
THE MANIPULATION OF TREES

AND LINEAR GRAPHS WITHIN A COMPUTER

AND SOME APPLICATIONS

~

ALEX KAREL OBRUCA

Thesis s~bm1tted for the degree

of Doctor of Philosophy at the

University of Newcastle-upon-Tyne

on June 1966

- i -

PRE F ACE •

The ideas for this thesis developed during

and shortly after my work for the Master of Science degree.

A few concepts and definitions of this thesis were intro­

duced in the dissertation but are re-introduced for cam-

pleteness • Most of the thesis is original and where it is

not, the parts are indicated as such. The last part of the

matrix bandwidth minimisation is the result of a suggestion .
from and collaboration with Dr. H.I.Scoins. One of my main

problems has been terminology. Every one who has published

seems to make it a point of principle to use different

names for the same concepts. I am not blameless, however, I
\ I

try to use a combination of Berges and Hararys definitions

and terminology as a basis, with a few additions of my own.

The thesis is divided into two parts :

Chapters and Appendices. Chapters 1 to 6 set out to define

the terms used and the theory behind the applications. The

Appendices contain the relevant programs and other practi-

cal work.

I would like to take this opportunity of

thanking the Science Research Council (or the then Depart­

ment of Scientific and Industrial Research) for their finan-

- ii -

cial help without which this thesis would not have been

possible. I would like to also thank the members of the

Computing laboratory for their patience and especially

Dr. H.I.Scoins for his helpful supervision.

Last but not least, I would like to record

my appreciation to my wife who has put up with a lot of

bad temperedness on my part as a result of this thesis and

Without whose help this thesis would not have appeared at

all.

~.

- iii -

A B S T RAe T •

A digraph of z points and br arcs can be

represented by its adjacency matrix. Within a computer this
~

means a storage of z elements. By suppress1ng obv1ous in-

formation, a reduction can be made 1n the storage reqUired.

The branches list representation stores the non-zero elem­

ents of the adjacency matr1x and requ1res only (br + z)

elements.

Any trees reqUired for computer manipula­

tion are rooted and ordered. They can be represented in the

two arrays below[j] and posnbr[j]1 where below[j] stores

the below of a point j and posnbr[j] its pos1tive neighbour.
f

However, th1s representation is very inconvenient for going
l

up the tree. Thus another representation called the rd l lu

representation is defined such that it is nearly as easy to

go up the tree as to go down it. A few procedures were writ­

ten which enabled an ordered-rooted tree to be divided into

two parts and rejoined together at different points. This

technique forms a basis for Top tree and Transportree.

A succesfUl investigation was also carried out to find a re­

lationship between labelled ordered-rooted trees and labelled

binary pendant trees.

- iv -

Top tree is a heuristic method of obtaining

a good solution in a relatively short time to the Travel­

ling Salesman Problem • It is based on the observation that

the majority of lines of a minimal solution (to the problem)

appear in the minimal spanning tree (for that same graph).

The technique is to reduce multi-membered stars of the mini­

mal spanning tree so as to have all points incident to at

most two lines. This seems to give very good results on both

random data and published examples.

The problem of minimising the bandwidth of a

matrix was also examined • The problem was re-stated as that

of having to label the points of a large graph so that the

maximum difference between the labels of adjacent pOints is

a minimum. The problem of doing this quickly was not solved

but here again ~ techniques based on the spanning tree for

that graph were evolved which reduced the initial bandwidth

considerably. An algorithm was written which did find the

minimum bandwidth labelling by going through the permutation

list. But due to the size of the list this was slow and im­

practical for graphs with z greater than 20.

- v -

The nature or this work was such that it was

suitable to tackle the Shortest Paths (through a digraph)

Problem. The tree spanning technique was developed so that

ror large, highly sparse digraphs (or networks) , it was

found to be more erficient than the Cascade method, one of

the better matrix type methods.

Finally H.I.Scoins method of solving the

Transportation Problem was refined (and called Transpor­

tree) so that the tree was not kept in the below array

(i.e. as a rooted tree) but in the rd, lu representation.

This results in the time spent list processing in order to

go up the tree being drasticaly reduced • This last section

was merely an exercise in showing how ordered-rooted trees

and their manipulation are of use in a wide array of problems.

I

II

III

IV

1

1 • 1

1.2

1.21

1.22

1.23

1.23.1

1.23.2

1.3

2

2.1

2.11

2. 11 .1

2.11.2

- vi -

INDEX.

PRE F ACE •

A B S T RAe T •

I N D EX.

C HAP T E R S •

INTRODUCTION.

General Introduction.

Defini tions.

Digraphs.

Graphs.

Trees.

Some Properties of Trees and Graphs.

Functions on Trees.

A Short Note.

REPRESENTATION AND MANIPULATION.

Representation.

Theoretic Representation.

Graphs and Digraphs.

Unlabelled Trees.

i

iii

vi

1

1

1

3

3

6

9

12

14

18

22

22

23

23

28

2.11.3

2.12'

2.12.1

2.12.2

2.2

2.21

2.22

3

3.1

3.2

3.21

3.3

3.31

3.31.1

3.4

3.5

3.6

3.7

3.8

3.q

- vii -

~ -Trees.

Computer Representation.

Digraphs and Graphs.

~-Trees.

Manipulation.

Graphs.

Trees.

TOPTREE.

In trod uc ti on.

The Minimal Spanning Tree (Min tree).

Description of Mintree.

Theoretical Description of Toptree.

The ordering of the stars.

Adjacent Multi-membered Stars.

Practical Description of Toptree.

The Number of Tours in a Subset s .
Obtaining the Minimal Solution.

Data Preparation and a Short Note.

Analysis of Results.

Goncl usion.

W\ -

32

33

34

35

36

36

39

40

40

43

44

47

51

53

55

61

64

66

68

74

4

4. 1

4.2

4.3

4.4

4.41

4.42

4.43

4.44

4.5

4.51

4.51.1

4.51.2

4.52

4.6

4.61

4.62

4.63

4.64

4.65

4.66

4.7

- viii -

THE MINIMISATION OF THE BANDWIDTH

OF A MATRIX

General Discussion.

Relationship between Matrices and Graphs.

Tree-like Matrices.

Stage 1.

Mushrooming r-trees with Maximum Height.

Evaluation o£ E(G).

Finding the Important Partial Graph.

Analysis o£ Stage 1 •

Stage 2.

Graphical Model.

Manipulation of the Graph.

Labelling o£ the Graph.

Analysis of Stage 2 •

Stage 3.

Introduction.

Generating the K[i] (or Rules of Choice).

Tests £or Rejection.

Sunmary o£ Rules and Tests.

The Algori thnh

Analysis o£ stage 3.

Conclusion.

75

75

78

80

83

86

88

89

93

94

95

99

105

107

108

108

111

115

119

120

122

124

5

5.1

5.2

5.21

5.3

5.31

5.32

5.4

6

6.1

6.2

6.3

6.4

v

VI

1

1 • 1

- ix -

SHORTEST DISTANCES ON A DIGRAPH •

General Discussion.

The Matrix Methods.

The Cascade Algorithm.

The Tree Methods.

Shortest Routes 1 •

Shortest Route 2 •

Conclusion.

THE TRANSPORTATION PROBLEM •

General Discussion.

Obtaining the Initial Tree.

Obtaining the Final Solution.

Concl usi on.

REF ERE N C E S •

A P PEN D ICE S •

GENERAL PROCEDURES.

Trees.

130

130

133

135

137

140

142

146

148

148

150

151

154

155

1

1

1

2

2.1

2.2

2.3

2.4

2.5

3

3.1

3.2

3.3

3.4

3.5

4

4.1

4.2

4.3

4.4

5

5.1

TOPTREE.

Toptree Program.

Data for Input.

- x -

Random Data Preparation and Mintree.

Dynamic Progra.mm1ng Program.

Specimen Output.

BANDWIDTH MINIMISATION.

Segment 1.

Segment 2.

Segment 3.

Data Preparation.

Specimen Output.

SHORTEST PATHS.

Cascade.

Shortest Route 1.

Shortest Route 2.

Specimen Input and Output.

TRANSPORTREE.

Specimen Input and Output.

14

14

23

24

28

34

36

45

66

83

95

97

102

102

105

108

111

115

126

- 1 -

I INTRODUCTION.

1.1 General Discussion.

The underlying theme behind this work, as

the title may suggest, has been the study of trees and how

they may be of use in the solution of some types of prob­

lems. A little time is spent describing graphs but merely

for completeness sake.

A lot of work has been done in graph theory

many theorems have been proved or disproved, but unfortuna-

tely little of it has been applied. Concepts like Grundy

functions , chromatic or ordinal numbering of a graph or

various operations such as conjunctive products of and com­

positions on two graphs, seem to be merely the toys of pure

mathematicians. The thesis goes only a little way in using

some of these ideas. The main building block behind the ap­

plications in Chapters 3 to 6 has been the spanning tree.

In Chapter 3, the minimal cost spanning tree for a given

graph is used to find a good solution to the Travelling

Salesman Problem. In Chapter 4, the spanning tree is used

to find a good permutation matrix which yields a reduction

in the bandwidth of a symmetric matrix • In Chapter 5, we

use the spanning tree technique to obtain the shortest dis-

tance between pairs of points in a digraph • In Chapter 6,

- 2 -

we could have used the minimal cost spanning tree to obtain

an initial solution to the Transportation Problem. However

as the basic solution is a spanning tree, we use the mani­

pulation of Chapter 3 to rearrange the configuration of the

tree into one which has optimal solution.

Working knowledge of Algol is assumed when

discussing the programming. However# slight traces of Algol

terminology do appear in places throughout the thesis. The

definitions that follow will be primarily concerned with the

terms used in the following chapters. Further definitions

and reading can be found in [, J 1 J 5) " ~s].

- 3 -

1.2 Defini tions.

1.21 Digraphs.

We define a ~ as a collection of objects

(which themselves will be re£erred to as elements). A set

will be represented by capital letters and its elements by

small ones, e.g. V = la,b, •••• ,v,w}. Let ~ be a one-to­

many function mapping a set V into itself. Then we define

a digraph (directed graph) to be the pair (V,~) for some

V and some function ~ • A pictorial representation can be

obtained if the set V is represented by pOints in a space

and if yEo £ (x), where x,y 6 V, then in the space there will

be a continuous line joining x to y. To distinguish between

a line joining y to x and one joining x to y (i. e. x CD .G(y)

and y~ ~ (x)), we insert an arrowhead in the appropriate

direction. Within the pictorial representation, the el­

ements v
4

of V will be referred to as points (vertices or

nodes). The pair (x,y) where y E: l., (x) J will be called an

arc of the digraph. The set of arcs of a digraph will be

denoted by U.

Having defined a digraph in the abstract,

we now proceed to make further definitions in terms of the

pictorial representation, rather than in terms of sets and

function mappings. A sub-digraph of a digraph n, is defined

- 4 -

to be a digraph whose points are a subset of those of D

and consisting of all the arcs of D joining these points.

A partial digraph of a digraph D, is any digraph whose

points and arcs are a subset of those in D. In fig. 1.211

we have an example of a digraph D, a subdigraph D 51 of D

and a partial digraph Dp ,also of D. D, and Dp contain all

the points of D except for v~ •

~-~--~5

.J)s

(fig. 1.211)

Two points x,y within D are said to be

~jacent if 1/. they are distinct and

2/. there exists an arc going from x to y

or from y to x.

If there is an arc u going from x to y, then we say that x

is the initial and y the terminal points of that arc. We

may also say that u is incident ~ x and incident to y.

- 5 -

Sim1larly two arcs u,v are said to be adjacent if

1/. they are distinct and

2/. they have a point in cammon.

A loop of a digraph is an arc whose ter­

minal and initial points are identical. We say that a di­

graph contains parallel lines it there is more than one

arc in the same direction joining any two points. In the

example of tig. 1.2111, pOints v, and Vs are adjacent in

all three tigures, but v4. and Vs are adjacent only in D

and Ds. There also is a loop in both D and D, centred on V'fo.

We go on to detine a path as a sequence ot

arcs (u"u~,u5' ••• ,u i) ot a digraph such that the termi­

nal point ot each arc coincides with the in1tial point or

the suooeeding aro. A path is Simple it it does not use the

same arc twioe and oomposite otherwise. It a path does not

use the same point twice, it is said to be elementary. It

a path meets in turn the pOints {XL"X."t,X1 , ••• "X
It

} we can

represent it by [x,'X~'X3" ••• ,xk], or if there is no am­

biguity by jA[x, ,x k]. The length ot a path (-(u"u" ... ,u\c)

say)" is the number ot arcs in the sequence .. l(p)-k. In D

of tig. 1.211 , it JA -[VI ,v,. ,v$ "v
J

,V,.] then 1 (fA) - 4 •

- 6 -

1.22 Graphs.

A digraph is said to be a graph if for every
~\.l\.e" ~.

(x,y) E:: U ~ (y,x)e: U~. Thus every pair of adjaaent points

are conneated by two oppositely direated arcs. To simplify

the representation of suah aras , we shall set up a rule

that two adjacent points (of a graph) will be joined by a

single continuous line (to be called a ~ or see!lent or

edge) which carries no arrowhead. A graph is aonnected if'

for every pair of distinct pOints , there is a path going

from one to the other. If the graph is disconnected, then

eaah of 1ts connected 8ubgraphs is called a component. A

graph is said to be complete (or maximally connected) it

every point is adjacent to every other.

A circuit is a path (U"U~I ••• IU~)

where u~ is adjacent to u,. A s1mple circuit is one where

the path is elementary. The degree ot a pOint v~, denoted

by d(v
4

), is equal to the number of' points adjacent to v
4

•

a aonneated graph

(tig. 1.221)

/I f-----.,

13--__ --JI

a complete graph

- 7 -

In the graphs of fig. 1.221, we have an

example of a connected graph and one or a complete graph.

Either of [vl..,v3 ,v".,vS',v,] or [VII ,v,'-- ,VI) could be taken

as an example of a simple circuit. We also have d(v.)a 1,

d(V,) - 4 and d(~)) - 3.
A partial graph is said to cover a graph

if the partial graph contains all the points in the graph.

A labelled graph is one where each point is associated

wi th a mique positive integer. '!'he graphs considered in

fig.l.221 were labelled graphs. It is usual when labelling

graphs to number the points from one upwards. The point

which is labelled j will be referred to as v
J

• Consider a

labelled graph G and suppose we wish to permutate the la­

bels ot G. We denote the new labelling ot the points by

means ot a superscript. Thus if the point originally label­

led 11, i.e. v,, ,was to be relabelled 27, we would reter

to it by v" , in terms of its old labelling or by v;? ' in

terms of the new. If this point was to be relabelled, 6 say
l I ~ we could rerer to it by v, • We can thus wr1 te VII :. v.l'fo:" v" •

It may also be desirable when relabelling a graph, to dis­

cuss the new label of a point. We denote the new label or

a point j by lab{j). In the example just described, we can

thus write either v II =- v:~ or lab (11) - 27 • We may have

within a labelled graph, labelled lines u, to u~ , where

- 8 -

br is the number of lines within the graph. If we have not

labelled the lines but we wish to refer to one in particu­

lar, we can do so by means ot its two end points vL'~ ,i.e.

by (i - j) • Suppose we wish to reter to a partial graph

within a labelled graph and that this partial graph contains

the points v, ,vJ,.'v
J

, ••• ,v, • We would do so by means of

[V, ,v'1,v3' ••• ,V,,}.
An associated cost graph is one where every

line u A.. (or (j - k)), has associated with i tselt a cost

parameter e(i) (or c(j,k)). Thus we can thus reter to the ...,.
cost ot the total graph which is equal to L e(1)

(,. .. ,
or !! c(J,k) • We may also reter to the cost ot a

J.' Ie.,
partial graph or in particular, to the cost ot a path

'" [U, ,U;l'U3 , ••• ,U,<] which will be equal to 2: c(j) •

a=1

- 9 -

1.23 Trees.

A tree T, is a oonnected graph which has
- ..,. T'"~

no circuits. A rooted tree ~ is one which has one and only

one of its points designated as a ~ point (or simply

~). An ordered rooted ~ is defined within a halfPlane

such that all its points lie on one side of a cut, which

meets the tree at the root • An ordered rooted tree can be

abbreViated to an o-r tree, or with a slight change in the

juxtaposition of its first two letters, a r-o tree which,

phonetically, becomes a ~-tree. A star (at a point) is the

set of all lines incident to that point. Two stars are said

to be adjacent it they have a line in common. A star will

be mUlti-membered it it contains more than two lines and a

tree with no multi-membered stars will be called a chain.

Every point of a r-tree has associated with

itself a generation number which has the value equal to the

length of the path between it and the root (i.e. if gen[j]

stands for the generation number of the point j , then we

have gen[j] - l(p[VJ ,root])). A point adjaoent to only

one other point oan be referred to as an end point (of the

tree). We define a partial ordering on the points of the

r-tree by means of the symbols> , < • We write v· > v
.4. ~

precedes v.
4

, it gen[j] < gen[k] and ~ [v~,~]

does not include the root point. We can thus define a sub-

- 10 -

~ at v~ , S'IT" ' of T as being that subgraph of T which
d

includes V
J

and all points that succeed it. v~ is desig-

nated as the root of S~ •
~

For any point v
k

' the set of points adja-

cent to it and sUCC~ing it, is called a package of which

it, vk ' is called the (package) ~ • If vK is the head

of a package consisting

••• "S v, are all

tree, T

~ 5

!

10

e-tree , T(

branches

1 y II

i

S11
a

••• ,v then
p

of the subtree at V

r-tree .. Tv-

s
. q~,.

~

S "S I •
""t 'IT"M

•
Ie

a package (head at v)
l.

(fig. 1.231)

- 11 -

Within the cut plane wherein the e-tree

lies# we can define a sign convention where positive sense

(+ve sense) is a clockwise motion around a point • Thus

within a paakage# a point v
f

has a +ve and/or -ve neigh­

bour or neither. v is the +ve neighbour if on traversing " -
from v in the +ve sense around the package head # the

p

next point wi thin the package is vq,. A .:.!! neighbour is

similarly defined. A e -chain is a chain which is ordered

and rooted at an end point.

A binary e -tree is one whose every pac­

kage contains two elements. An example of a binary e-tree

is the monkey puzzle tree sort. A bifurcating e -tree is

one whose packages contain at most two elements or lines:

sim1larly for tr1turcatinge-trees and so on. A labelled

~ is a labelled graph which is a tree. We shall assume

in general I that all e-trees are labelled ones unless

otherwise stated. A pendant e -tree is a e -tree whose

end pOints (or pendants) only are labelled. A practical

example of one is a list processing tree list.

Let us finally define a directed r-tree I

T~ on a digraph D I to be a partial digraph of D where

every point of T lies on an elementary path whose ini­

tial vertex is unique and is called the root.

- 12 -

1.23.1 Some Properties of Trees and Graphs.

Any tree, T, will have a diameter denoted

by diam (T) , which is the len'gth of the longest path in

T • Similarly a ~-tree T~ , will have a height , hght(Te)

Which is equal to Max 1 (f [root,v,,-]) , where vi.. is any

end pOint of T~ • This can be defined recursively as

hgh t (T t) - Max t hght (S,,~) 1 + 1 ,

where v is adjacent to the root of T t •
~

Within a connected graph, there will al­

ways be at least one path between any two pOints • Define
0..

fA WI [v (,.,v~] as CIR shortest path between v c.. and vJ • Then

if we consider all jU~ between all pairs ot points, there

will be a longest one which will be called the maxmin path.

It can also be described as that path which yields

over all pairs v c.. , v
J

in the graph.

A spanning ~ of a graph is any tree

that covers the graph. A minimal spanning ~ of a cost

aSSOCiated graph is that spanning tree whose cost is a

minimum. A mushrooming r-tree, Tm ' of a graph is a span­

ning r-tree and derives its name tram the method ot its con­

struction (Chpt. 4.41) • For a given root pOint, v~ , the

pa th 1 ength 1 C)A [v or' v""]) , for any v ~ of the mushrooming

r-tree, is equal to the maxmin path length within the graph

- 13 -

i.e. for all mushrooming r-trees whose root is v~ we have

within the graph.

A mushrooming r-tree ~ maximum height , TN ' is that

mushrooming r-tree or the graph which yields the maximum

value ror hght (T~) •

A maximal spanning directed r-tree is a

directed r-tree which contains every point reachable rrom

the root by means ot a path in the digraph.

Lastly, given a graph G and a spanning

tree on it , T, , we define the cotree , C , as being

that set or lines in G which do not appear in Ts • We

thus have TsLJ C - G • (We can, ir necessary, extend

this derin1tion so as to include the cotree within a di­

graph ot a maximal spanning directed r-tree.)

- 14 -

1.23.2 Functions on Trees.

For a given e-tree" T t " and its set of

points V" we can associate certain further one-to-one fUnc-

tions mapping V into itself. These functions will be depen­

dent upon the configuration of Te • As a consequence of the

definition of precedence and packages" we can define a

function below(x) " where x ~ V, as having the value of that

package head within which x lies. This is not quite com­

plete as we have not mentioned the predecessor ot the root.

Thus the detinition ot below(x) is completed by making

below(root) equal root. From the definition of +ve and

-ve neighbours" we can define the functions pos nbr(x) and

neg nbr(x) as we did tor below(x) • It a point v
J

has no

Positive neighbour" we put posnbr(j) = 0 and also make

posnbr(root) - 0 •

It is easy to see that it we were given

only the values ot below(x) , tor all x , we would be able

to reconstruct the r-tree. And with the addition 01' the

values of posnbr(x) or negnbr(x) , again for all x , we ,.
would be able to rec9Ftruct the corresponding e-tree • In

the next chapter we use these functions in order to dis­

cuss the best ways 01' storing (the configuration 01') a

e -tree wi thin a computer.

Combining the definitions of below(x) and

- 15 -

posnbr(x) , we can derive the following new function,

poss succ (x), standing for the positive successor of x ,

and it is equal to

1/ . posnbr(x) , if posnbr(x) 1 0 , else

2/. pos succ(below(x)) , if below(x) I x , else

3/. x (x being the root) •

Conversely neg succ(x) can be similarly defined • Another

function which can be derived from below(x) and posnbr(x)

is
(I

rd(x) , the right or down function. This is equal to

1/. posnbr(x), if posnbr(x) I x , else

2/. x, if x is the root, else

3/. - below(x) •

The rd function is slightly different from previously de-

fined ones tor two reasons. Firstly, it carries more in­

formation by the inclusion of the +ve or -ve sign. Second­

ly I the rd tunction could not be used , as it stands, re­

peatedly. That is , below~(x} has some meaning (where n is

a positive integer) I whereas we could not always be sure

as to the existence ot rd~ (x) , tor we have not defined

rd(y} , where y is a -ve integer •

The above definitions were ot terms or

functions which ,one could think ,-='_1: I moved across or

down the e-tree. That is , repeated applications (with

suitable changes of sign in the case ot the rd tunction)

- 16 -

would yield the root or the right hand side of a package •

We now define a function , above(x) , which is, in a sense,

the opposite to below(x) , and it is equal to

1/. 0, if x is an end point of the ~-tree, else

2/. y, where negnbr(y) = 0 and below(y) = x •

We can now combine above(x) and negsucc(x)
(,

into another function called the left and up function or

lu(x) , which will be equal to

1/. x, if above(x) = 0 and negsucc(x) = root, or

2/. - below(negsucc(x» , if above(x) = 0 , else

3/. above (x) •

lU(x) is similar to rd(x) , in that an application of lU(x) ..
will yield +ve or -ve numbers. As lU(x) is depen¥nt upon

above (x) , we see that repeated applications of this func­

tion will move us up and leftwards across the e-tree. As

an example of the above described functions, consider the

(I-tree in fig.l.23.21. The e -tree is represented by black

lines and the result of the application of each of the func­

tions on a point is indicated by red lines • Where there is

a minus sign on the diagram, this means that the result of

the application of the function on that particular point

was minus the point indicated. Table 1.23.22 shows the

resul t in applying all the mentioned f\m.ctions on the e -tree

of fig. 1.23.21 •

- 17 -

" /
5

~ ..
below(x) pos nbr(x) pos sue (x)

¥ - ,/ -" . y

'\f- ~\f~ ~ -
1-

rd(x) above (x) lU(x)

(figs . 1. 23 . 2 1)
.--.
~ ,.-- ;> -,,-

r- ? ... '-' :>
!>-o ;:> v --..-'" '-J ,,- ~ v -~-o "-" v ~ :>

oJ
-<> ,.... '-' ~ ... ? J) ..

;:> ?
-"\

~ ~
';)

-./ ~ tr> 0 '-' u ...
5 .. '" "'6 cf'

~ ..P J j '" ~
,.J

6 0 0 c 00 ..£I ~ ~ c
----- --------------------------------- ---

1 3 9 0 4 - 9 7 7 3 3

2 3 9 7 7 7 0 4 8 8

3 4 1 5 5 5 0 7 6 6

4 1 4 0 4 4 0 4 9 9

5 4 0 4 -1 3 3 0 -1

6 5 3 0 5 -3 0 7 0 - 9

7 3 9 1 1 2 2 0 - 9

8 4 2 0 7 - 2 0 4 0 8

9 2 4 0 4 -4 0 4 2 2

(t able 1 . 23 . 22

- 18 -

1.3 A Short Note.

Early in the work, an interesting relation­

ship was found between binary pendant e-trees and mUltifur­

cating -trees. Consider a set A == {a,b,c, ••• "t1 and an

operation on A which is neither commutative nor associative.

Let us denote this operation byO. In algebra, we call the

result of a certain number of operations a monoid. Define

a simple monoid to be an element of A . If u,v and ware

monoids ,let w == (u 0 v) J where

u == [<aOb) <) cJ and

v == f [d 0 (e 0 f)) 0 g 1 '
where a,b,c,d,e,f and g are elements of A • With the mo-

noid w J we can associate the binary pendant ~-tree in fig.

1.31 and the monoids u and v have representation as in

fig. 1.32 [I ,page 161] •

L.U = (u 0\.1'")

(fig. 1.31) (fig. 1.32)

- 19 -

It can be seen that the operation () repre­

sents, in the ~-tree , a join of the two structures corres-

ponding to the two symbols on either side of it • The join

is accomplished by inserting a new root which is adjacent

to the two other roots ,tak1ng 1nto account the sense of

rotation •

The counting series for the number of binary

pendant ~-trees wi th n pendants (or labelled end points) 1s

given by 1 +

2n + 1
(2n

n
1)

• The point of interest is that

th1s ser1es also represents the number of mult1turcat1ng

~-trees with n po1nts. An 1nvest1gation was carried out to

find the relationship I if any , between these two sorts of

~ -trees •

It was discovered that the monoids could be

interpreted to represent multiturcating ~-trees. This re­

presentation is unique. Suppose x and yare two monoids

(simple or otherwise) and let z be the first element to ap-

pear in x , when reading from left to right • In the case

where x 1s simple we have x - z • Further 1 et x and y be

represented by ~ and ~ , these being their ~-tree re-

presentat1on. ~ Then the pictorial representa-

t10n of the ~-tree (x0Y)
can be defined uniquely as :

- 20 -

Consider the case when :

x is simple (i. e. x:: z) , we obtain

y is simple , and we obta1n

both x and yare simple, we have

In other words, the multi:t'urcating ~-tree (x(;)y) is cre­

ated by joining the root point of y , to the root po1nt of

x by means of an extra line, placed in the most positive

position of the package of which z is the head. Similarly

we can , for any mult1turcat1ng t-tree produce its corres­

ponding monoidal expression.

Hence given any monoid we can associate

wi th ita un1que ~-tree and vice-versa • Thus any binary

pendant ~-tree can be associated with a unique multiturca­

ting e-tree and vice-versa. The author managed to find al­

gorithms which, given a e-tree in the one representation,

evaluated the correspond1ng ~-tree in the other representa­

tion. Init1ally, this was accomplished by reference to their

common mono1dal express1on, but later a d1rect transforma­

tion was achieved. Examples of some corresponding multitur­

cating and b1nary pendant e-trees appear 1n fig. 1.33 •

(When writing the monoidal expression, the operator ()

may be omitted without any loss of clarity,e.g. (a(b c».)

pendan t binary

~ -trees

- 21 -

monoidal

expression

mul ti !'urea ting

~ -trees

(a b)

((a b)c)

0.. b

(e(a b»

~v
tJ..

c.
((a b)(c d»

~ b

c V
~ 0-

(e((c(a b»d)

(table 1.33)

- 22 -

II REPRESENTATION AND MANIPULATION •

2.1 Representation.

The type of representation of a graph (or

tree) within a computer is going to be governed l to a cer­

tain extent I by the use it is put to in any given problem.

We may be 1nterested in a graph only for its existence.

That is I it may be nec!essary to enumerate the graphs or

examine them sequentially I testing whether they have some

property or not • The representation in this case can be

made extremely compact • On the other hand I we may require

the graph to store informat1on I where the configurat1on of

the graph determines the relat10nship between pieces of in­

formation I it may be desirable to manipulate this graph

into another conf1guration or vary the pieces of informa­

tion attached to each node of the graph • In this easel the

representat10n has not only to be reasonably compact I but

has to have the virtue of being easily manipulated and each

node and its corresponding piece of 1nformat1on has to be

eas1ly accessable.

- 23 -

2.11 Theoretic Representation.

2.11.1 Graphs and Digraphs.

The instinctive and most obvious way to

represent a graph or digraph ~ is to indicate the presence

or absence of a line or arc I between all pairs of points.

This is achieved in the adjacency (or associated) matrix I

A • If we have a z-point digraph ~ D I then we associate

wi th it I the zXZ matrix I A ~ where a
J

(E. A) - 1 I if

there is an arc going from v
k

to vI and a~ - 0 otherwise.

For a graph, A I will be symmetrical. Another common repre­

sentation is the incidence matrix ~ M. In this matrix I

rows represent pOints and columns are to be associated with

arcs. Thus we have

m"'J = 1 ~ if v.(, is the initial point of u
J

'

- -1 I terminal .. ,
= 0 ~ if there is no incidence between them.

It can be seen that the second represen­

tation is more space consuming. Examples of the two represen­

tation will be round in fig. 2.11.11 •

- 24 -

1

5 ~-~----:# 2

3

digraph D

-1 0

1 1

(f'ig. 2.11 .11) 0 0

0 0

0 -1

o 0 0 0 0

1 0 0 0 1

o 1 000

o 1 100

10010

adjaaenay matrix A

0 -1 0 0 0

-1 0 -1 0 0

1 0 0 0 -1

0 0 1 -1 1

0 1 0 1 0

incidence matrix M

We note as bef'ore I that if' the digraph

has z points and br aras where br > z I then the number of'

elements in M exaeeds those in A • We see that A I even it

it is a more aompaat representation than M I 1s still very

wasteful in so muah as that unless the digraph 1s aomplete,

- 25 -

there is redundant information • A more compact representa­

tion would result I if we were to indicate either the pre-

sence or absence of an arc I but not both • This leads to

the listed pairs representation • Here we represent the di­

graph as a list of pairs of numbers :-

(a,lb,) , (aa.,lb.J ' (a"b
l

) I ••••• l(a.,.,lb...,) where

(a~lbA) denotes the presence of an arc in the digraph

joining v to vL • We note that if the digraph is a graphl
Q.~ -"

every arc will occur twice (i.e. there will occur both (xIY)

and (y,x)) • Thus the list will be halved ,if we suppress

ane of the pairs (of arcs for the graph) • This may be done

by stipulating that for all pairs (a4,b~) I we have a~< b
4

•

Let us assess the amount of space required to store a graph

uniquely • The incidence matrix requires z x br elements.

The adjacency matrix requires z X z elements. The listed

pairs uses only 4 x br elements and this is reduced to

2 x br elements I when the redundant pairs are suppressed.

We must inevitably sacrifice something in

making the representation smaller and smaller: in this

case it is clarity. Within A and M , we could immediately

not only visualize the digraph, but very quickly find out,

say, the number of arcs eminating from any point. This can­

not be said for the listed pairs representation.

- 26 -

We can make one more reduction in the re­

presentation which requires 4 x br elements, to one which

requires only (br + z) elements. This is achieved by shuf­

fling the li st about and suppressing some further reci'tmdant
~~

inf'ormation. '''II· e. -e stipulate a f'urther ordering on the

initial elements in the pairs • That is, we order the list

of' pairs lexicographically with respect to a ... I the first

elements in all the pairs • This ordered list will contain

sublists , all of' which contain the same initial n~ber.

Consider each sublist seperately e.g.

(a Ie' bac), (a" , ~), (ate' b k) , ••• , (a", ' bl() • There are
I a. J or

r pairs in this sublist, which means that v~ is connected
M

to r other points • This sublist could be shortened to

• • • ; b &c •
""'

The first

element is the f'1rst number in all the pairs , the second

indicates the number of lines incident from it, followed by

a f'urther r numbers ,which are the labels of' those points

to which v is adjacent. We come now to the only slight-'I(
ly tricky part. If' we now join all these sublists up, begin-

ning to end , in their original order and also suppress a k

and r of each sublist, we are left with a string of numbers.

We can read sense into this apparent chaos by defining ano-

ther list st"st~,st., ••• ,st a • This list indicates

- 27 -

the starting position, st4 , in the main list, where we

look ror the labels or those points adjacent rrom any point

v 4 • For example, if we wish to rind all points adjacent

from point v p ' we note the value of stp , and look in the

main list at all the elements in the st~ position to the

(st,~ - 1) position. Consider the example in fig.2.11.11.

The fully listed pair representation would be

(2,1), (S,1), (S,4), (4,3), (3,2), (2,S), (4,2) •

Rearranging thi s we get

(2,1), (2,.S), (3,2), (4,2), (4,3), (S,l), (s,4)

where the sublists are underlined. In the last step this

becomes

and

1, 5, 2, 2, 3, 1, 4 ;

1, 1, 3, 4, 6 ;

to be called the branches list representation.

Let us call the main list , the branch

list and the subs1dary list , the rows tart list • Thus in

the previous example, ir we wish to find all the pOints

adjacent to v It ,we note the values

branches[rowstart[4]] to branches [rowstart [S] - 1]

which is branches [4] to branches[S] , g1 ving us the

values 2 and 3. We note that st. = st~ • We thus have

to always check for the possibility of no outward directed

arcs in the case of a digraph • In connected graphs this

problem naturally does not occur.

- 28 -

2.11.2 Unlabelled Trees.

There is as yet no known method of repre­(I .. V"""" .,·.oJ .4..)
senting uniquely and compactly a~tree • However e-trees

were represented by the author as a string of z numbers~

the ~-tree having z points • Recapulating from the authors

M.Sc. dissertation~ [/~] , another ordering is defined on

all the points of the ~-tree such that

a) a point with lower generation number precedes a point

with a higher one and

b) within a package, the more +ve of two pOints has

precedence and finally

c) of two packages with the same generation number, the

points within the one which has a more +ve package head

have precedence over the others.

Now consider each point in turn starting

from the root (by means of the above ordering) and write

down the number of lines, within the package of which it

is the head. This will then represent, by definition, a

~-tree uniquely and can be transJhated back into the pic­

tOrial representation very simply •

(fig. 2. 11 • 21)

• 0 0,,\/
Q 3 0

\ 0 \/ /0 \ ,2. ,
,,/' /"

~, /1
:.1

- 29 -

As an example, consider the unlabelled ~-tree

in fig. 2.11.21 , the root point being the lowest point in

the configuration. We can within the same configuration in­

sert at each point of the ~tree, the number of lines in the

package of which the point is the head. This is indicated

in fig. 2.11.21 next to the t-tree • If we now read the

numbers at each node by generations, starting from the

root and from left to right , we obtain the following sequ-

ence :

We can shorten the string, without any ambiguity resulting,

by suppressing the last 5 zerols and the string becomes :

2, 3, 1, 1, 0, 2, 1, 0, 3 ;

Consider an unlabelled binary pendant

~-tree and its monoid representation. As it is unlabelled

the monoid will comprise of opening and closing brackets

and some symbol, an asterisk say, to denote an end or pen-

dant point • As an example consider the pendant ~-tree of

fig. 2.11.22 • Suppose we let the integer one denote open

brackets and a zero stand for the asterisks. We can now
T

represent the monoid as a string of z~/s and ones, having

suppressed the closing brackets (as they are redundant).

Thus we have a binary representation for pendant ~-trees.

- 30 -

1110100 101100 0 10101100 0

~ 11101001011000101011000

(fig. 2.11.22)

This results in a much bulkier representa­

tion than the earlier one (for the same multifurcating

~-tree) but it can be easily extended to include labelled

pendant ~-trees and hence labelled multifurcating ~-trees~

by simply inserting the label of the point instead ot a zero.

It is interesting to note that in the above

mentioned binary representation~ we have one more zero than

ones. Thus if we write down randomly ~ zeroes and ones in

succession (noting only that sequence which starts with a

one) and stop as soon as we have more zeroes than ones l we
~

shall have generated a random pendant or mul~cating

~-tree. However this is not much use as we cannot guarantee

the size of the tree l i.e. we cannot use this method as it

stands l to generate random ~trees of z points.

- 31 -

H.I.Scoins solved this difficulty by developing a method

whereby random pendant ~-trees of z pendants are random­

ly generated J from which of course multifurcating ~-trees

can be obtained. The method is a partitioning type one. We

randomly partition z into two parts z. and z'" • These

two parts are further randomly partitioned into four parts

and so on • At each partition, we must obtain two nonzero

parts. The connection will be seen immediately from the

following example. Suppose z - 9 and we partition this

into 3 and 6 • Three is further partitioned 1nto 2 and 1,

say , and six 1nto 2 and 4 • Diagramat1cally we may get

3.......-=t'
4-~ ~.(~I

,/ ~I ~I
/" ~:a..,.....:=11

9 ~
~3~'
~~~ 

~, 

This immed1ately becomes the 

pendant ~-tree as 1n fig. 2.11.23. 

whose mono1dal representation 1s 

And hence we have obta1ned a random 

~-tree of 9 pOints. ( fig. 2.11.23 ) 



- 32 -

2.11.3 ~- Trees. 

It can be seen that any e-tree will be 

uniquely determined. if we specify below(j) and posnbr(j) 

for all v d wi thin the ~ -tree • Other pairs or functions 
T(\V\t-

Which will deteraa&. a ~-tree uniquely are:- below(j) and 

negnbr(j). below(j) and pos succ(j). The last pair or func­

tions being that pair which was used to represent a ~ -tree 

in [I~]. 

The only other representation used within 

this thesis was the pair of functions rd(x) and lU(x). That 

is a ~-tree was represented by the values rd(j) and lU(j) 

for all v~ in the ~ -tree. It is true that rd(j) on its own 

would have been surficient to represent a ~-tree uniquely. 

but in order to raailitate the searching and manipulation 

of the ~-tree. the added runction lu(j) was used. 

'/ 



- 33 -

2.1.2 Computer Representation. 

In general the graphical representation 

for any given problem will indicate the relationship be­

tween various pieces of information. The information may 

be associated with the points or it may be the function 

of pairs of pOints I in which case it is assigned to the 

corresponding lines. In both cases the lines of the graph 

merely indicate the presence or absence of same relation­

ship between pairs of points. A final solution to the pro­

blem will consist of some subset of the lines connecting 

some l if not all l ot the points. Thus in manipulating the 

graphl we should be primarily interested in the nodes and 

the relationship between them. Within the computer this 

means being able to locate any particular pOint l and both 

quickly and easily finding its immediate neighbour. This 

leads us to choose the adjacency type representation ra­

ther than the incidence type. The word type is delibera­

tely usedl the author not only uses the adjacency matrixl 

but also the derived listed pairs and branches list repre­

sentation. 



- 34 -

2.12.1 Digraphs and Graphs. 

We shall only deal with the representation 

of digraphs and ~-trees , as these are the pictorial rep­

resentations of the applications in Chapters 3 to 6~ We 

mentioned previously that a graph could be represented by 

two lists :- a branches list and a rows tart list • In the 

applications we regard the graph as a digraph , insomuch 

as that we note both (v ... ' v J) and ( vI' v4.,) if v4.. is 

adjacent to v~ • That is, the array ( or list ) branches 

comprises 2 X br elements. The two lists are stored in 

integer arrays branches [ 1:2xbr ] and rowstart[l:z]. In 

order to make it easier to follow the working of the pro­

cedures the author introduced a third array nrinrow [l:z] 

which indicated the number of pOints to which each point 

is adjacent. 

It would not be out of place to note that 

if it was a digraph, which we were actually storing and 

not a graph, it would still be very easy to search by rows 

but not by columns. That is ,we could easily find out all 

the pOints to which Vd is joined, simply by scanning row j • 

However, to find those pOints which join v
4 

would be a 

different matter altogether. This would necessitate scan­

ning the complete matrix or list. 



- 35 -

2.12.2 t - Trees. 

If we wish to represent a rooted tree~ this 

can be done as mentioned before ~ in the array below [1:z]~ 

where the tree contains z points. We would store in below[j] 

the value of that point which is adjacent to v~ and precedes 

it • We make below [root]:= root. However a ~-tree requires 

another array~ in order to planarize or order the tree~ and 

this is posnbr[l:z] • These two arrays used together are suf­

ficient for any work to be done on trees. H.I. Scoins in his 

method of solving the transportation problem uses only below[j] 

as he does not require his tree to be ordered. However the 

author~ in Chapter 5 , improved upon this by altering the re­

presentation of the ~-tree using the rd, lu arrays in order 

to facilitate the movement up and down the ~-tree. 

As mentioned before~ in order to move up 

the tree, given the below~ posnbr representation ~ would 

require repeated scans of the list in order to climb up one 

generation at a time. This is very time consuming. However 

if we use the rd, lu representation there is no trouble 

because we can find the upper left of any point (by lu[j]) 

and then move across the package by successively using 

rd [j]. 



- 36 -

202 Manipulation within the Computer. 

2.21 Graphs. 

The detailed manipulation required for 

each application is described in the appropriate chapters. 

However , there are a few standard techniques and manipu­

lations common to most of them. One is the input of data. 

The best method of presenting the data had to be found 

and then fed into the program • Assuming that we use the 

branches list representation it was found that the data 

punched in the following form was most appropriate :-

z 0 , 
r 0 

I , 

br ; 

b ob 0b 0 
" , I~' I ~ , · -. 

• • 0 

-b 0 
, 11':' 

I 

0b 0 , .a T'a, , 

• • • • • • • • • • • • • • • 

b °b °b 0 
&1' Z&" z.' · . - 0b 0 , z.,.' 

The column r indicates the number of elements in row[i], 
"'" 

followed by the labels of the r 1.. adjacent points. Output 

was in a similar manner • There is one drawback in this 

method of representing the data for a given problem, ready 

for input into the machine • It is necessary to know the 

number of lines in the graph and also the degree of every 

pOint. 



- 37 -

As stated in Chapter 11 the main building 

block 1 common to all the applications in this thesis l is 

the spanning tree ( in one rorm or another ). An algorithm 

ror obtaining a spanning tree is as rollows :-

Assign one or the points or the (di) graph 

as root point. This nowJ becomes the below or all points 

adjacent to it. They in turn become the belows or all pOints 

adjacent to them and not encountered berore (this is easily 

veriried ir we initially make below[j]:- 0 for all jl and 

then rilling them in as each point is encountered. Thus a 

point which has not been met before will have its below 

still equal to zero) • At the end the below array will be 

non-zerolunless a point is not connected by a path to the 

root point. 

Another manipulation encountered in Chpt.4 

is the systematic reduction of a graphl by the removal of 

one point at a time. The problem is not as simple as it 

looks I as we have to cater ror the possibility that the 

removal of one point results in the previously connected 

graph becoming disconnected. Within the same chapter I it 

was required to alter the labelling of a given graph. That 

iSI we are given a labelled graph (in the branches list re-



- 38 -

presentation) and an integer array containing a permutation 

vector and we wish to obtain the branches list representa­

tion or the resulting permutated labelled graph. This and 

other exercises in graph manipulation are best described 

in their respective chapters and appendices. 



- 39 -

2.22 Trees. 

Two types of manipulation occur 

within this work. One was, given a tree within a computer, 

to find the most efficient way of obtaining the information 

attached to any given node or sets of nodes • In this case 

the interest is in the ability of being able to go up 

and down the tree. The other type of manipulation was 

the physical alteraton of the configuration of the tree 

itself. That is, to alter the relationship between points 

as denoted by the presence or absence ot lines between 

them. This is usually acoomplished by the deletion o~ 

the l1nes of the tree one at a time and other suitable 

lines added in • As explained in the last subchapter the 

discussion on the manipulation of graphs and trees is best 

left to the individual chapters and the aooompanying Ap­

pendices. 



- 40 -

III TOPTREE. 
-------------------

3.1 Introduction. 

The Travelling Salesman Problem stated sim­

ply is this : given an associated cost graph~ find a circuit 

covering the graph which has its associated cost as a min­

imum • This circuit I not necessarily unique I will be known 

as a minimal tour or minimal solution I where a tour or sol­

ution to the problem is any circuit which covers the graph. 

The problem has just been stated in the more general form. 

Usually the lines obey the triangular inequality law, i.e. 

no two sides together are smaller than a third, and hence 

the minimal solution will be a simple circuit. The problem 

may be considered as a special assignment or even as a 

transportation problem. However these two approaches are 

very impractical due to the number of necessary constraints. 

In practical terms, the graph may be a road 

map~ obeying the triangular inequality law~ where the points 

represent towns and the lines represent the roads connec­

ting them. The problem may then be defined as that of having 

to visit each town ~ keeping the amount of travelling to a 

minimum ( hence the name given to the problem ). It follows 

intU1tively~ that a salesman would not return to a previous­

ly visited town ~ thus making the tour or circuit simple. 



- 41 -

There are two standard methods of finding a 

minimal solution. One 1s by Integer Progranuning [31 ] and 

the other by Dynamic Programming [~~]. However both methods 

are very limited by storage space and time. In general ~ if 

the number or towns or points is over 13 ~ neither of the 

above methods is practicable. In particular ~ both these 

methods were used in this work~ the programs being written 

for a KDF9 computer ~ and the maximum number of towns sol­

vable was 11 • 

Thus there is every incentive for finding a 

method of solving larger problems~ and failing this, of ob­

taining tours whose cost is very close to that or the mini­

mal solution • This is what Toptree does. It is a heuristic 

method which specifies a small subset of the set of possible 

solutions ~ and then searahes through this subset in order 

to find the best possible solution within this subset. 

In testing the method on randomly generated 

data and comparing the Toptree results with that obtained by 

either Integer or Dynamic Programm1ng~ it was round that in 

over 50 1. or the cases, the Toptree solution lay within 2 r­
of the minimal solution • Another advantage of Toptree is 

that~ while searching through the subset, it notes and out­

puts the best solution found so far. Thus the process may be 

terminated at any point. 



- 42 -

The method suggested itselr when a compari­

son was made between a route ror the minimal solution of the 

problem and a minimal spanning tree for that same graph. It 

was noticed that in almost all the cases exam1ned~ the min­

imal solution had at least half the lines of a minimal span­

ning tree within its route. Hence the idea developed of 

manipulating the tree into a chain and consequently obtain­

ing a simple circuit (by joining the end points of the chain). 

The next few pages are devoted to an explan­

ation of the derivation of a minimal spanning tree, followed 

by a description of how it can be reduced to a chain and 

hence a tour. This is followed by a brief discussion on the 

preparation of data, and how Toptree solutions compare with 

the minimal solutions. We shall, within this and subsequent 

chapters, assume a graph ( or digraph ) to have z points and 

br lines ( or arcs ). 



- 43 -

3.2 The Minimal Spanning Tree ( Mintree ). 

Given a connected graph with an associated 

cost matrix I there exists a partial connected graph cover-

ing the original graph whose cost is a minimum. With a lit­

tle thought it can be seen that this sub graph is in fact a 

tree, hence its name: the minimal spanning tree or m1ntree 

for short. Kruskal , in his paper [ ~1 ], proved this and 

provided a single algorithm to achieve it • Loberman and 

Weinberger elaborated further (in [30]) with flow charts 

and so on , two algorithms based uppn Kruskals ideas. The ,. 
author translated both ideas into Al1Pl and finding that 

one of them was quicker and less space consuming , improved 

upon it and published it as a procedure in [!~]. Here again 

the method of obtaining m1ntree was itself an exercise in 

tree manipulation. 



- 44 -

3.21 Description of Mintree. 

The procedure Mintree obtains the minimal 

spanning tree and describes it in the below representation 

( i.e. as a r-tree ) • This in no way restricts or hinders 

the obtaining of the spanning tree. The final result is 

that we have the minimal spanning tree rooted at some 

point. The technique is to search through the graph repeat­

edly, looking for suitable members of this tree. The method 

is as follows:-

la) Search for the least cost edge of the graph, a • This 

now forms a r-subtree J" say. 

lb) Search for the next smallest cost edge ( after having 

excluded the edge of la) from further consideration: 

in the computer this was done by putting its cost 

equal to »10) • 

lc) Test if this edge ( from lb ) ls adjacent to 'I, . 

if it is: attach it to " 

If not : this edge forms a new r-subtree 3~ • 

2) Exclude the last edge chosen, from further consid­

eration (l.e. :- »10 ) 



3) 

- 45 -

Search ror the next smallest cost edge and test ror 

one of the rour rollowing cases : 

a) It forms a circui t in one of the r-subtrees. 

Do nothing. 

b) It is adjacent to a line in only ~ of the 

r-subtrees. Attach this edge tothe r-subtree. 

c) It is adjacent to a line in two r-subtrees. Use 

this edge to join the two r-subtrees into one. 

d) It is adjaoent to no r-subtree. The edge then 

rorms a new r-subtree. 

4) Go baok to 2). 

5) The loop 2), 3), 4) is repeated until z-1 edges 

have been pioked , resulting in one connected min­

imal spanning tree ( m1ntree ). 

Theorem 3.21. If the lines of G have distinct 

costs then mintree is the minimal spanning tree of G. 

Proof (due to Kruskal):- Let the lines ot mintree be 

called 1, ,11.' ••• ,1&., in the order they were chosen. From 

the hypothesis that the lines ot G have distinct costs, it 

is easily seen that the construction ot mintree proceeds in 

a unique manner. 



- 46 -

Suppose that min tree is not a minimal span­

ning tree and let l~ be the first line from mintree which 

differs from that of a minimal spanniOg tree, T*. Then 

1 ~ ~U 1., ,.' ••• ,l~ .. are in T • T 1 .... must have exactly one loop 

which contains l~. This loop must also contain some line e 

which is not in m1ntree. Then T""U 14 - e is a tree. But 

according to the construction cost(e) > cost(l~). Therefore 

the cost of is less than that of Til'. This 

contradicts the definition of T and hence indirectly 

proves that mintree =. T'. ( If the costs of the lines are 

not distinct, mintree would not be unique: it will be one of 

the possibly many spanning trees of G. ) 



- 47 -

3.3 Theoretical Description o~ Toptree. 

Having produced a mintree, it 1s now re-

quired to manipulate it into a tour. The main criteria is to 

keep as many lines of mintree as possible in the resulting 

tour. Thus the assumption is made that the pOints which have 

only two lines incident to them within mintree, stand an 

excellent chance of having the same two lines incident to 

them within a minimal solution. The problem arises of what 

action to take, with those points incident to more than two 

lines. Toptree solves this by reducing these multi-membered 

stars, by the deletion of their members, one by one, until 

all points are incident to at most two lines. At each dele-

tion, Toptree adds a new line elsewhere, so as to keep what 

was m1ntree connected. The final tree is a chain, whose end 

points are then joined to form a simple circuit or tour. 

Here is the method in more detail. 

Let T denote a m1ntree, obtained for a 
~ 

given cost associated graph. T~ will consist of a connected 

set of stars , some of which will contain more than two 

lines. Each multi-membered star is examined in turn and is 

reduced by deleting its members one by one, to contain only 

two lines. When a line has been deleted from a star, T~w111 

become disconnected. The resulting two subtrees of T~ will 



- 48 -

be rejoined by means of a line from the cotree. A proviso 

is made~ to be explained a few paragraphs later~ that this 

new line will be such that the number of members in any 

star of the reconstructed Tm will not be increased. This 

can only be accomplished if the line were to join the end 

point of one subtree to an end point of the other • The 

final choice being that line which has the least cost. This 

process is carried out on all the stars until T ttl resul ts 

in a chain • As an example , consider the following tree in 

fig. 3.0 • 

3 3 

5 

4 

2 2 2 

(fig. 3.0) (fig. 3.1) (fig. 3.3) 

Suppose fig. 3.0 represents a m1ntree for 

a given 5 point graph. There is a multi-membered star with 

its head at vlf. • Thus one of (4-5), (4-2), or (4-1) must 

be removed , so that v~ will have only two lines incident 

to it. Suppose that (4-5) is removed. This results in the 



- 49 -

two subtrees {3, 51 and [2,4,11 or rig. 3.1. They are re­

joined by the smallest cost associated line between end 

points of the two subtrees. The rull choice or lines is 

(3-1), (3-2), (5-1) or (5-2). Suppose (5-1) is chosen. The 

resulting tree is shown in rig. 3.2 • The tree 1s a chain 

and so the two end points are joined together , by means or 

(2-3) , to rorm a tour as in rig. 3.3 • Another two tours 

would have resulted if we had deleted (4-1) or (4-2), in­

stead of (4-5), and repeated the above process. 

There is one point to note. Unless mintree 

is a chain, whereby only one tour is obtained, there will be 

many ways of reducing T~ to a chain. This will result in a 

subset of tours, Sm. Thus we have to rind a method or or­

dering the deletions within a star , and between the stars 

themselves, so as to obtain, for a given mintree, the maxi­

mum number of tours possible. 

Before we go on to discuss the ordering or 

the stars and their members, let us briefly study the posi­

tion when Tm has just been disconnected. We asserted that 

the join of the two subtrees has to be accomplished by means 

of a line connecting their end points. Consider the situa­

tion where this proViso was relaxed • While reducing a star, 



- 50 -

., say, we would be able to increase the members of an­

other star, s~ say. When we come to reduce s, ' after having 

reduced s. to a duo-membered star l there would be nothing 

to, stop us from increasing Sf again. Hence this could be 

repeated endlessly, without eithe;r reducing simultaneously 

to duo-membered stars. 



- 51 -

3.31 The Ordering of the stars. 

Consider the m1ntree of fig. 3.0. It had 

one multi-membered star at v+ which contained three lines. 

We showed that there are three different ways of reducing 

the star to one which contains only two lines. This in fact 

was done by deleting each of the three members of the star. 

Suppose that there had been four lines in the star at v~ • 

Then there would have been an initial choice of four lines 

to delete, resulting in a three-membered star at v~ • Thus 

there will be altogether 4 X 3 possible ways of reducing 

this four-membered star to one which contains only two 

lines. USing a similar argument , we can see that a star 

contain1ng n members, can be reduced to a duo-membered 

star in nl different ways. 
~ 

Now if there had been two non-adjacent, 

( the importance of which will be explained later) multi-

membered stars in T. , containing m, n lines respectively, 

we can calculate the number of ways of reducing TM to a 

chain. Consider the m-membered star. There will be m! ways 
~ 

of reducing it to a duo-membered star without affecting 

the other star in any way. When we came to reduce the n­

membered star we find that this can be reduced to a duo­

membered star in n! d1fferent ways. Here there will be 
~ 



- 52 -

m~ X n ~ different ways of reducing T m to a chain. Simi-
"2' "2' 
larly if we reduce the n-membered star first, followed by 

the other, we obtain a further m! x n{ ways of reducing 
~ ~ 

T~ to a chain. Hence there will be altogether 2 x (m~ X nt) 
~ ~ 

different ways ot reducing T I'n to a chain. 

The point is thus illustrated, that not 

only do we have to take the ordering of the deletions wi th­

in a package into account, but also the ordering of the 

packages themsel ves • For it T n\ were to contain three 

multi-membered stars S" s~ ,s3 say, there would be no 

necessi ty for the subset of tours Sm' obtained by redu­

cing :first s I , then s A and finally s J ' to be equal 

to 
, 

SM , the subset obtained by reducing s a. first, then s, 

and finally s l • Suppose that we have a mintree T"", which 

contains r multi-membered stars. Then there will be rl 

different ways of ordering these stars. Let us further 

suppose that each of these r multi-membered stars contains 

S 
A. 

(i - 1, 2, •••• ,r) lines. Then it follows that the 

maximum number ot ditferent ways ot redUcing T to a chain 
"" 

and hence a tour is g1 ven by 
v-

-- I I 
s I '" . --------- ( 3.3 A ) -

.c.. = I 



- 53 -

3.31.1 Adjacent Multi-membered Stars. 

(rig. 3.4) (fig. 3.5) (rig. 3.6) 

Consider the above mintree in rig. 3.4. 

T,., contains two adjacent mul tl-membered stars at vA and v, • 

Using the theory developed in the last subchapter and (3.3A) 

we would expect at most g X 3~x 5l - 360 ways of reducing 
It-

T~ to a chain • However , there are far fewer tours in S~ 

due to the adjacency or the two multi-membered stars. Con­

sider the reduction of the star at V,' We can delete either 

(3-1) or (3-2) ~ and obtain two subtrees similar to fig. 

3.5 • The resulting reconnected tree will contain a five­

membered star at va • Hence either deletion leads to ~.r 

possibly different chains. However, the third possible de­

letion at v~ is (3-8), the connecting line between the two 



- 54 -

multi-membered stars. When this is deleted~ we not only re­

duce the star at v) but also the one at v, • The two dis­

connected subtrees are depicted in fig.3.6. When rejoined ~ 

the reconstructed tree now contains a four-membered star 

at Va • Hence this deletion of (3-8) at v3 leads to only 

~! further chains. Thus deleting the lines at v
J 

first, we 

obtain altogether ~!.+ ~~ +~! = 132 possibly different 

chains. ( This is to be compared with 3 X ~~ = 180 pos­

sibly different chains if the stars had not been adjacent). 

Reducing the star at v~ first, followed by that at v~ , we 

obtain by sim1lar argument~ 108 possibly different chains. 

The grand total of possibly different chains in this case 

is thus 240. 



- 55 -

3.4 Practical Description or Toptree. 

Within the context or this thesis, it was 

necessary to both root and order T M' the m1ntree, so that 

it could be represented and manipulated within a computer. 

Hence stars become packages ( with the addition or the line 

joining the package head to the point below it ) and chains 

became t-chains. A procedure called process was written 

( see App.l.l ), which, when called, yielded all the points 

of a ~-tree, one by one • This was used to order the pack­

ages of T WI. so that they could be sequentially reduced. The 

method can be better illustrated by discussing a small 

example. 

Consider the mintree of seven pOints in 

fig. 3.7. There are two multi-membered packages within T"" , 

one at v~ and the other at v ... Let T", be rooted at v I and 

ordered as in the figure • Repeated application of the 

procedure process will yield the points of the ~-tree in 

the rollowing sequence:- 1, 5, 3, 2, 6, 4, 7. The first 

multi-membered package to be considered, will thus be the 

one at V 5 • In general, the ordering wi thin a package of 

which v P is the head 1 will be firstly lu(vjt) 1 followed 

by its positive neighbours, and finally the below of the 

package head. Thus in the package at v s the ordering of 

the deletions will be (5-3),(5-2) and (5-1): on the figure 



- 56 -

( J. ~) 

------~ 

( 3·g) 

(~,") 

(3·/.3) 

~ (.3" t) 

- ~ 

~ 
(.3' If) 

t 3· ,q 



- 57 -

this is denoted by single, double and treble strokes through 

the respective lines • Thus (5-3) is the first line to be 

deleted, resulting in the new ~-tree of fig. 3.8 , where 

the line (3-4) has been inserted. We regard this ~-tree 

afresh and repeat the above process. That is we sequential-

ly order the points of the r-tree, find the first multi­

membered package, and this will be at v, • We again order 

the lines within the package and delete the first which will 

be at (6-4) • We obtain the ~-tree of fig. 3.9. We again 

repeat the process of ordering the packages within this new 

~-tree and find that it has no multi-membered package. We 

deduce that it is a ~-chain, connect its end points to­

gether and obtain a tour. 

Having obtained a ~-chain, we go back one 

step (to the previous t-tree in the sequence, fig.3.8) , 

and re-examine that ~-tree. We choose the next line in that 

~-tree to delete and in this case it will be (6-7). As a 

result we obtain the ~-chain of fig. 3.10. We return, again 

to the t-tree if fig. 3.8 and delete the next and last line, 

(6-2), to obtain the ~-chain of fig. 3.11 • When we return 

again to the ~-tree in fig. 3.8 , we find that there are 

no more deletions to make , and hence we go back another 

step to the ~-tree in fig. 3.7. As mentioned just now, we 

search for the next line to delete and in the case of fig. 

3.7 it will be (5-2). 



- 58 -

This results in the ~-tree of fig. 3.12. 

The same procedure is applied to fig. 3.12 as was to fig. 

3.8 and we obtain three further ~-chains, those of figs. 

3.13, 3.14, and 3.15 • However, it is worth noting that 

the ordering within the package at v~, is different. Pre­

viously (6-4) was the first to be deleted , in this case 

it is (6-7). Having obtained the ~-chain of fig. 3.15 we 

return to fig. 3.12 and again back to fig. 3.7. 

This time we delete the third and last 

line (5-1). We obtain the ~-tree in fig. 3.16, and from 

it the three ~-chains of figs. 3.17 , 3.18 , and 3.19. 

When we finally return to fig. 3.7 we notice that there 

are no more lines to delete and so the algorithm stops. 

We have obtained nine, possibly different, 

~-chains and hence tours from the Tfn of fig. 3.7 • This 

fits in with the theory of the previous subchapter where 

for one ordering of the non-adjacent packages we calcul­

ated a maximum of 1 ( 3\x 3~) = 36 = 9 possible ~-chains 
'2' II -zr 

If we assigned a different point of T M as the root ( one 

of v It or v l ), we could obtain a firther nine t-Chains, but 

these need not necessarily be the same nor indeed different, 

from the ones just obtained. 



- 59 -

While going through this last example, it 

will have been noticed that the deletion of a line , causes 

a new ~-tree to be constructed. All these ~-trees have 

to be either stored or easily reconstructed. For when we 

have exhausted all possible deletions from one ~-tree, 

( as in fig. 3.11 ) we have to go back one step to the 

previous ~-tree ( as from fig. 3.8 to fig. 3.7 ). The stor­

age of the ~ -trees is solved by keeping them in a dynamic 

nesting type stack. That is, we have a stack of ~-trees 

where the bottom one is the first to have been examined 

(in the previous example it corresponds to fig. 3.7) and 

one of whose lines has been deleted to yield the second 

from bottom t-tree ( this corresponds to either fig. 3.8, 

3.12 or 3.16) and so on. Thus the t-tree at the top of 

the stack, the current ~-tree, has been formed by the de­

letion of one of the lines of the ~ -tree below it. 

The current t-tree, T. ' is examined to 

see if there are any multi-membered packages. If it has, 

we delete the first line in the first package. This will 

form a new current ~-tree, which 1s placed on top of the 

stack , pushing all the previous ones down one (11ke the 

bullets in a cartr1dge holder). If the current t-tree 

has no multi-membered packages, we form the tour, note both 

it and its total cost, and then reject the current ~ -tree. 



- 60 -

( , 
Thus the stack pops up one position and the ~-tree below 

becomes the current ~-tree. While examining T~, we may 

note that it has a multi-membered package and yet not have 

a next line to delete, i.e. we have exhausted all possible 

lines to delete within T~ (this will correspond to the 

~-tree in fig. 3.8 after having returned to it from the 
t 

(-tree in f1g. 3.11 ). We reject this ~ -tree and pop 
) 

up the next ~-tree in the stack and continue the analysis. 

This corresponds to the mechanism of finding a (-chain and 

reject1ng 1 t. 

Thus there is a continuous stack of ~-trees, 

the top one of which is being examined. The stack increases, 

if the current t-tree yields another by the reduction of 

one of its multi-membered packages, or decreases if the 

current ~ -tree is either a ~ -chain or an eXhausted ( -tree. 

In the example of fig. 3.7 I the first ~-tree in the stack 

will be that of fig. 3.7. The second ~ -tree will be 

either of figs. 3.8 I 3.12 , or 3.16. The third t-tree 

will be one of the nine chains. The process terminates when 

the bottom or first tree has been eXhausted of all pos­

sible deletions. 



- 61 -

3.5 The Number of' Tours in the Subset S • 

As mentioned previouslYI if' T~ has r stars 

containing S4 (i = 11 2, ••• , r) members, the number of' 

different tours for one ordering of the packages is 
-r 

~ ~5.1. (We see that the number of tours in the subset, 
4.: I 

S."., depends not only on the number of mul ti-membered. stars 
I 

but also on their density.) As we shall be concentrating 

on the e-tree representation of T 111\ 1 the above f'ormula 
T" 

becomes : 
n(S",) - ;~ L1. (p < + 1) -------( 3.4 A) 

n(S"", ) is the number of possibly different tours in where 

the subset S W\ and p A. is the m.unber of members in package 

(i). We see that p ... is one less than the value of the cor­

responding s • A simple table will illustrate the number 
"-

of' different ways of reducing a package to one containing 

one line only. If c(p~) stands for the number of chains 

( containing only 2 lines ) derivable from a package con-

taining n lines, we have 

------- -----------------------------------
n 1 2 3 4 5 6 

------- ------.----------------------------
package ( y 
------- -----------------------------------

c(p ) 1 3 12 60 360 252 
-------- -----------------------------------



- 62 -

As mentioned in Ch. 3.3, the formula (3.3A) 

and hence (3.4A), will not hold for adjacent packages. Thus 

a configuration of adjacent packages has to be tackled by 

hand, in order to evaluate its n(S~). Consider the complex 

configuration of fig. 3.521. 

There are three adjacent 

packages containing two, 

two and three lines resp­

ectively. If they were non-

adjacent we would expect, 

for one ordering of the 

~ 

( fig. 3.521 ) 

packages, ~! X ~! X ~~ = 108 possible reductions. How­

ever consider what actually happens in more detail. First 

let us delete (1-2). This results in a configuration with 

only one package of three lines : giving twelve ~-chains. 

If we delete (1-3), we obtain a configuration with two non­

adjacent multi-membered packages, each containing two lines: 

resulting in nine further ~-chains. Finally, when we delete 

(1-4), we obtain a configuration with a 2- and a 3-mernbered 

package: yielding 36 ~-chains. Hence the total number of 

~-chains possible for this configuration is 12 + 9 + 36 = 51, 

which is quite a reduction from 108. Using similar tech­

niques we obtain the results in the following table (3.522). 



- 63 -

" C)4. J.c. ~ ~. (Q.c...k.~ 

-~~~ -f 

Y Y 21 Y 57 

'\ 11 Y 15 ''i1 

~7 :!(! 
3~ lit 

91 log 



- 64 -

3.6 Obtaining the Minimal Solution. 

Wi th the publi shed pro bl ems, [fJIA. ,t 1~ ] 
there was no trouble in obtaining their minimal solutions 

as they were usually included, speculative or otherwise. 

However, it was necessary to obtain the minimal solution, 

as well as the Toptree one, for the random data problems. 

Thus a dynamic programming procedure was written to solve 

the problem • It was based on the paper by Held and Karp 

[ 2.~ ] • Due to the lim1 tations of store and time, the 

program, an Algol procedure, could solve problems of up 

to twelve points ( or towns ) only. An indication of time 

taken is as follows: 

'* estimated. 

It was found, that for large z , i.e. )9, 

this was still taking too long , as there were many sets 
I 

of data to analyse, so an Integer Programming program 

based on Gomorys method, was used • This sometimes failed 

-----------------~------------~---------------------------
I 

The program was in KDF9 User Code (i.e. machine code) 

hence its speed, and was written by J.S. Clowes of this 

laboratory. 



- 65 -

to reach a solution in a reasonably short time , and so 

the program was terminated and solved by Dynamic Program­

ing. 

Even so, the number of problems actually 

tackled, was limited by the speed of the above two programs. 

Toptree, on average, took from two to twenty seconds for 

a graph of up to twelve points. 



- 66 -

3.7 Data Preparation and a Short Note. 

At first, the data was to be generated by 

using a random number generator to fill in a symmetric cost 

matrix. This was rejected as it , the cost matrix, would 

have no connection with reality: an obvious consequence 

would have been that the shortest path between any two 

pOints, would not always have been the line between them. 

Hence a slightly longer and more complicated method was 
r ' used, which by construct1on, assured the planarity of the 

cost matrix and hence the corresponding graph. The method 

was to generate z pairs of (x,y) random coordinates within 

a fixed area. The distances between the z pOints were com­

puted and inserted into the (z X z) cost matrix. 

Because the method of data preparation 

placed the z points, randomly within a given area, the 

author was able to test Hammersley and Handscombs formula 

of 

- k X (z X A )1~ --------( 3.7 A ) 
~ 

where, 1 ~ = length or cost of lb1nimal tour, 

Z - number of points in graph, 

A = the area, 

for the Travelling Salesman Problem [ t B ]. 



- 67 -

Their argument ror obtaining the above for­

mula (3.7A) was as follows. The length or the tour depends 

upon the area A and upon the density or towns in this 
.c. • 

area (X). Let lA< A (X) · Dimensional analysis shows that 

(JA.. - ~ = 1. Now if we mul tiply the area by c and keep the 
~ 

density constant, we shall be multiplying the tour length 

by c. Hence ~ - 1 and we obtain 
~ 

l~ - k~ X (z X A) • 

The formula was tested on 463 set of data 

with z varying from five to eleven, and it was found that 

k_= 0.9 With standard deviation of 0.139. This seemed to 

indicate that there might be some validity to the argument 

and hence (3.7A). 

( Assuming a similar argument, we may obtain the formula 

l~ = kH X (z X A) ---------( 3.7 B ) 

where, lit := length ot mintree and 

k~ = k for m1ntree. 

It was to'lmd that k~ = 0.635 with a better 

standard ot deviation of 0.109. It was decided, as a nat­

ural extension, to write 

= k x (z X A) .,. --------( 3.7 c ) 
tor Toptree solutions, and it was found that kT - 0.915 

with a standard deviation of 0.140. ) 



- 68 -

3.8 Analysis of Results. 

463 sets of random data were prepared with 

the number of towns varying from 5 to 11. The first table, 

table 3.81 , shows how the Top tree solutions were distri­

buted as regards their approximation to the minimal solu­

tion. For example, of the 71 problems with 8 points in the 

graph, 42 Toptree solutions had equal lengths with the mini­

mal solution, five were between 0 and 0.5 ~ of the minimal 

solutions and so on. If we look at the last column , this 

indicates the analysiS on all the random data together. We 

see that the majority of Toptree solutions lie between 0 

and 5 % of the minimal. In fact a better picture is given 

by the table of (3.82), the frequency distribution table. 

This indicates in percent of the total number of problems 

solved, the distribution of the percentage difference be­

tween the Toptree and minimal solutions, e.g. for the 75 

problems containing 9 points, 66 r. Toptree solutions 

were minimal, 73 r. were within 2 % of the minimal, 85 7. 
were wi thin 5 1. of the minimal and all lay wi thin 10 Y-
of the minimal. All the problems taken together are lay-

ed out on the last line. 

The Toptree method was also applied to 

published problems. A table tollows (table 3.83), and in 

the time limi~ column it will be noted that both Dantzigs 



- 69 -

( 42 x 42 ) and the Spic (34 X 34 ) problems were pre­

maturely terminated. 

The Spic problem has not been published before, 

so the cost matrix is given on the next page. Proctor and 

Gamble initiated an advertising campaign, in order to sell 

a soap product of that name. They asked the public to draw 

the shortest route through 34 towns in England. A solution 

which shared equal first prize gave the tour length as 

1240 miles • The firm in question refuse to disclose any 

information, hence the tentative assumption of this being 

the minimal tour length. 

Upon studying the Barachet problem, it 

was noted that had a different root point been chosen, 

Toptree would have given the minimal solution. This stren­

gthens the suggestions that if the problem is reasonably 

small, or has an overall simple configuration ( and hence 

yields a small subset of Toptree tours ) a greater chance 

of obtaining the min1mal solution is achieved by varying 

the root point to different end pOints of T M • 



- 70 -

The lower triangle or the Spic cost matrix is given split 

into two parts due to the size or the page_ The bottom tri­

angle is to be attached to the right of the incomplete tri­

angle above it. The size or the cost matrix is (34 X 34) • 

70 ; 
165;1 05; 
120; 85;185; 
25- 61-165-, , , 91; 

30;100;170;150; 45; 
70;1 45;215;170;1 05; 50; 
55; 20;120; 90; 45; 80;130; 
80; 40; 85;125; 80; 95;145; 40; 

100; 50;155; 35; 70;115;155; 55; 95; 

150;125; 50;210;155;160;215;130; 85;190; 
130; 55;150; 65; 85;145;185; 70; 95; 30;180; 
35;100;195;135; 50; 40; 45; 75;115;105;185;140; 
50; 40;115;115; 45; 70;115; 25; 30; 80;110; 95; 85; 

160;100; 40;160;175;175;225;110; 80;125; 90;110;200;110; 

90; 85;115;165;100; 85;145; 75; 50;130; 85;140;115; 50;120; 
50;110;215;120; 60; 55; 55; 90;130;105;205;130; 20;100;200;135; 
20; 90;180;110; 40; 35; 65; 70;110; 80;180;110; 25; 70;170;105; 30; 

140; 85; 25;160;135;155;205; 95; 60;130;155;120;170; 90; 35; 85;190; 
90;160;225;210;120; 60; 60;145;140;180;190;200; 90;120;220;105;110; 

20; 50;145;110; 20; 50;100; 30; 60; 80;140; 95; 55; 30;140; 80; 65; 
75; 50; 95;140; 70; 80;130; 50; 15;100; 85;105;100; 25; 95; 35;125; 
50; 60;170; 70; 25; 80;105; 50; 90; 50;175; 80; 60; 75;150;125; 55; 
40; 80;155;155; 65; 35; 85; 65; 70;115;130;125; 65; 40;150; 50; 80; 
70; 90;200; 75; 50; 85; 90; 80;115; 70;205;100; 55;100;180;155; 40; 

115;115;215; 55; 90;135;135;105;145; 75;240;105;110;140;200;190; 80; 
115; 75; 60;160;115;120;165; 75; 35;125; 50;130;145; 65; 75; 45;165; 
115; 45; 95;110;100;145;190; 60; 65; 75;125; 55;140; 80; 55;115;155; 
115; 45; 65;125;120;125;175; 60; 35; 90; 85; 90;140; 55; 55; 90;150; 
65; 25;130; 75; 35; 80;130; 20; 75; 40;150; 50; 90; 45;125;100; 90; 



- 71 -

80; 75;180; 40; 55;110;130; 65;125; 40;205; 65; 80; 95;165;155; 80; 
90; 25;130; 60; 60;115;165; 45; 651 251150; 25;115; 65;100;1101110; 

150;1251 7512101150;140;190;125; 851180; 25;180;180;100;100; 751200; 
230;200;130;2851230;230;275;200;155;250; 8012501255;180116511501275; 

160; 
951 1901 

40;120;110; 
90; 701125; 601 
45;1451140; 40;100; 
60;125; 75} 40} 551 85; 
55;175;150; 70;130; 30;105; 

110;2oo;195J105;155; 651160; 50; 
130; 40;150; 95; 40;125; 85;155;185; 
125; 70} 2001 951 80;105112011351150; 85; 
125; 40;1751 90; 501105110°1135;165; 50; 35; 
651110;145; 40; 70; 40; 80; 70; 90;100; 65; 65; 

75;165;110; 65;120; 30;1151 40; 40;145;110;125; 50; 
90; 10011751 65; 75; 551 95; 85;100;100; 50; 65; 251 55; 

170; 65;1801130; 80;1751120;200;235; 50;140; 951145;205;150; 
250;130;250;210;1551255;200;280;310;125;200;160;225;280;225; 80; 



- 12 -

z - number of pOints 5 6 1 8 9 10 11 ALL 

N -number or problems 60 60 60 71 15 51 80 463 

0 44 38 28 42 48 23 31 260 

0 - 0.5 / / / / / / / / 
~ 

~ 1 0.5 - 1.0 / 1 2 5 2 5 3 18 

+~ 
1.0 - 1.5 2 1 3 3 1 2 5 11 

1.5 - 2.0 4 2 2 3 4 3 4 22 

2.0 - 2.5 / 3 4 '-' 1 2 3 2 15 
~ 2.5 - 3.0 2 / 2 2 3 2 5 16 
d 

1 3.0 - 3.5 / 2 1 3 2 2 2 12 

3.5 - 4.0 1 / / / 1 1 3 6 

1 ~ 4.0 - 4.5 / 3 2 2 / 1 1 9 

J ] 
4.5 - 5.0 1 3 4 1 1 3 2 15 

5.0 - 6.0 / / 3 1 / 1 2 1 

6.0 - 1.0 2 4 6 / 6 3 2 23 

1 · 7.0 - 8.0 / 2 5 1 3 5 3 19 

1 8.0 - 9.0 1 1 / 1 / 1 2 6 

~ 
9.0 -10.0 1 1 2 2 2 1 1 10 

10.0-11.0 / / / 1 / 1 1 3 

i 11.0-12.0 1 / / / / / 2 3 

~ / / / / / / 12.0-13.0 1 1 

1 13.0-14.0 / / / / / / / / 
14.0-15.0 / / / 1 / / / 1 

15.0- 100 / / / / / / / / 
(table 3.81) 



- 73 -

% difterence between Toptree and Minimal soln. 

z N 0 1 2 3 4 5 6 7 8 9 10 15 --- ---- ------------------.-----------------------------
5 60 73 73 83 88 90 92 92 95 95 97 98 100 

6 60 63 65 70 73 77 87 87 93 97 98 100 

7 60 47 50 58 62 63 73 78 88 97 97 100 

8 71 59 66 75 82 86 90 92 92 93 94 97 100 

9 75 66 67 73 80 84 85 85 93 97 97 100 

10 57 40 49 58 67 72 79 81 86 95 96 98 100 

11 80 46 50 61 73 79 83 85 88 91 94 95 100 

ALL 463 56 60 68 75 79 84 86 91 95 96 98 100 

( table 3.82 ) 

naae of Solut1on a1stance. ~ 
ot:" J.. 

Probl. z Min1uJ. TaptI-ee ,r. tiff. 'riae Mintree 
--------. ---------------------------------------------------

[/'1 J Dantz1& 42 699 729 '* 4.4 2 Hr •• 591 
(~ ] Held./Karp 25 1711 1783 4.2 3 II1n. 1240 

(/1JCroe. 20 246 260 5.8 3 111ft. 154 
Sp1c 34 1240 1280 3.3 

~ 
90 ain. 1040 

(IS-) Baracnet 10 378 381 0.8 19 sec. 2D/ 

Austrian 12 1745 1859 6.5 40 sec. 1284 

* prematurely thrown eft. 

( table 3.83 ) 



- 74 -

3.9 Conclusion. 

It was tound that Toptree, as programmed in Algol 

tor the KDF9 and using the tree techniques as developed 

within this thesis, was a highly etticient method tor find­

ing a tour, which was reasonably close to the m1~al solu­

tion. On top ot that was the ad.ad advantage ot terminating 

the process when a solution which satistied certain prior 

conditions had been tound (e.g. tour length to be leaa than 

a certain quantity, or atter a certain time had elapsed ). 

I t seems pure coincidence as to whether a lIl1n1mal solution 

exists in S"" the subset ot Toptree tours. It was also not­

ed that the lengths ot the tours within the subset were not 

extravagantly large coapared. to the IIl1n1mal or best in the 

subset. In particular it was noted that Top tree did very 

well on the large, published problems. 

In Chpt. 3.7 Ha.aersley ani Handcombs tor­

mula was extended to Toptree and Mintree solutions but no 

conclusion was arrived at by the author. The author had hop­

ed to be aDle to predict from the values ot k ... k , k and ,.. T 

either Mintree and/or Toptree distances , upper and lower 

bounds on the minimal. solution tor any given problem. 



- 75 -

IV THE MINIMISATION OF THE 

BANDWIDTH OF A MATRIX. 
-------------------------------

4.1 General Discussion. 

The problem ot minill1sing the bandwidth ot 

a matrix occurs in the solution ot large sets ot simulta­

neous equations. In civil engineering, tor example, it is 

frequently desira8le to find the displacements and rotations 

of the joints ot a building trame or bridge trusses under 

stress. This leads to the solution of large sets of siaulta-

neous equations : A ~ -!!. ------ CD I which expresses the 

joint equilibrium equations relating the jo1nt displacements 

to known app11ed loads. There may be anything up to 50 

joints in a trame I leading to 150 or 300 variables, x~ • 

Each JOint is usually connecte« to perhaps 4 or 8 others 

and hence the matrix A will have a large number of zero 

elements • It one were to calculate the denSity ot a matrix 

as the number ot non-zero elements divided by the total 

number ot elements, it will be seen that A will have 

denSity ot the order of 5 ~ • Sparse matrices are not pe­

culiar to civil engineering only. In electrical engineering 

the model DI1ght be a network of again the same number ot 

JOints and also again each joint ( or terminal ) may De con-

nected to only 4 to 8 others. 



- 76 -

Thus there occur many problems which lead to 

the solution of simultaneous equations # where the matrix 

concerned is highly sparse • If the number of variables# z # 

is small # the problem can be solved by the conventional 

elimination or iterative techniques. But when z is large# of 

the order of 100 or over , the standard methods fail owing 

to storage limitations. However if A is banded ( all the 

non-zero elements lie close to the main diagonal ) # other 

methods have been developed [lJ' .. ,'t.f..,l which require storage of 

only the elements ot the band, making the solution ot larger 

order equations possible. The speed of the solution in these 

methods also depends upon the bandwicilth of the matrix: the 

smaller the bandwidth, the quicker the solution is found. In 

Livesley[~Sl, the time taken to solve a set of simultaneous 

equations varies as the square ot the bandwidth. Thus given 

A ~ - ~ to solve, Where A is highly sparse, it is highly 

desirable to manipulate A, by pre- and post-multiplication 

of a sui table permutat10n matrix P .. into a banded tora and 

it possible into a torm where the bandwid.th 1s the minimum 

possible. 

The probl_ ot find.1ng P has Dean split 

into two parts. The first, Stage 2, i8 concerned with obtain-

1ng a good approximation, i.e. a permutation which reduc •• 

the or1ginal bandwiath cons1derably. The second, cons1sting 



- 77 -

or two rurther parts , named Stages 1 and 3 , rinds a permu­

tation which gives the minimum bandwidth • Stage 1 tries to 

evaluate the minimum bandwidth, railing this it gives a 

lower bound ror it. This is important to Stage 3, which is 

an algorithm that rinds a minimum bandwidth permutation. The 

more precise the value derived from Stage 1 , the quicker 

will a solution to Stage 3 be found. 

In this chapter, A will be regarded as a 

z X z binary symmetric matrix , i.e. the non-zero elements 

will be replaced by ones. A is usually symmetric due to 

the nature ot the models: actions and reactions are equal 

and opposite implying symmetry in the resulting derived 

equations. Ir -,,- is the permutation ( 1 2 3 •••••• Z) 
P P P~ •••••• p~ 

let us associate with it the z X z t).. 

permutation matrix Q where q c.J G Q , such that q<'J - 1 , 

when j - P.c.,. and q~~ - 0 , otherwise. 

Let us further shorten (1 2 3. • • •• Z ) 
, . P, PL p~ ••••• p~ 

to (P, p P ••• P ) • Then the problem of finding a 
L.3 '% 

suitable permutation matrix Q, with which to pre- and post-

mul t1ply A 1n order to minimise the bandwidth , can be 

stated as that or r1nding the right sequence of 1ntegers 

(P, Pot 

tat10ns ot 

PJ •••• p~) or L(z), the list ot all permu-

( 1 2 3 •••••• z ) • Denote the half bandwidth, 

or hbw , which occurs tor a permutation 1r as b( 7r ). 



- 78 -

4.2 Relationship between Matrices and Graphs. 

Suppose we are given a binary , symmetric 

z x z matrix, A. There will exist a corresponding undi­

rected graph or z nodes, labelled from 1 to z , such that 

ir a~J - 1 I where at-I E A ,there is a line joining v<f.. to v
J 

(A will be the adjacency matrix representation or the re-

sul ting graph G A ) • 

1 0 1 1 1 

0 1 1 0 0 2 3 5 

1 1 1 1 1 /\l 1 0 1 1 0 

1 0 1 0 1 4 1 

matrix A and its graph G,. 

( rig. 4.21 ) 

I t tollows that the pro bl em of min1m1 sing 

b(A) becomes the problem or re-labelling the nodes or G~I 

such that the maximum d1f'terence between the labels ot any 

two adjacent nodes is a minlJllUlll. 



- 79 -

Def'ine dif'(i,J) as equal to \i - J I ~ if' 

v,,- is adjacent to v J. ' and equal to zero otherwise. Let 

Id(G) stand f'or the maximum or largest dif'f'erence between 

the present labels of' adjacent points of' G ~ i.e. 

Id(G) - Max l dif(1.J) \. over all i and J • 

We are interested in the minimum value of Id(G), - ldM(a' ) 
I say , f'or so.e permutation a of the labels of G. 

Thus the problem is to find this quantity Idm(a ' ) and a 

labelling ~ a', that leads to 1t. In fig. 4.21 we see that 

b(A) - 4 and so is Id(GA ) - 4 • By definition they will 

always be the same. Mathematically we define b(A) as equal 

to Min {l (i) -f(i) -,1 where f(i) denotes the pos1-
Vi 2 J 

tion of the first non-zero 

term in the i!!: row and 1 (1) the last • We shall use b when 

we wish to ref"er to Jlatrices and Id to graphs. The matrix 
.u... 

A can be rearranged bYApre- and post-multiplication of the 

permutation matrix corresponding to (4 1 3 2 5) as in 

fig. 4.22 , to give Id(G".) - b(A') - 2 • 

1 0 1 0 0 

o , 1 1 0 

1 1 1 1 1 

o 1 111 

o 0 1 1 1 

matrix A' 

1 

(rig. 4.22) 

3 5 

lSI 
2 4 

graph a tit' 



- 80 -

4.3 Tree-l1ke Matrices. 

The tree 1 s a very special sort ot graph 

and 1t seems highly unl1kely that 1n an actual problem, the 

matrix will have representation of this type. However 1 twas 

thought that 1t the problem of relabell1ng the tree was tack­

led and solved, this might lead to a method ot solving the 

more highly comp11cated problem ot relabelling the graph. 

Two d1tterent approaches were tried and 

both were only partially successtul, 1.e. two algorithms 

were evolved which labelled trees such that the maximal dit-

terence between adjacent labels was II1nimal , but only if' 

the number ot pOints was less than 50 or so • The author 

teels that perseverance may have yielded something, but de­

sisted trom going on , as a lot ot ideas had been thrown up 

which were ot considerable use in the more general problem. 

For example it was noted that in handworked examples ldM(T) 

was found to satity Idf\l\ (T) - E{T) , where 

E(T) - Max Hz '+ m'- 2J 
SubtreesT'Ll Dl' 

-------( 4.3 A ) 

where tor a particular subtree T' of' T, 
I t 

Z - number of' points in T and 

m' - dlaa(T') • 



- 81 -

That is , given a matrix A having a tree-like correspon­

dence T~, there was always a labelling of TA which satis­

fied (4.3 A ). That E(T
A

) 1s a lower bound. on ld.,., (T
A 

) 

can be proven as follows : 

THEXJREM 4.~ 

Proof :- Let us denote lcl",(T.) by ld..,. Consider 
, 

any two p01nts v ~ , vd 1n T , one of the subtrees that 

yields the value E(T~) • Let 1(J4 [v.c. ,v~ ]) - r , 1.e. the 

path length between v .... and v~ 1s equal to r. It we try to 

label T' , we see that 'lab(1) - lab(J) f ~ r X ld", • 

That 1s , if we have to label v A and v" the label ot vd 

cannot have a dlfference from v~ greater than the number ot 

11nes between them tlmes ld~. If we assume, without loss 

ot generallty, that lab(l) > lab(J) then 

lab(l) ~lab(J) + r X ld",. 

If we take the worst situatlon which can occur, 1.e. lower 

bound on the r1ght hand s1de and upper bound. on the other 

we obta1n z· ~ 1 + r x ldlW\ , 

1.e. ld"" ~ z - 1 • 
r 



- 82 -

As we are interested in obtaining the lowest bound on ld
M 

6 

this will occur when r has greatest value 6 i.e. when 
I 

r - m - d1aa(T') or the maxm1n path length in T', 

thus 

But ld". is 1ntegral 6 

, 
z - 1 

JIl' 

• 
•• ld ~ [z' - 1 

tIo\ JIl' 

Another way of putting the above formula is 

ld~ .. the least integer ~ 
\ 

Z - 1 
m' 

+ m' - 1 ] 
JIl' 

• 



- 83 -

4.4 Stage 1. 

The obJeot of this subohapter and assooiated 

program was to oompute a lower bound for b(A) and if pos­

sible I to obtain a value for b ~ (A). This will help us de­

o1de how long the program for Stage 3 should be run. In the 

prev10us subchapter, 1t was shown that E(T) ~ ldM(T) and 

the author feels that the e qual 1 ty s1gn holds true. There 1s 

a s1m1lar and more general relat1onsh1p , wh10h inoludes that 

of Thm. 4.41 , for graphs. 
, 

Consider a graph G , where G indioates any 

oonneoted part1al graph of G. Let z and m denote, as 

before I the number of po1nts and the maxmin path length in 

G I • Wi thin G I there may be many pairs of points whioh 11e 

on the ends of a maxm1n path. There will be a pair v~ I v~ 

whioh have the the least number of distinot maxm1n paths 

between them ( distinot maxm1n paths have no point in oommon 

exoept for v A... and v~ ) • Let the least number of distinot 

maxm1n paths be k, we then have ldW\(G) ~ E(G) , where 

E(G) 
- ~~I {[-z-+-...m ...... +m-k ..... --3J1 ---------( 4.4 A) 

Theorem 4.4 

Proof :- We label one end of the D18.XJI1n path as 1. 



- 84 -

The other end will have a maximum value for its label. If 

there is only one maxmin path Join1ng the two pOints ~ it 

will be 1 + m' X ld.... ~ where we have shortened ld",(G) to 

ldm • However if there are two distinct maxmin paths bet­

ween these two end points 1 the upper bound on the label of 
, 

one of them is now ldM X m • For it we assign to one path 
I 

the labels 1 ~ ldM +1 ~ 2Xl.d m +1 ~ 3Xldh1 +11 • •• ~ mxld"" +1 ~ 

the other cannot have identical labels and hence its label­

ling must have a l1ne with a difference greater than ldm • 

Sim1larlYI 1f there are k distinct paths between the two 

points~ the maximum value of a label for one ot them is 

As 

or 

m
l 

X ld M - ( k - 2 ). 

mxld",- (k-2) ~ z' 

i.e. ld ~ z'+ k - 2 
!WI Dl ' 

in Thm. 4.3 1 ld Mis integral and we obtain 

ld~ ~ [z'+Dl'+k-~l 
m' 

, 
ld ~ the least integer ~ z + k - 2 

WV\ mi 
• 

Q.E.D. 

If we were willing to investigate all the 

partial graphs for a given graph~ finding tor each partial 

graph its maxmin path length ~ we would be able to evaluate 

E(G). For small graphs it is a feasable proposition. However 

tor large z 1 in the order of 30 and upwards 1 the method 

is too time consuming. 



- 85 -

The author has met counter examples to the 

proposition that ldm(a) - E(G). But the expression does not 

seem to underestimate ld_(a) either too much or too otten. 

The author teels that some slight modification to ( 4.4 A ) 

will lead to the equality s1gn holding true. As a counter 

example to the equal1ty sign holding true cons1der the simple 

cube as in tig. 4.41 • Considering the graph 1n toto we ob­

tain E(G) - 3 • ( z - 8 , k - 3 and m - 3 ). Any part1al 

graph will not yield a larger value tor E(G) and yet 

ldm(G) - 4 ( this was found by appeal1ng to symmetry and 

going through the reduced number ot poss1ble part1al graphs). 

~". ;1 : " / I 
: .... / 
~ ...... / I ............... 

. , . , 

i I , 
,_ ... _- -.l I 

, ,,' I 
c..-.. ----4 

( tig. 4.41 ) 

1------':71 

( t1g. 4.42 ) 



- 86 -

4.41 Mushrooming r-~ees with Maximum Height. 

Given a aonnected graph, the mushrooming 

r-tree with maximum height will not be unique. This is 

easily seen beaause the r-tree which gives us the maximum 

height, will have as its highest point that point which 

itself must be the root of another mushrooming r-tree with 

exactly the same height. 

Mushrooming r-trees, TM, are built up in the 

following manner. Consider all points in G adjacent to v~ 

( the designated root point ) • They will beaome adjacent 

points to v T in T"" • Now consider eaah of these first gene­

rat10n points in turn and connect them to adJaaent pOints 

within the graph I aare be1ng taken to exclude any aonnec­

tions which result in a circuit be1ng formed 1n Twn • Having 

exhausted all connect10ns to and from 2nd generation points 

the process is repeated on 3rd generat10n po1nts. We not1ce 

a mushrooming-out effect trom which the process derives its 

name. The process terminates when no new points can be ad­

ded to the r-tree, i.e. the r-tree covers the graph. Hence 

all mushrooming r-trees are also spanning trees tor that 

same graph. 



- 87 -

The mushrooming r-tree is constructed ~or 

each point o~ G in turn and the one with maximum height 

gives us naturally , the mushrooming r-tree with maximum 

height • This then is a simple method tor tinding a maxmin 

path and its distance. We compute the mushrooming r-tree 

with maximum height which gives us a maxmin path ( the path 

between the highest point ot the r-tree and the root) and 

its length ( being the height ot the r-tree ) • 



- 88 -

4.42 Evaluation of E(G). 

Thus for a given partial graph we can com­

pute the maxmin path distance. While we were computing this~ 

we would also note the root point of that mushrooming r-tree 

which yields the maximum height • This root point will form 

one end pOint of the maxmin path. The other depends upon 

which of the highest pOints of the r-tree yields the least 

value ot k~ the number ot distinct maxmin paths between the 

two end pOints of a maxmin path ( see Thm. 4.4 ) • 

We construct all possible connected partial 

graphs G
1 

ot G and their associated mushrooming r-trees 

ot maximum height and compute E(G ' ) • We note the best one~ 

i.e. the largest E(G') and this gives us our value tor E(G). 

For large problems it is both impracticable 

and impossible to carry out the above operations, due to the 

length ot time spent analysing all possible partial graphs. 

However ~ if one could find thi s imp or tan t partial graph G " 

which yields the largest value tor E(G") ~ then it would be 

a simple matter • The method described next cannot be proven 

to find this partial graph • However the author again feels 

that~ if it does not sometimes find this important partial 

graph ~ it finds others which give a close value for E(G). 



- 89 -

4.43 Find1ng the Important Part1al Graph. 

W1th1n a graph def1ne p(1~j) as 

{

for i > 1 and the sun to be 

p(1Jj) .. L p(1-1 Jk) , taken over all k where v,< 1s 

adjacent to v~. 

P1ctorially p(1,j) can be thought ot as 

the number ot d1tterent paths starting tram any po1nt in the 

graph , having length 1 and tel'lll1nat1ng at v J • Thus as 1 

1ncreases, the values ot p(i,j) tor varying j give an in­

dicat10n of the relative density ot the sub graph around any 

point j. Consider the binary matrix and its graph ot fig. 

4.21 and reproduced below: 

1 1 0 0 0 

1 1 1 1 1 1 2 3 

0 1 1 0 0 TSl 0 1 0 1 1 

0 1 0 1 1 4 5 

A G
A 

( fig. 4.431 ) 

It P - p(i,j) , where P is m x Z ( and 

tor f1g. 4.431 , m - 2 J the maxmin path length) we obtain 



p = 
4 2 

8 7 

- 90 -

2 

7 

Let us examine the m~ row of P • The 

values in this row indicate the number of paths of length m 

which terminate at each ot the z points. Thus a point in 

the centre ot a dense subgraph is going to have a higher 
( 

value ot p(m,j) then, say, one right an the end ot a long 
I 

thin arm • Hence in the graph of fig. 4.431 , we have 

p(2,2) ~ p(3,j) tor all j. This bears out what we realize 

intui tively I that v, is much further out and 1n the centre 

of a much less dense surround1ng then va. • We say that v, is 

relatively less reachable than any other po1nt and v~ 1s one 

ot the most reachable points. It 1s easy to see that 1f P 

was extended by adding more rows then the r ~ row ( r > m ) 

would indicate roughly the same reachability tor the points. 

This then ranks the points ot the graph in 

the order ot relative reaahability. It may be suggested that 

there ls no need to labor1ously compute all the el_ents of 

P , but to slmply rank the points in order of their degrees 

1.e. by d(j), and only compute p(2,J) or p(3,J) for those 

ot equal degree. This ranking will lead to a dlfferent or­

der1ng ot the pOints, as can be seen trom the following 

example. 



- 91 -

2 4 6 j 1 2 3 4 5 678 

p(1,j) 2 2 3 2 4 1 1 1 

"----7 p(2,j) 5 567 544 4 

p (3, J) 11 11 17 11 19 5 5 5 

8 p(m,J) 8 28 33 36 26 19 19 19 

We see that v~ is ot degree 2 and hence 

in1tially ranks lower than V3 and Vs , and yet p(4,4) has 

the greatest value ot all p(4,j) • 

The author decided that he would use the 

above concepts in tackling the problem ot finding the impor­

tant partial graph. The graph was reduced by one point at a 

time while computing E(G) for each successively smaller 

graph. ( E(G) was computed tor only the graph in question and 

not over all its partial graphs. From now on when we discuss 

the computation of 

the evaluation ot 

E(G' ) 

(4.4 A) 

tor any graph G ' we shall mean 

G1 
over the graph and not over 

all its partial graphs. ) The point to eliminate was the one 

with least reachability, i.e. ~ is eliminated if 

p(m ,J) ~ p(m ,i) , for all i • This gave excellent results 

as worked out on the computer. Unfortunately tor larger 

values of z ( z ~ 60 ), the time taken to do this was still 

too long and hence the stage was rarely ever completed. 



- 92 -

Having decided which point to eliminate 

( subtract or delete) tram the graph I it was usually easy 

to accomplish the elimination I because the point was usual­

ly an end pOint. But there are examples where the point to 

be subtracted is a cut pOint l i.e. upon reMoving the point# 

the graph becomes disconnected • This then introduces dir­

riculties or sequentially ordering the labels or points within 

the components and a little thought has to be put into the 

programming ( see Appendix 3.1 ) • In ne1ther case will the 

time taken be artected as there are at most z - 2 deletions 

to make. 



- 93 -

4.44 Analysis of Stage 1. 

The conclusion is reached that this stage 

is not as necessary as was first thought. This is because 

the third Stage I for Which this Stage was attempted ~ was 

found to be ineffective for large values of z. However it 

is worth running the prograa corresponding to this Stage in 

order to obtain an idea of the relative values ot ld g1ven 

by Stages 2 and 3 • For large values of z where Stage 3 

makes no improvement I the results ot this Stage are the 

only yard-stick Whereby to judge the value of the labelling 

given by Stage 3. 



- 94 -

4.5 Stage 2. 

This stage is concerned with the problem of 

finding a useful approximation to the minimal permutation. 

That is ~ to tind a pe~rmutation on t9fe or~inal graph which 

has a bandWidth which we hope is not tar trom the minimum. 

Here again the technique used was that ot obtain1ng spanning 

trees, manipulating them into suitable cont1gurations and 

then using the tinal configuration to give us a solution. 

In Stage 1 we saw that E(G) is directly 

related to the ~n path length. That is it one end ot the 

maxmin path is labelled 1 ~ we hope to be able to label the 

graph minimally • Thus the tirst step to take is to tind the 

end pOint of a maxm1n path as explained in Chpt. 4.441 • We 

will show now how this helps us. 



- 95 -

4.51 Graph1cal Model. 

Suppose we have a graph and let us imagine 

that we have a str1ng model correspond1ng to the graph # 

where each p1ece of string # which joins any pairs of adja­

cent points # 1s ot equal length • Further 1magine a small 

we1ght to be attached to each p01nt ( or knot ). If we now 

hold the string model up by one of 1ts points , the rest 

will hang down and each p01nt will 11e in a well det1ned 

layer. The f1rst or h1ghest layer would cons1st ot those 

adjacent to the point be1ng held # the second layer would 

comprise of those p01nts adjacent to the f1rst layer and 

so on • Suppose we label the po1nt be1ng held as one • We 

now label the pOints in the second layer: two# three and 

so on# t11l all the second layer p01nts have been labelled. 

We tum our attention to the next layer#the th1rd, and con­

t1nue the process on succeed1ng layers t1ll all the pOints 

have been labelled. Thus all p01nts in the preceding (r-l) 

layers will have been already labelled when we start label­

l1ng the p01nts 1n the r~ layer. It we know the n'Ulllber ot 

pOints in each layer# we can calculate the maximum poss1ble 

value ot Id(G) result1ng trom th1s method ot labelling G. 

The worst poss1ble ditference will occur 1n the two adJa­

cent layers which together have most points between them. 



- 96 -

Let us define this quantity as ld (G) and it will be 
11'1 'J 

equal to M ~ :(. t sum layer[ J) + sum layer[ J+1) - 1 l I 

l~j~ 

where layer[ j] - value of the layer wi thin whioh vel lies 

and layer[v.,.] - 0 I where voris the 

label ot the point being held, 
z 

and sum layer[j] - L ~ J.layer[1] 
t. ., 

where S~t is defined as the Kroeneoker delta. 

sum layer[j] , in other words , is equal to the number of 

points in layer[j] • This oan be best illustrated by a 

simple example, as in fig. 4.511 • 

11 12 15 
~--~--~~~~~ 

6 10 

1 5 

( tig. 4.511 ) ( tig. 4.512 ) 

t
---1-----t-,--2--3--4--s--6--1--8--9--;~-;;-;2-;3-;4-;sj 
--------- ---------------------------------------------layer[i] 1 2 3 4 5 2 2 4 4 6 3 4 3 4 5 
--------- ---------------------------------------------

( tables 4.513 ) t
-----i -----Il--2--3--4--s--6} 

------------ -----------------sumlayer[i] 1 3 3 5 2 1 
.---------- -----------------



- 97 -

, ., 

( tig. 4.514 ) ( fig. 4.515 ) 

In the example ot fig. 4.511 we have a 

simple metal girder 0 already labelled ( and thus haVing 

ld(G) - 6 ) • It we now hang the corresponding string model 

at v I we obtain the figure of 4.512. We have ld """''1(0) - 7, 

after examining the sumlayer table ot tables 4.513. We can 

also bUild a mushrooming r-tree from v, and this is indica­

ted in the same figure ( fig. 4.512 ) by heavy lines, its 

cotree being indicated by dotted lines. We can relabel 

fig. 4.512 , as indicated a paragraph or two ago and in the 

worst case obtain the labelling as in tig. 4.514 • This has 

ld(G') - 7. But with a little thought we can illlDlediately 

reduce this to ld(a' ) - 5 , as given by the labelling in 

tig. 4.515 • 



- 98 -

Hence if we can , firstly, choose the right 

point fram which to hang the model and secondly , manipulate 

pOints from one layer to another ( i.e. by altering the 

layer value attached to the points ) such that we decrease 

the numbers within those layers with most pOints, we have an 

excellent chance ot obta1n1ng a labelling with a smaller ld. 

Lastly, having got our model in a sausage shaped tormation, 

as opposed to the original multi-triangular conf1guration, 

we must try to find a method of labelling which produces 

the lowest value of ld(a) possible. 



- 99 -

4.51.1 Manipulation of the Graph. 

The hanging model and a r-tree have at least 

one property in oommon. Adjacent points differ by at most 

either one generation or one layer. Let us within the graph, 

costruct a mUshrooming r-tree whose root is the point being 

held. Then the generation number of a point will give an 

exaot indioation of the layer wi thin which it lies. In1 tial­

ly layer[i] would be set equal to gen[i] • The problem is 

that of altering the value of layer[i] tor some v~ such 

that we achieve a smooth, sausage-like hanging graph I i.e. 

minimise ld (G). Given that the resulting method is heu-
Il'\ 0..)( 

ristio I it would be to our interest it the mushrooming r-

tree was one with maximum height. For the more layers pos­

sible the better the chance ot deoreasing ld (0). Retur-
MQ.I( 

ning to the sausage analogy, tor a given amount ot stufting 

the sausage is likely to be muoh thinner it we have a longer 

skin • Conversely I it the 1 ength of skin is decreased. the 

sausage is bound to get thicker. Hence it is desirable that 

the point being held should be the end point ot a maxm1n 

path. That is, the mushrooming r-tree should 'be one ot max­

imum height. 



- 100 -

The general outline of the program is as 

tollows. A search is Jllad.e along sumlayer[i] tor 1 ~ i~ ml 

looking tor that layer with most points or two adjacent 

layers which together have most points • The points 01' the 

layer with most points, are examined to see it there is one 

which can be moved up a layer (i.e. layer[j]:-layer[j]-l;) 

and yet not create a situation where two adjaoent points 

(01' G) have more than one layer between them • Thus it 

the pOint to be moved up one layer has adjacent points in 

the layer below, these also have to be moved up one layer 

and so on • As an example consider the following graph in 

fig. 4.51.11 • 

10 

J-__ ~a 

I~ 

graph G r-tree TM 

(tig. 4.51.11) ( tig. 4.51.12 ) 

, 



- 101 -

The graph G o£ tig. 4.51.11 represents 

a simple structure in civil engineering • The shape ot the 

structure is a box or cube sitting on tour legs • We rind 

£rom G that the maxmin path length 1s 4 and that one 

ot the maxmin paths is given by [VI IV 2.. ,v'c> IV" ,v It] • 

We can construct a mushrooDdng r-tree T~ with VI as root 

and obtain the r-tree in fig. 4.51.12. The dotted lines in­

dicate the members ot the cotree. The sumlayer table tor T~ 

can be constructed and it is as follows (in table 4.51.13): 

(table 4.51.13) 

We see that sumlayer[4] and sumlayer[3] 

together have maximum value. We concentrate on sumlayer[4] 

as that is the larger. We note that both v,. and v, could 

have their layer numbers decreased without any complica­

tions • I£ we allow a step at a time to the reduction of a 

pOints layer value it will take 4 steps to reduce the lay-

er values of V It- and ver each £rom 4 to 3 , e.g. 



- 102 -

----------- --------.----
1 1 2 3 4 5 

-------~--- -------------sumlayer[1] 1 1 3 2 2 
----------- --------------

1 1 4 4 2 
----------- --------------

1 2 
----------- ---.----------

1 2 !!. 3 
----------- -----~--------1 333 
----------- --------------

(table 4.51.14) ( tig. 4.51.15 ) 

In each case the layer chosen to be reduced 

1s under11ned 1n table 4.51.14 • The last sumlayer values 1n 

the table corresponds to the contiguration 1n tig. 4.51.15. 

The r-tree 1s st1ll discemable exoept that 1 ts l1nes do not , , 
hang down as 1n the prev10us examples but 11e at the1r va-

r10us levels. 

In the last example there was no trouble as 

to the cho1ce ot which po1nt to move up • However it 1s not 

always as simple as that in general. The po1nt to be chosen 

1s that one with least degree. Th1s covers the prev10us ex­

ample as v 4- and v, were both ot degree 1 • Thus a search is 



- 103 -

made through the po1nts or the part1cular (max1mum) sum­

layer and the one with least degree ( with respect to the 

graph ) 1s chosen to move up • rr there 1s more than one 

po1nt or least degree an arb1trary choice is made between 

them: in the actual program it was the one which had the 
, 

least or1ginal label. Again in the example or r1g.4.51.12 

1t would have been v~ rather than v 1 • For completeness 

sake the result of this method on the r-tree ot tig. 

4. 51/2 1 s shown 1n tig. 4.51. 17 wi th the accompanying 

table ( 4.51.16 ) showing the variation in its sumlayers. 

----------- -------------.--
i 1 234 5 6 

----------- -----------------
sumlayer[1] 1 3 3 2 2 1 
----------- ----------------

1 3 ! 4 2 1 

----------- ----~------------1 4 3 4 2 1 
----------- --.--------------

, 

(table 4.51.16) (tig. 4.51.17) 



- 104 -

We note that as we start with all the points 

hanging down (i. e. the values of layer[i] are the maximum 

possible for all i), they have initially only one degree of 

movement • That is they can only move upwards, i.e. take 

lower values of layer[i] • Once some points have had their 

layer values altered, there will be for same points the 

choice of either having their layer values further decreased 

or increased again.This problem is side-stepped in this pro­

gram by allowing the points to have only one degree of fre­

edom all the time, i.e. they can only move upwards or stay 

where they are but never move down. Thus there comes a time 

when any movement ot the pOints (by the alteration ot their 

layer values) either increases the maximum sumlayer value 

or increases the ~um sum ot any two adjacent sumlayers. 

At this instant the program (or method) stops. More sophis­

ticated methods could be devised which allowed movement in 

either direction. This introduces added dirficulties such 

as which pOint to choose and in which direction is it to 

move or when is the aethod to tel"ll1nate. 



- 105 -

4.51.2 Labelling ot the Graph. 

The author tOlmd this the most ditficul t 

task ot all, and teels that the method tlnally adopted 

in this subchapter ( and program ) 1s only Just adequate. 

The problem was to find a method ot label11ng the mod1t1ed 

~, the mushrooming r-tree ot the previous subchapter. 

As hinted earlier. the method 1s to label the po1nts 1n 

success1ve and increasing valued layers.Thus all the p01nts 

1n layer [1] are tirst labelled. start1ng trom one. Then 

all the po1nts 1n layer [2] are labelled and so on until 

all layers contain labelled points. In the example ot the 

prev10us sub-chapter ( i.e. tig. 4.51.15. ) 1t ~gbt lead 

to an in1t1al solution as shown 1n t1g. 4.51.21. with 

ld(C:) - 5. 

" , ~ 
" I a. 

( tig. 4.51.21 ) ( tig. 4.51.22 ) 



- 106 -

An 1mprovement~ perhaps an obv1ous one~ 

woUld be to label t1rst~ with1n a layer~ those that are 

adjacent to an ear11er labelled po1nt 1n the layer above 

them. Thus the f1gure under cons1derat1on will be labelled 

as 1ndicated 1n tig. 4.51.22. This does not decrease ld{') 

1n th1s part1cular case. But 1 t can be seen that 1nstead 

01' l1nes that contributed to ld(6) equal1ng 5 we have now 

only one: (2-7). This can be eliminated 11' we 1ntroduce , \ 

the 1dea ot slack ~ whereby, 11' there 1s any slack bet-

ween layers ( e.g. between the f1rst layer~v, I and the next 

to be labelled 1n layer [2] ) wh1le label11ng, other po1nts 

obta1n precedence. This 1s 1llustrated 1n tig. 4.51.23. 

II ':t 

( t1g. 4.51.23 ) 

A further tew crude rules are tound 1n the descript10n 01' 

the program 1n Append1x 3.2. 



- 107 -

4.52 Analysis of Stage 2. 

Th1s was founc1 to be qu1 te a fast method 

of obtaining a permutat10n or labelling of the graph whose 

lei was cons1derably reduced • In the random data examples 

reductions 1n the order of a th1rd or h1gher were obtained. 

There 1s lots ot scope tor 1mprovement e1ther 1n the mani­

pulat10n or the label11ng ot the graph • There 1s no need 

to alter the bas1c 1dea but merely ret1ne the rules ( ot 

man1pula t10n and/or ot the label11ng ). 



- 108 -

4.6 Stage 3. 

4.61 Introduct1on. 

This the final Stage" 1mproves upon the 

solut1on obta1ned by Stage 2 and 1£ neccessary f1nds a per­

muta t10n with minimum bandwidth • The algor1 thm was the 1n­

direct resm t of a talk given by G.Alway some two and a 

halt years ago • It is similar in principle to the one pub­

li shed by Al way and Martin [ ~ * ] but the method ot attack 

and explanation is quite ditferent • Alway and Martin dis­

cuss their algorithm in terms ot binary words and pattems. 

Here the emphas1s 1s on the correspond1.ng graph and the 

changes in its ld due to various labellings on it. Suppose 

as before" that the l1st or permutat10ns be ret erred to as 

L(z) and that within this l1st the perautations are or­

dered lexicographically in increasing order ot magnitude, 

e.g. L(3)-(l,2,,3);(l,3,2);(2,1,,3)j(2,3,,1)j(3,1,2)j(3,2,1). 

Consider one of the permutations ot L(z) 

and let 1ts members be held 1n K[1]" an Algol array. It we 

allow the 1dentity pe~utation to correspond to the origi­

nal labell1ng ot the graph" then the labell1ng ot the graph 

corresponding to the permutation K[i] is as tollows : 

v K('-l - v ~ , i.e. the point originally labelled K[i] is to 

be relabelled 1 • It we write out the adjacency matrix cor-



- 109 -

responding to the identity permutation, then the matrix 

corresponding to the permutation K[i] is obtained DY re­

placing the i41- row and colunms by the K[i]!!: ones. 

For example consider the graph G, in rig. 

4.611. Let this correspond to the identity permutation and 

have binary matrix representation as in AG, • The graph Gl. , 
and its matrix A~ corresponding to the permutation 

a 

( 4, 5, 2, 3, 1, 6) can be pictured as in rig. 4.612 • 

1 2 J 4 .2 6 

~: , 0 0 0 0 1 0 

0 0 1 0 0 0 
I#-

0 1 0 1 1 0 

,q, = 
I 0 0 1 0 1 1 

1 0 1 1 0 1 

(rig. 4.611) 0 0 0 1 1 0 

4 ~ 2 J 1 6 

<"=t: 
0 1 0 1 0 1 

p. 
1 0 0 1 1 1 

~ 
0 0 0 1 0 0 

5 (I .:: 
Gt) 1 1 1 0 0 0 

J 4- 0 1 0 0 0 0 

(tig. 4.612) 1 1 0 0 0 0 



- 110 -

We see that K[i] ... 4, 5, 2, 3, 1" 6 for 

i III 1" 2, •• " 6 • The correspondence between the two la-

belled graphs 1s that within G " 
v",. has been relabelled 1 " i.e. 

, 
V'f- a V, " 

V~ 2 , i.e. Vs- - v' 
~ " 

• • • • • • • • • " 
v, 6 , i.e. v 

4 - v· C. • 

Thus it we go through L (z) and cal cula te 

the Id tor each permutation, we shall be able to find a 

pennutat10n with ld I'h • Another way ot doing this is to 

note the ld ot the identity permutation and then search 

through L(z) noting only those permutations which yield 

successively smaller values ot ld • The last one noted 

will be the one corresponding to ld WI (a). This is in tact 

what the algor! thm does. It surveys the z! poss1ble per­

mutations using stringent conditions to reject unsuitable 

permuta tions such that a comprehensive scan can be made 

in a much shorter time. 

As it is impossible to carry within the 

computer all L(z) permutations, we have to generate within 

K[i] each permutation that we wish to examine • It is dur­

ing this generating process that we incorporate the rules 

ot rejection in order to build up our complete permutation. 



- 111 -

4.62 Generating the K[i] (or Rules of Choice). 

The method of choosing permutations from L(z) 

is to fill inl without repetitionl the values of K[i] from 

the setl L I of numbers (or labels) ~1,2,3, ••• IZ}. The 

filling in of the array K[i] corresponds to the relabel­

ling of the graph. Thus it we allocate a number to K[ 1] 

and then another to K[2] and so on, th1s will correspond 

to the label 1 being attached to the point originally la­

belled K[1] , label 2 being attached to the point ori­

ginally labelled K[2] and so on. The labels to be applied, 

rather than the pOints to be labelledl are chosen in natu­

ral order. 

We must evolve same rules tor choosing the 

numbers K[1],K[2], ••• ,K[z] such that these rules cor­

respond to the sequential e~at10n of L(z). Let us as­

sociate with each label i the set of unlabelled points 

U(i). The rule will be that we allocate to K[i], for in­

creaSing i, the least member of U(i) • Consider the graph 

of fig. 4.611 • We have U(l) - (1, 2, 3, 4, 5, 6J and 

hence K[1]:- 1 • We have a dynamic pOinter that now moves 

to K[2] indicating that th1s is the next location to be 

tilled. We have U(2) - [2, 3" 4, 5, 61 and so K[2]:- 2. 

When the pointer finally moves to K[6] we obtain within 

K[i] the identity permutation, the first in L(z). 



- 112 -

Let us consider the next permutation which 

we know to be ( 1~ 2, 3~ 4~ 6~ 5 ). The pointer is at K[6]. 

We reject the content of K[6] and see if there is another 

member within u(6) to choose. There is not and so we move 

the pointer down (or leftwards) to K[5] • U(5) - f5~ 6} • 

We now alter the content of K[5] by choosing the least 

member within U(5) greater than (the old) K[5] • This is 

the previous mentioned rule but with greater restriction. 

Thus K[5]:= 6 • The pOinter moves up to K[6] and we use 
, 

the first mentioned rule to obtain K[6]:- 5 • The graph 

and matrix corresponding to this permutation are shown in 

fig. 4.621 • 

1 2 ~ 4 6 2 

s 0 0 0 0 0 1 

, 0 0 1 0 0 0 

I 0 1 0 1 0 1 

0 0 1 0 1 1 

0 0 0 1 0 1 

(fig. 4.621) 1 0 1 1 1 0 



- 113 -

It is worth emphasising the situation when 

either rule is to be used. Let us reter to the first rule 

ment1oned~ that ot choosing the least member of U(i) ~ as 

Rule ( ot Choice ) 1 and the second~ that of choosing the 

least member of U(i) greater than the previous K[i]~ as 

Rule ( of Choice) 2 • It it is required to till in K[J] 

then Rule 1 1s used it the po1nter has just moved ~ trom 

K[j-1] to K[j] ~ and Rule 2 1t the po1nter has just moved 

~ trom K[j+l] to K[j] • 

Cons1der the next permutat10n in the above 

mentioned example. We know that this will be (1~2.3.5.4,6) 

but let us see how it is obtained • The po1nter 1s at K[6] 

and moves down to K[5]. We see that Rule 2 indicates that 

no member ot U(5) can be allocated to K[5]. So the pointer 

moves down to K[4] • We note that U(4) - f 4. 5 .. 6 ~ • Rule 2 

gives us the point 5 to be allocated to K[4]. ( This means 

that the point 5 has been allocated the label 4. ) The poin­

ter moves now up to K[5] and we use Rule 1 to till in K[5]. 

We have U(5) - {4., 6) and thus K[5] :- 4 • Finally the 

po1nter moves up to K[6] and K[6] :- 6 • The corresponding . 
graph and matrix are Shown in tig. 4.622 • 



- 114 -

1 2 3 5 4 6 

0 0 0 0 0 1 

I 0 0 1 0 0 0 

5 
0 1 0 0 1 1 

0 0 0 0 1 1 

0 0 1 1 0 1 

(tig. 4.622) 1 0 1 1 1 0 

Thus given a permutation ~ whether partial 

or complete~ we can by the use ot the above mentioned rules 

find the next complete permutat10n in L{z) • We could use 

this to search the list L(z) examin1ng each permutation 7i~ 

in turn in order to evaluate b{1T..) and hence obtain b", (n;.). 

However this is 1mpracticable tor z greater than seven or 

eight. Thus we introduce saae turther tests 1n order to re­

ject intermed1ate permutations 1n wh1ch we are not 1nter­

ested because their ld is necessarily greater than the value 

we are looking tor. These tests will be called Tests tor 

Rejection. 



- 115 -

4.63 Tests for Rejeotion. 

The Tests ( for Rejeot1on ) oan be best ex­

plained in te~s of the labelling of the graph • Suppose we 

have a typioal unlabelled point v p wh10h is attaohed to t 

labelled points 

v , ••• 
+'+\ 

(fig. 4.631) 

'If, 

Further suppose that we wish to consider as­

signing the next unused label 1 to v, and that d1f{V,',v A) 

- r (tor 1 - 1, ••• ,t ) : that is, it we assign the label 

1 to v p , the maximum difference between it and any at the 

preViously labelled paints is r. We oan state that tor any 

subsequent labelling 

d1f(V~ 'Vo(.) ~ max~u,rl ' 

at the paints adjacent to v p ' 

for i - 1, •• ,t,t+1, ••• ,t+u • 

In other words, it we assign the label 1 to v p and whatever 

the subsequent labelling to the unlabelled paints ot the 

graph, we cannot hope to obtain an ld tor the graph of less 

than max[u,rJ . 



- 116 -

(f'1g. 4.632) 

For example consider the cont1guration of 

tig. 4.632 with two points already labelled 2 and 5 • Sup­

pose that the next label to be assigned is 6 • This corres­

ponds to tilling in K[6]. The test is: can 6 be assigned to 

v p such that the tinal labelling has an ld less than or 
I I ~ equal to" 3 say. The answer is no. dif(Vp 6V ... J - di:t(.,- "v",) 

~ 4 ( tor i - 16 2, 36 4 ), thus the least ld we can expect 

i:t we allocate 6 to v, is 4 as shown in rig. 4.633 • 

(tig. 4.633) 



- 117 -

The correspondence with the array K[i] is 

this. U(6) contains among its members fv ~v ,v ~v ,VII t. 1. I ~ , + ,.J 
A member of U(6) has to be chosen for allocation to K[6]. 

We have just shown that if we were only interested in per­

mutations whose Id 1s equal to or less than 3, we would not 

cons1der the po1nt v s1nce 1t has tour adjacent po1nts as .. 
yet unlabelled. This 1s our Test tor Rejection 1 • 

The mechanism tor carrying this out is as 

follows. For each label 1 ~ we have already associated with 

1t the set of unlabelled pOints U(1). We now define a sub­

set H(1) ( the set of Needed or Neighbours) or U(1). N(1) 

contains all the members ot U(1) which are adjacent to K[l], 

K[2], ••• ,K[1-1] and do not appear 1n K[1],K[2], ••• ,K[1-1]. 

N(1) can thus be defined 1n terms of N(1-1)~K[1-1] and U(1-1). 

We can detine N(l) syabollcally as N( 1) - 0 and 

N(l) - t N(i-l) - K[l-ll} U f all po1nts ad- 1 n U(1-1) ~ 
( Jacen t to V"(,_,l \ 

for 1 > 1 • 

N(l) can be thought ot as a priority subset within U(i) fran 

wh1ch the cho1ce tor K[1] 1s samet1mes preferentially made. 

Suppose we are searChing for a label11ng 

whose Id 1s less than LD and that the situat10n arises 

where the number ot members 1n N(j) - LD + 1 • This means 

that in the graph we have (LD + 1) unlabelled points ad-



- 118 -

jacent to already labelled points. Even it we allocate the 

next (LD + 1) labels to these pOints in N(j) we would have 

a labelling whose ld is greater than LD. Thus Test (for 

Rejection) 1 corresponds to finding that the number of mem­

bers in N(j) is greater than LD. This means that the choice 

ot the pOint in K[j-1] is inadequate and that any permuta­

tion which has its tirst (j-1) elements the same as K[i] 

(tor i a 1 to j-1) 6 can be safely neglected. The result is 

that we skip down L(z) to the tirst permutat10n whose (j-1) 

element 1s ditferent tram that in K[j-1] • 

It is possible while tilling in K[i] to ob­

ta1n a partial permutat10n such that within the graph two 

adjacent labelled pOints V4'V~ saY6 have d1tt(V: 6vj) > LD. 

The correspondence in the array K[i] is that there are more 

than LD other points between the poa1t1ons occupied by Y4 

and v t • That is it K[s] - i and K[t] - 1, then It-sl> LD. 

Thus every t~e K[j] is tilled, a backcheck 1s made to see 

if any labelled points adjacent to v~CJl appear in positions 

greater than LD places away. This 1s Test (tor ReJect1on) 2. 

We reject the current cho1ce ot K[J] it the backaheck is 

positive. 



- 119 -

4.64 Summary of Rules and Tests. 

As a result of the introduction of the set 

N(i)~ we can make one more pOint about Rule (of Choice) 2. 

We mentioned that the choice is to be the least member of 

U(j) greater than the present member ot K[j]. Suppose N(j) 

contains LD members then the choice of members for K[j] is 

in tact gOing to be much more restricted. We cannot attord 

to choose any member other than tram N(j). If we did not~ 

N(j+1) would contain all the members ot N(j) plus the 

pOints adjacent to the new K[j]. Th1s would result in Test 

2 rejecting the choice in the next iteration. Hence we anti­

cipate this by stipulating that it N(i) is full ~i.e. con­

tains LD members~ the choice will be tram N(i) and not U(i). 

Rules (ot Choice) tor K[j). 

1/. The pointer has just moved ~ tram K[j-l] to K[j]. The 

choice tor K[j] will be the least member ot U(j) (or N(j». 

2/. The pointer has just moved ~ from K[j+ll to K[j]. 

The choice will be the least member ot U(j) ( or N(j) ) 

greater than the old value of K[j]. 

Tests (tor Rejection) ot K[j]. 

1/. The number ot members in N(j) 1s greater than LD. 

2/. There are two adjacent points of the graph whose posi­

tions in the permutation are more than LD places apart. 



- 120 -

4.65 The Algorithm. 

The algor1thm works 1n two parts. It alter­

nates between choos1ng an element from U(1) to be assoo1at­

ed with label 1 ~ and that of test1ng whether 1t falls foul 

of one of the Tests. Once we have filled in all the values 

of K[1] we have a permutat1on, ld ~ which is equal to or 

less than LD. We put LD:- Id - 1 and continue the process 

from this last permutation. Eventually we either allow the 

algor1thm to test L(z) completely (and thus be sure of ob­

ta1n1ng ldm ) or prematurely tenrdnate the process. The 

actual program has been adapted so that~ if it is required" 

LD can be 1nput by the User. Thus if we have other eVidence 

that ld M is going to be somewhere near the value LD ~ we 

1nsert th1s value into LD and the skips down the list will 

be consequently greater. As an example of the method oonsi­

der the graph of tig. 4.651 • Suppose we wish to find a 

permutat10n yielding an ld of 2. We put LD - 2 and the va­

rious stages ot the state ot K[i] are shown in table 4.653. 

The table is almost self-explanatory. As it 

is read from lett to r1ght and down the page so does the 

algorithm work. The U{j) column is only t1lled in when re­

terence 1s made to it. Within the computer U(j) is cont1-

nually updated. Test 2 is made after K[j] is filled in and 

hence appears to the right ot the K[i]. The label11ng cor­

respond1ng to the final labelling is shown in tig. 4.652. 



- 121 -

I 

:J.. I 

( 1, 2, 3, 4, 5, 6) ( 2, 1, 3, 4, 6, 5 ) 

(fig. 4.651) (fig. 4.652) 
Rule 
or K[1 ] 

j N(.1) u1...1l Test 1 2 3 4 5 6 Test 2. 

1 0 ~,2,3,4,5,6 RC 1 1 

2 2,4 RC 1 1 2 -
3 3,4 RC 1 1 2 ~ 

4 4,6 RC 1 1 2 3 4 TR 2 

3 3,4 RC 2 1 2 4 

4 3,5,6 TR 1 

3 3,4 RC 2 1 2 * -
2 2,4 RC 2 1 4 -
3 2,3,5,6 TR 1 
2 2,4 HC 2 1 * -
1 0 ~,,2,3,4,,5,6 HC 2 2 -
2 1,3 HC 1 2 1 -
3 3,,4 HC 1 2 1 ~ 
4 4,6 RC 1 2 1 3 4 

5 5,6 RC 1 2 1 3 4 2-
6 6 RC 1 2 1 3 4 5 6 TR 2 -
5 5,6 RC 2 2 1 3 4 6 

6 5 HC 1 2 1 3 4 6 2 
~.------- .~----------.------~------------------~--------------* None ( table 4.653 ) 



- 122 -

4.66 Analysis of Stage 3. 

The program, Stage 3, is based on the algo­

rithm Just described and was reasonably fast on small sets 

of data, i.e. z < 30 I but not as fast as was hoped for lar­

ger values of z. This conclusion is reached on the basis 

that for z ~ go , Stage 3 was used in conjunction with 

Stage 2 and rarely improved its result. When, due to the 

time it was taking, Stage 3 was prematurely terminated, the 

partial permutation in K[i] was printed out and this indi­

cated that the algorithm was not skipping down the list L{z) 

very quickly (see Chpt. 4.67) • However no comparison I bad 

or otherwise, can be made with that as published by Alway 

and Martin as they do not include any experimental resul ts. 

The method can be improved it we were to make the jumps or 

skips down the list greater. This can be achieved by refin­

ing either the Rules of Choice and/or Tests for Rejection. 

That is define further rules and tests which would either 

choose more appropriate pOints to insert in K[j] or reject 

the choice for K[j] on the grounds that it would not lead 

to a desirable permutation. 

The Tests as described in 4.63 were in terms 

ot the immediate neighbours (or adjacent points) to a point. 

That is, if we gave a point v~ the label 1 we were only con-



- 123 -

cerned with the e~~ect on N{l)~ the subset o~ points immedi­

ately adjacent to previously labelled points • We could ex­

tend the tests so as to cover unlabelled points two~ three 

or ~our lines away • But this means that the time spent in 

testing ~or the suitability o~ a point is going to increase. 

There Will be a point whereby the increase in the size of 

the skips down L{z) is going to be nulli~ed by the time 

spent choosing and rejeoting unsuitable permutations. 



- 124 -

4.7 Conclusion. 

The three stages, as programmed for the 

KDF9 in Algol, were tried on two sets of data. One set was 

randomly produced and the other was gathered from various 

sources. When possible, Stage 3 alone was attempted on the 

same data and the accompanying table ( table 4.71 ) gives 

an idea of the result ot Stages 1, 2, and 3, and Stage 3 

alone and their respective times. On the random data, z>40, 

it was not possible to run all the three stages to their 

conclusion, and thus the times in their column indicate 

how long they ran before they were terminated. 

We see that, tor the practical examples 

illustrated in figs. 4.72 and 4.73, as opposed to the 

random ones, all three stages give close results. That is 

Stage 1 either gave ld or just one less, and Stage 2 gave 

the minimum ld or one above. However the random examples 

did not fare so well. Stage 3, except tor the tirst one, 

did not improve upon the permutation as supplied by stage 

2. This can be accounted for slightly by the tact that 

rarely was Stage 3 ever allowed to run to its natural end. 

Stage 2 was usually allowed to finish, and it reduced the 

in1 tial ld value (as set up by the random matrix gener­

ator ) by at least a third. How much it would improve upon 



- 125 -

, 
an intelligent guess or atte~ at an initial labelling 

is deba~able. The resulting graphs produced by the random 
~ 

matrix genera~r were so complex and naturally non-planar 

( i.e. they could not be drawn on a two-dimensional plane 

without lines intersecting each other) that it would be 

impossible to envisage the graphs l let alone attempt to 

label them. In the cases where the graphs were gathered 

from various sources (usually civil and electrical engine­

ering problems and chemical structures) the improvement may 

not be so sign1ficant l but this is because with practice 

the author acqUired certain intUitive and non-rigorous 

rules for the labelling of graphs. The practical problem 

as illustrated in figs. 4.72 and 4.73 have the least ld 

labelling on the graphs. 



- 126 -

lOt b Ie. 

z b.,. 

II 2{) ;"0 /51 3 jl 

.. 10 60 IS~ 5~ 

II 5 60 110 51 

II 5 80 153 7-g 

" 5 "0 195 tCJ 

I, 

It b 1'-0 3l.'i-- 110 

.. 
J 6'0 3o'J. 

to 

* t1Q.~ ~ ~ ~r ~ ~ ~ ~ 
~~~~. 


- 127 -

It 32 5"

- 128 -

I~
"

It 10 8

IS

1'-

" Ia. a ~
,

(M~/3) " 5 .3 2..

(F .e0h1.~/1)

5 8 " IS "
~J .l (.

3 'f 7 ~J ~1- ~a

I J.. ~,

'"
~ I , 3:

4 tf..
J~

(~l~/~)
3 s- a Iii.. I~ III ..?,. ~t .51

(F~/3)

" (~/,)
t:t ,

.3 IS

I

"(Tn-~)
~-r~ (;l~'. 4-'12)

- 129 -
,\ 13 s 3

t::::-- 3 (flOAfJ) --- 5
______ ':I

____ 9
I~ 10

IJ

Ii-
20

.2t-

a~

J'r I, "

" .U 1/

'" /
I~ .u. .t' ~, ~1

.to 2.'t-

IS I C}

''''
, ...

~ q

I 3 g

~ V~
if- ~ 12.

IS ,
(8'0/ H,o)

(:Do 0 ..,.)

'1

(']j'l / H).J
I

18

'"
5

3

..(.--------..::!I
,,,. (610b&)

(~)

- 130 -

V SHORTEST DISTANCES ON A DIGRAPH •

5.1 General Discussion.

Within a graph we derined (in Ch. 1.23.1)

JAm[v4 # vA] to be the shortest path between v~ and ~ #

and 1 (fA W\ [v., I Vj]) to be the 1 ength or I or the m.unber

or lines in it. Let us extend this definition to cost as­

sociated digraphs so that ror any two points V~I V
J

within

it, we define jU~[V~I Vj] to be the path with least cost

(or shortest distance) from v~ to v
J

i.e. if (u" u~, ••

•••••• , u ~) were to be any path from v ~ to v
J

then

cost (fA ..., [v ~. vd 1) - Min (~ cost (u f)) •
.f. : ,

If there is no path rrom v
L

to Vj then the shortest dist-

ance betw~en them in that direation is put at infin1ty.

We aan now define three alosely related

problems. The problems are to find the shortest distance

(and/or routes) between

1) two specific points of the digraph,

2) one specific point and the remainder of the points

of the digraph .. and

3) all pairs of pOints of the digraph.

- 131 -

Considerable work has been done on these

problems, (a general discussion on all the methods will

be found in [55]) , and all the algori thms to solve

them fall into two categories. The first, called by some

authors the matrix method , finds the shortest distances

between all pairs of points simultaneously (and hence

also solVing problems 1) and 2) at the same time). The

matrix methods give us the shortest distances between all

pairs of pOints, but extra computation is necessary if the

routes or paths yielding these distances are also required.

The second method,sametimes referred to as the tree method,

is used specifically to solve problems 1) and 2). However,

it can be applied repeatedly and hence to solve problem 3).

The tree methods, due to the nature of their construction,

yield both the shortest distance and a shortest path bet­

ween pairs of points.

The author investigated the matrix methods

and wrote a program for the most efficient one within this

category, the Cascade method of Farbey et al [+<t]. The

tree methods were then examined and two programs were writ­

ten using the techniques developed within this thesis.

- 132 -

The matrix methods are very easy to code

(for a computer), and the Cascade method was found to be

especially easy and elegant.However the matrix algorithms

are very space consuming (requiring storage of the order
~

z , at least), and do not compensate for this by a reduc-

tion in speed.The tree technique, as in the programs writ­

ten by the author, required slightly more laborious pro­

gramming and as a result are more complicated to follow.

But they use far less store (of the order z+br) and do

provide a shortest route while computing the shortest dis­

tance between pairs of points. A brief discussion of each

method will follow.

- 133 -

5.2 The Matrix Methods.

We have a cost associated digraph with no

loops or multiple connections, and whose costs associated

with each arc are non-negative. The information can be

stored J as described in Ch. 2.11.1 , in an adjacency type

cost matrix D, where d~J represents the cost to be assoc­

iated with the arc (i - j). If there is no arc joining v
4

to v, ' we put d~J equal to infinity. For computational

purposes this was set at »4. We also make , for all i,

d,~ = O. We define a new operation min-add, denoted by

the operator *, between two square matrices A, B, such

that A * B = C where C is (z x z) and

c J = Min t a",< + b kJ 1 .. _------(5.2 A)
Vk

Suppose that we now perform this operation

upon DJ the cost matrix of
to

above. We have D = D * D, and
2.

D will give the length of the shortest paths, of not more

than two arcs between all pairs of pOints.This is very easy

to see when we examine the operation as defined by (5.2A)

in more detail. We vary k over all points of the digraph

so that d l (~D.l) will automatically have the least (..J

value of the distance from v -t. to a third pOint, and from

there to v
J

• (This third point may be v~ itself).

- 134 -

!
SimilarlYI we can obtain D I the matrix

of shortest paths of not more than three arcs between all
...

pairs of points by the operation D * D or
,

D * D •

Dc,. D~ I can be obtained from * DID * D or D:t * Da

thus giving us an indication of how to accelerate the pro-
""II ".,

cess. This process terminates when either D = D or
:t 1\ r'\

D = D (depending upon which method is adopted). It

can be seen that this will be a lengthy process.

Let us asses the amount of storage required

if we choose the accelerated method I i.e. we repeatedly

perform D~~ :- na * D· I replacing D~ by D~A each time.

Because we have to compare D.2.~ with D ~ I we shall have to

store both of them thus requiring a storage of the order of
J.

2xz elements.

- 135 -

5.21 The Cascade Algorithm.

This algorithm is a great improvement upon

the general matrix methods just described.It uses far less
l-

store, of the order of z and requires only two matrix min-
I! I add operations only. It forms the matrices D and D in a

1. 1 similar way as the general matrix method forms D and D •

The general matrix method computed the elements of Dd
+' (or

D '-d) from those of the matrix obtained in the previous

iteration, i.e. D~ • The Cascade Algorithm however, forms

DR within n itself. That is, the elements of D are re­

placed one by one, by those ot D' and the min-add oper­

ations are carried out over the elements ot this hybrid

matrix. The ordering of the computation of the elements of ,.
D is all important and it is downwards by rows and trom

• ~ II A lett to right, i.e. we compute d., ,d,~, ••• ,d,'I. ,da.l' ••

fit II '" A (• ,d~l.' • • • ,dl. l ' ••• ,dz,'I... D is tonned trom D as

DA was fonned from D) but in the reverse order,i.e. by

rows upwards and from right to lett. d:" (E- D 8) now holds

the value of the shortest distance from v~ to V
J

• Farbey

et al prove that these two passes are sufficient and have

provided a very efficient algorithm. As an example of the

method the matrices D , DR- and n& are shown next to

the corresponding cost associated digraph of tig. 5.211.

13/='

- 136 -

(fig. 5 .. 211)

0 2 X 3 X

X 0 3 1 X

X 3 0 4 1 ~6

X 5 2 0 3

X 4 1 5 0

o 2 X X X

X 0 X 1 X

X 3 0 X 1

X X 2 0 X

X X 1 X 0

0 2 5 3 6

X 0 3 1 4

X 3 0 4 1

X 5 2 0 3

X 4 1 5 0

(where X stands for infin1 ty)

However in common with the other matrix

methods, the Cascade method does not give us the minimal

routes • The authors do indicate how this could be done

but it entails double the storage and of course will take

much longer. Land and Stairs [S/] have extended the met­

hod to deal with large digraphs by means ot partitioning

but the essence of simplicity as characterized by their

original algorithm has been lost.

- 137 -

5.3 The Tree Methods.

Most tree methods written to solve problem

2) have one point in common. The minimal solution is in the

form of a maximal spanning directed rooted tree where a

shortest route between the root and any other point is a

path of the directed rooted tree (d-r tree). G.Dantzig

(~1] prefers to start with any maximal spanning d-r tree

and by means of additions and deletions to itl obtain the

minimal solution • To each pOint of the d-r tree is at­

tached its current distance fram the root (via a path of

the d-r tree). An arc I, is chosen from the cotree and ad­

ded to the d-r tree. If this results in a point having les­

ser distance from the root l one of the arcs l~ in the re­

sulting circuit is deleted and returned to the cotree. (It

will be that arc of the d-r tree which has the same termi-

nal point as 1,). We also alter the current distances appro­

priately. If when we have inserted the arc 1, into the d-r

tree there is no improvement I we return 1, back to the co­

tree. Another arc 1) is chosen from the cotree and the pro­

cess repeated. The algorithm terminates when no improvement

occurs for the addition of any arc of the cotree. This met­

hod is slow and inefficient because in the worst case we

may have to examine every possible path out of the root. At

each stage the choice is made from all the arcs of the cotree

- 138 -

to see if any of them might improve the solutionl for the

rejection of an arc does not necessarily mean that it can­

not appear in the final solution.

Moore [6J] suggests a much improved algo­

rithm. He builds a least cost maximal spanning d-r tree

from the root outwards such that at any stage of this mush­

rooming procesS I only a small subset of the arcs of the co­

tree are examined. It is very similar to the authors second

program called Shortest Route 2 (which was written before

the author realized the existence of Moores algorithm).

The author wrote two programsl Shortest

Route 1 and 2 to solve problem 2) • Shortest Route 1 is a

specialised program which assumes that the cost of each

arc is the same. Shortest Route 2 is the more generalized

program which gives the least cost maximal spanning d-r

tree for each pOint of the digraph in turn (and hence sol­

ves problem 3)). In both cases I as a result of the repre­

sentation of the datal the size of the problem to be solved

is not limited by Zl the number of points but by brl the

number of arcs in the digraph. Using the branches list re­

presentation (Chpt. 2.11.1) the more generalized method,

Shortest Route 21 requires storage of the order 2 br + 5 z.

(However in the Algol program I because of the inability of

being able to do any list processing, the storage had to be

- 139 -

set at 2br + 9z • 5z locations never being I at any ins­

tant, more than two fifths full of necessary information.)

The discussion has been primarily the use

of tree methods on the solving of problems 2) and 3) • T.

Nicholson ['qoJ has devised an al gori thm whi ch solves pro-

blem 1) • This is also a type of mushrooming process • He

mushrooms out I as we do in both the Shortest Routes met-

hods I but from the two points simultaneously. When the

two d-r trees (one with reverse direction to the other)

meet he obtains as a result the shortest route and dist­

ance between them. He uses a technique first proposed by

Minty (in [55]) in order not to cover more points of the

digraph than necessary. He carries a minimum distance coun­

ter for each d-r tree such that the current distance of any

point from (or to) the root is the least distance if it

has value less than the corresponding counter. Thus he con­

fines himself to expanding fram the points that have cur­

rent distance value equal to the counter distance. This is

necessarily a slow process if at each iteration only one

pOint at a time is added and this will occur if the costs

(of each arc) are either all unequal or very nearly so.

- 140 -

5.31 Shortest Route 1.

We assume in this case that the cost to be

associated with each arc is unity. Thus the cost of a path

between any two pOints is equal to the number of arcs within

it. We can now use the mushrooming r-tree technique to solve

problem 2) •

A root point is chosen and we insert into

the d-r tree (which we are gOing to build up) all points ad­

jacent from the root. These pOints will be a distance of one

unit away from the root. In the next or second iteration we

examine these points and include in the d-r tree all points

adjacent to them and not already in the d-r tree. These ad­

jacent points will be a distance of two units away from the

root. We continue these iterations so that at the k~ iter-

ation we include in the d-r tree all points v • adjacent to
J

those just added in the previous iteration and not already

in the d-r tree. i. e. 1 (fA [v roo". V ~]) - k • The process ter­

minates when no new points can be added to the d-r tree.

Thus we mushroom out from the root examin­

ing all minimal routes leading away from it • As soon as a

pOint is introduced into the d-r tree we examine all points

adjacent from it • This means that all arcs eminating from

that point have been ex~ed. Thus in the next and subse­

quent iterations the pOint and its arcs will never be con-

- 141 -

sidered again. As a result the building of a maximal span­

ning d-r tree requires only br examinations of the adja­

cency matrix (or in the actual program , of the branches

list representation).

In the program the mushrooming d-r tree is

stored in the below array and when it has been constructed,

we find the shortest distance from the root to any point,

and a path yielding this distance, by running down the d-r

tree from the point to the root. In this and the next pro­

gram this results in the route being given back to front.

Instead of the first label in the sequence being the root

and the last the terminal point of the path , we have the

terminal pOint appearing first and the root, last. This is

in order to aid the programming • Otherwise, while running

down the d-r tree, we would have to store the points and

then output them in the reverse order.

Shortest Route 1 is similar in idea to, but

more powerful than, Mintys solution to problem 2) [5t].The

difference is that he confines himself to graphs where he

obtains a string model of the graph [Chpt. 4.51], holds it

up by the root and hence obtains a mushrooming r-tree. This

simple idea, for obvious reasons, cannot be extended to di­

graphs.

- 142 -

5.32 Shortest Route 2.

Wi thin a digraph it is more usual to find

the associated costs to be different (e.g. the distances of

a road) and so the algorithm Just described is inadequate.

The one to be described in not altogether different from the

previous one and is similar in theory to dynammic program­

ming. Let us define fk(i,J) to be the least distance from

v t. to v
J

' of k or less arcs. Dynamic programming formula-

tion of the problem would be f, (i,j) = cost(i,j) and

f (i,j) = Min(fk (i,l) + cost(l,J)) •
ki' vt 2.

If v~ remains constant, in our case it will be the root of

the mushrooming r-tree, we obtain f, (j) = cost(root,j) ,

ff<+,(j) = Min[fl((1) + cost(l,j)~ ,

over all v.t adjacent to V
J

•

Let the incomplete mushrooming d-r tree of the k~ iteration

be denoted by T Ii(, where the paths in T K are the shortest

distance paths from the root to any point in T k of k or

less arcs. We thus have f~(j) for all v in T K • Denote
Q

by M K the set of po1nts whose f k values have been either

computed or recomputed 1n the k !:;. i tera t10n. M ~ will not

contain the points of

value.

T whose
K

f Ii(value equals their fl<.,

- 143 -

Consider the expansion o~ the d-r tree in the

(k+1) ~ iteration. A point v t adjacent to v ~ in M" (from

whose points the expansion is being made) will ~all into one

of three categories :

1/ . It is not a member of T&(nor o~ T K .." I

2/. it is not a member of TIC but is of T K'+' I

3/. it is a member of TIoo(•

Suppose vt: belongs to the first category.

We incorporate it into TK~I by means of the arc (s - t)
I

and put fk+,(t) := f~(s) + cost(s,t) • The dash over the f

denotes that the value contained wi thin f It+, need not neces­

sarily be the final one • It becomes final at the start o~

the next iteration.

For practical purposes the second and third

categories can be regarded together. Suppose that v~ belongs

to either T\o(or TIil't'\ ,i.e. ~I«(t) or ~M:,(t) has already been

computed. We test to see whether the path to v t from the

root via v $ has lesser cost than the existing one. We test

if f,< (t) ~ f'o<. (s) + cost(s,t) , for v I:: in T I< (or if

f.: ... (t) ~ ftc. (s) + cost(S, t) , for v t: in T k+t) • If the con­

dition is satisfied (i.e. the existing path has equal or
I

less cost than the proposed new one) we make f~ ... (t):=fK(t).

If the condition is not satisfied I we alter the path from

- 144 -

the root to v ~ by adding the arc (s - t) to T Lo< and de­

l eting the other arc incident to v! in the resul ting cir­

cuit .. and making f' (t) := f., (s) + cost(s"t). U+,

It now remains to state that for all points

v d in T k for which f 1o(?I(j) has not been computed (be­

cause they were not adjacent to a member in M K) will have

f~~, (j) := f\.«j) • If MI(is empty, this means that TIC = Tk+o,

and that for any pOint within T L(.. we have not found a shor­

ter distance from the root of k + 1 arcs. Hence this indi­

cates the termination of the process.

Computationally we only have to carry one

array f[j]. f[j] will store the latest value of fK(j).

When we form f (j) we insert the new value into f[J] .. over-
t.<tl

writing the previous value (whether it had been f~(j) or
I I

f~~(J)). The array f[j] corresponds to the labels of

Moores algorithm as described in [~s]. Finally" we can re­

gard all the three categories as one. This is achieved by

initially making f[j]:= »5 (or some other large number)

for all j in the digraph. When we meet a point v t we test

whether f[t] > or ~ res] + cost[s"t]. If > holds true" we

alter f[t] and the path from the root to v t .. otherwise we

do nothing. With a little thought it will be seen that this

does in fact cover all three categories.

- 145 -

If we let n(M~) be the number of points

in Mk ' it was found that for non-planar digraphs G n(M04J

over all i of the computation, varied between two and three

times the number of points in the digraph • This seems to

agree with Moores proposition that for planar d1graphs, a

point will not on average occur more than twice in Z M.(.

(for all M4 in the computation).

- 146 -

5.3 Conclusion.

The Cascade and Shortest Route 2 programs

were run on sets of random data with the number of points

varying from 10 to 85. Table 5.31 shows the time taken

by each program for each set of data. We see from the time

ratio column (Shortest Route 2 divided by Cascade) that

Cascade is anything up to twice as fast for small digraphs

and just faster for medium sized digraphs. However at z=70

and denSity of 5 % I Shortest Route 2 takes no longer and

for z=85 and denSity of both 5 Y-and 9 r. I it is faster.

Let us see how the two algorithms, as exam­

ples of each of the two main methods I compare with each

other. The Cascade algOrithm will be obviously inefficient

on problems 1) and 2) • To use it on the two mentioned

types of problems would be similar to using a sledgehammer

to crack a nut. Let us assessthe two algorithms on problem

3) where we do not require the shortest routes. We see that

the Cascade algorithm will be faster for small and medium

sized digraphs I regardless of their denSity • However for

large sparse digraphs, Shortest Route 2 is as good if not

faster than Cascade. If we wish to find the shortest routes

as well as the shortest distances (to problem 3)) Shor­

test Route 2 will be as fast or faster than the appropria­

tely modified Cascade algorithm.

- 147 -

Time taken by S.R.2
Title z br density Cascade S.R.2 Cascade

------- ----------------- ------------------ -------
14/1 10 51 50 1- 4 s. 10 s. 2.5

14/2 10 24 25 % 3 s. 8 s. 2.7

14/3 10 5 5 % 2 s. 5 s. 2.5

14/4 30 428 48 1. 47 s. lm.45s. 2.2

14/5 30 249 28 1- 47 s. lm.35s. 2.0

14/6 30 64 7 7- 45 s. lm.31s. 2.0

14/7 30 32 4 1. 43 s. 55 s. 1.3

14/8 50 958 38 1.' 3m.5s. 5m.28s. 1.8

14/9 50 492 20 t. 3m.7s. 4m.41s. 1.5

14/10 50 206 8 r. 3m.4s. 4m.22s. 1.4

14/11 50 95 41- 2m.56s. 3m.52s. 1.3

14/12 70 1283 26 1. Bm.2s. 1Orn.40s. 1.3

14/13 70 402 8 t- 8m.ls. 8m. 42s. 1 • 1

14/14 70 192 4~ 8m. 7m.59s. 1 .0

14/15 85 665 91- 13m.44s. I ~tI1. 10» . ,. D

14/16 85 350 5 ,. 13m.42s. 13m.12s. 1.0

(ta bl e 5 • 31)

- 148 -

VI THE TRANSPORTATION PROBLEM •

6.1 General Discussion.

The author reveals no new method or theory

to solve the Transportation Problem. This is a short note

on how the problem can be tackled by means of tree manipu­

lation I the original method being due to H.I.Scoinsl and

how it could be improved by using some of the ideas expoun­

ded in previous chapters. Let us briefly state the problem.

We have m supply depots (or transm1tters)

each capable of supplying a~ (1 ~ i ~ m) units of goods

and n demand depots (or receivers) each requiring b
d

(1 ~ j ~ n) 1mi ts. We are also given a cost matrix c E C,
L.J

which indicates the cost of transporting one 1mit from sup-

ply depot 1 to demand depot j • We also specify that
WI ...,

Ga~ = G b A • The problem is, given the above conditions
.(.. .. , J .. ,
Which is the cheapes t way to meet the demand at the recei-

vers from the transmitters. MathematicallYI if x'\i were to

represent the m.unber of un1 ts sent from transm1tter i to
'III 1'1

receiver j I we have ~x~J = b6 and Lx \..~ = aA..~ for all
A. ~, J I,

i and J I and we wish to m:l.nim1se the function

~

Any basic feasJble solution

- 149 -

will contain only (n + m - 1) x not equal to zero. In fact

the basic feasible solution can always be represented as a

spanning tree of the graph of n + m points. For a further

discussion on the subject reference should be made to [")~2].

The general method of solution is to obtain
~

an initial basic fea~le solution and then iterate upon it

always finding better solutions~ till the best solution is

converged upon • Thus there is a natural division into two

parts: that of finding the initial tree and that of manipu­

lating this tree into others with better cost solutions.

- 150 -

6.2 Obtaining the Initial Tree.

There is more than one method of obtaining

an initial basic solution: the minimum row method~ the min­

imum matrix method , the N-W corner method to name a rew.

However according to [~I] there is no advantage in using

any particular method in order to obtain a smaller initial

cost or reduce the number of iterations in the second stage.

It seems that little work has been done in order to esta­

blish either mathematically or statistically the superio­

rity of anyone method.

The method chosen to be used in the program

was the modified North-West corner method. This was incor­

porated in the procedure called Treeform. The procedure

described the tree in the below array, the ordering of the

tree not being made till the second stage. The ordering is

necessary in order to be able to manipulate the (basic so­

lution) tree into another with lesser cost.

- 151 -

6.3 Obtaining the Final Solution.

The method used in the program is sometimes

referred to as the Stepping-stone Algorithm. A slight expla­

nation will ~ollow but it will be illustrated in terms of

the basic tree solution • Suppose we have a basic feasable
~

solution T!< as a result of the jc. - iteration. We now com-

pute the shadow costs for each of the n + m points. The

shadow cost of the root is made equal to zero. From the

root we go up the ~tree (using the process procedure) cal­

culating the other n + m - 1 shadow costs from the for­

mula shadow[j]:= cost[i,j] - shadow[i] , where shadow[i]

has already been computed. In the program the formula be-

comes shadow[j]:= cost[i,below[J]] - shadow[below[j]] •

Having oomputed the shadow costs, shadow[i],

for all n + m points the matrix is searched for the smal-

lest value of cost[i,j] - shadow[i] - shadow[j] ~ 0 --(5.3A).

Scoins in his method adopts a threshhold technique which

combines the above process and the other of finding the

first value of (5.3A) whioh is smaller than some preset

level.

Having noted the desirable link (i-j) to

be inserted, a simple circuit is formed in the ~-tree and

- 152 -

the link to be deleted (within the circuit) quickly deter­

mined, (s-t) say. (s-t) will be the link in the circuit

with the least associated load. The ~-tree is now severed

into two at (s-t) • The subtree is inverted so as to -make

v.(" (or v J) as its root and added to the main e-tree at

v J (or v.(..), thus defining a new tree T ~tl • Thi s can be

illustrated pictorially in fig. 5.31.

It will be noted from the figures in fig.

5.31 that in forming Tpl ~ it will be unnecessary to re­

calculate all the shadow costs again. The only ones which

will differ from those in T~ will be those in the subtree

that has been inverted and attached elsewhere. Thus we can

use the procedure process upon the subtree with VA (in the

figure) as root and recompute the shadow costs of its points.

If the subtree is small~ this will result in a large saving

of work. Otherwise for each iteration the shadow costs of

each of the n + m points will have to be recomputed. The

procedures belonging to the program are printed in Appen­

dix 5 and for any one who is interested , they do appear

With quite selt explanatory comments.

- 153 -

(I) (2)

(~) (4-)

(rig. 5·31)

In (1) we have T K. and from the shadow costs we have worked

out that (i-j) is to be inserted and (s-t) to be deleted.

The deletion is done in (2) and the subtree at v~ is inver­

ted so that vd is its new root as in (3). It is now reat­

tached to the main tree at v to form T •
"'- 1<. I

- 154 -

6.4 Conclusion.

The program as written by the author was

not any faster than the one written by H.I.Scoins. That is

the ~-tree representation and manipulation program was not

found to be faster than the r-tree one. The reason is that

the procedures used within the authors program were written

originally for the work of Chapters 3 and 4, where effic1en­

cy was not all 1mportant. In those chapters it was required

to test ideas and this resulted in a small number of slow

and inefficient procedures whose purpose was mainly to test

some aspects of manipulation rather than find the best way

of dOing the actual man1pulation. Thus there is scope for

further work in finding how the most efficient program of

each method compares with other.

- 155 -

REF ERE N C E S •

Chapter 1.

1/. Berge.C.: Theory of Graphs and its Applications

[Transalated by A. Doig. J.Wiley. London#1962]

2/. Cartwright.D.,Harary.F. and Norman .R. : Structural

Models. [John Wiley,New York. 1965].

3/. Cayley.A.: Collected Mathematical Papers. Cambri­

dge 1889 - 1897. Vol. 3 p.242. Vol.9 p.202.p427.

Vol.11 p.365. Vol.13. p.26.p.265.

4/. Konig.D.: Theorie der Endlichen und Unendlichen

Graphen. [Leipzig. 1936.]

5/. Ore.O.: Theory of Graphs. [Amer. Math. Soc •• Col­

loqium Publications. Vol. XXXVIII (1962)].

6/. ------ : Structures on Directed Graphs. [Annals of

Mathematics. v.63 (1956) p.383].

7/. Riordan.J.: An Introduction to Combinatorial

Analysis. [John Wiley. New York, (1958)]

8/. Trent.H.M.: A Note on the Enumeration and Listing

of all possible Trees in a Connected Linear Graph.

[Proc. Nat. Acad. Sciences. U.S.A. v.40 (1954)].

Chapter 2.

9/. Bott.R. and MayberrylJ. : Matrices and Trees.

[Economic Activity Analysis I Wiley I N.Y.1954.p.391]

- 156 -

10/. Erdos~P.~Goodman~A.~Pasa~L.: Representation of

Graphs. [Canad. Jr. of Math. v.20~ (1966) p.106)

11/. Neville~E.H.: The codifying of tree structures.

[Proc.Camb.Ph1l.Soc. v.49 (1953) p.381]

12/. Obruca~A.K.: An Investigation into Flat Rooted

Trees. [M.Sc. D1ssertation~ Univ. of Durham (1963)]

13/. Okado~S.: Algebraic and Topological Foundations

of Network Synthesis. (Proc.Symp.on Modern Network

Synthesis ~ N.Y. ~1955~ p.283]

14/. Perko~A.: Same Computational Notes on the Shortest

Route Problem. [B.C.J. ~v.8 ,(1965) p.19]

15/. Solamon~E.W.: A Comprehensive Program for Network

Problems. [B.C.J. v.3 (1961) p.89]

Chap ter 3. /5/ fA. 16 a.. .,.. fA (, h e t: J /... : ft r-a.r -Iv.<. A otr, . of ¥t...t. T-owd­
~ A~~ ~. (Op-4.I<..Lo. Yo 5") (J"51)P'~""tJ

16/. Bellman,R.: Dynamic Programming Treatment of the

Travelling Salesman Problem. [J.A.C.M. v.9 (1962)]

17/. Croes~G.A.: A Method tor Solving Travelling Sales­

man Problems. [Oper.Res. v.6 (1958) p.791]

18/. Dantzig,G. et al : On a L.P. Combinatorial Approach

to the Travelling Salesman Problem. [Rand Research

Memorandum, RM - 2321 , (1959)]

19/. -------: Solution ot a Large Scale Travelling Sales­

man Problem. [Oper.Res. v.2 (1954) p.393]

- 157 -

20/. FloodIM.: The Travelling Salesman Problem.

[Oper. Res. Iv.4 1 (1956) p.61]

21/. Gilbert6E.N.: Random Minimal Trees. [S.I.A.M.

v.13 1 (1965) p.376]

22/. HammersleY6J. and Handscomb6D. : Monte Carlo Methods.

[Methuen (Monographs) 6 London 6 1964 6 p.48]

23/. Held6M. and Karp6R. : A Dynam1c Programming Approach

to Sequencing Problems. [S.I.A.M. v.l0 (1962) p.196]

24/. Heller6I.: The Travelling Salesman Problem. Part 11

Basic Facts. [An Introduction to L.P. by Charnes 6

Cooper and Mellon. 6 J.W1ley 6 1953]

25/. -------: On the Travelling Salesman Problem. [Proc.

2nd Symp. on L.P. (1955) NBS and HQ USAF]

26/. Karel 6C et al : An Algorithm for the Travelling

Salesman Problem. [Oper.Res. v.ll (1963) p.972]

27/. Kruskal 6J.B.: On the Shortest Spanning Subtree of

a Graph and a Travell1ng Salesman Problem.

[Proc. Amer. Math. Soc. v.7 (1956) p.48]

28/. Kuhn6H.W.: The Travell1ng Salesman Problem.[Proc.

of the VIth Symp. in Appl. Math. 1956 (edit.) Curt1ss]

29/. Land6A.H. and Morton6G. : A Contribution to the Tra­

velling Salesman Problam.[J.Roy.Stat.Soc.(B)v.17(1955)]

30/. Loberman6H. and Weinberger6A. : Formal Procedures for

Connect1ng Terminals with a Minimal Total Wire Length.

[J.A.C.M. v.4 6 (1957) p.428]

- 158 -

31/. Miller,C., Tucker,A. and Zemlin,R. : Integer Program­

ming Formulation of the Travelling Salesman Problem.

[J.A.C.M. v.7 , no.4 (1960) p.326]

32/. Obruca,A.K. · Algorithm Mintree. [B.C.Bul. v.8(1964)] •

33/. Robacker,J. · Some Experiments on the Travelling Sales-·
man Problem. [Rand Report, 1955]

ChaEter 4.

34/. Alway,G. and Martin,D. : An algorithm for reducing

the Bandwidth of a Matrix of Synmetr1cal Configu­

ration. [B.C.J. v.8 (1965) p.264]

35/. Braun,F.H.: Machine Analysis of Networks and its

Applications. [I.B.M. Techn. Report, TR 00.855]

36/. Carre,B.A.: The Partitioning of Network Equations

for Block Iteration. [B.C.J. v.9 (1966) p.84]

37/. Harper,L. H.: Optimal Assignements of Numbers to

Vertices. [S.I.A.M. v.12 (1964) p.131]

38/. Livesley,R.: The Analysis of Large Structural

Systems. [B.C.J. v.3 (1961) p.34]

39/. Porter,S.: The Use of Linear Graphs in Gauss

Elimination. [S.I.A.M. Review, v.3 (1961) p.119]

40/. Sato,N. and Tinney,W. : Technique for the exploi­

ting the SparSity of the Network Admittance Matrix.

[I.E.E.E. Trans.on Power App. and Syst. N.69,p.944]

~O/o.. . J../ve.J1ei'J R..K. : 'm~ ~, ~~~

~~. r: p~~ P~/' ~'" J

- 159 -

41/. Varga#R.S.: Matrix Iterative Analysis. [London#

Prentice-Hall Int. (1962).]

42/. Wilson#L.B.: Solution of Certain Large Sets of

Equations on Pegasus using Matrix Methods.

~" [B.C.J. v.2 (1959) p.130]
~~Q.. 6QJ"w,c..k J T.: .s~ 1 ~ ~ ~~ ~ 0....

Chapter 2,. ~ ~ ~ c· t3.I. r. ~.~ (fct(, 3) f"2.0 ~J

43/. Beardwood#J.#Halton#J. and Hammersley#J. : The Shor­

test Path through many Points. [Proc. Camb. Phil.

Soc. v.55 (1959) p.299]

44/. Bellman#R.: On a Routing Problem. [Quart.Appl.

Math. XVI , no.l (1958)]

45/. Busacker~R. and Saaty,T. : Finite Graphs and Net-

works: An Introduction with Applications.

[McGraw Hill, 1965, p.58.]

46/. Clarke#S.#Krikorian,A. and Rausen#J.: Computing the

N Best Loopless Paths in a Network. [SIAM v.ll(1963)1

47/. Dantzig#G.: Discrete Variable Extremum Problems.

[Oper. Res. v.5 (1957) p.266]

48/. Erdos#P. and Gallai,T. : On Maximal Paths and Cir­

cuits of a Graph. [Acta Math.Acad.Hung. v.10 (1959))

49/. Farbey#B.#Land,A. and Murchland,J. : The Cascade

Algorithm for finding the Minimum Distances on a

Graph. [Private Communication, 1966]

- 160 -

50/. Hoffman, and Pavley : A Method for the Solution

of the N Best Path Problem. [JACM v.6(1959)p.566]

51/. Land,A. and Stairs,S. : The Extension of the Cas­

cade Algorithm to Large Graphs. [Private Comm.,1966]

52/. MintY6G.J.: A Comment on the Shortest Route Pro­

blem. [Opere Res. v.5 (1957) p.724]

53/. Moore,E.: The Shortest Path through a Maze.

[Proc. of an Int.Symp.on the Theory of Swltching61957]

[The Annals of the Computation Laboratory of Harvard

University, (1959) Harvard Un1v. Press]

54/. Narahon,Pandit: The Shortest Route Problem, an

Addendum. [Oper.Res. v.9 (1961) p.129]

55/. Pollack6M. and Wiebenson6W.: Solutions of the Shortest

Route Problems: A Review. [Oper.Res. v.8 (1960) p.225]

56/. Prim,R.C.: Shortest Connection Matrix Network

and Some Generalizations. [Bell Systems Tech.Jr,

v.36 (1957) p.1389]

57/. Rapaport,H. and Abramson,P. : An Analog Computer

for finding an Optimum Route through a Communucation

Network. (1959) I.R.E. Trans.Comm.Syst.CS-7 p.37]

58/. Robbins,H.E.: A Theorem on Graphs, with an Applica­

tion to a Problem of Traffic Control. [Amer. Math.

Monthly, v.46 (1939) p.281]

- 161 -

59/. ShirnbelJA.: Structures in Communication Nets. [Proc.

of Syrnp.on Inforrn.Netwks.JPolyt.Inst.of Brooklyn(19S4)]

60/. VerblunskyJS.: On the Shortest Path through a Number

of Points. [Proc.Amer.Math.Soc. v.6 (1957) p.904]
N, c. A 0/ r 011 T. fl.

J
'0/0.. .

Chapter 6. ~ ,~.(..., D\

~-uv~~~
~. [" ~ 1~ 6~. "~.

-e...~~J/'1'&]
61/. GassJS. : Linear Programming Methods ans Applications.

McGraw H1llJ 1958 I p.137.

6~/. VajdaJS.: Mathematical Programming. Addison Wesley.

1961 J p. 117.

- 1 -

APPENDIX 1.

App. 1.1 Trees.

When applying trees to solve or help solve

a given problem I we find all three types : trees~ r-trees

and ~-trees. Trees and r-trees are represented 1n the below

array. Th1s means that trees are made rooted by des1gnat1ng

one ot the1r po1nts as the root • However 1f 1t 1s required

to manipulate them (e.g. Toptree) then the r-trees have to

be planarized or ordered and made 1nto ~-trees. Th1s~ as

expla1ned 1n Chapter 2 • 1s 1n order to be able to process

them. The representat10n to be used will be the rd1lu one

1n all cases.
The rd1lu representation takes Sl1ghtly

longer to find the below ot a po1nt than does the below1

posnbr representat1on. But the procedure wh1ch accomp11shes

th1s, 1s very simple and can be defined recurs1vely as

1nteger procedure belnext(rd1a);

value a; 1nteger a; 1nteger array rd;

belnext:= 1t rd[a]<O then -rd[a] - -
else it rd[a]-a then a -- -

else belnext(rd,a);

S1m1larly pos1 t1 ve ne1ghbour can be defined

recursively as (overleaf)

- 2 -

1nteger procedure nbr next(rd~a);

value a; 1nteger a; 1nteger array rd;

nbr next:= 1r rd[a]-a then 0 - -
~ II rd[a])O ~ rd[a]

~ nbr next{rd~-rd[a]);

The rd~lu representation with the addition

or the above two procedures can accomp11sh all that the

below~ pos nbr representation could~ plus the ab1l1ty or

be1ng able to go up the ~-tree.

The most usefUl procedure written within

this thesis is the next one to be defined and it gives us

the means or analysing each po1nt of the ~-tree 1n tum.

It is an integer procedure called process~ which takes

the value of a different po1nt upon each call. The first

t1me a boolean 1dent1fier 1s set ~ (and wi thin the pro­

cedure it is reset talse) and the call yields the root ot

the subtree specified by another identit1er boot. That 1s~

the procedure will take on all the values of the points ot

the subtree at VboCll ~ vboot be1ng the first to be presented.

When all the pOints have been exhausted, the procedure

becomes zero. The ordering~ as can be seen from the pro­

cedure~ is up left and across •

- 3 -

integer procedure process(rd,lu,first,boot); value boot;

integer boot; boolean first; integer array rd,lu;

begin ~ integer b;

1! first ~ begin first:=false;

process:=b:=boot;

end

~ process:=b:=g: lu[b])O and lu[b]#b J:h.!!llu[b]

~ nbr next(rd,b);

~ process;

As explained before, process will not yield

a pOint, berore the point below it has already been presented.

Thus in Chapter 6 , this has been put to good use, when com­

puting the shadow costs of each point. We let the shadow cost

at the root equal zero and the ordering or the computation of

the other shadow costs is by means of process • The procedure

is reasonably efficient, however it will take slightly longer

to obtain the points of a high ~-tree than those of a shorter

~-tree due to the more frequent use of recursive calls.

The last three procedures will be of general

use to those who wish to manipulate ~-trees whilst using the

rd, lu representation. The next few procedures are more spe­

cialized and within the thesis have been used in Chapters 3

(for which they were originally written) and 6.

- 4 -

Rather than store the generation number

of each point within a ~-tree and recomputing them if

and when we alter the ~tree, a recursive procedure was

written which gave the generation number of a point when

called. This admittedly is slower, but if not used too

often, justifies itself by the saving in space. The met­

hod 1s to go down the ~-tree unt1l the root 1s reached

and 1n the process count the number of steps taken.

integer procedure gnrd(rd,a);

value a; integer a; integer array rd;

gnrd:= if rd[a]-a then 1 else gnrd(rd,belnext(rd,a))+1; - --
Given a ~-tree, Ttl it may be required to

cut it into two parts, TI and T~, by deleting (c-d) where

vL will remain connected to the root of T~, i.e. belong to
I the lower subtree T, _ The procedure written to accomplish

th1s was called Treecut. The procedure Newtree, when given

a e-tree rooted at vc ' alters its conf1guration so that it

becomes rooted at Vb- Finally the procedure Flxtop joins

or connects the two subtrees T I and Ta. at the pOints v ..
I a. of T to v~ of T • All these three procedures are used 1n

~~.
Chapter 3,l --~-..... -.. ~ ,- -- -- ._--- ._-- --- - - - - -........ , __ .- .-_ ._ _ • _ ... _ .. _ , ___ ~~,. --.-, -,-.-. 4o.:J ~ _ _ -,.,-r_-

Ie Ii asst., 2. II Ii 51' 110 Ii lllt.l,st." 1s llbaAlla" ttll NAB t

~!t iii t •• ».i3 111 JAil 1, I tit. POat at 'f Ie. 11 "I. It "

Bulat lB If •

- 5 -

All three procedures use a procedure called

topleft~ which when given a point~ v~ of T~ will yield the

top most left point of the subtree wi thin which v (). is the

root.

integer procedure toplett(a~lu);

value a; integer a; integer array 1u;

begin integer j~k;

j:=a;
,

!2£ k:=lu[j] while k > 0 ~ j1k 2£ j:-k;

topl eft: aj;

~ toplet'tj

procedure Treecut(c~d~rd~lu); value c~d;

integer c~d; integer array rd~lu;

begin integer h~j~k~l,t;

k:=lu[d] ;

1 :=rd[c];
,

t:=topleft(c,lu);

!! k1c ~ begin

end -

!2!: j:-k,rd[h] wh1le 31C ~ h:-j;
,

reiCh] :=-1;

- 6 -

else 1~ d+l=O then lu[d]:-1~ lu[t]-t then d else lu[t] - --- - - --
else - begin j:-tople~t(l~lu);

· lU[J] :=-lllu[t]=t ~ j ~ lu[t]; .
lu[d] :-1;

rd[c] :=c;

~ Treecut;

end·
~

lu[t] :=t;

procedure F1xtop(b~a,rd,lu)j value b,aj

1nteger b~a; 1nteger array rd~luj

begin integer u,v,w;

v:-lu[a] ;

u:=tople~t(b,lu);

it v<O or vaa then - - -
begin rd[b] :=-aj .

lu[u]:= 14. v-a ~ u!l!!. V;

end -
begin rd[b]:-v;

end;

lura] :-bj

~ F1xtop;

· w:-toplett(a~lu); .
lu[u]:- g, lu[w]-w ~ u !1.!!. lu[w];

· lu[w]:- -a;

- 7 -

Qrocedure Newtree(blclrdllu); value blc;

integer blc; integer array rdllu;

beS1n integer J,kll;

integer array red[O:abs(genrd(rdl b)-genrd(rd,c»+2];

procedure newrd(a); value a; integer a;

besin integer j,m;

1f a=l then -
begin !!. lu[red[a+l]]#red[a] then

begin for j:-lu[red[a+l]],pd[J] while j#red[a] -
~ m:-J; rd[m] :-rd.[rd[m]];

ra[red[a+l]]:- 1f lu[red[a]]>O and - -
lu[red[a]]#red[a] then lu[red[a]] else -red[a] - -

!!!!
.!!.!! beg;n !!. lu[red[a+l]]Fred[a] ~

end­
~

end newrd • - ,

begin !2t j:-lu[red[a+l]],rd[J]
,

while j#red[a] ~ m:-j;

rd[.] :-rd[pd[m]];

end;

rd[red[a+l]]:- if lu[red[a]]#red[a-l] then -,
lu[red[a]]!l!! II rd[red[a-l]] > 0

~ rd[red[a-l]] !l!! -redeal;

- 8 -

procedure newlu(a~k,l,b); value a~k,l,b;

integer a,k~l~b;

1£ red[a-1]1lu[red[a]] ~

begin lu[toplett(red[a],lu»):=!!. a1k ~ -red[a] .
else tople1"t(red[a] ~lu); -

1t aFk then lu[red[a]]:-red[a+1]; - -
end -
~ 11' a-k !!!9. 1)0 ~

begin lu[toplett(l~lu)]:- toplett(l,lu);

lu[red[a]] :-1;

~

else 11" a-k then lu[red[a]]:- red[a] - - - .
else lu[red[a]]:-red[a+];

it bFC then - -
begin red[l]:-b; ~ J:-2~J+l while red[J-l]~c ~

end;

!m!. Newtree;

. .
begin red[J]:-belnext(rd~red[J-1]); k:-J; end; . .

1:-rd[red[k-1]]; red[O]:-red[k+l]:-O; . .
!.2!:. J :-k-1 step -1 until 1 ~ newrd(J); .
rd[red[l]]:-red[1]j .
!2!. J:-k step -1 lmt11 1 S2. newlu(Jlk,l,b)j

- 9 -

The following 7 procedures are used to

order a r-tree so that it may be manipulated by some of the

previously described procedures. An ordering is defined on

the points so that each point has a value~ quite arbitrary

of course~ for the array pas nbr. This is done by means of

the procedure Planarize. The representation is now al tered

into the rd~ lu representation by means of the procedures

Convrd and Convlu. An example of the use of these proce­

dures is in Toptree. The spanning tree tor a graph is ob­

tained in a rooted form and before it can be man1pula ted

by the procedures Treecut, Newtree, etc., the r-tree has

to be ordered. We specify an ordering on the pOints of the

spanning tree which does not affect the problem at all.

procedure Planarize(bel,posnbr,z); integer z;

integer array bel~posnbr;

comment This procedure obtains the r-tree in the bel array

and transforms it into a ~-tree given by the arrays bel

and pos nbr • ;

begin integer J; integer array carry[O:z];

!2£ J:-O ~ 1 until z ~ carry[J] :-0;

!2!:. J :-1 step 1 until z ~

begin posnbr[J]:-carry[bel[J]];
,

carry[bel[J]J:-J; end;

- 10 -

~ j:=l step 1 until z do

!! bel[j]=O ~ bel[j]:-j;

~ Planarize;

procedure Convrd(bel,posnbr,z,rd); value z;

integer z; integer array bel,posnbr,rd;

comment this converts the (bel,posnbr) representation of

the (-tree into the rd representation. ;

begin integer j,root;

~ j:-l step 1 until z 2£

~ bel[J]-j ~ root:-j;

!2!:. j:-l ~ 1 until z S2

rd[j]:= !!. posnbr[j]#O ~ posnbr[j] ~

it j-root then j else -bel[j]; - --
2m! Convrd ;

procedure Convlu(bel,posnbr,z,lu); value z,bel,posnbr;

integer z; integer array bel,posnbr,lu;

comment this converts the (bel, posnbr) representat10n of

thee-tree into the lu representation (again losing the

ordering or planar property or the original ~-tree). ;

begin integer j,root; integer array nab,nsuc[l:z];

Na(bel,posnbr,z,nab);

Succes(bel,posnbr,z,nsuc);

,
Ref1(bel,posnbr,z);

- 11 -

!2!. j:-1 ~ 1 until z S!2. II bel [j]=j ~ root:=j;

!.2£ j:=1 ~ 1 until z S!2.
,

lU[j]:- 1£ nab[j]#O ~ nab[j]

~ 1£ nsuc[j]=root ~ j !l!! -bel[nsuc[j]];

~ Convluj

procedure Na(bel,posnbr,z,nab); integer z;

integer array bel,posnbr,nab;

comment this procedure finds the most negative or left

above for every point j, placing the value in nab[j].

(In tact nab[j] is equivalent to above(j) for the v,

of the t-tree.) It the point has no negative above, i.e.

is an end point then nab 1s put equal to zero. ;

besin integer j,k,l;

!2!: 1 :-1 step 1 until z S2.
begin nab[l]:-Oj

,

!2£ k:-l step 1 until z S2.
,

!! (bel[k]-l) ~ (k#l) ~

begin !2.t j :-2, j+l while z~j do

!! posnbr[j]-k ~

end;

Nal: end;

~Na ;

begin k:=jj j:-1; end;

nab [1] :-k; goto Na 1;

- 12 -

procedure integer z;

integer array bel~posnbr;

comment this computes the reflected tree of (bel,posnbr)

placing the new ~-tree in the same arrays bel,posnbr. The

reflected ~-tree of a given ~tree is the one which has the

same belows but has opposite sign convention. That is the

positive neighbours of the original ~-tree become negative

neighbours in the new one. ;

begin integer J~k; integer array m[l:z]j

!2t j:-1 step 1 until z 2£ rn[j]:~O;

!2t j:-l step 1 until z ~

!.2£. k: == 1 .!!!e. 1 un til z ~
,

II kaposnbrL1] ~ m[k] :-j;
,

!2t j:-1 ~ 1 until z ~ posnbr[j]:-rn[j];

~ Ren;

procedure Succes(bel~posnbr,z~suc); integer z;

integer array bel~posnbr~suc;

comment this computes the positive successor of each

point placing the values in suo[i] for i-1 ••• z. ;

begin integer j,kj

~ J:-1 step 1 until z 2£ suc[J]:=Oj

!.2!: j :=-1 step 1 until z gg,.

II bel[j]-J lh!!l

- 13 -

begin suc[j]:=j;

end -

!2!: k:=l step 1 until z ~

suc[k]:=su(bel,posnbr,suc,k);

end Succes;

value a; integer procedure

integer a; integer array bel,posnbr,suc;

comment this evaluates the positive successor of a point

a recursively. On coming out of this procedure any inter-

mediate successors that have been computed are retained

and assigned to the corresponding 1dent1fiers suc[l] ;

1£ suc[a]~O then su:-suc[a] ~ .
1£ nbr[a]~O .!:h!!!. su:=nbr[a] !i!!. .
su:-suc[a]:-su(bel,posnbr,suc,bel[a]);

- 14 -

APPENDIX 2.

App.2.1 Toptree Program.

We define three further procedures to be

used in the Top tree program for the Travelling Sales­

man Problem. One is called Free ends which when applied

to a ~-tree , ~serts in an array ends[1:z] the labels

of all the end pOints of that e-tree • This procedure is

used when T, has been divided into two parts or subtrees

by the deletion of a line • We find the best line with

which to join the two parts by means of the procedure

Join pts • The procedure branches count is used to :find

the degree of a pOint.

procedure Free ends(rd,lu,ends,root,z,k);

integer root,z,k; integer array rd,lu,ends;

begin integer j,c; boolean :first;

first:-true;

~ j:D1,j+1 while ends[J-1]~O ~

begin k:-JJ

~ c:-O, it CFO ~ c !i!! topleft{root,lu)

end­~

I

while lu[c])O and lu[c]~c do - -
c:=ends[j]:aprocess{rd,lu,f1rst,root);

- 15 -

if rd[lu[root]]=-root then ends[k]:= root - -
~ k:=k-1;

~ Free ends ;

procedure Join pts(cost,ends1,n1,below cut,ends2,n2,

above cut,a,b,dist); integer nl,n2,a,b,dist,above cut,

below cut; integer array cost,ends1,ends2;

begin integer j,k;

dist:=»10;

!2!: j:-l ~ 1 until n1 ~

!.2!: k:=l step 1 until n2 ~ .
!! (cost[ends1[j],ends2[k))<d1st) ~

(below cut#endsl[j] ~ above cut#ends2[k])

begin a:=ends1[j];

b:=ends2[k];
,

dist:-cost[a,b);

end;

end; Join pts;

integer procedure br count(j,rd,lu); value j;

integer jj integer array rd,luj

comment This evaluated d(V
J
), the degree of the point j.

In other words branohes count takes on the value of the num-

ber ot lines inoident to the point j. j

- 16 -

begin integer 1;

1 :-0;

II lu[j])0 ~ lu[j]1j .!m.!!l

~ j: -1 u [j 1., rei [j] whil e j) 0 s!2. 1 : -=1 + 1 ;

br count:-l+1;

~ br count;

There is one more point to note. The pro­

gram will always test if the root of T, is an end point.

If not~ it assigns an end point of T, as the root point.

This is to ensure that all mul ti-membered paokages of TJ.

are also multi-membered stars. The test is first made when

mintree is input (i.e. T4 - T~) and thereafter, every

time the ~-tree T, is divided into two parts and rejoined

together. The program~ apart fram the previously mentioned

prooedures, follOWS next. The seotion or program up to the

label LO is concerned with the input of data. The label

PROCESS deals with the division and rejoining of T, . PRINT

is concerned with output of better solutions as they are

found. The prooedures Time and time are given in App. 3.1

as they were written for the programs in that section.The

rest of the program is conoerned with data manipulation.

begin library AO~A6;

pen(20); open(30);

- 17 -

integer z~count~data nr;

write text(3o~1lPccclDHCL21/TOPTREE***11ccclJ);

data nr:=read(20);

START: z:=read(20);

begin integer j,k~a~b,dist,nr1,nr2,root,above cut,

below cut,pt,n,pa,neg,re.m,total,min total;

integer array cost[l:z,l:z],rdd,luu,ends1,ends2,
, .

s,rt,cut,distance[l:z],up,p[O:z],lu,rd[l:z,l:z];

(All the necessary procedures are declared here,

i.e. all the ones in App. 1.1 up to Newtree and

Join pta, Free ends, branches, Time and time.)

!2!: j :-2 step 1 lmtil z S2.

!2!: k:-1 step 1 W'ltil j-l S2.
,

cost[j,k]:-cost[k,j]:-read(20); .
tota1:-read(20);

writetext(30,1l8clMIN***TREE***TOTAL**--j);

write(30,format(lndddJ),total);

~ j:-l step 1 W'ltil z ~

begin rdd[j]:-read(20); .
luu[j]:-read(20); end; .

root:=read(20);

- 18 -

if rdd[luu[root]]# -root then - -
beg&n rem:atopleft(root,luu);

Newtree(rem,root,rdd,luu);

root:-rem;
,

em1 t:-read(20);
,

end­=-'

Time (em! t,LO,LO); timer: =0;

write text(3o,lLoooolCOUNT*****TOTAL**************

*****ROUTEiooclli; count:an:==O; min total:aIJ)10;

LO: pt:aroot;

Ll: pt:aluu[pt];

L2: !! rdd[luu[pt]]1-pt ~ ~

!! luU[luu[pt]]aluu[pt] ~ goto PRINT

else goto L1;

n:=n+l ; pa:-Oj
, ,

for j:=luu[pt],rdd[j] while j)O ~ pa:apa+1;
,

up [n] :=-1; p[n]:=paj
,

!.Q£. j :-1 step 1 until z do

begin rd[n,j]:-rdd[J];
,

lu[n,j]:=luu[j];

s[n] :=pt; rt[n] :aroot; cut[n] :-luu[pt];

distanoe[n]:-total; below out:apt; above cut:-luu[pt];
,

neg:-cost[below cut,above cut];

- 19 -

PROCESS:
,

T1me(O~FIN~FINISH);

Tree cut(above cut~below cut,rdd,luu);

Free ends(rdd,luu~endsl~root,z,nr1);

Free ends(rdd,luu~ends2,above cut~z,nr2);

Jo1npts(cost~endsl~nr1~belowcut~ends2~nr2~abovecut,a,b,d1st);

Newtree(b,above cut,rdd,luu);

F1xtop(b,a,rdd~luu);

total:-total+d1st-negj
,

II rdd[luu[root] l#-root ~

besin rem:-toplett(root~luu);

end­
~

goto L2;

PRINT:

Newtree(rem~root~rdd~luu);

pt:-root:-rem.;

coun t: -COUll t+ 1 ;
,

total:-total+cost[root~toplett(root,luu)];

11' total(m1n total then - -
besin write text(30,!icJj);

min total:- total;
,

wr1te(30~tormat(lnddddj)~coUllt);

write (30,tormat (14snddddj) ,total);

write text(30~1i6slJ);

end­~

- 20 -

~ J:- root1luu[k] while JFk 22

begin k:-J;

end­~

,

write(30 I format(lndddl)IJ);

L3: !!. n-O ~ goto FINISH;
,

II up[n])p[n] ~

beg;1n n:=n-l;

II n~O ~ goto FINISH .!!.!! goto L3;

end -
else -
begin !'.2.!:. J: -1 step 1 un til z ~

,
begin rdd[j]:-rd[nIJ];

,
luu[j] :-lu[nIJ]; end;

,

root:-rt[n]; pt:-s[n]j . ,
if rdd[cut[n]l<o then - -
besin above cut:-s[n]j .

pt:-below cut:-belnext{rddls[n]};

end -
below cut:-s[n];

I

cut[n]:-above cut:-rdd[cut[n)];

end;

up en] :-up [n]+l;

neg:-cost[below cut1above cut];

total:=dlstanae[nl;

goto PROCESS;

- 21 -

FIN: em1t:aread(20); T1me{em1t~LO~LO); .
tlmer:-ttmer+ttme; .
wrltetext(30~llaaalTIME**TAKEN**So**FAR*---j);

wr1te(30~tormat(lndd.dj)~tlmer/60);

wrl tetext{3o~1**MINUTES.l>;

wrltetext(30~llcclCOUNT**So**FAR**--1);

wr1te(30~tormat(lnddddl>~count);

end;

FINISH: write text(30~llccccl~**OF***PRoaRAM110slJ); .
wr1tetext(30~lTOTAL**TI~*TAKEN**IN**MINS**--1);

wr1te(30~tormat(lnddd.d1),tlmer/60);

wr1te text(30,lTOTAL**COUNT***--j);

wr1te{30,tormat(lnddddl>~count);

data nr:mdata nr-l;

g data nr - 0 ~ ~ goto START;

alose(30); alose(20);

end-+ -

- 22 -

The maximum storage used 1s of the order
l 3 x z + 10 x z • If we know the number of 11nes wh1ah 11e

1n mult1-membered paakages of mintree ~ we aan reduae the

storage dealarat10n • Suppose there are n 11nes wh1ah 11e

with1n mult1-membered paakages (l.e. n = (z - 1) - (num­

ber of one-membered packages)). Then the number of arrays

rdd and luu aan be reduaed from z to n. The storage required

1s of the order (z~ + 10 x z + 2 x z x n) where n < z •

In a large number of cases n ls half z g1ving us a sto­

rage llmit of the order 2 x zl + 10 x z •

- 23 -

App. 2.2 Data ror Input.

The data for input has to be in the rol-

lowing rormat :-

data nr ;

c ·c · 5. ' I~'

Z ;

• • • • •

c ·c • I.,' &~, •••

total j

rd[l] • lu[1] ,

• c • , zt:l'

This is the number of blocks of

data to follow.

A block of data starts from here

and z is the number of pOints in it.

Now follows the lower triangle of

the cost matrix.

Cost ot mintree •

• ,
rd[2] • lu[2]j , This is the rd" lu representation

• • • • • • • of mintree •

rd[z] • lu[z] • , ,
root j (of mintree)

if it is unknown Just insert 1.

1nterupt duration; 'Ibis 1s the time in seconds for the

procedure Time and also indicates

the end of a block of data.

- 24 -

App. 2.3 Random Data Preparation and Mintree.

A short program~ called steering Program~

was written which prepared random data and processed it

into a rorm sUitable ror input into Toptree. As mention­

ed in Chpt. 3.7 , the z pOints are scattered at random

onto a rectangle with sides or length 99 units. The dis­

tances between all pairs of pOints is calculated and in­

serted into the cost matrix • The second part of the pro­

gram applied the procedure Min tree to the resulting cost

matrix and described it in the below representation. This

was manipulated by the third part of the program, so as to

obtain the tree in the rd,lu representation. All relevant

information is output on paper tape in a suitable format

for re-input into Toptree. The procedure Mintree as pub­

lished in BC~ by the author is named here Min tree 1 •

begin integer z;

library 1; open(30); open(20); open(10);

L: write text(3o,11PlDHCL21******STEERING***PROGRAMlccccll);

z:-read(20); write(lo,format(lnddd;cl),z);

besin integer J,k,total; integer array cost[l:z,l:z],

below[O:z],link to,link from,rd,lu,x,y[l:z];

(The following procedures are now declared: Planarize~

Convlu,Convrd, Reil, Na, su, Success and random)

- 25 -

procedure Min treel(cost,z,below,total);

integer z.totalj integer array cost~belowj

begin integer m~n.a~b.s~count;

integer procedure root(a); value a; integer aj

root:- if below[a]-O then a else root(below[a]); - --
procedure change(a,b); value a,b; integer a,b;

begin integer m;

!2!: m: - II a.Q ~ b !!.!! below [a] whil e a.f ° 5!2.
begin below[a] lab; b:-a; a:=m; end;

~ change;

!.2!: m:-l ~ 1 until z ~ below[m] :-0;

count:-total:-Oj

A: s:~10;

!.2!: m:-2 step 1 until z ~

!.Q.!:. n:-l step 1 until m-l do
,

II cost[m,n]<s ~

begin s:-cost[m,n]; a:am; .
II root(a)Froot(b) ~

b:-n;

begin oount:-count+l; change(a.b);

total :-total+s;

!! count-z-l ~ goto FINISH;

end;

cost[a,b]:-»10; goto A;

FINISH: end Min treel; -

- 26 -

j:=random(1,100,read(20));

f£t. j :=1 step 1 until z 2.2.

begin x[j] :=random(1,100,0);

end" ~

write(30,rormat(18sndddl),x[j]);

y[J]:=random(1,100,0);

write(30,rormat(lPddddl),y[j]);

1£ j=5 ~ j=10 ~ j=15 ~ write text(3o,llcll);

write text(30,1l6clJ);

!£!:. j: =2 step 1 un til z do

begin write text(3o,llcll); write text(l0,llcll);

!£!:. k: = 1 step 1 until j -1 ~

end" ~

begin cost[j,k]:=cost[k,j]:=

end" ~

sqrt«x[j]-x[k])i2+(y[j]-y[k])i2);

write(30,rormat(!pdddddl),cost[j,k]);

write(10,rormat(lndddd;1),cost[j,k]);

Min treel(cost,z,below,total);

write text(3o,1l6clLINKs***OF**THE**TREElcccll);

!2.!: j :=1 step 1 until z ~

begin write(3U,format(!pddddddl),j);

write(30,rormat(14sndddcl),below[j]);

end" ~

end" ~

- 21 -

write text(30I11ccclTOTAL**--1);

write text(l0l11cccclJ);

write(30I format(lnddddcl)ltotal);

write(10,format(lndddd;ccl) ,total);

begin integer array nbr[l:z];

end" ~

Planarize(below,nbr,z);

Convlu(below,nbr,z,lu);

Convrd(below,nbr,z,rd);

f2!. j:=l step 1 tmtil z ~

begin write(10,format(l-ndddddd;1)lrd[j]);

write(10,format(15s-nddd;cl),lu[j]);

end;

charout(10,61); gap(10,50) ;

f2!. j :=1 step 1 until z ~

!! rd[j]=j ~ write(10I format(lndd;cl),j);

charout(1 0,61);

close(30) ; close(20); close (10);

end"" -
The data for input is as follows: z (the

number of points); random (an eleven d1git random number

to start the random number geerator); -+

- 28 -

App. 2.4 Dynamic Progra.nun1ng Program.

Thi sis the dynami c programming program

mentioned in Chpt. 3.6 • The data ~ormat ready for input

is as follows · •

data nr . , Number of blocks of data.

z • , Number of points in graph •

C 1I ;

C~I ; c~~ ;

• • • • • Lower triangle o~ the cost

c ; ••• ; c_;
2~ Iz ...

cz-. ; matrix.

The complete program is as follows.

begin integer n,count;

integer procedure tact(n); value nj integer n;

begin integer j,k; k:=1;

!E!: j :=1 step 1 until n ~ k:-kXj;

tact:=k;

~ tact;

integer procedure C(n,m); value n,m; integer n,mj

C:-fact(n)+(tact(n-m)xtact(m));

- 29 -

library 1; open(20);; open(30);;

write text(3o,lJpcclDHCL021116s1DYNAMIC***PROGRAMMINGlcl

114s1FOR***THE***TRAVELLING***SALESMAN***PROBLEMlcccccll);

count:=read(20);

START: n:=read(20); write text(3o,llccccll);

begin integer J,k,l,m,v,w,order,tally,note,rem,charge,top;

integer array cost[l:n,l:n],route,vector[l:n],

procedure

total[1:2,1:(n-1)xC(n-2,(n-2)+2)],

perm[1:4,1:(n-l)xC(n-2,(n-2)+2)];

Sequence(produce,n,m,vector,order); value n,m;

integer n,m,order; integer array vector; boolean produce;

begin integer s,j,t,ordersub,z;

integer procedure sum(s,p,k,bool);

integer s,p,k; boolean bool;

begin integer total,l;

value s,p,k,bool;

total:=O; II p=m-1 ~ total:a k

el se if' lc.r!o then - - -
begin !2!:. 1:= II bool ~ s ~ k

end" ~

step -1 un til !f. bool ~ s-k+ 1 ~ 1 2.2.
total:=total+sum(s,p+1,1,false);

sum:- total;

~ sum;

- 30 -

II produce then -
begin ordersub:=order; vector[1] :=1; s:=n-m+2;

.f.2!: j :=2 step 1 until m-l ~

begin vector[j] :=0;

!.2!:. t:= s" t-1 vector[j]=O while do -
begin z:= sum(s"j"t .. true)x(n-m+1); -

if order sub > z then - -
begin vector[j]:= vector[j-l] + t + 1;

end;

end­~

ordersub:=ordersub - z;

s:=s-t;

vector[m] :=50;

for j:=2 .. j+1 wh1le vector[m]=50 do

!! vector[j]-vector[j-1]>1 ~

begin z:=vector[j] - vector[j-1];

end­
~

!! z > order sub ~

vector[m]:=ordersub + vector[j-l]

else ordersub:=ordersub - z+1; -

begin order:-O; t:=l; s:-n-m+2;

!2!:j : =2 step 1 1m til m-1 22

end" ~

- 31 -

begin z:=vector[j] - vector[j-1] -1;

end·
~

order:= order + sum(sIJlzl~)x(n-m+l);

1£ vector[m])vector[j] ~ t:=t+1;

s:=s-z;

order:=order + vector[m] - t;

~ Sequence;

procedure Pennutate;

begin integer rem;

1£ m ~ 6 then perm[vlorder):aperm[w1tally] x

100 + vector[m]

begin rem:=penn[w,tally] + 100000 00000;

perm[vlorder):=(perm[w,tally] -100000 OOOOOx rem)

x 100 + vector[m]; perm[v+2I order]:=

perm[w+2,tally] x 100 + rem;

end" ~

~ Permutate;

!.2!:. j: =2 step 1 un til n s!9.

!.2.!:. k:=1 step 1 until j-l do

cost[j1k]:=CoBt[k,j]:-read(20);

!.2!:. j:=l step 1 until (n-1)xC(n-21(n-2)+2) !!2.

!.2.!:. k:-1 step 1 until 4.s!Q. penn[k, j] :=();

- 32 -

v:=1 ; w:=2;

!2!:. j:=2 step 1 until n s!.2.

begin total[v,j-l]:=cost[l,j];

perm[v,j-l]:-100+j; end" ~

!2!: m:=3 step 1 until n do

begin v:=if v=l then 2 else 1; - --

end" -'

w:=3-v; top:-(n-l)XC(n-2,m-2);

~ order:-l, order+l while order ~ top do

begin Sequence(true,n,m,vector,order);

end" ~

total[v,order]:= 1 00000 00000;

f2!: 1 :-2 step 1 until m-1 £E.
begin route[m-l]:-vector[l]; k:=l;

end" ~

for j:-k wh11e k(1, k+l while k(m-l do

begin route[k]:-vector[j];

k:-k+l; end;

Sequence(false,n,m-l,route,tally);

charge:=total[w,tally]+cost[vector[l],vector[m]];

!! charge (total[v,order] then -
begin total[v,order]:=charge;

Pennutate; end" ~

- 33 -

charge:= 1 00000 000UO;

for j :=1 step 1 until n-l !!.2.
if charge > total[v~j] + cost[n-j+l,l] ~

begin charge:=total[v,j] + cost[n+l-j,l];

end" ~

note:=j;

write text(3o,llcclTOTAL**---1);

write(30,format(lnddddddcl)~charge);

write text(3o,llcclROUTE**---1);

!2!. j :=1 step 1 until n ~

begj.n if' j > 6 - ~ v:=v+2;

end" ~

rem:=(perm[v,note]+ 100) X 100;

route[j]:=perm[v,note] - rem;

write(30~f'ormat(lnddddl),route[J]);

perm[v~note]:=perm[v,note] + 100;

II J> 6 ~ v:=v-2;

count:=count-l;

II count~O ~ goto START;

end; close(20); close(30);

end-+ -

- 34 -

App. 2.5 Specimen Output.

This was the Toptree output for the (20 x 20)

Croes Problem. The lower cost triangle is given below fol­

lowed by the output on the next page.

29;

41· , 72; 22;

9; 72; 70; 75; 62;

18; 50; 54; 60; 28; 79; 91 ;

6· , 39; 35; 20; 17; 72; 97; 59; 87;

42; 60· , 59; 24; 74; 26; 64; 47; 75; 4· , 31 ;

48; 34; 88· , 73; 93; 60; 97;

74; 25; 19; 79; o· , 32; 65; 63;

43; 46; 72; 51 ; 76; 63; 64· , 27; 71 ;

51; 25; 87; 43; 30; 84; 13; 42; 91 ; 66· ,
7; 35; 38; 58; 55; 21 ; 23; 62; 5; 30; 9;

36; 14; 24; 4; 84; 26· , 3; 32; 85; 57; 26; 86;

93; 20; 68; 47; 42; 96; 78; 20; 51; 8; 6; 27; 12· ,
58; 35; 63; 29; 47; 75; 15; 26; 72; 71 ; 99; 34; 28-, 19;

11; 83; 80· , 22; 91 ; 14; 30; 5; 53; 19; 33; 72; 24-, 77;

51; 27; 58; 48; 21 ; 13; 56; 80; 8; 25; 8; 45; 60· , 14;

61; 86-, 40· , 27; 59; 51 ; 22-, 52; 49; 10; 99; 59; 19; 22-,
30; 95; 89; 88; 24· , 16· , 13; 47; 90; 83; 92; 32; 12; 54;
44-, 30; 24-, 91 ; 80-, 83; 58; 36; 39; 40-, 31 ; 77; 20-, 77;

- 35 -

DHCL021/TOPTREE 1

MIN TREE TOTAL -- 154

COUNT TOTAL ROUTE

1 347 19 5 9 3 20 18 10 14 11 17
6 4 1 12 2 13 7 15 8 16

2 286 12 19 5 9 3 20 18 10 14 11
17 6 4 1 16 8 15 7 13 2

5 278 2 8 16 15 7 13 19 5 9 3
20 18 10 14 11 17 6 4 1 12

8 277 8 16 15 7 12 1 4 6 17 11
14 10 18 20 3 9 5 19 13 2

135 269 2 13 4 15 7 19 5 9 3 20
18 10 14 1 1 17 6 12 1 16 8

141 260 8 16 15 7 19 5 9 3 20 18
10 14 11 17 6 12 1 4 13 2

END OF PROGRAM COUNT -- 1728

Count is the iteration number within which the im­

proved solution was found. The count number after the words

END OF PROGRAM indicates the number of solutions within S~

which the program analysed.

- 36 -

APPENDIX 3.

The program for the bandwidth minimisation

is basically in Algol but a little Usercode (KDF9 Machine

language) is used to facilitate the segmentation and the

relabelling of magnetic tapes. The three segments of the

program correspond to the three Stages (described in Chpt.

4). At the finish of each segment, all data which is rele­

vant to the next segment is written onto a magnetic tape

(initially zero but labelled AKPOXMBM the first time the

program is called). Due to the inadequecy of the KDF9 Algol

compiler, the magnetiC tape transfer procedures are slight­

ly more complicated than they have to be , because all the

integer arrays have to be transferred to ~ arrays and

then copied to the magnetiC tape. There are a few input and

output procedures which are common to all three segments

and they, with a few others, will be described now.

procedure Mag read l(dv); value dv; integer dv;

comment This is one of the first instructions to be obeyed

during Segments 2 and 3 • This establishes the size of the

various arrays to be declared and read from the magnetic

tape (AKPOXMBM) • ;

begin readbinary(dv,mag,lAl);

datanr:=mag[l]; rm:=mag[2];

emi t : =mag [3] ;

bd:=mag[5];

ld:=mag[7] ;

br:=mag[9];

bstop : =mag [11];

mb : =mag [13];

~ Mag read 1;

- 37 -

t t: =mag [4] ;

bounds: =mag [6];

z:=mag[8] ;

b : =mag [1 0] ;

ma : =mag [1 2] ;

mc:=mag[14];

procedure next segment(v); value V; integer v;

comment This procedure is used to Jump to the next

segment. Thus the last instruction obeyed in Segment 1

is this procedure with v set equal to 2. At the end of

the next segment v is set equal to 3 and in the last

one it 1s set back to 1 • ;

KDF9 3/0/0/0;

1 ;

2· ,

VO=B 20 36 36;

J2EN; ERASE; J1;

J3EJ; LINK; ERASE; J2;

3; E3; SHC+12; SHL+6; Iv]; OR; SHL+12;

VO; OR; SHC+18; E2; SET1; OUT;

ALGOL; comment end of next segment;

procedure Mag read 2(dv); value dv; integer dv;

comment Having established the size of the various arrays

- 38 -

by means of Mag read 1 we now read down the rest of the

data by means of this procedure.;

begin

procedure arnext(array); integer array array;

begin 1£ b=50 ~ readbinary(dv~mag~lAl);

b:= II b=50 ~ 1 ~ b+l;

array[k]:=mag[b]; end· ~

for j :=1 step 1 until 3 do

begin b:-50; c:- if j=l then br else z; - - -

end· ~

!2!:. k:=l step 1 until c !!2.

if j=l ~ arnext(branches)

~ II J=2 ~ arnext(rowstart)

~ arnext(nrinrow);

~ Mag write2;

procedure Mag write(dv); value dv; integer dv;

comment One of the last few instructions to be obeyed

before the end of a segment is this procedure which

writes up onto the magnetic tape all the information

necessary to its functioning. This includes the branches~

rows tart and nrlnrow array. ;

begin integer j~k~ b~c;

procedure ldnext(array); integer array array;

- 39 -

begin b:= II b=50 ~ 1 else b+l;

mag[b]:=array[k]j

II b=50 .2.!: k=c ~ writebinary(dv1magllAl);

end" ~

b:=O;

begin b:=b+l; mag[b]:-j; end--'
!2!:. J :=b+l step 1 until 50 .5!2. mag[j] : .. OJ

writebinary(dvlmagllAl);

for j:-1 12,3 do - -
begin b:=O; c:= if J=l then br else z; - - -

for k:=l step 1 until c do

end­
~

!! j-l ~ idnext(branches)

else if j=2 then idnext(rowstart) -- -
~ idnext(nrlnrow);

end Mag write;

integer array branches,rowstart1nrinrow;

comment This procedure is used whenever it is required to

output any detail s of the graph. Thi sis done usually at

the end of every segment_ ;

- 40 -

begin integer j~k;

!£ dv=30 ~ writetext(3o~llcl**Z******BR*******

DENSITY*****B******B*STOPlccll);

write(dv~format(1Pdd;l)~z);

wrlte(dv~format(lndddddd;1),br+2);

write(dv~format(19snd;1)~density);

write(dv~format(lndddddd;l)~b);

write(dv~format(lndddddd;ccl),bstop);

1£ dv=30 ~ writetext(30~lLcclROW***NR*IN*ROW*

********MATRIXlcll);

for j:=l step 1 until z ~

begin newline(dv,1£ j-1=10X«j-l)+10) ~ 2 ~ 1);

1£ dv=30 ~ write(30~format(lnd;1),j);

write(dv~format(lnddddddd;l),nrinrow[j]);

writetext(dv~llssssll);

end­~

!2.!: k:=O step 1 until nrinrow[j]-l do

write(dv~tormat(1Pddd;l>~branches[rowstart[j]+k]);

~ Matrix Output 1;

procedure Matrix Input(branches,rowstart~nr in row,z~br);

integer z~br; integer array branches~rowstart~nr in row;

comment This is a standard input procedure used not only

in this program but in others. It accepts the matrix in

- 41 -

the branches list form and the layaout is as described in

Chpt. 2.21 .;

begin integer s,j,k;

s :=1;

.fE:. j :=1 step 1 until z ~

begin nr in row[j]:=read(20);

rowstart[j]:=s;

end·
~

!2.!:. k:=1 step 1 until nr in row[j] £2.

begin branches[s]:-read(20);

s:=s+1 ; end" ~

~ Matrix input;

procedure Perm branches(branches,rowstart,nrinrow,S,br,z);

integer br, z;

integer array branches,rowstart,nrinrow,S;

comment Given a matrix in the branches list representation

and a permutation of L(z) in the array S, this proce­

dure will pezmutate the rows and columns of the matrix cor­

respondingly (i.e. pre and post-multiply the equivalent ad­

jacency matrix by the vector corresponding to the array S).;

begin integer j"s"k; integer array copy branches[l:br],

inv S,inv rowstart,inv nrinrow[l:z];

- 42 -

f2!: j :=1 step 1 until z do

begin lnv S[S[j]]:=j;

end" ~

lnv rowstart[j]:=rowstart[S[j]];

lnv nrinrow[j]:=nrlnrow[S[j]];

f2!: j :=1 step 1 until br £!£

copybranches[j]:=inv S[branches[j]];

s :=1;

f2!: j :=1 step 1 until z !!.2.
begin nrlnrow[j]:=inv nrinrow[j];

rows tart [j] :=s;

end· ~

!.2!:. k:=1nv rowstart[j] step 1 until

inv rowstart[j]+nrinrow[j]-l ~

begin branches[s]:acopy branches[k];

s :=s+l; end·
~

~ Perm branches;

procedure Time(a~L1,L2); value a; integer a; label L1,L2;

comment This time control procedure is of great help in

circumstances where it is impossible to estimate how long

a program is going to take for some set of data. Into a

is inserted, when this procedure is called the first time,

the time interval (in seconds) between monitor typewritter

- 43 -

queries. To continue the program the reply is o.~. If it

is required to jump to the label L1 then a reply of 1.~

is called for and similarly a reply of 2.~ makes the pro­

gram jump to label L2.;

~ 2/2/0/9;

V3=B 02 07 64 51 55 45 00 00;

V4=B 61 65 45 62 71 00 00 34;

v6=Q 0/AV3/AV5;

V7=B 37 75 00 00 00 00 00 20;

V8=B 02 00 00 41 47 41 51 56;

V9=Q 0/AV8/AV8;

Ia]; SHA24; DUP; Jl=Z; DUP; =V2; =Vl; SET9; OUT; -YO; ~;

1; ERASE; SET9; OUT; YO; -; V2; -; J2~Z; ~;

2; V2; Vl; +; =V2; V6; =Q15; V9; =Q14;

3; TWEQ15; V5; SHc6; V7; -; ZERO; J41;ERASE; EXIT;

4; SET1; J51; ERASE; JILl];

5; SET2; -; J6=Z; TWQ14; VR; 33;

6; 31L2];
ALGOL;

integer procedure time;

comment The first time th1s procedure is called it notes

the time on the 24 hour clock and it will take on the value

of the total number of seconds which have elapsed since its

last call. ;

KDF9 3/0/0/0;

VO=O;

- 44 -

SET9; OUT; DUP; VO; CAB; =VO; -; SHA-24; ~;

ALGOL;

- 45 -

App. 3.1 Segment 1.

The first segment includes Stage 1, input pro­

cedures and a facility to generate random data. The main

procedure is called Ld comp • This is a control procedure

which is called once for each new set of data. By means of

Or inspect, it finds the next point to be removed from the

graph (Chpt. 4.43) and accomplishes this by means of Cut

point. The resultant graph is then rearranged ready for

the next iteration by means of Gr rearrange, Gr add and

Or subtract. At the start of each iteration E(resultant

graph) is computed by means of Ld calc • The procedures

used will now follow each having a brief comment to des­

cribe their workings.

procedure Ld calc(rem); integer rem;

comment Given the graph in (bbranches, etc.) the proce­

dure Min g roots finds the maximum path length and all

pairs of points yielding this value • Next for each pair

of these pOints, the procedure Loop count is entered to

find the number of dist1nct paths between them. We thus

have the values of all the variables in formula (4.4 A) •

The value of E(G') 1s inserted in the ident1fier rem. ;

begin integer loop,j,k,sum,b,d,g,n,m;

integer array endsl,mod[1:zz+1],ends2[1:bounds];

- 46 -

Min g roots(bbranches,rrowstart,nnrinrow,zz,bbr,ends1,

loop :==-1 ;

for j :=1 step 1 until b do

f.2!:. k:=mod[j] step 1 'tmtil mod [j+1l-1 do

begin Loop count(bbranches,rrowstart,nnrinrow,zz,bbr,

sum,ends1[j],ends2[k],n,m); if sum)loop then loop:=sum; - -
end· -'
rem:=entier«zz+loop+m-2)/m);

~ Ld calc;

procedure Min g roots(branches,rowstart,nrinrow,z,br,ends1,

ends2,mod,b,d,g); integer z,br,g,b,d; integer array branches,

rowstart,nrinrow,endsl,ends2,mod;

comment This uses the mushrooming r-tree technique as des­

cribed in Chpt. 4.41. in order to find the root and highest

point of all the mushrooming r-trees with maximum height.

These two sets of points are stored in the integer arrays

ends 1 and ends2 • ;

begin integer gee,a,s,olds,nr,c,j,k,root;

integer array gen,list[l:z];

for j:=l step 1 until z 2:.Q. endsl [j] :=ends2[j] :=0;

g:=O; d:=nr:=b:=O;

for root:=l step 1 until z do

begin f2!: j:=l step 1 until z ~ gen[J] :=0;

- 47 -

a:=s:=l; olds:=gee:=O; list[a]:=root; gen[root]:=l;

A: f2£ j:=olds+l,j+l while j~s do

!2!: k:=rowstart[list[j]] step 1 until

rowstart[list[j]]+nrinrow[list[j]]-l do

!! gen[branches[k]]=O ~

begin c:=branches[k]; gen[c]:=gen[list[j]]+l;

a:=a+l ; list[a] :=c;

!! gee(gen[c] then gee:=gen[c];

olds :=s; s:=a;

1£ gee(g ~ goto FINISH;

1£ g(gee ~ d:=b:=O; b:=b+l;

endsl[b]:=root; mod[b]:md+l;

!2!: j :=olds+l step 1 until s 2.2.

begin d:=d+lj

else -

g:-gee;

!! d)bounds ~ begin writetext(3o,1l4clNON-

CATASTROPHIC**FAILURE**DUE**TD**VALUE**OF**BOUNDS**BEING**T00

SMALL---**RESULTING**PROGRAM**THUS**INCOMPLETEl);

d:=mod[b]-l; b:=b-l; goto FINISH;

ends2[d]:=list[j];

FINISH:

end·
~

end·
~

mod[b+l]:=d+l; g:=g-l;

~ Min g roots;

- 48 -

procedure Loop count(branches,rowstart,nrinrow,z,br,loop,

endptl,endpt2,n,m); integer z,br,loop,end ptl,end pt2,n,m;

comment This procedure is given two points of the graph

and builds a spanning or mushrooming r-tree from each point

one generation at a time. The process stops as soon as the

two rooted trees come into contact. A note is made of the

number of cammon pOints and from this is deduced the num­

ber of distinct paths between the two respective roots. ;

integer array branches,nrinrow,rowstart;

begin integer j,k,a,b,s,t,old s,old t;

integer array delete[l:z],path[-z:z],list[l:2,1:z];

n ·-2· .- , s :=t:=l; old s:=old t:~:=path[O]:=O;

loop:=-l; a:=b:~l; list[l,l]:=endptl; list[2,1]:=endpt2;

for j:=l step 1 until z s!2. b~ path[j]:=j;

pa th [- j] : =- j ;

end·
~

delete[endptl]:=z;

del ete [j] : =0;

delete[endpt2]:=-z;

A: for j:=old s+l,j+l while j~s s!2.

!.2£. k:=rowstart[list [1, j]] step 1 until

rowstart[list[l,j]]+nrinrow[list[l,j]]-l do

!£ delete[branches[k]]<O and path[delete[branches[k]]]#O

and path[delete[list[l,j]]]10 then - -
begin loop :=loop+l; path[delete[branches[k]]]:~

end -

- 49 -

~ if delete[branches[k]]=O 2£ delete[branches[k]]=-z

~ begin delete[branches[k]]:=if j=l then a ~

delete[list[l~j]]; a:=a+l;

list[l~a]:=branches[k]; end­~

old s :=s; s:=a; m:=m+l; n:=n+s-old Sj

llloop~O then goto FINISH;

f2£ j:=old t+l~j+l while j~t do

~ k:=rowstart[list[2,j]] step 1 until

rowstart[list[2~j]]+nrinrow[list[2,j]]-1 do

if delete[branches[k]])O and path[delete[branches[k]]]lo - -
~ (path[delete[11st[2~j]]]lo ~ j=l) ~

begin loop:=loop+lj path[delete[branches[k]]]:=

path[delete[list[2~j]]]:=O; ~

~ !! delete[branches[k]]=O ~

begin delete[branches[k]] :=!!, J=l ~ -b ~

delete[list[2,j]]j b:=b+l;

list[2~b]:=branches[k];

old t :=t; t:=bj m:=m+l j n:=n+t-old tj

II loop<O ~ goto A;

FINISH: n:=n-(s-olds)-(t-oldt)+loop+lj

~ Loop count;

- 50 -

procedure Gr inspect(rem); integer rem;

comment The theory of Chpt. 4.43 is used and rem will

contain the label of that point v which has p(m"J)~(m"i)

for all i. Before the matrix P is computed l the procedure

Min g2 roots is entered in order to find the maxmin path

length m. ;

begin integer slt"J"sum"a;

Min g2 roots(a};

begin integer array matrix[l:a 1 l:zz);

end" ~

!2!: s :=1 step 1 until a do

!2!:. t:=l step 1 until zz s!2.

begin sum:=O; !Q!: J:=rrowstart[t] step 1 Wltil

rrowstart[t]+nnrinrow[t]-1 2£ sum:=

end·
~

sum+(g sil ~ matrix[s-l"bbranches[J]] ~ 1);

matrix[slt):=SUIn;

sum: =]0 10;

for J :=zz step -1 until 1 £Q.

g matrix[a"J]<sum ~

begtn sum:=matrix[a"J];

rem:=J; end" ~

~ Gr inspect;

- 51 -

procedure Min g2 roots(g); integer g;

comment this uses the mushrooming r-tree technique in

order to compute m .the heigth or the tallest or highest

mushrooming rtree and hence the maxmin path length. ;

begin integer root~a.J,k.clslolds,gee;

integer array gen1 list[1:zz];

g:=O;

£.Q!. root:==l step 1 mtil zz do

begin £E£. j:=l step 1 until zz ~ gen[j] :=0;

a:=s:=gen[root]:=l;

end· ~

olds:==gee:=O;

list[a] :=root;

A: ~ j:=olds+l.j+l while J~s ~

!.2.r. k:=rrowstart[list[j]] step 1 mtil

rrowstart[list[j]]+nnrinrow[list[j]]-l 9£
1r gen[bbranches[k]]=O ~

begin c:=bbranches[k]; gen[c]:agen[list[j]]+l;

a:=a+l; l1st[a]:=c;

it gee<gen[c] then gee:-gen[c]; - - end· ~

olds:=s; s:aa; !.!. a1zz ~ goto A;

1£ gee)g ~ g:=gee;

g::ag-l;

~ Min g2 roots ;

- 52 -

procedure sort(a,n); integer n; integer array a;

comment A simple sorting procedure used by Cut point. ;

begin integer b,i,jj

i:=O;

L: i :=i+1 j j :=nj !! i=n then goto SF;

M: !! j=i ~ goto L; j :=j-l;

1£ a[j](a[j+l] ~ begin b:=a[j+1]j a[j+l]:=a[j]j

goto Mj

SF: end sort;

a [j] :=bj end·
~

procedure Cut point(a,can,bool,branches,rowstart,nrinrow,

z,br)j value a; integer a,z,br; integer array can,branches,

rowstart,nrinrow; boolean boolj

comment Having decided which point to eliminate rrom the graph

by means or the procedure Or inspect , this is now affected.

The ract that the resulting graph may become disconnected is

not taken into account. The graph also has to be relabelled

in order that the remaining graph will be labelled consecu­

tively rrom one upwards. ;

begin integer j,k,b,c,d,r,n,lj integer array S,nig[l:z];

d:=aj r:=-l; nig[r] :an:=-1r bool then a ~ abs(can[d]);

!! n)z ~ goto CPFj

~ j:=O step 1 until nrinrow[n]-l 22

- 53 -

if nrinrow[branches[rowstart[n]+J]]=l ~

begin r:=r+l;

sort(nig,r) ;

c:=r; r:=-l;

nig[r]:=branches[rowstart[n]+j];

end;

CP2: r:=r+l; if r=c ~ goto CP1; a:=nig[r+l];

if ain ~ b:=z-r-l ~ begin b:=z; 1:=0;

II a=b ~ goto CP2;

end" ~

f2.!: j :=1 step 1 until a-1,a+l step 1 until b-l, b+1 step

1 until z S2 S[j] :==j; S[a] :=-b; S[b] ::aa;

g ~ bool ~ !2!: j:=l step 1 until z-l do

II sign(can[j])=sign(can[d]) ~ abs(can[j])=a ~

can[j]:=sign(can[j])Xb;

Perm branches(branches,rowstart,nrinrow,S,br,z);

go to CP2;

CP1: n:=nrinrow[z];

for j:=rowstart[z] step 1 until br £!Q.

begin f.2£ k:=rowstart[branches[J]] step 1 until

rowstart[branches[j]+l]-l do g branches[k]=z then

!2!: l: -k step 1 un til rows tart [z] -2 2.2

branches[l]:=branches[l+l];

C: nrinrow[branches[j]]:=nrinrow[branches[j]]-l;

!.2!. l:-branches[j]+l step 1 until z-l S2

rowstart[l]:-rowstart[l]-l;

end" ~

- 54 -

z:=z-c; br:=br-2xn;

CPF: ~ Cut pOint;

procedure Gr rearrange(a); integer a;

comment This procedure tests by means of Gr cont if the

graph is still connected. If it is not it takes certain

steps,by means of Gr seperate, so that the program does

not later fail catastrophically. ;

begin

integer array can[l:z];

procedure Gr seperate;

comment If the graph is disconnected l this procedure

will relabel the graph so that the pOints in each com­

ponent are consecutively labelled. ;

begin integer j; integer array branches2[1:bbbr],

nrinrow2 I rowstart2[1:zzz];

!2!: j :=1 step 1 until zzz ~

begin rowstart2[j]:=rrowstart[j];

nrinrow2[j]:-nnrinrow[j); end;

~ j:-l step 1 until bbbr S2 branches2[j]:=bbranches[j];

cz2:=cz1:=zzz; cbr1:-cbr2:=bbbr;

!2!: j:=zzz step -1 \ll1.til 1 S2

- 55 -

if can[j])O then Cutpoint(j,can,false,bbranches, - -
rrowstart,nnrinrow,czl,cbrl) else - Cutpo1nt(j, can,

false,branches2,rowstart2,nrinrow2,cz2,cbr2);

for j:=l step 1 until bbbr-cbrl do

bbranches[cbrl+j]:=branches2[j]+czl;

!2!:. j:=l step 1 until zzz-czl ~

begin rrowstart[czl+j]:=rowstart2[j]+cbr1;

nnrinrow[cz1+j]:=nrinrow2[j];

end Gr seperate;

boolean procedure gr cont;

end" ~

comment By means of mushrooming a qUick check is made to

see if the graph is connected. The root of the mushrooming

r-tree is v, " If the mushrooming r-tree does not contain

all the points of the graph then bool is set false to in­

dicate disconnectedness otherwise bool is set ~. ;

begin integer j,k,a,s,olds,c; boolean bool;

integer array gen,list[l:zzz];

bool :=true; !.2.!: j :-1 step 1 until zzz do

begin can[j]:=-j; gen[j]:=O; end;

gen[l]:=a:=s:=l; olds:=O; list[a] :=-1;

A: !££ j:=olds+1,j+l while j~s ~

~ k:=rrowstart[list[j]] step 1 until

rrowstart[list[j]]+nnrinrow[list[j])-l do

- 56 -

1£ gen[bbranches[k]]=O then

begin c:=bbranches[k]; gen[c]:=gen[list[j]]+l;

a:=a+l; list[a]:=c; end;

olds:=s; s:=a; !! oldsFS ~ aFzzz ~ goto A;

if' olds=s then - -
begin bool:=false; ~ j:=l step 1 until s do

can[list[j]]:=list[j]j end;

gr cont:=bool;

~ gr contj

~ j:=l step 1 until zz ~ copycut[j]:=copybr[j]:=O;

ZZZ:=ZZj bbbr:=bbrj na:=nb:=O; a:=l j

OR1: II gr cont ~ goto ORF; Or seperate;

a:=a+lj na:=na+cz2; nb:=nb+cbr2j

zzz:=copycut[a]:=cz2;

bbbr:=copybr[a]:=cbr2j goto OR1;

ORF: copycut[1]:=zz-na; copybr[l]:=bbr-nbj a:=a-l;

~ Or rearrange;

The following two procedures are simply

graph man1pulat1ve rout1nes 1n order to prepare the

graph for re-entry into the Ld calc 1terat1ve loop.

procedure Or add(a)j value aj integer a;

begin integer jj

- 57 -

f.££. j :=1 step 1 until br-cutbr [cp-1] do

branches[cutbr[cp-l]+j]:=bbranches[j]+cutpt[cp-1];

~ j:=l step 1 until z-cutpt[cp-l] 22

begin rowstart[cutpt[cp-l]+j]:=rrowstart[J]+cutbr[cp-1];

nrinrow[cutpt[cp-l]+j]:=nnrinrow[j]; end;

f2£. j :=1 step 1 until a ~

begin cutpt[cp-1+j]:=cutpt[cp-2+j]+copycut[j];

cutbr[cp-l+j]:=cutbr[cp-2+j]+copybr[j];

cp:=cp+a; cutpt[cp]:=z;

end Gr add;

cutbr[cp] :=br;

procedure Gr subtract;

begin integer j;

for j :=1 step 1 lmtil z ~

begin nnrinrow[j]:=nrinrow[j];

rrowstart[j]:=rowstart[j]; end;

£Q!: j:=1 step 1 until br 22 bbranches[j]:=branches[j];

~ j :=1 step 1 until z-zz !!2.
begin rowstart[j]:=rrowstart[j+zz]-bbr;

nrinrow[j]:=nnrinrow[j+zz]; end·
~

for j:=1 step 1 until br-bbr do

branches[j]:=bbranches[j+bbr]-zz;

- 58 -

£2£. j:=l step 1 until cp-1 do

begin cutpt[j]:=cutpt[j+l]-zz;

cutbr[j]:=cutbr[j+l]-bbr; end"
~

cutpt[cp] :=z;

~ Gr subtract;

cutbr[cp]:=br; Gr add(O);

procedure Ld comp(branches,rowstart,nrinrow,z,br,ld,bounds);

value branches,rowstart,nr1nrow,z,br; integer z,br,ld,bounds;

1nteger array branches,rowstart,nr1nrow;

comment All the prev10us procedures just descr1bed w1thin

th1s sub-appendix are declared w1thin this the main control

procedure. ;

begin 1nteger rem,zz,bbr,J,a,cPIPo1nt; 1nteger array copycut,

copybr,nnrinrow,rrowstart[l:z],cutbr,cutpt[O:z],bbranches[l:br];

(procedures dwclared here)

f2£ j:=l step 1 until z ~ cutpt[j]:=cutbr[J]:=O;

zz:=cutpt[l]:=z; bbr:=cutbr[l]:=br;

ld:=cutpt[O]:=cutbr[O]:=O; cp:=l;

!2.!:. j:=l step 1 unt1l br ~ bbranches[j] :=branches[j];

!.2£. j :=1 step 1 unt1l z do

begin nnrinrow[j]:anrinrow[J];

rrowstart[J]:=rowstart[j]; end" ~

- 59 -

LD1: Ld calc(rem);

!! rem)ld ~ ld:=rem; Gr inspect(point);

Cut point(point,nrinrow,~,bbranches,rrowstart,

nnrinrow,zz,bbr); z:=zz+cutpt[cp-l];

br:=bbr+cutbr[cp-l]; if zz=o ~ cp:=cp-l;

Gr rearrange(a); Or add(a); Time(O,LDF,LDF);

rem:=O;

LD2: zz:=cutpt[l]; bbr:=cutbr[1];

LDF:

Gr subtract; rem:=rem+1;

!! zz~2 ~ rem<cp ~ goto LD2;

if rem~cp and zz)2 ~ goto LD1;

~ Ld comp;

procedure Mat Rand(branches,rowstart,nrinrow,z,br,

density,const); integer z,br,density,const;

integer array branches,rowstart,nrinrow;

comment This procedure uses a random number generator in

order to generate random matrices. It is entered with two

identifiers already set. Density is a number lying in the

range (1,100) and will indicate the required density of

the final matrix. Const is a positive number which indi­

cates the amount of leeway or exactness required from the

given density. The smaller the value of const the more

- 60 -

exact has the final density to be . The usual range was

from 1 to 5. In the practical examples const was set

at ° or 1 for z = 60 and upwards. For smaller z ~ const

was increased up to 4 or 5 : especially if the required

density was low. If the procedure fails to find a matrix

fitting the initial conditions after ten attempts, it

jumps out of the procedure, Stage and program. To remedy

this either increase const or increase density for the

same value of z.;

begin integer j,k,l,c,m,n,p,q;

c:=o;

MRS: n:=O;

!2!:. j:=l step 1 until z do

begin m:=O; rowstart[j]:=n+l;

!!. j)l ~ f.2!. p:-l step 1 until j-l do

!2.!: q: -rows tart [p] step 1 un til

rowstart[p]+nrinrow[p]-l ~

if branches[q]=j then - -
begin if n=br ~ goto MRFAIL;

end" ~

n:=n+l;

II j=z ~ goto MR;

branches [n] : =p ;

!2!: k:==j+l step 1 until z ~

begin 1:=random(1,100,O);

end" ~

- 61 -

i1' l~density-const ~

begin if n=br ~ goto MRFAIL;

n:=n+1; branches[n]:=m:=k; end;

llm=U ~

begin II n=br ~ goto MRFAIL;

n:=o+l; branches[n]:=random(j+l,z,O);

MR: nrinrow[j]:=n-rowstart[j]+l;

1:=100xn/(zxz-z); k:- if density<35 then 50 else - --
if density(60 ~ 70 ~ 100;

it 1 OXl+k(11xdensi ty .Q!:. 1 UXl-k)9xdensi ty ~

begin if density)10 then ~ lll-lU(density ~

goto MRFIN; writetext (3o,llccclFAILURE** IN**MAT*

*RAND******FINAL**DENSITY**NOT**ACCURATE**ENOUGH**--

~

--**DENSITY**WAS*l); write(30,1'ormat(lnddl),1);

c:=c+1; if Cfl0 ~ goto MRS ~ goto FAIL;

~ goto MRFIN;

MRFAIL: writetext(30,llccclFAILURE**IN**MAT**RAND******OVER

FLOW**OF**BRANCHES1); c:=c+1;

it Cf10 ~ goto MRS ~ goto FAIL;

MRFIN: br:=n;

~ Mat Rand;

- 62 -

integer procedure random(a,b,c); value a,b,c; integer a,b,c;

comment This is a standard random number generator. Originally

it was copied from CACM but it has been mutilated

slightly in order to take any starter number. The first time

into this procedure and eleven digit number is inserted for

the a value, thereafter a takes the value zero. The bounds

for the random number are given by b and c. b being the

lower bound and c the upper. ;

begin ~ integer x,j,k,l;

if cf.o then -
begin x:=c;

j:=34 359 738 368;

k:=68 719 476 736;

1:=137 438 953 472;

end­~

x:=5xx;

R: II x~l ~ x:=x-l;

if x~k ~ x:=x-k;

II x~j then x:=x-j;

!!. x>1 09]09 ~ goto R;

random:=x/jx(b-a)+a;

end random;

- 63 -

The complete program is as follows.

begin array mag[1:50];

integer datanrlzlbrlblbdlldlbstopldensitYlrm,randnrl

nlm.conltclttlmalmblmclbounds,em1t;

(The procedures next segment and relabel

are declared here.)

open(20) ; open(30) ;

wrltetext(30,llPl*************MATRIX***BANDWIDTH***

MINIMISATION1cl*************----------------------­

----------****************DATA**TITLE***l);

copy text (20 .. 30 .. 1:;1);

datanr:-read(20); z:=read(20);

rm:=read(20); randnr:=bd:=O;

II rm~8 then

begin denslty:=read(20); con:=read(20);

randnr:=read(20); rm:=rm-8;

br:=zt2xdenslty/l00+2xzx(1-denslty/l00);

~ ~ br:=2xread(20);

II rm=2 or rm=6 then ld:=read(20) else ld:=O; -
II rm>3 ~ begin bd:=read(20);

bstop:=read(20);

~ ~ bd:=bstop:=O;

- 64 -

em1 t :=read (20);

bounds:= II rroI2x(rm+2) ~ read(20) else O· ,
b:=ma:=mb:=mc:=O;

begin integer array branches[l:br]~rowstart,nrinrow[l:z];

(All the procedures mentioned in App. 3.0 and

this one are declared now.)

if datanr=l then - -
begin flnd(100~1********1); relabel(100~lAKPOXM8Ml);

lnterchange(100); ~ ~ flnd(100,lAKPOXMBMl);

interchange(100);

Time(em1t,FAIL,PREND); tc:=time; tt:=O;

if zi2(bounds and bound sf ° then bounds:-zi2; - - -
!f randnr10 then

begin writetext(3o,1l8clSTAGE**O***--------***RANDOM**MATRIX

GENERATORlcl--------14clINITIALRANDOM**NR*=*1);

wrlte(30,format(LPddsdddsdddsdddj),randnr);

randnr:=random(1~100,randnr);

wrltetext(30,1l4clINITIAL**DENSITY*=*1);

write(30,format(lndj),density);

writetext(3o,1l10s1CON*=*DENSITY*VARIATION*=1);

wrlte(30~format(lnddl)Jcon);

Mat Rand{branchesJrowstart,nrinrow~z~br~densitYJcon);

~ ~ Matrix Input(branchesJrowstart~nrinrowJz,br);

- 65 -

writetext(30,1l8cl********INPUT***MATRlx1cl********

--------------1ccc11);
Matrix Output 1 (branches,rowstart,nrinrow,z,br,100Xbr/(zxz-z),

Id,bstop,30);

ll~i~(m+2) ~

begin Ld comp(branches,rowstart,nrinrow,z,br,ld,bounds);

writetext(30,118clSTAGE**1***--------***LD**COMP

UTATION*****LD*=l); write(30,format(lnddl),ld);

wrltetext(3o,llcl--------l);

end-
~

tc:=tlme; tt:=tc+tt;

writetext(3o,1l4clTIME**TAKEN*=*1);

wrlte(30,format(lnddl),tc+6o);

wrltetext(3o,1·1);

wrlte(30,format(lndl),(tc/60-tc+6o)x60);

wrltetext(30,1**MINUTESl);

PREND:FAIL:

Magwrlte(100); lnterchange(100);

writetext(O,lEND**OF**STAGE*-*l*---l);

end; close(20); close(30); close(100);

end~ ----
next segment(2);

- 66 -

App. 3.2 Segment 2.

As in the last segment Min g roots is used

to find the roots of all mushrooming r-trees with maximum

height. We then take each root in turn and iterate the fol­

lowing sequence.

Graph label will be the control procedure.

It builds a mushrooming r-tree for a given root and then

orders it by means of the procedures Planarize, Convlu and

Convrd. We have now the rd, lu representation of the r-tree

as described in Chpt. 4.51.1 • We enter the procedure Re­

arrange tree which manipulates the layers of the r-tree

into a sausage formation as described in the latter part

of Chpt. 4.51.1 •

procedure Rearrange tree(rd,lu,gen,nrabove,nrsides,wght,

below,z,root); integer z,root; integer array rd,lu,

gen,nrabove,nrsides,wght,below;

comment After filling in the initial values of all the

relevant arrays, Calc box is entered to compute sumfloat

for the ~-tree. This is followed by Calc float which as­

sociates with each point of the f-tree one of the integers

from -3 to +3 • This will indicate whether a pOint can be

moved down or not and whether it has to be moved down if

some pOint below it moves down. This is followed by Float

- 67 -

search which searches the ~-tree for a suitable point to

move down in order to decrease sumlayer. Having found a

suitable point Readjust is entered in order to alter the

layer values associated with the points that have just

moved down • Procedure backtest is used to find if we

can repeat the above iteration (by testing whether the

movement of any points will decrease ld (0». If not
"Ull

we finish with Readjust tree. ;

begin integer d,j,k,l,pem,qem,rem,sem,tem,av,bv,endpt,gmax;

boolean first; integer array box,gox,float,mark[1:z];

procedure Calcbox;

begin gmax : =0;

!2!:. j: = 1 step 1 un til z s!.Q. box [j] :.0;

!.2.E. j :=1 step 1 until z !!2.
begin box[gen[j]]:=box[gen[j]]+l;

if gen [j])gmax ~ begin gmax:-gen[j];

endpt:=j; ~;

end;

~ Calc box;

procedure Calc float;

begin !2.!: j: = 1 step 1 un til z 2:.2. fl oa t [j] : =0;

for j:=endpt,belnext(pd,d) while j~d do

- 68 -

begin d --j· .- , fl oa t [j] : =3;

.f.2!. j :=1 step 1 until z ~

if float[j]=O then - -

end· -'

begin !2.!:. k:=rowstart[j] step 1 until

rowstart[j]+nrinrow[j]-l ~

1£ gen[branches[k])gen[j] ~ belnext(pd1branches[k])fj

~ noat[j)~1 then noat[j] :=float[j]+2

else 1£ gen[branches[k]](gen[j) ~

belnext(pd1j)lbranches[k] and (float[j]=O or - -
float[j]~2) ~ float[j):=float[j]+1 ;

1£ float[j]=O ~ float[j]:=4;

!2!: j:=1 step 1 tmt1l z ~

!2!: k:=rowstart[j] step 1 until

rowstart[j]+nrinrow[j]-1 do

if belnext(pd1j)lbranches[k] ~ belnext(pd1branches[k])lj

~ j)branches[k] ~ marking(j1branches[k]);

f2!:. j :-1 step 1 until z do

begin 1£ (abs(float[j])=l 2£ abs(float[j])=3)

and jfroot ~

begin first:=true;

~ k:=process(pd1urth1f1rst 1j) while kfO ~

1£ gen[k]~en[belnext(pdlk)] ~

- 69 -

begin d:=nbrnext(pd,k,j);

f2£ l:=process(pd,urth,rirst,j) while lid do ;

II d=U ~ goto Cl; ~

~ II abs(float[k])=4 ~ float[k]:=

sign(float[k]) ~ II abs(fioat[k])=2 ~

float[k] :=slgn(float[k])x3;

Cl: end;

if (abs(float[j])=2 ££ abs(float[j])=3) ~ jlroot ~

~ k:=belnext(pd~j),belnext(pd~k) while float[k]<O

and kiroot do float[k]:= ir fioat[k]=-4 then 2 else - - - ---

end;

float[root] :=3;

~ Calc float;

procedure Float search;

!!. float[k]=-l ~ 3 ~

ir float[k]=-3 then 3 else - --
ir fioat[k]=-2 then 2 else - --

float[k] ;

begin sem:=rem:=tem:=qem:=pem:=O;

!2!: j:=l step 1 until gmax-l do

1£ (box[j]+box[j+l])sem 2£(box[j]+box[j+l]=sem ~

(box[j])tem ~box[j+l])tem») ~ mark[j]=O ~

begin sem:=box[j]+box[j+l];

- 70 -

tem:=l£ box[j]Lbox[j+l] then box[j] else box[j+l];

pem:=l£ box[j]Lbox[j+1] ~ j ~ j+l;

rem:=i!' pem=j ~ j+l ~ j;

qem:=j; ~;

~ Float search;

procedure marking(a,b); value a,b; integer a,b;

begin integer aa,bb,j,k,l,s;

integer array can[l:z+l];

II gen[a]=gen[b] ~ goto M;

aa:=if gen[a]<gen[b] then a else b; - --
bb:=i!' aa=a then b else a; - --
!.2!: j:=l step 1 until z+1 2£ can[j]:=O;

1:=0;

do - begin 1:=1+1; can[l]:=j; k:=j; end" ~

5:=0;

!.2!: j:=bb,belnext(pd,j) while 5=0 ~ J1root 22

ill k:=l step 1 until 1 do g can[k]=j ~ s:=k;

II 5=0 ~ 5:=1+1; k:=gen[aa];

1£ 5)2 ~ !.2!:. j :=2 step 1 until s-1 do

II gen[can[j]]~k ~ goto M

else -
M: ~ marking;

bestn tloat[can[j]]:=-abs(tloat[can[j]]);

k:=gen[can[j]]; end;

- 71 -

boolean procedure backtest;

begin £irst:=false;

for j:=l,j+l while not first and j(gmax do - - - -
1£ mark[j]=O ~ first:=true;

backtest:=first;

~ backtest;

procedure Readjust;

begin integer a~b~c~d~e;

integer array maj~min[l:z];

a:=b:=O; c:=d.:=-l;

f.2!: j :=1 step 1 until z do

if gen[j]=pem ~ float[j]f3 ~

begin a:=a+l; maj[a]:=j; ~

~ 1£ gen[j]=rem ~ float[j]f3

begin b:=b+l; min[b] :=j; ~;

!!. a=O ~ b=O ~ goto R3;

~ j:=O,j+1 while c#a-l ~

!2!:. k:=l step 1 until a ~

then -

1£ nrabove[maj[k]]+nrinrow[maj[k]]=j

(float[maj[k]]=l ~ float[maj[k]]=4)

and -

begin c:=k; goto R1; ~

else 1£ nrabove[maj[k]]+nrinrow[maj[k]]=j

~ c:=c+l;

- 72 -

for j:=O,j+l while d~b-l do - -
f.2.E. k:=1 step 1 until b ~

if nrabove[min[k]]+nrinrow[min[k]]=j ~

(float[m1n[k]]=1 ~ float[min[k]]=4)

~ begin d: =k; goto R 1; end

else if nrabove[m1n[k]]+nrinrow[min[k]]=j --
then d:=d+1; -

R3: rnark[qem] :=1; goto BT;

R1: first:=.E::~~';

£Q!: j :=1 step 1 until gmax do mark [j] :=();

e:= if d=-l then maj[c] else m1n[d]; - - -
~ j:=process(pd,urth,first,e) while j10 do

R4: 1£ gen[j]~en[belnext(pd,j)]+l ~ jle ~

begin d:=nbrnext(pd,j,e); j:=d;

~ c:aprocess(pd,urth,first,e) while cld £2 ;
II d=() ~ goto R5 ~ goto R4;

begin gen[j]:=gen[j]-l; gox [j] ::11 1 ; end" -'
R5: Calcbox; Float search;

II tem~av and sern~bv ~ goto R2;

~ j:=l step 1 until z do gen[j]:=gen[j]+gox[j];

goto RTF;

R2: !2!: j: = 1 s te,P 1 un til z S!Q.

1£ wght[j]=O ~ nrabove[j]:=gox[j]:=O ~

- 73 -

begin nrabve[j]:=gox[j]:=O;

!££ k:=urth[j]#pd[k] while k)O do

if gen[k])gen[j] then nrabove[j]:=nrabove[j]+l; - -

av:=tem; bv:=semj

~ Readjust;

!.2!: j :=1 step 1 until z 22.
begin wght[j]:=nrabove[j]:=brcount(j#pd#urth)-l;

float[j]:-box[j]:=nrsides[j]:=gox[j]:=mark[j]:=Oj

end­
~

first:=true; gen[root]:=o; av:-bv:=»10j -
!2£ j:=process(pd,urth,first,root) while jlO do

gen[j]:=gen[belnext(pd,j)]+lj

f2!: j:=l step 1 until z do

nrsides[j]:=nrinrow[j]-wght[j]-l;

nrsides[root]:-o;

CB: Calcboxj

CF: Calcfloa t;

FS: F.loatsearchj !!. pem=1 ~ goto RTF;

R: Readjust; goto CBj

BT: !! backtest ~ goto FSj

RTF:~ Rearrange treej

- 74 -

Having manipulated the spanning -tree into

a suitable configuration procedure Label tree is called.

This again consits of smaller procedures. As explained in

Chpt. 4.51.2, each succeding layer is tackled in turn and

all the points within it are labelled. Procedure Label

abas, when given a point labelled list[j], will label all

the points adjacent to it and the layer below it • It will

also label all points within the layer above which are

two lines away from itself. Continuity then labels all

points adjacent to list[j] and not included by Label abase

These points will be those formed by considering the lines

of the cotree. Finally any subtree of which list[j] is the

root, is investigated to see if any of its points lie in

the layer below. This is done by the procedure Up n down.

Now all the remainder of the points in the layer above not

already labelled will be labelled by means of Proc •

procedure Label tree(pd,urth,gen,wght,nr above,nr sides,label,

below,list,z,root,ld,hm); integer z,root,ld,hm; integer

array pd,urth,gen,wght,nr above,nr sides,label,below,list;

begin integer g,a,s,old s,u,j,c,l,b;

procedure Label abas(r); integer r;

begin integer array la,ma[1:z];

integer j,k,l,b,c,d,e,f;

- 75 -

procedure Label asides;

begin !££. j:=l step 1 until b-l do

if wght[ma[j]])O then

f2£ k:=urth[ma[J]],pd[k] while k)O do

if gen[k]=g ~ label [k]=O ~

begin a:=a+l; list[a]:=k;

label[k]:=a; btest(k);

end;

~ Label asides;

b:=l;

for j:=l step 1 until z do la[j]:=ma[J]:=O;

for j:=belnext(pd1r),if wght[r])O ~ urth[r] ~

r,pd[j] while j)O do ifgen[j]=g ~

~ k:=l,k+l while k~b ££

II b=l

II nrinrow[j]~la[k] .2!: k=b ~

begin L: b:=b+l;

f:=j; d:=nrlnrow[j];

for l:=k step 1 until b do

begin M: c:=la[l]; la[l]:=d; d:=c;

e:=ma[l]; ma[l]:=f; f:=e;

end;

k:=b;

end;

then soto LA-,

- 76 -

f.2E. j:=l step 1 until b-l do

lllabel[ma[j]]=O ~

begin a:=a+l;

label[ma[j]]:=a;

Label asides;

LA: end Label abas;

list[a]:=-ma.[j];

btest (rna [j]) ; end" ~

procedure btest(a); value a; integer a;

for u:=rowstart[al step 1 until rowstart[a]+.nrinrow[a]-l do

if label[branches[u]]=O then - -
~ II abs(label [branches[u]]-label [a])ld then

begin ld:-abs(label[branches[u]]-label[a]);

end -
else - if abs(label[branches[u]]-label[a])-ld

then hm:=hm+l; -
procedure Continuity(r); integer r;

begin integer k,l,p,b,c,d,e,f; integer array la,ma[l:z];

.!2!:. k:-l step 1 until z ~ la [k]:=ma [k] :-0;

b:=l; label[O]:-w4;

~ k:=rowstart[r] step 1 until

rows tart [r]+nrinrow[r]-l do

if label[branches[k]]=O and gen[branches[k]]-g then - - -
!.2!. 1 :=1 step 1 until b do

- 77 -

if label[below[branches[k]]]<la[l] or l=b then

begin N: b:=b+l; f:=branches[k];

d:=label[below[branches[k]]];

for p:=l step 1 until b do

begin P: c:=la[p]; la[p]:=d;

e:=ma[p]; ma[p]:=f; f:=e;

d:=c;

end·
~

l:=b;

if b)l ~ for k:=l step 1 until b-l ~

begin a:=a+l; list[a]:=ma[k];

end" ~

label[ma[k]]:=a; btest(ma[k]); end;

end Continuity;

procedure Up n down(r); value r; integer r;

begin integer elf;

for e:=rowstart[r] step 1 until

rowstart[r]+nrinrow[r]-l do

for f:=rowstart[branches[e]] step 1 until

rowstart[branches[e]]+nrinrow[branches[e]]-l do

1£ gen[branches[f]]=g ~ label[branches[f]]=O ~

begin a:=a+l; list[a]:=branches[f];

end" ~

label[branches[f]]:=a; btest(branches[f]);

~ Up n down;

- 78 -

procedure Proc(r); value r; integer r;

begin integer j; boolean second;

second:=~;

f2£ j:=process(pd,urth,second,r) while jfO do

!f label[j]=O and gen(j]=g ~

begin a:=a+l; list[a]:=j;

label[j]:=a; btest(j);

end;

end Proc;

for j:=l step 1 until z ~ label[j]:=list[j]:=U;

g:=a:=l; old s:=ld:=hrn:=O; list[l]:=root;

label[root]:=l; Proc(root); g:=2;

A: for j:=olds+l,j+l while j(s do

begin e:=a; Label abas(list[j]);

Continuity(list[j]);

b:=a;

if C1b then - -
begin !2!. 1 :=c+1 step 1 until b do

!2!: 1 :=0+1 step 1 until b do

end" ~

end" ~

olds:=s; s:=a;

~ Label tree;

g:=g+l ;

s:=a;

Up n down(list[l]);

Proe (list [1]) ;

- 79 -

procedure Graph Label(branches,rowstart,nr in row,z,br,

endpt,ld,hm,S) ; integer z,br,endpt,ld,hm; integer

array branches,rowstart,nr in row,S;

begin integer j,old s,s,a,root,k; integer array rd,

lu,gen,nrabove,nr sides,below,nbr,label,list,wght[o:z];

root:=endpt;

for j:=l step 1 until z 22 gen[j]:=below[j]:=

nrabove[j]:=nrsides[j]:=O;

list[l]:=root; a:=s:=l; old s:=O;

TL: ~ J:=olds+l,j+l while J~s 22

~ k:=rowstart[list[j]] step 1 until

rowstart[list[j]]+nrinrow[list[j]]-l do

if below[branches[k]]=O and branches(k]1root then - - -
begin a:=a+l; list[a]:-branches[k];

below[branches[k]):-list[j]; end;

olds:=Sj s:=aj if s1z then goto TL;

Planarize(below,nbr,z);

Convlu(below,nbr,z,lu) j

Convrd(below,nbr,z,rd);

Rearrange tree(rd,lu,gen,nrabove,nrsides,wght,below,

z,root) ; Label tree(rd,lu,gen,wght,nrabove,nrsides,

label,below,S,z,root,ld,hm);

~ Graph label;

- 80 -

procedure S Output(S,z); integer z; integer array S;

begin integer j;

f2£ j:=l step 1 until z do

begin write(30,format(lndddddl),S[j]);

if j=10x(j+l0) ~ newline(30,l);

end· ~

~ S Output;

The complete program 1s as follows.

begin integer datanr,z,br,ld,endpt,rID,em1t,b,bstop,bd,tt,

f,tc,ec,bsmal,hm,h,ma,mb,mc,bounds;

array mag[1:50];

(The procedures Mag readl and next segment

are declared now.)

find(100,lAKPOXMBMj);

open(30);

Magreadl(100);

begin integer array branahes[l:br],rowstart,nrinrow,

S,Seq,ends[l:z];

(All the rest of the procedures declared in

this sub-Appendix are now declared with

those of App. 3.0.)

- 81 -

Mag read2 (1 OU) ;

rewind (100) ;

if rm=2 or rm=3 or rm=6 or rm=7 then --- - - - -
begin Tlme(emit,FAIL,FAIL);

£2.!:. 1':=1 step 1 until z do Seq[r] :=1';

bsmal :=z-3; writetext(3o,l1PlSTAGE**2***--------***

APPRoxlMATE**LABELLING**OF**GRAPHlcl--------l);

Min g roots(branches,rowstart,nrinrow,z,br,ends,ec,f);

P: endpt:=ends[ec];

Graph Label(branches,rowstart,nrinrow,z,br,endpt,b,hm,S);

if bsmal)b or bsmal-b and hm<h then - - - ~

begin writetext(30,1l8clA**PERMUTATION**WHICH**YIELDS

**B*=*l); wrlte(30,format(lPdccl),b);

S Output(S, z);

~ 1':=1 step 1 until z do Seq[f]:=S[f];

bsmal:=b; h:-hm;

end" ~

Time(O,R,Q);

R: ec:=ec-1; !!. ec)O ~ gata P;

Q: Perm branches(branches,rowstart,nrlnrow,Seq,br,z);

writetext(30,1l4cl******REARRANGED**MATRIXlcl

******------------------lccll);
b:- II rm=2 2!:. rm-6 ~ bsmal ~ ld+(bsmal-ld)x3/4;

- 82 -

Matrix Output 1 (brancheslrowstartlnrinrowlzlbrl

b,bstoP I 30); tc:=t1me; tt:=tt+tc;

writetext(30,1l4clTIME**TAKEN**=*1);

write(30I format(lnddl)ltc+60);

writetext(301[.]);

write (301 format (lndl)I (tc/60-tc+60)x60);

writetext(3oI1**MINUTESj);

end ~ b:=!!. bd;tO !lli!. bdLld ~ bd

else if ld10 and ld)bd then ld+l else z-3; --- - - -.-

interchange(100);

Magwri te (1 00) ;

1nterchange(100);

writetext(O,lEND**oF**STAGE*-*2*------1);

FAIL:

end" -'
end
-+

close(30); close(100); next segment(3);

- 83 -

App. 3.3 Segment 3.

There is one main procedure only called Min

Band Width. Within it there are three small procedures cal­

led test~ next unused and next nun (standing ror next neces-

sary and unused).

integer procedure test;

comment; At any moment during the program the integer

array Sri] will be partially or totally rilled. When this

procedure is applied~ it takes on the value or the ld or

the partial permutation as described in Sri] •

begin t:=o; lim:= if r+b)z then z else r+b; - --
!Q£ J:=r+l~J+l while J~lim and teO do

ir J-b)l then - -
f2!: k:= ir r~b ~ 1 ~ r-b step 1 until J-b-l do

!.2.!:. l: =0 step 1 un til nr in row [S [k]] -1 2.2.

it branches[rowstart[S[k]]+l]=S[J] ~ t:=k;

test :=t;

~ test;

- 84 -

integer procedure next unused(a); value a; integer a;

comment this will give the lowest valued unlabelled point

The unlabelled points are kept in the array unused nr[j).

unusednr[k] = 0 if it has been labelled already and = k

otherwise;

begin t:=O;

if a)O and a(z then - ---
~ a:=a,a+1 while t=O ~ a~z

if unused nr[a]#O ~ t:=a;

next unused:=t;

~ nextunused;

do -

integer procedure next nun(a); value a; integer a;

comment Within the integer array needed nr[j,k] is kept

the set N(j) of Chpt. 4.63. Thus if a point v K lies

in N(j) then needed nr[j,k] = k else it = 0 • This

procedure at step j will give the lowest unlabelled point

Which lies in N(j). ;

begin t:=O;

II a)O ~ a~z ~

~ a:=a,a+1 while t=O ~ a~z do

if unused nr[a]#O and needed nr[r,a]#O then - -
next nun:=t;

end nextnun;

t:=a;

- 85 -

The program has two main entries ENl and

EN2 • ENl corresponds to Rule of Choice 1 and in particular

that section of program after label T. EN2 corresponds to

Rule of Choice 2. Label M corresponds to Test for Rejection 2.

Test for Rejection 1 occurs in the two lines just before label

T. When a complete permutation is reached a jump is made to

label L. Here the true value of b (or ld) of the permu­

tation S[i] is made and outputed with the array S[i].

procedure Min Band Width(branches,rowstart,nrinrow,

Seq,z,b,bstop,tc); integer z,b,bstop,tc;

integer array branches~nrinrow~rowstart~Seq;

begin inteser a,r,n,J,k,l,s,t,tl,lax,cut,lim,f count,

e count,e sum; inteser array needednr[l:z,l:z],

unusednr,tcont,S[l:z]; boolean up,down;

(The procedures next unused~ next nun and ,

test are declared here •)

!! bstop<l .2!. bstop~z-l ~

begin writetex (3o,llcclB*STOP**OUT**OF**BOUNDS

end­
~

* **NEW**VALUE**SET**EQUAL**TO*0lccJj)

bstop :=1;

- 86 -

fl :=forrnat(lnddddl);

Up:=down:=false; esum:=tc:=O;

II b(b stop ~ b:=b stop ~ II bLz ~ b:=z-1;

START: .f2!:. j :=1 step 1 until z do

S[j]:-unused nr[j]:=t count[j):-O;

!.2.!: J: =1 step 1 un til z 22.

!2!:. k:-l step 1 until b 22. needed nr[j,k] :=0;

r --l· .- , cut:= f count:- e count:=O;

f2.£. J:=l step 1 until z ~ Seq[j]:-J;

EN 1: r:=r-1; e count:=e count+1;

for j:=l step 1 until z ~ unused nr[j] :-j;

if r)O then - -
£21: j:=l step 1 until r do unused nr[S[j]] :-0;

if r=cut then -
begin r:=r+2; S[r] :-0;

S[r-l]:- next unused(S[r-l)+l);

!!. S[r-1]-O ~ goto FAIL;

goto EN 1; end;

lax:=b-tcount[r];

II S[r+1];io ~ goto T;

!2.!:. j:=l step 1 unt1l z 22. needed nr[r,j] :=0;

if r)cut+l then - -
!2!:. j: = 1 step 1 un til z !!2.

- 87 -

needed nr[r,j]:= 1£ needed nr[r-l,j]lo then -
!.2!:. j:=rowstart[S[r]] step 1 until

rowstart[S[r])+nr in row[S[r)]-l do

needed nr[r,branches[j)):-branches[J);

J ~ 0;

fE£. J:= II r-b~cut then cut+l ~ r-b step 1 until r do

needed nr[r,S[J]]:=O;

t:=O;

fE£. j:=l step 1 until z s!2.
II needed nr[r,j]lo ~

t count[r] :=t;

if t=O then - - begin cut:=r;

S[r] :-0;

end;

t:-t+l;

r:-r+1 ;

gata EN 1;

lax:=b-t; !£. lax<O ~ gato EN 1;

T: a: =S [r+ 1] + 1 ;

lim:- !£. z-rLb ~ b ~ z-r;

if lax)O ~ nextunused(a) ==0 .2!: lax~O ~

nextnun(a)=O ~ goto EN 1;

!2£ k:=l,k+l while k~lim ~

begin t:= !! k=2 ~ 1 ~ a;

if lax)O then - -
begin a:-S[r+k]:=next unused(t);

if needed nr[r,a]-O then lax:=lax-l; - -
unused nr[a] :-0; ~

- 88 -

~ begin a:=S[r+k] : =next nun { t);

end" ~

unused nr[a]:=O;

EN 2: e count:=e count+l;

k:=n:=if r+b)z then z else r+b; - --

end" ~

for J:=l step 1 until z do unused nr[j] :=j;

!.2!: j:-l step 1 until n £2. unused nr[S[j]] :=0;

la.x:=O;

!! needed nr[r,S[k]]-O ~

begin !! nextunused(S[k])pO ~

begin S[n]:=next unused(S[k]);

goto F; end

end" ~

~ lax:=lax+1 ;

M: unused nr[S[k]]:=S[k];

k:=k-l; g k=r ~ goto EN 1;

if needed nr[r,S[k]]=O then lax:=1a.x+1; - -
II S[k])S[k+ll~ goto M;

a:=g lax)O ~ next unused(S[kl) ~ next nun(S[kl);

unused nr[a] :=0; unused nr[S[k]]:=S[k];

S[k] :=a; lax:=lax-l;

if needed nr[r,S[k]]io then lax:=la.x+l; - -
a:=l ;

- 89 -

for k:=k+l while k~ £2.
begin lax:-lax-l; a:=S[k]:=

if laxLO then next unused (a) ~ nextnun (a);

unused nr[S[k]]:=O;

if needed nr[r I S[k]]10 ~ lax:=lax+l;

end­
~

F: f ceunt:-f ceunt+l;

if tc(100 then tc:=tc+l - -
~ begin tc:-O;

if test10 ~ gete EN 2;

if r(z-b then begin r:=r+2; S[r] :-0;

gete EN 1; end;

L: b:=b-l; s :=0;

end­
~

!2£ r:=b , r+1 while r~z-b ~ a=O £2. s:=test;

g saO ~ geto L;

writetext(301118clA**PERMUTATION**WHICH**YIELDS**B*=1);

write(30I f ormat(lndccl),b+1);

for j:=l step 1 until z ~ begin Seq[j]:-S[j];

write(30Iformat(lnddddl),S[j]);

if j=10X(j+l0) ~ newline(30, 1);

end-~

writetext(3o,113clF*COUNT**WAS*1);

write(30I fl , fcount);

writetext(30,113s1-------***E*COUNT**wAS*1);

- 90 -

write(30,fl+1,ecount);

down:=true; e sum:=e sum+e count;

!! up 2!: b<bstop ~ goto FINISH ~

begin r:=s; cut:=o;

ecount:=fcount:=O;

it tcount[r]~b then goto EN2;

goto EN 1; end;

FAIL: wrltetext(30,1l7clUNABLE**TO**FIND**PERM**FOR**B*=1);

write(30,format(lPdccl),b);

writetext(30,[[c]F*COUNT**WAS*]); -- -
write(30,fl,fcount);

writetext(30,[[3s]-------***E*COUNT**WAS*])" - - -'
write(30,fl+l,ecount);

up:=true;

esum:=esum+ecount;

if down ~ goto FINISH;

b:=b+l;

goto START;

TFAIL: esum:=esum+ecount;

FINISH: b:=b+l;

writetext(3o,1l5clEND**OF**MIN**BAND**WIDTH**---­

TOTALE*COUNT**WASj);

wrlte(30,fl+2,e sum);

e~ Min Band Width;

- 91 -

procedure Dot Output(branches,rowstart,nrinrow,z,br);

integer z,br; integer array branches,rowstart,nrinrow;

comment This procedure is given the matrix in the bran-

ches list notation and outputs the corresponding adJacen­

cy matrix in terms o~ dots and crosses. The dots stand

for zeroes and the crosses for ones. This enables one to

visualise the bandwidth of the matrix. ;

begin integer j,k,l,s;

writetext(30,1l6c]pOT/CROSS***REPRESENTATION**OF**

THE**FINAL**MATRIXlcccll);

if z)60 then - -
for j :=1 step 1 until z do

begin wrltetext(3o,l1cll);

for k:=l step 1 until z £2.

begin 8 :=0;

!2!:. 1: = 1 step 1 un til nrinrow [J] !!2.

!! branches[rowstart[j]-l+l]=k ~ 8:=1;

!! s=1 ~ wrltetext(3o,lXl) ~ wrltetext(3o,1.1);
end­~

end;

if z~60 ~

f.2!. j:=l step 1 until z do

begin writetext(3o,llcll);

- 92 -

for k:=l step 1 until z do

begin s:=O;

!2.!: 1 :=1 step 1 until nrinrow[j] £2.
if branches[rowstart[j]-1+1]=k then s:=l; - -

!! s=l ~ wr1tetext(3o,lX*1) ~ wr1tetext(30,l.*1);
end" ~

end" ~

writetext(3o,llccccll);

end" -'

The complete program is as follows.

begin

bounds,rm,ma,mb,mc; array mag[l:50];

(The procedures Mag read1, next segment and

relabel are now declared.)

open(30) ; find{100,[AKPOXMBM]); Magread1(100); - -
begin integer array branches[l:br],rowstart,nr in row,S[l:z];

(All the procedures of this sub-appendix and

those in App. 3.0 are now declared.)

- 93 -

Mag read2 (1 00) ;

rewind (100);

1£ rm)3 ~ b)bstop ~ b)ld ~

begin Time(emitIPREND,PREND);

end" ~

tc:=time;

writetext(30,l1PlSTAGE**3**--------***MIN**BAND**

WIDTHlcl--------l};

if bstop=O or bstop(ld then bstop:=ld; - - -
b:=b-l;

1f bd(b and bdio then b:=bd; - - -
Min Band W1dth(brancheslrowstartlnrinrowISlz,b,

bstop,tc);

Perm branches(branches,rowstart,nrinrow,S,br,z);

writetext(3o,1l8cl********FINAL***MATRIXlcl*****

***--------------[cc]]); - -
Matrix Output 1 (branches,rowstart,nrinrow,z,br,b,

bstoPI30);

tc:=time; tt:=tt+tc;

writetext(30,114clTIME**TAKEN**=*1);

write(30, format(lnddl),tc+60);

writetext(3o,l·1);

write (30, format (lndl) I (tc/60-tc+6o)x6o);

wr1tetext(3o,1**MINUTESl);

- 94 -

Dot Output(branches,rowstart,nrinrow,z,br);

writetext (3011i1 OClEND**OF**ANALYSIS**BY**MATRIX**BANDWIDTH

MINIMISATIONlcCCClTOTALTIME**TAKEN**=*l);

write(30,rormat(lnddl),tt+60);

writetext(3o,l·1);

write(30,forrnat(lndl),(tt/60-tt+60)x60);

writetext(3o,l**MINUTES.SEcoNDS1);

PREND:

if datanr<O then relabel (1001 [********]); - - --
writetext(0,[END**OF**STAGE*-*3*------------[cc]]); - - -
end­
~

end --+

c10se(30); c10se(100);

!.! datanrLO ~ nextsegment(1);

- 95 -

App. 3.4 Input Specification.

The input layout is as follows :-

: < TITLE > ;
data nr ;

z · ,
rrn • ,

br ;

densi ty; 1
con ;

rand nr ;

ld ;

bd; 1
b stop ;J ---------

emit;

bounds; -----------
< Branches list >

if rrn > 8 •

if rm < 8 •

if rm ~ 2 or 6 •

if rm > 3 •

if rm = 1, 3, 5 or 7 •

If this is the first set of data (or using

previous terminology, it is the first block of data), then

data nr is set equal to 1 • If it is the last, it is set

to -1 , otherwise it is put equal to 0 •

Z is the number of points in the graph.

- 96 -

rm is a aontrol variable on the three segments. Depen­

ding upon its value the program will aampl ete the corres­

ponding segments or stages • It' rm > 8 then the matrix

will be randomly produaed wi thin the first se~ent by Mat

Rand • If it is less than 8 ~ the matrix is being input in

the branahes list representation. The table for rm is :

------ ---------------------------.-.--.-
rm 1 2 3 4 5 6 7

9 10 11 12 13 14 15 --._-- ---------.. -----------------------
Stages 1 2 1~2 3 1~3 2~3 all

The density is a number between 0 and 100.

con is usually between 0 and 5.

rand nr is an eleven dig! t random number.

br is the number ot lines in the graph.

Id is the approximate ldm for the graph# it it is

unknown insert o.

bd is an upper bound on the ld m 6 again if this is

unknown insert the maximum possible number~ z •

b stop is the value of ld at which Stage 3 is to stop.

I1' this is unknown or immaterial insert o.

em1t 1s the time interuption frequenay in seaonds.

bounds is an upper bound for the arrays end 1 and end2.

It is convenient to set it a bit high at 2000.

- 97 -

A12E • ~·2 SEecimen OutEut.

MATRIX BANDWIDTH MINIMISATION DATA TITLE FLANGED/2

INPUT MATRIX

Z BR DENSITY B BSTOP

27; 30; 9; 0; 0-,

ROW NR IN ROW MATRIX

1 ; 2" 2" 3" , ,
4~ 2· 3; 1 ; 5; ,
6~ 3· 2· 1 ;

4!
, ,

2· 2- 7" , , ,
8! 5- 2- 2-

6!
, , ,

2- 3- 9; , ,
4~

~~ 2· 10; , ,
2- 5- 11 ; , 6; 9; 2· 12; ,

14; 10; 3; 7; 13;

11 ; 5; 8; 12; 15; 16; 17;
12; 2- 9; 11 ; ,
13; 2- 10; 18; ,
14; 2- 10; 15; ,
15; 2- 14; 11 ; ,
16- 2- 11 ; 19; , ,
1~; 2· 11 ; 20; ,
1 " 2- 13; 21 ; , ,
19; 2- 16; 21 ; ,
20· 2· 17; 22; , ,
21; 5; 18; 19; 23; 24" 25; ,
22- 3; 20; 26· 27; , ,
23; 1 ; 21;
24" 1 • 21 ; , ,

26" 25; 2" 21; , ,
26" 2" 22" 25; , , ,
27; 1 " 22· , ,

STAGE 1 -------- LD COMPUTATION LD = 4

TIME TAKEN = 1.22 MINUTES

- 98 -

STAGE 2 -------- APPROXIMATE LABELLING OF GRAPH

A PERMUTATION WHICH YIELDS B = 6

27 22 20 26 17 25 23 24 11 16
19 21 8 12 15 18 5 9 14 13
2 6 10 1 4 3 7

A PERMUTATION WHICH YIELDS B = 5

26 25 23 22 27 21 24 20 18 19
17 15 16 13 11 12 14 10 8 9
7 5 4 6 2 3 1

A PERMUTATION WHICH YIELDS B = 5

3 1 6 2 9 4 5 12 7 8
1 1 10 15 16 17 13 14 19 20 18
24 21 22 23 25 27 26

REARRANGED MATRIX

Z BR B B STOP

27; 30; 5; 0-,
ROW NR IN ROW MATRIX

1 ; 2- 2- 3; ,
4~ 2- 2- 1 ; , , ,

3" 2- 1 ; 5" 4~
,

6~ 3; 2" 7; , ,
8; 5- 2- 3"

6!
,

4! 2" 9; , ,
4! 7- 2- 10;

8~
, ,

2- 5" 11 ; , ,
6! 9; 2- 12; , ,

10; 2-, 7; 11 ;

- 99 -

11 ; 5; 1 u; 8" 13; 14; 15; ,
12; 3; 9; 16; 11;
13; 2" 17; 11 ; ,
14; 2" 11 ; 18; ,
15 ; 2" 1 " 19; , ,
16; 2" 12; 2v; ,
17; 2" 12; 13; ,
18; 2" 14" 22; , ,
19; 2" 15; 23; ,
20; 2· 16; 22; ,
21 ; 1 ; 22" ,

18; 24" 22" 5; 20" 21 ; 25; , , ,
23; 3; 19; 27; 26" ,
24; 1 ; 22· ,
25; 2" 22; 27; ,
26" 1 ; 23; ,
27; 2" , 23; 25;

TIME TAKEN = 1.46 MINUTES

STAGE 3 --------- MIN BAND WIDTH

A PERMUTATION WHICH YIELDS B = 5

1 2 3 4 5 6 7 8 9 10
1 1 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27

F COUNT WAS 19 -------- E COUNT WAS 20

A PERMUTATION WHICH YIELDS B = 4

1 2 3 4 5 6 7 8 9 10
11 13 12 14 1 5 17 16 18 19 20
21 22 23 24 25 26 27

F COUNT WAS 22 -------- E COUNT WAS 22

END OF MIN BAND WIDTH ---- TOTAL E COUNT WAS 42

- 100 -

FINAL MATRIX

Z BR B B STOP

27; 30; 4-, 4" ,

ROW NR IN ROW MATRIX

1 - 2- 2- 3; , ,
4; 2- 2- 1 ; , ,

3- 2- 1; 5-
4!

,
6! 3; 2; 7; ,
8! 5- 2- 3-

6!
,

4!
,

2- 9; , ,
4; 7" 2; 10; 8; 2; 5- 11 ;

9; 2- 6; 13; ,
10; 2" , 7; 1 ;

11 ; 5; 10; 8- 12; 14; 15; ,
12; 2" 16; 11 ; ,

16; 13; 3; 9; 17;
14; 2" 11 ; 18; ,
15; 2; 11 ; 19;
16- 2- 13; 12; , ,
1~; 2- 13; 20; ,
1 - 2" 14; 22; , ,
19; 2" 15; 23; ,
20; 2" 17; 22; ,
21- 1 ; 22; ,

18; 24; 22- 5; 20; 21; 25; ,
23; 3; 19; 27; 26-,
24- 1; 22; ,
25; 2- 22; 27; ,
26- 1; 23; ,
27; 2- 23; 25; ,

TIME TAKEN = 0.14 MINUTES

101

DOT/CROSS REPRESENTATION OF THE FINAL t-lATRIX

• x
X
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

X X
•

• •
x •
• X
• •
• •
• •
• •

•
• •
•
• •

•
•
• •
• •
• •
• •
• •
• •
• •
•
• •
•
• •

•

•
X
•
•
• x
X
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•

•

•

x
•
•
•
•
x

•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•

• • • •
• •

• •
X X • •
• • x •
• • • x
• • • •
• • • •
X • • •
• X •
• • X •
• • • •
• • • x
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •

• •
• • •
• • • •

END OF ANALYSIS BY

TOTAL TIME TAKEN

•
•

•
•
•
x
•
•
•
x
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

=

•
•
•
•
•
•

X
•
X
•
X
•
x
X
•
•
•
•
•
•
•
•
•
•
•
•

• •
•
• •
• •
• •
• •
• •
• •
• x
• •
X •
• •
• •
• •
• • x X
• X
• •
• •
• •
• •
• •
• •
•
• •
• •
• •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
X X
• •
• •
• •
• •
• •
• •
X •
• X
• •
• •
• •
• •
• •
• •
• •
• •

• •
•
• •

•
• •

•
•
• •
• •
• •
• •
X •
XX
• •
• •
• •
• •
•
• •
• X
• •
• •
• •
• •
• •

•
• •

•
•

•
• •
• •
• •
•

•
•

•
• •
• •
• •
x •
• x
• •
• •
•
• •
• •
• •
x •
• x
• •
• •
• •
• •

MATRIX BANDWIDTH

•
•
• •
• •
• •
• •
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
x •
• •
• •
• •
•
X X

•
• •
• •

•
• •

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
• x
•
X
X
•

X
X
•
•

•

•
•

•

•

•
•
•
•
•
•
•
•
•
X
•
•
•
•
•
•
X
X

• • • •
• •
• • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •
• • • •
• • • •
• • •
• • •

• • •
• • • •

• • •
• • •

• •
• • • •
• • •
• • • •
x X •
• • X X

• • •
• • x
• • •
• X • o

MINIMISATION

3.22 MINUTES. SECONDS

- 102 -

APPENDIX 4.

~p. 4.1 Cascade.

The main procedure was called~ appropriate­

ly Cascade. It is as follows :

procedure Cascade(mat~z);

integer z; integer array mat;

conunent mat[i~j] contains the cost associated matrix

and mat[i~i]

mat[i~j] -

- o. If v~ is not adjacent to va ~ then

10. At the end of the second pass mat[i~j]

will contain the length of the shortest path from v~ to v
J

;

begin integer j~k~l~m1n;

!2!:. j:-l step 1 until z do

!2!: k:=l step 1 until z do

!!. jfk ~

begin m1n:=mat[j~k];

end·
~

!2!: 1 :=1 step 1 until z do

II min)mat[j,l]+mat[l,k] ~

min:=mat[j~k]:=mat[j,l]+mat[l~k];

for j :-=z step -1 until 1 ~

!2.!:. k:=z step -1 until 1 do

- 103 -

II j~k ~
begin min:=mat[j,k];

!2.!: 1: =Z step - 1 un til 1 E!2.
!f. min)mat[j,l]+mat[l,k] ~

min:-mat[j,k]:=mat[j,l]+mat[l,k];

~ Cascade;

The data for this and the other two pro-

grams was in the branches list representation. Thus another

procedure Transform was written in order to transform the

data back into the adjacency type form.

procedure Transform(branches,rowstart,nrinrow,z,br,mat,di,dist);

integer z,br,di; integer array branches,rowstart,nrinrow,mat,dist

begin integer j,k,l;

!2!:. j: == 1 step 1 un til z .9E.

£2.!: k:=l step 1 until z do

mat[j,k] :=9103;

!2!:. j: == 1 step 1 un til z S2. ma t [j , j] : =0 ;

!2!:. j :=1 step 1 until z 5!2.
!2!: k:-rowstart[j] step 1 until

rowstart[j]+nrinrow[j]-l do

mat[J,branches[k]]:= if di)O then dist[k] else 1; - - -
end Transform;

- 104 -

The resultant shortest path distance matrix

was output by means of the procedure Mat out :-

procedure Mat out(mat,z); integer z; integer array mat;

begin integer j,k;

writetext(30,11PICL21 *****SHORTEST**DISTANCE**MATRIX

---CASCADE**METHOD18cll);

f2E. j ;=1 step 1 until z .9.2.

begin !£ j~(j+l1)xl1 then newline(30,1)

~ newline(30,2);

!2!: k:=1 step 1 until z do

begin !£ k=(k+l1)xl1 ~ space(30,2);

if mat[j,k]<w3 then write(30,format([nddd]), - - - -
mat[j,k]) ~ writetext(3o,l***Xl);

end;

~ Mat out;

procedure Distance input(br,dist); integer br;

integer array dist;

comment The costs to be associated with each line was

read in by means of this procedure, the ordering being the

same as the lines concerned. ;

begin integer j;

!2!: j:=l step 1 until br.9.2. dist[j]:=read(20);

~ Distance input;

- 105 -

ApR. 4.2 Shortest Route 1 •

The control procedure was titled Shor­

test Route. It assigned the root to each point in turn and

built a mushrooming r-tree. As soon as the r-tree had been

built, it was output. This was accomplished by running down

the r-tree from each point of the digraph in turn and out­

putting the successive belows. If a pOint does not belong

to the mushrooming r-tree (i.e. there is no path from the

root to that point, this is indicated by its distance vec­

tor, gen , being still equal to ~4.

procedure Tree span(branches,rowstart,nrinrow,z,br,gen,

below,root); integer root,z,br; integer array

branches,rowstart,nrinrow,below,gen;

comment This is the procedure which builds a mushrooming

r-tree in the array below for the root point root. ;

begin integer j,a,b,c,k,old a;

integer array list[l:z];

f2!: j:=l step 1 until z do

begin below[j):=-l;

gen[j]:= ~6; end;

below[root]:=old a:=gen[root]:=v;

list[1] :=root; a:ab:=l;

- 106 -

TS: for j:=olda+l,j+1 while j(a ~

f2£ k:=rowstart[list[j]] step 1 until

rowstart[list[j]]+nrinrow[list[j]]-l do

if below[branches[k]]=-l then

begin c:=branches[k];

below[c]:alist[j];

gen[c]:=gen[list[j]]+l;

b:=b+l; list[b]:=c;

end" ~

olda:=a; a:=b;

II b;tz and olda1a ~ goto TS;

~ Tree span;

procedure Shortest routes(branches,rowstart,nr1nrow,z,br);

integer z,br; integer array branches,rowstart,nrlnrow;

begin integer j,k,rootJl; integer array below,gen[l:z];

writetext (3UIl1PICL21 ******SHORTEST***PATHS***THROUGH*

A*GRAPHlcccclORIGIN****DESTINATION***DISTANCE*

********ROUTEiccll);

for root:=l step 1 until z do

begin Tree span(brancheslrowstartlnrinrowlz,br,gen,

below,root) ; write(30,format([nddd]),root); - -
!.2!:. k:=l step 1 until z do

!!. k1root ~

- 107 -

begin write(30,format(18sndddl),k);

end­
~

l:=k; if below[k]=-l ~ writetext(30,

1111s1NONE1) ~ write(30,format(16sndd

ddddl) "gen[k]);

II below[k]=-1 ~ goto SR1;

writetext(3o,1l8s11);

for 1 :=1, be1ow[1] while If 0 ~

write(30,format(lnddddl),1);

SR1: writetext(3o,llcll);

!! kfz ~ writetext(30,1l4s11);

~ Shortest routes;

The final program comprised of the above

two procedures and the procedure Matrix Input.

- 108 -

App. 4.3 Shortest Route 2 •

The program is very similar to Shor­

test Route 1 • The difference is that the d-r tree is built

up within the control procedure, Shrt route 2 , and not in

another (i.e. Treeform). Two other procedures are used:

Matrix input and Dist input.

procedure Shrt route 2(branches,rowstart~nrinrow,z~br,dist);

integer z~br; integer array branches~nrinrow,rowstart,dist;

begin integer root,J,k,l,m,s,olds,a,c,d;

boolean first;

integer array below,gen[1:z],list[1:5xz];

integer procedure distance(a,b); value a,b; integer a,b;

f£!: m:=rowstart[a] step 1 until

rowstart[a]+nrinrow[a]-l 22
!! branches[m]=b ~ distance:=dlst[rn];

writetext{30,l1PICL21 ******SHORTEST***PATHS***THROUGH

ACOST***ASSOCIAT~**GRAPHlcccclORIGIN****DESTI

NATION***DISTANCE19s1ROUTElccll);

!.2!: root:-l step 1 lU'ltl1 z ~

begin .!.2!:. J:al step 1 lU'lt11 z ~ gen[Jl:=~5;

l1st[1]:=below[root]:=root;

gen[root]:=olds:=O; s:=a:=l;

- log -

ST: ~ J:=olds+1 6 j+l while j~s 2£

~ k:=rowstart[list[j]] step 1 until

rowstart[11st[j]]+nr1nrow[list[J]]-1 2£

!! gen[branches[k]] > gen[11st[j]] +

d1st[k] ~

begin c:=branches[k]; d: =11 st [j] ;

a:=a+l; below[c] :=<1;

II a > 5xz ~ goto NOGO;

11st[a]:=c; gen[c]:agen[d]+dlst[k];

!!. a=s ~ goto SRTF;

olds:=s; s:caa.; goto STj

Noao: wrttetext(3o,llcclNoao***FAILURE***ARRAY**LIST**TOO

SMALL*---*ALTERUPPER**BOUNDlccll); goto SFIN;

SRTF: wr1te(30,format(lndddl)~root);

~ 1 :=1 step 1 unt1l z f!.2.

1f 11root then - -
begin wr1te(30~rormat(18sndddl)~l);

k:=l;

!! gen[k]-5 ~ writetext(30,1l11s1NONEj)

~ wr1te(30~format(110snddl)~gen[k]);

II gen[k]905 ~ goto SRTF1;

wr1tetext(30~1l8slJ);

end­
~

end­~

- 110 -

~ k:=k,below[k] while kfroot ~

write(30,format([ndddd]),k); - -
write(30,format(lnddddl),root);

SRTF1: writetext(3o,llcll);

if liz ~ writetext(30,il.4s11)

else writetext(30,[[c]]); - --

SFIN: end Shrt route 2; -
If the procedure should fail (at NOaO) be-

cause the array list is too small, the upper bound declara­

tion for list should be raised from 5xz to some higher figure

e.g. 6 or 7 times z. If this method was to be programmed in a

list processing language, we would have to declare space for

only 2 x z words because the useful part of the array list

is from list[olds] to list[a] and this will never exceed

twice the number of pOints in the digraph (Chpt. 5.22).

- '1' -

App. 4.4 SpeCimen Input and Output.

The input layout or format for Cascade

and Shortest Route 2 is of the form : -

data nr ;

z; br;

< Branches list representation>

di; ------------- This has a value only for Cascade.

If all the distances are unity

then di < 0 and the folloWing

cost matrix is not read# other­

Wise di > 0 •

< Cost Matrix> ----- The cost element of each line is

read 1n# the ordering being the

same as the branches list.

For Shortest Route 1 # the input is as

above up to the first end of message (~). For test pur­

poses the sarne data tape was used for all three programs

except that di was punched in by hand for Cascade.

- 112 -

Below is given the digraph or a simple pro­

blem with the output from the Cascade method program and

the program Shortest Route 2.

@
~~----~------~~----~~------~

'3

8

CL21 SHORTEST DISTANCE MATRIX --- CASCADE METHOD

0 2 6 9 11 X 7 5 9
12 0 4 7 9 X 5 3 7
8 10 0 3 8 X 10 13 12
X X X 0 X X X X X

16 10 8 4 0 X 2 6 4
18 12 10 6 2 0 4 8 6
14 8 6 8 4 X 0 4 2
16 10 8 10 6 X 2 0 4
18 12 10 6 2 X 4 2 0

- 113 -

CL21 SHORTEST PATHS THROUGH A DIGRAPH

ORIGIN DESTINATION DISTANCE ROUTE

1 2 2 2 2 1
3 6 3 2 1
4 9 4 3 2 1
5 11 5 9 7 8 2 1
6 NONE

~ 7 7 8 2 1
5 8 2 1

9 9 9 7 8 2 1
2 1 12 1 3 2

3 4 3 2
4 7 4 3 2
5 9 5 9 7 8 2
6 NONE
7 5 7 8 2
8 3 8 2
9 7 9 7 8 2

3 1 8 1 3
2 10 2 1 3
4 3 4 3
5 8 5 3
6 NONE
7 10 7 5 3
8 13 8 2 1 3
9 12 9 7 5 3

4 1 NONE
2 NONE
3 NONE
5 NONE
6 NONE

~ NONE
NONE

9 NONE
5 1 16 1 3 7 5

2 10 2 7 5
3 8 3 7 5
4 4 4 5
6 NONE

~ 2 7 5
6 8 9 7 5

9 4 9 7 5

- 114 -

6 1 18 1 3 7 5 6
2 12 2 7 5 6
3 10 3 7 5 6
4 6 4 5 6
5 2 5 6
7 4 7 5 6
8 8 8 9 7 5 6
9 6 9 7 5 6

7 1 14 1 3 7
2 8 2 7
3 6 3 7
4 8 4 5 9 7
5 4 5 9 7
6 NONE
8 4 8 9 7
9 2 9 7

8 1 16 1 3 ~ 8
2 10 2 7
3 8 3 7 8
4 10 4 5 9 ~ 8
5 6 5 9 7
6 NONE
7 2 7 8
9 4 9 7 8

9 1 18 1 3 7 5 9
2 12 2 7 5 9
3 10 3 7 5 9
4 6 4 5 9
5 2 5 9
6 NONE

~
4 7 5 9
2 8 9

- 115 -

APPENDIX 5.

There is only one sumcheck made while input-

ting the data f'ot this program , Transportree • This is to en-
m t'I

sure that La:: ~b.l (see Chpt. 6). After reading in all
I

the data, Tree find is used to find an initial basic feasable

solution. The solution is left in the below form • The tree is

then ordered by means of Planarize, Convlu and Convrd into the

rd, lu representation.

£rocedure Treeform(supply,demand); value supply,demand;

integer array supply, demand;

comment The modified N-W corner method is used to find the

initial basic feasable solution (or initial tree). This is

rooted at an arbitrary point and described in the below array;

besin

Erocedure rowsearch;

begin max:=w10;

!.2.!: j: =m+ 1 step 1 un til m+n 2.2.

!! cost[a,j](max ~ below[j]=-l ~

begin

~ rowsearch;

max:=cost[a,j];

b:=j; end· ~

- 116 -

procedure col search;

begin max:=~10;

!2!: j :=1 step 1 until m ~

l! cost[j,a]<max ~ below[j]=-l ~

begin max:-cost[J,a];

b:=j; end;

~ col search;

sum:=below[l]:=O; count:=a:=l ;

!2!. j:=-2 step 1 mtil n+m!!2. below[j]:=-l;

RS: rowsearch;

below[b]:=a; count:=count+1;

load[b]:=if supply[a]<demand[b] then - -
supply[a] ~ demand[b];

supply[a]:=supply[a]-load[b];

dsmand[b]:-demand[b]-load[b];

sum:=load[b]xcost[a,b]+sum;

!£ count=n+m then goto FIN;

II supply[a]~demand[b] ~ goto RS;

a:=b;

CS: col search;

below[b] :=a; coun t : =coun t+ 1 ;

load[b]:=!! supply[b]<demand[a] then

suPply[b] ~ demand[a];

FIN:

- 117 -

supply[b]:=supply[b]-load[b];

demand[a]:=demand[a]-load[b];

sum:=surn+load[b]xcost[b,a];

II count=n+m ~ goto FIN;

!! demand[a]Lsupply[b] then goto CS;

a:=b; goto RS;

~ Tree form;

The main iterative loop starts at TOP and

finishes at FINISH • First the shadow costs are computed by

means of Shad cost. Initially this computation is done for

all the points of the tree and thereafter, only for the

pOints of the subtree which has been cut of •

procedure Shad cost;

begin first:=true; shadow[l]:=O;

for j:=process(rd,lu,first,root) while j)O 2£
if j#l then - -

begin a:=belnext(rd,j);

shadow[j]:=postcost(a,j)-shadow[a]j

end;

~ shad cost;

- 118 -

This is now followed by Extra link which

finds the next link to be inserted. If there is no line

which will improve the solution, the identifiers endpt1

and endpt2 are made equal to zero. As mentioned in Chpt.

5.3 there are many ways of doing this. Two procedures

were written: one searched through for the smallest va­

lue of cost[i,j]-shadow[i]-shadow[j] and the other

for the first negative value of that same expression.

procedure Extra 1 link;

begin cut1:=cut2:=O;

f.2!: j :=1 step 1 until m ~

!.2!: k: =m+ 1 step 1 un til m+n E!2.

if cost[j,k]<shadow[j]+shadow[k] then - -
begin cutl:-j; cut2:=k;

El:
goto El; end;

~ Extra link;

The circuit is completed by means of

Loop form. Within the circuit, the smallest load link

is found by means of Smallest link and then the loads

along the loop are altered by means of Recalc loop.

- 119 -

procedure Smallest link;

begin inc:=m10;

~ j:=l step 2 until apex-l,lm step -2 until apex+l do

if load[loop[j]]<inc then - -
begin inc:aload[loop[j]];

s11 :=loop[j];

s12:=belnext(rd,s11);

10:=j; end;

~ Smallest link;

procedure Loop form;

begin ga:=gnrd(rd,cutl);

gb:=gnrd(rd,cut2);

c:=!.!. ga~gb ~ cutl else cut2;

d:=1f c=cutl then cut2 else cut1; - - -
g c~cut1 ~ begin

e:=(); f:=n+m;

j:=ga; ga:=gb;

gb:=j; end­
~

for j:=c,belnext(rd,k) while ga~gb ~

begin e:=e+1; loop[e]:=k:=j;

ga :=ga-1;

apex:=e;

loop [n+m] :=d;

end­
~

- 120 -

if loop[e]fd then - -
~ j:=belnext(rd,loop[e]) while jfloop[e] do

begin e :r:ae+1; loop [e] : = j ;

end;

!£ loop[e]=belnext(rd,loop[f]) ~

begin apex:=e;

end" ~

!.2.!: k: =f step 1 un til n+m do

begin e :=e+1;

end" ~

loop[e] :=loop[k];

goto LC1;

f:=f-1;

loop[f]:-belnext(rd,loop[f+1]);

LC1: Im:=e;

~ Loop form;

procedure Recalc loop;

begin !9.!:. j:=l step 2 until apex-l,

1m step -2 until apex+l ~

load[loop[j]]:=load[loop[j]]-inc;

!9.!:. j:=2 step 2 until apex-l,

Im- 1 step - 2 un til ap ex+ 1 2.9.

load[loop[j]]:=load[loop[j]]+inc;

- 121 -

if lo)apex ~

else

begin f.2!:. j:=lo step 1 until Im-1 do

load[loop[j]]:=load[loop[j+l]];

load[loop[lm]]:=inc;

end -
begin !2:: j :=10 step -1 until 2 ~

load[loop[j]]:=load[loop[j-l]];

10ad[100p[1]]:=inc;

end· ~

for j :=1 step 2 until Im-1 s!.Q.

sum:=sum-incXpostcost(loop[j],loop[j+l]);

!2!: j: =2 step 2 un til Im-2 do

sum:=sum+incxpostcost(100p[j],100p[j+1]);

sum:=sum+postcost(loop[l],loop[lm])X1nc;

~ Recalc loop;

We have thus so far found a line to delete

within a feasable solution, found another to insert (so as

to keep the solution basic and feasable) and altered the

loads along the affected route accordingly • However the

information is not as yet in the required form • The tree

has to be manipulated. This is accomplished by Treecut and

Fixtop. Treecut cuts the tree into two parts ar smallest

link and the tree is rejoined into a single tree by means

of Fixtop at the pOints given by Extra link.

- 122 -

A final procedure Print was written so as

to monitor what was happening in the program. Every out

number of iterations (out being input with the rest of the

data) ~ the tree and its cost was output. At the end the

final solution ~ its cost and the number of iterations is

output with the time taken to complete the computation.

procedure Print;

begin f:=format(lnddddl);

writetext(30~1l4c1TOTAL***COST**IS1);

Wr1te(30~f~sum);

writetext(3o~1l6c1*****ROUTE**********LOAD*****COST

1c1*****-----i1os1----i5s1----i2c11);

f1rst:=true;

!2£ j:=process(rd~lu~first~l) while j)O ~

II j;i1 ~

begin write(30~f~j); writetext(3o~llsll);

write(30~f~belnext(rd~j)); writetext(3o~1l7s11);

write(30~f~load[j]); writetext(30~1l4s11);

wrlte(30~f+l~load[j]Xpostcost(belnext(rd~j),j));

~ Print;

The complete program now follows on the

next page.

- 123 -

begin

open(20) ; open(30) .;

data nr:=read(20);

START: out:=read(20);

m:=read(20); n:=read(20); z:=rn+m;

begin integer sum,j,k,lo,sll,s12,p,b,count,ga,gb,cutl,

cut2,c,e,iterns,root,d,f,nr,lu,max,a,apex,lm,inc;

integer array cost[1:m,m+l:m+n],supply[1:m],demand[m+1:m+n],

below,nbr,shadow,loop,load,rd,lu[l:m+n];

boolean first;

(All the procedures described in this appendix

with Planarize, Convlu, Convrd, process,

Fixtop, nbr next and Refl are now declared.)

iterns:=a:=b:=O; root:=l ;

for j:=l step 1 until m do

begin supply[j]:=read(20);

b:=b+supply[j]; end;

!2!:. j: =m+ 1 step 1 un til m+n do

begin demand[j]:=read(20);

a: =a+demand [j] ; end­
~

- 124 -

f££. j :=1 step 1 until m S!.2.

f2!: k:=m+l step 1 until m+n S!.2.

cost[j,k]:=read(20);

if a~b ~ begin writetext(30,1l6clFAILURE**IN**INPUT

*---*DEMAND**NOT**EQUAL**TO**SUPPLY])° - ,
goto FAIL; end;

Treeform(supply,demand);

writetext(3o,1lPlCL21******AKPO/TREE/TRANSPORT18cl

INITIAL***SOLUTION12cll);

Planarize(below,nbr,z);

Convlu(below,nbr,z,lu);

Convrd(below,nbr,z,rd);

Print;

TOP: iterns:=iterns+l;

Shad cost;

Extra 2 link;

if' cutl=Othen goto FINISH;

Loop f'orm;

Smallest link;

Recalc load;

Treecut(sll,s12,rd,lu);

nr:=if' lo<apex ~ 100p[1] ~ loop[lm];

lu:=ll nr=loop[1] ~ loop[lm] ~ loop[11;

- 125 -

root:=loop[glo)apex ~ 1m ~ 1 J;

Newtree(nr,sll,rd,lu);

Fixtop(nr,lu,rd,lu);

!!(iterns+out)~(iter.ns/out) ~ goto TOP;

writetext(30,1l4clSOLUTION***FOR***ITERATION***NUMBERl);

write(30,format(lndddccl),iterns)j

Print;

goto TOP;

FINISH: writetext(30,1l8clFINAL****SOLUTIONlcl-----****---­

----14clrUMBER**OF**ITERATIONS**=1);

write(30,format(lndddcl),1terns-l)j

Print;

FAIL: da tanr: =da tanr-l ;

if datanr~O ~ goto START;

writetext(3o,1l8clEND***OF***TREETRANSPORT16cll);

close(20); close(30);

end-+

- 126 -

App. 5.1 Specimen Input and Output.

The ~nimum storage required ror this met­

hod is of the order m X n + 6(m + n), where m is the num­

ber of transmitters and n the number of receivers. rfhe pro-

gram described in the last sub-appendix requires a further

2 X (m + n) locations to carry the initial tree in both the

below, posnbr and rd,lu representations. In order to reduce

this, it would have been necessary to have split the program

into two parts : one would compute the initial tree and out-

put it in the rd, lu representation on paper tape I and the

other part would read in the initial tree , analyse it and

find the minimal solution. The split would occur at the la­

bel TOP: in the program. Data for input should be in the

following form :-

data nr • number of blocks of data. ,
out · iteration output counter. ,
m • n . , ,
b~ .

bl. · • • • • · b · , , ,
1\

,
a, . a ... · • a", · , , • • • • , ,

c,' • c ,~ • • c . , , • • • , , ,""
ca., • cu. · • . c;r'\ . , , · • , ,
• • • • • •

c,,' ; c tI).; ••• ; c II "", ;

- 127 -

Here is a specimen problem with the data

ready ror input and the output from the program_

1 ;

6-,
6-, 12-,

10; 14-, 9; 15; 11; 13;
6; 6-, 5; 7; 4-, 8; 6-, 5; 3; 7; 6; 9;

1 ; 2-, 2-, 3; 4; 4-, 1 -, 2-, 4; 3; 2-, 3;
3; 3; 4; 2-, 2-, 3; 2-, 3; 2-, 2-, 4; 5;
5; 4; 2- 1 ; 4- 1 ; 2- 3; 3; 5; 4- 5; , , , ,
1 ; 5; 2; 4; 5; 4; 4- 2- 1 ; 4- 5; 2-, , , ,
2- 3; 4; 2- 3; 1 - 5; 4- 2- 4- 3; 5; , , , , , ,
3; 3; 1 ; 4- 3; 4- 3; 4- 3; 4- 4- 1 ; , , , , ,

(Program output)

CL21 AKPO/TREE/TRANSPORT

INITIAL SOLUTION

TOTAL COST IS 149

- 128 -

ROUTE LOAD COST
----- ----
13 1 4 4
2 13 2 4

15 2 1 2
4 15 2 2

18 4 3 6
6 18 6 6

12 6 1 4
3 12 7 7

17 3 2 8
5 17 4 12

16 5 7 28
8 6 6 18

14 4 5 10
9 4 5 10

1 1 2 4 8
10 2 7 14
7 1 6 6

SOLUTION FOR ITERATION NUMBER 6

TOTAL COST IS 129

ROUTE LOAD COST

13 1 6 6

'4
1 4 4
7 2 2

15 4 3 3
14 4 5 10
9 4 5 10
6 9 0 0
8 6 4 12
5 8 2 6

16 5 3 12

2 16
11 2
10 2
3 10

12 3

~~ ~

FINAL SOLUTION
----- .. _--.----

4
4
6
1
8
6
9

NUMBER OF ITERATIONS

TOTAL COST IS 109

ROUTE LOAD

17 1 1

5 17 5
12 5 6

3 12 2
9 3 0
4 9 1
7 4 6

15 4 3
14 4 5
6 9 4

18 6 9
10 3 7
8 1 3
2 8 3

16 2 4 1 1 2
13 1 6

END OF TREETRANSPORT

END 1M 93

- 129 -

=

9

8
8

12
1
8

18
9

11

COST

2
15

6
2
0
2
6
3

10
4

9

l
14
8
6

	586725_001
	586725_002
	586725_003
	586725_004
	586725_005
	586725_006
	586725_007
	586725_008
	586725_009
	586725_010
	586725_011
	586725_012
	586725_013
	586725_014
	586725_015
	586725_016
	586725_017
	586725_018
	586725_019
	586725_020
	586725_021
	586725_022
	586725_023
	586725_024
	586725_025
	586725_026
	586725_027
	586725_028
	586725_029
	586725_030
	586725_031
	586725_032
	586725_033
	586725_034
	586725_035
	586725_036
	586725_037
	586725_038
	586725_039
	586725_040
	586725_041
	586725_042
	586725_043
	586725_044
	586725_045
	586725_046
	586725_047
	586725_048
	586725_049
	586725_050
	586725_051
	586725_052
	586725_053
	586725_054
	586725_055
	586725_056
	586725_057
	586725_058
	586725_059
	586725_060
	586725_061
	586725_062
	586725_063
	586725_064
	586725_065
	586725_066
	586725_067
	586725_068
	586725_069
	586725_070
	586725_071
	586725_072
	586725_073
	586725_074
	586725_075
	586725_076
	586725_077
	586725_078
	586725_079
	586725_080
	586725_081
	586725_082
	586725_083
	586725_084
	586725_085
	586725_086
	586725_087
	586725_088
	586725_089
	586725_090
	586725_091
	586725_092
	586725_093
	586725_094
	586725_095
	586725_096
	586725_097
	586725_098
	586725_099
	586725_100
	586725_101
	586725_102
	586725_103
	586725_104
	586725_105
	586725_106
	586725_107
	586725_108
	586725_109
	586725_110
	586725_111
	586725_112
	586725_113
	586725_114
	586725_115
	586725_116
	586725_117
	586725_118
	586725_119
	586725_120
	586725_121
	586725_122
	586725_123
	586725_124
	586725_125
	586725_126
	586725_127
	586725_128
	586725_129
	586725_130
	586725_131
	586725_132
	586725_133
	586725_134
	586725_135
	586725_136
	586725_137
	586725_138
	586725_139
	586725_140
	586725_141
	586725_142
	586725_143
	586725_144
	586725_145
	586725_146
	586725_147
	586725_148
	586725_149
	586725_150
	586725_151
	586725_152
	586725_153
	586725_154
	586725_155
	586725_156
	586725_157
	586725_158
	586725_159
	586725_160
	586725_161
	586725_162
	586725_163
	586725_164
	586725_165
	586725_166
	586725_167
	586725_168
	586725_169
	586725_170
	586725_171
	586725_172
	586725_173
	586725_174
	586725_175
	586725_176
	586725_177
	586725_178
	586725_179
	586725_180
	586725_181
	586725_182
	586725_183
	586725_184
	586725_185
	586725_186
	586725_187
	586725_188
	586725_189
	586725_190
	586725_191
	586725_192
	586725_193
	586725_194
	586725_195
	586725_196
	586725_197
	586725_198
	586725_199
	586725_200
	586725_201
	586725_202
	586725_203
	586725_204
	586725_205
	586725_206
	586725_207
	586725_208
	586725_209
	586725_210
	586725_211
	586725_212
	586725_213
	586725_214
	586725_215
	586725_216
	586725_217
	586725_218
	586725_219
	586725_220
	586725_221
	586725_222
	586725_223
	586725_224
	586725_225
	586725_226
	586725_227
	586725_228
	586725_229
	586725_230
	586725_231
	586725_232
	586725_233
	586725_234
	586725_235
	586725_236
	586725_237
	586725_238
	586725_239
	586725_240
	586725_241
	586725_242
	586725_243
	586725_244
	586725_245
	586725_246
	586725_247
	586725_248
	586725_249
	586725_250
	586725_251
	586725_252
	586725_253
	586725_254
	586725_255
	586725_256
	586725_257
	586725_258
	586725_259
	586725_260
	586725_261
	586725_262
	586725_263
	586725_264
	586725_265
	586725_266
	586725_267
	586725_268
	586725_269
	586725_270
	586725_271
	586725_272
	586725_273
	586725_274
	586725_275
	586725_276
	586725_277
	586725_278
	586725_279
	586725_280
	586725_281
	586725_282
	586725_283
	586725_284
	586725_285
	586725_286
	586725_287
	586725_288
	586725_289
	586725_290
	586725_291
	586725_292
	586725_293
	586725_294
	586725_295
	586725_296
	586725_297
	586725_298
	586725_299
	586725_300
	586725_301

