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Abstract

This thesis presents an approach to the implementation of declarative languages
on a simple, general purpose concurrent architecture. The safe exploitation of
the available concurrency is managed by relatively sophisticated code genera-
tion techniques to transform programs into an intermediate concurrent machine
code. Compilation techniques are discussed for 1'-HYBRID, a strongly typed
applicative language, and for 'c-HYBRID, a concurrent, nondeterministic logic
language.

An approach is presented for 1'- HYBRID whereby the style of programming
influences the concurrency utilised when a program executes. Code transfor-
mation techniques are presented which generalise tail-recursion optimisation,
allowing many recursive functions to be modelled by perpetual processes. A
scheme is also presented to allow parallelism to be increased by the use of local
declarations, and constrained by the use of special forms of identity function.

In order to preserve determinism in the language, a novel fault handling
mechanism is used, whereby exceptions generated at run-time are treated as a
special class of values within the language.

A description is given of ,C-HYBRID, a dialect of the nondeterministic logic
language Concurrent Prolog. The language is embedded within the applicative
language 1'-HYBRID, yielding a combined applicative and logic programming
language. Various cross-calling techniques are described, including the use of
applicative scoping rules to allow local logical assertions.

A description is given of a polymorphic typechecking algorithm for logic
programs, which allows different instances of clauses to unify objects of different
types. The concept of a method is derived to allow unification Information to
be passed as an implicit argument to clauses which require it. In addition,
the typechecking algorithm permits higher-order objects such as functions to be
passed within arguments to clauses.

Using Concurrent Prolog's model of concurrency, techniques are described
which permit compilation of 'c-HYBRID programs to abstract machine code de-
rived from that used for the applicative language. The use of methods allows
polymorphic logic programs to execute without the need for run-time type in-
formation in data structures.
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Chapter 1

Introduction

1.1 Motivation

In the past few years, trends in computer technology have drastically altered the

engineering trade-offs which have to be made in the design and realisation of

computer systems. The traditional von Neumann architecture (single processor,

flat global address space) is based upon the trade-off made by the designers of

the first computers, which comprised a large, complicated, expensive processor

attached to a (by modern terms) small memory. As technology has progressed,

processors have become smaller and faster, and memory capacities have increased

by several orders of magnitude.

With the advent of Very Large Scale Integration (VLSI), the traditional von

Neumann trade-off has come under increasing attack. Processing power has

become much cheaper, but the cost of communication between the various parts

of a computing system has become proportionally greater. As a result, the

von Neumann machine is now far from the ideal architecture to be realised in

VLSI, and researchers are striving 'for machine architectures which better suit

the design and implementation resources now offered.

Due to the relative cheapness of processing power and .expense of communi-

cation, VLSI systems are best realised as large numbers of small, simple comput-

1



Chapter 1. Introduction 2

ing elements exhibiting local communication [Mead 80]. Whereas a traditional

architecture encourages a sequential computational model (corresponding to a

single processor executing a program in a fiat, linear address space), a VLSI

architecture should encourage a distributed computational model, in which sec:

tions of program are executed concurrently by a number of processing elements

which communicate with one another. A concurrent model of computation can

efficiently exploit the physical resources of a VLSI system, whereas a sequential

model of computation will become progressively more unsuitable as technological

developments continue.

Another argument can be made for concurrent systems, independently of such

engineering issues. Whereas the first von Neumann machines were machine-code

programmed, and executed instructions at the rate of a few hundred per second,

modem machines execute bodies of software compiled from, in some cases, mil-

lions of lines of source code. Hardware systems based on conventional architec-

tures are approaching their limits in terms of improvements in performance to

support such sophisticated software systems. Applications are being identified

[Fuchi 83] for which improvements in performance of orders of magnitude will

be required, and this increase will not be achieved through continued miniaturi-

sation and technological improvements. Continued increases in performance can

only be achieved by exploiting VLSI components much more efficiently than via

conventional architectures.

It has also been suggested [Ashcroft 77] that the lack of suitable hardware

drastically inhibits our ability -J'b conduct modern software research. Without

appropriate machines, we are restricted in the expressiveness and power of our

programming languages, and this impairs our ability to develop algorithms for

modem applicationS. The greater the gap between architecture and application,

the larger and more complex the application software will be, and the larger and

more complex the language used to implement it. The von Neumann machines'

commitment to sequential concepts will become more and more of a liability as

developments on the hardware side make parallel processing increasingly attrac-

tive.
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From these points, it can be deduced that adequate performance for higher

level languages can only be achieved by exploiting concurrency in computer

systems.

1.2 Concurrent Systems

Recently there has been a great deal of research into concurrent architectures

[Treleaven c]. Many of these research projects have been based on the premise

that the von Neumann computer architecture should be replaced by some radi-

cal new machine organisation. The search for new computational models to deal

with concurrent systems has instigated research into novel concurrent architec-

tures [Moto-Oka 83].

Early research into novel concurrent architectures yielded the ideas behind

dataflow machines [Dennis 79]. Research based upon principles of VLS! design

yielded various types of tree machine [Browning 80], as well as novel approaches

to pipelined architectures [Kung 78]. New concepts about memory organisation

yielded machines capable of performing message passing [Wilner 80] and reduc-

tion [Mago 80]. Such machines, however, fail to provide facilities'for truly general

purpose computing. By contrast, one point overlooked by the opponents of the

traditional control flow architecture is its general purpose nature [Treleaven a].

The issues faced with such a general concurrent machine are the complexity of

programming it safely, and of exploiting the available concurrency efficiently.

Traditionally, such complexity is handled by abstraction [Dahl 72]; we must

therefore apply abstraction to the design and programming of concurrent archi-

tectures. Hardware does not abstract easily; architectures which have a partic-

ular abstraction tend not to be very general. Abstraction should therefore be

handled in a familiar manner, by means of software; this allows the massive in-

vestment in software technology to be exploited, whilst allowing flexibility. The

approach of this thesis is to use a sophisticated compiler to utilise the unsafe,

concurrent hardware. The compilation techniques are hidden from the end user,
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so that their complexities do not interfere with the programming of applications,

and the compiler provides a level of abstraction to protect the user. .

A problem still to be addressed is the exploitation of concurrency. For the

same reasons as above, this should be done by software abstraction. However,

concurrency exploitation cannot be done automatically by a compiler, since static

analysis often cannot determine the run-time behaviour of a program. It is there-

fore necessary for the programming language to provide the means to control the

concurrency (or, at least, not let it be totally uncontrolled), without sacrificing

abstraction. Is it possible to design a software system which is truly general-

purpose, without being over-complex to use or unsafe to program in, and can

it be made to handle the concurrency exploitation? The aim is a programming

system where concurrency can be controlled, without the danger associated with

concurrent programming.

Considered at a low enough level, computer systems are inherently concur-

rent, since they comprise a large number of asynchronous hardware components.

However, this concurrency is hidden by the traditional "machine level", where

a sequential instruction set is provided, together with some extremely unstruc-

tured mechanisms for dealing with nondeterministic events (interrupts). On top

of this level is generally built an operating system to provide "false" concurrency

in the form of multitasking. Although the abstraction is reasonable, it occurs at

a fairly coarse level, allowing a computer system to be regarded as a number of

processors each executing a (predominantly) isolated task. This trend continues

upwards into the development of computer networks, where a simple abstrac-

tion (such as the paradigm of a distributed file system [Brownbridge 82]) sits

over a coarse level of concurrency (a relatively small number of large discrete

processors) .

Utilising finer concurrency causes loss of abstraction. Languages designed

to describe concurrent systems (such as OCCAM[!NMOS 84bj, and its precur-

sor, CSP [Hoare 78]) are inherently unsafe because they make a very low level

of concurrency directly visible to the programmer. There have been sequential

languages extended to allow some concurrency to be expressed [Welsh 79j, but
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these only serve to provide traditional operating system functions wrapped in

a more sanitary package; in any case, programmers faced with any sort of tra-

ditional language tend to program in it sequentially, deliberately avoiding any

features provided for concurrency. Attempts to provide a general form of im-

plicit concurrency in traditional sequential languages (rather than the specialised

concurrency found in array processing) have failed due to the complete unsuit-

ability of the languages themselves. A traditional sequential language would, in

any case, not provide any facility to control the concurrency of its execution,

since the concurrency would be totally implicit.

A better approach is to formalise concurrent systems directly, and then build

a language which captures that formalism. The language CCS [Milner 80] is a

notation for a calculus which describes communicating agents in terms of state

transitions. As such, the language has a high level of abstraction, since it en-

capsulates the calculus directly, without any awareness of lower level features.

At the highest level of abstraction are to be found denotational languages

which are free from any notion of execution, whether sequential or concurrent.

Since such languages are referentially transparent, there is no need to guarantee

the order of execution of the parts of a program, since the outcome will be the

same regardless. Such languages are, therefore, ideal for execution on a con-

current architecture, despite their abstraction over any computational concepts

[Turner 81]. The problem remains, however, of controlling the concurrency of

execution of a declarative language.

This problem has already been solved in the logic language PROLOG[Clocksin 81],

where the cut operator is used to control the search path of an executing pro-

gram, as well as to force termination of potentially infinite computations. The

notion of sequential backtracking found in PROLOGhas been attacked by many

researchers in the field of artificial intelligence [Sussman 72]; and its replacement

by constructs less dependent on sequential execution makes PROLOGan ideal

language for concurrent implementation [Kowalski82]. In addition, such a con-

struct provides the additional facility of allowing the concurrency in a program

to be expressed by the programmer. Some dialects of PROLOGadopt a CCS-
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like notation to describe communication between concurrent parts of a program

[Monteiro 84]; others allow the dependencies between the variables of the pro-

gram to dictate the concurrency [Shapiro 83b]. The logic language presented in

this thesis is a dialect of Shapiro's Concurrent Prolog,which embodies the control

of concurrency by expressing dependencies between logical variables.

Functional languages have traditionally been free from such annotations,

since they lend themselves to straightforward implementation on conventional

architectures [Landin 64]. For a concurrent architecture, however, it is neces-

sary to address the issue of controlling the concurrency utilised by an execut-

ing program. Many implementors have introduced annotations into functional

languages to this end [Hudak 86, Halstead 85]. Such an approach destroys the

abstraction gained by the use of a functional language in the first place, by giving

the programmer dangerous insights into the way his program is being executed.

In addition, such annotations are generally architecture dependent.

The ideal aim, when implementing a functional language on a concurrent

architecture, is to allow some intimation of the required concurrency within the

language, without sacrificing the declarative view of computation. The principle

of separation of concerns suggests that the means to control the concurrency

of a program should be a totally separate mechanism from the program itself,

for example in the form of pragmas. However, the concise nature of functional

languages means that such pragmas would have to occur often and with local

scope, in order to provide sufficient control over the computation; it may be

necessary to control the execution of individual function calls, for example. This

use of pragmas would merely demote them to the level of annotations.

The functional language Crystal [Chen 86] takes a laudable step in this di-

rection by allowing the arguments passed to functions to dictate the topology

of the executing program. The topology can be altered by restructuring some

of the functions which comprise the program. However, there is still a lingering

awareness of the topology of the architecture, since arguments to functions are
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assumed to denote indices of processors", The functional language presented in

this thesis generalises the approach adopted by Crystal. As a result 'of optimi-

sation techniques used in the compiler, it is possible to intimate the required

concurrency within a program by writing sections of the program in a partic-

ular style. Advantages of this technique are that fine control over concurrency

is achieved without annotations, and that this control is performed within the

language itself. The compilation techniques presented make use of an abstract

model of concurrency analogous to data-driven computation [Treleaven 82].

1.3 This Thesis

Webegin (chapter 2) by presenting the functional language .1-HYBRID, together

with an implementation technique for .1- HYBRID on a concurrent architecture .

.1-HYBRID is closely related to a dialect of ML [Cardelli 83b], but does not

feature the abstract type mechanism, although it has a polymorphic typechecker

of the style intimated in [Milner 77]. The .1-HYBRID compiler generates code

for an abstract machine similar to the functional abstract machine used for ML

[Cardelli 83a], but featuring facilities for multiprocessing. The code generated

by the compiler will execute on a concurrent architecture, but has no regard for

efficiency (it generates a process for every function call), and allows no control

over the concurrency from within the program.

In. order to maintain determinism in the language, the exception mechanism

devised for ML [Milner 85] has been replaced by a system which treats faults

as first class objects which can be passed as arguments, returned as results

and embedded in data structures. This concept (based upon ideas presented in

[Mycroft 81]) is better suited t~ concurrent execution of programs, but requires

the compiler to have some awareness of fault-values when code is generated. It is

lCrystal allows integer arguments only
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also necessary to perform some run-time tagging of objects to determine whether

or not they represent faults.

Chapter 3 presents techniques to transform and optimise the code generated

by the compiler, in order to remove concurrency where it is redundant (ie. gives

rise to idle processes in the system), and to perpetuate existing processes in

the system. As a consequence of the optimisation techniques, it becomes possi-

ble to restructure programs to vary the concurrency utilised in their execution.

Techniques are derived for controlling the concurrency exploitation of programs

by using different language constructs, and for constructing identity functions

which impose concurrency constraints.

An optimisation is presented which generalises tail-recursion optimisation,

allowing many recursive functions to be modelled by perpetual processes. This

technique allows certain classes of applicative program ,- -'fto be executed by

a set of processes communicating systolically via streams of data values.

Chapter 4 introduces the logic language .c-HYBRID, which is a dialect of

Concurrent Prolog [Shapiro 83b]. A primary aim in the implementation of .c-HYBRID

has been to confer total type security on the Concurrent Prolog system, rather

than to use the typeless (or dynamically typed) system found in conventional

PROLOG. This type security allows .c-HYBRID to perform unification over ob-

jects of a variety of types, rather than over typeless functors.

This aim has been achieved by embedding the logic language within the ap-

plicative language, and altering the semantics of the polymorphic type system

to enforce security on PROLOG's unification process. Due to this embedding,

it has been necessary to strictly define the semantics of the interface between

the two languages, and to reconcile the determinacy of the applicative language

with the nondeterminacy of the logic language.

The language HYBRID is presented as a combination of '7-HYBRID and

.c-HYBRID, in the spirit of Loglisp[Robinson 80]. The properties of a combined

functional and logic language have been presented elsewhere [Sato , Barbuti ],

and such an approach yields a number of benefits. Logical inferences can be initi-
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ated from applicative programs, and functions can be called from logicprograms.

A clause declaration is treated as a special type of function definition, and so

clauses can be declared under the same scoping rules as functions. As a result, it

is possible to make local assertions, and perform local queries. Due to the higher

order nature of the language, functions and clauses can be passed as arguments

to functions and clauses, returned as results, or embedded in data structures,

Clauses can be expressed in a form analogous to the lambda-expression form of

a function, and the block structure of the language is respected in the bodies of

clauses. £-HYBRID can be regarded as an extension of .1-HYBRID which im-

parts facilities such as nondeterminism and pattern matching to the language,

whereas .1-HYBRID allows manipulation of data values by means other than

unification.

Chapter 5 describes the typechecking algorithm for £- HYBRID. Typecheck-

ing not only ensures the type validity of programs, but also serves to provide

information to the compiler, so that unification across objects of various discrete

types can be performed. Such unification is totally secure, in that the structure

of objects need not be inspected to determine their type in order to perform

the unification. The concept of a method is derived as a means to allow distinct

instances of polymorphic logical clauses to unify objects of different types.

Due to rigid type verification, it is possible to permit some unification of

functional objects (functions or clauses); as a result, the language allows higher-

order logical inferences. This facility, coupled with an extension of the Concurrent

Prolog guard construct, allows meta-inferences and negation-by-failure.

Chapter 6 details the compilation process for £-HYBRID programs. Unifi-

cation operations are compiled directly into sequences of abstract machine in-

structions (in the spirit of [Warren 77]), rather than being left for interpretation

by the machine. The nondeterminism of £-HYBRID is a direct consequence

of the nondeterminism of the underlying (abstract) architecture. Due to the

variety of types of object supported by the enclosing applicative language, the

compiler needs to generate type information which can be passed as argument

to a clause; this information allows clauses to unify structures of arbitrary type.
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The abstract machine architecture presented for 1-HYBRID is extended to cope

with certain logical concepts (for instance, creation and instantiation of logical

variables) .

Chapter 7 draws conclusions and identifies topics for further research.

Appendices A and B present tutorials for the programming languages 1-HYBRID

and t,-HYBRID, and describe language features not covered in earlier chapters.

Appendix C presents the syntax for the HYBRID language. Appendix D details

the abstract machine used by the compilers. The concurrency and communica-

tion primitives of the machine are presented and a description is given of the

instruction set.



Chapter 2

Concurrent Compilation of
1-HYBRID

2.1 Overview

This chapter describes a compilation technique for the functional language -;- HYB RID.

Programs written in -;- HYBRID are compiled into code to be executed by several

cooperating processes. Since -;- HYBRID is a deterministic, referentially trans-

parent language, the fact that a program can be executed concurrently does not

in any way affect the meaning of the program, but only its execution time.

The language -;-HYBRID bears closesimilarity to a dialect ofML [Cardelli 83b,

Milner 85], and familiarity is assumed with applicative languages. Appendix A

comprises a tutorial-style description of the language.

Compilation is viewed as a two stage process. The first stage is the trans-

formation of the program into an abstract intermediate code, consisting of in-

structions for a language-specific abstract machine. The second stage of the

compilation process is the further processing ("assembly") of the abstract code

into code for a physical architecture. Concern shall be given only to the first

stage of the process; the abstract intermediate code, which is executable in its

own right, is therefore regarded as the final, target code for the compiler.

11
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The transformation process from programs to abstract machine code can

itself be broken down into a number of stages. The first pass is responsible for

transforming a program into abstract machine code. The second pass attempts

to make the abstract code as efficient as possible. The code generated by the

first pass is executable in its own right; the inclusion of the second pass does not

affect the results obtained by executing the code, but may drastically improve

the efficiencyof its execution.

The second pass is responsible for making sequences of instructions execute

more quickly, but also serves a much more important purpose. The compilation

phase generates code without regard for how efficiently it can be executed by

several cooperating processes. As a result, unoptimised code will make bad use

of the multiprocessing resources available. The optimiser attempts to transform

the code into a form which can be used efficiently by cooperating processes.

It is necessary to define the notion of "efficiency"with respect to a multipro-

cessing environment. An efficient program (or a program compiled to efficient

code) will exploit the facilities of a multiprocessor to a greater extent than an

inefficient program. The fundamental resource to be exploited in a multiproces-

sor is the individual processing elements. Efficiency is therefore a measure of

how well the constituent processors are being exploited.

The multiprocessing environment under consideration allows processes to be

created and destroyed dynamically, and imposesno virtual limit on the number of

processes in existence at any time. It is therefore necessary to allocate processes

to physical processors during the execution of a program. This can either by done

according to some predetermined algorithm during the execution of a program,

or can be performed by some "operating system" which services requests for

processes at run-time. In either case, the efficiencyof a program can be measured

in terms of how many of the physical processing elements are performing some

useful function at an arbitrary point in the computation.

For the purposes of this thesis, it is assumed that the cost of communication

between processes is not inordinately expensive. 'It is hoped that techniques
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could be found on a closely coupled architecture to minimise this cost to the

level of, say, a global store access.

From the point of view of the abstract machine architecture, the efficiency of
/

the program is defined in terms of the number of processes created to execute the

program, and the proportion of those processes kept busy during their lifetime.

Two aims can be identified for the optimisation process:

• The creation 0/ an optimal number 0/ active processes to cooperate in the

execution of a program. This allows the time-complexity of a computation

to be reduced (if there are enough physical processors to be allocated to

virtual processes), or allows the target machine to be utilised to best effect

(by keeping every constituent processor busy);

• The minimisation 0/ the number 0/ idle processes in the s!lstem. This aim

may be disregarded for a multiprocessing system where idle processes can

be "swapped out" in favour of runnable processes. However, it may be

impossible to guarantee that an idle process never occupies a processor,

or there may be a considerable overhead in maintaining idle processes in

the system (for example, if the context switch time is considerable). It is

therefore considered a valid aim to statically minimise, by optimisation,

the creation of processes which will remain largely idle.

The use of the word "optimal" in the paragraph above requires some quali-

fication. There is no theoretical reason why a functional program should not be

reduced to a set of processes at a very fine level, with a process corresponding to

each primitive operation performed in the language. If there is a great number

of active processes in the system, then all the physical processors will be kept

busy executing a subset of these processes. The assumption is made, however,

that process creation and deletion are relatively expensive tasks in proportion

to the tasks that an individual processor performs. To quantify, the cost of a

process creation is considered to be equivalent to the cost of a full procedure call
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on a conventional architecture. It is therefore possible to outline a third aim for

the optimisation process:

• The perpetuation 0/ existing processes in the s1/stem. With the assumption

that process creation is relatively expensive, it can be concluded that the

perpetuation of processes is desirable. A process should not be created for a

trivial task, since the execution of that task will complete relatively quickly,

resulting in termination of the process; such a task is better performed by

an existing process. ITthe creation of a process for a particular task is going

to be immediately followed by the deletion of another process, the original

process should be preserved for the new task. A process may therefore

perform a series of tasks before finally terminating.

It is conceivable that the system could easily deal with the situation where

the termination of one process is followed by the creation of another, but the two

events may take place on separate processors, in which case little correlation can

be drawn between them. In this case it is desirable to statically optimise this

situation. A saving is also made if the two processes have some commonality

(for example, register values or references to the heap), since termination and

creation actions such as garbage collection need not be performed.

Since function application is the basis for the execution of functional pro-

grams, and since the ,evaluation of a function call will generally be a non-trivial

task (the function will probably contain (possibly recursive) calls to other func-

tions), the function call is treated as the operation for which a process creation

is generated. Built-in functions (such as arithmetic operators) are assumed to

denote trivial tasks, so that, for example, the evaluation of

does not generate a process to perform the multiplication (although exprl and

expr2may be evaluated concurrently). The unoptimised code generated by the

compilation stage will contain a process creation for every call to a non-primitive
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function. It is the task of the optimisation stage to maximise the efficiencyof

these operations with regard to the points mentioned above.

/

2.2 The SEeD Machine and the FAM

The abstract machine architecture used to implement 1'-HYBRID is related to

the functional abstract machine (FAM) used as an intermediate stage in the

interpretation of ML [Oardelll 8380].The FAM itself is based upon the abstract

SEeD machine used in the interpretation of Lisp [Landin 64].

The SEeD machine is defined in terms of four registers denoted by the names

stack, environment, control and dump. Since each register may contain a

structured value (s-expression), the state of the machine can be defined purely

in terms of these registers, without recourse to a global memory.

The stack is used for intermediate values during the evaluation of expres-

sions; for example, all arithmetic operators take arguments from, and return

results to, the stack. The environment is used to store the values of variables

in the environment of the function being executed. The control register contains

a list of instructions to be executed (the remainder of the currently executing

function). The dump is used to save sets of registers. The execution of programs

on the SEeD machine is given detailed consideration elsewhere [Henderson80].

The FAM is a version of the SEeD machine optimised for fast function ap-

plication. ML programs compiled into FAM machine code are not interpreted

directly, but assembled into native code for the machine running the ML in-

terpreter [Cardelli 83b]. As a consequence, the use of Lisp data structures to

represent the machine state is inappropriate, and true stacks are used instead.

The FAMcontains three stack pointers denoted by AP, SP and TP; each points

to a portion of main store. AP is the argument pointer, and refers to a stack

used for intermediate results (like the SEeD machine's stack register). SP

points. to a stack containing return addresses and closures of active functions; it

performs the same function as the SEeD machine's dump register. TP points
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to a stack of trap frames used to resume control of a function after an exception

has been activated.

2.3 The .1-HYBRID Abstract Machine

The; - HYBRID abstract machine is the target machine for the; - HYBRID com-

piler. Programs written in ;-HYBRID are transformed into abstract code which

can either be assembled into code for a physical architecture, or interpreted by

an emulator for the abstract machine.

The ; - HYBRID abstract machine is a parallel control flow machine. There

is a global address space which is accessible by each of an indefinite number of

processes. Each cell in the address space may contain a simple scalar value, or

a pointer to (address of) another cell. Each process executes a portion of code,

and updates the store. A process may create any number of sibling processes,

any of which may outlive its parent. The total number of processes running on

the abstract machine at any time is considered unlimited, and it is assumed that

an attempt to create a new process will always succeed 1.

There is a solitary mechanism for communication and synchronisation be-

tween processes: a simple message passing procedure is supported on memory

locations in the heap area. Memory cells can be assigned a unique value (hence-

forth called empty). Any subsequent attempt by a process to access such a

location causes the process to be suspended until the location is assigned a

non-empty value (by some other process). This mechanism allows processes to

communicate with one another, and also acts as a synchronisation primitive:

one process can suspend itself, and be resumed by another process performing

an assignment to memory,

lSome consideration is given to this point in chapter 7.
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With the exception of this communication mechanism, no guarantees are

made against interference between processes accessing the same location in the

heap, and it is up to the compiler to maintain the integrity of data structures
/

created on the heap (section 2.3.1). Since the language under consideration is

purely applicative, this task should not present any great problems.

The address space is partitioned into a number of areas. The code area

contains all the code generated for the program being executed, together with

the code for top-level functions (those in the top-level environment). Every

process has read access to the code area, but none has write access. The heap

area is used to build data structures; any process may claim areas of store from

the heap. An object claimed from the heap will initially contain the empty

value in each constituent cell, but the cells may be accessed by any number of

processes. The heap area is assumed to be garbage collected. The stack area

is used to allocate stack space for each process. Each process is allocated a

portion of stack (of bounded size) from the stack area, and generally uses it for

local calculations. When a process terminates, the stack space is immediately

reclaimed for subsequent use; in addition, some instructions cause a process to

discard its stack and claim a new stack (generally of a different size). The stack

area need not be garbage collected, since stacks are freed explicitly, but needs

to be compacted to avoid fragmentation.

A process can pass a pointer to an element of its stack to another process,

allowing the second process write values for the first. When this occurs (sec-

tion·2.4.3), the stack must not be reclaimed, and the stack locations reserved for

the second process to write to must not be overwritten by the first process.

Heap storage is claimed in blocks of predetermined size during the execution

of a program. A heap allocation by a process results in that process being given

a pointer to a fixed size block of store, all elements of the block being empty.

These elements can be assigned simple or pointer values, and the address of the

block can be passed between different processes. A blockmay be reclaimed when

no process possesses any reference to it.

The state of the F- HYBRIDmachine is regarded as the value of the memory
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locations of the global store, together with the state of each of its processes. Each

process has a set of private registers each capable of holding a scalar or pointer

value. Registers cannot be made empty, and it is impossible to assign a register
/

the empty value from a store location (the process attempting to do so would be

suspended). Although they are referred to by descriptive names, the registers are

functionally equivalent, with two exceptions: one register is reserved for use as a

stack pointer, and another is regarded as the program counter. Upon creation, a

proportion of the register values of the child process are derived from the register

values of the parent. This facility allows a child process to communicate with its

parent, and a parent process to create several children which can communicate

with one another.

2.3.1 The Bounded Stack Model

Since the abstract architecture provides no protection against interference be-

tween processes accessing store locations, a computational model is adopted

which minimises the complexity of communication between processes. The sim-

plicity of the model is due to the fact that the; - HYBRID language is applicative

in nature; there is no assignment statement, and therefore no notion in the lan-

guage of updatable memory.

Initially, an ; - HYBRID program is executed by a single process, referred

to as the outermost process. The outermost process will generally create child

processes to assist in the computation; a child process is created for each call to

a non-primitive function, although many of these process creations are removed

from the final code by optimisation. A child process is passed a closure to

execute, together with an argument, and the address of an empty cell in which

to return the result of calling the function.

It is necessary to guarantee that every process will return a result, in all but

two circumstances. The first of these is for the outermost process, which need

not return a result if a top-level declaration is being established. The second is
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when a computation is non-terminating; an infinite computation will result in

any processes waiting for the outcome to be suspended indefinitely.

The compiler guarantees that all execution paths through the code of a func-

tion will encounter a Result instruction, causing a result to be passed to the

caller, before causing the process to terminate. Initially, all instances of Result

are followed immediately by Stop, although optimisation can result in code con-

taining a Result followed by, in some cases, considerable computations.

In unoptimised cases, a parent process allocates an element of its stack to be

used as a result location by a child process. The code generator must guarantee

that such a location will be examined by the parent (causing its suspension, if

necessary), before the location is overwritten or the stack is reclaimed. It might

initially be thought that an expression such as

let x = e in 7

would violate such a constraint; however, the storage scheme used for local vari-

ables (section 2.4.2) avoids stack interference in such cases. An expression of the

form

let (_) = e in 7

(where (_) represents a "don't-care" value) results in the code for e being re-

moved by optimisation, again avoiding interference on the stack.

In optimised cases, a. parent may create a child process which will return a

result into some structure on the heap. In this case, any empty location in a

structure is either assigned by the process that claimed the structure, or is a

result cell to be assigned by some child process.

It is guaranteed in the 'compilation process that:

• every process (except the outermost) will return a result, or else proceed

indefinitely;
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• any result returned to an element of a stack will be examined before the

element is overwritten or the stack reclaimed;

• every empty location in structures claimed from the heap will be assigned

by the claimant, or is the result destination for some descendant of the

claimant;

• no (non-empty) value assigned to a heap element will be overwritten by

another value at some later time.

Note that stack values may be overwritten, simply in the process of the stack
being collapsed and re-used.

The top-level environment is implemented as a stack which grows indefi-

nitely during use. Only the outermost process has direct access to the environ-

ment stack, and increases the stack size explicitly by means of the Infla.teEnv

instruction (section 2.4.1). Values in the top-level environment may be overwrit-

ten when a top-level declaration fails due to a pattern-matching failure. In this

case, the identifiers established in the binding are unconditionally bound to the

fault-value

(fa.ult {decl})

regardless of any previous values for these identifiers present in the environment

(section A.6). This overwriting is guaranteed to be safe, since only the outermost

process has direct access to these locations.

2.3.2 Profiling and Stack Determination

An executing program consists of a number of cooperating processes, each of

which has a section of store to use as a local stack. For each newly created

process, the size of the stack it requires must be determined before the process

begins execution. Since every function is executed on a separately allocated

portion of stack, the stack space required for each individual function invocation

can be determined statically.
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The abstract instructions Code and Fork (section 6.3) contain a size field

which represents the maximum amount of stack space required by a process

executing a function (in the case of Code) or a branch of a clause (in the case

of Fork). When the compiler generates these instructions, the size field is left

blank; the size is determined by a separate profiling stage which examines the

generated code.

Associated with each instruction is an effect value, which is the amount by

which the execution of the instruction will alter the size of the stack. The effect of

each instruction can be determined statically. The profiler examines the code of

the function, taking into account all possible execution paths through the code,

and derives the maximum stack size by examining the effect of each instruction.

This process imposes some restrictions on the structure of the code generated.

If an instruction can be encountered by more than one path (for example, as the

destination of a jump) then the stack level at that instruction must be the same

for each possible path. This allowsthe stack size to be determined within a loop,

without knowledge of how many times the loop is executed".

2.3.3 Indirection Vectors

The syntax of the various instructions described below should be fairly self-

explanatory. However, the notion of an indirection vector requires explanation.

An indirection vector represents the address of some cell in the global address

space. It consists of a register name together with a number of non-negative

integer offsets. The register is assumed to contain the address of some cell

generated by, for example, claiming some storage space from the heap. The

integer offsets are interpreted as address indices. The first offset denotes the

cell addressed by indexing the register address by the integer value. For each

2This restriction is lifted in the case of terminating instructions such as Stop, in the

interests of code efficiency.
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subsequent offset, the cell referenced by the previous offset is expected to contain

an address to be indexed by the offset. Any indirection vector will contain at

least one offset.

An indirection vector will be written in one of the following forms. The form

reg/ Xl / ••• / Xi represents an indirection vector comprising a register reg and a

series of integer offsets Xl to Xi (i > 0, Xi ~ 0). In the form reg/x', the term z'

represents a series of offsets Xl / ••• / Xi, The term z: x' represents a series of offsets

the first of which is x, and the rest of which are represented by x' ('.' represents

"cons"). The term x': :1/' represents a series of offsets x' followed by a series of

offsets 1/' (': :' represents "append").

2.4 Compilation Details

A program written in 1'-HYBRIDmay either be an expression to be evaluated, or

a declaration to be established. In either case, the program is initially executed

by a single process which will generally cause the creation of other processes to

assist in the computation. The 1'-HYBRID interpreter considers the execution

of a program to be finished when the process set is empty (ie. all processes have

terminated). However, it is possible to conceive a system where expressions and

declarations can be entered while previous ones are still being evaluated. The

compiler is trusted to generate code which will not result in deadlock, based on

the concurrency model outlined in section 2.3.1.

2.4.1 Simple Expressions and Declarations

A program is initially executed by a single process. This process is created with

the register R.Aesul t pointing at the top of the global environment stack. For

a simple top-level expression (one without calls to non-primitive functions), a

single process calculates the value using its local stack space for intermediate re-

sults (figure 2-1). The instruction Stop terminates the process. The instruction
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.. 1 + 2 + 3 + 4;

L1: Int 1;
Int 2;
Plus;
Int 3;
Plus;
Int 4;
Plus;
Result;
Stop;

> 10 : 1nt

Figure 2-1: A Simple Expression

Result copies the value from the top of the local stack into the cell pointed at by

the register R...Result (in this case, the top of the top-level environment stack).

The instructions Result and Stop generally occur together, but optimisation

can result in code where a Result is executed by a process which can then go

on to perform other computations before being terminated by Stop.

Top-level declarations are stored in a top-level environment. Values in the

environment are made available to any process requiring access to them in the

followingmanner. The outermost process created to evaluate an expression or

declaration is given a pointer to the environment in the register R...Resu,lt.This

process may directly access values in the environment by indirection vectors of

the form Result/; (for; 2: 1). Any other process which requires an environmen-

tal value must be passed the value within a closure, since its R...Result register

will point to its parent's stack (section 2.4.3) or some cell claimed from the heap

(section 3.2).

The interpreter expects the value of a top-level expression to be placed at

Result/O by the outermost process, using the instruction Result. The values

generated for a top-level declaration are placed in Resultli for; 2: 1, by means

of Moveinstructions; Result/O cannot be used because top-level declarations
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let x • 1
and y • false
and z • nil;

L7: InflateEnv 3;
Int 1;
Move Result/1;
False;
Move Result/2;
Nil;
Move Result/3;
Stop;

For x, y, z

Store x

Store y

Store z

>
>+
>+

x • 1
Y • false
z • [] :

int
bool

a List

Figure 2-2: A Top-Level Declaration

may reference the last top-level expression. The instruction InflateEnv (used

by the outermost process) informs the interpreter that the top-level environment

size is to be increased to make space for new bindings (figure 2-2).

2.4.2 Structures and Local Declarations

Structures are created in an unconventional manner. The block of store to be

used for the - structure is initially claimed from the heap. Elements of the

structure are then assigned explicitly. This method of structure building allows

a structure to be assigned by a number of concurrent processcc.(section 3.2),

without the processes interfering with one another. For untagged structures

such as tuples and lists, each location in the block is assumed to be empty. For

tagged structures such as variants, the tag field (as specified in the instruction)

is assumed to be assigned (figure 2-3).

Values declared within a local declaration are not stored directly on the

local stack as might be expected, but are instead stored within a block of store
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(1. nil. (2. 3»:

L1: TupleCell 3:
Int 1:
Move Local/i/O:
Nil:
Move Local/1/1:
TupleCell 2:
Int 2:
Move Local/i/O:
Int 3:
Move Local/1/1:
Move Local/1/2:
Result:
Stop:

Structure for result

First element

Second element
Structure for (2. 3)

Third element

> (1. []. (2. 3» (int. a List. (int. int»

Figure 2-3: Simple Structures

claimed from the heap. Although the stack might be used in simple cases where

the bound value is calculated by the process establishing the binding, the heap

must be used when a bound value may be created by some other process. For

an expression of the form

let x = el
and y = e2
and

in 1

any processes created for eh e2, ••. must not interfere with the parent's stack,

since the values attached to the bound variables are immediately discarded.

The use of a section of heap for variable bindings is considered preferable to

forcing the parent process to await all the bindings, since evaluation of the

bound expression (in this case, the 1) can be performed independently of the

variable bindings. The use of processes to establish local bindings is discussed

in section 3.2.
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x + y where x • 1 and y = 2:

L7: Block 2:
Int 1:
Move Local/i/O:
Int 2:
MoveLocal/1/1:
From Local/O/O:
From Local/1/1:
Plus:
Deflate 1. 1:

L6: Result:
Stop:

For x, y

Store x

Store y

> 3: int

Figure 2-4: A Local Declaration

The instruction Block claims a pieceof store of the appropriate size; the block

has the same form as that used for structures. Subsequent Moveinstructions

assign the individual cells of the block. From instructions are used to retrieve

the values of the identifiers (figure 2-4).

2.4.3 Functions and Function Calls

An expression denoting a function evaluates to a closure. A closure contains the

code of the function, together with a set of values denoting the free variables

of the function. The instruction Code allocates a block of store from the heap

and assigns the appropriate location of the block with a pointer to the code.

The environment of the function (containing its free variables) is built explicitly

using a Block instruction followedby assignments to the block. The block is then

incorporated into the closure by means of a Closure instruction. The instruction

NullClosure may be used for functions which do not contain free variables.

The code generated for a function body assumes that the argument to the

function will be passed in the register R..Arg.The parent's stack is not used; this
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allows the parent to immediately continue execution, since the value in R..Argis

guaranteed to be passed immediately to the child process. The function's first

action is generally to remove the argument from R..Arg,since this register will be

used to pass arguments in subsequent function calls. It is also assumed that the

free variables of the function are pointed to by the register R_Global; Global/O

is assumed to be the value bound to the first free variable, Global/1 to the

second, and so on. The body of the function will, in general, contain a number

of branches, each with a distinct argument pattern. The code generated will

contain a number of sections, one for each branch of the function. Each such

section will contain code to decompose the argument according to the structure

of the formal parameter. Failure will cause control to pass to the next branch,

after the stack pointer (R..Local) has been repositioned to point to the bottom

of the stacks. It is assumed that a process executing a function is required to

return the result to the cell pointed at by the register R...Raault. Each branch

of the function is compiled into a code sequence terminated by the instructions

Result and Stop (figure 2-6).

A process is created for every call to a non-primitive function. The first

stage of the function call is the assignment of the closure to be activated, and the

argument to be passed, to the registers R..Funcand R..Argrespectively. A process

is then created to execute the function by means of the instruction PuahProcasa

(figure 2-5).

The assignment to R..Func and R..Argis done in a particular order to avoid

corruption of these registers during curried and nested application. If the register

values are created and assigned one after the other, an expression such as

f(g(x»

will result in code of the form

SStudy of the efficient compilation of patterns is considered beyond the scope of this

thesis.
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g nil;

L1: From Result/1;
Nil;
MoveReg R..Arg;
MoveReg RJ'unc;
PushProcess;
Result;
Stop;

Retrieve g
Argument

Process for g nil ...
Return g nil

> 1: int

Figure 2-5: A Simple Function Call

Retrieve f;
Move RJ'unc;
Retrieve g;
Move RJ'unc;
Retrieve x;
Move R..Arg;
PushProcess;
Move R..Arg;
PushProcess;

resulting in corruption of RJ'unc.

The child process created by PushProcess is given initial register values as

follows:

• The program. counter (R_program) references the first instruction of the

activated function;

• The environment register (R_Global) points to a block containing the

global variables of the function;

• The stack pointer (R-Local) points to the bottom of a newly allocated area

of store to be used for local stack space;

• The result register (R..Result) points to a memory cell to be used to pass

back the result of the function;
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• The argument register (R...Arg)is inherited directly from the parent.

The execution of a PushProcess instruction causes the parent's local stack

to rise by one element, and the new element to be assigned empty. This cell

is the one pointed to by the child's R..Result register. When the child process

terminates, therefore, the result of the function application will have been placed

on the top of the parent's stack. Any attempt in the meantime by the parent to

access this value will cause the parent to suspend until the value arrives. Note

that the parent can perform other computations before accessing the result of the

function call. IT both arguments to a binary operator are function applications,

then a process will be created for each before the parent attempts to access

either result cell. In addition, many occurrences of PushProcess are removed by

optimisation, so that the child process can assign the result of its computation

directly to a structure on the heap without any intervention from the parent.

Allowing a child process to directly access its parent's stack is avoided in

the case of local declarations (section 2.4.2), since the parent process is not

guaranteed to examine all the results computed by its children. In the case of

PushProcess, however, it is guaranteed that the parent will always examine the

stack cell allocated for the child, before attempting to re-use that portion of the

stack. For example, in the case of a binary operation such as

f(x) * g(y)

the parent process will allocate a stack cell for, and create a process to evaluate,

f(x), before going on to evaluate g(y). The result off(x) will then be accessed

by the parent, causing suspension if necessary.
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let g(a : at) • a
gC) =- x:

L7: InflateEnv 1:
L6: Code 2 [

L6: Block 2:
Frodeg R..Arg:

Result:
Stop:

L3: Fall 2:
Triv:
Frodeg R..Arg:

Result:
Stop:

]:

Move Result/1:
Stop:

> g =- A (int List -+ int)

Figure 2-6: A Function Definition

30

For definition 01g
Code lor g
Storage lor a, a t

First branch

Decompose argument,
iump to L3 il impossible

Retrieve a

End 01First Branch

Second branch:
Ignore argument, retrieve)

Closure lor g



Chapter 3

Optimisation and Concurrency
Extraction for 1"-HYBRID

This chapter describes the optimisation phase of the 1- HYBRID compiler. Op-

timisation is performed on the abstract machine code based purely on the code

itself, regardless of the language constructs the code represents.

Although the code generated by the compilation phase of the compiler is exe-

cutable in its own right, it will make very bad use of the concurrent architecture

used to execute it. In particular, the program will execute almost totally se-

quentially, since a process which executes a PushProces8 instruction to activate

a f~nction will, in general, immediately demand the result of the function, and

so wait for the result to arrive without doing any useful work. In addition, the

fact that structure assignment is performed by means of Moveinstructions means

that no concurrency would be exploited in assigning the elements of a structure;

for example, in an expression such as

ceo , gO)

the result of f 0 is sought for the first element of the structure before evaluation

of gO commences.

This chapter describes a series of optimisations, some of which are actually

performed during the generation of the abstract code, and some of which are

applied once the code has been generated. The purpose of these optimisations is

31
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to increase the efficiencyof an executing program by increasing its concurrency

utilisation.

Optimisation results in occurrences of PushProcess being removed from the

code, and generally being replaced by some other form of process creation. The

unoptimised code is concurrent in the sense that a number of processes are cre-

ated to execute a program, but very few of the processes are active at anyone

time. An executing program will consist of a small number of active processes

together with a large number of processes awaiting function results. The opti-

miser does not increase program efficiencyby increasing the number of process

creations occurring in the code; rather, it attempts to alter the code generated

so that each process can be kept active whilst its offspring is executing. The
01

result of such alteration is that the same numberj]or fewer) processes are over-

lapped to a greater extent in the execution of a program, increasing the number

of processes active at anyone time. H any process cannot be kept busy whilst

its offspring is executing, then the process creation is removed from the code,

and the parent process performs both tasks. As a result of these optimisations,

the number of processes in the system at any time may increase, since a single

parent process is free to create a number of offspring without waiting for each

one to terminate.

Subsequent examples show code which has been optimised.

3.1 Optimisation Strategy

Simple tail-recursion optimisation is performed during code generation. H a

function (or top-level expression) performs a function application as its last ac-

tion, then the function call can be performed as a tail-recursion, rather than by

the creation of another process. The instruction TailApply causes control to

pass to the function pointed to by RJ'unc. TailApply has the effect of replacing

the process's local stack with a new stack of the correct size for the function to

be executed. However, a simple optimisation can result in the stack being used
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explode "Foo":

L1: From Result/5:
Str "Foo":
MoveRegR..Arg:
MoveRegR..Func:
TailApply:

Retrieve explode

> [70: 111: 111] int List

Figure 3-1: Simple Tail Recursion

for a number of consecutive functions. It is necessary for the process to maintain

a record of the size of the stack currently allocated; if a function invoked by tail-

recursion requires a larger stack, then the current stack is replaced, otherwise the

same stack may be used (with R...Localreset accordingly). Using such a system,

a process would eventually allocate a stack large enough for any set of functions

featuring mutual tail-recursion. Figure 3-1 illustrates simple tail-recursion.

All the optimisations performed by the compiler are peephole optimisations.

The notation

Xl; ... ; Xn ==> Y1; ... ; y",

with n > 0, m > 0 represents the replacement of the instructions Xi by the

instructions y; (1 s i s n, 0 s j s m).

3.2 Concurrent Structure Assignment

Structures are created in two stages. The first stage is the allocation of an empty

structure from the heap, and the second stage is the assignment of the elements

of the structure. Typically, a process which is creating a structure will assign

the elements of the structure one by one; if one of the elements is the result of a

function call, then the process will be suspended until the result of the function
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has been returned. With the structure assignment optimisation below, function

results within structures can be assigned by the process executing the function,

leaving the calling process free to continue execution.

The structure assignment optimisation is represented thus:

PushProcess; ==> VecProcess -> Local/(x-1).x'
Move Local/x.x'

PushProcess; ==> VecProcess -> reg/ x'
Move reg/x'

The instruction

VecProcess -> vec

creates a process to execute the function in R..Func in the same manner as

PushProcess, but the result register of the child process points at the cell de-

noted by vee, rather than the top of the parent's stack. The parent's stack size

remains unchanged.

The first optimisation deals with a structure accessed through the local stack.

The VecProcess instruction assigns the element of the stack directly. Note that

the structure offset is reduced by one in the optimised code, since the parent's

stack does not inflate. The second optimisation deals with a structure referenced

through some other register (for example, R...Result). The function calls in

the example (figure 3-10) result in the creation of processes which assign the

structure directly. Each VecProcess creates a process which is responsible for

assigning the appropriate part of the structure.

Since the values bound within local declarations are held in structures, the

same optimisation results in concurrency in declarations where the right hand

side is a function call (figure 3-11). In this case, each call to the function f results

in a process being created by VecProcess which is responsible for assigning the

appropriate part of the declaration block.
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3.3 Structural Tail Recursion

The optimisations presented in this section are performed on the assumption

that "re-using" a process is preferable to the creation of a new process. This

is justified by aim of keeping the number of idle processes to a minimum; in

addition, the re-use of stack areas afforded by tail-recursion avoids fragmentation

of store.

Structural tail-recursion is a generalisation of conventional tail-recursion. A

function call is defined to be structurally tail-recursive if the enclosing function

performs no further action apart from assigning the function result within a

structure. For example, a function declaration such as

F(x) • 1: g(x)

contains a structural tail-recursive call to g, since the only action performed after

the activation of g is an assignment to the list cell.

There are two optimisations associated with the extraction of structural tail-

recursion. For the first, it should be observed that each execution path through

the code for a function or top-level expression is terminated by the instructions

Result and Stop. The optimisation

PushProcess: ==> TailApply
Result:
Stop

is performed during code generation, so this sequence need not be considered for

optimisation. The first optimisation is

VecProcess -> vee; ==> Result:
Result VecProcess -> vee

The Result can be brought forward since the top of the stack is unaffected

by the VecProcess (the code generator guarantees that vee is not Local/O).
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Intuitively, this optimisation allows a function or top-level expression to return

a structured result before assigning the final element (if it is a function call).

This optimisation will generally result in the sequence of instructions

VecProcess -> vee; Stop

since the Result instruction has been brought forward. This sequence, however,

contains a redundant process creation, since the parent process creates the child

process and immediately terminates. Therefore, a second optimisation is applied:

VecProcess -> vee; ==> SetResult vee;
Stop TailApply

This optimisation allows the parent process to perform the task initially intended

for the child. The SetResult instruction reassigns the parent's R-Result register

to point at the cell referred to by vee. The TailApply then begins execution of

the function.

As a result of the optimisations above, a function which returns a structure as

result will be made tail-recursive if the last element of the structure is a function

call. This allows, for example, list generating functions to be tail-recursive. In

the example of figure 3-12, the function Toexecutes iteratively to generate a list.

The final actions performed before the iteration (the TailApply) are to return

the current list element (using Result), and to set the result pointer to reference

the tail of this list element, ready for the next iteration (using SetResult).

The above optimisation deals with the situation where the last element of

a structure is assigned the result of a function. Another optimisation can be

applied in the more general case where the function call may be quite deeply

nested within a structure, as long as the call occurs as the last evaluation before

the structure is constructed:

VecProcess -> Local/O.x'; ==> Move Local/y.y';
Move Local/y.y' VecProcess -> Local/(y-1).y'::x'
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1 : 2 : 3 4 To 6;

L1: ConsCell;
Int 1;
Move Local/1/0;

Rest o/list

From Result/1;
Int 6;
MoveReg R..Arg;
MoveReg R_Func;
Move Local/1/1;
Move Local/1/1;
Move Local/1/1;
Result;
SetResult Local/O/1/1/1/1:
TailApply;

Retrieve To

Return [1; 2: 3; 4 I e]

Activate To

> [1; 2; 3; 4; 6; 4; 3; 2; 1] int List

Figure 3-2: Deep Structural Tail Recursion

This optimisation acts on a function call followed by a series of Move instructions.

It attempts to propagate the function call to the end of the execution path, so

that it can be transformed into a tail-recursion. The indirection vector associated

with the VecProcess gets longer at each optimisation, since the result cell is

further embedded within the structure (figure 3-2). The optimisation is intended

to be followed by an application of VecProcess ==> TailApply.

3.4 Application Optimisation

If a function call is required immediately before the computation can continue,

then the result of the function call will be placed on the top of the stack, rather

than being stored within some structure. In this case, the initial optimisation

PushProcess ==> VecProcess cannot be applied, and the instruction performing
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the function application remains a PushProcess (for example, the Fibonacci

function of figure 3-13). In many such situations, it is unnecessary to create a

process to perform the function call, since the parent process will immediately

wait for a result from the child process. There are circumstances where the

process creation should be preserved, however. One of these is when the parent

process can do usefulwork while the child is calculating a result. In an expression

such as

f(x) * g(y)

the code generated has the form

Assign x to R-Arg, f to R_Func
PushProcess;
Assign y to R-Arg, g to R_Func
PushProcess;
Times;

The first PushProcess creates a process to evaluate f (x): the parent process can

then proceed to the evaluation of g(y). However, a process creation for g(y) is

unnecessary, since the parent process will immediately await the result returned

in order to perform the multiplication.

A final optimisation is therefore performed to remove occurrences of PushProc ess

which will cause suspension of the parent until the child returns its result. In-

stead of increasing the concurrency in an executing program, this optimisation

serves to remove idle processes in the system.

PushProcess; ==> Apply;
[stack access] [stack access]

[stack access] represents any instruction which attempts to read the top element

of the stack (Local/O). The creation of a new process to perform the function

call is considered unnecessary, since the parent process will immediately wait for

the child process.

The instruction Apply is used to invoke a function without the overhead of

creating a process, although a new portion of stack is allocated for the function.
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The process executing the Apply instruction saves its current state, and then

begins execution or the function. The saved state is restored when the function

terminates.

Each process has a register R_Caller which is used exclusively for saving

process states. When a process is initially created, the value of R_Caller is nil.

Each time an Apply is encountered, R_Caller is assigned a pointer to a portion

of store which is then used to save the state (registers) of the current process.

Before the current process state is saved, the stack size is increased by one; the

top of the stack can then be used for the result of the function call (the function

being executed on the newly allocated portion of stack). Since each process state

suspended by Apply has its own piece of local stack space, a process which has

executed a series of Apply instructions can be viewed as having a single stack

consisting of a number of segments, one attached to each saved process state.

Several executions of Apply will result in a list of saved process states. When

a process terminates (by executing a Stop), any previously saved state (stored in

R_Caller) is resumed, with the program counter (R_program) advanced by one

instruction. Each Stop instruction encountered will cause a previously suspended

state to be resumed; if there is none, then the process terminates.

As a result of this optimisation, the expression

f(x) * g(y)

will be transformed into a sequence of instructions of the form

Assign x to R..Arg,f to R_Func
PushProcess:
Assign y to R..Arg,g to R_Func
Apply:
Times:

The second PushProcess instruction (followed immediately by the multiplica-

tion) is replaced by Apply. In the example of figure 3-13, the function Fib

performs two recursive calls to itself. Because the first call is followed by an

unrelated activity (in this case, setting up the second call), a PushProcess is
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used. Because the second call is followed immediately by Plus, which requires

the result of the call, the second call can be performed using Apply.

3.5 Control of Concurrency

Although the 1'-HYBRID language contains no explicit constructs for controlling

the manner in which a program executes, there must be some means to control

the concurrency exploitation for any given program. The program may have

undesirable properties when it is executed (for example, the creation of large

numbers of suspended processes), and these properties may not be detectable

statically when the program is compiled. For example, consider a expression

such as

if f(x) then g(x) else hex)

Under some circumstances, it may be desirable to generate the results of

g (x) and h (x) before the completion of f (x) (for example, if f, g and h all rep-

resent considerable computations, and there are sufficient computing resources

to execute them in parallel'}. Under other circumstances, it may be desirable

to await the result of f before invoking either g or h (for example, if one of the

latter represents a non-terminating computation).

The concurrency exploited by an executing program reflects on the optimi-

sations that have been performed on the code of the program. The concurre~cy

utilisation may therefore be affected by altering the style of the program to make

it more or less amenable to optimisation.

!This expression may be invoked a considerable number of times within, say, a re-

cursive function.
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3.5.1 Abstracted View of Optimisation

The code generation stage of ; - HYBRID compilation results in code which will

execute concurrently, but will make very bad use of the available resources. The

optimisation stage of the compiler results in code with the following properties:

• A process will be created for a function call which appears as an element

of a structure;

• A function call which occurs as the last operation (other than structure

building) within a function or top-level statement will be executed by the

calling process;

• Any function call whose result is immediately required by the caller is

performed directly by the caller, using Apply;

• Other function calls are performed by a new process created with the

PushProcess instruction.

The concurrency exploitation of a program can therefore be viewed as being

dependent on the number of function calls embedded within structures or local

declarations.

The optimisation techniques presented earlier in this chapter should be con-

sidered in a general context, and not specifically in the context of sections 3.5.2

and 3.5.3. It is quite possible that different types of application would bring

about ways of controlling the concurrency of programs, using various coding

techniques quite different from those presented here.

Section 3.5.2 presents techniques for increasing- the concurrency utilisation

within a program, or for ensuring that the processes created are kept busy.

Section 3.5.3 presents techniques for decreasing concurrency. It should be noted,

however, that any technique applied to increase the concurrency of an application

may be explicitly avoided to deliberately decrease the concurrency, and vice

versa.



Chapter 3. Optimisation and Concurrency Extraction for 1-HYBRID 42

3.5.2 Increasing Concurrency

This section identifies two techniques for increasing the concurrency in a pro-

gram. The first technique involves the use of local declarations to indicate that

certain expressions should be executed in parallel with the context in which they

are referenced; this technique follows as a consequence of the optimisation pre-

sented in section 3.2. The second technique attempts to remove unnecessary

dependencies between bound variables and the values bound to them, by delay-

ing as long as possible (or omitting completely) the pattern matching process

performed for the binding.

Local Declarations

The use of a local declaration for the result of a function call will force a process

to be created for the call (if this does not happen already). This increases the

concurrency of the program in two ways:

• The calling process can continue execution until the value of the declared

identifier is required;

• If the identifier is bound to a structured object, the child process can

continue to create the object whilst the parent object "consumes" it.

If it is desirable to initiate a computation sometime before the result is re-

quired, then the computation should be bound to a local variable. Recall (sec-

tion 2.4.2) that values for local declarations are stored in a block which is claimed

from the heap. Assignments to such a block may therefore be performed by

VecProcess instructions, when the value being assigned is the result of a func-

tion call. In figure 3-3, the identifiers f 1 and f2 are used to begin calculation

of Fib 10 and Fib 12 before evaluation of the condition. Note however that

the computations bound to f 1 and f2 both run to completion regardless of the

outcome of the conditional expression.
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let
f1 = Fib 10
and f2 = Fib 12

Create computations
"f1" and "f2"

in
if Fib 8 > 100 then f1 else f2;

> 144 int

Figure 3-3: Background Computations

An argument to a function is passed in the register R..Arg. The calling pro-

cess (or process context2) places the argument into R..Argbefore creating a new

process (or process context) to execute the function. This implies that a function

cannot be invoked until its argument (or the outermost structure of its argument,

if structured) is present, since the R..Argregister of a process cannot be assigned

remotely by some other process.

If a function returns a structure as result, then the result may be returned be-

fore all elements of it are defined; the undefined elements correspond to processes

still involved in the execution of the function (see section 2.3.1).

For an expression of the form

f (g(x»

the optimiser uses Apply to evaluate g (x), and again to activate f,. since both

arguments (x and g(x») are needed by the parent process, which places the

value in R..Arg. The optimisation is valid if g returns a single scalar result,

since the outermost process would in any case be forced to await the result of

g(x) before applying f. However, if g returns a structure as result, it would be

possible for f to commen~e execution while g was still executing (because the

child will be optimised to return a result and then continue execution); f could

commence as soon as the outermost structure of g's result was returned. Consider

2Use of Apply results in a new context being generated for the current process.
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let ree Iner nil = nil
Iner(x : x') = (x + 1) : Iner x';

> Iner = .A (int List -+ int List)

Figure 3-4: The function Incr

a list processing function such as Incr (figure 3-4). If a call to Incr occurs

as a function argument, then Apply will be used instead of a process creation

(figure 3-14). In this case, each of the outermost calls to Incr is suspended

until the next innermost call has executed to completion. It would be possible

to overcome this problem by preserving the PushProcess instructions in such

cases; the optimisation

PushProcess ==> Apply

could be applied only when the function being activated returned an unstruc-

tured resulr", However, such an approach reduces the degree to which the con-

currency of the function call can be controlled. In this situations, the program

can be restructured in order to reclaim the concurrency removed by the Apply

optimisation.

In order to gain the latent concurrency in an expression featuring nested func-

tion calls (by «mowing each function to generate partial results for consumption

by its parent), a local declaration can be used within the argument (figure 3-

15). Each local identifier is allocated a Block of one element, which can then be

assigned using a VecProeess instruction, allowing the separate incarnations of

Iner to execute in parallel.

The predefined composition operation "0" contains such a local declaration,

being defined by

3A property which can be derived from the type of the function.
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(f 0 g) x • f(y where y • g x)

This forces the creation of a process for each function of the composition.

The example of figure 3-15 could have been written

(Incr 0 Incr 0 Incr) [1; 2; 3]

with no loss of concurrency.

Parameter Decomposition

A function will, upon invocation, attempt to decompose its argument in order

to bind parts of the argument to lambda-bound identifiers. The execution of a

function will therefore be suspended if any part of the argument to be bound to

an identifier is not present (is empty).

Concurrency will be limited by:

• Having a function decompose its formal parameter to a greater extent than

necessary;

• Having a function access a component of a formal parameter identifier

before necessary.

These points present two ways to increase the concurrency within a function

call. Each involves the degree to which formal parameters are decomposed, and

where in the body of the function the decomposition takes place. The following

two functions are equivalent:

F1(bind) = ...• f (e) • [1]
[2]F2(id) = ...• f (e where bind • id) •...

Function [1] will, however, attempt to decompose its actual argument immedi-

ately, possibly suspending the execution of the entire function. Function [2]will

delay the decomposition until it is necessary.
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The second improvement comes about by delaying reference to the argument

as long as possible. Of the two functions

F1(id) "" (e where bind » id) + f 0 [1]

[2]F2(id) = f 0 + (t where bind » id)

function [2] is likely to result in greater concurrency, since the decomposition of

the argument is delayed until after the evaluation of f ().

It may also be advantageous to re-order arguments to commutative binary

operators when one argument is a parameter decomposition. Of the two expres-

sions

(tl where bind = id) + t2 [1]
[2]t2 + (tl where bind = id)

expression [2] evaluates (or creates a process to evaluate) t2 before attempting

to decompose id.

Since a function attempts to decompose its argument according to identifiers

in, and the structure of, its formal parameter, the nature of the formal parameter

will also affect the concurrency by altering the degree to which a function's

actual parameter must be present before the function can execute. Consider the

functions defined by

F1(x _) = x [1]

F2(x _ . _) ""x [2]

F3(x y z) ""x [3]

Function [2] performs greater decomposition than function [1]. An argument of

the form
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(where E represents empty) will suspend function [2], although function [1]will

immediately execute and return the result el. Function [2]will execute when

presented with an argument

However, function [3] will suspend, since it will attempt to assign the empty

parts of the structure to the local variables y and z.

3.5.3 Decreasing Concurrency

In many circumstances, the assumptions made by the optimiser as to the concur-

rency desired within a program may be incorrect. In some such circumstances,

the optimiser may attempt to extract excess concurrency from a program. The

repercussions of this will be

• A large number of idle processes in the system (which the optimiser has

assumed can be kept busy, when this is not the case);

• An excessive number of active processes in the system (a combinatorial

explosion arising from unnecessary or undesired process creation).

In these cases, it is necessary to restrict the concurrency extracted from the

program. Again, this is done by altering the style of the program.

This section presents an approach to concurrency control whereby functions

written in a particular way can be used to control the concurrency of a program

without affecting its meaning. Such functions might be viewed as annotations;

however, two points serve to differentiate the approach presented here 'with the

use of annotations:

• The WAIT and FLATTEN functions presented beloware written in the ;-HYBRID

language itself; this shows that coding techniques can be used to reduce

concurrency without recourse to "ad-hoc" features;
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• The concurrency control comes about natu.rally as a consequence of the

optimisation techniques presented above, rather than being a property of

the annotations themselves.

An additional advantage to the approach presented here is that functions

such as WAIT and FLATTEN can be written in 1'-HYBRID as required to have any

desired effect.

The Functions WAIT and FLATTEN

Concurrency results from function calls which occur in elements of structures or

local declarations, since the elements of a structure or declaration block may be

assigned independently by separate processes. A way of reducing the concurrency

is force the creation of one process to await the completion of another. This will,

for example, give complexity savings within recursive functions. In an expression

such as

some method is required for forcing termination of the processes evaluating el

before commencing evaluation of e2.

The initial approach is to delay the evaluation of e2 until id is assigned by the

processes evaluating el. This can be achieved by the introduction of a curried

function of two arguments:

let WAIT (_) x = x;

> WAIT = A: (a -+ (~ -+ ~))

A call to WAIT with one argument evaluates to the identity function. Therefore,

in the expression

let id = el
in WAIT id e2
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let ree Fib 1 = 1
Fib 2 = 1
Fib n = let x = Fib(n - 1)

in WAIT x (x + Fib(n - 2»;

> Fib = A (int ~ int)

Figure 3-5: Fibonacci Using Minimal Concurrency

the value of id is required in the R..Argregister for the call to WAIT, in order to

yield a function to be applied to t2. The evaluation of t2 is therefore delayed

until id is present.

Use of the function WAIT allows the Fibonacci function of 3-13 to be rewritten

so as to allow almost sequential execution (figure 3-5).

When a declaration introduces several identifiers, various uses of WAIT can

be used to selectively control the concurrency required. It is usually necessary

to rewrite the declaration using ene (section A.6), together with some renam-

ing to avoid name clashes, so that each individual declaration can express its

dependency on the termination of some previous one. Once this has been done,

a declaration can be modified in a number of ways. Figure 3-6 illustrates three

declarations with different dependencies between the expressions being evalu-

ated. In declaration [1],evaluation of th t2 and ts occurs in completely parallel.

In declaration [2], evaluation of t2 awaits the value of tl. In declaration [3], tl

and t2 are evaluated in parallel, but evaluation of ts only commences when both

values have arrived. The use of WAIT does not affect the meaning of the program,

since

WAIT t

is an identity function, for any (terminating) value of t.

The WAIT function suspends evaluation of its second argument until the first

argument becomes instanced; however, complete evaluation of the first argument
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let idl == el
and i~ == e2

in es [1]

let idl == el
ene i~ == WAIT idl e2

in es [2]

let idl == el
and i~ == e2

in WAIT idl (WAIT i~ es) [3]

Figure 3-6: Various Uses ofWAIT

let ree LongList o • [1]
LongList 1 == [1]
LongList n • let x • LongList(n - 1)

in WAIT x (x :: LongList(n - 2»;

> LongList == A (int -+ int List)

Figure 3-1: An Inadequacy ofWAIT

may be unfinished when evaluation of the second argument begins". In the

function LongList of figure 3-7, the use of WAIT will have little effect, since

it will only cause the evaluation of LongList (n - 2) to pause until the first

element of LongList(n - 1) arrives.

In order to overcomethis problem, it is necessary to await all the values in

a structure, rather than the outermost structure itself. This can be achievedby

the use of a function for flattening structures.

An identity function

FLATTEN : Q -+ Q

4In particular, this will happen if the first argument is structured.
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let {ree FLATTEN_List nil = nil
FLATTEN_List L = WAIT (FLATTEN_List(tail L» L

-- Flattens a list

ene FLATTEN_List_List •
FLATTEN_List 0 (map FLATTEN_List)}

-- Flattens a list of lists

and FLATTEN_Tuple3(x. y. z) =
WAIT x (WAIT Y (WAIT z (x. y. z»);

-- Flattens a tuple of three elements

> FLATTEN_list = A: (aList -+ a List)
>+ FLATTEN_list_list = A (P List List -+ P List List)
>+ FLATTEN_Tuple3· A: «~. 6. €) -+ (~. 6. f»~

Figure 3-8: Various FLATTENfunctions

is written to take a structure as argument and return an identical structure as

result. However, FLATTENis defined so that the result is returned only when the

argument is complete.

In practice, a number of FLATTENfunctions need to be defined, one for each

distinct structure of object". Figure 3-8 illustrates FLATTENfunctions for objects

oftype a List, a List List and (a. P. ~). Using one of these, the LongList

function can be rewritten in a sequential manner (figure 3-9).

Used in conjunction with each other, WAITand FLATTENcan havewide rang-

ing effects on the concurrent behaviour of -;- HYBRID programs.

5See chapter 7 for a brief discussion of this topic.
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let rec LongList 0 = [1]
LongList 1 = [1]
LongList n = let x = FLATTEN_List(LongList(n - 1»

in WAIT x (x :: LongList(n - 2»;

> LongList = A (int -+ int List)

Figure 3-9: A use of FLATTEN

(f 1. f 2. f 3) where f x· (x. -x);

L7:
Code for f

TupleCell 3;
From Local/1/0;
Int 1;
MoveReg R-Arg;
MoveReg R_Func;
VecProcess -> Local/O/O; Process for f 1

From Local/1/0;
Int 2;
MoveReg R-Arg;
MoveReg R_Func;
VecProcess -> Local/O/1; Process for f 2

VecProcess -> Local/O/2;
Stop;

Process for f 3

> «int. int). (int. int). (int. int))

Figure 3-10: Structure Assignment
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let f x = -x
ins x ...f 1

and y ... f 2
and z = f 3
and w = f 4

in x * y + z * w;

L16:Block 6;
L6:

Code lor f

Move Local/1/0;

From Local/O/O;
Int 1;
MoveReg R..Arg;
MoveReg R..Func;
VecProcess -> Local/O/1; Process lor f 1

From Local/O/O;
Int 2;
MoveReg R..Arg;
MoveReg R..Func;
VecProcess -> Local/O/2; Process lor f 2

Process lor f 3VecProcess -> Local/O/3;

Process lor f 4VecProcess -> Local/O/4;

Calculate x * y + Z * W

Result;
Stop;

> 14: int

Figure 3-11: Local Declaration Assignment
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let rec To n = if n > 0 then n To(n - 1)
else nil;

L7: InflateEnv 1;
L6: Code 5 [

L5: Block 1;
FromReg R..Arg;
Move Local/1/0;
From Local/O/O;
Int 0;
GT;
TestFault 0, L2;
FalseJump L3;

For n

Save n
Retrieve n

Test n > 0

False: return nil

ConsCell;
From Local/1/0;
Move Local/1/0;
From Global/O;
From Local/2/0;
Int 1;
Minus;
MoveReg R..Arg;
MoveReg R_Func;
Result;
SetResult Local/0/1;
TailApply;

n:
Retrieve To

Evaluate n - 1

To(n - 1)

L2:
Return (fault {bind} )

L3:
Return nil

];

Closure

Stop;

> To = A (int -+ int List)

Figure 3-12: Structural Tail Recursion
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let rec Fib 1 = 1
Fib 2 = 1
Fib n = Fib(n - 1) + Fib(n - 2);

L6: InflateEnv 1;
L6: Code 6 [

L4:

L2: Fall 2;
Block 1;
FromReg R..Arg;
Move Local/i/O;
From Global/O;
From Local/i/O;
Int 1;
Minus;
MoveReg R..Arg;
MoveReg R_Func;
PushProcess;

From Global/O;
From Local/2/0;
Int 2;
Minus;
MoveReg R..Arg;
MoveReg R_Func;
Apply;

Plus;
Result;
Stop;

];

Stop;

> Fib = A (int -+ int)

Figure 3-13: PushProcess and Apply

Deal with Fib 1, Fib 2

Store n

Retrieve Fib
Retrieve n

Call Fib(n - 1)

Call Fib(n - 2)

Closure
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Incr(Incr(Incr [1; 2; 3]»;

L1: From Result/1;
From Result/1;
From Result/1;

Retrieve Incr
three
times

Generate [1; 2; 3]

MoveReg R-Arg;
MoveReg R_Func;
Apply;

.MoveReg R-Arg;
MoveReg R_Func;
Apply;

MoveReg R-Arg;
MoveReg R_Func;
TailApply;

> [4; 5: 6] : int List

Figure 3-14: An InefficientNested Application
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Incr(
x where x • Incr(

y where y • Incr [1; 2; 3]));

L9: From Result/1;
Block 1;
From Result/1;
Block 1;
From Result/1;

Generate [1; 2; 3]

MoveReg R..Arg;
MoveReg R..Func;
VecProcess -> Local/O/O;
From Local/O/O; Execution continues as soon

as start of list arrives
Deflate 1. 1;

L7: MoveReg R..Arg;
MoveReg R..Func;
VecProcess -> Local/O/O;
From Local/O/O;
Deflate 1. 1;

Similarly

L8: MoveReg R..Arg;
MoveReg R..Func;
TailApply;

> [4; 6; 6] : int List

Figure 3-15: A More Efficient Nested Application



Chapter 4

The Language £-HYBRID

4.1 Introduction

This chapter is an introduction to a logical (or relational) subset of the declara-

tive language HYBRID. HYBRID is a language which supports both logical and

. functional programming styles, either separately or in combination. The name

£-HYBRID will be used to refer to the logical subset of HYBRID.

HYBRID can be viewed as a functional programming language with facilities

for declaring logical objects (clauses and variables), and executing logic -pro-

grams (ie. performing deductions). £-HYBRID is embedded into the functional

language in such a way that logical inferences can be initiated from applica-

tive programs, and functions can be called from logic programs. A program

can therefore be written partly in a functional form, and partly in logical form.

Functional expressions can contain declarations of clauses and calls to clauses

(queries); as a consequence, programs written in 'T- HYBRID can access-program

fragments written in £-HYBRID. Logical expressions can contain functional ex-

pressions; as a consequence, programs written in £-HYBRID can access program

fragments written in 'T-HYBRID. A clause declaration is treated as a special

type of function definition, and so clauses can be declared under the same scop-

ing rules as functions. Due to the higher order nature of the language, functions

58
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and clauses can be passed as arguments to functions and clauses, returned as

results, or embedded in data structures. Clauses can be expressed in a form

analogous to the lambda-expression notation for a function; a clause declaration

simply serves to associate a name with such an expression, in the same way that

a function declaration associates a name with an expression denoting a function.

The syntax for clauses and deductions bears some similarity to various di-

alects of PROLOG; some familiarity with PROLOG is therefore assumed. How-

ever, £-HYBRID adopts lexical conventions appropriate to a functional language;

this implies, in particular, that logical variables are introduced by declaration,

and not determined by case distinction.

£- HYBRID is statically scoped and strongly typed. This follows as a conse-

quence of the fact that it is embedded within a functional language with these

properties. Logic programs are polymorphically typechecked at compile-time

(chapter 5); this ensures that, for example, a logical deduction cannot fail due

to an inappropriate type of data object being manipulated at run-time.

A detailed description of the language £- HYBRID is presented in tutorial

form in appendix B. This chapter serves to introduce the concepts of the lan-

guage needed in order to describe the typechecking algorithm (chapter 5) and

the scheme used for code generation (chapter 6).

4.1.1 Data Types

£-HYBRID features all the data types to be found in 1-HYBRID (viz. integers,

booleans, strings, lists, disjoint sums, variants and functions). Programs written

in £-HYBRID can manipulate objects conforming to these types. In addition,

there is a new type corresponding to the logical notion of a clause. A clause can

be viewed as a special kind of function. It is "called" from within a query in

the same way that a function is called in an expression. A clause is passed an

argument (or tuple of arguments), which may be a simple expression, or may be

some pattern containing logical variables. The type of a clause determines the

type of argument which it may be passed. Whereas a function returns a result,
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which is a data object of a particular type, a clause either succeeds or fails. Any

computation performed by a clause is communicated to the calling context by

means of logical variables.

Logical variables behave in much the same manner as their counterparts in

PROLOG. A logical variable is initially undefined (or uninstantiated), and is

manipulated by the process of unification, which causes it to be instantiated to

some data value. This value may itself contain uninstantiated values correspond-

ing to other logical variables. The declaration of a logical variable simply serves

to associate a name with a data object which behaves in a particular manner.

Logical variables are not given any special type denoting their logical nature;

the type of a logical variable is simply the type of any object to which it may

become instantiated.

4.1.2 Unification

l-HYBRID supports the notion of unification found in PROLOG. When an in-

stance of a clause is activated, it attempts to unify the argument passed to it

(the actual parameter) according to the structure and value of its argument.

This process is different to that used for passing parameters to functions; within

a function, the formal parameter serves merely to denote the structure of the

argument, and specify which parts of that structure should be bound to iden-

tifiers. Within a clause, however, the formal parameter is a structure which

determines, amongst other things, the effect the unification process has upon

logical variables passed within the argument. However, the formal parameter

sections of functions and clauses have an identical syntax. Unification can be

viewed as a generalisation of the parameter passing method used in function

calls, since the unification process may instantiate one or more logical variables

appearing in the argument, in addition to assigning variables appearing in the

head (formal parameter section) of the clause. The unification process provides

another generalisation: variables may be repeated in the head of a clause, thus
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providing a facility to perform implicit comparison on parts of an argument, at

no extra cost to the complexity of the language.

4.1.3 The Structure of "c-HYBRID

The underlying computational model for the execution of 1!- HYBRID programs

is based on that used by Concurrent Prolog. Both languages incorporate guarded-

command indeterminacy, and dataflow-like synchronisation achieved by means

of shared logical variables. This can be contrasted with the computational model

for -;- HYBRID programs, which can be viewed as a process of reduction of ex-

pressions to the values they denote.

The functional computational model is totally deterministic; the value of an

expression is dependent solely upon the form of the expression (subject to the

bindings of a particular environment). The outcome of a logical deduction, how-

ever, may be nondeterministic, meaning that the outcome depends on properties

of the system which are not accessible within the language itself. This property,

together with the ability to invoke logical deductions from within functional

expressions, provides the means to access nondeterminism from functional pro-

grams, should this be desired.

The computation of a logic program is equivalent to the construction of a

proof of an existentially quantified goal from a set of axioms. In the case of

1!-HYBRID, the scoping rules of the language determine the axioms used in the

proof derivation. Such a computation may either succeed or fail; if it succeeds,

then the output of the computation resides in the state of the logical variables

presented to the program.

Logic programming languages provide facilities to control the proof process,

at the expense of completeness. Such facilities may be used to perform computa-

tions not possible within first order logic (for example, negation), or to improve

the efficiencyof the proof procedure. It is also generally necessary to perform op-

erations which are not practical within a simple relational computational model
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(for example, arithmetic operations). In either case, the completeness of the

logical model is compromised in the interests of efficiencyand practicality.

The computational model used by PROLOGis tailored to the execution of

useful PROLOGprograms, rather than to the general proof of first order logical

deductions. PROLOG adopts purely sequential semantics, and can thus give

an operational definition of the various non-logical features provided. PROLOG

models logical indeterminacy by means of sequential search and backtracking;

this means that a proof which requires the correct choice to be made by a number

of conjunctive goals will eventually succeed.

f.-HYBRID has a computational model based upon that used by Concurrent

Prolog. As with PROLOG,this model is incomplete with respect to first order

logic. The computational model is nondeterministic, which implies that certain

proofs will fail where, in terms of an indeterminate logic model, they would be

expected to succeed. There is no notion of backtracking; a clause will perform

a particular unification nondeterministic ally, regardless of the suitability of this

unification for the deduction as a whole. To counteract this nondeterminism,

there are facilities for explicitly controlling the proof procedure. The guard

construct provides a means of restricting the nondeterministic behaviour of a

proof, and the commit operator allows a clause to direct the progress of a proof

according to the outcome of a guard.

Because the logic computational model is nondeterministic, there is.no re-

quirement for consistency to be enforced between a number of goals; such con-

sistency is expressed explicitly by means of the guard construct. It is therefore

possible to utilise parallelism in the execution of a query. Conjunctive (or and-

parallel) goals may be executed in parallel, since the outcome of anyone goal

is not dependent on the success or failure or any other, and since nondetermin-

ism implies that there need not be any collaboration to achieve a consistent set

of bindings to logical variables. It is also possible to execute disjunctive (or-

parallel) goals in parallel, since only one such goal will succeed, depending on

the conditions of the guard, and not on the consistency requirements of the rest

of the system.
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Because the computational model is nondeterministic, there is no need to in-

troduce primitive features to provide nondeterminism. In particular, arbitration

(such as the merging of two streams whenever elements become available) can be

achieved directly in the language, without resorting to some primitive construct

which makes the arbitrary choice.

The computational model is essentially one of process reduction. A query

is represented by a set of processes. Each process, executing a goal, attempts

to nondeterministically reduce itself to a set of conjunctive sub-processes. Pro-

cesses corresponding to unit clauses terminate immediately. The outcome of

the query is success if all conjunctive processes and sub-processes succeed, and

failure otherwise.

4.2 The Logical Computational Model

Although f,-HYBRIDis a dialect of the; ~language Concurrent Prolog, f,-HYBRID

does not completely contain Concurrent Prolog (unification is not guarded), and

Concurrent Prolog does not completely contain f,-HYBRID(there is no scoping

or typechecking, and no higher-order facilities). However, the languages have a

common computational model, based upon process reduction.

A query term or declaration contains a set of conjunctive goals, all of which

must succeed in order for the query to succeed. The goals may be viewed as

processes which collaborate to determine the outcome of the query. Communi-

cation is by means of logical variables shared between the goals. Synchronisation

is achieved by specifying which logical variables may be instantiated by which

goals; a variable marked as read-only within a goal may not be instantiated by

the process executing the goal, and the process must wait for the variable to be

instantiated by some other goal. The read-only annotation, therefore, serves to

control the deduction by restricting the order in which goals can be reduced.,
A particular query term activates the clause denoted by the clause part of

the term. Consider a simple clause of the form
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clause formals :_ G1, .•. , Gi

This clause will immediately fail if it cannot unify its actual argument with

its formal parameter. Otherwise, it will reduce to the goals Gb •.. , Gi, which

must all succeed, as before. A unit clause (a clause with no body) will succeed

immediately upon unification. A literal goal (a boolean expression as goal)

will succeed if the expression evaluates to true, and fail otherwise. It is the

activation of unit clauses and literal goals which allow a logical computation to

finally terminate, since these do not reduce to other goal processes.

A clause with several alternative branches denotes a disjunction:

clause formalsl :_

formalB2 ._

The clause will fail if no unification to the formal parameters succeeds (ie. if all

alternatives fail). Otherwise, one of the successful alternatives is nondetermin-

istically chosen to reduce to a conjunction (or to succeed, if it is a unit clause).

Each alternative branch will attempt to unify the actual parameter against its

formal parameter, but only one will be permitted to succeed or reduce.

The most general form of a clause body consists of two sets of goals, separated

by the symbol '\':

clause formalsl :_

formalsn •_ G1, ••• , Gi \ T1, ••• , T;

The goals Gb ... , G, constitute the guard, and the goals Tb ... , T; the

tail, of the clause body. Given a set of disjunctive clause alternatives, 'each will

attempt head unification. For each alternative for which this is successful, the

guard will be activated as a conjunctive system. Only if this succeeds will the

process attempt to commit (exclude other disjunctive processes from reduction),

and then reduce to the tail. Only one process will be permitted to commit

successfully; any other process attempting to commit will simply terminate.
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If there is no explicit commit symbol ('\'), then the guard is assumed to be

null. In this case, a process attempts to commit when it has completed its head

unification.

Not all process failures in the system are fatal; the failure of a head unifica-

tion, or of a guard system, only fails that alternative. If all alternatives within a

clause fail, then the clause invocation itself fails. Any query failure which is not

within a guard system fails the entire query. A top-level query term or declara-

tion succeeds if all the (non-guard) processes within it succeed, and fails if any

(non-guard) process fails.

The guard system may consist of the single keyword otherwise; this may

only occur within a clause which has more than one alternative branch, and only

occur once within this clause. Such a guard will succeed if and only if all other

guard systems fail. The otherwise notation allows negation to be expressed by

failure without resorting to a higher-order or nested query. In a clause of the

form

clause formals, . - G1• •••• G, \ T1• •••• Ti
formals2 • - otherwise \ U1• •••• U/c

the tail system Ub ... , U/cwill be invoked on the failure of the guard Gb ... , Gi•

In addition, the use of otherwise, together with the facility to "add" definitions

to a clause (by defining a new instance of it in terms of an old one), makes it

possible to define a clause in which alternatives are sought in a strict sequential

order (for an example, see section B.3).

There are several important points to note about the logical computational

model, which are not immediately apparent from the above description:

• There is no remote process termination. If a clause alternative commits, it

does not immediately terminate the other disjunctive process sets. Rather,

the other alternatives attempt to commit, fail to do so, and terminate. In

a conjunctive system, a failure does not terminate the other goals in the

system; rather, they continue, discover the failure condition, and terminate.
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However, if a top-level query fails, the execution of the program continues

without waiting for termination of the other processes;

• All unifications have irreversible, global effect (in particular, unifications

performed by the alternative branches of a clause, even within a guard).

It is a consequence of these two points that a query can complete whilst there

are still processes active (and which will eventually fail) capable of performing

further unifications. Although the active processes will eventually terminate,

they may have the side-effect of instancing variables visible in the result of the

query.

4.3 Nested Systems and Higher Orderness

A logical query is a conjunctive set of goals. Each goal is executed by a log-

ical process which attempts to reduce nondeterministic ally to other processes.

A query terminates when the (non-guard) process set is empty. Execution of

a logic program is essentially "flat"; either the entire process set succeeds (and

the query succeeds), or one or more processes fails (and the query fails). Cor-

responding to this model of execution, there is a single level of synchronisation

and communication, achieved by means of logical variables. There is, however,

a level of nesting possible in Concurrent Prolog (and 'c'-HYBRID)programs. An

alternative branch of a clause does not reduce to the guard system, since the

tail must still be dealt with. Hence, a guard system is invoked as a separate

query, and the clause invoking the guard awaits completion of the guard before

continuing.

,C,-HYBRIDfeatures another "layering" facility. From within logical queries

it is possible to activate functional program fragments. Each such fragment can

contain other clause definitions and queries. It is, therefore, possible have a

deductive system parts of which are comprised of other deductive systems. Note

that it is possible to perform non-local unifications within such layered queries;
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there is no safeguard against a goal instancing a variable which is declared in a

more global deductive system.

Operationally, a clause is treated as a special kind of function. It takes

a special kind of argument (which may be a value, or may be some pattern

of logical variables), and returns a special kind of result (success or failure) .

.c.- HYBRID allows clauses to be treated as first-class objects; they may be passed

as arguments, returned as results, and embedded in data structures. Functions

may be higher-order over clauses, in the sense that they may takes clauses as

arguments, or return clauses as results. Clauses themselves may be higher-order,

since they may be passed argument patterns containing functions or clauses.

Appendix B contains numerous examples of clauses-as-objects, in particular

clauses being passed as arguments to, and results of, functions.

4.4 Cross Calling

The HYBRID language is a combination of the applicative language '; - HYBRID,

and the non-deterministic logic language .c.-HYBRID. Sections of program writ-

ten in either "sub-language" can access sections of program written in the other,

and an entire program may consist of ,;-HYBRID and .c.-HYBRID mixed in any

desired manner. The final application will dictate which parts of the program

are written in which sub-language, and at what "granularity" the mixing will

occur. The HYBRID language is, strictly speaking, functional, since any state-

ment presented to the interpreter is expected to be a functional expression or

declaration. However, the logic system is immediately accessible; the top-level

expression may be a query-expression, and the top level declaration may be a

clause declaration. At the lowest level, also, the HYBRID language should be

considered functional, since literals and constructors represent functional values

(as opposed to functors), and are evaluated in a functional way. In addition, all

of the basic operations other than comparison (ie. unification) are only available

as primitive functional operators.
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Various constructs of £'-HYBRIDcan, therefore, be categorised in a functional

sense. A clause is a special sort of function, since it is passed an argument, re-

turns a result (success/failure), and may invokeother queries (including itself). A

clause declaration is equivalent to a functional declaration which binds identifiers

to clause-expressions. A query declaration serves to bind identifiers to values.

A query expression represents a value. Logical variables can be thought of as

bindings of names to objects with a particular behaviour. However, some con-

structs can only be explained with reference to the logical computational model

(for example, nondeterminism), and can therefore not be regarded functionally.

Many similarities can be draw between the HYBRIDlanguage and the com-

bined applicative and logic language Loglisp [Robinson 80]. The most powerful

feature claimed for Loglisp is the ability to have the answer to a query be de-

livered as a functional data object, so that it can be subjected to arbitrary

manipulation; HYBRIDprovides this feature in precisely the same manner. In

addition, the ability to build primitive predicates applicatively and then invoke

them from a logical context makes the logic system effectively open-ended.

The major differencebetween Loglispand HYBRIDis the treatment of clauses.

Loglisp assertions are stored in a global database which may be interrogated

from any part of an applicative program, regardless of its context. Side-effecting

primitives are provided to add assertions to the database. By contrast, HYBRID

has no notion of a global database of assertions; the assertions available in any

context are comprised of the clause objects which are in scope at that context.

This does not imply that HYBRIDcannot implement a global database; a simple

top-level declaration of the form

let clause Cl : - goalSl
and C2 • - goals2
and
and Cn : - goalsn;

establishes a set of assertions visible in any context. However, the fact that

HYBRIDtreats clauses as first class objects allowsmuch more complex structures

of assertions to be manipulated. For example, local assertions of the form
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let clause C : - goals
in query G1• •••• Gn

provide a semantically clean alternative to the assert and retract primitives

found in PROLOG.

4.4.1 Behaviour of Logical Variables

The behaviour of a logical variable cannot be explained in purely functional

terms, since the unification process has no functional counterpart. However,

logical variables (or the values contained within them) may be accessible to a

functional part of a program. In this case, a logical variable is treated as a

binding of a name to an object with a rather strange behaviour.

In most cases, the behaviour of a logical variable is unimportant, and the

variable can just be regarded as a data value. However, it is possible for a query

term or declaration to leave logicalvariables uninstantiated. In functional terms,

a free variable is treated as the fault-value

{fault : {uninst})

As with other fault-values, it may be passed unaltered as argument and embed-

ded in data structures, and will cause fault propagation if an attempt is made to

access its value. For further discussion on the treatment of free logical variables

in a functional context, see appendices B and D.



Chapter 5

A Static Typechecking Algorithm for
Logic Programs

5.1 Introduction

This chapter describes a typechecking algorithm for logic programs. Programs

are presented in the language ,C-HYBRID, a logical subset of the combined logic

and functional programming language HYBRID. Typechecking is performed stat-

ically, and a common polymorphic typechecking algorithm is used for both the

logical and functional parts of a program. The approach taken is a largely prag-

matic one, driven by two aims:

1. To infer type security on logic programs;

2. To provide the type information necessary to perform unification.

A more rigorous approach to the typechecking of logic programs is given in

[Mycroft 83].

70
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.
5.2 Basic Typechecking

Firstly, a presentation is given of the basic typechecking rules for £-HYBRID.

The type domain is that used by 1-HYBRID, augmented by a new type used

to represent clauses. In addition, logical variables are dealt with in a special

manner.

5.2.1 Clauses and Clause Declarations

The clause is the £-HYBRID equivalent of a function. A clause may be "called"

with an argument as a logical goal, and "returns" success or failure as a result.

Initially, clauses which only have one alternative (disjunctive) branch will be

considered. A clause declaration has a special syntax, in which the keyword

clause acts as a declaration operator, thus:

let clause Id(formals) : - body

A clause declaration may introduce several clauses, using declaration opera-

tors such as and. Recursive clauses may be declared using rec. In each case, the

declaration merely serves to associate each of one or more identifierswith a clause

expression, which is a syntactic construct representing a clause. A declaration

of the form above is equivalent to

let Id .. clause formals :- body

It is therefore only necessary to consider the typechecking rules for clause

expressions, since clause declarations are not (semantically) special constructs

in themselves.

Every clause has a type which is an instance of the general type

a Clause
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where a is a type variable, and Clause is a (postfix) unary type operator. The

type Clause is unary since a clause does not return a typed result, but merely a

success or failure condition. Instantiations of the type variable reflect the type of

argument which can be passed to the clause. The type of the clause is constrained

by the form of its formal parameter (as with lambda-expressions), which may

contain bound identifiers. The type of the clause is further constrained by the

types imposed on these identifiers, determined by the clause body.

5.2.2 Unit Clauses

A unit clause contains no body, but merely a head comprising a formal parameter,

or pattern. The type of a unit clause is therefore determined solely by its formal

parameter. The determination of the type of a unit clause is almost identical to

the determination of the argument type of a function. Given two expressions of

the form

lambda bind. e

and

clause bind

the typechecking conditions imposed by bind are identical. The only difference

in the typechecking rules between lambda- and clause-bound identifiers is in the

treatment of repeated variables. A repeated lambda-bound identifier constitutes

an error, whereas a repeated clause-bound variable is allowed.

A structured argument (or pattern) serves to decompose, by unification, an

actual parameter according to a particular structure, and bind parts of the pa-

rameter to identifiers for subsequent use. Determining the type of the formal

parameter is equivalent to determining the most general type of object which

can be passed to the clause as actual parameter.

A formal parameter consists of primitive objects such as constants and iden-

tifiers composed into patterns by means of constructors. The type of the formal
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let clause A 3
and B nil
and C( [true; false], in_1ft "H);

> A = t/J int Clause
>+ B = t/J a List Clause
>+ C = t/J (bool List, (str + (3» Clause

Figure 5-1: A Simple Clause Declaration

clause(x);

> a Clause

Figure 5-2: A Simple Unit Clause

parameter is determined by the types derived for the lowest level components,

and the conditions imposed by the constructors.

A constant (or nilary constructor such as nil) has an immediately derivable

type. A functional expression has the type derived for the expression. Construc-

tors impose constraints on the argument type according to their corresponding

structured types (figure 5-1). An occurrence of an identifier which is free within

constructors in the formal parameter serves to declare that identifier locally

within the clause (figure 5-2).

Formal clause identifiers are "declaredin a similar manner to formal function

identifiers. They are declared in a context which is visible only within the body

of the clause. Identifiers are allocated non-generic! free types which II:laythen

be instanced according to context.

1A non-generic type is a type such that different instances of it share the same type

variables. By contrast, each instance of a generic type is given a different set of type

variables. See [Milner 771for a detailed explanation.
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clause (x. y. x);

> (a. P. a) Clause

Figure 5-3: A Repeated Head Variable

clauseL. _. _);

> (a. P. "I) Clause

Figure 5-4: Anonymous Variables

Such an identifier does not represent a value, but serves to name a logical

variable local to the clause. The logical variable is unified to the corresponding

part of an actual parameter in a similar manner to the binding of an identifier

to part of a function argument. It is important to note, however, that an iden-

tifier may be repeated within the head of a clause. Each occurrence of such an

identifier denotes the same logicalvariable, and so the types determined for each

occurrence of an identifier must be unified (figure 5-3).

The reserved identifier '_' represents the anonymous logical variable. Each

occurrence of '_' is therefore given a unique, free type (figure 5-4).

5.2.3 Non-Unit Clauses

A non-unit clause is a clause with a body containing one or more goals. The

simplest form of non-unit clause has as body a list of goals:

clause formals :_ goall •...• goaln

Each goal may reference the logical variables declared implicitly in the head of

the clause. The type of the clause is therefore affected by the types determined

for the variables from the goals.
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clause x ._ (head x? > 0);

> int List Clause

Figure 5-5: A Literal Goal

There are two forms of goal. The literal goal is a functional expression which

returns a boolean value. The clause goal represents an activation of a clause

with an actual parameter.

A literal goal is signified by enclosure within brackets; additionally, a primi-

tive expression which cannot be interpreted as a clause goal is considered to be

a literal goal. A literal goal is interpreted as an expression, and typechecked in

the usual manner. The type of the expression is expected to be boolean, and

is therefore unified against the type bool. The logical variables declared locally

to the clause are visible within a literal goal, and have non-generic types. In

addition, the typechecker ensures that they are referenced as read-only variables

(figure 5-5).

A clause goal consists of a clause part and an argument part. The clause part

denotes the clause to be activated, and the argument part denotes the argument

to be passed to the clause. The clause part does not merely name a clause to

be activated; rather, it is an expression which evaluates (in a functional sense)

to a clause object which can then be activated. The clause part is therefore

typechecked as an expression in the usual manner. For the purposes of type-

checking, the argument is also regarded as a functional expression. Identifiers

within the argument are sought in the environment of the body of the clause.

An argument part may also contain the anonymous variable '_'; each occurrence

of '_' is granted a unique free type. The goal is considered to be well-typed if

the type of the clause is an instance of a Clause, where the type instanced to

the variable a unifies with the type determined for the argument (figure 5-6).

A clause body may consist of a guard part and a tail part, separated by the
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let clause Is_Zero 0;

> Is..zero = t/J int Clause

Figure 5-6: A Simple Clause

clause x :- Is_Zero y with y;

> Q Clause

Figure 5-7: Use of "with"

commit symbol, '\'. In this case, the goals comprising the guard and the goals

comprising the tail are each treated in the above manner.

A clause body may declare local logical variables for use in the goals of the

body:

clause formals . - goall •...• goaln
with with-vars

The variables specified after the with are declared locally for the clause body,

and are therefore visiblewithin the goalscomprising the body (figure5-7). These

variables are given unique non-generic free types.

5.2.4 Disjunctive Clauses

A clause may have several disjunctive (or or-parallel) branches, each of which

has a formal parameter or head, and an optional body:

clause formals1 . - bodY1
formals2 . - bodY2

For the purposes of typechecking, each alternative branch is considered to be

a clause in its own right, and typechecked independently of the others. Each
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clause("". _. _) I
c., false. _)
(_. _. a) :- (a? > 0);

> (str. bool. int) Clause

Figure 5-8: A Disjunctive Clause

branch will therefore yield a type which is an instance of a Clause. The type of

the entire disjunctive clause is obtained by unifying together the types obtained

from each of the branches, as in figure 5-8.

5.2.5 Recursive Clauses

A recursive clause may be declared in a number of ways. A standard recursive

declaration, introduced by the keyword rec, may contain a clause declaration

(introduced by clause); in this case, the clauses will be established within the

mutually recursive context of the declaration (figure 5-9). A clause declaration

(introduced by clause) may contain recursive declarations introduced by rec

(figure 5-10). In both cases, however, the clause declaration is simply an abbre-

viation for a normal recursive declaration using clause expressions. The type-

checking rules for recursive clause declarations are therefore identical to those

for normal recursive declarations. The identifiers being declared are established

with non-generic free types, and the new environment is used to typecheck the

right-hand sides of the recursive declaration. The types of the identifiers are then

made generic. Again, with the exception of repeated variables, this procedure is

identical to the treatment of recursive function declarations.

5.2.6 Query Expressions

A query expression is a set of conjunctive goals optionally qualified with a list

of local logical variables:
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let rec Fact 0 ...1
Fact n ...n * Fact(n - 1)
and clause Foo x .- eq(x. Fact x?)

Foo x .- Foo(x? - 1) ;

> Fact ....x : (int ~ int)
>+ Foo ...t/J : int Clause

Figure 5-9: A Mixed Recursive Declaration

let clause Is_Zero 0
and rec Foo x :- Foo x;

> Is-Zero'" t/J: int Clause
>+ Foo'" t/J: a Clause

Figure 5-10: A Recursive Clause Declaration

query goals with with-list

The goals, which may be clause goals or literal goals, are typechecked in the same

manner as goals in a clause body. They do not, however, directly determine the

resultant type of the query expression, although they may instance the types of

the local logical variables. If there are no local variables, then then resultant type

of the query expression is boolean; regardless of the type conditions. imposed by

the goals. If there is a single local variable, then the type of the query expression

is the type determined for that variable. If there are several local variables, then

the type of the query expression is a tuple, with each element type being the

type of the corresponding logical variable. The type of a query expression

query goals with VI. ...• Vn

is a tuple of the form
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where each ti is the type derived for the variable Vi.

The logical variables have non-generic types whilst the goals are being type-

checked, but the resultant query expression is given a generic type.

5.2.1 Query Declarations

A query declaration comprises a set of conjunctive goals and a list of local logical

variables; it introduces (bindings to) the logical variables. The declaration is

made within a particular environment, and modifies that environment to include

the names of, and types assigned to, the logical variables. The logical variables

are initially declared with non-generic free types, and the goals are typechecked

as before. The types of the variables can then be made generic for use in the

new environment.

5.2.8 Free Logical Variables

In the functional language .1-HYBRID, it is possible to create an object whose

type is totally free. The constructor fault, when applied to an object of type

{apply, bind, cond, decl, infer,
prim: str, signal: -str, uninst} List

creates a fault-value with free type (section A.8). In practice, this causes no

problem, since fault-values are printed in a particular manner regardless of their

type, and because all the primitive operations in the .1-HYBRIDlanguage cater

for being presented with fault-values (section D.1.2).

However, it is also possible for the typechecking of a goal within"a query

expression or declaration to derive a free type for a logicalvariable. This provides

another opportunity for an object to be created whose type is an isolated type

variable. Since logical variables have non-generic type whilst their goals are

being typechecked, a variable whose resulting type is totally free must never be

logically unified by any of the clauses within the goals (otherwise, its type would
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have been unified with the corresponding part of the clause type). Such an

identifier emerging from a query must therefore be bound to an uninstantiated

logical variable. When used in a functional context, the variable behaves as a

particular kind of fault-value, and so may be permitted a free type.

5.3 Type-Secure Unification

Having presented a typechecking algorithm for ensuring type -security in logic

programs, the basis for the statically scoped, strongly typed logic language

£-HYBRID has been established. Since £-HYBRID and 1-HYBRID comprise

a common language, they both operate over the same data structures, and ob-

jects in both languages have a common type domain.."

In the context of a strongly typed functional language such as 1-HYBRID,

some type determination needs to be done when dealing with overloaded opera-

tors; since each such operator represents a possibly infinite set of functions, the

correct one of which must be chosen according to context.

It is clear that such an overloaded operator cannot be applied to objects with

polymorphic type, since the correct function cannot be determined from context.

This makes functions such as

lambda (x. y). x· y

illegal, since the precisemeaning of '=' is unknown. Although this is an irritating

restriction, functional languages can overcome this problem (by, for example,

forcing the arguments to '=' to have monomorphic type, or by passing the correct

comparison function explicitly as a parameter).

Since logic languages return results by unification, a scheme of this nature

would impose the restriction that all results returned from clauses be monomor-

phic, and would make the logic language no more powerful than a functional

language which disallowedpolymorphic functions. This problem must therefore

be solved in order to make a strongly typed logic language usable.
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Conventional logic programming languages (such as PROLOG) are typeless.

There is a universal data constructor (the functor), and unification is performed

over data structures composed from functors. £-HYBRID must, however, per-

form unification over objects of a wide variety of types, and unification over

objects of a particular type must respect the structural properties of that type.

Two general approaches are outlined to the problem of unifying objects of

various types. The first approach is to have a single, general unification algorithm

which embodies all of the different kinds of unification required. This approach

requires that all dynamic data structures be marked with their type, or at least

with enough information so that the unification algorithm can determine how to

perform the correct kind of unification. The unification algorithm incorporates

run-time checks on the objects being dealt with to determine their structure.

This approach has a number of disadvantages. The major disadvantage is

that the unification algorithm is comparatively complicated, since the manner

in which it operates depends on the structure of objects encountered at run-

time, and this structure must be determined dynamically. Since structures (and

their types) may be arbitrarily complicated, the unification algorithm must in

addition be recursive, even if the objects being unified are not.

Another disadvantage is that such an approach makes demands on the (run-

time) structure of data objects. In essence, it must be possible to tell, from the

representation of an object, how to correctly unify it. Although data objects

can be easily tagged with such information, such a system does not ·fit well into

an environment where all other operations can be performed regardless of the

structure of data objects.

A third disadvantage of such a system is that it does not provide safeguards

against attempts to unify objects of inappropriate type (for example, functions).

Although it would be possible to tag such objects as being non-unifiable, such

tags would only be encountered at run-time. This scheme in effect amounts to

performing run-time typechecking. This disadvantage of dynamic unification can

in fact be overcome by making modifications to the polymorphic typechecking

algorithm, so that unifyable objects can be statically distinguished from non-



Chapter 5. A Static Typechecking Algorithm for Logic Programs 82

unifyable ones [Milner 86]. However, a modified typechecking algorithm can,

in fact, totally guarantee that a particular unification algorithm only acts on

objects of the correct type, and a second approach adopting such an algorithm

is the one adopted.

Since the f,- HYBRID language provides a potentially infinite set of unifyable

types, it is chosen to regard unification as an infinite set of algorithms, one

for each unifyable type. Each unification operation featured in f,-HYBRID is

performed by one such algorithm.

This approach means that attempts to unify inappropriate objects can be

rejected at compile-time, since no correct unification algorithm exists. Note also

that the unification process is simplified, since a particular algorithm may "as-

sume" that it is acting on objects of the correct type, and need not inspect their

structure. An algorithm may therefore be optimised by making assumptions

about its arguments. It is also unnecessary to select the correct algorithm at

run-time, since a static approach guarantees that the correct algorithm will be

used for the appropriate argument.

5.3.1 Type Determination

Having advocated a scheme whereby a particular unification algorithm is selected

according to the argument's type, it is necessary to statically determine the type

of argument to each such unification. The typechecking algorithm must therefore

perform two tasks. The first of these is the standard typechecking procedure,

which ensures statically that all possible operations within a program will be

performed on objects of appropriate type. The second task is one of'type deter-

mination. For the purposes of f,-HYBRID, type determination can be viewed as

the static selection of the correct unification algorithm in all contexts .where a

unification by type occurs. By the same token as above, such a unification could

not be specified over objects with polymorphic type, since the correct unification

algorithm cannot be determined.
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An ideal type determination algorithm is one which combines the advantages

of dynamic typing (the types of objects are unspecified in unifications) with the

advantages of static typing (type security, plus selection of the correct unification

algorithm in all cases). Observe that, although a function such as the example

above contains an overloaded operator applied to a polymorphic argument, the

function is well defined as long as each instance (call) of the function attempts

to apply the operation to a distinct monotype. The correct function denoted

by '=' would be selected according to the types established at the call of the

function, rather than those in its definition. An attempt to apply the operation

to an inappropriate type of argument can be detected at a particular call to the

function, since this is where the meaning attached to the overloaded operator is

establlshed", In a similar manner, a clause definition which attempts to unify

polymorphic objects can be considered well defined, since each instance of the

clause within a goal establishes monotypes for the objects to be unified, and thus

establishes the correct unification algorithm.

Although unification is a symmetrical operation, some asymmetries must be

introduced into the typechecking algorithm. For example, the expression

query (clause nil) [lambda x. x]

is well-defined, since the clause can perform a structural unification regardless

of the type of objects in the argument list. However, the expression

query (clause [lambda x. x]) nil

is invalid, since the clause cannot unify the literal value of its formal parameter

against nil. This point is better illustrated by a declaration of the form

let clause BadClause [lambda x. x];

Although the unification associated with this clause can be performed in the

query

2Precautions need to be taken for lambda-bound functions, however (section 5.6).
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query BadClause nil

an attempt to activate BadClause with an instantiated list is clearly illegal,

since unification over functions is not well defined. For this reason, non-unifyable

literals (such a lambda-expressions) must be disallowedwithin formal parameters

to clauses.

5.3.2 Methods

This chapter goes on to present a type determination algorithm which performs

static typechecking according to the scheme outlined above. The type determi-

nation of arguments for unification in a clause definition is deferred, if necessary,

until a particular invocation of the clause within a goal. Such a scheme is type

secure, since any type determination which cannot be done when a clause is de-

fined (since the relevant types are polymorphic) is done for every goal featuring

the clause.

An implication of this scheme is that some unification information (an indi-

cation of the correct algorithm) must be passed to a clause for each invocation

of the clause from a goal. This information reflects the instances of types which

were polymorphic when the clause was defined, and will generally be different

for each goal featuring the clause. This unification information will be termed

a method. Any clause which defines unification over polymorphic "entities will

"expect" to be passed a method when it is invoked. Each goal featuring such a

clause will pass a distinct method to the clause. This method comprises (infor-

mally) some identification of the correct unification algorithm or algorithms to

be used for the (type of) argument being passed.

Note firstly that a method needs to be determinable from the type of a

clause. A clause which requires a method may be re-bound to other identifiers

or embedded within data structures; the only medium in which the method

information can be conveyed is its type. Moreover there has to be a specific

type semantics for dealing with such clauses, since the types of clauses may
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be propagated by type unification. The type semantics must deal with such

eventualities as unifying the types of two clauses each of which requires a distinct

method. For example in

query (if cond
then clausel
else clause2) arg

the resulting clause type must represent a method which is consistent for both of

the constituent clauses (in effect, a "union" of the information required by each

clause); a consequence of this is that a clause may be passed method information

which it does not require.

5.3.3 Method Determination

A method can be seen to be dependent in some way on the type variables oc-

curring within the type of a clause. A method which consisted of unification

information for each type variable instanced in the goal would be sufficient for

any unification performed when invoking that clause. However, this approach

has two drawbacks:

• Method information will be lost if the types of clauses are unified together.

For example, a clause with a resulting type et Clause, and which requires

a method, can have its type unified with a clause of type int Clause, in

which case the method information is lost;

• A free variable occurring within the type of a clause does not specifically

mean that the the clause requires a method to unify the appropriate (part

of the) argument. For example, a clause with the anonymous logical vari-

able '(_)' occurring within its formal parameter does not imply that a

unification needs to occur. However, the appropriate part of the argument

type will still be polymorphic. Similarly, the object denoted by

clause nil
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has a polymorphic type a List Clause, although no type information is

needed to perform the appropriate unification.

A method can be seen, therefore, to comprise type information for perform-

ing unification of the values of polymorphic formal parameters, as opposed to

unification by their structure, as in the example above.

It now remains to determine which unifications within a clause head can be

considered as value unifications.

5.3.4 Logical Variables

In operational terms, a logical variable occurring within a clause head is initially

free, and becomes instantiated by unification to an appropriate part of the actual

parameter. For the purposes of typechecking, therefore, logical variables behave

in a similar manner to updatable references (section 5.9). If there is only one

occurrence of a logical variable within the head of a clause, the outcome of that

particular unification is predetermined (a binding of the logical variable to the

argument value), and there is no need to perform any kind of unification. A

unification of values need occur, therefore, only for a repeated logical variable.

Note that such unifications may be monomorphic. A clause such as

clause (x. x) :- (x? > 0)

requires no method because the type of the unification is known when the clause

is defined. Therefore, only such unifications over polytypes need be considered.

It is chosen to ignore the case of polymorphic expressions within clause heads.

Such expressions are infrequent, since most polymorphic items within a clause

head contain constructors and therefore represent active unification. Any re-

maining polymorphic expressions are unlikely to have their types instanced

within the goals. To conclude, method information is to be provided for log-

ical variables occurring in the head of a clause which are repeated, and have

polymorphic type.
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5.4 Type Labelling

Some way is needed of representing, within the type of a clause, the fact that

some parts of a formal parameter are unified by value. This is not necessary

for monomorphic types, since the type of the unification is already determined

when the clause is defined. It is however necessary for polymorphic types, since

the type information will be passed within the method. Note that a clause

may attempt to unify several objects with distinct free types within one goal, or

one object containing a number of distinct polytypes. A method may therefore

provide several unification algorithms for these distinct types.

A type label is defined to be a positive integer associated with a (possibly

structured) type. A type t labelled with an integer n will be written tn; for

example, the type int labelled with the value 3 will be written ints. The

process of labelling a type is to associate a type label (1, 2, ... ) with every free

type variable in that type.

The method required for a clause is determined by labelling some of the free

types within the type of the clause. If a logical variable is repeated within the

head of a clause, then any free types within the type of the logical variable are

labelled. Note that no labelling will occur, therefore, if the type of the variable is

monomorphic. The method required by the clause is therefore a set of unification

algorithms, one for each labelled free type of the clause type. If a logical variable

has several type variables in its type, then several algorithms from the method

will be used to unify it. When a clause is invoked, it expects to be passed a

method for unifying its repeated polymorphic logical variables.

5.4.1 Method Construction

A method is constructed for every (non-literal) goal which attempts to activate

a clause with labelled type. The clause type will be instanced according to the

argument type (in the normal process of typechecking), resulting in a set of type
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labels attached to instanced types. These types are used to generate the method.

A method is a list of unification algorithms, one for each label in the (instanced)

clause type. Since clause types are usually generic, a particular clause can be

passed different methods in different goals.

For the purposes of typechecking, a method can be considered to be a list of

numbered types, of the form

Each type ti is expected to be a type appropriate for unification. Each entry

ti = ni denotes a unification algorithm for objects of that type.

The process of constructing a method for a goal is as follows:

• For each labelled type tn, remove the label n, and create a method entry

n = tj

• Instantiate the clause type according to the type of the argument in the

goal. This will have the effect of instancing the free types within the

method.

As an example, consider the clause defined by the declaration

let clause eq(x. x)

The type initially assigned to the clause by the typechecking process will be

(a. a) Clause

The type of the repeated logical variable x will be labelled, resulting in a type

for eq of (al. al) Clause.

For every goal which invokes eq, each argument, with a type of the form

(t. t), will give rise to a method [1= t] (figure 5-11).
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queryeq(nil. [1]);

I> query
eq (nil. [1]) [1 = int List]

> false bool

Figure 5-11: A Call to eq

5.4.2 Properties of Labelled Types

It is necessary to extend the semantics of polymorphic types to encompass la-

belled types. A labelled type inherits all the properties of the type itself, but

is, in addition, subject to a set of rules governing the behaviour of the type ac-

cording to its labels. Rules may be divided into occurrence rules, which govern

the circumstances under which a labelled type may occur, and unification rules,

which govern the way it behaves when manipulated by the typechecker.

5.4.3 Occurrence Rules

The occurrence rules for type labels are as follows:

• Labelled types must be generic (and non-generic types unlabelled);

• A valid type will have labels contained solely within the type operator

Clause. This implies that the type inti Clause is a valid type, whereas

inti is not. It should be noted that, by this criterion, methods may contain

invalid types;

• A particular label may occur several times within a type, but each occur-

rence refers to the same subtype (one with the same structure and the

same type variables);
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lambda x. clause [a; a; lit xl;

Type clash in: [a; a; lit xl
Attempt to label non-generic type: a(O) List

Figure 5-12: A Restriction on Type Labelling

• No labelled type may contain another type with the same label. This

condition followsfrom the condition above, together with the occur-check

which is performed on every type unification.

The first condition must be strictly enforced by the typechecker. Any attempt

to label a non-generic type is considered to constitute a type fault, as is any

attempt to unify a labelled type to a non-generic type (figure 5-12). The second

condition always holds true since the only types to be labelled are the types

of arguments to clauses. The labels cannot be propagated out of context since

labelled types are guaranteed to be generic.

A label will be repeated if a free type, which occurs several times within a

clause type, is labelled. In this case the labelled types are, trivially, identical. The

unification rules for labelled types (section 5.4.4) guarantee that this condition

is maintained.

A further occurrence rule for labelled types is that they may not occur within

the type of an argument to a clause. This avoids confusion between the labels

of a clause type and any labels occurring within its argument. This rule implies

that, for example, the clause eq defined above cannot be passed as argument to

another clause.

5.4.4 Unification Rules

There are a number of rules governing the behaviour of labelled types under type

unification.



Chapter 5. A Static Typechecking Algorithm for Logic Programs 91

• Labels are propagated by unification. A type variable unified to a labelled

type variable becomes labelled. Alternatively, an unlabelled type variable

will always unify to a labelled one, and not vice versa;

• Differing labels will not unify. For example, an attempt to unify al with

f32 will produce a type fault;

• Labelled free types may be instanced;

• When two types are unified, the types attached to any corresponding labels

in the two types are unified as well.

As an example of the second rule, the clause eq may occur in a context

which instances its type to (inti. inti) Clause. This property in itself implies

a change in the way that monotypes behave. Whereas conventionally a type

constant such as int represents the single type of all integers, it is now necessary

to cater for the existence of an arbitrary number of distinct int types, some of

which may adopt labels. Consider the followingexample:

let clause Both_Zero(O. 0)
in [Both_Zero; eq];

> [Tb; Tb]: (inti. inti) Clause List

There are several occurrences of the type int, some of which acquire the

label '1' through unification. Such unification must, however, not affect the

original type derived for Both..zero. In practice, this rule is implemented by

completely copying the (generic) type of any identifier accessed by name (recall

that non-generic types cannot acquire labels), and by giving each primitive type-

generating construct in the language a completely new type structure.

The last rule maintains the condition that a label occurring several times

within a type is attached to the same type. In the example of figure 5-13, the

general type of (a + (3) derived for both Foo and Goois further unified due to

the type labels present. This rule may cause unifications to cascade, since the
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let clause Foo(in_lft x, in_lft x)
and Goo(in_rht y, in_rht y)

in [Foo; Goo];

Figure 5-13: Label Propagation and Unification

types attached to corresponding labels may themselves contain corresponding

labels whose types must be unified.

5.5 Disjunctive Clauses

A clause may contain several alternative (or-parallel) branches. For the purposes

of typechecking, each branch is considered a separate clause, and typechecked in

isolation. Type labels are also assigned in isolation. The resultant clause type is

determined by unifying the types of the individual branches (with reference to

the unification rules which must be enforced for the unification of labelled types,

as detailed above).

5.6 Non-Generic Clauses

It is permissible to have clauses passed as parameters to, and invoked from, other

clauses or functions (figure 5-14). Such a clause cannot be passed a method

within the goal, since the type of the clause is unlabelled (in fact, free) when the

goal is analysed. However, an attempt might be made to pass a labelled clause

(one requiring a method) as argument. Some way must be found, therefore, of

ensuring that an attempt to activate a labelled clause passed as parameter, is

faulted.
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let Try c • query c x with x;

> Try = A (a Clause ~ a)

Figure 5-14: A Clause as Argument

let clause Eq_Ox :- eq(xi 0);

clause Eq_Ox .-
eq (XI 0) [1 = int]

> Eq_O= .,p int Clause

Figure 5-15: A Cascaded Method

The notation to Clause denotes the type of a clause which takes argument

of type t, and which may not unify with a labelled clause type. The '0' denotes

the fact that the clause argument type may not acquire labels.

When a goal is analysed, the clause type is examined. If it is free and non-

generic, then it is instanced to to Clause, where t is the type derived for the

argument. The type a0 Clause will unify with f3 Clause, in which case the

"do-not-label" property is propagated. Any attempt to unify T10 Clause with

T2 Clause will fail if the type T2 contains labels.

5.7 Method Propagation

The type determination algorithm described allows clauses which perform uni-

fications of polymorphic values to be called from goals which instance the types

of their arguments. Such a goal may be contained in the body of another clause,

in which case this clause is responsible for constructing the method for the goal

(figure 5-15).
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let clause Foo(x. y) :- eq(.[x]. y _):

I> clause Foo (x. y) :-
eq ([x]. y _) [1 = al List]

> Foo = 1/J

Figure 5-16: Label Propagation

This system has one major weakness. The argument type of the goal may

still be polymorphic, and dependent on the argument type of the containing

clause, as in the example of figure 5-16. In this case, the method derived for eq

will contain an entry of the form [1 = al, where the a is contained in the type

of Foo.

This weakness is circumvented by the following procedure:

• If a method for a goal within a clause contains free type variables, and

those type variables occur within the type of the containing clause, then

the free types are labelled.

In the example above, Foo acquires a labelled type, since it requires method

information which can then be passed to eq (figure 5-16).

Note that the free types within the method must occur in the type of the

containing clause, otherwise the method information cannot be propagated into

the clause. In the example of figure 5-19, an attempt is being made to label the

type of x. Since x is local to the clause, and does not appear in the head of the

clause, the label attached to the type of x cannot be propagated to the type of

the clause itself.

Note also that the method used for the inner goal may be of a completely

different structure to that passed to the clause. In figure 5-20, the method

information required for each call to eq depends on a structured type derived

from free types of x and y. In this case, the method constructed for a goal is
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let rec clause Foo(x, x) '- Foo(x, x);

I> clause Foo (x, x) '-
Foo (x, x) [RecCall]

> Foo = t/J

Figure 5-11: Use of [RecCall]

not generated from a set of unification algorithms, but must instead be derived

from the method passed to the activation of Foo.

There are therefore two criteria for labelling the type of a clause. A clause

type is labelled according to repeated logical variables in the head, and according

to free types in any of its contained methods.

5.8 Recursive Declarations

Recursive declarations featuring clauses need to be dealt with in a special way. A

recursively declared clause may require its type to be labelled due to free types in

methods occurring within it. However, such methods may be determined by the

eventual labelled type of the clause. This circularity is overcome by adopting a

convention that all the clauses defined by one recursive declaration have exactly

the same method.

Goals which feature recursive clause calls are marked with a special method

written [Rec Call]. This is taken to mean that the clause being activated within

the goal is a recursive call, and can be passed the same method as the clause

containing the goal (figure 5-17).

Whereas clause types in non-recursive declarations are labelled clause by

clause, a recursive declaration causes all the clauses in the declaration to be

labelled in one process, according to repeated head variables and (non-recursive)
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goal methods. The types of all clauses in the declaration are determined in one

pass, and labels are attached to these types in another pass. Since recursive

calls have the special method [RecCall], these do not contribute to the labelling

process. In the recursive declaration of figure 5-21, both clauses have the same

method (implied by the types derived for the clause). All mutually recursive

calls between the clauses use method [RecCall].

Because of the fact that recursive clauses are dealt with in a particular way,

it is not permissible to have the recursively defined clauses appearing in goals

in the recursive declaration, unless such goals appear immediately in a clause

body. A declaration of the form

let rec F() • query C()
and clause C() :-

is therefore illegal. The reason for this restriction is that the use of [Rec Call] is

only valid for (mutually) recursive clauses which directly invoke each other, and

not for occurrences of clauses within arbitrary expressions.

5.9 Typechecking Logical Variables

One or two points should be noted in passing with respect to logical variables. A

logical variable is treated (for typechecking purposes) as a binding of an identifier

to an object of a particular type. The fact that logical variables have a peculiar

behaviour (viz. they unify) is, for the purposes of typechecking, irrelevant. IT

a logical variable is uninstantiated, then it is treated by logic programs as an

object of the appropriate type which can be unified, and is treated by functional

programs as a particular kind of fault-value.

From a functional point of view, if a query expression featuring logical vari-

ables fails to unify all of the variables, then the query expression returns a value

containing fault-values. The fact that these fault-values may have polymorphic

type is irrelevant. However, since a logical variable can be instantiated in a differ-
cL

ent deductive system to the one in which it is defined,,.variable with polymorphic
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let query (clause(_» x with x;

> x = _ Q

.. query (clause 3) x;

> true bool

x;

> 3 int

Figure 5-18: Type Instantiation for a Logical Variable

let clause Bad() ._ eq(x, x) with x;

Type clash in: (x, x)
Purely local labelled type within clause:
Clause type is: triv
Local type is: Q

Figure 5-19: An Attempt to Label a Local Type

type might acquire a value of monomorphic type by means of a subsequent de-

duction, as in the example of figure 5-18. In this example, the type of the logical

variable becomes monomorphic to reflect the fact that its value has been instan-

tiated by a second query. In general, a deduction will alter (instance) the types

of any global logical variables it references.

This behaviour of logical variables corresponds to the behaviour of objects

with reference-types in ML. The typechecking of such objects has been dealt

with elsewhere [Damas 85], and is considered beyond the scope of this thesis.
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let clause Foo(x. y) :-
eq(in_lft x. in_rht x).
eq([y], [y]);

I> clause Foo (x. y) :-
eq (in..l.ftx, in_rht x).
eq ([y] I [y])

[1. (al + al)]
[1 • a2 List]

> Foo· 1/1

Figure 5-20: A Derived Method

let rec clause All_Same(x: x : x") '-
All_Same(x : x·)

All_Same [_] I
All_Same nil
and All_Lists_Same(x : x·) '-

All.,:Samex.
All_Lists_Same x·

All_Lists_Same nil;

I> clause All_Same (x : x x" ) '-.
All_Same (x x") [RecCall]

All_Same [_]
All_Same nil

clause All_Lists_Same (x x" ) '-

All_Same XI [RecCall]
All_Lists_Same x' [RecCall]

All_Lists_Same nil

> All_Same = 1/1 : al List Clause
>+ All_Lists_Same = 1/1 al List List Clause

Figure 5-21: AMutually Recursive Declaration



Chapter 6

Concurrent Implementation of
£-HYBRID

6.1 Introduction

This chapter describes a compilation technique for l-HYBRID. Programs writ-

ten in l-HYBRID are compiled into code for an abstract machine. The l-HYBRID

abstract machine directly supports the nondeterministic properties of the compu-

tational model, and contains the 1-HYBRID abstract machine. The l-HYBRID

machine can therefore execute 1-HYBRID programs.

Clauses and queries are compiled into sequences of simple instructions which

implement unification and process reduction. The f,-HYBRID computational

model is partially supported by sequences of instructions which implement com-

putational primitives (for example, unification), and partially by means of a

small number of extensions to the 1-HYBRID machine to support logical vari-

ables and the computational model. In addition, additional special-purpose reg-

isters, and a set of "high-level" instructions (representable in terms of lower-level

instructions), implement the synchronisation primitives needed by the logic com-

putational model. The extensions to the 1- HYBRID machine have been kept

deliberately simple. There is no general unification instruction, but instead a

small number of instructions to perform atomic unification actions. The model

99
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of nondeterministic process reduction is not supported directly by the abstract

machine, but by means of code sequences which make use of synchronisation

instructions.

6.2 Synchronisation Instructions

Processes in a logicalsystem communicate in one of twoways. The first is explicit

communication by means of shared logical variables; a unification performed

on a variable by one process will be visible to any other process which has

access to that variable. The second communication mechanism is implicit, and

is concerned with the management of process reduction within a query.

Two forms of implicit communication may be identified. And-communication

is defined as the passing of a success or failure condition to other processes in the

same conjunctive (and-parallel) system, and or-communication as the passing of

success or failure to processes in the same disjunctive (or-parallel) system.

Every £- HYBRID process belongs to a conjunctive system, since a goal can

only occur within the body of a clause, or within the outermost level of a query

term or declaration. A process may, however, be the only member of a conjunc-

tive system.

An £- HYBRID process may also be a member of a disjunctive system. If a

clause has several alternative branches, then the activation of that clause will

result in the creation of a number of processes, one for each alternative branch.

Each process is a member of the disjunctive system created for this clause, as

well as being a member of the conjunctive context in which the clause was

originally activated. A clause with only a single branch can be viewed as a

disjunctive system with only one member, but in this case optimisation results

in the disjunctive system being dispensed with.

An £-HYBRID process may communicate success or failure to other processes

in the same conjunctive system, by means of the instructions AndSuccess and
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AndFailure. Both instructions cause termination of the process. Communica-

tion of success and failure with other disjunctive processes is done by means of

the instructions OrSuccess and OrFailure. OrSuccess represents an attempt

by a disjunctive process to commit; the process will terminate if any other pro-

cess in the system has already committed. OrFailure represents the failure of

a disjunctive process. If no other disjunctive processes exist (ie. have already

failed), then failure must be communicated to the enclosing conjunctive system,

since this must also fail.

Inaddition, there is an Otherwise instruction corresponding to the otherwise-

form of a guard. A process which executes Otherwise will terminate if any other

process in the same disjunctive system performs an OrSuccess (i.e. commits),

and will continue execution if every other process in the system performs an

OrFailure.

The instructions AndSuccess, AndFailure, OrSuccess, OrFailura, and Otherwise,

although part of the £'-HYBRID machine instruction set, may be decomposed

into sequences of other instructions. They are provided as instructions for the

followingreasons:

• The profiler (chapter 3) makes assumptions about the nature of the ab-

stract code which are relaxed for terminating instructions (section 2.3.2). A

single instruction such as AndSuccess is accepted by the profiler, whereas

the equivalent sequence of simpler instructions would not be;

• Because abstract machine instructions are defined to be atomic (sectionD.2),

direct implementation of the above instructions in the abstract machine al-

lows critical regions within them to be implicitly respected.

Figure 6-1 presents the interpretation attached to the synchronisation instruc-

tions. Regions grouped by a vertical bar (" I")are considered to be critical.

Associated with every executing conjunctive system is an an~cell, which is

a block of storage allocated from the heap. The instruction
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AndSuccess - decrement And/O:
if And/O - 0 then And/1 := true:
Stop:

AndFailure - And/1 :- false:
Stop:

OrSuccess - B :- Or/1 :
Or/1 :- true:
Or/2 :- false:
i/ B then Stop:

OrFailure _ decrement Or/O:
if Or/O - 1 then Or/2 :- true
else i/ Or/O - 0 then AndFailure:
Stop:

Otherwise _ i/ not Or/2 then OrFailure:

Figure 6-1: "High-level" Synchronisation Instructions

AndCell n

allocates such a block from the heap, and places a pointer to it on the stack.

The block has two elements, the first having integer. value n, and the second

being empty. Before a conjunctive system is created, the pointer to the and-cell

is placed in the register R..And;the register value will then be propagated to all

members of the conjunction.

The first element of the and-cell represents the number of processes initially

in the conjunction; the second element is assigned the outcome of the entire

conjunction; true if successful, false if unsuccessful.

The effect of AndSuccess is to remove the process from the conjunctive sys-

tem. Decrementing And/Oupdates the number of processes active. H no more

processes are active, then the conjunctive system is deemed to have succeeded,

and And/l is assigned true. AndFailure assigns And/l to false, failing the

entire conjunction, and terminates. Since And/O is not decremented, no other

successful process will decrement it to zero and overwrite And/1.
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Every set of disjunctive processes has an associated or-cell, which is a block

of storage allocated in the same way as for the and-cell. The instruction

OrCell n

allocates a cell from the heap, placing a pointer on the stack. An or-cellcomprises

three elements. The first element is the number of disjunctive processes, n. The

second element, initially false, is used for the commit operation. The third is

used to implement otherwise. The instruction OrCell is generally followedby

an assignment of the (address of the) block allocated to the register R_Or.

Of all the processes in a disjunctive system, only one is permitted to commit.

The first process which attempts to commit will succeed, and will then reduce

itself to a conjunctive system (the tail of the clause). Any other process in the

same system which attempts to commit will fail, and terminate.

The meanings ofOrSuccess and OrFailure are shown in figure6-1. OrSuccess

attempts to commit by assigning Or/1 to be truej if the previous value was al-

ready true, then the process terminates. OrFailure decrements Or/Oj if the

value becomes zero, then the disjunctive system is empty, and the process per-

forms an AndFailure, thus failing the containing conjunctive system.

The instruction Otherwise will allow a process to proceed if it is the last

process in the disjunctive system, and will terminate the process.otherwise. If

Or/2 becomes true, then all other disjunctive processes have failed, and the

Otherwise succeeds. if Or/2 becomes false, then another disjunctive process

has succeeded, and the Otherwise must fail.
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6.3 Compilation of Clauses and Queries

A clause is implemented as a special kind of function. When a clause is acti-

vated, it is passed a single argument, which may be a value corresponding to an

1-HYBRID expression,. or a structure containing logical variables. The clause

does not return a result, but either succeeds or fails, depending on the outcome of

the deduction it denotes. Any values computed are communicated to the calling

context by means of logical variables.

A clause is compiled into a closure identical in structure to that of an 1-HYBRID

function. The closure contains the code of the clause, together with the size of

stack required for its activation, and a set of values denoting the free variables of

the clause. The clause is activated as a process, with argument passed in register

R..Arg.

The outcome of the query is communicated to the calling context by means

of success and failure instructions, rather than by use of the result register

R...Result. The success and failure instructions are responsible for maintaining

the state of the particular deductive system in the and- and or-cells allocated

by the calling process; use of R...Result would imply the creation of a dedicated

process (with dedicated code) to monitor each deductive system, and the use

of a complex result type to communicate the actions necessary in the reduction

model.

Figure 6-2 illustrates the code generated for two very simple clauses. The

first always succeeds regardless of its argument, and the second always fails. The

instructions AndSuccess and AndFailure are used to communlcatesueeess, or

failure, of the clause to the calling context. Both instructions cause the termina-

tion of the process executing them. Ingeneral, a unit clause will attempt to unify

its argument (passed in R..Arg)according to the formal parameter. ITthe unifi-

cation succeeds, the process executing the clause will perform an AndSuccess;

otherwise, control will pass to the AndFailure instruction.
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let clause Always(_)
and NeverL) :-

Lll:InflateEnv 2;
L5: Code 2 [

L4: AndSuccess;
L3: AndFailure;

];
NullClosure Local/O;
Move Result/l;

Ll0:Code 3 [
L9: AndFailure;
L8: AndFailure;

];
NullClosure Local/O;
Move Result/2;
Stop;

>
>+

Always ~ t/J :
Never =- t/J :

et Clause
f3 Clause

false;

Figure 6-2: Use of AndSuccess
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Code lor Always
Succeeds unconditionally
Failure label (never reached)

Code lor Never
Fails unconditionally
Failure label (never reached)
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When they occur as clause bodies, the literals true and false are treated as

special cases by the compiler, and cause generation ofAndSuccess and AndFailure

instructions as appropriate. A clause body which contains a number of goals is

compiled into a series of calls to the appropriate clauses. A simple clause with a

single alternative branch (and no guard) has the form

clause formals :- G1• •••• Gn

This clause will immediately perform an AndFailure if it cannot unify its ac-

tual argument with its formal parameter. Otherwise, it will reduce to the goals

Gh ..• , Gn (recall from section 6.2 that every executing goal belongs to a con-

junctive system). In order to perform reduction, a goal replaces itself in the

conjunctive system by the goals comprising its body, as described below.

6.3.1 Entry Sequences

A clause activation is similar to a function activation (section 2.4.3). The closure

representing the clause to be activated is placed in R_Func,and the argument

to be passed is placed in R-Arg. The activation of the tail of the clause consists

of a number of clause activations performed one after another; each activation

but the last is performed by ~ Process instruction, and the last is done by

TailApply.

By definition, a read-only logical variable cannot be instantiated by the goal

in which it appears with the read-only annotation. This condition is imple-

mented by requiring that the process accessing the variable be suspended until

the variable is instantiated by some other process (section 6.3.4).

In practice, it is difficult to ensure this read-only condition. A clause may

attempt to pass an uninstantiated variable to several processes; in this case, each

process must somehow be forbidden to unify the variable. A simple, if slightly

restrictive, technique is chosen to circumvent this problem. The compiler makes

sure that the argument to a goal is assembled by the goal process itself, via

an entry sequence; the entry sequence causes the goal process to suspend, if



Chapter 6. Concurrent Implementation of f.-HYBRID 107

necessary, until all read-only variables have been instantiated. This sequence is

executed directly by the goal process, and contains a tail-recursive call to the

clause itself. The entry sequence is an anonymous procedure which contains:

• the code to evaluate the expression representing the clause;

• a check for the clause expression being a fault-value;

• the code to assemble an argument to the clause;

• assignment of clause to R..Funcand argument to R.Arg;

• a tail-recursive call to activate the clause.

The process created for each goal begins by executing this entry sequence;

if any read-only variables are uninstantiated, the process will suspend at this

stage. The clause code is activated by the TailApply within the entry sequence.

The closure for the entry sequence contains the values of identifiers in the

clause expression and in the argument. Uninstantiated logical variables may be

compiled into the closure without regard for any read-only annotation attached

to them; such annotations are respected by the goal process when the entry

sequence is activated.

New processes for goals are created by the Process instruction. Process be-

haves like the instructions PushProcess and VecProcess used bythe ;-HYBRID

compiler (chapter 2), but is a degenerate form of these, in that the R...Result

register is not assigned any particular value. However, propagation of the syn-

chronisation registers R.Andand R_Oris guaranteed. A parent can therefore pass

a reference to an ana-cell to its children in R.And, all of whom will inherit a

pointer to the same cell.

Figure 6-3 illustrates the code generated for a clause body comprising two

goals. Each goal is conceptually executed by a newly created process; however,

optimisation results in the final goal in the tail of a clause being activated by tail-

recursion. Because TwoCalls reduces to two goals, the size of the conjunctive
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system in which the call to TwoCalls occurs will increase by one when TwoCalls

reduces. The correct size is maintained in And/O by means of the instruction

Increase dest; n

which is defined to atomically add the value n to the cell referenced by dest.

A unit clause (a clause with no body) will succeed immediately upon unifica-

tion. A literal goal (a boolean expression as goal) will succeed if the expression

evaluates to true, and fail otherwise. The example clause (figure 6-4) con-

tains an entry sequence which examines the value of the expression (0 > 1);

the TestFault instruction causes failure if the literal goal evaluates to a fault-

value. A literal goal must also be activated from an entry sequence, to deal with

read-only logical variables appearing in the literal expression itself.

A disjunction is denoted by a clause with several alternative branches, of the

form

clause formals1 :-

formalB2 :-

The clause will fail if no unification to the formal parameters succeeds (ie. if all

alternatives fail). Otherwise, one of the successful alternatives is nondetermin-

istically chosen to reduce to a conjunction (or to succeed, if it is a unit clause).

Each alternative branch will attempt to unify the actual parameter against its

formal parameter, but only one will be permitted to succeed and reduce to the

tail system.

Figure 6-5 illustrates a clause with two alternate branches. The code gen-

erated for the clause is divided into two sections, one for each branch. A Fork

instruction is used to create processes for all but one of the alternate branches

(the remaining branch being executed by the calling process).

Fork creates a new process which begins execution at a specified label. The

newly created process has a new area of stack referenced by R..Local (with size
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let clause TwoCalls(_) ._ Always 3, Never nil:

L12:InflateEnv 1:
Lll :Code 6 [

L10:Triv:
FromReg R..Arg:
FromReg RJMethod:
Increase And/O, 1:

L9: Code 2 [
L8: From Global/O:

TestFault 0, L7;
Int 3:
MoveReg R..Arg:
MoveReg R_Func:
TailApply;

L7: AndFailure:

Save old
register values
Increase size of conjunction
Entry sequence for Always
Clause passed here
Fail if it's a fault
Argument

Actual call to clause

]:

Closure for entry sequence;
Always is passed here

MoveReg R...Func;
Process:

L6: Code 2 [
First Goal
Entry sequence for Never

];

Closure for entry sequence,
Incorporates Never

MoveReg R_Func;
TailApply;

L3: AndFailure;
Activation of second goal
Failure label for TwoCalls

];

Closure for TwoCalls

Move Result/l:
Stop;

> TwoCalls = t/; 0: Clause

Figure 6-3: Clause Body Comprising Two Goals
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let clause GivesFalse(_) :- (0 > 1);

L9: InflateEnv 1;
L8: Code 5 [

L7: Triv;
FromReg R..Arg;
FromReg RJMethod;

L6: Code 2 [
L5: Int 0;

Int 1 ;
GT;
TestFault 0, L4;
FalseJump L4;
AndSuccess;

L4: AndFailure;
];
NullClosure Local/O;
MoveReg R..Func;
TailApply;

L3: AndFailure;
] ;
NullClosure Local/O;
Move Result/1;
Stop;

> GivesFalse = t/J a Clause

Figure 6-4: A Literal Goal
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Code for GivesFalse

Entry sequence for (0 > 1)

0> 1?
Fail if result is a fault
Fail if result is false

Failure label
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let clause AlwaysOneOrTwo(_) 0- Always 1
AlwaysOneOrTwo(_) 0- Always 2;

L12:InflateEnv 1;
LU :Code 6 [

L10: OrCell 2; Two disjunctive processes
MoveReg R_Or;
Fork 6. LS; Process lor second branch
Triv;
FromReg R-Arg;
OrSuccess; Commit lor first branch
FromReg RJMethod;

L9: Code 2 [

Entry sequence lor Always 1

];

Closure lor entry sequence

MoveReg R_Func;
TailApply;

L6: OrFailure;
LS: Triv;

FromReg R-Arg;
OrSuccess;
FromReg RJMethod;

L4: Code 2 [

Call 01Always 1
First branch [ailure label
Second proees« starts here

Commit lor second branch

Entry sequence lor Always 2

];

Closure lor entry sequence

MoveReg R_Func;
TailApply;

L1: OrFailure;
Call 01Always 2
Second branch [ailur« label

. ];

Closure

Move Result/1;
Stop;

> AlwaysOneOrTwo = ~ Q Clause

Figure 6-5: SimpleDisjunction
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as specified in the Fork instruction), but all other registers (except the program

counter) are inherited.

The most general form of a clause body consists of two sets of goals, separated

by the commit symbol, '\':

clause formals :- G1• .•.• Gn

\ T1• •••• r;

If there is no explicit commit symbol ('\'), then the guard is assumed to be

null. In this case, a process attempts to commit when it has completed its head

unification.

The goals G1 to Gn constitute the guard, and the goals Tl to Tm. the tail, of

the clause body. Given a set of disjunctive clause alternatives, each will attempt

head unification. If this is successful, the guard will be activated as a separate

conjunctive system. Only if the guard succeeds will the process attempt to

commit (exclude other disjunctive processes from reduction), and then reduce

to the tail. Only one process will be permitted to commit successfully; any

other process attempting the commit will immediately terminate. Recall from

section 4.2 that unification is not guarded; redundant processes may still perform

unifications that are visible to the query as a whole.

Figure 6-6 illustrates the code generated for a guarded clause. The guard

is executed as a separate conjunctive system, with a newly allocated and-cell.

The old value of RJ.nd is saved on the stack, and restored after the guard has

completed, so that the execution of the clause can reduce to a conjunctive system

executing the clause tail (should the clause commit successfully).

6.3.2 Storage of Logical Variables

The local logical variables of a clause are allocated within a block of store claimed

from the heap by a Block instruction. A separate block is allocated for each

alternative branch of a clause, since the local logical variables are distinct.
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let clause Guarded(_) .- Always 4 \ true
Guarded(_) .- Always 3 \ true:

L14:InflateEnv 1:
L13:Code 7 [

L12:0rCell 2:
MoveReg R_Or:
Fork 7. L7:
Triv:
FromReg R-Arg:
FromReg R-And:
AndCell 1:

MoveReg R-And:
FromReg RJMethod:

LU :Code 2 [

]:

MoveReg R..Func:
Process:
From And/1:
From Local/2:
MoveReg R-And:
Deflate 2. 1:
FalseJump L8:
OrSuccess:
AndSuccess:

L8: OrFailure:
L7:

]:

Move Result/1:
Stop:

> Guarded = 'IjJ a Clause

Figure 6-6: AGuarded Clause
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Two branches

Process for second branch

Save argument
Save old and-cell
New and-cell
for guard conjunctive system

Entry sequence for Always 4

Closure for entry sequence

A wait result of guard
Restore old and-cell

Fail if the guard failed
Commit
Clause tail: true
Failure label

Second branch of clause

Closure
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The elements of a piece of store allocated by Block are initially empty (sec-

tion 2.4.2). The Uninstance instruction is used to assign the elements a special

value associated with an uninstantiated logical variable (section 6.3.4).

Uninstantiated logical variables are treated distinctly from store locations

which are empty. An attempt by a process to copy an empty store location will

immediately suspend the process; by contrast, an attempt to copy an uninstan-

tiated logical variable will cause a reference (invisible pointer) to be created to

the variable (section 6.3.4).

A parameter to a clause is decomposed in a similar manner to the decompo-

sition of a parameter to a function, but the decomposition is done by unification.

Argument decomposition results in unification to the logical variables referenced

within the head of the clause.

Figure 6-8 illustrates the allocation of local logical variables. The logical

variable x is declared implicitly in the head of the clause, and the variable y is

declared explicitly by means of witho The Block instruction allocates space for

both x and y.

The code for XAndYillustrates an important optimisation. Since the formal

parameter variables in the head of a clause are initially undefined, the first

unification to such a variable can be replaced by a simple assignment, with the

same effect. If a variable only occurs once in the head of a clause, it is not

necessary to unify to it at all.

The same local variable space is used for goals whose actual parameter is

a single anonymous logical variable. Since the uninstantiated value cannot be

passed in a register, and cannot reside on the caller's stack (because of the

behaviour of logical variables (section 6.3.4)), the argument must be a reference

to a variable allocated in a block on the heap. Figure 6-9 illustrates the allocation

of these variables. A block of three locations is allocated. The first of these is

reserved for x, and the other two locations are used for the anonymous variables

passed to each call of Always.
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6.3.3 Query Expressions and Query Declarations

A query expression may have one of two forms. An expression of the form

query G11 ••• I G,.

creates a conjunctive system for the evaluation of the goals G1to G,., and returns

true for a successful outcome, and false otherwise. Such a result is directly

available from the and-cell created for the system; And/l will be assigned a

boolean value corresponding to the outcome of the query. The query expression

need only return the value of And/l, after having tidied up the stack. The query

expression of figure 6-10 activates a process for each goal in the query. The

sequence of instructions

From And/l;
Result;
Stop;

causes the outermost process to await, and return, the outcome of the query.

An expression of the form

query G1 I ••• I G,. with id1 I ••• I idm.

creates a conjunctive system for G1 to G,., using logical variables id1 to idm.. IT

the query succeeds, then the value of the query expression is the tuple

(id1 I ••• I idm.)

IT the query fails, the value of the expression is the fault-value

(fault: {infer})

The query term as a whole is executed by a new process. This means that

an expression of the form

«query goals1) I ••• I (query goals,.»
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will execute as a concurrent set of processes, one for each query term. Execution

by one process would mean that the process would await the result of each goals;

before creating the goal system goalS;+1, thus restricting parallelism.

Query declarations are dealt with in a similar manner. ITthe query system

succeeds, then the values unified to the logical variables in the declaration are

made available in the scope of the declaration. ITthe system fails, then fault-

values are generated.

A local query declaration establishes bindings within the scope of an expres-

sion. Space is allocated to the logical variables using a Block instruction in the

same way as for functional local declarations, but the variables are made unin-

stantiated before the query is initiated. ITthe query succeeds, then the variable

bindings made are available in the enclosed expression. Within the expression,

the values of the variables are accessed in the conventional manner using From,

their logical nature being irrelevant. ITthe query fails, then a fault-value is gen-

erated. Failed query declarations generate the same fault as failed functional

declarations; the fault-value

(fault: {decl})

is returned as the result of the expression. In figure 6-11 a process is created

for each goal in the query. The instruction From And/l causes the outermost

process to await the result of the query. ITthe query succeeds, control passes to

label L6, to calculate x + 1. In the query fails, control passes to Ll, causing the

generation of a fault-value.

Top-level query declarations store the logical variables in the top-level envi-

ronment. These locations are available to the outermost process 3$ offsets from

R..R.esult; the cells are made uninstantiated before the query begins execution.

Other processes in the system are passed references to these cells within closures.

ITthe query succeeds, then the values unified to the variables are treated subse-

quently as conventional values. ITthe query fails, then fault-values are generated

for the variables. In the example of figure 6-12, success of the query causes
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control to pass to L4. Failure causes a fault-value to be generated and copied to

each of the store locations allocated for x, y and z.

Top-level query declarations may cause overwriting of the values of memory

cellswith new values; in this respect, the assignment convention laid down for the

.1-HYBRID interpreter (section 2.3.1) is violated. Overwriting occurs when some

unification has been performed on a top-level variable, and the query system

subsequently fails; all top-level variables must be overwritten with a fault-value.

The overwriting operation is considered safe since the only active processes

are those within the query system, which has just indicated failure; the outcomes

of their computations will be discarded. Also, none of the remaining processes

can interfere with the fault-values assigned to the variables.

For local query declarations of the form

let query goall. ...• goal"
with idl• •••• idn

in expr

failure of the query causes a fault-value to be returned; evaluation of expr is

not attempted. The block allocated for the logical variables may therefore be

immediately discarded, without any overwriting taking place.

6.3.4 Logical Variables

Logical variables behave in much the same manner as their counterparts in

PROLOG. A logical variable is initially undefined (or uninstantiated), and is

manipulated by the process of unification, which causes it to be instantiated to

some data value. This value may itself contain uninstantiated values correspond-

ing to other logical variables. The declaration of a logical variable simply serves

to associate a name with a data object which behaves in a particular manner.

A representation is adopted for logical variables which does not make use

of structure sharing [Warren 77]. Since PROLOG programs manipulate data

objects purely by unification, structure sharing need only be supported in the
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unification algorithm. However, HYBRIDprograms treat objects as values which

are manipulated functionally, by a number of primitive operations. Structure

sharing would therefore have to be supported by every primitive operation.

As a result of a non-structure sharing approach, structures in the head of

a clause are built for each clause activation, since each activation will have a

distinct set of logical variables (section 6.4).

Logical variables are memory locations in the global address space. The

creation of a logical variable is viewed as the binding of a name to an object in

the global address space. No portion of the address space is allocated specially

for logical variables; any memory location may be used as a logical variable, and

the unification operations described below (section 6.4) are also well defined if

performed over simple data values.

A logical variable is created at a particular location by an Uninstance in-

struction. The cell referred to by the instruction is assigned a special uninstan-

tiated value. This value is distinct from any data value, any fault-value, and the

value used for empty.

When an attempt is made to copy the uninstantiated value from one loca-

tion to another, the destination location is assigned a second kind of value. A

reference value is an invisible pointer to another cell, created and manipulated

implicitly by the abstract machine. Any attempt to copy an uninstantiated value

to another cell results in the second cell being assigned a reference to the first cell.

An attempt to access a reference-cell results in access to the cell it references.

Since reference-cells are manipulated implicitly by every machine instruction, a

reference to a data value always appears as the data value itself, the dereferencing

operation being performed automatically.

It might be thought that an invisible pointer scheme could be used to pre-

vent processing bottlenecks which occur when processes access the empty value.

However, such a scheme is rejected for the followingreasons:

1. The mechanics of empty are assumed to be provided by the abstract ma-

chine at a very low level, and are used extensively throughout the imple-
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mentation of 1-HYBRID and 1!-HYBRID.The use of an invisible pointer

scheme for empty would impose considerable overheads in store manage-

ment. By contrast, the use of reference-cells is restricted to the propagation

of uninstantiated logical variables within 1!-HYBRIDj

2. The use of invisible pointers for empty would invalidate any kind of syn-

chronisation and control of the processes in a computation, since any pro-

cess accessing empty would be given an invisible pointer and immediately

continue execution. This would invalidate all of the concurrency control

techniques derived in chapter 3, and result in the execution of a program

being swamped by processes creating long chains of references to empty

cells.

It is possible, during unification, to generate long chains of reference-cells. A

long chain of reference cells terminating in a data value is equivalent to several

copies of the data value. A chain of reference cells terminating in an uninstanti-

ated value is equivalent to several references to that value. Instructions such as

If Instanced (section 6.4.2) assume that such chains will be shortened whenever

a reference cell in the chain is accessed. If the end of a reference chain is a data

value, then the reference cell is directly overwritten with the data value itself.

If the end of a reference chain is an uninstantiated cell, then the reference is

transformed to be a direct reference to the uninstantiated cell.

The behaviour of a logical variable cannot be explained in purely functional

terms, since the unification process has no functional counterpart. However,

logical variables (or the values contained within them) may be accessible to a

functional part of a program. In this case, a logical variable is treated as a

binding of a name to an object with a rather strange behaviour.

In functional terms, a free variable is treated as the fault-value

(fault {uninst})
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let query (clause (_)) x with x;

> x =

x + 1;

> (fault {prim "+"}. {uninst}) int

x;

> int

Figure 6-7: Uninstantiated Variables in a Functional Context

where {uninst} represents uninstantiated. As with other fault-values, it may be

passed unaltered as argument and embedded in data structures, and will cause

fault propagation if an attempt is made to access its value (figure 6-7).

Within queries, it is often necessary to mark logicalvariables as read-only. In

operational terms, this means that the process making a read-only access to the

variable is suspended until the variable is instantiated by another process. Since

goals may contain functional expressions (either as parts of arguments, or by

virtue of being literal goals), functional parts of programs may be invokedwith

logical variables which have still to be instantiated by another process in the

query. As mentioned above, the values of such variables would.just be treated

as fault-values.

In addition, any identifier within a functional expression may be marked as

read-only. Any process which attempts to evaluate this expression as part of

a goal will be suspended until the variable has been instantiated by another

process.

A read-only variable is retrieved by the instruction Read. Read behaves ex-

actly as From if the cell is a (reference to a) data or fault-value; if the cell is

empty, then the accessingprocess is suspended. However, if the cell is uninstan-
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let clause XAndY(x) ._ Always (x. y) with y;

L7: InflateEnv 1;
L6: Code 6 [

L6: Block 2;
Uninstance Local/O/O;
Uninstance Local/O/1;
From&eg R-Arg;
Move Local/1/0;
From&eg RJMethod;

L4: Code 3 [

Allocated lor y
Allocated lor x
Retrieve argument
Store to x

Entry sequence

];

Closure lor entry sequence

MoveReg R_Func;
TailApply;

L1: AndFailure;
] ;

Closure lor XAndY

Move Result/1;
Stop;

> XAndY· tP a Clause

Figure 6-8: Allocation of Local Logical Variables

tiated, the process also goes into a wait-state, to be resumed when the cell is

instantiated by another process.
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let clause Anons x ,_ Always(_). Always(_);

L13:InflateEnv 1;
L12:Code 6 [

L11 :Block 3;
Uninstance Local/O/O;
Uninstance Local/O/1;
Uninstance Local/O/2;
FromReg R..Arg;
Move Local/1/0;
FromReg RJMethod;
Increase And/O. 2;

L10:Code 2 [

Allocated lor x
Two anonymous
variables

Store x

Increase size 0/ conjunction
First entry sequence

];

Closure picks up 1st
anonymous variable

MoveReg R..Func;
Process;

Second entry sequence...

MoveReg R..Func;
TailApply;

L1: AndFailure;
];

Closure

Move Result/1;
Stop;

> Anons =- 1/J a Clause

Figure 6-9: Allocation of Anonymous Variables
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query Always 1, Always false, Always nil;

L11 :Code 4 [
Ll0:AndCell 3;

MoveReg RJ.nd;
Triv;

L3: Code 2 [
L2: From Global/O;

TestFault 0, Ll;
Int 1;
MoveReg R..Arg;
MoveReg RJ'unc;
TailApply;

Ll: AndFailure;
];

MoveReg RJ'unc;
Process;

MoveReg RJ'unc;
Process;

MoveReg RJ'unc:
Process;
Fall 1;
From And/l;
Result;
Stop;

];

TailApply;

> true': bool·

Figure 6-10: A Query Without Variables
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The query term ...
Three goals

First goal

Second goal

Third goal

The outcome 0/ the query

Closure
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let query Never x with x in'x + 1;

L6: Block 1;
From&eg R..And;
AndCell 1;
MoveReg R..And;
Uninstance Local/1/0;
Triv;

L4: Code 2 [

];

MoveReg R..Func;
Process;
Fall 1;
From And/1;
True Jump L5;
MoveReg R..And;
Fall 1;
Jump L1;

L5: MoveReg R..And;
From Local/O/O;
Int 1;
Plus;
Result;
Stop;

L1: Nil;
Fault;
Triv;
ChainFault 3;
Result;
Stop;

> (fault {decl}) int

Uninstantiate x

124

Entry sequence for Never

Closure

Query succeeds

Calculate x + 1

Construct (fault

Figure 6-11: Failure of a Local Query Declaration

{dec l ] )
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let query Never(x. y. z) with x. y. z;

L6: InflateEnv 3;
From&eg R-And;
AndCell 1;
MoveReg R-And;
Uninstance Result/1;
Uninstance Result/2;
Uninstance Result/3;
Triv;

L3: Code 3 [

];

MoveReg R..Func;
Process;
Fall 1;
From And/1';
True Jump L4;
Nil;
Fault;
Triv;
ChainFault 3;
Copy Result/1;
Copy Result/2;
Move Result/3;

L4: MoveReg R-And;
Stop;

> x = (fault
>+ y = (fault
>+ z = (fault

{decl})
{decl})
{decl})

0:

(3
'1
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Allocate x, y, z
Save and-cell

Set up new and-cell

Entry sequence for Never

Closure

Query successful

Construct fault

Overwrite x, y, z
Restore and-cell

Figure 6-12: Failure of Top-level Query Declarations
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6.4 Unification

C.-HYBRID supports the notion of unification found in PROLOG. When an in-

stance of a clause is activated, it attempts to unify the argument passed to it

(the actual parameter) according to the structure and value of its argument.

This process is different to that used for passing parameters to functions; within

a function, the formal parameter serves merely to denote the structure of the

argument, and specify which parts of that structure should be bound to iden-

tifiers (a process denoted by the term pattern matching). Within a clause, the

formal parameter is a structure which determines, amongst other things, the

effect the unification process has upon logical variables passed within the argu-

ment. However, the formal parameter sections of functions and clauses have an

identical syntax. Unification can be viewed as a generalisation of the param-

eter passing method used in function calls, since the unification process may

instantiate one or more logical variables appearing in the argument, in addition

to assigning variables appearing in the head (formal parameter section) of the

clause. Variables may also be repeated in the head of a clause.

Due to the nature of the typechecking process, it has been assumed until now

that the run-time representation of data objects contains no type information.

In keeping with this philosophy, the unification process is strongly typed. At no

stage during a unification process is it necessary to determine the type of object

being unified; the static typechecking algorithm of chapter 5 performs all the

necessary typechecking at compile-time.

6.4.1 Active and Passive Structures

A clause is a special kind of function. It consists of a number of branches, each

of which has a formal parameter section and an optional body. The formal

parameter of each branch is a structure of constants, expressions and logical

variables to be unified to an actual parameter when the clause is activated.
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A goal is an attempt to activate a clause. It consists of an expression repre-

senting a clause, and an actual parameter. The actual parameter is a structure of

constants, expressions and logical variables to be unified to a formal parameter

of the activated clause.

From this point of view, it would seem that there is no conceptual differ-

ence between a clause formal parameter and a goal actual parameter; both are

structures which are manipulated by some unification algorithm when a clause

is invoked. However, a distinction can be drawn between active and passive

argument structures.

A formal parameter within a branch of a clause is considered to be active,

since it does not directly represent a structure, but instead represents the unifica-

tion operations which the clause will attempt to perform on an actual parameter.

The object denoted by clause (3) can be thought of, not as a clause with formal

parameter 3, but as a clause which will attempt to unify an actual parame-

ter with the value 3. Similarly, clause (_) represents a clause which will not

attempt to perform any unification whatsoever.

An actual parameter within a goal is considered to be passive, since it directly

represents some structure to be unified by the clause being invoked. A term

such as query C(3) is an attempt to activate the clause C with the value 3 as

argument. The term query C(_) represents an attempt to activate C with a

value (_).

6.4.2 ·Structure and Value Unification

Each clause head is compiled with a unification algorithm determined by its

formal parameter. This "skeletal" .algorithm may require other information in

the form of a method, which is passed when the clause is invoked.

A structure occurring within the head of a clause indicates an intent to unify

the appropriate part of the argument to a structure of that kind; this will be

termed structural unification. No method information is necessary in this case,

since the structural operation does not depend on the type of argument.
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A constant or expression occurring within the head of a clause indicates an

intent to perform a unification against its value; this kind of operation (termed

value unification) is performed according to type.

Corresponding to the indefinite number of unifiable types of object available

in the language, there are an infinite number of unification algorithms, one for

each type. Inpractice, a unification algorithm is constructed as a portion of code

containing primitive unification instructions. Each such code portion assumes

objects of the appropriate type, and unifies them accordingly. In the current

implementation, a unification algorithm is constructed at each place where a

value unification is required. Possible optimisations include having a predefined

set of unification algorithms for the most commonly occurring types, and the

construction of complex unification algorithms in terms of predefined simpler

ones.

The unification instructions have the effect of transforming uninstantiated

cells into data cells, or references to other cells. As a result of unification oper-

ations, long chains of reference cells may be built up.

A single unification operation (in PROLOG terms) is decomposed into a num-

ber of primitive unification instructions. The number of instructions executed

depends on the complexity of the structures being unified, and on the complexity

of their types. each unification instruction is atomic, although the entire unifi-

cation operation may not be. Unification within a structure is.performed from

left to right; the unification order is important if a unification fails to complete,

since no backtracking occurs.

The Instructions If Instanced and UnifyChain

The instructions If Instanced and UnifyChain are generated exclusively for

head unifications. The instruction

If Instanced -> label
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examines the top of the stack; if it encounters a data value (or a reference to

it), then control is passed to label, chains of references being shortened in the

process; otherwise, control passes to the next instruction. The instruction

UnifyChain label

performs a primitive unification operation. It expects two arguments on the

stack. The first argument (Local/ 1) is assumed to be a reference (or chain of

references) to an undefined cell. The second argument (Local/O) is assumed

to be a data value. UnifyChain transforms the undefined cell into a data cell,

with the same value as Local/O. Both elements are removed from the stack, and

control is unconditionally passed to label.

Figure 6-13 illustrates simple unification using IsInstanced and UnifyChain.

The code generated assumes two execution paths for the clause. The first of these

occurs if IsThree is called with an instantiated argument. In this case, control

is passed immediately to label L4, which will perform an AndSuccess (at L5) if

the value passed is identical to the formal parameter (viz. the integer 3), and an

AndFailure otherwise.

. In general, there are a number of execution paths through the unification code

of a clause. For each part of an.argument, an instantiated cell causes control to

pass to the label of the If Instanced instruction; otherwise, control continues to

the UnifyChain instruction. This allows unnecessary unification to be avoided.

The instructions If Instanced and UnifyChain always appear in pairs. In

addition, they form a critical region with respect to the logical variable being

referenced. H the argument is already instantiated, then the unification at this

level of the structure is considered complete. Otherwise, control will eventually

pass to the UnifyChain instruction.

The reasoning behind this mechanism is twofold. Firstly, it removes the need

for a number of primitive Unify instructions, one for each data type in the lan-

guage. Secondly, it allowsfor optimisation of clauses which have complex formal

parameter structures. H the clause of figure 6-14 is activated with an unin-

stantiated variable as argument, then only one primitive unification operation
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let clause IsThree 3:

L8: InflateEnv 1:
L7: Code 3 [

L6: Triv:
FromReg RJ.rg:
IfInstanced L4:
Int 3:
UnifyChain L5:

L4: TestFault 0, L3:

Int 3:
EqInt:
FalseJump L3:

L5: AndSuccess:
L3: AndFailure:

];
NullClosure Local/O:
Move Result/1:
Stop:

> IsThree = 't/J int Clause

Figure 6-13: Scalar Unification
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Retrieve argument
Is the argument instantiated?
No: unconditionally
unify to 3
Argument is instantiated;
ensure it isn't a fault

Succeed if3, fail otherwise
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is performed (the UnifyChain), and the clause immediately succeeds. The head

structure is generated before unification commences, and then only the required

unification operations need be performed, according to the actual parameter

paased".

Since the l-HYBRIDabstract machine provides no facilities to explicitly

declare critical regions, it is necessary to avoid interference between processes

which have access to, and may attempt to unify, the same logical variable. The

clause UnifyOneOrTwoof figure 6-15 will, upon execution, create a disjunctive

system of two processes. The first of these will attempt to unify an argument

against the data value 1, and the second will attempt to unify an argument

against 2.

The critical region is enforced by allowing If Instanced to block access to

its argument from another process. ITthe argument to If Instanced is already

instantiated, then no interference can occur. However, if the argument is unin-

stantiated, then no other process must be permitted to unify it until the current

process has performed a UnifyChain.

ITthe If Instanced jump fails, then the argument can only be a reference

cell pointing directly to an uninstantiated cell (from section 6.3.4). In this case,

If Instanced makes the uninstantiated cell empty. This blocks any other access

to the cell by another process, since any attempt to access the empty cell will

suspend the process.

UnifyChain assumes that its first argument (Local/i) is a reference cell

pointing directly at an empty cell, and overwrites the empty cell without at-

tempting to examine it. This operation serves to end the critical region.

The Unify Instruction

The instruction

1A further optimisation would be to create structures statically and build them into

the closure of the clause.
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Unify -> label

is generated for unifications performed by type, rather than the structural uni-

fications of section 6.4.2. It expects two arguments on the stack, which may be

data values, or may be references to uninstantiated cells2• ITeither of the refer-

enced cells is uninstantiated, then it is assigned a reference to the other cell, the

cell values are removed from the stack, and control passes to label. Otherwise (if

both are instantiated values) the values are left on the stack, and control passes

to the next instruction. ITboth cells are uninstantiated, it is unimportant which

cell is unified to the other.

Unification by type occurs within methods (section 6.5), but can also occur

for the head of a clause when a head variable is repeated, or unification is per-

formed with a constant expression. In figure 6-16, unification is performed on

the two occurrences of the local logical variable x. However, since the type of x

can be statically determined (from the goal (x? > 0)), the code generated for

the clause IntPair can contain instructions to perform integer unification.

6.5 Method Construction

A method is a list of unification algorithms, each for a particular type of data

object. Corresponding to every clause is a (possibly empty) method for each

labelled type variable in its type. When the clause is compiled, it is assumed

that the information necessary to unify these types will be passed as an implicit

parameter. When the clause is activated, a method is constructed and passed

to the clause.

The register R..Methodis used to pass method information. When a clause is

compiled, it is assumed that each labelled type will have a corresponding entry

2A stack location cannot be uninstanced itself, since the uninstanced value cannot be

copied.



Chapter 6. Concurrent Implementation of f.-HYBRID

let clause Complex(_. _. _. x);

L8: InflateEnv 1;
L7: Code 4 [

L6: Block 1;
Uninstance Local/O/O;
TupleCell 4;
Uninstance Local/O/O;
Uninstance Local/O/1;
Uninstance Local/O/2;
From Local/1/0;
Move Local/1/3;
FromReg R..Arg;
IfInstanced L4;
From Local/1;
UnifyChain L6;

L4: TestFault O. L3;
From Local/O/3;
Move Local/3/0;

L6: AndSuccess;
L3: AndFailure;

] ;
NullClosure Local/O;
Move Result/1;
Stop;

> Complex == tP (a. P. ,. 6) Clause
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Uninstantiate x
Assemble (_. _. _. x)
First element
Second
Third

x is fourth
Retrieve argument

Not instantiated:
unify and succeed
Fail if fault

Assign x

Figure 6-14: A Complex Formal Parameter
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let clause UnifyOneOrTwo 1
UnifyOneOrTwo 2;

L12:InflateEnv 1;
L11 :Code 3 [

L10:0rCell 2;
MoveReg R_Or;
Fork 3. L6;
Triv;
FromReg R_Arg;
IfInstanced L8;
Int 2;
UnifyChain L9;

L8: TestFault O. L7;
Int 2;
EqInt;
FalseJump L7;

L9: OrSuccess;
AndSuccess;

L7: OrFailure;
L6: Triv;

FromReg R_Arg;
IfInstanced L4;
Int 1;
UnifyChain L5;

L4: TestFault O. L3;
Int 1;
EqInt;
FalseJump L3;

L5: OrSuccess;
AndSuccess;

L3: OrFailure;

First Branch

Critical Region

Argument instantiated;
equal to Sf

Second Branch

Critical Region

Argument instantiated;
equal to 1'1

];
NullClosure Local/O;
Move Result/1;
Stop;

> UnifyOneOrTwo.. t/J int Clause

Figure 6-15: A Critical Region in a Disjunctive System
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let clause IntPair(x. x) .- (x? > 0):

L13:InflateEnv 1:
L12:Code 6 [

Allocate x,
assemble (x, x)

FromReg R-Arg:
IfInstanced L4:
From Local/1:
UnifyChain L5:

L4: TestFault O. L3:
From Local/O/O:
Move Local/3/0:
From Local/O/1:
From Local/3/0:
Unify -> L6:
EqInt:
FalseJump L7:
Jump L6:

L7: AndFailure:
L6:

Argument is uninstant£ated

x := first 0/ tuple

Get second 0/ tuple
Get x

unification by type: int

Body 0/ clause

]:
NullClosure Local/O:
Move Result/1:
Stop:

> IntPair = 1/J (int. int) Clause

. Figure 6-16: A Repeated Monomorphic Variable
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in the method passed with the argument. Thus, a labelled type al will have a

method Method/O, (32 will have entry Method/1 and so on.

Each method entry is a closure which may be activated by function call. A

method entry takes no explicit argument, but assumes that the cells Result/O

and Result/1 contain the objects to be unified. A method entry returns true

to its caller if it successfully unifies the objects, and false otherwise. Each

method closure contains the code for the method entry, the size of stack needed

to execute it, and the method of the calling environment.

The equality clause is illustrated in figures 6-17 and 6-18. Output pre-

ceded by "t>" represents intermediate method information generated by the

typechecker. In the definition of eq (figure 6-17), it is assumed that a method

will be passed to each call of eq, using register R..Method. The method for eq

contains one entry (corresponding to the single label in the type of eq). The

method entry is activated by moving it from Method/O into the function register
at4&,.

RJ'unc, and then using Apply to activA it, returning true or false to the stack

to indicate success, or failure, of the unification.

In the call to eq (figure 6-18), the code for the method entry corresponding

to the type int List is compiled into a closure (L7 onwards). The closure of the

method entry contains the old method; this is necessary for method types which

themselves contain labels. The method is placed in register R..Method before the

goal is activated.

H a labelled type variable (such as al) appears in a method, it represents

a call within the method to the method of the containing clause. H a labelled
app~(J,('S hl CLh\.tJt(1ti

instantiated type (such as intl)A then the label is discarded.

The typechecker ensures that clauses within the same recursive declaration

use the same method. The special method written [RecCall] represents a method

identical to that of the caller; such instances are identified statically by the type-

checker (section 5.3.2). The clause Pairs of figure 6-19 contains a single recur-

sive call to itself, and so the value of register R..Method can be left undisturbed

throughout an invocation of Pairs (although the first method entry must still



Chapter 6. Concurrent Implementation of f,-HYBRID 137

let clause eq(x. x);

L10:InflateEnv 1;
L9: Code 6 [

Allocation lor x,
Assembly 0/ (x, x)

FromReg R-Arg;
If Instanced L4;
From Local/l;
UnifyChain L6;

L4: TestFault O. L3;
From Local/O/O;
Move Local/3/0;
From Local/O/l;
From Local/3/0;
Unify -> L6;
From Method/O;
MoveReg R_Func;
Apply;
Deflate 1. 2;
FalseJump L7;
Jump L6;

L7: AndFailure;
L6: AndSuccess;
L3: AndFailure;

Retrieve argument

Argument uninstantiated:
unily and exit
Argument instantiated
First 01 tuple
Store x
Second 01 tuple
Get x
II both are instantiated, then:
Retrieve the method,

and
call the method

Jump il method [ailed
Success

];
NullClosure Local/O;
Move Result/l;
Stop;

> eq = '" (al. al) Clause

Figure 6-17: Definition of Equality Clause

be placed in R_Func in order to activate it). The instructions FromReg R..Method

and CopyReg ·R..Methodare necessary in the case where a recursive clause makes

calls to some other clause with a different method structure, to avoid the register

value being corrupted; in the case of Pairs, they are unnecessary.
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let query eq([1]. x y) with x. y:

I> query
eq ([1]. x

with x. Y
y) [1 = int List]

LU:
Allocate x, y

Block 1:
L7: Code 6 [ Method for int List

]:
From Local/2:
Closure Local/1:
Move Local/1/0:
MoveReg RJMethod:

L9: Code 4 [

Get old method list
Put into closure of new

Pass method list

Entry sequence:
Assemble ([1]. x y),
call eq

]:

Closure

MoveReg RJ'unc:
Process:
Fall 1:
From And/1:
True Jump L10:

Activate goal

Outcome of goal

Generate fault-value

Copy Result/1:
Move Result/2:

L10:MoveReg R-And:
Stop:

Overwrite x and y
with fault-value
Query succeeds

> x = 1 :
>+ y = [] :

int
int List

Figure 6-18: Activation of Equality Clause
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let rec clause Pairs [(x. x) I x·] .- Pairs x·
Pairs nil;

~ clause Pairs [(x. x) I x·] .-
Pairs x·

Pairs nil
[RecCallj

L17:InflateEnv 1;
L16:Code 3 [

L16:0rCell 2;
MoveReg R_Or;
Fork 8. L11;

Two branches

Process lor Pairs [...]

L11:

Code lor Pairs nil

Construct Itx. x) I x '},
preliminary unification

From Method/O;
MoveReg R_Func;
Apply;
Deflate 1. 2;
FalseJump L7;
Jump L6;

L7: OrFailure;
L6: Fall 1;
L6: From Local/O/l;

Move Local/4/0;
Fall 1;

L3: OrSuccess;
FromReg RJMethod;
CopyReg RJMethod;

Unification by method

Method unification lails
Method unification succeeds

Save old method...
but use lor recursive call

Recursive call

Ll: OrFailure;
];

Closure

Stop;

> Pairs = 'I/J

Figure 6-19: A Method for Recursive Call
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Conclusions and Future Work

This thesis has attempted to show that, with a suitable concurrent architecture,

high levels of abstraction can be supported in programming languages without

sacrificing control over the concurrent behaviour of executing programs. How-

ever, as is typical in research projects, many other questions have been raised,

and not all of them can be answered in the scope of this work.

It has been demonstrated that, with a suitable choice of computational model

(chapter 2), and using suitable optimisation techniques (chapter 3), it is possible

to implement an applicative language so that the style of programming in the

language directly influences the amount of concurrency utilised in its execution.

Although the merits of such an approach are fairly self-evident, it is difficult

to accurately judge the relative gains of different programming styles without

accurate measures of the cost of concurrent operations in a specific architecture.

A number of important applicative programming paradigms lend themselves

easily to the optimisation techniques presented in chapter 3. The use of paral-

lel structure assignment (section 3.2) makes the concept of a place-holder, such

as the future 'of Multilisp [Halstead 85], unnecessary; place-holding is performed

automatically by empty values residing in heap structures .. The techniques de-

rived in section 3.5 allow fine control of the concurrency utilised in such cases.

More particularly, the identification of structural tail-recursion as an optimisa-

tion technique allows major gains to be made for a large class of applicative

programs, in particular those using recursive list traversal functions. Such gains

140
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are twofold. There is a saving in space (and number of idle processes) since

such a function is executed by a single process; however, such savings may be

made in a conventional applicative system by the use of accumulating parameters

[Henderson SO].The major gain of structural tail-recursion is that a function may

return a partial result value to be consumed by another function, whilst com-

pleting evaluation of the result. Nested systems of such functions exhibit systolic

properties [Kung 7S],with the additional advantage that the data values being

passed may be of arbitrary structure. Such behaviour compares favourably with

the co-routine interpretation of lazy evaluation, but has the advantage that all

the constituent processes are active at the same time.

The concept of using locally bound variables to introduce concurrency follows

naturally from traditional notions of abstraction, where identifiers are used to

denote values calculated in some separate part of a program. The notion of "dis-

tance" between the declaration of a variable and its use lends itself conveniently

to a concurrent interpretation: expressions which are some distance apart in a

program are more likely to be executed by different processes.

The concept of using "bottleneck" functions like FLATTEN and WAIT (chap-

ter 3) comes dangerously close to violating the abstraction of applicative pro-

gramming, since it relies on some understanding of the implementation of partial

application, and how it affects concurrency. In addition, some insight is required

into the representation of data objects in order to produce, on demand, a FLATTEN

function for some arbitrary type. This drawback could be overcome by providing

a facility to generate correct FLATTEN functions from context, employing some

preprocessing or macro expansion technique. It should be noted, however, that

the WAIT and FLATTEN functions are derived as a natural consequence of the

optimisation techniques derived at the start of chapter 3, rather than being fa-

cilities developed in their own right, and it would be hoped that other coding

practices could be developed to exploit the optimisation techniques in a more el-

egant manner. Such exploitation might take the form of pragmas to "customise"

the optimisation and concurrency extraction as required. As mentioned in chap-

ter 1, such a scheme would result in the programmer losing fine control over the
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concurrency, but this might be a small price to pay for separating the task of

writing programs from that of "tuning" their execution.

If the above techniques for control of concurrency are totally disregarded,

the concurrency utilisation in 1-HYBRID programs is reasonably encouraging.

Writing a program applicatively in 1-HYBRID without regard for performance

generally results in roughly 50% of the generated processes performing useful

work at anyone time, although if some consideration is given to visualising

the underlying algorithm and identifying the flow of data values through the

system, this figure can be improved considerably. Clearly, new paradigms for

writing efficient programs would have to be identified.

The concept of faults-as-values (chapter 2, appendix A), although aestheti-

cally pleasing, does not lend itself to simple implementation. Even given hard-

ware assistance for generating and detecting fault-values, the code generated by

the compiler must perform numerous checks for fault-values occurring in cir-

cumstances where the underlying machine could not be expected to perform the

correct behaviour. A simple expression such as

if cond then el else e2

requires careful consideration should cond evaluate to a fault-value; neither el

nor e2 can be regarded as the value of the expression, and control must pass to a

sequence of instructions generated to deal with this eventuality. In addition, the

operations which must be performed to propagate a fault-value presented to a

primitive operator are overly complex. The support for logical variables within

the abstract machine also proved to be more complex than at first imagined.

The technique of implementing "invisible pointers" in hardware (or, at least,

microcode) is already established [Weinreb 841,but extensions of this technique

would be necessary to treat logical variables in the manner required by sec-

tion D.1.2. A future research topic would be the presentation of fault-values to

the programmer in a manner which more closely reflected the nature and oc-

currence of the original error; contemporary pretty-printing techniques could be

brought to bear to this end [Oppen 801.
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The implementation of .C,-HYBRIDhas been simplified greatly by the assump-

tion of non determinism in the underlying hardware. However, the compilation

of 'c'-HYBRID programs to abstract machine code makes critical sections (such

as those required during unification) difficult to implement above the lowest

level, "per-instruction" basis. It is unfortunate that this shortcoming allows in-

terference between or-parallel clauses, and makes the order of unification steps

apparent. The proper implementation of guarded clauses requires that a guard

system, and all systems within it, may perform unifications without the variable

bindings being propagated beyond the guard. This is no mean feat, given that

variables within a guard may already be bound to other variables in some en-

closing system. Treating each entire guard as a critical section would solve this

problem, but only at a great cost to concurrency. Use of shared association lists

for variable bindings would be another, rather formidable, solution.

The lack of any kind of remote process termination has been found to pose no

great threat to the performance of a deductive system. The only or-parallelism

in a system is due to alternative guards (since a clause tail becomes part of

the enclosing and-system), and guards seldom contain long, complex calcula-

tions. However, a facility to implicitly terminate processes would improve the

1"-HYBRID implementation. Implicit process termination would allow infinite

computations to be dealt with safely, as well as giving other performance im-

provements.

The advantages of cross-calling applicative and logic programs are docu-

mented elsewhere [Robinson 80, Sato ,Barbuti ]. However, new issues are brought

to light by the combination of the deterministic language 1"-HYBRIDwith the

nondeterministic language 'c'-HYBRID. It appears initially that 'c'-HYBRID, by

its use of unguarded logical variables, quickly infests any associated 1"-HYBRID

functions with their strange behaviour. Inaddition, the facility to pass functions

and clauses as arguments to each other allows rather strange, "tightly-coupled"

hybrid systems to be built rather easily. Certainly, the use of local assertions

and clauses-as-arguments should provide insights into solutions of contemporary
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issues such as the framing problem [McCarthy 83]. The proper exploitation of a

hybrid declarative programming system requires careful consideration.

The polymorphic typechecking algorithm presented in chapter 5, whilst al-

lowing functional objects to be passed as arguments to clauses, is somewhat

lacking in elegance. The restrictions on the form and content of recursive clause

declarations, and lambda-bound clauses, should be investigated further, and the

general concept of labelled types requires some serious theoretical investigation.

The main strength of the algorithm presented is its ability to generate and propa-

gate distinct unification methods for distinct types, regardless of their structure.

This technique is ideally suited to the problem of implementing equality over ab-

stract data types. Ironically, this fact was realised too late; the implementation

of an abstract type mechanism for HYBRIDhad already been considered irrele-

vant to the project. The results of this thesis have already inspired simpler and

more elegant schemes for performing polymorphic comparison of non-abstract

data types [Milner 86].

A number of comments need to be made about the underlying concurrent

architecture. The concept of having a global address space, and allowing any

process to access any part of it, is eminently desirable from the point of view

of a compiler writer; it provides an elegant abstract level upon which to build

a variety of concurrent systems. However, more consideration needs to be given

to an architecture which seems to promote undesirable global communication.

An implementation of the architecture would probably consist of a number of

processing elements, each with a portion of local store; these portions of store

would comprise the whole of memory available to the system. Under such a

scheme, non-local memory accesses would cause communication between the

processor requiring the memory access, and the processor to which the store

would be local. In this way, the global address space could be supported by a

segmented memory model with processors communicating by means ofmessages.

A prototype of such an architecture is discussed elsewhere [Treleaven b, Foti ];

alternatively, such a scheme might be implemented on a number of processors
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such as transputers [INMOS 84a], if non-local memory accesses can be made to

generate read and write requests between processors.

Given a global address space, certain observations can be made which allow

the number of non-local memory accesses to be reduced substantially. The first

of these is that each HYBRID process is allocated a portion of stack space which

is almost totally local to it. The only violation of this locality comes from the use

of PushProcess, which results in one process having reference to the stack space

of another process. One solution of this problem would be to allow every child

process created by a PushProcess instruction to reside on the same processor

as its parent, whilst allowing VecProcess, which is free of stack interference,

to cause process migration. Investigation would have to be made of the effect

on concurrency resulting from such an approach. Another solution would be

to allocate a section of the heap for the result of a PushProcess, and use an

invisible reference (as in section 6.3.4) to give the parent process access to it.

The assumption of a totally local stack could yield considerable performance

benefits. Contemporary compilation techniques for procedural languages often

make use of an abstract stack code which, rather then being executable in its

own right, is considered as a stream of directives for an optimising code generator

[Robertson 81]. A local stack might be largely dispensed with, in favour of a set

of fast, general purpose registers (for example, a register file of the form found

in the RISC I microprocessor [Patterson 81]).

Given that any architecture has a bounded number of processing elements,

the ability of each of these to multitask is obviously highly desirable. However, it

might still be infeasible to assume that every attempt to create a process will be

successful. Given that some process creation requests may fail, a: generalisation
of the fault propagation scheme of section A.8 would allow a fault-value to be

generated for each failed attempt. From the point of view of an applicative

program, the result would be the generation of fault-values at the deepest levels

of an excessively large application; the price to pay for this scheme would be

a loss of determinism in such cases. However, without some way of reasoning
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about the failure of a deduction due to lack of resources, it would be difficult to

provide meaningful feedback in a logic application.

It has been assumed throughout this thesis that garbage collection is feasible

in a multiprocessing environment of the type described. Schemes have been

documented which perform. free list recombination in a concurrent environment

[Rudalics 85]; a cyclic reference counting scheme [Brownbridge 85]would provide

another approach. Concessions can be made due to the fact that local stack

space does not need garbage collecting (section 2.2), although fragmentation

must be avoided by some means. Since the size of cells claimed from the heap

is determined at compile time, "chunking" of heap requests could be performed

statically, resulting in less heap congestion and fragmentation.

Multiprocessing schemes give rise to another class of garbage collection prob-

lem, that of reclaiming processes whose computations are no longer required.

One solution is to implement a garbage collector which can "out-perform" any

process; if the garbage collector finds a process generating an unreferenced result,

then the process can be terminated. An alternative scheme might involve some

kind of resource allocation from parent process to child. Under such a scheme,

every process would have some resource value which would be shared out to all

of its children. Any process which ran out of resource would be terminated (or

suspended until more resource became available). It would be interesting to see

whether such a resource allocation scheme would provide the benefits of lazy

evaluation (the ability to manipulate potentially infinite objects) as well as the

benefits of concurrent execution.
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Appendix A

A Tutorial for 1-HYBRID

A.I Introduction

This is an introduction to the experimental programming language .1-HYBRID, a

purely applicative subset of the declarative language HYBRID. HYBRIDis a com-

bined applicative and logic language which allows functional program segments

to activate program segments written in a logical form, and vice versa. In this

appendix, the applicative language will be considered in isolation. This appendix

is based largely on an introductory document for Standard ML [Harper 85], but

has been altered to highlight features peculiar to .1-HYBRID.

.1- HYBRIDqualifies to be called applicative for two reasons:

• Functions are first class objects. They may be passed as arguments, re-

turned as results, and embedded in data structures. Functions may be

denoted by anonymous expressions, and not just by declarations.

• .1-HYBRIDis free from any imperative constructs. There are no variables

in the conventional sense of the term, and no form of assignment statement.

The principal control mechanism in .1-HYBRID is recursive function ap-

plication; there is no notion of sequential flow-of-control.
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1-HYBRID is statically scoped. All identifier references are resolved at

compile-time, rather than during the execution of a program. This leads to

more efficient programs, and avoids the class of errors introduced by identifiers

being accidentally redefined in the environment of an existing program.

1-HYBRID is strongly typed; the type of any legal expression is determined

statically by the compiler. Strong typing ensures that no type errors can occur

at run-time.

A.2 Using the System

The HYBRID compiler is interactive. Expressions entered at the terminal are

immediately typechecked, compiled and executed, yielding a result. Declarations

entered at the terminal are established for use by all subsequent expressions (and

further declarations).
J "i < •• Jfr~e..Q...IJ.dlL et ••

In this document, a block of text <MI:tlhuul lty ~e!f' represents some interac-

tion with the compiler. The prompt': :' is issued by the system when it is ready

to accept an expression or declaration. Lines beginning with '>' denote feedback

from the compiler after the execution of a program fragment.

A.3 Lexical Conventions

The lexical conventions for 1-HYBRID resemble those of a conventional pro-

gramming language. Statements may be spread over several lines, since spaces

and newlines are considered equivalent (except within strings), and serve merely

to separate tokens. A statement is terminated by a semicolon, ':'. Comments

are introduced by the token '--', and are terminated by the end of the line.

A number of characters are considered to be isolated symbols; they may occur

without leading or trailing spaces without ambiguity..Brackets and punctuation
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symbols are considered to be isolated, as are certain symbols such as 'Il', 'C', ,-,
and "",

There are a number of keywords which are reserved, and therefore may not

be used as identifiers. In addition, some identifiers have a special meaning to

the system, and may not be re-defined.

A.4 Simple Expressions

One of the simplest forms of statement in '7-HYBRID is a simple expression

involving constants:

2 + 2:

> 4 int

When an expression is presented to the system, it responds with the expression's

value and type. The type of an expression is determined totally by the compiler;

at no stage does any explicit type information need to be specified.

The type of an object represents its structure, and the kind of operations

which can be performed on it. All objects of type int represent values ranging

over the (positive and negative) integers, and are therefore amenable to the basic

arithmetic operations. The set of prime numbers does not form a distinct type

since they are structurally identical to (and a subset of) the set of integers. Also,

the set of primes could not constitute a type because it is not closed under the

basic arithmetic operations.

There are a number of basic, primitive types. For each primitive type, there

are primitive constants which represent values of that type (for example, 2 is

a constant of type int). For most primitive types, there are built-in operators

which act on values of these types.



Appendix A. A Tutorial for 1-HYBRID 155

Integers

Constants of type integer (denoted by int) are written as a sequence of digits.

There are a number of built-in operators which range over objects of type int,

and denote the arithmetic functions:

2 - 3 * 4:

> -10 int

... . 10 / -6 + 3 mod 2:

> -1: int

Note that integer negation is represented by '-'j the operator '-' is used solely

for subtraction. Operators are assigned a conventional precedence, which may

be overridden by brackets.

Booleans

There is a built-in boolean type (denoted by bool) with the two constants true

and fal ••. The boolean operators are 'Ir' (logical and), or, and not:

true or· true Ir false:

> true . bool.
(true or true) Ir false:

> false bool

not false Ir false:

> false bool

not (false Ir false) :

> true : bool
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The operators '<', '>', '<a' and '>=' may be applied to integers to yield boolean

results. In addition, the generic operators '.' and '<>' may be applied to objects

of integer, or boolean, type:

(3 >- 4) - (true - false);

> true bool

Strings

There is a basic string type (written str) whose constants are written as char-

acter sequences between double quotes ('"'). Strings may be compared using '.'

or '<>'.

The basic operations over strings are as follows: length returns the length

of a string. The infix operator ,..., concatenates two strings. ord takes two

arguments; the first is a string, and the second is a number between one and the

length of the string. The result is the ASCII value of the specified character of

the string. chr takes a numeric argument between 1 and 127, and returns a string

whose only character is the ASCII character corresponding to that argument.

ord and chr will generate fault-values (section A.8) if their arguments are outside

the required range.

("abc" ... "def". length("abc" ... "def"»;

> ("abcdef". 6): (str. int)

(chr 65. chr 200);

>' ("A". (fault: {prim "chr"}» (str. str)

(ord(IIabcd". 1). ord("abcd". 4). ord("abcd,j• 5»;

> (97. 100. (fault: {prim "ord"}» (int. int. int)
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Triv

There is a data type called tri v, with a singlevaluewritten' 0'. This is generally

used within variants, or to model the calling of functions without arguments

(section A.7).

0:

> 0: triv

Conditional Expressions

There is a conditional expression which yields one of two values depending of

the value of a boolean argument:

if 3 > 4 then "Wrong"
else "Right":

> "Right" str

The expression after the then must have the same type as the expression follow-

ing the else. The else-branch may not be omitted. Conditional expressions

may be nested to an arbitrary depth:

if 3 > 4 then
if true then "Fo01" else "Fo02"

else
if (if true then false else 1 > 0)
then "Fo03"
else "Fo04":

> "Fo04": str

The keyword else may be omitted within several cascaded conditional expres-

sions (although the meaning remains unchanged):
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if 2 • 0 then "Zero"
if 2 • 1 then "One"
if 2 • 2 then "Two"

else "Many" :

> "Two" str

It is worth noting at this stage that the primitive boolean operators 'ck' and

or evaluate both their arguments. However, the conditional construct only

evaluates either its then-branch or its else-branch. This point will become

important when considering recursive functions and nondeterministic programs

(appendix B).

A.5 Structured Types

There are a number of structured types in the language, corresponding to data

structures in a conventional programming language. Objects of a structured

type are constructed from other objects which may be primitive (for example,

integers), or themselves structured.

Corresponding to each structured type is a particular syntax: for creating.

objects of that type. Corresponding to the constants of a primitive type are

constructors of a structured type. A constructor is a special, identifier used to

create a structured data object.

Tuples

A tuple of values may be written with the values separated by commas and

enclosed in brackets: .

(1. false. "A"):

> (1, false, "A"): (int, bool. str)
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Note that the values within a tuple need not be of the same type. The comma

is not regarded as an infix operator; the expression above has a different value

(and type) to the expression (1. (f alse, "AII».
Tuples may be compared using '.' and '<>':

(1, false, "A") • (1, true, "A"):

> false bool

Two tuples are considered equal if all elements of the tuple are equal. It is

illegal to compare tuples of different length, since they do not have the same

type.

Lists

A list is an ordered sequence of values of the same type. The empty list is written

nil, and lists are constructed using the cons operator, written': ':

1 : 2 : 3 : nil:

> [1: 2: 3] int List

[false I nil] : nil: [true: true] : nil:

> [[false]: []: [true: true]] : bool List List

nil:

> []: a List

The system prints out lists in an alternative notation, which ~y also be used

for input. The elements are printed between square brackets, and separated by

semicolons. The tail of the list may be written between the symbol 'I' and the

closing bracket; by default, the tail is assumed to be nil.

Two lists are considered to be equal if they are the same length, and their

corresponding elements are equal:
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[1; 2; 3] • [1; 2];

> false bool

[1; 2; 3] • [2; 1; 3];

> false boo1

[1; 2] • 1 2 nil;

> true . boo1.

Disjoint Sums

Objects of two distinct types can be grouped to form.objects of one single type

known as a disjoint sum. A disjoint sum is a structure containing a data value,

together with an implicit tag denotingwhichof the twodistinct types it conforms

to. The sum may be tagged as a left sum, represented syntactically by the

constructor in..lft, or a right Bum, represented by in..rht:

in_1ft 3;

> (in..lft 3): (int + a)

in_rht (in_1ft [1; 2; 3]);

> (in..rht (in..lft [1; 2; 3]»: (a + (int List + P»

[in_1ft 2; in_rht false; in_1ft -3; in_rht true];

> [(in..lft 2); (in..rht false); (in..lft -3); (in..rht true)]
(int + bool) List

The component object of a disjoint sum may be extracted by means of the

predefinedfunctions out..lft and out..rht. The predefinedfunctions is..lft and

is..rht allowthe tag part of a disjoint sum to be tested; is..lft is true of a sum

created using in..lft, and converselyfor is..rht.

The comparison operators are defined over disjoint sums; the tags, and the

contained values, must be the same:



AppendixA. A Tutorial for 7-HYBRID 161

.... in_1ft 2 • in_rht false:

> false: bool

[in_1ft 2: in_rht false]
• [in_1ft 2: in_rht false]:

> true: bool

Variant Types

A variant type can be viewed as a generalisation of a disjoint sum; a variant can

be created over a data object whose type forms one of any number of types in

the variant. The different tag values of the variant are distinguished by means

of distinct names (or labels) within the type of the variant.

A variant structure is written between the braces '{' and '}'. Generally, the

label is written before the value contained within the variant:

{Foo(3)}:

> {Foo 3}: {Foo int}

The typechecker automatically determines the number of, and labels for, any

particular variant, depending on the context:

[{First(3)}: {Second(false)}: {Third(nil)}]:

> [{First 3}: {Second false}: {Third []}] : {First
into Second: bool. Third a List} List

{1 + 2} • {+(1. 2)}:

> true:. bool

Note that operators (but not constructors) can be used as labels, and in their

correct fix position.
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If necessary, it is possible to specify a variant together with a list of the

possible labels such a variant may have; this can be thought of as a form of type

coercion:

{A(S)};

> {A S}: {A: int}

{A(S) I A, B, C};

> {A S}: {A: int, B : a, C : p}

The labels are separated by commas, and separated from the body of the variant

by a vertical bar, 'I'.

Variant labels are intended to model functors as found in PROLOG. However,

a label is not a string, and it is not possible to access the characters making up

the label. A label without any variant value can be written purely as the label

within braces; it is treated as a variant with '0' as value:

[{Nothing}; {Nothing()};
{Something(1 + 2 + S, false)}];

> [{Nothing}; {Nothing}; {Something (6, false)}]
{Nothing, Something: (int, bool)} List

A variant type with no values attached to any labels can be thought of as an

enumerated type~

[{Red}; {Green}; {Blue}];

> [{Red}; {Green}; {Blue}] : {Blue, Green, Red} List

The keyword is may be used to test the tag of a variant object:

{Red} is Red;

> true:· bool

{Red} is Blue;

> false: bool
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The keyword as may be used to extract a data object from within a variant:

{Red(3)} as Red;

> 3 int

{Blue} as Blue;

> 0: triv

There is a case expression associated with variant types; this may be viewed

as a generalisation of the conditional expression described earlier. Within a case

expression, each possible label of a variant must be catered for:

.. case {Red} of
{Red}. "It's red";
{Green}. "It's green" ;
{Blue}. "It's blue"

end;

> "It's red" str

The case expression may also be used to extract a data object from within a

variant (section A.6).
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A.6 Declarations and Bindings

A declaration is a means of associating identifiers with values. A declaration

serves to introduce an identifier to the system; an occurrence of that identifier

within a program. represents the value that the identifier was bound to in the

declaration. Declarations may be local; a declaration made locally is valid only

within a certain scope, and does not affect the state of declarations (the en-

vironment) outside that scope. Declarations which are global (ie. are made at

top-level) last indefinitely, or until superceded.

Simple Declarations

The following is the simplest form of declaration, followed by an expression using

the identifier just declared:

let x • 20;

> x· 20: int

if false then x - 5 else x + 5;

> 25: int

The identifier x represents the value 20 in all subsequent expressions and decla-

rations, unless a subsequent (or local) declaration redefines x. Any other decla-

rations which make use of this value for x will be unaffected if x is subsequently

rebound to a new value (possibly of another type):
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let y • [x: x - 1: x * x]:

> y • [20: 19: 400] int List

let x • false:

> x • false bool

y:

> [20: 19: 400] int List

Compound Declarations

Several identifiers may be bound in parallel, using the keyword and to separate

the declarations:

let y • "New 'y'"
and z • y:

> y. "New 'y'n: str
>+ z· [20: 19: 400] : int List

Note that z gets bound to the old value of y. In such parallel declarations, the

right hand sides of the declaration are evaluated before the left hand bindings

are performed.

It is possible to cascade declarations using the keywo~d ene (for enclose);

this allows one declaration to be seen within another:

let Ten • 10
ene Hundred • Ten * Ten:

> Ten· 10: int
>+ Hundred· 100: int

The first declaration may be made local to the second declaration by means

of the keyword ins (for inside):
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let Six • 6
ins Sixty • Six * Ten:

> Sixty· 60: int

Six:

Unbound identifier: Six

There is an additional declaration keyword which may be used in certain

circumstances. The keyword ree prefixed to a declaration causes the declaration

to be considered recursive; the names being declared are made visible within the

declaration itself:

let L1 ... nil:

> Ll· [l : a Lilt
~et Ll - 1 : L1;

> L1 ... (1] int List

.... let ree L2 • 1 : L2;

> L2- [1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:
1; 1: 1: 1: 1: ... ] : int List

Within 'F- HYBRID,the use of ree is restricted to the declaration of lists and

functions.

The keywords and, ene and ins may be thought of as infix operators over

declarations; and has a higher precedence thaAenc or ins. In addition, and has

a higher precedence than the prefix rae, so that mutually recursive declarations

can be made in the followingmanner:"

lat rae Listl • 1 List2
and List2 ... 2 : List1:

> Listl • [1: 2: 1; 2; 1: 2: 1; 2; 1: 2; 1; 2; 1; 2: 1: 2;
1: 2: 1: 2: 1: ...] · int List·
>+ List2 ... [2: 1: 2: 1: 2: 1: 2: 1: 2: 1: 2: 1: 2: 1: 2: 1;
2: 1: 2: 1: 2: ...] · int List·



Appendix A. A Tutorial for F-HYBRID 167

Declarations may be of arbitrary complexity, and the precedence of the dec-

laration operators may be overridden by means of the braces '{' and '}':

let {x • 3 ene ree y • x : y}
and {z • false ene w • not z};

> x • 3 int
>+ y • [3; 3; 3; 3; 3; 3; 3; 3;
3: 3: 3: 3: 3: ...] . int List.
>+ z • false . bool.
>+ w • true : bool

3; 3; 3: 3; 3: 3; 3; 3;

It is illegal to have occurrences of ene or ins within a ree.

Local Declarations

The declarations illustrated above have all been global or top-level declarations;

the identifiers introduced by a declaration have been available for subsequent

expressions also entered at top-level. It is useful to make local declarations, in

order to introduce identifiers with a scope limited to a particular expression.

A declaration may be followedby the keyword in and an expression within

which the declaration is to have affect:

let x· true in [x: x: x];

> [true; true: true] : bool List

It may be more convenient to follow an expression by the keyword where

with the declaration after it:

[x; x: x] where x • true;

>' [true; true; true] : bool List

Local declarations may feature the declaration operators as required. An

expression with a local declaration is also an expression in its own right, and

may thus be used in any context where an expression is permitted:
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[2; x;
n + m where n • 1 ene m • n + 2;
let a • 2
in if true then let b • -6 in -b

else a + 3]
where x • 3;

> [2; 3; 4; 6] : int List

Bindings and Pattern Matching

The left hand side of a declaration need not be restricted to being an identifier;

it may instead be a pattern of identifiers with the form of a structured data

type. This provides the facility to decompose structured data objects within

declarations.

A tuple may be decomposed into its constituent elements by means of a tuple

pattern in the left hand side of a declaration:

let Tup • (1. false. nil. (2. 3»;

> Tup· (1. false. []. (2.3»: (int. bool. Q List.
(int. int»

.. let (x, y. z. w) • Tup;..
> x • 1 int
>+ y • false : bool
>+ z • [] : Q List
>+ w • (2. 3) . (int. int).

let (_. _. _. L. x» • Tup;

> x • 3 int

The reserved identifier' _' represents an anonymous identifier whose value is

to be disregarded. The followingdeclaration is therefore valid (although useless):

let • Tup:
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A pattern may contain constants; in this case, the constant must have the

same value as the appropriate part of the right hand side expression (otherwise

the binding will fail):

let (1. a. b. c) • Tup;
> a • false bool
>+ b • [] . a List.
>+ c • (2. 3) . (int. int).

A pattern may contain constructors such as true and false; these must

match the appropriate values in the right hand side. Lists may be decomposed

by means of the constructors nil and': '; the square bracket notation for lists is

also permitted:

let x : y : nil • [1; 2];

> x • 1 int
>+ y • 2 int

.. let x : y • [1; 2];

> x • 1 int
>+ y • [2] int List

let [x; y; z] • 1 2 : nil;

> x • (fault {decl}) int
>+ y • (fault {decl}) int
>+ z • (fault {decl}) int

Note that the last declaration fails because the pattern is attempting a decom-

position on a list of incorrect length. When a top-level declaration fails, the

identifiers introduced in the declaration are bound to fault-values (section A.8).

The constructors in_lft and in_rht may be used to decompose disjoint sums:
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let in_lft x • in_lft(in_rht 4) ;

> x • (in..rht4) : (a + int)

let in_lft(in_rht x) • in_lft(in_rht 4);

> x • 4 int

let in_lft x • in_rht 6;

> x • (fault : {decl}) . a.

Variant types may be decomposed by means of a variant pattern:

let ({Red x}) • {Red S};

> x· S int

Note that a pattern beginning with a variant requires the variant to be bracketed.

This is to avoid ambiguity with complex declarations which are bracketed using

'{' and '}';

Patterns are also allowed within case expressions, where they serve to bind

the value part of a variant so that it can be referred to within the expression:

case {Red(S, 4)} of
{Red(x, _)}. -x;
{Blue x}. if x then 1 else 0

end;

> -S: int
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A.7 Functions

A function is a special type of data object which may be applied to a value to

return a result. Inaddition, functions are are first class values within '7-HYBRIDj

they may be passed as arguments, returned as results, or embedded in data

structures.

Function application is represented by writing a function expression next

to an expression representing the function's argument. The entire expression

denotes the result of applying the function to the argument. A function need

not be denoted merely by an identifier; any expression may be applied to an

argument, as long as that expression yields a function value.

A function may only be applied to one argument. To get the effect of pass-

ing several arguments to a function, a tuple of values is passed; alternatively,

partial application may be used (section A.7). A function may be called with

(intuitively) no arguments by passing the trivial value' 0' as a single argument.

There are a number of built-in, primitive functions available in the '7- HYBRID

system. Many of these are infix or prefix operators; infix and prefix notation is

just a special syntax for function application:

1 + 2 + 3;

> 6 int

+(+(1. 2). 3);

> 6 int

let x • (1. 2) in +x;

> ~ int

The addition function (denoted by '+') is a data value in its own right, and

need not be directly applied to arguments:
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+ ••

> A «int. int) -+ int)

[+. +. +l :• • •

> [A: A: A]: «int. int) -+ int) List

let Plus • + in Plus(l. 2):

> 3: int

Similarly, constructors such as in..l.ftand in_rht may be regarded as data

values:

in_1ft:

> A (a -+ (a + fj»

(in_1ft. in_rht):

> (A. A): «a -+ (a + fj». ("I -+ (6 + "I»)

let F • in_1ft:

> F· A: (a -+ (a + fj»

F 3:

> (in..l.ft3) (int + a)

Note that the F has been introduced by means of a standard declaration; the

name F has been bound to the (built-in) function represented by the constructor

in..l.ft.

Function Declaration

Functions are defined in a straightforward manner. A function declaration fea-

tures the function identifier followed by its parameter, which takes the form of

a pattern:
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let Square x • x * x
and Add(x. y) • x + y
and Mu13 [x: y: z] • x * y * z
and Nothing(_) • ():

> Square· A (int -+ int)
>+ Add· A: «int. int) -+ int)
>+ Mu13· A: (int List -+ int)
>+ Nothing· A: (a -+ triv)

Since the formal parameter of a function is a pattern, it is possible for the

pattern to fail to match the actual parameter to the function:

Mu13 [1: 2]:

> (fault {bind}) int

When this happens, a fault-value is generated (section A.8). A function may

be declared in a clausal form where several alternative patterns are provided as

formal parameters. The alternative clauses of a function are separated by the

symbol 'I'. The first pattern to match the parameter causes the corresponding

function body to be evaluated:

: : let First nil • 0
First(x : _) • x:

> First· A: (int List -+ int)

A pattern may contain simple constant (such as an integer constant). An

expression is also permitted as part of a pattern, if proceeded by the keyword

lit (for literal). In this case, the corresponding part of the argument must have

the same value as the expression:
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.. let Ten • 10;..
> Ten • 10 : int

let F Ten • 0 in (F O. F 10);

> (0.0) . (triv. triv).
let F(lit Ten) • () in (F O. F 10);

> «fault : {bind}>. 0) . (triv. triv).

The keyword lit may be omitted if its argument cannot be confusedwith a

binding:

let F(Ten + 0) • () in (F O. F 10);

> «fault: {bind}). (»: (triv. triv)

It is possible for several alternative clauses of a function to match the ac-

tual argument; in this case, the first pattern matched causes the corresponding

function body to be activated:

let Pair(x : x') • in_lft(x. x')
Pair(_) • in_rht()

in Pair [1; 2; 3];

> (in-1ft (1. [2; 3]»: «int. int List) + triv)

Recursive Functions and Partial Application

By default, the body of a functionwill not be able to refer to the function itself.

The name of the function will be unavailable, 80 that an attempt to use that

name will result in that name being sought in the previous environment:

let Fact n • if n = 0 then 1
else n * Fact(n - 1);

Unbound identifier: Fact
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Recursive functions are introduced using the keyword rec. Mutually recur-

sive functions may be defined using and:

let rec Fact n • if n • 0 then 1
els. n * Fact(n - 1):

> Fact· A: (int -+ int)

·. l.t rec List1 0 • nil
List1 n • 1 : List2(n - 1)
and List2 0 • nil I

List2 n • 2 : List1(n - 1) :

> List1 • A Cint -+ int List)
>+ List2 • A (int -+ int List)

·.·. Fact 1:

> 6040: int

List1 1:

> [1: 2: 1: 2: 1: 2: 1] int List

Higher Order Functions

An expression of arbitrary complexity may evaluate to a function; such an ex-

pression may be applied directly to an argument:

(if S > 2 then List1 else List2) 1:

> [1: 2: 1: 2: 1: 2: 1] : int List

Since functions are first class objects in the language, they may be passed as

arguments to other functions, and returned as results from functions:
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let ApplyToOF • F 0:

> ApplyToO· A: «int -+ a) -+ a)

ApplyToOF where F x • x + 1:

> 1 int

ApplyToOtakes a function as argument, and returns the result of applying that

function to the value o.

A common example of a higher order function is Map,which takes a function

and a list as arguments, and returns the result of applying that function to each

element of the list:

let ree Map(_, nil) • nil
Map(F, x : x') • F x : Map(F, x'):

> Map· A: «(a -+ ~), a List) -+ ~ List)

Map(F. [1; 2; 3]) where F x • [x; x * x];

> [[1; 1]; [2: 4]; [3: en : int List List

let InerBy n •
let F x • x + n
in F:

> IncrBy· A-: {int -+. {int -+ int»

let Add6 • IncrBy 6
and Addl0 • InerBy 10

in (Add6 2, Addl02):

> (7, 12): (int, int)

InerBy 6 2:

> 7 int

The function IncrBy takes an integer as argument, and returns as result the

function which adds that value to numbers. In the last example above, the
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expression IncrBy 6 returns a function which is then applied to the value 2.

Note that function application associates from left to right; the above expression

is regarded as (IncrBy 6) 2, and not as IncrBy (6 2).

Functions need not refer only to local identifiers, but may refer to any iden-

tifier which is in scope. In the example above, the local function F refers to a

global identifier n (which is local to the containing function IncrBy).

The expression IncrBy 6 is referred to as a partial application, since it re-

sults in an functional value which can be further applied to another argument.

Functions can also be defined using partial application, by providing a number

of formal parameters in the function definition:

let IncrBy n x • x + n:

> IncrBy· A -: (int -+ (int -+ int»

IncrBy 6 2;

> 7 int

Functions may be denoted by a special form of expression, without having

to be bound to an identifier. Such an expression is called a lambda-expression,

and has a specific syntax:

lambda x. x + 1:

> A: (int -+ int)

The keyword lambda is followed by the formal parameter. The body of the

function follows the '.'. The expression above represents the function which

adds 1 to its argument. Lambda expressions may be bound to identifiers in

declarations; the following two declarations are therefore equivalent:



.
Appendix A. A Tutorial for 1-HYBRID 178

.. let F x • x + 1:

> F = A · (int -+ int)·
let F • lambda x. x + 1:

> F • A · (int -+ int)·
An expression containing lambda-expressions may be applied directly to an

argument:

(lambda x. x + 1) 10:

> 11: int

(lambda F. F 0) (lambda x. x + 1):

> 1 int

A lambda-expression may be made to represent a higher order function, if

several parameters are provided for partial application:

(lambda n x. x + n) 6 2:

> 7 int

:: (lambda n. lambda x. x + n) 6 2:

> 7 int

The two expressions above are equivalent; the first form of lambda-expression

is regarded as an abbreviation for the second, nested, expression.

Like function definitions, lambda-expressions can be clausah

(lambda x : x·. in_lft(x. x·)
_. in_rhtO) [1: 2: 3]:

> (in-1ft (1. [2: 3]»: «int. int List) + triv)

Note that a lambda-expression cannot represent a recursive function, unless
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the expression is bound to an identifier within a let rec declaration, since there

is no name attached to the expression by which it can refer to itself.

A.S Exceptions and Fault-Values

1-HYBRIDis statically typed, and a number of checks are performed on pro-

grams during the compilation phase. This means that many classes of program

fault are detected before the program reaches the execution phase. However,

there are certain classes of error which cannot be detected by static, compile-

time analysis, and these errors (or ezceptions) have to be dealt with during the

execution of a program.

Most modern languages have some form of error signalling and recoverymech-

anism, so that such exceptions can propagated through a program and dealt with

by a suitable ezception handler. 1-HYBRIDadopts an alternative scheme for

generating and dealing with exceptions.

When an exception is generated, the error is not propagated back through

the program. Instead, a fault-value is created, and execution of the program

continues as before. Fault-values are considered to be first class objects in the

language: they may be passed as arguments, returned as results, and embedded

in data structures.

Fault-values are created under exceptional circumstances by primitive oper-

ators, and may also be created explicitly. Fault-values are also propagated by

primitive operators and language constructs; an attempt to perform a primitive

operation on a fault-Value results in a new fault-value which holds a record of

the operation attempted. A fault-value thus contains a list of the operations

attempted on it.

A fault-value has an underlying representation, which is an object of type

{apply. bind. condo declo infer.
prim: str. signal: str. uninst} Li~t
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There is a constructor (denoted by fault) which allows objects of this type

to be converted into fault-values and back again. This underlying representation

is a list of values, each one of which corresponds to an attempted operation on

the fault-value. The last element of the list corresponds to the operation which

created the fault-value in the first place; elements in front of it correspond to

operations which have been performed subsequently. Each element is a variant

structure, with each variant label denoting a particular class of fault.

A simple fault-value can be generated by a failure from one of the built-in

operators:

let Faultl • 1 I 0;

> Faultl· (fault: {prim "I"}) int

.... let Fault2 • head nil:

> Fault2· (fault: {prim "head"}) : Q

The underlying representation of such a fault is a list whose single element is a

variant. This representation is accessed by using the constructor fault:

let (fault x) • Faultl:

> x·
prim

[{prim "I"}] :
str. signal

{apply. bind. condo declo infer.
str. uninst} List

head x;

> {prim "I"}
str. signal

{apply. bind. condo declo infer. prim
str. uninst}

let (fault(x : x'» = Fault2;

> x • {prim "head"} . {apply. bind. condo declo infer..
prim : str. signal . str. uninst}.
>+ x· • [] : {apply. bind. condo declo infer. prim

str. signal . str • uninst} List.

The variant {prim} denotes the fact that the fault-value was generated by a

primitive operation; the variant value is a string representing the name of the
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operation itself. Primitive operations will also propagate fault-values, by at-

taching such a variant to (the representation of) a fault-value presented as an

argument:

.... Fault2 + 1:

> (fault: {prim "+"}. {prim "head"}) int

Fault2 + 1 > 2:

> (fault
bool

{prim ">"}. {prim "+"}. {prim "head"})

not(Fault2 + 1 > 2):

> (fault
"head"}) :

{prim "not"}. {prim ">"}. {prim "+"}. {prim
bool

The variant {apply} is generated when an attempt is made to apply a fault-

value as a function to an argument:

Fault2 1:

> (fault: {apply}. {prim "head"})

Fault2 Fault2 1:

> (fault: {apply}. {apply}. {prim "head"}) : Q

The variant {bindlis generated by a function when the argument it is applied

to fails to match any pattern specifiedas formal parameter:

:: (lambda x : x'. false) nil:

> (fault: {bind}) bool

:: (lambda x : x'. falae I nil. true) Fault2:

> (fault: {bind}) bool

A function will not necessarilyfail when passed a fault-value as an argument;
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in particular, any a fault-value passed as argument will match against a single

identifier as formal parameter:

(lambda x. [x]) Fault2;

> [(fault: {prim "head"})] a List

(lambda x. x + 1) Fault2;

> (fault: {prim "+"}. {prim "head"}) int

Note in the second case above that the fault-value is propagated by the '+'
operation, since it is passed unaltered as argument x.

A fault-value can be decomposedby means of the constructor fault used in

a formal parameter; any non-fault passed as argument will fail to match against

fault:

:: let as_fault(fault x) • x;

> as_fault· A :
prim str. signal

(a -+ {apply. bind. condo declo infer.
str. uninst} List)

as_fault Fault2;

> [ {prim "head"}]
prim str. signal

{apply. bind. condo declo infer.
str. uninst} List

as_fault 3;,

> (fault: {bind})
prim: str. signal :

{apply. bind. condo declo infer.
str. uninst} List

The variant {cond} is generatedwhen an attempt is made to use a fault-value

to determine the value of a conditional or case expression:
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if Fault2 then 1 else 2:

> (fault {cond}. {prim "head"}) int

case Fault2 of
{Red}. 1:
{Green}. 2:
{Blue}. 3

end:

> (fault {cond}. {prim "head"}) int

The variant {decl} is generated when a pattern used within a local declara-

tion fails to match the value being bound:

x where x : x· • nil:

> (fault: {decl}) : a

Note that top-level declarations which fail in this way cause the identifiers in

the declaration to be bound to fault-values:

.... let Bad1 : Bad2 • nil:

> Bad1· (fault
>+ Bad2· (fault

{decl})
{decl})

a
a List

The variants {infer} and {uninst} are generated by logic programs (ap-

pendix B). The variant {signal} is not generated by any of the primitive op-

erators, but is provided for user-defined functions. Functions defined in library

filesgenerally use {signal (x)} for inappropriate arguments (where x is a string

denoting the name of the function).

Fault-values are amenable to comparison (if their type is a meaningful com-

parable type) ,but such comparison always yields false; this may be interpreted

as meaning that no two fault-values are ever equal. This property holds for pat-

terns in formal parameters and declaration bindings; literal fault-values (specified

with lit) will never match any provided argument:
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Fault1 • Fault1:
.
> false: bool

·.·. (lambda lit Fault1. Fault1) Fault1:

> (fault: {bind}) : int

(lambda fault x. fault x) Fault1:

> (fault: {prim "I"}) : Q

Fault-values may, however, be compared by performing comparison over the

underlying representations:

·.·. as_fault Fault1 • as_fault Fault1:

> true: bool

It is possible to generate a fault-value whose underlying representation is the

empty list:

fault nil:

> (fault)

Note also that the underlying representation of a fault-value may itself con-

tain fault-values:

fault [{signal "a"}: Fault2: {signal "b"}]:

> (fault: {signal "a"}. (fault
{signal "b"}) Q

{prim "head"}).

·.·. fault({signal "a"} : Fault2):

> (fault
'Q

{signal "a"} I (fault {prim "head"}»
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A Tutorial for 'c-HYBRID

n.i Introduction

This appendix is an introduction to the nondeterministic language "C-HYBRID.

For detailed information on the execution of concurrent logic programs, the

reader is referred to chapter 4, and to texts concerning Concurrent Prolog [Shapiro 83b,

Shapiro 83a].

B.2 Notation

The syntax for clauses and deductions bears some similarity to ~.J various dialects

of PROLOGj some familiarity with PROLOG is therefore assumed. However,

"C-HYBRIDadopts lexical conventions appropriate to a functional language; this

implies, in particular, that logical variables are introduced by 'declaration, and

not determined by case distinction.

185
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B.3 Simple Clause Definitions

Unit Clauses

A simple clause definition consists of the keywords let clause followedby the

clause name and argument:

let clause Is_Colour "Red":

> Is_Colour· ~: str Clause

let clause Is_Black "Black"
and Is_White "White":

> Is..Black· ~
>+ Is_White· ~

str Clause
str Clause

The first declaration introduces a clause called Is_Colour. In logical terms,

Is_Colour is a property which is asserted to be true of the value "Red". In seman-

tic terms, the name Is_Colour is bound to a clause object of type str Clause. .

In operational terms, Is_Colour is a clause which attempts to unify its argument

against the string literal "Red".

The second declaration introduces twoclauses named Is..Black and Is_White,

both of type str Clause. The keyword clause may be viewed as a prefix declar-

ative operator, with lowerprecedence than the infix and. It is therefore possible

to make mixed (clausal and non-clausal) declarations:

let {clause Is_White "White"}
and Is_Blue x • (x • "Blue")
and {clause Is_Black "Black"}
and Grey • "Grey":

> Is_White • ~ : str Clause
>+ Is..Blue • A : (str -+ bool)
>+ Is..Black • ~ . str Clause.
>+ Grey • "Grey" : str
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A clause takes a single argument. The effect of passing several arguments

to a clause is achieved by passing a tuple of arguments. The effect of calling a

clause with no arguments may be achieved by passing the value '()'.

A clause may have several alternative branches. These are expressed in a

form similar to that used for functions, with the alternatives separated by 'I':

let clause Is_Monochrome "Black"
Is_Monochrome "White";

> Is~onochrome· ~: str Clause

The property Is~onochrome is asserted to be true of the value "Black", and

also true of the value "White". There is a similarity to be drawn between the

above clause definition and the function definition

let Is_Monochrome' "Black" .. true
Is_Monochrome' "White" .. true
Is_Monochrome'(_) • false;

> Is~onochrome'· A: (str -+ bool)

The clause Is~onochrome will succeed if passed either of the values "Black" or

"White". Similarly, the function Is~onochrome' will return true for "Black"

or "White", and false otherwise.

Non-Unit Clauses

The examples presented so far are of unit clauses (ie. clauses with no body). A

non-unit clause has a set of query terms to the right of the inference symbol,

,:- ':
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.... let clause Is_Monochrome x :- Is_Black x

Is_Monochrome x :- Is_White x;

> Is~onochrome· ¢: str Clause

let clause Black_and_White (x. x') :-
Is_Black x. Is_White x':

> Black-and_White· ¢: (str. str) Clause

The clause Is..Monochromefeatures disjunctive (or-parallel) calls to Is..Black

and Is_Whitej it succeeds if either of these goals succeeds. The clause Black_and_White

features conjunctive (and-parallel) calls to Is..Black and Is_Whitej it succeeds

only if both of these goals succeed. The names x and x' represent logical vari-

ables, used in this case to denote the formal parameters passed to the top-level

clauses. Such variables are declared implicitly by occurrence within the head of

the clause, in the same way that lambda-bound variables are declared within the

formal parameter part of a function definition.

The anonymous logical variable is represented by the symbol '_':

let clause One_Black("Black". _)
One_Black(_. "Black");

> One..Black· ~: (str. str) Clause

let clause Anything(_);

> Anything· ~: a Clause

Clause declarations are, by default, non-recursive. This means that a clause

declaration can access a previous clause of the same name. This provides the

facility to "add alternatives" to a clause:

::' let clause Is_Colour "Blue"
Is_Colour c :- Is_Colour c;

> Is_Colour· ~: str Clause

Because of the static binding rules of the language, however, note that any
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definitions which made use of the first definition of Is_Colour would be imper-

vious to the second definition.

In a similar manner, it is possible to make "local" additions to a clause (in

other words, to locally redefine the clause in terms of its more global counter-

part), by means of a local declaration. Again, the local context could not use

values defined in terms of the global clause, since these would be impervious to

the local definition; such problems would have to be overcome by passing the

newly-declared clause as an argument.

Recursive (and mutually recursive) clauses are defined in the aame manner

as recursive and mutually recursive functions: the declarative operator r.c is

used to enclose a set of declarations composed using and:

l.t r.c claus. Us.l.ss x :- Us.18s. x:

> Us.l.ss· ~: a Claus.

l.t claus. Us.l.ss_1 x
and r.c Us.l.ss_2 x :- Us.l.ss_3 x

and Us.l.ss_3 x :- Us.l.ss_2 x:

> Us.l.ss_1· ~
>+ Us.l.ss-2· ~
>+ Us.l.ss-3· ~

a Claus.
f3 Clau••
f3 Claus.

The operatorrec may appear within clause declarations following claus.; it

serves to make that part of the declaration recursive. The operator clause may

appear within a rec: it introduces a particular part of the recursive declaration

to denote clauses.

Local Logical Variables

Any identifiers which occur freelywithin the head of a clause are accessible to the

body of the clause. However, other logical variables may be explicitly declared

for use in the body of the clause; such variables may be used to hold temporary

values being used by the goals within the clause body. Local variables are listed
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at the end of the clause body, introduced by the keyword with and separated

by commas:

let clause Never() :-
Is_Black x. Is_White x with x:

> Never· ~: triv Clause

Each alternative part of a clause has a different set of local variables, and

hence a different with-declaration:

let clause Always() :- Is_Black x with x
Always() :- Is_White y with y:

> Always· ~ triv Clause

Clause ExpressioDs

Clauses may be denoted by a particular form of expression, without having

to be bound to an identifier. Such expressions are analogous to the lambda-

expressions used to denote functions. The keyword clause introduces such a

clause expression. The followingtwo declarations are therefore equivalent:

let clause Both_Black(x. x') :-
Is_Black x. Is_Black x'

and Is_Grey "Grey":

> Both_Black· ~ (str. str) Clause
>+ Is_Grey· ~: str Clause

.... let Both_Black • clause x. x' :-
Is_Black x. Is_Black x'

and Is_Grey • clause "Grey":

> Both_Black· ~ (atr. str) Clause
>+ Is_Grey· ~: str Clause

The second declaration is simply binding two names to two clauses, each de-

noted by a clause-expression. Clauses are first class objects whichmay be bound

directly by name, rather than explicitly using a clause declaration:
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.... let Very_Dark • Is_Black:

> VeryJDark· ~: str Clause

let Three_Clauses • [Is_Black: Is_Grey; Is_White];

> Three_Clauses· [~: ~: ~] : str Clause List

let [cl: c2: _] • Three_Claus.s
in claus. x :- cl x. c2 x:

> ~: str Clause

B.4 Queries

Query Expressions

A query expression represents the outcome of a logical deduction. A query ex-

pression may merely return the outcome of a deduction (success or failure), or

may return results computed in logical variables. In the latter case, an unsuc-

cessful query will result in a fault-value being generated.

The simplest form of query consists of the keyword query followedby a list

of goal terms, separated by commas:

query Is_Black "Black":

> true: bool

query Is_Whit. "Black":

> false: bool

query Is_Black(_>. Is_White(_>:

> true: bool

The result of such a query is a boolean value: true if the query was successful,

false otherwise. Infunctional terms, the query expression evaluates to a boolean

value; therefore, such an expression may be nested within other expressions:
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[query Is_Black "Black"];

> [true]: bool List

The second form of query expression contains local logical variables, intro-

duced using with:

query Is_Black x with x;

> "Black" str

query Is_Black x, Is_White x' with x, x';

> ("Black", "White"): (str, str)

If one logicalvariable is declared in the with-part of the query, then a successful

query returns the value instantiated within the logical variable. If two or more

variables are declared, then the query returns a tuple of values, where each ele-

ment of the tuple represents the value instantiated in the corresponding variable.

If the query fails, then the query expression returns a fault-value containing a

single variant {infer}:

"Colour: " ... (query Is_Black x, Is_White x
with x);

> (fault {prim "..."}, {infer}) str

Queries returning tuples of values can usefully be passed immediately to

functions which take a tuple as argument:

let f(x, x') • x ... " " ... x'
in f(query Is_Black x, Is_White x' with x, x');

> "Black. White" str

Isolated logical programs can be embedded within functional programs by

using a local clause declaration just within the scope of a query expression:
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(let clause Is_White "Snow"
in query Is_White x with x) .. " White";

> "SnowWhite" str

query Is_White "Snow";

> false: bool

Since a clause takes a single argument which may be a tuple, it is possible for

a single logicalvariable occurring as formal parameter to match a tuple of values

as actual parameter, or vice venia. Contrast this behaviour with PROLOG:

.... let clause Nothing(_)
and Three_Nothings(_. _. _);

> Nothing • ¢ a Clause
>+ Three..Nothings • ¢ ((3. ,.,. cS) Clause

query Nothing(1. 2. false. "Hello").
Three_Nothings(_);

> true bool

Query Declarations

It is possible to make the results of a deduction available as named identifiers

by means of a conventional (possibly tupled) declaration:

let (b. w) • query Is_Black x. Is_White x'
with x, x';

> b· "Black" str
>+ w· "White" str

However, the query declaration is more convenient way of naming the outcome

of a query:

let query Is_Black b. Is_White w with b. w;

> b = "Black" str
>+ w· "White" str
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The syntax:of the query is the same as for query expressions, but the names

of the logical variables introduced by means of with are made accessible for

subsequent (or local) use. Note that there is no implicit declaration of logical

variables; any identifier which does not occur in the with-list of a query decla-

ration is treated as a standard value binding:

let query Is_Black x. Is_Black x· with x;

Unbound identifier: x·

let x· • "Black"
ins query Is_Black x. Is_Black x· with x;

> x· "Black": str

The keyword query is a prefix declarative operator which introduces a query

declaration. It is therefore possible to mix query declarations with other decla-

rations:

let clause Is_Blue "Blue"
and Is_Green "Green"
enc query la_Blue b with b

and query Is_Green g with g
in (Is_Blue. b. Is_Green. g);

> (.,p. "Blue" • .,p. "Green"): (str Clause. str. atr
Clause. str)

If a local query declaration fails, then the entire expression encompassing the

declaration fails, and a fault-value (with variant {decl}) is generated. If a top
a.I"Q_

level query declaration fails, fault-values,f1Sedin the bindings. Inboth cases, the

.behaviour is the same as that of a standard (functional) declaration which fails

to pattern-match.
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.
B.5 Complex Clauses and Constructors

Clauses may be defined with arbitrarily complex formal parameters, and queries

may pass arbitrarily complex arguments to clauses. So far, the only argument

types considered have been constants (for example, quoted strings), logical vari-

ables, and tuples. A clause may take the same sort of pattern as formal parameter

as a function (although there is no equivalent to partial application). There is

one important difference, however: a clause may contain repeated variables in

its head:

let clause eq(x. x):

> eq· ~: (a. a) Clause

Logically, the clause eq is true of any tuple of length 2 whose elements are

identical (unifiable). Operationally, eq will attempt to unify its argument to a

tuple of length 2, and then unify the first element with the second. Repeated

variables may be present in any number, and according to any pattern (with the

proviso that the clause argument has a legal type):

let clause Extr_Sum(in_lft x. x)
Extr_Sum(in_rht x. x):

> Extr..8um· ~: «a + a). a) Clause

let clause Head_of(x : _. x):

> Head_of· ~: (a List. a) Clause

.... let clause Foo({A x} : _. (x. in_lft y)~
[x: [yl: xl):

> Foo· ~: ({A: a List} List. (a List. (a + P».
a List List) Clause

Operationally, a clause with a repeated variable in its head can be expected

to unify the two corresponding parts of an actual parameter. This is permitted
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so long as the type of the argument (determined when the clause is called) is a

comparable type:·

query Extr_Sum(in_lft 3. x) with x:

> 3 int

let query Head_of([[l: 2: 3]: nil]. x).
Head_of (x. y) with x. y:

> x· [1: 2: 3]
>+ y. 1: int

int List

query Head_of([(l. false. {A("Hi")}. [[3]])]. x)
with x:

> (1. false. {A "Hi"}. [[3]])
int List List)

(int. bool. {A str}.

The clauses above are invertible; each clause will attempt to perform a uni-

fication between its formal and actual parameter, regardless of the (correctly

typed) structure of the latter:

·.·. let query Head_of(x. 1). Head_of(y. x) with x. y:

> x· [1 I_]: int List
>+ t > [[1 I _] I_]: int List List

·.·. let query Extr_Sum(x. (1. 2. 3» with x:

> x· (in-1ft (1. 2. 3»: «int. into int) + (int. into
int»

It is permissible to use the fault constructor within the head of a clause.

However, due to the nature of the unification process and the representation of

fault-values, the pattern within the fault cannot be merely a logical variable,

but must be some pattern which represents a list:
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let clause Extr_Fault(fault(x : _). x):

> Extr..Fault· 'f/J :
prim str. signal :

(a. {apply. bind. condo declo infer.
str. uninst}) Clause

query Extr_Fault(head nil. x) with x:

> {prim "head"}
str. signal :

{apply. bind. condo declo infer. prim
str. uninst}

.... query Extr_Fault((x where x : _ • nil). x) with x:

> {decl}: {apply. bind. condo declo infer. prim: str.
signal: str. uninst}

B.6 Goal Structure

A goal consists of twoparts: a clause to be activated, and a pattern to be passed

to it as argument. The syntax for a goal is identical to the syntax for function

application; the clause is written beside its argument, with the assumption of

an implicit infix "clause application" operator between the two. The clausemay

be denoted by an arbitrary expression (of appropriate type); such an expression

may contain further applications, but these are assumed to denote conventional

function calls:

query (if true then Is_Black
else Is_White) x with x:

> "Black": str

let F true • Is_Black
F false • Is_White

in query F true x with x:

> "Black": str

A clause expression may evaluate to a fault-value; in this case, the goal is

considered to immediately fail, regardless of the argument:



Appendix B. A Tutorial for £-HYBRID 198

query (head nil) (_);

> false: bool

Literals

Within a logical deduction, is it possible to evaluate function expressions, and

use such values to direct the progress of the deduction. Expressions may appear

within arguments to clauses, and may be introduced within the head of a clause,

preceded by the keyword lit:

let clause Is_Six 6
in query Is_Six(Double 3 where Double x· x + x):

> true bool

let s • 6
ins clause Is_Six(lit s)

in query Is_~x x with x;

> 6 int

Note that the logical variables within a clause are not visible within literals

in the head of the clause. This is to avoid confusion between the occurrences

of identifiers which serve to declare logical variables, and those which serve to

access them.

let clause Iner(i. i + 1);

Unbound identifier: i

let i • 3
ins clause Iner(i. i + 1);

> Iner· 1/J (a. int) Clause

The (implicit) literal i + 1 is evaluated, outside the scope of the logical variables,

to a value which is then unified against; it contains no structural information,

and is not further decomposed for the purposes of unification.
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It is also possible to treat functional expressions as goals. If an expression

evaluates to a boolean, then a value of true can be treated as sueeess, and false

can be treated as failure. Syntactically, any goal expression which cannot be

regarded as a clause activation (for example, a constant, or a single identifier) is

treated as a boolean expression. Additionally, any goal term enclosed in brackets

is treated as a boolean expression:

·.·. let F t_val • clause (_) :- t_val;

> F = A: (bool -+ Q Clause)

query (F false) (_);

> false: bool

query (F true)· (_);

> true: bool

x where query Is_Black x. (1 > 0) with x;

> "Black": str

·.·. x where query Is_Black x. (1 < 0) with x:

> (fault: {decl}) : str

Such goal literals may access logical variables; in these cases,' the variables

should be marked with the read-only marker, '1', for reasons which will become

apparent later (section B.7). Any logical variable which occurs within a function

expression in a goal (for example, in an expression evaluating to a clause) should

be marked in a similar manner:
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let clause Greater_Than(x, y) :- (x? > y?);

> Greater_Than = ~: (int, int) Clause

let clause Is_True x :- x?;

> Is_True = ~: bool Clause

let clause Foo(x, y) :- (if x?
then Is_Black
else Is_White) y;

> Foo = ~: (bool, str) Clause

let rec Fact 0 = 1
Fact n = n * Fact(n - 1)

ins clause Fact(x, y) :- eq(Fact x?, y);

> Fact = ~: (int, int) Clause

If a goal literal evaluates to a fault-value, the goal fails:

let clause Try_Head x :- (head x?);

> Try-Head = ~ bool List Clause

query Try_Head(true : _);

> true: bool

query Try_Head nil;

> false: bool

B.7 Higher Order Functions and Higher Order

Clauses

Operationally, a clause is treated as a special kind of function. It takes a special

kind of argument (which may be a value, or may be some pattern of logical

variables), and returns a special kind of result (success or failure). "c-HYBRID
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allows clauses to be treated as first-class objects; they may be passed as argu-

ments, returned as results, and embedded in data structures. Functions may be

higher-order over clauses, in the sense that they may takes clauses as arguments,

or return clauses as results. Clauses themselves may be higher-order, since they

may be passed argument patterns containing functions or clauses.

A clause may be passed as argument directly if it is denoted by a clause

expression:

let Triple x • [x: x: xl
in Triple (clause a :- (a? > 0»:

> [1/1 : 1/1: 1/11 : int Clause List
.-

query (head it) 1:

> true : bool

A clause passed as a parameter to a function may be activated by means of

a query expression or declaration within that function:

let Try C • query C [x: x: xl with x
in Try(clause 1 : _):

> 1 int

A function may also return a clause as result:
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let Map_Clause C s

let rec clause Map_C nil
Map_C(x : x') :- C x. Map_C x'

in Map_C;

> Map_Clause· A (a Clause -+ a List Clause)

query (Map_Clause Fact) [(6. a); (4. b); (3. 6)]
with a. b;

> (120. 24) (int. int)

query (Map_Clause(Map_Clause Fact»
[[(3. x)]; [(x. y)]]

with x. y;

> (6. 720): (int. int)

A clause may be passed a function as (part of) an argument; the function
may be calledwithin a literalgoal,or in a clause argument within a goal:

let clause Sam~(F. x) :- eq(F? x? x);

> Same· t/J: «a -+ a). a) Clause

query Same«lambda x. x * x). i);

> true: bool

A clause may be passed a clause as argument; the clause may then be invoked
as one of the goals within the clause:

let clause ApplyToZero c :- c? 0;

> ApplyToZero = t/J: int Clause Clause

query ApplyToZero(clause x :- (x? > 0»;

> false: bool

The guard system may consist of the single keyword otherwise; this may
only occur within a clause which has more than one alternativebranch, and only
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occur once within this clause. Such a guard will succeed if and only if all other

guard systems fail.

The otherwise notation allows negation to be expressed by failure without

resorting to a higher-order or nested query:

let clause Not_eq(x. x) :- false
Not_eq(_) ._ otherwise \ true;

> Not_eq = t/J: (a. a) Clause

query Not_eq(1. 2);

> true: bool

query Not_eq(1. x) with x;

> (fault: {infer}) : int

The use of otherwise, together with the facility to "add" definitions to a

clause (by defininga new instanee of it in terms of an old one), it is possible to

define a clause in which alternatives are sought in a strict sequential order:

let clause {C "Match 3"
ins C "Match 2"

C x :_ otherwise \ C x
ins C "Match 1" I

C x ._ otherwise \ C x};

> C • t/J str Clause

Atomicity of Unification

It is possible for a number of processes to attempt to unify against the same

term, as illustrated in the followingdefinition and use of the clause Clash:

let clause Clash(1. 2)
Clash(2. 2)

in query Clash(x. x) with x;

> (fault: {infer}) : int
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It would be expected that the first alternative would fail, and the second al-

ternative would succeed. However, it is possible that the first alternative can

instantiate the variable x to the value 1 before failing; in this eventuality, the

second alternative (and the query as a whole) will also fail. Since there is this

unprotected sharing between logical variables, it is necessary to clarify the way

in which any particular unification is performed, since a gradual unification by

one process can affect the execution of another.

Unification order can be summed up in the following two rules:

• Unification is made against a structure before being performed for elements

of that structure;

• At a particular level of a structure, unification is performed from left to

right.

This means that, for example, tuples are unified from the first element to the

last, and lists are unified from head to tail.

The procedure of unifying two terms consists of a number of primitive unifi-

cation operations. The unification operation, which consists of verifying that a

variable is free, and then instancing it to a term, is considered to be atomic. This

means that a variable cannot be instantiated to one term by one process, and

then instantiated to another term by another process, in quick succession. Any

unification consists of one or more of these primitive operations. Each primitive

unification is atomic, but the unification as a whole may not be.

Logical Variables

A logical variable is treated as a binding of a name to an object with a rather

strange behaviour. Inmost cases, the behaviour of a logical variable is unimpor-

tant, and the variable can just be regarded as a data value:

let query (clause 3) x with x;

> x = 3 int
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The above declaration has the effect of binding the value 3 to the name x; in

other words, it has the same effect as the declaration let x = 3. The fact that

x is a logical variable which becomes unified to the value 3 is not important,

since the unification is complete by the time the declaration is established.

It is possible for a query term or declaration to leave logical variables unin-

stantiated:

let query (clause (_» x with x;

> x = 0:

In functional terms, a free variable is treated as the fault-value

(fault : {uninst})

As with other fault-values, it may be passed unaltered as argument and embed-

ded in data structures, and will cause fault propagation if an attempt is made

to access its value:

if x then 1 else 2:

> (fault: {cond}. {uninst}) int

Within functional programs, a free logical variable will match the fault-value

with variant {uninst} (section D.1.2). Functional access to a free variable does

not make the variable into a fault-value; it is just treated as such.

(lambda (fault [a]). a). x;

> {uninst} :
str. signal

{apply. bind. condo declo infer. prim
str. uninst}

Read-Only Variables

Within queries, it is often necessary to mark logical variables as read-only. In

operational terms, this means that the process making a read-only access to the

variable is suspended until the variable is instantiated by another process. Since
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goals may contain functional expressions (for example, as parts of arguments,

or by virtue of being literal goals), functional parts of programs can be invoked

with logical variables which have still to be instantiated by another process in

the query. As mentioned above, the values of such variables would just be seen

as fault-values. For this reason, all logical variables occurring in a functional

expression within a query are forced to be read-only:

clause x :- (x > 0);

?Assuming read-only annotation: x
> ~: int Clause

clause C :- C 0;

?Assuming read-only annotation: C
> ~: int Clause Clause

In addition, any identifier within a functional program may be marked as

read-only. Any logical process which activates this program as part of a goal

will be suspended until the variable has been instantiated by another process.

Since logical variables occurring within expressions in goals are forced to be

read-only anyway, this facility is rarely necessary, but deals with the case where

a function is passed a structure which contains free variables.

f.-HYBRID features another "layering" facility (apart from guard systems).

From within logical queries it is possible to activate functional program frag-

ments. Each such fragment can contain other clause definitions and queries. It

is, therefore, possible have a deductive system parts of which are comprised of

other deductive systems:
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let clause Both(true, true)
and Either(true, _)

Either (_, true);

> Both" t/J :
>+ Either" t/J

(bool, bool) Clause
(bool, bool) Clause

query Either«query Both(false, true»,
(query Either(false, true»);

> true: bool

The above example shows one way of achieving logical-or within a conjunctive

system. A lessobscuremethod might be to use the functional operator or within

a goal literal:

query «query Is_Black x) or (query Is_White x»
with x;

> "Black": str

Note that it is possible to perform non-local unifications within such layered

queries; there is no safeguard against a goal instancing a variable which is de-

clared in a more global deductive system. In the example above, both of the

sub-goals are attempting to instantiate a global logicalvariable. ITsuch an effect

is undesirable, then the appropriate variables should be annotated as read-only.

Negation can be expressed by use of the functional operator not within a

goal literal:

query (not(query Is_White x» with x;

> (fault: {infer}) str

In this example, Is_White unifiesx and the inner query returns true. The literal

goal of the enclosing query evaluates to false, failing the enclosing query and

giving rise to the fault-value.
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HYBRID Syntax

The meta-syntax used in this appendix is based upon that used in [Cardelli 81].

Identifiers denote non-terminals. Character sequences between quotes ("... ")

represent terminals; words within quotes are reserved. 'I' is syntactic alternative.

Square brackets are used to group subphrases. 'T' denotes optional items. '*'
denotes items to be repeated 0 or more times. '+' denotes items to be repeated 1

«
or more times. '/' is used to represent the separation of a number of occurrences

of one phrase by another; for example, the phrases '[a / ,8]+' and 'a [,8a]*' are
equivalent.

TopTerm - ["diagnose" [[Ident I "*"] ["on" I "off"]? / -. "]+
I "include" Str

?I "let" FullDed ["in" InnerTerm]'
I fullTerm

] ";"

FullDed - [InnerDed / ["ins" I "enc"]]+

InnerDed - "rec" InnerDed
I Def ["and" InnerDed]*

Def - "clause" FullClauseDef
I "query" Goals ["with" IdentListf
I "{" FullDed "}"
I [FnBind "." fullTerm / "I"]+
I FullBind "." fullTerm

208
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FnBind -+ Prefix FullBind+
I FullBind Infix FullBind+
I FullBind Postfix FullBind*
I Ident FullBind+

FullClauseDef -+ "ree" FulIClauseDef
I InnerClauseDef ["and" FullClauseDef]*

InnerClauseDef -+ "{" [FullClauseDef / ["ins" I "ene"]]+ "}"
I [ClauseBind [":-" ClauseBody]? / "1"]+

ClauseBind -+ Prefix FullBind
I FullBind Infix FullBind
I FullBind Postfix
I Ident FullBind

ClauseBody -+ [Goals -v I "otherwise" "\"]? Goals
["with" IdentList]?

Goals -+ [ [Prefix Inner Bind
«I InnerBind Infix Inner Bind

I InnerBind Postfix·
I SimpleTerm InnerBind
I SimpleTerm
] / "."
]+

FullBind -+ [InnerBind / -. "]+

VariBind -+ Prefix InnerBind
I Inner Bind Infix InnerBind
I InnerBind PostFix
I Ident InnerBind?

InnerBind -+ ["(" FullBind? ")"
1"[" [[FullBind / ";"]+ "I" FullBindf]? "]"
I "{" VariBind ["I" IdentList]? "}"
I SimpleTerm
I Ident
I «:

] [":" InnerBind]?
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FullTerm -+ "let" FullDed "in" InnerTerm
?

1 InnerTerm ["where" FullDed]'

InnerTerm -+ ["if" InnerTerm "then" Full'Iermj'" "else" FullTerm
1 "case" InnerTerm "of"
["{" VariBind "}" "." FullTerm/ ";"]+
"end"

1 "lambda" [FullBind+ "." FullTerm / "1"]+
1 "c1ause" [FullBind [": _" ClauseBody /J? / "I"]+
1 "query" Goals ["with" IdentList]?
1 [SimpleTerm / ". "]+

SimpleTerm -+ Prefix SimpleTerm
1 SimpleTerm Infix SimpleTerm
1 SimpleTerm Postfix
1 SimpleTerm SimpleTerm
1 ScannerTerm

ScannerTerm -+ ["en FullTerm? ")"
1 "[" [[FullTerm/ ";"]+ ["I" FullTerm]?j1 "J"
1 "{" SimpleTerm r I" IdentList]? "}"
1 Atomic'Ierm.,

] [["is" 1 "as"] Ident]*

IdentList -+ [Ident / "."] +

AtomicTerm -+ Ident "1"? 1 Int 1 Str 1 «:

Ident -+ Letter [Letter 1 Digit 1 «: 1 "."] *

Prefix -+ "not" 1 "in..1ft" 1 "in...rht" I· "-" 1 "fault"

Infix -+ "or" 1 "Il" 1 "." 1 "<>" 1 "A" 1 ": :" 1 ":" 1 "<" 1 "<." 1 ">."
1 ">" 1 "_" 1 "+" 1 "I" 1 "*" 1 "mod" 1 "«" 1 "»" 1 "0" 1

Postfix -+ "++"

Int -+ Digit+

Str -+ "II" "h. t "II"... sequence 0 c arac ers ...

Letter -+ "A" ... "z" 1 "a" ... "z"

Digit -+ "0" ... "9"
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The HYBRID Abstract Machine Code

The HYBRID abstract machine is a concurrent control flow architecture. There

is a global address space of fixed size memory cells, and a number of processes

execute code and access data in this common address space.

There is a solitary mechanism for communication and synchronisation be-

tween processes: a simple message passing procedure is supported on memory

locations in the global address space. Memory cells can be assigned a unique

value (empty) ; any subsequent attempt by a process to access such a location

causes the process to be suspended until the location is assigned a non-empty

value (by some other process). This mechanism allows processes to communicate

with one another, and also acts as a synchronisation primitive: one process can

suspend itself, and be resumed by another process performing an assignment to

memory. With the exception of this communication mechanism, no guarantees

are made against interference between processes accessing the same location in

memory.

211
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D.I The Abstract Machine

D.l.l Memory Structure

The abstract machine has a global, flat address space of fixed size memory cells.

Each memory cell may be empty, or may contain a simple value (such as an

integer), or a pointer value (an address of a store location). The machine believes

in a variety of data types. Simple values can be of integer type, or of boolean

type (with value true or false), or of a special void type (with value void).

Pointer values may be references to static objects (portions of code, or strings of

characters), or to dynamic objects (blocks of store). It is assumed that pointer

values can be distinguished from void.

The abstract machine is not intended to be type-secure: the result of per-

forming operations on objects of inappropriate type is undefined. It is assumed

that typechecking will be performed statically, at compile-time.

Each process has a small set of private, special purpose registers, and also has

a small area of stack space, used for storing temporary and intermediate values.

In addition, a process can claim vectors of storage from a dynamic heap, which

can then be used to build structured data types. When a process is created, it is

allocated a section of store to use for stack space. Such space may be reclaimed

when the process terminates.

Heap storage is claimed in blocks of predetermined size during the execution

of a program. A heap allocation by a process results in that process being given

a pointer to a block of store of fixed size, all elements of which are empty. These

elements can be assigned simple or pointer values, and the address of the block

can be passed between different processes. A block may be reclaimed when no

process possesses a pointer to it.

A program is initially executed by a single process. However, this process

may dynamically create other processes to assist in the computation, and each

such process may create more processes, and so on. A child process is completely
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independent of its parent, and may continue to run when the parent terminates.

The total number ofprocessesrunning on the abstract machine at anyone time is

considered unlimited, and it is assumed that an attempt to create a new process

will always succeed.

D.l.2 Fault-Values

Fault-values are reserved kinds of data object that are treated specially by the

HYBRID abstract machine. Fault-values may be generated explicitly, and in

addition are generated implicitly by certain built-in operations.

Every fault-value has as underlying representation. Although a fault-value

may have any type, it may be converted to and from an object of type

{apply, bind, cond, deol, infer,
prim: str, signal: str, uninst} List

The constructor fault takes an object of this type, and generates the corre-

sponding fault-value. The built-in function as_fault converts a fault-value into

its representation, as illustrated in the example below:

fault [{uninst}; {signal "S"}];

> (fault: {uninst}, {signal "S"})

as_fault(head nil);

> [{prim "head"}]
prim: str, signal

{apply, bind, cond, decl, infer,
str, uninst} List

Fault-values are propagated by many primitive operations. Such propagation'

(referred to as chaining) results in a new variant object being "consed" to the

front of the list representing the fault-value. For example:
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(head nil);

> (fault: {prim "head"})

(head nil) + 1;

> (fault: {prim "+"}. {prim "head"}) int

(head nil) + 1 > 0;

> (fault: {prim ">"}. {prim "+"}. {prim "head"}) bool

Primitive operators (such as '+' and '>') perform this chaining operation implic-

itly when presented with fault-values. In other cases, the instruction ChainFaul t

is used to perform chaining (for example, in conditional and case expressions).

The operation

ChainFault n

where n is an integer ~ 0, takes two arguments on the stack. The first argument

(Local/i) is assumed to be a fault-value. The second argument (Local/O) is

expected to be a value to be built into a variant cellwith a variant tag represented

by n. For example, given a fault-value

(fault : {apply})

and an argument e, the result of ChainFaul t n will be a fault-value of the form

(fault {tagn e}, {apply})

with the tag label tagn determined by the value of n.

In a functional context, uninstantiated logical variables are treated as fault-

values with a variant {uninst}j functional programs are said to manifest unin--

stantiated variables into this fault-value, although the variable itself remains

unchanged. For example, the expression



Appendix D. The HYBRID Abstract Machine Code 215

let query (clause (_)) x with x
in x + 3;

> (fault: {prim "+"}. {uninst}) : int

results in the logical variable x being manifested to a fault-value with variant

{uninst}, and chained with the variant {prim "+"}.

D.l.3 Registers

Every executing process has a set of private, special purpose registers. Each is

capable of holding a simple or pointer value. Registers cannot be made empty,

and cannot, for obvious reasons, be assigned empty from a store location. Such

registers are not accessible to any other process. However, when one process

creates another, the child process may inherit the values of one or more of its

parent's registers.

The registers are named, and used, as follows:
<f

R-Local is used as a stack pointer, and always points to the top of a process's

stack space;

R_Global is a pointer to values in the environment of a process (the closure);

R..Func is used to pass function and clause closures from a parent process to a

child;

R....Argis used to pass arguments to functions and clauses;

R..R.esult is used to pass results back from functions and method calls;

R....Andis used to store and-cells between conjunctive systems;

R_Or is used to store or-cells between disjunctive systems;

R..Methodis used to pass method information to a process created for a method

unification;



Appendix D. The HYBRID Abstract Machine Code 216

R_Caller is used to store a process context when an Apply is executed. The

context is restored on encountering a termination instruction such as Stop;

R_Program is the program counter.

D.2 Abstract Instruction Set

Each instruction is written as a single-word name (eg, Jump), possibly followed

by - . one or more arguments. A majority of the abstract machine instructions

take arguments from the local stack. Zero-address instructions (for example, the

arithmetic and comparison operators), take arguments from the top of the stack.

Some instructions take arguments from an arbitrary point in the stack, referred

to by an integer offset (~ 0); the top of the stack has offset O. The most general

addressing mode makes use of an index register (for example, the stack pointer,

R.l.ocal), and a number of offsets. The effectiveaddress is calculated by advanc-..
ing the pointer value of the register by the first value, dereferencing, advancing

this pointer value by the second offset, and so on. As an example, the address

Local/1/2 is equivalent to the expression Local [1] [2] in the language C. Such

address vectors may be of arbitrary (fixed) length.

Destinations of jumps are written Ln, where n is an integer> O. Instructions

may be labelled (eg. L3: Move ... ), although not all labelled instructions are

required to be destinations of jumps.

Each abstract instruction is defined to be atomic. This avoids

conditions in the case of the logical unification and synchronisation instructions,

although the assignment rules laid out in section 2.3.1 make the condition un-

necessary in most cases where a stack access is not involved.

In the descriptions which follow,Src is used to represent the stack offset of an

instruction argument. Desi is the stack offset of an assignable destination. VSrc·

and VDest are vector equivalents of Src and Dest respectively; each represents

a named register together with a vector of offsets. Reg represents a named
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register. Lab represents an instruction label. n is used to represent a literal

integer argument (~ 0). s is used to represent a literal quoted string.

The terminology "containing a structure" means "containing a pointer to

a structure." ITan instruction is described as encountering a fault-value, this

should be taken to mean that uninstaneed values are manifested beforehand.

Inflate n: Inflate the local stack by n elements. The top element is pre-

served by copying. After the inflation, cells Local/1 to Local/n are

empty.

Deflate Size, n: Deflate the local stack by n elements. The top element is

preserved by copying.

InflateEnv n: Inflate the environment, by treating R....Result as a stack

pointer. The top element (Result/O) is preserved by copying. After the

inflation, cells Result/1 to Result/n are empty.

Rise n: Increase amount of local stack accessible by decreasing R_Local.

The top of stack (Local/O) becomesaddressable as Local/n. CellsLocal/O

to Local/n - 1 are empty after the Rise.

Fall n: Decrease amount of local stack accessible by increasing R_Local.

The cell addressable as Local/n becomes Local/O.

TestTrue SrcOjJset, Label: Examine Local/ SrcOjJset. ITtrue, control is

transferred to Label. ITfalse, or a fault-value, there is no effect.

TestFalse SrcOjJset, Label: Examine Local/ SrcOjJset. ITfalse, control is

transferred to Label. ITtrue, or a fault-value, there is no effect.

TestVariant Tag, SrcOjJset, Label: Regards Local/ SrcOjJset as a variant

structure. ITLocal/ SrcOjJset/O has integer value Tag, control is trans-:

ferred to Label. ITLocal/ SrcOjJset is a fault-value, or Local/ SrcOjJset/O

has any other integer value, there is no effect.
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TestNil SrcOffset. Label: Transfers control to Label if Local/ SrcOffset is

void. Has no effect if Local/ SrcOffset is a structure, or a fault-value.

TestCons SrcOffset. Label: Transfers control to Label if Local/ SrcOffset is

a structure. Has no effect if Local/ SrcOffset is void.

TestLft SrcOffset. Label: Regards Local/ SrcOffset as a sum structure. If

Local/ SrcOffset/O has boolean value false, control is passed to Label. If

Local/ SrcOffset is a fault-value, or Local/ SrcOffset/O has boolean value

true, there is no effect.

TestRht SrcOffset. Label: Regards Local/ SrcOffset as a sum structure. If

Local/ SrcOffset/O has boolean value true, control is passed to Label. If

Local/ SrcOffset is a fault-value, or Local/ SrcOffset/O has boolean value

false, there is no effect.

TestFault SrcOffset. Label: Manifests Local/ SrcOffset. If the result is a

fault-value, control is transferred to Label. Otherwise, there is no effect.

ExtractVariantTag SrcOffset. DestOffset: Regards Local/ Sre Offset as a

variant structure. Copies Local/ SrcOffset/O to Local/ DestOffset.

ExtractVariantValue SrcOffset. DestVec: Regards Local/ SrcOffset as a

variant structure. Copies Local/SrcOffset/1 to Dest Ye«,

ExtractTuple Src Offset. Index. Dest Vee: Regards Local/ SrcOffset as a tu-

ple structure. Copies Local/ Src Offset / Index to Dest Vee.

ExtractHead SrcOffset. Dest Vee: Regards Local/ SrcOffset as a cons-cell.

Copies Local/ SrcOffset/O to Dest Vee.

ExtractTail SrcOffset. Desi Vee: Regards Local/ SrcOffset as a cons-cell.

Copies Loca~/Src Offset / 1 to Dest Vee.

ExtractSumTag SrcOffset. DestOffset: Regards Local/ SrcOffset as a sum

structure. Copies Local/ SrcOffset/O to Local/ DestOffset.
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ExtractSumValue SrcOffset. Dest Vec: Regards Local/ SrcOffset as a sum

structure. Copies Local/ Src Offset / 1 to Dest Vec.

ExtractFaul t Src Offset. Dest Vec : Manifests Local/ Src Offset. IfLocal/ Src Offset

is a fault-value, then assigns Dest Vec the underlying representation. Oth-

erwise, the effect is undefined.

Tri v: Pushes the void value representing' 0' onto the stack.

Int n: Pushes integer value n onto the stack.

Str s: Pushes string value s onto the stack.

Copy Dest Vec: Copies top of stack to Dest Vec; the stack remains unchanged.

CopyReg Reg: Copies top of §tack into register Reg; the stack remains un-

changed.

Move Dest Vec: Copies top of stack to Dest Vec; stack falls by one.

MoveRegReg: Copies top of stack into register Reg; stack falls by one.

From Src Vec : Pushes value of Src Vec onto stack.

FromReg Reg: Pushes contents of register Reg onto stack.

Read Src Vec: Pushes value of Src Vec onto stack. Process will suspend if

Src Vec is uninstantiated.

Process: Creates a process to execute the closure contained in RJ'unc. The

new process is allocated a stack of size Func/2, and executes the code In

Func/O. The register R_Global is assigned from Func/1. All other registers

are inherited from the parent.



Appendix D. The HYBRID Abstract Machine Code 220

VecProcess _> Dest Vee: Similar to Process, except that the new process

has register R.Jtesult referencing Dest Vee. Also accommodates the case

where R_Funcis a fault-value. In this case, fault tag {apply} is chained

to the value of R_Func,and this value is assigned to Dest Vee without a

process being created.

PushProcess: Similar to Process, except that the new process has register

R.Jtesult referencing an empty cell pushed onto the parent's stack. Ac-

commodates a fault-value in R_Func,as above.

Apply: Similar to PushProcess. Instead of a new process being created, the

current process saves its register values in a block claimed from the heap;

a reference to this block is then placed in R_Caller. The current process

then adopts the state of the new process. Accommodates a fault-value in

R_Func,as above.

VariantCell Tag: Pushes a st.ructure of two elements onto the stack. The

first element has' integer value Tag. The second is empty.

TupleCell Size: Pushes a structure of Size elements onto the stack. All

elements are empty.

ConsCell: Pushes a structure of two elements onto the stack. Both elements

are empty.

LftCell: Pushes a structure of two elements onto the stack. The first element

has value false; the second is empty.

RhtCell : Pushes a structure of two elements onto the stack. The first element

has value true; the second is empty.

ReturnTrue: Assigns true to the result cell Result/O.

ReturnFalse: Assigns false to the result cell Result/O.
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Result: Copies the top of the stack to the result cell Result/O.

Stop: If R_Caller is void, then terminate the current process. Otherwise,

restore the process context in R_Caller. In either case, the current stack

is discarded.

SetResul t Dest Vee:

DestVee.

Assign R..Result the address of the cell referenced by

TailApply: If RJ'unc is a fault-value, then chain fault tag {apply} to it,

copy this value to Result/O, and Stop; otherwise, discard the stack, and

begin execution of the closure in RJ'unc, as for Process.

Code Size [Code]: Push a closure onto the stack. A structure of three ele-

ments is claimed from the heap. The first element is assigned a reference

into the code area, to the first instruction of [Code]. The second element

is left empty. The third element is assigned integer value Size.

Block Size: Synonymous with TupleCell Size; push a structure of Size el-

ements onto the stack. All elements are empty.

Closure Dest Vee: AssumesLocal/O to be a block ofvalues for the closure at

Dest Vee, or a void value (if the closure accesses no free variables). Copies

Locai/O into DestVee/1, and drops the stack by one element.

NullClosure Dest Vee: Assumes Dest Vee to reference a closure accessing no

free variables. Assigns DestVee/1 to be void.

True: Pushes value true onto the stack.

False: Pushes value false onto the stack.

Not: If top of stack is a fault-value, then chains fault tag {prim "not"} to

it; otherwise, performs boolean not on the top of the stack.
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Neg: If top of stack is a fault-value, then chains fault tag {prim II-II} to it;

otherwise, performs boolean not on the top of the stack.

And: Takes two boolean values. If either of Local/1 and Local/O is a fault-

value, then removeboth and return {prim "k"} chained to the fault-value;

if both are fault-values, then use the fault-value Local/i. Otherwise, re-

move both and push their logical and.

Or: Takes two boolean values. Replaces Local/1 and Local/O by logical or;

if either is a fault-value, chains {prim "or"}, as above.

GT: Takes two integer values. Replaces Local/1 and Local/O by boolean

value true (Local/1 > Local/O), or false (Local/1 ~ Local/O); if either

is a fault-value, chains {prim ">"}, as above.

LT: As for GT,but pushes true ifLocal/1 < Local/O, false ifLocal/1 2: Local/O.
Chains {prim II<II} for fault-values.

_,

GE: Asfor GT,but pushes true ifLocal/1 2: Local/O, false ifLocal/1 < Local/O.

Chains {prim ">="} for fault-values.

LE: As for GT,but pushes true ifLocal/1 ~ Local/O, false ifLocal/1 > Local/O.

Chains {prim "<="} for fault-values.

Increase Src Vec. n: Adds n to integer value of Src Vec; operation is atomic.

Plus: Takes two integer values. Replaces Local/1 and Local/O by their

product. If either is a fault-value, chains {prim II+II.} as above.

Minus: Calculates difference;for fault-values, chains {prim II_II}.

Times: Calculates product; for fault-values, chains {prim "*"}.

Div: Calculates integer quotient; for fault-values, chains {prim II/II}.
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Mod: Calculates integer modulus; for fault-values, chains {prim "mod"}.

Length: Htop of stack is a fault-value, then chains fault tag {prim "length"}

to it; otherwise, removes string from top of stack and pushes its length.

Concat: Performs string concatenation; for fault-values, chains {prim """}.

Ord: Expects Local/1 to be a string and Local/O to be an integer> 0 and

less than the length of the string. Returns the ASCII value of the character

at that location within the string. Generates a fault-value with variant

{prim "ord"} if the integer is out of range, and chains {prim "ord"} for

fault-values as arguments.

Chr: H top of stack is a fault-value, then chains fault tag {prim "chr "] to

it; otherwise, remove an integer value n from the top of the stack, and

pushes a single character string with ASCII value n (for 1:5 n:5 127), or

generates a fault-value corresponding to {prim "chr"},
<f

InLft: Generates a sum structure. Claims a structure of two elements from

the heap. The first element is assigned false, and the second is assigned

from Local/O, which is removed from the stack.

InRht: Generates a sum structure. Claims a structure of two elements from

the heap. The first element is assigned true, and the second is assigned

from Local/O, which is removed from the stack.

Nil: Pushes void onto the stack.

Head: Head of list. H Local/O is a fault-value, then chains {prim "head"}

to it. H Local/O is void, then removes it and generates a fault-value with

{prim "head"}; otherwise, replaces the structure Local/O with its first

element.

Tail: Tail of list. H Local/O is a fault-value, then chains {prim "tail"}

to it. H Local/O is void, then removes it and generates a fault-value with
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{prim "tail"}; otherwise, replaces the structure Local/O with its second

element.

Is Tag: If Local/O is a fault-value, then chains {prim "is"} to it; other-

wise, treats it as a variant structure, with an integer as first element. If

Local/O/O is equal to Tag, then pushes true, otherwise pushes false.

The structure is removed.

As Tag: If Local/O is a fault-value, then chains {prim "as"} to it; other-

wise, treats it as a variant structure, with an integer as first element. If

Local/O/O is equal to Tag, then pushes Local/O/1, otherwise generates a

fault-value from {prim "as"}. The structure is removed.

Null: IfLocal/O is a fault-value, then chains {prim "null"} to it; otherwise,

pushes true if Local/O is void, or false if Local/O is a structure.

Fault: If Local/O is a fault-value, then chains {prim "fault"} to it; other-
<f

wise, transforms it into a fault-value.

ChainFault Tag: Expects Local/1 to be a fault-value. Generates a variant

cell with tag Tag and value Local/O, and chains this Local/1.

EqTriv: Pushes false if Local/1 or Local/O is a fault-value, and false

otherwise.

Eqlnt: Regards Local/1 and Local/O as integers. Pushes true if they are

equal, and false if they are unequal, or either is a fault-value.

EqStr: Regards Local/1 and Local/O as strings. Pu~hes true if they are

equal, and false if they are unequal, or either is a fault-value.

EqBool: Regards Local/1 and Local/O as booleans. Pushes true if they are

equal, and false if they are unequal, or either is a fault-value.

Jump Label: Performs unconditional jump to Label.
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TrueJump Label: Pops boolean value Local/Oj jumps to Label if true. Un-

defined for a fault-value.

FalseJump Label: Pops boolean value Local/Oj jumps to Label if false. Un-

defined for a fault-value.

Switch labelo. ...• labeln: Pops integer value Local/Oj jumps to labelo for

value 0, tabel, for value 1, and so on. Undefined for integer value < 0 or

> n, or for a fault-value.

Fork Size. Label: Create a process to start execution of the current code

portion at Label. The new process is allocated a stack of size Size; all

registers except R.l.ocal and R_Programare inherited from the parent.

AndCell Size: Pushes a structure of two elements. The first is assigned in-

teger value Size, the second is left empty.

OrCell Size: Pushes a structure of three elements. The first is assigned

integer value Size, the secotld is assigned boolean value false, and the

third is left empty.

AndSuccess: Decrements And/Ojif zero then assigns And/1 to be true. Then

performs a Stop.

AndFailure: AssignsAnd/1 to be false. Then performs a Stop.

OrSuccess: Assigns Or/1 to be true and Or/2 to be false. If Or/1 was

true then performs a Stop.

OrFailure: Decrements Or/O. If it is now one then assigns Or/2 to be true;

if zero then performs AndFailure. Then performs a Stop.

Otherwise: If Or/2 is false then performs OrFailure.

If Instanced Label: If Local/O is instantiated, then transfers control to La- .

bel; otherwise, prunes the reference chain, and assigns the last cell of the

reference chain to be empty.
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UnifyChain Label: Assumes that Local/1 is a single reference to an empty

cell. Assigns the empty cell with Local/O, and removes both from the

stack.

Uninstance Dest Vee: Uninstantiates the cell referenced by Dest Vee.

Unify -> Label: Unifies two arguments. ITLocal/1 references an uninstan-

tiated cell, then unifies it to Local/O, and removes both from the stack,

and jumps to Label. ITLocal/O references an uninstantiated cell, then uni-

fies it to Local/1, and removes both from the stack, and jumps to Label.

Otherwise (both are instantiated), performs a Skip.

Skip: No operation. Continues to next instruction.


