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ABSTRAcr 

An experimental system providing assistance in the task of 

program construction, validation and description is presented. This 

system (Pearl) encourages a particular top-down approach to programming 

such that programs so developed exhibit a multi-level, hierarchical 

structure. 

Amongst several tools provided by the system is one ·"hich 

enables programs to be exercised even though they may be eXDressed 

in terms of abstract operations and data types. 

The whole system is designed to be used in an interactive 

environment. Programs are developed by the programmer with appropriate 

assistance and guidance from the computer. 

Contemporary programming tools and methods are surveyed and 

their relevance to the development of high quality software is discussed. 

In particular attention is given to progl'arruning methodolcg.ieO', ,1esign 

representations and issues of program correctness. 

The practicality of the system is demonstrated i!l a mmber of 

examples. 
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Chapter 1: 

tntroduction 

The tools and techniques used in the construction of computer programs 

have evolved rapidly during the short history of computers. This rapid 

evolution has resulted in the current position whereby there is a great 

variety of such tools and techniques in use, each mor~ or less suited 

to particular programming activities. It has become increasingly apparent 

that this variety is not itself sufficient to enable the construction 

of programs which will allow computers to perform ~he ever more complex 

tasks demanded of them (e.g. Naur and Rande~l 1969, Buxton and Randell 

1970). In society, the reliance that is placed ~pon the correct functioning 

of computer systems is increasing at a great rate (~eg. air-traffic 

control systems, banking systems etc.). It 1s true, therefore, that society, 

and particularly the individual within society, will become more 

vulnerable unless a higher degree of confidence can be placed in the 

correct functioning of such systems. Thus it is crucial t\at ~.rtnS are 

discovered by which computer systems may be constru~ted in order th~t 

such confidence may be justifiably expressed. 

This thesis is concerned with an inves~igation into a number of 

aspects of programming which have a direct bearing upon the quality of 

the software component of a computer syst~. There are undoubtedly 

problems conCerning the reliable function of computer hardware. 

Such problems, however, are left to other workers. 

The research reported in subsequent chapters follows closely many of 

the ideas of "structured prograrmning" as illustrated by Dijkstra in 8 

number of papers, but primarily in Dijkstra (1972a). In order to 

demonstrate why we believe that the programming techniques which are 

subsumed by the general term "structured programming" are so important, it 
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is necessary to appreciate what is involved in the task of writing a 

computer program. Indeed, as Dijkstra (1972b) points out so clearly, 

it is essential that we realize that programming is an extremely difficult 

task. A very succinct analysis is given by Ershov (1972). 

Computer programming may be regarded as a complex problem solving 

activity. Simon (1969), Hormann (1970) and Koestler (1964) are amongst 

several writers who have attempted to describe the problems of complexity 

and how human beings can overcome them. 

Much of the recent work on how complex programs are developed has 

stressed the importance of hierarchies and levels. (Zurcher and Randell 

1968, Wirth 1971b, Woodger 1971, Dijkstra 1968b and 1972a). These ideas 

accord well with those of those authors mentioned above concerning 

more general complexity. 

C9nfidence in the trustworthiness of a program comes ultimately from 

its observed behaviour when executed by a computer. This fact has long 

been recognized and has spawned many of the tools used by Jrogrammers 

at present (e.g. debugging tools, testing procedures, etc.). I.'ro,> 

usefulness of such tools should not be overlooked in the devel<'pm""lt 

of a program, despite the fact that their use cannot guarantee the 

absolute worth of complex software. 

Program proof methods represent further attempts at generating 

confidence in a program. Floyd (1967a) and Naur (1966) describe methods 

by which the properties of a program can be checked against assertions 

representing the intention of that program. Tools have been described 

(King 1969, Good 1970, Deutsch 1973) wh~ch assist the programmer in the 

generation of such proofs. 

Program proof methods may also be used during the development of 

a program to ensure that it is correctly construLteo (Naur 1969, 
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Hoare 1971a, Allen and Jones 1973). Floyd (1971) describes how a tool 

might be constructed to assist in this process. Less formal methods 

may also be applied during the development of a program to make it 

more likely that the program will exhibit the appropriate properties. 

Zurcher and Randell (1968), Mills (1971) and Baker U Q72) all describe 

how program development may be aided by the use of tools based upon 

such methods. 

A major goal of the present research has been to C0' ~·0~.ne and 

analyse these and other somewhat separate ideas and to \Jse them as a 

basis for a coherent design methodology which is explic;.t ellougp to be 

embodied in a tool to assist the complete programming task. This tool 

takes the form of a (prototype) computer system which acts as a 1at, 

base for the design of programs. Programs may be developed by the 

programmer by entering textual information whi~h rerr~sents additions 

to the incomplete design. The form of this informatio:1. is base(~ upon a 

notation which encourages the representation of progral1'S <.n a highl y 

structured, hierarchical manner, In addition t:le p:CO!raml:;,,:: '.0 ""('c'Jras~(~ 

to follow a particular development method so as t·.., \~a5:·, f'l: 1 l:<>-·.~tit 

from the system during the early stSII,p.s of his de::i.~·.1. 'C'" .:vsten :--:",jvtnes 

the programmer with a number of explicit facil ities, ~acJ:-, cd:.'"c1 at 

improving his understanding of the program as it is :o·"p.:l)ped. These 

include aids in checking the logical consistency of input information, 

execution of partially developed programs, certain debugging facil~ties 

and a number of interrogation mechanisms. The system has been designed 

and implemented as an online, conversational system. 

The following chapters form two distinct parts. The reader who is 

only interested in details of the implemented system is recommended to 

omit Chapters 2,3 and '.. These describe and discuss certain aspects of 
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program construction, and techniques and tools presently available to 

assist the programmer. 

In Chapter 2 a simple view of programming is taken. This is 

described in terms of three elements. 

(1) 

(ii) 

(iii) 

problem 

man 

machine 

Each of these elements is considered in turn, althol1~:~ most 

attention is given to ''man'' and to the interfaces between Tun and 

problem and man and machine. 

Attention is paid, in Chapter 3, to the ideas of structure and 

method in the representation and development of a program. An informal 

notion of a level of description is given whereby a program ',lav l'e 

represented in terms of concepts which capture some essential pr"perty 

of the problem or the programming language, but not necessaril y all such 

properties. A program may be represented '.t a number of (E i'ferent 

levels of description related according to their \Tar L01\f; . -.',t'. ".1 

interpretations. Different methods of de'Jeloping a f·;:O~:rc.,] c,]-'" ,~e.i'.cribed 

and discussed using the notion of representaU_0:1 at many' ""vpi.s of 

description. 

Chapter 4 presents a discussion of variOl1S too)!' and t~chniql,les 

to do with establishing the correctness of computer pro.=;r<l'-,s. These 

range from proof techniques (applied both to a given program and to 

the development of a program), to program testing tools and other 

mechanical aids which may help the programmer to increase the level 

of confidence he may have in his program. 
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Chapters 5 and 6 give details of the experimental system referred 

to above. Chapter 5 serves to introduce the system and to describe 

how it enables a programmer to build up a program according to a 

particular design method. Chapter 6 describes the more extensive 

features of the system enabling design evaluation, interrogation and 

re-appraisal. A number of examples of the system in use are given in 

these chapters. Further, and more complete examples are to loe found 

in appendices D,E and F. 

The experimental nature of the system has generated a number of 

interesting points of discussion. These are grouped together in 

Chapter 7. Here, also, are presented some conclusions on the 

relevance of such systems as an aid to the programming activity. These 

are, of course, to a certain extent limited by the prototypical nature 

of the implemented system. However, we feel that most of th~ are 

valid in a wider sense. 
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Chapter 2: 

Basic Elements of Programming 

There are at least three elements which are basic in programming. 

One is the machine for which the program is being writt2<', the second 

is the problem (or task) which is the reason for the progr&~ and the 

third is the programmer (or programmers) whose job it is to construct 

the program from an understanding of the problem and the properties 

of the machine. The job of the programmer is, (Dijkstra 1972b, Ershov 

1972) very difficult and represents a significant intellectual challenge. 

Amongst reasons for this are the inherent complexity of the tasks for 

which computers are used and of the computers themselves, and also the 

requirements of the program as being amongst other things, precise, 

adaptable, extendable, well-documented and correct. 

In this chapter we study the effect on programming of t~.~~:' 

t.hree basic elements in order to give some ::'n~igbt into the art-:al 

sources of complexity and of ways by which the diffir:uJ ti-"s can be 

reduced. In particular we discuss prograrrnning as being a ~n'0}' ~ Pl1 

solving activity in order to relate wider observations of creative 

human activity (e.g. Polya 1945, Koestler 1964, Simon 1969, Honr.ann 1970) 

to the construction of programs. Such a discussion allo,·~s a number of 

observations to be made as to the appropriateness of certain tools which 

are often used in program construction (e.g. flowcharts, decision tablE's, 

particular programming languages). The observations we make in this 

chapter are mainly of a critical nature. A more constructive approach 

is taken in later chapters. 
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2.1 A view of programming: the basic elements 

Real 
world 

problem/man 
interface 

problem 

I 

man 

man/machine 
interface 

program 

: '" I 
I 
I 

. .... ______________ .J L _____________ .J 

understanding of 
problem 

Y understanding of 

k 1 d interface now e ge, 
experience etc. 

Figure 2.1 

man/machine 

machine 

Figure 2.1 represents a simplified view of the programmin~ activity. 

The central element is the programmer. He has two interfaces. One, 

the problem/man interface is with the outside world; the other, the 

man/machine interface, is with the computer (the machine). 

The programmer accepts (understands) the specification of a problem 

in the outside world. His task is to develop a solution in the sense 

of describing, in a program, the process which the machinr must r.lrl"Y 

out to generate the anSwer to the problem. This proces:; we shall call 

the solution process. (We have not made figure 2.1 complet0 but only 

included those concepts which are appropriate [or the discussions of this 

chapter. We have not, for example, shown how the results of a progra~ 

execution can influence the programmer. We describe some extensions 

in this direction in Chapter 4). 

The interface which the programmer has with the outside world 

is hard to characterize. We intend that this interface should include 

all methods by which the programmer obtains information about the 

problem. Problem specification is a difficult task itself and thus it is 
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hard to state more exactly what-form this interface takes. A short 

discussion of how information about problems is supplied and understood 

is given in section 2.3.1. Of course it is often the case that details 

of problems are only uncovered as part of the development of the program. 

-Thus it is not in practice the case that the problem/man interface 

is divorced from the actual design activity. A part of this interface. 

therefore, represents interactions arfsing during the task of program 

construction. 

The program which describes the solution prC?cess is generally 

written in some notation representing concepts which have no direct 

physical existence in the hardware of the machine. This notation, the 

programming language, therefore acts as the interface between the 

programmer and the machine. The influence that this interface has upon 

the construction of programs and other discussion is given in sections 

2.3.2, 2.3.3. and 2.4. 

2.2 Program construction as a problem solving activity 

Figure 2.1 may be interpreted to cover the development of solution 

processes to problems which do not require the construction of a computer 

program. The ''machine'' need not be a computer but could he any processing 

device, even ~ human being. The man/machine interface will tben not be 

characterized by a programming language in the accepted sense, but more 

generally -as some medium for communication. 

examples: 
(a) A theorem to be proved in mathematics is a problem. 

The mathematician who solves this problem responds 
to the stimulus of the statement of the theorem 
by developing a proof written in some m.athematical 
system. This proof describes the "solution process" 
to be followed whereby the truth of the original 
theorem may be accepted. A machine which carries 
out this "solution process" might be a colleague 
or_ perhaps the reader of a book. 
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(b) An architect may be asked to design a building 
according to some specification as to its purpose, 
its location and its estimated cost. The architect 
accepts this specification and draws up an 
appropriate design. This design is a solution 
process for his problem. The ''machine'' which reacts 
to the design may be the builder or perhaps the client' 
who wishes to appraise the architect's work before 
finally committing himself. 

There are, thus, parallels which can be drawn between computer 

programming and other design activities. More generally, as RosS 

(1967) points outl 

"design is a special term for some ill-defined 
type of problem solving". 

Problem solving is generally thought of as being some process by 

which possible solutions to a problem are tested for their adequacy. 

Cortsiderth~ following problem: 

"Find those numbers, whose absolute value is a 
natural number smaller than 100, whose square is 36" .• 

A way of finding the solution to this problem would be to consider 

. ,. every number and test it to see if it had the stated properties. The 

solution would then be the set of numbers found to satisfy this test. 
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In this context, the process of solving a problem is taken to mean that 

the actual numbers should be Qetermined and displayed. It is, however, 

also necessary to determine whether or not the "solution process" by 

which the results are determined is itself adequate. 

The solution process described above is of the form: 

"Pick a number from the set .of all numbers. If this 
number has an absolute value smaller than 100 and a 
square of 36, then accept it, otherwise reject it. 
Repeat this process for all numbers". 

Clearly this solution process is itself inadequate and should 

not be accepted. It is necessary, therefore, that, from amongst the 

set of solution processes for this problem, a better one be chosen. 

Problem solving may be thought of as being a process of examining 

the various solution processes themselves for being acceptable. Although 

one of the criteria of acceptance should, of course, be that the solution 

process will, indeed, produce the required solution to the stated 

problem, this is by no means the only one which should be <.iprli.~d. As 

we discuss more fully in Chapter 4, it is, in fact, a criterion which 

is very difficult to apply with confidence in computer progrrolming. 

It is possible to identify two (at least) separate problem solving 

activities in programming. Both parallel the views of problem solving 

described above. 

The first is the task of choosing a particular representation within 

a programming language to fulfill a function whose properties are understood 

by the programmer. Such a situation can easily arise when a progr&~er 

recognizes a problem for which he knows an acceptable solution process, 
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but which is represented interms different from those of the language in 

which he must write his program. 

examples: 

(a) Algorithms published in the literature are often 
written in Algol whereas, for one reason or another, 
the programmer must write his program in FORTRAN. 

(b) Algorithms expressed in a descriptive manner using 
natural language (e.g. Knuth 1968). 

This is a problem solving activity by which the programmer makes 

a choice from amongst the features of the programming language. In 

particular the programmer must generally apply Some judgement as to 

whether one representation is more suitable than another. 

The second problem solving activity which we identify in 

programming is that of the derivation of the solution process itself 

from the statement of the problem. If it is required to construct, for 

example, an airline seat reservation system, then it is necessary to 

decide which computations must be carried out before encoding th."n 

in a programming language. Of course, a programmer in this situation 

will use his knowledge of the properties of any hardware or rr0;r~~ing 

language he may use, as a guide in the overall design. However, the 

activity which is being followed is separate from that of encoding a 

solution process which has already been derived. It requires, as in 

the example above, that different possible solution processes must be 

examined until one which is adequate is accepted. We believe that this 

latter viewpoint of problem solving in programming is the most important 

as, in general, it includes the representation problem. 
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2.2.1 Method 

A primitive notion of problem solving is that it is a process of casting 

through a Set of possible solutions until one is discovered which is 

acceptable for the problem under investigation. This notion requires further 

elaboration in the context of programming ~nd probably in any other 

non-trivial problem domain). 

In the example given in the previous section where the problem 

is to find certain numbers, the space of possible solutions has an accepted 

representation which allows each possible solution (a number) to be 

identified. Further, the properties of the members of the solution Space 

allow of the possibility of some scheme whereby individual "solutions" can 

be chosen methodically (i.e. the ordering properties of numbers). As is 

described below a knowledge of such properties is almost essential in the 

derivation of an acceptable solution process to this problem. In programming, 

the space of possible solutions has a less well-understood representation 

and has properties which are often too complex for programmers to appreciate. 

Even if the problem is merely that of choosing a representation for a 

solution process otherwise described, few programmers would clai:n that 

the representation they have chosen was th.e best. It is appnrent, as we 

shall describe in a little more detail in section 2.4.2) that th~ very 

power of programming languages in some cases adds to the complexity of 

programming, rather than reducing it. 

In the derivation of a program as a solution process, there is a 

difficulty in the identification of individual elements from th~ 

space of possible solution processes (j.e. the space of all programs) •. 

What a programmer does, of course, is to use properties he requires in 

order to derive possible programs which he may then examine. However, the 

properties he may require of a program are often poorly understood owing to 
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a lack of a clear and complete specification of the problem (see section 2.3.1) 

and also because of his lack of knowledge of the properties of the programming 

language. Thus it is difficult for a programmer to know what he is 

deriving, and also when he has a program which satisfies his requirements. 

Nevertheless the notion of searching allows a basis for a discussion 

of how complex problems may be tackled. A complex problem may have many 

possible solutions, all of which ought to be examined. However, it is 

impossible to do this in a reasonable time. Ways must be sought by which 

the space to be searched can be drastically reduced in order to focus 

attention upon an area where an acceptable solution is most likely to be 

found. 

Consider the following steps in the derivation of an acceptable 

solution process for the numbers problem of the previous section. 

1. The set of "possible solutions" may be divided into the real 

numbers and the complex numbers. From the properties of 

complex numbers it can be seen that an acceptable solution 

process need only consider members of the set of real 

numbers. 

2. Only the set of integers {-99, +99 ] 

need be considered because of the definition of absolute 

'value. 

3. The set { -99, ..., +99 } may be partitioned into 

{-99, ••• , -1} and {O, ••• J +99} The solution 

process need only consider the set { 0, ..., +99} 

and, for any solution found in this set (different from 0), 

select also the corresponding negative value of thiS solution 

from {-99, ••• , -1} as a solution. 
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4. An acceptable solution process may be described over the set 

{ 0, • • • , +99} which searches from 0 in increasing 

magnitude of number and which terminates as soon as a 

number is found whose square is greater than or equal to 36 

(as . . . , +99} ). 

At each step, the set of possible solutions is further limited until, 

at stage 4, a solution process can be described which, we suggest, is 

acceptable. There are other solution processes which could equally have 

been suggested at stage 4 (e.g.4. one which commenced with +99 and then 

continued with 98 etc. ). Thus, even in this derivation, there is a choice 

"d solution processes.(Of course further anal~sis of the set of possible 

solutions can, in this example, reduce the set of possible solutions 

from the positive integers to a single element). 

The process of the analysis of information contained in the problem 

statement and of known properties of the space of possible solutions is 

a means for reduc.ing the set of possible solutions that need be considered. 

In this examplo the steps of methodical reduction can be clearly L'>qll:"~':'l~d 

because of the well-formed nature of the problem and because til" properties 

of the solution space are well-understood. However, even in sclYing problems 

which are .ill-formed or whose solution spaces are incompletely understood 

by the problem solver, the value of a methodical step-wise investigation 

has been stressed by several writers (e.g. Polya 1945, Alexander 1966, 

Mannheim 1966, stmon 1969, Hormann 1970). In programming, also, a similar 

appreciation has found expression in such ideas as "structured prograrr.ming" 

(Dijkstra 1972a) and "step-wise refinement" (Wirth 1971b). We discuss these 

ideas further in Chapter 3. 
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In general, the methods suggested by these writers may be characterized 

as the decomposition of a problem into smaller problems for which, 

individually, there is a greater likelihood of an acceptable solution being 

discovered. 

example: 

In the derivation given for the numbers problem above, 
it may be seen that each step represented a decomposition 
of the stated problem into problems of conceptually less 
complexity. 

The decision to decompose a problem in a particular way is based 

upon some expectancy of where solutions are to be found or, alternatively, 

of where solutions are not expected to be found. 

example: 

At step 1 above, the decomposition is based upon the 
"ease of solution" of the problem of finding complex 
numbers whose square is 36. 

In taking these decisions, the problem solver must carry out 

some form of analysis. In many complex problem solving Situations, 

the validity of such analysis is often not decidable at the time the 

decision must be taken. It may be only at a much later stage in the 

problem solving activity that decisions taken earlier are found to 

be valid or invalid. Whether or not such information can then be used 

to turn the search for an acceptable solution in other directions 

depends upon the ease with which a change of direction can be made. In 

programming a particular decomposition of a problem is often reflected 

in the modular structure of the program. Each decision concerning the 

decomposition is therefore embedded in program code. According to the 
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way in which the structure of the program is represented in the code, it may 

be a difficult task to alter the program even though the decomposition is 

demonstrably unsuitable. This phenomenon is, of course, closely related 

to the forms available for representing the design of a program. This is 

discussed further in sections 2.3 and 2.4 and also in Chapter 3. 

The comments we have made concerning the difficulties to be faced 

in tackling complex tasks are related more closely to the development 

.. of programs in Chapter 3. Our intention at this time has been to 

draw attention to the fact that programming is a complex and difficult 

task, but that man has been faced with such tasks before and has 

developed mechanisms for overcoming them. An insight into what these 

mechanisms involve can only be of help in deciding how programming 

should be carried out. 

2.2.2 Some "human aspects" 

The natural abilities of an individual human being as a problem 

solver will have a great influence upon the success of that individual 

when faced with problems of great complexity. Although the means by 

which complex problems can be tackled may be well appreciated, it is 

still necessary that the appropriate feats of intellect are accomplished. 

It is surely necessary for a programmer to be creative. The 

sheer immensity of the task of constructing a program requires an 

individual flair for assimilating apparently unrelated info~mation or for 

taking the "right decision" even when there is little substantiating 

evidence. Koestler (1964) describes a possible mechanism to account (or the 

"flash of inspiration" and the ''moment of insight" which are so necessary 

in the task of tackling complex problems. Hormann (1970) characterizes the 

application of knowledge and experience in problem solving and relates 

these to an individual's creative abilities in a particular task. The 
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characterization which he gives is expressed in terms of "prepared" and 

"unprepared conditfons". "Prepared conditions" represent situations 

recognizable ~y an individual from his experience. Hormann uses these 

characterizations to explain a number of observations concerning the ways 

in which problems may be overcome by a human being. In particular, he 

discusses the possibUity that an individual can solve a problem which he 

has not previously encountered by means of a mismatch between some prepared 

condition (representing an earlier experience) and the given problem. 

Such mismatches can occur if the given problem is, in some sense, similar 

to the previous experience. A danger here is that a gross mismatch 

between a problem and some prepared condition may be undetected and lead 

to the acceptance of incorrect solutions to problems. Unfortunately, a 

programmer who is pressed to attain production schedules is more likely 

to commit such errors than a programmer who has time to consider his task 

with care. 

Both Koestler and Hormann attempt to give explanations for an 

individual's problem solving ability. It is interesting to remark that 

Polya (1945), in giving rules to follow in solving problems, suggests that 

a person should conSCiously try and match his past experience to any 

problem with which he is faced. Polya states that one should always 

ask oneself -whether the problem has been solved before, and failing an 

affirmative answer, ask whether any similar problem has been solved before. 

There is an obvious Similarity between these suggestions and the mechanism 

described by Hormann. 
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Creativity is, therefore, One characteristic which we believe is 

essential in a programmer. Weinberg (1971) discusses a number of others. 

Amongst these 1s humility. A good illustration of the need for humility 

is given by the phenomenon of "ownership" described by both Weinberg and 

Ershov (1972). A programmer is likely to develop protective instincts 

towards his program because it represents a large intellectual effort 

on his part. As a result, a programmer may even jealously guard his work, 

whether ot not it is of any worth. The consequences of such an attitude, 

particularly within a programming team, may be imagined and prompted 

Weinberg to promote the concept of "ego less programming". Under this 

approach, a program is written, not by an individual but by a group of 

people such thatno one person feels responsible for it. The success 

of such a policy depends upon the readiness of all programmers to accept 

the suggestions of others for the overall good of the program. Such 

a requirement may, in fact, make it a difficult policy to adopt, but 

'the arguments upon which it is based cannot be questioned. When an 

individual is working alone on a program, it would still seem to be a 

wiso policy for him to rememb~r thnt he is fallible and therdore 1 ikcly 

to produce a'program which may need correction or improvement. 

A programmer a~so needs to be both suspicious and trusting. He 

should always be wary of possible difficulties and inconsistencies in 

the task he is required to do and yet must have confidence in his own 

ability to produce a satisfactory program. 

There are, of course, many other aspects of human nature which are 

relevant in a consideration of programming. A programmer must be able to 

arrange his work in a methodical manner, be able to organize the 

information with which he is faced and even overcome boredom induced by 

the tedium of encoding familiar constructions. An extensive discussio~ 
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is given by Weinberg (1971). 

2.3 Understanding problems and design 

How a programmer understands the problem he is to tackle, the 

form the programming language takes and the tools which he may use in 

program construction will play a large part in shaping the eventual program. 

In the ne~t few sections we discuss some of the issues involved and consider 

some of the tools which are available to the programmer to use -as he 

designs a program. At this time we are considering only tools which may be 

thought of as design aids. Others tools, which, though affecting the 

programming activity are: more concerned with program testing or 

validation are discussed in Chapter 4. 

2.3.1 Problem specification 

The specification of a problem can and does take various forms. 

Rarely is the specification of a complex problem sufficient in itself. 

The programmer will, therefore, find that he needs to discover anSwers 

to questions about the problem which arise as part of the development of 

his program. The di.fficulty is natural and may occur for a number of reasons. 

We suggest three, although there are probably many more. 

(i) The form of problem specification is incomplete or open 

.to a number of different interpretations. 

(ii) 

(iii) 

The problem itself may be changing with time. 

The problem is so complex that it cannot be expressed 

succinctly in a sufficiently rigorous manner. 

The specification of problems may take many forms. Natural language 

and jargon are often used, with the danger of misunderstanding or 

incompleteness. A number of workers (e.g. Rose 1966, Kolsky 1969, 

Falkoff 1970) advocate the use of a subsidiary programming language (APL) 

to specify or describe programs. It may be possible to apply these techniques 
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more generally to the specification of problems. Some discussion of the 

use of particular languages for problem specification is given in Naur 

and Randell (1969). Parnas (1972) gives a technique for specifying 

modules 'in a program design in terms of fUnctions which describe the purpose 

of a module. This technique appears promising in those cases where it has 

been tried. 

It is, however, probably true to say that no one technique or language 

can be sufficient. It is likely that there will always be a need for 

explanatory material in addition to any formal description of a problem 

(e.g. an exposition of terminology, a language manual etc.). 

One comment which we venture to make is that the form of the problem 

specification can be suggestive as to the form the solution might take. 

Notation and other devices used in the design of a program play their 

part in the form of that program, so it is likely that this observation 

extends also to the manrier of the problem specification. 

, 'l ",example: 

2.3.2 

A programming problem might be described by a "procedural 
specification" intended to illustrate a flow of,inrormntion. 
Such a specification can colour a programmer's thinking to 
a greater extent than if the problem was described in a 
"non-procedura1!' manner. 

Design and documentation 

Apart from the programming language, the influences most likely to 

bear upon the d'esign of a program are the tools and techniques used. 
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, By the use of various notations or other design aids, the programmer may 

learn more about a problem, and some of its peculiarities as well as 

experiment with possible solutions. 

Many of these notations can be used in documents describing either 

the purpose of the program or its design. Documentation plays an 

important role in program construction. Most programs which are intended 

for more than "one-off" jobs need some description in tenns more anenable 

to a human reader than that afforded by the code of the program itself. 

Potential users of the program will require knowledge of the purpose of 

the program, the format of the input data and control records, and the 

output they may expect. Other programmers may require more detailed 

descriptions of the program code so that they may maintain the program or 

modify it to local requirements. Such documentation can conceivably be 

written after the program itself has been written, though there may 

be some good arguments why this could be bad practice. For example, 

in many cases such documentation is generally provided by the programmer 

himself. Apart from the fact that programmers are not necessarily good 

at writing documentation (as pointed out by Weinberg 1971), intercst in 

a program can naturally lessen when the creative phase has been completed. 

The programmer may even move on to other projects and leave thc documentation 

to be completed by his successor, if it is ever properly completed. 

It may, therefore,be a good idea to produce documentation directly 

from the program text using such techniques as automatic flow-charting 

or by other methods (e.g. Mills 1970). 

Documentation of a design itself, made as the design is carried out, 

is particularly necessary in computer programming (see Naur and Randcll 

1969 p90, for example). In a project involving numbers of people it 

is essential. Several massive systems have been constructed (Brown 1970, 
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Falla and Burns 1973, Pearson 1973) to provide support for information on, 

for example, design specifications, program methods'and progress. Baker, 

(1912) describes how a programming secretary with machine assistance can 

play a central role in the maintenance of information. For small groups 

of programmers, a filing cabinet or even a notebook may be suffiCient, 

if its value is fully appreciated. 

The form of documentation used or required can influence the work 

of a programmer. 

example: 

It is very much easier to document a program in terms 
of separately describable modules with few cross-referenc~s 
than one which makes use of intricate relationships 
amongst a large number of variables and functions. 

This influence is likely whether there are many people involved or 

only one. Being forced to describe a program leads one to appreciate its 

shortcomings. 

As a program is developed it should be documented so thai: the decisions 

taken during development and the reasoning behind these decisions will be 

available later. The development process may well be based upon such information. 

example: 

If, in a particular development, the designers maintain a 
diary of progress made, then they are well equipped to use 

'such information to influence their work. In the absence 
of such documentation it is likely that future decisions 
will be ill-considered or invalid with respect to earlier, 
undocumenteq and hence forgotten, decisions. 

It is likely that well-considered programs are the result of 

well-documented designs. The converse, that badly documented designs 
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result in badly considered programs is likely to be an understatement. 

Selig: 

t~ith the rapid proliferation of computer languages, 
subroutines and programs, and the tremendous effort 
they represent, meticulous documentation is becoming 
essential, not just to save money but to prevent chaos". 

(Naur and Randell 1969 p116) 

Before we consider a few tools and notations used in the deSign of 

a program, it must be stressed that documentation is something which is 

for the benefit of a human 'reader. Its purpose is to enable a human being 

to come to an understanding of the program or design being documented. 

When the documentation is purely descriptive then this need should normally 

be achievable. However, documentation which is precise is also a requisite 

in programming and it also should be comprehensible. The method of Parnas 

(1972) for describing the fUnction of program modules or the use of 

subsidiary programming languages to describe a program (Rose 1966, 

Kolsky 1969, Falkoff 1970) are of relevance in this direction. 

2.3.3 Some tools used in program design 

There are a number of tools available to a programmer for u~c during 

program design. Many of these are notational or graphical and facilitate 

the repres~ntation of ideas on paper. We also include a short discussion 

on machine-assisted tools, but only in the sense of special purpose 

computer-aided design systems. Machine assistance in the form of 

compilers, debugging systems or interactive programming systems is 

dealt with in Chapter 4. The discussion of programming languages at this 

time is also restricted to their use in deSign, rather than as being a 

definition of the interface between man and the computer. Programming 
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,languages are discussed from this latter viewpoint in section 2.4. 

Decision tables represent a method of describing the logical connections 

inherent in a problem (or in any process). In particular they provide 

" •• , • a means by which the work required to understand and. 
define a problem, develop and program a solution and provide 
documentation, is substantially reduced". 

(Schmidt and Kavanagh 1970). 

However, decision tables alone do not provide a basis for the solution 

of complex problems. The derivation of a solution in terms of a decision 

table implies a good understanding of the problem so that the logical 

connections are correctly established between the various components of 

the problem. 

Once the necessary logical connections are established, decision 

tables may prove of value in determining such properties as logical 

completeness. They can also be used to describe the solution process for 

a problem in a way which may be automatically translated into a representation 

. in a programming language (see, for example, several papers in NcDaniel 1970). 

It is possible to use decision tables to give many-levelled descriptions 

of a problem or a solution process. (A discussion of IIlevels ll is given 

in Chapter 3). The derivation of such descriptions is determined solely 

by the programmer himself, with the properties of decision tables only 

acting in a passive role. 
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Flow charts may be used in sUnilar ways to decision tables. They 

refer, however, to the flow of action or information, rather than.to fixed 

logical relationships. As the actions may be determined as a result of 

previous actions described in the flow chart, the generality of flow 

chart descriptions may be difficult to understand. 

It is possible to code directly from a flow chart into a programming 

language possessing similar primitives to the primitive flow chart 

symbols (e.g. labels, goto's, functions, tests). 

Flow charts may be used, like decision tables, to represent a 

many-levelled description of a problem or solution process. In this case, 

however, each~vel represents a description of a flow of control, rather 

than of levels of logical connection. If flo~ charts are used in this way 

to describe processes, the ,programmer must hUnself: have a conception of' the 

different levels of control fiow and ensure that these are faithfully 

represented by the description he gives. 

Various textual notations are often useful during the design of programs. 

Natural language is a common method of description. It offers a means 

of communication wit II other people (in either written or spoken form) which 

is essential if the various facets of a complex problem are to be appreciated. 

The use of natural language in an unrestricted way is always open to the 

danger of misinterpretation, but "jargonized" forms can be very helpful 

whilst avoiding the implications of specialized notations such as 

programming languages. It is quite possible to describe algorithms in 

this way (as Knuth 1968 demonstrates so well), provided the termS used 

are, unlikely to be misinterpreted. 
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Programmers often make use of a "bastardized" form of a progTamming 

language in the development of programs. Such a notation retains much 

of the flavour of the programming language but, as there are no 

stringent grammatical rules to follow (the programmer is, in effect, 

devising the language as required) the programmer can express himself 

as he pleases. The use of such language forms is likely to be beneficial 

in bridging the gap between the language of the problem statement and the 

programming language to be used to express the solution process (see also 

section 3.2.2.). 

On a similar theme, any simplifications to the precision of a 

programming language are likely to be helpful in a notation whose primary 

use is for the expression of ideas. An example is an expression of 

non-determinism. Programming languages are, by nature, deterministic. Yet 

many programs are describing non-deterministic concepts. These programs 

are often characterized by a "choice" of a particular indetermin&te value 

with appropriate backtracking provisions if the choice was, in [act, the 

wrong one. It may be helpful to the programmer if he could write his program 

using non-deterministic constructions where applicable, but without the 

need to give full details of how the backtracking mechanism should be 

incorporated. Floyd (1967b) and Johansen (1967) describe how programs 

which use non-deterministic constructions may be expanded in an automatic 

way so that the necessary backtracking mechanisms are incorporated. 

(Unfortunately. the generality of such schemes necessities ~he inclusion 

of much inefficient. and often unnecessary computation. This can, tt course, 

be removed by "hand tuning" the program, although this may be a non

trivial and error-pron.e task). 
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There are doub't1ess many other concepts whose expression in a 

programming language is complex, but whose basic notion is wel1-und~rstood 

and is easily expressed in a textual manner. Their use by the programmer 

in documenting his program design is likely to be beneficial. If they 

are easily mapped into "real" programming language conStructs then the 

task of program development is again simplified. 

The ultimate notation available to the programmer is, of course, 

the programming language itself. This we will discuss in detail in 

section 2.4 and a1s~ in Chapter 3. We believe that its usefulness in the 

design of the program is more by its influence then by its use as a 

primary design notation. Indeed, we believe that the use of the programming 

language itself early in the design process can be bad practice, as it 

represents a committment to a particular solution process at a time when 

much of the information which the programmer may be able to find out 

about his problem is likely to be undiscovered. 

In some cases it may be possible to call upon machine (coffiPuter) 

assistance in the design process. The amount of assistance a computer 

may give varies through special purpose "computer-aided design systems" 

such as the LOGOS scheme (Glaser 1971) whereby the problem itself is 

represented in the computer system and the design of its solution aided 

and maintained also by the system, the AED approach to computer-aided 

design (Ross 1967) whereby various design packages, a programming language 

and a "culture" all act to assist the programmer, to systems 

giving pure1~ clerical assistance. The work at Stanford (Engelbart and 

English 1968) on a computer system for the augmentation of human int~llcct, 
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and that represented by MATHLAB (Engelman 1968) are good examples of this 

latter form of computer aid. We could also include systems which are 

more oriented to the production of computer programs (e.g. APL). 

These systems are also discussed in Chapter 4. We see computer-aided 

design tools primarily as a means of reducing the intellectual effort 

required of a human being for tasks which are mainly mechanical but still 

absolutely essential (e.g. representation, organization and presentation 

of information). The unique ability of the human being in a creative role 

is crucial to any design or problem solving activity. Design aids which 

allow the human being to concentrate his abilities on this role are 

bound to be of use in extending the human capability for undertaking difficult 

tasks, such as program construction, with greater confidence. 

2.4 Programming Languages 

We have suggested that a programming language characterizes the 

man/machine interface. It is the aim of the programmer to describe 

a solution process in terms of a programming language, rather than in terms 

of the physical concepts of the computer. The programming language, 

therefore, has a very great effect upon the programming activity. 

Programming languages should be designed with Some care in order that it be 

as straightforward as pOSSible for the programmer to develop a representation 

for even complex solution processes. 

The development of programming languages has tended to recognize 

this obligation, although we believe there is still a long way to go. 

Early computers were programmed in machine code and subsequently in a 

symbolic form of machine code. The man/machine interface was, at that time, 

only slightly removed from the machine and the programmer required a large 

intellectual effort to achieve a suitable encoding of his program. Later efforts 
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(e.g. FORTRAN, Algol, COBOL, etc.) were further removed from particular 

machines and paid a greater concern to the expression of problem 

solutions in a form more closely related to problems themselves. Nowadays, 

high-level languages have been devised for many of the more common computer 

applications (Sammet 1969). 

Most recent language developments have recognized that the programmer 

will benefit greatly if he has to adapt the problem less to the peculiarities 

of a machine and is therefore able to concentrate more on the development 

of the solution process. ·A human being solving a complex problem has 

ample opportunity for error. The lessening of the problems of communication 

with the computer should allow more freedom to concentrate on the real 

difficulties. 

The development of languages represents a steady process of 

movement away from the concept of a specific form of computer, and more 

to the general representatiOn of problem. concepts and algorithms. A 

logical conclusion to this development process would appear to be the 

use of natural language to communicate with the computer. There are many 

difficulties with this idea, and even were it practical from the point of 

view of implementation, it is likely to be a source of much 

misunderstanding. The "heaviness" of legal English should act as a 

warning that it is very difficult to write un&~bigious statements in 

natural language (Hill 1972). What would appear more appropriate is a 

language that takes due account of both man and machine, with little explicit 

emphasis on the latter and more attention given to the former. One way in 

which this may be possible can be seen in the concepts of extensible languages 

which allow the programmer to add to the basic language of the machine 
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interface as he thinks fit. 

However, it should be stressed that our present Concern is to 

study the role of programming languages in program development. We do 

not wish to be concerned with arguments about the form new programming 

languages should take. 

2.4.1 Programming language influences 

The choice of a particular programming language by a programmer 

theoretically acts as a constraint upon the number of actual solutions 

from amongst which he may choose for his particular task. However, any 

reduction is unlikely to be noticed unless the choice rules out 

particularly appropriate representations for the problem in hand. 

The decision to use a certain language may not always be made 

on the basis of the merits of the language itself. Other criteria, 

often based on pragmatic. arguments, can playa large part. Progr~~ers 

may have to make do with ill-conceived language constructions and the 

likelihood of difficulties later simply because there is a "good" 

implementation of the language which generates "efficient" machine code 

and which is well supported by a large library of useful functions. Mass 

usage of such languages encourages their continued existence to the likely 

detriment of other concepts in programming ,,,hich may, in the long term, 

o'ffer great benefits. The blame does not lie with individual programmers 

as they are often given little choice in what programming language to ~se. 

Their organizations will make this choice for them, having considered (or 

tried to consider) factors other than that of the language itself. 

Compatibility and transferability of both programs and programmers are 

just two examples. 

For whatever reasons a particular language may be chosen p it will have 

a considerable influence upon the way in which a program is developed and 
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possibly contribute to the difficulties. 

Even with contemporary high-level languages which are described 

as being general purpose, the concepts directly describable are limited. 

In order to make use of a programming language to represent a solution 

process, the programmer has to create mappings from the concepts of the 

problem to those of the programming language. It is natural for a program 

,to be developed along the lines suggested by the programming language as 

these mappings are then more easily appreciated. 

example: 

If APL is chosen as the programming language, then a 
programmer is encouraged to think in terms of matrices 
and to consider his problem in such terms. Again, if 
a string processing language is chosen, a programmer 
is immediately encouraged to think in the particular 
terms that the language suggests. 

In some circumstances the particular concepts of a programming 

language are well-suited for a given programming task (e.g. RPG for the 

conStruction and printing of tables of data). In general this is not true 

and thus a part of the programming effort is the choice of suitable 

representations for problem-oriented concepts in terms of the limited 

concepts provided in anyone programming language. One way of reducing 

the effort required in this task would be the use of more powerful 

programming languages. However there is some danger in this approach, 

namely that the more powerful a programming language is, the more difficult 

it is for, a programmer to appreciate its properties. If a language spans 

a large set of concepts then the difficulty of choOSing the most appropriate 

representation increases, because there is a potentially larger set of 

'candidates. Conversely, a language which is very restricted and so does 

not have this problem has, of course, difficulties of its own. A programmer 

may conceivably have a complete understanding of the properties of such a 
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language, but, for any given problem, it is unlikely that there exists 

any obvious, direct representation.. The programmer has, therefore, to 

create one, which may be a non-trivial task. Thus, a programming language 

which is over restrictive is likely to lead to programming problems, 

whilst one which provides a vast set of concepts and functions is likely 

also to cause problems through difficulties in understanding. Extensible 

languages may prove to be a solution to this particular difficulty, 

provided that the mechanisms of extension are themselves non-complex 

whilst being sufficiently general. 

If a programmer is free to choos.e from amongst a set of alternative 

languages then ther~ is likely to be some advantage if the final decision 

is delayed. The process of developing a program allows a programmer 

time to learn about the problem and its difficulties. If he makes no 

committmentm a particular language during the early stages of 

development then he is likely to be better placed to make a wise choice. 

The set of possible languages will probably be small (for reasons separate 

from the task in hand) and so the programmer should be well able to 

judge which language is best suited to his particular situation. 

Programming language design 

The problems for which computers are used are generally complex. 

The various properties and concepts of computers are complex. The 

interface between these two sources of complexity is the programming 

language. One function of a programming language should, therefore, 

be to offer means of Simplifying both. This function is carried out 

by the various languages available with differing degrees of success as 

illustrated by Some of the examples given below. 

The number of languages with procedure or subroutine mechanisms which 
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may be used easily are good examples. The worth of such a concept (and more 

particularly the use of libraries of subroutines) is obvious when we recall 

the discussion of man's requirements for solving problems (i.e. the breaking 

up of the design, the recognition of situations etc.). Indeed, there may be 

a considerable effect upon the program design itself: 

(i) The programmer is spared intellectual effort. 

(ii) A program may be designed in a particular way to incorporate 

an existing subroutine. 

example: 

In the solution of a boundary value problem of ordinary 
differential equations, the existence of a subroutine 
which solves initial value problems might encourage 
the programmer to use the "shooting method" (Keller 1968) 
rather than develop his own solution directly. 

The presentation of the language itself can be a powerful Simplifying 

. agent. Flow charts may be described as programm'ing languages, and they 

certainly allow for the concept of a subroutine call mechanism. Yet we 

do not normally consider flow charts as being suitable for the detailed 

representation of programs to be input to some machine. One reason of course, 

is that computers do not possess input devices capable of accepting such 

graphical information. Textual representation, however, offers a much 

more concise form for transmitting information and, because of education, 

is naturally acceptable to the human programmer. On the assumption that 

programs are to be understood by human readers, the actual symbols of the 

language, the relationships that may exist between these symbols, and the 

meaning to be attached to the symbols should be chosen so as to assume as 

little intellectual effort as possible from the reader. A programming 

language is likely to be more acceptaHe if it satisfies this property of 
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"readability", at least to the extent that comprehension of a program 

is not obscur~d by the constructs of the language itself. 

example: 

~ language such as PL360 (Wirth 1968) has some appeal 
when compared to the assembly language of the 360 computers. 
(lBM 1969). 

To a certain extent, the clarity of individual programs depends , 
upon the problem and on the ability of the programmer, not simply as 

a coder, but also as a problem solver and designer. However, as a 

brief survey wi~l show, there are certain constructs present in current 

high-level programming languages which are extremely complex and liable, 

themselves, to lead to much misunderstanding. Even in well designed 

'programs their use will obscure the basic design, whilst in badly designed 

programs, their use can make it almost impossible for the human reader to 

discover how the program works. Unfortunately the use of some of these 

constructs is often necessary. The programmer must then exercise discipline 

over himself to see that any complexity is reduced to a minimum. We 

discu,ss some of the pOints in the illustrations which follow. 

(a) Input/output handling. 

Undoubtedly, input/output handling can be a complex problem, but it 

rarely appears to receive the attention that it warrants in a language. 

Indeed in some languages, the handling of input and output is regarded as 

an "add on" feature to be determined by individual implementations. We 

do not advocate any,particular approach for the specification of input/output, 

but certain methods seem to be more appealing 'than others. 
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example: 

The idea of a "picture" of the required output being 
given by the user (as in COBOL for example). 

One feature commonly encountered is that of referring to devices 

by a number, instead of using a more meaningful name; such a technique 

is surely indicative of the half-hearted approach that seems to be taken 

i~ so many cases. 

(b) "goto" statements 

There has bee~ much discussion in the literature regarding the 

efficacy of USing "goto" statements in programs. (Dijkstra 1968c, 

Rice 1968, Wulf 1972, Leavonworth 1972, Hopkins 1972). The arguments 

for and against are well-known and we will not discuss them further 

here, though we will return to the "goto" statement briefly in Chapter 3. 

(c) the ALTER verb in COBOL 

COBOL, as many other high level languages, possesses a "gor.q" 

statement. However, it also allows what we may call a "variable 

destination goto" statement. The destination of a jump m.:ly be altered 

during the program execution. Thus the text of the program may be 

changed dynamically. It can no longer be read with ease by a human reader. 

The prospect of a program with many uncontrolled jumps whose destination 

is unknown, except during the actual execution of the program, makes 

one marvel at the debugging ability of those programmers who write 

such COBOL programs. 



- 36 -

(d) The CASE statement 

(see for example Algol W, PL360, XPL, Algol 68). 

The case statement may be considered as a generalization of the, 

alternative statement (if). We can describe its syntax by the following. 

~ <integer expression) £! 

{ <statement-i) 

<statement-2) 

(statement-n) } 

The value of the (integer expression» determines which, if any, 

of the n statements will be executed. The ordering of the individual 

statements is vital to the correct functioning of the whole statement. 

'If one statement is omitted (a card is lost), or some get out of order 

(the cards are dropped), then the whole statement is Hable to be erroneous. 

Yet it may still be meaningful to the reader and acceptable to the language 

processor. The solution to this difficulty is shown by Wirth (1971a) 

·in the language PASCAL. Each of the n statements is given a label and 

the (int.eger expression) is replaced by an < expression) which will 

evaluate to one of the n labels. 
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example: 

Suppose "pointer" is a variable of a certain type yielding 
the values described as "east", "west", "north" and "south". 
We may write:-

~ pointer of 

east: . . . 
west: . . . 
north: 

south: 

The ordering of the four possible statements is immaterial and 
a number of other checks are possible to prevent errors. 

(e) Implicit declarations 

Weinberg (1971) and Palme (1972) are among many who have written 

about the dangers of languages where declarations are made implicitly. 

"New" variables are liable to be introduced through misspelling of 

variable names without any indication of fault by the language processor. 

Explicit declarations are useful to a reader in that he is given a full 

description of what attributes he may assume for the individual variable 

names (see also Chapter 4 section 4.1). 

There are many other instances of error-prone constructions being 

provided in programming languages (see for example Weinberg 1971). The 

general point which they illustrate is that it is extremely simple to 
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introduce ~iexitY into a language design whereas the aim should be 

simplicity. Ie suggest, therefore, that language designers should pay 

a greater heel than is generally apparent to the fact that a programmer 

is fallible and finds complexity difficult to overcome. In the 

design of a program, the programmer is learning about his pro~lem. 

If he can express himself clearly and easily, then his appreciation 

of his task is likely to grow. However, if he has to struggle with 

complex language c~nstructions, then much of his effort will be 

diverted and he may miss opportunities in the discovery of acceptable 

solutions. 

. . \ 
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Chapter 3: 

Structure in Representation and Method 

In the previous chapter, a number of the requirements of man for 

tackling cornptex tasks were noted. In particular it was suggested that 

a methodical approach was essential and that thee must be a means of 

representing and organizing the information concerned with the job being 

tackled. These needs are closely related. Method relies upon the 

availability of information, whilst any representation or organization 

of information will not be helpful if it obstructs the method. One of the 

most powerful ways of organizing information for describing complex 

systems is the hierarchy. Simon (1969) says: 

" • •• if there are any important systems in the world that 
are complex without being hierarchic, they may, to a considerable 
extent, escape our observation and understanding". 

Further support is given by Whyte (1969): 

" • • • hierarchical classification is the most powerful method 
used by the human brain in ordering experience, observation, 
entities and information". 

A recent paper (Belady and Lehman 1971) analyses the structure of 

programs from the pOint of view of its effect upon the economic lifetime 

of a program. (The economic lifetime of a program describes that period 

of time during wh{ch useful work can, with confidence, be achieved with 

that program. It ends when errors or malfunctions of the program occurring 

as a result of modifications or misconceptions incorporated earlier cannot be 
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r~oved without adding further errors which will themselves prevent useful

work and whifh also cannot be removed). Amongst the conclusions reached 
i 

in this papel is that the structure of a program should allow hierarchical 

~ 
representati~n. 

Programming methods which accord with the philosophy of "divide and 

rule" can lead to programs which exhibit a hierarchic structure. An example 

of such methods has been given in Chapter 2 in terms of problem 

decomposition. 

Simon (1969) gives a telling illustration of the power of hierarchic 

design and development methods. This illustration compares two approaches 

to the construction of a complex mechanism. The first approach, which we 

will describe as the "single-unit" approach represents a method which 

is not based upon hierarchic notions. The various primitive elements 

which form components of the total mechanism are assembled in no particular 

order and are not recognizable as being correctly in position until the last 

primitive element is assembled. The second approach is based upon the 

method of butlding recognizable sub-components which may themselves be used 
; 

to form further recognizable sub-components until the total mechanism is 

constructed. In this second approach, the existence of completed sub-

components represents the state of the construction activity at any given 

time. This information can be used with advantage during the construction 

activity and allows, for example, for the activity to be interrupted or 

for the course of the activity to be influenced. The "single-unit" approach 

offers none of these posSibilities. Any interruption of the construction 

activity wtll, almost certainly, necessitate the complete reconunencement of 

the task as no information is available to describe the current state of the 

activity. 

This illustration can be translated into programming terms without losing 

any effect. If a program is constructed from components and sub-structu"res 
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which can be /recognized as such because of the representation of the program, 
I. . ,t 

then the pro~ammer is well placed to decide what he must do next and what 
. ~. 

~~ 

relationship lhis has to his previous work. On the other hand, if a program 

is constructed without any definite method such that the properties of that 

:program cannot (except in the most trivial cases) be appreciated, then the 

programmers task is hopeless. 

Programming languages are, as discussed in Chapter 2, much too 

restrictive to allow the representation of components in a form 

sufficiently related to the problem to be useful in a general way. 

example: 

Programming languages generally have a limited domain 
of data types or structures which they can express. 
Thus, in any representation of a program in a programming 
language, all objects manipulated by that program must 
be expressed in terms of these types or structures. 

As we described in Chapter 2, programmers tend to use other 

notations to represent their program at various stages of its development. 

Thus natural language may be used to express an overview of a ?rogram 

which is presented to the computer in a programming language. 

The various representations of a program can be structured 

hierarchically according to the forms of notation used. In this way the 

aggregation of properties given in one representation can be appreciated 

in terms of some other "higher level" representation. Other structurings 

might be applied but, following our comments above on hierachies, we 

wish to base our further discussion of programming upon methods and 

representations founded upon the ideas of problem decomposition and 

hierarchically ordered description. 

In this chapter we will illustrate relationships betweendfferent 
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l 
repres.entatiqps of a program by the device of a "level of description". , 
A. program may'!be represented at a "level of description" according to a 

set of concepts whose meaning is understood at that level. The same program 

may also be represented at another level of description by its expression in 

terms of other concepts understood at this second level. Various hierarchical 

relationships can be described which relate representations given at 

different levels. 

Programming methods can be described following the notion of 

hierarchically organized representations. Various methods have been 

described (e.g. "top-down", ''bottom-up''), all of which are based upon the 

philosophy of "divide and rule". The different methods are best 

~haracterized according to the ordering they suggest for the development 

of the program. We will describe several methods in terms of the 

representation scheme afforded by "levels of description" and discuss 
, ' 

some particular issues concerning the practical application of programming 

methods using contemporary programming tools. 

3.1 Levels of description 

Consider the following pieces of text. Both describe a solution 

. process for the same task. 

Text A) "Read 10 input cards and, for each card, make a test to 

det~rmine whether each of the first 9 values of that card 

is within acceptable limits and further, whether the 10th 

value is a valid check sum of the other 9 and is also within 

acceptable limits". 



Text B) integer 

integer 

!2!. 
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array values (119); 

check; integer i, j; 

i-: = 1 ~ 10 do 

1.2£ j: = 1 until 9 do 

begin read (values (j»; 

if ~ acceptable (values (j» ~ writerror (1) 

end· -' 
read (check); 

if ,checked (values, check) then writerror (2); 

if ~ acceptable (check) ~ writerror (3) 

Although both text A and text B represent (essentially) the same 

solution process for the same problem, the terms in which they are expressed 

are different. The difference is that each may be understood according to 

an interpretation attached to the particular set of concepts used. It is 

clear that the interpretation of the concepts used in text A is not dependent 

upon the interpretation of the concepts used in text B ilnd vice versa. The 

reader may have been able to better understand B having read A because 

of the expressed relationship between text A and text B. However, B 

is understandable separately from A. 

We will say that information may be represented at differing 

levels of description according to the set of concepts, and their 

associated interpretation, used in that representation. Information 

represented at a number of different levels of description may be related 

by an explanation of how concepts at one level of description can be expressed 

in terms of concepts of another level of description. 

Woodger (1971) makes Similar observations about "levels of langu?g'!l". 
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In particular he stresses that a language (a set of concepts together with 

an interpretation) should be capable of interpretation independently of 

any other level of language. 

3.1.1 Characterization of a level of description 

We characterize a level of description in terms of the prUnitive 

conceptS which that level provides. These we describe in terms of 

four sets. 

The first is the set of objects. It is sufficient to name only 

the type of objects which may be described rather than enumerating them 

individually. In examples and further discussion, this set will be 

denoted by D. 

The second characterizing set is the set of operations which may 

be performed upon objects described by the set D. By an operation we 

mean to include not only operations in the normal sense, but also predicates 

and functions which take objects as operands. We do not regard identification 

as an operation. This set of operations will be denoted by F. 

Operations may be combined by elements of the third characterizing 

set which we denote by C. The set C contains, therefore, those elements 

of a level of description describing permissible orderings of operations. 

example: 

A particular level of description might be capable of 
expressing ordering in such terms as: 

"and", "then", "after". 

A level of description such as provided by a programming 
language contains terms like 

".,. , "i! ." 
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Finally, objects may be grouped together in certain ways expressed 

in terms of data structuring primitives. 

examples: 

a'Heck" or a "sequence" 

We include in this final set (denoted by S), means of identifying 

elements of "data structures". 

We will adopt the convention of subscripting the set identifiers D, 

F, C and S in order to distinguish levels of description. We now give two 

examples of different levels of description. 

Example 1 

The level of description provided by a simple, conventional programming 

language (which we call SPL) may be characterized as follows:-

= {integers, booleans} 

= {+, -, =, <, &, I, : = } 

= {;, if ••• then ••• ~ ••• , ~ ••• dO ••• } 

SSPL {array, subscriPtion} 

Example 2 

Consider the following problem described in natural language. 

"A bunch of banan/is is hanging just out of reach above a monkey. The 

monkey wants the bananas. Nearby there is a large box which the 

monkey can move and onto which the monkey may climb. How can the 

monkey reach the bananas?" 
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The solution to this problem is, of course, obvious assuming a 

reasonably intelligent monkey. The characterization of the level of 

description at which this solution could be given is:-

= 

= 

{ monkey, box, bananas} 

{ (monkey) move (box), 

(monkey) climb on (box), 

(monkey) take (bananas)} 

CMB {first, then} 

5MB {bunch} 

The characterization of a level of description as given above is 

not intended to be the basis for any rigorous treatment of language 

relationships. It is merely for the purpose of separating cer£ain concepts 

which are frequently used in the expression of programs and which 

conveniently allow different descriptions of the same thing. 

3.1.2 Related levels of description 

If the interpretation of concepts of one level of description may 

be expressed in terms of the interpretation of concepts of a second level 

of description, then there exists a relationship between these levels of 

description. 

Such a relati?nship may take the form of an explicit statement that 

the meaning of a particular concept (or set of concepts) at one level is 

equivalent to the meaning of an expression understood in terms of concepts 

of the second level. 
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~ 
exampl~ 

Suppose that there is an operation" fll understood at level 
1. Suppose some expression is given at level 2 whose 
meaning will be understood according to the concepts of that 
level. If this meaning is understood to be equivalent 
to the meaning of the operation" fIt, at level 1, then there 
is a relationship between levels 1 and 2. 

Alternatively~ such a relationship between two levels may exist 

because a description of a piece of information is given at both levels. 

The fact that it is the same information which is described implies that 

the interpretation of the. concepts of one level can be expressed according 

to the interpretation of the concepts of the second level. 

example: 

The two representations of the one program given in section 
3.1 imply a relationship between the two levels of 
description used. 

We will describe this relationship between two lev~ls of description 

in t~rms of the notion of height. A level of description is said to be 

higher than another if the concepts of the first level are understood by 

expressions described using the concepts of the second level. It is not 

useful to define this notion more closely. In particular we do not wish 

to indicate whether or not the height relationship may be defined 

cyclically. 

If there is some level of description which is considered never 

to be higher than any other level of description, then this level is 

known as the base level. It will normally be the level of description 

of the programming language. 
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It is intended that the measure of the height of one level with 

respect to another be connoted with the relative "closeness" of concepts 

of 'each level. 

example: 

If one level of description contains the notion of ''matrix'' 
whilst another provides the concept of "array", then these 
levels can be described as being closer together than if 
the second level provided only the concept of a linear 
address space. 

However, it must be noted that we do not attempt to give any 

quantification of height and further, that for any two levels which have 

an explicit height relationship, it is always possible to interpose 

a third level between them provided that we have a sufficiently 

inventive idea of 'what is meant by "concept". 

Information (including the particular case of programs) may be 

represented at a number of different levels of description. These 

various representations can exhibit a hierarchic structure reflecting 

the actual relationships that exist amongst the set of levels of 

description. Simon (1969) describes hierarchic structures by the 

property of "near-decomposability". A set of variables representing 

certain information can be compounded into groups, each of which may 

be studied'more or less independently of the interactions between the 

groups. Relations between the groups may themselves be studied more 

or less independently of their individual element-wise composition. Related 

levels of description can exhibit such a property according to the 

expression by which they are related. 

An abstraction is a particular relationship between the representations 

of some information at two separate levels of description, such that the terms 



- 49 -

of the lower level are used to express one concept of one of the 

~haracterizing sets of the higher level. B t e ween any two levels there may, 

of course, be more than one abstraction. 

We may identify four separate abstractiOns according to the particular 

set to which the Concept in the higher level belongs. 

(i) Representational abstraction (the set D). 

(ii) Operational abstraction (the set F). 

(iii) Sequential abstraction (the set C). 

(iv) Structural abstraction (the set S). 

Any of the elements of the lower level may, of course, be used 

to express any particular abstraction. 

example: 

An object at one leveL may be "represented" by a 
particular set of operations. An abstraction 
from this set of operations may be considered as 
a member of the set D at a higher level and hence 
be a representational abstraction. 

Abstraction represents the aggregation of properties ;md interactions 

of concepts from the lower level to be interpreted as a Single concept 

at the higher level. The inverse of this process we call sbboration. 

Elaboration details an interpretation of an aggregate property in terms 

of properti-es and interactions of a set of concepts. 

example: 

A program might be described at one level of description in 
terms of a "stack" using operations "pop an element" and "push 
an element". At a lower level, the notion of a stack might be 
elaborated in terms of an "array" and a "pointer" into the array 
to represent the top of the "stack". Elaborations would also be 
given for the "stack" operations as being operations upon arrays 
and pointers. The program described using a "stack" could 
equally be described in terms of these elaborations. 
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I 

Dens~ty of a set of related levels of description 
) 

One of 'the major reasons for giving representations 

a number of different levels of description is that there 

of a program at 

should, as a 

result, be an increase in the comprehensibility of that program in terms of 

the relationships that exist, between the concepts of the problem area and 

the primitives of the programming language. Whether or not this goal 

can be achieved depends considerably upon the ease with which the actual 

r~lationships existing between the various levels of d,~_cr iption can be 

understood. Even if these relationships can be described according to 

abstraction, comprehension is not necessarily assured. This Can be true 

if the process of understanding individual relationships between levels 

is very difficult. In this case any measure of the height of two related 

levels will be large and the number of different levels used will be 

small. Alternatively, it may be a relatively easy matter to understand 

the individual relationships between levels, but, because of the large 

number of such relationships, understanding the whole is difficult. 

There is, in general, some point where the nu,.11,,~L of l'cL.ltcd levels 

is large enough such that it is possible to comprehend ti, [, i1\ v[ the 

relationships existing between individual levels, butnoL ~o la(ge that 

the number of relationships itself is a barri,"J: t,) cor.lprel";,lsion. This 

number will not be constant, even for a particular problem or a 

particular programmer. We will describe a set of levels of description 

which satisfy this necessarily vague criterion as being sufficiently dense. 

In any discussion which follows we will further assume that a sufficiently 

dense set of levels of description will be related by abstractions. 
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3.1.4 Levels of description and programming languages 

The prUnitive concepts of a programming language form a level of 

description. In addition most programming languages provide well-defined 

mechanisms by which a programmer can give a representation of a program 

at levels above the base level of the language itself (e.g. procedures, 

data structures, macros). 

A procedure is a method of aggregating the properties of operations 

combined in a certain way in order to provide a '~igher level" operation. 

Procedures, therefore, provide a means of describing operational abstraction. 

The use of a procedure allows the programmer to abstract from the details 

of the expression describing how a certain operation is implemented to an 

understanding of effect denoted by the name of the procedure. 

Data struc~uring facilities in a programming language can be used 

to abstract from a set of relationships amongst data to the notion of a 

structured object possessing certain properties. Hoare (1972a) stresses 

the importance of this role in describing and understanding programs 

and lists a comprehensive set of structures. Many of these are found 

in the language PASCAL (Wirth 1971a). 

In most programming languages, however, there is only a limited 

provis,ion for deriving a new level of description by representational 

absttaction. Algol 60, for example, allows arrays to appear as 

parameters 'to procedures,but does not allow an array to be used as a 

primitive in a further array. (Of course, multi-dimensional arrays 

may be used, but these do not express the appropriate conceptual properties 

of arrays of arrays). 

Extensible languages provide more general facilities for the 

rep~esentation of programs at several levels of description. Algol 68 

(van Wijngaarden 1969) allows the expression of both operational and 
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representational abstractions to provide concepts which may be used 

to represent a program. 

example: 

A level of description containing rational numbers may be 
described in Algol 68 by, 

mode 
.2E. n 
.2E. d 

rational = struct 
= (rational r) 

(rational r) 

(~numerator, denominator); 
int: numerator of r; 
i~ denominator--of rj 

together with operations (for example) 

.2E. sign 

.2E. whole 
= (rational r) int 

(rational r) bool 
sign .!!. 

d r 
r; 

1; 

~xample taken from Lindsey and van der Meulen 1971) 

SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968) also provides similar 

facilities by the ~ concept. 

example: 

Rational numbers, as above, can be provided by: 

class rational; 
begin integer numerator, denominator; 

integer procedure sign; sign:= if numerator(O then -1 ~ 1; 
boolean procedure whole; whole:= denominator = 1; 

The extensible language EeL (Wegbreit 1971). in addition to 

providing means for both operational and representational abstraction, 

has a facility for sequential abstraction. 
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In order that a program expressed at a number of levels may be 

easily understood, it should be possible for these levels to be described 

as being sufficiently dense. Certain structuring primitives of programming 

languages can make this difficult if they are not used in restricted ways. 

A pointer is often used to represent relationships amongst elements 

of data. In most programming languages where the pointer is available, 

there is little restriction upon the complexity of the relationships that 

can be so expressed. If the use of a pointer in a program describes relationships 

which are difficult to understand according to any abstraction, then it 

will not be possible to represent that program at levels of description 

wh,ich are sufficiently dense. 

The goto statement has properties which are similar to those of the 

pointer except that it represents relationships which describe the flow 

of control in a program. It is possible to use the go to to describe 

relationships which are so complex as to preclude the representation of 

a program at a sufficiently dense set of levels of description. 

Wulf and Shaw (1973) have described the global variable in a similar 

light. 

Each of these constructions can, of course, be used and still allow 

a program to be represented at a set of levels of description which may 

be described as being sufficiently dense. However, it is necessary 

that some discipline of use be adopted. This introduces a dilemma for 

language design as to whether or not it would be better to omit such 

constructs. It is the author's opinion th.at it should not be left to 

the individual programmer to impart his own discipline, for who is he 

to judge what should form a sufficiently dense set of levels of description 

and what should not? It is part of human nature to be fascinated by i;::;e,nuity 
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to the detrUnent, in many cases, of clarity, simplicity and understanding. 

If programmers are given the freedom to hang themselves, then many of them 

will probably try. 

The development of certain programming languages lends support to the 

idea of providing a reasonably powerful set of structuring primitives 

whilst imposing restrictions upon the programmer. 

The language BLISS (Wulf, Russell and Habermann 1971), for example, 

does not have an explicit goto statement. Instead, specialist usages of 

the goto are retained in the form of exits from loops, blocks and procedures. 

The language developed as part of the SUE project (Clark and Horning 1971) 

includes mechanisms (e.g. CONTEXT, DATA and PROGRAM blocks) specifically 

designed to encourage the programmer to represent his program according 

to a hierarchical structure. 

It is, however, probably true to say that there are many obstacles 

to be overcome and technical advances to be made before.languages 

possessing ·such properties as mentioned earlier are widely accepted. 

3.2 Methods for constructing programs 

As Simon (1969) suggests, and as was d~scribed in the previous chapter, 

one of the most powerful ways of tackling a complex problem is to reduce 

it to a set of "smaller" (i.e. less complex) problems. Each of these 

problems may in turn be reduced to sets of smaller problems thereby 

developing. a hierarchy of "problems". Those which are :;'c.ast complex will 

be found at the extreme points of this hierarchy (Le. if the structure 

is thought of as a tree, then the leaves of this tree stand for those 

problems which are least complex). Eventually the division process 

ceases when a problem is so "Simple" that its solution can be expressed 

with ease and confidence. The solution to the whole (original) problem 

may then be found by a composition process, the solutions to a Set of 
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of sub-problems being composed to express a solution to the problem from 

which they were derived. Thus, the total solution may be expressed. 

However, a simple recognition of the power of problem decomposition is 

no more than a guide to how problems may be solved or how computer 

programs may be written. What is missing is a method, or way of 

proceeding. 

Various programming methods have been described which are based 

upon this principle of decomposition. Terms such as "structured progranming", 

"step':'wise refinement", "top-down", and "bottom-up" have become 

increasingly familiar in the literature. According to ea~h of these 

methods, programs are constructed in a piecemeal manner. Individual 

parts of a program are identified and constructed as separate activities, 

in a manner similar to the problem decomposition process described above. 

The various methods differ in the emphasis each places upon the separate 

tasks which together form the total programming activity. In particular, 

varying emphasis is placed upon the ordering of the development itself 

(see section 3.2.2. below). 

The structuring of the program development process in these ways 

can be described, with advantage, in terms of levels of description, 

abstraction and elaboration. Indeed, many of the methods which are 

discussed in more detail in section 3.2.2., are based upon notions which 

are equivalent to the development of a program by its expression at 

a number of related levels of description. 

3.2.1 Relationship with levels of description 

The development of a program by methods based upon problem 

decomposition generates a certain structure amongst the information 

which describes such a development. This information and this structure 

may be represented using the notions of levels of description, abstraction 
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and elaboration. This is best illustrated by an example. Any ordering 

of the development process which is apparent in this example should, at this 

time,be taken as merely incidental. 

Consider the following problem. (See also section 3.1). 

'~rite a program which reads 10 input cards and tests these same 
10 input cards for the following conditions. Each of the first 
9 values on ,each card should be within certain limits. The 10th 
value should also be within these limits and, further, should be 
a check upon the preceding 9 values on that card". 

The first stage in writing such a program is to analyse the problem 

statement to decide what major concepts require to be represented. 

Such an analysis might well suggest that this program could be written 

as a loop, with each pass of the loop first reading a single card and 

then testing this 'card to see whether it possesses the required properties. 

A program to do this can be represented as: 

"Do the following 10 times: 
Read an input card and then test it". 

This analysis decomposes the original "problem" into five probl~s. 

Pieces of IJrogram must be written to represent (a) looping ("do the 

following 10 times"), (b) carrying out a sequence of operations ("and then"), 

(c) reading an input card, (d) testing an input card and (e) storing inforrr.ation 

about an input card in order that, once read, it can be tested. These. 

five concepts are just those concepts which characterize the level of 

description at which the program is represented above. If we denote 
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'thiS by level "1", then:-

'D = {input card} 1 

Fl = {read (input card), test (input card)} 

C
l = fdo • • • 10 times, and then J 

Sl = { } 

As the next stage in developing the program one of these five 

concepts is chosen and analysed in order to decide how it may be 

decomposed. 

Suppose that it is decided to develop further the operation 

"test (input card)" by separating the operation of actua11y checking the 

card from the operation of reporting whether or not a card is satisfactory. 

Thus "test (input card)" is decomposed into operations which we might ca11 

"check (input card)" and "report (result)". If the total program is to be 

expressed in terms of these concepts, then the level 01 descrIption at' 

which such an expression is given wi11 contain "check (input card)" and 

"report (result)" as operational concepts. Notice, also, that a new 

concept has been introduced, that of "result". Some means of communication 

between the action of "check (input card)" and "report (result)" must 

be found. Thus, although the decomposition of a "problem" at one level 

of description may be carried out according to the properties required 

of that "problem" regard must be paid as to how that decomposition may be 

expressed in the context of lower level concepts. In this case, we 

expect that it will be an easy matter to implement the necessary communication 

and so decompose "test (input card)" as described. In general, however, it 

may not be possible to evaluate a decomposition of a problem with any 
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great confidence because 0.£ a lack of knowledge either of the properties 

required of the high-level "problem" or of the relationships that such a 

decomposition will require at some lower level. 

If a level of description is characterized on the basis of the 

decomposition of "test (input card)" suggested above, then this level 

(denoted as level 2) is related to level 1. The operation "test (input card)" 

at level 1 is elaborated at level 2 by an expression involving operations 

"check (input card)" and "report (result)". This elaboration may be 

represented as a piece of program at level 2. 

Suppose that the, next "problem" chosen is that of deciding what information 

to retain about an "input card". An analysis of the properties of an 

"input card" and the requirements of the communication between "read (input· 

card)1I and "check (input card)" suggests that it is necessary to retain 

all 10 "values" of any input card. Each of these 10 values must be 

identifiable separately and in the proper order. Thus the problem of 

retaining an "input card" may be decomposed into the problems of retaining 

a ''value'' and of structuring several "values" into an ordered "sequence". 

Notice now that, if the total program was represented at a level of description 

reflecting this decomposition then it is not sufficient merely to incorporate 

an expression of an "input card" as being "a sequence of 10 values". In 

addition expressions are required which describe how the operations 

"read (input card)" and "check (input card)" are carried out in respect of the 

decision taken as to the representation of an input card. Thus, in order to 

give a meaningful representation of the program at thiS new level of 

description (denoted as level 3) decompositions must also be given for 

"t;ead (input card)" and "check (input card)'i in terms of, for instance, 

"read (value)" and't:heck (value)". In order to understand the program at 
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level 3, therefore, it is necessary to understand several individual elaborations, 

although each may be described hierarchically. 

The development of the program may continue in a manner similar to 

that described above. A choice is made from amongst a set of possible 

"problems" that remain. An analysis of the properties required of the 

chosen problem suggests a decomposition of that problem into a set of 

"sub-problems". This decomposition forms the basis for a level of 

description at which the program (or a part of the program) may be expressed. 

However, this expression may require further concepts or decompositions 

before it can be understood to satisfy the properties required of the problem. 

Alternatively, the ordering of the separate tasks may be different as we 

discuss below. However, the notions of decomposition, expression and choice 

are relevant whatever ordering is followed. 

3.2.2 A discussion of methods 

The relationship between approaches to program construction based upon 

a decomposition of the overall task and the ideas of levels of description 

discussed in the previous section draws attention to a number of factors. 

The programmer must choose a particular "problem" to investigate further. 

When he has made a choice, he must decide on a suitable decomposition of that 

probiem and how the piece of program for that problem will be expressed in 

terms of this decomposition. The influences upon his choice and his 

determination of a suitable decomposition and expression are, to a la~ge 

extent, based on any actual method he may be following. A number of well 

known methods are discussed below. This discussion is itself based upon 

two observations concerning program construction. The first is that the 

order in which a program is developed plays a crucial part in the form 

it eventually takes. A simple example is only an illustration of this 

observation. 
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example: 

At an early stage in the development of a program it is 
realized that certain data must be retained and made 
available during subsequent processing. If a decision 
is taken at an early stage as to how this data is 
retained (i..e. according to a particular mapping between 
the abstract data structure and actual storage according 
to an expression in a programming language) then this 
decision determines to a considerable degree how operations 
upon this data are implemented. At the time the decision 
is taken the full extent of such operations will, most 
likely, be unknown. If the decision is delayed until as 
much information as possible is available about how the 
data will be used, then a more appropriate representation 
might be achieved. 

The second observation concerns the evaluation of decisions and 

expressions made by the programmer. Although Chapter 4 is devoted to a 

consideration of program correctness and testing, the necessity of evaluating 

a program at· various stages in its development has an extremely powerful 

effect upon the practical application of certain programming methods 

and therefore warrants comment at this time. If a particular rr.cthod allows 

the programmer to obtain infoli113tion about the worth of his work then this 

can act as a means of guiding his future work in particular directions. 

Mannheim (1966) describes a ''method'' for the design of highway routes which 

is' based almost completely upo~ the idea of repeated evaluations. The 

method depends upon the designer providing "cost estimates" applicable 

to design choices at a particular level of description, and then uses 

Bayesian decision theory to suggest the cheapest route on the bas.is of 

these estimates. Although the actual mechanism of evaluation might not 

be practical in a programming situation there are techniques which have 

a similar background and which can be used. A number of these are 
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described below. 

It is interesting, before considering programming methods in detail, 

to note the work of Alexander (1966). Alexander seeks to derive a method 

of design which we may describe as being determined from a direct 

consideration of properties of the problem. His technique is based upon 

the formation (by the designer) of a matrix of values to represent the 

relationships between all of those properties which are ~ acceptable in 

any solution to the problem under investigation. (In Alexander's particular 

case, he was interested in problems of environmental planning). Certain 

properties have a strong inter-relationship whilst being relatively 

independent of the remainder. Alexander proposes that the set of unacceptable 

properties may be grouped according to the strength of their mutual 

relationships. There will then be certain relationships existing between 

the groups themselves. These groups can therefore be aggregated into 

larger groups and the process repeated until all unacceptable properties 

are categorized into one single group. These various gro<lpings form a 

hierarchical structure. The designer uses this structure and th0 properties 

of the individual groups to form his complete design for the solution to 

the problem. Thus the only problem facing the designer is the expression 

of this solution in appropriate terms. Whilst such an approach has a 

certain ap,ped, there are, however, a number of difficulties which 

restrict its applicability in a practical situation such as programming. 

Randell (1971) points out a number of these. In particular there is the 

problem of constructing the matrix of values relating unacceptable properties. 

This requires that the problem being tackled is well-specified and that the 

programmer is able to appreciate, more completely than is usual at the 

outset of any programming activity, the way in which the concepts of the 
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problem are related to the prUnitives of the programming language. 

Alexander's method appears to disal1ow, to a considerable extent, the 

freedom for a designer to reappraise his design on the basis of the way 

that design is developing and in the light of a better appreciation of 

the task with which he is confronted. This may be satisfactory in certain 

desigri Situations where problems are well-specified and where there is 

no difficulty in representing the final design. However, these are two 

aspects of design in general which are not characteristic of programming. 

A programming method needs to allow the programmer the opportunity to 

learn about his task as he carries it out. Thus any ordering of the 

development cannot and should not be determined precisely at an early stage. 

The programmin8 methods which we now discuss rely on an ordering of 

the development of a program, but not one which has the inflexibility 

apparent in Alexander's method. Rather, they may be described generally 

as trying to balance the need for some ordering of the programmer's 

intellectual effort against the usefulness that information gained during 

the development process can have upon the way in which that development 

proceeds. 

The essence of bottom-up programming is the construction of concepts, 

which are ~xpected to be of use, from others which have less immediate 

attraction or applicability. The construction process is represented by a 

decision to provide a certain concept which will enable a representation 

to be given of a program (or piece of a program) in terms which are more 

closely related to the problem than are those of any available level of 

description. This decision is followed by an activity in which the appropriate 

elements of some already defined level of description (e.g. a progrmfu~ing 
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language) are combined in some way to represent the implementation of the 

new concept. This basic construction process is repeated, building 

further concepts in a hierarchical fashion until a set of concepts is 

constructed which is sufficient to allow the representation of the 

program for the overall problem at a level of description close to 

that at which the problem is described and understood. 

A design ordering which is purely bottom-up is unlikely to be of -any 

practical use becau~e it takes no account of the posed problem to limit the 

space of concepts which are provided at each stage. However, it is more 

often the case that bottom-up programming forms part of a wider design 

method in which an initial design stage is carried out. This will take 

the form of a problem analysis process which decomposes the overall 

programming task into a hierarchy of sub-components. This hierarchy may 

then be implemented in a bottom-up manner to construct the total program. 

Methods similar to this have been used in programming a number of large 

systems (e.g. Scherr 1973). 

As a program which is constructed in a bottom-up manner can always 

be represented at the level of a progr&~ing language, use can be made 

of the underlying hardware at any stage of the development [or the purposes 

of evaluation and testing. It is possible to derive physical measures 

of resource utilization (e.g. execution time, storage requirements) during 

the development process and to demonstrate certain properties of pieces 

of program. It is, however, not possible to relate any individual 

measures to those which constrain the total program because this can 

only be achieved when the whole program is complete. 

Bottom-up program construction is clearly exemplified in the 

description of the T.H.E. operating system given by Dijkstra (1968b). 

Each level of the design is built from the one beneath it, masking out-
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unwanted features and constructing others which are required. 

Most contemporary programming languages, and particularly 

extensible languages encourage a bottom-up programming style by the 

provision of mechanisms such as procedures and data structures (see 

section 3.1.4 abov~ and compilers which enable programs to be tested 

on hardware. The use of separately compiled procedures is often 

helpful in testing programs at higher levels of description. Many of the 

publications concerned with SIMULA 67 include examples of bottom-up 

construction, (e.g. Dahl, Myhrhaug and Nygaard 1968, Dahl and Hoare 

'1972, Birtwistle 1973). 

Amongst other reports exemplifying this approach is a paper 

by Naur (1969). This describes the idea of an "action cluster" 

whereby a representation is made for the innermost loops of a program 

before the remainder of the program is constructed. 

It would appear that the construction of a program following 

bottom-up techniques is always likely to involve a compromise. 

The problem analysis phase cannot pay sufficient attention to the 

specific difficulties which will occur during the later implementation 

of the concepts specified during that phase. Thus problems will arise 

during implementation which would be best resolved by a furth.::r 

consideration of the overall design. It is often the case, however, 

that it is not possible to carry out the necessary redesign because of 

the effort which has already been invested. In this case, any 

implementation problems must be overcome in some unsatisfactory manner so 

that the original design is maintain~d. It may even be the case that it 

is not possible to meet the original design specifications but equally it 

is not possible to change these specifications. A program constructed 

under such conditions will not, therefore, be likely to meet its overall 
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design specifications. 

Top-down programming is an ordering of the development of a program 

whereby the derivation of a suitable decomposition proceeds together with 

the determination and representation of an appropriate piece of program. 

Design commences with a description of the problem at SOme level of 

description. Using the concepts of this level a solution process may be 

described. These concepts are programming problems because they will not, 

in general, be directly representable in a programming language. The 

development of the program proceeds by considering these various problems 

in turn. Solutions for each may be expressed in terms of lower level 

concepts (which will not generally be those of a programming language) 

following an analysis and decomposition of the properties required. 

example: 

A solution process may be described using the operation "test 
an input card". The problem of constructing a representation 
for the operation in terms of a programming languoge is 
tackled by analysing the required properl:ics of the operation. 
decomposing it into the lower level operations "c;l(.'ck an 
input card" and "report results" and giving an expression 
of how these operations may be combined to fulall the 
action of the operation "test an input card" (Le. 
"check an input card and then report results".) 

The process continues until the representation of solutions to 

all problems can be given (by composition) in terms of the programming 

language. 

Each decomposition is an invention of a new level of description 

enabling a description of the program (or part of the program) to be 

represented. Successive levels of description are related by elaboration 

until, finally, the "invented" level coincides exactly with the prograrm:'i-:g 
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language. 

There have been numerous reports which discuss top-down program 

construction (e.g. Zurcher and Randell 1968, Mills 1971, Wirth 1971b, 

Baker 1972). Of particular interest is the report on "structured 

programming" (Dijkstra 1972a). This report introduces the concept 

of a "pearl" as a unit of program development. A pearl encapsulates 

many of the notions of a level of description together 1~ith the 

r~presentationof elaborations of higher concepts. 

The process of top-down programming differs from methods based 

upon a bottom-up ordering by the stress placed upon solving the problem 

of giving a representation to a program or piece of program. Just as a 

blind bottom-up design and encoding method is unhelpful because it takes 

no account of knowledge of the original problem, so a blind top-down 

approach is impractical because it cannot take account of the requirements 

of any actual programming language. 

A particularly obvious manner by which the properties of the 

programming language can influence the development at highcr lcvels is 

through notation. The programming language provides ;", lcv01 of description 

which may be characterized by sets DpL' FpL' CpL and SpL. f.ach level of 

description derived during the construction process may bc ..:.haractcrized 

by sets as D
LD

, F
LD

, CLD and SLD (for instance). One approach is to 

restrict the relationships between the sets of level PL and those of 

various levels LD in certain ways. For example, the following relationships 

could be maintained. 
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CLD = CpL 

SLD SpL 

DLD DpL 

FLD :::> FpL 

By DLD ::> DpL etc. we mean that the data concepts of the programming 

language are available at all levels of description LD, although other 

concepts of data may be present at levels other than that of the programming 

language. Other interpretations could be placed upon this relationship, 

either limiting or expanding the set of concepts available at various levels. 

If, in addition, other characteristics of the programming language 

(i.e. its textual nature, its particular syntactic forms) are suitably 

generalized and applied to the notations used at higher levels, then the 

flavour of the base language will permeate the design process and 

encourage the program to be developed in a consistent manner towards a 

given programming language. 

Baker (1972) describes a top-down approach based upon a 5~;,llial:' 

scheme, with the further constraint that the mechanisms used to relate 

the various levels of description (i.e. the expressions of solutions 

at each level) should be those mechanisms of the prograrming language 

which structure concepts hierarchically. In his sch~e, DLD 

SpL for all LD and the base language is PL!1. 

The more general scheme described above is recognizable as the 

generalized or "bastard" programming language often used by progranuners 

during program development (see Chapter 2, section 2.3.3.). 
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Most programming languages can be used in a restricted manner 

to provide a number of levels of description derived top-down. 

The use of such notations purely as representational devices is almost 

neutral as to the ordering of the development (see section 3.1.4. above). 

example: 

A program can be represented in a programming language 
as merely a sequence of calls to procedures which have 
not been developed. Mills (1971) and Baker (1972) use 
an approach similar to this (see below). 

Design evaluation in a top-down method cannot rely upon 

knowledge of the eventual form of the program in a programming language 

until the program is almost complete. Thus the only measures of the 

"correctness" (or suitability) of a particular program development 

which can be determined in the early stages are relative to the progrmTh~er's 

intention for high-level concepts. Equally, no measures can be given of the 

utilization of actual hardware resources. when the program is represented in 

terms of abstract concepts divorced from considerations of execution speeds 

or storage requirements. 

However, though these observations are g0nerally true of top-down 

development methods, it is possible to improve on this situation if certain 

restrictions are made. The method described by Mills (1971) and Baker (1972) 

is an example. The programmer is allowed only to represent his program 

at levels of description which are derivable within a given programming 

language. He may represent his program in terms of procedures which are 

not implemented, for example. Because the program is still represented in 

the programming language, it may be presented to a compiler and executed 
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with "dununy" procedure bodies providing suitable support for the yet 

to be designed procedures. Thus, a certain amount of program evaluation 

can be done· with mechanical assistance. 

More generally, it is possible to make use of sUnulation techniques 

to overcome problems of design evaluation in top-down developments. 

Simulation can be used to model the typical behaviour of processes 

without actually creating a representation for them. This possibility 

was recognized in papers by Parnas and Darringer (1967) and Zurcher and 

Randell (1968). In the latter case, the term ''multi-level modelling" 

is introduced to describe the particular design method advocated. At 

any particular time during its development, a program may be represented 

in terms of concepts which are not those of the base programming language. 

Simulation techniques may be used to model these concepts and thereby 

allow useful design evaluation to be carried out. 

According to the multi-level modelling design method (and also that 

described by Parnas and Darringer) such simulations form the basis for 

,program development. Initially the highest level of desiga is 'imulated 

in order that it may be evaluated. The concepts simulated i.lt tl . .ct. level 

are then implemented in terms of lower level concepts. These concepts 

are in turn simulated to provide a mechanism for evaluation. When this 

evaluation is completed, the cycle is repeated. Hulti-Ievel modelling 

has received further attention in papers by Aslanian and Bennett 

(1971) and Graham, Clancy and DeVaney (1973). 

This discussion of programming methods has stressed particularly 

the role played by the ordering of the development activity. As both 

Gill (1969) and Naur (1972) point out, a strict adherence to either a top-down 
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or a bottom-up ordering is neither natural nor practical. As we described 

above, however, the separation of the task of analysing a problem from 

the task of embedding the appropriate concepts in a program can lead 

to programs which may not meet their specifications or which are unnecessarily 

complex. There would seem, therefore, to be an attraction in the parallel 

development of these tasks so that each may influence the other and allow 

a closer assimilation of the program text with its purpOSt~. In order that 

thfs be possible without the need for constant redesign or reimplementation, 

we believe that it is necessary that programming methods be used which are 

based upon a top-dcwn ordering. This is not generally the case at present. 

We suggest that this is primarily because the tools available to a programmer 

encourage him to encode his design in a programming language at a very early 

stage. The subject of later chapters is to describe certain programming 

aids which take an opposite point of view. 

3.3 Conclusions 

This chapter has been concerned largely with the way programs are 

developed. TIle basic premise was that program design and development 

is an extremely complex problem solving activity involving the 

representation of complex information in specialized notations. Our thesis 

has been that design must proceed in well-disciplined ways and that a 

hierarchical structuring of the representation of the program and of the 

development process were aims to be achieved. To these ends we introduced 

the notions of a level of description and of abstraction and elaboration 

relating such levels. 
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We believe that programming methods based upon a top-down 

ordering of the development have several advantages over other methods. 

This ordering combines both the derivation of suitable decompositions 

of a programming task and the expression of the program in terms of 

these decompositions within a single development structure. This 

allows full use to be made of information gained from such expressions 

in the ·evaluation of design decisions in order to influence future 

development. The use of simulation techniques enables USCLul information 

to be obtained about the properties of a program, even though this 

program may not be completely developed and represented in its 

final form in a programming language. 



- 72 -

Chapter 4: 

Correctness, debugging and other considerations 

In the previous chapters, programming has been considered from the 

general standp~int as being a special form of problem solving activity. 

We have discussed many of the issues involved in the derL'ation of a 

program as a piece of text representing a set of computational processes 

f.rom this point of view. However, little attention has L~cn given to the 

problem of ascertaining whether a program will, in fact, fulfill the 

expectations of the programmer. We mentioned, briefly, Some related 

ideas in discussing ways by which designs may be evaluated. In this 

chapter we describe some of the difficulties that have to be faced if 

a programmer wishes to be certain (or at least have a justifiably 

high degree of confidence) that a program is "correct". Often, as will 

be seen, a major problem is that of defining what is meant by "correct". 

We do not attempt to give a formal definition, but rather we discusS the 

specific difficulties inherent in describing, or even ascertaining, the 

relationship between a statement of a prob1en and a prohra~ written in 

response to that problem. We discuss various techniques whereby the 

progrmooler can demonstrate confidence in a program. These techniques 

include program proofs, constructive programming techniques, debugging 

and program testing and various other mechanical tools which are available. 

A major aim of these discussions is to draw attention to the influence 

that an overt concern for program correctness can have on the programming 

activity and to suggest the form of useful programming aids. 
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4.1 What is meant by correctness, and redundancy 

It is very difficult to define precisely what is meant by the 

"correctness" of a computer program. We may sometimes say that a program 

is correct because we can "see" from its text that it obviously solves 

the given problem. This is equivalent to proving a theorem in mathematics 

by the axiom, "obvious", and has similar dangers. If we claim that we can 

see that a program solves some problem then we are making two very 

powerful assumptions. One is that we have completely understood the problem 

and the second is that we understand fully how the various programming 

constructions are related and represent a process to carry out the 

solution to the problem. In the previous chapters we have described some 

of the difficulties associated with such understandings. Except perhaps for 

the case of extremely simple programs solving trivial problems, the 

technique of "seeing" the correctness of a program is bound to be 

unsuccessful. In real world problems and programming situations, it is 

often the case that the problem is only fully appreciated by an attempt 

to write a program for it. 

The correctness of a program is defined ultimately by w~.h'ther or not 

the results of its execution are always those desired and expected. 

(Whether or not this includes all intermediate results is dependent upon the 

form of any actual definition of correctness which may be adopted) •. One way 

in which such a criterion may be checked is by running the program under all 

possible inputs and under all possible conditions. Even if we disailow the 

possibility of such things as asynchronous interrupts, then clearly it is 

likely to be necessary to run the program an extremely large number of timeS. 

Moreover, this approach becomes completely uneconomic when we realise that 

whenever a modification is made to the program, many of the previous testS 

have to be re-run. Well-structured programs can help reduce the number of 
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test~cases required (Dijkstra 1970), but that is all. Even the choice of 

the test-cases themselves may be an almost impossible task, the very 

complexity of a design making it difficult to ascertain whether or not 

certain program paths have been rigorously tested. Hetzel (1973) lists 

some approaches which' have been followed in the field of automatic 

generation of test data. However, if a satisfactory "proof" of a progr8ll\ 

is required, then examining the executions it invokes is never likely to be 

~ success. 

"Program testing can be used to show the presence of 
bugs, but never their absence". 

-Dijkstra (1970) 

If we wish to ascertain absolutely that a program does what we believe it 

should, then we must rely on the program text alone. If it is possible to 

give a "proof" that the processes defined by a program will always produce 

an effect which can be recognized as being what is required, then we have 

indeed managed to provide some degree of confidence in tile prognun. However, 

as we shall see it is by no means an easy matter to give such a "proof", and 

even then, the "proof" may be based upon a numbe:' of assumptions, some of whic 

are quite likely to be invalid. Thus there is likely to be a continued 

tequirement for program testing techniques in order to improve program 

comprehension and increase confidence levels. 

As is probably clear, establishing that a progam is correct is 

likely to require a considerable effort from the programmer. Much of this 

effort is expended in supplying redundant information which can act as 

checks within the program. In many current programming languages the 

programmer must provide information which is strictly redundant. The 
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declaration of variables as being of a particular type is an example. Checks 

can be made (e.g. type checks of operands and parameters) on the program tex~ 

which would not otherwise be possibl~because the necessary information 

is available. Likewise, if it is desired to construct a proof of the 

correctness of a program from its text, then additional information must be 

supplied to specify the purpose of the program and against which the proof 

may be constructed. Program testing relies on the availability of redundant 

information. If this was not the case, then there would be no criteria by 

which to judge the results of such tests. We will give examples of such 

redundancy in the course of this chapter. 

Of course, as human beings, we rely heavily on redundancy to allow 

us to achieve a better understanding of complexity. Many of the points we 

made in Chapters 2 and 3 concerning the design and representation of solutions 

are ultimately founded upon this idea. Hierarchical structures represent 

redundant information. The processes of abstraction and elaboration are 

exploitations of this fact. 

Unfortunately, the provision of redundant information is not always 

acceptable to the programmer. If he is unable to see how he may gain from 

it or if it involves him in a considerable amount of addi:.. Lo,l~,l work, then 

his natural inclination will be to refuse the task. For simi~ar reasons, 

documentation is often badly done, or not done at all. T:w program .. ner' 

himself considers he will get no benefit from it, or c~rtainly that 

he will get no return worth the effort involved. However, if he can be 

given tangible benefits from such extra work in proportion to the work he 

expends, then he may be attracted. A reasonable aim, therefore, should be 

the provision of an environment in which a programmer is rewarded for his 

extra effort in supplying information in order that a higher degree of 

confidence Can be placed in his programs. At the present time, the satisfactol 
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achievement of this aim would seem to be some time in the future. In the 

remainder of this chapter we investigate some of the questions which arise 

and how these questions are related to specific programming methods and tools. 

4.2 The text of a program 

In this section we will describe some approaches that have been made 

for the verification of the behaviour of a program by consideration of its 

text rather than from any properties which may be deduced from executing 

the program on a machine with particular test data. 

4.2.1 The meaning of a program text 

There are two obvious requirements to be met before we can prove 

the correctness of a program from its text. One is that there should be some 

means by which an exact understanding may be gained of what processes are 

represented and what are the effects of such processes. The other is that 

there should be some means for specifying those processes which the program 

text should represent (i.e. what is the intent of the progr~~er in writing 

the program). The latter requirement is dealt with in section 4.2.2. 

A significant amount of work has been carried out attempting to define 

the meanings of the elements of programming languages and their cCI.l;,ination 

into programs (see Steel 1966, de Bakker 1969 for example). Manv workers have 

expressed the meaning of programs in terms of an interpretation on abstract, 

formal machines (e.g. van Wijngaarden 1966, McCarthy 1966, Lucas, Lauer and 

Stigleitner 1968). Such methods do not, in general, allow a single 

interpretation to be given for a program text which encompasses all processes 

which that text can represent. This is because it is necessary to specify 

an initial state of the abstract machine for any interpretation which thereby 

allows a meaning to be assigned to a program text only in the context of 

a particular set of input data. 
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Another approach to the derivation of the meaning of a program text 

is by the use of axioms and rules of inference. Hoare (1969) describes how 

axiomatic schema can be given which define primitive elements of programming 

languages by transformations of predicates over the variables of a program, 

and suggests a possible notation. 

example: 

the axiom of assignment 
~ Po (x: = f} P 

where f is an expression, 
x is a variable identifier, 

and Po, P are predicates, Po being obtained from P by 
systematically replacing occurrences of x by f. 

It is generally the case that the meaning derived for a program text 

by the use of such a scheme will be conditional upon a separate determination 

of the property of program termination. However, the fact that a meaning 

can be derived which is independent of particular values of input data 

(being expressed in terms of predicates relating the rlo;) .. ;r~ies of the 

input and output variables of the program) gives the .:lxio;nati .. ' approach a 

considerable attraction. 

Hoare and Wirth (1972) give an axiomatic definition for a major p'urt 

of the language PASCAL (Wirth 1971a). Dijkstra (1973) uses an axiomatic 

basis to define predicate transformations exhibiting certain properties 

in order to derive equivalent programming language primitives possessing 

similar properties. 
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4.2.2 Expressing the intention of a program 

We may be able to derive a meaning for a program by consideration of 

its text by the approaches described in section 4.2.1. However, in order to 

ascertain whether or not this derived meaning satisfies the purpose for which 

the program was written, it is necessary to have a means by which the 

programmer can express his intent or understanding of h:.:' program. One obvious 

way in which this can be done is by the programmer stat~; : j hilt, whenever .: 

process which is represented by the program, terminate", chen certain values 

will have been produced. As a trivial extension to this ;\;'1., the programmer 

may express his understanding of parts of the program by ;;;t:-,i~ements which 

declare that, at particular points in any such process, certain intermediate 

values will have been produced. These various statements arc known as 

assertions. The use of assertions in the proof of the correctness of a 

program was suggested independently by Naur (1966) and Floyd (1967a), 

although the idea of an assertion is Illuch older and may be sC..-:n i 1l writings 

from the early days of modern computer programming (GoldstLH> a1:(: 

von Neumann 1.947, Turing 1949). 

Proving a p)_,::cn. l:1:ogl~am ,:orrect 

Naur (1966) and Ployd (1967<:\) both propose that tIl' 'ISC 0':: Llsscrtions 

provides the basis for a technique by which progr;1ccls may be "pnIVcd to bc 

correct". The technique requires that at specific point.s wilhin a jJrogra1l1, 

the programmer makes asse't:tions about the current values (; [ the program 

variables. Each assertion is that, ,-,hen the program ex~~cutii)n reaches these 

points,then the named program variables will have the stated values. In 

particular, the assertion at the end of the program represents the expected 

result of the exccutLon, wllilst an assertion at the stLlr~ of thc progrmn 

specifies the conditions under which the progr<1m will achieve this 
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desired result. Using a certain minimum set of such assertions and some 

suitable scheme for defining the semantics of the programming language, 

the program can then be checked statically to see if these assertions will 

actually hold. Notice that it is also necessary to prove that the program 

execu·tion will actually reach those parts of the program annotated with 

assertions, in particular that it terminates. 

There is, as we have stated, a minimum set of assertions required 

for this process to, be carried out. It has been shown (.~jT is 1969) that it 

is sufficient if every loop. of the program contains at least one assertion. 

It should be noted that this technique may also be applied to programs 

which are interesting even though they loop (e.g. some processes in operating 

systems). The technique is used simply to demonstrate that, when a process 

reaches a certain point in the program describing it, then certain conditions 

apply with respect to the program variables. Terminating programs are merely 

a particularly interesting special case. 

It is important to appreciate the role of redundancy in this 

technique, and also its fallibility. The provision of a sufficient set of 

assertions is no more than a second writing of the progl-U];l. 1. JcC'(1 there is 

a strong requirement that the " a ..;sertive program" uses a simil3;- notation to 

the program itself as they need to be checked against each other. As 

usually the same person who writes the program also s\J"plics the assertions, 

there is ground for believing that any misconceptiom~ he may have had when 

writing the program will also find their place as similar misconceptions in 

the assertions. 

Another difficulty is the question of what to do when an inconsistency 

is discovered. BaSically what the technique does is to compare two 

representations of the same object. When a mismatch occurs, all that may be 

concluded is that there is probably an error in one of the two versions. 
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Provided it is possible to decide in which version the error is, then progress 

may be made. It could be that the error occurs in an assertion. If so, then 

the programmer has an incomplete understanding of his program and his 

intention and so he should improve this understanding by trying to correct 

the assertion. If the error is in the program, then the programmer has also 

learnt something; namely that the program does not do what he thought it did, 

and again he has to discover what it does. 

Finally there is one important pOint to be made - \'(;t assertions. 

If a complet-e check is made between the program and the set of assertions, 

then this does not mean that the program is correct. All Lhat may be 

properly claimed is that it is correct "relative to the assertions that 

were applied", and also "on the assumption that the model nssumed for the 

programming language semantics was correct". The program might still fail 

to solve the problem. 

The basic technique outlined above has been applied by several 

workers and considerable experience has been gained. LvndoG (1972) and 

Elspas, Levitt, Waldinger and Waksman (1972) both give lengthy surveys. 

The experience gained has not been confined solely to pr"L'l"a'1'-s using only 

integers or other particul~rly well-understood concepts [or which axioms 

can be derived without excessive difficulty. Hull, Enright zm( Sedgwick (1972: 

apply similar principles to the problems of the correc:'ncs:; of numerical 

algorithms. In addition Clint (1970) demonstrates that Jssertions can be 

used to prove properties about programs which use floath.g point arithmetic. 

Ashcroft and Manna (1971) and Lauer (1972) have recently investigated ways 

of extending Floydls original approach to the problems of co-operating 

sequential processes. 

A number of practical difficulties have arisen, not the least being 

the complexity of the proof of the theorems which arise. A theorem needs to 
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be proved for each path in the program which is bounded by assertions. These 

theorems are generated by "pushing" an assertion through the program, 

modifying it in accordance with the semantic definition of the programming 

constructions used, until another assertion is encountered. It is then 

necessary to prove a theorem concerning the compatibility of the modified 

assertion with the one encountered. Such theorems are generally known as 

verification conditions. 

It is obvious that the form these verification conditions take is 

dependent upon the form of the assertions applied. Whilst it is unlikely that 

there will be much choice in the form of the assertions at the beginning and 

end of a program, the assertions made within the program arc dependent upon 

the techniques employed in the program. Therefore, the programmer has some 

control over the complexity of the verification conditions by suitable 

choice of program and assertions. However, we believe that the programmer 

is unlikely to have sufficient understanding of his problem to usc this as an 

absolute criterion governing the design of his program. It is still a useful 

exercise, however, to anticipate a requirement for a program ,:>roof during 

program construction. This is likely to have some affect upon a design. 

Another difficulty that can arise is in the formation of the 

assertions to apply to a given program. This is particularly apparent in the 

case of assertions which are within a loop of the program. In some sense 

these assertions represent the meaning of the loop itself. It has been pointed 

out (King 1969, Good 1970) that there is an analogy between loop assertions 

and inductive hypotheses in mathematics. Elspas, Green, Levitt and Waldinger 

(1972) have suggested that difference equations might be used to establish 

loop assertions. Otherwise, it would appear that they must be supplied 

solely on the basis of a programmer's intuition. In view of the important role~ 
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that the choice and form of assertions play in the generation of verification 

conditions, there is an argument for guidance being avail~le to a programmer 

so that the assertions he makes are suitable • . .. 
Machine "assistance may offer a solution to many of the problems described 

In theory it is possible to reduce the complexity of the verification 

conditions by supplying more assertions. This has, however, the effect of 

increasing the number of theorems to be proved. King (1969) describes 

a system which, given a program annotated with assertions, will generate the 

verification conditions 'and use an automatic theorem prover to prove their 

correctness. However, the program must be written in a special language 

which is, of necessity, limited. The basis of this limitation is the need 

to be able to describe the semantics of the language in a way that allows 

a theorem prover to be able to generate the necessary proofs. An interactive 

system is described by Deutsch (1973). Deutsch claims that this system 

is more powerful than King's, due largely to advances in the techniques of 

automatic theorem proving. He does, however, remark that the set of programs 

which can be automatically proved by his system also appears to be limited. 

Elspas, Levitt, Waldinger and Waksman (1972) describe l~'I.Jny of the difficulties 

which have to be overcome in the design of a theorem prover suitable for 

proving the theorems which are generated in proofs of correctness of programs. 

It has been conjectured (Elspas, Green, Levitt and Waldinger (1972» that it 

is unlikely that a resolution based theorem prover will ever be capable of 

proving such theorems. They suggest that a deductive theorem prover working 

interactively might' offer the best approach. 

, Good (1970) describes a system which makes use of the human being to carl 

out th~ proofs whilst employing the computer in those places where it can 

be of great assistance at little cost. His scheme does not employ an 

automatic theorem prover and hence is capable of a wider application. There 

is no need to iimit the form of the assertions to a particular system, "and 
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in fact Good's scheme allows assertions to be written in a free form. The 

machine assistance provided is in the construction and simplification of the 

verification conditions and the maintenance of clerical information indicating 

which theorems have been proved (by the programmer) and which theorems 

still remain to be proved. 

The "free form" assertion does have the advantage that it allows 

the programmer more scope in formulating assertions, but the danger is that 

there is then no restriction on its abuse. 

Various other automatic systems have been proposed, several of which 

have been constructed (see London 1972) - systems which produce verification 

. conditions alone are popular. We believe that such systems are useful in 

that the production of verification conditions provides an illustration 

of the complexity of a program and may suggest ways in which improvements 

may be made tothe program or how more appropriate assertions may be provided. 

Partial proofs and some effects of proof teChniques 

Although it may not be practical to prove the correctnesS of a 

complete program, the same techniques may be applied in order to prove 

(again in a relative sense) that a program satisfies some particular function. 

For example, it may be possible to prove that a program does do something, 

whether or not it is practical to prove that it does all that is required 

of it. We may call such a proof, a partial proof of correctness. 

example: 

It may be critical that a real time system always 
produces, correctly, a certain set of values. The 
program may, in fact, produce other results but 
these are irrelevant if we can place no confidence 
in the values of the critical results. Proving 
that the program does generate these properly may be 
feasible (and thus desirable) whereas proving that 
the program generates all of its results may not. 

Even if it is not feasible to prove the correctness of a progr~~ 

completely or even partially as suggested above, then it is very often" 
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a useful exercise for the programmer to try to formulate assertions about 

his program, and possibly to construct proofs about properties of some 

of the more complex parts. In doing this, the programmer is forced to 

write down, in a semi-formal way, what he thinks his program does. It is 

the author's experience that such an exercise can lead to a better 

appreciation of the real essence of a difficulty, and thus to a more 

reliable program. 

To illustrate, we give two examples, neither of which offers 

a formal proof, but rather some arguments taken from particular cases. 

Example 1: 

This example arises from a piece of program that was to assign 

to a variable "OK" the value ~ or ~ according to a set 

of conditions. The program was of the following form. We 

have added two assertions (P1 and P2) for later discussion. 

assertion P1 - - - - - -~ 

OK 

assertion P2 

if pf f 0 then 

t if pd 

[ . . . . . 
OK 

} 
} ; 

- .- --~ 

'.-
,.hile 

{. 

(i op); 

i f o and OK .£2. 

op) } OK .- (i f .-
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The variable "OK" is only set to false if a particular value (op) 

of i is found and both pf and pd are non zero. 

The meaning of this piece of program can be defined in terms of 

two assertions Pi and P2• (The actual form of Pi and P
2 

is immaterial to 

this discussion). As such the complete piece of program is well-defined. 

However, the conditional statement 

g pf + 0 ~ .••• 

does not have a meaning of its own. In order to give any meaning to it, 

it is necessary to include the preceding statement: 

OK, . -,-

As given above, it is not too difficult to prove that the program 

is consistent with appropriate assertions Pi and P2• However, in practice 

problems arose when the program was modified to cater for a wider class of 

possibilities. These modifications entailed additional statements and, 

unfortunately, these were added between the "OK : = true" and the 

"if pf +- 0 then ••• " statements. Proving the modified piece of 

program was now much more difficult, as what had previously been a unit 

of meaning, was now separated into two sections. As' a result an error 

was committed and was not uncovered by the informal attempt at proving 

the modifications. When, subsequently, the error was detected, the true 

meaning of the original statements was fully appreciated and was then 

Qetter expressed in the following indivisible form: 
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assertion P 1 - - - ~ 

.li pf =F O~ 

{.ll pd =F 0 then 

{. • . • . • . 
OK ~= (i r/= op); 

~ i =1= O~ OK do 

{. • • • . 
OK "- (i =1= op)} } .-

else OK :=~} 

else OK != true 

assertion P2 - - -~ 

In this, form, the meaning of the piece of program between 

assertions P1 and P
2 

is that of an indivisible unit. The moral 

of this example is that where a piece of program is complex, then 

it should 

(a) be given a meaning by the use of assertions 

. and (b) be indivisible in a syntactic sense. 

l::xample 2: 

This example serves to discuss the relative merits of 

two common language constructions for expressing iteration, 

namely while ••• !!2. ••• and repeat ••• until ••• 

The former allows zero or more iterations, whilst the latter 

will carry out the iteration at least once. Figures 4.1(a) 

and 4.1{b) describe these constructions in typical flowchart 

form. They have been annotated with Some general assertions. 
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P 

P2!X 

(p 2! X) and not b --

true 
.(p .2!. X) and b 

s 

- _ - X 

Figure 4.1(a) while b do S 

s 

- - - Q 

- - - Q.2!. (Y and ~ b) 

- - - y 

I 
true I 

(y and b) 

(y and E.2! b) 

Figure 4.1(b) repeat S until b 
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The important assertions that describe the meaning of the 

iterations are those immediately preceding the body of the 

loop, (i.e. ~mmediately preceding 5) which we call the loop 

assertion and those expressing the result of the terminated 

iterations (at the exit from the loop). 

In the case of ~ • • • ~ • • • the ~oop assertion 

always implies the truth of the condition governing the 

loop. 

i.e. (p or X) and b b 

This is not true for repeat • • .~. Only after 

one iteration has been carried out does the assertion need 

to contain any reference to the controlling condition. 

i.e. Q .2!. (y~.!l2E. b) not b 

This special case treatment for the repeat • • • ~ 

iteration appears. (certainly from the author's experience) 

to make it harder to specify the actual intention of the 

loop via the loop assertion. It is quite possible to 

execute the body of a repeat ••• until ••• iteration 

with,the terminating condition already realised. As a 

result it can be more difficult to specify what the loop 

assertion should be, because this assertion does not 

necessarily follow from the condition controlling the 

loop. 
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These two examples represent abstractions from particular instances 

in the author's experience where a concern for a proof of a piece of 

program led to .certain styles of programming. It would be difficult to 

give actual cases in detail because of their complexity. Equally, 

simple contrived examples do not suffice because their very simplicity tends 

to hide the problems they are supposed to illustrate. Thus, an appeal is 

made to the reader to relate these abstract examples to his own experience. 

Constructive use of assertions 

We introduced the notion of assertions from the pOint of view 

of giving a method by which the programmer's understanding of a program 

could be expressed. The flavour that we hope has been imparted is one of 

"write your program, then prove it is correct". 

If care is not taken it is likely that the principles of proving 

correctness will be divorced from the major problems of program construction. 

There does not seem to be anything particularly sensible in designing ~nd 

writing a large piece of software, and only then proving (or, more 

disastrously disproving) its correctnesS. As Dijkstra has said (Dijkstra 

1968a, 1972a), what we should really strive for is a way of maintaining 

correctness rather than of obtaining it. A concern for a later proof may 

have an effect on the way a program is written, but this is different from 

constructing a program and proving that this construction process is 

correct. 

We may make, use of assertions as a means of expressing an intent. 

Indeed, we have already noted that it is possible to view a set of assertions 

~ 
as a program. While we do not agree that this is a particularly appropri,ate 
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result in theorems that cannot be proved, in a program construction 

situation it may simply result in a program which is significantly 

different· from that which was intended. 

example: 

Hoare (1971a) describes the conStruction of a program 
called FIND. Hoare "proves the correctness" of the 
derivation of this program without making use of one 
particular assertion. This specifies that the 
vector constructed by the program must be a 
permutation of the input vector. In the derivation, 
Hoare uses his own knowledge of this fact without 
explicitly writing it down. If this assertion 
was not included in the set of assertions describing 
what such a program should do, then the program 
derived by, for instance, an automatic program 
synthesizer might well be different to that 
anticipated. It would, of course, be perfectly 
correct with respect to the information given by the 
programmer. 

What is missing from the use of assertions in this manner is 

the necessary redundancy of information which enables checks to be made 

regarding the properties of the program • 

. Assertional methods can, however, play an importa~t role during 

the development of a program. This role is particularly related to the 

approaches to program design discussed in Chapter 3. Recall that 

assertions allow an expression of the programmer's intent. Used as 

such assertions can represent a decision to develop a program along 

particular lines without the actual program being written. From such 

assertions the programmer may be able to evaluate different possible 

decisions.' Having made some particular decision, as represented by some 

set of assertions, he may then proceed to c~nstruct a piece of program 

which he can prove will satisfy his intent as expressed by this$ffie 
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set of assertions. Such techniques are to be seen in a number of papers, 

particularly in the "action clusters" of Naur (1969), in programs 

developed by Dijkstra (1968a, 1972a) and by Wirth (1971b), and in the 

techniques described by Mills (1971) and Baker (1972). In all of the' 

cited references, the "statements of intent" are given in an informal 

manner. The justification of their correctness and the proof that the 

piece of program satisfies the intention are often given as a discursive 

argument embedded in the program design documentation. Hoare (1971a) and 

Allen and Jones (1973) give examples of a similar nature except that the. 

statements of intent are given in a formal notation (e.g. predicate 

calculus, Set theory) which allow rigorous proofs to be made. Indeed, 

in the case of Allen and Jones, the whole development process is 

carried out in such a system. An actual programming language is only 

used ~o represent an algorithm which has been otherwise completely 

developed. 

Hoare introduces the idea of an "invariant" into the process of 

prOgram development. His technique is describable in terms of levels 

of description. At a particular level of description his progr&~ makes 

use of certain properties of concepts from that level of description. 

(e.g. properties of a data type, or properties of a control structure).· 

These properties are described in terms of invariants at that level of 

description. When, at a lower level of description, an elaboration is 

given for a concept So described, it is a necessary part of the process 

of justifying the correctness of this elaboration that these invariant. 

properties are proved to be maintained. 

Unfortunately, there is one non-trivial drawback to a more 

formal dev·elopment of programs. This is that there is a not 

inconsiderable dependency upon the programmer's ability to prove the 
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theorems and lemmas which occur in the justification process. It is perhaps 

useful to illustrate this point by comparing the developments of the 

algorithm FIND given by Allen and Jones (1973) and by Hoare (1971a). 

A program has to be written whose purpose (Hoare 1961) is to find 

the element of an array A[1:N] whose value is fth in order of magnitude, 

and to rearrange the array such that this element is placed in A[f] a.nd 

further, that all elements with subscripts lower than f have lesser values 

than this element and all elements with subscripts greater than f have 

greater values than this element. 

In both cases, the program which is evolved represents about 

30 lines of a high-level programming language. However, in Hoare's 

development 18 separate lemmas must be proved. Allen and Jones require 

the proof of some 16 theorems and a number of lemmas in a development 

which is described in approximately 40 pages of manuscript. Of course, 

. in both cases a number of proofs are trivial, but some are not. It is 

apparent that the form these theorems take depends upon the development 

process chosen. Man-machine systems may be an answer for the trivial proofs, 

but whether we are prepared to allow ease of proving theorems to have a 

conSiderable effect upon the actual development of a program is a debatable 

question. If possible we would expect that the proof of the necessary 

theorems was something that could be left on one side during each stage 

of the development, to be taken up as and when the programmer felt that 

formal justification was necessary. 

It is, however, the author's belief that a suitable grafting of some 

of the above ideas for expressing intention and criteria relating to the 

correctness of progr~s onto the design methods described in Chapter 3 is 

likely to be of significant worth. The difficulty lies in deciding how much 

of such a facility should be provided, and the form it might take. 
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In Chapters 5 and 6 we describe one possible approach. 

4.3 Information from Program Execution 

The traditionally accepted methods of evaluating a program are 

based upon exercising it under a set of data values known as test cases. 

Although such exercises cannot hope to be exhaustive, it is possible to 

use these techniques to the point where a high degree of confidence in the 

behaviour of a program can be gained. If this was not the case, then the 

r~pid growth in the use of computers that has occurred over the last 

twenty years would not have been possible. It is probably true to say. 

that at this time at least 99% of programs being written will be 

evaluated by the use of techniques based on test case execution. We 

should, therefore, investigate some of these techniques, their limitations 

and their influence on programming methods. 

'4.3.1 Writing programs to be tested 

It is important that any information generated by the execution 

of a program can be easily related to the actual text of that program. 

A single program text will, in general, map onto a number of differertt 

computational processes dependent upon the input data. However, even 

with a knowledge of the irtput data, the mapping from a given process 

onto the describing program text is generally ill-defined. 

examp,le: 

When, for example, a FORTRAN program fails, in many 
systems it is a difficult task to find out where 
this failure occurred. 

Even if it is pOSSible to relate information frQm a process to a 

particular line of program text, this is likely to be insufficient. Several 

events in a process will often be related to the same line in a program. 
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example: 

A statement in the body of a loop will be "used" in 
the process several times. 

In order to be helpful it is necessary to identify an event in 

the execution of a program uniquely. In order to do this more information 

is needed (e.g. trace information). It will be obvious that to relate 

information about events in a process to the program text in a manner 

which is useful to the programmer, then it is necessary to start from 

a point where the exact relationship between text and process is known. 

In general, this point will be the beginning of the program. This says, 

therefore, that the programmer can only relate an arbitrary event in the 

execution of a program to the program text by knowing the sequence of 

events that have occurred since execution commenced. This is, in 

general, unacceptable because of the sheer amount of information that 

this represents. Dijkstra (1968c) has suggested that, if the program is 

structured in a particular way, then the necessary information could be 

maintained by use of a simple stack. The particular structuring is 

conSistent with our earlier discussions of well-structured program design, 

in that it is necessary that the relationships that may be exhibited 

amongst the, control structures of the program must follow a hierarchical 

disCipline. Much has been made of the fact that this requirement does 

not allow the uncontrolled use of 'goto' statements (e.g. Rice 1968). 

, What we feel is important to stress is that the relationships between 

the program text and the computational processes it represents are 

particularly important ones from the point of view of the comprehension of 

the program by a human being. The way in which Dijkstra demonstrates how 
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Such relationships could be obscured by the use of uncontrolled jumps, serves 

as an illustration of several of the points we made about hierarchies 

and relationships in Chapter 3. 

Consideration for relating run-time information to the program text 

has le4 to other programming methods. Amongst these the sUnplest may be 

described as "defensive" programming. Additional tests on the values of 

program variables are placed in the program to give a close relationship 

between text and process. It may be that a rigorous examination of the 

program text would reveal that such tests will always be satisfied. However, 

the programmer may have neither the desire, nor even, in general, the ability, 

to carry out this rigorous check. The simple expedient of inserting a 

test ensures that when the program is run, the knowledge that it has passed 

(or failed) the test should be available, whereas without the test this 

krtowledge is less likely to be easily obtainable. 

The sheer size arid complexity of large programs has led to such 

notions as modular programming (see ICL (1971) for example). By 

decomposing a progr'~ into separable units, each of which may, initially, 

be partially tested in isolation, a higher degree of confidence can be 

plac~d in the total program. Of course, the choice of a particular 

modularization may not be made solely on the grounds of ease of testing. 

The fact that a set of modules may have been well-tested individually does 

not guarantee that they will work together as a group. However, we believe that, 

if, during the design of a program, due consideration is paid to the requirements 

of program testing, then modular techniques can be of some help in 

increasing the reliability of that program. 

As a general philosophy, it is probably useful to appreciate, at 

the time a piece of program is designed and written, when tests will 
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be necessary to exercise it. As a program is designed, various decisions 

are taken. The testing of the program is an aid to ensuring that these 

decisions are actually reflected in the program code written down. The 

obvious time to design those tests which pertain to a particular piece 

of program is when the decision is made and the piece of program written. 

There is, of course, an even greater attraction in carrying out these 

tests then as well, but this may not be generally possible. 

4.3.2 The information fed back to the programmer 

There are essentially two sources from which the programmer can 

expect information about the progress of the execution of his program. 

One is from explicit statements in the program itself. At selected points 

in the program, the programmer may insert statements which will print 

out information such as the fact that execution actually reached this 

statement or a display of the contents of selected program variables. 

Such .a method can be attractive if it is relatively easy for the 

programmer to insert these statements without making alterations to the 

program under investigation. They must usually be removed once the 

programmer is satisfied with the way the program behaves during execution. 

(This, in itself can sometimes be a source of errors. It is not unknown 

for simple testing statements to mask out bugs which then appear when the 

statements are removed). A number of high-level languages cater specifically 

.for these methods with special language forms (e.g. the AT statement of 

FORTRAN,dynamic tracing facilities USing subroutine calls, 

programmer controlled exception handling in PL/1). By USing such facilities 

the programmer may include testing statements which can be invoked by 

suitable input data. The statements do not, therefore, have to be removed. 

(Another example is described by Satterthwaite (1972). We will say 

more of this below). 
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The other s~urce of information is the machine which is executing 

the program. In figure 4.2 we extend the figure of Chapter 2 (figure 

2.1) to include the transfer of information from an executing program 

to the programmer. 

Real 
world 

knowledge, experience 

understanding of 
problem 

etc. 

'" 
understanding of man/machine 

interface 
r---------------~ r--- - -----------, 

problem 

specification 

V I 
'V • 

~ 

man 

Figure 4.2 

program 

machine 
understandable 

form 

messages from 

machine 

messages from 
( 

program 

What we beli'eve is a characteristic of many contemporary 

programming systems is that the man/machine interface is divided 

into at least two parts. One is the interface which accepts information 

from the programmer and transmits it to the machine. The other is the 

interface which accepts messages from the machine (in a form appropriate 

to it) and transmits these to the programmer. All too often it would seem 
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that this interface serves only as a relay station doing little to interpret 

the messages to the programmer's view of his program written in a particular 

programming language. Barron (1971) gives several examples. 

A further reference to figure 4.2 may be helpful to explain the 

problems to be overcome. When a program is written in a particular language 

(distinct from the order code of the machine), there is some mechanism 

which physically represents the interface between man and machine. If this 

mechanism is a translator then the actual executing machine is conceptually 

separate from the interface. The original program is translated from its 

form in the programming language to a form understandable to the 

executing machine. Thus the executing machine has no knowledge itself 

of the original form of the program. It, therefore, cannot phrase messages 

to the programmer in terms of the original programming language. If a 

sUitable interface is created to intercept these messages and make use 

of the original translator then it is possible to translate messages from 

the machine back into a form related to the original program (i.e. 

"source-language debugging"). This mechanism can be seen in the Alcor 

Illinois 7090/7094 post mortem dump system (Bayer, Gries, Paul and 

Wiehle 1967) and other debugging systems (see for example Evans and Darley 

1966, Balzer 1969, Satterthwaite 1972). 

Of course, if the man/machine interface is very closely tied to the 

actual execution machine (as for example, in the case of a software 

interpreter), then it is an easier matter to relate information about a 

program execution to the original source language form. 

It is also important to consider what information should 

be made available to the programmer and when. It is obvious that one 

time when information is required is when the executing machine is 

asked to perform some function which it cannot do. 
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It is hoped that the executing machine will at least report this fact to the 

programmer. However, tt is useful if the machine gives a little more 

information regarding the possible cause of the error and the current state 

o,f the execution process. Most contemporary progranuning and computer 

systems provide some such feature, though those which relate this information 

to the source language form of the program are less numerous. 

There are other occasions when it is useful to supply the programmer 

with information. The tracing facilities of several high-level languages 

(COBOL, FORTRAN, PL/1) are examples. 

It is also useful for the programmer to be given some statistics 

regarding salient features of a program execution. The evaluation of a 

program design is not simply a case of finding as many ''bugs'' as possible. 

Satterthwaite (1972) describes a system which generates a "profile" 

of a program execution in terms of frequency counts of the executions of 

various portions of the program. In Satterthwaite's system this information 

is neatly related back to the original program text, thus enabling the 

programmer to see where the bulk of the work is being performed. He 

can then pinpoint areas where it would be useful to improve the design. 

In such ways, program evaluation may be extended beyond the realms of 

being merely "correct" to allow comparisons between different versions of 

a "correct" program. 

We will return briefly to some other aspects of debugging systems 

in section 4.4. 

Program Testing as part of program design 

Whilst a programmer cannot hope to test a program completely through 

,observation of its behaviour under all conditions, observation of its 
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behaviour in particular cases can be instructive. Very few people are 

willing to accept their comprehension of a program purely from its 

text because of the immense intellectual effort required to appreciate the 

effect of the processes the program describes. Few people, therefore, will 

have complete confidence in their program without testing it. We believe 

that it is unlikely that the techniques of static program proofs will 

ever completely remove the need for test runS and evaluations. There is, 

therefore, a place to be found for tools which improve the information given 

to a programmer when a program is being tested. There is, indeed, a place 

for such facilities throughout the design process. The problems that are 

to be faced in appreciating a program from its text alone are equally likely 

to be encountered at any time in the design process. Thus any assistance 

'which a programmer can obtain from experimental evaluations of partial designs 

will be invaluable. , He is then able to obtain information about his design 

in terms of the process he is describing at the current level of description. 

Experiments can be made in "real" Situations and designs may be tested as they 

are formulated rather than when they are ultimately realised in a conventional 

programming language. It may even be possible to make observations pertaining 

to program efficiency if the tools are sufficiently powerful. As· we 

described in Chapter 3 (section 3.2.2.), in a design methodology based upon 

levels of description the concepts of multi-level modelling (Zurcher and 

Randell 1968) have an obvious application. 

4.4 Some further machine aids and influences 

In this section we will look briefly at a few other machine-based 

tools which can help the programmer in the construction of a program and 

which may ,enable him to have more confidence in his work. 
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Interactive systems 

A feature of the rec~nt growth of time-shared terminal systems has 

been the rise in popularity of languages and other facilities which make 

specific use of the fact that a human being is physically in communication 

with a program during its execution. Such systems range from interactive 

debugging schemes to complete programming systems such as BASIC and APL. 

One of the particular characteristics of such interactive systems ,is 

the ~bility of the programmer to continuously monitor the execution ofa 

program. It therefore becomes even more essential that the form of 

communication between the programmer and the machine is easily related 

to the program text. In online debugging systems for programs written 

in languages,which are not specifically classified as "interactive 

languages" there is often a question of efficiency to be taken into account 

'(see Balzer 1969 for some further discussion on this point). Approaches 

akin to the scheme described by Satterthwaite (1972) whereby use is made of 

efficient machine code wherever possible with source language interpreters 

being invoked if needed, would seem to have some attraction. Mitchell (1970) 

describes a system based upon the technique of incremental compilation which 

is similar. 

Generally, interactive programming systems (e.g. BASIC, APL) make use 

of an inte~preter for program executions. Such a syst~~ is therefore able 

to maintain overall control of program executions and communicate with the 

user about such executions in terms of the source program. By choosing 

to use such a system, a programmer deliberately sacrifices some of the power 

(e.g. execution speed, storage and input/output facilities) of the 

underlying hardware which could otherwise be obtained through a more 

conventional programming language system. However, in many circumstances, 

this sacrifice is more than outweighed by the benefits to be gained through 
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interactions between programmer and program executions. 

The PILOT system (Teitelman 1970) was designed to allow particularly 

close co-operation between the user and his programs written in LISP. The 

user can direct PILOT as to what actions to take when error conditions 

arise (e.g. a spelling corrector). He is able to interact with PILOT 

as part of any error correction activity that may be undertaken. Other 

facilities are available which allow the programmer to give directions about 

the operation of his program. 

It is the author's belief that, although the simple fact of having 

the programmer so closely involved with his program will not in itself 

guarantee better programs, it can help because of the increased understanding 

that is likely to accrue. 

In order that such benefits may be achieved, an interactive system 

must possess certain properties. These we may classify generally under the 

heading of human engineering. Potential human users must not be distracted 

from obtaining the benefits of machine assistance because it is awkward. 

The well thought out design of the notation used in APL is a good example. 

This notation is extremely easy to use following Some experience, and concise 

enough to be attractive for a human being at a typewriter terminal. Whilst 

it may have some drawbacks from the point of view of representing solution 

processes, as a means of immediate man to machine communication it can have 

few.peers. The human engineering aspects of interactive systems are not 

specific to interactive programming systems. As Engelman (1968) pOints out, 

computers are very good at doing certain things which human beings find 

difficult. This ability is heightened in an interactive environment ~f the 

computer can do what is required just when it is required and particularly 

if such use is convenient. 

Human engineering has received considerable attention in several. . 
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man~achine systems (e.g. that described by Engelbart an~ English (1968), 

MATHLAB (Engelman 1968), Hansen (1971a, 1971b), Mitchell (1970». The 

I 
interested r,ader is referred particularly to Hansen (1971b), or to 

Mitchell (19;0) which is more relevant to the design of interactive 

programming systems. 

Generation of syntactically correct programs 

Hansen (1971a) describes how a programmer can be guided to construct 

only programs which are at least syntactically correct. He demonstrates 

how a text handling system based on hierarchical relations between pieces 

of text can be tailored to accept only text satisfying certain predefined 

rules. In particular he uses the production rules of PL/1. 

The rules are applied in a constructive manner. The system (called 

. EMILY) displays the current text (or portion of it) and advises the 

programmer which syntactic form of text string he may use to replace a 

non-terminal symbol present in the text displayed. The text which is 

constructed is certain to satisfy the syntax of the programming language, 

although logical errors may be present. 

Program skeletons 

Systems have been described (for example Bequaert 1968, Dutton and 

Minto ,1971) in which programs are written by adding code to pieces 

'of pre-written code called program skeletons. These program skeletons 

carry out various commonplace processing functions which are not specific 

to any particular application. This differs from the normal practice 

of programming such functions individually as required. 

example: 

Many data processing systems require functions for data 
input, data updating and data retrieval. 
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It is possible that a programmer, by incorporating code which is 

already written in a general fashion and specializing it to suit his 

own requirements will produce more reliable programs in a shorter time. 

He will, for example, be able to concentrate more fully upon those design 

points which are relevant to the job in hand • 

. The method whereby the program skeletons are actually used in the 

construction of a program varies. In the system described by Dutton and 

Minto (1971), the skeletons are written in COBOL and each skeleton has 

exit points where the programmer can supply further statements (also in 

. COBOL) which are ~pecific to his purpose. Bequaert (1968) describes how 

the prog~am skeletons can be specialized for particular applications on the 

basis of the programmer's response to questions generated by the system. 

The way in which programs are developed using such systems is 

obviously dependent upon the availability and form of skeletons. These 

factors will exert an influence over the actual design of programs in a 

way which is similar to that exerted by a programming language. In 

applications areas where there are likely to be many programs requiring 

similar functions these systems should prove to be of some worth. There 

still remains, of course, the task of designing the total program and of 

constructing the necessary code to interface in a suitable manner with 

the skeletons. 

Automatic error correction by a translator 

Language processors are generally unconstructive when they detect 

errors in programs submitted to them. Usually an error message is supplied 

which gives the context of the error and some indication of what specific 

.error has been found. It is rare that any action ·is taken to suggest how the 

error might be removed. The PL/C system (see, for example, Conway and 

Gries 1973) constructed at Cornell University, however, goes one stage 
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further than this by attempting to automatically "correct" program errors 

discovered at compilation. Whilst a large number of punctuation errors can 

be corrected with confidence, the correction of many other syntactic and 

semantic errors is unlikely to recreate the progr~er's intention. It is 

cl.aimed by the system designers that even in these latter cases, the effect 

is to allow the provision of further diagnostic information which will increase 

the programmer's chances of removing errors from his program. 

A danger of the approach of automatic error correction would appear 

to be the likely encouragement of sloppy habits in a programmer. He will 

omit semi-colons because he believes that the system will insert them in 

the right places. Of course, system corrections should be checked by the 

programmer because no guarantee can be given that all such corrections 

maintain the original intention. The author conjectures that, unless there 

is some explicit mechanism to motivate a programmer to check all corrections 

.carefully, then a number of erroneous "corrections" will not be appreciated 

as such. Even if the proportion of such misconceptions is small, it is 

surely worthwhile to demand some additional work on behalf of the progrmnmer 

to m~ke it more likely that he appreciates exactly what processes arc 

represented by the program he has written. Unfortunately, it might be 

diffiCult to·design a mechanism which would provide the desired effect. 
, 

4.5 Summary: Towards a Program Building System 

The major question we have discussed in this chapter has been that 

.of establishing the correctness of computer programs. We introduced this in 

terms of a requirement to increase a programmer's confidence in the worth of 

a particular program, or piece of program, .as a solution to some problem. 

This involves the programmer in the comprehension of what he has written 

down (the text of his program) as a specification of a computational process. 
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We have discussed how it is possib1e,using the program text 

and suitable information regarding the meaning of programming language 

constructions, to obtain a high degree of confidence in a program. Many 

of the techniques employed in this appreciation centre around the provision. 

of redundant information in the form of assertions, declarations etc. We 

also described how such information may be used in a constructive manner 

thereby ensuring a high degree of confidence in a program arising from the 

methods used in its construction. 

In a similar way we have seen how we may improve the understanding 

we have of a program by observing its execution. Whilst this method 

cannot hope to give complete certainty as to how a program will behave it 

is possible to use testing criteria to aid in the process of program 

development. 

On a number of occasions in the course of the above discussions 

we encountered situations where the co-operation of man and machine was 

likely to be useful. As examples we cite program proving systems (Good 1970, 

E1spas, Green, Levitt and Waldinger 1972), interactive debugging systems 

(e.g~ Balzer 1969), interactive programming systems (e.g. APL, 

BASIC), interactive program construction (Hansen 1971a) or other non-programming 

endeavours (Engelman 1968, Engelbart and English 1968). 

A natural successor to these schemes would be a single system 

concerned with providing a set of computer-aided tools to help a programmer 

in the development of a program. In addition to some of the particular 

techniques we have described, such a system would provide clerical aids 

organizing the information of the design development for the programmer. It 

would also impart the necessary discipline upon the programmer so as to affect 
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the overall structure of the final program. 

The remainder of this thesis describes one particular such 

interactive "program building system" which the author has designed 

and implemented. 

This system, in fact, concentrates primarily on providing facilities 

for program design rather than on testing or proving completed programs. 

This emphasis is only as a result of the particular emphasis it was 

thought desirable to demonstrate in an actual implementation. Thus, 

for example, whilst the evaluation of actual programs by execution on 

test data can be a powerful technique, it has already received a 

significant amount of attention elsewhere. It was thought more appropriate 

to concentrate attention on those facilities which could guide the 

programmer in the development of a well-considered program, reflecting 

the care taken in its design, and exhibiting a good, elegant and appropriate 

structure. Because of the experimental nature of the implemented system, 

there are, of course, a number of deficiences and limitations. In the 

description which follows, these will be explained and their remedies, 

where appropriate, described. The actual system can act, therefore 

as a study of the feasibility of some of the ideas that have been 

discussed in Chapters 2-4. 
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Chapter 5: 

Basic construction of programs using Pearl 

In this chapter we will describe the basic ideas behind the Pearl 

(Program Elaboration and Refinement Language) program building system. 

This will entail a demonstration of how a program design may be built 

up into a complete program using the concepts of levels of description 

and of a particular design strategy. (see Chapter 3). In Chapter 6 we 

describe other features provided by the system in the form of machine 

assistance in the maintenance of the design and in its evaluation. In 

both Chapter 5 and Chapter 6 we will incorporate discussion on particular 

points as appropriate. More general discussion concerned with experience 

gained from using the system will be found in Chapter 7. In no sense 

will these chapters attempt to be definitive. Appendix B contains a 

summary o'f system facilities whilst appendix A gives a formal description 

of the syntax of the notation used to represent designs. Appendix C 

gives a few notes on system implementation. A number of examples are 

given in the following chapters; complete texts from which these were 

drawn may be found in appendices D, E and F. 

5.1.,~ 

The Pearl system acts as a specialized management system for a 

particular set of information; namely a program design. The system 

accepts texts in a particular notation representing parts of a program 

design. Each new piece of information is first checked in a number of 

ways before being incorporated into the total design. This ensures 

that the new information is itself reasonable and that it is consistent 

with the design already present. A number of conventional data base 

facilities are provided in Pearl to allow access and manipulation of 

design, information (see Chapter 6). 
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The basic notion behind the system is that of describing processes 

to solve sub-problems in terms of varying levels of description. A program 

at a particular level of description is thought of as representing the 

action to be invoked on a hypothetical ''machine'' possessing attributes 

which characterize that level of description. The word ''machine'', 

although not intended to have all of its more generally assumed connotations, 

is chosen advisedly. In the current context a machine is an abstract entity 

capable of performing some action described by a program indicating the 

sequence of operations that define that action. A machine is considered 

to possess (or to understand) certain attributes and to operate within 

some environment. These attributes relate to the functions that the 

machine is capaule of performing, or the types of objects to which it 

can apply these functions. The reader will appreciate that these machines 

have much in common with Dijkstra's "pearls". (Dijkstra 1972a). 

Pearl provides a generalized programming language to be applied in 

any such machine. The programmer may specify an ideal ma.:!liv, for his 

purpose by particularizing this general language. The design task then 

bec.omes one of implementing those features introduced by thp. programmer 

which are non-primitive in the underlying actual machin~(the base 

machine). This task may be carried out by the introduction of further 

ideal machines each suited to a particular purpose. 

Each machine is considered to exist in an environment of other machines 

according to its purpose in the design. This environment provides a 

partial particularization of the generalized programming language and 

augments the set of concepts available within a machine. A description 

of the form the environment takes is given in section 5.2.3 whilst a 

discussion of the implications of particular environments can be found 

in Chapter 7. It should be noted that the rules describing what 
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environment is available to a particular machine are closely tied to the 

desire to encourage top-down development of programs. It is not impossible 

to follow a bottom-up method, but in general the user will find this a 

devious thing to attempt. 

Each machine introduced by the programmer represents a decision. 

A machine is limited to carry out one and only one program. Machines 

therefore differ from Dijkstra's pearls in this respect. (Further discussion 

related to this point is given in Chapter 7). 

We have described one relationship that may exist between a pair 

of machines (i.e. one machine implements a feature introduced by another 

machine). This relationship suggests that the set of machines used in a 

program development may be represented as a tree. However, as will be 

described in succeeding sections, other relationships are also allowed 

amongst machines. These tend to structure the set of machines into a 

directed graph rather than a tree. 

The representation of a developing program using a generalized 

programming language is related to the concepts of extensible programming 

languages (e.g. SIMULA 67, D~hl, Myhrha\.\g and Nygaard 196i\), Alf~ol llH 

(van Wijngaarden 1969), ECL (Wegbreit 1971). However, tllere are differences 

as we hope will become apparent. In particular, in Pearl emphasis is 

placed on the way in which programs are constructed. From this point 

of view the actual syntactic forms of the Pearl notation may be 

considered immaterial. From others, however, (e.g. readability, 

comprehensibility) they are important and have been designed following 

the discussions of Chapters 2 and 3. Additionally, features of the 

notation allow the description of redundant information which is then 

available for certain checks to be made concerning the "correctness" 

of programs. Several of these have been outlined in Chapter 4. 
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The generalized language is based upon a particular programming 

language. This programming language (the base' language) provides a level 

of description whose characterizing concepts are considered primitive. 

~y this we mean that this set of concepts is understandable to an 

~xisting machine in much the same way as the concepts of Algol are 

understandable to an Algol machine. In any program development all other 

levels of desctiption will be higher than the level of the base language. 

The concepts of the base language are available in all machines 

introduced by the programmer (i.e. they are "pushed through" the various 

levels of description characterized by programmer introduced machines). 

These concepts are as follows:-

1. Data types 

2. Operations 

(i) upon integer 

(ii) between strings 

(iii' some i/o operations 

(iv) declaration 

integer, string 

••.• +, -) *,/, =,<,), Bo, I ,I > =, ,,=, ., = 
II (catenate) 

substring selection 

readint (integer),. 

writeint (integer), 

nlcr, 

prsym (integer) 

(v) assignment (:=) is available between instances 

of similar data types. 
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(i) 

(ii) 

(iii) 

(iv) 
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Control structures 

sequence • · · 51; 52 

alternative · · · if E then 51 else 52 

conditional · • · il. E then 51 

repetition • · · while E do 5 

rej2eat 5 until E 

5,51,52 are stat~ents and E is an integer 
valued expression. The value 1 is taken to 
be "true", any other value as "false". 

Data structures vector (together with subscription). 

A definition of the language is included in Appendix A. 

Programmer controlled generalizations of the base language are 

confined to data types and operations. 

The concept of a data type is generalized to allow any data type 

the programmer wishes to identify. The concepts of declaration, subscription 

and assignment are all generalized in the obvious ways. The assignment 

operator (:=) is used to represent all assignments, with the restriction that 

, its operands must both be of the same data type. The meaning implied by this 

operation is that an application serves to make the value of the left-hand 

operand the same as the value of the right-hand operand. 

The concept of an operation is generalized by providing a standard 

form in which operations may be written. This is in prefix form:-

<name,)(operand 1, operand 2, ••• , operand n) 

or, if there are no operands to be named, simply 

<$ame,) (e. g. nlcr) 

The generalizations allowed correspond to the notions of 

representational abstraction and operational abstraction as described in 

Chapter 3. 
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5.2 Constructing a program (using the *build command) 

The nature of the Pearl system is that it is driven by commands issued 

by the user at an online terminal. One of these commands allows the 

user to build up a complete description of a machine and add it to the data 

base describing his developing program. This command is the "*build" command. 

For the remainder of this chapter we will describe and discuss h~w the 

user "builds a machine", what assistance he can obtain and what restrictions 

are imposed to encourage the structuring that we have described. 

5.2.1 The specification of a machine 

Each machine introduced by the programmer is given a name. This name 

serves to label the machine as a complete unit, covering both its specification 

and its action. 

Machines are introduced to carry out a particular function. They tous 

represent a conscious design decision made by the programmer. Provision 

is made for the programmer to document this decisioh in the form of a comment. 

Together with the machine name and some punctuation this serves as a heading 

for a machine. 

example: 

cardprocessor: 'read each card and then process it' 

The identification of the particular concepts understood by this machine 

now follows. A new data concept may be introduced by a ~ statement, and 

a new operation concept by an operation statement. 

examples: 

~ cardimage 

operation print (cardimage c) 
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It is worth stressing that in both of these cases no indication is 

given of either how a cardimage is to be represented, or how the print 

operation is to be carried out. The names given to the concepts will no 

doubt have a meaning for the programmer. 

The form of the operation statement is not unlike a procedure heading 

in Algol-like languages. Each formal operand may optionally be specified 

as "vary". Only operands so specified are subject to a change of value 

·a~ a result of the action of the operation. 

example: 

operation read (cardimage c vary) 

This mechanism will be further described in section 5.2.6.1. 

5.2.2 Describing the action of a machine 

The specification of a machine and its environment serve to describe 

a particular programming language. The desired action of the machine may 

be described by writing a program for the machine in this programming 

. language. 

Figure 5.1 gives an example of a machine which processes cardirnages. 

~his machine represents the first stage in the process of constructing 

a program to solve the problem we described in Chapter 3. As this 

problem will be used as an example throughout this chapter, it is 

repeated here. 

'~rite a program which reads 10 input cards and tests 
these same 10 input cards for the following conditions. 
Each of the first 9 values on each card should be 
within certain limits. The 10th value should also be 
within these limits and, further, should be a check 
upon the preceding 9 values on that card". 
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'biiild 
:ardprocessor:' read eaCh card and then process it' 
~gin type cardimage; 

operation read{cardimage c varl); 
operation process (cardimage c); 

,rogram: 

~nd 

declare cardimage c; 
declare integer i; 
i;=O; 
while i< 1 0 do 

(i:=1+1 ; 
read.(c) ; 
process (C» • , 

~ND OF CHECKING 
~O FRRORS iERE DETECTED., 

Figure 5.1 
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Most, of the features shown in Figure 5.1 have been described. Of 

those that have not, only one requires extensive discussion. ("program"). 

The name "program" expresses the function carried out by the machine 

as an elaboration of a concept introduced by Some other machine. The 

concept "program" is provided by the system and is thus the standard 

"starting point" for any design. 

The labelling of the program part may appear to make the machine 

name redundant. In a completed program this is probably true. However, 

the use of separate machine names allows a greater flexibility both from 

the point of view of the user as a reference mechanism, and also to 

enable alternative machines to be described elaborating the same concept. 

(In the present implementation of Pearl this is not allowed, but it is 

much more in the spirit of Dijkstra's "necklace of pearls". (Dijkstra 

1972a). Some discussion of this idea appears in Chapter 7). 

"5.2.3.,, The environment of a machine 

The environment within which a machine may be defined is specified 

in terms of the operations and types that are available to it. The rules 

governing the introduction of machines and therefore the introduction of 

operations and types are framed to accord with the philosophy of top-down 

program construction. 

Machines are introduced in a specific time sequence. At the 

Commencement of a program construction (i.e. at the time the concept 

"program" is unelaborated) the set of operations available in the 

environment is that provided by the base language. Each machine introduced 

by the programmer may modify the environment, and this modified 

environment is then available for subsequent machines. Thus the set of 

operations and types is considered global to all machines subject to 

one or two restrictions which are explained below. 
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A machine may augment the environment by the introduction of data 

types and operations not already present. It may modify the environment 

by elaborating a concept that exists within the environment but which is 

not already elaborated. A machine may not elaborate a concept introduced 

in that machine. If a machine elaborates a data type then this data type 

is subsequently removed from the environment (see also section 5.2.5). 

Thus programmer elaborated data types are unavailable later in the 

construction sequence. Some discussion on the effect that this particular 

rule has had is given in Chapter 7. 

The above rules encourage top-down program construction. It is a 

reasonably simple matter to envisage different rules governing the 

environment which would encourage other construction strategies. 

(see, for example, section 7.1.2). The rules chosen are extremely 

simple and have proved to be quite satisfactory once their devotion to 

a top-down philosophy is appreciated. 

It will be noticed that use of concepts introduced into the environment 

will, in general, destroy a purely hierarchical arrangement of machines. 

It would of course, be possible to describe rules which would not allow this. 

Such a scheme, if enforced rigidly, would bar such notions as concept 

sharing between machines of different sub-trees in the hierarchy. One 

possible relaxation of this would be to use machine names themselves to 

make concepts available. This last suggestion is similar to the 

referencing of block attributes in SIMULA 67. (Dahl, Myhrhaug and 

Nygaard 1968). 

For the purposes of the present system, however, it was considered 

that the simple approach implemented offered a reasonable degree of power 

with only an occasional frustration. 
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5.2.4. Elaboration of an operational concept 

A conceptual operation is added to the environment by an operation 

statement. As pointed out above, this introduction corresponds closely to a 

procedure heading. We continue the analogy in describing how such a concept 

is subsequently elaborated by another machine. 

The action part of a machine is associated with a particular 

operational concept by labelling it with the name of that operation. Thi$ 

may be seen as physically linking the text of the procedure heading to the 

text of the procedure body. Thus each may appear at the appropriate time 

in the construction process. 

Figure 5.2 (part of the card processing program) gives a sequence 

of operation elaborations. It extends Figure 5.1 by a further 2 machines. 

The program describing how an operation is carried out will normally 

reference its operands. Thus the label that is applied to the action 

part of the el~orating machine should display these operands. If it was 

allowed to use the name of the operation alone (which is sufficient), then 

understanding the elaboration of the operation is likely to involve the 

human reader in considerable cross-checking between machine descriptions. 

example: 

In a machine A an operation 'swap' is introduced as:-

operation swap (integer x vary, integer y vary). 

At some later stage in the construction, machine B 
is introduced to elaborate s~ap. It is sufficient 
to write:-

swap: declare integer Z; 

z: = x; x: y; z. 
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.*build 
cardprocessor:tread each card and then process it' 
begin type cardimage: 

operat~on read{cardimage c vary); 
operat1on process{cardiaage c); 

program: 

end 

declare cardimage c; 
declare integer i; 
i:=O; 
while i<10 do 

(i:=i+1; 
read (C) ; 
process (c) ) • , 

END OF CHECKING 
NO ERRORS WERE DETECTEDo 

+*build 
processor:'check the values and the check' 
begin operation checkcard(cardimage c, integer ok vary); 

operation rejectmessage; 
operation writeout(cardimage C); 

process (cardimage c): 
declare integer ok; 
checkcard(c, ok) i 

end 

if ~ok then rejectmessage; 
writeout(c) 0 

END OF CHECKING 
NO ERRORS WERE DETECTED. 

+ .... build 
checker:'check the values, then and only then, the check' 
begin operation checkvalidity(cardimage c, integer ok vary); 

operation check check ,(cardi.age c, integ~r ok vary); 

checkcard(cardimage c, integer ok vary}: 
checkvalidity(c, ok); 
if ok then checkcbeck(c, ok}. 

end 
END OF CHECKING 
NO ERRORS WERE DETECTED. 

Figure 5.2 
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However, when confronted by this piece of text, what meaning should 
a reader associate with the variables x and y? 

The actual implementation does, in fact, include a mechanism for 

supplying the programmer with the original operands if necessary. (An 

. e.xample is shown in Figure 5.3). 

It is possible to introduce a conceptual operation without using 

the operation statement. The symbol ":=" is used to denote assigmnent 

of the value of one variable to another variable irrespective of the 

type of these variables but provided the two variables are of ~he same 

type. If this type is primitive (i.e. not programmer introduced) then 

the operation denoted is also primitive. If, however. the type is not 

primitive. then the operation denoted is conceptual. As such it will 

require further elaboration when the data type in question is elaborated. 

When the symbol ":=" is used (in a machine) to denote a conceptual 

assignment operation it is considered exactly as if an operation statement 

had been used to introduce it. A system generated name is used to denote 

the. operation together with some formal operands. 

example: 

If ina machine we have the fullowing: 

. declare value (tempi, temp~; 

tempi: = temp2; 

then the ":=" represents a conceptual operation of assignment 
of a "value". The system treats this exactly as if the 
programmer had explicitly stated: 

operation value ___ assign (value valuel vary, value value2). 
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+*build 
checker:'check the values, then and only then, the ChECk' 
begin operation checkvalidity(cardimage c, integer ok varJ): 

operation checkcheck(cardimage, c, integer ok vary); 

checkcard: 
*** WARNING, ORIGINAL BAD PARAMETFRS 
WILL USE ORIGINAL PARAMETERS AS FOLLOWS 
CARDI rlAGE C 
INTEGER OK VARY 

checkvalidity(c,ok) : 

Figure 5.3 
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. This mechanism allows the user to properly label the elaboration 

of the assignment operator acting between operands of a conceptual type. 

This particular approach was chosen for its simplicity.. Some further 

discussion on the whole problem of the generalized assignment operator is 

given in section 7.1.5. 

5.2.5. Elaboration of data types 

Machines may be introduced, not only to indic~te how an oper4tion 

is carried out, but also to give a representation of a conceptual data 

.type. The two functions are similar. 

Instances of a particular data type are created using a declaratiOn • 

. Thus 

declare integer i 

allocates a certain amount of a resource (called memory) and marks it 

as an integer to be referenced by the name "i". 

In exactly the same way 

declare cardimage c 

\ 

may be considered as allocating a certain amount of memory which will be 

considered as a cardimage and be referenced by the name "c". In both of 

these examples, the effect of the declaration is an allocation of a 

"certain amount of memory" together with a reference to its type and 

name. The actual amount of memory is dependent upon the representation 

of the data type in terms of,the memory elements themselves. 

In the case of the primitive data types, the representation is 

'defined. For conceptual types, the amount allocated will depend upon 
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the structure subsequently given to the data concept by the programmer. 

The 'introduction of a new conceptual data type can be -thought of as 

the introduction of an unelaborated operation upon memory. The two 

primitive types are thus primitive operations on memory. The creation of 

an instance of a data type is thus a call upon the relevant operation. The 

elaboration of a conceptual data type is thus similar to the elaboration 

of a conceptual operation. 

Figure 5.4 shows a further machine from the cardprocessing program 

elaborating the data concept "cardimage". 

Instances of a data type may be initialized by incorporating the 

necessary operations in the program of the machine elaborating that data 

type. Figure 5.5 shows this in a modification of machine "cardrep" of 

figure 5.4. The variable "i" is local to the inner block. The names of 

variables declared in the outermost block of a program elaborating a 

data type are available to machines elaborating operations having operands 

of that data type. 

Pearl enforces a rule that such operations must be elaborated 

immediately the data type is elaborated (see also sectio~ 5.2.6.3). This 

rule is a recognition of the strong relationship that exists between a 

data type and operations upon instances of that data type. Once the 

necessary machines have been entered, the elaborated data type is 

removed from the environment thus disallowing the recursive definition 

of data types. This is aimed at encouraging top-down program development. 

The sequence of machines shown in figure 5.6 is an illustration 

of the elaboration of operations related to an elaborated data type. 

The data type "cardimage" has previously been introduced together 

with the operations "read", "writeout", "checkvalidity" and "checkcheck", 

each having an operand of type "cardimage" and still being unelaborated. 
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.. 
+*.bulld 
cardrep:'a card is 9 data values and a check' 
begin type value; 

cardimage: declare vector(9) value data; 
declare value check. , 

end 
END OF CHECKING 
NO naRORS WERE DETECTED • 

. , 

Figure 5.4 
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. , 
+*build 
cardrep:'a card is 9 data values and a check' 
begin type value; 

operation·clear(value v vary); 

car,Umage: 

end 

declare vector (9) value data; 
declare value check; 

declare integer i; 
i: =0; 
while i<9 do 
( 1:=i+1; 

clear (data (i» ); 
clear (check) ) •. 

EN D' OF CHECKING 
NO EBRORS WERE DETECTED., 

.. 

Figure 5.5 
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+*build 
cardrep:'a card is 9 data values and a check' 
begin type value; 

cardimage: declare vector(9) value data; 
declare value check. 

end 
END OF CHECKING 
NO ERRORS iERE DETECTED. 

+*build 
cardreader:'reads in the 10 values' 
begin operation readvalue(value v varJ); 

read.(cardimage c vary): 
declare integer i; 
i:=O; 
while i<9 do 
(i: =i +1 ; 
readvalue(data (i) of c) ); 

read val ue (check of c). , 
end 
END OF CHECKI NG 
NO ERRORS WERE DETECTED. , 

+*build 
cardwriter:'writes out values anJwaJ' 
begin operation writevalue(value v); 

wr1teout(cardimage c): 
declare integer it 
i:=O; 
while i<9 do 
(1:=i+1. 
wri tevalue (data (i) of c) ); 

writevalue{check of c). 
end 
END OF CHECKING 
NO FRRORS WERE DETECTED. 

Figure 5.6 
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'. 

+*build 
validity check:'checks the 9 values' 
begin operation checkvalue(value v, integer ok vary); 

checkva~idity(cardimage c, integer ok vary): 
declare integer i; 
i:=O; ok:=true; 
while i<9 & ok do 
(i:=14-1; 
checkvalue(data(i) of c, ok) ) •. 

end 
END OF CHECKING 
NO FRRORS ~ERE DETECTED. 

+*build 
cheCker:'make sure check is ok' 
begin 'operation combine (value v vary, value w); 

operation comparevalue(value (u,v), integer ok varl); 

checkcheck(cardimage c, integer ok vary): 
declare value temp; 

end 

declare integer i; 
i:=1; temp:=data(1) of c; 
while i <9 do 

(i:=i+1: ' 
combine (temp, data (i) of c»; 

comparevalue(temp, check of c, ok) •. 

END OF CHECKING 
NO ERRORS ~ERE DETECTED •. 

Figure 5.6 (continued) 
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Machine "cardrep" is defined g1·v1·ng . f h a representat10n or t e type 

"cardimage" in terms of the type "value". Once this machine has been 

accepted by Pearl, the programmer is constrained as to what he may 

~ubsequently enter. He may only enter machines which elaborate 

operations having an operand of type "cardimage" until such time as 

no such operations remain unelaborated. Thus the set of machines 

"cardreader", "cardwriter", "validitycheck" and "checker" (in any 

order decided by the programmer) must be entered before a machine which 

elaborates some other concept either of operation or of type. (e.g. 

the type "value"). Only when this particular set of machines has been 

accepted is the type "cardimage" no longer available in the environment. 

A special operator (~) allows reference to particular elements 

of the elaboration of a data type during the elaboration of the related 

operations. 

The enforcement of this strategy calls for a few comments. However, 

beyond noticing that the set of machines providing the representation of 

the data type and the elaborations of all related operations has much 

. in common with the ~ concept of SIMULA 67 (Dahl, Myhrhaug and 

Nygaard 1968) we postpone discussion until Chapter 7. 

5.2.6. Correctness considerations 

In addition to what we have described above, there are a number of 

features provided by the system which allow the progra~~er to increase 

the confidence he is willing to place in what he has written down. 

We saw in Chapter 4 that the provision of redundant information is 

a powerful method of increasing the understanding that may be gained of 

a program. The various features to be described allow the programmer 

using Pearl a number of ways of saying what he understands by what he 

has written in his program, or what he intends to write. As a by-product 
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of this, there are a number of occasions when the redundancy can be checked 

by the system in an automatic or semi-automatic fashion. 

There are two main areas of interest. Firstly, because the actions 

of machines are described by programs, then these programs are subject 

to problems of comprehension much as traditional programs are. Secondly, 

in a development of a program in multi-level fashion there is a requirement 

to ensure that descriptions given at different levels of description are 

mutually consistent. 

ASsertions etc. 

There are several features provided which are best classified 

as being of a miscellaneous nature. 

An "assert expression" is provided as part of the base language. 

example: 

assert x = a & y b before 

Assertions may be made about the state of a computation at any 

point within an individual program for a machine. In the system as 

implemented, these assertions are not used to generate verification 

conditio~s or for the automatic proof of program correctness, but rather 

act as run-time checks. 

As an aid towards maintaining the correctness of an elaboration, 

Some restrictions are applied to the mechanism used in par&~eter 

passing. This mechanism is known as "call by reference". (Note, 

there is nothing equivalent to a global variable common to several 

machines). Operations act upon their operands. This effect, when seen 

in p~ocedures in high level languages, is often known as side cffL'!=t in 

that it is possible, by a procedure call, to alter the value of a variable 

without explicitly making use of an assignment statement. Indeed it is 
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possible for a single procedure call to change the value of many program' 

variables. In several current languages those parameters of a procedure 

whose value may be changed by calling that procedure are not distinguished 

syntactically. In Pearl, the vary attribute is provided. In the elaboratic 

of an operation,only such operands (or their components) as have been 

given the attribute vary may appear on the left-side of an assignment 

operator, or as an actual operand which itself has the vary attribute. 

Thus, when an operation is introduced, the programmer must specify 

which of its operands will be changed in value by that operation. 

The system will ens.ure that his specifications are not violated by later 

constructions. The vary attribute partitions the operands of an 

operation into two groups in a manner similar to that described by Hoare 

(1971b). Further discussion on the vary mechanism is given in section 

There are also some restrictions which prevent the programmer from 

doi~g things which may be considered unreasonable. 

example: 

It is not possible to change the value of any (non
local) variable as part of the evaluation of a 
logical expression despite the fact that the base 
language is an "expression language". 

Finally, all operands of operations are checked to ensure that they 

are of the type spe~ified in the introduction of the operation or in the 

base language. 

5.2.6.2 Meanings Qf conceptual operations 

In section 5.2.1 we introduced the operation statement whereby new 

operations could be introduced. In order to allow the programmer to 

indicate the effect that an abstract operation has upon its operands · .... ;.;:.i:OL: 
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describing how the effect is achieved, the operation statement is extended 

to express the "meaning" of the operation being introduced. This takes 

the form of a pre-condition and a post-condition described by assertions 

over the operands of the operation. Thus the syntax of the operation" 

statement may take the extended form:-

operation 

provided 

yields 

(name) (operand list) 

<pre-condition;> 

(post-condition) onexit 

Both the pre-condition and the post-condition are logical expressions, 

but certain restrictions apply to the latter in order that the meaning of 

the operation may be deterministic. A discussion of some of the implication 

of this restriction is to be seen in Chapter 7, whilst an argument for its 

presence in the current system may be found in Chapter 6. To ensure a 

fully deterministic meaning for an operation in a fairly trivial manner, 

logical disjunction is disallowed in the post-condition. Also in the 

~) poat-condition the usual symbol [or logical conjunction (&) is le;ll.Jccd 

by a comma so that the post-condition can be expressed as an atomic 

list of assertions about the operands uSing a comma to separate the 

elements. 

example:-

operation swap (integer (x,y)~, integer (a,b») 

provided x = a & y = b yields 

x = b, Y = a oncxit 
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5.2.6.,3 •. States 

To enable the expression of assertions about variables of non-primitivE 

type, a further concept is introduced; that of IIstate". States are a means 

of indicating' a condition in which an instance of a data type may be found. 

They are derived directly from the need to express the result of an operatiol 

on a conceptual. data type. However, they may also be used in conjunction, 

with the primitive types integer and string. 

States for a type may be introduced at any time that an operation 

using an operand of that type may be introduced. Their introduction is 

part of the machine specification and is effected by the states statement. 

The form of this statement is similar in form to an operation statement, 

but without a meaning part. 

example: 

states empty (queue: a) 

.Once a state is introduced, it may be used to define the meaning 

of an operation. 

example: 

operation clear (queue a vary) 

provided I empty (a) yields 

empty (a) onexit 

States may also be used as logical functions which may be tested 

in a program. 
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example: 

.., empty (a) do 

A state may be undecidable in addition to being either true or false. 

States may be elaborated in a similar fashion to the elaboration 

of operations, and the restrictions which apply following the elaboration 

of a conceptual data type are extended to cover the elaboration of states 

o( that data type. (see section 5.2.5) • 

. Two ways in which elaborations of states may be used are given below. 

Both exemplify a different stress applied in the derivation of a design. 

If a state is used to express the meaning of a particular operation, 

then the elaboration of the state may serve as a check on the elaboration 

of that operation. This is illustrated in figure 5.7. The machines pres~nte( 

there are taken from a modified development for the checking problem used 

earlier in this chapter (see figure 5.2). 

An additional operation "initial" is introduced to ensure that the 

variable "c" is in the correct state for the first "read" operation. The 

operation "process" is defined to yield a cardimage in the state 

"processed". However, from its elaboration in the machine "processor2", 

:It is seen that, as a result of the application of the "writeout" operation, 

the cardimage will, in fact, be in the state "written". The elaboration 

of the state "processed" as meaning "written" restores the correctness of 

the program. 

From a different point of view, states may be used to specify a 

program development. A program may be defined by giving the states 

necessary to fulfill the requirements of the program. The program 

development takes the form of defining an operation which satisfies 
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+*buil.d 
cardprocessor2: j as,cardprocessor, plus states for checking' 
begin type cardimage: 

states readin(cardimage c), 
processed(cardimage c); 

operation initial(cardiaage c) 
provided true yields processed (c) onexit; 

operation read (eardimage c vary) 
provided processed(c) yields readin(e) onexit; 

operation process(cardimage c) 
provided readin(c) yields proeessed(c) onexit; 

program: 

end 

declare cardimage c; 
declare integer i; 
i:=O; initial (i); 
while i<10 do 
( i: =i+ 1 ; 

read(c) : 
process (e) ) •. 

END OF CHECKING 
NO EBRORS WERE DETECTED. 

+*build 
processor2:was processor plus states' 
begin states passed (cardimage C), written(cardimage.e); 

operation checkcard(cardimage c, integer ok vary) 
provided readin(c) yields passed{c) onexit: 

operation writeout(cardimage c) 
provided passed(c) yields written (C) onexit; 

operation rejectmessage; 

process(cardimage c): 
declare. integer ok: 
checkcard (c ,ok) ; 
if ~ok then rejectmessage; 
writeout (C) •• 

en'" 
END OF CHECKING 
NO ~RRORS iERE DETECTED •. 

+*build 
staterel:'explain processed versus written' 
begin 

processed(cardimage c): 
written (c) • 

end 
END OF CHECKING 
NO ERBORS ~ERE tr-TECTED. 

Figure 5.7 
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these states. Subsequent elaboration of the states thereby provides 

. further specifications to be met by elaboration of the operations introduced 

to satisfy given state transitions. 

example: 

Thus 

A program might require that an object of a data type "t" 
satisfies some predicate "pi". An operation to express 
this would be introduced as:-

operation opi (t x vary) 

provided true yields pi(x) onexit 

Next the predicate pi is elaborated as being some relationship m between two other predi"cates p2 and p3. 

pi (t x) p2 (x) ~ ·p3 (x) 

In order to satisfy this relationship two further operations 
could be introduced. 

operation op2 (t x vary) 

provided ••••• yields p2 (x) onexit l 

operation op3 (t x vary) 

provided • •• yields p3 (x) onexit 

These are then used to elaborate opl so that the relationship 
between pi, p2 and p3 is met. 

Thus .the elaboration of states may be used eitther to drive the 

program design process l or be caused as a result of the design process. 

The particular stress applied is dependent upon the programmer himself 

and the problem he is solving. 

Pre- and post-conditions upon programs 

When an operation is elaborated, this elaboration may be given pre-

and post-conditions. In the same way that pre- and post-conditions given 

at the time of an operation introduction may be considered as giving a' . 
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meaning to the concept of the operation, so the pre- and post-conditions 

applied to an elaboration may be considered as expressing the meaning of the 

actual implementation of the operation. A check between the two sets of 

conditions is provided as an aid towards correct elaboration. Such checking 

takes the form of a message to the programmer who can take action as· necessary 

as no automatic theorem prover is implemented within the system. 

The conditions '·applied to the elaboration part are in fact assertions 

a~though the syntax takes a slightly different form. 

example: . 

Suppose that an operation is introduced. 

operation op1 (... ) 

provided p( • • • ) yields Q ( • • .) onexit 

Subsequently op1. is elaborated. 

op1 (...): 

provided R ( • • • ) ~ 

• 

assert S ( • • • ) onexit 

The programmer is reminded that the following conditions 
should hold: 

p ( . . 
and S ( • 

. ) 
) 

R ( . . 
=> Q (. 

.5 .• 3 Supplementing the design with a new machine 

. ) 
) 

Under the control of the *build command, the programmer can enter the 

text for a new machine into the system. Once this text has been satisfactor: 

checked the new machine is added to the program design. This necessitates 

~odifications to the current environment as described in section 5.2.3 •. 
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In addition c~rtain relationships are noted as to the place of the 

new machine within the total design structure. These relationships are 

expressed between the machines representing the design. 

For the purposes of later discussion.we introduce the notion of a 

machine beiltg "dependent upon the existence of" another machine. 

A new machine Ml is dependent upon the existence of another machine 

M2.present in the design structure, 1£:-

(i) M2 introduced the concept type, operation or state elaborated 
by Mi. 

(ii) M2 introduced some concept which is used an}'\-lhere within Mi. 
~.g. declaring an instance of a type, invoking an operation 
or using a state). 

(iii) M2 elaborated a data type and M1 gives an elaboration for 
an operation or state upon that data type. (In this cas'e 
Ml maY,make use of the representation of the data type 
as given in M2). 

As a point of interest it should be stressed that relationships 

are expressed between machines only, and not between machines (or parts 

of machines) and individual concepts. Further discussion on the 

implications of this decision is given in Chapter 6, sections 6.1.1. 

and 6.1.2 • 

. 5 .•. 4. Discussion of the notation 

There are a number of issues which require discussion with regard to the 

contents of this chapter. At this time we will deal only with those specific 

to the not~tion used to specify machines and their programs. Other discussion 

is left until Chapter 7 • 

. 5 .• ,4 •. 1 . Omissions 

Whilst we cannot hope to give a complete list of those things which 

.might reasonably be expected to appear in the Pearl no~ation but which do 

not,. an attempt' is made to cover the most glaring omissions. 
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(a) procedures or subroutines. 

The procedure or subroutine is a most important structuring feature 

of most contemporary high-level languages. In a limited way the notion 

of an operation in Pearl serves a similar purpose whilst 

restricting the more general concept in a number of ways. By viewing a 

procedure purely as a particular form of control structure there would 

seem to be no strong argument for its omission. However, it was felt 

that its inclusion as such would add an unnecessary additional complexity 

to the description of the program of a machine as well as possibly allowing 

the programmer to build potentially large machines representing a set of 

design decisions instead of the one decision intended. 

(b) functions 

The' notion of a function is almost entirely absent. A state covers a -
limited set of those conventionally available to a programmer. (Namely, 

boolean functions of a single argument). The omission is most noticeable 

when thete is a need to express a relationship between a number of variables 

as a boolean function of n arguments. Such functions occur naturally as 

(for example) the conditions in alternative or iterative control structures. 

It was expected that the expression language nature of the ~ase language 

would make unnecessary an explicit provision for such relationships. However, 

in our opinion the use of such concepts as "block expressions" detracts 

quickly from the clarity of programs and is, in general, a poor construction. 

From experience, it is probable that there is a strong argument for 

the inclusion of explicit boolean functions of more than one argument. 

However, the further generalization to n-place functions of any type is of 

more doubtful value. The same effect can be obtained by an extension of the 



- 140 -

function into an operation by an additional assignment to a vary operand. In 

these cases there appears to be no syntactic argument against such a 

cons truction. 

(c) data types and structuring facilities 

The two primitive types (integer and string) were chosen for their 

general usefulness and for the fact that the concepts they represent are 

teasonably well understood. It may be considered that lower level, more 

basic ·types should have been chosen in view of the fact that all data 

concepts must eventually find a representation in terms of the system 

provided types. However, if the base level is chosen too low, then it is 

less reasonable to ignore such complications as storage management primitives. 

In the current system the storage allocation is handled within the base level 

machine and the programmer has no way of altering the mechanism. 

Experience has suggested that a further primitive type (the boolean 

or logical) should have been provided. The control structures which 

conventionally rely upon boolean expressions (e.g. the alternative and 

iterative constructions) instead use integer expressions using the value 1 

as being equivalent to true and any other value as false. Similarly the 

relational operators (=, < , ), etc.) and "boolean" operators (&, I, -, ) 

take integer operands and produce integer results. Such use of the integer 

type is not, of course, unique. (It is to be seen in APL and XPL for 

example). It is acceptable until we consider the definition of the 

operators &, land...,. In order to give a definition for these 

operators over all (possible) integer values, it is necessary to assume a 

representation for integers. That chosen for the system as implemc~tcd is 

16-bit 2 ts complement as the interpreter waS to use half-,.ord 

arithmetic on an IBM System /360 machine. 
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7 & 3 

-2 & 5 
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=3 

= 4 

Thus the base language is itself making assumptions about how one of 

its concepts is represented. It does not~ therefore, truly represent a 

single level of conception •. With hindSight, it is preferable to 

introduce the type boolean as a primitive type. 

There are two structuring relationships that may be expressed amongst 

data elements. 

One is that represented by the elaboration of a data type into a 

set of components. This relationship represents an abstraction relationship 

between two distinct levels of description used in the design. 

The other relationship is that provided by the vector form. This 

Serves to exemplify one of many possible such relationships which may 

be formed, which do not necessarily characterize a different level of 

description. Other possibilities including arrays, powersets and sequences 

are suggested by Hoare (1972a) of which several are available in the 

language PASCAL (Wirth 1971a). Whilst the provision of a single cxarr.plc 

of such a structuring relationship was considered sufficient for the 

purposes of the current work, it is likely that any practical system would 

require such other examples as we have suggested. 

(d) control structures 

The control structures represent a simple, self-contained set of 

elements to describe the sequential flow of program control. They do not 

allow the complexity of the ~ statements of Algol or the connectivity 
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prese~ted by the goto. No attempt was made to include facilities for the 

description of either parallelism or co-routines. 

(e) Operations 

Given the choice of basic data types, the set of operations provided 

is ,representative of the set of possibilities, whilst allowing useful 

cortcepts to be described at the base level for the purposes of exemplifiction. 

(f) Correctness facilities 

'The requirement that the definition of operation meanings be deterministic 

is a particular limitation. Additionally, as states are purely one place 

predicates, there is no way of specifying meanings as abstract relations. 

Further discussion on these points is given in Chapter 7 for consideration 

in possible extensions. 

The system provides no automatic scheme for proving the correctness 

of either an individual program for an ideal machine or of the consistency 

of the overall design. The relevant sections of Chapter 4 deal with this 

point. One possibility that could have been implemented is the automatic 

generation of verification conditions. This was not done, purely for reasons 

of time and not because of the lack of belief in the practical uti ),ity of 

such a tool. 

Likewise, there are undoubtedly several other ad hoc features that 

could be included to catch possible program errors. 

example: 

It is 'possible to check, in some cases, that the logical 
expression controlling a loop may not be altered by 
computation within the loop. 
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The usefulness. of such checks is of doubtful general worth and, again, 

t~e precluded any investigation. 

5.4.2. Generalization of control structure elements 

The base language of Pearl is an "expression language" (see Wirth and 

Weber i966, for example). Statements of the language potentially have 

values and may be used as operands in the formation of expressions. In 

some ways this allows a simplification of the concepts of the programming 

la~guage and so should reduce its inherent complexity thereby increasing 

the chance of comprehension by the programmer. 

examples: 

(1) The well-known conditional expression 

a: = if E then b else c is derived from the 
use of the general alternative control structure 
element of the language as the right operand of the' 
assignment operator. 

(2) It is possible (as in CPL for example, Barron, Buxton, 
Hartley, Nixon and Strachey 1964) to write 
(if E then b else c) : = a where the same 
alternativ;'"contr;r5tructure is used as the left 
operand of the assignment operator. (The parc;lthcses 
are needed to achieve the correct preccde~ce oi 
alternative over assignment). 

(3) The semi-colon may also be used in this way. 

a: x + y + Z; a/2 

has the value a/2 

Unfortunately it seems to be the case that such generalization a110\"s 

the programmer too much freedom and can lead to unnecessary complexity. Indeed 

it may well be that it encourages the programmer to attempt devious program 

constructions. It is not an impossible task to conjure up programs that 

when unravelled are quite sensible. and yet are textually insanely complex. 
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A conclusion which may be reached is that elements of a programming 

language whose purpose is to express a flow of control should in general be 

distinguished from elements whose purpose is to identify particular actions 

to be carried out. As Wilkes (1968) has suggested, there are benefits to be 

achieved if it is possible to separate the notions of control flow from 

consideration of particular operations or data types, although this may 

be a difficult task. 

States. values and generalized constants 

The idea of a ~ was introduced to allow the programmer to express 

the result of an operation. 

There is a very close analogy between the notion of a state and the 

abstraction of a value, or set of values. 

example: 

The state "even(i)" where i is an integer, represents the 
abstraction from all possible integer constants which are 
even. 

States may be considered as representing conceptual values 

of conceptual data types. 

example: 

Given the data type "queue ll the state "empty (queue q)1I 
may be thought of as expressing one particular value that 
a queue may take. 

However, such analogies, whilst useful, do not express the full 

intention of the general notion of states in the present experimental system. 

It is possible to define an operation which changes the state of one of its 

operands even though that operand does not possess the attribute vary. 
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example: 

operation print (cardimage c) 

provided ., printed (c) yields printed (c) onexit 

This example serves to illustrate the intended use of states in 

allowing the programmer a formal means of expressing his intention without. 

necessarily committing himself to particular implemeritations of that intent. 

The operation introduction expresses a clear intent. The operation "print" 

will not change the value (in a primitive sense) of the operand, but its 

application is an event with Significance which is to be recorded. This 

use of a state has proved to be of benefit in expressing the use of a 

varlable (see for example the development given in Appendix D). 

It is possible that the additional insight given by an investigation 

of the application of 'invariants' for a data structure will suggest better 

how a state is related to the various notions discussed above. 

As was described earlier, (section 5.2.6.3.) it is possible to conceive 

·of the definition and elaboration of states as driving the program design. 

It is interesting to speculate whether it is more helpful to think of a 

program being developed in terms of the operations and data structures 

necessary to describe the required process (with states being used to 

validate the program so developed) or whether in fact states are indeed the 

way in which the necessary operations and structures are determined. The view 

taken by Schwartz (1970), that there are various advantages to be gained when 

a system is built through consideration of its data, would seem to support the 

latter approach. 

5.5. Some comparisons with other programming notations 

There is some similarity between the scheme presented above 

and extensible programming languages. However the extension 



mechanism is unusual. In ECL (Wegbreit 1971) or Algol 68 (van Wijngaarden 1969), 

the extension is made outwards from the actual objects present in the base 

language. It is necessary when introducing a new concept, to give its 

representation. In Pearl, the extensibility is based upon a generalizatipn of a 

programming language together with a separate mechanism for relating concepts 

to a representation in the base language. This allows a greater freedom of 

expression a~d, in general (although not in Pearl as implemented), the 

,possibility of a variety of design strategies (including bottom-up for example). 

SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968), whilst also exhibiting an 

extension mechanism which is primarily bottom-up, does provide a neat 

encapsulation of the relationship between a data concept and the set of operations 

associated with that data concept. The language itself probably suffers, 

however, from its historical derivations and resultant overall complexity. 

We have earlier discussed the role of SIMULA in the context of the 

representation of program designs on many levels (see Chapter 3). 

Pearl is unusual in its enforcement of a particular design discipline. 

We have earlier discussed how programming notations influence program 

'development. In the design of Pearl an attempt has been made to take 

advantage of this fact in order to encourage design in particular ways. By 

,way of 'contrast, although the AED-O language (Ross 1969) and the AED 

philosophy itself (Ross 1967) are based upon a similar recognition, the 

,programmer is given immense freedom and facility to build models and designs. 

This freedom allows the careful programmer a wide range of expression, but in 

doing so opens the way to unbridled complexity. The Pearl philosophy may be 

stated more in terms of giving the programmer enough rope to do something 

~onstructive, but not enough to 'hang himself. Whether it would be possible 

to maintain this philosophy if additional power was added (e.g. in the number 

of conceptual relationships that could be represented) is an open question. 



It is the author's belief that it would, provided the additional complexity 

was constrained to be used in particular ways which did not result in the 

connectivity of substantially different concepts being increased beyond some 

reasonably low bound. 

In its provisions for the specification and maintenance of correctness 

criteria, Pearl is by no means unique. An equivalent form of assert expression 

is to be seen in, for example, some implementations of Algol W (Algol W 1972) 

a~d in the language Nucleus (Good and Ragland 1973). The provision of a means 

of giving meanings to conceptual operations is less common. There is a 

similarity with assertional languages such as ABSET. (Elcock, Foster, Gray, 

McGregor and Murray, 1971). 

5.6. Summary 

In this chapter we have concentrated on one particular feature of the 

Pearl system; namely the manner in which it assists in the actual construction 

of a program. This necessarily entailed a description of the bases of the 

system for describing and checking a multi-level design uSing one design 

strategy in particular. In the next chapter we will describe the other 

facilities provided by the system for the editing, interrogation and interpretation 

of the information contained within the data base of the program design. 



- 148 -

Chapter 6· 

Extended Facilities of Pearl 

In this chapter we describe the facilities provided by the Pearl 

system which allow the programmer to carry out design modification and 

design evaluation, and to request information about the state of a 

design. 

Chapter 5 described how the programmer can construct a program 

using a particular notation together with some machine assistance. One 

important aspect of the assistance provided is the construction of a 

data base representing the evolving design. It is not difficult to 

visualize the programmer developing his design in the way described, 

using the machine to check each piece in much the same way as a 

conven.tional compiler might do, but not making use of the machine to 

maintain the design at all. The medium in which the design is stored 

may then be represented as a pile of paper. 

example: 

It is possible to develop a program written in Algol in a 
similarly structured manner. Each individual Algol text may 
be checked by an Algol compiler, but the relationships 
existing between individual texts will not be recognized and 
stored by anyone other than the individual programmer. 

The drawbacks of such a medium are obvious when consideration is 

given to the functions which may be applied to discover infonnation 

pertaining to any particular level of description. One effect of the 

awkwardness of information retrieval is that errors are "corre~ted" 

by patching those texts which are easily available (generally the base 

level program) rather than by a proper modification to the design at the 
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appropriate level. 

''It is the patching of partially correct programs that makes them 
obscure". 

(Henderson and Snowdon 1972). 

In the Pearl system, the computer itself is used to maintain the 

information representing the design as a data base and facilities are 

provided to enable easy access to this information so that 

proper modifications can be made. 

Other tools may obviously be provided to act upon the information 

in the data base. One such is an interpreter enabling the run-time 

evaluation of the program under development. In the current implementation, 

this interpreter is limited in the facilities it provides. For example, 

the.primitive type string has not been implemented whilst error checking 

and reporting facilities, whilst being available, are not as extensive 

as some of those described in Chapter 4. Other tools which could be 

provided in an extension of the current system readily suggest themselves. 

We give as examples:-

automatic or semi-automatic program prover. 

an automatic means of checking for correct 

construction. 

powerful debugging aids. 

translator into an existing language or· to 

machine code. 

The system is used interactively from a terminal (although it can 

be used in batch mode) with the various tools being invoked by a set of 

commands. The *build command was introduced in the previous chapter. The 
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majority of the remaining commands will be introduced in the following 

sections. (For a complete list, see appendix B). Examples will be used 

where appropriate. Several of these are taken from the program 

developments shown in appendices D, E and F. 

6.1. Modification of the Design 

There are two commands which allow the programmer to modify an 

existing design. These both use a '~achine" as the unit of editing. 

Modification may be carried out locally by a replacement command, whilst 

more drastic alterations may be carried out by invocation of a 

deletion command. 

6.1.1. Replacement 

The *replace command is designed to allow the replacement of a 

single named machine by another machine. (As an extension we might 

consider the replacement of a set of connected machines by a different 

set of connected machines). 

The replacement of a machine is not dissimilar to the original 

introduction of a machine using *build. However, it is necessary to 

(a) re-construct the environment of the machine being rcp13ccd,. 

and (b) impose certain additional restrictions upon the replacement 

machine so as not to violate the currently existing 

environment or its development. 

It is a reasonably trivial matter to ensure that condition (a) 

can be achieved, whilst use is made of the dependency relationships that 

are defined between machines (see Chapter 5, section 5.3) to construct the 

necessary restrictions in (b). 

In particular it is required that the specification part of the 

replacement machine should include the specification part of the machine 
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being replaced to the extent that individual concepts are re-introduced. 

This requirement is imposed because no means are provided (except for 

exhaustive search) within the system by which to ascertain whether or not 

an individual concept introduced in one machine has been used by any other 

machine. A different implementation would ease this requrernent. (Appendix 

B contains a complete definition of the restrictions). 

Operation meanings may be changed provided the programmer accepts 

that the new meaning implies the old meaning. This is an instance of the 

fact mentioned above that it is non-trivial (although possible) to discover 

whether a particular operation meaning may have been made use of in some 

machine. 

Figure 6.1 illustrates a part of a Pearl session in which a machine 

is replaced by another, and operation meanings are checked. It is based 

upon the development given in appendix b. 

It will be appreciated that the action provided by the replacement 

command is limited. Figures 6.2 and 6.3 may help to clarifv the command 

further in view of the restrictions given, 

Fi.gure 6.2 shows a design built from S related mad-d.nes 1-11, M2, MJ, 

M4, MS. Each machine is represented as a node. Th"! full 1 h.es linking 

two machines represent the elaboration of a concept introduced by the 

machine nearer the root by the machine further from the root. The labels 

on these lines identify particular concepts. Thus the concept c is 

introduced by Ml and elaborated by M2. The dashed lines between machines 

represent other dependency relationships. Thus M5 is dependent upon M2 

through use of the concept d introduced in M2. 
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+*build 
liner1:'we print an image by printing its lines' 
begin 

states lineprinted(line 1) ,1inebuilt(line 1); 
opera tion lineprint (line 1) 

provided linebuilt(l) yields lineprinted(l) onexit; 

print(image i): 
declare integer j; 
j:=21 : 
while j>1 do 
(j:=j-1 i lineprint (1 (j) of i». 

end 
END OF CHECKING 
NO EBRORS WERE DETECTED. , 

+*rep1ace liner' 
1iner11:'we print an image by printing its lines' 
begin 

states 1ineprinted (line 1),linebui1t(line l)q 
lineempty(line 1); 

operation 1ineprint(line 1) 
provided linebuilt (1) I lineempty (1) 
yields lineprinted(l) onexit; 

1 DeES 
LINFBOILT L 
IMPLY 
LINY-'BUILT L LINEEMPTY ( L ) 
yes 
? T .. 
• I ,: 

LINFPRINTEJ: L 
I MPtIED BY 
LINEPRINTEt L 
yes 
print (image i) : 

declare integer j; 

Figure 6.1 
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of d 

d MS 

Figure 6.2 

Suppose that a decision is taken to replace M2. The replacement 

machine must fit into the position occupied by M2 in the structure of 

figure 6.2. Figure 6.3 shows the structure that is left if M2 is removed. 

'Ml 

_______ / use of d 

d,/ e ~-~:~--_~' ___ M5 
~ If '\ M3 

M4 

Figure 6.3 
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Thus the replacement machine must 

(i) elaborate the concept c introduced in Ml, and 

(ii) provide (introduce) concepts d, e and f. 

The replacement command is intended to illustrate how the programmer can 

make slight perturbations to a design without discarding previous work. 

Obviously, other similar tools could be provided, whilst different implementations 

of the system could relax the restrictions that apply. 

The replacement of a machine which elaborates a data type imposes an 

additional constraint upon how design may proceed. Following such a 

successful replacement, the programmer must provide replacements for machines 

which give elaborations for operatiOns and states which use an instance of 

this data type as an operand or parameter. (This constraint is equivalent 

to that imposed when a machine giving a representation of a data type is first 

entered; see .section 5.2.4.). In this way the programmer is protected from 

overlooking the consequences of a different representation of a data type. 

Figure 6.4 shows an example where this restriction applies. (Taken 

from the example of appendix D). 

The machine "longrep" gives a representation for the type "line". 

Machine "longrepl" elaborates the operation "lineprint" using this 

representation. Subsequently a different representation for a "line" is 

thought more appropriate. The machine "shortrep" replaces "longrep" to carry 

out this change. The programmer is now constrained to give a replacement 

for "longrepl' reflecting the altered representation of a line. This he does 

using machine "shortrep1". 

(A facility is provided to circumvent thiS constraint. The 

programmer may indicate that he wishes to "leave" the original machine). 

6.1.2. Deletion of machines 

By using the command *delete, the programmer may remove a named'. 
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+*build 
longrep:'a line is simply a vector of 20 symbols (integers) , 
begin 

line: declare vector(20)integer symb. 
end 
END OF CHECK! NG 
NO ERRORS WERE tETECTED. 

+*build 
longrep1:'print a line by using prsym' 
begin 

lineprint(line 1): 
declare integer j; 
j:=O; 
while j <20 do 
( j: ::j+ 1; prsym (symb (j) of 1»; 
nlcr. 

end 
END OF CHECKING 
NO FRRORS WERE DETECTED. 

+*replace longrep 
shortrep:'include a count of symhols to be printed with line' 
begin 

line: declare integer f; 
declare vector(20) integer symb •. 

end 
END OF CHECKING 
NO FRRORS WERE tETECTED. 

+*replace longrep1 
shortrep1:'print f symbols using prsym' 
begin 

lineprint (line 1): 
declare integer j: 
j :=0 ; 
while j<f of I do 
( j:=j+1; prsym (s1mb (j) of 1»; 
nIcr. 

end 
END OF CHECKING 
NO rRROBS iERE DETECTED. 

Figure 6.4 
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machine from the data base completely. The net effect is to leave the design 

as if the machine had never existed. To achieve this, the command is more 

powerful" than it might at first appear. 

If a machine is deleted, then all of the data types, operations and 

states which are introduced by that machine are also deleted. It is necessary, 

therefore, to delete, in addition, all those machines which depend upon the 

existence of a machine being deleted. Deletion of these machines causes 

deletion of further dependent machines and so on. In a highly connected 

system of machines, it is easy to see that the explicit deletion of one 

machine can have a drastic effect upon the remainder of the structure. Of 

course, as the data base represents a set of machines which must all be 

CQnnected directly or indirectly to the initial ideal machine elaborating 

the "program" concept, it is a trivial matter to delete the whole program 

design. The delete command should obviously be treated with care. 

Figure 6.5 offers an illustration 

program 
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M2 _ 
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C21--__., 

I 
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If the command 

*delete M8 

is issued, then only machine M8 will be removed. 

If the command 

*delete M2 

is issued, then this will caUSe deletion of machines M2, M7, M5, M6, M8, M3. 

6.2 Interrogation of the design 

A command is available (*list) by which information may be 

retrieved from the data base and presented in readable form to the 

user. The command may be parameterized according to simple rules 

so that the user can request that specific information is displayed. A 

,full list of the options available is given in appendix B. 

Figure 6.6 shows an example of the use of the *list command 

based upon t'he program development of app.endix D. This particular example 

illustrates the formatting feature provided for the display of text. 

Any formatting information present when text is input to the system is 

destroyed. Standard formatting is applied when text is displayed by 

the system for the user, thereby making textual input a less laborious 

task than might otherwise be the case. 

6.3 Design evaluation - program execution 

The *execute command invokes an interpreter to execute the program 

under design. This interpreter has a number of features. Perhaps most 

interesting is its ability to execute a program which is not complete. 

This allows some evaluation of a program design at any stage in its 
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+*build 
jscanner:~setmarks. put each of the 40 marks into image' 
begin operation addmark(integer j, image i vary) 
provided j>O & j<=40 yields true onexit; 
setmarks (image i vary): 
declare integer j; 
j:=O; 
while j<40 do 
(j:==j+1; addmark (j"i» 0, 

end 
END OF CHECKING 
NO FRRORS WERE DETECTED •. 

+*list jscanner 
JSCANNER IS A MACHINE 
JSCANNER:' SETMABKS •. PUT EACH OF THE 40 MARKS UTO nlAGE' 
BEGIN 
OPERATION ADDMARK(INTEGER J, IMAGF I VARY) 

PROVIDED J>O&J<=40 YIELDS TROE ONEXIT; 
SET1URKS (I f!AGE. r VARY): 

END 

DECLARE INTEGER J; 
J:=O: 
WHILE J<40 DO 

( J:=J+1; 
ADDt1ARK (J, I» •. 

Figure 6.6 
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construction. The interpreter also allows a limited amount of interaction 

between the executing program and the programmer sitting at a terminal. 

Some provision is made for error checking and error reporting, the latter in 

a language appropriate to the error condition encountered. 

For a number of reasons, but mainly that of time, the interpreter 

pr.ovided in the current implementation is incomplete and experimental. It 

was considered desirable for some form of interpreter to be provided within 

the system, particularly to demonstrate the feasibility of carrying out 

Some program design evaluation before the level of the base machine had 

been encountered. Thus an interpreter providing some of the more unusual 

features was developed, whilst those features of a more mundane nature 

were either omitted or not developed completely. 

The form of the command is:

*execute machinename 

'l1le action invoked may be considered as "switching on the power" 

to the named machine. 'l1lis machine will then carry out the action 

described by its program part, in general involving the invocation 

of other machines to carry out elaborations of any concepts it requires. 

(Recursive invocations of machines are handled in the obvious manner; 

recall that recursive definition of data types is not allowed). As 

implemented, the machine named in the command must be the initial 

ideal machine elaborating the "program" concept, although an obvious 

and attractive extension is to allow the command to apply to any 

machine. There would then, of course, be a need for some form of 

initialization of any operands. 

6.3.1. The basic execution process 

In a completely elaborated program, execution flow is similar to 

the, flow of a program written in a contemporary programming language 

'equipped with a procedure mechanism (e.g. Algol 60). As described in . 
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section 5.2.5 the declare statements are regarded in a similar fashion to 

operations whose concern is the allocation and formatting of memory •. 

If an operation is defined with a pre-condition or a post-condition these 

are checked prior to execution of the elaboration and after it respectively. 

We will deal in more detail with the execution of programs when not 

all of the necessary machines· have been designed and entered by the 

programmer. Three possible approaches are considered. 

6;3.2. Simulatiori or temporary machines 

A straightforward approach is one which clearly parallels the ideas 

of multi-level modelling (Zurcher and Randell 1968). The programmer 

includes in his design, "dummy" machines which merely simulate the 

necessary effect to produce acceptable results. Then, as design proceeds, 

each simulating machine is replaced by a proper machine designed to overcome 

the difficulty being simulated. Of course, this may involve the use of 

further dummy machines Simulating the new set of primitive notions. The 

simulating machines can, of course, be powerful making use of any information 

which may be available. Aslanian and Bennett (1971) describe a system 

which provides a comprehensive set of simulation concepts which 

substantially increase the descriptive power available to the progra~er. 

No such concepts are provide~ in Pearl. 

However, the facilities provided in Pearl make it a reasonably 

simple matter to develop a program using dummy machines to allow test 

executions early in the development. 

6.3.3. Programmer assistance 

By reason of the interactive, online nature of Pearl, it is possible 

to make use of the programmer to supply values as the result of 

unelaborated operations. Use is made of such information as the type of 

the operands and whether they are vary or not before deciding whether. 
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programmer assistance can be invoked. Figure 6.7 gives a short illustration. 

The t~chnique has a number of advantages and disadvantages. Among 

the advantages is the reduction in the amount of text that must be 

entered by the programmer in order to test a program. He does not have to 

explicitly code and enter machines (even "dummy" machines) to provide 

an "implementation" of operations which he has not properly designed. 

However, experience suggests that the programmer sitting at a terminal 

requires information about the state of a computation when prompted for 

values' and is often surprised by what he is asked to do. This difficulty 

is, of course, closely tied to the problem of relating a program text to 

the actual program execution. It may be that b'etter human engineering 

could alleviate the difficulties somewhat but there appear 

to be limitations to this int,eractive approach. 

6.3.4. Using operation meanings 

Consider the two machines described in figure 6.8. (It is assumed 

that no other machines exist). The obvious intention of the progrmruner 

,is to construct a program which yields, as its result an object nc.uncd 

"page" of type "image", which is in the state "printed". (Ti;is is the 

assertion supplied as the result of the initial machine "compfirst"). 

The command 

*execute compfirst 

activates "compfirst". 

An object of type "image" with name "page" is created. As no 

representation is given, a standard one is used. Control now moves to 

carry out the operation "build" upon the conceptual object "page". First, 

the pre-condition is checked and found true. "Clearfirst" is now activated 
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+*build 
display: 'display values of a function of integers 0-9' 
begin operation f (integer x,integer y vary) ; 

program: 
declare integer (x,y): 
x:=O: 

end 

while x< 10 do 
( f(x.y); 

wr iteint (y) ; 
x:=x+'). 

END OF CHECKING 
NO FRRORS WERE DETECTED. 

+*execute program 
*** UNELABORATEt OPERATION 
F(INTEGER X,INTEGER Y VARY) 
BEFORE OPERATION 
X till S 0 
Y WAS 0 
PLEASE PROVIDE VALUES FOR 
Y 
12 
72 
* •• UNELABORATED OPERATION 

Figure 6.7 
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+*build 
compfirst:'store image of page before printing' 
begin type image; 

states built (image i), printed(image i); 
operation 

build (image i vary) 
provided true yields built (i) onexit, 

print (image i) 
provided built(i) yields printed(i) onexit: 

program: 
declare image page; 
build (page); print (page). , 

assert printed(page) onexit 
end 
END OF CHECKING 
NO FRRORS WERE DETECTED. 

+*build 
clearfirst:~expand build.we will empty the image first' 
begin states blank(image i); 

operation 
clear(image. i vary) 

provided true yields blank(i) onexit, 
setmarks(image i vary) 

provided blanket) yields built (i) onexit: 

build(image i vary): 
clear (i): setmarks (i) •. 

end 
END OF CHECKING 
NO FRRORS WERE DETECTED. 

+*execute compfirst 

EXECUTION SUCCESSFUL 

Fi.gure 6.8 
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to carJ'y out the elaboration for ''build''. The first action is to "clear" 

the object "page". The pre-condition is satisfied, but there is no machine 

available to carry out the operation. Thus it is performed symbolically 

using the post-condition of the definition of "clear" as the statement of the 

l:esult of the operation. As a result the object "page" is deemed to satisfy 

the predicate 

"blank (page)". 

and the pre-condition of the next action, the operation "setmarks" is met. 

In a similar manner, there being no machine elaborating "setmarks", the 

object "page" will subsequently satisfy the predicate 

''built (page)". 

The action of "clearfirst" thus being completed, "compfirst" is 

resumed. A check is made that the elaboration of "build" was carried out 

successfully by evaluating the post-condition given in the definition 

of "build". The "print" operation is carried out in a Similar, conceptual 

fashion. As a result it is determined that the object "page" is "printed" 

and thus the final assertion is met. 

This example indicates how incomplete programs may be executed in a 

meaningful way with some expectation of discovering inconSistencies. 

Obviously there are limitations. Some are described in the next few sections, 

whilst others, possibly more far-reaching, are discussed in Chapter 7. 

6.3.5. The use of meanings and states 

. In the example of section 6.3.4 we described how the post-condition 

'of an operation definition could be used as a statement of its result. 

In the cases given, the actual post-conditions consisted of a Single state. 

States are the only elements of post-conditions which may be used in this 

manner. Figure 6.9 illustrates one reason for this. (This figure is 

hypothetical for illustrative purposes). 
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+*build 
nl:W DO. ' 

begin 
operation makezero{integer i vary) 

provided true yields i=O onexit; 
operation generalop(integer i,integer (j,k) vary) 

provided i=O yields i>j,j>kgk>i onexit; 

program: 

end 

declare integer (a,b,c); 
makezero(a); generalop(aQb,c). 

+*execute n 1 

Figure 6.9 
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When "n1" is activated, it will follow its program and declare three 

integer variables a, b and c~ An application of the ''makezero'' operation 

follows. Suppose that, as it is unelaborated, we make use of the post

condition to act as a stat'ement of the result. Thus the intege~ variab~e 

a is given the value zero and execution of "n1" continues. The precondition 

of "generalop" is satisfied and an attempt is made to fulfill the post

condition. One possibility is to use the known value of a to determine 

a yalue for b so as to satisfy a» b. Thus if b is assigned the value 

-1, then this condition will be met. The second condition now requires 

-i) c, and thus c is assigned the value -2. This results in the obvious 

contradiction -2» 0 from the final condition. Of course it is not possible 

to choose a set of integer values to satisfy these conditions because of the 

theorem 

i) j & j) k i> k 

Unfortunately it would require an automatic theorem prover to 

disco'ver,whether a given post-condition could be satisfied at all. 

The restriction of the use of post-conditions in this manner 

only to those post-conditions which are states, offers a partial solution 

to this problem. However, there are still a number of rules to be observed. 

The first we have hinted at above. If the post-condition of an unelaborated 

operation consists of more than one element, then the list of elements is 

processed left to right. 
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if an operation has a post-condition as 

• yields s(x), -, s(x) onexit, 

then this would be treated as if it was 

••• yields, s(x) onexit 

despite its obvious contradictory nature. 

The other rules are less trivial. The next section is devoted to a 

discussion of them • 

. 6.3.6. Rules for the use of operation meanings in the execution 

of incomplete programs 

(i) The pre-condition of an operation meaning is always a test. 

(ii) The post-condition of an operation meaning is used either as a 

test, or as a statement expressing a result. The only element 

possessing this duality is the state. Whether a state is 

used as a test or as a statement is dependent upon whether 

or not the operation itself is elaborated (c) or unclaborated 

(u), and also whether the state itself is elaborated (c) or 

unelaborated (u). Figure 6.10 gives a table showing which 

particular use a state is put to. The table is described 

in terms of an operation b and a state bd where 

operation 

provided 

b (. • .) 

yields bd ( ••• ) onexit 
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b bd Test or 
statement 

Case 1 u e test 

Case 2 u u statement 

Case 3 e e test 

Case 4 e u statement 

. Figure 6.10 

Neither case 2 nor case 3 from this table call for much comment. 

If both the operation b and the state bd are unelaborated, then the 

state acts as a statement; if both are elaborated the state is a test 

upon the consistency of the elaborations. 

In case 1 the programmer has provided an elaboration of the state 

but not of the operation. Presumably the ultimate elaboration of b 

will reflect the given elaboration of bd. If the execution process 

was to interpret bd as a statement then, because bd has been elaborated, 

it would be necessary to ensure that the elaboration of bd was a150 

true. It is not difficult to see how this could lead to either 

non-deterministic or contradictory situations. 
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example: 

In section 6.3.5. an example was discussed to show why only 
states may exhibit the dual role of statement and test. 
This example is exactly similar to the situation we are 
now discussing when viewed as follows. Suppose a data type 
D is introduced together with a state S. S· is used to 
define an operation F as:-

.operation F (D x) provided yields S(x) onexit 

S~bsequentlyD is elaborated as having 3 integers components 
i, j, k, whilst S is elaborated as :-

S(D x): 

(i of x> j .2i x) & (j of x) k of x) 

& (k of x) i of x) 

An execution of a program invoking the unelaborated operation 
F(x) must not use the state Sex) as a statement because the 
elaboration of sex) cannot possibly be satisfied. 

In the absence of a tool able to resolve inconsistencies of the 

nature of the example, the obvious course is taken of insisting that 

an elaborated state always implies a test. 

Case 4 of figure 6.10 arises when the operation has been elaborated 

but its meaning is still expressed at the higher, unelaborated lev,,! vf 

description. It is therefore meaningless to test the state, as it should 

not have been changed as a result of the action caused by the operation 

elaboration. The state is thus interpreted as a statement. 

Both case 1 and case 4 are good illustrations of the "close" 

conceptual relationship that exists between operations and states. 

(see section 5.2.6.3). These two cases are examples of the difficultic~ 

that are liable to arise if an operation is described at a different level 

to the state which defines it (or which is defined by it). The 

relat~onship between an operation and the states used to define its 
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meaning is similar to that which exists between a data type and the operations 

allowed upon instances of it. It will be appreciated, therefore, that 

individual machines do not represent individual levels of description; 

there will generally be several machines within that single level. The 

cases we have discussed above therefore represent not only the execution of 

a program not completely defined in terms of the base language, but also a 

view.of such an execution even when closely related concepts of the program 

are themselves developed to differing degrees of detail. 

6.3.7. Error reporting and debugging facilities 

The structural nature of the set of machines enables the occurrence 

of 'any run-time errors to be meaningfully related to the original program 

text as described in Chapter 4. In the current implementation of the 

interpreter there are a few automatic checks carried out at run time. 

These include subscript checking and arithmetic overflow but not such features 

as ensuring a variable has been assigned before its value is US<2(:. In addition· 

a number of features of the notation enable the programmer to specify 

explicitly that checks be made. (e.g. assert expressions, pr'.'.- and post

conditions on operations and elaborations etc.). 

When an error is detected, the execution process provi'!c'; CC(Uli •• 

information to the programmer. This consists of a meSs3gc '"'ll:1l"0;)rintc to the 

fatilt, followed by material indicating in which ma~hine it OCdlC."cd .:md at 

which point in its program. This is given in the form oi a source li.stin.; 

with a pointer. Next the programmer is given a trac~ of machine activations 

So that he has some additional contextual material upon which to base his 

investigations. Finally the values of any pertinent variables arc listc~;. 

Figure 6.11 shows an example. 

The trace ot machine activations and the textual pointer referencing a 

failing machine are particularly related to the structure of programs 
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... buUd 
iDsert:'insert an integer value into a list' 
begin type integerlist; 

?peration insertvalue(integerlists vary, integer i); 

program: 
declare integeriist s; 
declare integer ii 
i:=O; 
while i< 10 do 
, i: =i+ 1 ; 

insertvalue (s,i» • , 
end . 
END OF CHECKING 
NO PRRORS iBRE DETECTED. , 

.. tbuild 
listrep:'a list has 9 elements' 
begin 

integerlist: 
declare vector (9) integer element; 

.declare integer count; 
count:=O. , 

end 
END OF CHECKING 
NO :!"RRORS ~BRE tETECTED. , 

+*build 
listinsert:'insert according to vector representation' 
begin 

insertvalue(integerlist s vary,integer i): 
count of s:=count of s+1; 
elernent(count of s) of s:=i. 

en(l 
END OF CHECKING 
NO FRRORS ~ERE tETECTED. 

+*execute prog ram 
*** ERROR: SUBSCRIPT ERROR 
CURRENT MACHINE IS lISTINSERT EXECUTING OPERATION nSI;RTVALU.o: 
ERR('IR AT: 
COUNT OF S := COUNT OF S+1; 
ELEMENT(COONT OF S) OF S := I. 

I 
LISTTNSER1 WAS. CALLED FROM INSERT EXECUTING OPERATION PRCGFA~ 
VALUE OF INDEX IS 10 
DEClARED SIZE IS 9 

Figure 6.11 
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written in Pearl. The implementation does not provide either frequency 

counts (Satterthwaite 1972) or a complete correlation between the static 

and dynamic representations of a program. (Dijkstra 1968c). Both would be 

worthwhile and, probably, non-complex additions. 

The system does not, as implemented, include the more attractive 

features of online debugging systems such as the interrogation of named 

variables or the program counters of machines. As is described in Chapter 4, 

features such as these can increase the understanding that a progr~er 

has for a program and thereby raise his confidence in it. 

Further comments related to possible extensions to the current Pearl 

implementadon (and thereby to similar systems) are given in the next chapter. 

6.4 Summary 

This chapter has· described those facilities of the Pearl system 

wHCh enable modification, interrogation and evaluation of program designs. 

Pearl represents· an attempt to provide a unified environment for the 

development of computer programs. This environment is provided by meanS of 

a design notation in which a developing program may be described, together 

with.a set of tools to help the programmer to a realization of ;) l'~·"')~ram 

in which he can place a high degree of confidence. Many of tr.cse (:olll s are 

already available in contemporary computing systems, but Pearl c.dl:iti.onall)' 

provides some which are unusual as well as exerting a particular influence 

over the complete design process. This influence may be traced from the. 

earliest conception of a program design throughout, and even beyond, the· 

normal life of the program itself. Pearl is able to do this because 
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it represents an information system for the total design proco.ss. 

There are a number of points of discussion that the design of 

Pearl raises. It has deficiencies and weaknesses of its own besides 

being based upon some philosophies about program design that are, 

to say the least, the subject of considerable discussion. In the next 

chapter we attempt to give an evaluation of the experimental system 

including suggestions as to how noted deficiencies could ros~ibly be 

corrected and the power of systems like Pearl extended. Also we 

discuss how Pearl as a system relates to contemporary programming 

systems. 



- 174 -

Chapter 7: 

Discussio'n and Conclusions 

Experience in the use of Pearl has shed some light upon the 

contribution that such systems may make to the programming activity. 

We will discuss some points in this chapter, particularly those which we 

see as relevant in the light of likely future developments. 

In this context, it is important to relate Pearl to certain other 

tao Is and techniques that are current ly availab le to the prograHuncr, or 

which have been proposed. 

Finally we give some indication of the success of the current 

investigation. Several points of argument are raised, even in the 

underlying design philosophies. It is an important result of this 

work to decide whether decisions taken on the basis of these philosophies 

have been substantiated. 

7.1 Some deficiencies and limitations of Pearl 

In Chapter 5 (section 5.4) we described certain omissions and 

deficiencies in the notation of Pearl. We have said little abollt 

equivalent inadequacies in the system as a whole. Some of Ll..:!se L.,.'~ 

been recognized from the outset in that certain influences upon :.1.(' 

design of the system (e.g. human engineering) were not catered [or 

specifically, or that the experimental nature of the implementatiun 

made it impossible to include several desirable features. Other 

deficiencies have been revealed by use of the system. 

7.1.1 Machines and levels of description 

In Chapter 3 we developed the idea of a level of description being 

characterized by four sets of concepts (D,F,C and S). Pearl is built 

around the notion of allowing the representation of a program at a level of 

description chosen by the programmer. This freedom is provided by the. 
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mechanism of the 'ideal' machine whereby the programmer specifies elements 

'for the characterizing sets. There is, therefore, a very close correspondence 

between an .ideal machine and a level of description. However, this 

correspondence is not ,one to one. A single machine (together with its 

environment) need not completely represent a single level of description. 

This is a natural result of the concept of a machine as carrying out a 

.. single elaboration. The specification part of each machine thereby 

introduces only those concepts necessary to carry out this elaboration, 

whether or not these concepts characterize a complete level of description 

in t,he sense that all related concepts are introduced. 

It is arguable whether or not it would have been better to have made 

a One to one correspondence between machines and levels of description. For 

a number of reasons it was decided not to do this. 

1. A machine represents a single design decision. 

2. A machine was chosen as the basic unit of information in the syste:n. 

As such it should be neither textually unwieldy 

or potentially complex. The uniform nature of all machines as 

the only building block was considered important. 

3. At any stage of design', the programmer should Lot neocd re· ~:)C!ci [y 

more than is necessary to represent a particular dccisio~. 

4. The system could take care of the need to gather together ... set of 

~achines representing a complete level of description. 

Unfortunately, it is often the case that a programmer finds it 

necessary to introduce machines of not inconsiderable complexity (se,' 

for example the development shown in appendix E). Stoy and Strachcy (1972) 

have remarked that in programming there is a certain requirement for a 

conjunction of autonomy and hierarchy. This is apparently reflected by the 

complexity of' certain individual machines. 
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However, we believe that the concept of a machine is satisfactory in 

an environment such as Pearl, although it is possible that a smaller unit 

of information might be desirable. It would then be possible to re-investigate 

the relationships between the idea of a machine and the characterization of, 

levels of description with a view to obtaining a closer correspondence. 

There is a not inconsiderable problem here of course. The concept of 

a machine does provide a useful, self-contained, structural unit of design 

which enables the imposition upon the programmer of a significant design 

discipline. Smaller information units, whilst arguably having Some 

advantages, have some potential dangers. It would be necessary to 

represent more relationships amongst such units than is the case with a 

machine~ The programmer would have to be aware of these and tbe imposition 

of a satisfactory design discipline becomes a more difficult problem. 

Naturally this raises the question once more of how much 

freedom the programmer should be allowed. It must be said, however, that 

it is the author's belief that it is better to err on the side of too much 

restriction than too little, for programmers will generally abuse it if 

they are given too much. 

7.1.2. Machine environments and design strategies 

At any time in the development of a program, the cnvironr::ei,t 

available in a machine represents the information contain,~d in ;:hc 

design as 'it has been developed to that point. A subsequ~nt inspection of 

the environment will indicate that the design has progressed, but without 

indicating exactly how it has progressed. Thus a notion of progrQssive 

design is available from an inspection of the changing environment. 

The strategy for design progress provided in Pearl is only one 

of a number of possibilities. In Chapter 3 (section 3.2.2.) we discussed 

a number of basic'design strategies and concluded that one which alloweJ the 
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programmer to develop his program starting from the level of the ~roblem 
t" 

description would have most advantages. The rules representing the 

design strategy of program development in Pearl are based upon this 

conclusion. Thus the environment available to a new machine represents the 

total' design as developed and there are rules dictating how a new machine 

can interpret and modify this representation. The particular representation 

and set of rules has proved to be adequate in the context of the design ' 

strategy they encourage. 

The particularly rigid discipline enforced by Pearl has proved to be 

of benefit in the programming task in that it has led to a better appreciation 

of difficulties inherent in the problem being tackled rather than problems 

of choice amongst possible representations in some programming language. 

As a result, the programmer is encouraged to try to understand what he is 

reaily trying to do, before he does it, rather than the more commonly 

encountered situation of the programmer trying to understand why he has done 

something already. 

On occasion it has been found that the disCipline is too rigid. 

In Pearl the level of the base language is fixed and all progr;.i:lls !11 ljsl be 

elaborated down to this level. There is no reasonab Ie way by "/h: ell 1:~le 

programmer can, even in a consistent fashion, raise the level of C:1C base 

language concepts (i.e. a bottom-up strategy). Perhaps a system such as 

Pearl shou'ld be neutral as to the direction in which design proceeds. 

However, it should be noted that such a relaxation introduces a further 

degree of freedom into the design process, with consequent methodological 

issues raised. In Pearl it was decided to take a particularly rigid 

viewpoint and limit this freedom quite extensively. It will be appreciated that 

even in Pearl, there are situations where the programmer still has considerable 
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freedom of design. 

example: 

the number of operands in an operation, in particular the 
freedom to define an operation which alters the values of 
any number of its operands. 

As alternatives which could be implemented in a system based upon· 

Pearl the following are suggested for consideration. 

1. Program development may additionally proceed in a bottom-up 

fashion. This is allowed by a relaxation of the rule that a 

machine may only elaborate a concept that was present in the 

environment before the machine was defined. 

example: 

A machine X could both introduce and elaborate a new concept Y. 

If this extension is to discipline the programmer to a pu.c 00~ ::O.~i-Up 

development, then the elaboration of the concept Y mu~t 01".1:, r .. ;.;':., 

use of concepts which have a definite representation in the !.lase 

language. This is probably an unnatural restrictio:1. 1t 1"0uid ;;1 pear 

more reasonable to allow elaboration in terms of concepts whVh ~",y or 

may not have a definite base language representation. The progra,mcr 

may then develop programs, not only from the top or from the botu>:ll, 

but also from the ''middle'' (up or down). 
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2. In suggestion 1, the design is still represented by a single 

erivironment. It is possible to change the representation of a 

design by adding structure to the environment. We can envisage a 

structure based upon scope rules for machines, so that only a sub-set 

of the total set of design concepts is available to anyone new machine. 

example: 

Suppose there is a concept c present in the total 
environment. A new machine N may not wish to be told 
of this concept so that, although it has a requirement 
of a concept with the properties of c, it can, for 
instance, introduce a concept c with similar properties. 
Of course, the design may be such that the new machine 
N should not know of the existence of c. Such situations 
may arise in programs being developed by several pl'op.le 
where the single, global environment of Pearl could have 
some disadvantages. Individual designers should be able 
to derive their own parts of the program in a manner 
which is unimpeded by others. 

3. As an extension of 2, different representations of the same concept 

could be allowed to co-exist in the design. This could be of use as 

a meanS of archiving the development process, or for the i':I;); _,;,mLation 

of versions developed by two or more programmers each in[luenc~d by their 

own design requirements, or of versions developed to cope witl: ~xpected 

Variations for program use, or to cater for program portability. 

examples: 

(a) It may be possible to develop a compiler such that by 
changing the representation of the concepts of code 
generation new compilers could be produced easily for 
different machines. 
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(b) Some decisions made during development of a program may 
be based upon predictions of input load. Versions 
allow different representations to be developed according 
to a set of differing predictions. 

Such a scheme is suggested by Dijkstra (1972a) with the notion that 

a program is constructed by making a necklace of pearls chosen from amongst 

a set of potentially useful pearls. The ultimate extension to such a scheme 

is to allow the choice of a particular version of a representation to be left 

until the program is actually executing. 

Experimentation with the 3 alternatives suggested (and others) may well 

be an interesting exercise. However, such experimentation is likely to be 

subJective according to individual progrannners and situations and thereby 

be difticult to evaluate. 

7.1.3. Extended notion of states 

The concept of state as described in chapters 5 and 6 has proved to be 

a useful tool in the expression of the meanings of a conceptual operation. 

A state allows the programmer a means of writing down his intentions in a 

formal yet descriptive terminology which relies heavily upon on in~0rrr0tation 

from natural language. The rigid nature of the syntax imposes :l rcquirera,~nt 

for careful expression and contributes to considered design in much the Si.Jlle 

way as does the construction of assertions about a program (see Chapt~r 4). 

The very usefulness of the technique draws particular attention to its 

other limitations and restrictions. There is therefore an attraction in 

investigating how these restrictions may be relaxed. 

The basis for the restrictions lies in the desire to use operation 

lllC;!anings to define the effect of unelaborated operations at run time. The 

two main restrictions are:-

(i) Meanings should be completely deterministic, and 
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(ii) it is not possible to use states (reasonably) to express a 

relationship between operands of an operation. 

Relaxation of restriction (i) introduces, in theory, combinatorial 

problems, as an operation may produce a number of different results, each 

of which must be considered in a state test of a program. Henderson 

and Quarendon (1974) describe some work in this area. Figure 7.1 however, 

gives an example of the additional power of expression which can be gained 

if the potential combinatorial explosion can be overcome. 

The operation "read" has a result which is determinable only when 

supplied with additional information. The program illustrated in the figure 

is one which occurS frequently in practical programming situations and yet 

there is no way of representing it in Pearl without including a deterministic 

mechanism explicitly in the form of flags or other testable relationships. 

Figure 7.2 illustrates the difficulties to be overcome if relationships 

between variab1es are to be represented. The specific problem is to determine 

whether or not the final assertion is satisfied. If not, then what 

relationship does hold between the cards a and b? On the other hand if the 

assertion is satisfied, then how is such a relationship maintain(~c! ,~l', 

perhaps of greater importance, how can it be detected that 50m2 

relationships cannot possibly be maintained? It is the author's bel icf t;",at 

a programmer should be able to write down such things as non-d~t~rministic 

results, or results which are relationships. In many cases there is no 

. reason why this should not be possible provided the programmer is in full 

control of what he is doing. The difficulties arise because it is necessary 

to take precautions to warn a programmer when he has lost sight of his 

purpose. Again, it is a matter of deciding how much freedom progr~.ers 

should be allowed. 
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type card; 
type cardreader; 
states reaoin (card. C), eof (cardreader r) ; 
opera tion readJ(card c vary,. cardreader r) 
provided 0 o.yields readin (c) 

or eof(r) onexit; 
program: declare cardreader r, card c; 

read (c,r) 
w bile -oeof (r) do 

( 0 't 1 • 

rHad(c,r) ); 

type card; 
relation samecar1(card(a,b»; 
opera tion read (card c vary): 

Figurte 701 

operation copycard(card a vary, card b) 
provided readin (b) yields samecard (a, b) 

onexit; 
program: declare card (a,b.c); 

read(a); 
copycard (b,a) ; 

assert samecdrdia,b) before 
read (c) ; 
copy car 1 (b,c) ; 

assert samecard (a,c) .~~ 

Figure 7.2 
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The "vary" mechanism 

One concept that has been found wanting is the "vary" mechanism 

applicable to the operands of an operation. (see section 5.2.6.1) •. 

The idea of an "invariant" as suggested by Hoare (1972b) 

. has a great attract~on as a more powerful mechanism which serves a 

similar purpose. The invariant allows the actual representation of a data 

oQject to change without affecting the abstraction of the object as used at 

a higher level of description. The vary mechanism prevents any such changes, 

whether or not they are visible to the higher level. It is not possible,. 

therefore, to change the representation in any helpful manner during 

program execution (the "benevolent side effect" Hoare 1972b). 

In order to allow an invariant to apply to a data object, it is 

necessary to provide a means for variable initialization. The condition 

of the invariant is then established before any operations may b~ carried out. 

This may be done by an extension of the ~ statement as illustrated 

below. The example is based on one from Hoare (1972b). 

.9:.1?.£ 

states 

smallbtset invar limited; 

limited (smallintset s); 

The st~te "limited" is intended to refer to a bound vn the number 0; 

elements in a "smallintset". The invar clause is equivalent to the: :lvst

condition of an operation statement. If an instance of a "smallintsct" is 

declared in a machine program, then this instance should invaria:)ly sat isfy 

the condition of being "limited". If an elaboration is given for "smalli"tset:", 

then it is the responsibility of this elaboration to correctly ensure that the 
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appropriate operations are carried out so that instances of "smallintset" 

, will be initialized to the state "limited". A check that Ibis has been done 

milY be carried out during execution in a straight forward way by using the 

~ clause as a test. For this test to be meaningful, it would be expected 

that'the terms occurring in an ~ clause would also be'elaborated. 

"smallintset" might be elaborated as: 

smallintset: declare vector(100) integer A; 

declare integer m; 

m: = O. 

and "limited" as: 

limited (smallintset s): m of s)= 0 & m.2i s (= 100. 

The test of the correct initialization of "smallintset" is thus 

expressed in terms of the elements of its representation. 

Thus, 

If an elaboration of "smallintset" is not given, executions of 

programs declaring instances of "smallintset" may still be carried out by 

using the invar clause as a statement as is possible with the post-condition 

of an operation statement. 

7.1.5. The assignment operato'L" 

The operation of the assignment of a value to a variable is a basic 

one in a wide class of contemporary progrrunming languages. The base langur.ge 

of Pearl is a member of this class. It is fitting that this should be so due to 

, the, widespread use of languages of this class. The generalized use of the 

operation in Pearl and the way in which it is handled calls for a few com~entS. 

Although the scheme that has been implemented is satisfactory (see 

section 5.2.4) it has drawn attention to a number of points. Firstly, the 

assignment operator symbol is unique amongst other operator symbols, in that 

its functional representation is context dependent. This can be defended on the 

grounds of familiarity of use and its common purpose, which is context, 
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independent. This suggests that assignment should be treated as a well 

understood operation of the base language, much like subscription. 

Assignment is a much more complex operation than subscription (which 

we may view as an operation on a type "address"). How an assignment is 

carried out is dependent upon the representation of its operands.. This may 

not be sufficient information however. We can envisage situations where 

further information might be necessary, particularly if the notion of a type 

is parameterized in a manner equivalent to the parameterization of classes 

in. SIMULA 67. 

example: 

table (integer n): 

deciare integer size; 

declare vector (n) line 1; 

size: = n. 

It is thus reasonable to allow the programmer to give elaborations for 

.. any assignment operator used between operands of a conceptu"11 type. Thus the 

operation of assignment should, i11 general, be viewed as a conc(';>L ... L1l o~'('cation 

just as any other introduced by the programmer. 

In the implementation of Pearl the prograrru-ner may use th0 Cor,;.nor; 

symbol (:=) for all assignments, but must also provide elaborations f0r ar.y 

assignment which may be invoked between operands which are not of a primitive 

type. This has led to a number of difficulties, particularly in the con:ext 

of a program modification uSing the commands *replace or *delete. The 

usefulness of the flexible viewpoint has not been confirmed in practice and 

it is doubtful that any significant benefit was derived from the additional 

, en~ineering effort required in the implementation. 
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1.1.6. .Human Engineering 

It is important that, in any system incorporating a human element, the 

interfaces between that human element and other parts of the system are well 

engineered. In an interactive system such as Pearl, potential users must not 

be deterred because of the form of their contact with the system. In the 

current implementation, whilst not disregarding this issue completely, it has not 

been explored to any depth. This was done consciously in the interests of 

limiting the task of implementation. Where pOSSible some attempt has been made 

td make the system easy to use but on occasion human engineering has been 

~eglected. This has had the effect that there are a number of examples where, 

.itl a~ environment other than one which is purely experimental, potential users 

'might well at first find the system unattractive. 

The notation itself is one such example. It was chosen for its 

simpliCity and readability. The similarity between it and other high level 

languages is not c.oincidental.. Many of the concepts we believe to be 

desir,able are to be found in contemporary languages and it is thus appropriate 

to take advantage of well understood syntax. Unfortunately, such syntax 

can be verbose for a human being sitting at a terminal. The rcqu:: rcr,;ent for 

unique names leads to the invention of long identifiers (not in i·._~,d[ iJ bad 

thing) thereby adding to the overall textual length of progr~s. 

It may well be that we should develop a language offering ::wo different 

representa~ions*. One representation is that used for program input (e.g. from 

a terminal), the other being used when the programmer wishes to inspect his 

program. Each representation would be derivable from the other in an 

automatic fashion. 

The handling of errors discovered as a machine definition is entered ~s 

*This idea was first communicated to the author by J.D. Ichbiah. 
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another source of frustration for the user of the current system. In an 

interactive system, it is particularly attractive to the user to be able to 

correct immediately errors discovered by the compiler. Because of the 

parsing method employed by the syntax checking routines of Pearl, this is 

not pouible (see appendix C). Indeed it has been found most appropriate 

to terminate the checking of input completely once a non-trivial error 

has been encountered. Naturally this can be extremely frustrating for the 

user. 

In order to make systems such as Pearl more attractive there are 

facilities which could be considered in addition to the removal of the 

sources of frustration noted above. Pre-eminent amongst these is an 

editing system allowing the user to edit existing machines in a microscopic 

fashion (in comparison to *replace or *delete), so that the large w~ount 

of textual input currently necessary may be reduced. 

There are obviously many issues involved when the human engineering 

of an interactive system is considered (e.g. positioning of keys, type of 

function provided automatically etc). An appreciation of these may be gained 

from the work of Hansen (1971a, 1971b) or Mitchell (1970). 

7.1.7. Miscellaneous 

We close this discussion with a section on some other possible> 

extensions to the current system. 

An additional method of passing information between ,,;.:ccutinc; r.la,:l;ines 

would often be useful. As a candidate for this we suggest a set ot 610b~1 

variables, perhaps organized in subsets according to m:.1c!;incs, WiLli ;1C:CC~S 

controlled in a similar fashion to the accesS of operation, state or type 

names. However, it is necessary that the use of such global variables 

be obvious and restricted (maybe read only) to disallow obscure and 

complex relationships amongst machines. The class concept of SIHULA 6" 
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could afford a possible solution. Unfortunately the scope rules of'that 

language suffer from their development from those of Algol 60 which can be 

the source of much devious program construction. The named common areas of 

FORTRAN may be more appropriate~ provided that additional restrictions are 

imposed to prevent misuse. A possible approach would be to use an explicit 

named set of variables (implemented by some machine) together with a 

statement of an invariant to hold over these variables. 

It may be possible to develop an extension to Pearl which has a 

substantially different base language (e.g. one providing storage 

management primitives) or one which allowed generalization of the control 

structure elements in addition to operation and type. 

The elements of the 'system itself can be expanded to provide, for 

instance further interrogation facilities or (as suggested earlier) editing 

and formal proving tools. Arguments can easily be made for any of these, but 

,it is necessary to beware of allowing the system to become too large or too 

complex. One answer to this could possibly lie in making the system itself 

extendable so that a user could build up more complex facilities to satisfy 

his own requirements. This is a mechanism often seen in the cOl\1J-;"al,(i j ~nguages 

of interactive systems, particularly those of text editing systems. (van Dam 

and Rice 1971). 

The system could also fruitfully be extended to include a mechanism 

for constructing efficient machine code programs to take full advantage of 

hardware. Indeed, this could possibly be combined with the interpretation 

techniques currently used as the basis of the program testing tools prov:'cied 

by the system. The testing and debugging system described by Satterthwaite 

(1972) is based upon the use of machine code rather than interpretation, whilst 

the incremental compilation techniques described by Mitchell (1970) arc of 

obvious r'elevance. 
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Hopkins (1970) has suggested that, because O.f the redundancy of the 

informatiO.n available in a structured develO.pment O.f a pr~ gram, it may be 

possible to carry out a substantial amO.unt O.f optimization when prO.ducing 

the executable cede f~r the completed prO.gram. No. wO.rk has been carried out 

en these lines within the implementatiO.n O.f Pearl. 

7.2 The fallibility O.f Pearl - an example 

It is apprO.priate to' illustrate that even simple programming errO.rs 

can be made and may pass undetected when using Pearl. This comment is 

pO.ssibly teo' strO.ngly wO.rded as the error which we shall describe was 

eventually discO.vered and certainly could have been discO.vered earlier, 

althO.ugh for reasons we give below the prO.grammer may be discouraged frem 

making this possible. 

In appendix E is shown an example of the design of a program to solve 

i:he eight queens problem as posed by Wirth (1971b). The relevant portions. of 

this design are repeated in figure 7.3. 

The concept behind the design of the program is that of moving a "pointer" 

over a "board" and testing the squares pointed at by the pointer. In machine N4, 

the pointer is represented by two integers, one to point at rows, ",.J onc to point 

at columns. The crucial error has been made by this choice of reprc:;cntation 

in terms of base language concepts, but more of that below. Ir. H4G, the> operation 

,"regress" is elaborated in terms O.f this representation O.f a pointer. This 

involves the twO. operations "findqueen" and "removequcen", both of which 

use integer operands to identify the relevant square on the board. During the 

original design of this machine, the use of one of these operations was specified 

wrongly insO.far as the logical correctness of the program was concerned. In fact 

the row and column pointers became interchanged. When the program was run it 

did not, of CO.urse, perform satisfactorily. Eventually the error was found 

by inspection and corrected. 
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m4:'now a pointer points to a column and a row' 
begin 

pointer: declare integer (row,col). 
end 

. , 

m4g:'we regress by using old information' 
begin 

operation findqueen (board q,integer row vary, integer col); 
operation removequeen(board 9 vary,integer row,integer col); 

regress(board q vary,pointer p vary): 
declare integer (i, j) ; 
j:=col of p; 
j:=j··1; 
if j>O then 
( findqueen(g.i,j); 

removegueen (g,i,i): 
if 1:.::8 then 
( j:=j-1: 

if j>O then 
( find queen (g,i,j) ; 

removegueen (g. i. j) ) ) ; 
col of p:=j; 
row cf p:=i+1. 

FigurE- 7.3 
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However, the error need never have occurred if the poin~er had no~ been 

. represented by two objects of the same type. If a poiriter had been 

represented as a "rowpointer" and a "columnpointer", then any interchanged 

use would have been discovered by reason of the stringent type che~king. 

There is however a disincentive to carrying out the design in this way 

which it is particularly instructive to describe. If the design had been 

carried out according to the second alternative we described, than the two 

types "rowpointer" and "columnpointer" would each have separately required 

elaboration. Suppose a rowpointer was represented as an integer. Then the 

. operation "findqueen" for example, which has both a columnpointer and a 

rowpointer as an operand will require elaboration before a columnpointer can 

be elaborated. The programmer must introduce a new operation (which we might 

call "newfindqueen") which now has a columnpointer and an integer as operands. 

Once he has done this for any similar operations he may give a representation 

for a columnpointer as an integer and elaborate "newfindqueen" etc. into 

operations having two integers as operands. The intermediate operations 

serve no purpose other than transforming one operand of the original set of 

operations in the next level of representation as a step towards lh2 

transformation of the complete set of operands. At each intcrmcdi. .. \:C' level, 

however, it is possible to perform a check upon what is written down although 

even at the lowest level there is an operation which has two integers as 

operands. and so the error can be repeated. Hopefully the prograrrJTler will have 

a better understanding of what he is doing however. The notatiun will help as 

well, as one of these two operands should always appear in the context of the 

.2f operator. 

The unfortunate disincentive is the large amount of text which needs to 

be input to prevent such errors occurring. As a human being carrying out the 

. programming task, the author (who was the programmer at fault) was not.prepared 
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to accept this additional work in return for such (seemingly) meagre benefit. 

The penalty was paid in full. 

The moral is, of course, that no matter what tools are provided, 

the human user may be guaranteed to misuse them or to fail to appreciate 

their true worth. 

7.3. Relationship with other tools and techniques 

The Pearl system has much in common with other tools and techniques 

currently available, Some of which have been already noted. This is to be 

expected as we do not claim to propose any new or startling tech~ique to be 

applied in the programming task. What has been done is to look at the different 

, tasks involved in programming and to select those approaches which are considered 

likely to make the whole programming task ~ comprehensible. The words ~ 

and ~ in the last sentence are stressed because we have taken the view that 

programming covers more than the initial creation of a definitive piece of text. 

Rather, programming is an activity which encompasses the life of a program, from 

its conception to that time when all physical trace hss been lost. 

The Pearl scheme is very closely related to the ideas of "structured 

programming" as described by Dijkstra (1972a). However, Pearl is :norc rigid 

in the form that development may take, whilst the use of the computC'r allows 

not only a means of enforcing the discipline, but also a \~ay of providin6 a 

powerful set of tools to actively assist the programmer during (and after) 

the development. Thus there is some reward for the prograrr~cr who follows the 

design discipline imposed upon him. 

In Chapter 5 we discussed both SIMULA 67 (Dahl, Myhrhaug and Nygaard 1968) 

and ECL (Wegbreit 1971) as extensible languages. It would, of course, be possible 

to build a system similar to Peari around a given extensible language encouraging 

the necessary design discipline that we regard as lacking in such languages. 

However, it is the author's belief that the necessary restrictions to apply such 
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a discipline would have a drastic effect upon the language. 

In Chapter 6 we described how Pearl is related to the work 

of Zurcher and Randell in providing a scheme for the evaluation of incomplete 

program designs by test executions. Use has also been made of the notions of 

assertions about programs although more in the manner of maintaining or driving 

the program design than in generating verification conditions to be proved by 

an automatic theorem prover. 

Although Pearl is designed specifically for the development of one 

program by a single programmer, it has several similarities with systems 

aimed at the problems of a team of people constructing a large piece of 

software. Pearson (1973) and Falla and Burns (1973) give outline 

descriptions of such systems. Both of these systems and Pearl rely upon 

the construction of a data base to represent a developing program. However, 

Pearl differs particularly in its emphasis upon the methodology of program 

construction. Both of the other cited systems are principally concerned 

with project control, although attention is paid to the structure of the 

reSUlting software at the level of individual module relationships. 

The Le2 system (Mitchell, Perlis and van Zoeren 1968) was designed to 

see how the computer could be of assistance in the top-down design of programs. 

,It is an interactive system using program execution as the main source of 

design information. The programmer may enter program text in the forT.! of 

"parts" which may be likened to procedures. If a "part" is discovered to 

be misSing when execution takes place, the execution process gives the 

programmer the opportunity to enter the necessary text before resuming. 

However, Le 2 gives no other assistance in the enforcement or cncQuragc;-;-u371t 

of a discipline for design. The programmer has complete freedom to construct 

programs as he likes and there is, therefore, an equivalent methodological 

difficulty. Le2 provides no mechanism at all for the testing of incomplete 
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programs. If he wishes to do this, then the programmer must provide, 

explicitly, executable temporary code to implement "parts" which are missing. 

(ThiS is equivalent to a programmer in Pearl entering "dummy" machines as 

described in section 6.3.2.). 

In a paper given at the I.F.I.P. conference in 1971 (Floyd 1971) there 

appears an example of a hypothetical man~achine interaction to construct a 

computer program. Floyd calls for the usual tools of syntax checker, code 

generator, program executor, prompter and file handler. In addition he suggests 

that the machine might continually check the consistency of the program against 

a set of specifications. This would involve a proof of the semantic correctness 

of the program, a proof of the termination of iteration, and countcr-examples~ 

incorrect programs. Of particular note in, his example is the apparent hierarchical 

design strategy and the need for intelligible interaction between man and 

machine. The interactive program verifier described by Deutsch (1973) is 

based upon some of Floyd's proposals. 

A further proposal is made by Freeman (1973). Freeman describes the' 

tools and techniques that his system will provide as follows: 

". •• an integrated programming environment ••• in which all the 
tools needed to develop a program are immediately availabl~ at the 
same level of control: editors, filing systems, cOffipil~rs. debugging 
systems, I/O facilities; such a system is usually interactive". 

Freeman takes functional programming (Freeman and Newell 1971) as the 

basis for program design. This scheme is again hierarchical in nature. 

Conspicuous by its absence in the list presented by Freeman is any tool 

concerned with checking the logical correctnesS of a program or part 

thereof from the text alone. 

The implemented Pearl system is much closer to Freeman's proposals than 
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to Floyd's in that they both lack a complete logic checking tool. Pearl 

does, however, offer some such capability through the design of the notation 

and the static checks that are possible. It does not, however, go to such 

lengths with the debugging facilities as suggested by Freeman, although there 

is no reason why future developments should restrict themselves in this 

direction. 

These proposals together with the systems described by Pearson (1973) 

and Falla and Burns (1973) are of particular interest in that they indicate 

that a unified approach to the process of program writing, development and 

maintenance is being more widely appreciated and also that there is considerable 

common ground. 

7.4. Conclusions and summary 

In the introduction to this thesis (Chapter 1) we expressed concern 

over the reliability of contemporary software produced using the tools and 

and techniques generally available. We have tried to investigate some of the 

causes of difficulty that arise in the programming task. At the bottom of 

many difficulties is the inherent lack of comprehension due to the complexity 

of both the problems to be solved and of the tools available for t:,C'ir solution. 

The average programmer is unlikely to be able to obtain a su[;icicnt 

grasp over both the problem and the available programming languages so as to be 

able to choose the best way of uSing the machine to solve the problc.n. Each 

individual programmer will develop his own way of doing things dependent upon 

his own experience, ability and environment. Unfortunately his natural 

resources tend to possess transients and so when he returns to a partic~lar 

problem at a later date, he is often unable to recall how his program works. 

,It is not really surprising that others subsequently have even greater 

difficulty. 
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The desire for poweTful constructions is a major Source of complexity 

in programming languages. In view of the cost of hardware this is to be 

expected. If the programming language removes much of the power of the 

hardware then it is likely that there will be questions of economics to be 

answered. Notwithstanding this point of view, we have suggested that the 

complexity of programming languages must be reduced. It does not follow 

that there will be a commensurate reduction in the power of the language; the 

opposite may even be true. 

Although we may be able to lessen the impact of complex programming 

language constructions, there still remain the difficulties posed in the 

comprehension of real world problems and the evolution of satisfactory solutions. 

These are two processes which cannot be truly separated. Indeed programming 

is a particular form of problem solution. An understanding of the process of 

problem solving can act as a guide to how programs may be developed. We 

described the use of a generalized notation and particular design strategies to 

constrain and assist the program designer, using the ideas of a "level of 

description" and the relationships of "abstraction" and "elaboration". 

Many of the conclusions at which we have arrived are, of necessity, 

subjective. However we believe that the arguments and suggestions 

put forward are well-founded as basic philosophies to be held abcut ;>rogra.'T' 

development and design; only experience can show whether this is tru;'y the case. 

~ particularly important requirement of these philosophies is that of 

restriction. We have already made a similar point about progra.'T~ing languages, 

'but it is equally important that the prograrruner has only a limited set of 

things he can write down at any time in the program development. It should 

then be pOSSible to understand program designs and to follow a constructive 

deSign strategy. This restriction must not be too oppressive or the 

programmer will find his natural inventiveness and creativity is hampered, 
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but it must not be too lax or else the programmer will tend to introduce 

complexity into his design through a lack of appreciation for the true . 

source of difficulty. We have suggested that a hierarchic program 

structure, developed basically via a top-down strategy i~ a reasonable 

way for a design to be represented, whilst imposing a sufficient restriction 

to limit the. degree of complexity. As the appropriate discussion has 

indicated, this may well be an over-cautious discipline. However, we must 

take care if we introduce any relaxations. 

We h~ve also suggested that the necessary restrictions are best imposed 

upon the programmer rather than being self-imposed. This may again be wrong 

in particular cases, but not, we believe, in general. How many programmers 

take as much care in the documentation and description of the design of 

a program as is seen in a recent paper by Naur (1972)1 We suspect the 

number is very few. Yet this is the degree of discipline which is 

necessary and which, if not imposed by external means, must come from 

the programmer himself. 

Pearl is a scheme which imposes a discipline throughout the design of 

. a program. Although much of its worth comes from its attention to the telCtu~l 

development of a program in a well-structured way, this is only a "art 

of the process of program development. The unification of rr .. ~ny teoL and 

techniques in a single environment is aimed at making the whole task of the 

comprehension of complexity in program design easier for the human being, 

be he the programmer or any other interested person. We have been able to 

combine in a single scheme, many techniques, ranging from the hi.::rarchical 

development and representation of a program, schemes for specifying the 

intention and understanding of a programmer, facilities for progran~er 

interrogation of designs and proposals, machine assistance in the maintenance 

of such information and means for checking its consistency, through to the 
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simple expedient of program development in a interactive system. However, 

it must be stressed that whilst all of these may make their own individual 

contribution, they are worth less if the total scheme is not based upon the 

philosophy of comprehension through simplicity, claritr and ease of use. 

We certainly do not. claim to have found the panacea for the problems 

of writing highly reHable software. Indeed the examples given may have 

been just as easily developedm a conventional way, or would they? Certainly 

in Pearl, the programmer is provided with means by which he can convey a 

large amount of information about his program and its design. Whether such 

a scheme is practical on a large scale program development can only be the 

subject of speculation. However, it is our hope and belief. that most, if not 

all, of what has been said would apply and be applied with suitable 

modification in such circumstances. 

Further research on the lines suggested by work with Pearl is now 

being carried out at Newcastle University under a grant from the 

Science Research Council. The major aim of this continued work is the 

construction of a further program building system which will additionally 

incorporate features which received little attention in Pearl. In particular, 

Some effort is being devoted to the human engineering aspects of [h., new 

system to enable a closer evaluation of the acceptability of such systems 

to the programming community than was possible with Pearl. 
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APPENDICES 

Appendices A,B and C contain details of the Pearl system. 

Appendix A gives a definition in B.N.F. of the Pearl notation. 

B details the various commands which a user may invoke, whilst 

Appendix C gives some notes on system implementation. 

Appendix 

Appendices D,E and F show programs developed using Pearl. In 

each appendix, only the set of machines and a sample execution are 

included. The actual development of programs such as these additionally 

involves numerous other interactions between the programmer and Pearl. 

Text in lower case is entered by the user, whilst that in upper case 

is written by the system. The system invites the user to enter a 

c.ommand by typing a ''+'' sign. 
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Appendix A: Syntax of machine descriptions 

The syntax of the notation used for describing machines is giv~n below 

in Backus Naur Form. Any character or character string not enclosed in angular 

brackets « ) ) is a terminal symbol. In addition <identifer) 

< type name), (number) and (string) are terminal symbols. An (identifie9 

and a. (type name) are character sequences containing between 1 and 255 characters 

inclusiye. The first character must be either a letter or one of the symbols _ # • 
The remainder may be chosen from these characters plus the digits 0-9. A 

<fumber» is a sequence of decimal digits whose value is an integer in the range 

o to 64035. A <string) is a sequence of characters (any characters) enclosed 

in single quotation marks. A quotation mark within a string is represented by 

two such marks. The sequence must not contain more than 255 characters. 

References are made in the follow definition to notes which follow it. 

PRODUCTION 

<machine> ::= <machine heading> <decision step> 

<machine beading> ::= <identifier> : <string> 

<decision step> ::= begin <decision option> end 

<decision option> ::= (6p elab> 
I <machine definition> Cop elab> 

<machine definition> ::= <machine statement> <i> 
I <machine definition) <machine statement> <;) 

<machine statement) ::= <type introduction) 
1 <operation list> 

1 <states list> 

<type intIoduction> ::= type <id spec> 

<idspec> ::~ <identifier> 
<identifier list) <identifier> ) 

I 
I 
I 

. NOTES 

1 

'2 
2 
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PRODUCTION 

<identifier list> 0.- ( 
I <identifier list> <identifier> , 

<operation list> ::: <operation start> <op specif> 
l<operation list> I <op specif> 

<operation start> ::= operation 

<op specif> ::= <operation> 
I <operation> <provided> <valued expression> 

NOTES 

<resolt> 14 

<opera tion> :: = <identifier> 
I <identifier> <parameter list> 

<parameter list> ::= <parameter head> 
<parameter element> ) 

<parameter head> ::= ( 
I <parameter head> <parameter element> , 

<parameter element> ::= <typing element> 
<typing element> vary 

<typing element> ::= <t name> <id spec> 
I vector <t name> <id spec> 
I <head> <size> <t name> <id spec> 

<head> •• = vector ( 

<size> ::= <valued expression> 

<t name> ::= <type name> 

<provided> ~:= provided 

3 
4 

14 

<D?sult> ::= <yields> <valued expression> onexit 14 

<yields> ::= yields 
assert 5 

<states list> .0= <states> <op specif> 
<states list> , <op specif> 

<states> ::= states 

<op elab> ::= <descrip> 
<i1escrip> 

<pre-block>. 
: <pre-block> 0 <result> 
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<descrip> ::= <operation> 
<type name> 

<pre-block> ::= <block> 
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<entry> <block> 

NOTES 

6,7 
8 

<entry> ::= <provided> <valued expression> then 14 

<block> ::= <expression> 
<expression> <;> <block> 

<;> ::= ; 

<expression> ::= <valued eXfression> 
I <valueless statement> 

<valueless statement> ::= <declaration> 
I <repeat head> <valued expression> 
I <while head> <expression> 
I <if clause> <expression> 

<declaration> ::= <declare) <typing element> 
I <declaration> , <typing element> 

<declare> ::= declare 

<repeat head> ::= <repeat> <expression> until 

(repeat> ::= repeat 

2,12 

12 
12,14 
12 
12 

9 

<while head> ::= <while> <valued expression> do 14 

<while> ::= while 

<valued expression> !:= <logical expression> 
I <lo9ical expression> := <valued expression> 
I <if clause> <true part> <valued expression> 

<if clause> ::= <if> <valued expression> then 

<if> ::= if 

<true part> ::= <valued expression> else 

<logical expressio~> ::= <logical factor> 
I <logical e~pression> I <logical factor> 

<logical factor> ::= <logical primary> 
I <logical factor> <conop> <logical primary> 

10,12 
11, 12 

12 
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I 

PRODUCTION 
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<logical rrimary> ::= <strin9 expression> 
<string expression <relation) 

~<lcgical primary) 
truE 
false 

<relation> •. = 

< 
> 
< 
> . 
.., = 

<strin9 expression) 

<string expression> ::= <arithmetic expression> 
I <string expression>1 f<arithmetic expression> 

<arithmetic expression> ::= <term> 
1 <arithmetic Expression) - <term> 
, <arithmetic expression> + <term> 
I - <teru'> 
I + < term> 

<term> ::= <primary> 
<term) * <primary> 
<term> I <primary> 

<primary> :;= <basic primary> 
I <assertion) <basic primary> 

<assertion> ::= <assert><valued expression>before 

<assert> ::= assert 

<basic primary> .. = <variable> 
< (> <block) 
<constant> 

«> ::= ( 

(constant) ::= <nurrber> 
<str ing> 

<variable> ::= <name> 
<qualifier> <name> 

<qualifier> ::= <name> of 

i NOTES 

1

12 
12 

I 

I 

12, 14 

9, 12 
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PRODUCTION 

<name) ::= <identifier> 
I <subscript head> <valued expression> 

<subscript head> ::= <identifier> <{> 
I <subscript head> <valued expression> , 

Notes: ......... 
1. Apy errors made up to this point are recoverable. 

2. There are certain additional non-terminals which are necessary for 

code emission purposes. The code emitted by the compiler (called 

~ way code) is interpreted both for listing and for execution. 

3. ' A <typing elemens> of this form must not be used in a <declaratio~ 

4. A ~yping elemen~ of this form must not be used in a <parameter elemen~ 

5. ,This form of <yield~ is used when giving the post-condition for a 

<pre-bloc~ 

6. The elaboration of states also takes this form. 

7. If'the operation or state being elaborated was introduced with parameters 

different from those given, the system will make the corroction or insertion 

and inform the user. 

8. There is a particular problem following the elaboration of a data type 

concerning the names used for the components of that data type. It is 

possible that there may be a clash between these and a name of a formal 

parameter of an operation or state which is elaborated as a result of the 

elaboration of the data type. This is only discovered when the operation 

or state is elaborated. It is necessary to change the name of the formal 

parameter. 
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9. The scope of variable names is the block in which they are 

10. 

declared except in the case when a data type is elaborated. In 

this last case, the names of variables declared in the outermost 

block are available to machines elaborating any operations or states 

upon the elaborated data type. 

The type of the <:logical expression» and the <:valued expressio~ 

must be the same and not "undefined" (i.e. the type should be 

either a primitive type or a user defined conceptual type. 

An "undefined" type covers all other cases). 

11. The type of the «true par~ and the <yalued expression» 

must be identical. This type is the type of the whole alternative 

valued expression and may be "undefined". 

12. In post-conditions for operation definitions there are a number 

of restrictions. 

Conjunction is specified by rather than &. (0 

(ii) Parentheses for blocks may only be used within eithc.r 

arithmetic or string expressions. 

(iii) The following may not be used. 

repeat while declare 

:= if assert 

(iv) Operations may not be invoked. 

13. Subscripts start from 1. 

14. In these (valued expression» 's assignments (or use of operations 

with vary parameters) may only apply to variables local to the 

~alued expressio~ 
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Appendix B: Commands 

There are 7 commands available. 

(i) *initialize 

This command initializes the data base representing a program. 

Initialization consists of a machine called IIsystem" plus 

the following data types and operations. 

Data types: 

Operations: 

program 

writeint (integer i) 

nlcr 

prsym (integer i) 

readint (integer i vary) 

substr (string s vary, 
string t, integer (i,j» 

(ii) *build 

integer, string 

an unelaborated operation. 

to write the value of i. 

to give new line and carriage return 
character to output device. 

print a symbol corresponding to the 
byte value of i on the next available 
character position of the output device. 

read an integer value into i. 

assign to s characters i to j 
inclusive from t (i, j > 1). 

This command invokes the routines which enable the input of a 

new machine. The description of the machine follows the command. 

(iii) *replace <machine name) 

This command replaces the machine named with the machine whose 

description follows. In addition to the form required by *build 

there are other restrictions on replacement machines. 

(a) All of the concepts introduced by the original machine must be 

re-introduced, at least in name. New operations and states may 

also be introduced but not (in the current implementation), 

new types. 
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(b) The formal.parameters of a re-introduced operation must 

agree both in number and in type (by position) with the 

formal parameters of the original. It is possible to 

change the identifier of a formal parameter. It is also 

possible for an operand of are-introduced operati,!n to be 

given the attribute vary, even though this attribute 

was not present in the original. Removal of the vary 

attribute for an operand is not allowed. The meaning 

part of re-introduced operations may also be changed. 

However, the old meaning should imply the new meaning. 

The system will request confirmation of this if not in 

batch mode. Meanings may be added where they were not 

previously present. 

(c) The formal parameter of a re-introduced state should 

agree in type with the original. 

(d) The environment of the replacement machine will be the sOlrrie 

as for the machine being replaced. However. additional 

restrictions are imposed on the choice of namc:; for ncw 

concepts to prevent clashes with names present in any 

later environment. 

(e) The concept elaborated by the replacement machine must be 

the same as that .elaborated by the original. 

If the concept elaborated is a data concept, then the system will 

immediately require replacements for all machines which were originally 

dependent upon the original representation of this data concept. 

If desired, it is possible to replace a machine by itself. Instead of 

providing a replacement machine. the word "leave" may be used. 

*replaee X 

leave 
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(iv) *delete <machine name) 

This command causes the deletion of the named machine and of all machines 

which are dependent upon it and upon them etc. 

(v) *list ~ptio~ 

This command provides means for the retrieval of information from the 

data-base according to the stated option. 

<€ption> :: = ~las9 

<ClasS) 

(class type) 

.. . . 

<identifier) 

all 

choice 

(class type) 

<class type) full 

machines 

operations 

states 

Listing a (class type) results in a summary of those OLj.:!Lt;s present 

in the data-base of the named <class type) If the keywon: lull is 

appended, complete listings are given. The *list «identi.fier) 

option gives a "full" listing of information about the named object 

if such an object is present in the data~base. 

The option ~ is equivalertt to requests to list each <class 

type) without full. 

The user can discover if his choice of elaborations is limited in any 

way following.elaboration of a data type (or replacement of a machine 

elaborating a data type) by the command *list choice. 

A full listing of a machine or elaborated concept uses an automati.c 
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indentation algorithm to layout a program in a neat manner. This can 

'be useful as the layout used on the program input is therefore ilnmaterial. 

(vi) *execute <option) 

This command causes the execution of a program. 

<option) :: = (machine nam9 

I program 

It is necessary that the<$tachine nam~names the machine which elaoorates 

the concept "program". 

A description of the execution mechanism is giveri in Chapter 6. 

(vii) *quit 

This command terminates the session for the user. Any relevant 

information is written to the data-base and held on backing store 

to enable continuation at a later date. 

In addition to these commands, an interrupt function is avoilable 

which will terminate action of any command at an appropriate moment 

consistent with non-violation of data-base information. 

Abbreviated forms of these commands are allowed (e.g. '~init 

for *initialize, *exec for *execute etc.). 

-
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Appendix C: Some notes on the implementation of Pearl 

The Pearl system has been implemented in an experimental fashion to 

run under the M.T.S. operating system at the University of Newcastle upon 

Tyne. This implementation is based upon the existence of two major pieces 

of software. 

The first is the XPL compiler generator system, (McKeeman, Horning 

and Wortman 1970) which has been used to construct the processor for the 

input of machine descriptions. The XPL system encourages the construction 

of such a processor using the XPL programming language. Progr~s written 

in this language are compiled into object modules which require a loader 

of their own. Normally this loader is part of an interface tailored 

for the ,particular operating system being used. This interface provides 

the XPL program with system dependent facilities such as storage control 

and input/output handling. In Pearl, the opportunity was taken to 

develop such an interface to provide for the overlaying of XPL programS 

and to greatly enhance the standard file handling facilities available. 

These file handling facilities are formed from the second miljor piece of 

software which has been utilized. This consists of a set of routines, 

collectively known as the Newcastle File Handling System (Cooke and 

Gray 1973), which allow for the construction and manipulation of complex, 

tree-like 'data structures which may be stored on disk files. }1uch use 

is made of such structures to hold the design information of a program 

with its complex relationships. 

Part of the interface between the XPL program and the operating 

system is controlled by the user. The commands he supplies determine 

which particular function of the system will be loaded into the 

overlay area. All of the major functions of the system are written as X?L 
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programs which communicate with the file routines and the user via the 

interface program. The interface program is written in a combination of 

360 machine language and PL360. 

The interruption handler of Pearl utilizes a feature of the 

M.T.S. operating system which allows user programs to handle particular 

forms of interrupt. Using this feature it is a relatively trivial matter 

to return control to the user interface routine with a request for another 

command. It is also possible to delay the acceptance of such an interrupt, 

so that the system is able to ensure that the information held about a 

program design remains consistent. 

The total design structure is represented by a number of interrelated 

tree structures. Individual trees are used for machines, types and operations, 

whilst states are stored as part of the tree representing types. The program 

code for a machine is kept separately from the description of the machine 

itself, but refere.nced directly from the machine tree. This code 

1 ("i-way code) is in a reverse-Polish form and is such as it may be used to 

drive an execution pr('lcess or to l"egenerate the origina} source. Symbol 

tables are additionally !'equired If'r thi.s latter purpose. 
1 The "i-way code 

contains several operations whic.h are common to both the listing interpreter 

and thl~ execution interpr.:,ter. It thus makes it a comparatively simple process 

t,; pinpoint an erroneous st.atement found by the execution i'1terpreter in the 

original source listing. This cC'de is also used to retain operation meanings. 

The functions invoked by the va~ious commands are combined into 3 

separate overlays written i~ XPL. That for *build and *replace combined in 

one such program occupies 50 K bytes of code (71 K including data and 

variables). The interpreter (*execute) is a second, separate program of 23 K 

bytes of code (55 K) whilst all of the remaining functions are combined into 

the third program. This has a total of 22 K bytes of code from a total 
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size of 32 K bytes. 

The actual interface program (written largely in PL360) and the set 

of utility functions (written in 360 Assembler) which provide the file 

handling facilities require a further 108 K bytes including a large 

in-core data area of more than 35 K bytes. The whole system at present, 

including the necessary file buffers, requires approximately 190 K bytes 

of core storage. This figure could be reduced by limiting the size of 

the data areas. 
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Appendix D 

This appendix shows a set of machines developed to construct 

a program for a problem described by Dijkstra (1972a). 

A program is to be constructed which will print 20 lines 

numbered from top to bottom by a y-coordinate running from 20 through 

to 1. The position of characters on a line is given by an 

x-coordinate running from 1 to 20. For each of the 40 positions 

given by 

x fx(j) and y = fy(j) for 1 (= j <= 40 

a mark has to be printed; all other positions on the page are to be 

blank. 

(This problem is changed from that given by Dijkstra in the 

magnitude of the di.mensions of the page and of the number of TJlark!' to 

be placed). 
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PEnRL PROGRAM WRIT!NG SYSTEM 
COMrANDS r~Y BE ENTERED NOW 

+*ini t 
DeNT' 

+*build 
compfirst:'store image of page before printing' 
begin tyP€ image; 

states built~mage i)8 printed(image i); 
operation 
build (image i vary) 

provided true yields built(i) onexit, 
pri Ilt (image i) 
prcvided built(i) yields 
printed (i) onexit; 

program: 
declare image page; 
build (page); print (page) • 

assert printed (page) onexit 

end 
END OF CHECKING 
NC FBRORS WERE tETECTED. 

Hbnild 
clearfirst:~expand build. we will empty the image first' 
begin states blank (image i); 

operat:ion 
clear (image i vary) 

prov ided true yields b la nk (i) onexi t, 
setmarks(image i vary) 

provided tlank(i) yields built(i) onexit; 

build (image i vary): 
c1 ear (i); setmarks (i) • 

en!' 
END ("1F CHECKING 
NO ~RRORS WERE tETECTED. 
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+*build 
J3canner:'setmarks. put each of the 40 marks into image 1 

begin ope ra tion 
addmark(integer j. image i vary) 

prcvided j>O & j<=40 yields 
true onexit; 

se tma rks (i mage i var y) : 
declare integer j; 
j: =0 ; 
while j<40 do 

( j:=j+1; addmark (j,i) ). 

end 
END OF CHECKI NG 
NO fRRORS WERE tETECTED. 

+*build 
comppos:'calculate the position of the jth mark' 
begin states validx(integer x). validy (integer y); 

operation 
f (integer (x.y) vary, integer j) 

prcvided j>O & j<=QO yields 
validx(x), validy~) onexit, 

mar kpos (in teger (x. y). image i vary) 
provided validx(x) & validy (y) yields 

true onexit; 

addmark(integer j, image i vary): 
declare integer (x,y); 
f (x. y, j): 
markpos (x. y, i) • 

enr' 
END OF CHECKING 
NO PRRORS ~ERE [ETECTED. 

+*build 
function: 'an example of a possible function for f' 
begin 

t(integer (x,y) vary, integer j}: 
x:=if j<~1 then j else j-20; 
if j>20 then y:=j-20 
else y:=21-j. 

end 
END OF CHECKING 
NO PRRORS WERE tETECTED. 
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+*bu ild 
liner: 'an image is a vector of lines called I' 
begin type line; 

l.mage: 
declare vector (20) line 1. 

end 
END 0 F C HECK IN G 
NO ~BROBS iERE t~TECTED., 

+*build 
liner1: f we print an image by printing its lines' 
begin states line printed (line 1), linebuilt(1ine 1) 

ope ra tion 
lin€print (line 1) 

provided linebui1t(l) yields 
lineprinted(l} onexit; 

print (image i) : 
declare integer j; 
j: =21 ; 
wllile j> 1 do 

(j:=j-1; lineprint(l(j) of i) ). 

enrl 
END OF CHECKING 
NO YRRORS ~ERE t~TECTEDo 

+ *build 
liner2: v clear out the image line by line' 
begin states blankline(line 1), markinline(line 1); 

operation 
lineclear(line 1 vary) 

provided true yields 
~markinlineql), blankline(l) onexit; 

clear (image i vary): 
declare integer j; 
j:=O; 
while j<20 do 

( j:=j+1; 
llnec1ear(l(j) of i) ). 

en 1 

END OF CHECKING 
NO FRROBS WERE tETECTED. 
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+*build 
liner3: i x is a position on the yth line of the pase' 
begin operation 

linemark(integer x, line 1 vary) 
provided true yields 
markinline(lJ. ~blankline(l) onexit; 

markpos (in teger (x, y), image i vary) : 
linemark(x,l(y) of i). 

end 
END OF CHECKING 
NO ERRORS WERE tETECTED. 

+ *build 
liner4:'an image is printed if its bottom line is' 
begin 

printed (image i): lineprinted (1 (1) of i). 

end 
EN[; OF CHECKING 
NO FRRORS 'ERE rETECTED. 

+*build 
liner5: i an image is blank if its last line is' 
begin 

blank (image i): blankline (1 (20) of i). 

enr. 
EN D OF CHE CK ING 
NO rRRORS ~ERE tETECTED •. 

"build 
liner6:~an image is built when its last line is built' 
begin 

buil t (image i): linebuil t (1 (20) of i). 

end 
END r'F CHECKING 
NO ~RRORS WERE r~TECTED. 

+*build 
linerel1 :~explain relation between linebuilt and other states' 
begin 

li nebuil t (line 1): markinline (1) I blankline (1) • 

eni' 
END OF CHECKING 
NO ~RRORS REBE tETECTED. 
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+*build 
longrep:'a line is simply a vector of 20 symbols (integers) , 
begin 

line: declare vector (20) integer 51mb. 

end 
END Of CHECKING 
NO PRRORS WEBE tETECTED. 

+*build 
longrep1:'print line by using prsym' 
begin 

lineprint (line 1) : 
declare integer j; 
j:=O; 
while j<20 do 

(j:=j+1; prsym(symb(j) of 1) ); 
n1cr. 

en~ 

END OF CHICKING 
NO ?RRORS WERE [ETECTED. 

+*build 
longrep2: 'linemark. put a mark in symt(x) of line' 
begin 

linemark(integer x, line 1 vary): 
syret (x) of 1 := 92 •. 

en~ 

END OF CHECKING 
NO FRROaS ~ERE tETECTED. 

+*build 
longrep3:'clear line completely to blanks' 
begin 
lineclear(line 1 vary): 

declare integer j; 
j:=O; 
wbile j<20 do 

( j:=j+1; 5ymb (j) of 1 := 64). 

end 
END 0F CHECKING 
NO ~RRORS WERE tETECTED. 
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+*execute program 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
** 
** 

* * 
* * 

* * 
* * 

* * 
* * 

* * 
* * 

* * 
EXECUTION SUCCESSFUL 

+*quit 
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Appendix E 

This appendix shows a set of machines based upon the program 

developed by Wirth (1971b) to find 1 solution to the a-queens problem. 

The program described here does not follow that developed by Wirth in 

all respects, particularly at the higher levels of description. 
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FEARL PROGRAft WRITING SYSTEft 
CO~~ANDS ~AY BE ENTERED NOH 

+*init 
DONE 

+*build 
m1:¥ find a solution to 8 queens problem' 
begin 
type board; 
type pointer; 
states full(board q); 
states toofar(pointer p), offbottom(pointer p); 
operation settofirstsguare(pointer p vary); 
operation trysguare(pointer p, board g, integer safe vary); 
operation futonsquare(board 9 vary, pointer p); 
operation moveonfornextgueen(pointer p vary); 
operation moveonforthisgueen(pointer p vary); 
operation regress (board 9 vary, pOinter p vary) ; 
operation print(board q); 
operation clear(board 9 vary); 
opera tion fail ure ; 
program: 

end 

declare board g, pointer p, integer safe; 
clea r (q) ; 
settofirstsquare(p) ; 
repeat 

( repeat 
( trysquare (P, q, safe); 

if safe then 
( putonsguare (g, p); 

moveonfornextgueen(p» 
else 

moveonforthisgueen(p» 
until full (g) I toofar (p) ; 
if .... full (g) then 

regress (g, p» 
until full (g) Joffbottom{p); 
if full (g) then 

prin t (g) 
else 

failure. 

END OF CHECKING 
NO ERRORS WERE tETECTED. 
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+*build 
m2:'we appreciate 1 queen per column' 
begin 
operation settofirstoffirst(pointer p vary): 
settofirstsquare{pointer p vary): 

settofirstoffirst(p) •. 
end 
END OF CHECKING 
NO ERRORS ~ERE D¥.TECTED. 

+*build 
m3: wsee m2' 
begin 
operation movetofirstofnext(pcinter p varl): 
moveonfornextgueen(pointer p vary): 

movetoiirstofnext(p) •. 
end 
END OF CHECKING 
NO F.RRORS WERE tETECTED. 

+*build 
mit: 'now a pOinter points to a column and a row' 
begin 
pointer: 

declare integer (row, col). 
end 
END OF CHECK ING 
NO ERRORS ~ERE tETECTED •. 

+*build 
m4a: 'as a result of m4' 
begin 
settofirstcffirst(pointer p vary): 

end 

row of p:=1; 
col of p:='. 

END OF CHECKING 
NO ~RRORS ~ERE tETECTED. 

+*build 
m4b:' see m4a; note possible overflow i 
begin 
movetofirstofnext(pointer p vary): 

en(' 

col cf p:=col of P+'; 
row of p:='. 

END OF CHECKING 
NO ERRORS WERE tETECTED. 
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+*tuild 
.4c:'see m4a: note possible overflow' 
begin 
moveonforthisgueen(pointer p vary): 

row of p:=row of p+1. 
end 
END OF CHECK ING 
NO ~RROBS WERE tETECTED. 

+*build 
m4d:'see m4a; trysquare related to coords' 
begin 
operation trycoord(integer row, integer col, 

toard g, integer safe vary); 
trysguare(pointer p, board g, integer safe vary): 

trycoord(row of p, col of p, g, safe). 
end 
END OF CHECKING 
NO ERRORS WERE DETECTED. 

+*build 
m4e:'see m4a; mapping straight to coords v 

begin 
operation putoncoord (board 9 vary, integer row, integer col); 
putonsguare(board 9 vary, pointer p): 

putoncoord(g, row of p, col of pl. 
end 
END OF CHECKING 
NO FRRORS WERE rETECTED. 

Ubuild 
m4f:'we may go over row' 
begin 
toofar (pointer p): 

row of p>8. 
end 
END OF CHECKING 
NO ~RRORS WERE tETECTED. 



- 224 -

+*tuild 
m4g:'we regress by using old information' 
begin 
oFeration findqueen(board q, integer row vary, integer col); 
operation removequeen(board q vary. integer row, 

in teger col); 
regress(board q vary, pointer p vary): 

end 

declare in teger (i, j); 
j:=col of p; 
j:=j-1 ; 
if j)O then 

( find[lUeen (g:. i, j); 
removequeen(q, i, j) 
if i=8 then 

( j: = j- 1 ; 
if j>O then 

col of p:=j; 
row of p:=i+L 

( findgueen (q, i. j); 
removequeen (q. i, j»»; 

END OF CHECKI NG 
NO fRRORS ~ERE tETECTED. 

Hbuild 
m4h:'we may falloff only in columns' 
begin 
of not tom (pointer p): 

col of p< 1. 
en!' 
END OF CHECKING 
NO ERRORS ~ERE DETECTED. 

Hbuild 
m'>:' a board: position of queens + squares covered j 

begin 
board: 

eon 

declare integer numberon; 
declare vector (8)integer x; 
declare vector (8) integer a, vector (15) integer (h, c). 

END OF CHECKING 
NO ~RRORS WERE DETECTED. 
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+*bu ild 
m5a:'a board is full when there are 8 queens on it' 
begin 
tull (board '1): 

numberOD of '1=8. 
end 
END OF CHECKING 
NO ~RRORS WERE tETECTED. 

+*build 
m5b:'printiDg is trivial' 
begin 
print (boa rd (1): 

end 

declare integer i; 
i :=0 ; 
while i<numberon of 9 do 

( i:=1+1; 
writeint (x (i) cf g». 

END ~F CHECKING 
NO ~RRORS ~ERE tETECTED. 

+*build 
m5c:'no '1ueens and no blockages' 
begin 
clear(board q vary): 

declare integer i; 
numberoD of '1:=0; 
i:=O; 
while i <8 do 

( 

while 
( 

i:=i+1; 
a (i) of '1 ~=true; 
b (i) of '1:=true; 
c (1) of g :=true) ; 
i< 15 do 
i:=i+1; 
b (1) of '1: =true; 
c (i) of g:=true). 

END ('IF CHECK! NG 
NO ~RRORS WERE IETECTED. 

+*build 
m5d:'using these auxiliaries we can easily compute solution' 
begin 
trycoord(i~teger row, integer col, board '1, integer safe vary): 

safe :=a (row) of gab (row+col-1) of -j&c (row-col+8) of g. 

END f'F CHECKING 
NO rRRORS WERE tETECTED. 
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mSe:'as mSd¥ 
begin 
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putoncoord(board q vary, integer row, integer col): 

end 

x(co~ of q:=row; 
numt€ron of q:=numberon of g+1; 
a(ro~ of q:=false; 
b(row+col-1) of q:=false; 
c(ro~-col+8) of ~:=false. 

END OF CHECKING 
NO ERRORS WERE DETECTED •. 

+*build 
mSf:vfinding a gueen in given column is easy' 
begin 
findgueen(toard g, integer row vary, integer col) 

row:=x(col) of g. 
end 
END OF CHE en NG 
NO ~RRORS WERE tETECTED. 

+*build 
mSg:'and so is removing iti 
begin 
removequeen(board q vary, integer row, integer col) : 

end 

a (row) of q:=true; 
b(row+col~1) of q:=true: 
c(row-col+8} of g:=true; 
numteron of g:=numberon of g-1. 

END OF CHECKING 
NO ~RRORS WERE tETECTED. 

+*build 
m6: Ya failure report for m'V 
begin 
failure: 

writEint (999) 0 

enr 
END OF CHECKING 
NO ~RRORS .ERE rETECTED. 



+*exec program 
1 
~ 

8 
6 
3 
7 
2 
4 
EXECUTION SUCCESSFUL 

+*quit 
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Appendix F 

In Chapters 3 and 5 a problem is described whereby 10 i".,)l.t 

cards are to be checked for certain properties (see section 3.2.1. 

or 5.2.2.). This appendix contains a completed program for that 

problem. 
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PEARL PROGRA~ WRITING SYSTE~ 
COrMANDS MAY EE ENTERED NOW 

+*init 
DO!:::-

+*build 
car~proeessor:tread each card, and tben process it' 
begin 
type cardimage; 
operation read(cardimage c vary) 
operation process(cardimage C); 
program: 

end 

declare cardimage c; 
declare integer i; 
i:=O; 
while 1<10 do 

( i:=i+1; 
read (c) ; 
process {c». 

END OF CHECKING 
NO ~RRORS WERE DETECTED. 

+*build 
processor:vcheck tbe values and the check W 

begin 
operation checkcard(cardimage c, integer ok vary) 
operation successmessage; 
operation reject message; 
operation ~riteout(cardimage c); 
process (ca rdimage c) : 

end 

declare integer ok; 
checkcard (c, ok); 
~ri teout (c) ; 
if ok then 

successmessage 
else 

rejectmessage. 

END OF CHECKING 
NO ERRORS WERE DETECTED. 
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+*build 
checker:'check the values, then and only then, the check' 
begin 
operation checkvalidity{cardimage c, integer ok vary); 
operation checkcheck (cardimage c, integer ok vary); 
checkcard (cardimage c, integer ok vary): 

end 

checkvalidity(c, ok); 
if ok then 

cbeckcheck (c, ok). 

ENC OF CHECKING 
NO ERRORS ~ERE CETECTED. 

+*t:uild 
cardrep:' a card is 9 data values and a cbeck' 
begin 
type value; 
card image: 

e n(' 

declare vector (9}value data; 
declare value check •. 

END OF CHECKING 
NO ~RRORS WERE ~ETECTED. 

+*build 
cardreader:wreads in the 10 values' 
begin 
operation Ieadvalue{value v vary}; 
read(cardimage c vary): 

ent' 

declare integer i; 
i:=O; 
while i<9 do 

( i:=1+1; 
readvalue(data(i) of c»; 

readvalue(check of c) 0 

END OF CHECKING 
NO FRRORS WERE DETECTED. 



+*tuild 
car~~riter:wwrites out values' 
begin 
opera tion wri te val ue (val ue v); 
writeout(cardimage c): 

declare integer i; 
nlcr; 
i:=O; 
w bile i<9 do 

( i:=i+1; 
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writevalue (data (i) of c» ; 
writevalue(check of c). 

end 
END OF CHECKING 
NO FRRORS WERE tETECTED. 

+ *b uild 
validitycbeck:'checks the 9 values' 
begin 
ope'ration checkvalue (value v, integer ok vary); 
checkvalid1ty(cardimage c, integer ok vary): 

end 

declare integer i; 
i:=O; 
ok: = true; 
while i <9~ok do 

( i:=1+1; 
checkvalue(data(i) of c, ok}). 

END OF CHECKING 
NO FRRORS WERE tETECTED. 

Hbuild 
checkcbecker:'make sure check value is satisfied' 
begin 
operation combine(value v vary, value w); 
operation comparevalue(value u g value v, integer ok vary); 
checkcheck(cardimage c, integer ok vary): 

en(~ 

declare value temp; 
declare integer i; 
i: =, ; 
temp :=data (i) of c; 
while i <9 do 

( i:=i+1; 
combine(temp, data (i) of c»; 

comparevalue(temp, check of c, ok). 

END OF CHECKING 
NO rRRORS WERE tETECTED. 
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+*build 
valuer:vvalues are integers in this case' 
begin 
value: 

declare integer valueof. 
end 
END OF CHECKI NG 
NO FRRORS WERE DETECTED. 

+*build 
realreader:vvalues may thus be easily read in' 
begin 
readvalue(value v vary): 

readint(valueof of v). 
end 
END OF CHECKING 
NO FRRCRS WERE DETECTED. 

+*build 
validvaluer:wvalues in the range 0 to 99' 
begin 
checkvalue(valu€ v, integer ok vary): 

ok:=valueof of v>O&valueof of v<100. 
end 
END OF CHECKING 
NO FORCRS WERE DETECTED. 

+*build 
realwriter:wwriting values is writing integers' 
begin 
wr itevalue (va lue v) : 

writeint(valueof of v). 
end 
END OF CHECKING 
NO FRRORS WERE DETECTED. 

+ "'build 
combiner:vcombine is an addition process' 
begin 
combine(value v vary, value w): 

valueof of v:=valueof of v+valueof of w. 
end 
END OF CHECKI NG 
NO ~RRORS WERE [ETECTED. 
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+*build 
eheeksumer:'eheeking is purely arithmetic' 
begin 
eomparevalue(value u, value v, integer ok vary): 

ok:= (valueof of v=valueof of u). 
end 
END OF CHE CK ING 
NO ~RRORS wERE VETECTFD. 

+*build 
assignment:'assignment of values' 
begin 
value_assign(value value1 vary, value value2): 

valu€of of value1:=valueof of value2. 
end 
END OF CHECKING 
NO ERRORS wERE DETECTED. 

+*build 
sueeesswri ter: Wgi ve "0.15.. ~It 

begin 
sueee ssrne s sage: 

enn 

nler; 
prsyo: (214) ; 
prsyre(75}; 
prsym (2 ~ 0) ; 
prsYD'(75); 
nler. 

END OF CHECKING 
NO ERRORS ~ERE tETECTED. 

+ *build 
failurewriter:'give "error"i 
begin 
rejeetrnessage: 

en·' 

nler; 
prsy m (197) ; 
prsym (217) ; 
prsyro(217) ; 
prsym (214) ; 
prsy Ir (217) ; 
nler. 

END rF CHECKING 
NO rRRORS ~ERE rETECTED. 



~.execute card processor 

10 
15 
30 
1 
16 
8 
26 
33 
3 
142 

o. I) •• 

11 
23 
14 
8 
7 
12 
90 
17 
64 
241 

ERROR 

22 
33 
50 
-5 
77 
13 
17 
20 
46 
283 

ERR0R 
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77 
&3 
25 
14 
36 
26 
82 
91 
100 
424 

ERReR 

42 
13 
26 
18 
91 
1 
22 
81 
17 
311 

o.~. , 

39 
47 
29 
10 
61 
41 
93 
8 
26 
334 

ERROR 

66 
23 
42 
85 
96 
83 
2 
7 
12 
416 
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23 
49 
9 
13 
25 
13 
31 
41 
99 
30) 

O.IS. , 

18 
76 
8 
31 
47 
27 
72 
62 
83 
424 

o .IS. 

16 
51 
26 
16 
23 
68 
85 
45 
2 
232 

ERBCR 

BXECUTION SUCCESSFUL 
+ *quit 
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