init

for *initialize, *exec for *execute etc.).

- 210 -

~Appendix C: Some notes on the implementation of Pearl

The Pearl system has been implemented in an experimental fashion to
run under the M.T.S. operating system at the University of Newcastle upon
Tyne. This implementation is based upon the existence of two major pieces
of software.

The first is the XPL compiler generator system, (McKeeman, Horning
}qnd.Wortman 1970) which has been used to construct the processor for the
input of machine descriptions. The XPL system encourages the construction
of such a processor using the XPL programming language. Programs written
in this language are compiled into object modules which require a loader
of their own. Normally this loader is part of an interface tailored
fo¥ the ,particular operating system being used. This interface provides
, the XPL érogram with system dependent facilities such as storage control
and input/output handling. In Pearl, the opportunity was taken to
develop such an interface to provide for the overlaying of XPL programs
and to greatly enhance the standard file handling facilities available.
These file handling facilities are formed from the second major picce of
software which has been utilized. This consists of a set of routines,
collectively known as the Newcastle File Handling System (Cooke and
Gray 1973), which gllow for the construction and manipulation of complex,
~ tree-like data strﬁctures which may be stored on disk files. Much use
ié made of such structures to hold the design information of a program
with its complex relationships.

| Part of the interface between the XPL program and the operating
system is controlled by the user. The commands he supplies determine
which particular function of the system will be loaded into the

overlay area. All of the major functions of the system are written as XPL

- 211 -

programs which communicate with the file routines and the user via the
interface program. The interface program is written in a combination of
360 machine language and PL360.,

The interruption handler of Pearl utilizes a feature of the
M.T.S. operating system which allows user programs to handle particular
forms of interrupt. Using this feature it is a relatively trivial matter
to return control to the user interface routine with a request for another
command. It is also possible to delay the acceptance of such an interrupt,
so that the system is able to ensure that the information held about a
program design remains consistent.

The total design structure is represented by a number of interrelated
tree structures. Individual trees are used for machines, types and operations,
whilst states are stored as part of the tree representing types. The program
code for a machine is kept separately from the description of the machine
itself, but referenced directly from the machine tree. This code
(%-way code) is in a reverse~-Polish form and is such as it may be used to
drive an execution process or to ragenerate the original source. Symbol
tables are additionally required {er this latter purpose. The %—way code
contains several operations which are common to both the ilisting interpreter
and the execution interpreter. It thus makes it a ccmparatively simple process
to pinpoint an erronmecous statement found by the execution interpreter in the
original source listing. This code is also used to retain operation meanings.

The functions invoked by the various commands are combined into 3
separate overlays written in XPL. That for *build and *replace combined in
one such program occupies 50 K bytes of code (71 K including data and
variables). The interpreter (*execute) is a second, separate program of 23 K
bytes of code (55 K) whilst all of the remaining functions are combined into

the third program. This has a total of 22 K bytes of code from a total

- 212 -

size of 32 K bytes.

The actual interface program (written largely in PL360) and the set

of utility functions (written in 360 Assembler) which provide the file
handling facilities require a further 108 K bytes including a large
in=-core data area of more than 35 K bytes. The whole system at present,
including the necessary file buffers, requires approximately 190 K bytes
of core storage. This figure could be reduced by limiting the size of

the data areas.

- 213 -

Appendix D

This appendix shows a set of machines developed to construct
a program for a problem described by Dijkstra (1972a).

A program is to be constructed which will print 20 lines
numbered from top to bottom by a y-coordinate running from 20 through

to 1. The position of characters on a line is given by an

x~-coordinate running from 1 to 20. For each of the 40 positions
given by

x = fx(j) and y = fy(j) for 1<E= j<f= 40
a mark has to be printed; all other positions on the page are to be

blank.
(This problem is changed from that given by Dijkstra in the

magnitude of the dimensicns of the page and of the number of marks to

be placed).

- 214 -

FEARL PROGRAM WRITING SYSTEM
COMMFANDS MAY BE ENTERED NOW
+#init
DCNT
+*puild
coppfirst:'store image of page before printing'
begin type image;
states built (image. i), printed (image i);
operation
build (image i vary)
provided true yields built (i) onexit,
prict (image 1)
prcvided built(i) yields
printed (i) omnexit;

program:
declare image page;
tuild (page) ; print(page).

assert printed(page) onexit

end
EXD OF CHECKING
NC TRRORS WERF LETECTED.

+*build
clearfirst:*expand build. we will empty the image first'
begin states blank (image.i};
operation
clear (image i vary)
provided true yields blank (i) onexit,
setmarks (image. i vary)
provided tlank(i) yields built (i) onexit;

build {image i vary) :
clear (i) ; setmarks (i) .

end
END OF CHECKING
NO "RRORS WERE LETECTED.

- 215 -

+*#build ,
Jscanner:'setwmarks. put each of the 40 marks into image’
begin operation

addmark(integer j, image i vary)
prcvided j>0 &8 j<=40 yields
true onexit;

setmarks(image i vary):
declare integer j;
j:=0;
while j<40 do
{ j:=j+1; addmark (j,i)).

end
END OF CHRECKING
NO TRRORS WERE TCETECTED.

+*build
comppos:*calculate the position of the jth mark®
begin states validx{integer x), validy (integer y);
operation
f (integer (x,y) vary, integer j)
prcvided j>0 & j<=40 yields
validx (x), validy (y) onexit,
markpos(integer (x,y), image i vary)
provided validx(x) & validy (y) yields
true omnexit;

addmark (integer j, image i vary):
declare integer (x,y):;
f(x, ¥y, 3
markpos (x,y,1) .

end
END CF CHECKING
NO FRRORS WERE LETECTED.

+*build
function: ‘an example of a possible function for f!'
begin

t (integer (x,y) vary, integer j):
x:=if j<Z1 then j else 3-20;
if §j>20 then y:=3-20
else y:=21-3.

end
END OF CHECKING
NC TRRORS WERE LCETECTED.

- 216 -

+*build
liper:*an image is a vector of lines called 1"
begin type line;

image:
declare vector(20)line 1.

end
ERD OF CHECKING
NC YRRORS WERE TLETECTED. ,

+*build
linert1:%we print an image by printing its lines*
begin states lineprinted(line 1), linebuilt(line 1)
operation
lineprint (line 1)
provided lipebuilt (l) yields
lineprinted(l) onexit;

print(image 1i):
declare integer j;
Jj:=21;
while 3> 1 do
{ J:=3j-1; lineprint (1 (j) of i)).

end
END OF CHECKING
NO YRRORS WERE LETECTED.

+*build
liner2:*clear out the image line by line’
begin states blankline (line 1), markinline (line 1)3
operation
lineclear (1ine 1 vary)
provided true yields .
~markinline (1), blankline (l) onexit;

Clear (image i vary):
declare integer j;
J:=0;
while j<20 do
(J:=3+X ,
lineclear (1 (j) of 1)).

en’
END OF CHECKING
NO TRRORS WERE LCETECTED.

- 217 -

+*puilad

liner3:%x is a position on the yth line of the page'

begin operation

linemark (integer x, line 1 vary)

previded true yields

markinline(l), =-blankline(l) onexit;

markpos (integer (x,y), image i vary):

linemark (x,1(y) of i).
end
ENRD OF CHECKING
NO FRROBRS WERE CETECTED.

+*puild

linertt:%an image is printed if its bottom line is'

begin

printed (image i): lineprinted (1(1)
end

ENTC OF CHECKING

NC FRRORS WERE LETECTED.

+*build

of i).

liner5:%an image is blank if its last line is'

begin
blapk (image i) : blankline (1 (20) of

end
END OF CHECKING
NO TRRORS WERE TETECTED.

+*build]
liner6:‘an image is built when its
begin

built(image i) : linebuilt (1 (20) of

end
END CF CHECKING
NO FRRORS %ERE LFTECTED. .

+*build
linerel1:'explain relation between
begin

linebuilt (line 1) : markinline (1) |

end
END OF CHECKING
NO “RRORS WERE LCETECTED.

oudS eTdh e

JRY JER pwy o L gt

i).

last line is built’

i).

linebuilt and other

blankline (1) .

states'

- 218 -

+*puild

longrep:'a line is simply a vector of 20 symbols (integers)®
begin

line: declare vector (20)integer symb.

end
END OF CHECKING
NO T"RRORS WERE LETECTED,

+*build
longrepl:*print line by using prsym?
begin

lineprint(line 1) :
declare integer j;
j:=0;
while 3j<Z0 do
(j:=j+1; prsym(symb(j) of 1))3
nicr.

end
END OF CHF¥CKING
NO TRRORS WERE LETECTED.

+*build
longrep2: *linemark. put a mark in symb(x) of line!
begin

linemark (irteger x, line 1 vary):
syrb(x) cf 1 := 9Z.

end
END OF CHECKING
NO FRRORS WERE LETECTED.

+*puilad
longrep3: 'clear line completely to blanks'’

begin

lineclear {(l1ine 1 vary):
declare integer 3j;
j:=0;
while 3j<20 do

{ j:=3j+1; symb(j) of 1 := 6W4).

end
END OF CHECKING
NO TRRORS WERE TETEUTED.

+*execute program

EXECUTION SUCCESSFUL
+*xquit

- 219 -

- 220 -

Appendix E

This appendix shows a set of machines based upon the program
developed by Wirth (1971b) to find 1 solution to the 8-queens problem,
The program described here does not follow that developed by Wirth in

all respects, particularly at the higher levels of description.

- 221 -

PEARL PROGRANM WRITING SYSTEHNM
COMMANDS MAY BE ENTERED KON
+*init
DONE
+*build
m1:* find a solution to 8 queens problem?
begin
type board;
type pointer;
states full (board q);
states toofar(pointer p), offbottom{pointer p);
operation settofirstsquare(pointer p vary);
operation trysquare (pointer p, board g, integer safe vary);
operation putonsquare(board q vary, pointer p);
operation moveonfornextgueen{pointer p vary):
operation moveonforthisqueen (pointer p vary):;
operation regress{board q vary, pointer p vary) ;
operation print(board q);
operation clear (board g vary);
operation failure;
program:

declare board g, pointer p, integer safe;
clear(q);
settofirstsquare (p) :
repeat
{ repeat
(trysquare(p, g, safe);
if safe then
(putomsquare(qg, p);
moveonfornextqueen (p))
else
moveonforthisqueen (p))
until full{qg) | toofar (p);
if -~full (g) then
regress(q, p))
until full (q) joffbottom (p);
if full(qg) then
print(q)
else
failure.
end
END OF CHECKING
NO FRRORS WERE LETECTED.

+xpuild

- 222 -

m2:'we appreciate 1 gueen per column'

begin

operation settofirstoffirst (pointer p vary);
settofirstsquare(pointer p vary):

settofirstoffirst (p) . .

end
END OF CHECKING
NO TRRORS WERE DETECTED.

+*puild
m3:'see m2°
begin

operation movetofirstofnext(pcinter p vary):
noveonfornextqueen (pointer p vary):

movetofirstofnext (p). .

end
END OF CHECKING
NO TRRORS WERE LCETECTED.

+*build

n4:'now a pointer points to
begin

pointer:

declare integer (row,
end .
END OF CHECKING
NO FRRORS ®ERE CETECTED. .

+*buila

mda:*as a result of mu4?f
begin

settofirstceffirst (pointer p

row of p:=1;
col of p:=1.
end
END OF CHECKING
NCO TFRRORS WERE LETECTED.

+*build

a column and a row'

coi)o

vary) :

m4b:' see mia; note possible overflow’

begin

movetofirstofnext (pointer p vary):

col cf p:=col of p+1;
Ttow of p:=1.

end

END OF CHECKING

NO FRRORS WERE CETECTED.

- 223 -

+*tuilad

pic:'see mba; note possible overflow!
begin

noveonforthisqueen (pointer p vary):

row cf p:=rov of p+1,
end
END OF CHECKING
NO TRRORS WERE CETECTED.,

+*build

p4d:*see mba; trysquare related to coords'

begin

operation trycoord (integer row, integer col,
toard gq, integer safe vary);

trysquare (pointer p, board g, integer safe vary):

tryccord(row c¢f p, col of p, g, safe).
end
END OF CHECKING
NO FRRORS WERE DETECTED.

+*puild

nie:'see mia; mapping straight to coords?

begin

operation putoncoord (board g vary, integer row, integer col);
putonsquare({board g vary, pointer p):

putoncoord {g, row of p, col of p).
end
END OF CHECKING
NO FTRRORS WERE LETECTED.

+*build

mif:'we may go cver row?
begin

toofar (pointer p):

row of p>8.
end
ERD OF CHECKIKG
NO TRRORS WERE LETECTED.

- 224 -

+*ruilad
rig:'we regress by using old information®
begin
operation findqueen (board g, integer row vary, integer col);
operation removequeen(board g vary, integer row,
integer coly);
regress(board q vary, pointer p vary):

declare integer (i, jj;
j:=col of p;
j:=j-1;
if 350 then
(findqueen{(qg, i, J);
removequeen(q, i, j);
if i=8 then
(3:=3-7;
if j>0 then
(findqueen(q, i, J);
removequeen (g, i, J3)))):
col of p:=7;
row cf p:=i#1,
end
END OF CHECKING
NO FRRORS WERE TCETECTED.

+*build

n4h:'we may fall off only in columns'
begin

offrottom (pointer p):

col of p«1.
end
END OF CHECKING
NO ERRORS WERE DETECTED.

+*builad
m>:'a board: position of gqueens + squares covered?’
begin
board:
declare integer numberon;
declare vector (8)integer x;
declare vector (8)integer a, vector (15)integer (k, ¢).
end

END OF CHECKING
NO “RRORS WERE DETECTED.

- 225 -

+*puilad

n5a:'a board is full when there are 8 queens on
begin

tull (board q):

ite

numberon of g=8.
end

END OF CHECKING
NO "RRORS WERE CETECTED.

+*build

mS5b:'printing is trivial®
begin

print (board q):

declare integer ij;

i:=0;

while i<numterorn of g do

(i1:=i+1;
writeint (x (i) cf q)).

end
END CF CHECKING
NC "RRORS WERE CYETECTED.

+*build

m5Cc:'no queens and no blockages®
begin

clear (board g vary):

declare integer ij;
numberon of q:=0;
i:=0;
while 148 do

(1i:=i+7;

a (i) of g:=true;
b(i) of g:=true;
c (i) of gs:=true);
while iK1t do
{(i:=i+1;
b{(i) of qg:=true;
c{i) of g:=true).

end
END OF CHECKING
NO TRRORS WERE L EBTECTED.

+*build ‘ o
m5d:'using these auxiliaries we can easily compute solution
begin
trycoord(irteger row, integer col, board g, integer safe vary):

safe:=a (row) of g&b(row+col-1) of j&c{row-ccl+8) of g.
en
ERD 0F CHECKING
NO “RRORS WERE TETECTED.

- 226 -

+*build

m5e:'as m54°*

begin

putoncoord (board g vary, integer row, integer col):

X (col) of g:=rov;
numkberon of g:=numberon of g+1;
a(row) of g:=false;
b(row+col-1) of g:=false;
c (row-col+8) of y:=false.

end

END OF CHECKIKG

NO FRRORS WERE DETECTED. .

+*puild

m5f:"finding a queen in given column is easy!
begin

findqueen(tktoard q, integer row vary, integer col):

row:=x(col) of q.
end
END OF CHECKING
NO ERRORS WERE LETECTED.

+*build

m5g:'and so is removing it®

begin

removequeen(board g vary, integer row, integer col):

a(row) of g:=true;
b (row+col-1) of g:=true;
c(row-col+8) of g:=true;
numteron of g:=numberon of g-1.
end
END OF CHECKING
NC "RRORS WERE LETECTED.

+*build

m6:'a failure report for m1?
begin

tailure:

writeint (999).
end
END OF CHECKING
NC TRRORS ERE LETECTED.

- 227 -

+*exec program

ENNWTRE U -

EXECUTION SUCCESSFUL
+*quit

~ 228 -

Appendix F

In Chapters 3 and 5 a problem is described whereby 10 input
cards are to be checked for certain properties (see section 3,2.1.
or 5.2.2.). This appendix contains a completed program for that

problem.

- 229 -

PEARL PROGRAM WRITING SYSTEHM
COFFMANDS MAY RE ENTERED NOW
+*init
ponr
+*xbuild

cardprocessor:‘read each card, and then process it

begin

type cardimage;

operation read(cardimage c vary);
oreratiocn process(cardimage c);
program:

declare cardimage c;
declare integer i;
i:=0;
while 3<10 do
(i:=i+1;
read{c) ;
process (c)).
end
END OF CHECKING
NO TRRORS WERE CILITECTED.

+xbuild

processor:'check the values and the check®
begin

operation checkcard{cardimage c, integer ck
operation =successmessage;

operation rejectmessage;

operation writeout (cardimage c);

process (cardimage C) :

declare integer ok;
checkcard(c, ck);
writeout (c) ;
if ok then
successmessage
else
rejectmessage.
end
END OF CHECKING
NC TRRORS WERE LDETECTED,

vary) ;

- 230 -

+*puild

checker:'check the values, then and only then, the check’
begin

operation checkvalidity(cardimage c, integer ok vary);
operation checkcheck (cardimage ¢, integer ok vary);
checkcard (cardimage c, integer ok vary):

checkvalidity(c, ok);
if ok then
checkcheck(c, ok).
end
ENC OF CHECKING
NO PRRORS WERE LCETECTED,

+*tuild

cardrep:' a card is 9 data values and a check®
begin

type value;

cardimage:

declare vector (9)value data;
declare value check. .

end

END OF CHECKING

NO "RRORS ®WERE LETECTED.

+*pbuild

cardreader:'reads in the 10 values®
begin

operation readvalue (value v vary);
read(cardimage C vary):

declare integer i;
i:=0;
while i<9 do
{(i:=i+7;
readvalue (data (i) of c¢)};
readvalue (check of ¢).
end
END OF CHECKING
NC TRRORS WERE LCETECTED.

-~ 231 -

+%tuild

carédvriter:*writes out values'
begin

operation writevalue (value v);
writeout(cardimage c):

declare integer i;
nlcr;
i:=0;
while i<9 do
(i:=i+1;
writevalue (data (i) of c));
writevalue (check of c).
end
END OF CHECKIRNG
NO FRRORS WERE CETECTED.

+*puild

validitycheck:?checks the 9 values®

begin

operation checkvalue(value v, integer ok vary);
checkvalidity (cardimage c, integer ok vary):

declare integer ij;

i:=03

ok:=true;

while i<98o0k do

(di:=i+7;
checkvalue (data (i) of ¢, ©ok)).

end
END CF CHECKING
NC TRRORS WERE LETECTED.

+*puild

checkchecker:*make sure check value is satisfied’
begin

operation conmbine(value v vary, value Ww);

operation comparevalue (value u, value v, integer ok
checkcheck (cardimage ¢, integer ok vary):

declare value temp;
declare integer 1i;
1:=1;
temp:=data (i) of c;
while i<9 do
(i:=i+71;
combine (temp, data (i) of c));
comparevalue (temp, check of ¢, ok} .
end
END OF CHECKING
NC TRRORS WERE CETECTED.

vary):;

- 232 -

+*build
valuer:*values are integers in this case!
begin
value:

declare integer valueof.
end
END OF CHECKING
NO FRRORS WERE DETECTED.

+*puild

realreader:*values may thus be easily read in'
begin

readvalue(value v vary):

readint(valueof of v).
end
END OF CHECKING
NO TRRORS WERF DETECTED.

+*build

validvaluer:*values in the range 0 to 99°
begin

checkvalue (value v, integer ok vary):

ok:=valueof of v>0&valueof of v<100.
end

END OF CHECKING
NO FRRORS WERE CETECTED.

+*build

realwriter:*writing values is writing integers®
begin
writevalue (value v) 2

writeint (valueof of v).
end
END OF CHECKING
NO FRRORS WERE LCETECTED.

+*build

combiner:’combine is an addition process'
begin

combine{value v vary, value w):

valueof of v:=valueof of v+valueof of w.
end
END OF CHECKRING
NO TRRORS WERE TETECTED.

- 233 -

+*puild

checksumer:'checking is purely arithmetic!

begin

comparevalue (value u, value v, integer ok vary):

ok:= (valueof of v=valueof of u).
end
END OF CHECKING
NO "RRORS WERE CETECTED.

+*build

assignment:*assignment of values®

begin

value_assign(value valuel vary, value value2):

valueof of valuel:=valueof of value2.
end

END OF CHECKING
NO TRRORS WERE CETECTED.

+*build

successwriter:give ™o.k."*
begin

successmessage:

nlcr;
prsym(214)
prsye (75);
prsym(210) 3
prsyr (75);
nlcr.

LY

end
END OF CHECKING
NO FRRORS WERE TETECTED.

+*build

failurewriter:%give "error"’
begin

rejectmessage:

nlcr;
prsyn(197)
prsym(217);
prsyr{217)
prsym (214)
prsys(217)
nlcr.

© ws w4

en?
END CF CHECKING
NO TRRORS ®ERE LETECTED.

- 234 -
. A%*execute cardprocessor

10
15
30
1
16
8
26
33
3
142

0.8.,

1
23
14
8

7
12
90
17
64
241

ERROR

ERRCR

- 235 -

77
63
25
14
36
26

91
100
424

ERRCR

ERROR

66

42
85
96
813

12
426

annANn

- 236 -

4284

O.K-

232
ERRCR

EXECUTION SUCCESSFUL
+t¥*quit

References

'C. Alexander 19663
"Notes on the Synthesis of Form!'.
Harvard University Press, Cambridge, Mass., 1966.

Algol W 1972:
‘ 'Algol W Programming Manuall. .
Computing Laboratory, University of Newcastle Upon Tyne, June 1972.

C.D. Allen and C.B. Jones 1973:
'The Formal Development of an Algorithm!.
IBM United Kingdom, Research Report TR.12.110, March 1973,

E. Ashcroft and Z. Manna 1971:
'"Formalization of properties of parallel programs?'.
in Machine Intelligence 6, B. Meltzer and D. Michie (eds),
Edinburgh University Press, 1971 pp. 17-42,

R. Aslanian and M. Bennett 1971:
C 'Evolutive modelling and evaluation of operating and computer systems?!.

Research report CA-016, Compagnie Internationale pour ltInformatique,
France 1971.

".. F.T. Baker 1972:

'Chief programmer team management of production programming’.
IBM Systems Journal No. 1, Vol. 11 (1972) pp. 56-73.

'J.W, de Bakker 1969:
" 'Semantics of programming languages'.
in Advances in Information System Science, J.T. Tou (ed), Vol. 2
(1969) pp. 173-228.

“R.M, Balzer 1969: .
' - VEXDAMS -~ extendable debugging and monitoring system!,
AFIPS Spring Joint Computer Conference 1969 pp. 567-580.

" D.W. Barron 1971:
'Programming in wonderland?'.
. Computer Bulletin No.4y Vol. 15 (1971) p. 153.

D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon and C. Strackey 1964:
'The Main Features of CPL'.
Computer Journal Vol. 6 (1964) pp. 134-143.

R. Bayer, D. Gries, M. Paul and H.R. Wiehle 1967:
"The ALCOR Illinois 7090/7094 Post Mortem Dump'.
Communications of the ACM No. 12, Vol. 10 (Dec. 1967) pp. 804-808.

L.A. Belady and M.M. Lehman 1971:)
‘'Programming system dynamics or the meta dynamics of systems in
maintenance and growth?.
IBM Research Report RC 3546, Sept. 17th 1971.

F.C. Bequaert 1968:]
'QUIP - A system for automatic program generation?.
AFIPS Fall Joint Computer Conference 1968 pp. 611-616.

- 238 -

: G.M. Birtwistle 1973:

' 'SIMULA -~ its features and prospects!?.
in High Level Programming Languages - the way ahead,
Proceedings of a Conference held at the University of York 1972,
N.C.C. Publications, Sept. 1973 pp. 85-100.

H.M; Brown 1970:
Presentation given at a Conference in Rome 1969, See Software
Engineering Techniques, J.N. Buxton and B. Randell (eds), 1970 pp. 53-60.

JeNe Buxton and B. Randell 1970:
'Software Engineering Techniques!'.

Report on a Conference sponsored by the NATO Science Committee,
Rome 1969, published 1970,

B.L., Clark and J.J+ Horning 1971:
. 'The System Language for Project SUE!'.
SIGPLAN Notices No. 9, Vol. 6 (Oct. 1971) pp. 79-88.

M. Clint 1970:
'An Approach to Floating-~Point Function Theory®.
Report of Queen's University, Belfast 1970.

. R. Conway and D, Gries 1973:
o3 'An Introduction to Programming - a structured approach using
' PL/I and PL/C'.
. Winthrop Publishers Inc., Cambridge, Mass., 1973.

M. Cooke and W.A. Gray 1973:
' ~ 'A Redesigned Record Structure for the Newcastle File Handling System®.
Program, No. 1, Vol. 7 (Jan. 1973) pp. 1-23.

0-J. Dahl and C.A.R. Hoare 1972:
'Hierachical program structures?'.
in Structured Programming, O-J Dahl, E.W. Dijkstra and C.A.R. Hoare,
Academic Press, London 1972. '

0-J. Dahl, B. Myhrhaug and K. Nygaard 1968:
YSIMULA 67 Common Base Language'.
Publication No. S-2, Norwegian Computing Centre 1968.

A. van Dam and D. Rice 1971:
"0n-line text editing: A survey'.
Computing Surveys No. 3, Vol. 3 (1971) pp. 93-114.

L.P. Deutsch 1973:
'An interactive program verifier'.
Ph.D. thesis, University of California, Berkeley.
Xerox Corporation Report No. CSL-73-1 May 1973.

E.W, Dijkstra 1968a:
" 1A constructive approach to the problem of program correctness?t.
B.I.T. Vol. 8 (1968) pp. 174-186.

E.W. Dijkstra 1968b: :
*The structure of the T.H.E. multiprogramming system?.
Communications of the ACM No. 5, Vol. 11 (1968) pp. 341-346.

- 239 -

E.W. Dijkstra 1968c:
'Goto statement considered harmful?,

Letter to the editor, Commwmications of the ACM No. 3, Vol. 11
(1968) pp. 147-148.

E.W. Dijkstra 1968d:
. Reply to a letter of J.R. Rice.
Communications of the ACM No. 8, Vol. 11 (1968) pp. 538, 541.

E.W. Dijkstra 1970 :
' 'Structured Programming?,

in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),
1970.

E.W, Dijkstra 1972a:
. 'Notes on Structured Programming'.

in Structured Programming, O-J. Dahl, E.W. Dijkstra and C.A.R. Hoare,
Academic Press, London 1972,

E.W. Dijkstra 1972b:
'The Humble Programmer?®.
Communications of the ACM No. 10, Vol. 15 (1972) pp. 859-866,

E.W. Dijkstra 1973:
' 'A Simple Axiomatic Basis for Programming Language ConStructs'.
Report EWD372-0, Technological University, Eindhoven 1973.

W.G.P. Dutton and C.S. Minto 1971:
'PM3 - an automatic program generator!'.
in Software 71, Proceedings of a Conference held at the University
of Kent at Canterbury 1971. fTranscripta Books 1971 pp. 143-146.

E.W. Elcock, J.M. Foster, P.M.D. Gray, J.J. McGregor and A.M. Murray 1971:
'ABSET: A programming language based on sets: motivation and examplest.
in Machine Intelligence 6, B. Meltzer and D. Michie (eds),

Edinburgh University Press 1971, pp. 467-492.

B. Elspas, M.W. Green, K.N. Levitt and R.J. Waldinger 1972:
"Research in interactive program proving techniques?'.
Stanford Research Institute 1972,

B. Elspas, K.N. Levitt, R.J. Waldinger and A. Waksman 1972:
'An assessment of techniques for proving program correctness'.
Computing Surveys No. 2, Vol. 4 June 1972 pp. 97-147.

D.C. Engelbart and W.K. English 1968:
'A research centre for augmenting human intellect?'.
AFIPS Fall Joint Computer Conference 1968 pp. 395-410.

C. Engelman 1968:
'MATHLAB 68°'.
Proceedings of the I.F.I.P. Congress, Edinburgh 1968 pp. B91- B9S.

A.P., Ershov 1972:
'Aesthetics and the Human Factor in Programming'.
Datamation No. 7, Vol. 18 (1972) pp. 62-67.

T.Ge

A.D.

M.E.

ReW,

.ReWo

‘ReWe

L= 240 -

Evans and D.L. Darley 1966:
*On-line debugging techniques: a survey!?,
AFIPS Fall Joint Computer Conference 1966 pp. 37-50.

Falkoff 1970¢
'Criteria for a system design language?.
in Software Engineering Techniques, J.N. Buxton and B. Randell

Falla and D. Burns 1973:

tSoftware Development Systems?.

Datafair 73 Conference papers, Vol. 1, Business Papers,
British Computer Society 1973 pp. 166-173.

Floyd 1967a:
*Assigning Meanings to Programs?'.
AM.S. Symposiuq in Applied Maths. Vol. 19, 1967 pp., 19-32.

Floyd 1967b:
'Non=-deterministic Algorithms?,

‘ Journal of the ACM No. 4, Vol. 14 (Oct. 1967) pp. 636-644.

Floyd 1971:
'Towards interactive design of correct programs?®.

Proceedings of the I.F.I.P. Congress, Ljubljana 1971 pp. 11-14.

P., Freeman 1973:

'Functional programming, testing and machine aids'.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall,
Englewood Cliffs 1973 pp. 49-56.

f. Freeman and A. Newell 1971:

tA model for functional reasoning in design'.
Report CMU-CS-71-107, Carnegie Mellon University 1971.

S. G111 1969:

E. L'

H.H.

" D.I.

‘D‘I.

'"Thoughts on the sequence of writing software’.
in Software Engineering, P. Naur and B. Randell (eds), 1969.

Glaser 1971:
'Introduction and overview of the LOGOS project!.
Case Western Reserve University, Oct. 1971.

Goldstine and J. von Neumann 1947:

(eds), 1970,

'Planning and coding problems for an electronic computing instrument?’.
in John von Neumann, Collected Works Vol. 5. Pergamon Press 1963 p. 80.

Good 1970:
'Toward a man-machine system for proving program correctness'.
Ph.D. thesis, University of Wisconsin 1970.

Good and L, Ragland 1973:
'NUCLEUS - A language of provable programs'.

in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall, Englewood

- 241 -

R.M. Graham, G.J. Clancy Jnr. and D.B. DeVaney 1973:
tA software design and evaluation system?'.
Communications of the ACM, No. 2, Vol. 16 (Feb. 1973) pp. 110-116.

WeJ. Hansen 1971a:
 'Creation of hierarchic text with a computer display'.
Ph,D. ;hesis, Stanford University 1971,

WeJ. Hansen 1971b:

'User engineering principles for interactive systems!.
AFIPS Fall Joint Computer Conference 1971 pp. 523-532,

P. Henderson and P. Quarendon 1974:
'Finite state testing of structured programst?,
Colloque sur la Programmation, CNRS, Paris 1974.

' P» Henderson and R.A. Snowdon 1972:
'An Experiment in Structured Programming'.
B.I.Tl VO].. 12, (1972) Ppo 38"53.

W.C.vHetzel 1973
*Principles of Computer Program Testing'.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall Inc. 1973
pp. 17-28.

Iqu‘Hill 1972:
TWouldn't it be nice if we could write computer programs in ordinary
English - or would it??,
Computer Bulletin No. 6, Vol. 16 (June 1972) pp. 306-312.

C.A.R. Hoare 1961:
TAlgorithm 65 Find!
Communications of the ACM No. 7, Vol. 4 (1961) p. 321.

‘C.A. R. Hoare 1969:
''An axiomatic basis for computer programming?.
Communications of the ACM No. 10, Vol. 12 (1969) pps. 576-580, 583.

. CoAsRe Hoare 1971a:
tProof of a program: FIND'.
Communications of the ACM No. 1, Vol. 14 (1971) pp. 39-45.

. CsA«R. Hoare 1971b:
1Procedures and Parameters: an axiomatic approach'.
in Symposium on Semantics of Algorithmic Languages, A. Dold and
B. Eckmann (eds), Springer-Verlag 1971.

C.A.R. Hoare 1972a:
_"Notes on Data Structuring?t.
in Structured Programming, O-J. Dahl, E.W. Dijkstra and C.A.R. Hoare,

Academic Press, London 1972.

C.A.R. Hoare 1972b:
. 'Proof of correctness of data representations'.
Acta Information Vol. 1, (1972) pp. 271-281.

- 242 ~

C.A.R. Hoare and N. Wirth 1972:
'An axiomatic definition of the programming language PASCAL'.
Eidge Technische Hochschule, Zurich, Berichte der Fachgr,
Computer Wissenschaften Nr. 6, November 1972,

- MsE. Hopkins 1970:
. tComputer aided software design!'.

in Software Engineering Techniques, J.N. Buxton and B. Randell (eds)
1970, pps. 99-101'

M.E. Hopkins 1972:
'A case for the GOTO!,
Proceedings of the ACM Conference, Boston 1972 pp. 787-790.

AeM. Hormann 1970

'Planning by man-machine synergism: a characterization of processes and
environment?®.

System Development Corporation, report SP-3484 March 1970.

T.E. Hull, W,H. Enright and A.E. Sedgwick 1972:
tThe correctness of numerical algorithms?,
Proceedings of an ACM Conference on proving assertions about
programs, Las Cruces, New Mexico 1972 pp. 66-73.

IBM 1969:
1IBM System/360 Operating System Assembler Language!.
Form (28-6514-6 IBM Corporation, White Plains, New York 1969,

ICL'1971:
"Modular Programming Techniques!'.
ICL Dataskil, publication 5092, 1971.

‘Ps Johansen 1967:
' tNon-deterministic Programming?.
B.I.T. Vol. 7 (1967) PP 289-304.

H.B. Keller 1968:
" 'Numerical methods for two point boundary value problems®.
Blaisdell, Waltham Mass., 1968.

- J.C. King 1969: .
'A Program Verifier'.
Ph.D. thesis, Carnegie-Mellon University 1969.

. D.E. Knuth 1968:
'The Art of Programming: Volume 1°'.
Addison-Wesley, 1968.

A. Koestler 1964:
- 1The Act of Creation!.
Hutchinson, London 1964.

H.G. Kolsky 1969:
'Problem Formulation using APLY.
IBM Systems Journal No. 3, Vol. 8 (1969) pp. 204-219.

- 243 -
H.C. Lauer 1972:

tCorrectness in Operating Systems?,
Ph.D. thesis, Carnegie-Mellon University 1972.

B.M. Leavonworth 1972:
'Programming with{out) the GOTO!.
Proceedings of the ACM Conference, Boston 1972 pp. 782-786.

C.H. Lindsey and S.G. van der Meulen 1971:
tInformal introduction to ALGOL 681,
North Holland Publishing Company, Amsterdam 1971.

ReL. London 1972:
'The current state of proving programs correct?,
Proceedings of the ACM Conference, Boston 1972 pp. 39-46.

P. Lucas, P,E, Lauer and H., Stigleitner 1968:
'Method and notation for the formal definition of programming
) Technical report TR 25-087, IBM Laboratory Vienna, June 1968.

M.L. Mannheim 1966:

languages?t.

'Hierarchical structure: a model of design and planning processes?'.

M.I.T. Report No. 7, M.I.T. Press, Cambridge, Mass,, 1966,

J. McCarthy 1966:
' 1A formal description of a subset of Algoll?.

in Formal Language Description Languages for Computer Programming,

T.B. Steel Jnr, (ed), North Holland Publishing Company,
Amsterdam 1966 pp. 1-12.

H. McDaniel 1970:
tApplications of Decision Tables'.
Brandon/System Press Inc. 1970.

W.M. McKeeman, J.J. Horning and D.B. Wortman 1970:
1A Compiler Generator'.
Prentice-Hall, Englewood Cliffs 1970.

H.D. Mills 1970:
. 'Syntax~directed documentation for PL360?.
Communications of the ACM No. 4, Vol. 13 (1970) pp. 216-222,

H.D. Mills 1971:
'"Top down programming in.large systems'.

in Debugging Techniques in Large Systems, R. Rustin (ed), Prentice-Hall,

Englewood Cliffs 1971 pp. 41-55.

J.G. Mitchell 1970:
'The design and construction of flexible and efficient
programming systems?'.
Ph.D. thesis, Carnegie-Mellon University 1970.

(Excerpts given as lecture notes by A.J. Perlis at a summer school

held in Marktoberdorf, W. Germany 1971).

- 244 -

J.G. Mitchell, A.J. Perlis and H.R. van Zoeren 1968:

' 2
LC": A language for conversational computing'.

in Interactive systems for experimental applied mathematics,
M, Klerer and J. Reinfelds (eds), Academic Press, New York 1968.

P. Naur 1966:
tProof of algorithms by generalized snapshot!?.
B.I.T~ Vol. 6, (1966) pp., 310-316.

P. Naur 1969:
tProgramming by Action Clusters'.
BQIIT. vol. 9, (1969) PPe 250-2580

P. Naur 1972:
'An Experiment in Program Development'.
B,I.T, Vol. 12, (1972) pp. 347-365.

P, Naur and B, Randell 1969:
*Software Engineering’o
Report on a Conference sponsored by the NATO Science Committee,
Garmisch 1968, published 1969.

J. Palme 1972:
Letter to the editor, Computer Journal No. 1, Vol. 15, Feb. 1972, -.. -
ppe 436,
D.L. Parnas 1972:
'A technique for software module specification with examples'.
Communications of the ACM No. 5, Vol. 15 (1972) ppe 330-336.

D.L. Parnas and J.A. Darringer 1967:
1S0DAS and a methodology for system design'.
AFIPS Fall Joint Computer Conference 1967 pp. 449-474.

D. Pearson 1973:
Articles describing the CADES system, Computer Weekly, July 26th,
August 2nd, August 9th 1973.

G. Polya 1945:
tHow to solve it'.
Princeton University Press. 1945.

B. Randell 1971:
in Efficient production of Large Programs, Computation centre of the

Polish Academy of Sciences 1971 pp. 36-37.

J.R. Rice 1968:
"The goto statement reconsidered?.
Letter to the editor, Communications of the ACM, No. 8, Vol. 11 (196%§8 .
P .
A.J. Rose 1966:
'The use of APL for describing programs at many levels of detailt.
IBM Research Report RC 1700, Oct. 1966.

D.T. Ross 1967:
1The AED approach to generalized computer=-aided design?t.
Proceedings of the ACM National Meeting 1967, pp. 367-385.

D. T'

J.E.

E.H.

A.L.

Jele

He. Ao

Te.B.

J.E.

- 245 -

Ross 1969:
YIntroduction to Software Engineering with the AED-0 language?,
Report ESL-R-405 M.I.T. DSR project No. 71425, 1969,

Sammet 1969:
'Programming Languages: History and Fundamentals?.
Prentice~Hall Inc., Englewood Cliffs 1969,

Satterthwaite 1972:
"Debugging Tools for High Level Languages?'.
Software: Practice and Experience No. 3, Vol. 2, (1972) pp. 197-217.

Scherr 1973:
tDeveloping and Testing a Large Programming System, 0S/360 Time
Sharing Optionft.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall Inc.,
Englewood Cliffs 1973 pp. 165-180.

Schmidt and T.F., Kavanagh 1970:

*The Use of Decision Tables!?.

in Applications of Decision Tables, H. McDaniel (ed) Brandon/System
Press Inc. 1970.

Schwartz 1970:

YAnalyzing large~scale system development?.

in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),
1970 pps. 122-137,

Simon 1969: .
*The Sciences of the Artificalt.
M.I.T. Press, Gambridge, Mass., 1969,

Steel 1966:
YFormal Language Description Languages for Computer Programnwing?.
North Holland Publishing Company, Amsterdam 1966.

Stoy and C., Strachey 1972:
'0S6 - An experimental operating system for a small computer. Part 1:
General principles and structure?.
Computer Journal No. 2, Vol. 15 (1972) pp. 117-124.

We Teitelman 1970:

A.MQ

'Towards a programming laboratoryt.
in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),

1970 pp. 137-149.

Turing 1949: ,
*Checking a Large Routine'.
in Report on a Conference on High Speed Calculating Machines,
University Mathematical Laboratory, Cambridge 1949, pp. 67-68.

ReJe Waldinger and R.C.T. Lee 1969:

'PROW - A step toward automatic program writing?t. o
Proceedings of the First International Joint Conference on Artifical

Intelligence, Washington D.C. 1969.

- 246 -
B. Wegbreit 1971:)
¥The ECL programming system!?.
AFIPS Fall Joint Computer Conference 1971 pp. 253-262.

G.M. Weinberg 1971:
1The Psychology of Computer Progtramming!.
Van Nostrand Reinhold, New York 1971.

L.L. Whyte 1969:
'Structural Hierarchies: A challenging class of physical and
biological problems?,
in Hierarchical Structures, L.L. Whyte, A.G. Wilson and D. Wilson (eds),
American Elsevier, New York 1969 pp. 3-16, '

A. van Wijngaarden 1966:
'Recursive definition of syntax and semantics?.
in Formal Language Description Languages for C ogrammi
T.Bs Steel Jnr, (ed), North Holland Publishing Company,
Mnsterdam 1966 pp. 13-24,

A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster 1969:
" 'Report on the Algorithmic Language ALGOL 68' Numerische Mathematik
Vol. 14 (1969) pp. 79-218.

M.Ve. Wilkes 1968:
!The outer and inner syntax of a programming language'. .
Computer Journal No. 3, Vol. 11 (1968) pp. 260-263.

N. Wirth 1968:
'PL360, a programming language for the 360 computers?®.
Journal of the ACM No. 1, Vol. 15 (1968) pp. 37-74.

No Wirth 1971a:
1The programming language PASCAL'.
‘Acta Informatica Vol. 1 (1971) pp. 35-63.

Ne Wirth 1971b: _
' tProgram development by step-wise refinement'.
Communications of the ACM No. 4, Vol. 14 (1971) pp. 221-226.

N. Wirth and H. Weber 1966:
YEULER: A generalization of Algol and its formal definmition: part 2%
Communications of the ACM No. 2, Vol. 9 (1966) pp. 89-99.

M. Woodger 1971:
"0n semantic levels in programming®.
Proceedings of the I.F.I.P. Congress, Ljubljana, 1971, pp. TA-3-79 to

TA-3 -83 -

- 247 -

. WeA. Wulf 1972:
tA case against-the GOTO".
Proceedings of the ACM Conference, Boston 1972 pp. 791-797.

VA Wulf, D.B. Russell and A.N. Habermann 1971:
'BLISS: A language for Systems Programming'.
Communications of the ACM No. 12, Vol. 14 (1971) pp. 780-790,

W. Wulf and M. Shaw 1973:
1Global Variable Considered Harmful!.
SIGPLAN Notices No. 2, Vol. 8 (1973) pp. 28-34,

: F. Zurcher and B. Randell 1968:

'Iterative multi-level modelling - a methodology for computer
system designf.

Proceedings of the I.F.I.P. Congress, Edinburgh 1968 pps D138-D142.

	473344_0001
	473344_0001a
	473344_0002
	473344_0003
	473344_0004
	473344_0005
	473344_0006
	473344_0006a
	473344_0007
	473344_0008
	473344_0009
	473344_0010
	473344_0011
	473344_0012
	473344_0013
	473344_0014
	473344_0015
	473344_0016
	473344_0017
	473344_0018
	473344_0019
	473344_0020
	473344_0021
	473344_0022
	473344_0023
	473344_0024
	473344_0025
	473344_0026
	473344_0027
	473344_0028
	473344_0029
	473344_0030
	473344_0031
	473344_0032
	473344_0033
	473344_0034
	473344_0035
	473344_0036
	473344_0037
	473344_0038
	473344_0039
	473344_0040
	473344_0041
	473344_0042
	473344_0043
	473344_0044
	473344_0045
	473344_0046
	473344_0047
	473344_0048
	473344_0049
	473344_0050
	473344_0051
	473344_0052
	473344_0053
	473344_0054
	473344_0055
	473344_0056
	473344_0057
	473344_0058
	473344_0059
	473344_0060
	473344_0061
	473344_0062
	473344_0063
	473344_0064
	473344_0065
	473344_0066
	473344_0067
	473344_0068
	473344_0069
	473344_0070
	473344_0071
	473344_0072
	473344_0073
	473344_0074
	473344_0075
	473344_0076
	473344_0077
	473344_0078
	473344_0079
	473344_0080
	473344_0081
	473344_0082
	473344_0083
	473344_0083a
	473344_0084
	473344_0085
	473344_0086
	473344_0087
	473344_0088
	473344_0089
	473344_0090
	473344_0091
	473344_0092
	473344_0093
	473344_0094
	473344_0095
	473344_0096
	473344_0097
	473344_0098
	473344_0099
	473344_0100
	473344_0101
	473344_0102
	473344_0103
	473344_0104
	473344_0105
	473344_0106
	473344_0107
	473344_0108
	473344_0109
	473344_0110
	473344_0111
	473344_0112
	473344_0113
	473344_0114
	473344_0115
	473344_0116
	473344_0117
	473344_0118
	473344_0119
	473344_0120
	473344_0121
	473344_0122
	473344_0123
	473344_0124
	473344_0125
	473344_0126
	473344_0127
	473344_0128
	473344_0129
	473344_0130
	473344_0131
	473344_0132
	473344_0133
	473344_0134
	473344_0135
	473344_0136
	473344_0137
	473344_0138
	473344_0139
	473344_0140
	473344_0141
	473344_0142
	473344_0143
	473344_0144
	473344_0145
	473344_0146
	473344_0147
	473344_0148
	473344_0149
	473344_0150
	473344_0151
	473344_0152
	473344_0153
	473344_0154
	473344_0155
	473344_0156
	473344_0157
	473344_0158
	473344_0159
	473344_0160
	473344_0161
	473344_0162
	473344_0163
	473344_0164
	473344_0165
	473344_0166
	473344_0167
	473344_0168
	473344_0169
	473344_0170
	473344_0171
	473344_0172
	473344_0173
	473344_0174
	473344_0175
	473344_0176
	473344_0177
	473344_0178
	473344_0179
	473344_0180
	473344_0181
	473344_0182
	473344_0183
	473344_0184
	473344_0185
	473344_0186
	473344_0187
	473344_0188
	473344_0189
	473344_0190
	473344_0191
	473344_0192
	473344_0193
	473344_0194
	473344_0195
	473344_0196
	473344_0197
	473344_0198
	473344_0199
	473344_0200
	473344_0201
	473344_0202
	473344_0203
	473344_0204
	473344_0205
	473344_0206
	473344_0207
	473344_0208
	473344_0209
	473344_0210
	473344_0211
	473344_0212
	473344_0213
	473344_0214
	473344_0215
	473344_0216
	473344_0217
	473344_0218
	473344_0219
	473344_0220
	473344_0221
	473344_0222
	473344_0223
	473344_0224
	473344_0225
	473344_0226
	473344_0227
	473344_0228
	473344_0229
	473344_0230
	473344_0231
	473344_0232
	473344_0233
	473344_0234
	473344_0235
	473344_0236
	473344_0237
	473344_0238
	473344_0239
	473344_0240
	473344_0241
	473344_0242
	473344_0243
	473344_0244
	473344_0245
	473344_0246
	473344_0247
	473344_0248
	473344_0249
	473344_0250
	473344_0251

