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Abstract 

This thesis discusses a variety of parallel algorithms for linear algebra 

problems including the solution of the linear system of equations Ax = b 

using QR and L U decomposition, reduction of a general matrix A to 

Hessenberg form, reduction of a real symmetric matrix B to tridiagonal 

form, and solution of the symmetric tridiagonal eigenproblem. Empirical 

comparisons are carried out using various different versions of the above 

algorithms and this is described in this thesis. We also compare three 

different synchronisation mechanisms when applied to the reduction to 

Hessenberg form problem. We implement Cuppen's method for computing 

both eigenvalues and eigenvectors of a real symmetric tridiagonal matrix 

T using both recursive and non-recursive implementations. We consider 

parallel implementations of these versions and also consider parallelisation of 

the matrix multiplication part of the algorithm. We present some numerical 

results illustrating an experimental evaluation of the effect of deflation on 

accuracy, comparison of the parallel implementations and comparison of the 

additional parallelisation for matrix multiplication. 
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A variety of algorithms are investigated which involve varying amounts 

of overlap between different parts of the calculation and collecting together 

updates as far as possible to make good use of the storage hierarchy 

of the shared memory multiprocessor. Algorithms using dynamic task 

allocation are compared with ones which do not. The results presented 

have been obtained using the C++ programming language, with parallel 

constructs provided by the Encore Parallel Threads package on a shared 

memory Encore Multimax (MIMD) computer. The experimental results 

demonstrate that dynamic task allocation can be sometimes very effective 

on this machine, and that very high efficiency is often obtainable with careful 

construction of the parallel algorithms even for relatively small matrices. 
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CHAPTER 1 

Introduction 

Parallel processmg has emerged as a key enabling technology in 

modern computers, driven by the ever-increasing demand for higher 

performance, lower costs, and sustained productivity in real-life applications. 

A multiprocessor system provides a promising approach to high speed 

computing. This is a single computer system containing multiple processors 

which are capable of communicating and cooperating at different levels 

in order to solve a given problem [48]. More specifically, through some 

regular interprocessor network, processors exchange information to share 

the workload of a given program so that the computation can be performed 

in a parallel manner. 

However, programming and compiling for multiprocessor systems is 

a far more complex task than traditional sequential programming. To 

efficiently and correctly utilise a multiprocessor, one has to investigate such 

issues as degree of parallelism, allocation of tasks, synchronisation between 

processors, as well as memory management. 
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Chapter 1 Introduction 

1.1 Background 

Many physical problems need to be expressed in terms of sets of 

quantities (called elements), which are conventionally arranged in an array 

of m rows and n columns. Such an array is called a matrix. Matrices 

provide a theoretical and practical way of approaching many types of 

problems, including the solution of linear algebraic equations, systems of 

linear differential equations, and many other applications [68]. 

This thesis discusses efficient serial and parallel methods for computing 

the solution of the linear system of equations Ax = b, reduction of a general 

matrix A to Hessenberg form, reduction of a real symmetric matrix B to 

tridiagonal form, and computing all eigenvalues and eigenvectors of a real 

symmetric tridiagonal matrix. 

Systems of linear algebraic equations occur in a variety of applications 

in practice and solving this problem is often one of the core components 

of many scientific computations. These equations are associated with 

many problems in engineering and science, as well as with applications of 

mathematics to the social sciences and the quantitative study of business 

and economic problems [7]. 

The development of efficient algorithms has received considerable 

attention in the literature [93,38,43,and 85]. A large number of papers have 

appeared in recent years describing various approaches to parallelising QR 

and LU factorisation on distributed memory and shared memory MIMD 
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Chapter 1 Introduction 

architectures. These factorisations are certainly some of the most used of 

all numerical linear algebra computations. 

Orthogonal transformations are a well-known tool in numerical linear 

algebra and are used extensively in decompositions such as the QR 

factorisation, tridiagonalisation, bidiagonalisation, Hessenberg reduction, 

and the eigenvalue or singular value decomposition of a matrix [90]. 

Widely used transformations for the QR factorisation of a matrix 

are Givens orthogonalisation, Householder orthogonalisation, and Gram

Schmidt orthogonalisation. Such factorisations may be realised on 

multiprocessors via plane rotations [24 and 78], elementary reflectors [4], 

or using the Modified Gram-Schmidt algorithm [90]. Several algorithms 

have been proposed in the past for the orthogonal factorisation of matrices, 

including those by Goles and Kiwi [37] on a shared memory SIMD computer, 

Zhou and Brent [101] on a distributed memory MIMD computer, and Wright 

[97] on a shared memory MIMD computer. 

Modi and Clarke [67] have suggested a greedy algorithm for Givens 

reduction and the equivalent ordering of the rotations, but do not consider 

a specific architecture or communication pattern. Cosnard, Muller, and 

Robert [16] have shown that the greedy algorithm is optimal in the number of 

time steps required. Theoretical studies and comparison of such algorithms 

for Givens reduction have been given by Pothen, Somesh, and Vemulapati 

[74] and by Elden [30] and some of these algorithms have been implemented 

on current commercially available distributed memory multiprocessors [34]. 
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Chapter 1 Introduction 

Pothen and Raghavan [73] have compared the early work of Pothen, 

Somesh, and Vemulapati [74] on a modified version of a greedy 

Givens reduction with a standard row-oriented version of Householder 

transformations on a local memory system. Their tests seem to indicate that 

Givens reduction is superior on such an architecture. Wright [97], however, 

has implemented a number of algorithms on a shared memory machine for 

QR decomposition. These were compared and the ones using Householder 

transformations with multiple updates to columns were found to be very 

effective and better than the ones using Givens transformations. 

Block algorithms developed for specific architectures rely on transferring 

large submatrices between different levels of storage. A numerical linear 

algebra library based on block methods was developed and its performance 

analysed in terms of architectural parameters in 1985 and early 1986 for a 

single cluster of the Cedar machine, and the multi vector processors, Alliant 

FX/8 [77]. At approximately the same time, Calahan developed block 

LV factorisation algorithms for one CPU of the CRAY-2 [11]. In 1985, 

Bischof and van Loan [4] developed the use of block Householder reflectors in 

computing the QR factorisation and presented results on an FPS-164/MAX. 

It was shown in [4] that this block algorithm is as numerically stable as 

the classical Householder method. Most recently, Schreiber and van Loan 

[79] have considered a more efficient storage scheme for the product of 

Householder matrices. They describe the compact WY representation of 

the orthogonal matrix Q. Wright [97] stated that one idea popular with 

distributed memory machines is to use some sort of block method, though 
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Chapter 1 Introduction 

for shared memory machines the advantages are not so obvious. 

J alby and Philippe [50] have considered the stability of the modified 

Gram-Schmidt algorithm and Gallivan et al [33] have analysed the 

performance of this algorithm as a function of block size which is presented 

along with experimental results on an Alliant FX/8 for single and double

level versions of the algorithm. 

The various versions of the parallel L U factorisation algorithms have 

appeared in different contexts in the literature, some use distributed memory 

multiprocessor architectures [36,92,14,84] and some use shared memory 

[64]. The algorithms use several ways to organise the computations for 

calculating the L U factorisation of a matrix. The essential differences 

between the various forms are: the set of computational primitives 

required, the distribution of work among the primitives, and the size 

and shape of the subproblems upon which the primitives operate. Since 

architectural characteristics can favour one primitive over another, the 

choice of computational organisation can be crucial in achieving high 

performance. Of course, this choice in turn depends on a careful analysis 

of the architecture/primitive mapping. However other features are also 

important as will be discussed below. 

One alternative method to L U decomposition which has been suggested 

for the solution of linear algebraic equations is QR decomposition. This 

algorithm is inherently stable and thus avoids the complication of pivoting. 

Since the operation count for QR decomposition is twice that of L U 
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Chapter 1 Introduction 

decomposition, QR decomposition will only be competitive if the efficiency 

of LV decomposition with pivoting is less than half the efficiency of QR 

decomposition [92], but Geist and Romine [36] claim that parallel QR 

decomposition is not competitive to parallel LV decomposition. 

We concentrate here on QR factorisation for solving systems of linear 

equations by using Householder transformation and the Givens method, 

and LV decomposition for solving systems of linear equations by using a 

method similar to Doolittle or to Crout reduction. These methods are the 

principal tools in the direct solution of linear systems of equations. Each 

method is based on a factorisation of the coefficient matrix of the system. 

We consider QR factorisation algorithms, namely, Householder and Givens 

transformations, which have been implemented as described in [97]. 

We will focus in particular on algorithms written in the C++ 

programming language. C++ is an object-oriented programming language 

which can provide various types of matrix classes (see chapter 2 for details). 

The use of C++ implies some storage organisation for array elements. The 

primitive arrays provided in C++ use storage by rows. As far as we are 

aware little work seems to have been done on parallelising these algorithms 

using C++. The comparisons in this thesis were carried out using both 

row and column representation of the matrix: this was made easy by the 

use of a C++ matrix class (see chapter 2 for details) which was altered 

internally. Comparisons were also carried out for versions with and without 

array bound checking and for versions with and without an inline function. 
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Chapter 1 Introduction 

These extra comparisons were included to compare the algorithms under 

different conditions, and make spurious conclusions less likely. The code 

was written using the Encore Parallel Threads package (THREADS) [31], 

which provides mechanisms for synchronisation. The EPT routines can be 

accessed by C++ using the C linkage convention. 

In [97] a number of algorithms for QR decomposition were compared and 

ones using Householder transformations with multiple updates to columns 

were found to be very effective. Most of the algorithms considered here for 

LU decomposition use a similar idea, though one simple implementation is 

also used for comparison. Some preliminary comparisons used pairwise row 

Gaussian elimination [82] in a similar manner to the Givens QR reduction 

considered in [97]. These algorithms gave significantly poorer times and 

were also less accurate than the column based algorithms and so are not 

considered here. 

The use of the algorithm employed here to accomplish the L U 

decomposition is motivated primarily by Wright [97]. In the Householder 

algorithm, once a pivotal column has been completed no further changes 

are made to that column. In the usual Crout and Doolittle algorithms 

interchanges may take place in these columns corresponding to later pivotal 

columns. Here the algorithm is modified so that interchanges of the 

multipliers do not take place, with the programs organised in a similar way 

to Householder Q R reduction. This variant of the interchange mechanism 

is mentioned by Gallivan et al [34], but not investigated in detail here. 
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Chapter 1 Introduction 

Algebraic eigenvalue problems, either standard Ax = AX, or generalised 

Ax = ABx, occur in wide variety of applications. This problem arises in 

many areas of physics, engineering, and science such as stability theory, 

the theory of vibrations, quantum mechanics, continuum mechanics, the 

analysis of electron orbits in atoms, the stability of structures, statistical 

analysis, and other areas [100]. In many cases, the problems are of very 

large order. For example, properties of certain quantum dynamical systems 

can be determined through statistical analysis of quantities computed from 

the eigenvalues or eigenvectors of symmetric matrices associated with those 

systems [51], [52]. 

Matrices arising in such applications sometimes have a tridiagonal form 

[61], and often have a banded form [51]. In addition, tridiagonal and 

bidiagonal matrices arise in the solution of general problems. That is, full 

eigensystems of dense matrices are usually computed by Jacobi methods 

[40], or by reduction of A matrix to tridiagonal form T by Givens rotations 

or Householder reflections followed by computation of the eigensystems of 

T [96]. 

A direct reduction of A to symmetric tridiagonal form T by Givens 

transformations or Householder transformations can be followed by 

computation of the eigendecomposition for the reduced matrix. Sparse 

symmetric eigenvalue problems are often handled by the Lanczos method 

[70] which itself produces symmetric tridiagonal eigenproblems. This thesis 

is concerned with methods for reducing a general matrix A to upper 
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Chapter 1 Introduction 

Hessenberg form and a real symmetric matrix B to tridiagonal form. 

It is well known that the methods for the reduction of a general matrix 

to Hessenberg form and a real symmetric matrix to tridiagonal form do not 

of themselves solve the eigenvalue problem, but this approach does reduce 

the problem to a form that can be manipulated inexpensively. 

We start with the nonsymmetric case. There are several methods for 

reducing a general matrix to upper Hessenberg form, including some using 

Householder transformations and others similar to Gaussian elimination. 

Although those similar to Gaussian elimination are about twice as fast 

as those using Householder transformation, the latter method is more 

stable as it provides unconditional stability [9]. In chapter 5, we 

describe an evaluation of five parallel implementations using Householder 

transformations. 

Similarly, the most common method for handling the symmetric 

eigenproblem consists of first reducing the symmetric matrix to tridiagonal 

form via Householder transformations. The algorithms for the reduction of 

a general matrix to Hessenberg form can also be used for the reduction 

of a symmetric matrix to tridiagonal form. We consider three parallel 

implementations of the reduction of a symmetric matrix to tridiagonal form 

in chapter 6. 

Several algorithms have been developed for eigenvalue problems on 

parallel computers. The most robust of these methods are those that 
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Chapter 1 Introduction 

rely first on reducing the symmetric matrix to tridiagonal form followed 

by handling the symmetric tridiagonal eigenvalue problem. Some works 

find as an example [26] and [65], use shared memory architectures. Other 

papers, such as [28],[55],[35], and [94], do not consider shared memory 

multiprocessor architectures. Dongarra and Sidani [25] consider the non

symmetric problem using shared memory but assume that reduction to 

Hessenberg form has already been carried out. Dongarra et al [27] consider 

algorithms for reduction to Hessenberg form using blocking to reduce data 

movement. All these papers give much relevant background to our work. 

The Symmetric Tridiagonal Eigenproblem is an important problem in 

numerical linear algebra. There are various ways to solve this problem. 

Conventional methods are the shifted QR algorithm [10] and the bisection 

method based on the Sturm sequence(see [95] and [70]). In recent years, a 

divide-and-conquer technique has been developed by Cuppen [17]. Solving 

eigenproblems using rank-one modification was proposed by Bunch, Nielsen, 

and Sorensen [6], the work based on Golub [38]. Another approach using 

the divide-and-conquer technique is given by Krishnakumar and Morf [58]. 

Cuppen's method has attracted much attention. The idea has been extended 

and implemented using a variety of architectures, for example by Dongarra 

and Sorensen [26] and Ipsen and Jessup [49]. Watkins [93] states that 

Cuppen's method is highly parallelisable. Cuppen [17] claims this algorithm 

is asymptotically faster than the QR method by an order of magnitude. 

QR and Cuppen's methods are often used to compute all eigenvalues and 

eigenvectors of the matrix but the bisection method is normally used when 
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Chapter 1 Introduction 

only a few of the eigenvalues and corresponding eigenvectors are required 

[49]. The Cuppen method uses a partitioning technique which reduces 

the original problem to smaller ones of the same type, by a rank-one 

modification. Cuppen [17] observed that there can frequently be some 

deflation in the updating process as the original matrix is rebuilt from the 

subproblems. Dongarra and Sorensen [26] implemented a further deflation 

technique to make the algorithm more efficient and more stable. 

Gallivan et al [34] suggest that if only eigenvalues are desired (or all those 

lying in a given interval) or selected eigenpairs are desired, then bisection 

should be used (for example, see Wilkinson and Reinsch [96] or Parlett [70]). 

Such a combination has been adapted for the Illiac IV parallel computer in 

[60] and [46], and later for the Alliant FXj8 [65]. 

The implementation of Cuppen's algorithm in [26] always computes the 

eigenvalues to high accuracy, but some specific examples illustrate that it 

may not compute fully orthogonal eigenvectors (see [6], [17], and [26]). To 

resolve this problem, Kahan [54] suggests computing some key quantities 

more accurately using simulated extended precision. Sorensen and Tang 

[83] presented an alternative implementation scheme which was inspired by 

the earlier work of Kahan [54]. They showed that this method is stable 

but that it requires extended precision and so is machine-dependent [83]. 

Gu and Eisenstat [42] suggested an alternative method using the same 

rank-one modification as in [83], using a different approach for finding the 

eigenvectors. They showed that the new method is backward stable. 
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Chapter 1 Introduction 

We implement Cuppen's method for finding all the eigenvalues and 

corresponding eigenvectors of the real symmetric n x n tridiagonal matrix 

T in this thesis. This method may be implemented recursively to produce a 

parallel counterpart to Cuppen's algorithm [17] as demonstrated in [26]. We 

discuss in addition to the recursive sequential algorithm two non-recursive 

sequential algorithms and their parallel implementations in order to compare 

these implementations in chapter 7. This chapter shows that non-recursive 

versions are generally the fastest and compete overall with recursive versions. 

In addition, we present and observe the effect of deflation on the accuracy 

of Cuppen's method, but this is not of primary concern in this thesis. 

1.2 Motivation and Research Objectives 

As mentioned before, the goal of this thesis is to consider efficient serial 

and parallel methods for computing the solution of the linear system of 

equations Ax = b, reduction of a general matrix A to Hessenberg form, 

reduction of a real symmetric matrix B to tridiagonal form, and computing 

all eigenvalues and eigenvectors of a real symmetric tridiagonal matrix T. 

The comparisons were carried out using the C++ programming language 

mainly using classes to represent the matrices. The parallel versions were 

implemented using the Encore Parallel Threads [31] package (EPT), which 

provides among other things the facility for the programs to explicitly create 

parallel "THREAD"s of execution using the "THREAD create" function. It 

also provides mechanisms for synchronisation. The mechanisms used in 

this thesis are "THREADjoin"s, locks, semaphores, and monitors. These 
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mechanisms are the standard synchronisation mechanisms in the EPT 

package except for the lock mechanisms. The locks are provided in an 

extension to EPT. These mechanisms are used to provide mutually exclusive 

access to shared data. 

Using the C++ language and shared memory computer system, the 

program does not have direct control of the allocation of either processors 

or storage. This is mainly a property of the operating system and not one of 

the language (the same is true using PASCAL or FORTRAN). The transfer 

of data between shared and cache memories is controlled by the hardware. 

Variables can be declared locally or globally, but in either case they will be 

stored in shared memory with possible copies in cache. The programmer 

can ask for a number of parallel threads, but again the actual allocation is 

controlled by the operating system and this may depend on current usage 

of the machine as it is time-shared. 

This last point suggests that dynamic allocation of work may be 

particularly appropriate. However, it is difficult to measure its effectiveness 

as this is expected to be of most benefit under heavily loaded conditions, 

when timings are very variable. All the results in the sequel are based on the 

best times observed over a number of runs when the machine was lightly 

loaded. Dynamic allocation is likely to improve processor utilisation but 

does require inter-processor communication for control. Predetermined ( or 

static) allocation is less flexible but avoids the need for this communication. 

There are a number of considerations which were taken into account in 
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developing the parallel algorithms in this thesis. Firstly, and most obviously, 

THREAD waiting time should be kept low, both by avoiding synchronisation 

as far as possible and by keeping critical sections (see chapter 3 for details) 

as small as possible. Secondly, the storage hierarchy of the multiprocessor 

system implies different access times for the different parts of memory and 

there is the possibility of contention waits for access to shared memory [48], 

so that Threads [31] package (EPT), which provides data transfer should be 

avoided where possible. Thirdly, as the type of multiprocessor being used is 

normally set up in a multi-user mode, the algorithms should be adaptable 

so that serious degradation does not occur if the number of threads asked 

for is greater than the number of processors available. 

In this thesis the experimental results to be presented show that dynamic 

task allocation can be very effective on shared memory machines, and 

that very high efficiency is obtainable with careful construction of the 

parallel algorithms even for relatively small matrices. The results also 

show that careful implementation taking these points into account produces 

significantly better times than those for simple parallel versions for all the 

algorithms presented here, and in most cases very good use of the parallel 

facilities is possible [98]. 
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1.3 Structure of the Thesis 

The structure of the thesis is as follows: The present chapter aims at 

presenting a brief review of the relevant algorithms. Chapter 2 outlines 

notation, assumptions, criteria for evaluating the numerical methods, and 

also gives an overview of object-oriented programming in C++. 

Chapter 3 gives an introduction to some of the basic ideas in parallel 

computation including a review of the architecture of such computers 

as well as some fundamental concepts and also describes the shared 

memory multiprocessor used in the experiments. This chapter also deals 

with the parallel programming environment, an overview of the Encore 

Parallel Threads (EPT) package, and an introduction of inter-thread 

communications. 

In chapter 4, we consider a number of different parallel algorithms for 

the QR and LV decomposition of a square matrix A. Algorithms based 

on both Givens and Householder transformations are considered for QR 

decomposition. For the LV decomposition we consider methods using both 

a unit lower triangular matrix L and a general upper triangular matrix U, 

and a unit upper triangular matrix and a general lower triangular matrix. 

In chapter 5, we examine the reduction of a general matrix to upper 

Hessenberg form. We describe an evaluation of five parallel implementations 

using Householder transformations. We also consider a number of parallel 

implementations for comparing three different synchronisation mechanisms 
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(see chapter 3 for details) when applied to a particular problem. 

In chapter 6, we examine the tridiagonalisation of an nXn real symmetric 

matrix, using Householder transformations. It is first written in a sequential 

form followed by parallel versions. This is similar to the reduction to 

upper Hessenberg form of a general matrix but has rather less scope for 

parallelisation. We compare the performance of the three implementations. 

These tests use both a simple Matrix class used for a general matrix and 

a special Symmetric Matrix class written so that only half the matrix is 

stored. 

In chapter 7, we describe the implementation of Cuppen's method 

for finding all of the eigenvalues and corresponding eigenvectors of real 

symmetric n x n tridiagonal matrix T. We review the description of 

the divide-and-conquer method presented in [17], examine the arithmetic 

complexity of this method, discuss a number of sequential algorithms, 

both recursive and non-recursive. We consider parallel implementations 

of these versions, four of which are variant recursive versions and two 

different non-recursive versions. We also consider parallelisation of the 

matrix multiplication part of the algorithm. This chapter also provides 

some experimental results illustrating the effect of deflation on accuracy, as 

well as comparison of the parallel implementations with and without the 

additional parallelisation for matrix multiplication. 

Finally, conclusions and suggestions for future research are presented in 

Chapter 8. 
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Preliminaries 

This thesis is concerned with the development of parallel algorithms for 

numerical linear algebra. We have designed different implementations of 

such algorithms and compared them empirically. All the comparisons have 

been carried out using the C++ programming language using the Encore 

Parallel Threads package on a shared memory multiprocessor (the Encore 

Multimax). The comparisons were carried out by measuring the elapsed 

time using each of the implementations. These algorithms are as follows: 

• We firstly considered the QR decomposition of a matrix for solving 

systems of linear equations, that is using the decomposition of a square 

matrix into an orthogonal matrix Q and an upper triangular matrix R. 

In order to compute this we used Householder and Givens transformation 

methods which were first written in a sequential form followed by their 

parallel versions. Here the Q matrix was not stored. 

• Secondly, we examined two methods for the L U decomposition of a 

matrix. One uses a unit lower triangular matrix L and a general 
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upper triangular matrix U and is similar to Doolittle reduction and 

GAXPY Gaussian elimination [40]. The other method uses a general 

lower triangular matrix L and a unit upper triangular matrix U and 

is similar to Crout reduction. A comparison of these methods is made 

using a number of variant parallel implementations. Results similar to 

QR decomposition were obtained. This work is described in [56]. 

• Thirdly, we considered the reduction of a general matrix to upper 

Hessenberg form using Householder transformations. A variety of 

parallel algorithms were investigated. Comparisons of performance were 

carried out between the five implementations. This work has been 

written up as a technical report [57]. 

• Fourthly, we compared the lock, semaphore, and monitor synchronisation 

mechanisms for algorithms which were otherwise the same. Two parallel 

implementations of the reduction to Hessenberg form were used in 

these experiments. We came to a clear conclusion about using the 

synchronisation mechanisms, which is that, in all cases, using "Locks" is 

more efficient than using "Monitors" or "Semaphores". 

• Fifthly, we considered the tridiagonalisation of an n X n real symmetric 

matrix, using Householder transformations. This was first written in a 

sequential form followed by its parallel versions. This is similar to the 

reduction to upper Hessenberg form of a general matrix but has rather 

less scope for parallelisation. We compared the performance of the three 

implementations. 
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All these compansons were carried out usmg both row and column 

representations of the matrix; this was made easy by the use of the simple 

C++ matrix class which was altered internally. Comparisons were also 

carried out between cases with and without array bound checking. These 

extra comparisons were included in order to compare the algorithms 

under different conditions, and to make spurious conclusions less likely. 

• Finally, we implemented Cuppen's divide-and-conquer method to 

compute all of the eigenvalues and corresponding eigenvectors of an 

n X n real symmetric tridiagonal matrix. The method uses a divide-and

conquer technique which reduces the eigenvalue problem for a symmetric 

tridiagonal matrix to smaller problems of the same type by a rank-one 

modification. The algorithm can be parallelised using different schemes 

some being recursive and some non-recursive. We discuss a number of 

sequential and a variety of parallel approaches for the implementation of 

this algorithm. 

Notations are introduced in section 2.1 along with assumptions about 

the matrices used. Definitions and theoretical results about the measures 

of quality employed are presented in section 2.2. In sections 2.3 and 

2.4, we introduce measures of the sensitivity of a linear system and an 

eigenvalue problem, respectively. Real general matrices were used to test the 

Householder and Givens transformation methods, the Doolittle and Crout 

reduction, and the reduction of a general matrix to upper Hessenberg form. 

To test the tridiagonalisation phase we used real symmetric matrices. The 
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symmetric tridiagonal matrices used to test the eigenvalue problem of the 

divide-and-conquer method are given in section 2.5. Relevant features of 

the object-oriented programming language C++ are introduced in section 

2.6. The overview of classes used here and inline functions are presented in 

subsections 2.6.1. 

2.1 Notations and Assumptions 

The following notation will be used throughout this thesis. Unless 

otherwise specified, a superscript T denotes transpose. All quantities are 

assumed to be real. We use the notation of Golub and van Loan [40] 

where A(k,j : n) denotes the vector consisting of the elements of A(k,i), 

i = j, ... ,n, for the algorithms in this thesis. 

A denotes an n x n general matrix having the QR decomposition 

A = Q R, where Q is an n x n orthogonal matrix and R is an n x n upper 

triangular matrix. To solve Ax = b, we first use Gaussian elimination to 

factor the nonsingular matrix A as A = LU, where L is an n x n lower 

triangular matrix, U is an n x n upper triangular matrix, and where the 

permutations has been ignored. 

T denotes an n x n symmetric tridiagonal matrix with the 

eigendecomposition T = Q DQT where D is an n X n diagonal matrix with 

the eigenvalues I.AII > 1.A21 > ... > l.Anl as its diagonal elements. The n x n 

matrix Q is orthogonal and has as its columns the eigenvectors ql, Q2,· .. ,qn 
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2.2 Measures of the Quality of a Method 

In this thesis, different methods and implementations are compared 

empirically in terms of runtime and parallel efficiency. 

• Speed-up: In evaluating a parallel algorithm for a given problem, it is 

quite natural to do it in terms of the best available sequential algorithm 

or corresponding one for that problem. The speedup Sp attained when 

using p processors to solve a problem instance of size N is defined by the 

formula 

where Ts(N) and Tp(N) are the times for the sequential and parallel 

verSIOns. 

• Overhead To: The sum of the time spent by all processors with other 

processors, waiting for signals, time in starvation, etc. [81]. Overhead is 

defined by 

where Ts(N) and Tp(N) are the times for the sequential and parallel 

versions and p is the number of processors. 

• Efficiency: The efficiency Ep of a parallel algorithm is defined to be 

the speedup divided by p, which has the effect of scaling the speedup to 

a value usually between 0 and 1. Symbolically, efficiency is defined by 

E (N) = Ts(N) 
p p X Tp(N) 
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where Ts(N) and Tp(N) are the times for the sequential and parallel 

versions and p is the number of processors. In this thesis, the mean 

efficiency is calculated by averaging the efficiencies. Since Sp( N) ~ p, 

we have usually Ep( N) < 1 and an efficiency of Ep( N) = 1 corresponds 

to a perfect speedup of Sp( N) = p [39]. 

• Amdahl's Law: Amdahl noted that the computation time can be 

divided into a parallel portion and a sequential portion, and no matter 

how high the degree of parallelism in the former, the speedup will be 

asymptotically limited by the latter which must be performed on a single 

processing element [2]. 

2.3 Measures of Sensitivity of Linear Systems 

When we solve a system of linear equations or compute an eigenvalue 

problem we usually obtain an approximation of the exact result. The result 

will be affected by the roundoff errors made during the computation. The 

result produced by the algorithm is accepted as correct as long as the error 

of the computation is less than some specific value, where the error is the 

difference between the exact result and the computed result. In case the 

errors are not small, it is important therefore to ask what effect small changes 

or perturbations in the coefficients have on the solution of the system or the 

eigenproblem. How do these errors affect the accuracy of the computed 

solution? 
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Consider a linear system, 

Ax=b (2.3.1 ) 

where A is a nonsingular matrix, and b is the nonzero right hand side vector. 

The system has a unique solution x. Suppose the system has x as computed 

solution of the perturbed system 

~ 

Ax =b (2.3.2) 

where b = b + 8b and x = x + 8x. We hope that if 8b is small compared to 

b, then 8x is also small compared with x. The size of 8b and 8x relative to b 

and x are given by 118bll/llbil and 118xll/llxli respectively. We wish to relate 

11 8x ll/llxli to 118bll/llbll. 

Substituting equation (2.3.1) into equation (2.3.2) and multiplying by 

the matrix A-I gives 

8x = A- 18b. (2.3.3) 

Whatever vector norm we have chosen, we will use the induced matrix 

norm to measure matrices. Using the properties of the vector norm and its 

induced matrix norm, equations (2.3.1) and (2.3.3) imply that 

118xll < IIA -111118bll (2.3.4) 

and 

IIbll < IIAllllxll, (2.3.5) 
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or equivalently 
1 1 

W < IIAII TIbIT (2.3.6) 

Combining inequalities (2.3.4) and (2.3.6) yields an important inequality 

(2.3.7) 

which provides a bound for 118xll/llxli in terms of 118bll/llbll. The factor 

IIAIIIIA -111 is called the condition number of A and is denoted by ~(A) [7]. 

The inequality (2.3.7) needs to be interpreted correctly. If ~(A) is close 

to 1, then small relative changes in the components of the linear system of 

equations produce small relative changes in the solution. In this case we 

say that the linear system is well-conditioned. A linear system of equations 

is said to be ill-conditioned if ~(A) is large and small changes in problem 

parameters may cause large changes in the solution. 

The accuracy of a method may be measured by the residual in the 

computed solutions of the linear system (2.3.1). In [39], the residual vector 

of a computed solution x to the equation (2.3.1) is defined by 

r = b - Ax (2.3.8) 

If r were zero, then x would be the exact solution of the linear system (2.3.1). 

Thus we would expect r to be small if x were a good approximation to the 

exact solution. If r were small, then Ax effectively approximates the right 

hand side b. This is true in some cases, but if A is ill-conditioned, the size 
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of T can be very misleading. As an example, consider the system 

(
0.780 0.563) (Xl) = (0.217) , 
0.913 0.659 X2 0.254 

and the approximate solution 

Then, the residual vector is 

x = ( 0.341 ) . 
-0.087 

Now consider another very different approximate solution 

x = ( 0.999 ) 
-1.001 ' 

and the corresponding residual vector 

_ ( 0.0013 ... ) 
T- . 

-0.0015 ... 

(2.3.9) 

(2.3.9a) 

(2.3.9b) 

(2.3.9c) 

(2.3.9d) 

By comparing the residuals (2.3.9b) and (2.3.9d) we could easily conclude 

that (2.3.9a) is the better approximate solution. However, the exact solution 

of (2.3.9) is (1,-1), so the residuals give completely misleading information. 

If the matrix A is well-conditioned, the residual vector provides a valid 

estimate of the accuracy of an approximate solution x. However, in general, 

small residuals do not always imply high accuracy. 
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When we solve a system of linear equations, we are concerned with 

knowing whether or not our computed solution is accurate. This calls 

for an error analysis which attempts to determine the effect of round-

off errors. The round-off errors result from inaccuracy in computation. 

Computational procedures may consist of hundreds or even thousands of 

elementary operations and the cumulative effect of round-off is sometimes 

severe. 

For systems of linear equations there is a way to analyse an error based 

on the residual and condition number. From (2.3.8) consider 

(2.3.10) 

so that, if E = A -lb - x is the error in the approximate solution, then, 

(2.3.11) 

This is the fundamental relation between the residual and the error. Then 

IIEII < 1W'lllIrll = J«A) ill:III' (2.3.12) 

so that the error is bounded by K(A) times a normalised residual vector. 

The estimate (2.3.12) shows that if K(A) and 11111111 are both small, then the 

error is also small. On the other hand, from r = AE, we obtain 

fl<IIEII IIAII-

so that if 11111111 is large, so is the error. 
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If the condition number is large, then small changes in the data may 

cause large changes in the solution depending on the particular perturbation. 

The practical effect of a large condition number depends on the accuracy 

of the data and the word length of the computer being used. If the data 

are measured quantities, however, the computed solution may not have any 

meaning even if computed accurately [39]. 

2.4 Measures of Sensitivity of Eigenproblem 

The accuracy for the eigenvalue problem can also be determined by 

residual error in the computed solutions and by the orthogonality of 

the computed eigenvectors. For a symmetric tridiagonal matrix T with 

computed eigendecomposition Q DQT, the quality of the solution can be 

measured using the residual ~ 

1 
~ =--:0--

!-X!maa: 

max 

~ 

and a measure of orthogonality of the eigenvectors 

where D = diag(-X) and qi is the ith column of Q. The residual error is thus 

determined by the largest residual error for any single computed eigenpair. 

Theorem 2.4.1 (see Theorem 2.1 in [53]). 

Let QDQT be the computed eigendecomposition of a symmetric 

tridiagonal matrix T. If ~ < E1, and ~ < E2, then there exists a matrix 
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E such that 

T + E = QDQT, and IIEI12 < vn[I~lmazE2 + 1~lmazEl VI + VnE2] , 

where I-Xlmaz = max(I-X11, I-Xnl)· 

Theorem 2.4.1 above shows that if the residual ~ and orthogonality S' 

are small, then Q DQT is the exact eigendecomposition of a matrix T + E 

nearly equal to T. In this result E is neither symmetric nor tridiagonal in 

general. 

2.5 Test Matrices 

In this thesis the algorithms for the QR and LV decomposition and the 

reduction of a general matrix to upper Hessenberg form were tested only 

with circulant matrices. Since the results are only concerned with timings 

and because these algorithms are independent of the test matrix apart from 

interchanges in the LV decomposition, only one type of matrix is needed 

to provide a satisfactory test. For the same reason the algorithms for the 

tridiagonalisation of an n X n real symmetric matrix were tested again using 

only one type of symmetric test matrix. If accuracy were an issue then many 

more types of matrices would need to be tested. The serial and parallel 

algorithms were tested on the collection of matrices given in this section. 

These are as follows: 

1. General Test Matrices: 

Only one type of test matrix was used. This was the circulant matrix 
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A. The (n x n) circulant matrix A is given by 

{ 
n + k - j + 1, if k < j 

A"k = 
J, k - j + 1, otherwise, 

Preliminaries 

all the elements of the matrix are real and different from zero [44]. If the 

right hand side vector b given by 

bj = n(n + 1)/2 

is used then the corresponding solution of the equations x is given by 

Xj = 1, 

for j = 1, 2, ... , n. 

2. Symmetric Test Matrices: 

For the symmetric matrix tests, the matrices B given by 

Bij = i + j + 1.31/(i + j), 

for i = 1,2, ... , nand j = 1,2, ... , n, were used. 

3. Tridiagonal Test Matrices: 

A number of test matrices were used to test Cuppen's algorithm as the 

amount of deflation in this method depends on the test matrix and this 

affects the timings. 
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The matrix T[J3, a, 13]: The matrix with a = 2 in each diagonal position 

and f3 = -1 in each off-diagonal position was used. It has eigenvalues given 

in [93] as 

for k = 1,2, ... , n. The eigenvector corresponding to the eigenvalue Ak is 

q(k) given by 

q~k) = sin[ik7r/(n + 1)], 

for i = 1,2, ... ,n and k = 1,2, ... ,n. The matrix [-l,u,-l] has value-1 

in each off-diagonal position and the value u = i X 10-6 in the ith diagonal 

position, for i = 1,2, ... , n. This has been chosen because the matrix 

undergoes little deflation when its eigenproblem is solved by Cuppen's 

divide-and-conquer method [17]. 

2.6 Object-Oriented Programming in C++ 

Object-oriented programming makes use of the class construct. One 

advantage of programming in an object-oriented language is that new types 

can be created through this class mechanism. In C++ terminology, a class 

is a data type that contains data and functions. An object is simply a 

user-defined class variable. Every object will be an instance of a class. We 

can define operations in the class and these operations can be performed 

on instances of that class. A class declaration determines how storage is 

to be used to represent an object and which operations are to be available 

to manipulate that storage. Language support for classes first came with 
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Simula 67 [15]. 

c++ was developed by Stroustrup in the early 1980s. Pohl [71] states 

that Stroustrup had two main goals: (1) C++ was to be compatible with 

ordinary C, and (2) it was to extend C using the class construct of Simula 

67. The class construct is an extension of the C struct. The language, in an 

early form of the C++ programming language, is described by Stroustrup 

[89]. 

Booch [5] defines object-oriented programmmg as "a method of 

implementation in which programs are organized as cooperative collections 

of objects, each of which represents an instance of some class, and whose 

classes are all members of a hierarchy of classes united via inheritance 

relationships. " 

Object-Oriented Programming has grown from a radical concept of 

the 1960's to routine practice among serial programmers in late 1980's. 

Can it be as useful in parallel programming as in serial programming? 

Object-oriented programming involves simple components that can be tested 

independently and be used to assemble complex programs. Most of these 

simple (independent) components may be used in their own right in other 

programs. 

The use of the object model helps us to exploit the expressive power 

of object-based and OOP languages. As Stroustrup points out, "it is 

not always clear how best to take advantage of a language such as C++. 
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Significant improvements in productivity and code quality have consistently 

been achieved using C++ as 'a better C' with a bit of data abstraction 

thrown in where it is clearly useful. However, further and noticeable larger 

improvements have been achieved by taking advantage of class hierarchies 

in the design process. This is often called object-oriented design and this is 

where the greatest benefits of using C++ have been found" [87]. 

Hwang [47] states that the popularity of OOP is attributed to three 

application demands: First, there is increased use of interacting processes 

by individual users, such as using multiple windows. Second, workstation 

networks have become a cost-effective mechanism for resource sharing 

and distributed problem solving. Third, multiprocessor technology has 

advanced to the point of providing supercomputing power at a fraction of 

the traditional cost. 

Perhaps the most widely known OOP language is C++, and so the 

algorithms, in this thesis have been implemented in this language in order 

to take advantage of its features and facilities. Lewis and El-Rewini [62] 

stress the point that OOP features information hiding and encapsulation, 

meaning that (i) each object hides the implementation details and also data 

from view of outside clients only a restricted set of methods is visible, and 

(ii) changes to the implementation of the object do not require changes to 

the code that uses the object, so long as the interface is stable. A modern 

programming language would be a poor one if the programmer had no means 

of building data items to match the conceptual items within the solution to 
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the problem being addressed. To re-phrase, data abstraction, the ability to 

create user-defined data types, is essential in any modern language. 

Abstract data types are implemented in C++ through the class facility. 

Classes allow a programmer to control the visibility of the underlying 

implementation. What is public is accessible and what is private is hidden. 

Data hiding is one component of object-oriented programming. Classes 

have member functions, including those that overload operators. Member 

functions allow the programmer to code the appropriate functionality for 

the abstract data type [72]. 

A class is an extension of the idea of the struct construct in conventional 

C. The structure type allows the programmer to group together several 

pieces of data and treat them as a single data item. C++ structs behave 

as a class whose members are publicly exported by default, whereas classes' 

members are private to the class by default. In both class and struct access 

to variables and functions can be changed using the keywords private and 

public. The keyword public indicates the visibility of the members, and 

members of an object are accessible to any function having access to the 

declaration of that object class and scope access to the object itself. If the 

class is not used with the public keyword, the members are private to it. 

Private members are available for use only by other member functions of 

the class. Public members are available for use by any function within the 

scope of the object declaration. Privacy allows part of the implementation 

of a class type to be hidden. This restriction prevents unanticipated 
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modifications to the data structure. As the default for class is private, 

we need only use the keyword public. 

The C++ class concept supports data hiding. Data hiding is a feature of 

object-oriented programming. When the representation of a type is hidden, 

some mechanism must be provided for a user to initialise variables of that 

type. A simple solution is to require a user to call some function to initialise 

a variable before using it. This is often done by a constructor when the 

variable is declared. Data hiding is a property of class objects whereby the 

internal structure of an object is hidden from the rest of the program, which 

can interact with the object only by sending it messages and receiving its 

replies using the public members of the class. 

2.6.1 Classes 

We used one matrix package and some matrix classes throughout this 

thesis. The package is called new mat and is intented for scientists and 

engineers who need to manipulate a variety of matrix types using standard 

matrix operations. The package includes the operations *, +, -, inverse, 

transpose, conversion between types, submatrix, determinant, Cholesky 

decomposition, Householder triangularisation, singular value decomposition, 

eigenvalues of a symmetric matrix, sorting, fast fourier transform, printing 

and an interface with "Numerical Recipes in C" [18]. 

The matrix classes are namely a simple matrix and vector class, and a 

symmetric matrix class. We wrote these classes to access the matrices and 
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the computations. This enabled the computation to be carried out using 

both row and column representations of the matrix. This was made easy by 

the use of the C++ class facility. 

Classes help the programmer provide higher-level programmmg 

constructs than either functions or structs alone support. These constructs 

serve as abstractions, and what they abstract typically relates closely to 

the application for which the program is being written. The use of class 

emphasises this mapping from application domain abstractions to solution 

domain abstractions in a way that data structs alone cannot [15]. 

N ewmat Matrix Package 

The newmat matrix package is used for the manipulation of matrices, 

including the standard operations. A matrix is a two dimensional array of 

numbers. However, very special operations such as matrix multiplication are 

defined specifically for matrices. This means that a matrix package tends 

to be different from a general array package. The package is designed for 

version 2 of C++ by Davies [18]. 

The structure of matrix objects is described in the following way. Each 

matrix object contains the basic information such as the number of rows 

and columns and the status variable plus a pointer to the data array which 

is on the heap. 

In this package, the elements of the matrix are stored as a single array. 
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Alternatives would have been to store each row as a separate array or a set 

of adjacent rows as a separate array, but large arrays may cause problems 

for memory management in smaller machines. 

The newmat matrix package has a two-stage approach to evaluating 

matrix expressions which is used to improve efficiency and reduce the use 

of temporary storage. A first requirement is that a matrix expression is 

evaluated with close to the same efficiency as a hand-coded version. A second 

requirement is that temporary matrices generated during the evaluation of 

the expression are destroyed as quickly as possible. 

The package does not have graceful exit from errors. All errors are 

treated as fatal. It is important to mention that in the newmat matrix 

package access to matrix element arrays involves array bound checking as 

well as access via functions. 

Matrix and Vector Class 

This section describes a matrix and vector class which is used for most 

of our experiments throughout this thesis. The class consists of two parts. 

One part is a one-dimensional and the other part is a two-dimensional array. 

A common mistake using bare C++ arrays is to access a subscript out of 

range elements. In C++ these problems can be taken care of by defining an 

array type in which bounds are tested. 

An example of a matrix and vector class matrix.h which is particularly 
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convenient for the present thesis is given below. The class was altered 

internally to give storage of the matrix by rows or by columns and to include 

or not to include array bound checking. On the other hand, the matrix 

representation for C++ Data Arrays and the Newmat Matrix Package have 

no facility to give storage of the matrix by columns by internal alteration. 

Also we should note that there is no array bound checking when using C++ 

Data Arrays, while the Newmat Matrix Package always has array bound 

checking. Let us consider as an example a Matrix and Vector class that 

enforces data hiding and which can be declared as follows: 

/ / File matrix. h 
/ / Header file for class Matrix 
#include < iostream.h > 

/ /Definition for Matrix 
class Matrix 
{ 

}j 

int mj int nj int SZj double * aj 
public: 
Matrix(int ma, int na)j 
"" MatrixO j 
inline double& operatorO( int i, int j)j 

/ /Definition for Vector 
class Column Vector 
{ 

}j 

int nj double * aj 
public: 
Column V ector( int na) j 
"" Column VectorOj 
inline double& operatorO(int i)j 

A C++ program consists of a number of source files. Each source file 

37 



Chapter 2 Preliminaries 

is compiled separately into a machine-code file. The resulting machine-code 

files are then linked to one another and with any needed library files to yield 

a single executable file. Any program that uses the Matrix and Vector class 

will include this header file with the statement 

#include "matrix.h". 

(The names of header files written by the user are enclosed in quotation 

marks rather than angle brackets.) The header file must be included in all 

programs that create and use objects of this matrix class. The above class 

must be compiled and linked to any program using matrices of the class. 

We give the member function definition for the Matrix and Vector class as 

follows: 

/ / File Matrix.c 
/ / Source file for class Matrix 
#include " matrix.h " 

Matrix::Matrix(int ma, int na) 
{ 

} 

m=ma; 
n=na; 
sz=m * n; 
a = new double[sz]; 
for (int i = 0; i < size; i + + ) 
a[i] = 0.0; 

Matrix:: f'V Matrix() 
{ 

delete [] a; 
} 

inline double& Matrix::operatorO( int i, int j) 
{ 

int pos = (j - 1) * n + i-I; 
if ((pos < 0) II pos >= sz)) 
{ 
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} 

} 

cou t < < " Matrix: subscript out of range " 
« i «" "« j « endl; 

exit(l); 

return a[pos]; 

Column Vector::Column Vector( int na) 
{ 

} 

n=na; 
a = new double[n]; 
for (int i = 0; i < n; i + + ) 
a[i] = 0.0; 

Column Vector::""Column VectorO 
{ 

delete [] a; 
} 

inline double& Column Vector: :operatorO (int i) 
{ 

} 

if (( i < 1) II (i > n)) / / omit for no checking 
{ 

} 

cout« " ColumnVector: subscript out of range" 
«i « endl; 

exit(2); 

return a[i - 1]; 

A C++ constructor can provide a way to automatically initialise 

data. A constructor is a member function whose name is the same 

as the class. The constructors "Matrix::Matrix(int ma,int na)" and 

"Column Vector::Column Vector(int na)" allow the programmer to build 

dynamically allocated arrays. 

The class creates the C++ data array by usmg new and removmg 

the object by using delete. Each time a new object is defined, its class 
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constructor is automatically invoked. The statement 

a = new double[sz]j 

invokes the C++ new operator to create an array of variables of type double 

and places the address of this variable in the pointer variable a. The pointer 

variable a is used as the base address of a dynamically allocated array whose 

number of elements is the same as the value of sz. The keyword new is an 

unary operator that takes as an argument a data type that can include an 

array size. It allocates the appropriate amount of memory to store this 

type from free store. Storage obtained by new is persistent and is not 

automatically returned on block exit. When storage return is desired, a 

destructor function must be included in the class. A destructor is identified 

by having the same name as the class name prefixed by the tilde symbol 

( f"V). Typically, a destructor uses the unary operator delete to deallocate 

storage allocated by new [71]. 

Inline Function 

In C++ programming there is sometimes a need for many calls of 

functions that are very simple and small. Unfortunately, a certain amount 

of computational overhead is associated with each function call and return. 

In order to reduce the cost of calls and improve the speed of programs, C++ 

provides the inline feature to avoid function call overhead. A function may 

be made inline by explicit use of the inline and declaration keyword on the 

function definition, for example 

inline double sqr (double x) 
{ 

return x * Xj 

} 
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The definition of an inline function must occur before it is used. 

Generally, this is accomplished by putting the inline function definition 

in a header file. The appearance of an inline declaration for a function, 

after any call to the function, is an error. The C++ programming language 

provides an alternative declaration of an inline function. The function has 

its complete definition placed in the class declaration. Any function that is 

defined (and not just declared) inside a class declaration is considered to be 

an inline function. The keyword inline does not have to be used. 

The inline function modifier can be used to request that a function be 

expanded inline. This expansion avoids the overhead of a function call by 

expanding the body of the function at the point it is called. The compiler 

will attempt to inline expand the code of a function that is declared as 

such before it is used, where the declaration and use appear in the same 

source stream. Such inline expansion can result in large savings of central 

processing unit time [15]. 

An inline function may use extra space because the inline function 

duplicates the code for every function call and one may think that it 

automatically increases code space. This is not necessarily true because 

in line functions are designed for small functions in C++ such as matrix or 

vector subscripting. When a function call requires code to pass arguments, 

make the call, and handle the return value this code is not present for an 

inline function. If our in line function turns out to be smaller than the 

amount of code necessary for the ordinary call, we are actually saving space 

[29]. We shall discuss further the performance of inline functions in chapter 

4. 
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CHAPTER 3 

Parallel Computer Architectures and Programming 

3.1 Parallel Computers 

The basic idea in parallel computing is the execution of a program 

on two or more processors at the same time on a single problem and in 

a single system. Parallel computing may offer a number of advantages. 

Depending on the type of application and tools available, a single large job 

can be decomposed into several smaller tasks that can run simultaneously 

for faster running. This implies that two or more processors are operated 

simultaneously. 

The motivation for using parallel computers is the hope that if one 

processor executes a task in time t then p processors can perform the task 

in time tip. Clearly, the nearer this time is to tip, the better the parallel 

algorithm. However, an execution time of tip can be achieved only in very 

special situations. 
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3.2 Parallel Computer Architectures 

Parallel architectures may be classified in a number of ways. Flynn [32] 

proposed a classification based on the multiplicity of instruction streams 

(IS) and data streams (DS) in a computer system. The instruction stream 

is defined as the sequence of instructions as performed by the machine and 

the data stream as the sequence of data called for by the instruction stream 

(including input and partial or temporary results). The classification has 

the following form: 

• Single instruction stream - single data stream (SISD) 

• Single instruction stream - multiple data stream (SIMD) 

• Multiple instruction stream - single data stream (MISD) 

• Multiple instruction stream - multiple data stream (MIMD) 

Although this classification gives a general categorisation, the current 

development of computer architectures is more complicated and some 

architectures exhibit aspects of more than one category. 

3.2.1 SISD Computer Organisation 

The SISD computer is typically designed based on the von Neuman 

model as a single stream of instructions controlling a single stream of data 

(see figure 3.1). Instructions are executed sequentially but these may be 

overlapped in their execution stage (pipelining). Most present day SISD 
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uniprocessor systems are pipelined. A SISD computer may have more than 

one functional unit. All the functional units are under the supervision of 

one control unit [48]. This type of computer consists of three levels: the 

control unit (CU), the processor (P), and the memory modules (MM). 

L-___ c_u ____ ~----Is----~~I~ ____ p ____ ~I~E~-D-S----~~~1 ___ M_M ____ ~ 

Fig. 3.1 SISD Computer Structure. 

Example 1. Let us consider the implementation of a matrix 

multiplication algorithm on different computer architectures. The product 

of a n X p matrix A and a p X n matrix B is a matrix 0 whose elements are 

given by 
P 

Oij = L AikBkj (3.1) 
k=l 

for i = 1,2, ... , nand j = 1,2, ... ,n. There are n 2p cumulative additions 

and multiplications to be performed in equation (3.1). 

In a conventional SISD uniprocessor system, the n 3 cumulative 

multiplications are carried out by a sequentially coded program with loops 

corresponding to the three indices to be used. The time complexity of 

multiplying two n X n matrices for this example is clearly O(n3). 

3.2.2 SIMD Computer Organisation 

A SIMD computer is an array processor model. It executes a single 

stream of instructions from a central control unit (CU) and operates on 
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several data elements simultaneously (see figure 3.2). There are a number 

of identical processing elements (P) each receiving the same broadcast 

instruction to be performed on their own data item. Each of the N 

processors have their own local memory (M) where they can store both 

program sections and data [1]. 

M) M2 ... MN 

os) OS2 OSN 

p) P2 ... PN 

IS 

CU 

Fig. 3.2 SIMD Computer Structure. 

As an example, let us consider the implementation of the matrix 

multiplication algorithm (Example 1) on an SIMD computer with n 

processing elements. Hwang and Briggs [48] have stated that the algorithm 

structure depends heavily on the memory allocations of th~ A and B 

matrices in the processing elements' memories. Column vectors are stored 

within the same processing element memory. This memory allocation 

scheme allows parallel access to all the elements in each row vector of 

the matrices. Based on this data allocation, the two parallel operations 

correspond to vector load for initialisation and vector multiply for the 
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inner loop of additive multiplications. If there are n processors the time 

complexity has been reduced to O(n2). Therefore, the SIMD algorithm 

is n times faster than the SISD algorithm for matrix multiplication. It 

should be noted that the vector load operation is performed to initialise 

the row vectors of matrix C one row at a time. In the vector multiply 

operation, the same multiplier aij is broadcast from the control unit (CU) 

to the processing elements to multiply all elements of the itk row vector of B 

i.e. bik for k = 1,2, ... ,n. In total, n 2 vector multiply operations are needed 

in the double loops. The successive memory contents in the execution of the 

above SIMD matrix multiplication program are illustrated in [48]. Each 

vector multiply instruction implies n parallel scalar multiplications in each 

of the n 2 iterations. A number of parallel SIMD computers are on the 

market, including the AMT DAP-610, the Thinking Machines CM-2, and 

the MasPar MP-1 [22]. 

3.2.3 MISD Computer Organisation 

The MISD computer is the third classification of Flynn which involves 

multiple instruction streams controlling a single data stream. It consists 

of N processors (P), each receiving different instructions from its control 

unit (CU) and performing operations on the same data stream which is 

received from the memory module (MM) at each step (see figure 3.3). The 

conventional view is that such a machine has not yet appeared, although 

there is also a view that pipelined vector processors belong to this class 

rather than to SIMD or SISD [2]. 
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CUI CU 2 ... CU N 

lSI IS2 ISN 
\ 

PI P2 ... PN 

DS 

MM 

Fig. 3.3 MISD Computer Structure. 

3.2.4 MIMD Computer Organisation 

A MIMD computational model corresponds to a multiple stream of 

instructions each of which are applied to separate data items. This class 

is very broad because it comprises all multiprocessor systems. There 

are two basic types of MIMD architectures, namely distributed memory 

multicomputer systems (loosely coupled) and shared memory multiprocessor 

systems (tightly coupled). 

The fundamental difference between the two systems is in the design 

of the system memory. The defining characteristic for these two systems 

is the communication mechanism provided by the underlying hardware: 

the shared memory system assumes hardware support for shared-memory, 

while the distributed system makes no such assumption. Interprocessor 

communication in distributed systems is usually handled by a local area 

network and takes place through message passing, whereas in shared 
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memory systems communication is achieved via a common bus or an 

interconnection network. (In the sequel, we will use the terms 'shared 

memory' and 'common memory' interchangebly.) The processors in a shared 

memory system communicate with each other through shared variables 

in a common memory. A major advantage of a shared memory system 

is potentially very rapid communication of data between processors. A 

serious disadvantage is that different processors may wish to use the common 

memory simultaneously, in which case there will be a delay until the memory 

is free. This delay, called contention time, can increase as the number of 

processors increases. 

3.2.4.1 Shared Memory Systems 

A shared memory system is composed of autonomous computing units 

which are usually used to execute a single task together. This is achieved by 

having a common memory. All processors can access any part of the common 

memory because it is a single shared memory and accessible to all processors 

(see figure 3.4). Communications among the processors are accomplished 

through reading from and writing to the common memory. The simplest 

implementation of the shared memory model is to connect processors and 

common memory modules by a single bus. This is called a bus-based shared 

memory multiprocessor. Bus-based shared memory multiprocessor systems 

representative of this structure are the Encore Multimax, the Sequent 

Symmetry, the Flex/32, and the Alliant FX/8 [21]. 
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The multiprocessor system used to perform the experiments described 

in this thesis is a bus-connected shared memory Encore Multimax computer 

running the UMAX operating system. The machine (locally called Newton) 

has 14 NS32532 processors, each with 256 Kb processor cache memory. 

The bus-based shared memory multiprocessor systems have a common 

bus. An advantage of this is that a very small number of connection lines 

are used, but there may be contention (bus contention) for use of the bus 

by different processors; this can become a severe problem as the number of 

processors increases. The common bus is a key system element of shared 

memory systems. It provides a common communication path and carries 

instructions and data between the common memory, processors, and I/O 

subsystem devices. An illustration of a multiprocessor system using the 

bus-based shared memory structure is shown in figure 3.4. 

Common Memory 110 Devices 
Modules 

. . . ... 

COMMON BUS 

IS 1 IS 2 IS N 

ctJ i2J ... ctJ 
Fig. 3.4 Bus-Based Shared Memory Structure 
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The common memory may be organised as several memory banks. A 

memory bank is a unit of interleaved memory allowing only a single read 

or write at a time. It may be the case that some processor attempts 

to access a memory bank which is being accessed by another processor. 

If this is the case the common bus provides a mechanism for resolving 

the problem. In order to minimise memory contention, processors often 

have large local cache memories (c in figure 3.4) to reduce the number of 

memory requests. If suitable cacheing strategies are employed then the 

shared memory architecture works very well in practice, allowing the current 

generation of multiprocessors to utilise up to thirty processors [86]. Caches 

are high-speed memory units used as a buffer, and placed between the 

processors and common memory to capture those portions of the contents 

of main memory currently in use. Since cache memories are typically five to 

ten times faster than main memory, they can reduce the effective memory 

access time if carefully designed and implemented. 

When a processor makes a memory request, it generates the address of 

the desired word and searches the cache for the reference. If the item is 

found in cache a hit occurs, and a copy is sent to the processors, without a 

request being made to the main memory (thus taking less time). If the item 

is not found in cache, a miss (or cache fault) is generated, and the request 

must then be passed on to the main memory system. When the item is 

returned to the processor, a copy is stored in the cache, where room must 

be found for it. Obviously, cache misses can be very costly in terms of speed. 

On the other hand, if we are to consider speed as the main criterion, then 
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using cache memory will be an additional advantage over normal memory 

[22]. 

The other advantage of a cache memory is that it may reduce the time 

the processor must spend waiting for data to arrive from the slower common 

memory. Memory references are generated by the central processor unit for 

either instruction or data access. These accesses tend to be clustered in 

certain regions in time, space, and ordering. The efficiency of a program 

using cache memory depends, in part, on the locality of reference in the 

program being run. Given a reasonable amount of locality of reference, 

for the majority of the time the processor can fetch instructions and 

operands from cache memory, rather than common memory. Only when 

the instruction or operand is not in the cache memory must the processor 

be idle [75]. 

A parallel matrix multiplication algorithm (Example 1.) for the shared 

memory model is given in section 3.5. The outer loop is done in parallel in 

this algorithm. The time complexity of this algorithm is as follows. Each 

processor calculates nip rows of matrix C; the time needed to calculate a 

single row is O( n 2 ) where n is the matrix size and p is number of processors. 
3 

Hence the complexity of this algorithm is ~ + kp. Note that since there are 

only n rows, at most n processes can be used to execute this algorithm. 

Developing an efficient matrix multiplication algorithm for the 

distributed memory model is complicated by the nonhomogeneous memory 

structure [75]. 
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3.3 Basic Concepts of Parallel Computing 

In this section we will define precisely some of the basic terminologies 

of parallel programming. 

• Process: A sequence of operations defined by the result it produces 

or by its purpose. A process is an asynchronous activity such as the 

execution of a program by the central processing unit [12]. 

• Processor: A piece of hardware, or a combination of hardware, whose 

function is to interpret and execute instructions. It may be the principal 

operating part of a computer, in which case it is also known as the 

central processor. The processor or set of processors in a computer is 

often called the processing unit [12]. 

• Grain Size (or Granularity): Grain Size is simply a measure of the 

amount of computation involved in a software process. The simplest 

measure IS to count the number of instructions in a grain (program 

segment). Grain sizes are commonly described as fine, medium, or 

coarse, depending on the processing levels involved. 

• Latency: Latency is a time measure of the communication overhead 

incurred between machine subsystems. For example, the memory latency 

is the time required by a processor to access the memory. The time 

required for two processes to synchronise with each other is called the 

synchronisation latency. Computational granularity and communication 

latency are closely related [47]. 
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• Dataflow Diagram An illuminating way to describe an algorithm 

is to use a dataflow diagram. Such an algorithm consists of nodes 

that represent data items and directed edges that represent execution 

dependencies. The diagram is constructed so that there are no data 

dependencies between leaf data items. That is, there is no contention 

for write access to a common location between two leaf data items. 

The dataflow representation of programs differs from a control flow 

representation in the sense that the edges of the dataflow diagram do 

not represent processes but the other is a diagrammatic representation 

of the structure of an algorithm, showing the executions performed by 

the program and the flow of control. 

The ability to execute program segments in parallel reqUIres each 

segment to be independent of the other segments. In order to visualise 

the segments of the programs, we use a type of dataflow diagram for 

some of algorithms in this thesis. This helps to discover the inherent 

parallelism and show that parallel execution may be coordinated through 

the aggregation of this information into a dataflow diagram [22]. 

• Parallelism and Load Balancing: Load balancing is perhaps the central 

issue of parallel computing. The aim is always that after the initial 

allocation all processors have nearly the same amount of work and this 

should be achieved with the smallest overhead possible. If the work is 

not evenly allocated across the available processors, some processors will 

be idle. This type of parallel program may not achieve good parallelism 
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because load imbalance can cause poor efficiency. For example, suppose 

a parallel computer has 10 processors and is to perform a large matrix 

multiplication problem, with the matrices divided into 81 partitions. 

Assuming the partitions are of the same size then, the processors can 

work in perfect parallelism on 80 partitions but only 1 processor will be 

active during the remaining 1 partition and 9 processors will do nothing. 

Although, in such examples, it is easy to partition the task into many 

parts these parts may be of widely different sizes. Hence, after an initial 

allocation of tasks among processors, some processors may finish their 

tasks much sooner than others. 

An alternative way of allocating work is to consider the possibility of a 

dynamic balancing of load. Dynamic load balancing is possibly useful 

when the sizes of segments are not known initially. This should provide 

flexibility for the algorithm particularly in a multi-user environment, 

for, if one processor is held up others will carry out the work instead. 

On the other hand, suppose a parallel computer has 10 processors and 

a large matrix multiplication problem, with the matrices divided into 

80 partitions. Assuming the partitions are of the same size then, the 

processors can work in perfect parallelism. In other words, if the number 

of partitions is divisible by the number of processors, then a static load 

balancing will be efficient. In static load balancing tasks are allocated to 

processors at the beginning of a computation. 

Dongarra et al [22] acknowledge that the importance of load balancing 
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can be overstated. For example, in a system that is multiprogrammed, 

the fact that one or more processors are idle should not be of great 

concern since the idle time (from one user's point of view) can be taken 

up by another job. This point is of particular importance when the 

parallelism, measured in number of simultaneously executable tasks, 

varies during the course of a job. Thus it might be efficient at one 

time to use all the processors of a system while at another time to use 

only one or two processors. 

• Contention time: As shared memory systems have a common memory 

(as illustrated in figure 3.4) which different processors may wish to use 

simultaneously, there will be a delay when some processors are waiting 

for the memory to be free. This delay is called contention time [39]. 

• Starvation: Due to the internal structure of an application or due 

to the difficulty in dividing tasks evenly across the available processors 

or waiting for data to become available, there may be points in an 

application's execution where some available processors may not be kept 

busy and this will result in poor performance. This is called Starvation 

[81]. 

3.4 Parallel Programing Environment 

This section describes the parallel programmmg environment and 

introduces inter-thread communications. An environment for parallel 

programming consists of hardware platforms, i.e. the machine, the operating 
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system, the language supported (in which the program is to be written), and 

software tools for data management. 

As stated before, the hardware platform used in this work was a bus

connected shared memory Encore Multimax computer running the UMAX 

operating system. Comparisons were carried out in this thesis using the 

C++ programming language for various matrix representations including 

C++ bare arrays, the newmat matrix package, and a simple Matrix and 

Vector class discussed in section 2.6 which was used to access the matrices. 

The algorithms for QR decomposition suffered failure for large matrices (run

time thread's stacksize) when using the newmat matrix package. This is 

because using the newmat matrix package for the manipulation of matrices 

needs much more space than using either the C++ bare arrays or the 

simple Matrix and Vector class. This is one reason why the simple Matrix 

and Vector class was used in preference to the newmat matrix package for 

most of the work described in this thesis. The code was written using the 

Encore Parallel Threads package (THREADS) [31], which provides among 

other things the facility for the programs to create parallel "THREADs" of 

execution explicitly using the THREAD create function (see section 3.5). It 

also provides mechanisms for synchronisation. The mechanisms used here 

are "THREADjoin"s, monitors, semaphores, and locks provided in the 

extension to THREADS. They are used to provide mutually exclusive 

access to shared data. 

In a multi-threading environment, a thread is the basic unit of central 
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processmg unit utilisation. It is equivalent to a program stream with 

an independent program counter operating within each thread. Shared 

memory programs usually employ a number of medium-grain lightweight 

processes (called threads), whose number depends primarily on the amount 

of parallelism exhibited by the algorithm. A single thread executes a 

portion of a program, cooperating with other threads concurrently executing 

within the same address space. Like processes, every thread must have a 

separate program counter and stack of activation records, describing the 

state of its execution. Usually, threads are lightweight processes that run 

within the environment defined by a job. A job may have multiple threads 

with all threads having the same job-sharing capabilities and resources. 

Considerable overhead is required to create and maintain separate virtual 

address spaces to support inter-thread communication, switch between 

threads to effect simultaneous execution, synchronise threads, ensure mutual 

exclusion, and so on [47]. 

A large number of threads would be very expensive if implemented inside 

the operating system kernel [20]. It is fortunate that in the EPT package 

thread management is controlled out of the kernel and in a thread library 

so that threads can be implemented in user-space and thread management 

overhead is small. Although there are conceptual advantages to having 

more threads than processors in a shared memory program, a medium-grain 

decomposition also helps in avoiding load imbalance, which can sometimes 

severely impact performance. 
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3.5 Overview of the Encore Parallel Threads Package 

EPT is a library of routines, which enables a programmer to employ 

the shared memory and parallel features of the Encore Multimax. It is an 

extension of the Threads package that was developed by Doeppner at Brown 

University [31]. 

The package has many facilities but only some of these have been used 

III this work. The library provides a programmer with routines at the 

user level. These can be used to manipulate threads of control and to 

provide a connection so that threads can share information, thus enabling 

a program to be parallelised. The threads are very suitable for use in a 

parallel environment with any number of processors. The EPT routines can 

be accessed by C++ by using the C linkage convention which is illustrated 

in the example algorithm (see below). A threads environment is initialised 

in EPT by calling the function 

T H READgo(prcs, datasize, Junc, args, argsize, stacksize, priority). 

This function provides the facilities for the programmer to specify the 

number of processors (prcs) for use. The parameter prcs defines the 

maximum possible level of true parallelism on the shared memory machine 

(and is bounded above by 14 in Newton). We can create as many threads as 

We like, but only prcs (number of physical processors) of these will be truly 

concurrent. 

The argument datasize sets up a pool of memory or total amount of data 
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space. The function junc is initiated as the first thread of execution. The 

argument args indicates the number of parameters needed by the function 

Junc and argsize is the size of storage for the parameters. If argsize is 

0, args is passed to the thread unchanged. However, if argsize is nonzero, 

argsize bytes of data pointed to by args are placed on the new thread's stack 

and the thread is passed as a pointer to this location instead of the original 

value of args [31]. The arguments args and argsize provide the programmer 

with the necessary parameters to be passed to the function Junc. stacksize 

is the maximum stack size provided for the use of the newly created thread. 

The latter is given a runtime priority of value priority. This function is 

usually called in the main program. 

As we mentioned before, the T H RE ADgo function provides a multi

thread environment so that when any thread requires a new thread to be 

created then this can be achieved by calling T H READcreate with the 

parameters specified as follows 

THREADcreate(junca, args, argsize, ATTACHED, stacksize,priority). 

This is equivalent to a Fork operation (i.e. creates a new parallel thread 

of control). The arguments junc, stacksize, priority, args and argsize 

have the same meaning as those for the THREADgo function. The 

additional argument in THREADcreate is 'attachment'. The 'attachment' 

determines if the new thread's termination is synchronised with that of 

the parent thread that created it. If the attachment is ATTACHED, 

this determines that there is a relationship between parent and the child 
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threads, so that the parent thread will only end when child thread has 

completed its work, and the parent can execute a call to wait until 

the child terminates (THREADjoin). If ATTACHED is replaced by 

DETACH ED, it indicates that the child thread bears no relationship 

with its parent: it is totally independent. In this thesis we only use 

ATTACHED. The THREADjoin function is used in the parallel task 

to ensure that the child thread has been completed. This function has no 

parameters and the program needs as many T H READjoin' s as the number 

of THREAD create calls made. 

The following example uses multiple threads for matrix multiplication 

which is based on static (scattered) allocation of rows to threads. 

#include < iostream.h > 
#include < math.h > 
#include " M atrix.c " 

extern " C " 
{ 

} 
#include " thread.h " 

struct mulpars 
{ 

mulpars( int N, int Pr, int Prcs, M atrix& A, M atrix& B, M atrix& C): 
n(N),pr(Pr ),prcs(Prcs), a(A), b(B), c( C) { } 

}j 

int nj 

int prj 
int prCSj 
Matrix& aj 
Matrix& bj 
Matrix& Cj 

/ / matrix size 
/ / processors number 
/ / number of processors 

void mult (struct mulpars * params) 
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{ 

} 

int i, j, k; / / they are subscripts 
int prcs = params - > prcs; 
int pr = params - > prj 
int n = params - > n; / / matrix S1,ze 
M atrix& a = params - > a; 
M atrix& b = params - > bi 
M atrix& c = params - > c; 

} 

for (i = prj i <= n; i+ = prcs) 
{ 

for (j = 1; j < = n; j + + ) 
{ 

c(i, j) = 0; 
for (k = 1; k <= n; k + +) 
c(i, j) = c(i, j) + a(i, k) * b(k, j); 

} 

void multp (struct mulpars * params) 
{ 

} 

int prj 
int prcs = params - > prcs; 

for (pr = 1; pr <= prcs; pr + + ) 
{ 

} 

params - > pr = prj 
T H READcreate(mult,params, sizeoj( *params ), ATTACH ED, 

1024 * 1,2); 

for (pr = 1; pr <= prcs; pr + + ) 
{ 

T H READjoinO; 
} 

void startroutineO 
{ 

int i, j, pr = 1; 
int n = 100; / / matrix S1,ze 
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} 

int prcs 2; 
Matrix a( n, n); 
Matrix b( n, n); 
Matrix c( n, n); 

II number of processors 
I I a, b, and c are all zero 

I I set the matrices a and b 
struct mulpars params(n,pr,prcs, a, b, c); 
multp(&params ); 

main 0 
{ 

THREADgo(prcs,2 * 1024 * 1024, startroutine, 0, 0, 2 * 1024,1); 
} 

The THREADcreate function offers the user the opportunity for 

parameters to be passed to their respective functions using the parameters 

params and sizeo f ( *params ). As we explained earlier if in the 

T H READgo function argsize is 0, args is passed to the thread unchanged. 

However, if argsize is nonzero, argsize bytes of data pointed to by args 

are placed on the new thread's stack and the thread is passed a pointer to 

this location instead of the original value of args. This implies that each 

THREAD uses its own copy of the parameters. 

A memory problem occured when the matrices or vectors are declared 

in the parallel part of the programs. This requires allocation of storage 

space on the heap. In order to avoid this problem matrices or vectors were 

declared before the parallel section and passed as reference parameters which 

are defined in struct. When necessary they are referenced from within the 

struct. 

3.6 Inter-Thread Communication 

A common problem occurs when two or more concurrent threads share 

data which is modifiable. When a thread is updating variables, it is generally 

unreasonable to allow any other thread to access the same variables. If 
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a thread is allowed to access a set of variables which are being updated 

by another thread concurrently, erroneous results are likely to occur in the 

computation. Therefore, controlled access to the shared variables is required 

to guarantee that a process has mutually exclusive access to the section of 

program in which the data is modified. Such segments of programs are 

called critical sections [20]. When one thread is already in a critical section, 

all other threads wanting to access the critical section must wait. When the 

thread in the critical section has finished performing the task it can set the 

critical section free and another thread takes over. 

The EPT package also provides a number of mechanisms for 

synchronisation which entails a thread suspending its own execution, usually 

waiting for some other thread to cause its execution to resume [20]. 

Synchronisation has two uses: to constrain the ordering of events and 

to control interference. The most primitive synchronisation mechanisms 

of a shared-memory computational model are semaphores and locks. The 

mechanisms used in our study are semaphores, monitors, and locks. Locks 

are not provided by the EPT package itself, but are available as an extension 

code. The simplest forms of these synchronisation mechanisms are used to 

provide mutually exclusive access to a particular object or data structure 

(shared data) i.e. the execution can only be performed by a single thread 

at anyone time. 

3.6.1 Locks 

In practice, a lock is most often used because it is simple. The locks 

synchronisation implementation uses busy waiting. This is called a spin

lock (that is, a thread repeatedly tests the value of a shared variable). 

However, locks waste processor cycles during delays. Moreover, a wait 

may generate extra communication traffic and consume extra time in the 
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network, slowing other processors doing useful work, including one working 

in a critical section. Reducing the amount of busy waiting is a major issue 

for synchronisation efficiency. Busy-waiting is a technique implemented such 

that a waiting thread continues to use processor cycles to test the value of 

the synchronisation variable until it assumes a desired value. 

A lock prevents a thread from entering a critical section while another 

thread is accessing that section, so that the newly arrived thread waits. 

The critical section provides programs with a means of ensuring that shared 

variables are accessed by only one thread at a time. When a thread gets 

the lock, it sets the lock busy immediately. A thread requesting access to 

the section must wait until the current thread releases that section. When 

a thread leaves a critical section then it sets the lock to "unlock", and a 

waiting thread is allowed to enter. The program uses the lock and unlock 

operations to provide mutually exclusive access to a particular object or 

shared data. 

The lock is used to control entry to and exit from a critical section with 

busy waiting. A critical section must be executed by only one thread at a 

time. In general locks are only suitable for short waits. 

The simple lock and unlock synchronisation structure is presented using 

the following example which uses multiple threads for an alternative version 

of matrix multiplication. The algorithm illustrates the use of dynamic 

allocation of rows to THREADs on the shared memory machine. 

#include < iostream.h > 
#include < math.h > 
#include " Locks.h " 

#include " Matrix.h " 

extern " C " 
{ 

64 



Chapter 3 Parallel Computer Architectures and Programming 

#include " thread.h " 
} 

#include " matrix.c " 

int prcs; II nur.nber of processors 

struct mulpars 
{ 

}; 

mulpars( int N, M atrix& A, M atrix& B, M atrix& C, 
int * Nxrw, LOCK& Slock): 
n(N), a(A), b(B), c( C), nxrw(N xrw), slock(Slock) { } 

int n; 
int * nxrw; 
Matrix& a' , 
Matrix& b; 
Matrix& c; 
LOCK& slock; 

I I r.natrix size 
I I next row 

void nrow (int row,struct mulpars *pars) 
{ 

} 

int j, k; 

int n = pars - > n; 
Matrix& a = pars - > a; 
M atrix& b = pars - > b; 
Matrix& c = pars - > c; 

for (j = 1; j <= n; j + +) 
{ 

c(row, j) = 0; 
for (k = 1; k < = n; k + + ) 

I I they are subscripts 

I I r.natrix size 

c(row, j) = c(row, j) + a(row, k) * b(k, j); 
} 

void modrow (struct mulpars *pars) 
{ 

int row; 

int n = pars - > n; 
do 
{ 
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} 

} 

pars- > slock.lockO; 
row = *(pars- > nxrw); 
*(pars- > nxrw) = row + 1; 
pars- > slock.unlockO; 

if (row <= n) 
{ 

nrow(row, pars); 
} 

while (row < n); 

void matmulp (struct mulpars *params) 
{ 

} 

int prcount; / / processors count 
for (prcount = 1; prcount <= prcs; prcount + +) 
{ 

} 

THREADcreate( modrow ,params,sizeof( *params) ,ATTACHED, 
1 * 1024,2); 

for (prcount = 1; prcount <= prcs; prcount + +) 
{ 

THREADjoinO; 
} 

void startroutineO 
{ 

} 

int i, j; 
int n = 100; 
Matrix a(n,n); 
Matrix b(n, n); 
Matrix c(n, n); 
int nxrw = 1 
/ / set the matrices a and b 
int nxrw = 1; 
LOCK slock; 

/ / matrix size 
/ / a, b, and c are all zero 

struct mulpars params( n, a, b, c, &nxrw, slock); 
matmulp( &params); 

main 0 
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{ 
prcs = 2; / / number of processors 
THREADgo(prcs,2 * 1024 * 1024,startroutine,0, 0, 2 * 1024,1); 

} 

3.6.2 Semaphores 

A semaphore is a synchronisation mechanism which provides an 

alternative way of obtaining mutual exclusion. As originally proposed, these 

operations were first developed by E. W. Dijkstra in the mid-1960s [19]. 

The only logical operations on semaphores are wait and signal (P and V 

respectively). The operations P and V come from abbreviations of the 

Dutch words for waiting and signaling. 

A semaphore is a shared integer variable that may only be accessed 

using one of three possible operations. These are T H READseminit, 

T H READpsem, and T H READvsem. The last two functions perform 

the corresponding P and V primary operations on semaphores. The first 

function is written in the form 

sem = T H READseminit( initialvalue) 

and creates a new semaphore, initialises the value of initialvalue, and 

returns a reference to the created semaphore. The T H READpsem 

operation waits until the semaphore has a positive value and then 

decrements that value. If the value is zero or negative then the semaphore 

suspends the calling thread, thus producing a waiting operation, and places 

it in a waiting queue. Otherwise the thread continues and decrements the 

initialvalue. The function is written in the form 

T H READpsem( sem). 
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A T H READvsem operation increments the initialvalue, and a 

T H READpsem operation waits until the initialvalue is greater than zero 

and then decrements the initialvalue. T H READpsem operations are 

typically used to wait (synchronise) until some condition is true (such 

as a shared buffer becoming non-empty), and THREADvsem operations 

typically signal that some condition is now true. The system has to ensure 

that each of these operations execute atomically. This means that if a wait 

and signal operation occur simultaneously they are executed one at a time. 

The programmer has no control over this and does not know in what order 

they are executed. 

The semaphores implement synchronisation at a higher level than the 

busy waiting that is used to control entry to and exit from a critical section 

without busy waiting. This includes the appropriate queues and permits 

groups of threads to enter a critical section at anyone time. 

The following example uses multiple threads for addition of the element 

of a vector (using static allocation of work to threads). 

#include < iostream.h > 

#include < math.h > 
#include " Matrix.h " 
extern " C " 
{ 

} 
#include " thread.h " 

SEMAPHORE semj 

struct addpars 
{ 

addpars(int N, int Pr, int Pres, ColumnVector& X, double& s): 
n(N),pr(Pr ),prcs(Prcs), x(X), s(8) { } 

int nj 

int prj 
/ / vector size 
/ / processors number 
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}; 

int prcs; 
double& s; 
ColumnVector& X' , 

/ / number of processors 

void add (struct addpars * pars) 
{ 

} 

double sa = 0; 
int i; / / this 'tS a subscript 
int prcs = pars - > prcs; 
int pr = pars - > prj 
int n = pars - > n; / / vector szze 
double& s = pars - > S; 
ColumnVector& x = pars - > x; 

for (i = prj i <= n; i+ = pres) 
sa+ = x(i); 
T H READpsem( sem); 
s+ = sa; 
T H RE ADvsem( sem); 

void addp (struet addpars * params) 
{ 

} 

int prj 
sem = THREADseminit(O); 
for (pr = 1; pr <= prcs; pr + + ) 
{ 

} 

params - > pr = prj 
THREADereate(add,params, sizeof(*params) , ATTACHED, 

1024 * 1,2); 

for (pr = 1; pr <= prcs; pr + + ) 
{ 

THREADjoinO; 
} 

void startroutineO 
{ 

int i, j, prcs, pr = 1; 
double s = 0; 
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} 

int n = 100; / / vector size 
ColumnVector x(n); / / x ~s zero 
for (i = 1; i < = n; i + + ) 
x( i) = i; / / for example 
struct mulpars params(n,pr,prcs, x, s); 
addp(&params); 

main () 
{ 

int prcs = 2; 
THREADgo(prcs,2 * 1024 * 1024, startroutine, 0, 0, 2 * 1024,1); 

} 

3.6.3 Monitors 

A monitor is a synchronisation mechanism that attempts to encapsulate 

mutual exclusion and provides convenient facilities for signaling and waking 

up threads. In this thesis we have not looked at the general structure of a 

monitor and examined the facilities it offers. Monitors are just used as an 

alternative mechanism to semaphores in the EPT package. This mechanism 

was originally proposed by C. A. R. Hoare in the early 1970s [45], and was 

implemented in the Concurrent Pascal programming language. 

A monitor consists of a set of variables representing the state of some 

resource and a set of functions. When a thread requires to use a monitor, 

it must create one before using it. This is accomplished by a thread call 

mon = THREADmonitorinit(conditions, resetfunc). 

A monitor may provide condition variables (conditions) each of which have 

associated suspend and continue operations. The parameter resetfunc 

(reset function) is used for orderly reorganisation of the monitor should the 

thread be terminated. In its simplest form, the monitor provides exclusive 
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access to shared data. The required control of access can be accomplished 

by using the following functions: 

T H READmonitorentry( mon, manager) 

and 

T H RE ADmonitorexit( mon). 

Only one thread can execute the code between the T H READmonitorentry 

and T H READmonitorexit functions at one time. Thus, if thread Tl 

has invoked one of the monitor entry functions and thread T2 attempts 

to invoke a function in the same monitor, T2 will be blocked until Tl 

relinquishes the monitor. Only one thread may be inside the monitor 

(i.e. executing a monitor function) at any point in time. The first 

parameter mon is the handler of the monitor that has been created to 

protect the data structure. The second parameter, manager gives the caller 

the option of managing the monitor control block space and NULL gives 

default action. The parameter manager is a pointer to an area of opaque 

type T H RE AD -.AI AN AG E RJ3 LOC K. This storage needs a lifetime long 

enough to still exist when THREADmonitorexit(mon) is called. 

Monitors also provide wait and signal operations in the following way. 

If a thread enters a monitor and finds that a required condition is not true, 

it can suspend itself by executing a wait statement of the form 

T H READmonitorwait( mon, condition). 

The function has two parameters which are mon and condition. mon 

is the name given to the monitor. The condition argument gives the 

number of condition queues (inside the monitor) to be created. The 

T H READmonitorwait function removes the thread from the monitor and 

places it on a queue waiting for the condition to be signaled. When this 
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new thread enters the monitor and changes the condition to true then it can 

execute a signal statement of the form 

T H READmonitorsignalandexit( mon, condition). 

This function withdraws a waiting thread from the condition's queue and 

wakes it up. If no threads are waiting on the condition queue, the thread 

simply continues and the caller exits the monitor. 

The constraint imposed by the monitor is that only one thread shall 

be inside a monitor procedure at anyone time. An important feature of 

monitors and semaphores is that they do not use busy waiting. In general 

semaphores and monitors are more appropriate for longer waits. 

We have considered a number of parallel algorithms for comparing the 

three different synchronisation mechanisms mentioned above when applied 

to a particular problem. When we attempted to simulate the event (see 

chapter 4 for details) synchronisation mechanism with monitors, we observe 

that this mechanism slowed down the performance of the implementation. 

This is one reason why the monitors and semaphores were not used for most 

of the work in this thesis. The results are discussed in chapter 5. 
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CHAPTER 4 

Direct Solution of Linear Equations 

4.1 Introduction 

In this Chapter, we consider a number of different parallel algorithms 

for the QR and L U decomposition of a square matrix A. The first problem 

tackled was the decomposition of a square matrix into a product of an 

orthogonal matrix Q and upper triangular matrix R (i.e. QR decomposition) 

and its use for the solution of sets of linear algebraic equations. Wright [97] 

has described algorithms for this problem implemented using PASCAL with 

the Encore multi-tasking library and Encore Parallel Fortran (EPF) which 

is an extension to FORTRAN77 including parallel constructs. The work 

here is to consider implementation of these algorithms in C++ with the 

Encore Parallel Threads package [31]. Following the work in [97] a further 

version was also investigated using the event synchronisation facility in EPF 

where if a pivotal column is not yet available the process just waits until it 

is. This algorithm was also implemented in C++ with a simulation of event 

synchronisation as THREADS does not provide this facility. 
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The second problem tackled was the decomposition of a square matrix 

into a product of a lower triangular matrix L and an upper triangular matrix 

U with matrix L or U unit diagonal. (i.e. LV decomposition). Precisely 

the same strategy in QR (Householder transformations) decomposition can 

be used for LV decomposition if no row interchanges are carried out, and 

the single processor version is then equivalent to the GAXPY Gaussian 

elimination described in [40]. For LV decomposition with interchanges 

the GAXPY version described [40] has updates to columns which are not 

independent because the whole row is interchanged together, so that the 

interchanges are applied to the pivotal information stored in the lower 

triangle of the matrix. However, the interchange strategy may be modified 

so that first, the multipliers in L are not interchanged and secondly, 

interchanges in U are delayed until just before a column update. This 

strategy recovers the column independence, so that the same parallel 

strategies used for the QR decomposition can be applied. This has the 

minor disadvantage that element updates cannot be carried out using scalar 

products (as in the Crout algorithm) as the modifications to an element are 

interleaved with interchanges. This possibility is mentioned by Gallivan et 

al [34], but does not seem to have been investigated further. 

Algorithms based on both Givens and Householder transformations 

are considered for QR decomposition in the section 4.2. For the LV 

decomposition we consider methods using both a unit lower triangular 

matrix L and a general upper triangular matrix U, and a unit upper 

triangular matrix and a general lower triangular matrix. These algorithms 
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are considered in section 4.4. The former is similar to Doolittle reduction, 

the jki forms of LV decomposition [39,23], and GAXPY Gaussian 

elimination [40] and the later is similar to Crout reduction. 

4.2 Sequential Algorithms for QR Decomposition 

We considered the solution of the system of linear equations 

Ax =b, (4.2.1) 

for the n-vector x, with A an n X n matrix and b an n-vector. The aim of 

the QR decomposition is to transform the system (4.2.1) into one which is 

easy to solve. Specifically, the aim is to determine a matrix Q and an upper 

triangular matrix R such that 

A=QR, 

with Q orthogonal, that is, QTQ = In. If we replace A in (4.2.1) by QR and 

premultiply by QT, then, using the orthogonality of Q, it follows that 

( 4.2.2) 

Having determined the QR decomposition of A, the solution of (4.2.1) 

therefore requires multiplication of the right-hand side vector b by QT and, 

backward substitution to solve the upper triangular system (4.2.2). Note 

that the Q is not usually obtained explicitly (in this work we did not 

accumulate the orthogonal transformations Q). 
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Widely used methods for the QR decomposition of a matrix are 

Householder transformations, Givens transformations, or Gram-Schmidt 

orthogonalisation. Although there are some similarities between the Gram

Schmidt orthogonalisation and Householder orthogonalisation, there are also 

some important differences. An attractive feature of the Gram-Schmidt 

process is its speed, if Q is required explicitly as it is twice as fast as 

Householder's algorithm since the columns of Q are computed directly. 

In Householder's method, Q is the product of Householder matrices. 

As we mentioned that we did not need to accumulate the orthogonal 

transformations Q then the Gram-Schmidt method is not preferable for this 

problem so that the Gram-Schmidt method is not discussed any further here. 

The QR algorithms based on Givens transformations require about twice 

the number of arithmetic operations as the algorithms using Householder 

transformations [34]. 

4.2.1 Sequential Algorithm: Givens 

The Givens process works by taking linear combination of rows of the 

matrix, chosen to make the new elements below the diagonal zero. The basic 

computation involves the premultiplication of A by an (i, j) transformation 

matrix Gii which just changes the coefficient in row i and row j. A Givens 

transformation is defined by a 2 x 2 orthogonal matrix of the form 
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where c2 + s2 = 1. If a 2 X n matrix 

is premultiplied by G, a zero can be introduced into the a21 position. Each 

time a Givens transformation is applied, there is a requirement for data 

exchange between the corresponding two rows of the array. The Givens 

process works by taking linear combinations of rows of the matrix, chosen 

to make the new elements below the diagonal zero [97]. 

The Givens algorithm may be written: 

for i = 1, ... , n 
for j = i + 1, ... , n 

A(i,i: n)(new) = c * A(i,i: n) - s * A(j,i: n) 

A(j,i: n)(new) = s * A(i,i: n) + c* A(j,i: n) 

endforj 
endfori 

where c = Aii/d, s = -Aji/d, and d2 = Ari + A~i. A similar transformation 

is applied to the right-hand side b. 

4.2.2 Sequential Algorithm: Householder 

The QR decomposition of a matrix A is computed using a sequence of 

Householder matrices to reduce A to upper triangular form. The reduction 

requires n - 1 Householder transformations. A Householder transformation 

uses a matrix of the form H = I - 2wwT where wT w = 1, that is w is a 

vector with Euclidean length one. The resulting upper triangular matrix is 

R and the product of the Householder matrices is Q. 
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In the first step we premultiply A by the Householder matrix HI to 

annihilate elements 2 to n in the first column of A, giving Al = HIA. In the 

second step we premultiply Al by the Householder matrix H2 to annihilate 

elements 3 to n in the second column of AI. In the kth step, we premultiply 

Ak-l by the Householder matrix Hk to annihilate elements k + 1 to n in the 

kth column of Ak-l. The Householder matrix Hk has the form 

where I is a (k - 1) X (k - 1) unit matrix and H is an appropriately sized 

Householder matrix. Step k generates Ak = HkAk-l. After n - 1 steps, we 

arrive at R: 

finally, A = QR, where 

since H i-
l = HT = Hi, i = 1,2, ... ,n - 1. 

Let a = (aI, a2, ... , an)T be a vector such that not all of the entries 

a2, aa, ... , an are zero, and suppose we want to transform a to a vector 

h = (hI, h2, ... , hn)T where h = Ha with H orthogonal and such that 

h2 = ha = ... = hn = O. Define h = (0" 0 ... O)T then 10"1 = IIhl12 = IIal12 
because H is chosen an orthogonal matrix. 

H can be chosen to be a Householder transformation matrix given in 

the form H = I - 'YuuT, where u = a - h = (al + 0", a2, aa, ... , an)T and 

'Y = 2/llull~· We specified that 0" = ±llaI12' but we did not specify the sign. 

In theory either choice works, but in practice 0" should be chosen so that its 

sign is the same as that of al. This ensures that cancellation cannot occur 

in the calculation of al + 0". 
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The following algorithm finds the Q R factors for an n x n matrix A, 

overwriting the coefficient matrix with both R and the vectors characterising 

each Householder matrix. Since all the nonzero elements of w do not fit 

within the space created by the annihilated coefficients, we store the diagonal 

of R in a separate array d to make room for the first nonzero component of w. 

This process modifies each pivotal column, headed by akk for k = 1, ... , n 

followed by updates to the later columns. The algorithm takes the form: 

for k = 1 : n - 1 
u = Jr-a-=-ik-+-a-'i=-+-l-k-+-' -. -. +-a--=!"'-k 

if u = 0 
d(k) = 0 

else 

endfor 

t = A(k,k) 
,(k) = l/(u * (u + ItJ))2 
if t < 0 

u =-u 

d(k) = -u 
A(k, k) = ,(k) * (t + u ) 
A(k : n, k) = ,(k) * A(k : n, k) 

v(k + 1 : n)T = v(k + 1 : n)T + A(k : n, k)T * A(k : n, k + 1 : n) 
A(k : n, k+1 : n) = A(k: n, k+1 : n)-A(k : n, k)*v(k+1 : n) 

This may be considered as modifying sub-colurrms with heads in 

the upper triangle of the matrix in the order (1, 1), (1, 2), ... , (1, n), then 

(2,2), (2, 3), ... , (n - 1, n). The right-hand side can just be treated as an 

additional column of the matrix. 

Before considering possible parallel implementations, the diagram in 

figure 4.1 illustrates the data dependencies of the Householder QR and LV 

(column version of LV) decomposition algorithms which are essentially the 
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same. Both types of algorithm have the same natural parallelism and may 

be used in a number of different ways. This illustrates that there are a lot 

of choices in the ordering of updates for these columns. 

, , , , , , , , , , 
~ 

Fig. 4.1 Dataflow Diagram for QR and LV Decomposition 

I 

V 

In the Householder algorithm once a pivotal column has been completed 
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no further changes are made to the column. In the usual Crout and Doolittle 

algorithms modification may be made because of interchanges taking place 

corresponding to later pivotal columns. Here the algorithm is modified so 

that interchanges of the multipliers do not take place, with the algorithms 

organised in a similar way to the Householder implementations. 

4.3 Parallelisation of QR and L U decomposition 

In the diagram in figure 4.1 the kth pivotal update is denoted by Pk 

and with standard column update is denoted by Gjk for (j = k + 1 : n). 

This forms the basis of a simple parallel implementation of the Householder 

algorithm and a simple parallel implementation of the LV decomposition. 

In these algorithms modification to the pivotal columns are carried out 

sequentially and each parallel task is fairly small. This algorithm will be 

described below. 

In [97] a number of parallel implementations for QR decomposition were 

compared using PASCAL with the Encore multi-tasking library. It was 

found that one using Householder transformations with multiple updates to 

columns was very effective. The Householder algorithm considered for QR 

decomposition and most of the algorithms considered for LV decomposition 

use a similar idea though one simple implementation is also used for 

comparison. The diagram in figure 4.1 shows that once a pivotal column and 

the consecutive column have been completed then the next pivotal column 

can be dealt with before the remaining columns with heads in the same row 

as the first pivotal column are modified. These updates are independent 
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and can hence be carried out in parallel. This observation will be made use 

of in some algorithms described below for QR decomposition (Householder 

algorithm) as well as LV decomposition. 

In the parallelisation of the QR decomposition and LV decomposition 

the critical part of the process is the pivotal update which suggests 

treating this as soon as possible, in particular before all the updates 

in the current pivotal row. This can be done by ordering the updates 

working down columns rather than along the rows. This leads to a parallel 

implementation assigning columns to different parallel tasks. This clearly 

requires some mechanism to ensure that updates are not carried out before 

the corresponding pivotal columns are ready. Some ways of achieving this 

are discussed below in sections 4.3.1 and 4.4.2. Two types of implementation 

of the Householder algorithm will be discussed. The first is a simple 

fixed allocation implementation, the other uses dynamic allocation. Both 

algorithms do precisely the same arithmetic. 

4.3.1 Parallel Algorithm: Givens 

Several parallel implementations of the Givens method have been 

introduced in the literature. One implementation of this method has been 

suggested by Modi [66] and it is adapted to a multiprocessor machine 

by Wright [97]. Here a simpler but related version of the algorithm 

is described and this simplified version has been implemented. The 

ordering of eliminations used in the usual sequential algorithm is not 

suitable for parallelisation so an alternative ordering is used. Note that 
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the transformations may be ordered so that any pair of rows can be 

combined which also produce an upper triangular matrix. The alternative 

computation considered here is divided up into a number of stages [97]. In 

the first stage roughly half of the first column is made zero by rotations. 

For the first column, the row j is taken with row n - j + 1 for j = 

1, ... , [(n - i + 1)/2]. In the second stage a similar transformation is applied 

to reduce half of the remaining non-zero rows in the first column and start on 

the second column. Implementation of the Givens method is done by keeping 

two indices for each column indicating the first and last rows in this column 

which are available for processing at each stage. At the end of the stage 

these indices are updated. Note that at each stage all these transformations 

are independent of each other, so that they can be allocated to threads in 

either a pre-determined fashion or dynamically. At the end of each stage 

synchronisation is required as the new stage cannot start until the previous 

one is complete. Each stage is terminated by "THREADjoin" s. 

4.3.2 Parallel Algorithm: Householder 

The first parallel implementation of the Householder algorithm treats 

the pivotal column sequentially and then updates the later columns with 

heads in the same row in parallel. All these updates are carried out before 

the next pivotal column is dealt with. These updates are all independent and 

so can be performed in parallel. The allocation of column updates to threads 

was done in a pre-determined (or static) way. There are two obvious ways 

of doing this i.e. the blocked and scattered forms. In this implementation 
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only the scattered form was used, that is at the kth pivotal stage thread j 

dealt with columns k + j, k + pr + j, k + 2pr + j where pr is the number 

of threads. 

The second method allocated columns dynamically with waiting when 

necessary, and the waiting was carried out using a simulation of event 

synchronisation using a loop and with a test protected by a monitor. This 

version orders the updates working down columns rather than along the rows 

and uses event synchronisation to ensure that the updates to the columns 

are carried out in the correct order. For any column, updates are carried 

out so long as the corresponding pivotal columns have been completed. If 

they have not then the process waits until the pivotal columns are ready. 

In this algorithm the columns are allocated in ascending order of column 

number and the columns are allocated dynamically by keeping a record of 

the position of the next untreated column. Any processor which finishes 

processing a column starts on the next one indicated. The variables used to 

control the allocation of work to threads are only modified in critical regions 

controlled by monitors. If there are no available columns for modification 

the thread terminates with "THREADjoins". 

4.3.3 Experimental Results for QR Decomposition 

We have tested Givens and Householder transformation algorithms for 

QR decomposition using C++ Data Arrays, data represented by the matrix 

class type defined in the Newmat Matrix Package, and the Matrix Class 

defined in chapter 2. The results are obtained with only row representation 
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for all the matrix representation types. For simplicity we only measured the 

time for the computation of the triangular factor R. The interval timer was 

used in order to compare the efficiency of the algorithms. The results are 

also obtained with and without use the inline function included for the array 

subscripting of the matrix class (see section 2.6 in chapter 2 for details). 

An initial empirical comparison was carried out using four different 

versions based on the algorithms described above. The two Householder 

transformation algorithms using C++ Data Arrays were H ouA and H oudA 

versions using the Matrix Class were HouC and HoudC, and versions using 

the Newmat Matrix Package were HouM and HoudM. In the first version 

the tasks are allocated to threads in a pre-determined (scattered) ordering 

and the other version the tasks are allocated to threads dynamically. We 

also obtained the results from Householder versions using the Matrix Class 

with array bound checking (cHouC and cHoudC) in order to provide a more 

appropriate comparison with the results using the Newmat Matrix Package. 

The other algorithm was based on Givens transformations, using C++ Data 

Arrays (GivA), Matrix Class (GivC) without array bound checking, and 

Newmat Matrix Package (GivM) , with pre-determined allocation. 

Times were obtained for the two different algorithms and the four matrix 

environments using one to eight processors with matrices of sizes 40(40)200. 

In addition to the raw times, values were obtained for the efficiency by 

comparing parallel versions with a sequential version of the Householder 

algorithm (HouA) for Householder versions and with a sequential version 
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of the Givens algorithm (GivA) for Givens versions using C++ data 

arrays. These sequential times were better than the other implementations. 

These comparisons were made in order to compare the algorithms under 

different conditions, matrix representations, and to make use of the C++ 

programming language as far as possible. 

As pointed out in chapter 2, C++ provides the inline feature to avoid 

function call overhead. To investigate the effect of using inline function 

calls for array subscripting, we used the two Householder transformation 

algorithms using the Matrix Class HouG and HoudG. The results are 

illustrated in table 4.1 which gives the measured elapsed times. The 

subscript indicates whether the inline function was used or not. 

Sequential Time 

n HOUCinline H OUCnoinline H OUdCinline H OUdCnoinline 

40 0.523 0.593 0.565 0.700 

80 3.693 4.667 4.352 5.121 

120 12.094 16.253 14.463 16.849 

160 35.153 39.366 35.633 37.465 

200 61.573 77.347 65.394 76.302 

Table 4.1 Matrix Class with and without Inline Function. 
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Tables 4.1 and 4.2 show the sequential and parallel times for the two 

versions. It is obvious from the table that using inline functions with the 

Matrix Class is significantly better than not doing so using both Householder 

transformation versions. The remaining results all use the inline function 

with the Matrix Class. 

Parallel Time for 2 processors 

n HOUCinline H OUCnoinline H OUdCinline H OUdCnoinline 

40 0.568 0.613 0.434 0.503 

80 2.727 3.221 2.600 3.108 

120 8.378 9.184 7.834 9.055 

160 19.131 21.876 17.882 21.945 

200 37.641 42.341 37.864 44.374 

Table 4.2 Matrix Class with and without Inline Function. 

Figures 4.2 and 4.3 display plots of mean efficiency against number of 

processors for different implementations using C++ Data Arrays, Matrix 

Class, Newmat Matrix Package. There is no column matrix representation 

for C++ Data Arrays and Newmat Matrix Package so that the time is 

not obtained for the Matrix Class using the column representation. In 

this section the times are obtained for the efficiency with a row matrix 

representation. Figure 4.4 shows actual efficiencies using 2 processors and 

figure 4.5 shows similar plots for 6 processors for different sized matrices. 

The results generally confirm expectations, particularly that the 
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Householder implementations with dynamic allocation gIve better 

performance than the simple implementation. 
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Fig. 4.2 Mean Efficiency Graph: Householder Transformations 

In [97] a number of algorithms for QR decomposition were compared 

and it was observed that the efficiency of the algorithms is affected by the 

organisation of data. Also [97] has illustrated the difference between the use 

of the normal representation of a matrix (i.e. row matrix representation) 

and its transpose (i.e. column matrix representation) with the Householder 

implementations. Using the Matrix Class was particularly convenient for 

such comparisons as the Matrix Class could be altered internally to give 

storage of the matrix by rows or by columns (we have not used column 

matrix representation for QR decomposition) and to include versions with 
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or without array bound checking. 

4.3.4 Conclusion for QR Decomposition 

We have compared the C++ Data Arrays, Matrix Class, and the 

Newmat Matrix Package representation in the testing of QR decomposition 

using the Householder transformations and the Givens transformations. A 

very significant factor affecting the times seems to be the representation of 

the matrix (i.e. C++ Data Arrays, Newmat Matrix Package and Matrix 

Class). These versions using the Newmat Matrix Package were significantly 

slower than those using C++ Data Arrays or Matrix Class without array 

bound checking. This is also expected since in the N ewmat Matrix Package 

arrays involve array bound checking as well as access via functions. On the 
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other hand, these versions using the N ewmat Matrix Package were slightly 

better than those using Matrix Class with array bound checking particularly 

for two processors. 

The Householder method was generally faster than the Givens method 

using C++ Data Arrays, Newmat Matrix Package, and Matrix Class. This 

is expected from the operations count. There is a clear conclusion th':tt the 

efficiency curves for the dynamic allocation Householder transformations 

using C++ Data Arrays (HoudA) and Matrix Class (HoudC) are better 

than those for the other representations. The efficiency curve for the 

pre-determined allocation Householder transformations using Matrix Class 

(H ouC) is also marginally better than other implementations and in most 

cases it is quite close to curves of the H oudA and H oudC versions. As 

the size of matrix increases, the graphs for all the versions rise rapidly with 

matrix size for 2 processors as well as for 6 processors. These results are 

shown in figures 4.4 and 4.5. 

The only differences between the implementations H ouA and H ouC is in 

the representations (i.e. the C++ Data Arrays or Matrix Class) since in both 

versions the way of allocation of the columns to threads is the same. In spite 

of this H ouC is more efficient than H ouA which is surprising because the 

H ouC version involves more work than the H ouA version as H ouC accesses 

the matrix elements via a function. C++ Data Arrays subscripting should 

save time for reading and writing in data but additional waiting during the 

process may be caused by contention for access to the shared memory. As 
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we mentioned in chapter 1, the lack of direct control over the location of 

data causes some difficulty in investigating this because the transfer of data 

between shared and cache memory is controlled by the hardware. 

Surprisingly, the dynamic allocation Householder version (H oudM) 

using the N ewmat Matrix Package has poorer efficiency than the pre

determined allocation version (H ouM) for 2 processors. When the number 

of processors and the size of the matrices is large, the efficiency for the 

H oudM version is marginally better than that for H ouM for 6 processors. 

This is shown in figure 4.4. 

Other important remarks follow from the comparison between the results 

using the Newmat Matrix Package and the Matrix Class with array bound 

checking. The results show that the H ouM version gave significantly better 

result than the cH ouG version. On the other hand, the H oudM and 

cH oudG versions have only small differences in these efficiency curves for 

more than 2 processors. Nevertheless the efficiency of the cH oudC version 

is slightly better than H oudM for 1 and 2 processors. These can be seen in 

figure 4.2. 

For all versions, the larger the matrix size the better the efficiency, 

particularly for larger numbers of processors. Comparing the results for 

these versions shows that the H oudA and H oudG versions come out better 

than the others, in most cases. 
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4.4 Sequential Algorithms for L U Decomposition 

We shall now consider L U decomposition. The sequential algorithm 

producing a unit upper triangular Matrix is outlined below. To facilitate 

later parallel implementation a number of modifications to the standard 

Crout algorithm are introduced. The pivotal column is treated as in 

the Crout algorithm but, following this, updates are applied only to the 

immediately succeeding column, all the updates to this column being delayed 

so that they can be performed together. Once a pivotal column has been 

updated no further changes are made to this column. In particular no 

interchanges are carried out on the pivotal column at this stage. The index 

piv(j) indicates the row chosen as pivot at the ph pivotal stage. 

The summary of the algorithm may be written: 

for j = 1 : n 
for i = 1 : j - 1 

A( i, j) ~ A(piv( i), j) 
A(i,j) = A(i,j)jA(i,i) 
A(i + 1 : n,j) = A(i + 1 : n,j) - A(i + 1 : n,i)A(i,j) 

endfor 
Find p with j < P < n so I A(p,j) I = II A(j: n,j) 1100 
A(j, j) ~ A(p, j) 
piv(j) = p 

endfor 

Note that the forward substitution applied to the right-hand side is 

carried out after the decomposition phase but the order is just the same as 

that for a column of the matrix with the interchanges interleaved with the 

elimination steps. As these steps are interleaved it follows that the Land 
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U matrices produced by this method do not in general satisfy 

LU=PA 

for any permutation matrix P. We then carry out forward and backward 

substitutions to find the solution x. 

The algorithm giving a unit lower triangular matrix is equivalent to the 

GAXPY Gaussian elimination described in [40] apart from the interchange 

implementation. The structure of the algorithm is similar to that for the 

unit upper triangular version except that the pivotal column is divided by 

the pivot instead of the pivotal row. 

4.4.1 Parallel implementations for L U Decomposition 

We consider four types of implementation, applicable to both upper and 

lower unit triangle versions. The first two are based on event synchronisation 

to ensure that the updates to the columns are carried out in the correct 

order. For any column, updates are carried out so long as the corresponding 

pivotal columns have been completed. If they have not, then the process 

waits until the pivotal columns are ready. In both algorithms the columns 

are allocated in ascending order of column number. In the first algorithm 

the columns are allocated dynamically by keeping the position of the next 

untreated column. Any processor which finishes processing a column then 

starts on the next one indicated. In the second method the columns are 

allocated in a predetermined (scattered) fashion. 

In the third algorithm processes avoid waiting for synchronisation by 
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starting treatment of a new column when further progress in the column 

currently being updated is not possible. The columns are allocated 

dynamically to the processors by keeping an index for each column indicating 

how many updates have been carried out, along with an indicator of whether 

the column is currently being processed. When a thread finds that no more 

updates to a column can be performed, a search is carried out for these 

indices to find the first column which is not being processed and where the 

updates can be performed. As with the other implementations there is an 

index giving the position of the next pivotal column to be processed. 

In [97] a number of algorithms for QR decomposition were compared and 

ones using Householder transformations with multiple updates to columns 

were found to be very effective. Most of the algorithms considered here for 

LV decomposition use a similar idea though one simple implementation is 

also used for comparison. 

The fourth algorithm is a simple implementation carrying out all updates 

corresponding to a pivotal column together in parallel, with the pivotal 

columns treated sequentially. This is to provide a basis for comparison for 

the other algorithms. 

All four algorithms do precisely the same arithmetic, so that even the 

rounding errors will be the same. 

In addition to the algorithms described above which access the elements 

of the matrix directly, variants of the algorithms were used in which the 

columns of the matrix were copied to a local vector before processing and 
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then copied back when all the updates currently possible had been carried 

out. The tests were carried out using Matrix class with both row and column 

representations of the matrices. 

4.4.2 Experimental Results for L U Decomposition 

In this section we present the numerical results (using C++) obtained 

from seven different parallel versions of the LU decomposition algorithms. 

These versions are outlined in section 4.4.1. Four of the algorithms use 

Crout-like reduction and three of the algorithms use Doolittle like reduction. 

The results use the notation cr for Crout-like and do for Doolittle

like algorithms. Implementation one is indicated by evd (dynamic event), 

implementation two by evs (static event), implementation three by m 

(column splitting), and the simple implementation four by s. The use of 

copying a column to a vector is indicated by v, and the representation of 

the matrix by columns is indicated by t. Results are only given for the 

column representation as these were always better than those for the row 

representation, and so as not to confuse the other comparisons. 

We tested the algorithms using from one up to ten processors with 

matrices of sizes 100(100)500. To illustrate the relative performance of 

the algorithms graphs of efficiencies are displayed in the figures. For the 

results without array bound checking a sequential version of the Crout

like reduction algorithm (crevst) was used for the sequential time as this 

produced the best times (better than the standard Crout version). Similarly, 
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the results with array bound checking used a sequential version of the 

Doolittle-like reduction algorithm (doevst) for the sequential times as this 

gave the best overall performance in this case. The parallel and sequential 

times were obtained for the same sized matrices and the same environment. 

Figures 4.6, 4.7, 4.8 and 4.9 display plots of mean efficiencies for the 

over the matrix sizes against number of processors for different algorithms. 

Figures 4.10 and 4.11 show actual efficiencies using 2 processors, and figures 

4.12 and 4.13 present similar plots for 6 processors. Figures 4.14 and 

4.15 display results for different sized matrices and different numbers of 

processors for the Crout-like column splitting algorithms crmvt and crmt, 

the first of which turned out to be the best algorithm overall. 

The results of the experiments are generally as expected, in particular 

that the simple parallel implementation is significantly slower than all other 

versions. More surprising is the finding that the column copying versions 

of all the algorithms are significantly better than the versions without 

copying. It is perhaps also surprising that with processor number increase 

the efficiencies decrease more rapidly when checking is used than when it 

is not. The other differences between the implementations are relatively 

small, though method three, the column copying Crout-like implementation 

(crmvt), comes out best. However, without column copying, this algorithm 

is not so good as the other versions. 
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In the checking and no copymg case, method two, the static allocation 

Doolittle-like (doevst) algorithm is best. In the 'no checking' and 'no 

copying' case the dynamic allocation crevdt and doevdt algorithms gIve 

almost identical results, significantly better than the other versions. 

In most cases the Crout-like versions are more efficient than the 

corresponding Doolittle-like versions and this may be because the former 

only requires finding a pivot and interchanging two values at the pivotal 

stage while the latter also requires divisions of the whole of the remainder 

of the column by the pivot. 

4.4.3 Conclusion for L U Decomposition 

The good results for column copying indicate that the time needed for 

this copying is possibly more than offset by the reduction in array subscript 

calculations and better locality of data. The comparison of the three basic 

implementations is less clear as there are a number of factors involved. For 

the column splitting versions with column copying it appears that more time 

is saved on avoiding waits than is lost in re-allocation of the columns, but 

that this is not true when reference is made directly to the matrix. Perhaps it 

is worth noting that separate experiments indicated that waiting or column 

changing due to pivot columns not being available are relatively rare events, 

so the overhead involved is not as important as might be thought at first. 

Perhaps most important is the comparison of the new methods with 

the simple implementation of the Crout algorithm. They gain firstly by 
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avoiding THREAD joins at the end of each group of columns and secondly by 

modifying the pivoting implementation and so avoiding different processors 

writing to the matrix elements. In the 'event' implementations any matrix 

element is only written to by one thread and no other thread reads this 

element until its final value has been set, which means that good use of the 

write-deferred cache is likely. 

For all versions, the larger the matrix size the better the efficiency, 

particularly for larger numbers of processors. In addition, the efficiencies for 

all methods get closer as the matrix size increases, which is not surprising 

as the arithmetic becomes relatively more important compared to overhead 

as the matrix size increases. However, the methods found best here work 

well even for medium sized matrices. 

Overall the study shows that the column based approach to LU 

decomposition using the modified pivoting implementation described here 

does have significant advantages on a shared memory multiprocessor. It is 

also clear that copying of columns which are to be updated to vectors is 

worthwhile, and that using this the Crout-like column splitting version is 

marginally the best. 
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Red uction of a General Matrix to Hessenberg Form 

5.1 Introduction 

In this chapter we examine the reduction of a general matrix to upper 

Hessenberg form. Such algorithms do not of themselves solve the eigenvalue 

problem, but this approach does reduce the problem to a form that can 

be manipulated inexpensively Watkins [93]. We describe an evaluation of 

five parallel implementations using Householder transformations. We also 

compare three different synchronisation mechanisms (these mechanisms are 

introduced in chapter 3) when applied to this particular problem. 

The chapter is organised as follows. A sequential algorithm for reduction 

to Hessenberg form is described in section 5.2 and the data dependencies in 

this algorithm are considered. In section 5.3 five parallel implementations 

are described. Experimental result are presented in section 5.4. Conclusions 

are given in section 5.5. 
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5.2 Sequential Algorithm 

The following algorithm reduces a general n x n matrix A to Hessenberg 

form. H is a Householder matrix with form H = I - 2wwT where w is a 

unit vector. An example of this type of algorithm is described in [43]. In 

this algorithm a sequence of Householder matrices HIH2 ... Hn-2 are chosen 

such that 

is upper Hessenberg matrix. Each step in the reduction of A to an upper 

Hessenberg matrix can be given as 

A* =HAH 

where H is a Householder matrix and A * indicates the new matrix. 

The multiplication takes the form (H A)H, unlike the algorithm described 

by Dongarra et al [27] which combines the two multiplications. This 

combination has benefits in reducing data transfer but involves more 

arithmetic. As good speed up with the simple algorithm is obtained and 

the alternative algorithm will not be considered further. 

The algorithm considered here chooses an H using the pivotal column, 

headed by ak+l,k for k = 1,2, ... , n - 2, so that the elements below the 

head of the new pivotal column are zero. The Householder transformation 

is used to update the later columns k + 1, k + 2, ... ,n while the columns' 

k = 1,2, ... , k -1 are not altered. When the column updates corresponding 

to the first multiplication are completed, the row updates corresponding to 
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the second multiplication are carried out for all the rows. Following this the 

next pivotal column can be treated and the whole process repeated for the 

next stage. 

The algorithm below performs real Householder reduction to upper 

Hessenberg form: 

for k = 1 : n - 2 
8 = Jr-A==-i-+.....:lk~+-A---::-i+-2-k-+-. -.. -+-A"7;-k 

t = A(k + 1, k) 
r = 1/(8(8 + Itl))1/2 
if (t < 0) 
8 =-8 

u(k) = -8 

A(k + 1, k) = r * (t + 8) 
A(k + 2 : n, k) = r * A(k + 2 : n, k) 
( Set up the Householder transformation H ) 

t(k + 1 : n)T = A(k + 1 : n, k)T * A(k + 1 : n, k + 1 : n) 
A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n) - t(k + 1 : n) 

*A(k + 1 : n,k)T 
( Multiply on the left by H ) 

t(l : n) = A(l : n, k + 1 : n) * A(k + 1 : n, k) 
A(l : n, k + 1 : n) = A(l : n, k + 1 : n) - t(l : n) * A(k + 1 : n, k)T 
( Multiply on the right by H ) 

endfor 

Before considering possible parallel implementations, it is useful to 

consider the data dependencies of this algorithm. We consider updates 

to pivotal columns, standard columns and rows rather than updates to 

individual elements. This is a simplification of the situation but is sufficient 

for the present discussion. 
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Fig. 5.1 Dataflow Diagram for Hessenberg Form 
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In figure 5.1 the kth pivotal update is denoted by Pk, the update to the 

column headed by ajk using Pj-l is denoted by ejk and the update to the 

row starting with element ajk using Pk-l is denoted by Rjk. We can see 

from the above diagram that the row updates at any particular stage can 

be divided into two groups. The first group which will be denoted by rowa 

consist of the rows with row numbers less than or equal to the latest pivotal 
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stage number. The other rows are denoted by rowb. The rowb rows must 

be completed before the next pivotal update can be made, while this is not 

true for the rowa rows. This observation will be made use of in algorithms 

4 and 5 described below. 

5.3 Parallel Implementations 

We consider five essentially different parallel implementations. The 

first of these is a simple implementation carrying out the pivotal column 

updates sequentially, followed by parallel column updates and then parallel 

row updates. This is possible because all the column updates Ckk to Ckn are 

independent of each other, and can be carried out once the pivotal update 

Pk - 1 has been completed. Similarly, rows Rlk to Rnk are independent and 

can be updated when the column updates Ckk to C kn have been completed. 

Both these parallel updates are terminated with "THREADjoins", which 

act as barriers. This simple implementation provides a basis for comparison 

with the other algorithms. 

The next two algorithms are based on the observation that at any stage 

the updates to rowa rows can be carried out at the same time as the column 

updates while the rowb row updates can not. The pivotal updates are again 

carried out sequentially. The thread chooses columns for updating until 

there are no more columns to be allocated. If all columns are allocated, 

then a row is chosen from rows 1 to n taken in order. Updates are carried 

out immediately for rowa rows, but for rowb rows the thread waits until all 

the columns have been completed, as these row updates may only be carried 

out if this has happened. The waiting is carried out by using a loop checking 

a count of the number of columns (done) which have been completed. These 

two algorithms avoid one of the "THREADjoins" needed at each stage of 

the first algorithm. 
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In the second algorithm the columns and rows are allocated to threads 

dynamically. This should provide flexibility for the algorithm in a multi

user environment, for if one thread is held up others will carry out the work 

instead. The variables used to control the allocation of work to threads 

are only modified in critical regions. For this second algorithm the critical 

region was initially controlled by locks, but in addition, we also use the 

semaphore and monitor synchronisation mechanisms. This was done so that 

the different mechanisms could be compared. 

In the third algorithm the columns and rows are allocated in a 

predetermined way (scattered ordering). This allows the pre-allocation 

of tasks to threads, which should reduce the amount of interprocessor 

communication as no lock is needed for the row and column allocation. 

However, this gives less flexibility than algorithm 2. The parallel version of 

algorithm 2 is outlined below: 

for k = 1 : n - 2 
Process pivotal column k sequentially 
nxcol = k + 1 / / next column 
nxrow = 1 / / next row 
done = k / / number of columns completed 

do in parallel 
do 

col = nxcol 
nxcol = col + 1 
Allocate column (col) to this thread and increment (col) 
If (col <= n) 

modify column (col) 
then increment count (done) 
If (done == n) 
allow rows k to n to be processed 
as all columns are completed 

while (col < n) 
end parallel 
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do in parallel 
do 

row = nxrow 
nxrow = row + 1 

Reduction to Hessenberg Form 

Allocate row (row) to this thread 
If ((row> k) and (done < n) 

wait until count done = n 
modify row (row) 

while (row < n) 
end parallel 

end 

The fourth algorithm avoids the sequential updating of the pivotal 

column by allowing a start on the next pivotal column while rowa rows 

are still being processed. The calculations are still carried out in stages 

corresponding to the pivotal updates. A stage starts after a pivotal update 

is made and the previous rowa rows have been completed. The next set of 

columns are allocated for update in parallel, with rowa rows allocated when 

no more columns remain to be allocated. However, as soon as all the set 

of column updates is completed, rowb rows are allocated for update even 

though all rowa rows may not have been allocated. When the updates of 

the rowb rows are completed, the next pivotal column is started, regardless 

of whether all rowa rows are completed or not. The stage terminates by 

completing any rowa row updates which have not been treated previously. 

This implementation is expected to reduce the waiting time as rowa row 

processing can take place at the same time as the pivotal column update. 

Five counters and three Boolean flags are needed, one for completion of 

columns (done), one for completion of rowb rows (doner), and the others 

are used in the dynamic allocation of columns (nxcol), rows rowa (nxrowa) 

and rows rowb (nxrowb). The flag rd indicates whether the rowb rows can 

be updated, the second flag dopiv indicates whether the pivotal column can 

be updated, the third one (test) indicates whether the pivotal column as 
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well as rowa rows are completed. A "THREADjoin" is used before the next 

set of columns is updated. 

Note that this algorithm does not allow rowa rows to be allocated after 

all rowb rows are allocated until all rowb rows are completed. This could 

cause some extra waiting. This parallel version is outlined as algorithm 4 

below: 

Process first pivotal column sequentially and 
set next pivot number (piv = 2) 
for k = 1 : n - 2 

nxcol = k + 1 
nxrowa = 1 
nxrowb = k + 1 
done = k 

/ / next column 
/ / next rowa row 

/ / next rowb row 
/ / Number of columns completed 

doner = k / / Number of the rowb rows completed 

do in parallel 
char rd, dopiv, test / / to arrange the rowa rows update 
rd and dopiv = F ALB E 
do 

col = nxcol 
nxcol = col + 1 
Allocate column (col) to this thread and increment (col) 
If (col <= n) 

modify column (col) 
then increment count (done) 
If (done == n) 
allow (rowb) rows to be updated 
as all column are completed 

while (col < n) 

do 
If (done == n) 

row = nxrowb 
nxrowb = row + 1 
Allocate rowb (row) to this thread 
rd = TRUE 

else 
row = nxrowa 
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nxrowa = row + 1 
Allocate rowa (row) to this thread 

If ((rd) and (row <= n)) 
update row 
increment count (doner) 

If ((!rd) and (row <= k)) 
update row 

while (doner! = n) 

do 
ra = 1 / / ra ~s rowa row 
If (piv == k + 1) 

then increment pivot count (piv = k + 2) 
dopiv = TRUE 

If ((dopiv) and (k < n - 2)) 
process pivotal column (k + 1) 
dopiv = F ALS E 

else 
ra = nxrowa 
row = ra 
nxrowa = ra + 1 
Allocate rowa (row) to this thread 
If (row <= k) 

update row 
test = (piv = k + 2) and (ra > k) 

while (!test) 
end parallel 

end 

The fifth algorithm was designed to avoid the waiting problem in 

algorithm four and also to avoid using any "THREADjoins" except on 

completion of the whole reduction. The other important aim in the design 

of this algorithm was to avoid splitting the algorithm into stages by making 

use of the observation made clear in the dataflow diagram that the pivotal 

column, column and rowb row updates are not dependent on the rowa row 

updates being completed. In fact when this algorithm is run on a single 

processor all the rowa row updates are left until all the other updates have 

been completed. 
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Work is allocated to threads m the order indicated in the left hand 

column of the dataflow diagram, that is, a pivotal update is followed by a 

set of column updates which is in turn followed by a set of rowb updates, 

leading to the next pivotal update. However, when any thread finds none 

of this work available for allocation, any rowa rows which are ready for 

updating are allocated instead. When rowa rows are processed all updates 

currently possible are carried out, that is all updates which depend on pivotal 

columns which have been already treated excluding any updates that have 

been previously carried out. This should allow transfer between cache and 

shared memory to be reduced. To achieve this two integer vectors are kept. 

The vector element ct( ra) is used to indicate the position of the last update 

to row ra and the element of vector nactv(ra) is used to indicate whether 

some thread is currently working on row ra. The corresponding element 

of the vector nactv is set to FALSE (i.e. thread is working on row rowa) 

whenever a rowa rows being updated. When the corresponding rowa rows 

updates are completed, then vector element ct( ra) is incremented and the 

element of vector nactv(ra) is set to TRUE. 

The columns and rows are allocated dynamically to the threads, and 

counts for the columns and the rowb rows are used as before. As we 

indicated above, the rowa rows are updated independently. This should 

ensure that the pivotal columns are given high priority in the early part of 

the calculation when they are more critical, but gradually have less priority 

as the calculation proceeds, as in the later stages when there will be plenty 

of rowa rows ready for updating. Two implementations of this algorithm 

which only differ in the way the reduction is terminated were developed and 

tested. These implementations are expected to be more efficient than the 

previous versions. 

In the version H ella a thread terminates when all the rowa rows are 
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completed. In the Helle version the thread terminates when all the rowa 

rows are allocated and the current thread has no further work. In the H ella 

version a delay loop was included which is activated when the thread finds 

no work to carry out. This was with the aim of reducing contention for the 

lock which is repeatedly accessed in the allocation phase. In practice this 

delay made little difference to the results. Algorithm 5 (H ella version) is 

outlined below: 

Process first pivotal column sequentially and 
set next pivot number (pv = 2) 
rct = 0 
for k = 1 : n - 2 

ct(k) = k 
nactv(k) = TRUE 

end 
nxcol = 2 
nxrowa = 1 
nxrowb = n + 1 
done = 1 
doner = 1 

dopiv = FALSE 
do in parallel 
do 

pw = pv 

/ / Number of columns completed 
/ / Number of the rowb rows completed 

If ((dopiv) and (piv <= n - 2)) 
dopiv = F ALS E 
process pivotal column (piv) 
then increment pivot (pv = piv + 1) 
nxcol = piv + 1 
done = piv 

else 
col = nxcol 
If (col <= n) 

nxcol = col + 1 
modify column (col) 
increment count (done) 
If (done == n) 
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else 

nxrowb = piv 
doner = piv - 1 

1'OW = nxrowb 
If (row <= n) 

nxrowb = row + 1 
modify row (rowb) 
increment count (doner) 
If (doner == n) 
dopiv = TRUE 

else 
ra = nxrowa 
If (ra == piv - 1) 
nxrowa = 1 
else 
nxrowa = ra + 1 

Reduction to Hessenberg Form 

If ((ra < piv) and (ct(ra) <= n - 2) and nactv(ra)) 
nactv(ra) = FALSE 
while(ct(ra) < piv) 

modify row (rowa) 
increment number (ct( ra ) ) 

nactv(ra) = TRUE 
If (ct(ra) == n - 1) 

then increment row count (rc) 
else 

wait 
while (rc < n - 2) 
end parallel 

end 

The Helle implementation is a little more complicated due to the need 

to ensure that all rowa row updates are completed while allowing a thread 

to terminate before this has happened. This is done by checking at the 

end of each row of rowa updates whether the final pivotal column has been 

completed and if so continuing with this row until all updates have been 

completed. When the final pivotal column is completed the indicator for 

the next rowa (nxrowa) is set to one and the threads then process the rows 
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in order. When row ra is allocated nactv(ra) is set to FALSE and is then 

not reset to TRUE on completion of the updates so that threads do not 

attempt to process a row which has already been completed. 

5.4 Experimental Results 

The results use the notation He for our implementations of parallel 

upper Hessenberg reduction. The numerical results were obtained for the 

five versions outlined in section 5.3. The first method (i.e. the simple 

implementation) is denoted by ss, the second implementation using dynamic 

allocation by Id (using locks), smd (using semaphores), and md (using 

monitors). The third implementation using static allocation is denoted by 

ls, the fourth implementation using pivotal processing done in parallel by 

mml and the fifth implementations using delayed rowa allocation by lla and 

lle. The representation of the matrix by columns is indicated by the final 

character t, otherwise the representation is by rows. 

The comparisons were carried out by measuring the elapsed time for a 

general matrix to be reduced to upper Hessenberg form using each of the 

implementations. Comparisons were carried out between the performance 

of the five implementations. Comparisons were also carried out between the 

performance of the three different synchronisation mechanisms in the second 

implementation. 

We tested the algorithms using from one up to ten processors 

(1,2,4,6,8,10) with matrices of sizes 100(100)500. The sequential times were 

obtained from the simple algorithm (H eseq) which was compiled without 

array bound checking using the row representation version. This was slightly 

better than the column representation version and as expected, significantly 

better than the same version with array bound checking. The parallel and 

sequential times were, of course, obtained for the same sized matrix. 
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To show the performance of the five different parallel versions, we plot in 

figures 5.2, 5.3, 5.4, and 5.5 mean efficiencies against number of processors. 

Figures 5.6 and 5.7 show actual efficiencies using 2 processors for results 

with and without array bound checking and figures 5.8 and 5.9 show similar 

plots for 8 processors. Figures 5.10 and 5.11 display results for different sized 

matrices and different numbers of processors for the fifth method (version 

Helle). 

Also to show the performance of the three different synchronisation 

mechanisms in the second implementations we plot in figures 5.12, 5.13, 

5.14, and 5.15 mean efficiencies against number of processors, for results 

with and without array bound checking. Figures 5.16 and 5.15 show actual 

efficiencies using 2 processors for results with and without array bound 

checking and figures 5.18 and 5.19 show similar plots for 8 processors. The 

second method using lock (version Held) displays a good parallel efficiency 

for all our versions. 
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In this chapter we have investigated some parallel algorithms for the 

reduction of a general matrix to upper Hessenberg form. 

As expected, the first method (the simple parallel implementation Hess) 

is slower than all the other versions. This is because the THREAD joins at 

the end of each stage of column and row updates lead to significant waiting. 

There is a clear conclusion that the fifth implementations (H ella and 

Helle) are better than the other implementations, with little difference 

between row and column versions. The efficiency graphs show that the 

difference between the (H ella and Helle) implementations are very small 

and very close to possible errors in measurement, though Helle seems to be 

marginally better. It is notable that for larger numbers of processors with 

these implementations even small sizes of matrix give significantly better 

results than other versions. As the number of processors increases the graphs 
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for this algorithm are very nearly horizontal indicating little loss. The high 

efficiency indicates that losses due to critical areas controlled by locks are 

very small. 

Surprisingly, the fourth algorithm (H emml) including the pivotal 

column done in parallel has poorer efficiency than the other implementations 

except the simple parallel implementation (Hess), possibly due to more 

overhead than Held and static H els, and more waiting than version H ella 

and Helle, as rowa rows are not processed after all columns are processed 

until all rowb rows are completed. In spite of this the H emml version is 

still significantly better than Hess in most cases. The differences between 

the implementations Held and H els which only vary in their method of 

allocation to the threads are relatively small. Comparing the results for 

these versions shows that the Held version comes out better in most cases, 

except with array bound checking and using column representation of the 

matrix, where version three HeIst is better than Heldt. 

For all versions, the larger the matrix size the better the efficiency, 

particularly for larger numbers of processors. In addition, the efficiencies for 

the Held, H els and H emml methods get closer as the matrix size increases. 

This is not surprising as the arithmetic becomes relatively more important 

compared to overhead as the matrix size increases. 

When we compare the "locks" and "semaphores" synchronisation 

mechanisms for the second algorithm, we find that with no array bound 

checking and both row and column representation the versions Held and 

H esmd are very close particularly for 4 and 6 processors. 

With array bound checking the lock version is significantly better than 

the semaphore versions. This is shown in figures 5.12 and 5.13. 

The monitor version is worse than the semaphore version with no check 
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but it is better than the semaphore version with array bound checking case. 

The monitor version in the checking case is still significantly poorer than 

the lock version, and the difference increases with the number of processors. 

Also with array bound checking the semaphore versions are some times 

even poorer than the simple version Hess. With no array bound checking 

the monitor versions H emd and H emdt give similar efficiencies to the simple 

implementation Hess. 

There is a clear conclusion about using the synchronisation mechanisms. 

All implementations using "locks" are more efficient than those using 

"monitors" or "semaphores". The "locks" version gives the best 

efficiency in most cases. In conclusion, we have observed that the 

parallel implementation of delayed rowa row allocation (H ella and Helle 

versions) attain remarkably high efficiencies, with both row and column 

representations of the matrix. 

129 



CHAPTER 6 

Reduction of a Symmetric Matrix to Tridiagonal Form 

6.1 Introduction 

In this chapter we examine the reduction of a real symmetric matrix to 

tridiagonal form. Such algorithms do not of themselves solve the eigenvalue 

problem, but this approach does reduce the problem to a form that can 

be manipulated inexpensively [93]. Reduction to tridiagonal form is a 

major step in eigenvalue computations for symmetric matrices. Finding the 

eigenvalues and eigenvectors of a tridiagonal matrix is significantly simpler 

than computing those for a general symmetric matrix [95]. In recent years 

a number of parallel implementations of algorithms for eigenvalue problems 

have been widely investigated. Algorithms for shared memory architectures 

([26] and [27]) and distributed memory architectures ([28],[55] and [13]) 

have been implemented for reducing a symmetric matrix to tridiagonal 

form. Dongarra and Sorensen [26] present a method intended to be used 

in conjunction with the initial reduction to tridiagonal form to compute the 

complete eigensystem of the original matrix. Dongarra et al [27] consider 
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block algorithms for the reduction of a real symmetric matrix to tridiagonal 

form using Householder transformations. 

Let B be an n x n symmetric matrix T. Our aim is to reduce a symmetric 

matrix to tridiagonal form, that is a matrix described as follows: 

Tij = 0 unless J = 1" i + 1, or i - 1. 

The sequential Householder tridiagonalisation approach IS described III 

[40],[93] and [95]. 

The algorithms for reduction of a general matrix to Hessenberg form can 

also be used for the reduction of a symmetric matrix to tridiagonal form, 

and there are some rather obvious savings which can be made by taking 

the symmetry into account. However, if only half of the matrix is stored or 

used, such algorithms have much greater data dependencies which limit the 

possibilities for parallelisation. 

The chapter begins with the description of a sequential algorithm for 

reduction to tridiagonal form in section 6.2. The data dependencies in this 

algorithm are also considered. In section 6.3 three parallel implementations 

are described. Experimental results are presented in section 6.4 and 

conclusions are given in section 6.5. 

6.2 Sequential Algorithms 

We consider the tridiagonalisation of an n x n real symmetric matrix 

B, using Householder transformations. The method uses (n - 2) successive 
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transformations to reduce a matrix to tridiagonal form. An example of 

such an algorithm is described in [93]. We present below the Householder 

transformation process and the tridiagonalisation of the symmetric matrix 

B. 

Let b = (bl' b2, ... ,bn)T be a vector such that not all of the entries 

b2, b3,"" bn are zero, and suppose we want to transform b to a vector 

q = (ql, q2,··· qn)T where q = Qb with Q orthogonal and such that 

q2 = q3 = ... = qn = O. Define q = (u, 0 , ... O)T then lui = IIql12 = IIbl12 
because Q is chosen an orthogonal matrix. 

Before we summarise the algorithm for the reduction of a symmetric 

matrix to tridiagonal form, let us point out one other potential danger. In 

order to calculate u, we must calculate IIbl12 = (b~ + b~ + ... + b;_2)1/2 for 

such a computation. Since squaring doubles the exponent of a number, an 

overflow can occur if some of the entries of b are very large and an underflow 

can occur if some of the entries are very small. An overflow will usually stop 

the computation. An underflow mayor may not stop the computation, 

depending on which compiler options are in effect. If the computation is 

not stopped, the underflow will be set to zero which can be dangerous if this 

makes u equal to zero. 

The problem with overflows and underflows in the calculation of IIbl12 

can be alleviated by the following simple method: Let m = maxl~k~nlbkl. If 

m = 0, then IIbl12 = O. Otherwise let b = (l/m)b. Then IIbl12 = mllbl12. This 

scaling statement eliminates the possibility of overflow because Ibk I < 1 for 
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all k. Underflows can not cause problems as clearly a will be greater than 

or equal to 1. Thus these underflows are harmless and can safely be set to 

zero [93]. In this thesis the scaling statement is only used in the algorithm 

for the reduction of a symmetric matrix to tridiagonal form, though it could 

be applied in the other algorithms using Householder matrices. 

To describe the algorithm for the reduction of a symmetric matrix to 

tridiagonal form, we adopt the following notation introduced in [93]. We 

begin with the matrix 

In the first step of the reduction, we transform B to BI = QIBQI, where 

1 0 0 

o 

o 

and QI is a Householder transformation matrix chosen so that Qla 

bl1 al 0 0 

( bll a
TQl ) 

al 

0 BI = Qla QIBQI 
BI 

0 

We save a little bit here by not performing the computation aT QI, which 

duplicates the computation Qla. The main saving is made in the calculation 
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of i3t as described below. Finally, because the matrix B is symmetric, we 

need only store the lower triangles of the matrices. 

Ql is a Householder transformation matrix given in the form Ql 

I -,uuT , where u = a- h = (al +u,a2,a3, ... ,an)T and, = 2/"ull~. Thus 

6.2.1 

The terms in this expression admit considerable simplification [93] if we 

introduce the auxiliary vector 

~ 

v = -,Bu. 6.2.2 

Thus 

6.2.3 

and 

6.2.4 

Introducing the scalar 

6.2.5 

we can rewrite this last term as 28uuT . Thus 

6.2.6 
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The final manipulation is to split the last term into two pieces in order 

to combine one piece with the term vuT and the other piece with the term 

uvT . Specifically, let 

w = v +8u 6.2.7 

Then 

6.2.8 

In the algorithm below B(k,j : n) denotes the vector consisting of the 

elements of B(k, i), i = j, ... , n, and the kth Householder vector u is stored 

in B(k + 1 : n, k). 

We assume that the Input for the algorithm is the lower triangular 

portion of a real symmetric matrix B, which is updated 

bl1 

b21 b22 

B= b31 b32 b33 

bn l bn2 bnn-l bnn 

The Output is the lower diagonal of a symmetric tridiagonal matrix T 

represented by two vectors. 
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In displaying input and output matrices, our convention is that empty 

portions of the matrices are always zero. The above algorithm code segment 

may be written as 

Algorithm 
for k = 1 : n - 2 

Q (k) = B(k, k) 
m = max(IB(j, k)l, j = k + 1 : n) 
if (m /; 0) 

B(k+ 1: n,k) = B(k + 1: n,k)/m 
f3 (k) = V'L.ri=k+l B(i, k)2 
if (B(k+ l,k) < 0) 

f3(k) = -f3(k) 
B(k + 1, k) = B(k + 1, k) + f3(k) 
,(k) = 1/(f3(k) * B(k + 1, k)) 
f3(k) = f3(k) * m 
( Set up the Householder transformations ) 
wa=O 
for j = k + 1 : n 

wa = a(j, j) * B(j, k) 
v(j + 1 : n) = v(j + 1 : n) + B(j + 1 : n, j) * B(j, k) 
wa = wa + B(j + 1 : n,j)T * B(j + 1 : n, k) 
v(j) = v(j) + wa 

endfor 
(Calculate Bu, where u is stored in B(k + 1 : n, k) ) 
8=0 
v(k + 1 : n) = -,(k) * v(k + 1 : n) 
8 = 8 + v(k + 1 : n)T * B(k + 1 : n, k) 
8=,(k)*8/2 
w(k + 1 : n) = v(k + 1 : n) + 8 * B(k + 1 : n, k) 
(Calculate w (this could overwrite v instead)) 
for j = k + 1 : n 

B(j: n,j) = B(j: n,j) + w(j: n) * B(j, k) 
+B(j : n, k) * w(j) 

endfor 
(Update B) 

endif 
endfor 
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a (n - 1) = -B(n - 1, n - 1) 
a (n) = B(n, n) / / The main-diagonal of the output matrix 
f3 (n -1) = - B (n, n -1) / / The off-diagonal of the output matrix 

The implementations store the main-diagonal entries of the tridiagonal 

matrix T in a separate one-dimensional array (a) and the off-diagonal entries 

in a one-dimensional array (f3). 

The second step of the reduction has no effect on the first row and 

column of BI. This was not so in the non-symmetric case as there the 

first row needs to be altered; it is this difference that makes the symmetric 

reduction less than half as expensive as the non-symmetric reduction [93]. 

The second step is identical to the first step, except that it acts on the 

su bmatrix RI . 

Figure 6.1 represents the dataflow for this algorithm. This dataflow 

diagram shows that in the first stage, the update to the components of the 

vectors by Uj and Vi (i, j = k, k + 1, ... , n) are carried out. In the second 

stage, the computation of the scalar 8 is carried out. This is a crucial point 

as it is needed for the computation of the vector Wi (i = k, k + 1, ... , n), in 

the third stage. The final stage, the update to R using Uk, Uk+}' ... , Un and 

Wk, wk+I, . .. , Wn is denoted by Rk . After the kth reduction step the (k+ 1)th 

step starts to update the reduction in the same way as the kth step. These 

observations will be made use of in Algorithm I described below. 

We consider three slightly different versions for the reduction of a 

symmetric matrix to tridiagonal form. As only the lower triangle of B 

is stored the scalar products in forming Bu split into two parts. The first 

part uses the part of the row in the lower triangle of B. The other part 

corresponding to the upper triangle uses its reflection, that is part of a 

column of B. This mean that every element of the lower triangle B 
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contributes to two different scalar products. The first version uses a 

modification of the Watkins algorithm [93] so that each element of B is 

used only once in forming the scalar products Bu. The second version used 

a further modification where all contributions to each scalar product in Bu 

were calculated together. In the third version the formation of the scalar 

products Bu, the multiplication of them by a constant scalar -, (i.e. to 

find the vector v) and the calculation of 8 are included in the same loop. 

6.3 Parallel Implementations 

The sequential algorithms have been described above. Here we 

will consider three types of parallel implementation. In all these 

implementations, the tasks are allocated in a predetermined (scattered) 

ordering. This allows the pre-allocation of tasks to threads. 

In summary, in all three implementations the update of the pivotal 

column is carried out sequentially as shown in figure 6.1. As soon as the 

pivotal column has been updated, the computation of the matrix vector 

products Bkuj can proceed. These need to be synchronised in the first 

implementation because different threads contribute to the same scalar 

product but synchronisation is not necessary for the other implementations. 

The process is continued until all the scalar products required for BkUj are 

completed. After that the resulting vector is multiplied by the constant 

-, to get the vector v using 6.2.2. As the scalar product uT v is formed 

in parallel, we store the partial result during the calculation of the scalar 

product and then add the partial sums to the final total using a lock. Then 

the scalar product uT v is multiplied by a constant -!, to get the scalar 8 

using 6.2.5. This is done sequentially in all parallel implementations. 

It is clear from figure 6.1 that the calculation of 8 is a bottle-neck as 

the vector Wi can not be updated using 6.2.7 before its completion. After 
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this computation of 8, the components of the vector ware updated. Notice 

that the computation of the vector w components are independent of one 

another and that they can be performed in parallel without using a lock. 

Finally, from 6.2.8 we can see that Bk+1 can be updated either after each 

element of the vector w is computed or after all components of vector w have 

been evaluated. Following this, the next pivotal column can be treated in 

the same way and the whole process is repeated for the next stage. 

The first implementation starts by carrying out the pivotal column 

updates sequentially. This is followed by the matrix vector product updates 

6.2.2 done in parallel (i.e. forming v). Updating the matrix vector product 

needs a lock because different threads contribute to the same scalar product. 

When this is all completed then the calculation of the scalar 8 using 6.2.5 is 

carried out in parallel and so we store the partial results which contribute to 

the scalar 8. We used a lock in order to prevent simultaneous contribution 

of the partial result to 8 by the different threads. The multiplication of the 

scalar 8 by -,/2 is carried out sequentially. This is followed by forming the 

vector w using 6.2.7. Bl is updated in parallel after all components of the 

vector w have been evaluated using 6.2.8 

For the calculation of Bu the parallel section is terminated with 

"THREADjoin" s which ensures that all the components of v are computed 

before commencing the calculation of the scalar 8 using 6.1.1.5 which is done 

in parallel. The algorithm is as follows: 

Algorithm I 

prcount is the thread number 
prcs is number of processor (threads) 

For k = 1 : n - 2 
(i) (pivotal column updates sequentially, as In sequential algorithm) 
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for (i = k + 1; i < = n; i + + ) 
v(i) = 0.0 
8 = 0.0 

START PARALLEL 
double wa = 0.0 

(ii) for (j = k + preount; j <= n; j = j + pres) 
wa = a(j,j) * b(j, k) 
for (i=j+1; i<=n; i++) 

lockO 
v(i) = v(i) + b(i,j) * b(j, k) 

unlock() 
wa = wa + b( i, j) * b( i, k) 

endfor 
lock() 

v(j) = v(j) + wa 
unlock() 

endfor 
FINISH PARALLEL 

Tridiagonal Form 

(Matrix vector product using 6.2.2 updates in parallel) 

START PARALLEL 
double sa = 0.0 

(iii) for (i = k + preount; i <= n; i = i + pres) 
v(i) = -,(k) * v(i) 
sa = sa + v(i) * b(i, k) 

endfor 
lockO 

8 = 8 + sa 
unlock() 

FINISH PARALLEL 
(Compute the scalar 8 using 6.2.5 in parallel) 

8 = -, * 8 /2 
START PARALLEL 

(iv) for (i = k + preount; i <= n; i = i + pres) 
w(i)=w(i)+8 *b(i,k) 

endfor 
FINISH PARALLEL 
(Compute the vector w using 6.2.7 in parallel) 

START PARALLEL 
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(v) for (j = k + prcountj j <= nj j = j + prcs) 
for (i = j j i < = nj i + + ) 

Tridiagonal Form 

b(i,j) = b(i,j) + w(i) * b(j, k) + b(i, k) * w(j) 
endfor 
FINISH PARALLEL 
(Update Busing 6.2.8 III parallel) 

Endfor 

Synchronisation is required when the scalar 8 is updated using 6.2.5, 

because different threads contribute to the sums. This is done by first 

computing partial results, followed by global summation of the partial 

results. This synchronisation is necessary to avoid two processors attempting 

to add into the sum at the same time and is carried out using a lock. When 

all contributions to 8 have been added the parallel section is terminated. 

We then update w using 6.2.7 in parallel and terminate this parallel section. 

In the last stage we update Bl using 6.2.8 in parallel. This parallel 

implementation uses four parallel sections and one lock which is used in 

three places. The first implementation provides a basis for comparison with 

the other implementations. 

In the second implementation the algorithm is modified so that some 

data dependency is avoided. The important point is that in the second 

version in the calculation of Bu each processor only writes to one element 

of v but each B value is read twice. These updates are independent and can 

hence be carried out in parallel without the use of a lock. When a thread 

finds that no more updates to a matrix-vector product Bu are completed, 

then the parallel section is terminated. The calculation of the scalar 8 using 

6.2.5, w using 6.2.7 and updating iiI using 6.2.8 are done in parallel as in the 

first implementation. In this implementation we use four parallel sections 

and one lock used in only one place. 
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Algorithm II 

prcount is the thread number 
prcs is number of processor (threads) 

For k = 1 : n - 2 
(i) (pivotal column updates sequentially, as in sequential algorithm) 

START PARALLEL 
(ii) (Matrix vector product using 6.2.2 updates in parallel) 

for (j = k + prcountj j <= nj j = j + prcs) 
v(j) = 0 
for (i = k + 1 j i < = j j i + + ) 
v(j) = v(j) + b(j, i) * b( i, k) 
for (i = j + 1 j i < = nj i + + ) 
v(j) = v(j) + b( i, j) * b( i, k) 

endfor 
FINISH PARALLEL 

(iii) (Multiply v by T and compute the scalar 6 
using 6.2.5 in parallel, as in Algorithm I part (iii)). 

(iv) (Compute the vector w using 6.2.7 in parallel, 
as III Algorithm I part (iv)). 

(v) (Update Busing 6.2.8 in parallel, as in Algorithm I part (v)). 

Endfor 

In the third implementation we combined the calculation of the products 

Bu and the scalar 6. We use a lock when updating 6 because two processors 

might add into the sum of 6 at the same time. The rest of the algorithm 

which finds w using 6.2.7 and B1 using 6.2.8 are parallelised and terminated 

in the same way as in the first implementation. We expected that this 

implementation will be more efficient than the others because combining 

the matrix-vector product and the evaluation of the scalar 6 decreases the 

number of parallel sections. We use three parallel sections and one lock for 

this implementation. 
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Algorithm III 

preount is the thread number 
pres is number of processor (threads) 

For k = 1 : n - 2 
(i) (pivotal column updates sequentially, as in sequential algorithm ) 

8 = 0.0 

(ii) (Matrix vector product using 6.2.2 and the scalar 8 using 6.2.5 
are combined (i.e. (ii) and (iii)) and update in parallel) 

START PARALLEL 
double sa = 0.0 
for (j = k + preountj j <= nj j = j + pres) 

v(j) = 0 
for (i = k + 1 j i < = j j i + + ) 
v(j) = v(j) + b(j, i) * b( i, k) 
for (i = j + 1; i <= n; i + +) 
v(j) = v(j) + b( i, j) * b( i, k) 
v(j) = -,(k) * v(j) 
sa = sa + v(j) * b(j, k) 

endfor 
lockO 

8 = 8 + sa 
unlock() 

FINISH PARALLEL 

(iii) (Compute the vector w using 6.2.7 in parallel, 
as in Algorithm I part (iv)). 

(iv) (Update Busing 6.2.8 in parallel, 
as III Algorithm I part (v)). 

Endfor 

6.4 Experimental Results 

Results illustrating the performance of the algorithms presented in this 

chapter are reported in this section. These tests used both the simple Matrix 

class used for a general Matrix and a special symmetric Matrix class written 
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so that only half the matrix is stored. With the general Matrix class only 

the lower triangular part is used which wastes storage. These classes were 

used to access the matrices and the computations were carried out using 

both row and column representations of the matrix. This was made easy by 

the use of the C++ class facility. 

The storage allocation is illustrated here using the elements of the matrix 

to indicate the subscript used in the one dimensional array. Both row 

and column storage are illustrated. In the illustrations the elements of the 

matrices represent the subscripts for the corresponding elements in the one 

dimensional array used for storage. For the n x n symmetric matrix only 

the lower triangular part was considered. 

The n x n lower triangular matrix defined by 

{ 
0, 

Bi; = B .. 
~1 , 

j > i 
j'5:i' 

may be represented usmg a one-dimensional array ordered for the 

representation by rows as follows: 

0 
1 2 

Brow = 3 4 5 
6 7 8 9 
10 11 12 13 14 

The same matrix can be represented by columns as follows: 

0 
1 5 

Bcolumn = 2 6 9 
3 7 10 12 
4 8 11 13 14 
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The C++ simple matrix class and symmetric matrix class only vary in 

the way the matrix is stored. In the symmetric matrix class, only the lower 

part of the matrix is stored but the calculation of the subscripts for the 

matrix elements needs more arithmetic than the simple matrix class; so it 

requires less storage but needs extra arithmetic. The value of the subscript 

needed for the simple matrix class is calculated as position = (i -1) *n+ j-1 

for the row representation and position = (j - 1) * n + i-I for the column 

representation. The calculation of the subscript needed for the symmetric 

matrix class is position = (i * ( i-I) /2) + j - 1 for the row representation and 

position = ((j -1) * (2 * n - j + 2)/2) + i - j for the column representation, 

where i and j are indices of the matrix element and n is the matrix size. 

In the results we used the notation Tri for our parallel implementations 

of reduction to tridiagonal form. The numerical results were obtained for 

the three versions outlined in section 6.3. The first method (the simple 

implementation) is indicated by 1p, the second implementation by 2p and the 

third implementation by 3p. The representation of the matrix by columns 

is indicated by the final character t, otherwise the representation is by rows. 

The elapsed time for the reduction of a real symmetric matrix to tridiagonal 

form using each of the implementations was measured. Comparisons were 

also carried out both with and without array bound checking. 

We tested the algorithms using one to ten processors (1,2,4,6,8,10) with 

matrices of sizes 100(100)500. In calculating the results using array bound 

checking for the symmetric matrix class we used a sequential version of 

the algorithm (Tri2) for comparison. For the simple matrix class we used 

a sequential version of the algorithm (Trilt). Similarly, for the results 

without array bound checking and using the symmetric matrix class we 

used a sequential version of the algorithm (Tri3t). These sequential versions 

gave times which were slightly better than those for other versions. Each 
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efficiency calculation was carried out with the same representation and the 

same compiler options. Normally, we expect the efficiency to be less than 

one. 

To show the performance of the three different parallel versions and their 

representations of the matrix by columns and rows, we plot, in figures 6.2 

and 6.3, mean efficiencies against number of processors for the simple C++ 

matrix class, and in figures 6.4 and 6.5 mean efficiencies against number of 

processors for the C++ symmetric matrix class. Figures 6.6 and 6.7 show 

actual efficiencies using 2 processors for the simple C++ matrix class with 

and without array bound checking and figures 6.10 and 6.11 show similar 

plots for 6 processors. Figures 6.8 and 6.9 show actual efficiencies using 

2 processors for the C++ symmetric matrix class with and without array 

bound checking and figures 6.12 and 6.13 show similar plots for 6 processors. 

It can be seen from figures 6.6, 6.7, 6.8, and 6.9 that there is only a 

very small increase in the efficiency values as matrix size increases. Even 

when there is an increase in the efficiency (for example with Tri2p, Tri2pt 

and Tri3p, Tri3pt) , this is followed by a fall in some cases (for example 

with or without array bound checking, the symmetric matrix class using 

2 processors performs as in figures 6.8 and 6.9). On the other hand, the 

efficiency increases slightly with the size of matrix for the simple matrix 

class (see figures 6.6 and 6.7) with or without array bound checking. 

The results generally confirm our expectations, particularly when we use 

the representation of the matrix by rows or by columns (i.e. the transpose 

of the row representation of the matrix). In most cases the different 

representations gave rise to very close efficiency curves when these tests used 

the simple matrix class. This is because similar subscript arithmetic was 

involved for the row and column representation and the other computations 

would be the same with the representations of the matrix columns as well as 
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rows. On the other hand, when these tests use the C++ symmetric matrix 

class the efficiency curve of the transposed versions is marginally better than 

the efficiency curve of the row versions. This improvement did not surprise 

us because as we can see from the formulae for the subscripts of the matrix, 

the calculation of the subscript requires extra arithmetic operations for the 

column representation of the matrix. 

Mean Efficiency 

pr Tri1p Tri1pt Tri2p Tri2pt Tri3p Tri3pt 

1 0.946 0.950 0.904 0.922 0.913 0.925 

2 0.572 0.578 0.828 0.841 0.829 0.844 

4 0.317 0.321 0.714 0.726 0.728 0.740 

6 0.193 0.196 0.602 0.614 0.625 0.640 

8 0.129 0.131 0.495 0.505 0.529 0.537 

10 0.093 0.093 0.399 0.396 0.441 0.449 

Table 6.1 No Check with Matrix Class. 

Tables 6.1 and 6.2 show the mean efficiency of all the three versions. The 

numbers in the tables are efficiency values based on times used to complete 

the reduction to tridiagonal form of an n X n symmetric matrix using a simple 

matrix class and symmetric matrix class. It is obvious from tables 6.1 and 

6.2 that the difference between the two classes is small. The efficiency with 

the symmetric matrix class is marginally better than that with the simple 

matrix class using 1, 2, 4, and 6 processors for Tri2pt and Tri3pt versions 

but not for 8 and 10 processors. Also with the symmetric matrix class the 

efficiency is marginally better than that with the simple matrix class using 

1 processor for Tri1p and Tri1pt versions but not using the other number 
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of processors. In other cases, the efficiency values with simple matrix class 

is marginally better than that with symmetric matrix class for all the other 

versions (except for Tri2p with 4 processors where efficiencies are almost 

identical) . 

Mean Efficiency 

pr Tri1p Tri1pt Tri2p Tri2pt Tri3p Tri3pt 

1 0.937 0.890 0.944 0.872 0.957 0.906 

2 0.628 0.631 0.835 0.752 0.897 0.814 

4 0.364 0.359 0.712 0.681 0.771 0.716 

6 0.240 0.236 0.620 0.591 0.673 0.632 

8 0.169 0.167 0.525 0.508 0.585 0.551 

10 0.121 0.121 0.425 0.425 0.502 0.474 

Table 6.2 No Check with Symmetric Matrix Class. 

For the implementations using the simple matrix class the lower and 

upper triangular parts of matrix B are both stored but we need only update 

the main diagonal and lower triangular matrix, whereas, for the symmetric 

matrix class a lower triangular matrix was used to store B without storing 

the elements above the main diagonal. This may have affected the storage 

pattern but we do not have clear evidence for this. This is shown in table 

6.2. 

It is obvious from the efficiency graphs that the first implementation 

using all representations of the matrix gave very poor times even for large 

matrix sizes and numbers of processors. 

149 



Chapter 6 

1.0 

0.8 

E)' 0.6 
c: 
.~ 
[j 

0.4 

0.2 

Tridiagonal Form 

Algorithms 

~ Trl1p 
~Trl1pt 

-+- Trl2p 
_Trl2pt 

-e:J- Tri3p 
--"!'-- Trl3pt 

O.O-L----.-----------~--------_.----------_.--------__, 

2 

1.0 

0.8 

E)' 0.6 
c: 
.~ 
:e: w 

0.4 

0.2 

0.0 
2 

4 6 8 10 

Number of Processors 

Fig. 6.2 No Check with Simple Matrix Class 

4 6 8 10 

Number of Processors 

Fig. 6.3 Check with Simple Matrix Class 

150 

Algorithms 

~ Trl1p 
~ Tri1pt 

-+- Trl2p 
_ Tri2pt 

-e:J- Trl3p 

--"!'-- Trl3pt 



Chapter 6 

1.0 

0.8 

~ 0.6 
c:: 
Q) 
'0 
:E 
w 

0.4 

0.2 

Tridiagonal Form 

Algorithms 

~Trllp 

-6- Trllpt 

--+- Trl2p 
~ Trl2pt 

-f9- Trl3p 
-4'-- Trl3pt 

O.O-L----,----------.----------,----------,----------, 
2 

1.0 

0.8 

~ 0.6 
c:: 

~ 
UJ 

0.4 

0.2 

0.0 
2 

4 6 8 10 

Number of Processors 

Fig. 6.4 No Check with Symmetric Matrix Class 

4 6 8 

Number of Processors 

10 

Algorithms 

~Trllp 

-6- Trllpt 

--+- Tri2p 
~Trl2pt 

-f9- Trl3p 
-4'-- Tri3pt 

Fig. 6.5 Check with Symmetric Matrix Class 

151 



Chapter 6 

1.0 

0.8 

g 0.6 i_---~~----.... --~==~====~ 
.~ 
:E 
w 

0.4 

0.2 

o.o-r-----------.-----------,,-----------.-----------, 
100 200 300 400 500 

Size of Matrix 

Tridiagonal Form 

Algorithms 

~ Trl1p 
-A- Trl1pt 

-t- Trl2p 
~ Tri2pt 

--E9- Trl3p 

-+- Trl3pt 

Fig. 6.6 No Check with Simple Matrix Class for 2 Processors 

1.0 

~ 0.6 i_---===~===---'t-====~~========::::::€l 
.~ 
:e w 

0.4 

0.2 

o.o-r-----------.-----------.------------,-----------, 
100 200 300 400 500 

Size of Matrix 

Algorithms 

~ Tri1p 
-A- Trl1pt 

-t- Tri2p 
~ Tri2pt 
--E9- Tri3p 

-+- Tri3pt 

Fig. 6.7 Check with Simple Matrix Class for 2 Processors 

152 



Chapter 6 

1.0 

(;' 0.6 
c: 
Q) 
'0 
:E w 

0.4 

0.2 

O.O~----------~-----------.------------.-----------. 

100 200 300 400 500 

Size of Matrix 

Tridiagonal Form 

Algorithms 

~ Tri1p 
~ Tri1pt 

--+- Tri2p 
~ Tri2pt 
-E9- Tri3p 

-+- Tri3pt 

Fig. 6.8 Check with Symmetric Matrix Class for 2 Processors 

1.0 

0.8 

(;- 0.6 
c: 

~ 
UJ 

0.4 

0.2 

Algorithms 

~ Trl1p 
~ Tri1pt 

--+- Tri2p 
~Trl2pt 

-E9- Tri3p 

-+- Tri3pt 
O.o~----------~-----------.------------.-----------. 

100 200 300 400 500 

Size of Matrix 

Fig. 6.9 Check with Symmetric Matrix Class for 2 Processors 

153 



Chapter 6 

1.0 

0.8 

() 0.6 
c:: 
.~ 
:e 
w 

0.4 

0.2 L--~----+----""'--~~ 

o.o~----------~-----------.------------~----------, 

100 200 300 400 500 

Size of Matrix 

Tridiagonal Form 

Algorithms 

~Tri1p 

~ Tri1pt 

-+- Tri2p 
~ Trl2pt 
-e- Trl3p 

----+- Trl3pt 

Fig. 6.10 No Check with Simple Matrix Class for 6 Processors 

1.0 

0.8 

() 0.6 
c:: 
.~ 

m 
0.4 

0.2 L_-----tP---......--------..~--~ 

o.o~----------_.----------_,------------._--------__, 

100 200 300 400 500 

Size of Matrix 

Algorithms 

~Trl1p 

~Trl1pt 

-+- Trl2p 
~ Trl2pt 
-e- Trl3p 

----+- Trl3pt 

Fig. 6.11 Check with Simple Matrix Class for 6 Processors 

154 



Chapter 6 

1.0 

0.8 

>- 0.6 
g 
Q) 
'0 
:E w 

0.4 

0.2 ~--~--~~--~--~ 

o.o-r-----------,-----------,------------r-----------, 
100 200 300 400 500 

Size of Matrix 

Tridiagonal Form 

Algorithms 

~Tri1p 

---A- Tri1pt 

-+- Trl2p 
~ Trl2pt 
-e3- Trl3p 

-+- Trl3pt 

Fig. 6.12 No Check with Symmetric Matrix Class for 6 Processors 

1.0 

0.8 

>- 0.6 
<.> 

j 
0.4 

0.2j...---.... -------$----------~ 

o.o-r-----------.-----------,------------r-----------, 
100 200 300 400 500 

Size of Matrix 

Algorithms 

~Trl1p 

---A- Trl1 pt 

-+- Tri2p 
~Tri2pt 

-e3- Tri3p 

-+- Tri3pt 

Fig. 6.13 Check with Symmetric Matrix Class for 6 Processors 

155 



Chapter 6 Tridiagonal Form 

In addition, in most cases this implementation (Tri1p and Tri1pt) gave rise 

to almost indistinguishable efficiency curves. As we mentioned in the section 

6.2, this is because this version has greater data dependencies which limit 

the exploitation of the parallel system. As we can see from the efficiency 

graphs in figures 6.10-13, the performance of Tri1p and Tri1pt show little 

improvement as the matrix size and the number of processors increase. On 

the other hand, for the second and third implementations (Tri2p, Tri2pt 

and Tri3p, Tri3pt) the efficiency improves as matrix sizes increase. 

6.5 Conclusions 

In this chapter we have investigated some parallel implementations of an 

algorithm for the reduction of a real symmetric matrix to tridiagonal form. 

As expected, the first implementation (Tri1p) is slower than all the other 

versions. This is possibly because in this algorithm more T H READjoins 

are needed. The other reason is that the algorithm uses an extra lock which 

may also lead to extra waiting. 

The efficiency graphs show that the difference between the Tri2p and 

Tri3p implementations is very small, may be less than possible errors in 

measurement, though Tri3p seems to be marginally better. It is notable 

that the third version for larger numbers of processors and for larger sizes 

of matrix gives marginally better results than the second version. This may 

be because of using an extra set of T H READjoins in the second version. 

Even with the extra subscript arithmetic the results of implementations 

using the symmetric matrix class are marginally better than those using the 

simple matrix class. The reason for the marginal improvement is possibly 

due to a smaller storage demand. As we pointed out in the previous 

section, the calculation of the subscripts for the matrix elements needs more 

arithmetic operations in the symmetric matrix class than the simple matrix 
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class. 

Finally, it can be concluded from the experimental results of parallelising 

this algorithm that some minor changes did give some improvements, but 

all the efficiencies obtained were much poorer than those for algorithms 

described in chapter 5. 
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CHAPTER 7 

The Symmetric Tridiagonal Eigenproblem 

7.1 Introduction 

We implement Cuppen's method for finding all of the eigenvalues and 

corresponding eigenvectors of real symmetric n x n tridiagonal matrix T. The 

method uses a partitioning technique which reduces the original problem to 

smaller ones of the same type, by a rank-one modification. Cuppen [17] 

observed that there can frequently be deflation in the updating process as 

the original matrix is rebuilt from the subproblems. Dongarra and Sorensen 

[26] implemented a further deflation technique to make the algorithm more 

efficient and more stable. 

The implementation in [26] always computes the eigenvalues to high 

accuracy, but some specific examples [6],[17] and [26] illustrate that it may 

not compute fully orthogonal eigenvectors. To resolve this problem, Kahan 

[54] suggests computing some key quantities more accurately using simulated 

extended precision. Sorensen and Tang [83] presented an alternative 
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implementation scheme which was inspired by the earlier work of Kahan 

[54]. They showed that this method is stable but that it requires extended 

precision and so is machine-dependent [83]. Gu and Eisenstat [42] suggested 

an alternative method using the same rank-one modification as [83] but 

a different approach to finding the eigenvectors after all eigenvalues are 

computed. This new way makes the simulated double precision unnecessary, 

and they showed that the new method is backward stable. 

The rest of this chapter is organised as follows. In section 7.2 we review 

the description of the divide-and-conquer method presented in [17]. In 

section 7.3 we discuss computing eigenvalues and eigenvectors of a rank 

one modification of a diagonal matrix and exceptional cases are considered 

in section 7.4. In section 7.5 we examine the arithmetic complexity 

of the divide-and-conquer method. In section 7.6 we discuss a number 

of sequential algorithms based on recursive and non-recursive versions. 

We consider parallel implementations of these versions in section 7.7 of 

which four are recursive and two are non-recursive. In addition we also 

consider parallelisation of the matrix multiplication part of the algorithms 

in section 7.7.3. Section 7.8 presents results of some numerical results 

illustrating an experimental evaluation of the effect of deflation on accuracy, 

comparison of the parallel implementations and comparison of the additional 

parallelisation for matrix multiplication. Conclusions are given in section 

7.9. 
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7.2 Cuppen's Divide-and-Conquer Algorithm 

Let us consider a n X n symmetric tridiagonal matrix T as follows: 

a1 f31 
f31 a2 f32 

T= f32 a3 

f3n-l 
f3n-1 an 

Without loss of generality, we will assume f3i 1= O. Using a rank

one modification, Cuppen's Divide-and-Conquer method divides the given 

symmetric tridiagonal matrix T replacing the original problem by two 

problems with smaller matrices. The modification of the matrices is the 

heart of this method. 

The divide and conquer approach is to divide the original problem into 

two simpler subproblems, solve each of these subproblems, and then combine 

these two to form the solution to the original problem. The subproblems 

can be solved in the same way and so the whole problem is recursive. As 

indicated in [17], we can either carryon till we arrive at trivial 1 X 1 or 

2 X 2 eigenvalue problems, or using an alternative method such as QR to 

calculate the eigenvalues and the eigenvector matrix of small no X no blocks. 

Here we only use the first alternative. 
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T can be written as 

o 

o 
1 1 

1 1 

o 

o 

(7.2.1) 

where 1'1 and 1'2 are of order n1 > 1 and n2 > 1 with n1 + n2 = n, f3 is the 

nih off-diagonal element of T and the unit vector w is given by 

1 T 
w = v'2(0 ... 0 1 I 1 0 ... 0) (7.2.2) 

where the non-zeros are in the i = n1 and i = n1 + 1 position. 

This may be written T = l' + 2f3wwT where 

T -. - = (1'1 0) 
o T2 

Let us assume that the eigenvalues and eigenvectors of l' are known, that 

is we have an orthogonal Q and diagonal D such that l' = Q DQT . The 

eigenvalues of l' consist of eigenvalues of 1'1 and 1'2. Suppose that the 

solutions of the eigenproblem for the 1'1 and 1'2 matrices are given by 

- - - -T - - - -T 
T1 = Q1D1 Q1 and T2 = Q2D2Q2 
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which gives 

For the next part of the process D and Q need to be reordered so that 

the new diagonal elements are in ascending order. Suppose the permutation 

matrix P is such that PDP has diagonal elements in order. We first permute 

the elements of D and Q in such a way that we will replace the D with a 

new D and the Q with a new Q. If D = PDP, then D = PDP and 

T = QPDPQT so if we define Q = QP, then we have the following form 

where p is the scalar 2f3 and z is the real vector of order n given by 

-T 
z=Q w. 

(7.2.4) 

(7.2.5) 

From (7.2.4) it suffices to consider finding the eigenvalues and 

eigenvectors of the matrix D + pzzT. A scheme for doing this is outlined in 

[26]. We will consider this scheme as a numerical approach for calculating 

the eigensystem in the next section. 

Recursion is a very important tool in which a function invokes itself 

and forms a natural means for implementing divide and conquer algorithms. 

Such algorithm can simplify the solution of a problem by enabling us easily to 

divide its solution into manageable pieces. A recursive solution to a problem 

has to have at least one base case in order to terminate the recursion [80]. 
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The computation consists of two stages for both recursive and non

recursive methods. In the first stage the subdivisions are formed. This 

stage can also be further divided into two steps. The first step subdivides 

and modifies the matrix, and in the second step the quadratic equations 

for sizes the 2 X 2 eigenvalue problem are solved. In the second stage, the 

method looks for ways to solve the original problem in terms of the pieces, 

that is after the solution of the pieces, the sub-solutions must be combined 

together in this stage. 

7.3 Computing Eigenvalues and Eigenvectors of iJ + pzzT 

In this section we consider the calculation of the eigenvalues and 

eigenvectors of a matrix iJ + pzzT. The modification is based on the 

following theorem due to Wilkinson [95]. Let C = iJ + pzzT, where iJ 

is diagonal, IIzl12 = 1. Let d1 < d2 < ... < dn be the eigenvalues 

of iJ, and let Al < Al < ... < An be the eigenvalues of C. Then 

Ai = di + PJ.Li, 1 < i < n, where :Ei=l J.Li = 1, and 0 < J.Li < 1. Moreover, 

Al < d1 < A2 < ... < An < dn if p < 0 and d1 < Al < d2 < ... < dn < An 

if p > o. Finally, if the di are distinct and all the elements of z are nonzero, 

then the eigenvalues of C strictly separate those of iJ. 

In this section we will assume the di are distinct and also that all Zi 

non-zero. Consider the matrix equation 

(7.3.1) 

where A is an eigenvalue and q is an eigenvector. The above equation can 
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be written as follows 

(D - )..I)q + p(zT q)z = 0 (7.3.2) 

where the scalar zT q f:. 0 because of the assumption that).. f:. di. Multiplying 

(7.3.2) on the left by (D - )..I)-1, gives 

multiplying (7.3.3) by zT / zT q on the left as zT q f:. 0, we obtain 

).. must satisfy (7.3.4) and this equation may be written as 

n z~ 
f()..) = 1 + P L _ z = 0 

i=l di - ).. 

(7.3.3) 

(7.3.4) 

(7.3.5) 

since (D - )..I)-l z = diag(d:~J. This equation which is referred to as the 

secular equation in [38], gives the eigenvalues of D + pzzT as the roots 

of f()..) = O. There are number of ways to solve the secular equation. 

For simplicity, we found the numerical solution of equation (7.3.5) by the 

bisection method. Newton's method is another possibility but since f()..) is 

a rational function of ).., Bunch et al [6] suggest a method based on rational 

interpolation. Li [63] suggested a new improved method based on this idea. 

Let us look at the behaviour of the function f. It is a rational function 

with the n distinct poles db d2 , ••• , dn . The derivative of f is given by 

(7.3.6) 



Chapter 7 The Symmetric Tridiagonal Eigenproblem 

If p < 0, !' (A) is negative for all values of A which are not poles. Therefore 

each continuous piece of f is strictly decreasing. As A approaches the pole 

- h 2 
di, the function is dominated by the it term (d:~>')' Since each of the terms 

z2 
--..--=.L-( • ) tends to zero as A ---+ ±oo, so 
di->' 

lim f(A) = 1, 
>.~±oo 

since also 

lirp f(A) = -00 
>'~di-

and 

Hrp f(A) = +00 , 

>'~di+ 

it follows that if p < 0 then the secular equation f(A) = 0 has exactly 

one solution between each pair of poles and one additional solution to the 

left. Let the zeros of f(A) (i.e. the eigenvalues of iJ + pzzT) be denoted by 

Al < A2 < ... < An [40]. This allows us to conclude that if p < 0 then f 

has exactly n roots, one in each of the intervals 

A similar argument shows that if p > 0 then f has precisely n roots, one in 

each of the intervals 
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For p < 0 the graph of f(>-.) takes the form: 

dn-I d n 

!~ L ______ _ I _______ ...1 

A. I 

2 

Fig. 7.1 f(>-.) = 1 + P L:i=l d;~A in the case p < o. 

for p > 0 the graph is reflected in the y axis. 

After calculating the eigenvalues of iJ + pzzT, it is not difficult to 

compute the eigenvectors. Using equation (7.3.3) for any eigenvalue >-. we 

can take the corresponding eigenvector as 

q = c(iJ - >-'1)-1 z 

where c = ±J f'fA) is a nonzero scalar chosen to normalise the vector. Thus 

for each eigenvalue >-., the corresponding eigenvector has components given 

by 

1 <i < n. (7.3.8) 
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The above shows that we can find an orthogonal Q and a diagonal D such 

that iJ + pzzT = QDQT. It follows that the original matrix Tusing (7.2.4) 

can be expressed in the form T = Q DQT, where 

Q=QQ, (7.3.9) 

that is we have solved the original problem. 

7.4 Exceptional Cases 

In section 7.3, eigenvalues and eigenvectors are calculated when the 

intermediate matrix iJ has distinct components along the diagonal and the 

components of z are not zero. If some of the diagonal components of iJ 

are equal or some components of z are zero, then we can use a deflation 

technique. For equal diagonal components this technique involves altering 

the Q matrices as there is additional freedom which can be used to make 

some of the Zi zero. 

As an example consider the 4 X 4 symmetric tridiagonal matrix 

2 -1 0 0 

-1 2 -1 0 
T= 

0 -1 2 -1 

0 0 -1 2 

Then for p = -2, 

~C ~l ) (~l ~l). Tl = and T2 = 
-1 

167 



Chapter 7 The Symmetric Tridiagonal Eigenproblem 

These two submatrices have the same eigenvalues 1.382 and 3.618, so the 

intermediate matrix iJ is as follows: 

1.382 0 0 0 

- (DJ ~.) -
0 3.618 0 0 

D= 
0 0 0 1.382 0 

0 0 0 3.618 

and d1 = d3, d2 = d4. Let us choose a permutation matrix denoted by P as 

100 0 

o 0 1 0 
P= o 100 

000 1 

We first permute the elements of jj and Q in such a way that new diagonal 

elements are in order 

dl 0 0 0 

D=pjjp= 
0 d2 0 0 

0 0 d3 0 

0 0 0 d4 

where dl = db d2 = d3, d3 = d2, and d4 = d4 and to correspond the first 

row of Q2 and the last row of Ql are interchanged so that 

where Q = QP. Therefore, 

T = Q( D + pzzT)QT 
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where z = QT w. 

Note further that 

where H is any orthogonal matrix of the form 

with iIi, 2 x 2 matrices for this examples. Also iJ + pzzT will have the same 

eigenvalues as 

(7.4.1) 

I.e. HiJHT +pz*z*T when z* = Hz. Using (7.2.4) we can write the original 

matrix as follows 

The orthogonal matrix H may be chosen so that z* has some zero 

components, that is, it looks like z* = (Zl 0 Z3 O)T in the example. Then 

the problem iJ + pz* z*T is as follows: 

zi z*2 
1 0 z*z* 1 3 0 

0 
O)=iJ+ p 

0 0 0 0 
D+p ( zi 0 z3 

z*z* z*2 z* 0 0 3 3 1 3 

0 0 0 0 0 

Let H be an orthogonal Householder matrix which transforms the first pair 

of the components of z with iI1(Zl, Z2)T = (zi, O)T and the second pair of 
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the components of Z with H2(Z3, Z4)T = (zj, O)T. This implies that 

If we now choose a new Q such that new Q old Q H T , then 

In general when we have k of the components of D equal, that is 

the basis for the eigenspace of these eigenvalues is not unique and can hence 

be changed. Let us consider the k x k submatrix denoted by R 

R= +p ( Zi+l Zi+2 . .. Zi+k) 

Let H be an orthogonal Householder matrix which transforms 

(Zi+l Zi+2 ... Zi+k)T to (zi+l 0 ... O)T. Then, since the identity matrix 

does not change with Householder transformation, i.e. HI HT = I, 

+p (Zi+l 0... 0). 

o 
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Then 

where z* has zero values in the i + 2, i + 3, ... ,i + k positions so that di 

is a eigenvalue of multiplicity k - 1 for R. Alternatively all elements except 

Zi+k could be made zero. 

After permuting the columns of Q, the diagonal elements of D and 

introduction of the zero components of z, it follows that corresponding to 

the zero components of Z then D and iJ have common eigenvalues where D 

are the eigenvalues of T. The original matrix T is expressed as 

where matrix Q comes from (7.3.9). The eigenvalues of the original matrix 

are the diagonal components of D while the eigenvectors of T are the 

columns of 

Q=QQ. 

In effect this transformation allows the (i + 2 )th to (i + k )th rows and 

columns to be ignored. Consequently we may assume that if di = dj for 

some i and j then Zi = 0 or Zj = 0 where j = i + 1 [17]. Furthermore, equal 

iJ values along the diagonal components result in a significant reduction in 

the work required to find the eigenvalues and eigenvectors of iJ + pzzT. The 

above exceptional cases assume that k eigenvalues are exactly equal. 

Suppose Zi = 0 for some i. Therefore, if q = (ql, q2, ... , qn)T is an 
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eigenvector of iJ + pzzT where q is a column of Q associated with some 

eigenvalue A =J di, then qi = 0, so column i of Q is equal to column i of Q. 

Otherwise column j of Q is Q times column j of Q. 

With exact arithmetic only k = 2 should occur as no more than two 

eigenvalues of iJ should be identical. Deflation may also be used when 

di are approximately equal. In this case it is possible that k > 2 may 

occur. It should be noted that in this case the Zi are still set to exactly 

zero. The deflation technique for approximately equal eigenvalues has been 

investigated in [26]. 

7.5 Arithmetic Complexity 

We now consider the operations count in the divide-and-conquer 

algorithm. To determine the arithmetic complexity of the algorithm, we 

multiply the statement count by the number of times that the statement is 

executed. Here we examine the total count of multiplications and divisions 

required to compute the eigenvalues and corresponding eigenvectors of a 

symmetric tridiagonal matrix when no deflation is used. 

We first consider the join of two halves of a matrix of size n. The 

arithmetic complexity of this algorithm can be formed as follows: 

• Cuppen [17] makes the assumption that the root finding part of the 

algorithm requires on average t function evaluations per zero. In one 

rank-one modification step of order n this contributes tn2 operations 

(see section 7.3.5 of [26]). 
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• The calculation of z requires n operations (see section 7.2.5). The 

calculation of n eigenvectors of D+pzzT costs 3n2 operations (see section 

7.3.8). 

• Finally, the matrix multiplication of Q and Q require n 3 operations (see 

section 7.2.9). For the matrix of order n, the total computation for 

tridiagonal matrix T is 

For the complete problem recursive and non-recursive versions have the 

same operation count. The eigenvalue problem T of size n x n is solved in 

terms of two independent ~ x ~ sized sub-problems, which in turn are solved 

in terms of four independent I x I sized sub-problems, and so on. Thus, 

the total work will be 

l(n) + U(n/2) + 4l(n/4) + ... 

Note that since l(n) '" n3 the total operation count will be 

As can seen in the approximate total operation, most of the work takes place 

at the top level. 

It should be noted that a significant portion of the time in the eigenvalue 

problem algorithm is spent in computing the columns of the eigenvectors 
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using (7.3.8) and multiplication of the Q and Q matrices (7.3.9). If only the 

eigenvalues are required, then we can do better by saving the n 3 operations 

required to compute the eigenvectors. Details of this are given in [91]. 

7.6 Sequential Algorithms 

In this section we first present a recursive version of the algorithm that 

calculates all the eigenvalues and corresponding eigenvectors of a symmetric 

tridiagonal matrix T. Then non-recursive implementations of this algorithm 

are considered. 

In the recurSIve verSIOn of this algorithm the function to find the 

eigenvalues and corresponding eigenvectors includes two calls of itself with 

different parameter values. Suppose we consider a submatrix with its first 

diagonal element in position index st and last index fin. We can partition 

this matrix into two submatrices 1'1 and '1'2 where matrix '1'1 has subscript 

st : mid and 1'2 has subscript ( mid + 1 ): fin, where mid refers to the 

middle index, that is mid = sHlin and st < mid < fin. 

For clarification purposes, we can represent the recursive process as a 

binary tree with each node representing a rank-one tear and hence a partition 

into two subproblems. It consists of a node called the root together with 

two binary trees called the left subtree and the right subtree of the root. 

Thus, for example, in figure 7.2, a matrix of size 61 X 61 is on the top level 

and the level number is zero and submatrices of size 31 X 31 and 30 X 30 

are on the next to top level with level number one. The height of a tree is 
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the maximum level among all nodes in the tree. The tree in figure 7.2 is 

of height 5 (including submatrices of size 1 X 1 and 2 x 2). Pictorially, we 

use a tree illustrating the partitioning of the original matrix into a number 

of submatrices using a number of levels. Thus, there are two symmetric 

tridiagonal submatrices for which we need to find eigenvalues at each node 

of the tree. For example consider a matrix size n = 61. The numbers in the 

diagram indicate the sizes of the matrices. Subdivisions are represented by 

the tree in figure 7.2. 

61 

Fig. 7.2 Computation Tree. 

This tree illustrates that if the matrix size is an odd number, then 

the partitioning scheme will not produce equal sized symmetric tridiagonal 

submatrices at the next level. It also shows that at the lowest level (i.e. in 

the fifth level) there are 32 submatrices and some submatrices are 1 x 1 and 
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some 2 x 2 which are both trivial eigenvalue problems. In the case of a 1 x 1 

submatrix, the intermediate eigenvalue is the element of that submatrix and 

for a 2 X 2 submatrix the eigenvalues are the solution of a quadratic equation. 

Now let us begin by considering the tree of recursive calls and determine 

the order in which the combinations are actually done. As mentioned before, 

there are two recursive calls which are required at each subtree of the tree 

in figure 7.2 to solve eigenvalue problems. Each of these subproblems may 

be solved independently without fear of data conflict. The combination of 

subproblems is started at the highest level (i.e. smaller submatrices). As 

soon as the first two sub-matrices which are represented as the leftmost 

two nodes in the tree are solved, they are then combined. Then the next 

two sub-matrices are combined, and afterward the resulting sub-matrices of 

these are combined and the node will become a node at the previous level. 

In this way the process continues building up larger sizes of sub-matrix. 

We also considered two non-recurSIve verSIOns. The important 

distinction between them is that the partitioning in the two implementations 

is different. The first version uses a different partitioning to the recursive 

version as it seemed simpler to implement. The matrix is partitioned into 

2 x 2 submatrices from the left. If the original matrix size is even then the 

submatrices will all be of size 2 X 2. If its size is odd then the submatrices will 

also be of size 2 X 2 except for the last one which will be 1 X 1. The second 

implementation uses the same partitions as the recursive method but uses 

a linked list to store the submatrices. The motivation for a non-recursive 
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version was to compare this with the recursive version and to investigate 

the relationship between the recursive and non-recursive implementations 

of Cuppen's divide-and-conquer method. 

The first non-recursive version uses the simple partitioning scheme 

carried out at the lowest level. This algorithm is carried out in stages 

corresponding to each level. The first part of the algorithm carried out 

partitioning and modification of the matrix followed by solution of the 

quadratic equations. The second part of the algorithm combines the sub-

solutions for pairs of submatrices in each successive level. The algorithm is 

as follows: 

i, j, k are subscripts 
nb is final index of the matrix 
a a vector - matrix diagonal 
j3 a vector off-diagonal elements of the matrix 

j = OJ 
(this is needed for nb < 2 case) 
for (i = 2 j i < nbj i = i + 2) 
{ 

} 

(modify the matrix) 
a(i) = a(i) - j3(i)j 
a(i + 1) = a(i + 1) - j3(i)j 

(solve quadratic equation) 
quadr( i-I, i, a, j3, ld, Q)j 
J = Zj 

(solve quadratic equation or 1 x 1 matrix) 
quadr(j + 1, nb, a, j3, ld, Q)j 

(submatrices join process) 
k = 2j (k represents submatrix size at current level ) 
do 
{ 
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} 

} 

for (i = 1; i < = nb - k; i = i + 2 * k) 
{ 

ma = i; me = i + k - 1; mb = i + 2 * k - 1; 
if (mb > nb) mb = nb 
p = 2 * {3(mc)j 

calculate wand z = QT w usmg (7.2.2) and (7.2.4) 

use deflation if applicable 

find the new eigenvalues 

calculate qi using (7.3.8) 

multiply Q = QQ using (7.3.9) 

k = 2 * kj 

while (k <= nb + 1); 

It is important to note that the actual sizes of the submatrices used 

by this "simple non-recursive" version are not the same as those used by 

the recursive implementations. In order to illustrate the workload (i.e. the 

actual size of the original matrix and submatrices) of the recursive (tree) 

and simple non-recursive (tnree) versions we need to find out the relative 

costs of matrix multiplication for the sizes of the matrices which are used in 

this work. For simplicity, at the top and next to top level the work is 

(7.6.1) 

where n is the original matrix size and nl and n2 are the sizes of the 

sub-matrices. Note that for the calculation of the relative costs of matrix 

multiplication at the top (e.g. matrices of size n X n ) and next to top (e.g. 

matrices of size n/2 X n/2 and n X n) levels the formula is: 

n 3 + n~ + n~ 
1.25n3 (7.6.2). 

We will particularly consider the relative cost of the matrix sizes 

100 X 100, 200 X 200, 300 X 300, and 400 X 400 for the matrix multiplication. 
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For n = 100,200, and 400, the ratio is approximately 1.047. Similarly, for 

n = 300, the ratio is approximately 1.300. 

For a further example we shall consider an extreme case. Suppose that 

we have the original matrix of size 65 X 65. In the simple non-recursive 

version the last combination is a 64 X 64 with a 1 X 1, while in the recursive 

implementation this would be a combination of a size 33 X 33 with 32 X 32 

at the top level. For n = 65 the ratio is approximately 1.563. So we can 

conclude from the above calculation of the operation costs that the simple 

non-recursive version involves much more work than the corresponding 

recursive version. The former version also requires an extra level for some 

matrix sizes. 

It is clear that the relative cost here depends on the size of the matrix i.e. 

how evenly or nearly evenly it is partitioned in the algorithm. In general, 

a lower bound for the relative cost of the work is 1 for matrices with size a 

power of 2 and an upper bound is 1.8 for matrices of other sizes. 

The second non-recursive version used the same partition as the 

recursive version and used a linked list structure to accomplish this. This 

version can be run in virtually any programming environment but the 

recursive implementation obviously requires one that supports recursion. 

Some programming languages, such as FORTRAN and BASIC, do not 

support recursion [59]. Furthermore, the non-recursive algorithm is also 

useful even when the programming language used supports recursion, as 

loops are usually more efficient than recursive calls. 

The first step carried out in this verSIOn of the algorithm IS the 

partitioning scheme and modification of the original matrix. The 

partitioning is carried out till the submatrices are of dimension 1 x 1 or 

2 x 2. 
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Conventional linked lists are described, in [80]. Each node in a linked 

list contains both the list user's data and an explicit link to the next node 

using a pointer. We can depict a list not as a sequence of contiguous entries 

but as a sequence of entries in an order that is determined solely by pointers 

leading from one entry to another. Going through this sequence is called 

traversing a list. To traverse a list, we must start at the list head and follow 

the list pointers. Conventionally, the last node of the list is marked by a 

Null pointer. An empty linked list is likewise represented by a Null pointer. 

Figure 7.3 illustrates these conventions. Using a linked list structure in 

the algorithm allows one to avoid data movement that would otherwise be 

necessary to insert or delete an item from a list. 

To illustrate how basic linked list primitives might be implemented in 

C++, we begin by precisely specifying the format of the list nodes. The 

following declaration illustrates the linked list in C++ 

typedeJ struct nodepars * PtrNode; 
struct nodepars 
{ 

}, 

int st; 
int fin; 
int lev; 
PtrNode link; 

The C++ name for a record is struct and the structure type allows the 

programmer to assemble several items of data in a single structure, which is 

very similar to a Pascal record. Each node in the linked list used here is a 

record containing the position of the first and last diagonal elements of the 

submatrices and level of the subdivision and a link to another node. The 

st is the position of the first element and fin is the last diagonal element of 
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the submatrix. For example, from figure 7.3, st = 1 and fin = 2 in the first 

node and st = 3 and fin = 3 in the second node and so on. lev indicates the 

level of the node in the binary tree, and link is a pointer to point to the next 

node. That is for the original matrix lev = 0 and every time a subdivision 

is made lev is incremented by one. 

Figure 7.3 illustrates how our data can be represented as a linked list. 

The list consists of a sequence of nodes linked by pointers. Each list contains 

an item of data and a link to the next node. As an example in figure 7.3 the 

representations of the list is given for a 9 x 9 matrix after all subdivisions 

have been carried out. 

r--

lev=3 lev=3 lev=2 lev=2 lev=2 
List -~ 1,2 -~ 3,3 - --;. 4,5 ------'J>o 6,7 It -~ 8,9 Nul 

'---

Fig. 7.3 Linked list with pointers indicating order of items. 

The submatrices are stored as a list in both the partitioning and the 

modification stage. In the linked list implementation space is allocated 

dynamically. This invokes a call to the constructor for the type. The nodes 

are actually created only when the function new is called. The following line 

of code is used for such a construction: 

ptrb = new nodepars(mid + 1, fin, lev + 1,ptr- > link) 

where lev is level number of the partition, and ptr- > link is a pointer 

which points to the next node. (The (- » notation is used in C++ to 

provide access to the members of a structure via a pointer.) 
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The submatrices are joined in the second part of the algorithm. In 

order to combine submatrices, two integers are kept for checking the level 

number; these are lev which indicates the level of the submatrix for each 

node in the tree and mlv which indicates the maximum level of the nodes 

in the whole list. The list is searched starting from its head for the first 

pair of adjacent nodes with the same level number as the maximum level 

number (lev == mlv). The matrices corresponding to the two nodes are 

then joined, then the second of the nodes is deleted from the list and the 

first of the nodes becomes a node with lev decremented by 1. When deleting 

a node from the list it is returned to free store using the delete operator. 

The node (submatrix) joining process proceeds to the next level of the tree 

once the combination of all the nodes with lev == mlv level have been 

completed. This occurs when the Null pointer is reached in the traverse of 

the list, at which point the mlv (maximum level) number is decremented. 

Note that the nodes with equal maximum level number always occur in 

pairs, as a consequence of the way the tree is constructed. 

7.7 Parallel Implementations 

We consider parallel implementations of the Symmetric Tridiagonal 

Eigenproblem, discussed in the previous section. The algorithms have some 

natural parallelism which can be made use of in both the recursive and 

the non-recursive versions. In section 7.6, the discussions help to see and 

understand how to implement parallelisation of these algorithms. 
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7.7.1 Recursive Implementations 

We consider four variant recursive parallel implementations. As 

mentioned in section 7.5, the function makes two calls to itself and both 

parts of the calculation are independent so that these calls can be done in 

parallel without fear of data conflicts. 

In the first implementation these calls are made usmg two 

"THREADcreate"s and are terminated with two "THREADjoin"s, which 

act as a barrier. 

The second recursive parallel implementation was designed to reduce 

the number of new threads created from that in the first implementation. 

The first call is done by THREADcreate and the second is a conventional 

call. 

The third recursive implementation attempts to avoid creating more 

threads than processors. This can be done by keeping a count of the number 

of THREADcreate's. The count indicates the number of threads that have 

been created. If the count is less than the number of processors then this 

count is incremented and a "THREAD create" call is made; otherwise a 

conventional recursive call is made. The termination is done with one 

"THREADjoin" for each THREADcreate. The thread count is immediately 

decremented after the "THREADjoin". As this count is used by different 

processes, a lock is used when both incrementing and decrementing the 

count. 

In the fourth implementation we considered another approach to avoid 
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creating more threads than processors. The process is carried out by using 

a counter to count the level of recursion and this level is multiplied by 2 

after each recursion. The fourth implementation only creates new threads 

at the top levels, and because it only checks the level it does not need to 

use a lock so that it reduces the amount of interprocessor communication. 

7.7.2 Non-recursive Implementations 

We consider parallel implementations of the two non-recursive versions 

outlined in section 7.5. The first one uses the simple partitioning scheme 

carried out from right to left at the lowest level. This version is carried out in 

stages corresponding to the level. In the first part the algorithm carried out 

partitioning and modification of the original matrix sequentially. Solution of 

the quadratic equations is then carried out in parallel. When the first part is 

completed the second part of the algorithm combines pairs of submatrices, 

and this is carried out in parallel. 

The second implementation uses the same partitions as the recursive 

method but a linked list is used to store information about the submatrices. 

In the first part the modifications to the original matrix are carried out 

sequentially but all the quadratic equation calculations are carried out in 

parallel. When the first part is completed, then the submatrix joining is 

carried out in parallel in the next part. 

The parallelisation of the first implementation IS straightforward. 

It simply involves parallelising a loop using "THREADcreate" and 
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"THREAD join". In the first part of the parallel implementation (quadratic 

equations) threads are allocated to tasks in a predetermined (scattered) 

ordering. We define task i to be the solution of the quadratic equations 

formed from rows and columns i and i + 1 of the matrix. The thread chooses 

pairs of 2 x 2 matrices and solves the corresponding quadratic equations until 

there are no more pairs of matrices to be allocated. 

The submatrices are combined in the second part of the algorithm. 

The combination of the pairs is carried out from left to right until the 

end of the list. In the second part of the parallel implementation threads 

are also allocated to tasks in a predetermined (scattered) ordering. We 

also define task i at the level k where the submatrix size is k to be 

the combination of the sub-solutions formed from rows and columns with 

subscripts ( i, i + k -1 ), ( i + k, i + 2k -1 ). When k = 2 then the sequence 

of pairs will have indices ( i, i + 1 ), ( i + 2, i + 3 ) and so on. In the 

parallelisation of the combination process, thread j carries out the following 

tasks for (i = na + (2 * k * (j - 1)); i <= nb - k; i+ = 2 * pres * k), where 

k is submatrix size (k = 2,4,8, ... ), na is the first index of the matrix, pres 

is number of processors, and j is the thread number. 

The process is carried out with the step size (i.e. 2 * k * pres) increasing 

in value by a factor of 2 for each consecutive level. This allows the pre

allocation of tasks to threads which should reduce the amount of inter-thread 

communication as no lock is needed for the task allocation in this non

recursive version. This organisation is simple to implement in parallel. This 
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algorithm, in addition to the problem discused for the sequential version, 

however, has a problem with lack of balance when the upper levels of the 

tree are reached (if n is not a power of 2). 

In order to illustrate the allocation of the task to threads (i.e. the actual 

size of the submatrices) of the recursive (.erecp ) and simple non-recursive 

(.enrecp ) versions, we can calculate the relative costs of matrix multiplication 

at the top two levels using 2 processors with a modification of (7.6.1), that 

IS 

.enrecp( n) _ n 3 + n~ 
) 

- 3 .erecp(n 1.125n 
(7.7.2.1). 

where nl is the larger of the two submatrix sizes. 

We need to find out the relative costs of matrix multiplication for 

the matrix sizes tested in this work using the formulae (7.7.2.1). For 

n = 100,200, and 400 size of matrices the ratio is approximately 1.122. 

Similarly, for n = 300 size of matrices the ratio is approximately 1.441. 

The parallel relative costs is larger than the sequential one, because the two 

levels can be done simultaneously by 2 processors. 

When we consider the matrix multiplication ratio for 2 processors for 

the extreme case with n = 65, the ratio of .enrecp( n) and .erecp( n) versions is 

approximately 1.728. 

The second version uses the same partitioning scheme as in the recursive 

implementations, and parallelises the sequential linked list version described 

in section 7.6. The parallel version of the linked list implementation carries 

out the partitioning and modification of the original matrix sequentially. 
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Solving the quadratic equations in the first part and combining the 

submatrices in the second part of the algorithm are done in parallel. 

The first part of the parallel implementation finds the solution of the 

quadratic equations. The allocation of tasks (i.e. quadratic equations) to 

threads is done in a pre-determined way. The tasks are allocated to threads 

by searching from the head of the list for the first pair of nodes. This process 

continues until the head of the list reaches a Null pointer. 

The second part of the implementation carries out the combination of 

the sub-matrices. In addition to keeping the integers (lev and mlv) as in 

the sequential linked list version, a flag atv (active) is kept in the parallel 

implementation, its purpose will be explained later. It is important to clarify 

that the level (lev) and the active flag (atv) are associated with each node 

(submatrix) while the maximum level (mlv) is associated with the whole 

list, i.e. there is an atv flag in each node. The submatrices are allocated 

to threads by each thread searching from the head of the list for the first 

pair of nodes with the same level number as the maximum level number 

(lev == mlv). The submatrices are combined, as in the sequential version. 

Then the second of the two nodes is deleted from the list and the first of the 

nodes will become a node at the previous level of the list. When the current 

pointer points to Null, then mlv is decremented and the current pointer is 

reset to point to the head and a new level is started. Whenever a submatrix 

join process is carried out the lev number is decremented but mlv is only 

updated when all submatrices on that level have been allocated but not 
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necessarily completed. Updating of the level number (lev) and maximum 

level number (mlv) was done by only one thread at a time. We achieve this 

using a lock. The list updates must also be done by only one thread at a 

time, and again this is accomplished using the lock. The flag atv (active) 

is kept in this parallel version and is initially set to FALSE for each node. 

It is set to TRUE whenever a node is being processed. This is needed to 

avoid the possibility of a THREAD attempting to start a new level from 

using a node which is not yet ready. If a thread finds a node with the flag 

atv==TRUE it terminates. Because this phenomenon is only likely to occur 

at the lower levels (i.e. large submatrix sizes) and at those levels where there 

are likely to be plenty of threads it seems sensible to terminate the threads 

rather than to look for further work. The submatrix join process continues 

until the mlv value (maximum level number) reaches zero and (head- >link 

== Null). 

Both the quadratic solution and submatrix combination part is 

terminated with "THREADjoin" s, which act as barriers. Based on this 

discussion, we depict below the parallel non-recursive version using a linked 

list in the following code. This is used by each thread for the submatrix 

combination process. In this version pars- > indicates the shared variables 

in the code below. 

int mlv, lev; 
PtrNode ptr,ptra; 
PtrNode head = pars- > head; 
char stop = FALSE; 
ptr- > atv = FALSE; 
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mlv = pars- > mlv; 
while ((pars- > head- > link! = NULL)&&(!stop)) 
{ 

pars- > lck.lockO; 
ptr = pars- > ptr; 
lev = ptr- > lev; 

if (ptr! = NULL) 
{ 

stop = ptr- > atv; 
if (!stop) 
{ 

if (lev == mlv) 
{ 

} 

ptra = ptr- > link; 
if (ptra! = NULL) 
{ 

} 

if (ptra- >atv) 
{ 

} 
else 
{ 

} 

stop=TRUE; 
pars- > lck. unlock(); 

ptr- >atv=TRUE; 
pars- >ptr=ptra- >link;/ /for other processors 
pars- >lck.unlock(); 
(start to update the submatrices join process) 
join{ ptr,pars); 
pars- >lck.lock(); 
ptr- > fin =ptra- > fin; 
ptr- > link=ptra- > link; 
ptr- >lev=ptr- >lev-l; 
ptr- >atv=FALSE; 
pars- > lck. unlock(); 
delete ptra; 

else 
{ 

pars- >ptr=ptr- >link; 
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} 

pars- >lck.unlock{}; 
} 

} 
else 

} 
else 
{ 

} 

pars- > lck. unlock{}; 

pars- >ptr=head; 
pars- >mlv=mlv-l; 
pars- > lck. unlock{}; 

7.7.3 Additional Parallelisation in Matrix 

Multiplication Part QQ 

/ / stop TRUE 

In addition to the algorithms in sections 7.7.1 and 7.7.2 concerning 

parallelisation of the recursive and non-recursive implementations, we also 

parallelised the matrix multiplication part of the algorithms using (7.3.9) 

in all the above parallel implementations. As observed in section 7.5, a 

significant portion of the time in the eigenvalue problem algorithm is spent 

in computing the product of the Q and Q matrices. The products are carried 

out by a nest of loops, the first loop (subscript) is for the row of Q and the 

second loop (subscript) is for the column of Q. The Procedure Matrix 

Multiplication is the same for both the recursive and non-recursive versions. 

It is also important to point out that allowance for the effect of deflation is 

included. The parallel matrix multiplication part of the algorithm is given 

below. 

Procedure MATRIX MULTIPLICATION 
na is first index of the submatrix 
nb is last index of the submatrix 
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prcount is the thread number 
prcs is number of processor (threads) 

if (lev < prcs) 
{ 

START PARALLEL SECTION 
for (i = na + prcount - 1; i <= nb; i = i + prcs) 
{ 

for (j = na; j <= nb; j + +) 
{ 

if (z(j) = _ 0) 
Q( i, j)=Q( i, j) 

else 
{ 

for (k = na; k <= nb; k + +) 
Q(i,j) = Q(i,j) + Q(i,k) * Q(k,j) 

} / /endelse 
} / /endj 

} / /endi 
FINISH PARALLEL SECTION 

} / /endif 

else 
{ 

(matrix multiplication zs done sequentially) 
} / /endelse 

For the matrix multiplication the allocation of the work to threads has 

been done in a pre-determined way. We consider here an approach similar to 

the fourth recursive parallel implementation in order to avoid creating more 

threads than processors at the lowest level. This process is carried out by 

using a counter for the level of the sub-matrices and this level is multiplied 

by 2 after the completion of each level. This enables parallelisation of matrix 

multiplication to be only used at the top levels. The parallel structure is 

controlled in the following manner: if the level number (lev) is less than 

the number of processors then the matrix multiplication is done in parallel, 

otherwise it is done sequentially. 
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7.B Experimental Results 

In this section we present and analyse the effect of deflation on the 

accuracy of the sequential recursive and non-recursive versions in sub-section 

7.8.1. A comparison of the results of the recursive and non-recursive parallel 

implementations outlined in the previous sections is given in sub-section 

7.8.2. An extra comparison is also presented for the results of the additional 

parallelisation in the matrix multiplication part in sub-section 7.8.3. 

7.B.1 Comparison of the Effect of Deflation on 

Accuracy 

This section presents an experimental evaluation of the effect of deflation 

on accuracy of the eigenvalues (i.e. the accuracy of the eigenvectors are not 

measured). A number of test matrices were used to test Cuppen's algorithm 

since the amount of deflation in this method depends on the test matrix type 

and this affects the timings. 

Tables 7.1 and 7.2 show the raw times, deflation counts and the accuracy 

for several orders of matrix types [-1, 2, -1] and [-1, u, -1] for solving 

eigenvalue problems. These test matrices were introduced in chapter 2. For 

the matrix [-1, u, -1] exact eigenvalues are unknown and hence the accuracy 

of this matrix is not shown in the tables. We also use two tolerances: the 

first tolerance (cr) is used in the root finding stage and the second tolerance 

(Cd) is used to test for deflation. The first test matrix type [-1,2, -1] has 

significant deflation in the root finding step. The second test matrix type 

[-l,u,-l] has the value u = i X 10-6 in the itk diagonal position, and for 

matrices of this type the intermediate matrix iJ has distinct components 

along its diagonal at each stage and the components of z are ratios of the 

diagonal components to the off-diagonal components which are small. 
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For the sizes tested little deflation (using ed > Ie - 6) or no deflation 

(using ed < Ie - 8) occurs with this type of matrix. The times, the 

deflation counts and accuracy tests are given in the tables below. The results 

given in tables 7.1a, 7.1b, and 7.1c are obtained from the recursive version, 

non-recursive (using linked list) version and simple non-recursive version 

respectively. The recursive and non-recursive (using linked list) verSIOns 

give the same amount of deflation and same accuracy. 

The amount of deflation and hence the timing also depends on the size 

of the tolerance ed which is used to test whether two eigenvalues are nearly 

equal. When the difference between the two eigenvalues is less than ed we 

consider the eigenvalues to be equal and then apply deflation otherwise we 

will consider the eigenvalues not to be equal. The tolerance ed is also used 

in the check for the value of Zi i.e. IZil < ed rather that IZil = o. An 

important effect on the accuracy of the result is the size of the tolerance er 

which is used to terminate the root finding loop. When the differences of 

the absolute value of the (second and first) roots is less than or equal to er 

then the loop terminates. These tolerances have an effect on the amount of 

work required. 

The accuracy of all the implementations is also tested. We test matrices 

chosen from matrix type [-1,2 ,-1] using different tolerances. This matrix 

type has known eigenvalues, so that the error can be directly evaluated. Let 

.xi be the approximation of the exact eigenvalue Ai. Tables 7.1a, 7.1b, 7.1c, 

7.2.a 7.2b and 7.2c give the times as well as the error 

of eigenvalues computed by the recursive, non-recursive (linked list), and 

simple non-recursive versions for the test problems. 

From the point of view of numerical computation, in most cases the error 
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seems to be roughly max {cr, cd} and no advantage seems to be gained 

if one epsilon is much larger than the other though choosing Cd slightly 

larger than Cr seems to be helpful. We make several observations about 

the experimental results. The accuracy is affected by the relationship of 

the different tolerances (cd or cr). Firstly, we observe that when testing the 

problems with Cd < Cr, the accuracy of all the implementations are very poor 

and hence the accuracy of the implementations were not tested further, and 

the results are not shown in the tables. The second observation is that when 

testing the problems with Cd > Cr for all matrix sizes, the implementations 

achieve better accuracy than when testing the problems with Cd = Cr for 

Finally, when testing the problems with Cd ~ cr, in most cases the 

implementations achieve good accuracy except the recursive and non

recursive (linked list) implementations which give very poor accuracy with 

Cd = Cr = Ie - 8 for a 300 x 300 matrix. 

The experimental results given in this section show that the accuracy 

of the computed eigenproblem depends on the tolerances (cd and cr) used. 

It appears that the simple non-recursive version achieves marginally better 

accuracy than recursive and non-recursive (liked list) versions with matrices 

of size 100(100)400. The total amount of deflation in the simple non

recursive version is much more than that in the recursive and non-recursive 

(linked list) versions. This is because the matrix partitioning into 2 x 2 

submatrices is from right to left, so that there are many identical submatrices 

at the lowest level. 
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Cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8 

[-1,2 ,-1] [-l,u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

145 33.00 5.87e-09 - 43.95 127 32.50 1.86e-07 - 51.31 

353 213.82 5.47e-09 - 332.61 330 236.48 2.62e-07 - 328.72 

449 763.38 3.l1e-08 - 1180.48 298 1125.21 1.4ge-02 - 1153.24 

869 1755.78 2.17e-08 - 2730.43 828 1950.35 8.87e-07 - 2765.73 

cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

145 30.16 1.86e-07 92 49.15 128 30.70 9.45e-06 93 40.49 

353 211.49 2.75e-07 197 330.84 325 230.59 1.83e-05 197 332.48 

449 722.19 3.08e-07 230 1168.82 379 905.28 5.22e-05 228 1175.63 

869 1776.43 8.87e-07 405 2694.18 825 1957.46 6.88e-05 405 2656.91 

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

145 27.71 1.86e-07 145 27.39 145 26.87 9.45e-06 145 31.49 

355 202.65 5.24e-05 355 206.31 355 202.15 5.60e-05 355 202.84 

449 746.49 7.53e-04 449 793.95 449 745.52 7.51e-04 449 739.54 

877 1720.35 6.12e-04 876 1707.76 875 1721.71 6.33e-04 876 1717.21 

Table 7.1a: A Comparison of the Deflation Matrices Size of 100(100)400 

Times for Recursive Version. 
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Cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

145 29.60 5.87e-09 - 46.03 127 35.81 1.86e-07 - 50.56 

353 213.20 5.47e-09 - 358.13 330 233.83 2.62e-07 - 352.48 

449 801.27 3.11e-08 - 1261.33 298 1185.57 1.4ge-02 - 1216.48 

869 1718.11 2.17e-08 - 2901.08 828 1928.01 8.87e-07 - 2822.26 

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l] 

count secs accur count secs count secs accur count secs 

145 29.80 1.86e-07 92 44.48 128 38.57 9.45e-06 93 47.17 

353 207.75 2.75e-07 197 347.07 325 253.17 1.83e-05 197 337.16 

449 750.41 3.08e-07 230 1216.55 379 984.65 5.22e-05 228 1189.46 

869 1799.64 8.87e-07 405 2855.54 825 1909.82 6.88e-05 405 2800.92 

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l] 

count secs accur count secs count secs accur count secs 

145 29.73 1.86e-07 145 29.46 145 27.79 9.45e-06 145 28.15 

355 208.80 5.24e-05 355 226.78 355 213.78 5.60e-05 355 214.04 

449 753.29 7.53e-04 449 794.19 449 746.21 7.51e-04 449 758.41 

877 1752.58 6.12e-04 876 1762.21 875 1743.79 6.33e-04 876 1699.27 

Table 7.1b: A Comparison of the Deflation Matrices Size of 100(100)400 

Times for Non-Recursive Version (Linked list). 
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Cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l] 

count secs accur count secs count secs accur count secs 

162 46.14 3.87e-09 - 51.06 162 46.18 8.08e-08 - 51.27 

420 351.03 6.62e-09 - 359.08 420 341.86 3.07e-0/ - 378.79 

714 1567.29 6.30e-08 - 1587.63 714 1564.17 2.51e-07 - 1534.43 
I 

1036 2946.54 2.13e-08 - 2938.49 1036 2854.02 1.6ge-07 - 2937.871 

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6 

[-1,2 ,-1] [-l,u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

162 44.59 8.08e-08 130 42.98 162 49.35 3.9ge-06 130 40.83 

420 340.18 3.07e-07 277 325.96 420 350.20 1.27e-05 277 320.18 

714 1519.49 2.51e-07 426 1491.53 714 1512.00 6.92e-05 426 1452.25 

1036 2853.41 1.6ge-07 572 2949.06 1036 2866.08 2.77e-05 572 2705.67 

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

162 44.49 8.08e-08 162 44.36 162 45.59 3.9ge-06 162 44.73 

421 348.14 5.04e-04 421 320.10 421 335.49 4.01e-04 421 346.28 

719 1512.33 4.21e-04 719 1493.55 719 1538.49 4.21e-04 719 1468.31 

1044 2821.02 3.47e-04 1046 2835.49 1044 2809.16 3.48e-04 1046 2870.54 

Table 7.1c: A Comparison of the Deflation Matrices Size of 100(100)400 

Times for Simple Non-Recursive Version. 
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The test results also illustrate the times measured for matrix types [-

1,2,-1] and [-I,u,-I] with different amounts of deflation. For all problem 

sizes tested when using Cd = Ie - 8 and Cd = Cr execution times are larger 

than those using cd > Ie - 8 and cd > Cr for the matrix type [-1,2,-1] as 

there is less deflation and so more arithmetic is needed. Note that even 

though the non-recursive (linked list) version gives identical deflations to 

the recursive version, in most cases the raw times are not quite the same. In 

most cases, the raw times for the recursive version are relatively better than 

the non-recursive (linked list) version. Moreover, even though the simple 

non-recursive version gives more deflation than the recursive version and 

the non-recursive (linked list) version (i.e. all cases except using Cd = Ie - 8 

and Cr = le-9 with the matrix type [-I,u,-I]), the times are still significantly 

worse. 

The theory given by Dongarra and Sorensen in [26] suggests that it 

would be appropriate to relate the two tolerances by 

where p is the scalar 2 times the off-diagonal element of the original matrix. 

This is consistent with the results obtained here. 

The results for the simple non-recursive version shows substantial 

improvements when the implementations are tested for power of 2 size of 

matrices, when all the implementations have the same submatrices and the 

same deflation. Comparing the raw times for all versions indicates that the 

simple non-recursive version executes most efficiently. Overall the simple 

non-recursive version is relatively better than the recursive and the non

recursive (linked list) versions in terms of raw time,using all values of Cd and 

Cr for both test matrix types [-1,2,-1] and [-I,u,-I]. 
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n 

64 
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n 

64 

128 
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n 

64 

128 

256 

cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count sees accur count sees count sees accur count sees 

100 7.94 4.92e-09 - 12.54 100 7.82 1.20e-07 - 14.88 

260 56.11 5.38e-09 - 96.63 260 55.15 1.91e-07 - 92.95 

644 455.7C 1.46e-08 - 753.06 644 451.46 5.30e-07 - 741.35 

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l] 

count secs accur count secs count secs accur count secs 

100 7.78 1.20e-07 68 12.30 100 7.27 5.36e-06 68 10.82 

260 54.83 1.91e-07 164 85.39 260 53.36 7.53e-06 164 87.50 

644 457.17 5.30e-07 357 721.62 644 472.33 2.75e-05 356 719.49 

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6 

[-1,2 ,-1] [-l,u,-l] [-1,2 ,-1] [-l,u,-l] 

count secs accur count secs count secs accur count secs 

100 8.73 1.20e-07 100 7.71 100 8.68 5.36e-06 100 7.39 

260 55.05 1.91e-07 260 55.47 260 56.02 7.53e-06 260 53.18 

646 510.86 7.36e-04 646 457.59 646 465.00 7.37e-04 646 442.41 

Table 7.2a: A Comparison of the Deflation Matrices Size of 2n 

Times for Recursive Version. 
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n 

64 

128 

256 

n 

64 

128 

256 

n 

64 

128 

256 

cd = Ie - 8 and Cr = Ie - 9 cd = Ie - 8 and Cr = Ie - 8 

[-1,2 ,-1] [-l,u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

100 8.32 4.92e-09 - 13.08 100 8.40 1.20e-07 - 14.67 

260 56.80 5.38e-09 - 93.11 260 61.90 1.91e-07 - 91.15 

644 456.99 1.46e-08 - 742.76 644 452.11 5.30e-07 - 741.10 

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [--1, u, -1] 

count secs accur count secs count secs accur count secs 

100 8.15 1.20e-07 68 12.15 100 7.71 5.36e-06 68 11.36 

260 56.83 1.91e-07 164 89.30 260 54.23 7.53e-06 164 85.17 

644 449.91 5.30e-07 357 724.71 644 445.87 2.75e-05 356 713.92 

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

100 9.70 1.20e-07 100 8.04 100 7.68 5.36e-06 100 7.70 

260 58.87 1.91e-07 260 56.47 260 54.03 7.53e-06 260 54.14 

646 447.93 7.36e-04 646 453.02 646 464.66 7.37e-04 646 445.36 

Table 7.2b: A Comparison of the Deflation Matrices Size of 2n 

Times for Non-Recursive Version (Linked list). 
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n 

64 

128 

256 

n 

64 

128 

256 

n 

64 

128 

256 

cd = Ie - 8 and Cr = Ie - 9 cd = Ie - 8 and Cr = Ie - 8 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

100 9.36 4.92e-09 - 12.69 100 7.71 1.20e-07 - 12.18 

260 57.30 5.38e-09 - 97.09 260 54.93 1.91e-07 - 88.45 

644 449.82 1.46e-08 - 741.03 644 448.26 5.30e-07 - 742.85 

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6 

[-1,2 ,-1] [-l,u,-l] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

100 7.76 1.20e-07 68 13.86 100 7.21 5.36e-Oe 68 10.71 

260 54.36 1.91e-07 164 89.17 260 52.72 7.53e-Oe 164 82.22 

644 453.75 5.30e-07 357 726.11 644 437.26 2.75e-05 356 696.63 

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6 

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1] 

count secs accur count secs count secs accur count secs 

100 8.73 1.20e-07 100 7.69 100 7.21 5.36e-06 100 7.20 

260 55.72 1.91e-07 260 54.66 260 52.04 7.53e-06 260 52.00 

646 450.78 7.36e-04 646 459.55 646 462.62 7.37e-04 646 442.48 

Table 7.2c: A Comparison of the Deflation Matrices Size of 2n 

Times for Simple Non-Recursive Version. 
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Comparing power of 2 size of matrices in tables 7.2, for recursive and 

non-recursive (linked list) versions using Cd > Cr > le-9 for test matrix type 

[-1,2,-1], we observe that the recursive version is marginally better than the 

non-recursive (linked list) version in terms of raw time for small matrix sizes. 

For larger matrix sizes the reverse is true. The accuracies are, however, the 

same in both cases. On the other hand, for test matrix type [-l,u,-l] and 

using cd > Cr > Ie - 9, the non-recursive (linked list) version is marginally 

better than the recursive version for larger matrix sizes except when using 

(cd = Ie - 6 and Cr = Ie - 8) and (cd = Ie - 4 and Cr = Ie - 6), but for 

smaller matrix sizes the reverse is true. The other observation is that for all 

matrix sizes the recursive version is relatively better than the non-recursive 

(linked list) version when using cd = Cr for the matrix type [-1,2,-1] except 

for n = 256. However, in most cases the opposite is true for the matrix type 

[-I,u,-I]. These raw times are shown in tables 7.2a and 7.2b. 

7.B.2 Comparison of the Parallel Implementations 

Results were obtained from the four recursive versions and two non

recursive versions of the Cuppen's method outlined in section 7.6. 

The results use the notation Tr for recursive implementations of 

parallel recursive algorithms. The numerical results were obtained for 

the four versions of the algorithm which are outlined in section 7.6.I. 

The first method which simply implements the function calls using two 

"THREAD creates" and terminates with two "THREADjoins" is indicated 

by p. The second implementation using the same method but with the 

first call done by THREADcreate and the second using a conventional call, 

is indicated by pO. The third implementation which uses the processors 

count, is indicated by pI. The fourth implementation which tests the level of 

recursion, is indicated by p2. Results were obtained for the two non-recursive 
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versions outlined in section 7.6.2. The first implementation using the simple 

non-recursive version is indicated by Tnrsp and the second implementation 

using linked lists is indicated by Tnrlp. 

We tested the algorithms using from one up to six processors with 

matrices of sizes 100(100)400 and power of two size (i.e. 2n, 6 < n < 8). 

The methods are not efficient when applied to smaller matrices because of 

the parallel overheads. 

For simplicity the results for the companson of the parallel 

implementations used the same tolerance in the root finding stage and in 

the deflation stage (i.e. e = er = ed)' In this section the comparison has no 

matrix multiplication parallelism included. 

The sequential times were obtained from the non-recursive linked list 

algorithm (Tnrlp). This was slightly better than the other versions. The 

parallel and sequential times were, of course, obtained for the same type 

and size of matrix. 

To show the performance of the four variant parallel recurSIve and 

two different parallel non-recursive versions, we plot in figures 7.4 and 7.5 

(e = Ie - 6), and 6 and 7 (e = Ie - 8) mean efficiencies against number of 

processors for the matrix type [-1,2,-1]' and in figures 7.8 and 7.9 (e = 1e-6), 

and 7.10 and 7.11 (e = Ie - 8) mean efficiencies against number of processors 

for the matrix type [-l,u, -1]. Figures 7.12 (e = 1e-6) and 7.13 (e = 1e-8) 

show actual efficiencies using 2 processors for the matrix type [-1,2,-1], and 

figures 7.14 (e = Ie - 6) and 7.15 (e = Ie - 8) show similar plots for the 

6 processors. Figures 7.16 (e = Ie - 6) and 7.17 (e = Ie - 8) show actual 

efficiencies using 2 processors for the matrix type [-l,u,-l]' and figures 7.18 

(e = Ie - 6) and 7.19 (e = Ie - 8) show similar plots and same matrix type 

for 6 processors. 
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The differences between the parallel recursive versions are relatively 

small, but overall the parallel recursive version (Trp2) seems to be 

marginally better than the other versions. This may be because in this 

version (Trp2) new threads are only created at the top levels, and threads 

are not created for the lower levels where the amount of work is small. The 

results do show that having a lot more threads than processors does not 

cause a severe loss of efficiency due to the extra overhead. 

In the non-recursive (linked list) version tasks are dynamically allocated 

to the threads while the combination process is similar to the recursive 

verSIOn. Another important point is that even though the sizes of 

submatrices are the same the version Tnrlp is relatively better than the 

recursive versions when using 1 or 2 processors. This is shown in figures 7.8, 

7.9, 7.12, and 7.13. When using 4 or more processors, the version Tnrlp 

gave quite similar efficiency to the recursive versions. 

As expected, the simple non-recursive parallel implementation Tnrsp is 

slower than all the other versions. The main reasons for this are firstly the 

extra work involved in this method and secondly, the uneven allocation of 

submatrix sizes to the available threads. Taking into account the analysis in 

sections 7.6 and 7.7.2 where we have considered the relative costs of different 

versions, we now compare here the ratio of the sequential and the parallel 

times (e.g. for 2 processors) in order to see whether the ratio of the times 

agree with theory. The first comparison is carried out testing the problems 

with the matrix type [-1,2,-1] using c = Ie - 6 as follows: 
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Matrix [-1,2 ,-1] Matrix [-l,u, -1] 

n S equentialratio Parallelratio S equentialratio Parallelratio 

100 1.409 1.430 1.155 1.123 

200 1.505 1.481 1.134 0.977 

300 1.613 1.765 1.289 1.280 

400 1.581 1.524 1.051 1.013 

Table 7.3: The Comparison for the Ratio of the Times 

for f nree and free versions 

Note that the ratio for 300 X 300 matrices is larger than the others, as 

expected though it is not very close to the ratio predicted by the simplified 

model. Possible reasons why the measured ratios are not close to the 

predicted ones may be: 

• The assumption that the time for root finding is equal for roots at 

different levels, even though the calculation on different levels is not 

identical, 

• differences at higher levels are ignored, 

• the effect of deflation on the timings. 

As we pointed out in the previous section, even though the simple non

recursive version gives more deflation (i.e. for 2n problem size) than the 

recursive version and the non-recursive (linked list) versions (i.e. in all cases 

except using e = Ie - 8 with the matrix type [-l,u,-l]), the times are still 

significantly worse. One possible additional reason for this may be that 

tasks are allocated to threads in a predetermined (scattered) ordering which 

gives less flexibility and so affects the performance of the implementation 

Tnrsp. Thus, although one thread may encounter significant savings when 
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deflation occurs, the gain may not be shared by the calculation as a whole 

unless the effects of deflation are evenly distributed to threads while solving 

the deflated problem and multiplying matrices. 

The parallel implementation Tnrsp executes most efficiently when its 

workload (submatrix sizes) is evenly allocated to the available threads. This 

is illustrated by matrix sizes a power of 2 in tables 7.2a, 7.2b, and 7.2c 

as well as in figures 7.16-19. In some cases the implementation Tnrsp is 

relatively better than the other implementations for one processor using 

the two different test matrix types and epsilon values for these matrix 

sizes. When the number of processors is increased the version Tnrsp is 

still competitive with other versions for matrix type [-1,2,-1] and as well as 

for matrix type [-l,u,-l]. This is shown in figures 7.16-19. 

7.8.3 Comparison of the Additional Parallelisation 

for Matrix Multiplication 

In this section we consider the results of the verSIOns usmg parallel 

matrix multiplication in all the implementations presented in this chapter. 

The results in sub-section 7.8.2 show that without additional parallelisation 

of the matrix multiplication the efficiencies of implementations are very 

poor. Results in this section show that if we have computed the matrix 

multiplication in parallel then the implementations can achieve moderate 

efficiency. 

The sequential times used for the companson of these parallel 

implementations were obtained from the non-recursive linked list algorithm 

(Tnrlp) as before for matrices of sizes 100(100)400. But in contrast, for 

matrices of power of two size (i.e. 2n, 6 < n < 8) sequential times 

were obtained from the simple non-recursive algorithm (Tnrsp) which were 

slightly better than the other versions, whereas, in the previous section the 
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sequential times for the Tnrlp version were used for these power of 2 matrix 

sIze. 

The figures below show the performance of the four variant parallel 

recursive and two different parallel non-recursive versions using parallel 

matrix multiplication. We plot in figures 7.4a and 7.5a c = Ie - 6), and 7.6a 

and 7.7a (c = Ie - 8) mean efficiencies against number of processors for the 

matrix type [-1,2,-1]' and in figures 7.8a and 7.9a (c = Ie - 6), and 7.10a 

and 7.11a (c = Ie - 8) mean efficiencies against number of processors for the 

matrix type [-1, u, -1]. Figures 7.12a (c = Ie - 6) and 7.13a (c = Ie - 8) 

show actual efficiencies using 2 processors for the matrix type [-1,2,-1]' and 

figures 7.14a (c = Ie - 6) and 7.15a (c = Ie - 8) show similar plots for the 

6 processors. Figures 7.16a (c = Ie - 6) and 7.17a (c = Ie - 8) show actual 

efficiencies using 2 processors for the matrix type [-I,u,-I], and figures 7.18a 

(c = Ie - 6) and 7.19a (c = Ie - 8) show similar plots and same matrix for 

6 processors. 

To show the performance for matrices with size a power of 2, we plot 

mean efficiencies against number of processors for the matrix type [-1,2,-1] 

in figures 7.16a (c = Ie - 6) and 7.17a (c = Ie - 8), and those for the matrix 

type [-1, u, -1] in figures 7.18 and 7.18a (c = Ie - 6), and 7.19 and 7.19a 

(c = Ie - 8). 

The results for this extra parallelisation in the matrix multiplication 

part show substantial improvements, and in fact when using 1 processor 

some parallel recursive versions gave better times than the best sequential 

implementation used for comparison. It is not obvious to us why this 

abnormality occurred. When the number of processors increases, in 

some cases the efficiency curves slightly decrease and then again increase 

using matrix type [-1, 2, -1] as well as [-1, u, -1] for matrices with sizes 

100(100)400. 
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Again using additional parallelisation of the matrix multiplication, the 

differences between the parallel recursive versions are relatively small. Note 

that the parallel recursive version Trp2 does not seem to be the best 

recursive version. It looks as though the parallel recursive version Trp is 

marginally better than the other recursive versions. 

The non-recursive linked list version (Tnrlp) is overall more efficient 

than the other implementations using both matrix types [-1,2, -1] and 

[-I,u, -1] when using more than one processor. The simple non-recursive 

version (Tnrsp) displayed very poor performance when we tested the version 

Tnrsp using matrix type [-1,2, -1] but when we tested this algorithm with 

matrix type [-1, u, -1], the efficiency curve is improved and in some cases 

is close to the efficiency curves of the recursive versions. 

Comparing power of 2 size matrices efficiency curves in figures 7.16a-

19a we observe that in the recursive version there is a very rapid decrease 

in the efficiency followed by a small increase, as the number of processors 

increases when using c = Ie - 6 for test matrix type [-1,2, -1]. It is also 

worth noting that the efficiency for 2 processors is especially low. This is 

shown in figure 7.16a. But this decrease and increase in the efficiency curves 

are small when using c = Ie - 8 value and matrix type [-1, u, -1]. The 

non-recursive linked list (Tnrlp) version is still relatively better than other 

versions as in the previous section. In some cases the simple non-recursive 

version is relatively better than the other versions for 1 processor. When 

the number of processors are greater than one, the efficiency curves is quite 

close to the version Tnrlp. 
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Comparing power of 2 size matrices efficiency curves in figures 7.16a-

19a we observe that in the recursive version there is a very rapid decrease 

in the efficiency followed by a small increase, as the number of processors 

increases when using c = Ie - 6 for test matrix type [-1,2, -1]. It is also 

worth noting that the efficiency for 2 processors is especially low. This is 

shown in figure 7.16a. But this decrease and increase in the efficiency curves 

are small when using c = Ie - 8 value and matrix type [-1, u, -1]. The 

non-recursive linked list (Tnrlp) version is still relatively better than other 

versions as in the previous section. In some cases the simple non-recursive 

version is relatively better than the other versions for 1 processor. When 

the number of processors are greater than one, the efficiency curves is quite 

close to the version Tnrlp. 

The efficiency of the implementation Tnrsp, however, suffered badly 

from the load imbalance for matrix size not a power of 2. As we pointed 

out in section 7.7.2 for the 300 X 300 matrix, at the next to top level the 

matrix multiplication operation costs are almost four times larger than these 

for recursive and non-recursive linked list (Tnrlp) versions. The efficiency 

depends very much on matrix sizes. Moreover, as we mentioned before, 

when the tasks are evenly distributed to threads the version Tnrsp shows 

significantly improved performance and competes with the other versions in 

the case using the matrix sizes a power of 2. 

7.9 Conclusions 

In this chapter we have investigated some recursive and non-recursive 

parallel divide-and-conquer methods on the shared memory machine. In 

particular, recursive and non-recursive (Tnrsp) sequential versions are 

compared in terms of deflation using different types of matrices. All 

the implementations are much faster for matrix type [-1,2,-1] than for 
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matrix type [-l,u,-l] which indicates that the saving from the deflation is 

considerable. 

The implementation Tnrlp avoids the difficulty in allocating tasks evenly 

across the available threads in the parallel implementation (Tnrsp). There 

is a clear conclusion that the non-recursive parallel implementation using 

linked lists Tnrlp is a good alternative algorithm to the recursive algorithm. 

In most cases Tnrlp is marginally better than the recursive versions. 

As expected, a significant decrease in the execution times occurs when 

the matrix multiplications procedure is parallelised. The result was an 

increase of efficiency of 40-55 % in most cases. This observation shows that 

it is very important to include parallelisation of the matrix multiplication 

in all these algorithms. 
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CHAPTER 8 

Conclusions and Future Research 

We have presented several algorithms in Numerical Linear Algebra on a 

shared memory multiprocessor system. In this chapter, we summarise our 

major contributions in this thesis. Extensions to the current work will be 

suggested, plans for future work will be given, and closing remarks will be 

stressed. 

8.1 Summary 

As pointed out earlier, the mam aIm of this thesis was to examme 

the improvement of efficiency by implementing in parallel some algorithms 

for numerical linear algebra which are widely used computational tools in 

science and engineering research. This research is becoming increasingly 

dependent upon the development and implementation of efficient parallel 

algorithms. Numerical linear algebra algorithms are indispensable in science 

and engineering research and this thesis has attempted to collect and 

describe a selection of some of the more important algorithms and their 
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parallel implementations. The algorithms, including the solution of the 

linear system of equations Ax = busing QR and L U decompositions, 

reduction of a general matrix to Hessenberg form, reduction of a real 

symmetric matrix to tridiagonal form, and Cuppen's divide-and-conquer 

method for finding all of the eigenvalues and corresponding eigenvectors 

of a real symmetric tridiagonal matrix were implemented on the system 

available to us namely the Encore Multimax. Our evaluation focus was not 

to rewrite an existing program but to restructure the algorithms in order to 

produce efficient serial and parallel methods. 

We have concentrated in particular on algorithms written in the C++ 

programming language. C++ is an object-oriented programming language, 

which can provide various types of matrix classes. The use of C++ implies 

some storage organisation for array elements. The primitive arrays provided 

in C++ use storage by rows. As far as we are aware there is little 

previous work on parallelising these algorithms using C++. Consequently 

in this thesis we have considered implementation of the serial and parallel 

methods using the object-oriented programming language C++. The 

algorithms have been designed for the C++ programming language using 

the Encore Parallel Threads [31] package. The package provides mechanisms 

for synchronisation. The synchronisation strategy to use in any situation 

depends on the program's structure and the computer system's flexibility. 

Each strategy has its benefits and costs. 

The comparisons were carried out by measuring the elapsed time for 
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each implementation. These comparisons were carried out using both row 

and column representation of the matrix for most of the implementations 

described in chapters 4, 5, and 6. This was made easy by the use of 

some C++ matrix classes which were altered internally. Comparisons 

were also carried out both with and without array bound checking. These 

extra comparisons were included to compare the algorithms under different 

conditions, and make spurious conclusions about the relative merits of the 

algorithms less likely. Chapter 7 presents an experimental evaluation of the 

effect of deflation on accuracy. A number of test matrices were used to test 

Cuppen's algorithm since the amount of deflation in this method depends 

on the test matrix. The results of the recursive and non-recursive parallel 

implementations of this algorithm were compared. An extra comparison was 

also presented for the results of the additional parallelisation in the matrix 

multiplication part. 

There are some general observations from the experiments carried out 

using the shared memory architecture in this thesis and the following overall 

conclusions can be drawn: 

• Firstly, the experimental results presented show that dynamic task 

allocation can sometimes be very effective on this machine, and that 

very high efficiency is often obtainable with careful construction of the 

parallel algorithms even for relatively small matrices. 

• Secondly, as we pointed out in chapter 4, in the solution of algebraic 

equations (or QR and LV decompositions) all column updates do not 
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need to be performed before the next pivotal column is treated. Various 

alternative ways of allocating column updates were investigated where 

pivotal and normal columns were treated simultaneously. The most 

effective of these was an algorithm which carried out as many column 

updates to a column as possible by the same processor, and when 

no further updates were possible due to the relevant pivotal column 

not having been treated, then starting on a different column. The 

results show that the column based multiple column approach for LV 

decomposition does have significant advantages on a shared memory 

multiprocessor. 

• Thirdly, restructuring the algorithms to avoid splitting the algorithms 

into stages gives significant improvement particularly for reduction to 

Hessenberg form (i.e. the fifth implementations H ella and Helle). The 

idea here is that the columns and rows are allocated dynamically to the 

threads, and counts for the columns and the rowb rows are used. This 

was based on the observation made clear in the dataflow diagram that 

the pivotal, column and rowb row updates are not dependent on the 

rowa row updates being completed. When any thread finds no column 

or rowb row available for allocation, then any rowa rows which are ready 

for updating are allocated instead. 

Comparisons were carried out between the performance of the five 

implementations of algorithms for a general matrix to be reduced to 

upper Hessenberg form. The fifth implementations, H ella and Helle 
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are clearly better than the other implementations. As the number 

of processors increases the graphs for this algorithm are very nearly 

horizontal indicating little loss and remarkably high efficiencies, with 

both row and column representations of the matrix. 

Comparisons were also carried out between the performance of the three 

different synchronisation mechanisms in the second implementation. In 

most cases the "Locks" synchronisation mechanism was more efficient 

than those using "Monitors" or "Semaphores" at least for this particular 

problem. The synchronisation mechanism to use in any situation 

depends on the program's structure and the computer system's flexibility. 

Each mechanism has its benefits and costs. In general locks are only 

suitable for short waits, semaphores and monitors are more appropriate 

for longer waits. Here we organised the program so that the waits are 

usually short. 

• Fourthly, the algorithm described for reduction to Hessenberg form can 

also be used for the reduction of a symmetric matrix to tridiagonal 

form, and there are some rather obvious savings from the symmetry. 

However, the alternative algorithm described in chapter 6 involve less 

arithmetic but has much greater data dependencies so limiting the 

possibilities for parallelisation. It is concluded from the experimental 

results of parallelising this algorithm that some minor changes did give 

some improvements, but all the efficiencies obtained were much poorer 

than those for the algorithms described in chapter 5. 
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• Finally, we have investigated some recursive and some non-recursive 

parallel implementations of a divide-and-conquer method for finding all 

of the eigenvalues and corresponding eigenvectors of a real symmetric 

tridiagonal matrix in chapter 7. As we stated in that chapter, 

the motivation for a non-recursive version was to compare this with 

the recursive version and to investigate the relationship between the 

recursive and non-recursive implementations of Cuppen's divide-and-

conquer method. 

An important point that arIses III the implementation of Cuppen's 

algorithm concerns the choices of tolerance Cr in the computation of the 

root finding stage and tolerance Cd in the computation of the deflation 

stage. From the point of view of numerical computation, in most cases 

there is no advantage to be gained if one epsilon is much larger than the 

other, although choosing Cd slightly larger than Cr seems to be helpful. 

The experimental results illustrated that the differences between the 

parallel recursive versions are relatively small. The experiments show 

that having more threads than processors does not cause a severe loss of 

efficiency due to the extra overhead. 

There is a clear conclusion that the non-recursive linked lists serial and 

parallel implementation is a good alternative algorithm to the recursive 

algorithm. In most cases this algorithm is marginally better than the 

. . 
recurSIve versIOns. 

232 



Chapter 8 Conclusions and Future Research 

As expected, a significant decrease in the execution times occurs when 

the matrix multiplications procedure is parallelised. The result was 

an increase of efficiency of 40-55 % in most cases. This observation 

shows that it is very important to include parallelisation of the matrix 

multiplication in all these algorithms. The experimental results illustrate 

that the non-recursive linked list version is still relatively better than the 

. . 
recurSIve verSIOns. 

8.2 Future Research 

To extend the work reported in this thesis, we identify the following 

areas that deserve further study. 

All the above algorithms were implemented on a shared-memory Encore 

Multimax using the C++ programming language. These algorithms can be 

compared using the other popular parallel architectures such as distributed 

memory machines and also shared memory machines with different relative 

speeds for arithmetic and storage. This extra comparison should include the 

comparison of the algorithms under different environments and to investigate 

how generally applicable they are using different architectures. 

The results described in this thesis indicate that for QR and LV 

decomposition and Hessenberg reduction very high parallel efficiencies are 

obtainable on the shared memory machine used, as long as care is taken in 

the implementation of the algorithms. For reduction of a symmetric matrix 

to tridiagonal form the results are not so good, but here a combination with 
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finding the eigenvalues as suggested by Dongarra et al [26] might compensate 

for this problem. However, detailed study and experiments should be further 

explored. 

The divide-and-conquer method might also be applied to the related 

problem of computing the singular value decomposition (SVD) of a real 

bidiagonal matrix. 

Comparison of the Cuppen method with the QL method, Sturm 

sequence (or bisection with inverse iteration), and QR method for the 

symmetric tridiagonal eigenvalue problem deserve to be considered. 

8.3 Closing Remarks 

In general, we encountered memory problems during our 

implementation. For example, in the algorithms for QR decomposition the 

memory fills up with large matrices when using the new mat matrix package 

because when using this package for the manipulation of matrices we need 

much more space than using a simple matrix class. The second example is 

when the objects are declared in the parallel part of the programs. Then, 

in most cases, a memory problem would occur with large matrix sizes. This 

requires allocation of storage space on the heap. The memory problem is 

disappointing and limits the size of the problem that we can use for testing 

our algorithm. Although such problems could be somewhat avoided by 

declaring the object before the parallel section and passing it as a reference 

parameter and also addressed by improving the management of dynamic 
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structures, they would not be completely solved. 

The objective of this research as pointed out from the outset was to 

develop serial and parallel algorithms. From the research that we have 

carried out and which is reported in this thesis we can conclude that 

effective exploitation of parallelism with numerical linear algebraic problems 

is dependent on several factors some of which include the nature of the 

problem to be solved and the type of architecture on which we intend to 

implement the problem. 
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