
Ph.D Thesis

INTERACTIVE USE OF A COMPUTER IN THE

PREPARATION OF STRUCTURED PROGRAMS

R.A. SNOWDON

April 1974

University of Newcastle Upon Tyne

,

BEST COpy

..

, . AVAILABLE

, V,ariable print quality

Acknowledgements

I gratefully acknowledge the encouragement given to me by many

colleagues during the course of this work. In particular, I should

like to thank Professor B. Randell for his supervision and for his

critical reading of my manuscripts. Professor J.J. Horning must

also be acknowledged for suggesting the acronym "Pearl".

I would also like to thank Miss Moira Dearden for being a

most efficient typist and for her patience in waiting for the

thesis in its final form.

Finally, thanks must also go to my wife for her understanding,

particularly during the period of preparation of this thesis.

The research described here was supported by the Science

Research Council.

ABSTRAcr

An experimental system providing assistance in the task of

program construction, validation and description is presented. This

system (Pearl) encourages a particular top-down approach to programming

such that programs so developed exhibit a multi-level, hierarchical

structure.

Amongst several tools provided by the system is one ·"hich

enables programs to be exercised even though they may be eXDressed

in terms of abstract operations and data types.

The whole system is designed to be used in an interactive

environment. Programs are developed by the programmer with appropriate

assistance and guidance from the computer.

Contemporary programming tools and methods are surveyed and

their relevance to the development of high quality software is discussed.

In particular attention is given to progl'arruning methodolcg.ieO', ,1esign

representations and issues of program correctness.

The practicality of the system is demonstrated i!l a mmber of

examples.

ChaEter 1

ChaEter 2

2.1.

2.2.

2.2.1.

2.2.2.

2.3.

2.3.1.

2.3.2.

2.3.3.

2.4.

2.4.1.

2.4.2.

ChaEter 3

3.1.

3.1.1.

3.1.2.

3,1.3.

3.1.4.

3.2.

3.2.1.

3.2.2.

3.3.

Contents

Introduction

Basic Elements of Programming

A view of programming: the basic elements

Program construction as co. PIC:",:'!r sebring
activity

Method

Some "human" aspects

Understanding problems and (lesign

Problem specification

Design and documentation

Some tools used in program design

Programming languages

Programming language influences

Programming language design

Structure in ReEresentation and Method
i

Levels of description

Characterization of a level of description

Related levels of description

Density of a s~t of related levels of
description

Levels of description and programming
languages

Methods for constructing programs

Relationship with levels of description

A discussion of methods

Conclusions

1

6

7

8

12

16

19

19

20

23

28

30

32

39

44

46

50

51

54

55

59

70

Chapter 4

4.1.

4.2.

4.2.1.

4.2.2.

4.2.3.

4.2.4.

4.2.5.

4.3.

4.3.1.

4.3.2.

4.3.3.

4.5.

Chapter 5

5.1.

5.2.

5.2.1.

5.2.2.

5.2.3.

5.2.4.

5.2.5.

5.2.6.

Correctness, debugging and other considerations

What is meant by correctness, and redundancy

The text of a program

The meaning of a program text

Expressing the intention of a program

Proving a given program correct

Partial proofs and some effects of proof
techniques

Constructive use of assertions

Information from program execution

Writing programs to be tested

The information fed back to the programmer

Program testing as part of program design

Some further machine aids and influences

Interactive systems

Generation of syntactically correct programs

Program skeletons

Automatic error correction by a translatc,:

Summary: Towards a Program Building System

Basic Construction of programs using Pearl

Bases

Constructing a program (using the *build
command)

The specification of a machine

Describing the action of a machine

The environment of a machine

Elaboration of operational concepts

Elaboration of data types

Correctness considerations

72

73

76

76

78

78

83

89

94

94

97

100

101

102

104

104

106

109

109

114

114

115

117

119

123

129

5.2.6.1.

5.2.6.2.

5.2.6.3.

5.2.6.4.

5.3.

5.4.

5.4.1.

5.4.2.

5.4.3.

5.5.

5.6.

ChaEter 6

6.1.

6.1.1.

6.1.2.

6.2.

6.3.

6.3.1.

6.3.2.

6.3.3.

6.3.4.

6.3.5.

6.3.6.

6.3.7.

6.4.

Assertions etc.

Meanings of conceptual operations

States

Pre- and post-conditions upon programs

Supplementing the design with a new mach::':,,'!

Discussion of the notation

Omissions

Generalization of control structure eled.o.)t~

States, values and generalized constants

Some comparisons with other programming
notations

Summary

Extended Facilities of Pearl

Modification of the design

Replacement

Deletion of machines

Interrogation of the design

The basic execution proce~s

Progrwnner assistance

Us ing operat ion mean;. nE's

The use of meanings and states

Rules for the use of operation IllSR.r:ings

in the execution of incomplete progr<;j",s

Error reporting and debugging facilities

Summary

131

13:<

136

1'7

138

143

144

145

147

148

150

1"4

1 <~
,'/

1 ',i

161

167

170

172

Chapter

7.1.

7.1.1.

7.1. 2.

7.1.3.

7.1.4.

7.1.5.

7.1.6.

7.1.7.

7.2.

7.3.

7.4.

7

Appendices

.. ~ ,'"" ".,

References

Discussion and Conclusions

Some deficiences and limitations of Pearl

Machines and levels of description

Machine environments and design strategies

Extended notion of states

The "vary" mechanism

The aSSignment ope~ator

Human engineering

Miscellaneous

The fallibility of Pearl • an example

Relationship with other tools and techniques

Conclusions and summary

Appendix A

Appendix B

Appendix C

Apf>endix D

Appendix E

Appendix F

- 1 -

Chapter 1:

tntroduction

The tools and techniques used in the construction of computer programs

have evolved rapidly during the short history of computers. This rapid

evolution has resulted in the current position whereby there is a great

variety of such tools and techniques in use, each mor~ or less suited

to particular programming activities. It has become increasingly apparent

that this variety is not itself sufficient to enable the construction

of programs which will allow computers to perform ~he ever more complex

tasks demanded of them (e.g. Naur and Rande~l 1969, Buxton and Randell

1970). In society, the reliance that is placed ~pon the correct functioning

of computer systems is increasing at a great rate (~eg. air-traffic

control systems, banking systems etc.). It 1s true, therefore, that society,

and particularly the individual within society, will become more

vulnerable unless a higher degree of confidence can be placed in the

correct functioning of such systems. Thus it is crucial t\at ~.rtnS are

discovered by which computer systems may be constru~ted in order th~t

such confidence may be justifiably expressed.

This thesis is concerned with an inves~igation into a number of

aspects of programming which have a direct bearing upon the quality of

the software component of a computer syst~. There are undoubtedly

problems conCerning the reliable function of computer hardware.

Such problems, however, are left to other workers.

The research reported in subsequent chapters follows closely many of

the ideas of "structured prograrmning" as illustrated by Dijkstra in 8

number of papers, but primarily in Dijkstra (1972a). In order to

demonstrate why we believe that the programming techniques which are

subsumed by the general term "structured programming" are so important, it

- 2 -

is necessary to appreciate what is involved in the task of writing a

computer program. Indeed, as Dijkstra (1972b) points out so clearly,

it is essential that we realize that programming is an extremely difficult

task. A very succinct analysis is given by Ershov (1972).

Computer programming may be regarded as a complex problem solving

activity. Simon (1969), Hormann (1970) and Koestler (1964) are amongst

several writers who have attempted to describe the problems of complexity

and how human beings can overcome them.

Much of the recent work on how complex programs are developed has

stressed the importance of hierarchies and levels. (Zurcher and Randell

1968, Wirth 1971b, Woodger 1971, Dijkstra 1968b and 1972a). These ideas

accord well with those of those authors mentioned above concerning

more general complexity.

C9nfidence in the trustworthiness of a program comes ultimately from

its observed behaviour when executed by a computer. This fact has long

been recognized and has spawned many of the tools used by Jrogrammers

at present (e.g. debugging tools, testing procedures, etc.). I.'ro,>

usefulness of such tools should not be overlooked in the devel<'pm""lt

of a program, despite the fact that their use cannot guarantee the

absolute worth of complex software.

Program proof methods represent further attempts at generating

confidence in a program. Floyd (1967a) and Naur (1966) describe methods

by which the properties of a program can be checked against assertions

representing the intention of that program. Tools have been described

(King 1969, Good 1970, Deutsch 1973) wh~ch assist the programmer in the

generation of such proofs.

Program proof methods may also be used during the development of

a program to ensure that it is correctly construLteo (Naur 1969,

- 3 -

Hoare 1971a, Allen and Jones 1973). Floyd (1971) describes how a tool

might be constructed to assist in this process. Less formal methods

may also be applied during the development of a program to make it

more likely that the program will exhibit the appropriate properties.

Zurcher and Randell (1968), Mills (1971) and Baker U Q72) all describe

how program development may be aided by the use of tools based upon

such methods.

A major goal of the present research has been to C0' ~·0~.ne and

analyse these and other somewhat separate ideas and to \Jse them as a

basis for a coherent design methodology which is explic;.t ellougp to be

embodied in a tool to assist the complete programming task. This tool

takes the form of a (prototype) computer system which acts as a 1at,

base for the design of programs. Programs may be developed by the

programmer by entering textual information whi~h rerr~sents additions

to the incomplete design. The form of this informatio:1. is base(~ upon a

notation which encourages the representation of progral1'S <.n a highl y

structured, hierarchical manner, In addition t:le p:CO!raml:;,,:: '.0 ""('c'Jras~(~

to follow a particular development method so as t·.., \~a5:·, f'l: 1 l:<>-·.~tit

from the system during the early stSII,p.s of his de::i.~·.1. 'C'" .:vsten :--:",jvtnes

the programmer with a number of explicit facil ities, ~acJ:-, cd:.'"c1 at

improving his understanding of the program as it is :o·"p.:l)ped. These

include aids in checking the logical consistency of input information,

execution of partially developed programs, certain debugging facil~ties

and a number of interrogation mechanisms. The system has been designed

and implemented as an online, conversational system.

The following chapters form two distinct parts. The reader who is

only interested in details of the implemented system is recommended to

omit Chapters 2,3 and '.. These describe and discuss certain aspects of

- 4 -

program construction, and techniques and tools presently available to

assist the programmer.

In Chapter 2 a simple view of programming is taken. This is

described in terms of three elements.

(1)

(ii)

(iii)

problem

man

machine

Each of these elements is considered in turn, althol1~:~ most

attention is given to ''man'' and to the interfaces between Tun and

problem and man and machine.

Attention is paid, in Chapter 3, to the ideas of structure and

method in the representation and development of a program. An informal

notion of a level of description is given whereby a program ',lav l'e

represented in terms of concepts which capture some essential pr"perty

of the problem or the programming language, but not necessaril y all such

properties. A program may be represented '.t a number of (E i'ferent

levels of description related according to their \Tar L01\f; . -.',t'. ".1

interpretations. Different methods of de'Jeloping a f·;:O~:rc.,] c,]-'" ,~e.i'.cribed

and discussed using the notion of representaU_0:1 at many' ""vpi.s of

description.

Chapter 4 presents a discussion of variOl1S too)!' and t~chniql,les

to do with establishing the correctness of computer pro.=;r<l'-,s. These

range from proof techniques (applied both to a given program and to

the development of a program), to program testing tools and other

mechanical aids which may help the programmer to increase the level

of confidence he may have in his program.

- 5 -

Chapters 5 and 6 give details of the experimental system referred

to above. Chapter 5 serves to introduce the system and to describe

how it enables a programmer to build up a program according to a

particular design method. Chapter 6 describes the more extensive

features of the system enabling design evaluation, interrogation and

re-appraisal. A number of examples of the system in use are given in

these chapters. Further, and more complete examples are to loe found

in appendices D,E and F.

The experimental nature of the system has generated a number of

interesting points of discussion. These are grouped together in

Chapter 7. Here, also, are presented some conclusions on the

relevance of such systems as an aid to the programming activity. These

are, of course, to a certain extent limited by the prototypical nature

of the implemented system. However, we feel that most of th~ are

valid in a wider sense.

- 6 -

Chapter 2:

Basic Elements of Programming

There are at least three elements which are basic in programming.

One is the machine for which the program is being writt2<', the second

is the problem (or task) which is the reason for the progr&~ and the

third is the programmer (or programmers) whose job it is to construct

the program from an understanding of the problem and the properties

of the machine. The job of the programmer is, (Dijkstra 1972b, Ershov

1972) very difficult and represents a significant intellectual challenge.

Amongst reasons for this are the inherent complexity of the tasks for

which computers are used and of the computers themselves, and also the

requirements of the program as being amongst other things, precise,

adaptable, extendable, well-documented and correct.

In this chapter we study the effect on programming of t~.~~:'

t.hree basic elements in order to give some ::'n~igbt into the art-:al

sources of complexity and of ways by which the diffir:uJ ti-"s can be

reduced. In particular we discuss prograrrnning as being a ~n'0}' ~ Pl1

solving activity in order to relate wider observations of creative

human activity (e.g. Polya 1945, Koestler 1964, Simon 1969, Honr.ann 1970)

to the construction of programs. Such a discussion allo,·~s a number of

observations to be made as to the appropriateness of certain tools which

are often used in program construction (e.g. flowcharts, decision tablE's,

particular programming languages). The observations we make in this

chapter are mainly of a critical nature. A more constructive approach

is taken in later chapters.

- 7 -

2.1 A view of programming: the basic elements

Real
world

problem/man
interface

problem

I

man

man/machine
interface

program

: '" I
I
I

. ______________ .J L _____________ .J

understanding of
problem

Y understanding of

k 1 d interface now e ge,
experience etc.

Figure 2.1

man/machine

machine

Figure 2.1 represents a simplified view of the programmin~ activity.

The central element is the programmer. He has two interfaces. One,

the problem/man interface is with the outside world; the other, the

man/machine interface, is with the computer (the machine).

The programmer accepts (understands) the specification of a problem

in the outside world. His task is to develop a solution in the sense

of describing, in a program, the process which the machinr must r.lrl"Y

out to generate the anSwer to the problem. This proces:; we shall call

the solution process. (We have not made figure 2.1 complet0 but only

included those concepts which are appropriate [or the discussions of this

chapter. We have not, for example, shown how the results of a progra~

execution can influence the programmer. We describe some extensions

in this direction in Chapter 4).

The interface which the programmer has with the outside world

is hard to characterize. We intend that this interface should include

all methods by which the programmer obtains information about the

problem. Problem specification is a difficult task itself and thus it is

- 8 -

hard to state more exactly what-form this interface takes. A short

discussion of how information about problems is supplied and understood

is given in section 2.3.1. Of course it is often the case that details

of problems are only uncovered as part of the development of the program.

-Thus it is not in practice the case that the problem/man interface

is divorced from the actual design activity. A part of this interface.

therefore, represents interactions arfsing during the task of program

construction.

The program which describes the solution prC?cess is generally

written in some notation representing concepts which have no direct

physical existence in the hardware of the machine. This notation, the

programming language, therefore acts as the interface between the

programmer and the machine. The influence that this interface has upon

the construction of programs and other discussion is given in sections

2.3.2, 2.3.3. and 2.4.

2.2 Program construction as a problem solving activity

Figure 2.1 may be interpreted to cover the development of solution

processes to problems which do not require the construction of a computer

program. The ''machine'' need not be a computer but could he any processing

device, even ~ human being. The man/machine interface will tben not be

characterized by a programming language in the accepted sense, but more

generally -as some medium for communication.

examples:
(a) A theorem to be proved in mathematics is a problem.

The mathematician who solves this problem responds
to the stimulus of the statement of the theorem
by developing a proof written in some m.athematical
system. This proof describes the "solution process"
to be followed whereby the truth of the original
theorem may be accepted. A machine which carries
out this "solution process" might be a colleague
or_ perhaps the reader of a book.

- 9 -

(b) An architect may be asked to design a building
according to some specification as to its purpose,
its location and its estimated cost. The architect
accepts this specification and draws up an
appropriate design. This design is a solution
process for his problem. The ''machine'' which reacts
to the design may be the builder or perhaps the client'
who wishes to appraise the architect's work before
finally committing himself.

There are, thus, parallels which can be drawn between computer

programming and other design activities. More generally, as RosS

(1967) points outl

"design is a special term for some ill-defined
type of problem solving".

Problem solving is generally thought of as being some process by

which possible solutions to a problem are tested for their adequacy.

Cortsiderth~ following problem:

"Find those numbers, whose absolute value is a
natural number smaller than 100, whose square is 36" .•

A way of finding the solution to this problem would be to consider

. ,. every number and test it to see if it had the stated properties. The

solution would then be the set of numbers found to satisfy this test.

- 10 -

In this context, the process of solving a problem is taken to mean that

the actual numbers should be Qetermined and displayed. It is, however,

also necessary to determine whether or not the "solution process" by

which the results are determined is itself adequate.

The solution process described above is of the form:

"Pick a number from the set .of all numbers. If this
number has an absolute value smaller than 100 and a
square of 36, then accept it, otherwise reject it.
Repeat this process for all numbers".

Clearly this solution process is itself inadequate and should

not be accepted. It is necessary, therefore, that, from amongst the

set of solution processes for this problem, a better one be chosen.

Problem solving may be thought of as being a process of examining

the various solution processes themselves for being acceptable. Although

one of the criteria of acceptance should, of course, be that the solution

process will, indeed, produce the required solution to the stated

problem, this is by no means the only one which should be <.iprli.~d. As

we discuss more fully in Chapter 4, it is, in fact, a criterion which

is very difficult to apply with confidence in computer progrrolming.

It is possible to identify two (at least) separate problem solving

activities in programming. Both parallel the views of problem solving

described above.

The first is the task of choosing a particular representation within

a programming language to fulfill a function whose properties are understood

by the programmer. Such a situation can easily arise when a progr&~er

recognizes a problem for which he knows an acceptable solution process,

- 11 -

but which is represented interms different from those of the language in

which he must write his program.

examples:

(a) Algorithms published in the literature are often
written in Algol whereas, for one reason or another,
the programmer must write his program in FORTRAN.

(b) Algorithms expressed in a descriptive manner using
natural language (e.g. Knuth 1968).

This is a problem solving activity by which the programmer makes

a choice from amongst the features of the programming language. In

particular the programmer must generally apply Some judgement as to

whether one representation is more suitable than another.

The second problem solving activity which we identify in

programming is that of the derivation of the solution process itself

from the statement of the problem. If it is required to construct, for

example, an airline seat reservation system, then it is necessary to

decide which computations must be carried out before encoding th."n

in a programming language. Of course, a programmer in this situation

will use his knowledge of the properties of any hardware or rr0;r~~ing

language he may use, as a guide in the overall design. However, the

activity which is being followed is separate from that of encoding a

solution process which has already been derived. It requires, as in

the example above, that different possible solution processes must be

examined until one which is adequate is accepted. We believe that this

latter viewpoint of problem solving in programming is the most important

as, in general, it includes the representation problem.

- 12 -

2.2.1 Method

A primitive notion of problem solving is that it is a process of casting

through a Set of possible solutions until one is discovered which is

acceptable for the problem under investigation. This notion requires further

elaboration in the context of programming ~nd probably in any other

non-trivial problem domain).

In the example given in the previous section where the problem

is to find certain numbers, the space of possible solutions has an accepted

representation which allows each possible solution (a number) to be

identified. Further, the properties of the members of the solution Space

allow of the possibility of some scheme whereby individual "solutions" can

be chosen methodically (i.e. the ordering properties of numbers). As is

described below a knowledge of such properties is almost essential in the

derivation of an acceptable solution process to this problem. In programming,

the space of possible solutions has a less well-understood representation

and has properties which are often too complex for programmers to appreciate.

Even if the problem is merely that of choosing a representation for a

solution process otherwise described, few programmers would clai:n that

the representation they have chosen was th.e best. It is appnrent, as we

shall describe in a little more detail in section 2.4.2) that th~ very

power of programming languages in some cases adds to the complexity of

programming, rather than reducing it.

In the derivation of a program as a solution process, there is a

difficulty in the identification of individual elements from th~

space of possible solution processes (j.e. the space of all programs) •.

What a programmer does, of course, is to use properties he requires in

order to derive possible programs which he may then examine. However, the

properties he may require of a program are often poorly understood owing to

- 13 -

a lack of a clear and complete specification of the problem (see section 2.3.1)

and also because of his lack of knowledge of the properties of the programming

language. Thus it is difficult for a programmer to know what he is

deriving, and also when he has a program which satisfies his requirements.

Nevertheless the notion of searching allows a basis for a discussion

of how complex problems may be tackled. A complex problem may have many

possible solutions, all of which ought to be examined. However, it is

impossible to do this in a reasonable time. Ways must be sought by which

the space to be searched can be drastically reduced in order to focus

attention upon an area where an acceptable solution is most likely to be

found.

Consider the following steps in the derivation of an acceptable

solution process for the numbers problem of the previous section.

1. The set of "possible solutions" may be divided into the real

numbers and the complex numbers. From the properties of

complex numbers it can be seen that an acceptable solution

process need only consider members of the set of real

numbers.

2. Only the set of integers {-99, +99]

need be considered because of the definition of absolute

'value.

3. The set { -99, ..., +99 } may be partitioned into

{-99, ••• , -1} and {O, ••• J +99} The solution

process need only consider the set { 0, ..., +99}

and, for any solution found in this set (different from 0),

select also the corresponding negative value of thiS solution

from {-99, ••• , -1} as a solution.

- 14 -

4. An acceptable solution process may be described over the set

{ 0, • • • , +99} which searches from 0 in increasing

magnitude of number and which terminates as soon as a

number is found whose square is greater than or equal to 36

(as . . . , +99}).

At each step, the set of possible solutions is further limited until,

at stage 4, a solution process can be described which, we suggest, is

acceptable. There are other solution processes which could equally have

been suggested at stage 4 (e.g.4. one which commenced with +99 and then

continued with 98 etc.). Thus, even in this derivation, there is a choice

"d solution processes.(Of course further anal~sis of the set of possible

solutions can, in this example, reduce the set of possible solutions

from the positive integers to a single element).

The process of the analysis of information contained in the problem

statement and of known properties of the space of possible solutions is

a means for reduc.ing the set of possible solutions that need be considered.

In this examplo the steps of methodical reduction can be clearly L'>qll:"~':'l~d

because of the well-formed nature of the problem and because til" properties

of the solution space are well-understood. However, even in sclYing problems

which are .ill-formed or whose solution spaces are incompletely understood

by the problem solver, the value of a methodical step-wise investigation

has been stressed by several writers (e.g. Polya 1945, Alexander 1966,

Mannheim 1966, stmon 1969, Hormann 1970). In programming, also, a similar

appreciation has found expression in such ideas as "structured prograrr.ming"

(Dijkstra 1972a) and "step-wise refinement" (Wirth 1971b). We discuss these

ideas further in Chapter 3.

- 15 -

In general, the methods suggested by these writers may be characterized

as the decomposition of a problem into smaller problems for which,

individually, there is a greater likelihood of an acceptable solution being

discovered.

example:

In the derivation given for the numbers problem above,
it may be seen that each step represented a decomposition
of the stated problem into problems of conceptually less
complexity.

The decision to decompose a problem in a particular way is based

upon some expectancy of where solutions are to be found or, alternatively,

of where solutions are not expected to be found.

example:

At step 1 above, the decomposition is based upon the
"ease of solution" of the problem of finding complex
numbers whose square is 36.

In taking these decisions, the problem solver must carry out

some form of analysis. In many complex problem solving Situations,

the validity of such analysis is often not decidable at the time the

decision must be taken. It may be only at a much later stage in the

problem solving activity that decisions taken earlier are found to

be valid or invalid. Whether or not such information can then be used

to turn the search for an acceptable solution in other directions

depends upon the ease with which a change of direction can be made. In

programming a particular decomposition of a problem is often reflected

in the modular structure of the program. Each decision concerning the

decomposition is therefore embedded in program code. According to the

- 16 -

way in which the structure of the program is represented in the code, it may

be a difficult task to alter the program even though the decomposition is

demonstrably unsuitable. This phenomenon is, of course, closely related

to the forms available for representing the design of a program. This is

discussed further in sections 2.3 and 2.4 and also in Chapter 3.

The comments we have made concerning the difficulties to be faced

in tackling complex tasks are related more closely to the development

.. of programs in Chapter 3. Our intention at this time has been to

draw attention to the fact that programming is a complex and difficult

task, but that man has been faced with such tasks before and has

developed mechanisms for overcoming them. An insight into what these

mechanisms involve can only be of help in deciding how programming

should be carried out.

2.2.2 Some "human aspects"

The natural abilities of an individual human being as a problem

solver will have a great influence upon the success of that individual

when faced with problems of great complexity. Although the means by

which complex problems can be tackled may be well appreciated, it is

still necessary that the appropriate feats of intellect are accomplished.

It is surely necessary for a programmer to be creative. The

sheer immensity of the task of constructing a program requires an

individual flair for assimilating apparently unrelated info~mation or for

taking the "right decision" even when there is little substantiating

evidence. Koestler (1964) describes a possible mechanism to account (or the

"flash of inspiration" and the ''moment of insight" which are so necessary

in the task of tackling complex problems. Hormann (1970) characterizes the

application of knowledge and experience in problem solving and relates

these to an individual's creative abilities in a particular task. The

- 17 -

characterization which he gives is expressed in terms of "prepared" and

"unprepared conditfons". "Prepared conditions" represent situations

recognizable ~y an individual from his experience. Hormann uses these

characterizations to explain a number of observations concerning the ways

in which problems may be overcome by a human being. In particular, he

discusses the possibUity that an individual can solve a problem which he

has not previously encountered by means of a mismatch between some prepared

condition (representing an earlier experience) and the given problem.

Such mismatches can occur if the given problem is, in some sense, similar

to the previous experience. A danger here is that a gross mismatch

between a problem and some prepared condition may be undetected and lead

to the acceptance of incorrect solutions to problems. Unfortunately, a

programmer who is pressed to attain production schedules is more likely

to commit such errors than a programmer who has time to consider his task

with care.

Both Koestler and Hormann attempt to give explanations for an

individual's problem solving ability. It is interesting to remark that

Polya (1945), in giving rules to follow in solving problems, suggests that

a person should conSCiously try and match his past experience to any

problem with which he is faced. Polya states that one should always

ask oneself -whether the problem has been solved before, and failing an

affirmative answer, ask whether any similar problem has been solved before.

There is an obvious Similarity between these suggestions and the mechanism

described by Hormann.

, "

- 18 -

Creativity is, therefore, One characteristic which we believe is

essential in a programmer. Weinberg (1971) discusses a number of others.

Amongst these 1s humility. A good illustration of the need for humility

is given by the phenomenon of "ownership" described by both Weinberg and

Ershov (1972). A programmer is likely to develop protective instincts

towards his program because it represents a large intellectual effort

on his part. As a result, a programmer may even jealously guard his work,

whether ot not it is of any worth. The consequences of such an attitude,

particularly within a programming team, may be imagined and prompted

Weinberg to promote the concept of "ego less programming". Under this

approach, a program is written, not by an individual but by a group of

people such thatno one person feels responsible for it. The success

of such a policy depends upon the readiness of all programmers to accept

the suggestions of others for the overall good of the program. Such

a requirement may, in fact, make it a difficult policy to adopt, but

'the arguments upon which it is based cannot be questioned. When an

individual is working alone on a program, it would still seem to be a

wiso policy for him to rememb~r thnt he is fallible and therdore 1 ikcly

to produce a'program which may need correction or improvement.

A programmer a~so needs to be both suspicious and trusting. He

should always be wary of possible difficulties and inconsistencies in

the task he is required to do and yet must have confidence in his own

ability to produce a satisfactory program.

There are, of course, many other aspects of human nature which are

relevant in a consideration of programming. A programmer must be able to

arrange his work in a methodical manner, be able to organize the

information with which he is faced and even overcome boredom induced by

the tedium of encoding familiar constructions. An extensive discussio~

- 19 -

is given by Weinberg (1971).

2.3 Understanding problems and design

How a programmer understands the problem he is to tackle, the

form the programming language takes and the tools which he may use in

program construction will play a large part in shaping the eventual program.

In the ne~t few sections we discuss some of the issues involved and consider

some of the tools which are available to the programmer to use -as he

designs a program. At this time we are considering only tools which may be

thought of as design aids. Others tools, which, though affecting the

programming activity are: more concerned with program testing or

validation are discussed in Chapter 4.

2.3.1 Problem specification

The specification of a problem can and does take various forms.

Rarely is the specification of a complex problem sufficient in itself.

The programmer will, therefore, find that he needs to discover anSwers

to questions about the problem which arise as part of the development of

his program. The di.fficulty is natural and may occur for a number of reasons.

We suggest three, although there are probably many more.

(i) The form of problem specification is incomplete or open

.to a number of different interpretations.

(ii)

(iii)

The problem itself may be changing with time.

The problem is so complex that it cannot be expressed

succinctly in a sufficiently rigorous manner.

The specification of problems may take many forms. Natural language

and jargon are often used, with the danger of misunderstanding or

incompleteness. A number of workers (e.g. Rose 1966, Kolsky 1969,

Falkoff 1970) advocate the use of a subsidiary programming language (APL)

to specify or describe programs. It may be possible to apply these techniques

- 20 -

more generally to the specification of problems. Some discussion of the

use of particular languages for problem specification is given in Naur

and Randell (1969). Parnas (1972) gives a technique for specifying

modules 'in a program design in terms of fUnctions which describe the purpose

of a module. This technique appears promising in those cases where it has

been tried.

It is, however, probably true to say that no one technique or language

can be sufficient. It is likely that there will always be a need for

explanatory material in addition to any formal description of a problem

(e.g. an exposition of terminology, a language manual etc.).

One comment which we venture to make is that the form of the problem

specification can be suggestive as to the form the solution might take.

Notation and other devices used in the design of a program play their

part in the form of that program, so it is likely that this observation

extends also to the manrier of the problem specification.

, 'l ",example:

2.3.2

A programming problem might be described by a "procedural
specification" intended to illustrate a flow of,inrormntion.
Such a specification can colour a programmer's thinking to
a greater extent than if the problem was described in a
"non-procedura1!' manner.

Design and documentation

Apart from the programming language, the influences most likely to

bear upon the d'esign of a program are the tools and techniques used.

- 21 -

, By the use of various notations or other design aids, the programmer may

learn more about a problem, and some of its peculiarities as well as

experiment with possible solutions.

Many of these notations can be used in documents describing either

the purpose of the program or its design. Documentation plays an

important role in program construction. Most programs which are intended

for more than "one-off" jobs need some description in tenns more anenable

to a human reader than that afforded by the code of the program itself.

Potential users of the program will require knowledge of the purpose of

the program, the format of the input data and control records, and the

output they may expect. Other programmers may require more detailed

descriptions of the program code so that they may maintain the program or

modify it to local requirements. Such documentation can conceivably be

written after the program itself has been written, though there may

be some good arguments why this could be bad practice. For example,

in many cases such documentation is generally provided by the programmer

himself. Apart from the fact that programmers are not necessarily good

at writing documentation (as pointed out by Weinberg 1971), intercst in

a program can naturally lessen when the creative phase has been completed.

The programmer may even move on to other projects and leave thc documentation

to be completed by his successor, if it is ever properly completed.

It may, therefore,be a good idea to produce documentation directly

from the program text using such techniques as automatic flow-charting

or by other methods (e.g. Mills 1970).

Documentation of a design itself, made as the design is carried out,

is particularly necessary in computer programming (see Naur and Randcll

1969 p90, for example). In a project involving numbers of people it

is essential. Several massive systems have been constructed (Brown 1970,

',,'
, "

- 22 -

Falla and Burns 1973, Pearson 1973) to provide support for information on,

for example, design specifications, program methods'and progress. Baker,

(1912) describes how a programming secretary with machine assistance can

play a central role in the maintenance of information. For small groups

of programmers, a filing cabinet or even a notebook may be suffiCient,

if its value is fully appreciated.

The form of documentation used or required can influence the work

of a programmer.

example:

It is very much easier to document a program in terms
of separately describable modules with few cross-referenc~s
than one which makes use of intricate relationships
amongst a large number of variables and functions.

This influence is likely whether there are many people involved or

only one. Being forced to describe a program leads one to appreciate its

shortcomings.

As a program is developed it should be documented so thai: the decisions

taken during development and the reasoning behind these decisions will be

available later. The development process may well be based upon such information.

example:

If, in a particular development, the designers maintain a
diary of progress made, then they are well equipped to use

'such information to influence their work. In the absence
of such documentation it is likely that future decisions
will be ill-considered or invalid with respect to earlier,
undocumenteq and hence forgotten, decisions.

It is likely that well-considered programs are the result of

well-documented designs. The converse, that badly documented designs

- 23 -

result in badly considered programs is likely to be an understatement.

Selig:

t~ith the rapid proliferation of computer languages,
subroutines and programs, and the tremendous effort
they represent, meticulous documentation is becoming
essential, not just to save money but to prevent chaos".

(Naur and Randell 1969 p116)

Before we consider a few tools and notations used in the deSign of

a program, it must be stressed that documentation is something which is

for the benefit of a human 'reader. Its purpose is to enable a human being

to come to an understanding of the program or design being documented.

When the documentation is purely descriptive then this need should normally

be achievable. However, documentation which is precise is also a requisite

in programming and it also should be comprehensible. The method of Parnas

(1972) for describing the fUnction of program modules or the use of

subsidiary programming languages to describe a program (Rose 1966,

Kolsky 1969, Falkoff 1970) are of relevance in this direction.

2.3.3 Some tools used in program design

There are a number of tools available to a programmer for u~c during

program design. Many of these are notational or graphical and facilitate

the repres~ntation of ideas on paper. We also include a short discussion

on machine-assisted tools, but only in the sense of special purpose

computer-aided design systems. Machine assistance in the form of

compilers, debugging systems or interactive programming systems is

dealt with in Chapter 4. The discussion of programming languages at this

time is also restricted to their use in deSign, rather than as being a

definition of the interface between man and the computer. Programming

- 24 -

,languages are discussed from this latter viewpoint in section 2.4.

Decision tables represent a method of describing the logical connections

inherent in a problem (or in any process). In particular they provide

" •• , • a means by which the work required to understand and.
define a problem, develop and program a solution and provide
documentation, is substantially reduced".

(Schmidt and Kavanagh 1970).

However, decision tables alone do not provide a basis for the solution

of complex problems. The derivation of a solution in terms of a decision

table implies a good understanding of the problem so that the logical

connections are correctly established between the various components of

the problem.

Once the necessary logical connections are established, decision

tables may prove of value in determining such properties as logical

completeness. They can also be used to describe the solution process for

a problem in a way which may be automatically translated into a representation

. in a programming language (see, for example, several papers in NcDaniel 1970).

It is possible to use decision tables to give many-levelled descriptions

of a problem or a solution process. (A discussion of IIlevels ll is given

in Chapter 3). The derivation of such descriptions is determined solely

by the programmer himself, with the properties of decision tables only

acting in a passive role.

- 25 -

Flow charts may be used in sUnilar ways to decision tables. They

refer, however, to the flow of action or information, rather than.to fixed

logical relationships. As the actions may be determined as a result of

previous actions described in the flow chart, the generality of flow

chart descriptions may be difficult to understand.

It is possible to code directly from a flow chart into a programming

language possessing similar primitives to the primitive flow chart

symbols (e.g. labels, goto's, functions, tests).

Flow charts may be used, like decision tables, to represent a

many-levelled description of a problem or solution process. In this case,

however, each~vel represents a description of a flow of control, rather

than of levels of logical connection. If flo~ charts are used in this way

to describe processes, the ,programmer must hUnself: have a conception of' the

different levels of control fiow and ensure that these are faithfully

represented by the description he gives.

Various textual notations are often useful during the design of programs.

Natural language is a common method of description. It offers a means

of communication wit II other people (in either written or spoken form) which

is essential if the various facets of a complex problem are to be appreciated.

The use of natural language in an unrestricted way is always open to the

danger of misinterpretation, but "jargonized" forms can be very helpful

whilst avoiding the implications of specialized notations such as

programming languages. It is quite possible to describe algorithms in

this way (as Knuth 1968 demonstrates so well), provided the termS used

are, unlikely to be misinterpreted.

- 26 -

Programmers often make use of a "bastardized" form of a progTamming

language in the development of programs. Such a notation retains much

of the flavour of the programming language but, as there are no

stringent grammatical rules to follow (the programmer is, in effect,

devising the language as required) the programmer can express himself

as he pleases. The use of such language forms is likely to be beneficial

in bridging the gap between the language of the problem statement and the

programming language to be used to express the solution process (see also

section 3.2.2.).

On a similar theme, any simplifications to the precision of a

programming language are likely to be helpful in a notation whose primary

use is for the expression of ideas. An example is an expression of

non-determinism. Programming languages are, by nature, deterministic. Yet

many programs are describing non-deterministic concepts. These programs

are often characterized by a "choice" of a particular indetermin&te value

with appropriate backtracking provisions if the choice was, in [act, the

wrong one. It may be helpful to the programmer if he could write his program

using non-deterministic constructions where applicable, but without the

need to give full details of how the backtracking mechanism should be

incorporated. Floyd (1967b) and Johansen (1967) describe how programs

which use non-deterministic constructions may be expanded in an automatic

way so that the necessary backtracking mechanisms are incorporated.

(Unfortunately. the generality of such schemes necessities ~he inclusion

of much inefficient. and often unnecessary computation. This can, tt course,

be removed by "hand tuning" the program, although this may be a non

trivial and error-pron.e task).

- 27 -

There are doub't1ess many other concepts whose expression in a

programming language is complex, but whose basic notion is wel1-und~rstood

and is easily expressed in a textual manner. Their use by the programmer

in documenting his program design is likely to be beneficial. If they

are easily mapped into "real" programming language conStructs then the

task of program development is again simplified.

The ultimate notation available to the programmer is, of course,

the programming language itself. This we will discuss in detail in

section 2.4 and a1s~ in Chapter 3. We believe that its usefulness in the

design of the program is more by its influence then by its use as a

primary design notation. Indeed, we believe that the use of the programming

language itself early in the design process can be bad practice, as it

represents a committment to a particular solution process at a time when

much of the information which the programmer may be able to find out

about his problem is likely to be undiscovered.

In some cases it may be possible to call upon machine (coffiPuter)

assistance in the design process. The amount of assistance a computer

may give varies through special purpose "computer-aided design systems"

such as the LOGOS scheme (Glaser 1971) whereby the problem itself is

represented in the computer system and the design of its solution aided

and maintained also by the system, the AED approach to computer-aided

design (Ross 1967) whereby various design packages, a programming language

and a "culture" all act to assist the programmer, to systems

giving pure1~ clerical assistance. The work at Stanford (Engelbart and

English 1968) on a computer system for the augmentation of human int~llcct,

- 28 -

and that represented by MATHLAB (Engelman 1968) are good examples of this

latter form of computer aid. We could also include systems which are

more oriented to the production of computer programs (e.g. APL).

These systems are also discussed in Chapter 4. We see computer-aided

design tools primarily as a means of reducing the intellectual effort

required of a human being for tasks which are mainly mechanical but still

absolutely essential (e.g. representation, organization and presentation

of information). The unique ability of the human being in a creative role

is crucial to any design or problem solving activity. Design aids which

allow the human being to concentrate his abilities on this role are

bound to be of use in extending the human capability for undertaking difficult

tasks, such as program construction, with greater confidence.

2.4 Programming Languages

We have suggested that a programming language characterizes the

man/machine interface. It is the aim of the programmer to describe

a solution process in terms of a programming language, rather than in terms

of the physical concepts of the computer. The programming language,

therefore, has a very great effect upon the programming activity.

Programming languages should be designed with Some care in order that it be

as straightforward as pOSSible for the programmer to develop a representation

for even complex solution processes.

The development of programming languages has tended to recognize

this obligation, although we believe there is still a long way to go.

Early computers were programmed in machine code and subsequently in a

symbolic form of machine code. The man/machine interface was, at that time,

only slightly removed from the machine and the programmer required a large

intellectual effort to achieve a suitable encoding of his program. Later efforts

- 29 -

(e.g. FORTRAN, Algol, COBOL, etc.) were further removed from particular

machines and paid a greater concern to the expression of problem

solutions in a form more closely related to problems themselves. Nowadays,

high-level languages have been devised for many of the more common computer

applications (Sammet 1969).

Most recent language developments have recognized that the programmer

will benefit greatly if he has to adapt the problem less to the peculiarities

of a machine and is therefore able to concentrate more on the development

of the solution process. ·A human being solving a complex problem has

ample opportunity for error. The lessening of the problems of communication

with the computer should allow more freedom to concentrate on the real

difficulties.

The development of languages represents a steady process of

movement away from the concept of a specific form of computer, and more

to the general representatiOn of problem. concepts and algorithms. A

logical conclusion to this development process would appear to be the

use of natural language to communicate with the computer. There are many

difficulties with this idea, and even were it practical from the point of

view of implementation, it is likely to be a source of much

misunderstanding. The "heaviness" of legal English should act as a

warning that it is very difficult to write un&~bigious statements in

natural language (Hill 1972). What would appear more appropriate is a

language that takes due account of both man and machine, with little explicit

emphasis on the latter and more attention given to the former. One way in

which this may be possible can be seen in the concepts of extensible languages

which allow the programmer to add to the basic language of the machine

- 30 -

interface as he thinks fit.

However, it should be stressed that our present Concern is to

study the role of programming languages in program development. We do

not wish to be concerned with arguments about the form new programming

languages should take.

2.4.1 Programming language influences

The choice of a particular programming language by a programmer

theoretically acts as a constraint upon the number of actual solutions

from amongst which he may choose for his particular task. However, any

reduction is unlikely to be noticed unless the choice rules out

particularly appropriate representations for the problem in hand.

The decision to use a certain language may not always be made

on the basis of the merits of the language itself. Other criteria,

often based on pragmatic. arguments, can playa large part. Progr~~ers

may have to make do with ill-conceived language constructions and the

likelihood of difficulties later simply because there is a "good"

implementation of the language which generates "efficient" machine code

and which is well supported by a large library of useful functions. Mass

usage of such languages encourages their continued existence to the likely

detriment of other concepts in programming ,,,hich may, in the long term,

o'ffer great benefits. The blame does not lie with individual programmers

as they are often given little choice in what programming language to ~se.

Their organizations will make this choice for them, having considered (or

tried to consider) factors other than that of the language itself.

Compatibility and transferability of both programs and programmers are

just two examples.

For whatever reasons a particular language may be chosen p it will have

a considerable influence upon the way in which a program is developed and

- 31 -

possibly contribute to the difficulties.

Even with contemporary high-level languages which are described

as being general purpose, the concepts directly describable are limited.

In order to make use of a programming language to represent a solution

process, the programmer has to create mappings from the concepts of the

problem to those of the programming language. It is natural for a program

,to be developed along the lines suggested by the programming language as

these mappings are then more easily appreciated.

example:

If APL is chosen as the programming language, then a
programmer is encouraged to think in terms of matrices
and to consider his problem in such terms. Again, if
a string processing language is chosen, a programmer
is immediately encouraged to think in the particular
terms that the language suggests.

In some circumstances the particular concepts of a programming

language are well-suited for a given programming task (e.g. RPG for the

conStruction and printing of tables of data). In general this is not true

and thus a part of the programming effort is the choice of suitable

representations for problem-oriented concepts in terms of the limited

concepts provided in anyone programming language. One way of reducing

the effort required in this task would be the use of more powerful

programming languages. However there is some danger in this approach,

namely that the more powerful a programming language is, the more difficult

it is for, a programmer to appreciate its properties. If a language spans

a large set of concepts then the difficulty of choOSing the most appropriate

representation increases, because there is a potentially larger set of

'candidates. Conversely, a language which is very restricted and so does

not have this problem has, of course, difficulties of its own. A programmer

may conceivably have a complete understanding of the properties of such a

- 32 -

language, but, for any given problem, it is unlikely that there exists

any obvious, direct representation.. The programmer has, therefore, to

create one, which may be a non-trivial task. Thus, a programming language

which is over restrictive is likely to lead to programming problems,

whilst one which provides a vast set of concepts and functions is likely

also to cause problems through difficulties in understanding. Extensible

languages may prove to be a solution to this particular difficulty,

provided that the mechanisms of extension are themselves non-complex

whilst being sufficiently general.

If a programmer is free to choos.e from amongst a set of alternative

languages then ther~ is likely to be some advantage if the final decision

is delayed. The process of developing a program allows a programmer

time to learn about the problem and its difficulties. If he makes no

committmentm a particular language during the early stages of

development then he is likely to be better placed to make a wise choice.

The set of possible languages will probably be small (for reasons separate

from the task in hand) and so the programmer should be well able to

judge which language is best suited to his particular situation.

Programming language design

The problems for which computers are used are generally complex.

The various properties and concepts of computers are complex. The

interface between these two sources of complexity is the programming

language. One function of a programming language should, therefore,

be to offer means of Simplifying both. This function is carried out

by the various languages available with differing degrees of success as

illustrated by Some of the examples given below.

The number of languages with procedure or subroutine mechanisms which

- 33 -

may be used easily are good examples. The worth of such a concept (and more

particularly the use of libraries of subroutines) is obvious when we recall

the discussion of man's requirements for solving problems (i.e. the breaking

up of the design, the recognition of situations etc.). Indeed, there may be

a considerable effect upon the program design itself:

(i) The programmer is spared intellectual effort.

(ii) A program may be designed in a particular way to incorporate

an existing subroutine.

example:

In the solution of a boundary value problem of ordinary
differential equations, the existence of a subroutine
which solves initial value problems might encourage
the programmer to use the "shooting method" (Keller 1968)
rather than develop his own solution directly.

The presentation of the language itself can be a powerful Simplifying

. agent. Flow charts may be described as programm'ing languages, and they

certainly allow for the concept of a subroutine call mechanism. Yet we

do not normally consider flow charts as being suitable for the detailed

representation of programs to be input to some machine. One reason of course,

is that computers do not possess input devices capable of accepting such

graphical information. Textual representation, however, offers a much

more concise form for transmitting information and, because of education,

is naturally acceptable to the human programmer. On the assumption that

programs are to be understood by human readers, the actual symbols of the

language, the relationships that may exist between these symbols, and the

meaning to be attached to the symbols should be chosen so as to assume as

little intellectual effort as possible from the reader. A programming

language is likely to be more acceptaHe if it satisfies this property of

- 34 -

"readability", at least to the extent that comprehension of a program

is not obscur~d by the constructs of the language itself.

example:

~ language such as PL360 (Wirth 1968) has some appeal
when compared to the assembly language of the 360 computers.
(lBM 1969).

To a certain extent, the clarity of individual programs depends ,
upon the problem and on the ability of the programmer, not simply as

a coder, but also as a problem solver and designer. However, as a

brief survey wi~l show, there are certain constructs present in current

high-level programming languages which are extremely complex and liable,

themselves, to lead to much misunderstanding. Even in well designed

'programs their use will obscure the basic design, whilst in badly designed

programs, their use can make it almost impossible for the human reader to

discover how the program works. Unfortunately the use of some of these

constructs is often necessary. The programmer must then exercise discipline

over himself to see that any complexity is reduced to a minimum. We

discu,ss some of the pOints in the illustrations which follow.

(a) Input/output handling.

Undoubtedly, input/output handling can be a complex problem, but it

rarely appears to receive the attention that it warrants in a language.

Indeed in some languages, the handling of input and output is regarded as

an "add on" feature to be determined by individual implementations. We

do not advocate any,particular approach for the specification of input/output,

but certain methods seem to be more appealing 'than others.

- 35 -

example:

The idea of a "picture" of the required output being
given by the user (as in COBOL for example).

One feature commonly encountered is that of referring to devices

by a number, instead of using a more meaningful name; such a technique

is surely indicative of the half-hearted approach that seems to be taken

i~ so many cases.

(b) "goto" statements

There has bee~ much discussion in the literature regarding the

efficacy of USing "goto" statements in programs. (Dijkstra 1968c,

Rice 1968, Wulf 1972, Leavonworth 1972, Hopkins 1972). The arguments

for and against are well-known and we will not discuss them further

here, though we will return to the "goto" statement briefly in Chapter 3.

(c) the ALTER verb in COBOL

COBOL, as many other high level languages, possesses a "gor.q"

statement. However, it also allows what we may call a "variable

destination goto" statement. The destination of a jump m.:ly be altered

during the program execution. Thus the text of the program may be

changed dynamically. It can no longer be read with ease by a human reader.

The prospect of a program with many uncontrolled jumps whose destination

is unknown, except during the actual execution of the program, makes

one marvel at the debugging ability of those programmers who write

such COBOL programs.

- 36 -

(d) The CASE statement

(see for example Algol W, PL360, XPL, Algol 68).

The case statement may be considered as a generalization of the,

alternative statement (if). We can describe its syntax by the following.

~ <integer expression) £!

{ <statement-i)

<statement-2)

(statement-n) }

The value of the (integer expression» determines which, if any,

of the n statements will be executed. The ordering of the individual

statements is vital to the correct functioning of the whole statement.

'If one statement is omitted (a card is lost), or some get out of order

(the cards are dropped), then the whole statement is Hable to be erroneous.

Yet it may still be meaningful to the reader and acceptable to the language

processor. The solution to this difficulty is shown by Wirth (1971a)

·in the language PASCAL. Each of the n statements is given a label and

the (int.eger expression) is replaced by an < expression) which will

evaluate to one of the n labels.

- 37 -

example:

Suppose "pointer" is a variable of a certain type yielding
the values described as "east", "west", "north" and "south".
We may write:-

~ pointer of

east: . . .
west: . . .
north:

south:

The ordering of the four possible statements is immaterial and
a number of other checks are possible to prevent errors.

(e) Implicit declarations

Weinberg (1971) and Palme (1972) are among many who have written

about the dangers of languages where declarations are made implicitly.

"New" variables are liable to be introduced through misspelling of

variable names without any indication of fault by the language processor.

Explicit declarations are useful to a reader in that he is given a full

description of what attributes he may assume for the individual variable

names (see also Chapter 4 section 4.1).

There are many other instances of error-prone constructions being

provided in programming languages (see for example Weinberg 1971). The

general point which they illustrate is that it is extremely simple to

- 38 -

introduce ~iexitY into a language design whereas the aim should be

simplicity. Ie suggest, therefore, that language designers should pay

a greater heel than is generally apparent to the fact that a programmer

is fallible and finds complexity difficult to overcome. In the

design of a program, the programmer is learning about his pro~lem.

If he can express himself clearly and easily, then his appreciation

of his task is likely to grow. However, if he has to struggle with

complex language c~nstructions, then much of his effort will be

diverted and he may miss opportunities in the discovery of acceptable

solutions.

. . \

- 39 -

Chapter 3:

Structure in Representation and Method

In the previous chapter, a number of the requirements of man for

tackling cornptex tasks were noted. In particular it was suggested that

a methodical approach was essential and that thee must be a means of

representing and organizing the information concerned with the job being

tackled. These needs are closely related. Method relies upon the

availability of information, whilst any representation or organization

of information will not be helpful if it obstructs the method. One of the

most powerful ways of organizing information for describing complex

systems is the hierarchy. Simon (1969) says:

" • •• if there are any important systems in the world that
are complex without being hierarchic, they may, to a considerable
extent, escape our observation and understanding".

Further support is given by Whyte (1969):

" • • • hierarchical classification is the most powerful method
used by the human brain in ordering experience, observation,
entities and information".

A recent paper (Belady and Lehman 1971) analyses the structure of

programs from the pOint of view of its effect upon the economic lifetime

of a program. (The economic lifetime of a program describes that period

of time during wh{ch useful work can, with confidence, be achieved with

that program. It ends when errors or malfunctions of the program occurring

as a result of modifications or misconceptions incorporated earlier cannot be

- 40 -

r~oved without adding further errors which will themselves prevent useful

work and whifh also cannot be removed). Amongst the conclusions reached
i

in this papel is that the structure of a program should allow hierarchical

~
representati~n.

Programming methods which accord with the philosophy of "divide and

rule" can lead to programs which exhibit a hierarchic structure. An example

of such methods has been given in Chapter 2 in terms of problem

decomposition.

Simon (1969) gives a telling illustration of the power of hierarchic

design and development methods. This illustration compares two approaches

to the construction of a complex mechanism. The first approach, which we

will describe as the "single-unit" approach represents a method which

is not based upon hierarchic notions. The various primitive elements

which form components of the total mechanism are assembled in no particular

order and are not recognizable as being correctly in position until the last

primitive element is assembled. The second approach is based upon the

method of butlding recognizable sub-components which may themselves be used
;

to form further recognizable sub-components until the total mechanism is

constructed. In this second approach, the existence of completed sub-

components represents the state of the construction activity at any given

time. This information can be used with advantage during the construction

activity and allows, for example, for the activity to be interrupted or

for the course of the activity to be influenced. The "single-unit" approach

offers none of these posSibilities. Any interruption of the construction

activity wtll, almost certainly, necessitate the complete reconunencement of

the task as no information is available to describe the current state of the

activity.

This illustration can be translated into programming terms without losing

any effect. If a program is constructed from components and sub-structu"res

- 41 -

which can be /recognized as such because of the representation of the program,
I. . ,t

then the pro~ammer is well placed to decide what he must do next and what
. ~.

~~

relationship lhis has to his previous work. On the other hand, if a program

is constructed without any definite method such that the properties of that

:program cannot (except in the most trivial cases) be appreciated, then the

programmers task is hopeless.

Programming languages are, as discussed in Chapter 2, much too

restrictive to allow the representation of components in a form

sufficiently related to the problem to be useful in a general way.

example:

Programming languages generally have a limited domain
of data types or structures which they can express.
Thus, in any representation of a program in a programming
language, all objects manipulated by that program must
be expressed in terms of these types or structures.

As we described in Chapter 2, programmers tend to use other

notations to represent their program at various stages of its development.

Thus natural language may be used to express an overview of a ?rogram

which is presented to the computer in a programming language.

The various representations of a program can be structured

hierarchically according to the forms of notation used. In this way the

aggregation of properties given in one representation can be appreciated

in terms of some other "higher level" representation. Other structurings

might be applied but, following our comments above on hierachies, we

wish to base our further discussion of programming upon methods and

representations founded upon the ideas of problem decomposition and

hierarchically ordered description.

In this chapter we will illustrate relationships betweendfferent

- 42 -

l
repres.entatiqps of a program by the device of a "level of description". ,
A. program may'!be represented at a "level of description" according to a

set of concepts whose meaning is understood at that level. The same program

may also be represented at another level of description by its expression in

terms of other concepts understood at this second level. Various hierarchical

relationships can be described which relate representations given at

different levels.

Programming methods can be described following the notion of

hierarchically organized representations. Various methods have been

described (e.g. "top-down", ''bottom-up''), all of which are based upon the

philosophy of "divide and rule". The different methods are best

~haracterized according to the ordering they suggest for the development

of the program. We will describe several methods in terms of the

representation scheme afforded by "levels of description" and discuss
, '

some particular issues concerning the practical application of programming

methods using contemporary programming tools.

3.1 Levels of description

Consider the following pieces of text. Both describe a solution

. process for the same task.

Text A) "Read 10 input cards and, for each card, make a test to

det~rmine whether each of the first 9 values of that card

is within acceptable limits and further, whether the 10th

value is a valid check sum of the other 9 and is also within

acceptable limits".

Text B) integer

integer

!2!.

- 43 -
array values (119);

check; integer i, j;

i-: = 1 ~ 10 do

1.2£ j: = 1 until 9 do

begin read (values (j»;

if ~ acceptable (values (j» ~ writerror (1)

end· -'
read (check);

if ,checked (values, check) then writerror (2);

if ~ acceptable (check) ~ writerror (3)

Although both text A and text B represent (essentially) the same

solution process for the same problem, the terms in which they are expressed

are different. The difference is that each may be understood according to

an interpretation attached to the particular set of concepts used. It is

clear that the interpretation of the concepts used in text A is not dependent

upon the interpretation of the concepts used in text B ilnd vice versa. The

reader may have been able to better understand B having read A because

of the expressed relationship between text A and text B. However, B

is understandable separately from A.

We will say that information may be represented at differing

levels of description according to the set of concepts, and their

associated interpretation, used in that representation. Information

represented at a number of different levels of description may be related

by an explanation of how concepts at one level of description can be expressed

in terms of concepts of another level of description.

Woodger (1971) makes Similar observations about "levels of langu?g'!l".

- 44 -

In particular he stresses that a language (a set of concepts together with

an interpretation) should be capable of interpretation independently of

any other level of language.

3.1.1 Characterization of a level of description

We characterize a level of description in terms of the prUnitive

conceptS which that level provides. These we describe in terms of

four sets.

The first is the set of objects. It is sufficient to name only

the type of objects which may be described rather than enumerating them

individually. In examples and further discussion, this set will be

denoted by D.

The second characterizing set is the set of operations which may

be performed upon objects described by the set D. By an operation we

mean to include not only operations in the normal sense, but also predicates

and functions which take objects as operands. We do not regard identification

as an operation. This set of operations will be denoted by F.

Operations may be combined by elements of the third characterizing

set which we denote by C. The set C contains, therefore, those elements

of a level of description describing permissible orderings of operations.

example:

A particular level of description might be capable of
expressing ordering in such terms as:

"and", "then", "after".

A level of description such as provided by a programming
language contains terms like

".,. , "i! ."

- 45 -

Finally, objects may be grouped together in certain ways expressed

in terms of data structuring primitives.

examples:

a'Heck" or a "sequence"

We include in this final set (denoted by S), means of identifying

elements of "data structures".

We will adopt the convention of subscripting the set identifiers D,

F, C and S in order to distinguish levels of description. We now give two

examples of different levels of description.

Example 1

The level of description provided by a simple, conventional programming

language (which we call SPL) may be characterized as follows:-

= {integers, booleans}

= {+, -, =, <, &, I, : = }

= {;, if ••• then ••• ~ ••• , ~ ••• dO ••• }

SSPL {array, subscriPtion}

Example 2

Consider the following problem described in natural language.

"A bunch of banan/is is hanging just out of reach above a monkey. The

monkey wants the bananas. Nearby there is a large box which the

monkey can move and onto which the monkey may climb. How can the

monkey reach the bananas?"

- 46 -

The solution to this problem is, of course, obvious assuming a

reasonably intelligent monkey. The characterization of the level of

description at which this solution could be given is:-

=

=

{ monkey, box, bananas}

{ (monkey) move (box),

(monkey) climb on (box),

(monkey) take (bananas)}

CMB {first, then}

5MB {bunch}

The characterization of a level of description as given above is

not intended to be the basis for any rigorous treatment of language

relationships. It is merely for the purpose of separating cer£ain concepts

which are frequently used in the expression of programs and which

conveniently allow different descriptions of the same thing.

3.1.2 Related levels of description

If the interpretation of concepts of one level of description may

be expressed in terms of the interpretation of concepts of a second level

of description, then there exists a relationship between these levels of

description.

Such a relati?nship may take the form of an explicit statement that

the meaning of a particular concept (or set of concepts) at one level is

equivalent to the meaning of an expression understood in terms of concepts

of the second level.

~
6 I ' ,

- Q -

~
exampl~

Suppose that there is an operation" fll understood at level
1. Suppose some expression is given at level 2 whose
meaning will be understood according to the concepts of that
level. If this meaning is understood to be equivalent
to the meaning of the operation" fIt, at level 1, then there
is a relationship between levels 1 and 2.

Alternatively~ such a relationship between two levels may exist

because a description of a piece of information is given at both levels.

The fact that it is the same information which is described implies that

the interpretation of the. concepts of one level can be expressed according

to the interpretation of the concepts of the second level.

example:

The two representations of the one program given in section
3.1 imply a relationship between the two levels of
description used.

We will describe this relationship between two lev~ls of description

in t~rms of the notion of height. A level of description is said to be

higher than another if the concepts of the first level are understood by

expressions described using the concepts of the second level. It is not

useful to define this notion more closely. In particular we do not wish

to indicate whether or not the height relationship may be defined

cyclically.

If there is some level of description which is considered never

to be higher than any other level of description, then this level is

known as the base level. It will normally be the level of description

of the programming language.

- 48 -

It is intended that the measure of the height of one level with

respect to another be connoted with the relative "closeness" of concepts

of 'each level.

example:

If one level of description contains the notion of ''matrix''
whilst another provides the concept of "array", then these
levels can be described as being closer together than if
the second level provided only the concept of a linear
address space.

However, it must be noted that we do not attempt to give any

quantification of height and further, that for any two levels which have

an explicit height relationship, it is always possible to interpose

a third level between them provided that we have a sufficiently

inventive idea of 'what is meant by "concept".

Information (including the particular case of programs) may be

represented at a number of different levels of description. These

various representations can exhibit a hierarchic structure reflecting

the actual relationships that exist amongst the set of levels of

description. Simon (1969) describes hierarchic structures by the

property of "near-decomposability". A set of variables representing

certain information can be compounded into groups, each of which may

be studied'more or less independently of the interactions between the

groups. Relations between the groups may themselves be studied more

or less independently of their individual element-wise composition. Related

levels of description can exhibit such a property according to the

expression by which they are related.

An abstraction is a particular relationship between the representations

of some information at two separate levels of description, such that the terms

- 49 -

of the lower level are used to express one concept of one of the

~haracterizing sets of the higher level. B t e ween any two levels there may,

of course, be more than one abstraction.

We may identify four separate abstractiOns according to the particular

set to which the Concept in the higher level belongs.

(i) Representational abstraction (the set D).

(ii) Operational abstraction (the set F).

(iii) Sequential abstraction (the set C).

(iv) Structural abstraction (the set S).

Any of the elements of the lower level may, of course, be used

to express any particular abstraction.

example:

An object at one leveL may be "represented" by a
particular set of operations. An abstraction
from this set of operations may be considered as
a member of the set D at a higher level and hence
be a representational abstraction.

Abstraction represents the aggregation of properties ;md interactions

of concepts from the lower level to be interpreted as a Single concept

at the higher level. The inverse of this process we call sbboration.

Elaboration details an interpretation of an aggregate property in terms

of properti-es and interactions of a set of concepts.

example:

A program might be described at one level of description in
terms of a "stack" using operations "pop an element" and "push
an element". At a lower level, the notion of a stack might be
elaborated in terms of an "array" and a "pointer" into the array
to represent the top of the "stack". Elaborations would also be
given for the "stack" operations as being operations upon arrays
and pointers. The program described using a "stack" could
equally be described in terms of these elaborations.

3.1.3

- 50 -

I

Dens~ty of a set of related levels of description
)

One of 'the major reasons for giving representations

a number of different levels of description is that there

of a program at

should, as a

result, be an increase in the comprehensibility of that program in terms of

the relationships that exist, between the concepts of the problem area and

the primitives of the programming language. Whether or not this goal

can be achieved depends considerably upon the ease with which the actual

r~lationships existing between the various levels of d,~_cr iption can be

understood. Even if these relationships can be described according to

abstraction, comprehension is not necessarily assured. This Can be true

if the process of understanding individual relationships between levels

is very difficult. In this case any measure of the height of two related

levels will be large and the number of different levels used will be

small. Alternatively, it may be a relatively easy matter to understand

the individual relationships between levels, but, because of the large

number of such relationships, understanding the whole is difficult.

There is, in general, some point where the nu,.11,,~L of l'cL.ltcd levels

is large enough such that it is possible to comprehend ti, [, i1\ v[the

relationships existing between individual levels, butnoL ~o la(ge that

the number of relationships itself is a barri,"J: t,) cor.lprel";,lsion. This

number will not be constant, even for a particular problem or a

particular programmer. We will describe a set of levels of description

which satisfy this necessarily vague criterion as being sufficiently dense.

In any discussion which follows we will further assume that a sufficiently

dense set of levels of description will be related by abstractions.

~ 51 -

3.1.4 Levels of description and programming languages

The prUnitive concepts of a programming language form a level of

description. In addition most programming languages provide well-defined

mechanisms by which a programmer can give a representation of a program

at levels above the base level of the language itself (e.g. procedures,

data structures, macros).

A procedure is a method of aggregating the properties of operations

combined in a certain way in order to provide a '~igher level" operation.

Procedures, therefore, provide a means of describing operational abstraction.

The use of a procedure allows the programmer to abstract from the details

of the expression describing how a certain operation is implemented to an

understanding of effect denoted by the name of the procedure.

Data struc~uring facilities in a programming language can be used

to abstract from a set of relationships amongst data to the notion of a

structured object possessing certain properties. Hoare (1972a) stresses

the importance of this role in describing and understanding programs

and lists a comprehensive set of structures. Many of these are found

in the language PASCAL (Wirth 1971a).

In most programming languages, however, there is only a limited

provis,ion for deriving a new level of description by representational

absttaction. Algol 60, for example, allows arrays to appear as

parameters 'to procedures,but does not allow an array to be used as a

primitive in a further array. (Of course, multi-dimensional arrays

may be used, but these do not express the appropriate conceptual properties

of arrays of arrays).

Extensible languages provide more general facilities for the

rep~esentation of programs at several levels of description. Algol 68

(van Wijngaarden 1969) allows the expression of both operational and

- 52 -

representational abstractions to provide concepts which may be used

to represent a program.

example:

A level of description containing rational numbers may be
described in Algol 68 by,

mode
.2E. n
.2E. d

rational = struct
= (rational r)

(rational r)

(~numerator, denominator);
int: numerator of r;
i~ denominator--of rj

together with operations (for example)

.2E. sign

.2E. whole
= (rational r) int

(rational r) bool
sign .!!.

d r
r;

1;

~xample taken from Lindsey and van der Meulen 1971)

SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968) also provides similar

facilities by the ~ concept.

example:

Rational numbers, as above, can be provided by:

class rational;
begin integer numerator, denominator;

integer procedure sign; sign:= if numerator(O then -1 ~ 1;
boolean procedure whole; whole:= denominator = 1;

The extensible language EeL (Wegbreit 1971). in addition to

providing means for both operational and representational abstraction,

has a facility for sequential abstraction.

- 53 -

In order that a program expressed at a number of levels may be

easily understood, it should be possible for these levels to be described

as being sufficiently dense. Certain structuring primitives of programming

languages can make this difficult if they are not used in restricted ways.

A pointer is often used to represent relationships amongst elements

of data. In most programming languages where the pointer is available,

there is little restriction upon the complexity of the relationships that

can be so expressed. If the use of a pointer in a program describes relationships

which are difficult to understand according to any abstraction, then it

will not be possible to represent that program at levels of description

wh,ich are sufficiently dense.

The goto statement has properties which are similar to those of the

pointer except that it represents relationships which describe the flow

of control in a program. It is possible to use the go to to describe

relationships which are so complex as to preclude the representation of

a program at a sufficiently dense set of levels of description.

Wulf and Shaw (1973) have described the global variable in a similar

light.

Each of these constructions can, of course, be used and still allow

a program to be represented at a set of levels of description which may

be described as being sufficiently dense. However, it is necessary

that some discipline of use be adopted. This introduces a dilemma for

language design as to whether or not it would be better to omit such

constructs. It is the author's opinion th.at it should not be left to

the individual programmer to impart his own discipline, for who is he

to judge what should form a sufficiently dense set of levels of description

and what should not? It is part of human nature to be fascinated by i;::;e,nuity

- 54 -

to the detrUnent, in many cases, of clarity, simplicity and understanding.

If programmers are given the freedom to hang themselves, then many of them

will probably try.

The development of certain programming languages lends support to the

idea of providing a reasonably powerful set of structuring primitives

whilst imposing restrictions upon the programmer.

The language BLISS (Wulf, Russell and Habermann 1971), for example,

does not have an explicit goto statement. Instead, specialist usages of

the goto are retained in the form of exits from loops, blocks and procedures.

The language developed as part of the SUE project (Clark and Horning 1971)

includes mechanisms (e.g. CONTEXT, DATA and PROGRAM blocks) specifically

designed to encourage the programmer to represent his program according

to a hierarchical structure.

It is, however, probably true to say that there are many obstacles

to be overcome and technical advances to be made before.languages

possessing ·such properties as mentioned earlier are widely accepted.

3.2 Methods for constructing programs

As Simon (1969) suggests, and as was d~scribed in the previous chapter,

one of the most powerful ways of tackling a complex problem is to reduce

it to a set of "smaller" (i.e. less complex) problems. Each of these

problems may in turn be reduced to sets of smaller problems thereby

developing. a hierarchy of "problems". Those which are :;'c.ast complex will

be found at the extreme points of this hierarchy (Le. if the structure

is thought of as a tree, then the leaves of this tree stand for those

problems which are least complex). Eventually the division process

ceases when a problem is so "Simple" that its solution can be expressed

with ease and confidence. The solution to the whole (original) problem

may then be found by a composition process, the solutions to a Set of

- 55 -

of sub-problems being composed to express a solution to the problem from

which they were derived. Thus, the total solution may be expressed.

However, a simple recognition of the power of problem decomposition is

no more than a guide to how problems may be solved or how computer

programs may be written. What is missing is a method, or way of

proceeding.

Various programming methods have been described which are based

upon this principle of decomposition. Terms such as "structured progranming",

"step':'wise refinement", "top-down", and "bottom-up" have become

increasingly familiar in the literature. According to ea~h of these

methods, programs are constructed in a piecemeal manner. Individual

parts of a program are identified and constructed as separate activities,

in a manner similar to the problem decomposition process described above.

The various methods differ in the emphasis each places upon the separate

tasks which together form the total programming activity. In particular,

varying emphasis is placed upon the ordering of the development itself

(see section 3.2.2. below).

The structuring of the program development process in these ways

can be described, with advantage, in terms of levels of description,

abstraction and elaboration. Indeed, many of the methods which are

discussed in more detail in section 3.2.2., are based upon notions which

are equivalent to the development of a program by its expression at

a number of related levels of description.

3.2.1 Relationship with levels of description

The development of a program by methods based upon problem

decomposition generates a certain structure amongst the information

which describes such a development. This information and this structure

may be represented using the notions of levels of description, abstraction

- 56 -

and elaboration. This is best illustrated by an example. Any ordering

of the development process which is apparent in this example should, at this

time,be taken as merely incidental.

Consider the following problem. (See also section 3.1).

'~rite a program which reads 10 input cards and tests these same
10 input cards for the following conditions. Each of the first
9 values on ,each card should be within certain limits. The 10th
value should also be within these limits and, further, should be
a check upon the preceding 9 values on that card".

The first stage in writing such a program is to analyse the problem

statement to decide what major concepts require to be represented.

Such an analysis might well suggest that this program could be written

as a loop, with each pass of the loop first reading a single card and

then testing this 'card to see whether it possesses the required properties.

A program to do this can be represented as:

"Do the following 10 times:
Read an input card and then test it".

This analysis decomposes the original "problem" into five probl~s.

Pieces of IJrogram must be written to represent (a) looping ("do the

following 10 times"), (b) carrying out a sequence of operations ("and then"),

(c) reading an input card, (d) testing an input card and (e) storing inforrr.ation

about an input card in order that, once read, it can be tested. These.

five concepts are just those concepts which characterize the level of

description at which the program is represented above. If we denote

- 57 -

'thiS by level "1", then:-

'D = {input card} 1

Fl = {read (input card), test (input card)}

C
l = fdo • • • 10 times, and then J

Sl = { }

As the next stage in developing the program one of these five

concepts is chosen and analysed in order to decide how it may be

decomposed.

Suppose that it is decided to develop further the operation

"test (input card)" by separating the operation of actua11y checking the

card from the operation of reporting whether or not a card is satisfactory.

Thus "test (input card)" is decomposed into operations which we might ca11

"check (input card)" and "report (result)". If the total program is to be

expressed in terms of these concepts, then the level 01 descrIption at'

which such an expression is given wi11 contain "check (input card)" and

"report (result)" as operational concepts. Notice, also, that a new

concept has been introduced, that of "result". Some means of communication

between the action of "check (input card)" and "report (result)" must

be found. Thus, although the decomposition of a "problem" at one level

of description may be carried out according to the properties required

of that "problem" regard must be paid as to how that decomposition may be

expressed in the context of lower level concepts. In this case, we

expect that it will be an easy matter to implement the necessary communication

and so decompose "test (input card)" as described. In general, however, it

may not be possible to evaluate a decomposition of a problem with any

- 58 -

great confidence because 0.£ a lack of knowledge either of the properties

required of the high-level "problem" or of the relationships that such a

decomposition will require at some lower level.

If a level of description is characterized on the basis of the

decomposition of "test (input card)" suggested above, then this level

(denoted as level 2) is related to level 1. The operation "test (input card)"

at level 1 is elaborated at level 2 by an expression involving operations

"check (input card)" and "report (result)". This elaboration may be

represented as a piece of program at level 2.

Suppose that the, next "problem" chosen is that of deciding what information

to retain about an "input card". An analysis of the properties of an

"input card" and the requirements of the communication between "read (input·

card)1I and "check (input card)" suggests that it is necessary to retain

all 10 "values" of any input card. Each of these 10 values must be

identifiable separately and in the proper order. Thus the problem of

retaining an "input card" may be decomposed into the problems of retaining

a ''value'' and of structuring several "values" into an ordered "sequence".

Notice now that, if the total program was represented at a level of description

reflecting this decomposition then it is not sufficient merely to incorporate

an expression of an "input card" as being "a sequence of 10 values". In

addition expressions are required which describe how the operations

"read (input card)" and "check (input card)" are carried out in respect of the

decision taken as to the representation of an input card. Thus, in order to

give a meaningful representation of the program at thiS new level of

description (denoted as level 3) decompositions must also be given for

"t;ead (input card)" and "check (input card)'i in terms of, for instance,

"read (value)" and't:heck (value)". In order to understand the program at

- 59 -

level 3, therefore, it is necessary to understand several individual elaborations,

although each may be described hierarchically.

The development of the program may continue in a manner similar to

that described above. A choice is made from amongst a set of possible

"problems" that remain. An analysis of the properties required of the

chosen problem suggests a decomposition of that problem into a set of

"sub-problems". This decomposition forms the basis for a level of

description at which the program (or a part of the program) may be expressed.

However, this expression may require further concepts or decompositions

before it can be understood to satisfy the properties required of the problem.

Alternatively, the ordering of the separate tasks may be different as we

discuss below. However, the notions of decomposition, expression and choice

are relevant whatever ordering is followed.

3.2.2 A discussion of methods

The relationship between approaches to program construction based upon

a decomposition of the overall task and the ideas of levels of description

discussed in the previous section draws attention to a number of factors.

The programmer must choose a particular "problem" to investigate further.

When he has made a choice, he must decide on a suitable decomposition of that

probiem and how the piece of program for that problem will be expressed in

terms of this decomposition. The influences upon his choice and his

determination of a suitable decomposition and expression are, to a la~ge

extent, based on any actual method he may be following. A number of well

known methods are discussed below. This discussion is itself based upon

two observations concerning program construction. The first is that the

order in which a program is developed plays a crucial part in the form

it eventually takes. A simple example is only an illustration of this

observation.

- 60 -

example:

At an early stage in the development of a program it is
realized that certain data must be retained and made
available during subsequent processing. If a decision
is taken at an early stage as to how this data is
retained (i..e. according to a particular mapping between
the abstract data structure and actual storage according
to an expression in a programming language) then this
decision determines to a considerable degree how operations
upon this data are implemented. At the time the decision
is taken the full extent of such operations will, most
likely, be unknown. If the decision is delayed until as
much information as possible is available about how the
data will be used, then a more appropriate representation
might be achieved.

The second observation concerns the evaluation of decisions and

expressions made by the programmer. Although Chapter 4 is devoted to a

consideration of program correctness and testing, the necessity of evaluating

a program at· various stages in its development has an extremely powerful

effect upon the practical application of certain programming methods

and therefore warrants comment at this time. If a particular rr.cthod allows

the programmer to obtain infoli113tion about the worth of his work then this

can act as a means of guiding his future work in particular directions.

Mannheim (1966) describes a ''method'' for the design of highway routes which

is' based almost completely upo~ the idea of repeated evaluations. The

method depends upon the designer providing "cost estimates" applicable

to design choices at a particular level of description, and then uses

Bayesian decision theory to suggest the cheapest route on the bas.is of

these estimates. Although the actual mechanism of evaluation might not

be practical in a programming situation there are techniques which have

a similar background and which can be used. A number of these are

','

- 61 -

described below.

It is interesting, before considering programming methods in detail,

to note the work of Alexander (1966). Alexander seeks to derive a method

of design which we may describe as being determined from a direct

consideration of properties of the problem. His technique is based upon

the formation (by the designer) of a matrix of values to represent the

relationships between all of those properties which are ~ acceptable in

any solution to the problem under investigation. (In Alexander's particular

case, he was interested in problems of environmental planning). Certain

properties have a strong inter-relationship whilst being relatively

independent of the remainder. Alexander proposes that the set of unacceptable

properties may be grouped according to the strength of their mutual

relationships. There will then be certain relationships existing between

the groups themselves. These groups can therefore be aggregated into

larger groups and the process repeated until all unacceptable properties

are categorized into one single group. These various gro<lpings form a

hierarchical structure. The designer uses this structure and th0 properties

of the individual groups to form his complete design for the solution to

the problem. Thus the only problem facing the designer is the expression

of this solution in appropriate terms. Whilst such an approach has a

certain ap,ped, there are, however, a number of difficulties which

restrict its applicability in a practical situation such as programming.

Randell (1971) points out a number of these. In particular there is the

problem of constructing the matrix of values relating unacceptable properties.

This requires that the problem being tackled is well-specified and that the

programmer is able to appreciate, more completely than is usual at the

outset of any programming activity, the way in which the concepts of the

- 62 -

problem are related to the prUnitives of the programming language.

Alexander's method appears to disal1ow, to a considerable extent, the

freedom for a designer to reappraise his design on the basis of the way

that design is developing and in the light of a better appreciation of

the task with which he is confronted. This may be satisfactory in certain

desigri Situations where problems are well-specified and where there is

no difficulty in representing the final design. However, these are two

aspects of design in general which are not characteristic of programming.

A programming method needs to allow the programmer the opportunity to

learn about his task as he carries it out. Thus any ordering of the

development cannot and should not be determined precisely at an early stage.

The programmin8 methods which we now discuss rely on an ordering of

the development of a program, but not one which has the inflexibility

apparent in Alexander's method. Rather, they may be described generally

as trying to balance the need for some ordering of the programmer's

intellectual effort against the usefulness that information gained during

the development process can have upon the way in which that development

proceeds.

The essence of bottom-up programming is the construction of concepts,

which are ~xpected to be of use, from others which have less immediate

attraction or applicability. The construction process is represented by a

decision to provide a certain concept which will enable a representation

to be given of a program (or piece of a program) in terms which are more

closely related to the problem than are those of any available level of

description. This decision is followed by an activity in which the appropriate

elements of some already defined level of description (e.g. a progrmfu~ing

- 63 -

language) are combined in some way to represent the implementation of the

new concept. This basic construction process is repeated, building

further concepts in a hierarchical fashion until a set of concepts is

constructed which is sufficient to allow the representation of the

program for the overall problem at a level of description close to

that at which the problem is described and understood.

A design ordering which is purely bottom-up is unlikely to be of -any

practical use becau~e it takes no account of the posed problem to limit the

space of concepts which are provided at each stage. However, it is more

often the case that bottom-up programming forms part of a wider design

method in which an initial design stage is carried out. This will take

the form of a problem analysis process which decomposes the overall

programming task into a hierarchy of sub-components. This hierarchy may

then be implemented in a bottom-up manner to construct the total program.

Methods similar to this have been used in programming a number of large

systems (e.g. Scherr 1973).

As a program which is constructed in a bottom-up manner can always

be represented at the level of a progr&~ing language, use can be made

of the underlying hardware at any stage of the development [or the purposes

of evaluation and testing. It is possible to derive physical measures

of resource utilization (e.g. execution time, storage requirements) during

the development process and to demonstrate certain properties of pieces

of program. It is, however, not possible to relate any individual

measures to those which constrain the total program because this can

only be achieved when the whole program is complete.

Bottom-up program construction is clearly exemplified in the

description of the T.H.E. operating system given by Dijkstra (1968b).

Each level of the design is built from the one beneath it, masking out-

- 64 -
unwanted features and constructing others which are required.

Most contemporary programming languages, and particularly

extensible languages encourage a bottom-up programming style by the

provision of mechanisms such as procedures and data structures (see

section 3.1.4 abov~ and compilers which enable programs to be tested

on hardware. The use of separately compiled procedures is often

helpful in testing programs at higher levels of description. Many of the

publications concerned with SIMULA 67 include examples of bottom-up

construction, (e.g. Dahl, Myhrhaug and Nygaard 1968, Dahl and Hoare

'1972, Birtwistle 1973).

Amongst other reports exemplifying this approach is a paper

by Naur (1969). This describes the idea of an "action cluster"

whereby a representation is made for the innermost loops of a program

before the remainder of the program is constructed.

It would appear that the construction of a program following

bottom-up techniques is always likely to involve a compromise.

The problem analysis phase cannot pay sufficient attention to the

specific difficulties which will occur during the later implementation

of the concepts specified during that phase. Thus problems will arise

during implementation which would be best resolved by a furth.::r

consideration of the overall design. It is often the case, however,

that it is not possible to carry out the necessary redesign because of

the effort which has already been invested. In this case, any

implementation problems must be overcome in some unsatisfactory manner so

that the original design is maintain~d. It may even be the case that it

is not possible to meet the original design specifications but equally it

is not possible to change these specifications. A program constructed

under such conditions will not, therefore, be likely to meet its overall

- 65 -

design specifications.

Top-down programming is an ordering of the development of a program

whereby the derivation of a suitable decomposition proceeds together with

the determination and representation of an appropriate piece of program.

Design commences with a description of the problem at SOme level of

description. Using the concepts of this level a solution process may be

described. These concepts are programming problems because they will not,

in general, be directly representable in a programming language. The

development of the program proceeds by considering these various problems

in turn. Solutions for each may be expressed in terms of lower level

concepts (which will not generally be those of a programming language)

following an analysis and decomposition of the properties required.

example:

A solution process may be described using the operation "test
an input card". The problem of constructing a representation
for the operation in terms of a programming languoge is
tackled by analysing the required properl:ics of the operation.
decomposing it into the lower level operations "c;l(.'ck an
input card" and "report results" and giving an expression
of how these operations may be combined to fulall the
action of the operation "test an input card" (Le.
"check an input card and then report results".)

The process continues until the representation of solutions to

all problems can be given (by composition) in terms of the programming

language.

Each decomposition is an invention of a new level of description

enabling a description of the program (or part of the program) to be

represented. Successive levels of description are related by elaboration

until, finally, the "invented" level coincides exactly with the prograrm:'i-:g

- 66 -

language.

There have been numerous reports which discuss top-down program

construction (e.g. Zurcher and Randell 1968, Mills 1971, Wirth 1971b,

Baker 1972). Of particular interest is the report on "structured

programming" (Dijkstra 1972a). This report introduces the concept

of a "pearl" as a unit of program development. A pearl encapsulates

many of the notions of a level of description together 1~ith the

r~presentationof elaborations of higher concepts.

The process of top-down programming differs from methods based

upon a bottom-up ordering by the stress placed upon solving the problem

of giving a representation to a program or piece of program. Just as a

blind bottom-up design and encoding method is unhelpful because it takes

no account of knowledge of the original problem, so a blind top-down

approach is impractical because it cannot take account of the requirements

of any actual programming language.

A particularly obvious manner by which the properties of the

programming language can influence the development at highcr lcvels is

through notation. The programming language provides ;", lcv01 of description

which may be characterized by sets DpL' FpL' CpL and SpL. f.ach level of

description derived during the construction process may bc ..:.haractcrized

by sets as D
LD

, F
LD

, CLD and SLD (for instance). One approach is to

restrict the relationships between the sets of level PL and those of

various levels LD in certain ways. For example, the following relationships

could be maintained.

- 67 -

CLD = CpL

SLD SpL

DLD DpL

FLD :::> FpL

By DLD ::> DpL etc. we mean that the data concepts of the programming

language are available at all levels of description LD, although other

concepts of data may be present at levels other than that of the programming

language. Other interpretations could be placed upon this relationship,

either limiting or expanding the set of concepts available at various levels.

If, in addition, other characteristics of the programming language

(i.e. its textual nature, its particular syntactic forms) are suitably

generalized and applied to the notations used at higher levels, then the

flavour of the base language will permeate the design process and

encourage the program to be developed in a consistent manner towards a

given programming language.

Baker (1972) describes a top-down approach based upon a 5~;,llial:'

scheme, with the further constraint that the mechanisms used to relate

the various levels of description (i.e. the expressions of solutions

at each level) should be those mechanisms of the prograrming language

which structure concepts hierarchically. In his sch~e, DLD

SpL for all LD and the base language is PL!1.

The more general scheme described above is recognizable as the

generalized or "bastard" programming language often used by progranuners

during program development (see Chapter 2, section 2.3.3.).

- 68 -

Most programming languages can be used in a restricted manner

to provide a number of levels of description derived top-down.

The use of such notations purely as representational devices is almost

neutral as to the ordering of the development (see section 3.1.4. above).

example:

A program can be represented in a programming language
as merely a sequence of calls to procedures which have
not been developed. Mills (1971) and Baker (1972) use
an approach similar to this (see below).

Design evaluation in a top-down method cannot rely upon

knowledge of the eventual form of the program in a programming language

until the program is almost complete. Thus the only measures of the

"correctness" (or suitability) of a particular program development

which can be determined in the early stages are relative to the progrmTh~er's

intention for high-level concepts. Equally, no measures can be given of the

utilization of actual hardware resources. when the program is represented in

terms of abstract concepts divorced from considerations of execution speeds

or storage requirements.

However, though these observations are g0nerally true of top-down

development methods, it is possible to improve on this situation if certain

restrictions are made. The method described by Mills (1971) and Baker (1972)

is an example. The programmer is allowed only to represent his program

at levels of description which are derivable within a given programming

language. He may represent his program in terms of procedures which are

not implemented, for example. Because the program is still represented in

the programming language, it may be presented to a compiler and executed

- 69 -

with "dununy" procedure bodies providing suitable support for the yet

to be designed procedures. Thus, a certain amount of program evaluation

can be done· with mechanical assistance.

More generally, it is possible to make use of sUnulation techniques

to overcome problems of design evaluation in top-down developments.

Simulation can be used to model the typical behaviour of processes

without actually creating a representation for them. This possibility

was recognized in papers by Parnas and Darringer (1967) and Zurcher and

Randell (1968). In the latter case, the term ''multi-level modelling"

is introduced to describe the particular design method advocated. At

any particular time during its development, a program may be represented

in terms of concepts which are not those of the base programming language.

Simulation techniques may be used to model these concepts and thereby

allow useful design evaluation to be carried out.

According to the multi-level modelling design method (and also that

described by Parnas and Darringer) such simulations form the basis for

,program development. Initially the highest level of desiga is 'imulated

in order that it may be evaluated. The concepts simulated i.lt tl . .ct. level

are then implemented in terms of lower level concepts. These concepts

are in turn simulated to provide a mechanism for evaluation. When this

evaluation is completed, the cycle is repeated. Hulti-Ievel modelling

has received further attention in papers by Aslanian and Bennett

(1971) and Graham, Clancy and DeVaney (1973).

This discussion of programming methods has stressed particularly

the role played by the ordering of the development activity. As both

Gill (1969) and Naur (1972) point out, a strict adherence to either a top-down

- 70 -

or a bottom-up ordering is neither natural nor practical. As we described

above, however, the separation of the task of analysing a problem from

the task of embedding the appropriate concepts in a program can lead

to programs which may not meet their specifications or which are unnecessarily

complex. There would seem, therefore, to be an attraction in the parallel

development of these tasks so that each may influence the other and allow

a closer assimilation of the program text with its purpOSt~. In order that

thfs be possible without the need for constant redesign or reimplementation,

we believe that it is necessary that programming methods be used which are

based upon a top-dcwn ordering. This is not generally the case at present.

We suggest that this is primarily because the tools available to a programmer

encourage him to encode his design in a programming language at a very early

stage. The subject of later chapters is to describe certain programming

aids which take an opposite point of view.

3.3 Conclusions

This chapter has been concerned largely with the way programs are

developed. TIle basic premise was that program design and development

is an extremely complex problem solving activity involving the

representation of complex information in specialized notations. Our thesis

has been that design must proceed in well-disciplined ways and that a

hierarchical structuring of the representation of the program and of the

development process were aims to be achieved. To these ends we introduced

the notions of a level of description and of abstraction and elaboration

relating such levels.

- 71 -

We believe that programming methods based upon a top-down

ordering of the development have several advantages over other methods.

This ordering combines both the derivation of suitable decompositions

of a programming task and the expression of the program in terms of

these decompositions within a single development structure. This

allows full use to be made of information gained from such expressions

in the ·evaluation of design decisions in order to influence future

development. The use of simulation techniques enables USCLul information

to be obtained about the properties of a program, even though this

program may not be completely developed and represented in its

final form in a programming language.

- 72 -

Chapter 4:

Correctness, debugging and other considerations

In the previous chapters, programming has been considered from the

general standp~int as being a special form of problem solving activity.

We have discussed many of the issues involved in the derL'ation of a

program as a piece of text representing a set of computational processes

f.rom this point of view. However, little attention has L~cn given to the

problem of ascertaining whether a program will, in fact, fulfill the

expectations of the programmer. We mentioned, briefly, Some related

ideas in discussing ways by which designs may be evaluated. In this

chapter we describe some of the difficulties that have to be faced if

a programmer wishes to be certain (or at least have a justifiably

high degree of confidence) that a program is "correct". Often, as will

be seen, a major problem is that of defining what is meant by "correct".

We do not attempt to give a formal definition, but rather we discusS the

specific difficulties inherent in describing, or even ascertaining, the

relationship between a statement of a prob1en and a prohra~ written in

response to that problem. We discuss various techniques whereby the

progrmooler can demonstrate confidence in a program. These techniques

include program proofs, constructive programming techniques, debugging

and program testing and various other mechanical tools which are available.

A major aim of these discussions is to draw attention to the influence

that an overt concern for program correctness can have on the programming

activity and to suggest the form of useful programming aids.

- 73 -

4.1 What is meant by correctness, and redundancy

It is very difficult to define precisely what is meant by the

"correctness" of a computer program. We may sometimes say that a program

is correct because we can "see" from its text that it obviously solves

the given problem. This is equivalent to proving a theorem in mathematics

by the axiom, "obvious", and has similar dangers. If we claim that we can

see that a program solves some problem then we are making two very

powerful assumptions. One is that we have completely understood the problem

and the second is that we understand fully how the various programming

constructions are related and represent a process to carry out the

solution to the problem. In the previous chapters we have described some

of the difficulties associated with such understandings. Except perhaps for

the case of extremely simple programs solving trivial problems, the

technique of "seeing" the correctness of a program is bound to be

unsuccessful. In real world problems and programming situations, it is

often the case that the problem is only fully appreciated by an attempt

to write a program for it.

The correctness of a program is defined ultimately by w~.h'ther or not

the results of its execution are always those desired and expected.

(Whether or not this includes all intermediate results is dependent upon the

form of any actual definition of correctness which may be adopted) •. One way

in which such a criterion may be checked is by running the program under all

possible inputs and under all possible conditions. Even if we disailow the

possibility of such things as asynchronous interrupts, then clearly it is

likely to be necessary to run the program an extremely large number of timeS.

Moreover, this approach becomes completely uneconomic when we realise that

whenever a modification is made to the program, many of the previous testS

have to be re-run. Well-structured programs can help reduce the number of

- 74 -

test~cases required (Dijkstra 1970), but that is all. Even the choice of

the test-cases themselves may be an almost impossible task, the very

complexity of a design making it difficult to ascertain whether or not

certain program paths have been rigorously tested. Hetzel (1973) lists

some approaches which' have been followed in the field of automatic

generation of test data. However, if a satisfactory "proof" of a progr8ll\

is required, then examining the executions it invokes is never likely to be

~ success.

"Program testing can be used to show the presence of
bugs, but never their absence".

-Dijkstra (1970)

If we wish to ascertain absolutely that a program does what we believe it

should, then we must rely on the program text alone. If it is possible to

give a "proof" that the processes defined by a program will always produce

an effect which can be recognized as being what is required, then we have

indeed managed to provide some degree of confidence in tile prognun. However,

as we shall see it is by no means an easy matter to give such a "proof", and

even then, the "proof" may be based upon a numbe:' of assumptions, some of whic

are quite likely to be invalid. Thus there is likely to be a continued

tequirement for program testing techniques in order to improve program

comprehension and increase confidence levels.

As is probably clear, establishing that a progam is correct is

likely to require a considerable effort from the programmer. Much of this

effort is expended in supplying redundant information which can act as

checks within the program. In many current programming languages the

programmer must provide information which is strictly redundant. The

- 75 -

declaration of variables as being of a particular type is an example. Checks

can be made (e.g. type checks of operands and parameters) on the program tex~

which would not otherwise be possibl~because the necessary information

is available. Likewise, if it is desired to construct a proof of the

correctness of a program from its text, then additional information must be

supplied to specify the purpose of the program and against which the proof

may be constructed. Program testing relies on the availability of redundant

information. If this was not the case, then there would be no criteria by

which to judge the results of such tests. We will give examples of such

redundancy in the course of this chapter.

Of course, as human beings, we rely heavily on redundancy to allow

us to achieve a better understanding of complexity. Many of the points we

made in Chapters 2 and 3 concerning the design and representation of solutions

are ultimately founded upon this idea. Hierarchical structures represent

redundant information. The processes of abstraction and elaboration are

exploitations of this fact.

Unfortunately, the provision of redundant information is not always

acceptable to the programmer. If he is unable to see how he may gain from

it or if it involves him in a considerable amount of addi:.. Lo,l~,l work, then

his natural inclination will be to refuse the task. For simi~ar reasons,

documentation is often badly done, or not done at all. T:w program .. ner'

himself considers he will get no benefit from it, or c~rtainly that

he will get no return worth the effort involved. However, if he can be

given tangible benefits from such extra work in proportion to the work he

expends, then he may be attracted. A reasonable aim, therefore, should be

the provision of an environment in which a programmer is rewarded for his

extra effort in supplying information in order that a higher degree of

confidence Can be placed in his programs. At the present time, the satisfactol

- 76 -

achievement of this aim would seem to be some time in the future. In the

remainder of this chapter we investigate some of the questions which arise

and how these questions are related to specific programming methods and tools.

4.2 The text of a program

In this section we will describe some approaches that have been made

for the verification of the behaviour of a program by consideration of its

text rather than from any properties which may be deduced from executing

the program on a machine with particular test data.

4.2.1 The meaning of a program text

There are two obvious requirements to be met before we can prove

the correctness of a program from its text. One is that there should be some

means by which an exact understanding may be gained of what processes are

represented and what are the effects of such processes. The other is that

there should be some means for specifying those processes which the program

text should represent (i.e. what is the intent of the progr~~er in writing

the program). The latter requirement is dealt with in section 4.2.2.

A significant amount of work has been carried out attempting to define

the meanings of the elements of programming languages and their cCI.l;,ination

into programs (see Steel 1966, de Bakker 1969 for example). Manv workers have

expressed the meaning of programs in terms of an interpretation on abstract,

formal machines (e.g. van Wijngaarden 1966, McCarthy 1966, Lucas, Lauer and

Stigleitner 1968). Such methods do not, in general, allow a single

interpretation to be given for a program text which encompasses all processes

which that text can represent. This is because it is necessary to specify

an initial state of the abstract machine for any interpretation which thereby

allows a meaning to be assigned to a program text only in the context of

a particular set of input data.

- 77 -

Another approach to the derivation of the meaning of a program text

is by the use of axioms and rules of inference. Hoare (1969) describes how

axiomatic schema can be given which define primitive elements of programming

languages by transformations of predicates over the variables of a program,

and suggests a possible notation.

example:

the axiom of assignment
~ Po (x: = f} P

where f is an expression,
x is a variable identifier,

and Po, P are predicates, Po being obtained from P by
systematically replacing occurrences of x by f.

It is generally the case that the meaning derived for a program text

by the use of such a scheme will be conditional upon a separate determination

of the property of program termination. However, the fact that a meaning

can be derived which is independent of particular values of input data

(being expressed in terms of predicates relating the rlo;) .. ;r~ies of the

input and output variables of the program) gives the .:lxio;nati .. ' approach a

considerable attraction.

Hoare and Wirth (1972) give an axiomatic definition for a major p'urt

of the language PASCAL (Wirth 1971a). Dijkstra (1973) uses an axiomatic

basis to define predicate transformations exhibiting certain properties

in order to derive equivalent programming language primitives possessing

similar properties.

- 78 -

4.2.2 Expressing the intention of a program

We may be able to derive a meaning for a program by consideration of

its text by the approaches described in section 4.2.1. However, in order to

ascertain whether or not this derived meaning satisfies the purpose for which

the program was written, it is necessary to have a means by which the

programmer can express his intent or understanding of h:.:' program. One obvious

way in which this can be done is by the programmer stat~; : j hilt, whenever .:

process which is represented by the program, terminate", chen certain values

will have been produced. As a trivial extension to this ;\;'1., the programmer

may express his understanding of parts of the program by ;;;t:-,i~ements which

declare that, at particular points in any such process, certain intermediate

values will have been produced. These various statements arc known as

assertions. The use of assertions in the proof of the correctness of a

program was suggested independently by Naur (1966) and Floyd (1967a),

although the idea of an assertion is Illuch older and may be sC..-:n i 1l writings

from the early days of modern computer programming (GoldstLH> a1:(:

von Neumann 1.947, Turing 1949).

Proving a p)_,::cn. l:1:ogl~am ,:orrect

Naur (1966) and Ployd (1967<:\) both propose that tIl' 'ISC 0':: Llsscrtions

provides the basis for a technique by which progr;1ccls may be "pnIVcd to bc

correct". The technique requires that at specific point.s wilhin a jJrogra1l1,

the programmer makes asse't:tions about the current values (; [the program

variables. Each assertion is that, ,-,hen the program ex~~cutii)n reaches these

points,then the named program variables will have the stated values. In

particular, the assertion at the end of the program represents the expected

result of the exccutLon, wllilst an assertion at the stLlr~ of thc progrmn

specifies the conditions under which the progr<1m will achieve this

- 79 -

desired result. Using a certain minimum set of such assertions and some

suitable scheme for defining the semantics of the programming language,

the program can then be checked statically to see if these assertions will

actually hold. Notice that it is also necessary to prove that the program

execu·tion will actually reach those parts of the program annotated with

assertions, in particular that it terminates.

There is, as we have stated, a minimum set of assertions required

for this process to, be carried out. It has been shown (.~jT is 1969) that it

is sufficient if every loop. of the program contains at least one assertion.

It should be noted that this technique may also be applied to programs

which are interesting even though they loop (e.g. some processes in operating

systems). The technique is used simply to demonstrate that, when a process

reaches a certain point in the program describing it, then certain conditions

apply with respect to the program variables. Terminating programs are merely

a particularly interesting special case.

It is important to appreciate the role of redundancy in this

technique, and also its fallibility. The provision of a sufficient set of

assertions is no more than a second writing of the progl-U];l. 1. JcC'(1 there is

a strong requirement that the " a ..;sertive program" uses a simil3;- notation to

the program itself as they need to be checked against each other. As

usually the same person who writes the program also s\J"plics the assertions,

there is ground for believing that any misconceptiom~ he may have had when

writing the program will also find their place as similar misconceptions in

the assertions.

Another difficulty is the question of what to do when an inconsistency

is discovered. BaSically what the technique does is to compare two

representations of the same object. When a mismatch occurs, all that may be

concluded is that there is probably an error in one of the two versions.

- 80 -

Provided it is possible to decide in which version the error is, then progress

may be made. It could be that the error occurs in an assertion. If so, then

the programmer has an incomplete understanding of his program and his

intention and so he should improve this understanding by trying to correct

the assertion. If the error is in the program, then the programmer has also

learnt something; namely that the program does not do what he thought it did,

and again he has to discover what it does.

Finally there is one important pOint to be made - \'(;t assertions.

If a complet-e check is made between the program and the set of assertions,

then this does not mean that the program is correct. All Lhat may be

properly claimed is that it is correct "relative to the assertions that

were applied", and also "on the assumption that the model nssumed for the

programming language semantics was correct". The program might still fail

to solve the problem.

The basic technique outlined above has been applied by several

workers and considerable experience has been gained. LvndoG (1972) and

Elspas, Levitt, Waldinger and Waksman (1972) both give lengthy surveys.

The experience gained has not been confined solely to pr"L'l"a'1'-s using only

integers or other particul~rly well-understood concepts [or which axioms

can be derived without excessive difficulty. Hull, Enright zm(Sedgwick (1972:

apply similar principles to the problems of the correc:'ncs:; of numerical

algorithms. In addition Clint (1970) demonstrates that Jssertions can be

used to prove properties about programs which use floath.g point arithmetic.

Ashcroft and Manna (1971) and Lauer (1972) have recently investigated ways

of extending Floydls original approach to the problems of co-operating

sequential processes.

A number of practical difficulties have arisen, not the least being

the complexity of the proof of the theorems which arise. A theorem needs to

- 81 -

be proved for each path in the program which is bounded by assertions. These

theorems are generated by "pushing" an assertion through the program,

modifying it in accordance with the semantic definition of the programming

constructions used, until another assertion is encountered. It is then

necessary to prove a theorem concerning the compatibility of the modified

assertion with the one encountered. Such theorems are generally known as

verification conditions.

It is obvious that the form these verification conditions take is

dependent upon the form of the assertions applied. Whilst it is unlikely that

there will be much choice in the form of the assertions at the beginning and

end of a program, the assertions made within the program arc dependent upon

the techniques employed in the program. Therefore, the programmer has some

control over the complexity of the verification conditions by suitable

choice of program and assertions. However, we believe that the programmer

is unlikely to have sufficient understanding of his problem to usc this as an

absolute criterion governing the design of his program. It is still a useful

exercise, however, to anticipate a requirement for a program ,:>roof during

program construction. This is likely to have some affect upon a design.

Another difficulty that can arise is in the formation of the

assertions to apply to a given program. This is particularly apparent in the

case of assertions which are within a loop of the program. In some sense

these assertions represent the meaning of the loop itself. It has been pointed

out (King 1969, Good 1970) that there is an analogy between loop assertions

and inductive hypotheses in mathematics. Elspas, Green, Levitt and Waldinger

(1972) have suggested that difference equations might be used to establish

loop assertions. Otherwise, it would appear that they must be supplied

solely on the basis of a programmer's intuition. In view of the important role~

- 82 -

that the choice and form of assertions play in the generation of verification

conditions, there is an argument for guidance being avail~le to a programmer

so that the assertions he makes are suitable • . ..
Machine "assistance may offer a solution to many of the problems described

In theory it is possible to reduce the complexity of the verification

conditions by supplying more assertions. This has, however, the effect of

increasing the number of theorems to be proved. King (1969) describes

a system which, given a program annotated with assertions, will generate the

verification conditions 'and use an automatic theorem prover to prove their

correctness. However, the program must be written in a special language

which is, of necessity, limited. The basis of this limitation is the need

to be able to describe the semantics of the language in a way that allows

a theorem prover to be able to generate the necessary proofs. An interactive

system is described by Deutsch (1973). Deutsch claims that this system

is more powerful than King's, due largely to advances in the techniques of

automatic theorem proving. He does, however, remark that the set of programs

which can be automatically proved by his system also appears to be limited.

Elspas, Levitt, Waldinger and Waksman (1972) describe l~'I.Jny of the difficulties

which have to be overcome in the design of a theorem prover suitable for

proving the theorems which are generated in proofs of correctness of programs.

It has been conjectured (Elspas, Green, Levitt and Waldinger (1972» that it

is unlikely that a resolution based theorem prover will ever be capable of

proving such theorems. They suggest that a deductive theorem prover working

interactively might' offer the best approach.

, Good (1970) describes a system which makes use of the human being to carl

out th~ proofs whilst employing the computer in those places where it can

be of great assistance at little cost. His scheme does not employ an

automatic theorem prover and hence is capable of a wider application. There

is no need to iimit the form of the assertions to a particular system, "and

- 83 -

in fact Good's scheme allows assertions to be written in a free form. The

machine assistance provided is in the construction and simplification of the

verification conditions and the maintenance of clerical information indicating

which theorems have been proved (by the programmer) and which theorems

still remain to be proved.

The "free form" assertion does have the advantage that it allows

the programmer more scope in formulating assertions, but the danger is that

there is then no restriction on its abuse.

Various other automatic systems have been proposed, several of which

have been constructed (see London 1972) - systems which produce verification

. conditions alone are popular. We believe that such systems are useful in

that the production of verification conditions provides an illustration

of the complexity of a program and may suggest ways in which improvements

may be made tothe program or how more appropriate assertions may be provided.

Partial proofs and some effects of proof teChniques

Although it may not be practical to prove the correctnesS of a

complete program, the same techniques may be applied in order to prove

(again in a relative sense) that a program satisfies some particular function.

For example, it may be possible to prove that a program does do something,

whether or not it is practical to prove that it does all that is required

of it. We may call such a proof, a partial proof of correctness.

example:

It may be critical that a real time system always
produces, correctly, a certain set of values. The
program may, in fact, produce other results but
these are irrelevant if we can place no confidence
in the values of the critical results. Proving
that the program does generate these properly may be
feasible (and thus desirable) whereas proving that
the program generates all of its results may not.

Even if it is not feasible to prove the correctness of a progr~~

completely or even partially as suggested above, then it is very often"

- 84 -

a useful exercise for the programmer to try to formulate assertions about

his program, and possibly to construct proofs about properties of some

of the more complex parts. In doing this, the programmer is forced to

write down, in a semi-formal way, what he thinks his program does. It is

the author's experience that such an exercise can lead to a better

appreciation of the real essence of a difficulty, and thus to a more

reliable program.

To illustrate, we give two examples, neither of which offers

a formal proof, but rather some arguments taken from particular cases.

Example 1:

This example arises from a piece of program that was to assign

to a variable "OK" the value ~ or ~ according to a set

of conditions. The program was of the following form. We

have added two assertions (P1 and P2) for later discussion.

assertion P1 - - - - - -~

OK

assertion P2

if pf f 0 then

t if pd

[.
OK

}
} ;

- .- --~

'.-
,.hile

{.

(i op);

i f o and OK .£2.

op) } OK .- (i f .-

- 85 -

The variable "OK" is only set to false if a particular value (op)

of i is found and both pf and pd are non zero.

The meaning of this piece of program can be defined in terms of

two assertions Pi and P2• (The actual form of Pi and P
2

is immaterial to

this discussion). As such the complete piece of program is well-defined.

However, the conditional statement

g pf + 0 ~ .•••

does not have a meaning of its own. In order to give any meaning to it,

it is necessary to include the preceding statement:

OK, . -,-

As given above, it is not too difficult to prove that the program

is consistent with appropriate assertions Pi and P2• However, in practice

problems arose when the program was modified to cater for a wider class of

possibilities. These modifications entailed additional statements and,

unfortunately, these were added between the "OK : = true" and the

"if pf +- 0 then ••• " statements. Proving the modified piece of

program was now much more difficult, as what had previously been a unit

of meaning, was now separated into two sections. As' a result an error

was committed and was not uncovered by the informal attempt at proving

the modifications. When, subsequently, the error was detected, the true

meaning of the original statements was fully appreciated and was then

Qetter expressed in the following indivisible form:

- 86 -

assertion P 1 - - - ~

.li pf =F O~

{.ll pd =F 0 then

{. • . • . • .
OK ~= (i r/= op);

~ i =1= O~ OK do

{. • • • .
OK "- (i =1= op)} } .-

else OK :=~}

else OK != true

assertion P2 - - -~

In this, form, the meaning of the piece of program between

assertions P1 and P
2

is that of an indivisible unit. The moral

of this example is that where a piece of program is complex, then

it should

(a) be given a meaning by the use of assertions

. and (b) be indivisible in a syntactic sense.

l::xample 2:

This example serves to discuss the relative merits of

two common language constructions for expressing iteration,

namely while ••• !!2. ••• and repeat ••• until •••

The former allows zero or more iterations, whilst the latter

will carry out the iteration at least once. Figures 4.1(a)

and 4.1{b) describe these constructions in typical flowchart

form. They have been annotated with Some general assertions.

- 87 -

P

P2!X

(p 2! X) and not b --

true
.(p .2!. X) and b

s

- _ - X

Figure 4.1(a) while b do S

s

- - - Q

- - - Q.2!. (Y and ~ b)

- - - y

I
true I

(y and b)

(y and E.2! b)

Figure 4.1(b) repeat S until b

- 88 -

The important assertions that describe the meaning of the

iterations are those immediately preceding the body of the

loop, (i.e. ~mmediately preceding 5) which we call the loop

assertion and those expressing the result of the terminated

iterations (at the exit from the loop).

In the case of ~ • • • ~ • • • the ~oop assertion

always implies the truth of the condition governing the

loop.

i.e. (p or X) and b b

This is not true for repeat • • .~. Only after

one iteration has been carried out does the assertion need

to contain any reference to the controlling condition.

i.e. Q .2!. (y~.!l2E. b) not b

This special case treatment for the repeat • • • ~

iteration appears. (certainly from the author's experience)

to make it harder to specify the actual intention of the

loop via the loop assertion. It is quite possible to

execute the body of a repeat ••• until ••• iteration

with,the terminating condition already realised. As a

result it can be more difficult to specify what the loop

assertion should be, because this assertion does not

necessarily follow from the condition controlling the

loop.

- 89 -

These two examples represent abstractions from particular instances

in the author's experience where a concern for a proof of a piece of

program led to .certain styles of programming. It would be difficult to

give actual cases in detail because of their complexity. Equally,

simple contrived examples do not suffice because their very simplicity tends

to hide the problems they are supposed to illustrate. Thus, an appeal is

made to the reader to relate these abstract examples to his own experience.

Constructive use of assertions

We introduced the notion of assertions from the pOint of view

of giving a method by which the programmer's understanding of a program

could be expressed. The flavour that we hope has been imparted is one of

"write your program, then prove it is correct".

If care is not taken it is likely that the principles of proving

correctness will be divorced from the major problems of program construction.

There does not seem to be anything particularly sensible in designing ~nd

writing a large piece of software, and only then proving (or, more

disastrously disproving) its correctnesS. As Dijkstra has said (Dijkstra

1968a, 1972a), what we should really strive for is a way of maintaining

correctness rather than of obtaining it. A concern for a later proof may

have an effect on the way a program is written, but this is different from

constructing a program and proving that this construction process is

correct.

We may make, use of assertions as a means of expressing an intent.

Indeed, we have already noted that it is possible to view a set of assertions

~
as a program. While we do not agree that this is a particularly appropri,ate

- 91 -

result in theorems that cannot be proved, in a program construction

situation it may simply result in a program which is significantly

different· from that which was intended.

example:

Hoare (1971a) describes the conStruction of a program
called FIND. Hoare "proves the correctness" of the
derivation of this program without making use of one
particular assertion. This specifies that the
vector constructed by the program must be a
permutation of the input vector. In the derivation,
Hoare uses his own knowledge of this fact without
explicitly writing it down. If this assertion
was not included in the set of assertions describing
what such a program should do, then the program
derived by, for instance, an automatic program
synthesizer might well be different to that
anticipated. It would, of course, be perfectly
correct with respect to the information given by the
programmer.

What is missing from the use of assertions in this manner is

the necessary redundancy of information which enables checks to be made

regarding the properties of the program •

. Assertional methods can, however, play an importa~t role during

the development of a program. This role is particularly related to the

approaches to program design discussed in Chapter 3. Recall that

assertions allow an expression of the programmer's intent. Used as

such assertions can represent a decision to develop a program along

particular lines without the actual program being written. From such

assertions the programmer may be able to evaluate different possible

decisions.' Having made some particular decision, as represented by some

set of assertions, he may then proceed to c~nstruct a piece of program

which he can prove will satisfy his intent as expressed by this$ffie

- 92 -

set of assertions. Such techniques are to be seen in a number of papers,

particularly in the "action clusters" of Naur (1969), in programs

developed by Dijkstra (1968a, 1972a) and by Wirth (1971b), and in the

techniques described by Mills (1971) and Baker (1972). In all of the'

cited references, the "statements of intent" are given in an informal

manner. The justification of their correctness and the proof that the

piece of program satisfies the intention are often given as a discursive

argument embedded in the program design documentation. Hoare (1971a) and

Allen and Jones (1973) give examples of a similar nature except that the.

statements of intent are given in a formal notation (e.g. predicate

calculus, Set theory) which allow rigorous proofs to be made. Indeed,

in the case of Allen and Jones, the whole development process is

carried out in such a system. An actual programming language is only

used ~o represent an algorithm which has been otherwise completely

developed.

Hoare introduces the idea of an "invariant" into the process of

prOgram development. His technique is describable in terms of levels

of description. At a particular level of description his progr&~ makes

use of certain properties of concepts from that level of description.

(e.g. properties of a data type, or properties of a control structure).·

These properties are described in terms of invariants at that level of

description. When, at a lower level of description, an elaboration is

given for a concept So described, it is a necessary part of the process

of justifying the correctness of this elaboration that these invariant.

properties are proved to be maintained.

Unfortunately, there is one non-trivial drawback to a more

formal dev·elopment of programs. This is that there is a not

inconsiderable dependency upon the programmer's ability to prove the

- 93 P

theorems and lemmas which occur in the justification process. It is perhaps

useful to illustrate this point by comparing the developments of the

algorithm FIND given by Allen and Jones (1973) and by Hoare (1971a).

A program has to be written whose purpose (Hoare 1961) is to find

the element of an array A[1:N] whose value is fth in order of magnitude,

and to rearrange the array such that this element is placed in A[f] a.nd

further, that all elements with subscripts lower than f have lesser values

than this element and all elements with subscripts greater than f have

greater values than this element.

In both cases, the program which is evolved represents about

30 lines of a high-level programming language. However, in Hoare's

development 18 separate lemmas must be proved. Allen and Jones require

the proof of some 16 theorems and a number of lemmas in a development

which is described in approximately 40 pages of manuscript. Of course,

. in both cases a number of proofs are trivial, but some are not. It is

apparent that the form these theorems take depends upon the development

process chosen. Man-machine systems may be an answer for the trivial proofs,

but whether we are prepared to allow ease of proving theorems to have a

conSiderable effect upon the actual development of a program is a debatable

question. If possible we would expect that the proof of the necessary

theorems was something that could be left on one side during each stage

of the development, to be taken up as and when the programmer felt that

formal justification was necessary.

It is, however, the author's belief that a suitable grafting of some

of the above ideas for expressing intention and criteria relating to the

correctness of progr~s onto the design methods described in Chapter 3 is

likely to be of significant worth. The difficulty lies in deciding how much

of such a facility should be provided, and the form it might take.

- 94 -

In Chapters 5 and 6 we describe one possible approach.

4.3 Information from Program Execution

The traditionally accepted methods of evaluating a program are

based upon exercising it under a set of data values known as test cases.

Although such exercises cannot hope to be exhaustive, it is possible to

use these techniques to the point where a high degree of confidence in the

behaviour of a program can be gained. If this was not the case, then the

r~pid growth in the use of computers that has occurred over the last

twenty years would not have been possible. It is probably true to say.

that at this time at least 99% of programs being written will be

evaluated by the use of techniques based on test case execution. We

should, therefore, investigate some of these techniques, their limitations

and their influence on programming methods.

'4.3.1 Writing programs to be tested

It is important that any information generated by the execution

of a program can be easily related to the actual text of that program.

A single program text will, in general, map onto a number of differertt

computational processes dependent upon the input data. However, even

with a knowledge of the irtput data, the mapping from a given process

onto the describing program text is generally ill-defined.

examp,le:

When, for example, a FORTRAN program fails, in many
systems it is a difficult task to find out where
this failure occurred.

Even if it is pOSSible to relate information frQm a process to a

particular line of program text, this is likely to be insufficient. Several

events in a process will often be related to the same line in a program.

- 95 -

example:

A statement in the body of a loop will be "used" in
the process several times.

In order to be helpful it is necessary to identify an event in

the execution of a program uniquely. In order to do this more information

is needed (e.g. trace information). It will be obvious that to relate

information about events in a process to the program text in a manner

which is useful to the programmer, then it is necessary to start from

a point where the exact relationship between text and process is known.

In general, this point will be the beginning of the program. This says,

therefore, that the programmer can only relate an arbitrary event in the

execution of a program to the program text by knowing the sequence of

events that have occurred since execution commenced. This is, in

general, unacceptable because of the sheer amount of information that

this represents. Dijkstra (1968c) has suggested that, if the program is

structured in a particular way, then the necessary information could be

maintained by use of a simple stack. The particular structuring is

conSistent with our earlier discussions of well-structured program design,

in that it is necessary that the relationships that may be exhibited

amongst the, control structures of the program must follow a hierarchical

disCipline. Much has been made of the fact that this requirement does

not allow the uncontrolled use of 'goto' statements (e.g. Rice 1968).

, What we feel is important to stress is that the relationships between

the program text and the computational processes it represents are

particularly important ones from the point of view of the comprehension of

the program by a human being. The way in which Dijkstra demonstrates how

- 96-

Such relationships could be obscured by the use of uncontrolled jumps, serves

as an illustration of several of the points we made about hierarchies

and relationships in Chapter 3.

Consideration for relating run-time information to the program text

has le4 to other programming methods. Amongst these the sUnplest may be

described as "defensive" programming. Additional tests on the values of

program variables are placed in the program to give a close relationship

between text and process. It may be that a rigorous examination of the

program text would reveal that such tests will always be satisfied. However,

the programmer may have neither the desire, nor even, in general, the ability,

to carry out this rigorous check. The simple expedient of inserting a

test ensures that when the program is run, the knowledge that it has passed

(or failed) the test should be available, whereas without the test this

krtowledge is less likely to be easily obtainable.

The sheer size arid complexity of large programs has led to such

notions as modular programming (see ICL (1971) for example). By

decomposing a progr'~ into separable units, each of which may, initially,

be partially tested in isolation, a higher degree of confidence can be

plac~d in the total program. Of course, the choice of a particular

modularization may not be made solely on the grounds of ease of testing.

The fact that a set of modules may have been well-tested individually does

not guarantee that they will work together as a group. However, we believe that,

if, during the design of a program, due consideration is paid to the requirements

of program testing, then modular techniques can be of some help in

increasing the reliability of that program.

As a general philosophy, it is probably useful to appreciate, at

the time a piece of program is designed and written, when tests will

- 97 -

be necessary to exercise it. As a program is designed, various decisions

are taken. The testing of the program is an aid to ensuring that these

decisions are actually reflected in the program code written down. The

obvious time to design those tests which pertain to a particular piece

of program is when the decision is made and the piece of program written.

There is, of course, an even greater attraction in carrying out these

tests then as well, but this may not be generally possible.

4.3.2 The information fed back to the programmer

There are essentially two sources from which the programmer can

expect information about the progress of the execution of his program.

One is from explicit statements in the program itself. At selected points

in the program, the programmer may insert statements which will print

out information such as the fact that execution actually reached this

statement or a display of the contents of selected program variables.

Such .a method can be attractive if it is relatively easy for the

programmer to insert these statements without making alterations to the

program under investigation. They must usually be removed once the

programmer is satisfied with the way the program behaves during execution.

(This, in itself can sometimes be a source of errors. It is not unknown

for simple testing statements to mask out bugs which then appear when the

statements are removed). A number of high-level languages cater specifically

.for these methods with special language forms (e.g. the AT statement of

FORTRAN,dynamic tracing facilities USing subroutine calls,

programmer controlled exception handling in PL/1). By USing such facilities

the programmer may include testing statements which can be invoked by

suitable input data. The statements do not, therefore, have to be removed.

(Another example is described by Satterthwaite (1972). We will say

more of this below).

- 98 -

The other s~urce of information is the machine which is executing

the program. In figure 4.2 we extend the figure of Chapter 2 (figure

2.1) to include the transfer of information from an executing program

to the programmer.

Real
world

knowledge, experience

understanding of
problem

etc.

'"
understanding of man/machine

interface
r---------------~ r--- - -----------,

problem

specification

V I
'V •

~

man

Figure 4.2

program

machine
understandable

form

messages from

machine

messages from
(

program

What we beli'eve is a characteristic of many contemporary

programming systems is that the man/machine interface is divided

into at least two parts. One is the interface which accepts information

from the programmer and transmits it to the machine. The other is the

interface which accepts messages from the machine (in a form appropriate

to it) and transmits these to the programmer. All too often it would seem

- 99 -

that this interface serves only as a relay station doing little to interpret

the messages to the programmer's view of his program written in a particular

programming language. Barron (1971) gives several examples.

A further reference to figure 4.2 may be helpful to explain the

problems to be overcome. When a program is written in a particular language

(distinct from the order code of the machine), there is some mechanism

which physically represents the interface between man and machine. If this

mechanism is a translator then the actual executing machine is conceptually

separate from the interface. The original program is translated from its

form in the programming language to a form understandable to the

executing machine. Thus the executing machine has no knowledge itself

of the original form of the program. It, therefore, cannot phrase messages

to the programmer in terms of the original programming language. If a

sUitable interface is created to intercept these messages and make use

of the original translator then it is possible to translate messages from

the machine back into a form related to the original program (i.e.

"source-language debugging"). This mechanism can be seen in the Alcor

Illinois 7090/7094 post mortem dump system (Bayer, Gries, Paul and

Wiehle 1967) and other debugging systems (see for example Evans and Darley

1966, Balzer 1969, Satterthwaite 1972).

Of course, if the man/machine interface is very closely tied to the

actual execution machine (as for example, in the case of a software

interpreter), then it is an easier matter to relate information about a

program execution to the original source language form.

It is also important to consider what information should

be made available to the programmer and when. It is obvious that one

time when information is required is when the executing machine is

asked to perform some function which it cannot do.

- 100 -

It is hoped that the executing machine will at least report this fact to the

programmer. However, tt is useful if the machine gives a little more

information regarding the possible cause of the error and the current state

o,f the execution process. Most contemporary progranuning and computer

systems provide some such feature, though those which relate this information

to the source language form of the program are less numerous.

There are other occasions when it is useful to supply the programmer

with information. The tracing facilities of several high-level languages

(COBOL, FORTRAN, PL/1) are examples.

It is also useful for the programmer to be given some statistics

regarding salient features of a program execution. The evaluation of a

program design is not simply a case of finding as many ''bugs'' as possible.

Satterthwaite (1972) describes a system which generates a "profile"

of a program execution in terms of frequency counts of the executions of

various portions of the program. In Satterthwaite's system this information

is neatly related back to the original program text, thus enabling the

programmer to see where the bulk of the work is being performed. He

can then pinpoint areas where it would be useful to improve the design.

In such ways, program evaluation may be extended beyond the realms of

being merely "correct" to allow comparisons between different versions of

a "correct" program.

We will return briefly to some other aspects of debugging systems

in section 4.4.

Program Testing as part of program design

Whilst a programmer cannot hope to test a program completely through

,observation of its behaviour under all conditions, observation of its

- 101 -

behaviour in particular cases can be instructive. Very few people are

willing to accept their comprehension of a program purely from its

text because of the immense intellectual effort required to appreciate the

effect of the processes the program describes. Few people, therefore, will

have complete confidence in their program without testing it. We believe

that it is unlikely that the techniques of static program proofs will

ever completely remove the need for test runS and evaluations. There is,

therefore, a place to be found for tools which improve the information given

to a programmer when a program is being tested. There is, indeed, a place

for such facilities throughout the design process. The problems that are

to be faced in appreciating a program from its text alone are equally likely

to be encountered at any time in the design process. Thus any assistance

'which a programmer can obtain from experimental evaluations of partial designs

will be invaluable. , He is then able to obtain information about his design

in terms of the process he is describing at the current level of description.

Experiments can be made in "real" Situations and designs may be tested as they

are formulated rather than when they are ultimately realised in a conventional

programming language. It may even be possible to make observations pertaining

to program efficiency if the tools are sufficiently powerful. As· we

described in Chapter 3 (section 3.2.2.), in a design methodology based upon

levels of description the concepts of multi-level modelling (Zurcher and

Randell 1968) have an obvious application.

4.4 Some further machine aids and influences

In this section we will look briefly at a few other machine-based

tools which can help the programmer in the construction of a program and

which may ,enable him to have more confidence in his work.

- 102-

Interactive systems

A feature of the rec~nt growth of time-shared terminal systems has

been the rise in popularity of languages and other facilities which make

specific use of the fact that a human being is physically in communication

with a program during its execution. Such systems range from interactive

debugging schemes to complete programming systems such as BASIC and APL.

One of the particular characteristics of such interactive systems ,is

the ~bility of the programmer to continuously monitor the execution ofa

program. It therefore becomes even more essential that the form of

communication between the programmer and the machine is easily related

to the program text. In online debugging systems for programs written

in languages,which are not specifically classified as "interactive

languages" there is often a question of efficiency to be taken into account

'(see Balzer 1969 for some further discussion on this point). Approaches

akin to the scheme described by Satterthwaite (1972) whereby use is made of

efficient machine code wherever possible with source language interpreters

being invoked if needed, would seem to have some attraction. Mitchell (1970)

describes a system based upon the technique of incremental compilation which

is similar.

Generally, interactive programming systems (e.g. BASIC, APL) make use

of an inte~preter for program executions. Such a syst~~ is therefore able

to maintain overall control of program executions and communicate with the

user about such executions in terms of the source program. By choosing

to use such a system, a programmer deliberately sacrifices some of the power

(e.g. execution speed, storage and input/output facilities) of the

underlying hardware which could otherwise be obtained through a more

conventional programming language system. However, in many circumstances,

this sacrifice is more than outweighed by the benefits to be gained through

- 103 -

interactions between programmer and program executions.

The PILOT system (Teitelman 1970) was designed to allow particularly

close co-operation between the user and his programs written in LISP. The

user can direct PILOT as to what actions to take when error conditions

arise (e.g. a spelling corrector). He is able to interact with PILOT

as part of any error correction activity that may be undertaken. Other

facilities are available which allow the programmer to give directions about

the operation of his program.

It is the author's belief that, although the simple fact of having

the programmer so closely involved with his program will not in itself

guarantee better programs, it can help because of the increased understanding

that is likely to accrue.

In order that such benefits may be achieved, an interactive system

must possess certain properties. These we may classify generally under the

heading of human engineering. Potential human users must not be distracted

from obtaining the benefits of machine assistance because it is awkward.

The well thought out design of the notation used in APL is a good example.

This notation is extremely easy to use following Some experience, and concise

enough to be attractive for a human being at a typewriter terminal. Whilst

it may have some drawbacks from the point of view of representing solution

processes, as a means of immediate man to machine communication it can have

few.peers. The human engineering aspects of interactive systems are not

specific to interactive programming systems. As Engelman (1968) pOints out,

computers are very good at doing certain things which human beings find

difficult. This ability is heightened in an interactive environment ~f the

computer can do what is required just when it is required and particularly

if such use is convenient.

Human engineering has received considerable attention in several. .

- 104 -

man~achine systems (e.g. that described by Engelbart an~ English (1968),

MATHLAB (Engelman 1968), Hansen (1971a, 1971b), Mitchell (1970». The

I
interested r,ader is referred particularly to Hansen (1971b), or to

Mitchell (19;0) which is more relevant to the design of interactive

programming systems.

Generation of syntactically correct programs

Hansen (1971a) describes how a programmer can be guided to construct

only programs which are at least syntactically correct. He demonstrates

how a text handling system based on hierarchical relations between pieces

of text can be tailored to accept only text satisfying certain predefined

rules. In particular he uses the production rules of PL/1.

The rules are applied in a constructive manner. The system (called

. EMILY) displays the current text (or portion of it) and advises the

programmer which syntactic form of text string he may use to replace a

non-terminal symbol present in the text displayed. The text which is

constructed is certain to satisfy the syntax of the programming language,

although logical errors may be present.

Program skeletons

Systems have been described (for example Bequaert 1968, Dutton and

Minto ,1971) in which programs are written by adding code to pieces

'of pre-written code called program skeletons. These program skeletons

carry out various commonplace processing functions which are not specific

to any particular application. This differs from the normal practice

of programming such functions individually as required.

example:

Many data processing systems require functions for data
input, data updating and data retrieval.

- 105 -

It is possible that a programmer, by incorporating code which is

already written in a general fashion and specializing it to suit his

own requirements will produce more reliable programs in a shorter time.

He will, for example, be able to concentrate more fully upon those design

points which are relevant to the job in hand •

. The method whereby the program skeletons are actually used in the

construction of a program varies. In the system described by Dutton and

Minto (1971), the skeletons are written in COBOL and each skeleton has

exit points where the programmer can supply further statements (also in

. COBOL) which are ~pecific to his purpose. Bequaert (1968) describes how

the prog~am skeletons can be specialized for particular applications on the

basis of the programmer's response to questions generated by the system.

The way in which programs are developed using such systems is

obviously dependent upon the availability and form of skeletons. These

factors will exert an influence over the actual design of programs in a

way which is similar to that exerted by a programming language. In

applications areas where there are likely to be many programs requiring

similar functions these systems should prove to be of some worth. There

still remains, of course, the task of designing the total program and of

constructing the necessary code to interface in a suitable manner with

the skeletons.

Automatic error correction by a translator

Language processors are generally unconstructive when they detect

errors in programs submitted to them. Usually an error message is supplied

which gives the context of the error and some indication of what specific

.error has been found. It is rare that any action ·is taken to suggest how the

error might be removed. The PL/C system (see, for example, Conway and

Gries 1973) constructed at Cornell University, however, goes one stage

- 106 -

further than this by attempting to automatically "correct" program errors

discovered at compilation. Whilst a large number of punctuation errors can

be corrected with confidence, the correction of many other syntactic and

semantic errors is unlikely to recreate the progr~er's intention. It is

cl.aimed by the system designers that even in these latter cases, the effect

is to allow the provision of further diagnostic information which will increase

the programmer's chances of removing errors from his program.

A danger of the approach of automatic error correction would appear

to be the likely encouragement of sloppy habits in a programmer. He will

omit semi-colons because he believes that the system will insert them in

the right places. Of course, system corrections should be checked by the

programmer because no guarantee can be given that all such corrections

maintain the original intention. The author conjectures that, unless there

is some explicit mechanism to motivate a programmer to check all corrections

.carefully, then a number of erroneous "corrections" will not be appreciated

as such. Even if the proportion of such misconceptions is small, it is

surely worthwhile to demand some additional work on behalf of the progrmnmer

to m~ke it more likely that he appreciates exactly what processes arc

represented by the program he has written. Unfortunately, it might be

diffiCult to·design a mechanism which would provide the desired effect.
,

4.5 Summary: Towards a Program Building System

The major question we have discussed in this chapter has been that

.of establishing the correctness of computer programs. We introduced this in

terms of a requirement to increase a programmer's confidence in the worth of

a particular program, or piece of program, .as a solution to some problem.

This involves the programmer in the comprehension of what he has written

down (the text of his program) as a specification of a computational process.

- 107 -

We have discussed how it is possib1e,using the program text

and suitable information regarding the meaning of programming language

constructions, to obtain a high degree of confidence in a program. Many

of the techniques employed in this appreciation centre around the provision.

of redundant information in the form of assertions, declarations etc. We

also described how such information may be used in a constructive manner

thereby ensuring a high degree of confidence in a program arising from the

methods used in its construction.

In a similar way we have seen how we may improve the understanding

we have of a program by observing its execution. Whilst this method

cannot hope to give complete certainty as to how a program will behave it

is possible to use testing criteria to aid in the process of program

development.

On a number of occasions in the course of the above discussions

we encountered situations where the co-operation of man and machine was

likely to be useful. As examples we cite program proving systems (Good 1970,

E1spas, Green, Levitt and Waldinger 1972), interactive debugging systems

(e.g~ Balzer 1969), interactive programming systems (e.g. APL,

BASIC), interactive program construction (Hansen 1971a) or other non-programming

endeavours (Engelman 1968, Engelbart and English 1968).

A natural successor to these schemes would be a single system

concerned with providing a set of computer-aided tools to help a programmer

in the development of a program. In addition to some of the particular

techniques we have described, such a system would provide clerical aids

organizing the information of the design development for the programmer. It

would also impart the necessary discipline upon the programmer so as to affect

- 108 -

the overall structure of the final program.

The remainder of this thesis describes one particular such

interactive "program building system" which the author has designed

and implemented.

This system, in fact, concentrates primarily on providing facilities

for program design rather than on testing or proving completed programs.

This emphasis is only as a result of the particular emphasis it was

thought desirable to demonstrate in an actual implementation. Thus,

for example, whilst the evaluation of actual programs by execution on

test data can be a powerful technique, it has already received a

significant amount of attention elsewhere. It was thought more appropriate

to concentrate attention on those facilities which could guide the

programmer in the development of a well-considered program, reflecting

the care taken in its design, and exhibiting a good, elegant and appropriate

structure. Because of the experimental nature of the implemented system,

there are, of course, a number of deficiences and limitations. In the

description which follows, these will be explained and their remedies,

where appropriate, described. The actual system can act, therefore

as a study of the feasibility of some of the ideas that have been

discussed in Chapters 2-4.

- 109 -

Chapter 5:

Basic construction of programs using Pearl

In this chapter we will describe the basic ideas behind the Pearl

(Program Elaboration and Refinement Language) program building system.

This will entail a demonstration of how a program design may be built

up into a complete program using the concepts of levels of description

and of a particular design strategy. (see Chapter 3). In Chapter 6 we

describe other features provided by the system in the form of machine

assistance in the maintenance of the design and in its evaluation. In

both Chapter 5 and Chapter 6 we will incorporate discussion on particular

points as appropriate. More general discussion concerned with experience

gained from using the system will be found in Chapter 7. In no sense

will these chapters attempt to be definitive. Appendix B contains a

summary o'f system facilities whilst appendix A gives a formal description

of the syntax of the notation used to represent designs. Appendix C

gives a few notes on system implementation. A number of examples are

given in the following chapters; complete texts from which these were

drawn may be found in appendices D, E and F.

5.1.,~

The Pearl system acts as a specialized management system for a

particular set of information; namely a program design. The system

accepts texts in a particular notation representing parts of a program

design. Each new piece of information is first checked in a number of

ways before being incorporated into the total design. This ensures

that the new information is itself reasonable and that it is consistent

with the design already present. A number of conventional data base

facilities are provided in Pearl to allow access and manipulation of

design, information (see Chapter 6).

- 110 -

The basic notion behind the system is that of describing processes

to solve sub-problems in terms of varying levels of description. A program

at a particular level of description is thought of as representing the

action to be invoked on a hypothetical ''machine'' possessing attributes

which characterize that level of description. The word ''machine'',

although not intended to have all of its more generally assumed connotations,

is chosen advisedly. In the current context a machine is an abstract entity

capable of performing some action described by a program indicating the

sequence of operations that define that action. A machine is considered

to possess (or to understand) certain attributes and to operate within

some environment. These attributes relate to the functions that the

machine is capaule of performing, or the types of objects to which it

can apply these functions. The reader will appreciate that these machines

have much in common with Dijkstra's "pearls". (Dijkstra 1972a).

Pearl provides a generalized programming language to be applied in

any such machine. The programmer may specify an ideal ma.:!liv, for his

purpose by particularizing this general language. The design task then

bec.omes one of implementing those features introduced by thp. programmer

which are non-primitive in the underlying actual machin~(the base

machine). This task may be carried out by the introduction of further

ideal machines each suited to a particular purpose.

Each machine is considered to exist in an environment of other machines

according to its purpose in the design. This environment provides a

partial particularization of the generalized programming language and

augments the set of concepts available within a machine. A description

of the form the environment takes is given in section 5.2.3 whilst a

discussion of the implications of particular environments can be found

in Chapter 7. It should be noted that the rules describing what

- 111 -

environment is available to a particular machine are closely tied to the

desire to encourage top-down development of programs. It is not impossible

to follow a bottom-up method, but in general the user will find this a

devious thing to attempt.

Each machine introduced by the programmer represents a decision.

A machine is limited to carry out one and only one program. Machines

therefore differ from Dijkstra's pearls in this respect. (Further discussion

related to this point is given in Chapter 7).

We have described one relationship that may exist between a pair

of machines (i.e. one machine implements a feature introduced by another

machine). This relationship suggests that the set of machines used in a

program development may be represented as a tree. However, as will be

described in succeeding sections, other relationships are also allowed

amongst machines. These tend to structure the set of machines into a

directed graph rather than a tree.

The representation of a developing program using a generalized

programming language is related to the concepts of extensible programming

languages (e.g. SIMULA 67, D~hl, Myhrha\.\g and Nygaard 196i\), Alf~ol llH

(van Wijngaarden 1969), ECL (Wegbreit 1971). However, tllere are differences

as we hope will become apparent. In particular, in Pearl emphasis is

placed on the way in which programs are constructed. From this point

of view the actual syntactic forms of the Pearl notation may be

considered immaterial. From others, however, (e.g. readability,

comprehensibility) they are important and have been designed following

the discussions of Chapters 2 and 3. Additionally, features of the

notation allow the description of redundant information which is then

available for certain checks to be made concerning the "correctness"

of programs. Several of these have been outlined in Chapter 4.

- 112 -

The generalized language is based upon a particular programming

language. This programming language (the base' language) provides a level

of description whose characterizing concepts are considered primitive.

~y this we mean that this set of concepts is understandable to an

~xisting machine in much the same way as the concepts of Algol are

understandable to an Algol machine. In any program development all other

levels of desctiption will be higher than the level of the base language.

The concepts of the base language are available in all machines

introduced by the programmer (i.e. they are "pushed through" the various

levels of description characterized by programmer introduced machines).

These concepts are as follows:-

1. Data types

2. Operations

(i) upon integer

(ii) between strings

(iii' some i/o operations

(iv) declaration

integer, string

••.• +, -) *,/, =,<,), Bo, I ,I > =, ,,=, ., =
II (catenate)

substring selection

readint (integer),.

writeint (integer),

nlcr,

prsym (integer)

(v) assignment (:=) is available between instances

of similar data types.

3.

(i)

(ii)

(iii)

(iv)

- 113 -
, ,
Control structures

sequence • · · 51; 52

alternative · · · if E then 51 else 52

conditional · • · il. E then 51

repetition • · · while E do 5

rej2eat 5 until E

5,51,52 are stat~ents and E is an integer
valued expression. The value 1 is taken to
be "true", any other value as "false".

Data structures vector (together with subscription).

A definition of the language is included in Appendix A.

Programmer controlled generalizations of the base language are

confined to data types and operations.

The concept of a data type is generalized to allow any data type

the programmer wishes to identify. The concepts of declaration, subscription

and assignment are all generalized in the obvious ways. The assignment

operator (:=) is used to represent all assignments, with the restriction that

, its operands must both be of the same data type. The meaning implied by this

operation is that an application serves to make the value of the left-hand

operand the same as the value of the right-hand operand.

The concept of an operation is generalized by providing a standard

form in which operations may be written. This is in prefix form:-

<name,)(operand 1, operand 2, ••• , operand n)

or, if there are no operands to be named, simply

<$ame,) (e. g. nlcr)

The generalizations allowed correspond to the notions of

representational abstraction and operational abstraction as described in

Chapter 3.

- 114 -

5.2 Constructing a program (using the *build command)

The nature of the Pearl system is that it is driven by commands issued

by the user at an online terminal. One of these commands allows the

user to build up a complete description of a machine and add it to the data

base describing his developing program. This command is the "*build" command.

For the remainder of this chapter we will describe and discuss h~w the

user "builds a machine", what assistance he can obtain and what restrictions

are imposed to encourage the structuring that we have described.

5.2.1 The specification of a machine

Each machine introduced by the programmer is given a name. This name

serves to label the machine as a complete unit, covering both its specification

and its action.

Machines are introduced to carry out a particular function. They tous

represent a conscious design decision made by the programmer. Provision

is made for the programmer to document this decisioh in the form of a comment.

Together with the machine name and some punctuation this serves as a heading

for a machine.

example:

cardprocessor: 'read each card and then process it'

The identification of the particular concepts understood by this machine

now follows. A new data concept may be introduced by a ~ statement, and

a new operation concept by an operation statement.

examples:

~ cardimage

operation print (cardimage c)

- 115 -

It is worth stressing that in both of these cases no indication is

given of either how a cardimage is to be represented, or how the print

operation is to be carried out. The names given to the concepts will no

doubt have a meaning for the programmer.

The form of the operation statement is not unlike a procedure heading

in Algol-like languages. Each formal operand may optionally be specified

as "vary". Only operands so specified are subject to a change of value

·a~ a result of the action of the operation.

example:

operation read (cardimage c vary)

This mechanism will be further described in section 5.2.6.1.

5.2.2 Describing the action of a machine

The specification of a machine and its environment serve to describe

a particular programming language. The desired action of the machine may

be described by writing a program for the machine in this programming

. language.

Figure 5.1 gives an example of a machine which processes cardirnages.

~his machine represents the first stage in the process of constructing

a program to solve the problem we described in Chapter 3. As this

problem will be used as an example throughout this chapter, it is

repeated here.

'~rite a program which reads 10 input cards and tests
these same 10 input cards for the following conditions.
Each of the first 9 values on each card should be
within certain limits. The 10th value should also be
within these limits and, further, should be a check
upon the preceding 9 values on that card".

- 116 -

'biiild
:ardprocessor:' read eaCh card and then process it'
~gin type cardimage;

operation read{cardimage c varl);
operation process (cardimage c);

,rogram:

~nd

declare cardimage c;
declare integer i;
i;=O;
while i< 1 0 do

(i:=1+1 ;
read.(c) ;
process (C» • ,

~ND OF CHECKING
~O FRRORS iERE DETECTED.,

Figure 5.1

- 117 -

Most, of the features shown in Figure 5.1 have been described. Of

those that have not, only one requires extensive discussion. ("program").

The name "program" expresses the function carried out by the machine

as an elaboration of a concept introduced by Some other machine. The

concept "program" is provided by the system and is thus the standard

"starting point" for any design.

The labelling of the program part may appear to make the machine

name redundant. In a completed program this is probably true. However,

the use of separate machine names allows a greater flexibility both from

the point of view of the user as a reference mechanism, and also to

enable alternative machines to be described elaborating the same concept.

(In the present implementation of Pearl this is not allowed, but it is

much more in the spirit of Dijkstra's "necklace of pearls". (Dijkstra

1972a). Some discussion of this idea appears in Chapter 7).

"5.2.3.,, The environment of a machine

The environment within which a machine may be defined is specified

in terms of the operations and types that are available to it. The rules

governing the introduction of machines and therefore the introduction of

operations and types are framed to accord with the philosophy of top-down

program construction.

Machines are introduced in a specific time sequence. At the

Commencement of a program construction (i.e. at the time the concept

"program" is unelaborated) the set of operations available in the

environment is that provided by the base language. Each machine introduced

by the programmer may modify the environment, and this modified

environment is then available for subsequent machines. Thus the set of

operations and types is considered global to all machines subject to

one or two restrictions which are explained below.

- 118 -

A machine may augment the environment by the introduction of data

types and operations not already present. It may modify the environment

by elaborating a concept that exists within the environment but which is

not already elaborated. A machine may not elaborate a concept introduced

in that machine. If a machine elaborates a data type then this data type

is subsequently removed from the environment (see also section 5.2.5).

Thus programmer elaborated data types are unavailable later in the

construction sequence. Some discussion on the effect that this particular

rule has had is given in Chapter 7.

The above rules encourage top-down program construction. It is a

reasonably simple matter to envisage different rules governing the

environment which would encourage other construction strategies.

(see, for example, section 7.1.2). The rules chosen are extremely

simple and have proved to be quite satisfactory once their devotion to

a top-down philosophy is appreciated.

It will be noticed that use of concepts introduced into the environment

will, in general, destroy a purely hierarchical arrangement of machines.

It would of course, be possible to describe rules which would not allow this.

Such a scheme, if enforced rigidly, would bar such notions as concept

sharing between machines of different sub-trees in the hierarchy. One

possible relaxation of this would be to use machine names themselves to

make concepts available. This last suggestion is similar to the

referencing of block attributes in SIMULA 67. (Dahl, Myhrhaug and

Nygaard 1968).

For the purposes of the present system, however, it was considered

that the simple approach implemented offered a reasonable degree of power

with only an occasional frustration.

- 119 -

5.2.4. Elaboration of an operational concept

A conceptual operation is added to the environment by an operation

statement. As pointed out above, this introduction corresponds closely to a

procedure heading. We continue the analogy in describing how such a concept

is subsequently elaborated by another machine.

The action part of a machine is associated with a particular

operational concept by labelling it with the name of that operation. Thi$

may be seen as physically linking the text of the procedure heading to the

text of the procedure body. Thus each may appear at the appropriate time

in the construction process.

Figure 5.2 (part of the card processing program) gives a sequence

of operation elaborations. It extends Figure 5.1 by a further 2 machines.

The program describing how an operation is carried out will normally

reference its operands. Thus the label that is applied to the action

part of the el~orating machine should display these operands. If it was

allowed to use the name of the operation alone (which is sufficient), then

understanding the elaboration of the operation is likely to involve the

human reader in considerable cross-checking between machine descriptions.

example:

In a machine A an operation 'swap' is introduced as:-

operation swap (integer x vary, integer y vary).

At some later stage in the construction, machine B
is introduced to elaborate s~ap. It is sufficient
to write:-

swap: declare integer Z;

z: = x; x: y; z.

- 120 -

.*build
cardprocessor:tread each card and then process it'
begin type cardimage:

operat~on read{cardimage c vary);
operat1on process{cardiaage c);

program:

end

declare cardimage c;
declare integer i;
i:=O;
while i<10 do

(i:=i+1;
read (C) ;
process (c)) • ,

END OF CHECKING
NO ERRORS WERE DETECTEDo

+*build
processor:'check the values and the check'
begin operation checkcard(cardimage c, integer ok vary);

operation rejectmessage;
operation writeout(cardimage C);

process (cardimage c):
declare integer ok;
checkcard(c, ok) i

end

if ~ok then rejectmessage;
writeout(c) 0

END OF CHECKING
NO ERRORS WERE DETECTED.

+ build
checker:'check the values, then and only then, the check'
begin operation checkvalidity(cardimage c, integer ok vary);

operation check check ,(cardi.age c, integ~r ok vary);

checkcard(cardimage c, integer ok vary}:
checkvalidity(c, ok);
if ok then checkcbeck(c, ok}.

end
END OF CHECKING
NO ERRORS WERE DETECTED.

Figure 5.2

- 121 -

However, when confronted by this piece of text, what meaning should
a reader associate with the variables x and y?

The actual implementation does, in fact, include a mechanism for

supplying the programmer with the original operands if necessary. (An

. e.xample is shown in Figure 5.3).

It is possible to introduce a conceptual operation without using

the operation statement. The symbol ":=" is used to denote assigmnent

of the value of one variable to another variable irrespective of the

type of these variables but provided the two variables are of ~he same

type. If this type is primitive (i.e. not programmer introduced) then

the operation denoted is also primitive. If, however. the type is not

primitive. then the operation denoted is conceptual. As such it will

require further elaboration when the data type in question is elaborated.

When the symbol ":=" is used (in a machine) to denote a conceptual

assignment operation it is considered exactly as if an operation statement

had been used to introduce it. A system generated name is used to denote

the. operation together with some formal operands.

example:

If ina machine we have the fullowing:

. declare value (tempi, temp~;

tempi: = temp2;

then the ":=" represents a conceptual operation of assignment
of a "value". The system treats this exactly as if the
programmer had explicitly stated:

operation value ___ assign (value valuel vary, value value2).

- 122 -

+*build
checker:'check the values, then and only then, the ChECk'
begin operation checkvalidity(cardimage c, integer ok varJ):

operation checkcheck(cardimage, c, integer ok vary);

checkcard:
*** WARNING, ORIGINAL BAD PARAMETFRS
WILL USE ORIGINAL PARAMETERS AS FOLLOWS
CARDI rlAGE C
INTEGER OK VARY

checkvalidity(c,ok) :

Figure 5.3

- 123 ...

. This mechanism allows the user to properly label the elaboration

of the assignment operator acting between operands of a conceptual type.

This particular approach was chosen for its simplicity.. Some further

discussion on the whole problem of the generalized assignment operator is

given in section 7.1.5.

5.2.5. Elaboration of data types

Machines may be introduced, not only to indic~te how an oper4tion

is carried out, but also to give a representation of a conceptual data

.type. The two functions are similar.

Instances of a particular data type are created using a declaratiOn •

. Thus

declare integer i

allocates a certain amount of a resource (called memory) and marks it

as an integer to be referenced by the name "i".

In exactly the same way

declare cardimage c

\

may be considered as allocating a certain amount of memory which will be

considered as a cardimage and be referenced by the name "c". In both of

these examples, the effect of the declaration is an allocation of a

"certain amount of memory" together with a reference to its type and

name. The actual amount of memory is dependent upon the representation

of the data type in terms of,the memory elements themselves.

In the case of the primitive data types, the representation is

'defined. For conceptual types, the amount allocated will depend upon

- 124 -
the structure subsequently given to the data concept by the programmer.

The 'introduction of a new conceptual data type can be -thought of as

the introduction of an unelaborated operation upon memory. The two

primitive types are thus primitive operations on memory. The creation of

an instance of a data type is thus a call upon the relevant operation. The

elaboration of a conceptual data type is thus similar to the elaboration

of a conceptual operation.

Figure 5.4 shows a further machine from the cardprocessing program

elaborating the data concept "cardimage".

Instances of a data type may be initialized by incorporating the

necessary operations in the program of the machine elaborating that data

type. Figure 5.5 shows this in a modification of machine "cardrep" of

figure 5.4. The variable "i" is local to the inner block. The names of

variables declared in the outermost block of a program elaborating a

data type are available to machines elaborating operations having operands

of that data type.

Pearl enforces a rule that such operations must be elaborated

immediately the data type is elaborated (see also sectio~ 5.2.6.3). This

rule is a recognition of the strong relationship that exists between a

data type and operations upon instances of that data type. Once the

necessary machines have been entered, the elaborated data type is

removed from the environment thus disallowing the recursive definition

of data types. This is aimed at encouraging top-down program development.

The sequence of machines shown in figure 5.6 is an illustration

of the elaboration of operations related to an elaborated data type.

The data type "cardimage" has previously been introduced together

with the operations "read", "writeout", "checkvalidity" and "checkcheck",

each having an operand of type "cardimage" and still being unelaborated.

- 125 -

..
+*.bulld
cardrep:'a card is 9 data values and a check'
begin type value;

cardimage: declare vector(9) value data;
declare value check. ,

end
END OF CHECKING
NO naRORS WERE DETECTED •

. ,

Figure 5.4

- 126 -

. ,
+*build
cardrep:'a card is 9 data values and a check'
begin type value;

operation·clear(value v vary);

car,Umage:

end

declare vector (9) value data;
declare value check;

declare integer i;
i: =0;
while i<9 do
(1:=i+1;

clear (data (i»);
clear (check)) •.

EN D' OF CHECKING
NO EBRORS WERE DETECTED.,

..

Figure 5.5

- 127 -

+*build
cardrep:'a card is 9 data values and a check'
begin type value;

cardimage: declare vector(9) value data;
declare value check.

end
END OF CHECKING
NO ERRORS iERE DETECTED.

+*build
cardreader:'reads in the 10 values'
begin operation readvalue(value v varJ);

read.(cardimage c vary):
declare integer i;
i:=O;
while i<9 do
(i: =i +1 ;
readvalue(data (i) of c));

read val ue (check of c). ,
end
END OF CHECKI NG
NO ERRORS WERE DETECTED. ,

+*build
cardwriter:'writes out values anJwaJ'
begin operation writevalue(value v);

wr1teout(cardimage c):
declare integer it
i:=O;
while i<9 do
(1:=i+1.
wri tevalue (data (i) of c));

writevalue{check of c).
end
END OF CHECKING
NO FRRORS WERE DETECTED.

Figure 5.6

, .
" ",

- 128 -

'.

+*build
validity check:'checks the 9 values'
begin operation checkvalue(value v, integer ok vary);

checkva~idity(cardimage c, integer ok vary):
declare integer i;
i:=O; ok:=true;
while i<9 & ok do
(i:=14-1;
checkvalue(data(i) of c, ok)) •.

end
END OF CHECKING
NO FRRORS ~ERE DETECTED.

+*build
cheCker:'make sure check is ok'
begin 'operation combine (value v vary, value w);

operation comparevalue(value (u,v), integer ok varl);

checkcheck(cardimage c, integer ok vary):
declare value temp;

end

declare integer i;
i:=1; temp:=data(1) of c;
while i <9 do

(i:=i+1: '
combine (temp, data (i) of c»;

comparevalue(temp, check of c, ok) •.

END OF CHECKING
NO ERRORS ~ERE DETECTED •.

Figure 5.6 (continued)

- 129 -

Machine "cardrep" is defined g1·v1·ng . f h a representat10n or t e type

"cardimage" in terms of the type "value". Once this machine has been

accepted by Pearl, the programmer is constrained as to what he may

~ubsequently enter. He may only enter machines which elaborate

operations having an operand of type "cardimage" until such time as

no such operations remain unelaborated. Thus the set of machines

"cardreader", "cardwriter", "validitycheck" and "checker" (in any

order decided by the programmer) must be entered before a machine which

elaborates some other concept either of operation or of type. (e.g.

the type "value"). Only when this particular set of machines has been

accepted is the type "cardimage" no longer available in the environment.

A special operator (~) allows reference to particular elements

of the elaboration of a data type during the elaboration of the related

operations.

The enforcement of this strategy calls for a few comments. However,

beyond noticing that the set of machines providing the representation of

the data type and the elaborations of all related operations has much

. in common with the ~ concept of SIMULA 67 (Dahl, Myhrhaug and

Nygaard 1968) we postpone discussion until Chapter 7.

5.2.6. Correctness considerations

In addition to what we have described above, there are a number of

features provided by the system which allow the progra~~er to increase

the confidence he is willing to place in what he has written down.

We saw in Chapter 4 that the provision of redundant information is

a powerful method of increasing the understanding that may be gained of

a program. The various features to be described allow the programmer

using Pearl a number of ways of saying what he understands by what he

has written in his program, or what he intends to write. As a by-product

- 130 -

of this, there are a number of occasions when the redundancy can be checked

by the system in an automatic or semi-automatic fashion.

There are two main areas of interest. Firstly, because the actions

of machines are described by programs, then these programs are subject

to problems of comprehension much as traditional programs are. Secondly,

in a development of a program in multi-level fashion there is a requirement

to ensure that descriptions given at different levels of description are

mutually consistent.

ASsertions etc.

There are several features provided which are best classified

as being of a miscellaneous nature.

An "assert expression" is provided as part of the base language.

example:

assert x = a & y b before

Assertions may be made about the state of a computation at any

point within an individual program for a machine. In the system as

implemented, these assertions are not used to generate verification

conditio~s or for the automatic proof of program correctness, but rather

act as run-time checks.

As an aid towards maintaining the correctness of an elaboration,

Some restrictions are applied to the mechanism used in par&~eter

passing. This mechanism is known as "call by reference". (Note,

there is nothing equivalent to a global variable common to several

machines). Operations act upon their operands. This effect, when seen

in p~ocedures in high level languages, is often known as side cffL'!=t in

that it is possible, by a procedure call, to alter the value of a variable

without explicitly making use of an assignment statement. Indeed it is

- 131 -

possible for a single procedure call to change the value of many program'

variables. In several current languages those parameters of a procedure

whose value may be changed by calling that procedure are not distinguished

syntactically. In Pearl, the vary attribute is provided. In the elaboratic

of an operation,only such operands (or their components) as have been

given the attribute vary may appear on the left-side of an assignment

operator, or as an actual operand which itself has the vary attribute.

Thus, when an operation is introduced, the programmer must specify

which of its operands will be changed in value by that operation.

The system will ens.ure that his specifications are not violated by later

constructions. The vary attribute partitions the operands of an

operation into two groups in a manner similar to that described by Hoare

(1971b). Further discussion on the vary mechanism is given in section

There are also some restrictions which prevent the programmer from

doi~g things which may be considered unreasonable.

example:

It is not possible to change the value of any (non
local) variable as part of the evaluation of a
logical expression despite the fact that the base
language is an "expression language".

Finally, all operands of operations are checked to ensure that they

are of the type spe~ified in the introduction of the operation or in the

base language.

5.2.6.2 Meanings Qf conceptual operations

In section 5.2.1 we introduced the operation statement whereby new

operations could be introduced. In order to allow the programmer to

indicate the effect that an abstract operation has upon its operands · ;.;:.i:OL:

- 132 -

describing how the effect is achieved, the operation statement is extended

to express the "meaning" of the operation being introduced. This takes

the form of a pre-condition and a post-condition described by assertions

over the operands of the operation. Thus the syntax of the operation"

statement may take the extended form:-

operation

provided

yields

(name) (operand list)

<pre-condition;>

(post-condition) onexit

Both the pre-condition and the post-condition are logical expressions,

but certain restrictions apply to the latter in order that the meaning of

the operation may be deterministic. A discussion of some of the implication

of this restriction is to be seen in Chapter 7, whilst an argument for its

presence in the current system may be found in Chapter 6. To ensure a

fully deterministic meaning for an operation in a fairly trivial manner,

logical disjunction is disallowed in the post-condition. Also in the

~) poat-condition the usual symbol [or logical conjunction (&) is le;ll.Jccd

by a comma so that the post-condition can be expressed as an atomic

list of assertions about the operands uSing a comma to separate the

elements.

example:-

operation swap (integer (x,y)~, integer (a,b»)

provided x = a & y = b yields

x = b, Y = a oncxit

'.

- 133 -

5.2.6.,3 •. States

To enable the expression of assertions about variables of non-primitivE

type, a further concept is introduced; that of IIstate". States are a means

of indicating' a condition in which an instance of a data type may be found.

They are derived directly from the need to express the result of an operatiol

on a conceptual. data type. However, they may also be used in conjunction,

with the primitive types integer and string.

States for a type may be introduced at any time that an operation

using an operand of that type may be introduced. Their introduction is

part of the machine specification and is effected by the states statement.

The form of this statement is similar in form to an operation statement,

but without a meaning part.

example:

states empty (queue: a)

.Once a state is introduced, it may be used to define the meaning

of an operation.

example:

operation clear (queue a vary)

provided I empty (a) yields

empty (a) onexit

States may also be used as logical functions which may be tested

in a program.

,.'

- 134 -

example:

.., empty (a) do

A state may be undecidable in addition to being either true or false.

States may be elaborated in a similar fashion to the elaboration

of operations, and the restrictions which apply following the elaboration

of a conceptual data type are extended to cover the elaboration of states

o(that data type. (see section 5.2.5) •

. Two ways in which elaborations of states may be used are given below.

Both exemplify a different stress applied in the derivation of a design.

If a state is used to express the meaning of a particular operation,

then the elaboration of the state may serve as a check on the elaboration

of that operation. This is illustrated in figure 5.7. The machines pres~nte(

there are taken from a modified development for the checking problem used

earlier in this chapter (see figure 5.2).

An additional operation "initial" is introduced to ensure that the

variable "c" is in the correct state for the first "read" operation. The

operation "process" is defined to yield a cardimage in the state

"processed". However, from its elaboration in the machine "processor2",

:It is seen that, as a result of the application of the "writeout" operation,

the cardimage will, in fact, be in the state "written". The elaboration

of the state "processed" as meaning "written" restores the correctness of

the program.

From a different point of view, states may be used to specify a

program development. A program may be defined by giving the states

necessary to fulfill the requirements of the program. The program

development takes the form of defining an operation which satisfies

- 135 -

+*buil.d
cardprocessor2: j as,cardprocessor, plus states for checking'
begin type cardimage:

states readin(cardimage c),
processed(cardimage c);

operation initial(cardiaage c)
provided true yields processed (c) onexit;

operation read (eardimage c vary)
provided processed(c) yields readin(e) onexit;

operation process(cardimage c)
provided readin(c) yields proeessed(c) onexit;

program:

end

declare cardimage c;
declare integer i;
i:=O; initial (i);
while i<10 do
(i: =i+ 1 ;

read(c) :
process (e)) •.

END OF CHECKING
NO EBRORS WERE DETECTED.

+*build
processor2:was processor plus states'
begin states passed (cardimage C), written(cardimage.e);

operation checkcard(cardimage c, integer ok vary)
provided readin(c) yields passed{c) onexit:

operation writeout(cardimage c)
provided passed(c) yields written (C) onexit;

operation rejectmessage;

process(cardimage c):
declare. integer ok:
checkcard (c ,ok) ;
if ~ok then rejectmessage;
writeout (C) ••

en'"
END OF CHECKING
NO ~RRORS iERE DETECTED •.

+*build
staterel:'explain processed versus written'
begin

processed(cardimage c):
written (c) •

end
END OF CHECKING
NO ERBORS ~ERE tr-TECTED.

Figure 5.7

- 136 -

these states. Subsequent elaboration of the states thereby provides

. further specifications to be met by elaboration of the operations introduced

to satisfy given state transitions.

example:

Thus

A program might require that an object of a data type "t"
satisfies some predicate "pi". An operation to express
this would be introduced as:-

operation opi (t x vary)

provided true yields pi(x) onexit

Next the predicate pi is elaborated as being some relationship m between two other predi"cates p2 and p3.

pi (t x) p2 (x) ~ ·p3 (x)

In order to satisfy this relationship two further operations
could be introduced.

operation op2 (t x vary)

provided ••••• yields p2 (x) onexit l

operation op3 (t x vary)

provided • •• yields p3 (x) onexit

These are then used to elaborate opl so that the relationship
between pi, p2 and p3 is met.

Thus .the elaboration of states may be used eitther to drive the

program design process l or be caused as a result of the design process.

The particular stress applied is dependent upon the programmer himself

and the problem he is solving.

Pre- and post-conditions upon programs

When an operation is elaborated, this elaboration may be given pre-

and post-conditions. In the same way that pre- and post-conditions given

at the time of an operation introduction may be considered as giving a' .

- 137 -

meaning to the concept of the operation, so the pre- and post-conditions

applied to an elaboration may be considered as expressing the meaning of the

actual implementation of the operation. A check between the two sets of

conditions is provided as an aid towards correct elaboration. Such checking

takes the form of a message to the programmer who can take action as· necessary

as no automatic theorem prover is implemented within the system.

The conditions '·applied to the elaboration part are in fact assertions

a~though the syntax takes a slightly different form.

example: .

Suppose that an operation is introduced.

operation op1 (...)

provided p(• • •) yields Q (• • .) onexit

Subsequently op1. is elaborated.

op1 (...):

provided R (• • •) ~

•

assert S (• • •) onexit

The programmer is reminded that the following conditions
should hold:

p (. .
and S (•

.)
)

R (. .
=> Q (.

.5 .• 3 Supplementing the design with a new machine

.)
)

Under the control of the *build command, the programmer can enter the

text for a new machine into the system. Once this text has been satisfactor:

checked the new machine is added to the program design. This necessitates

~odifications to the current environment as described in section 5.2.3 •.

- 138 -

In addition c~rtain relationships are noted as to the place of the

new machine within the total design structure. These relationships are

expressed between the machines representing the design.

For the purposes of later discussion.we introduce the notion of a

machine beiltg "dependent upon the existence of" another machine.

A new machine Ml is dependent upon the existence of another machine

M2.present in the design structure, 1£:-

(i) M2 introduced the concept type, operation or state elaborated
by Mi.

(ii) M2 introduced some concept which is used an}'\-lhere within Mi.
~.g. declaring an instance of a type, invoking an operation
or using a state).

(iii) M2 elaborated a data type and M1 gives an elaboration for
an operation or state upon that data type. (In this cas'e
Ml maY,make use of the representation of the data type
as given in M2).

As a point of interest it should be stressed that relationships

are expressed between machines only, and not between machines (or parts

of machines) and individual concepts. Further discussion on the

implications of this decision is given in Chapter 6, sections 6.1.1.

and 6.1.2 •

. 5 .•. 4. Discussion of the notation

There are a number of issues which require discussion with regard to the

contents of this chapter. At this time we will deal only with those specific

to the not~tion used to specify machines and their programs. Other discussion

is left until Chapter 7 •

. 5 .• ,4 •. 1 . Omissions

Whilst we cannot hope to give a complete list of those things which

.might reasonably be expected to appear in the Pearl no~ation but which do

not,. an attempt' is made to cover the most glaring omissions.

- 139 -

(a) procedures or subroutines.

The procedure or subroutine is a most important structuring feature

of most contemporary high-level languages. In a limited way the notion

of an operation in Pearl serves a similar purpose whilst

restricting the more general concept in a number of ways. By viewing a

procedure purely as a particular form of control structure there would

seem to be no strong argument for its omission. However, it was felt

that its inclusion as such would add an unnecessary additional complexity

to the description of the program of a machine as well as possibly allowing

the programmer to build potentially large machines representing a set of

design decisions instead of the one decision intended.

(b) functions

The' notion of a function is almost entirely absent. A state covers a -
limited set of those conventionally available to a programmer. (Namely,

boolean functions of a single argument). The omission is most noticeable

when thete is a need to express a relationship between a number of variables

as a boolean function of n arguments. Such functions occur naturally as

(for example) the conditions in alternative or iterative control structures.

It was expected that the expression language nature of the ~ase language

would make unnecessary an explicit provision for such relationships. However,

in our opinion the use of such concepts as "block expressions" detracts

quickly from the clarity of programs and is, in general, a poor construction.

From experience, it is probable that there is a strong argument for

the inclusion of explicit boolean functions of more than one argument.

However, the further generalization to n-place functions of any type is of

more doubtful value. The same effect can be obtained by an extension of the

- 140 -

function into an operation by an additional assignment to a vary operand. In

these cases there appears to be no syntactic argument against such a

cons truction.

(c) data types and structuring facilities

The two primitive types (integer and string) were chosen for their

general usefulness and for the fact that the concepts they represent are

teasonably well understood. It may be considered that lower level, more

basic ·types should have been chosen in view of the fact that all data

concepts must eventually find a representation in terms of the system

provided types. However, if the base level is chosen too low, then it is

less reasonable to ignore such complications as storage management primitives.

In the current system the storage allocation is handled within the base level

machine and the programmer has no way of altering the mechanism.

Experience has suggested that a further primitive type (the boolean

or logical) should have been provided. The control structures which

conventionally rely upon boolean expressions (e.g. the alternative and

iterative constructions) instead use integer expressions using the value 1

as being equivalent to true and any other value as false. Similarly the

relational operators (=, < ,), etc.) and "boolean" operators (&, I, -,)

take integer operands and produce integer results. Such use of the integer

type is not, of course, unique. (It is to be seen in APL and XPL for

example). It is acceptable until we consider the definition of the

operators &, land...,. In order to give a definition for these

operators over all (possible) integer values, it is necessary to assume a

representation for integers. That chosen for the system as implemc~tcd is

16-bit 2 ts complement as the interpreter waS to use half-,.ord

arithmetic on an IBM System /360 machine.

example~:

•

7 & 3

-2 & 5

- 141 -

=3

= 4

Thus the base language is itself making assumptions about how one of

its concepts is represented. It does not~ therefore, truly represent a

single level of conception •. With hindSight, it is preferable to

introduce the type boolean as a primitive type.

There are two structuring relationships that may be expressed amongst

data elements.

One is that represented by the elaboration of a data type into a

set of components. This relationship represents an abstraction relationship

between two distinct levels of description used in the design.

The other relationship is that provided by the vector form. This

Serves to exemplify one of many possible such relationships which may

be formed, which do not necessarily characterize a different level of

description. Other possibilities including arrays, powersets and sequences

are suggested by Hoare (1972a) of which several are available in the

language PASCAL (Wirth 1971a). Whilst the provision of a single cxarr.plc

of such a structuring relationship was considered sufficient for the

purposes of the current work, it is likely that any practical system would

require such other examples as we have suggested.

(d) control structures

The control structures represent a simple, self-contained set of

elements to describe the sequential flow of program control. They do not

allow the complexity of the ~ statements of Algol or the connectivity

- 142 -

prese~ted by the goto. No attempt was made to include facilities for the

description of either parallelism or co-routines.

(e) Operations

Given the choice of basic data types, the set of operations provided

is ,representative of the set of possibilities, whilst allowing useful

cortcepts to be described at the base level for the purposes of exemplifiction.

(f) Correctness facilities

'The requirement that the definition of operation meanings be deterministic

is a particular limitation. Additionally, as states are purely one place

predicates, there is no way of specifying meanings as abstract relations.

Further discussion on these points is given in Chapter 7 for consideration

in possible extensions.

The system provides no automatic scheme for proving the correctness

of either an individual program for an ideal machine or of the consistency

of the overall design. The relevant sections of Chapter 4 deal with this

point. One possibility that could have been implemented is the automatic

generation of verification conditions. This was not done, purely for reasons

of time and not because of the lack of belief in the practical uti),ity of

such a tool.

Likewise, there are undoubtedly several other ad hoc features that

could be included to catch possible program errors.

example:

It is 'possible to check, in some cases, that the logical
expression controlling a loop may not be altered by
computation within the loop.

- 143 -

The usefulness. of such checks is of doubtful general worth and, again,

t~e precluded any investigation.

5.4.2. Generalization of control structure elements

The base language of Pearl is an "expression language" (see Wirth and

Weber i966, for example). Statements of the language potentially have

values and may be used as operands in the formation of expressions. In

some ways this allows a simplification of the concepts of the programming

la~guage and so should reduce its inherent complexity thereby increasing

the chance of comprehension by the programmer.

examples:

(1) The well-known conditional expression

a: = if E then b else c is derived from the
use of the general alternative control structure
element of the language as the right operand of the'
assignment operator.

(2) It is possible (as in CPL for example, Barron, Buxton,
Hartley, Nixon and Strachey 1964) to write
(if E then b else c) : = a where the same
alternativ;'"contr;r5tructure is used as the left
operand of the assignment operator. (The parc;lthcses
are needed to achieve the correct preccde~ce oi
alternative over assignment).

(3) The semi-colon may also be used in this way.

a: x + y + Z; a/2

has the value a/2

Unfortunately it seems to be the case that such generalization a110\"s

the programmer too much freedom and can lead to unnecessary complexity. Indeed

it may well be that it encourages the programmer to attempt devious program

constructions. It is not an impossible task to conjure up programs that

when unravelled are quite sensible. and yet are textually insanely complex.

- J.'+'+ -

A conclusion which may be reached is that elements of a programming

language whose purpose is to express a flow of control should in general be

distinguished from elements whose purpose is to identify particular actions

to be carried out. As Wilkes (1968) has suggested, there are benefits to be

achieved if it is possible to separate the notions of control flow from

consideration of particular operations or data types, although this may

be a difficult task.

States. values and generalized constants

The idea of a ~ was introduced to allow the programmer to express

the result of an operation.

There is a very close analogy between the notion of a state and the

abstraction of a value, or set of values.

example:

The state "even(i)" where i is an integer, represents the
abstraction from all possible integer constants which are
even.

States may be considered as representing conceptual values

of conceptual data types.

example:

Given the data type "queue ll the state "empty (queue q)1I
may be thought of as expressing one particular value that
a queue may take.

However, such analogies, whilst useful, do not express the full

intention of the general notion of states in the present experimental system.

It is possible to define an operation which changes the state of one of its

operands even though that operand does not possess the attribute vary.

- 145 -

example:

operation print (cardimage c)

provided ., printed (c) yields printed (c) onexit

This example serves to illustrate the intended use of states in

allowing the programmer a formal means of expressing his intention without.

necessarily committing himself to particular implemeritations of that intent.

The operation introduction expresses a clear intent. The operation "print"

will not change the value (in a primitive sense) of the operand, but its

application is an event with Significance which is to be recorded. This

use of a state has proved to be of benefit in expressing the use of a

varlable (see for example the development given in Appendix D).

It is possible that the additional insight given by an investigation

of the application of 'invariants' for a data structure will suggest better

how a state is related to the various notions discussed above.

As was described earlier, (section 5.2.6.3.) it is possible to conceive

·of the definition and elaboration of states as driving the program design.

It is interesting to speculate whether it is more helpful to think of a

program being developed in terms of the operations and data structures

necessary to describe the required process (with states being used to

validate the program so developed) or whether in fact states are indeed the

way in which the necessary operations and structures are determined. The view

taken by Schwartz (1970), that there are various advantages to be gained when

a system is built through consideration of its data, would seem to support the

latter approach.

5.5. Some comparisons with other programming notations

There is some similarity between the scheme presented above

and extensible programming languages. However the extension

mechanism is unusual. In ECL (Wegbreit 1971) or Algol 68 (van Wijngaarden 1969),

the extension is made outwards from the actual objects present in the base

language. It is necessary when introducing a new concept, to give its

representation. In Pearl, the extensibility is based upon a generalizatipn of a

programming language together with a separate mechanism for relating concepts

to a representation in the base language. This allows a greater freedom of

expression a~d, in general (although not in Pearl as implemented), the

,possibility of a variety of design strategies (including bottom-up for example).

SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968), whilst also exhibiting an

extension mechanism which is primarily bottom-up, does provide a neat

encapsulation of the relationship between a data concept and the set of operations

associated with that data concept. The language itself probably suffers,

however, from its historical derivations and resultant overall complexity.

We have earlier discussed the role of SIMULA in the context of the

representation of program designs on many levels (see Chapter 3).

Pearl is unusual in its enforcement of a particular design discipline.

We have earlier discussed how programming notations influence program

'development. In the design of Pearl an attempt has been made to take

advantage of this fact in order to encourage design in particular ways. By

,way of 'contrast, although the AED-O language (Ross 1969) and the AED

philosophy itself (Ross 1967) are based upon a similar recognition, the

,programmer is given immense freedom and facility to build models and designs.

This freedom allows the careful programmer a wide range of expression, but in

doing so opens the way to unbridled complexity. The Pearl philosophy may be

stated more in terms of giving the programmer enough rope to do something

~onstructive, but not enough to 'hang himself. Whether it would be possible

to maintain this philosophy if additional power was added (e.g. in the number

of conceptual relationships that could be represented) is an open question.

It is the author's belief that it would, provided the additional complexity

was constrained to be used in particular ways which did not result in the

connectivity of substantially different concepts being increased beyond some

reasonably low bound.

In its provisions for the specification and maintenance of correctness

criteria, Pearl is by no means unique. An equivalent form of assert expression

is to be seen in, for example, some implementations of Algol W (Algol W 1972)

a~d in the language Nucleus (Good and Ragland 1973). The provision of a means

of giving meanings to conceptual operations is less common. There is a

similarity with assertional languages such as ABSET. (Elcock, Foster, Gray,

McGregor and Murray, 1971).

5.6. Summary

In this chapter we have concentrated on one particular feature of the

Pearl system; namely the manner in which it assists in the actual construction

of a program. This necessarily entailed a description of the bases of the

system for describing and checking a multi-level design uSing one design

strategy in particular. In the next chapter we will describe the other

facilities provided by the system for the editing, interrogation and interpretation

of the information contained within the data base of the program design.

- 148 -

Chapter 6·

Extended Facilities of Pearl

In this chapter we describe the facilities provided by the Pearl

system which allow the programmer to carry out design modification and

design evaluation, and to request information about the state of a

design.

Chapter 5 described how the programmer can construct a program

using a particular notation together with some machine assistance. One

important aspect of the assistance provided is the construction of a

data base representing the evolving design. It is not difficult to

visualize the programmer developing his design in the way described,

using the machine to check each piece in much the same way as a

conven.tional compiler might do, but not making use of the machine to

maintain the design at all. The medium in which the design is stored

may then be represented as a pile of paper.

example:

It is possible to develop a program written in Algol in a
similarly structured manner. Each individual Algol text may
be checked by an Algol compiler, but the relationships
existing between individual texts will not be recognized and
stored by anyone other than the individual programmer.

The drawbacks of such a medium are obvious when consideration is

given to the functions which may be applied to discover infonnation

pertaining to any particular level of description. One effect of the

awkwardness of information retrieval is that errors are "corre~ted"

by patching those texts which are easily available (generally the base

level program) rather than by a proper modification to the design at the

- 149 -
appropriate level.

''It is the patching of partially correct programs that makes them
obscure".

(Henderson and Snowdon 1972).

In the Pearl system, the computer itself is used to maintain the

information representing the design as a data base and facilities are

provided to enable easy access to this information so that

proper modifications can be made.

Other tools may obviously be provided to act upon the information

in the data base. One such is an interpreter enabling the run-time

evaluation of the program under development. In the current implementation,

this interpreter is limited in the facilities it provides. For example,

the.primitive type string has not been implemented whilst error checking

and reporting facilities, whilst being available, are not as extensive

as some of those described in Chapter 4. Other tools which could be

provided in an extension of the current system readily suggest themselves.

We give as examples:-

automatic or semi-automatic program prover.

an automatic means of checking for correct

construction.

powerful debugging aids.

translator into an existing language or· to

machine code.

The system is used interactively from a terminal (although it can

be used in batch mode) with the various tools being invoked by a set of

commands. The *build command was introduced in the previous chapter. The

- l~U'-

majority of the remaining commands will be introduced in the following

sections. (For a complete list, see appendix B). Examples will be used

where appropriate. Several of these are taken from the program

developments shown in appendices D, E and F.

6.1. Modification of the Design

There are two commands which allow the programmer to modify an

existing design. These both use a '~achine" as the unit of editing.

Modification may be carried out locally by a replacement command, whilst

more drastic alterations may be carried out by invocation of a

deletion command.

6.1.1. Replacement

The *replace command is designed to allow the replacement of a

single named machine by another machine. (As an extension we might

consider the replacement of a set of connected machines by a different

set of connected machines).

The replacement of a machine is not dissimilar to the original

introduction of a machine using *build. However, it is necessary to

(a) re-construct the environment of the machine being rcp13ccd,.

and (b) impose certain additional restrictions upon the replacement

machine so as not to violate the currently existing

environment or its development.

It is a reasonably trivial matter to ensure that condition (a)

can be achieved, whilst use is made of the dependency relationships that

are defined between machines (see Chapter 5, section 5.3) to construct the

necessary restrictions in (b).

In particular it is required that the specification part of the

replacement machine should include the specification part of the machine

- 151 -

being replaced to the extent that individual concepts are re-introduced.

This requirement is imposed because no means are provided (except for

exhaustive search) within the system by which to ascertain whether or not

an individual concept introduced in one machine has been used by any other

machine. A different implementation would ease this requrernent. (Appendix

B contains a complete definition of the restrictions).

Operation meanings may be changed provided the programmer accepts

that the new meaning implies the old meaning. This is an instance of the

fact mentioned above that it is non-trivial (although possible) to discover

whether a particular operation meaning may have been made use of in some

machine.

Figure 6.1 illustrates a part of a Pearl session in which a machine

is replaced by another, and operation meanings are checked. It is based

upon the development given in appendix b.

It will be appreciated that the action provided by the replacement

command is limited. Figures 6.2 and 6.3 may help to clarifv the command

further in view of the restrictions given,

Fi.gure 6.2 shows a design built from S related mad-d.nes 1-11, M2, MJ,

M4, MS. Each machine is represented as a node. Th"! full 1 h.es linking

two machines represent the elaboration of a concept introduced by the

machine nearer the root by the machine further from the root. The labels

on these lines identify particular concepts. Thus the concept c is

introduced by Ml and elaborated by M2. The dashed lines between machines

represent other dependency relationships. Thus M5 is dependent upon M2

through use of the concept d introduced in M2.

- 152 -

+*build
liner1:'we print an image by printing its lines'
begin

states lineprinted(line 1) ,1inebuilt(line 1);
opera tion lineprint (line 1)

provided linebuilt(l) yields lineprinted(l) onexit;

print(image i):
declare integer j;
j:=21 :
while j>1 do
(j:=j-1 i lineprint (1 (j) of i».

end
END OF CHECKING
NO EBRORS WERE DETECTED. ,

+*rep1ace liner'
1iner11:'we print an image by printing its lines'
begin

states 1ineprinted (line 1),linebui1t(line l)q
lineempty(line 1);

operation 1ineprint(line 1)
provided linebuilt (1) I lineempty (1)
yields lineprinted(l) onexit;

1 DeES
LINFBOILT L
IMPLY
LINY-'BUILT L LINEEMPTY (L)
yes
? T ..
• I ,:

LINFPRINTEJ: L
I MPtIED BY
LINEPRINTEt L
yes
print (image i) :

declare integer j;

Figure 6.1

- 153 -

of d

d MS

Figure 6.2

Suppose that a decision is taken to replace M2. The replacement

machine must fit into the position occupied by M2 in the structure of

figure 6.2. Figure 6.3 shows the structure that is left if M2 is removed.

'Ml

_______ / use of d

d,/ e ~-~:~--_~' ___ M5
~ If '\ M3

M4

Figure 6.3

- 154 -

Thus the replacement machine must

(i) elaborate the concept c introduced in Ml, and

(ii) provide (introduce) concepts d, e and f.

The replacement command is intended to illustrate how the programmer can

make slight perturbations to a design without discarding previous work.

Obviously, other similar tools could be provided, whilst different implementations

of the system could relax the restrictions that apply.

The replacement of a machine which elaborates a data type imposes an

additional constraint upon how design may proceed. Following such a

successful replacement, the programmer must provide replacements for machines

which give elaborations for operatiOns and states which use an instance of

this data type as an operand or parameter. (This constraint is equivalent

to that imposed when a machine giving a representation of a data type is first

entered; see .section 5.2.4.). In this way the programmer is protected from

overlooking the consequences of a different representation of a data type.

Figure 6.4 shows an example where this restriction applies. (Taken

from the example of appendix D).

The machine "longrep" gives a representation for the type "line".

Machine "longrepl" elaborates the operation "lineprint" using this

representation. Subsequently a different representation for a "line" is

thought more appropriate. The machine "shortrep" replaces "longrep" to carry

out this change. The programmer is now constrained to give a replacement

for "longrepl' reflecting the altered representation of a line. This he does

using machine "shortrep1".

(A facility is provided to circumvent thiS constraint. The

programmer may indicate that he wishes to "leave" the original machine).

6.1.2. Deletion of machines

By using the command *delete, the programmer may remove a named'.

- 155 -

+*build
longrep:'a line is simply a vector of 20 symbols (integers) ,
begin

line: declare vector(20)integer symb.
end
END OF CHECK! NG
NO ERRORS WERE tETECTED.

+*build
longrep1:'print a line by using prsym'
begin

lineprint(line 1):
declare integer j;
j:=O;
while j <20 do
(j: ::j+ 1; prsym (symb (j) of 1»;
nlcr.

end
END OF CHECKING
NO FRRORS WERE DETECTED.

+*replace longrep
shortrep:'include a count of symhols to be printed with line'
begin

line: declare integer f;
declare vector(20) integer symb •.

end
END OF CHECKING
NO FRRORS WERE tETECTED.

+*replace longrep1
shortrep1:'print f symbols using prsym'
begin

lineprint (line 1):
declare integer j:
j :=0 ;
while j<f of I do
(j:=j+1; prsym (s1mb (j) of 1»;
nIcr.

end
END OF CHECKING
NO rRROBS iERE DETECTED.

Figure 6.4

- 156 -

machine from the data base completely. The net effect is to leave the design

as if the machine had never existed. To achieve this, the command is more

powerful" than it might at first appear.

If a machine is deleted, then all of the data types, operations and

states which are introduced by that machine are also deleted. It is necessary,

therefore, to delete, in addition, all those machines which depend upon the

existence of a machine being deleted. Deletion of these machines causes

deletion of further dependent machines and so on. In a highly connected

system of machines, it is easy to see that the explicit deletion of one

machine can have a drastic effect upon the remainder of the structure. Of

course, as the data base represents a set of machines which must all be

CQnnected directly or indirectly to the initial ideal machine elaborating

the "program" concept, it is a trivial matter to delete the whole program

design. The delete command should obviously be treated with care.

Figure 6.5 offers an illustration

program

~ Ml

M2 _

C22

C21--__.,

I

7\
\

, ,

C13

, , ,

/
/

use
C22

of'
I C41 ',;;;'

Figure 6.5

use o[C21

C31

k
\

- -4r"

use of C22

M6

C61

M8

- 157 -

If the command

*delete M8

is issued, then only machine M8 will be removed.

If the command

*delete M2

is issued, then this will caUSe deletion of machines M2, M7, M5, M6, M8, M3.

6.2 Interrogation of the design

A command is available (*list) by which information may be

retrieved from the data base and presented in readable form to the

user. The command may be parameterized according to simple rules

so that the user can request that specific information is displayed. A

,full list of the options available is given in appendix B.

Figure 6.6 shows an example of the use of the *list command

based upon t'he program development of app.endix D. This particular example

illustrates the formatting feature provided for the display of text.

Any formatting information present when text is input to the system is

destroyed. Standard formatting is applied when text is displayed by

the system for the user, thereby making textual input a less laborious

task than might otherwise be the case.

6.3 Design evaluation - program execution

The *execute command invokes an interpreter to execute the program

under design. This interpreter has a number of features. Perhaps most

interesting is its ability to execute a program which is not complete.

This allows some evaluation of a program design at any stage in its

- 158 -

+*build
jscanner:~setmarks. put each of the 40 marks into image'
begin operation addmark(integer j, image i vary)
provided j>O & j<=40 yields true onexit;
setmarks (image i vary):
declare integer j;
j:=O;
while j<40 do
(j:==j+1; addmark (j"i» 0,

end
END OF CHECKING
NO FRRORS WERE DETECTED •.

+*list jscanner
JSCANNER IS A MACHINE
JSCANNER:' SETMABKS •. PUT EACH OF THE 40 MARKS UTO nlAGE'
BEGIN
OPERATION ADDMARK(INTEGER J, IMAGF I VARY)

PROVIDED J>O&J<=40 YIELDS TROE ONEXIT;
SET1URKS (I f!AGE. r VARY):

END

DECLARE INTEGER J;
J:=O:
WHILE J<40 DO

(J:=J+1;
ADDt1ARK (J, I» •.

Figure 6.6

- 159 -

construction. The interpreter also allows a limited amount of interaction

between the executing program and the programmer sitting at a terminal.

Some provision is made for error checking and error reporting, the latter in

a language appropriate to the error condition encountered.

For a number of reasons, but mainly that of time, the interpreter

pr.ovided in the current implementation is incomplete and experimental. It

was considered desirable for some form of interpreter to be provided within

the system, particularly to demonstrate the feasibility of carrying out

Some program design evaluation before the level of the base machine had

been encountered. Thus an interpreter providing some of the more unusual

features was developed, whilst those features of a more mundane nature

were either omitted or not developed completely.

The form of the command is:

*execute machinename

'l1le action invoked may be considered as "switching on the power"

to the named machine. 'l1lis machine will then carry out the action

described by its program part, in general involving the invocation

of other machines to carry out elaborations of any concepts it requires.

(Recursive invocations of machines are handled in the obvious manner;

recall that recursive definition of data types is not allowed). As

implemented, the machine named in the command must be the initial

ideal machine elaborating the "program" concept, although an obvious

and attractive extension is to allow the command to apply to any

machine. There would then, of course, be a need for some form of

initialization of any operands.

6.3.1. The basic execution process

In a completely elaborated program, execution flow is similar to

the, flow of a program written in a contemporary programming language

'equipped with a procedure mechanism (e.g. Algol 60). As described in .

- 160 -

section 5.2.5 the declare statements are regarded in a similar fashion to

operations whose concern is the allocation and formatting of memory •.

If an operation is defined with a pre-condition or a post-condition these

are checked prior to execution of the elaboration and after it respectively.

We will deal in more detail with the execution of programs when not

all of the necessary machines· have been designed and entered by the

programmer. Three possible approaches are considered.

6;3.2. Simulatiori or temporary machines

A straightforward approach is one which clearly parallels the ideas

of multi-level modelling (Zurcher and Randell 1968). The programmer

includes in his design, "dummy" machines which merely simulate the

necessary effect to produce acceptable results. Then, as design proceeds,

each simulating machine is replaced by a proper machine designed to overcome

the difficulty being simulated. Of course, this may involve the use of

further dummy machines Simulating the new set of primitive notions. The

simulating machines can, of course, be powerful making use of any information

which may be available. Aslanian and Bennett (1971) describe a system

which provides a comprehensive set of simulation concepts which

substantially increase the descriptive power available to the progra~er.

No such concepts are provide~ in Pearl.

However, the facilities provided in Pearl make it a reasonably

simple matter to develop a program using dummy machines to allow test

executions early in the development.

6.3.3. Programmer assistance

By reason of the interactive, online nature of Pearl, it is possible

to make use of the programmer to supply values as the result of

unelaborated operations. Use is made of such information as the type of

the operands and whether they are vary or not before deciding whether.

- 161 -

programmer assistance can be invoked. Figure 6.7 gives a short illustration.

The t~chnique has a number of advantages and disadvantages. Among

the advantages is the reduction in the amount of text that must be

entered by the programmer in order to test a program. He does not have to

explicitly code and enter machines (even "dummy" machines) to provide

an "implementation" of operations which he has not properly designed.

However, experience suggests that the programmer sitting at a terminal

requires information about the state of a computation when prompted for

values' and is often surprised by what he is asked to do. This difficulty

is, of course, closely tied to the problem of relating a program text to

the actual program execution. It may be that b'etter human engineering

could alleviate the difficulties somewhat but there appear

to be limitations to this int,eractive approach.

6.3.4. Using operation meanings

Consider the two machines described in figure 6.8. (It is assumed

that no other machines exist). The obvious intention of the progrmruner

,is to construct a program which yields, as its result an object nc.uncd

"page" of type "image", which is in the state "printed". (Ti;is is the

assertion supplied as the result of the initial machine "compfirst").

The command

*execute compfirst

activates "compfirst".

An object of type "image" with name "page" is created. As no

representation is given, a standard one is used. Control now moves to

carry out the operation "build" upon the conceptual object "page". First,

the pre-condition is checked and found true. "Clearfirst" is now activated

- 162 -

+*build
display: 'display values of a function of integers 0-9'
begin operation f (integer x,integer y vary) ;

program:
declare integer (x,y):
x:=O:

end

while x< 10 do
(f(x.y);

wr iteint (y) ;
x:=x+').

END OF CHECKING
NO FRRORS WERE DETECTED.

+*execute program
*** UNELABORATEt OPERATION
F(INTEGER X,INTEGER Y VARY)
BEFORE OPERATION
X till S 0
Y WAS 0
PLEASE PROVIDE VALUES FOR
Y
12
72
* •• UNELABORATED OPERATION

Figure 6.7

- 163 -

+*build
compfirst:'store image of page before printing'
begin type image;

states built (image i), printed(image i);
operation

build (image i vary)
provided true yields built (i) onexit,

print (image i)
provided built(i) yields printed(i) onexit:

program:
declare image page;
build (page); print (page). ,

assert printed(page) onexit
end
END OF CHECKING
NO FRRORS WERE DETECTED.

+*build
clearfirst:~expand build.we will empty the image first'
begin states blank(image i);

operation
clear(image. i vary)

provided true yields blank(i) onexit,
setmarks(image i vary)

provided blanket) yields built (i) onexit:

build(image i vary):
clear (i): setmarks (i) •.

end
END OF CHECKING
NO FRRORS WERE DETECTED.

+*execute compfirst

EXECUTION SUCCESSFUL

Fi.gure 6.8

- 164 -

to carJ'y out the elaboration for ''build''. The first action is to "clear"

the object "page". The pre-condition is satisfied, but there is no machine

available to carry out the operation. Thus it is performed symbolically

using the post-condition of the definition of "clear" as the statement of the

l:esult of the operation. As a result the object "page" is deemed to satisfy

the predicate

"blank (page)".

and the pre-condition of the next action, the operation "setmarks" is met.

In a similar manner, there being no machine elaborating "setmarks", the

object "page" will subsequently satisfy the predicate

''built (page)".

The action of "clearfirst" thus being completed, "compfirst" is

resumed. A check is made that the elaboration of "build" was carried out

successfully by evaluating the post-condition given in the definition

of "build". The "print" operation is carried out in a Similar, conceptual

fashion. As a result it is determined that the object "page" is "printed"

and thus the final assertion is met.

This example indicates how incomplete programs may be executed in a

meaningful way with some expectation of discovering inconSistencies.

Obviously there are limitations. Some are described in the next few sections,

whilst others, possibly more far-reaching, are discussed in Chapter 7.

6.3.5. The use of meanings and states

. In the example of section 6.3.4 we described how the post-condition

'of an operation definition could be used as a statement of its result.

In the cases given, the actual post-conditions consisted of a Single state.

States are the only elements of post-conditions which may be used in this

manner. Figure 6.9 illustrates one reason for this. (This figure is

hypothetical for illustrative purposes).

- 165 -

+*build
nl:W DO. '

begin
operation makezero{integer i vary)

provided true yields i=O onexit;
operation generalop(integer i,integer (j,k) vary)

provided i=O yields i>j,j>kgk>i onexit;

program:

end

declare integer (a,b,c);
makezero(a); generalop(aQb,c).

+*execute n 1

Figure 6.9

- 166 -

When "n1" is activated, it will follow its program and declare three

integer variables a, b and c~ An application of the ''makezero'' operation

follows. Suppose that, as it is unelaborated, we make use of the post

condition to act as a stat'ement of the result. Thus the intege~ variab~e

a is given the value zero and execution of "n1" continues. The precondition

of "generalop" is satisfied and an attempt is made to fulfill the post

condition. One possibility is to use the known value of a to determine

a yalue for b so as to satisfy a» b. Thus if b is assigned the value

-1, then this condition will be met. The second condition now requires

-i) c, and thus c is assigned the value -2. This results in the obvious

contradiction -2» 0 from the final condition. Of course it is not possible

to choose a set of integer values to satisfy these conditions because of the

theorem

i) j & j) k i> k

Unfortunately it would require an automatic theorem prover to

disco'ver,whether a given post-condition could be satisfied at all.

The restriction of the use of post-conditions in this manner

only to those post-conditions which are states, offers a partial solution

to this problem. However, there are still a number of rules to be observed.

The first we have hinted at above. If the post-condition of an unelaborated

operation consists of more than one element, then the list of elements is

processed left to right.

example:

- 167 -

if an operation has a post-condition as

• yields s(x), -, s(x) onexit,

then this would be treated as if it was

••• yields, s(x) onexit

despite its obvious contradictory nature.

The other rules are less trivial. The next section is devoted to a

discussion of them •

. 6.3.6. Rules for the use of operation meanings in the execution

of incomplete programs

(i) The pre-condition of an operation meaning is always a test.

(ii) The post-condition of an operation meaning is used either as a

test, or as a statement expressing a result. The only element

possessing this duality is the state. Whether a state is

used as a test or as a statement is dependent upon whether

or not the operation itself is elaborated (c) or unclaborated

(u), and also whether the state itself is elaborated (c) or

unelaborated (u). Figure 6.10 gives a table showing which

particular use a state is put to. The table is described

in terms of an operation b and a state bd where

operation

provided

b (. • .)

yields bd (•••) onexit

- 168 -

b bd Test or
statement

Case 1 u e test

Case 2 u u statement

Case 3 e e test

Case 4 e u statement

. Figure 6.10

Neither case 2 nor case 3 from this table call for much comment.

If both the operation b and the state bd are unelaborated, then the

state acts as a statement; if both are elaborated the state is a test

upon the consistency of the elaborations.

In case 1 the programmer has provided an elaboration of the state

but not of the operation. Presumably the ultimate elaboration of b

will reflect the given elaboration of bd. If the execution process

was to interpret bd as a statement then, because bd has been elaborated,

it would be necessary to ensure that the elaboration of bd was a150

true. It is not difficult to see how this could lead to either

non-deterministic or contradictory situations.

- 169 -

example:

In section 6.3.5. an example was discussed to show why only
states may exhibit the dual role of statement and test.
This example is exactly similar to the situation we are
now discussing when viewed as follows. Suppose a data type
D is introduced together with a state S. S· is used to
define an operation F as:-

.operation F (D x) provided yields S(x) onexit

S~bsequentlyD is elaborated as having 3 integers components
i, j, k, whilst S is elaborated as :-

S(D x):

(i of x> j .2i x) & (j of x) k of x)

& (k of x) i of x)

An execution of a program invoking the unelaborated operation
F(x) must not use the state Sex) as a statement because the
elaboration of sex) cannot possibly be satisfied.

In the absence of a tool able to resolve inconsistencies of the

nature of the example, the obvious course is taken of insisting that

an elaborated state always implies a test.

Case 4 of figure 6.10 arises when the operation has been elaborated

but its meaning is still expressed at the higher, unelaborated lev,,! vf

description. It is therefore meaningless to test the state, as it should

not have been changed as a result of the action caused by the operation

elaboration. The state is thus interpreted as a statement.

Both case 1 and case 4 are good illustrations of the "close"

conceptual relationship that exists between operations and states.

(see section 5.2.6.3). These two cases are examples of the difficultic~

that are liable to arise if an operation is described at a different level

to the state which defines it (or which is defined by it). The

relat~onship between an operation and the states used to define its

- 170 -

meaning is similar to that which exists between a data type and the operations

allowed upon instances of it. It will be appreciated, therefore, that

individual machines do not represent individual levels of description;

there will generally be several machines within that single level. The

cases we have discussed above therefore represent not only the execution of

a program not completely defined in terms of the base language, but also a

view.of such an execution even when closely related concepts of the program

are themselves developed to differing degrees of detail.

6.3.7. Error reporting and debugging facilities

The structural nature of the set of machines enables the occurrence

of 'any run-time errors to be meaningfully related to the original program

text as described in Chapter 4. In the current implementation of the

interpreter there are a few automatic checks carried out at run time.

These include subscript checking and arithmetic overflow but not such features

as ensuring a variable has been assigned before its value is US<2(:. In addition·

a number of features of the notation enable the programmer to specify

explicitly that checks be made. (e.g. assert expressions, pr'.'.- and post

conditions on operations and elaborations etc.).

When an error is detected, the execution process provi'!c'; CC(Uli ••

information to the programmer. This consists of a meSs3gc '"'ll:1l"0;)rintc to the

fatilt, followed by material indicating in which ma~hine it OCdlC."cd .:md at

which point in its program. This is given in the form oi a source li.stin.;

with a pointer. Next the programmer is given a trac~ of machine activations

So that he has some additional contextual material upon which to base his

investigations. Finally the values of any pertinent variables arc listc~;.

Figure 6.11 shows an example.

The trace ot machine activations and the textual pointer referencing a

failing machine are particularly related to the structure of programs

- 171 -

... buUd
iDsert:'insert an integer value into a list'
begin type integerlist;

?peration insertvalue(integerlists vary, integer i);

program:
declare integeriist s;
declare integer ii
i:=O;
while i< 10 do
, i: =i+ 1 ;

insertvalue (s,i» • ,
end .
END OF CHECKING
NO PRRORS iBRE DETECTED. ,

.. tbuild
listrep:'a list has 9 elements'
begin

integerlist:
declare vector (9) integer element;

.declare integer count;
count:=O. ,

end
END OF CHECKING
NO :!"RRORS ~BRE tETECTED. ,

+*build
listinsert:'insert according to vector representation'
begin

insertvalue(integerlist s vary,integer i):
count of s:=count of s+1;
elernent(count of s) of s:=i.

en(l
END OF CHECKING
NO FRRORS ~ERE tETECTED.

+*execute prog ram
*** ERROR: SUBSCRIPT ERROR
CURRENT MACHINE IS lISTINSERT EXECUTING OPERATION nSI;RTVALU.o:
ERR('IR AT:
COUNT OF S := COUNT OF S+1;
ELEMENT(COONT OF S) OF S := I.

I
LISTTNSER1 WAS. CALLED FROM INSERT EXECUTING OPERATION PRCGFA~
VALUE OF INDEX IS 10
DEClARED SIZE IS 9

Figure 6.11

- 172 -

written in Pearl. The implementation does not provide either frequency

counts (Satterthwaite 1972) or a complete correlation between the static

and dynamic representations of a program. (Dijkstra 1968c). Both would be

worthwhile and, probably, non-complex additions.

The system does not, as implemented, include the more attractive

features of online debugging systems such as the interrogation of named

variables or the program counters of machines. As is described in Chapter 4,

features such as these can increase the understanding that a progr~er

has for a program and thereby raise his confidence in it.

Further comments related to possible extensions to the current Pearl

implementadon (and thereby to similar systems) are given in the next chapter.

6.4 Summary

This chapter has· described those facilities of the Pearl system

wHCh enable modification, interrogation and evaluation of program designs.

Pearl represents· an attempt to provide a unified environment for the

development of computer programs. This environment is provided by meanS of

a design notation in which a developing program may be described, together

with.a set of tools to help the programmer to a realization of ;) l'~·"')~ram

in which he can place a high degree of confidence. Many of tr.cse (:olll s are

already available in contemporary computing systems, but Pearl c.dl:iti.onall)'

provides some which are unusual as well as exerting a particular influence

over the complete design process. This influence may be traced from the.

earliest conception of a program design throughout, and even beyond, the·

normal life of the program itself. Pearl is able to do this because

- 173 -

it represents an information system for the total design proco.ss.

There are a number of points of discussion that the design of

Pearl raises. It has deficiencies and weaknesses of its own besides

being based upon some philosophies about program design that are,

to say the least, the subject of considerable discussion. In the next

chapter we attempt to give an evaluation of the experimental system

including suggestions as to how noted deficiencies could ros~ibly be

corrected and the power of systems like Pearl extended. Also we

discuss how Pearl as a system relates to contemporary programming

systems.

- 174 -

Chapter 7:

Discussio'n and Conclusions

Experience in the use of Pearl has shed some light upon the

contribution that such systems may make to the programming activity.

We will discuss some points in this chapter, particularly those which we

see as relevant in the light of likely future developments.

In this context, it is important to relate Pearl to certain other

tao Is and techniques that are current ly availab le to the prograHuncr, or

which have been proposed.

Finally we give some indication of the success of the current

investigation. Several points of argument are raised, even in the

underlying design philosophies. It is an important result of this

work to decide whether decisions taken on the basis of these philosophies

have been substantiated.

7.1 Some deficiencies and limitations of Pearl

In Chapter 5 (section 5.4) we described certain omissions and

deficiencies in the notation of Pearl. We have said little abollt

equivalent inadequacies in the system as a whole. Some of Ll..:!se L.,.'~

been recognized from the outset in that certain influences upon :.1.('

design of the system (e.g. human engineering) were not catered [or

specifically, or that the experimental nature of the implementatiun

made it impossible to include several desirable features. Other

deficiencies have been revealed by use of the system.

7.1.1 Machines and levels of description

In Chapter 3 we developed the idea of a level of description being

characterized by four sets of concepts (D,F,C and S). Pearl is built

around the notion of allowing the representation of a program at a level of

description chosen by the programmer. This freedom is provided by the.

- 175 -

mechanism of the 'ideal' machine whereby the programmer specifies elements

'for the characterizing sets. There is, therefore, a very close correspondence

between an .ideal machine and a level of description. However, this

correspondence is not ,one to one. A single machine (together with its

environment) need not completely represent a single level of description.

This is a natural result of the concept of a machine as carrying out a

.. single elaboration. The specification part of each machine thereby

introduces only those concepts necessary to carry out this elaboration,

whether or not these concepts characterize a complete level of description

in t,he sense that all related concepts are introduced.

It is arguable whether or not it would have been better to have made

a One to one correspondence between machines and levels of description. For

a number of reasons it was decided not to do this.

1. A machine represents a single design decision.

2. A machine was chosen as the basic unit of information in the syste:n.

As such it should be neither textually unwieldy

or potentially complex. The uniform nature of all machines as

the only building block was considered important.

3. At any stage of design', the programmer should Lot neocd re· ~:)C!ci [y

more than is necessary to represent a particular dccisio~.

4. The system could take care of the need to gather together ... set of

~achines representing a complete level of description.

Unfortunately, it is often the case that a programmer finds it

necessary to introduce machines of not inconsiderable complexity (se,'

for example the development shown in appendix E). Stoy and Strachcy (1972)

have remarked that in programming there is a certain requirement for a

conjunction of autonomy and hierarchy. This is apparently reflected by the

complexity of' certain individual machines.

- 176 -

However, we believe that the concept of a machine is satisfactory in

an environment such as Pearl, although it is possible that a smaller unit

of information might be desirable. It would then be possible to re-investigate

the relationships between the idea of a machine and the characterization of,

levels of description with a view to obtaining a closer correspondence.

There is a not inconsiderable problem here of course. The concept of

a machine does provide a useful, self-contained, structural unit of design

which enables the imposition upon the programmer of a significant design

discipline. Smaller information units, whilst arguably having Some

advantages, have some potential dangers. It would be necessary to

represent more relationships amongst such units than is the case with a

machine~ The programmer would have to be aware of these and tbe imposition

of a satisfactory design discipline becomes a more difficult problem.

Naturally this raises the question once more of how much

freedom the programmer should be allowed. It must be said, however, that

it is the author's belief that it is better to err on the side of too much

restriction than too little, for programmers will generally abuse it if

they are given too much.

7.1.2. Machine environments and design strategies

At any time in the development of a program, the cnvironr::ei,t

available in a machine represents the information contain,~d in ;:hc

design as 'it has been developed to that point. A subsequ~nt inspection of

the environment will indicate that the design has progressed, but without

indicating exactly how it has progressed. Thus a notion of progrQssive

design is available from an inspection of the changing environment.

The strategy for design progress provided in Pearl is only one

of a number of possibilities. In Chapter 3 (section 3.2.2.) we discussed

a number of basic'design strategies and concluded that one which alloweJ the

- 177 -

programmer to develop his program starting from the level of the ~roblem
t"

description would have most advantages. The rules representing the

design strategy of program development in Pearl are based upon this

conclusion. Thus the environment available to a new machine represents the

total' design as developed and there are rules dictating how a new machine

can interpret and modify this representation. The particular representation

and set of rules has proved to be adequate in the context of the design '

strategy they encourage.

The particularly rigid discipline enforced by Pearl has proved to be

of benefit in the programming task in that it has led to a better appreciation

of difficulties inherent in the problem being tackled rather than problems

of choice amongst possible representations in some programming language.

As a result, the programmer is encouraged to try to understand what he is

reaily trying to do, before he does it, rather than the more commonly

encountered situation of the programmer trying to understand why he has done

something already.

On occasion it has been found that the disCipline is too rigid.

In Pearl the level of the base language is fixed and all progr;.i:lls !11 ljsl be

elaborated down to this level. There is no reasonab Ie way by "/h: ell 1:~le

programmer can, even in a consistent fashion, raise the level of C:1C base

language concepts (i.e. a bottom-up strategy). Perhaps a system such as

Pearl shou'ld be neutral as to the direction in which design proceeds.

However, it should be noted that such a relaxation introduces a further

degree of freedom into the design process, with consequent methodological

issues raised. In Pearl it was decided to take a particularly rigid

viewpoint and limit this freedom quite extensively. It will be appreciated that

even in Pearl, there are situations where the programmer still has considerable

- 178 -

freedom of design.

example:

the number of operands in an operation, in particular the
freedom to define an operation which alters the values of
any number of its operands.

As alternatives which could be implemented in a system based upon·

Pearl the following are suggested for consideration.

1. Program development may additionally proceed in a bottom-up

fashion. This is allowed by a relaxation of the rule that a

machine may only elaborate a concept that was present in the

environment before the machine was defined.

example:

A machine X could both introduce and elaborate a new concept Y.

If this extension is to discipline the programmer to a pu.c 00~ ::O.~i-Up

development, then the elaboration of the concept Y mu~t 01".1:, r .. ;.;':.,

use of concepts which have a definite representation in the !.lase

language. This is probably an unnatural restrictio:1. 1t 1"0uid ;;1 pear

more reasonable to allow elaboration in terms of concepts whVh ~",y or

may not have a definite base language representation. The progra,mcr

may then develop programs, not only from the top or from the botu>:ll,

but also from the ''middle'' (up or down).

- 179 -

2. In suggestion 1, the design is still represented by a single

erivironment. It is possible to change the representation of a

design by adding structure to the environment. We can envisage a

structure based upon scope rules for machines, so that only a sub-set

of the total set of design concepts is available to anyone new machine.

example:

Suppose there is a concept c present in the total
environment. A new machine N may not wish to be told
of this concept so that, although it has a requirement
of a concept with the properties of c, it can, for
instance, introduce a concept c with similar properties.
Of course, the design may be such that the new machine
N should not know of the existence of c. Such situations
may arise in programs being developed by several pl'op.le
where the single, global environment of Pearl could have
some disadvantages. Individual designers should be able
to derive their own parts of the program in a manner
which is unimpeded by others.

3. As an extension of 2, different representations of the same concept

could be allowed to co-exist in the design. This could be of use as

a meanS of archiving the development process, or for the i':I;); _,;,mLation

of versions developed by two or more programmers each in[luenc~d by their

own design requirements, or of versions developed to cope witl: ~xpected

Variations for program use, or to cater for program portability.

examples:

(a) It may be possible to develop a compiler such that by
changing the representation of the concepts of code
generation new compilers could be produced easily for
different machines.

- 180 -

(b) Some decisions made during development of a program may
be based upon predictions of input load. Versions
allow different representations to be developed according
to a set of differing predictions.

Such a scheme is suggested by Dijkstra (1972a) with the notion that

a program is constructed by making a necklace of pearls chosen from amongst

a set of potentially useful pearls. The ultimate extension to such a scheme

is to allow the choice of a particular version of a representation to be left

until the program is actually executing.

Experimentation with the 3 alternatives suggested (and others) may well

be an interesting exercise. However, such experimentation is likely to be

subJective according to individual progrannners and situations and thereby

be difticult to evaluate.

7.1.3. Extended notion of states

The concept of state as described in chapters 5 and 6 has proved to be

a useful tool in the expression of the meanings of a conceptual operation.

A state allows the programmer a means of writing down his intentions in a

formal yet descriptive terminology which relies heavily upon on in~0rrr0tation

from natural language. The rigid nature of the syntax imposes :l rcquirera,~nt

for careful expression and contributes to considered design in much the Si.Jlle

way as does the construction of assertions about a program (see Chapt~r 4).

The very usefulness of the technique draws particular attention to its

other limitations and restrictions. There is therefore an attraction in

investigating how these restrictions may be relaxed.

The basis for the restrictions lies in the desire to use operation

lllC;!anings to define the effect of unelaborated operations at run time. The

two main restrictions are:-

(i) Meanings should be completely deterministic, and

- 181 -

(ii) it is not possible to use states (reasonably) to express a

relationship between operands of an operation.

Relaxation of restriction (i) introduces, in theory, combinatorial

problems, as an operation may produce a number of different results, each

of which must be considered in a state test of a program. Henderson

and Quarendon (1974) describe some work in this area. Figure 7.1 however,

gives an example of the additional power of expression which can be gained

if the potential combinatorial explosion can be overcome.

The operation "read" has a result which is determinable only when

supplied with additional information. The program illustrated in the figure

is one which occurS frequently in practical programming situations and yet

there is no way of representing it in Pearl without including a deterministic

mechanism explicitly in the form of flags or other testable relationships.

Figure 7.2 illustrates the difficulties to be overcome if relationships

between variab1es are to be represented. The specific problem is to determine

whether or not the final assertion is satisfied. If not, then what

relationship does hold between the cards a and b? On the other hand if the

assertion is satisfied, then how is such a relationship maintain(~c! ,~l',

perhaps of greater importance, how can it be detected that 50m2

relationships cannot possibly be maintained? It is the author's bel icf t;",at

a programmer should be able to write down such things as non-d~t~rministic

results, or results which are relationships. In many cases there is no

. reason why this should not be possible provided the programmer is in full

control of what he is doing. The difficulties arise because it is necessary

to take precautions to warn a programmer when he has lost sight of his

purpose. Again, it is a matter of deciding how much freedom progr~.ers

should be allowed.

- 182 -

type card;
type cardreader;
states reaoin (card. C), eof (cardreader r) ;
opera tion readJ(card c vary,. cardreader r)
provided 0 o.yields readin (c)

or eof(r) onexit;
program: declare cardreader r, card c;

read (c,r)
w bile -oeof (r) do

(0 't 1 •

rHad(c,r));

type card;
relation samecar1(card(a,b»;
opera tion read (card c vary):

Figurte 701

operation copycard(card a vary, card b)
provided readin (b) yields samecard (a, b)

onexit;
program: declare card (a,b.c);

read(a);
copycard (b,a) ;

assert samecdrdia,b) before
read (c) ;
copy car 1 (b,c) ;

assert samecard (a,c) .~~

Figure 7.2

- 183 -

The "vary" mechanism

One concept that has been found wanting is the "vary" mechanism

applicable to the operands of an operation. (see section 5.2.6.1) •.

The idea of an "invariant" as suggested by Hoare (1972b)

. has a great attract~on as a more powerful mechanism which serves a

similar purpose. The invariant allows the actual representation of a data

oQject to change without affecting the abstraction of the object as used at

a higher level of description. The vary mechanism prevents any such changes,

whether or not they are visible to the higher level. It is not possible,.

therefore, to change the representation in any helpful manner during

program execution (the "benevolent side effect" Hoare 1972b).

In order to allow an invariant to apply to a data object, it is

necessary to provide a means for variable initialization. The condition

of the invariant is then established before any operations may b~ carried out.

This may be done by an extension of the ~ statement as illustrated

below. The example is based on one from Hoare (1972b).

.9:.1?.£

states

smallbtset invar limited;

limited (smallintset s);

The st~te "limited" is intended to refer to a bound vn the number 0;

elements in a "smallintset". The invar clause is equivalent to the: :lvst

condition of an operation statement. If an instance of a "smallintsct" is

declared in a machine program, then this instance should invaria:)ly sat isfy

the condition of being "limited". If an elaboration is given for "smalli"tset:",

then it is the responsibility of this elaboration to correctly ensure that the

- 184 -

appropriate operations are carried out so that instances of "smallintset"

, will be initialized to the state "limited". A check that Ibis has been done

milY be carried out during execution in a straight forward way by using the

~ clause as a test. For this test to be meaningful, it would be expected

that'the terms occurring in an ~ clause would also be'elaborated.

"smallintset" might be elaborated as:

smallintset: declare vector(100) integer A;

declare integer m;

m: = O.

and "limited" as:

limited (smallintset s): m of s)= 0 & m.2i s (= 100.

The test of the correct initialization of "smallintset" is thus

expressed in terms of the elements of its representation.

Thus,

If an elaboration of "smallintset" is not given, executions of

programs declaring instances of "smallintset" may still be carried out by

using the invar clause as a statement as is possible with the post-condition

of an operation statement.

7.1.5. The assignment operato'L"

The operation of the assignment of a value to a variable is a basic

one in a wide class of contemporary progrrunming languages. The base langur.ge

of Pearl is a member of this class. It is fitting that this should be so due to

, the, widespread use of languages of this class. The generalized use of the

operation in Pearl and the way in which it is handled calls for a few com~entS.

Although the scheme that has been implemented is satisfactory (see

section 5.2.4) it has drawn attention to a number of points. Firstly, the

assignment operator symbol is unique amongst other operator symbols, in that

its functional representation is context dependent. This can be defended on the

grounds of familiarity of use and its common purpose, which is context,

- 185 -

independent. This suggests that assignment should be treated as a well

understood operation of the base language, much like subscription.

Assignment is a much more complex operation than subscription (which

we may view as an operation on a type "address"). How an assignment is

carried out is dependent upon the representation of its operands.. This may

not be sufficient information however. We can envisage situations where

further information might be necessary, particularly if the notion of a type

is parameterized in a manner equivalent to the parameterization of classes

in. SIMULA 67.

example:

table (integer n):

deciare integer size;

declare vector (n) line 1;

size: = n.

It is thus reasonable to allow the programmer to give elaborations for

.. any assignment operator used between operands of a conceptu"11 type. Thus the

operation of assignment should, i11 general, be viewed as a conc(';>L ... L1l o~'('cation

just as any other introduced by the programmer.

In the implementation of Pearl the prograrru-ner may use th0 Cor,;.nor;

symbol (:=) for all assignments, but must also provide elaborations f0r ar.y

assignment which may be invoked between operands which are not of a primitive

type. This has led to a number of difficulties, particularly in the con:ext

of a program modification uSing the commands *replace or *delete. The

usefulness of the flexible viewpoint has not been confirmed in practice and

it is doubtful that any significant benefit was derived from the additional

, en~ineering effort required in the implementation.

- 186 -

1.1.6. .Human Engineering

It is important that, in any system incorporating a human element, the

interfaces between that human element and other parts of the system are well

engineered. In an interactive system such as Pearl, potential users must not

be deterred because of the form of their contact with the system. In the

current implementation, whilst not disregarding this issue completely, it has not

been explored to any depth. This was done consciously in the interests of

limiting the task of implementation. Where pOSSible some attempt has been made

td make the system easy to use but on occasion human engineering has been

~eglected. This has had the effect that there are a number of examples where,

.itl a~ environment other than one which is purely experimental, potential users

'might well at first find the system unattractive.

The notation itself is one such example. It was chosen for its

simpliCity and readability. The similarity between it and other high level

languages is not c.oincidental.. Many of the concepts we believe to be

desir,able are to be found in contemporary languages and it is thus appropriate

to take advantage of well understood syntax. Unfortunately, such syntax

can be verbose for a human being sitting at a terminal. The rcqu:: rcr,;ent for

unique names leads to the invention of long identifiers (not in i·._~,d[iJ bad

thing) thereby adding to the overall textual length of progr~s.

It may well be that we should develop a language offering ::wo different

representa~ions*. One representation is that used for program input (e.g. from

a terminal), the other being used when the programmer wishes to inspect his

program. Each representation would be derivable from the other in an

automatic fashion.

The handling of errors discovered as a machine definition is entered ~s

*This idea was first communicated to the author by J.D. Ichbiah.

- 187 -

another source of frustration for the user of the current system. In an

interactive system, it is particularly attractive to the user to be able to

correct immediately errors discovered by the compiler. Because of the

parsing method employed by the syntax checking routines of Pearl, this is

not pouible (see appendix C). Indeed it has been found most appropriate

to terminate the checking of input completely once a non-trivial error

has been encountered. Naturally this can be extremely frustrating for the

user.

In order to make systems such as Pearl more attractive there are

facilities which could be considered in addition to the removal of the

sources of frustration noted above. Pre-eminent amongst these is an

editing system allowing the user to edit existing machines in a microscopic

fashion (in comparison to *replace or *delete), so that the large w~ount

of textual input currently necessary may be reduced.

There are obviously many issues involved when the human engineering

of an interactive system is considered (e.g. positioning of keys, type of

function provided automatically etc). An appreciation of these may be gained

from the work of Hansen (1971a, 1971b) or Mitchell (1970).

7.1.7. Miscellaneous

We close this discussion with a section on some other possible>

extensions to the current system.

An additional method of passing information between ,,;.:ccutinc; r.la,:l;ines

would often be useful. As a candidate for this we suggest a set ot 610b~1

variables, perhaps organized in subsets according to m:.1c!;incs, WiLli ;1C:CC~S

controlled in a similar fashion to the accesS of operation, state or type

names. However, it is necessary that the use of such global variables

be obvious and restricted (maybe read only) to disallow obscure and

complex relationships amongst machines. The class concept of SIHULA 6"

- 188 -

could afford a possible solution. Unfortunately the scope rules of'that

language suffer from their development from those of Algol 60 which can be

the source of much devious program construction. The named common areas of

FORTRAN may be more appropriate~ provided that additional restrictions are

imposed to prevent misuse. A possible approach would be to use an explicit

named set of variables (implemented by some machine) together with a

statement of an invariant to hold over these variables.

It may be possible to develop an extension to Pearl which has a

substantially different base language (e.g. one providing storage

management primitives) or one which allowed generalization of the control

structure elements in addition to operation and type.

The elements of the 'system itself can be expanded to provide, for

instance further interrogation facilities or (as suggested earlier) editing

and formal proving tools. Arguments can easily be made for any of these, but

,it is necessary to beware of allowing the system to become too large or too

complex. One answer to this could possibly lie in making the system itself

extendable so that a user could build up more complex facilities to satisfy

his own requirements. This is a mechanism often seen in the cOl\1J-;"al,(i j ~nguages

of interactive systems, particularly those of text editing systems. (van Dam

and Rice 1971).

The system could also fruitfully be extended to include a mechanism

for constructing efficient machine code programs to take full advantage of

hardware. Indeed, this could possibly be combined with the interpretation

techniques currently used as the basis of the program testing tools prov:'cied

by the system. The testing and debugging system described by Satterthwaite

(1972) is based upon the use of machine code rather than interpretation, whilst

the incremental compilation techniques described by Mitchell (1970) arc of

obvious r'elevance.

- 189 -

Hopkins (1970) has suggested that, because O.f the redundancy of the

informatiO.n available in a structured develO.pment O.f a pr~ gram, it may be

possible to carry out a substantial amO.unt O.f optimization when prO.ducing

the executable cede f~r the completed prO.gram. No. wO.rk has been carried out

en these lines within the implementatiO.n O.f Pearl.

7.2 The fallibility O.f Pearl - an example

It is apprO.priate to' illustrate that even simple programming errO.rs

can be made and may pass undetected when using Pearl. This comment is

pO.ssibly teo' strO.ngly wO.rded as the error which we shall describe was

eventually discO.vered and certainly could have been discO.vered earlier,

althO.ugh for reasons we give below the prO.grammer may be discouraged frem

making this possible.

In appendix E is shown an example of the design of a program to solve

i:he eight queens problem as posed by Wirth (1971b). The relevant portions. of

this design are repeated in figure 7.3.

The concept behind the design of the program is that of moving a "pointer"

over a "board" and testing the squares pointed at by the pointer. In machine N4,

the pointer is represented by two integers, one to point at rows, ",.J onc to point

at columns. The crucial error has been made by this choice of reprc:;cntation

in terms of base language concepts, but more of that below. Ir. H4G, the> operation

,"regress" is elaborated in terms O.f this representation O.f a pointer. This

involves the twO. operations "findqueen" and "removequcen", both of which

use integer operands to identify the relevant square on the board. During the

original design of this machine, the use of one of these operations was specified

wrongly insO.far as the logical correctness of the program was concerned. In fact

the row and column pointers became interchanged. When the program was run it

did not, of CO.urse, perform satisfactorily. Eventually the error was found

by inspection and corrected.

- 190 -

m4:'now a pointer points to a column and a row'
begin

pointer: declare integer (row,col).
end

. ,

m4g:'we regress by using old information'
begin

operation findqueen (board q,integer row vary, integer col);
operation removequeen(board 9 vary,integer row,integer col);

regress(board q vary,pointer p vary):
declare integer (i, j) ;
j:=col of p;
j:=j··1;
if j>O then
(findqueen(g.i,j);

removegueen (g,i,i):
if 1:.::8 then
(j:=j-1:

if j>O then
(find queen (g,i,j) ;

removegueen (g. i. j))) ;
col of p:=j;
row cf p:=i+1.

FigurE- 7.3

- 191 -

However, the error need never have occurred if the poin~er had no~ been

. represented by two objects of the same type. If a poiriter had been

represented as a "rowpointer" and a "columnpointer", then any interchanged

use would have been discovered by reason of the stringent type che~king.

There is however a disincentive to carrying out the design in this way

which it is particularly instructive to describe. If the design had been

carried out according to the second alternative we described, than the two

types "rowpointer" and "columnpointer" would each have separately required

elaboration. Suppose a rowpointer was represented as an integer. Then the

. operation "findqueen" for example, which has both a columnpointer and a

rowpointer as an operand will require elaboration before a columnpointer can

be elaborated. The programmer must introduce a new operation (which we might

call "newfindqueen") which now has a columnpointer and an integer as operands.

Once he has done this for any similar operations he may give a representation

for a columnpointer as an integer and elaborate "newfindqueen" etc. into

operations having two integers as operands. The intermediate operations

serve no purpose other than transforming one operand of the original set of

operations in the next level of representation as a step towards lh2

transformation of the complete set of operands. At each intcrmcdi. .. \:C' level,

however, it is possible to perform a check upon what is written down although

even at the lowest level there is an operation which has two integers as

operands. and so the error can be repeated. Hopefully the prograrrJTler will have

a better understanding of what he is doing however. The notatiun will help as

well, as one of these two operands should always appear in the context of the

.2f operator.

The unfortunate disincentive is the large amount of text which needs to

be input to prevent such errors occurring. As a human being carrying out the

. programming task, the author (who was the programmer at fault) was not.prepared

- 192 -

to accept this additional work in return for such (seemingly) meagre benefit.

The penalty was paid in full.

The moral is, of course, that no matter what tools are provided,

the human user may be guaranteed to misuse them or to fail to appreciate

their true worth.

7.3. Relationship with other tools and techniques

The Pearl system has much in common with other tools and techniques

currently available, Some of which have been already noted. This is to be

expected as we do not claim to propose any new or startling tech~ique to be

applied in the programming task. What has been done is to look at the different

, tasks involved in programming and to select those approaches which are considered

likely to make the whole programming task ~ comprehensible. The words ~

and ~ in the last sentence are stressed because we have taken the view that

programming covers more than the initial creation of a definitive piece of text.

Rather, programming is an activity which encompasses the life of a program, from

its conception to that time when all physical trace hss been lost.

The Pearl scheme is very closely related to the ideas of "structured

programming" as described by Dijkstra (1972a). However, Pearl is :norc rigid

in the form that development may take, whilst the use of the computC'r allows

not only a means of enforcing the discipline, but also a \~ay of providin6 a

powerful set of tools to actively assist the programmer during (and after)

the development. Thus there is some reward for the prograrr~cr who follows the

design discipline imposed upon him.

In Chapter 5 we discussed both SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968)

and ECL (Wegbreit 1971) as extensible languages. It would, of course, be possible

to build a system similar to Peari around a given extensible language encouraging

the necessary design discipline that we regard as lacking in such languages.

However, it is the author's belief that the necessary restrictions to apply such

- 193 -

a discipline would have a drastic effect upon the language.

In Chapter 6 we described how Pearl is related to the work

of Zurcher and Randell in providing a scheme for the evaluation of incomplete

program designs by test executions. Use has also been made of the notions of

assertions about programs although more in the manner of maintaining or driving

the program design than in generating verification conditions to be proved by

an automatic theorem prover.

Although Pearl is designed specifically for the development of one

program by a single programmer, it has several similarities with systems

aimed at the problems of a team of people constructing a large piece of

software. Pearson (1973) and Falla and Burns (1973) give outline

descriptions of such systems. Both of these systems and Pearl rely upon

the construction of a data base to represent a developing program. However,

Pearl differs particularly in its emphasis upon the methodology of program

construction. Both of the other cited systems are principally concerned

with project control, although attention is paid to the structure of the

reSUlting software at the level of individual module relationships.

The Le2 system (Mitchell, Perlis and van Zoeren 1968) was designed to

see how the computer could be of assistance in the top-down design of programs.

,It is an interactive system using program execution as the main source of

design information. The programmer may enter program text in the forT.! of

"parts" which may be likened to procedures. If a "part" is discovered to

be misSing when execution takes place, the execution process gives the

programmer the opportunity to enter the necessary text before resuming.

However, Le 2 gives no other assistance in the enforcement or cncQuragc;-;-u371t

of a discipline for design. The programmer has complete freedom to construct

programs as he likes and there is, therefore, an equivalent methodological

difficulty. Le2 provides no mechanism at all for the testing of incomplete

- 194 -

programs. If he wishes to do this, then the programmer must provide,

explicitly, executable temporary code to implement "parts" which are missing.

(ThiS is equivalent to a programmer in Pearl entering "dummy" machines as

described in section 6.3.2.).

In a paper given at the I.F.I.P. conference in 1971 (Floyd 1971) there

appears an example of a hypothetical man~achine interaction to construct a

computer program. Floyd calls for the usual tools of syntax checker, code

generator, program executor, prompter and file handler. In addition he suggests

that the machine might continually check the consistency of the program against

a set of specifications. This would involve a proof of the semantic correctness

of the program, a proof of the termination of iteration, and countcr-examples~

incorrect programs. Of particular note in, his example is the apparent hierarchical

design strategy and the need for intelligible interaction between man and

machine. The interactive program verifier described by Deutsch (1973) is

based upon some of Floyd's proposals.

A further proposal is made by Freeman (1973). Freeman describes the'

tools and techniques that his system will provide as follows:

". •• an integrated programming environment ••• in which all the
tools needed to develop a program are immediately availabl~ at the
same level of control: editors, filing systems, cOffipil~rs. debugging
systems, I/O facilities; such a system is usually interactive".

Freeman takes functional programming (Freeman and Newell 1971) as the

basis for program design. This scheme is again hierarchical in nature.

Conspicuous by its absence in the list presented by Freeman is any tool

concerned with checking the logical correctnesS of a program or part

thereof from the text alone.

The implemented Pearl system is much closer to Freeman's proposals than

- 195 -

to Floyd's in that they both lack a complete logic checking tool. Pearl

does, however, offer some such capability through the design of the notation

and the static checks that are possible. It does not, however, go to such

lengths with the debugging facilities as suggested by Freeman, although there

is no reason why future developments should restrict themselves in this

direction.

These proposals together with the systems described by Pearson (1973)

and Falla and Burns (1973) are of particular interest in that they indicate

that a unified approach to the process of program writing, development and

maintenance is being more widely appreciated and also that there is considerable

common ground.

7.4. Conclusions and summary

In the introduction to this thesis (Chapter 1) we expressed concern

over the reliability of contemporary software produced using the tools and

and techniques generally available. We have tried to investigate some of the

causes of difficulty that arise in the programming task. At the bottom of

many difficulties is the inherent lack of comprehension due to the complexity

of both the problems to be solved and of the tools available for t:,C'ir solution.

The average programmer is unlikely to be able to obtain a su[;icicnt

grasp over both the problem and the available programming languages so as to be

able to choose the best way of uSing the machine to solve the problc.n. Each

individual programmer will develop his own way of doing things dependent upon

his own experience, ability and environment. Unfortunately his natural

resources tend to possess transients and so when he returns to a partic~lar

problem at a later date, he is often unable to recall how his program works.

,It is not really surprising that others subsequently have even greater

difficulty.

- 196 -

The desire for poweTful constructions is a major Source of complexity

in programming languages. In view of the cost of hardware this is to be

expected. If the programming language removes much of the power of the

hardware then it is likely that there will be questions of economics to be

answered. Notwithstanding this point of view, we have suggested that the

complexity of programming languages must be reduced. It does not follow

that there will be a commensurate reduction in the power of the language; the

opposite may even be true.

Although we may be able to lessen the impact of complex programming

language constructions, there still remain the difficulties posed in the

comprehension of real world problems and the evolution of satisfactory solutions.

These are two processes which cannot be truly separated. Indeed programming

is a particular form of problem solution. An understanding of the process of

problem solving can act as a guide to how programs may be developed. We

described the use of a generalized notation and particular design strategies to

constrain and assist the program designer, using the ideas of a "level of

description" and the relationships of "abstraction" and "elaboration".

Many of the conclusions at which we have arrived are, of necessity,

subjective. However we believe that the arguments and suggestions

put forward are well-founded as basic philosophies to be held abcut ;>rogra.'T'

development and design; only experience can show whether this is tru;'y the case.

~ particularly important requirement of these philosophies is that of

restriction. We have already made a similar point about progra.'T~ing languages,

'but it is equally important that the prograrruner has only a limited set of

things he can write down at any time in the program development. It should

then be pOSSible to understand program designs and to follow a constructive

deSign strategy. This restriction must not be too oppressive or the

programmer will find his natural inventiveness and creativity is hampered,

- 197 -

but it must not be too lax or else the programmer will tend to introduce

complexity into his design through a lack of appreciation for the true .

source of difficulty. We have suggested that a hierarchic program

structure, developed basically via a top-down strategy i~ a reasonable

way for a design to be represented, whilst imposing a sufficient restriction

to limit the. degree of complexity. As the appropriate discussion has

indicated, this may well be an over-cautious discipline. However, we must

take care if we introduce any relaxations.

We h~ve also suggested that the necessary restrictions are best imposed

upon the programmer rather than being self-imposed. This may again be wrong

in particular cases, but not, we believe, in general. How many programmers

take as much care in the documentation and description of the design of

a program as is seen in a recent paper by Naur (1972)1 We suspect the

number is very few. Yet this is the degree of discipline which is

necessary and which, if not imposed by external means, must come from

the programmer himself.

Pearl is a scheme which imposes a discipline throughout the design of

. a program. Although much of its worth comes from its attention to the telCtu~l

development of a program in a well-structured way, this is only a "art

of the process of program development. The unification of rr .. ~ny teoL and

techniques in a single environment is aimed at making the whole task of the

comprehension of complexity in program design easier for the human being,

be he the programmer or any other interested person. We have been able to

combine in a single scheme, many techniques, ranging from the hi.::rarchical

development and representation of a program, schemes for specifying the

intention and understanding of a programmer, facilities for progran~er

interrogation of designs and proposals, machine assistance in the maintenance

of such information and means for checking its consistency, through to the

- 198 -

simple expedient of program development in a interactive system. However,

it must be stressed that whilst all of these may make their own individual

contribution, they are worth less if the total scheme is not based upon the

philosophy of comprehension through simplicity, claritr and ease of use.

We certainly do not. claim to have found the panacea for the problems

of writing highly reHable software. Indeed the examples given may have

been just as easily developedm a conventional way, or would they? Certainly

in Pearl, the programmer is provided with means by which he can convey a

large amount of information about his program and its design. Whether such

a scheme is practical on a large scale program development can only be the

subject of speculation. However, it is our hope and belief. that most, if not

all, of what has been said would apply and be applied with suitable

modification in such circumstances.

Further research on the lines suggested by work with Pearl is now

being carried out at Newcastle University under a grant from the

Science Research Council. The major aim of this continued work is the

construction of a further program building system which will additionally

incorporate features which received little attention in Pearl. In particular,

Some effort is being devoted to the human engineering aspects of [h., new

system to enable a closer evaluation of the acceptability of such systems

to the programming community than was possible with Pearl.

- 199 -

APPENDICES

Appendices A,B and C contain details of the Pearl system.

Appendix A gives a definition in B.N.F. of the Pearl notation.

B details the various commands which a user may invoke, whilst

Appendix C gives some notes on system implementation.

Appendix

Appendices D,E and F show programs developed using Pearl. In

each appendix, only the set of machines and a sample execution are

included. The actual development of programs such as these additionally

involves numerous other interactions between the programmer and Pearl.

Text in lower case is entered by the user, whilst that in upper case

is written by the system. The system invites the user to enter a

c.ommand by typing a ''+'' sign.

- 200 -

Appendix A: Syntax of machine descriptions

The syntax of the notation used for describing machines is giv~n below

in Backus Naur Form. Any character or character string not enclosed in angular

brackets «)) is a terminal symbol. In addition <identifer)

< type name), (number) and (string) are terminal symbols. An (identifie9

and a. (type name) are character sequences containing between 1 and 255 characters

inclusiye. The first character must be either a letter or one of the symbols _ # •
The remainder may be chosen from these characters plus the digits 0-9. A

<fumber» is a sequence of decimal digits whose value is an integer in the range

o to 64035. A <string) is a sequence of characters (any characters) enclosed

in single quotation marks. A quotation mark within a string is represented by

two such marks. The sequence must not contain more than 255 characters.

References are made in the follow definition to notes which follow it.

PRODUCTION

<machine> ::= <machine heading> <decision step>

<machine beading> ::= <identifier> : <string>

<decision step> ::= begin <decision option> end

<decision option> ::= (6p elab>
I <machine definition> Cop elab>

<machine definition> ::= <machine statement> <i>
I <machine definition) <machine statement> <;)

<machine statement) ::= <type introduction)
1 <operation list>

1 <states list>

<type intIoduction> ::= type <id spec>

<idspec> ::~ <identifier>
<identifier list) <identifier>)

I
I
I

. NOTES

1

'2
2

- 201 -

PRODUCTION

<identifier list> 0.- (
I <identifier list> <identifier> ,

<operation list> ::: <operation start> <op specif>
l<operation list> I <op specif>

<operation start> ::= operation

<op specif> ::= <operation>
I <operation> <provided> <valued expression>

NOTES

<resolt> 14

<opera tion> :: = <identifier>
I <identifier> <parameter list>

<parameter list> ::= <parameter head>
<parameter element>)

<parameter head> ::= (
I <parameter head> <parameter element> ,

<parameter element> ::= <typing element>
<typing element> vary

<typing element> ::= <t name> <id spec>
I vector <t name> <id spec>
I <head> <size> <t name> <id spec>

<head> •• = vector (

<size> ::= <valued expression>

<t name> ::= <type name>

<provided> ~:= provided

3
4

14

<D?sult> ::= <yields> <valued expression> onexit 14

<yields> ::= yields
assert 5

<states list> .0= <states> <op specif>
<states list> , <op specif>

<states> ::= states

<op elab> ::= <descrip>
<i1escrip>

<pre-block>.
: <pre-block> 0 <result>

PRODUCTION

<descrip> ::= <operation>
<type name>

<pre-block> ::= <block>

- 202 -

<entry> <block>

NOTES

6,7
8

<entry> ::= <provided> <valued expression> then 14

<block> ::= <expression>
<expression> <;> <block>

<;> ::= ;

<expression> ::= <valued eXfression>
I <valueless statement>

<valueless statement> ::= <declaration>
I <repeat head> <valued expression>
I <while head> <expression>
I <if clause> <expression>

<declaration> ::= <declare) <typing element>
I <declaration> , <typing element>

<declare> ::= declare

<repeat head> ::= <repeat> <expression> until

(repeat> ::= repeat

2,12

12
12,14
12
12

9

<while head> ::= <while> <valued expression> do 14

<while> ::= while

<valued expression> !:= <logical expression>
I <lo9ical expression> := <valued expression>
I <if clause> <true part> <valued expression>

<if clause> ::= <if> <valued expression> then

<if> ::= if

<true part> ::= <valued expression> else

<logical expressio~> ::= <logical factor>
I <logical e~pression> I <logical factor>

<logical factor> ::= <logical primary>
I <logical factor> <conop> <logical primary>

10,12
11, 12

12

<conop> ::= &

I

PRODUCTION

- 203 -

<logical rrimary> ::= <strin9 expression>
<string expression <relation)

~<lcgical primary)
truE
false

<relation> •. =

<
>
<
> .
.., =

<strin9 expression)

<string expression> ::= <arithmetic expression>
I <string expression>1 f<arithmetic expression>

<arithmetic expression> ::= <term>
1 <arithmetic Expression) - <term>
, <arithmetic expression> + <term>
I - <teru'>
I + < term>

<term> ::= <primary>
<term) * <primary>
<term> I <primary>

<primary> :;= <basic primary>
I <assertion) <basic primary>

<assertion> ::= <assert><valued expression>before

<assert> ::= assert

<basic primary> .. = <variable>
< (> <block)
<constant>

«> ::= (

(constant) ::= <nurrber>
<str ing>

<variable> ::= <name>
<qualifier> <name>

<qualifier> ::= <name> of

i NOTES

1

12
12

I

I

12, 14

9, 12

If!

ii', 'I':.'
!

f

- 204 -

PRODUCTION

<name) ::= <identifier>
I <subscript head> <valued expression>

<subscript head> ::= <identifier> <{>
I <subscript head> <valued expression> ,

Notes:
1. Apy errors made up to this point are recoverable.

2. There are certain additional non-terminals which are necessary for

code emission purposes. The code emitted by the compiler (called

~ way code) is interpreted both for listing and for execution.

3. ' A <typing elemens> of this form must not be used in a <declaratio~

4. A ~yping elemen~ of this form must not be used in a <parameter elemen~

5. ,This form of <yield~ is used when giving the post-condition for a

<pre-bloc~

6. The elaboration of states also takes this form.

7. If'the operation or state being elaborated was introduced with parameters

different from those given, the system will make the corroction or insertion

and inform the user.

8. There is a particular problem following the elaboration of a data type

concerning the names used for the components of that data type. It is

possible that there may be a clash between these and a name of a formal

parameter of an operation or state which is elaborated as a result of the

elaboration of the data type. This is only discovered when the operation

or state is elaborated. It is necessary to change the name of the formal

parameter.

- 205 -

9. The scope of variable names is the block in which they are

10.

declared except in the case when a data type is elaborated. In

this last case, the names of variables declared in the outermost

block are available to machines elaborating any operations or states

upon the elaborated data type.

The type of the <:logical expression» and the <:valued expressio~

must be the same and not "undefined" (i.e. the type should be

either a primitive type or a user defined conceptual type.

An "undefined" type covers all other cases).

11. The type of the «true par~ and the <yalued expression»

must be identical. This type is the type of the whole alternative

valued expression and may be "undefined".

12. In post-conditions for operation definitions there are a number

of restrictions.

Conjunction is specified by rather than &. (0

(ii) Parentheses for blocks may only be used within eithc.r

arithmetic or string expressions.

(iii) The following may not be used.

repeat while declare

:= if assert

(iv) Operations may not be invoked.

13. Subscripts start from 1.

14. In these (valued expression» 's assignments (or use of operations

with vary parameters) may only apply to variables local to the

~alued expressio~

- 206 -

Appendix B: Commands

There are 7 commands available.

(i) *initialize

This command initializes the data base representing a program.

Initialization consists of a machine called IIsystem" plus

the following data types and operations.

Data types:

Operations:

program

writeint (integer i)

nlcr

prsym (integer i)

readint (integer i vary)

substr (string s vary,
string t, integer (i,j»

(ii) *build

integer, string

an unelaborated operation.

to write the value of i.

to give new line and carriage return
character to output device.

print a symbol corresponding to the
byte value of i on the next available
character position of the output device.

read an integer value into i.

assign to s characters i to j
inclusive from t (i, j > 1).

This command invokes the routines which enable the input of a

new machine. The description of the machine follows the command.

(iii) *replace <machine name)

This command replaces the machine named with the machine whose

description follows. In addition to the form required by *build

there are other restrictions on replacement machines.

(a) All of the concepts introduced by the original machine must be

re-introduced, at least in name. New operations and states may

also be introduced but not (in the current implementation),

new types.

- 207 -

(b) The formal.parameters of a re-introduced operation must

agree both in number and in type (by position) with the

formal parameters of the original. It is possible to

change the identifier of a formal parameter. It is also

possible for an operand of are-introduced operati,!n to be

given the attribute vary, even though this attribute

was not present in the original. Removal of the vary

attribute for an operand is not allowed. The meaning

part of re-introduced operations may also be changed.

However, the old meaning should imply the new meaning.

The system will request confirmation of this if not in

batch mode. Meanings may be added where they were not

previously present.

(c) The formal parameter of a re-introduced state should

agree in type with the original.

(d) The environment of the replacement machine will be the sOlrrie

as for the machine being replaced. However. additional

restrictions are imposed on the choice of namc:; for ncw

concepts to prevent clashes with names present in any

later environment.

(e) The concept elaborated by the replacement machine must be

the same as that .elaborated by the original.

If the concept elaborated is a data concept, then the system will

immediately require replacements for all machines which were originally

dependent upon the original representation of this data concept.

If desired, it is possible to replace a machine by itself. Instead of

providing a replacement machine. the word "leave" may be used.

*replaee X

leave

- 208 -

(iv) *delete <machine name)

This command causes the deletion of the named machine and of all machines

which are dependent upon it and upon them etc.

(v) *list ~ptio~

This command provides means for the retrieval of information from the

data-base according to the stated option.

<€ption> :: = ~las9

<ClasS)

(class type)

.. . .

<identifier)

all

choice

(class type)

<class type) full

machines

operations

states

Listing a (class type) results in a summary of those OLj.:!Lt;s present

in the data-base of the named <class type) If the keywon: lull is

appended, complete listings are given. The *list «identi.fier)

option gives a "full" listing of information about the named object

if such an object is present in the data~base.

The option ~ is equivalertt to requests to list each <class

type) without full.

The user can discover if his choice of elaborations is limited in any

way following.elaboration of a data type (or replacement of a machine

elaborating a data type) by the command *list choice.

A full listing of a machine or elaborated concept uses an automati.c

- 209 -

indentation algorithm to layout a program in a neat manner. This can

'be useful as the layout used on the program input is therefore ilnmaterial.

(vi) *execute <option)

This command causes the execution of a program.

<option) :: = (machine nam9

I program

It is necessary that the<$tachine nam~names the machine which elaoorates

the concept "program".

A description of the execution mechanism is giveri in Chapter 6.

(vii) *quit

This command terminates the session for the user. Any relevant

information is written to the data-base and held on backing store

to enable continuation at a later date.

In addition to these commands, an interrupt function is avoilable

which will terminate action of any command at an appropriate moment

consistent with non-violation of data-base information.

Abbreviated forms of these commands are allowed (e.g. '~init

for *initialize, *exec for *execute etc.).

-

- 210 -

Appendix C: Some notes on the implementation of Pearl

The Pearl system has been implemented in an experimental fashion to

run under the M.T.S. operating system at the University of Newcastle upon

Tyne. This implementation is based upon the existence of two major pieces

of software.

The first is the XPL compiler generator system, (McKeeman, Horning

and Wortman 1970) which has been used to construct the processor for the

input of machine descriptions. The XPL system encourages the construction

of such a processor using the XPL programming language. Progr~s written

in this language are compiled into object modules which require a loader

of their own. Normally this loader is part of an interface tailored

for the ,particular operating system being used. This interface provides

the XPL program with system dependent facilities such as storage control

and input/output handling. In Pearl, the opportunity was taken to

develop such an interface to provide for the overlaying of XPL programS

and to greatly enhance the standard file handling facilities available.

These file handling facilities are formed from the second miljor piece of

software which has been utilized. This consists of a set of routines,

collectively known as the Newcastle File Handling System (Cooke and

Gray 1973), which allow for the construction and manipulation of complex,

tree-like 'data structures which may be stored on disk files. }1uch use

is made of such structures to hold the design information of a program

with its complex relationships.

Part of the interface between the XPL program and the operating

system is controlled by the user. The commands he supplies determine

which particular function of the system will be loaded into the

overlay area. All of the major functions of the system are written as X?L

- 211 -

programs which communicate with the file routines and the user via the

interface program. The interface program is written in a combination of

360 machine language and PL360.

The interruption handler of Pearl utilizes a feature of the

M.T.S. operating system which allows user programs to handle particular

forms of interrupt. Using this feature it is a relatively trivial matter

to return control to the user interface routine with a request for another

command. It is also possible to delay the acceptance of such an interrupt,

so that the system is able to ensure that the information held about a

program design remains consistent.

The total design structure is represented by a number of interrelated

tree structures. Individual trees are used for machines, types and operations,

whilst states are stored as part of the tree representing types. The program

code for a machine is kept separately from the description of the machine

itself, but refere.nced directly from the machine tree. This code

1 ("i-way code) is in a reverse-Polish form and is such as it may be used to

drive an execution pr('lcess or to l"egenerate the origina} source. Symbol

tables are additionally !'equired If'r thi.s latter purpose.
1 The "i-way code

contains several operations whic.h are common to both the listing interpreter

and thl~ execution interpr.:,ter. It thus makes it a comparatively simple process

t,; pinpoint an erroneous st.atement found by the execution i'1terpreter in the

original source listing. This cC'de is also used to retain operation meanings.

The functions invoked by the va~ious commands are combined into 3

separate overlays written i~ XPL. That for *build and *replace combined in

one such program occupies 50 K bytes of code (71 K including data and

variables). The interpreter (*execute) is a second, separate program of 23 K

bytes of code (55 K) whilst all of the remaining functions are combined into

the third program. This has a total of 22 K bytes of code from a total

- 212 -

size of 32 K bytes.

The actual interface program (written largely in PL360) and the set

of utility functions (written in 360 Assembler) which provide the file

handling facilities require a further 108 K bytes including a large

in-core data area of more than 35 K bytes. The whole system at present,

including the necessary file buffers, requires approximately 190 K bytes

of core storage. This figure could be reduced by limiting the size of

the data areas.

- 213 -

Appendix D

This appendix shows a set of machines developed to construct

a program for a problem described by Dijkstra (1972a).

A program is to be constructed which will print 20 lines

numbered from top to bottom by a y-coordinate running from 20 through

to 1. The position of characters on a line is given by an

x-coordinate running from 1 to 20. For each of the 40 positions

given by

x fx(j) and y = fy(j) for 1 (= j <= 40

a mark has to be printed; all other positions on the page are to be

blank.

(This problem is changed from that given by Dijkstra in the

magnitude of the di.mensions of the page and of the number of TJlark!' to

be placed).

- 214 -

PEnRL PROGRAM WRIT!NG SYSTEM
COMrANDS r~Y BE ENTERED NOW

+*ini t
DeNT'

+*build
compfirst:'store image of page before printing'
begin tyP€ image;

states built~mage i)8 printed(image i);
operation
build (image i vary)

provided true yields built(i) onexit,
pri Ilt (image i)
prcvided built(i) yields
printed (i) onexit;

program:
declare image page;
build (page); print (page) •

assert printed (page) onexit

end
END OF CHECKING
NC FBRORS WERE tETECTED.

Hbnild
clearfirst:~expand build. we will empty the image first'
begin states blank (image i);

operat:ion
clear (image i vary)

prov ided true yields b la nk (i) onexi t,
setmarks(image i vary)

provided tlank(i) yields built(i) onexit;

build (image i vary):
c1 ear (i); setmarks (i) •

en!'
END ("1F CHECKING
NO ~RRORS WERE tETECTED.

- 215 -

+*build
J3canner:'setmarks. put each of the 40 marks into image 1

begin ope ra tion
addmark(integer j. image i vary)

prcvided j>O & j<=40 yields
true onexit;

se tma rks (i mage i var y) :
declare integer j;
j: =0 ;
while j<40 do

(j:=j+1; addmark (j,i)).

end
END OF CHECKI NG
NO fRRORS WERE tETECTED.

+*build
comppos:'calculate the position of the jth mark'
begin states validx(integer x). validy (integer y);

operation
f (integer (x.y) vary, integer j)

prcvided j>O & j<=QO yields
validx(x), validy~) onexit,

mar kpos (in teger (x. y). image i vary)
provided validx(x) & validy (y) yields

true onexit;

addmark(integer j, image i vary):
declare integer (x,y);
f (x. y, j):
markpos (x. y, i) •

enr'
END OF CHECKING
NO PRRORS ~ERE [ETECTED.

+*build
function: 'an example of a possible function for f'
begin

t(integer (x,y) vary, integer j}:
x:=if j<~1 then j else j-20;
if j>20 then y:=j-20
else y:=21-j.

end
END OF CHECKING
NO PRRORS WERE tETECTED.

- 216 -

+*bu ild
liner: 'an image is a vector of lines called I'
begin type line;

l.mage:
declare vector (20) line 1.

end
END 0 F C HECK IN G
NO ~BROBS iERE t~TECTED.,

+*build
liner1: f we print an image by printing its lines'
begin states line printed (line 1), linebuilt(1ine 1)

ope ra tion
lin€print (line 1)

provided linebui1t(l) yields
lineprinted(l} onexit;

print (image i) :
declare integer j;
j: =21 ;
wllile j> 1 do

(j:=j-1; lineprint(l(j) of i)).

enrl
END OF CHECKING
NO YRRORS ~ERE t~TECTEDo

+ *build
liner2: v clear out the image line by line'
begin states blankline(line 1), markinline(line 1);

operation
lineclear(line 1 vary)

provided true yields
~markinlineql), blankline(l) onexit;

clear (image i vary):
declare integer j;
j:=O;
while j<20 do

(j:=j+1;
llnec1ear(l(j) of i)).

en 1

END OF CHECKING
NO FRROBS WERE tETECTED.

- 217 -

+*build
liner3: i x is a position on the yth line of the pase'
begin operation

linemark(integer x, line 1 vary)
provided true yields
markinline(lJ. ~blankline(l) onexit;

markpos (in teger (x, y), image i vary) :
linemark(x,l(y) of i).

end
END OF CHECKING
NO ERRORS WERE tETECTED.

+ *build
liner4:'an image is printed if its bottom line is'
begin

printed (image i): lineprinted (1 (1) of i).

end
EN[; OF CHECKING
NO FRRORS 'ERE rETECTED.

+*build
liner5: i an image is blank if its last line is'
begin

blank (image i): blankline (1 (20) of i).

enr.
EN D OF CHE CK ING
NO rRRORS ~ERE tETECTED •.

"build
liner6:~an image is built when its last line is built'
begin

buil t (image i): linebuil t (1 (20) of i).

end
END r'F CHECKING
NO ~RRORS WERE r~TECTED.

+*build
linerel1 :~explain relation between linebuilt and other states'
begin

li nebuil t (line 1): markinline (1) I blankline (1) •

eni'
END OF CHECKING
NO ~RRORS REBE tETECTED.

- 218 -

+*build
longrep:'a line is simply a vector of 20 symbols (integers) ,
begin

line: declare vector (20) integer 51mb.

end
END Of CHECKING
NO PRRORS WEBE tETECTED.

+*build
longrep1:'print line by using prsym'
begin

lineprint (line 1) :
declare integer j;
j:=O;
while j<20 do

(j:=j+1; prsym(symb(j) of 1));
n1cr.

en~

END OF CHICKING
NO ?RRORS WERE [ETECTED.

+*build
longrep2: 'linemark. put a mark in symt(x) of line'
begin

linemark(integer x, line 1 vary):
syret (x) of 1 := 92 •.

en~

END OF CHECKING
NO FRROaS ~ERE tETECTED.

+*build
longrep3:'clear line completely to blanks'
begin
lineclear(line 1 vary):

declare integer j;
j:=O;
wbile j<20 do

(j:=j+1; 5ymb (j) of 1 := 64).

end
END 0F CHECKING
NO ~RRORS WERE tETECTED.

- 219 -

+*execute program
* *
* *
* *
* *
* *
* *
* *
* *
* *
**
**

* *
* *

* *
* *

* *
* *

* *
* *

* *
EXECUTION SUCCESSFUL

+*quit

- 220 -

Appendix E

This appendix shows a set of machines based upon the program

developed by Wirth (1971b) to find 1 solution to the a-queens problem.

The program described here does not follow that developed by Wirth in

all respects, particularly at the higher levels of description.

- 221 -

FEARL PROGRAft WRITING SYSTEft
CO~~ANDS ~AY BE ENTERED NOH

+*init
DONE

+*build
m1:¥ find a solution to 8 queens problem'
begin
type board;
type pointer;
states full(board q);
states toofar(pointer p), offbottom(pointer p);
operation settofirstsguare(pointer p vary);
operation trysguare(pointer p, board g, integer safe vary);
operation futonsquare(board 9 vary, pointer p);
operation moveonfornextgueen(pointer p vary);
operation moveonforthisgueen(pointer p vary);
operation regress (board 9 vary, pOinter p vary) ;
operation print(board q);
operation clear(board 9 vary);
opera tion fail ure ;
program:

end

declare board g, pointer p, integer safe;
clea r (q) ;
settofirstsquare(p) ;
repeat

(repeat
(trysquare (P, q, safe);

if safe then
(putonsguare (g, p);

moveonfornextgueen(p»
else

moveonforthisgueen(p»
until full (g) I toofar (p) ;
if full (g) then

regress (g, p»
until full (g) Joffbottom{p);
if full (g) then

prin t (g)
else

failure.

END OF CHECKING
NO ERRORS WERE tETECTED.

- 222 -

+*build
m2:'we appreciate 1 queen per column'
begin
operation settofirstoffirst(pointer p vary):
settofirstsquare{pointer p vary):

settofirstoffirst(p) •.
end
END OF CHECKING
NO ERRORS ~ERE D¥.TECTED.

+*build
m3: wsee m2'
begin
operation movetofirstofnext(pcinter p varl):
moveonfornextgueen(pointer p vary):

movetoiirstofnext(p) •.
end
END OF CHECKING
NO F.RRORS WERE tETECTED.

+*build
mit: 'now a pOinter points to a column and a row'
begin
pointer:

declare integer (row, col).
end
END OF CHECK ING
NO ERRORS ~ERE tETECTED •.

+*build
m4a: 'as a result of m4'
begin
settofirstcffirst(pointer p vary):

end

row of p:=1;
col of p:='.

END OF CHECKING
NO ~RRORS ~ERE tETECTED.

+*build
m4b:' see m4a; note possible overflow i
begin
movetofirstofnext(pointer p vary):

en('

col cf p:=col of P+';
row of p:='.

END OF CHECKING
NO ERRORS WERE tETECTED.

- 223 -

+*tuild
.4c:'see m4a: note possible overflow'
begin
moveonforthisgueen(pointer p vary):

row of p:=row of p+1.
end
END OF CHECK ING
NO ~RROBS WERE tETECTED.

+*build
m4d:'see m4a; trysquare related to coords'
begin
operation trycoord(integer row, integer col,

toard g, integer safe vary);
trysguare(pointer p, board g, integer safe vary):

trycoord(row of p, col of p, g, safe).
end
END OF CHECKING
NO ERRORS WERE DETECTED.

+*build
m4e:'see m4a; mapping straight to coords v

begin
operation putoncoord (board 9 vary, integer row, integer col);
putonsguare(board 9 vary, pointer p):

putoncoord(g, row of p, col of pl.
end
END OF CHECKING
NO FRRORS WERE rETECTED.

Ubuild
m4f:'we may go over row'
begin
toofar (pointer p):

row of p>8.
end
END OF CHECKING
NO ~RRORS WERE tETECTED.

- 224 -

+*tuild
m4g:'we regress by using old information'
begin
oFeration findqueen(board q, integer row vary, integer col);
operation removequeen(board q vary. integer row,

in teger col);
regress(board q vary, pointer p vary):

end

declare in teger (i, j);
j:=col of p;
j:=j-1 ;
if j)O then

(find[lUeen (g:. i, j);
removequeen(q, i, j)
if i=8 then

(j: = j- 1 ;
if j>O then

col of p:=j;
row of p:=i+L

(findgueen (q, i. j);
removequeen (q. i, j»»;

END OF CHECKI NG
NO fRRORS ~ERE tETECTED.

Hbuild
m4h:'we may falloff only in columns'
begin
of not tom (pointer p):

col of p< 1.
en!'
END OF CHECKING
NO ERRORS ~ERE DETECTED.

Hbuild
m'>:' a board: position of queens + squares covered j

begin
board:

eon

declare integer numberon;
declare vector (8)integer x;
declare vector (8) integer a, vector (15) integer (h, c).

END OF CHECKING
NO ~RRORS WERE DETECTED.

- 225 -

+*bu ild
m5a:'a board is full when there are 8 queens on it'
begin
tull (board '1):

numberOD of '1=8.
end
END OF CHECKING
NO ~RRORS WERE tETECTED.

+*build
m5b:'printiDg is trivial'
begin
print (boa rd (1):

end

declare integer i;
i :=0 ;
while i<numberon of 9 do

(i:=1+1;
writeint (x (i) cf g».

END ~F CHECKING
NO ~RRORS ~ERE tETECTED.

+*build
m5c:'no '1ueens and no blockages'
begin
clear(board q vary):

declare integer i;
numberoD of '1:=0;
i:=O;
while i <8 do

(

while
(

i:=i+1;
a (i) of '1 ~=true;
b (i) of '1:=true;
c (1) of g :=true) ;
i< 15 do
i:=i+1;
b (1) of '1: =true;
c (i) of g:=true).

END ('IF CHECK! NG
NO ~RRORS WERE IETECTED.

+*build
m5d:'using these auxiliaries we can easily compute solution'
begin
trycoord(i~teger row, integer col, board '1, integer safe vary):

safe :=a (row) of gab (row+col-1) of -j&c (row-col+8) of g.

END f'F CHECKING
NO rRRORS WERE tETECTED.

+*build
mSe:'as mSd¥
begin

- 226 -

putoncoord(board q vary, integer row, integer col):

end

x(co~ of q:=row;
numt€ron of q:=numberon of g+1;
a(ro~ of q:=false;
b(row+col-1) of q:=false;
c(ro~-col+8) of ~:=false.

END OF CHECKING
NO ERRORS WERE DETECTED •.

+*build
mSf:vfinding a gueen in given column is easy'
begin
findgueen(toard g, integer row vary, integer col)

row:=x(col) of g.
end
END OF CHE en NG
NO ~RRORS WERE tETECTED.

+*build
mSg:'and so is removing iti
begin
removequeen(board q vary, integer row, integer col) :

end

a (row) of q:=true;
b(row+col~1) of q:=true:
c(row-col+8} of g:=true;
numteron of g:=numberon of g-1.

END OF CHECKING
NO ~RRORS WERE tETECTED.

+*build
m6: Ya failure report for m'V
begin
failure:

writEint (999) 0

enr
END OF CHECKING
NO ~RRORS .ERE rETECTED.

+*exec program
1
~

8
6
3
7
2
4
EXECUTION SUCCESSFUL

+*quit

- 227 -

- 228 -

Appendix F

In Chapters 3 and 5 a problem is described whereby 10 i".,)l.t

cards are to be checked for certain properties (see section 3.2.1.

or 5.2.2.). This appendix contains a completed program for that

problem.

- 229 -

PEARL PROGRA~ WRITING SYSTE~
COrMANDS MAY EE ENTERED NOW

+*init
DO!:::-

+*build
car~proeessor:tread each card, and tben process it'
begin
type cardimage;
operation read(cardimage c vary)
operation process(cardimage C);
program:

end

declare cardimage c;
declare integer i;
i:=O;
while 1<10 do

(i:=i+1;
read (c) ;
process {c».

END OF CHECKING
NO ~RRORS WERE DETECTED.

+*build
processor:vcheck tbe values and the check W

begin
operation checkcard(cardimage c, integer ok vary)
operation successmessage;
operation reject message;
operation ~riteout(cardimage c);
process (ca rdimage c) :

end

declare integer ok;
checkcard (c, ok);
~ri teout (c) ;
if ok then

successmessage
else

rejectmessage.

END OF CHECKING
NO ERRORS WERE DETECTED.

- 230 -

+*build
checker:'check the values, then and only then, the check'
begin
operation checkvalidity{cardimage c, integer ok vary);
operation checkcheck (cardimage c, integer ok vary);
checkcard (cardimage c, integer ok vary):

end

checkvalidity(c, ok);
if ok then

cbeckcheck (c, ok).

ENC OF CHECKING
NO ERRORS ~ERE CETECTED.

+*t:uild
cardrep:' a card is 9 data values and a cbeck'
begin
type value;
card image:

e n('

declare vector (9}value data;
declare value check •.

END OF CHECKING
NO ~RRORS WERE ~ETECTED.

+*build
cardreader:wreads in the 10 values'
begin
operation Ieadvalue{value v vary};
read(cardimage c vary):

ent'

declare integer i;
i:=O;
while i<9 do

(i:=1+1;
readvalue(data(i) of c»;

readvalue(check of c) 0

END OF CHECKING
NO FRRORS WERE DETECTED.

+*tuild
car~~riter:wwrites out values'
begin
opera tion wri te val ue (val ue v);
writeout(cardimage c):

declare integer i;
nlcr;
i:=O;
w bile i<9 do

(i:=i+1;

- 231 -

writevalue (data (i) of c» ;
writevalue(check of c).

end
END OF CHECKING
NO FRRORS WERE tETECTED.

+ *b uild
validitycbeck:'checks the 9 values'
begin
ope'ration checkvalue (value v, integer ok vary);
checkvalid1ty(cardimage c, integer ok vary):

end

declare integer i;
i:=O;
ok: = true;
while i <9~ok do

(i:=1+1;
checkvalue(data(i) of c, ok}).

END OF CHECKING
NO FRRORS WERE tETECTED.

Hbuild
checkcbecker:'make sure check value is satisfied'
begin
operation combine(value v vary, value w);
operation comparevalue(value u g value v, integer ok vary);
checkcheck(cardimage c, integer ok vary):

en(~

declare value temp;
declare integer i;
i: =, ;
temp :=data (i) of c;
while i <9 do

(i:=i+1;
combine(temp, data (i) of c»;

comparevalue(temp, check of c, ok).

END OF CHECKING
NO rRRORS WERE tETECTED.

- 232 ~

+*build
valuer:vvalues are integers in this case'
begin
value:

declare integer valueof.
end
END OF CHECKI NG
NO FRRORS WERE DETECTED.

+*build
realreader:vvalues may thus be easily read in'
begin
readvalue(value v vary):

readint(valueof of v).
end
END OF CHECKING
NO FRRCRS WERE DETECTED.

+*build
validvaluer:wvalues in the range 0 to 99'
begin
checkvalue(valu€ v, integer ok vary):

ok:=valueof of v>O&valueof of v<100.
end
END OF CHECKING
NO FORCRS WERE DETECTED.

+*build
realwriter:wwriting values is writing integers'
begin
wr itevalue (va lue v) :

writeint(valueof of v).
end
END OF CHECKING
NO FRRORS WERE DETECTED.

+ "'build
combiner:vcombine is an addition process'
begin
combine(value v vary, value w):

valueof of v:=valueof of v+valueof of w.
end
END OF CHECKI NG
NO ~RRORS WERE [ETECTED.

- 233 -

+*build
eheeksumer:'eheeking is purely arithmetic'
begin
eomparevalue(value u, value v, integer ok vary):

ok:= (valueof of v=valueof of u).
end
END OF CHE CK ING
NO ~RRORS wERE VETECTFD.

+*build
assignment:'assignment of values'
begin
value_assign(value value1 vary, value value2):

valu€of of value1:=valueof of value2.
end
END OF CHECKING
NO ERRORS wERE DETECTED.

+*build
sueeesswri ter: Wgi ve "0.15.. ~It

begin
sueee ssrne s sage:

enn

nler;
prsyo: (214) ;
prsyre(75};
prsym (2 ~ 0) ;
prsYD'(75);
nler.

END OF CHECKING
NO ERRORS ~ERE tETECTED.

+ *build
failurewriter:'give "error"i
begin
rejeetrnessage:

en·'

nler;
prsy m (197) ;
prsym (217) ;
prsyro(217) ;
prsym (214) ;
prsy Ir (217) ;
nler.

END rF CHECKING
NO rRRORS ~ERE rETECTED.

~.execute card processor

10
15
30
1
16
8
26
33
3
142

o. I) ••

11
23
14
8
7
12
90
17
64
241

ERROR

22
33
50
-5
77
13
17
20
46
283

ERR0R

- 234 -

77
&3
25
14
36
26
82
91
100
424

ERReR

42
13
26
18
91
1
22
81
17
311

o.~. ,

39
47
29
10
61
41
93
8
26
334

ERROR

66
23
42
85
96
83
2
7
12
416

- 235 -

23
49
9
13
25
13
31
41
99
30)

O.IS. ,

18
76
8
31
47
27
72
62
83
424

o .IS.

16
51
26
16
23
68
85
45
2
232

ERBCR

BXECUTION SUCCESSFUL
+ *quit

- 236 -

References

C. Alexander 1966:
'Notes on the Synthesis of Form'.
Harvard University Press, Cambridge, Mass., 1966.

Algol W 1972:
'Algol W Programming Manual'.
Computing Laboratory, University of Newcastle Upon Tyne, June 1972.

C.D. Allen and C.B. Jones 1973:
'The Formal Development of an Algorithm'.
IBM United Kingdom, Research Report TR.12.110, March 1973.

E. Ashcroft and Z. Manna 1971:
'Formalization of properties of parallel programs'.
in Machine Intelligence 6, B. Meltzer and D. Michie (eds),
Edinburgh University Press, 1971 pp. 17-42.

R. Aslanian and M. Bennett 1971:
'Evolutive modelling and evaluation of operating and computer systems'.
Research report CA-016, Compagnie Internationale pour l'Informatique.
France 1971.

F.T. Baker 1972:
'Chief programmer team management of production programming'.
IBM Systems Journal No.1, Vol. 11 (1972) pp. 56-73.

J.W. de Bakker 1969:
'Semantics of programming languages'.
in Advances in Information System Science, J.T. Tou (ed), Vol. 2
(1969) pp. 173-228 •

. R.M. Balzer 1969:
'EXDAMS - extendable debugging and monitoring system'.
AFIPS Spring Joint Computer Conference 1969 pp. 567-580.

D.W. Barron 1971:
'Programming in wonderland'.
Computer Bulletin No.4, Vol. 15 (1971) p. 153.

D.W~ Barron, J.N. Buxton, D.F. Hartley, E. Nixon and C. Strachey 1964:
'The Main Features of CPL'.
Computer Journal Vol. 6 (1964) pp. 134-143.

R. Bayer, D. Gries, M. Paul and H.R. Wiehle 1967:
'The ALCOR Illinois 7090/7094 Post Mortem Dump'.
Communications of the ACM No. 12, Vol. 10 (Dec. 1967) pp. 804-808.

L.A. Belady and M.M. Lehman 1971:
'Programming system dynamiCS or the meta dynamics of systems in

maintenance and growth'.
IBM Research Report RC 3546, Sept. 17th 1971.

F.C. Bequaert 1968:
'QUIP - A system for automatic program generation'.
AFIPS Fall Joint Computer Conference 1968 pp. 611-616.

- 238 -

G.M. Birtwistle 1973:
'SIMULA - its features and prospects'.
in High Level Programming Languages - the way ahead,
Proceedings of a Conference held at the University of York 1972,
N.C.C. Publications, Sept. 1973 pp. 85-100.

H.M .. Brown 1970:
Presentation given at a Conference in Rome 1969. See Software
Engineering Technigues, J.N. Buxton and B. Randell (eds), 1970 pp. 53-60.

J.N. Buxton and B. Randell 1970:
'Software Engineering Techniques'.
Report on a Conference sponsored by the NATO Science Committee,
Rome 1969, published 1970.

B.L. Clark and J.J. Horning 1971:
'The System Language for Project SUE'.
SIGPLAN Notices No.9, Vol. 6 (Oct. 1971) pp. 79-88.

M. Clint 1970:
'An Approach to Floating-Point Function Theory'.
Report of Queen's University, Belfast 1970.

R. Conway and D. Gries 1973:
.I' 'An Introduction to Programming - a structured approach uSing

pLII and PL/c'.
Winthrop Publishers Inc., Cambridge, Mass., 1973.

M. Cooke and W.A. Gray 1973:
'A Redesigned Record Structure for the Newcastle File Handling System'.

, . Program, No.1, Vol. 7 (Jan. 1973) pp. 1-23.

O-J. Dahl and C.A.R. Hoare 1972:
'Hierachical program structures'.
in Structured Programming, O-J Dahl, E.W. Dijkstra and C.A.R. Hoare,
Academic Press, London 1972.

O-J. Dahl, B. Myhrhaug and K. Nygaard 1968:
'SIMULA 67 Common Base Language'.
Publication No. S-2, Norwegian Computing Centre 1968.

A. van Dam and D. Rice 1971:
'On-line text editing: A survey'.
Computing Surveys No.3, Vol. 3 (1971) pp. 93-114.

L.P. Deutsch 1973°:
'An interactive program verifier'.
Ph.D. thesis, University of California, Berkeley.
Xerox Corporation Report No. CSL-73-1 May 1973.

E.W. Dijkstra 1968a:
'A constructive approach to the problem of program correctness'.
B.I.T. Vol. 8 (1968) pp. 174-186.

E.W. Dijkstra 1968b:
'The structUre of the T.H.E. multiprogramming system'.
Communications of the ACM No.5, Vol. 11 (1968) pp. 341-346.

- 239 -

E.W. Dijkstra 1968c:
'Goto statement considered harmful'.
Letter to the editor, Communications of the ACM No.3, Vol. 11
(1968) pp. 147-148.

E.W. Dijkstra 1968d:
Reply to a letter of J.R. Rice.
Communications of the ACM No.8, V.ol. 11 (1968) pp. 538, 541.

E.W. Dijkstra 1970:
'Structured Programming'.
in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),
1970.

E.W. Dijkstra 1972a:
'Notes on Structured Programming'.
in Structured Programming, O-J. Dahl, E.W. Dijkstra and C.A.R. Hoare,
Academic Press, London 1972.

E.W. Dijkstra 1972b:
'The Humble Programmer'.
Communications'of the ACM No. 10, Vol. 15 (1972) pp. 859-866.

E.W."Dijkstra 1973:
'A Simple Axiomatic Basis for Programming Language Constructs'.
Report EWD372-0, Technological University, Eindhoven 1973.

W.G.P. Dutton and C.S. Minto 1971:
'PM3 - an automatic program generator'.
in Software 71, Proceedings of a Conference held at the University
of Kent at Canterbury 1971. Transcripta Books 1971 pp. 143-146.

E.W. Elcock, J.M. Foster, P.M.D. Gray, J.J. McGregor and A.M. Murray 1971:
'ABSET: A programming language based on sets: motivation and examples'.
in Machine Intelligence 6, B. Meltzer and D. Michie (eds),
Edinburgh University Press 1971, pp. 467-492.

B. Elspas, M.W. Green, K.N. Levitt and R.J. Waldinger 1972:
'Research in interactive program proving techniques'.
Stanford Research Institute 1972.

B. Elspas, K.N. Levitt, R.J. Waldinger and A. Waksman 1972:
'An assessment of techniques for proving program correctness'.
Computing Surveys No.2, Vol. 4 June 1972 pp. 97-147.

D.C. Engelbart and,W.K. English 1968:
'A research centre for augmenting human intellect'.
AFIPS Fall Joint Computer Conference 1968 pp. 395-410.

C. Engelman 1968:
'MATHLAB 68'.
Proceedings of the I.F.I.P. Congress, Edinburgh 1968 pp. B91-B95.

A.P. Ershov 1972:
'Aesthetics and the Human Factor in Programming'.
Datamation No.7, Vol. 18 (1972) pp. 62-67.

, - 240 -

T.G. Evans and D.L. Darley 1966:
'On-line debugging techniques: a survey'.
AFIPS Fall Joint Computer Conference 1966 pp. 37-50.

A.D. Falkoff 1970:
'Criteria for a system design language'.
in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),1970.

M.E~ Falla and D. Burns 1973:
'Software Development Systems'.
Datafair 73 Conference papers, Vol. 1, Business Papers,
British Computer Society 1973 pp. 166-173.

R.W. Floyd 1967a:
'AsSigning Meanings to Programs'.
A.M.S. Symposiu~ in Applied Maths. Vol. 19, 1967 pp. 19-32.

,R.W. Floyd 1967b:
'Non-deterministic Algorithms'.
Journal of the ACM No.4, Vol. 14 (Oct. 1967) pp. 636-644.

'R.W. Floyd 1971:
'Towards interactive design of correct programs'.
Proceedings of the I.F.l.P. Congress, Ljubljana 1971 pp. 11-14.

P. Freeman 1973:
'Functional programming, testing and machine aids'.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall,
Englewood Cliffs 1973 pp. 49-56.

P. Freeman and A. Newell 1971:
fA model for functional reasoning in design'.
Report CMU-CS-71-107, Carnegie Mellon University 1971.

S. Gill 1969:
'Thoughts on the sequence of writing software'.
in Software Engineering, P. Naur and B. Randell (eds), 1969.

E.L. Glaser 1971:
'Introduction and overview of the LOGOS project'.
Case Western Reserve University, Oct. 1971.

H.H. Goldstine and J. von Neumann 1947:
'plamling and coding problems for an electronic computing instrument'.
in John von Neumann. Collected Works Vol. 5. Pergamon Press 1963 p. 80.

,D.I. Good 1970:
'Toward a man-machine system for proving program correctness'.
Ph.D. thesis, University of Wisconsin 1970.

D.I. Good and L. Ragland 1973:
'NUCLEUS - A language of provable programs'.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall, Englewood
Cliffs 1973 pp. 93-117.

- 241 -

R.M. Graham, G.J. Clancy Jnr. and D.B. DeVaney 1973:
'A software design and evaluation system'.
Communications of the ACM, No.2, Vol. 16 (Feb. 1,973) pp. 110-116.

W;J. Hansen 1971a:
'Creation of hierarchic text with a computer display'.
Ph.D. thesis, Stanford University 1971.

W.J. Hansen 1971b:
'User engineering prinCiples for interactive systems'.
AFIPS Fall Joint Computer Conference 1971 pp. 523-532.

P. Henderson and P. Quarendon 1974:
'Finite state testing of structured programs'.
Colloque sur la Programmation, CNRS, Paris 1974.

, P. Henderson and R.A. Snowdon 1972:
'An Experiment in Structured Programming'.
B.I.T. Vol. 12, (1972) pp. 38-53.

W.C. Hetzel 1973:
'Principles of Computer Program Testing'.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall Inc. 1973

pp. 17 -28.
I.D., Hill 1972:

'Wouldn't it be nice if we could write computer programs in ordinary
English - or would it?'.

Computer Bulletin No.6, Vol. 16 (June 1972) pp. 306-312.

C.A.R. Hoare 1961:
'Algorithm 65 Find'
Communications of the ACM No.7, Vol. 4 (1961) p. 321.

C.A.R. Hoare 1969:
. 'An axiomatic basis for computer programming'.
Conununications of the ACM No. 10, Vol. 12 (1969) pps. 576-580, 583.

C.A.R. Hoare 1971a:
'Proof of a program: FIND'.
Communications of the ACM No.1, Vol. 14 (1971) pp. 39-45.

,C.A.R. Hoare 1971b:
'Procedures and Parameters: an axiomatic approach'.
in Symposium on Semantics of AlgorithmiC Languages~ A. Dold and
B. Eckmann (eds), Springer-Verlag 1971.

C.A.R. Hoare 1972a:
'Notes on Data Structuring'.

'in Structured Programming, O-J. Dahl, E.W. Dijkstra and C.A.R. Hoare,
Academic Press, London 1972.

t.A.R. Hoare 1972b:
" 'Proof of correctness of data representations '.

Acta Information Vol. 1, (1972) pp. 271-281.

- 242

C.A.R. Hoare and N. Wirth 1972:
'An axiomatic definition of the programming language PASCAL'.
Eidg. Technische Hochschule, Zurich, Berichte der Fachgr,
Computer Wissenschaften Nr. 6, November 1972.

M,E. Hopkins 1970:
'Computer aided software design'.
in Software Engineering Techniques. J.N. Buxton and B.- Randell (eds)
1970, pps. 99-101.

M.E. Hopkins 1972:
'A case for the GOTO'.
Proceedings of the ACM Conference, Boston 1972 pp. 787-790.

A.M. Hormann 1970:
'Planning by man~achine synergism: a characterization of processes and

enviromnent'.
System Development Corporation, report SP-3484 March 1970.

T.E. Hull, W.H. Enright and A.E. Sedgwick 1972:
'The correctness of numerical algorithms'.
Proceedings of an ACM Conference on proving assertions about
programs, Las Cruces, New Mexico 1972 pp. 66-73.

IBM 1969:
'IBM System/360 Operating System Assembler Language'.
Form C28-6514-6 IBM Corporation, White Plains, New York 1969.

ICL-1971:
'Modular Programming Techniques'.
ICL Dataskil, publication 5092, 1971.

P. Johansen 1967:
'Non-deterministic Programming'.
B.I.T. Vol. 7 (1967) pp. 289-304.

H.B. Keller 1968:
'Numerical methods for two point boundary value problems'.
Blaisdell, Waltham Mass., 1968.

J.C. King 1969: ,
'A Program Verifier'.
Ph.D. thesiS, Carnegie-Mellon University 1969.

D.E. Knuth 1968:
'The Art of Programming: Volume 1'.
Addison-Wesley, 1968.

A. Koestler 1964:
'The Act of Creation'.
Hutchinson, London 1964.

H.G. Kolsky 1969:
'Problem Formulation using APL'.
IBM Systems Journal No.3, Vol. 8 (1969) pp. 204-219.

- 243 -

H.C. Lauer 1972:
'Correctness in Operating Systems'.
Ph.D. thesis, Carnegie-Mellon University 1972.

B.M. Leavonworth 1972:
'Programming with(out) the GOTO'.
Proceedings of the ACM Conference, Boston 1972 pp. 782-786.

C.H. Lindsey and S.G. van der Meulen 1971:
'Informal introduction to ALGOL 68'.
North Holland Publishing Company, Amsterdam 1971.

R.L. London 1972:
'The current state of proving programs correct'.
Proceedings of the ACM Conference, Boston 1972 pp. 39-46.

P. Lucas, P.E. Lauer and H. Stigleitner 1968:
'Method and notation for the formal definition of programming languages'.
Technical report TR 25-087, IBM Laboratory Vienna, June 1968.

M.L. Mannheim 1966:
'Hierarchical structure: a model of design and planning processes'.
M.I.T. Report No.7, M.I.T. Press, Cambridge, Mass., 1966.

J. McCarthy 1966:
'A formal description of a subset of Algol'.
in Formal Language Description Languages for Computer Programming,
T.B. Steel Jnr, (ed), North Holland Publishing Company,
Amsterdam 1966 pp. 1-12.

H. McDaniel 1970:
'Applications of Decision Tables'.
Brandon/System Press Inc. 1970.

W.M. McKeeman, J.J. Horning and D.B. Wortman 1970:
'A Compiler Generator'.
PrentiCe-Hall, Englewood Cliffs 1970.

H.D. Mills 1970:
'Syntax-directed documentation for pL360'.
Communications of the ACM No.4, Vol. 13 (1970) pp. 216-222.

H.D. Mills 1971:
'Top down programming in. large systems'.
in Debugging Techniques in Large Systems, R. Rustin (cd), Prentice-Hall,
Englewood Cliffs 1971 pp. 41-55.

J.G. Mitchell 1970:
'The design and construction of flexible and efficient

programming systems'.
Ph.D. thesiS, Carnegie-Mellon UniverSity 1970.
(Excerpts given as lecture notes by A.J. Perlis at a summer school
held in Marktoberdorf, W. Germany 1971).

- 244 -

J.G. Mitchell, AoJ. Perlis and H.R. van Zoeren 1968:

'LC2: A l~nguage for conversational computing'.
in Interactive syst~s for experimental applied mathematics,
M. Klerer and J. Re1nfelds (eds), Academic Pre~s, New York 1968.

P. Naur 1966:
'Proof of algorithms by generalized snapshot'.
B.I.Ta Vol. 6, (1966) pp. 310-316.

P. Naur 1969:
'Programming by Action Clusters'.
B.I.T. Vol. 9, (1969) pp. 250-258.

P. Naur 1972:
'An Experiment in Program Development'.
B.I.T. Vol. 12, (1972) pp. 347-365.

P. Naur and Bo Randell 1969:
'Software Engineering'.
Report on a Conference sponsored by the NATO Science Committee,
Garmisch 1968, published 1969.

J. Palme 1972:
Letter to the editor, Computer Journal No.1, Vol. 15, Feb. 1972,· ,.

pp. 4,36.

D.L. Parnas 1972:
'A technique for software module specification with examples'.
CommunicationS of the ACM No.5, Vol. 15 (1972) pp. 330-336.

D.L. Parnas and J.A. Darringer 1967:
'SODAS and a methodology for system design'.
AFIPS Fall Joint Computer Conference 1967 pp. 449-474.

D. Pearson 1973:
Articles describing the CADES system, Computer Weekly, July 26th,
August 2nd, August 9th 1973.

G. Polya 1945:
'How to solve it'.
Princeton University Press. 1945.

B. Randell 1971:
in Efficient production of Large Programs, Computation centre of the
Polish Academy of Sciences 1971 pp. 36-37.

J.R. Rice 1968:
'The goto statement reconsidered'.
Letter to the editor, Communications of the ACM, No.8, Vol. 11 (1968) p. 538.

A.J. Rose 1966:
'The use of APL for describing programs at many levels of detail'.
IBM Research Report RC 1700, Oct. 1966.

D.T. Ross 1967:
'The AED approach to generalized computer-aided design'.
Proceedings of the ACM National Meeting 1967, pp. 367-385.

- 245 -

D.T. Ross 1969:
'Introduction to Software Engineering with the AED-O language',
Report ESL-R-405 M.I.T. DSR project No. 71425, 1969.

J.E. Sammet 1969:
'Programming Languages: History and Fundamentals'.
Prentice-Hall Inc., Englewood Cliffs 1969.

E.H. Satterthwaite 1972:
'Debugging Tools for High Level Languages'.
Software: Practice and Experience No.3, Vol. 2, (1972) pp. 197-217.

A.L. Scherr 1973:
'Developing and Testing a Large Programming System, 05/360 T~e

Sharing Option f.
in Program Test Methods, W.C. Hetzel (ed), Prentice-Hall Inc.,
Englewood Cliffs 1973 pp. 165-180.

D.T. Schmidt and T.F. Kavanagh 1970:
'The Use of Decision Tables'.
in Applications of Decision Tables, H. McDaniel (ed) Brandon/System
Press Inc. 1970.

J.I. Schwartz 1970:
'Analyzing large-scale system development'.
in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),
1970 pps. 122-137.

H.A. Simon 1969:
'The Sciences of the Artifical L•
M.I.T. Press, Cambridge, Mass., 1969.

T.B. Steel 1966:
'Formal Language Description Languages for Computer Progranr.lLing'.
North Holland Publishing Company, knsterdam 1966.

J.E. Stoy and C. Strachey 1972:
'OS6 - An experimental operating system for a small cOlUJ:uter. Part 1:

General principles and structure'.
Computer Journal No.2, Vol. 15 (1972) pp. 117-124.

W. Teitelman 1970:
'Towards a programming laboratory'.
in Software Engineering Techniques, J.N. Buxton and B. Randell (eds),
1970 pp. 137-149.

A.M. Turing 1949:
'Checking a Large Routine'~
in Report on a Conference on High Speed Calculating Machines,
University Mathematical Laboratory, Cambridge 1949, pp. 67-68.

R.J. Waldinger and R.C.T. Lee 1969:
'PROW - A step toward automatic program writing'Q
Proceedings of the First International Joint Conference on Artifical
Intelligence, Washington D.C. 1969.

- 246 -
B. Wegbreit 1971: ,

'The ECL programming system'.
AFIPS Fall Joint Computer Conference 1971 pp. 253-262.

G.M. Weinberg 1971:
'The Psychology of Computer Programming'.
Van Nostrand Reinhold, New York 1971.

L.L. Whyte 1969:
'Structural Hierarchies: A challenging class of physical and

biological problems'.
in Hierarchical Structures, L.L. Whyte, A.G. Wilson and D. Wilson (eds),
American Elsevier, New York 1969 pp. 3-16.

A. van Wijngaarden 1966:
'Recursive definition of syntax and semantics'.
in Formal Language Description Languages for Computer Programming.
T.B. Steel Jnr, (ed), North Holland Publishing Company,
Amsterdam 1966 pp. 13-24.

A. van Wijngaarden (ed), B.J. Mailloux, J.E.L. Peck and C.H.A. Koster 1969:
'Report on the Algorithmic Language ALGOL 68' Numerische Mathematik
Vol. 14 (1969) pp. 79-218.

M.V. Wilkes 1968:
'The outer and inner syntax of a programming language'.
Computer Journal No.3, Vol. 11 (1968) pp. 260-263.

N. Wirth 1968:
'PL360, a programming language for the 360 computers'.
Journal of the ACM No.1, Vol. 15 (1968) pp. 37-74.

N. Wirth 1971a:
'The programming language PASCAL'.
Acta Informatica Vol. 1 (1971) pp. 35-63.

N. Wirth 1971b:
'Program development by step-wise refinement'.
Communications of the ACM No.4, Vol. 14 (1971) pp. 221-226.

N. Wirth and H. Weber 1966:
'EULER: A generalization of Algol and its formal definition: part 2~
Communications of the ACM No.2, Vol. 9 (1966) pp. 89-99.

M. Woodger 1971:
'On semantic levels in progrmruning'.
Proceedings of the I.F.I.P. Congress, Ljubljana, 1971, pp. TA-3-79 to
TA-3-83.

- 247 -

W.A. Wulf 1972:
'A case against·· the GOTO'.
Proceedings of the ACM Conference, Boston 1972pp. 791-797.

W.A. Wulf, D.B. Russell and A.N. Habermann 1971:
'BLISS: A language for Systems Programming l •

Conununications of the ACM No. 12, Vol. 14 (1971) pp. 780-790.

W. Wulf and M. Shaw 1973:
'Global Variable Considered Harmful'.
SIGPLAN Notices No.2, Vol. 8 (1973) pp. 28-34.

F. Zurcher and B. Randell 1968:
'Iterative multi-level modelling - a methodology for compute.r

system design' •
. , Proceedings of the I.F.I.P. Congress, Edinburgh 1968 pp. D138-D142.

	473344_0001
	473344_0001a
	473344_0002
	473344_0003
	473344_0004
	473344_0005
	473344_0006
	473344_0006a
	473344_0007
	473344_0008
	473344_0009
	473344_0010
	473344_0011
	473344_0012
	473344_0013
	473344_0014
	473344_0015
	473344_0016
	473344_0017
	473344_0018
	473344_0019
	473344_0020
	473344_0021
	473344_0022
	473344_0023
	473344_0024
	473344_0025
	473344_0026
	473344_0027
	473344_0028
	473344_0029
	473344_0030
	473344_0031
	473344_0032
	473344_0033
	473344_0034
	473344_0035
	473344_0036
	473344_0037
	473344_0038
	473344_0039
	473344_0040
	473344_0041
	473344_0042
	473344_0043
	473344_0044
	473344_0045
	473344_0046
	473344_0047
	473344_0048
	473344_0049
	473344_0050
	473344_0051
	473344_0052
	473344_0053
	473344_0054
	473344_0055
	473344_0056
	473344_0057
	473344_0058
	473344_0059
	473344_0060
	473344_0061
	473344_0062
	473344_0063
	473344_0064
	473344_0065
	473344_0066
	473344_0067
	473344_0068
	473344_0069
	473344_0070
	473344_0071
	473344_0072
	473344_0073
	473344_0074
	473344_0075
	473344_0076
	473344_0077
	473344_0078
	473344_0079
	473344_0080
	473344_0081
	473344_0082
	473344_0083
	473344_0083a
	473344_0084
	473344_0085
	473344_0086
	473344_0087
	473344_0088
	473344_0089
	473344_0090
	473344_0091
	473344_0092
	473344_0093
	473344_0094
	473344_0095
	473344_0096
	473344_0097
	473344_0098
	473344_0099
	473344_0100
	473344_0101
	473344_0102
	473344_0103
	473344_0104
	473344_0105
	473344_0106
	473344_0107
	473344_0108
	473344_0109
	473344_0110
	473344_0111
	473344_0112
	473344_0113
	473344_0114
	473344_0115
	473344_0116
	473344_0117
	473344_0118
	473344_0119
	473344_0120
	473344_0121
	473344_0122
	473344_0123
	473344_0124
	473344_0125
	473344_0126
	473344_0127
	473344_0128
	473344_0129
	473344_0130
	473344_0131
	473344_0132
	473344_0133
	473344_0134
	473344_0135
	473344_0136
	473344_0137
	473344_0138
	473344_0139
	473344_0140
	473344_0141
	473344_0142
	473344_0143
	473344_0144
	473344_0145
	473344_0146
	473344_0147
	473344_0148
	473344_0149
	473344_0150
	473344_0151
	473344_0152
	473344_0153
	473344_0154
	473344_0155
	473344_0156
	473344_0157
	473344_0158
	473344_0159
	473344_0160
	473344_0161
	473344_0162
	473344_0163
	473344_0164
	473344_0165
	473344_0166
	473344_0167
	473344_0168
	473344_0169
	473344_0170
	473344_0171
	473344_0172
	473344_0173
	473344_0174
	473344_0175
	473344_0176
	473344_0177
	473344_0178
	473344_0179
	473344_0180
	473344_0181
	473344_0182
	473344_0183
	473344_0184
	473344_0185
	473344_0186
	473344_0187
	473344_0188
	473344_0189
	473344_0190
	473344_0191
	473344_0192
	473344_0193
	473344_0194
	473344_0195
	473344_0196
	473344_0197
	473344_0198
	473344_0199
	473344_0200
	473344_0201
	473344_0202
	473344_0203
	473344_0204
	473344_0205
	473344_0206
	473344_0207
	473344_0208
	473344_0209
	473344_0210
	473344_0211
	473344_0212
	473344_0213
	473344_0214
	473344_0215
	473344_0216
	473344_0217
	473344_0218
	473344_0219
	473344_0220
	473344_0221
	473344_0222
	473344_0223
	473344_0224
	473344_0225
	473344_0226
	473344_0227
	473344_0228
	473344_0229
	473344_0230
	473344_0231
	473344_0232
	473344_0233
	473344_0234
	473344_0235
	473344_0236
	473344_0237
	473344_0238
	473344_0239
	473344_0240
	473344_0241
	473344_0242
	473344_0243
	473344_0244
	473344_0245
	473344_0246
	473344_0247
	473344_0248
	473344_0249
	473344_0250
	473344_0251

