
THE UNIVERSITY OF NEWCASTLE UPON TYNE
DEPARTMENT OF COMPUTING SCIENCE

UNIVERSITY OF
NEWCASTLE UPON TYNE

Parallel Algorithms for Numerical Linear

Algebra on a Shared Memory Multiprocessor

by

Dogan Kaya

PhD Thesis
NEWCASTLE UNIVERSITY LIBRARY

094 52313 1

Thec;\~ L54-S'8

June 1995

Abstract

This thesis discusses a variety of parallel algorithms for linear algebra

problems including the solution of the linear system of equations Ax = b

using QR and L U decomposition, reduction of a general matrix A to

Hessenberg form, reduction of a real symmetric matrix B to tridiagonal

form, and solution of the symmetric tridiagonal eigenproblem. Empirical

comparisons are carried out using various different versions of the above

algorithms and this is described in this thesis. We also compare three

different synchronisation mechanisms when applied to the reduction to

Hessenberg form problem. We implement Cuppen's method for computing

both eigenvalues and eigenvectors of a real symmetric tridiagonal matrix

T using both recursive and non-recursive implementations. We consider

parallel implementations of these versions and also consider parallelisation of

the matrix multiplication part of the algorithm. We present some numerical

results illustrating an experimental evaluation of the effect of deflation on

accuracy, comparison of the parallel implementations and comparison of the

additional parallelisation for matrix multiplication.

11

A variety of algorithms are investigated which involve varying amounts

of overlap between different parts of the calculation and collecting together

updates as far as possible to make good use of the storage hierarchy

of the shared memory multiprocessor. Algorithms using dynamic task

allocation are compared with ones which do not. The results presented

have been obtained using the C++ programming language, with parallel

constructs provided by the Encore Parallel Threads package on a shared

memory Encore Multimax (MIMD) computer. The experimental results

demonstrate that dynamic task allocation can be sometimes very effective

on this machine, and that very high efficiency is often obtainable with careful

construction of the parallel algorithms even for relatively small matrices.

111

Copyright @1995 by Dogan Kaya

The copyright of this thesis rests with the author. No quotation from it

should be published without author's prior written consent and information

derived from it should be acknowledged.

IV

Acknowledgements

My deepest gratitude goes to my supervisor, Dr. Kenneth Wright, for

his continuous encouragement throughout this research, for his excellent

criticisms, superb editing and meticulous proofreading. He always made

time for me, listening to my problems and provided me with abundant

wisdom. I wish to thank him for everything that he taught me. Additionally,

I wish to thank my thesis committee, Dr. Chris Phillips and Dr. Graham

Megson, for their helpful suggestions and comments.

There are also a number of people that have helped out in one way or

another. I am very grateful to all of them. There are some to whom I would

like to give special thanks. My good friend Dr. Mesut Guner, who helped

me during all stages of the preparation of the text. I would also like to thank

Dr. M. Pakzad for reading the early draft of the thesis.

I am deeply grateful to my wife and my family at home for their

consistent support and comfort. Now Bushra and Orner Faruk, time to

play.

Finally, I acknowledge the financial support of the University of Firat

in Turkey during my stay in the UK.

v

Dedication

This work is dedicated to the memory of my distinguished friend,

Mehmed Kalkan, who was doing his Ph.D. in Politics at Durham University

and passed away on 27 June 1992.

VI

Vll

Contents

Abstract

Acknowledgements

Dedication

Contents

List of Figures

List of Tables

1 Introduction

1.1 Background

1.2 Motivation and Research Objectives

1.3 Structure of the Thesis

2 Preliminaries

2.1 Notations and Assumptions

2.2 Measures of the Quality of a Method

2.3 Measures of Sensitivity of Linear Systems

2.4 Measures of Sensitivity of Eigenproblem

2.5 Test Matrices

2.6 Object-Oriented Programming in C++

2.6.1 Classes

V11

11

v

VI

V11

Xl

XV

1

2

12

15

17

20

21

22

27

28

30

34

3 Parallel Computer Architectures and programming 42

3.1 Parallel Computers 42

3.2 Parallel Computer Architectures 43

3.2.1 SISD Computer Organisation 43

3.2.2 SIMD Computer Organisation 44

3.2.3 MISD Computer Organisation 46

3.2.4 MIMD Computer Organisation 47

3.2.4.1 Shared Memory Systems 48

3.3 Basic Concepts of Parallel Computing 52

3.4 Parallel Programing Environment 55

3.5 Overview of the Encore Parallel Threads Package 58

3.6 Inter-Thread Communication 62

3.6.1 Locks 63

3.6.2 Semaphores 67

3.6.3 Monitors 70

4 Direct Solution of Linear Equations 73

4.1 Introduction 73

4.2 Sequential Algorithms for QR Decomposition 75

4.2.1 Sequential Algorithm: Givens 76

4.2.2 Sequential Algorithm: Householder 77

4.3 Parallelisation of QR and LV decomposition 81

4.3.1 Parallel Algorithm: Givens 82

4.3.2 Parallel Algorithm: Householder 83

4.3.3 Expeirmental Results for QR Decomposition 84

Vlll

4.3.4 Conclusion for QR Decomposition 90

4.4 Sequential Algorithms for LV Decomposition 93

4.4.1 Parallel implementations for LV Decomposition 94

4.4.2 Experimental Results for LV Decomposition 96

4.4.3 Conclusion for LV Decomposition 103

5 Reduction of a General Matrix to Hessenberg Form 105

5.1 Introduction 105

5.2 Sequential Algorithm 106

5.3 Parallel Implementations 109

5.4 Experimental Results 117

5.5 Conclusions 127

6 Reduction of a Symmetric Matrix to Tridiagonal Form 130

6.1 Introduction 130

6.2 Sequential Algorithms 131

6.3 Parallel Implementations 139

6.4 Experimental Results 144

56.5 Conclusions 156

7 The Symmetric Tridiagonal Eigenproblem 158

7.1 Introduction 158

7.2 Cuppen's Divide-and-Conquer Algorithm 160

7.3 Computing Eigenvalues and Eigenvectors of D+pzzT 163

7.4 Exceptional Cases 167

7.5 Arithmetic Complexity 172

IX

7.6 Sequential Algorithms

7.7 Parallel Implementations

7.7.1 Recursive Implementations

7.7.2 Non-recursive Implementations

7.7.3 Additional Parallelisation in Matrix

Multiplication Part QQ

7.8 Experimental Results

7.8.1 Comparison of the Effect of Deflation on

174

182

183

184

190

192

Accuracy 192

7.8.2 Comparison of the Parallelisation Implementations 202

7.8.3 Comparison of the Additional Parallelisation

for Matrix Multiplication

7.9 Conclusions

8 Conclusions and Future Research

8.1 Summary

8.2 Future Research

8.3 Closing Remarks

Bibliography

x

214

225

227

227

233

234

236

List of Figures

3.1 SISD Computer Structure 44

3.2 SIMD Computer Structure 45

3.3 MISD Computer Structure 47

3.4 Bus-Based Shared Memory Structure 49

4.1 Dataflow Diagram for QR and LV Decomposition 80

4.2 Mean Efficiency Graph: Householder Transformations 88

4.3 Mean Efficiency Graph: Givens Transformations 89

4.4 Efficiency Graph for 2 Processors: QR Decomposition 89

4.5 Efficiency Graph for 6 Processors: QR Decomposition 90

4.6 Mean Efficiency Graph: LV Dec. No Check and

Copying Vector 98

4.7 Mean Efficiency Graph: LV Dec. Check and

Copying Vector 98

4.8 Mean Efficiency Graph: LV Dec. No Check and

No Copying Vector 99

4.9 Mean Efficiency Graph: LV Dec. Check and

No Copying Vector 99

4.10 No Check and Copying Vector for 2 Processors 100

4.11 No Check and No Copying Vector for 2 Processors 100

Xl

4.12 No Check and Copying Vector for 6 Processorsm

4.13 No Check and No Copy Vector for 6 Processors

4.14 No Check and Copying Vector "crmvt"

4.15 No Check and No Copying Vector "crmt"

5.1 Dataflow Diagram for Hessenberg Form

5.2 Mean Efficiency Graph: Hessenberg Form No Check

5.3 Mean Efficiency Graph: Hessenberg Form No Check

5.4 Mean Efficiency Graph: Hessenberg Form Check

5.5 Mean Efficiency Graph: Hessenberg Form Check

5.6 No Check for 2 Processors

5.7 Check for 2 Processors

5.8 No Check for 8 Processors

5.9 Check for 8 Processors

5.10 No Check "Hella"

5.11 No Check "Helle"

5.12 Mean Efficiency Graph with No Check

5.13 Mean Efficiency Graph with No Check

5.14 Mean Efficiency Graph with Check

5.15 Mean Efficiency Graph with Check

5.16 No Check for 2 Processors

5.17 Check for 2 Processors

5.18 No Check for 8 Processors

5 .19 Check for 8 Processors

6.1 Dataflow Diagram for Tridiagonal Form

XlI

101

101

102

102

108

118

118

119

119

120

120

121

121

122

122

123

124

124

125

125

126

126

127

138

6.2 No Check with Simple Matrix Class 150

6.3 Check with Simple Matrix Class 150

6.4 No Check with Symmetric Matrix Class 151

6.5 Check with Symmetric Matrix Class 151

6.6 No Check with Simple Matrix Class for 2 Processors 152

6.7 Check with Simple Matrix Class for 2 Processors 152

6.8 Check with Symmetric Matrix Class for 2 Processors 153

6.9 Check with Symmetric Matrix Class for 2 Processors 153

6.10 No Check with Simple Matrix Class for 6 Processors 154

6.11 Check with Simple Matrix Class for 6 Processors 154

6.12 No Check with Symmetric Matrix Class for 6 Processors 155

6.13 Check with Symmetric Matrix Class for 6 Processors 155

2

7.1 f(A) = 1 + P 2:i=l d:~>" in the case p < 0 166

7.2 Computation Tree 175

7.3 Linked list with pointers indicating order of items 181

7.4 Mean Efficiencies of the e = Ie - 6, (-1,2,-1) 204

7.5 Mean Efficiencies of the e = Ie - 8, (-1,2,-1) 204

7.6 Mean Efficiencies of the e = Ie - 6, (-I,u,-I) 205

7.7 Mean Efficiencies of the e = Ie - 8, (-l,u,-l) 205

7.8 Prcs 2 Efficiencies of the e = Ie - 6, (-1,2,-1) 206

7.9 Prcs 2 Efficiencies of the e = Ie - 8, (-1,2,-1) 206

7.10 Prcs 6 Efficiencies of the e = Ie - 6, (-1,2,-1) 207

7.11 Prcs 6 Efficiencies of the e = Ie - 8, (-1,2,-1) 207

7.12 Prcs 2 Efficiencies of the e = Ie - 6, (-I,u,-I) 208

7.13 Prcs 2 Efficiencies of the e = Ie - 8, (-I,u,-I) 208

Xl11

7.14 Prcs 6 Efficiencies of the c = Ie - 6, (-I,u,-I) 209

7.15 Prcs 6 Efficiencies of the c = Ie - 8, (-I,u,-I) 209

7.16 Power of 2, Mean Efficiencies of the c = Ie - 6, (-1,2,-1) 210

7.17 Power of 2, Mean Efficiencies of the c = Ie - 8, (-1,2,-1) 210

7.18 Power of 2, Mean Efficiencies of the c = Ie - 6, (-1,2,-1) 211

7.19 Power of 2, Mean Efficiencies of the c = Ie - 8, (-1,2,-1) 211

7.4a Mean Efficiencies of the c = Ie - 6, (-1,2,-1) 217

7.5a Mean Efficiencies of the c = Ie - 8, (-1,2,-1) 217

7.6a Mean Efficiencies of the c = Ie - 6, (-I,u,-I) 218

7.7a Mean Efficiencies of the c = Ie - 8, (-I,u,-I) 218

7.8a Prcs 2 Efficiencies of the c = Ie - 6, (-1,2,-1) 219

7.9a Prcs 2 Efficiencies of the c = Ie - 8, (-1,2,-1) 219

7.10a Prcs 6 Efficiencies of the c = Ie - 6, (-1,2,-1) 220

7.11a Prcs 6 Efficiencies of the e = Ie - 8, (-1,2,-1) 220

7.12a Prcs 2 Efficiencies of the c = Ie - 6, (-I,u,-I) 221

7.13a Prcs 2 Efficiencies of the c = Ie - 8, (-I,u,-I) 221

7.14a Prcs 6 Efficiencies of the c = Ie - 6, (-I,u,-I) 222

7.15a Prcs 6 Efficiencies of the c = Ie - 8, (-I,u,-I) 222

7.16a Power of 2, Mean Efficiencies of the c = Ie - 6, (-1,2,-1) 223

7.17a Power of 2, Mean Efficiencies of the c = Ie - 8, (-1,2,-1) 223

7.18a Power of 2, Mean Efficiencies of the c = Ie - 6, (-I,u,-I) 224

7.19a Power of 2, Mean Efficiencies of the c = Ie - 8, (-I,u,-I) 224

XIV

List of Tables

4.1 Matrix Class with and without Inline Function 86

4.2 Matrix Class with and without Inline Function 87

6.1 No Check with Matrix Class 148

6.2 No Check with Symmetric Matrix Class 149

7.1a: A Comparison of the Deflation Matrices Size of

100(100)400 Times for Recursive Version 196

7.1 b: A Comparison of the Deflation Matrices Size of

100(100)400 Times for Non-Recursive Version (Linked list) 195

7.1c: A Comparison of the Deflation Matrices Size of

100(100)400 Times for Simple Non-Recursive Version 197

7.2a: A Comparison of the Deflation Matrices Size of 2n

Times for Recursive Version

7.2b: A Comparison of the Deflation Matrices Size of 2n

Times for Non-Recursive Version (Linked list)

7.2c: A Comparison of the Deflation Matrices Size of 2n

Times for Simple Non-Recursive Version

7.3: The Comparison for the Ratio of the Times

for f nree and free versions

xv

199

200

201

213

CHAPTER 1

Introduction

Parallel processmg has emerged as a key enabling technology in

modern computers, driven by the ever-increasing demand for higher

performance, lower costs, and sustained productivity in real-life applications.

A multiprocessor system provides a promising approach to high speed

computing. This is a single computer system containing multiple processors

which are capable of communicating and cooperating at different levels

in order to solve a given problem [48]. More specifically, through some

regular interprocessor network, processors exchange information to share

the workload of a given program so that the computation can be performed

in a parallel manner.

However, programming and compiling for multiprocessor systems is

a far more complex task than traditional sequential programming. To

efficiently and correctly utilise a multiprocessor, one has to investigate such

issues as degree of parallelism, allocation of tasks, synchronisation between

processors, as well as memory management.

1

Chapter 1 Introduction

1.1 Background

Many physical problems need to be expressed in terms of sets of

quantities (called elements), which are conventionally arranged in an array

of m rows and n columns. Such an array is called a matrix. Matrices

provide a theoretical and practical way of approaching many types of

problems, including the solution of linear algebraic equations, systems of

linear differential equations, and many other applications [68].

This thesis discusses efficient serial and parallel methods for computing

the solution of the linear system of equations Ax = b, reduction of a general

matrix A to Hessenberg form, reduction of a real symmetric matrix B to

tridiagonal form, and computing all eigenvalues and eigenvectors of a real

symmetric tridiagonal matrix.

Systems of linear algebraic equations occur in a variety of applications

in practice and solving this problem is often one of the core components

of many scientific computations. These equations are associated with

many problems in engineering and science, as well as with applications of

mathematics to the social sciences and the quantitative study of business

and economic problems [7].

The development of efficient algorithms has received considerable

attention in the literature [93,38,43,and 85]. A large number of papers have

appeared in recent years describing various approaches to parallelising QR

and LU factorisation on distributed memory and shared memory MIMD

2

Chapter 1 Introduction

architectures. These factorisations are certainly some of the most used of

all numerical linear algebra computations.

Orthogonal transformations are a well-known tool in numerical linear

algebra and are used extensively in decompositions such as the QR

factorisation, tridiagonalisation, bidiagonalisation, Hessenberg reduction,

and the eigenvalue or singular value decomposition of a matrix [90].

Widely used transformations for the QR factorisation of a matrix

are Givens orthogonalisation, Householder orthogonalisation, and Gram

Schmidt orthogonalisation. Such factorisations may be realised on

multiprocessors via plane rotations [24 and 78], elementary reflectors [4],

or using the Modified Gram-Schmidt algorithm [90]. Several algorithms

have been proposed in the past for the orthogonal factorisation of matrices,

including those by Goles and Kiwi [37] on a shared memory SIMD computer,

Zhou and Brent [101] on a distributed memory MIMD computer, and Wright

[97] on a shared memory MIMD computer.

Modi and Clarke [67] have suggested a greedy algorithm for Givens

reduction and the equivalent ordering of the rotations, but do not consider

a specific architecture or communication pattern. Cosnard, Muller, and

Robert [16] have shown that the greedy algorithm is optimal in the number of

time steps required. Theoretical studies and comparison of such algorithms

for Givens reduction have been given by Pothen, Somesh, and Vemulapati

[74] and by Elden [30] and some of these algorithms have been implemented

on current commercially available distributed memory multiprocessors [34].

3

Chapter 1 Introduction

Pothen and Raghavan [73] have compared the early work of Pothen,

Somesh, and Vemulapati [74] on a modified version of a greedy

Givens reduction with a standard row-oriented version of Householder

transformations on a local memory system. Their tests seem to indicate that

Givens reduction is superior on such an architecture. Wright [97], however,

has implemented a number of algorithms on a shared memory machine for

QR decomposition. These were compared and the ones using Householder

transformations with multiple updates to columns were found to be very

effective and better than the ones using Givens transformations.

Block algorithms developed for specific architectures rely on transferring

large submatrices between different levels of storage. A numerical linear

algebra library based on block methods was developed and its performance

analysed in terms of architectural parameters in 1985 and early 1986 for a

single cluster of the Cedar machine, and the multi vector processors, Alliant

FX/8 [77]. At approximately the same time, Calahan developed block

LV factorisation algorithms for one CPU of the CRAY-2 [11]. In 1985,

Bischof and van Loan [4] developed the use of block Householder reflectors in

computing the QR factorisation and presented results on an FPS-164/MAX.

It was shown in [4] that this block algorithm is as numerically stable as

the classical Householder method. Most recently, Schreiber and van Loan

[79] have considered a more efficient storage scheme for the product of

Householder matrices. They describe the compact WY representation of

the orthogonal matrix Q. Wright [97] stated that one idea popular with

distributed memory machines is to use some sort of block method, though

4

Chapter 1 Introduction

for shared memory machines the advantages are not so obvious.

J alby and Philippe [50] have considered the stability of the modified

Gram-Schmidt algorithm and Gallivan et al [33] have analysed the

performance of this algorithm as a function of block size which is presented

along with experimental results on an Alliant FX/8 for single and double

level versions of the algorithm.

The various versions of the parallel L U factorisation algorithms have

appeared in different contexts in the literature, some use distributed memory

multiprocessor architectures [36,92,14,84] and some use shared memory

[64]. The algorithms use several ways to organise the computations for

calculating the L U factorisation of a matrix. The essential differences

between the various forms are: the set of computational primitives

required, the distribution of work among the primitives, and the size

and shape of the subproblems upon which the primitives operate. Since

architectural characteristics can favour one primitive over another, the

choice of computational organisation can be crucial in achieving high

performance. Of course, this choice in turn depends on a careful analysis

of the architecture/primitive mapping. However other features are also

important as will be discussed below.

One alternative method to L U decomposition which has been suggested

for the solution of linear algebraic equations is QR decomposition. This

algorithm is inherently stable and thus avoids the complication of pivoting.

Since the operation count for QR decomposition is twice that of L U

5

Chapter 1 Introduction

decomposition, QR decomposition will only be competitive if the efficiency

of LV decomposition with pivoting is less than half the efficiency of QR

decomposition [92], but Geist and Romine [36] claim that parallel QR

decomposition is not competitive to parallel LV decomposition.

We concentrate here on QR factorisation for solving systems of linear

equations by using Householder transformation and the Givens method,

and LV decomposition for solving systems of linear equations by using a

method similar to Doolittle or to Crout reduction. These methods are the

principal tools in the direct solution of linear systems of equations. Each

method is based on a factorisation of the coefficient matrix of the system.

We consider QR factorisation algorithms, namely, Householder and Givens

transformations, which have been implemented as described in [97].

We will focus in particular on algorithms written in the C++

programming language. C++ is an object-oriented programming language

which can provide various types of matrix classes (see chapter 2 for details).

The use of C++ implies some storage organisation for array elements. The

primitive arrays provided in C++ use storage by rows. As far as we are

aware little work seems to have been done on parallelising these algorithms

using C++. The comparisons in this thesis were carried out using both

row and column representation of the matrix: this was made easy by the

use of a C++ matrix class (see chapter 2 for details) which was altered

internally. Comparisons were also carried out for versions with and without

array bound checking and for versions with and without an inline function.

6

Chapter 1 Introduction

These extra comparisons were included to compare the algorithms under

different conditions, and make spurious conclusions less likely. The code

was written using the Encore Parallel Threads package (THREADS) [31],

which provides mechanisms for synchronisation. The EPT routines can be

accessed by C++ using the C linkage convention.

In [97] a number of algorithms for QR decomposition were compared and

ones using Householder transformations with multiple updates to columns

were found to be very effective. Most of the algorithms considered here for

LU decomposition use a similar idea, though one simple implementation is

also used for comparison. Some preliminary comparisons used pairwise row

Gaussian elimination [82] in a similar manner to the Givens QR reduction

considered in [97]. These algorithms gave significantly poorer times and

were also less accurate than the column based algorithms and so are not

considered here.

The use of the algorithm employed here to accomplish the L U

decomposition is motivated primarily by Wright [97]. In the Householder

algorithm, once a pivotal column has been completed no further changes

are made to that column. In the usual Crout and Doolittle algorithms

interchanges may take place in these columns corresponding to later pivotal

columns. Here the algorithm is modified so that interchanges of the

multipliers do not take place, with the programs organised in a similar way

to Householder Q R reduction. This variant of the interchange mechanism

is mentioned by Gallivan et al [34], but not investigated in detail here.

7

Chapter 1 Introduction

Algebraic eigenvalue problems, either standard Ax = AX, or generalised

Ax = ABx, occur in wide variety of applications. This problem arises in

many areas of physics, engineering, and science such as stability theory,

the theory of vibrations, quantum mechanics, continuum mechanics, the

analysis of electron orbits in atoms, the stability of structures, statistical

analysis, and other areas [100]. In many cases, the problems are of very

large order. For example, properties of certain quantum dynamical systems

can be determined through statistical analysis of quantities computed from

the eigenvalues or eigenvectors of symmetric matrices associated with those

systems [51], [52].

Matrices arising in such applications sometimes have a tridiagonal form

[61], and often have a banded form [51]. In addition, tridiagonal and

bidiagonal matrices arise in the solution of general problems. That is, full

eigensystems of dense matrices are usually computed by Jacobi methods

[40], or by reduction of A matrix to tridiagonal form T by Givens rotations

or Householder reflections followed by computation of the eigensystems of

T [96].

A direct reduction of A to symmetric tridiagonal form T by Givens

transformations or Householder transformations can be followed by

computation of the eigendecomposition for the reduced matrix. Sparse

symmetric eigenvalue problems are often handled by the Lanczos method

[70] which itself produces symmetric tridiagonal eigenproblems. This thesis

is concerned with methods for reducing a general matrix A to upper

8

Chapter 1 Introduction

Hessenberg form and a real symmetric matrix B to tridiagonal form.

It is well known that the methods for the reduction of a general matrix

to Hessenberg form and a real symmetric matrix to tridiagonal form do not

of themselves solve the eigenvalue problem, but this approach does reduce

the problem to a form that can be manipulated inexpensively.

We start with the nonsymmetric case. There are several methods for

reducing a general matrix to upper Hessenberg form, including some using

Householder transformations and others similar to Gaussian elimination.

Although those similar to Gaussian elimination are about twice as fast

as those using Householder transformation, the latter method is more

stable as it provides unconditional stability [9]. In chapter 5, we

describe an evaluation of five parallel implementations using Householder

transformations.

Similarly, the most common method for handling the symmetric

eigenproblem consists of first reducing the symmetric matrix to tridiagonal

form via Householder transformations. The algorithms for the reduction of

a general matrix to Hessenberg form can also be used for the reduction

of a symmetric matrix to tridiagonal form. We consider three parallel

implementations of the reduction of a symmetric matrix to tridiagonal form

in chapter 6.

Several algorithms have been developed for eigenvalue problems on

parallel computers. The most robust of these methods are those that

9

Chapter 1 Introduction

rely first on reducing the symmetric matrix to tridiagonal form followed

by handling the symmetric tridiagonal eigenvalue problem. Some works

find as an example [26] and [65], use shared memory architectures. Other

papers, such as [28],[55],[35], and [94], do not consider shared memory

multiprocessor architectures. Dongarra and Sidani [25] consider the non

symmetric problem using shared memory but assume that reduction to

Hessenberg form has already been carried out. Dongarra et al [27] consider

algorithms for reduction to Hessenberg form using blocking to reduce data

movement. All these papers give much relevant background to our work.

The Symmetric Tridiagonal Eigenproblem is an important problem in

numerical linear algebra. There are various ways to solve this problem.

Conventional methods are the shifted QR algorithm [10] and the bisection

method based on the Sturm sequence(see [95] and [70]). In recent years, a

divide-and-conquer technique has been developed by Cuppen [17]. Solving

eigenproblems using rank-one modification was proposed by Bunch, Nielsen,

and Sorensen [6], the work based on Golub [38]. Another approach using

the divide-and-conquer technique is given by Krishnakumar and Morf [58].

Cuppen's method has attracted much attention. The idea has been extended

and implemented using a variety of architectures, for example by Dongarra

and Sorensen [26] and Ipsen and Jessup [49]. Watkins [93] states that

Cuppen's method is highly parallelisable. Cuppen [17] claims this algorithm

is asymptotically faster than the QR method by an order of magnitude.

QR and Cuppen's methods are often used to compute all eigenvalues and

eigenvectors of the matrix but the bisection method is normally used when

10

Chapter 1 Introduction

only a few of the eigenvalues and corresponding eigenvectors are required

[49]. The Cuppen method uses a partitioning technique which reduces

the original problem to smaller ones of the same type, by a rank-one

modification. Cuppen [17] observed that there can frequently be some

deflation in the updating process as the original matrix is rebuilt from the

subproblems. Dongarra and Sorensen [26] implemented a further deflation

technique to make the algorithm more efficient and more stable.

Gallivan et al [34] suggest that if only eigenvalues are desired (or all those

lying in a given interval) or selected eigenpairs are desired, then bisection

should be used (for example, see Wilkinson and Reinsch [96] or Parlett [70]).

Such a combination has been adapted for the Illiac IV parallel computer in

[60] and [46], and later for the Alliant FXj8 [65].

The implementation of Cuppen's algorithm in [26] always computes the

eigenvalues to high accuracy, but some specific examples illustrate that it

may not compute fully orthogonal eigenvectors (see [6], [17], and [26]). To

resolve this problem, Kahan [54] suggests computing some key quantities

more accurately using simulated extended precision. Sorensen and Tang

[83] presented an alternative implementation scheme which was inspired by

the earlier work of Kahan [54]. They showed that this method is stable

but that it requires extended precision and so is machine-dependent [83].

Gu and Eisenstat [42] suggested an alternative method using the same

rank-one modification as in [83], using a different approach for finding the

eigenvectors. They showed that the new method is backward stable.

11

Chapter 1 Introduction

We implement Cuppen's method for finding all the eigenvalues and

corresponding eigenvectors of the real symmetric n x n tridiagonal matrix

T in this thesis. This method may be implemented recursively to produce a

parallel counterpart to Cuppen's algorithm [17] as demonstrated in [26]. We

discuss in addition to the recursive sequential algorithm two non-recursive

sequential algorithms and their parallel implementations in order to compare

these implementations in chapter 7. This chapter shows that non-recursive

versions are generally the fastest and compete overall with recursive versions.

In addition, we present and observe the effect of deflation on the accuracy

of Cuppen's method, but this is not of primary concern in this thesis.

1.2 Motivation and Research Objectives

As mentioned before, the goal of this thesis is to consider efficient serial

and parallel methods for computing the solution of the linear system of

equations Ax = b, reduction of a general matrix A to Hessenberg form,

reduction of a real symmetric matrix B to tridiagonal form, and computing

all eigenvalues and eigenvectors of a real symmetric tridiagonal matrix T.

The comparisons were carried out using the C++ programming language

mainly using classes to represent the matrices. The parallel versions were

implemented using the Encore Parallel Threads [31] package (EPT), which

provides among other things the facility for the programs to explicitly create

parallel "THREAD"s of execution using the "THREAD create" function. It

also provides mechanisms for synchronisation. The mechanisms used in

this thesis are "THREADjoin"s, locks, semaphores, and monitors. These

12

Chapter 1 Introduction

mechanisms are the standard synchronisation mechanisms in the EPT

package except for the lock mechanisms. The locks are provided in an

extension to EPT. These mechanisms are used to provide mutually exclusive

access to shared data.

Using the C++ language and shared memory computer system, the

program does not have direct control of the allocation of either processors

or storage. This is mainly a property of the operating system and not one of

the language (the same is true using PASCAL or FORTRAN). The transfer

of data between shared and cache memories is controlled by the hardware.

Variables can be declared locally or globally, but in either case they will be

stored in shared memory with possible copies in cache. The programmer

can ask for a number of parallel threads, but again the actual allocation is

controlled by the operating system and this may depend on current usage

of the machine as it is time-shared.

This last point suggests that dynamic allocation of work may be

particularly appropriate. However, it is difficult to measure its effectiveness

as this is expected to be of most benefit under heavily loaded conditions,

when timings are very variable. All the results in the sequel are based on the

best times observed over a number of runs when the machine was lightly

loaded. Dynamic allocation is likely to improve processor utilisation but

does require inter-processor communication for control. Predetermined (or

static) allocation is less flexible but avoids the need for this communication.

There are a number of considerations which were taken into account in

13

Chapter 1 Introduction

developing the parallel algorithms in this thesis. Firstly, and most obviously,

THREAD waiting time should be kept low, both by avoiding synchronisation

as far as possible and by keeping critical sections (see chapter 3 for details)

as small as possible. Secondly, the storage hierarchy of the multiprocessor

system implies different access times for the different parts of memory and

there is the possibility of contention waits for access to shared memory [48],

so that Threads [31] package (EPT), which provides data transfer should be

avoided where possible. Thirdly, as the type of multiprocessor being used is

normally set up in a multi-user mode, the algorithms should be adaptable

so that serious degradation does not occur if the number of threads asked

for is greater than the number of processors available.

In this thesis the experimental results to be presented show that dynamic

task allocation can be very effective on shared memory machines, and

that very high efficiency is obtainable with careful construction of the

parallel algorithms even for relatively small matrices. The results also

show that careful implementation taking these points into account produces

significantly better times than those for simple parallel versions for all the

algorithms presented here, and in most cases very good use of the parallel

facilities is possible [98].

14

Cbapter 1 Introduction

1.3 Structure of the Thesis

The structure of the thesis is as follows: The present chapter aims at

presenting a brief review of the relevant algorithms. Chapter 2 outlines

notation, assumptions, criteria for evaluating the numerical methods, and

also gives an overview of object-oriented programming in C++.

Chapter 3 gives an introduction to some of the basic ideas in parallel

computation including a review of the architecture of such computers

as well as some fundamental concepts and also describes the shared

memory multiprocessor used in the experiments. This chapter also deals

with the parallel programming environment, an overview of the Encore

Parallel Threads (EPT) package, and an introduction of inter-thread

communications.

In chapter 4, we consider a number of different parallel algorithms for

the QR and LV decomposition of a square matrix A. Algorithms based

on both Givens and Householder transformations are considered for QR

decomposition. For the LV decomposition we consider methods using both

a unit lower triangular matrix L and a general upper triangular matrix U,

and a unit upper triangular matrix and a general lower triangular matrix.

In chapter 5, we examine the reduction of a general matrix to upper

Hessenberg form. We describe an evaluation of five parallel implementations

using Householder transformations. We also consider a number of parallel

implementations for comparing three different synchronisation mechanisms

15

Chapter 1 Introduction

(see chapter 3 for details) when applied to a particular problem.

In chapter 6, we examine the tridiagonalisation of an nXn real symmetric

matrix, using Householder transformations. It is first written in a sequential

form followed by parallel versions. This is similar to the reduction to

upper Hessenberg form of a general matrix but has rather less scope for

parallelisation. We compare the performance of the three implementations.

These tests use both a simple Matrix class used for a general matrix and

a special Symmetric Matrix class written so that only half the matrix is

stored.

In chapter 7, we describe the implementation of Cuppen's method

for finding all of the eigenvalues and corresponding eigenvectors of real

symmetric n x n tridiagonal matrix T. We review the description of

the divide-and-conquer method presented in [17], examine the arithmetic

complexity of this method, discuss a number of sequential algorithms,

both recursive and non-recursive. We consider parallel implementations

of these versions, four of which are variant recursive versions and two

different non-recursive versions. We also consider parallelisation of the

matrix multiplication part of the algorithm. This chapter also provides

some experimental results illustrating the effect of deflation on accuracy, as

well as comparison of the parallel implementations with and without the

additional parallelisation for matrix multiplication.

Finally, conclusions and suggestions for future research are presented in

Chapter 8.

16

CHAPTER 2

Preliminaries

This thesis is concerned with the development of parallel algorithms for

numerical linear algebra. We have designed different implementations of

such algorithms and compared them empirically. All the comparisons have

been carried out using the C++ programming language using the Encore

Parallel Threads package on a shared memory multiprocessor (the Encore

Multimax). The comparisons were carried out by measuring the elapsed

time using each of the implementations. These algorithms are as follows:

• We firstly considered the QR decomposition of a matrix for solving

systems of linear equations, that is using the decomposition of a square

matrix into an orthogonal matrix Q and an upper triangular matrix R.

In order to compute this we used Householder and Givens transformation

methods which were first written in a sequential form followed by their

parallel versions. Here the Q matrix was not stored.

• Secondly, we examined two methods for the L U decomposition of a

matrix. One uses a unit lower triangular matrix L and a general

17

Chapter 2 Preliminaries

upper triangular matrix U and is similar to Doolittle reduction and

GAXPY Gaussian elimination [40]. The other method uses a general

lower triangular matrix L and a unit upper triangular matrix U and

is similar to Crout reduction. A comparison of these methods is made

using a number of variant parallel implementations. Results similar to

QR decomposition were obtained. This work is described in [56].

• Thirdly, we considered the reduction of a general matrix to upper

Hessenberg form using Householder transformations. A variety of

parallel algorithms were investigated. Comparisons of performance were

carried out between the five implementations. This work has been

written up as a technical report [57].

• Fourthly, we compared the lock, semaphore, and monitor synchronisation

mechanisms for algorithms which were otherwise the same. Two parallel

implementations of the reduction to Hessenberg form were used in

these experiments. We came to a clear conclusion about using the

synchronisation mechanisms, which is that, in all cases, using "Locks" is

more efficient than using "Monitors" or "Semaphores".

• Fifthly, we considered the tridiagonalisation of an n X n real symmetric

matrix, using Householder transformations. This was first written in a

sequential form followed by its parallel versions. This is similar to the

reduction to upper Hessenberg form of a general matrix but has rather

less scope for parallelisation. We compared the performance of the three

implementations.

18

Chapter 2 Preliminaries

All these compansons were carried out usmg both row and column

representations of the matrix; this was made easy by the use of the simple

C++ matrix class which was altered internally. Comparisons were also

carried out between cases with and without array bound checking. These

extra comparisons were included in order to compare the algorithms

under different conditions, and to make spurious conclusions less likely.

• Finally, we implemented Cuppen's divide-and-conquer method to

compute all of the eigenvalues and corresponding eigenvectors of an

n X n real symmetric tridiagonal matrix. The method uses a divide-and

conquer technique which reduces the eigenvalue problem for a symmetric

tridiagonal matrix to smaller problems of the same type by a rank-one

modification. The algorithm can be parallelised using different schemes

some being recursive and some non-recursive. We discuss a number of

sequential and a variety of parallel approaches for the implementation of

this algorithm.

Notations are introduced in section 2.1 along with assumptions about

the matrices used. Definitions and theoretical results about the measures

of quality employed are presented in section 2.2. In sections 2.3 and

2.4, we introduce measures of the sensitivity of a linear system and an

eigenvalue problem, respectively. Real general matrices were used to test the

Householder and Givens transformation methods, the Doolittle and Crout

reduction, and the reduction of a general matrix to upper Hessenberg form.

To test the tridiagonalisation phase we used real symmetric matrices. The

19

Cbapter 2 Preliminaries

symmetric tridiagonal matrices used to test the eigenvalue problem of the

divide-and-conquer method are given in section 2.5. Relevant features of

the object-oriented programming language C++ are introduced in section

2.6. The overview of classes used here and inline functions are presented in

subsections 2.6.1.

2.1 Notations and Assumptions

The following notation will be used throughout this thesis. Unless

otherwise specified, a superscript T denotes transpose. All quantities are

assumed to be real. We use the notation of Golub and van Loan [40]

where A(k,j : n) denotes the vector consisting of the elements of A(k,i),

i = j, ... ,n, for the algorithms in this thesis.

A denotes an n x n general matrix having the QR decomposition

A = Q R, where Q is an n x n orthogonal matrix and R is an n x n upper

triangular matrix. To solve Ax = b, we first use Gaussian elimination to

factor the nonsingular matrix A as A = LU, where L is an n x n lower

triangular matrix, U is an n x n upper triangular matrix, and where the

permutations has been ignored.

T denotes an n x n symmetric tridiagonal matrix with the

eigendecomposition T = Q DQT where D is an n X n diagonal matrix with

the eigenvalues I.AII > 1.A21 > ... > l.Anl as its diagonal elements. The n x n

matrix Q is orthogonal and has as its columns the eigenvectors ql, Q2,· .. ,qn

20

Chapter 2 Preliminaries

2.2 Measures of the Quality of a Method

In this thesis, different methods and implementations are compared

empirically in terms of runtime and parallel efficiency.

• Speed-up: In evaluating a parallel algorithm for a given problem, it is

quite natural to do it in terms of the best available sequential algorithm

or corresponding one for that problem. The speedup Sp attained when

using p processors to solve a problem instance of size N is defined by the

formula

where Ts(N) and Tp(N) are the times for the sequential and parallel

verSIOns.

• Overhead To: The sum of the time spent by all processors with other

processors, waiting for signals, time in starvation, etc. [81]. Overhead is

defined by

where Ts(N) and Tp(N) are the times for the sequential and parallel

versions and p is the number of processors.

• Efficiency: The efficiency Ep of a parallel algorithm is defined to be

the speedup divided by p, which has the effect of scaling the speedup to

a value usually between 0 and 1. Symbolically, efficiency is defined by

E (N) = Ts(N)
p p X Tp(N)

21

Chapter 2 Preliminaries

where Ts(N) and Tp(N) are the times for the sequential and parallel

versions and p is the number of processors. In this thesis, the mean

efficiency is calculated by averaging the efficiencies. Since Sp(N) ~ p,

we have usually Ep(N) < 1 and an efficiency of Ep(N) = 1 corresponds

to a perfect speedup of Sp(N) = p [39].

• Amdahl's Law: Amdahl noted that the computation time can be

divided into a parallel portion and a sequential portion, and no matter

how high the degree of parallelism in the former, the speedup will be

asymptotically limited by the latter which must be performed on a single

processing element [2].

2.3 Measures of Sensitivity of Linear Systems

When we solve a system of linear equations or compute an eigenvalue

problem we usually obtain an approximation of the exact result. The result

will be affected by the roundoff errors made during the computation. The

result produced by the algorithm is accepted as correct as long as the error

of the computation is less than some specific value, where the error is the

difference between the exact result and the computed result. In case the

errors are not small, it is important therefore to ask what effect small changes

or perturbations in the coefficients have on the solution of the system or the

eigenproblem. How do these errors affect the accuracy of the computed

solution?

22

Chapter 2 Preliminaries

Consider a linear system,

Ax=b (2.3.1)

where A is a nonsingular matrix, and b is the nonzero right hand side vector.

The system has a unique solution x. Suppose the system has x as computed

solution of the perturbed system

~

Ax =b (2.3.2)

where b = b + 8b and x = x + 8x. We hope that if 8b is small compared to

b, then 8x is also small compared with x. The size of 8b and 8x relative to b

and x are given by 118bll/llbil and 118xll/llxli respectively. We wish to relate

11 8x ll/llxli to 118bll/llbll.

Substituting equation (2.3.1) into equation (2.3.2) and multiplying by

the matrix A-I gives

8x = A- 18b. (2.3.3)

Whatever vector norm we have chosen, we will use the induced matrix

norm to measure matrices. Using the properties of the vector norm and its

induced matrix norm, equations (2.3.1) and (2.3.3) imply that

118xll < IIA -111118bll (2.3.4)

and

IIbll < IIAllllxll, (2.3.5)

23

Chapter 2 Preliminaries

or equivalently
1 1

W < IIAII TIbIT (2.3.6)

Combining inequalities (2.3.4) and (2.3.6) yields an important inequality

(2.3.7)

which provides a bound for 118xll/llxli in terms of 118bll/llbll. The factor

IIAIIIIA -111 is called the condition number of A and is denoted by ~(A) [7].

The inequality (2.3.7) needs to be interpreted correctly. If ~(A) is close

to 1, then small relative changes in the components of the linear system of

equations produce small relative changes in the solution. In this case we

say that the linear system is well-conditioned. A linear system of equations

is said to be ill-conditioned if ~(A) is large and small changes in problem

parameters may cause large changes in the solution.

The accuracy of a method may be measured by the residual in the

computed solutions of the linear system (2.3.1). In [39], the residual vector

of a computed solution x to the equation (2.3.1) is defined by

r = b - Ax (2.3.8)

If r were zero, then x would be the exact solution of the linear system (2.3.1).

Thus we would expect r to be small if x were a good approximation to the

exact solution. If r were small, then Ax effectively approximates the right

hand side b. This is true in some cases, but if A is ill-conditioned, the size

24

Chapter 2 Preliminaries

of T can be very misleading. As an example, consider the system

(
0.780 0.563) (Xl) = (0.217) ,
0.913 0.659 X2 0.254

and the approximate solution

Then, the residual vector is

x = (0.341) .
-0.087

Now consider another very different approximate solution

x = (0.999)
-1.001 '

and the corresponding residual vector

_ (0.0013 ...)
T- .

-0.0015 ...

(2.3.9)

(2.3.9a)

(2.3.9b)

(2.3.9c)

(2.3.9d)

By comparing the residuals (2.3.9b) and (2.3.9d) we could easily conclude

that (2.3.9a) is the better approximate solution. However, the exact solution

of (2.3.9) is (1,-1), so the residuals give completely misleading information.

If the matrix A is well-conditioned, the residual vector provides a valid

estimate of the accuracy of an approximate solution x. However, in general,

small residuals do not always imply high accuracy.

25

Chapter 2 Preliminaries

When we solve a system of linear equations, we are concerned with

knowing whether or not our computed solution is accurate. This calls

for an error analysis which attempts to determine the effect of round-

off errors. The round-off errors result from inaccuracy in computation.

Computational procedures may consist of hundreds or even thousands of

elementary operations and the cumulative effect of round-off is sometimes

severe.

For systems of linear equations there is a way to analyse an error based

on the residual and condition number. From (2.3.8) consider

(2.3.10)

so that, if E = A -lb - x is the error in the approximate solution, then,

(2.3.11)

This is the fundamental relation between the residual and the error. Then

IIEII < 1W'lllIrll = J«A) ill:III' (2.3.12)

so that the error is bounded by K(A) times a normalised residual vector.

The estimate (2.3.12) shows that if K(A) and 11111111 are both small, then the

error is also small. On the other hand, from r = AE, we obtain

fl<IIEII IIAII-

so that if 11111111 is large, so is the error.

26

Chapter 2 Preliminaries

If the condition number is large, then small changes in the data may

cause large changes in the solution depending on the particular perturbation.

The practical effect of a large condition number depends on the accuracy

of the data and the word length of the computer being used. If the data

are measured quantities, however, the computed solution may not have any

meaning even if computed accurately [39].

2.4 Measures of Sensitivity of Eigenproblem

The accuracy for the eigenvalue problem can also be determined by

residual error in the computed solutions and by the orthogonality of

the computed eigenvectors. For a symmetric tridiagonal matrix T with

computed eigendecomposition Q DQT, the quality of the solution can be

measured using the residual ~

1
~ =--:0--

!-X!maa:

max

~

and a measure of orthogonality of the eigenvectors

where D = diag(-X) and qi is the ith column of Q. The residual error is thus

determined by the largest residual error for any single computed eigenpair.

Theorem 2.4.1 (see Theorem 2.1 in [53]).

Let QDQT be the computed eigendecomposition of a symmetric

tridiagonal matrix T. If ~ < E1, and ~ < E2, then there exists a matrix

27

Chapter 2 Preliminaries

E such that

T + E = QDQT, and IIEI12 < vn[I~lmazE2 + 1~lmazEl VI + VnE2] ,

where I-Xlmaz = max(I-X11, I-Xnl)·

Theorem 2.4.1 above shows that if the residual ~ and orthogonality S'

are small, then Q DQT is the exact eigendecomposition of a matrix T + E

nearly equal to T. In this result E is neither symmetric nor tridiagonal in

general.

2.5 Test Matrices

In this thesis the algorithms for the QR and LV decomposition and the

reduction of a general matrix to upper Hessenberg form were tested only

with circulant matrices. Since the results are only concerned with timings

and because these algorithms are independent of the test matrix apart from

interchanges in the LV decomposition, only one type of matrix is needed

to provide a satisfactory test. For the same reason the algorithms for the

tridiagonalisation of an n X n real symmetric matrix were tested again using

only one type of symmetric test matrix. If accuracy were an issue then many

more types of matrices would need to be tested. The serial and parallel

algorithms were tested on the collection of matrices given in this section.

These are as follows:

1. General Test Matrices:

Only one type of test matrix was used. This was the circulant matrix

28

Chapter 2

A. The (n x n) circulant matrix A is given by

{
n + k - j + 1, if k < j

A"k =
J, k - j + 1, otherwise,

Preliminaries

all the elements of the matrix are real and different from zero [44]. If the

right hand side vector b given by

bj = n(n + 1)/2

is used then the corresponding solution of the equations x is given by

Xj = 1,

for j = 1, 2, ... , n.

2. Symmetric Test Matrices:

For the symmetric matrix tests, the matrices B given by

Bij = i + j + 1.31/(i + j),

for i = 1,2, ... , nand j = 1,2, ... , n, were used.

3. Tridiagonal Test Matrices:

A number of test matrices were used to test Cuppen's algorithm as the

amount of deflation in this method depends on the test matrix and this

affects the timings.

29

Chapter 2 Preliminaries

The matrix T[J3, a, 13]: The matrix with a = 2 in each diagonal position

and f3 = -1 in each off-diagonal position was used. It has eigenvalues given

in [93] as

for k = 1,2, ... , n. The eigenvector corresponding to the eigenvalue Ak is

q(k) given by

q~k) = sin[ik7r/(n + 1)],

for i = 1,2, ... ,n and k = 1,2, ... ,n. The matrix [-l,u,-l] has value-1

in each off-diagonal position and the value u = i X 10-6 in the ith diagonal

position, for i = 1,2, ... , n. This has been chosen because the matrix

undergoes little deflation when its eigenproblem is solved by Cuppen's

divide-and-conquer method [17].

2.6 Object-Oriented Programming in C++

Object-oriented programming makes use of the class construct. One

advantage of programming in an object-oriented language is that new types

can be created through this class mechanism. In C++ terminology, a class

is a data type that contains data and functions. An object is simply a

user-defined class variable. Every object will be an instance of a class. We

can define operations in the class and these operations can be performed

on instances of that class. A class declaration determines how storage is

to be used to represent an object and which operations are to be available

to manipulate that storage. Language support for classes first came with

30

Chapter 2 Preliminaries

Simula 67 [15].

c++ was developed by Stroustrup in the early 1980s. Pohl [71] states

that Stroustrup had two main goals: (1) C++ was to be compatible with

ordinary C, and (2) it was to extend C using the class construct of Simula

67. The class construct is an extension of the C struct. The language, in an

early form of the C++ programming language, is described by Stroustrup

[89].

Booch [5] defines object-oriented programmmg as "a method of

implementation in which programs are organized as cooperative collections

of objects, each of which represents an instance of some class, and whose

classes are all members of a hierarchy of classes united via inheritance

relationships. "

Object-Oriented Programming has grown from a radical concept of

the 1960's to routine practice among serial programmers in late 1980's.

Can it be as useful in parallel programming as in serial programming?

Object-oriented programming involves simple components that can be tested

independently and be used to assemble complex programs. Most of these

simple (independent) components may be used in their own right in other

programs.

The use of the object model helps us to exploit the expressive power

of object-based and OOP languages. As Stroustrup points out, "it is

not always clear how best to take advantage of a language such as C++.

31

Chapter 2 Preliminaries

Significant improvements in productivity and code quality have consistently

been achieved using C++ as 'a better C' with a bit of data abstraction

thrown in where it is clearly useful. However, further and noticeable larger

improvements have been achieved by taking advantage of class hierarchies

in the design process. This is often called object-oriented design and this is

where the greatest benefits of using C++ have been found" [87].

Hwang [47] states that the popularity of OOP is attributed to three

application demands: First, there is increased use of interacting processes

by individual users, such as using multiple windows. Second, workstation

networks have become a cost-effective mechanism for resource sharing

and distributed problem solving. Third, multiprocessor technology has

advanced to the point of providing supercomputing power at a fraction of

the traditional cost.

Perhaps the most widely known OOP language is C++, and so the

algorithms, in this thesis have been implemented in this language in order

to take advantage of its features and facilities. Lewis and El-Rewini [62]

stress the point that OOP features information hiding and encapsulation,

meaning that (i) each object hides the implementation details and also data

from view of outside clients only a restricted set of methods is visible, and

(ii) changes to the implementation of the object do not require changes to

the code that uses the object, so long as the interface is stable. A modern

programming language would be a poor one if the programmer had no means

of building data items to match the conceptual items within the solution to

32

Chapter 2 Preliminaries

the problem being addressed. To re-phrase, data abstraction, the ability to

create user-defined data types, is essential in any modern language.

Abstract data types are implemented in C++ through the class facility.

Classes allow a programmer to control the visibility of the underlying

implementation. What is public is accessible and what is private is hidden.

Data hiding is one component of object-oriented programming. Classes

have member functions, including those that overload operators. Member

functions allow the programmer to code the appropriate functionality for

the abstract data type [72].

A class is an extension of the idea of the struct construct in conventional

C. The structure type allows the programmer to group together several

pieces of data and treat them as a single data item. C++ structs behave

as a class whose members are publicly exported by default, whereas classes'

members are private to the class by default. In both class and struct access

to variables and functions can be changed using the keywords private and

public. The keyword public indicates the visibility of the members, and

members of an object are accessible to any function having access to the

declaration of that object class and scope access to the object itself. If the

class is not used with the public keyword, the members are private to it.

Private members are available for use only by other member functions of

the class. Public members are available for use by any function within the

scope of the object declaration. Privacy allows part of the implementation

of a class type to be hidden. This restriction prevents unanticipated

33

Chapter 2 Preliminaries

modifications to the data structure. As the default for class is private,

we need only use the keyword public.

The C++ class concept supports data hiding. Data hiding is a feature of

object-oriented programming. When the representation of a type is hidden,

some mechanism must be provided for a user to initialise variables of that

type. A simple solution is to require a user to call some function to initialise

a variable before using it. This is often done by a constructor when the

variable is declared. Data hiding is a property of class objects whereby the

internal structure of an object is hidden from the rest of the program, which

can interact with the object only by sending it messages and receiving its

replies using the public members of the class.

2.6.1 Classes

We used one matrix package and some matrix classes throughout this

thesis. The package is called new mat and is intented for scientists and

engineers who need to manipulate a variety of matrix types using standard

matrix operations. The package includes the operations *, +, -, inverse,

transpose, conversion between types, submatrix, determinant, Cholesky

decomposition, Householder triangularisation, singular value decomposition,

eigenvalues of a symmetric matrix, sorting, fast fourier transform, printing

and an interface with "Numerical Recipes in C" [18].

The matrix classes are namely a simple matrix and vector class, and a

symmetric matrix class. We wrote these classes to access the matrices and

34

Chapter 2 Preliminaries

the computations. This enabled the computation to be carried out using

both row and column representations of the matrix. This was made easy by

the use of the C++ class facility.

Classes help the programmer provide higher-level programmmg

constructs than either functions or structs alone support. These constructs

serve as abstractions, and what they abstract typically relates closely to

the application for which the program is being written. The use of class

emphasises this mapping from application domain abstractions to solution

domain abstractions in a way that data structs alone cannot [15].

N ewmat Matrix Package

The newmat matrix package is used for the manipulation of matrices,

including the standard operations. A matrix is a two dimensional array of

numbers. However, very special operations such as matrix multiplication are

defined specifically for matrices. This means that a matrix package tends

to be different from a general array package. The package is designed for

version 2 of C++ by Davies [18].

The structure of matrix objects is described in the following way. Each

matrix object contains the basic information such as the number of rows

and columns and the status variable plus a pointer to the data array which

is on the heap.

In this package, the elements of the matrix are stored as a single array.

35

Chapter 2 Preliminaries

Alternatives would have been to store each row as a separate array or a set

of adjacent rows as a separate array, but large arrays may cause problems

for memory management in smaller machines.

The newmat matrix package has a two-stage approach to evaluating

matrix expressions which is used to improve efficiency and reduce the use

of temporary storage. A first requirement is that a matrix expression is

evaluated with close to the same efficiency as a hand-coded version. A second

requirement is that temporary matrices generated during the evaluation of

the expression are destroyed as quickly as possible.

The package does not have graceful exit from errors. All errors are

treated as fatal. It is important to mention that in the newmat matrix

package access to matrix element arrays involves array bound checking as

well as access via functions.

Matrix and Vector Class

This section describes a matrix and vector class which is used for most

of our experiments throughout this thesis. The class consists of two parts.

One part is a one-dimensional and the other part is a two-dimensional array.

A common mistake using bare C++ arrays is to access a subscript out of

range elements. In C++ these problems can be taken care of by defining an

array type in which bounds are tested.

An example of a matrix and vector class matrix.h which is particularly

36

Chapter 2 Preliminaries

convenient for the present thesis is given below. The class was altered

internally to give storage of the matrix by rows or by columns and to include

or not to include array bound checking. On the other hand, the matrix

representation for C++ Data Arrays and the Newmat Matrix Package have

no facility to give storage of the matrix by columns by internal alteration.

Also we should note that there is no array bound checking when using C++

Data Arrays, while the Newmat Matrix Package always has array bound

checking. Let us consider as an example a Matrix and Vector class that

enforces data hiding and which can be declared as follows:

/ / File matrix. h
/ / Header file for class Matrix
#include < iostream.h >

/ /Definition for Matrix
class Matrix
{

}j

int mj int nj int SZj double * aj
public:
Matrix(int ma, int na)j
"" MatrixO j
inline double& operatorO(int i, int j)j

/ /Definition for Vector
class Column Vector
{

}j

int nj double * aj
public:
Column V ector(int na) j
"" Column VectorOj
inline double& operatorO(int i)j

A C++ program consists of a number of source files. Each source file

37

Chapter 2 Preliminaries

is compiled separately into a machine-code file. The resulting machine-code

files are then linked to one another and with any needed library files to yield

a single executable file. Any program that uses the Matrix and Vector class

will include this header file with the statement

#include "matrix.h".

(The names of header files written by the user are enclosed in quotation

marks rather than angle brackets.) The header file must be included in all

programs that create and use objects of this matrix class. The above class

must be compiled and linked to any program using matrices of the class.

We give the member function definition for the Matrix and Vector class as

follows:

/ / File Matrix.c
/ / Source file for class Matrix
#include " matrix.h "

Matrix::Matrix(int ma, int na)
{

}

m=ma;
n=na;
sz=m * n;
a = new double[sz];
for (int i = 0; i < size; i + +)
a[i] = 0.0;

Matrix:: f'V Matrix()
{

delete [] a;
}

inline double& Matrix::operatorO(int i, int j)
{

int pos = (j - 1) * n + i-I;
if ((pos < 0) II pos >= sz))
{

38

/ / omit
/ / for no checking

Chapter 2 Preliminaries

}

}

cou t < < " Matrix: subscript out of range "
« i «" "« j « endl;

exit(l);

return a[pos];

Column Vector::Column Vector(int na)
{

}

n=na;
a = new double[n];
for (int i = 0; i < n; i + +)
a[i] = 0.0;

Column Vector::""Column VectorO
{

delete [] a;
}

inline double& Column Vector: :operatorO (int i)
{

}

if ((i < 1) II (i > n)) / / omit for no checking
{

}

cout« " ColumnVector: subscript out of range"
«i « endl;

exit(2);

return a[i - 1];

A C++ constructor can provide a way to automatically initialise

data. A constructor is a member function whose name is the same

as the class. The constructors "Matrix::Matrix(int ma,int na)" and

"Column Vector::Column Vector(int na)" allow the programmer to build

dynamically allocated arrays.

The class creates the C++ data array by usmg new and removmg

the object by using delete. Each time a new object is defined, its class

39

Chapter 2 Preliminaries

constructor is automatically invoked. The statement

a = new double[sz]j

invokes the C++ new operator to create an array of variables of type double

and places the address of this variable in the pointer variable a. The pointer

variable a is used as the base address of a dynamically allocated array whose

number of elements is the same as the value of sz. The keyword new is an

unary operator that takes as an argument a data type that can include an

array size. It allocates the appropriate amount of memory to store this

type from free store. Storage obtained by new is persistent and is not

automatically returned on block exit. When storage return is desired, a

destructor function must be included in the class. A destructor is identified

by having the same name as the class name prefixed by the tilde symbol

(f"V). Typically, a destructor uses the unary operator delete to deallocate

storage allocated by new [71].

Inline Function

In C++ programming there is sometimes a need for many calls of

functions that are very simple and small. Unfortunately, a certain amount

of computational overhead is associated with each function call and return.

In order to reduce the cost of calls and improve the speed of programs, C++

provides the inline feature to avoid function call overhead. A function may

be made inline by explicit use of the inline and declaration keyword on the

function definition, for example

inline double sqr (double x)
{

return x * Xj

}

40

Chapter 2 Preliminaries

The definition of an inline function must occur before it is used.

Generally, this is accomplished by putting the inline function definition

in a header file. The appearance of an inline declaration for a function,

after any call to the function, is an error. The C++ programming language

provides an alternative declaration of an inline function. The function has

its complete definition placed in the class declaration. Any function that is

defined (and not just declared) inside a class declaration is considered to be

an inline function. The keyword inline does not have to be used.

The inline function modifier can be used to request that a function be

expanded inline. This expansion avoids the overhead of a function call by

expanding the body of the function at the point it is called. The compiler

will attempt to inline expand the code of a function that is declared as

such before it is used, where the declaration and use appear in the same

source stream. Such inline expansion can result in large savings of central

processing unit time [15].

An inline function may use extra space because the inline function

duplicates the code for every function call and one may think that it

automatically increases code space. This is not necessarily true because

in line functions are designed for small functions in C++ such as matrix or

vector subscripting. When a function call requires code to pass arguments,

make the call, and handle the return value this code is not present for an

inline function. If our in line function turns out to be smaller than the

amount of code necessary for the ordinary call, we are actually saving space

[29]. We shall discuss further the performance of inline functions in chapter

4.

41

CHAPTER 3

Parallel Computer Architectures and Programming

3.1 Parallel Computers

The basic idea in parallel computing is the execution of a program

on two or more processors at the same time on a single problem and in

a single system. Parallel computing may offer a number of advantages.

Depending on the type of application and tools available, a single large job

can be decomposed into several smaller tasks that can run simultaneously

for faster running. This implies that two or more processors are operated

simultaneously.

The motivation for using parallel computers is the hope that if one

processor executes a task in time t then p processors can perform the task

in time tip. Clearly, the nearer this time is to tip, the better the parallel

algorithm. However, an execution time of tip can be achieved only in very

special situations.

42

Chapter 3 Parallel Computer Architectures and Programming

3.2 Parallel Computer Architectures

Parallel architectures may be classified in a number of ways. Flynn [32]

proposed a classification based on the multiplicity of instruction streams

(IS) and data streams (DS) in a computer system. The instruction stream

is defined as the sequence of instructions as performed by the machine and

the data stream as the sequence of data called for by the instruction stream

(including input and partial or temporary results). The classification has

the following form:

• Single instruction stream - single data stream (SISD)

• Single instruction stream - multiple data stream (SIMD)

• Multiple instruction stream - single data stream (MISD)

• Multiple instruction stream - multiple data stream (MIMD)

Although this classification gives a general categorisation, the current

development of computer architectures is more complicated and some

architectures exhibit aspects of more than one category.

3.2.1 SISD Computer Organisation

The SISD computer is typically designed based on the von Neuman

model as a single stream of instructions controlling a single stream of data

(see figure 3.1). Instructions are executed sequentially but these may be

overlapped in their execution stage (pipelining). Most present day SISD

43

Chapter 3 Parallel Computer Architectures and Programming

uniprocessor systems are pipelined. A SISD computer may have more than

one functional unit. All the functional units are under the supervision of

one control unit [48]. This type of computer consists of three levels: the

control unit (CU), the processor (P), and the memory modules (MM).

L-___ c_u ____ ~----Is----~~I~ ____ p ____ ~I~E~-D-S----~~~1 ___ M_M ____ ~

Fig. 3.1 SISD Computer Structure.

Example 1. Let us consider the implementation of a matrix

multiplication algorithm on different computer architectures. The product

of a n X p matrix A and a p X n matrix B is a matrix 0 whose elements are

given by
P

Oij = L AikBkj (3.1)
k=l

for i = 1,2, ... , nand j = 1,2, ... ,n. There are n 2p cumulative additions

and multiplications to be performed in equation (3.1).

In a conventional SISD uniprocessor system, the n 3 cumulative

multiplications are carried out by a sequentially coded program with loops

corresponding to the three indices to be used. The time complexity of

multiplying two n X n matrices for this example is clearly O(n3).

3.2.2 SIMD Computer Organisation

A SIMD computer is an array processor model. It executes a single

stream of instructions from a central control unit (CU) and operates on

44

Chapter 3 Parallel Computer Architectures and Programming

several data elements simultaneously (see figure 3.2). There are a number

of identical processing elements (P) each receiving the same broadcast

instruction to be performed on their own data item. Each of the N

processors have their own local memory (M) where they can store both

program sections and data [1].

M) M2 ... MN

os) OS2 OSN

p) P2 ... PN

IS

CU

Fig. 3.2 SIMD Computer Structure.

As an example, let us consider the implementation of the matrix

multiplication algorithm (Example 1) on an SIMD computer with n

processing elements. Hwang and Briggs [48] have stated that the algorithm

structure depends heavily on the memory allocations of th~ A and B

matrices in the processing elements' memories. Column vectors are stored

within the same processing element memory. This memory allocation

scheme allows parallel access to all the elements in each row vector of

the matrices. Based on this data allocation, the two parallel operations

correspond to vector load for initialisation and vector multiply for the

45

Chapter 3 Parallel Computer Architectures and Programming

inner loop of additive multiplications. If there are n processors the time

complexity has been reduced to O(n2). Therefore, the SIMD algorithm

is n times faster than the SISD algorithm for matrix multiplication. It

should be noted that the vector load operation is performed to initialise

the row vectors of matrix C one row at a time. In the vector multiply

operation, the same multiplier aij is broadcast from the control unit (CU)

to the processing elements to multiply all elements of the itk row vector of B

i.e. bik for k = 1,2, ... ,n. In total, n 2 vector multiply operations are needed

in the double loops. The successive memory contents in the execution of the

above SIMD matrix multiplication program are illustrated in [48]. Each

vector multiply instruction implies n parallel scalar multiplications in each

of the n 2 iterations. A number of parallel SIMD computers are on the

market, including the AMT DAP-610, the Thinking Machines CM-2, and

the MasPar MP-1 [22].

3.2.3 MISD Computer Organisation

The MISD computer is the third classification of Flynn which involves

multiple instruction streams controlling a single data stream. It consists

of N processors (P), each receiving different instructions from its control

unit (CU) and performing operations on the same data stream which is

received from the memory module (MM) at each step (see figure 3.3). The

conventional view is that such a machine has not yet appeared, although

there is also a view that pipelined vector processors belong to this class

rather than to SIMD or SISD [2].

46

Chapter 3 Parallel Computer Architectures and Programming

CUI CU 2 ... CU N

lSI IS2 ISN
\

PI P2 ... PN

DS

MM

Fig. 3.3 MISD Computer Structure.

3.2.4 MIMD Computer Organisation

A MIMD computational model corresponds to a multiple stream of

instructions each of which are applied to separate data items. This class

is very broad because it comprises all multiprocessor systems. There

are two basic types of MIMD architectures, namely distributed memory

multicomputer systems (loosely coupled) and shared memory multiprocessor

systems (tightly coupled).

The fundamental difference between the two systems is in the design

of the system memory. The defining characteristic for these two systems

is the communication mechanism provided by the underlying hardware:

the shared memory system assumes hardware support for shared-memory,

while the distributed system makes no such assumption. Interprocessor

communication in distributed systems is usually handled by a local area

network and takes place through message passing, whereas in shared

47

Chapter 3 Parallel Computer Architectures and Programming

memory systems communication is achieved via a common bus or an

interconnection network. (In the sequel, we will use the terms 'shared

memory' and 'common memory' interchangebly.) The processors in a shared

memory system communicate with each other through shared variables

in a common memory. A major advantage of a shared memory system

is potentially very rapid communication of data between processors. A

serious disadvantage is that different processors may wish to use the common

memory simultaneously, in which case there will be a delay until the memory

is free. This delay, called contention time, can increase as the number of

processors increases.

3.2.4.1 Shared Memory Systems

A shared memory system is composed of autonomous computing units

which are usually used to execute a single task together. This is achieved by

having a common memory. All processors can access any part of the common

memory because it is a single shared memory and accessible to all processors

(see figure 3.4). Communications among the processors are accomplished

through reading from and writing to the common memory. The simplest

implementation of the shared memory model is to connect processors and

common memory modules by a single bus. This is called a bus-based shared

memory multiprocessor. Bus-based shared memory multiprocessor systems

representative of this structure are the Encore Multimax, the Sequent

Symmetry, the Flex/32, and the Alliant FX/8 [21].

48

Chapter 3 Parallel Computer Architectures and Programming

The multiprocessor system used to perform the experiments described

in this thesis is a bus-connected shared memory Encore Multimax computer

running the UMAX operating system. The machine (locally called Newton)

has 14 NS32532 processors, each with 256 Kb processor cache memory.

The bus-based shared memory multiprocessor systems have a common

bus. An advantage of this is that a very small number of connection lines

are used, but there may be contention (bus contention) for use of the bus

by different processors; this can become a severe problem as the number of

processors increases. The common bus is a key system element of shared

memory systems. It provides a common communication path and carries

instructions and data between the common memory, processors, and I/O

subsystem devices. An illustration of a multiprocessor system using the

bus-based shared memory structure is shown in figure 3.4.

Common Memory 110 Devices
Modules

.

COMMON BUS

IS 1 IS 2 IS N

ctJ i2J ... ctJ
Fig. 3.4 Bus-Based Shared Memory Structure

49

Chapter 3 Parallel Computer Architectures and Programming

The common memory may be organised as several memory banks. A

memory bank is a unit of interleaved memory allowing only a single read

or write at a time. It may be the case that some processor attempts

to access a memory bank which is being accessed by another processor.

If this is the case the common bus provides a mechanism for resolving

the problem. In order to minimise memory contention, processors often

have large local cache memories (c in figure 3.4) to reduce the number of

memory requests. If suitable cacheing strategies are employed then the

shared memory architecture works very well in practice, allowing the current

generation of multiprocessors to utilise up to thirty processors [86]. Caches

are high-speed memory units used as a buffer, and placed between the

processors and common memory to capture those portions of the contents

of main memory currently in use. Since cache memories are typically five to

ten times faster than main memory, they can reduce the effective memory

access time if carefully designed and implemented.

When a processor makes a memory request, it generates the address of

the desired word and searches the cache for the reference. If the item is

found in cache a hit occurs, and a copy is sent to the processors, without a

request being made to the main memory (thus taking less time). If the item

is not found in cache, a miss (or cache fault) is generated, and the request

must then be passed on to the main memory system. When the item is

returned to the processor, a copy is stored in the cache, where room must

be found for it. Obviously, cache misses can be very costly in terms of speed.

On the other hand, if we are to consider speed as the main criterion, then

50

Chapter 3 Parallel Computer Architectures and Programming

using cache memory will be an additional advantage over normal memory

[22].

The other advantage of a cache memory is that it may reduce the time

the processor must spend waiting for data to arrive from the slower common

memory. Memory references are generated by the central processor unit for

either instruction or data access. These accesses tend to be clustered in

certain regions in time, space, and ordering. The efficiency of a program

using cache memory depends, in part, on the locality of reference in the

program being run. Given a reasonable amount of locality of reference,

for the majority of the time the processor can fetch instructions and

operands from cache memory, rather than common memory. Only when

the instruction or operand is not in the cache memory must the processor

be idle [75].

A parallel matrix multiplication algorithm (Example 1.) for the shared

memory model is given in section 3.5. The outer loop is done in parallel in

this algorithm. The time complexity of this algorithm is as follows. Each

processor calculates nip rows of matrix C; the time needed to calculate a

single row is O(n 2) where n is the matrix size and p is number of processors.
3

Hence the complexity of this algorithm is ~ + kp. Note that since there are

only n rows, at most n processes can be used to execute this algorithm.

Developing an efficient matrix multiplication algorithm for the

distributed memory model is complicated by the nonhomogeneous memory

structure [75].

51

Cbapter 3 Parallel Computer Arcbitectures and Programming

3.3 Basic Concepts of Parallel Computing

In this section we will define precisely some of the basic terminologies

of parallel programming.

• Process: A sequence of operations defined by the result it produces

or by its purpose. A process is an asynchronous activity such as the

execution of a program by the central processing unit [12].

• Processor: A piece of hardware, or a combination of hardware, whose

function is to interpret and execute instructions. It may be the principal

operating part of a computer, in which case it is also known as the

central processor. The processor or set of processors in a computer is

often called the processing unit [12].

• Grain Size (or Granularity): Grain Size is simply a measure of the

amount of computation involved in a software process. The simplest

measure IS to count the number of instructions in a grain (program

segment). Grain sizes are commonly described as fine, medium, or

coarse, depending on the processing levels involved.

• Latency: Latency is a time measure of the communication overhead

incurred between machine subsystems. For example, the memory latency

is the time required by a processor to access the memory. The time

required for two processes to synchronise with each other is called the

synchronisation latency. Computational granularity and communication

latency are closely related [47].

52

Chapter 3 Parallel Computer Architectures and Programming

• Dataflow Diagram An illuminating way to describe an algorithm

is to use a dataflow diagram. Such an algorithm consists of nodes

that represent data items and directed edges that represent execution

dependencies. The diagram is constructed so that there are no data

dependencies between leaf data items. That is, there is no contention

for write access to a common location between two leaf data items.

The dataflow representation of programs differs from a control flow

representation in the sense that the edges of the dataflow diagram do

not represent processes but the other is a diagrammatic representation

of the structure of an algorithm, showing the executions performed by

the program and the flow of control.

The ability to execute program segments in parallel reqUIres each

segment to be independent of the other segments. In order to visualise

the segments of the programs, we use a type of dataflow diagram for

some of algorithms in this thesis. This helps to discover the inherent

parallelism and show that parallel execution may be coordinated through

the aggregation of this information into a dataflow diagram [22].

• Parallelism and Load Balancing: Load balancing is perhaps the central

issue of parallel computing. The aim is always that after the initial

allocation all processors have nearly the same amount of work and this

should be achieved with the smallest overhead possible. If the work is

not evenly allocated across the available processors, some processors will

be idle. This type of parallel program may not achieve good parallelism

53

Chapter 3 Parallel Computer Architectures and Programming

because load imbalance can cause poor efficiency. For example, suppose

a parallel computer has 10 processors and is to perform a large matrix

multiplication problem, with the matrices divided into 81 partitions.

Assuming the partitions are of the same size then, the processors can

work in perfect parallelism on 80 partitions but only 1 processor will be

active during the remaining 1 partition and 9 processors will do nothing.

Although, in such examples, it is easy to partition the task into many

parts these parts may be of widely different sizes. Hence, after an initial

allocation of tasks among processors, some processors may finish their

tasks much sooner than others.

An alternative way of allocating work is to consider the possibility of a

dynamic balancing of load. Dynamic load balancing is possibly useful

when the sizes of segments are not known initially. This should provide

flexibility for the algorithm particularly in a multi-user environment,

for, if one processor is held up others will carry out the work instead.

On the other hand, suppose a parallel computer has 10 processors and

a large matrix multiplication problem, with the matrices divided into

80 partitions. Assuming the partitions are of the same size then, the

processors can work in perfect parallelism. In other words, if the number

of partitions is divisible by the number of processors, then a static load

balancing will be efficient. In static load balancing tasks are allocated to

processors at the beginning of a computation.

Dongarra et al [22] acknowledge that the importance of load balancing

54

Chapter 3 Parallel Computer Architectures and Programming

can be overstated. For example, in a system that is multiprogrammed,

the fact that one or more processors are idle should not be of great

concern since the idle time (from one user's point of view) can be taken

up by another job. This point is of particular importance when the

parallelism, measured in number of simultaneously executable tasks,

varies during the course of a job. Thus it might be efficient at one

time to use all the processors of a system while at another time to use

only one or two processors.

• Contention time: As shared memory systems have a common memory

(as illustrated in figure 3.4) which different processors may wish to use

simultaneously, there will be a delay when some processors are waiting

for the memory to be free. This delay is called contention time [39].

• Starvation: Due to the internal structure of an application or due

to the difficulty in dividing tasks evenly across the available processors

or waiting for data to become available, there may be points in an

application's execution where some available processors may not be kept

busy and this will result in poor performance. This is called Starvation

[81].

3.4 Parallel Programing Environment

This section describes the parallel programmmg environment and

introduces inter-thread communications. An environment for parallel

programming consists of hardware platforms, i.e. the machine, the operating

55

Chapter 3 Parallel Computer Architectures and Programming

system, the language supported (in which the program is to be written), and

software tools for data management.

As stated before, the hardware platform used in this work was a bus

connected shared memory Encore Multimax computer running the UMAX

operating system. Comparisons were carried out in this thesis using the

C++ programming language for various matrix representations including

C++ bare arrays, the newmat matrix package, and a simple Matrix and

Vector class discussed in section 2.6 which was used to access the matrices.

The algorithms for QR decomposition suffered failure for large matrices (run

time thread's stacksize) when using the newmat matrix package. This is

because using the newmat matrix package for the manipulation of matrices

needs much more space than using either the C++ bare arrays or the

simple Matrix and Vector class. This is one reason why the simple Matrix

and Vector class was used in preference to the newmat matrix package for

most of the work described in this thesis. The code was written using the

Encore Parallel Threads package (THREADS) [31], which provides among

other things the facility for the programs to create parallel "THREADs" of

execution explicitly using the THREAD create function (see section 3.5). It

also provides mechanisms for synchronisation. The mechanisms used here

are "THREADjoin"s, monitors, semaphores, and locks provided in the

extension to THREADS. They are used to provide mutually exclusive

access to shared data.

In a multi-threading environment, a thread is the basic unit of central

56

Chapter 3 Parallel Computer Architectures and Programming

processmg unit utilisation. It is equivalent to a program stream with

an independent program counter operating within each thread. Shared

memory programs usually employ a number of medium-grain lightweight

processes (called threads), whose number depends primarily on the amount

of parallelism exhibited by the algorithm. A single thread executes a

portion of a program, cooperating with other threads concurrently executing

within the same address space. Like processes, every thread must have a

separate program counter and stack of activation records, describing the

state of its execution. Usually, threads are lightweight processes that run

within the environment defined by a job. A job may have multiple threads

with all threads having the same job-sharing capabilities and resources.

Considerable overhead is required to create and maintain separate virtual

address spaces to support inter-thread communication, switch between

threads to effect simultaneous execution, synchronise threads, ensure mutual

exclusion, and so on [47].

A large number of threads would be very expensive if implemented inside

the operating system kernel [20]. It is fortunate that in the EPT package

thread management is controlled out of the kernel and in a thread library

so that threads can be implemented in user-space and thread management

overhead is small. Although there are conceptual advantages to having

more threads than processors in a shared memory program, a medium-grain

decomposition also helps in avoiding load imbalance, which can sometimes

severely impact performance.

57

Chapter 3 Parallel Computer Architectures and Programming

3.5 Overview of the Encore Parallel Threads Package

EPT is a library of routines, which enables a programmer to employ

the shared memory and parallel features of the Encore Multimax. It is an

extension of the Threads package that was developed by Doeppner at Brown

University [31].

The package has many facilities but only some of these have been used

III this work. The library provides a programmer with routines at the

user level. These can be used to manipulate threads of control and to

provide a connection so that threads can share information, thus enabling

a program to be parallelised. The threads are very suitable for use in a

parallel environment with any number of processors. The EPT routines can

be accessed by C++ by using the C linkage convention which is illustrated

in the example algorithm (see below). A threads environment is initialised

in EPT by calling the function

T H READgo(prcs, datasize, Junc, args, argsize, stacksize, priority).

This function provides the facilities for the programmer to specify the

number of processors (prcs) for use. The parameter prcs defines the

maximum possible level of true parallelism on the shared memory machine

(and is bounded above by 14 in Newton). We can create as many threads as

We like, but only prcs (number of physical processors) of these will be truly

concurrent.

The argument datasize sets up a pool of memory or total amount of data

58

Chapter 3 Parallel Computer Architectures and Programming

space. The function junc is initiated as the first thread of execution. The

argument args indicates the number of parameters needed by the function

Junc and argsize is the size of storage for the parameters. If argsize is

0, args is passed to the thread unchanged. However, if argsize is nonzero,

argsize bytes of data pointed to by args are placed on the new thread's stack

and the thread is passed as a pointer to this location instead of the original

value of args [31]. The arguments args and argsize provide the programmer

with the necessary parameters to be passed to the function Junc. stacksize

is the maximum stack size provided for the use of the newly created thread.

The latter is given a runtime priority of value priority. This function is

usually called in the main program.

As we mentioned before, the T H RE ADgo function provides a multi

thread environment so that when any thread requires a new thread to be

created then this can be achieved by calling T H READcreate with the

parameters specified as follows

THREADcreate(junca, args, argsize, ATTACHED, stacksize,priority).

This is equivalent to a Fork operation (i.e. creates a new parallel thread

of control). The arguments junc, stacksize, priority, args and argsize

have the same meaning as those for the THREADgo function. The

additional argument in THREADcreate is 'attachment'. The 'attachment'

determines if the new thread's termination is synchronised with that of

the parent thread that created it. If the attachment is ATTACHED,

this determines that there is a relationship between parent and the child

59

Chapter 3 Parallel Computer Architectures and Programming

threads, so that the parent thread will only end when child thread has

completed its work, and the parent can execute a call to wait until

the child terminates (THREADjoin). If ATTACHED is replaced by

DETACH ED, it indicates that the child thread bears no relationship

with its parent: it is totally independent. In this thesis we only use

ATTACHED. The THREADjoin function is used in the parallel task

to ensure that the child thread has been completed. This function has no

parameters and the program needs as many T H READjoin' s as the number

of THREAD create calls made.

The following example uses multiple threads for matrix multiplication

which is based on static (scattered) allocation of rows to threads.

#include < iostream.h >
#include < math.h >
#include " M atrix.c "

extern " C "
{

}
#include " thread.h "

struct mulpars
{

mulpars(int N, int Pr, int Prcs, M atrix& A, M atrix& B, M atrix& C):
n(N),pr(Pr),prcs(Prcs), a(A), b(B), c(C) { }

}j

int nj

int prj
int prCSj
Matrix& aj
Matrix& bj
Matrix& Cj

/ / matrix size
/ / processors number
/ / number of processors

void mult (struct mulpars * params)

60

Chapter 3 Parallel Computer Architectures and Programming

{

}

int i, j, k; / / they are subscripts
int prcs = params - > prcs;
int pr = params - > prj
int n = params - > n; / / matrix S1,ze
M atrix& a = params - > a;
M atrix& b = params - > bi
M atrix& c = params - > c;

}

for (i = prj i <= n; i+ = prcs)
{

for (j = 1; j < = n; j + +)
{

c(i, j) = 0;
for (k = 1; k <= n; k + +)
c(i, j) = c(i, j) + a(i, k) * b(k, j);

}

void multp (struct mulpars * params)
{

}

int prj
int prcs = params - > prcs;

for (pr = 1; pr <= prcs; pr + +)
{

}

params - > pr = prj
T H READcreate(mult,params, sizeoj(*params), ATTACH ED,

1024 * 1,2);

for (pr = 1; pr <= prcs; pr + +)
{

T H READjoinO;
}

void startroutineO
{

int i, j, pr = 1;
int n = 100; / / matrix S1,ze

61

Chapter 3 Parallel Computer Architectures and Programming

}

int prcs 2;
Matrix a(n, n);
Matrix b(n, n);
Matrix c(n, n);

II number of processors
I I a, b, and c are all zero

I I set the matrices a and b
struct mulpars params(n,pr,prcs, a, b, c);
multp(¶ms);

main 0
{

THREADgo(prcs,2 * 1024 * 1024, startroutine, 0, 0, 2 * 1024,1);
}

The THREADcreate function offers the user the opportunity for

parameters to be passed to their respective functions using the parameters

params and sizeo f (*params). As we explained earlier if in the

T H READgo function argsize is 0, args is passed to the thread unchanged.

However, if argsize is nonzero, argsize bytes of data pointed to by args

are placed on the new thread's stack and the thread is passed a pointer to

this location instead of the original value of args. This implies that each

THREAD uses its own copy of the parameters.

A memory problem occured when the matrices or vectors are declared

in the parallel part of the programs. This requires allocation of storage

space on the heap. In order to avoid this problem matrices or vectors were

declared before the parallel section and passed as reference parameters which

are defined in struct. When necessary they are referenced from within the

struct.

3.6 Inter-Thread Communication

A common problem occurs when two or more concurrent threads share

data which is modifiable. When a thread is updating variables, it is generally

unreasonable to allow any other thread to access the same variables. If

62

Chapter 3 Parallel Computer Architectures and Programming

a thread is allowed to access a set of variables which are being updated

by another thread concurrently, erroneous results are likely to occur in the

computation. Therefore, controlled access to the shared variables is required

to guarantee that a process has mutually exclusive access to the section of

program in which the data is modified. Such segments of programs are

called critical sections [20]. When one thread is already in a critical section,

all other threads wanting to access the critical section must wait. When the

thread in the critical section has finished performing the task it can set the

critical section free and another thread takes over.

The EPT package also provides a number of mechanisms for

synchronisation which entails a thread suspending its own execution, usually

waiting for some other thread to cause its execution to resume [20].

Synchronisation has two uses: to constrain the ordering of events and

to control interference. The most primitive synchronisation mechanisms

of a shared-memory computational model are semaphores and locks. The

mechanisms used in our study are semaphores, monitors, and locks. Locks

are not provided by the EPT package itself, but are available as an extension

code. The simplest forms of these synchronisation mechanisms are used to

provide mutually exclusive access to a particular object or data structure

(shared data) i.e. the execution can only be performed by a single thread

at anyone time.

3.6.1 Locks

In practice, a lock is most often used because it is simple. The locks

synchronisation implementation uses busy waiting. This is called a spin

lock (that is, a thread repeatedly tests the value of a shared variable).

However, locks waste processor cycles during delays. Moreover, a wait

may generate extra communication traffic and consume extra time in the

63

Chapter 3 Parallel Computer Architectures and Programming

network, slowing other processors doing useful work, including one working

in a critical section. Reducing the amount of busy waiting is a major issue

for synchronisation efficiency. Busy-waiting is a technique implemented such

that a waiting thread continues to use processor cycles to test the value of

the synchronisation variable until it assumes a desired value.

A lock prevents a thread from entering a critical section while another

thread is accessing that section, so that the newly arrived thread waits.

The critical section provides programs with a means of ensuring that shared

variables are accessed by only one thread at a time. When a thread gets

the lock, it sets the lock busy immediately. A thread requesting access to

the section must wait until the current thread releases that section. When

a thread leaves a critical section then it sets the lock to "unlock", and a

waiting thread is allowed to enter. The program uses the lock and unlock

operations to provide mutually exclusive access to a particular object or

shared data.

The lock is used to control entry to and exit from a critical section with

busy waiting. A critical section must be executed by only one thread at a

time. In general locks are only suitable for short waits.

The simple lock and unlock synchronisation structure is presented using

the following example which uses multiple threads for an alternative version

of matrix multiplication. The algorithm illustrates the use of dynamic

allocation of rows to THREADs on the shared memory machine.

#include < iostream.h >
#include < math.h >
#include " Locks.h "

#include " Matrix.h "

extern " C "
{

64

Chapter 3 Parallel Computer Architectures and Programming

#include " thread.h "
}

#include " matrix.c "

int prcs; II nur.nber of processors

struct mulpars
{

};

mulpars(int N, M atrix& A, M atrix& B, M atrix& C,
int * Nxrw, LOCK& Slock):
n(N), a(A), b(B), c(C), nxrw(N xrw), slock(Slock) { }

int n;
int * nxrw;
Matrix& a' ,
Matrix& b;
Matrix& c;
LOCK& slock;

I I r.natrix size
I I next row

void nrow (int row,struct mulpars *pars)
{

}

int j, k;

int n = pars - > n;
Matrix& a = pars - > a;
M atrix& b = pars - > b;
Matrix& c = pars - > c;

for (j = 1; j <= n; j + +)
{

c(row, j) = 0;
for (k = 1; k < = n; k + +)

I I they are subscripts

I I r.natrix size

c(row, j) = c(row, j) + a(row, k) * b(k, j);
}

void modrow (struct mulpars *pars)
{

int row;

int n = pars - > n;
do
{

65

Chapter 3 Parallel Computer Architectures and Programming

}

}

pars- > slock.lockO;
row = *(pars- > nxrw);
*(pars- > nxrw) = row + 1;
pars- > slock.unlockO;

if (row <= n)
{

nrow(row, pars);
}

while (row < n);

void matmulp (struct mulpars *params)
{

}

int prcount; / / processors count
for (prcount = 1; prcount <= prcs; prcount + +)
{

}

THREADcreate(modrow ,params,sizeof(*params) ,ATTACHED,
1 * 1024,2);

for (prcount = 1; prcount <= prcs; prcount + +)
{

THREADjoinO;
}

void startroutineO
{

}

int i, j;
int n = 100;
Matrix a(n,n);
Matrix b(n, n);
Matrix c(n, n);
int nxrw = 1
/ / set the matrices a and b
int nxrw = 1;
LOCK slock;

/ / matrix size
/ / a, b, and c are all zero

struct mulpars params(n, a, b, c, &nxrw, slock);
matmulp(¶ms);

main 0

66

Chapter 3 Parallel Computer Architectures and Programming

{
prcs = 2; / / number of processors
THREADgo(prcs,2 * 1024 * 1024,startroutine,0, 0, 2 * 1024,1);

}

3.6.2 Semaphores

A semaphore is a synchronisation mechanism which provides an

alternative way of obtaining mutual exclusion. As originally proposed, these

operations were first developed by E. W. Dijkstra in the mid-1960s [19].

The only logical operations on semaphores are wait and signal (P and V

respectively). The operations P and V come from abbreviations of the

Dutch words for waiting and signaling.

A semaphore is a shared integer variable that may only be accessed

using one of three possible operations. These are T H READseminit,

T H READpsem, and T H READvsem. The last two functions perform

the corresponding P and V primary operations on semaphores. The first

function is written in the form

sem = T H READseminit(initialvalue)

and creates a new semaphore, initialises the value of initialvalue, and

returns a reference to the created semaphore. The T H READpsem

operation waits until the semaphore has a positive value and then

decrements that value. If the value is zero or negative then the semaphore

suspends the calling thread, thus producing a waiting operation, and places

it in a waiting queue. Otherwise the thread continues and decrements the

initialvalue. The function is written in the form

T H READpsem(sem).

67

Chapter 3 Parallel Computer Architectures and Programming

A T H READvsem operation increments the initialvalue, and a

T H READpsem operation waits until the initialvalue is greater than zero

and then decrements the initialvalue. T H READpsem operations are

typically used to wait (synchronise) until some condition is true (such

as a shared buffer becoming non-empty), and THREADvsem operations

typically signal that some condition is now true. The system has to ensure

that each of these operations execute atomically. This means that if a wait

and signal operation occur simultaneously they are executed one at a time.

The programmer has no control over this and does not know in what order

they are executed.

The semaphores implement synchronisation at a higher level than the

busy waiting that is used to control entry to and exit from a critical section

without busy waiting. This includes the appropriate queues and permits

groups of threads to enter a critical section at anyone time.

The following example uses multiple threads for addition of the element

of a vector (using static allocation of work to threads).

#include < iostream.h >

#include < math.h >
#include " Matrix.h "
extern " C "
{

}
#include " thread.h "

SEMAPHORE semj

struct addpars
{

addpars(int N, int Pr, int Pres, ColumnVector& X, double& s):
n(N),pr(Pr),prcs(Prcs), x(X), s(8) { }

int nj

int prj
/ / vector size
/ / processors number

68

Chapter 3 Parallel Computer Architectures and Programming

};

int prcs;
double& s;
ColumnVector& X' ,

/ / number of processors

void add (struct addpars * pars)
{

}

double sa = 0;
int i; / / this 'tS a subscript
int prcs = pars - > prcs;
int pr = pars - > prj
int n = pars - > n; / / vector szze
double& s = pars - > S;
ColumnVector& x = pars - > x;

for (i = prj i <= n; i+ = pres)
sa+ = x(i);
T H READpsem(sem);
s+ = sa;
T H RE ADvsem(sem);

void addp (struet addpars * params)
{

}

int prj
sem = THREADseminit(O);
for (pr = 1; pr <= prcs; pr + +)
{

}

params - > pr = prj
THREADereate(add,params, sizeof(*params) , ATTACHED,

1024 * 1,2);

for (pr = 1; pr <= prcs; pr + +)
{

THREADjoinO;
}

void startroutineO
{

int i, j, prcs, pr = 1;
double s = 0;

69

Chapter 3 Parallel Computer Architectures and Programming

}

int n = 100; / / vector size
ColumnVector x(n); / / x ~s zero
for (i = 1; i < = n; i + +)
x(i) = i; / / for example
struct mulpars params(n,pr,prcs, x, s);
addp(¶ms);

main ()
{

int prcs = 2;
THREADgo(prcs,2 * 1024 * 1024, startroutine, 0, 0, 2 * 1024,1);

}

3.6.3 Monitors

A monitor is a synchronisation mechanism that attempts to encapsulate

mutual exclusion and provides convenient facilities for signaling and waking

up threads. In this thesis we have not looked at the general structure of a

monitor and examined the facilities it offers. Monitors are just used as an

alternative mechanism to semaphores in the EPT package. This mechanism

was originally proposed by C. A. R. Hoare in the early 1970s [45], and was

implemented in the Concurrent Pascal programming language.

A monitor consists of a set of variables representing the state of some

resource and a set of functions. When a thread requires to use a monitor,

it must create one before using it. This is accomplished by a thread call

mon = THREADmonitorinit(conditions, resetfunc).

A monitor may provide condition variables (conditions) each of which have

associated suspend and continue operations. The parameter resetfunc

(reset function) is used for orderly reorganisation of the monitor should the

thread be terminated. In its simplest form, the monitor provides exclusive

70

Chapter 3 Parallel Computer Architectures and Programming

access to shared data. The required control of access can be accomplished

by using the following functions:

T H READmonitorentry(mon, manager)

and

T H RE ADmonitorexit(mon).

Only one thread can execute the code between the T H READmonitorentry

and T H READmonitorexit functions at one time. Thus, if thread Tl

has invoked one of the monitor entry functions and thread T2 attempts

to invoke a function in the same monitor, T2 will be blocked until Tl

relinquishes the monitor. Only one thread may be inside the monitor

(i.e. executing a monitor function) at any point in time. The first

parameter mon is the handler of the monitor that has been created to

protect the data structure. The second parameter, manager gives the caller

the option of managing the monitor control block space and NULL gives

default action. The parameter manager is a pointer to an area of opaque

type T H RE AD -.AI AN AG E RJ3 LOC K. This storage needs a lifetime long

enough to still exist when THREADmonitorexit(mon) is called.

Monitors also provide wait and signal operations in the following way.

If a thread enters a monitor and finds that a required condition is not true,

it can suspend itself by executing a wait statement of the form

T H READmonitorwait(mon, condition).

The function has two parameters which are mon and condition. mon

is the name given to the monitor. The condition argument gives the

number of condition queues (inside the monitor) to be created. The

T H READmonitorwait function removes the thread from the monitor and

places it on a queue waiting for the condition to be signaled. When this

71

Chapter 3 Parallel Computer Architectures and Programming

new thread enters the monitor and changes the condition to true then it can

execute a signal statement of the form

T H READmonitorsignalandexit(mon, condition).

This function withdraws a waiting thread from the condition's queue and

wakes it up. If no threads are waiting on the condition queue, the thread

simply continues and the caller exits the monitor.

The constraint imposed by the monitor is that only one thread shall

be inside a monitor procedure at anyone time. An important feature of

monitors and semaphores is that they do not use busy waiting. In general

semaphores and monitors are more appropriate for longer waits.

We have considered a number of parallel algorithms for comparing the

three different synchronisation mechanisms mentioned above when applied

to a particular problem. When we attempted to simulate the event (see

chapter 4 for details) synchronisation mechanism with monitors, we observe

that this mechanism slowed down the performance of the implementation.

This is one reason why the monitors and semaphores were not used for most

of the work in this thesis. The results are discussed in chapter 5.

72

CHAPTER 4

Direct Solution of Linear Equations

4.1 Introduction

In this Chapter, we consider a number of different parallel algorithms

for the QR and L U decomposition of a square matrix A. The first problem

tackled was the decomposition of a square matrix into a product of an

orthogonal matrix Q and upper triangular matrix R (i.e. QR decomposition)

and its use for the solution of sets of linear algebraic equations. Wright [97]

has described algorithms for this problem implemented using PASCAL with

the Encore multi-tasking library and Encore Parallel Fortran (EPF) which

is an extension to FORTRAN77 including parallel constructs. The work

here is to consider implementation of these algorithms in C++ with the

Encore Parallel Threads package [31]. Following the work in [97] a further

version was also investigated using the event synchronisation facility in EPF

where if a pivotal column is not yet available the process just waits until it

is. This algorithm was also implemented in C++ with a simulation of event

synchronisation as THREADS does not provide this facility.

73

Chapter 4 Direct Solution of Linear Equations

The second problem tackled was the decomposition of a square matrix

into a product of a lower triangular matrix L and an upper triangular matrix

U with matrix L or U unit diagonal. (i.e. LV decomposition). Precisely

the same strategy in QR (Householder transformations) decomposition can

be used for LV decomposition if no row interchanges are carried out, and

the single processor version is then equivalent to the GAXPY Gaussian

elimination described in [40]. For LV decomposition with interchanges

the GAXPY version described [40] has updates to columns which are not

independent because the whole row is interchanged together, so that the

interchanges are applied to the pivotal information stored in the lower

triangle of the matrix. However, the interchange strategy may be modified

so that first, the multipliers in L are not interchanged and secondly,

interchanges in U are delayed until just before a column update. This

strategy recovers the column independence, so that the same parallel

strategies used for the QR decomposition can be applied. This has the

minor disadvantage that element updates cannot be carried out using scalar

products (as in the Crout algorithm) as the modifications to an element are

interleaved with interchanges. This possibility is mentioned by Gallivan et

al [34], but does not seem to have been investigated further.

Algorithms based on both Givens and Householder transformations

are considered for QR decomposition in the section 4.2. For the LV

decomposition we consider methods using both a unit lower triangular

matrix L and a general upper triangular matrix U, and a unit upper

triangular matrix and a general lower triangular matrix. These algorithms

74

Chapter 4 Direct Solution of Linear Equations

are considered in section 4.4. The former is similar to Doolittle reduction,

the jki forms of LV decomposition [39,23], and GAXPY Gaussian

elimination [40] and the later is similar to Crout reduction.

4.2 Sequential Algorithms for QR Decomposition

We considered the solution of the system of linear equations

Ax =b, (4.2.1)

for the n-vector x, with A an n X n matrix and b an n-vector. The aim of

the QR decomposition is to transform the system (4.2.1) into one which is

easy to solve. Specifically, the aim is to determine a matrix Q and an upper

triangular matrix R such that

A=QR,

with Q orthogonal, that is, QTQ = In. If we replace A in (4.2.1) by QR and

premultiply by QT, then, using the orthogonality of Q, it follows that

(4.2.2)

Having determined the QR decomposition of A, the solution of (4.2.1)

therefore requires multiplication of the right-hand side vector b by QT and,

backward substitution to solve the upper triangular system (4.2.2). Note

that the Q is not usually obtained explicitly (in this work we did not

accumulate the orthogonal transformations Q).

75

Chapter 4 Direct Solution of Linear Equations

Widely used methods for the QR decomposition of a matrix are

Householder transformations, Givens transformations, or Gram-Schmidt

orthogonalisation. Although there are some similarities between the Gram

Schmidt orthogonalisation and Householder orthogonalisation, there are also

some important differences. An attractive feature of the Gram-Schmidt

process is its speed, if Q is required explicitly as it is twice as fast as

Householder's algorithm since the columns of Q are computed directly.

In Householder's method, Q is the product of Householder matrices.

As we mentioned that we did not need to accumulate the orthogonal

transformations Q then the Gram-Schmidt method is not preferable for this

problem so that the Gram-Schmidt method is not discussed any further here.

The QR algorithms based on Givens transformations require about twice

the number of arithmetic operations as the algorithms using Householder

transformations [34].

4.2.1 Sequential Algorithm: Givens

The Givens process works by taking linear combination of rows of the

matrix, chosen to make the new elements below the diagonal zero. The basic

computation involves the premultiplication of A by an (i, j) transformation

matrix Gii which just changes the coefficient in row i and row j. A Givens

transformation is defined by a 2 x 2 orthogonal matrix of the form

76

Chapter 4 Direct Solution of Linear Equations

where c2 + s2 = 1. If a 2 X n matrix

is premultiplied by G, a zero can be introduced into the a21 position. Each

time a Givens transformation is applied, there is a requirement for data

exchange between the corresponding two rows of the array. The Givens

process works by taking linear combinations of rows of the matrix, chosen

to make the new elements below the diagonal zero [97].

The Givens algorithm may be written:

for i = 1, ... , n
for j = i + 1, ... , n

A(i,i: n)(new) = c * A(i,i: n) - s * A(j,i: n)

A(j,i: n)(new) = s * A(i,i: n) + c* A(j,i: n)

endforj
endfori

where c = Aii/d, s = -Aji/d, and d2 = Ari + A~i. A similar transformation

is applied to the right-hand side b.

4.2.2 Sequential Algorithm: Householder

The QR decomposition of a matrix A is computed using a sequence of

Householder matrices to reduce A to upper triangular form. The reduction

requires n - 1 Householder transformations. A Householder transformation

uses a matrix of the form H = I - 2wwT where wT w = 1, that is w is a

vector with Euclidean length one. The resulting upper triangular matrix is

R and the product of the Householder matrices is Q.

77

Chapter 4 Direct Solution of Linear Equations

In the first step we premultiply A by the Householder matrix HI to

annihilate elements 2 to n in the first column of A, giving Al = HIA. In the

second step we premultiply Al by the Householder matrix H2 to annihilate

elements 3 to n in the second column of AI. In the kth step, we premultiply

Ak-l by the Householder matrix Hk to annihilate elements k + 1 to n in the

kth column of Ak-l. The Householder matrix Hk has the form

where I is a (k - 1) X (k - 1) unit matrix and H is an appropriately sized

Householder matrix. Step k generates Ak = HkAk-l. After n - 1 steps, we

arrive at R:

finally, A = QR, where

since H i-
l = HT = Hi, i = 1,2, ... ,n - 1.

Let a = (aI, a2, ... , an)T be a vector such that not all of the entries

a2, aa, ... , an are zero, and suppose we want to transform a to a vector

h = (hI, h2, ... , hn)T where h = Ha with H orthogonal and such that

h2 = ha = ... = hn = O. Define h = (0" 0 ... O)T then 10"1 = IIhl12 = IIal12
because H is chosen an orthogonal matrix.

H can be chosen to be a Householder transformation matrix given in

the form H = I - 'YuuT, where u = a - h = (al + 0", a2, aa, ... , an)T and

'Y = 2/llull~· We specified that 0" = ±llaI12' but we did not specify the sign.

In theory either choice works, but in practice 0" should be chosen so that its

sign is the same as that of al. This ensures that cancellation cannot occur

in the calculation of al + 0".

78

Chapter 4 Direct Solution of Linear Equations

The following algorithm finds the Q R factors for an n x n matrix A,

overwriting the coefficient matrix with both R and the vectors characterising

each Householder matrix. Since all the nonzero elements of w do not fit

within the space created by the annihilated coefficients, we store the diagonal

of R in a separate array d to make room for the first nonzero component of w.

This process modifies each pivotal column, headed by akk for k = 1, ... , n

followed by updates to the later columns. The algorithm takes the form:

for k = 1 : n - 1
u = Jr-a-=-ik-+-a-'i=-+-l-k-+-' -. -. +-a--=!"'-k

if u = 0
d(k) = 0

else

endfor

t = A(k,k)
,(k) = l/(u * (u + ItJ))2
if t < 0

u =-u

d(k) = -u
A(k, k) = ,(k) * (t + u)
A(k : n, k) = ,(k) * A(k : n, k)

v(k + 1 : n)T = v(k + 1 : n)T + A(k : n, k)T * A(k : n, k + 1 : n)
A(k : n, k+1 : n) = A(k: n, k+1 : n)-A(k : n, k)*v(k+1 : n)

This may be considered as modifying sub-colurrms with heads in

the upper triangle of the matrix in the order (1, 1), (1, 2), ... , (1, n), then

(2,2), (2, 3), ... , (n - 1, n). The right-hand side can just be treated as an

additional column of the matrix.

Before considering possible parallel implementations, the diagram in

figure 4.1 illustrates the data dependencies of the Householder QR and LV

(column version of LV) decomposition algorithms which are essentially the

79

Chapter 4 Direct Solution of Linear Equations

same. Both types of algorithm have the same natural parallelism and may

be used in a number of different ways. This illustrates that there are a lot

of choices in the ordering of updates for these columns.

, , , , , , , , , ,
~

Fig. 4.1 Dataflow Diagram for QR and LV Decomposition

I

V

In the Householder algorithm once a pivotal column has been completed

80

Chapter 4 Direct Solution of Linear Equations

no further changes are made to the column. In the usual Crout and Doolittle

algorithms modification may be made because of interchanges taking place

corresponding to later pivotal columns. Here the algorithm is modified so

that interchanges of the multipliers do not take place, with the algorithms

organised in a similar way to the Householder implementations.

4.3 Parallelisation of QR and L U decomposition

In the diagram in figure 4.1 the kth pivotal update is denoted by Pk

and with standard column update is denoted by Gjk for (j = k + 1 : n).

This forms the basis of a simple parallel implementation of the Householder

algorithm and a simple parallel implementation of the LV decomposition.

In these algorithms modification to the pivotal columns are carried out

sequentially and each parallel task is fairly small. This algorithm will be

described below.

In [97] a number of parallel implementations for QR decomposition were

compared using PASCAL with the Encore multi-tasking library. It was

found that one using Householder transformations with multiple updates to

columns was very effective. The Householder algorithm considered for QR

decomposition and most of the algorithms considered for LV decomposition

use a similar idea though one simple implementation is also used for

comparison. The diagram in figure 4.1 shows that once a pivotal column and

the consecutive column have been completed then the next pivotal column

can be dealt with before the remaining columns with heads in the same row

as the first pivotal column are modified. These updates are independent

81

Chapter 4 Direct Solution of Linear Equations

and can hence be carried out in parallel. This observation will be made use

of in some algorithms described below for QR decomposition (Householder

algorithm) as well as LV decomposition.

In the parallelisation of the QR decomposition and LV decomposition

the critical part of the process is the pivotal update which suggests

treating this as soon as possible, in particular before all the updates

in the current pivotal row. This can be done by ordering the updates

working down columns rather than along the rows. This leads to a parallel

implementation assigning columns to different parallel tasks. This clearly

requires some mechanism to ensure that updates are not carried out before

the corresponding pivotal columns are ready. Some ways of achieving this

are discussed below in sections 4.3.1 and 4.4.2. Two types of implementation

of the Householder algorithm will be discussed. The first is a simple

fixed allocation implementation, the other uses dynamic allocation. Both

algorithms do precisely the same arithmetic.

4.3.1 Parallel Algorithm: Givens

Several parallel implementations of the Givens method have been

introduced in the literature. One implementation of this method has been

suggested by Modi [66] and it is adapted to a multiprocessor machine

by Wright [97]. Here a simpler but related version of the algorithm

is described and this simplified version has been implemented. The

ordering of eliminations used in the usual sequential algorithm is not

suitable for parallelisation so an alternative ordering is used. Note that

82

Chapter 4 Direct Solution of Linear Equations

the transformations may be ordered so that any pair of rows can be

combined which also produce an upper triangular matrix. The alternative

computation considered here is divided up into a number of stages [97]. In

the first stage roughly half of the first column is made zero by rotations.

For the first column, the row j is taken with row n - j + 1 for j =

1, ... , [(n - i + 1)/2]. In the second stage a similar transformation is applied

to reduce half of the remaining non-zero rows in the first column and start on

the second column. Implementation of the Givens method is done by keeping

two indices for each column indicating the first and last rows in this column

which are available for processing at each stage. At the end of the stage

these indices are updated. Note that at each stage all these transformations

are independent of each other, so that they can be allocated to threads in

either a pre-determined fashion or dynamically. At the end of each stage

synchronisation is required as the new stage cannot start until the previous

one is complete. Each stage is terminated by "THREADjoin" s.

4.3.2 Parallel Algorithm: Householder

The first parallel implementation of the Householder algorithm treats

the pivotal column sequentially and then updates the later columns with

heads in the same row in parallel. All these updates are carried out before

the next pivotal column is dealt with. These updates are all independent and

so can be performed in parallel. The allocation of column updates to threads

was done in a pre-determined (or static) way. There are two obvious ways

of doing this i.e. the blocked and scattered forms. In this implementation

83

Chapter 4 Direct Solution of Linear Equations

only the scattered form was used, that is at the kth pivotal stage thread j

dealt with columns k + j, k + pr + j, k + 2pr + j where pr is the number

of threads.

The second method allocated columns dynamically with waiting when

necessary, and the waiting was carried out using a simulation of event

synchronisation using a loop and with a test protected by a monitor. This

version orders the updates working down columns rather than along the rows

and uses event synchronisation to ensure that the updates to the columns

are carried out in the correct order. For any column, updates are carried

out so long as the corresponding pivotal columns have been completed. If

they have not then the process waits until the pivotal columns are ready.

In this algorithm the columns are allocated in ascending order of column

number and the columns are allocated dynamically by keeping a record of

the position of the next untreated column. Any processor which finishes

processing a column starts on the next one indicated. The variables used to

control the allocation of work to threads are only modified in critical regions

controlled by monitors. If there are no available columns for modification

the thread terminates with "THREADjoins".

4.3.3 Experimental Results for QR Decomposition

We have tested Givens and Householder transformation algorithms for

QR decomposition using C++ Data Arrays, data represented by the matrix

class type defined in the Newmat Matrix Package, and the Matrix Class

defined in chapter 2. The results are obtained with only row representation

84

Chapter 4 Direct Solution of Linear Equations

for all the matrix representation types. For simplicity we only measured the

time for the computation of the triangular factor R. The interval timer was

used in order to compare the efficiency of the algorithms. The results are

also obtained with and without use the inline function included for the array

subscripting of the matrix class (see section 2.6 in chapter 2 for details).

An initial empirical comparison was carried out using four different

versions based on the algorithms described above. The two Householder

transformation algorithms using C++ Data Arrays were H ouA and H oudA

versions using the Matrix Class were HouC and HoudC, and versions using

the Newmat Matrix Package were HouM and HoudM. In the first version

the tasks are allocated to threads in a pre-determined (scattered) ordering

and the other version the tasks are allocated to threads dynamically. We

also obtained the results from Householder versions using the Matrix Class

with array bound checking (cHouC and cHoudC) in order to provide a more

appropriate comparison with the results using the Newmat Matrix Package.

The other algorithm was based on Givens transformations, using C++ Data

Arrays (GivA), Matrix Class (GivC) without array bound checking, and

Newmat Matrix Package (GivM) , with pre-determined allocation.

Times were obtained for the two different algorithms and the four matrix

environments using one to eight processors with matrices of sizes 40(40)200.

In addition to the raw times, values were obtained for the efficiency by

comparing parallel versions with a sequential version of the Householder

algorithm (HouA) for Householder versions and with a sequential version

85

Chapter 4 Direct Solution of Linear Equations

of the Givens algorithm (GivA) for Givens versions using C++ data

arrays. These sequential times were better than the other implementations.

These comparisons were made in order to compare the algorithms under

different conditions, matrix representations, and to make use of the C++

programming language as far as possible.

As pointed out in chapter 2, C++ provides the inline feature to avoid

function call overhead. To investigate the effect of using inline function

calls for array subscripting, we used the two Householder transformation

algorithms using the Matrix Class HouG and HoudG. The results are

illustrated in table 4.1 which gives the measured elapsed times. The

subscript indicates whether the inline function was used or not.

Sequential Time

n HOUCinline H OUCnoinline H OUdCinline H OUdCnoinline

40 0.523 0.593 0.565 0.700

80 3.693 4.667 4.352 5.121

120 12.094 16.253 14.463 16.849

160 35.153 39.366 35.633 37.465

200 61.573 77.347 65.394 76.302

Table 4.1 Matrix Class with and without Inline Function.

86

Chapter 4 Direct Solution of Linear Equations

Tables 4.1 and 4.2 show the sequential and parallel times for the two

versions. It is obvious from the table that using inline functions with the

Matrix Class is significantly better than not doing so using both Householder

transformation versions. The remaining results all use the inline function

with the Matrix Class.

Parallel Time for 2 processors

n HOUCinline H OUCnoinline H OUdCinline H OUdCnoinline

40 0.568 0.613 0.434 0.503

80 2.727 3.221 2.600 3.108

120 8.378 9.184 7.834 9.055

160 19.131 21.876 17.882 21.945

200 37.641 42.341 37.864 44.374

Table 4.2 Matrix Class with and without Inline Function.

Figures 4.2 and 4.3 display plots of mean efficiency against number of

processors for different implementations using C++ Data Arrays, Matrix

Class, Newmat Matrix Package. There is no column matrix representation

for C++ Data Arrays and Newmat Matrix Package so that the time is

not obtained for the Matrix Class using the column representation. In

this section the times are obtained for the efficiency with a row matrix

representation. Figure 4.4 shows actual efficiencies using 2 processors and

figure 4.5 shows similar plots for 6 processors for different sized matrices.

The results generally confirm expectations, particularly that the

87

Chapter 4 Direct Solution of Linear Equations

Householder implementations with dynamic allocation gIve better

performance than the simple implementation.

1.0

0.8

>. 0.6
(;)
c:

~
0.4

0.2

0.0-+----,----,----,----,----.---.-----,

2 3 4 5 6 7 8

Number of Processors

Algorithms

~ HouA
-f9- HouC
~ cHouC
-e- HouM
---A- HoudA

-+- HoudC
-$- cHoudC
~ HoudM

Fig. 4.2 Mean Efficiency Graph: Householder Transformations

In [97] a number of algorithms for QR decomposition were compared

and it was observed that the efficiency of the algorithms is affected by the

organisation of data. Also [97] has illustrated the difference between the use

of the normal representation of a matrix (i.e. row matrix representation)

and its transpose (i.e. column matrix representation) with the Householder

implementations. Using the Matrix Class was particularly convenient for

such comparisons as the Matrix Class could be altered internally to give

storage of the matrix by rows or by columns (we have not used column

matrix representation for QR decomposition) and to include versions with

88

Chapter 4 Direct Solution of Linear Equations

1.0

0.8

>. 0.6
~

~
0.4

0.2 Algorithms

~GivA

-t9- GivC
-e- GivM

o.o-r------,------.------,------,------,------,------,
2 3 4 5 6 7 8

Number of Processors

Fig. 4.3 Mean Efficiency Graph: Givens Transformations

1.0

0.8

>. 0.6 Algorithms

~ HouA
-t9- HouC

~

~
0.4

0.2

O.O-r-----------,------------,-----------,-----------,
40 80 120 160 200

Size of Matrix

-%- cHouC

-e- HouM
-.!!!.- HoudA

-+- HoudC
_____ cHoudC

--*- HoudM
~GivA

-+- GivC
~GivM

Fig. 4.4 Efficiency Graph for 2 Processors: QR Decomposition

89

Chapter 4 Direct Solution of Linear Equations

1.0

0.8

>. 0.6
u

Algorithms

~ HouA
-e3- HouC

c:
.!l.!

~
0.4

0.2

O.O~-----.,.-----.--------.-------.,

40 80 120 160 200

Size of Matrix

--H- cHouC
-e- HouM
--A- HoudA

-t- HoudC

-$- cHoudC
~ HoudM

-+- GivA
--+- GivC
~GivM

Fig. 4.5 Efficiency Graph for 6 Processors: QR Decomposition

or without array bound checking.

4.3.4 Conclusion for QR Decomposition

We have compared the C++ Data Arrays, Matrix Class, and the

Newmat Matrix Package representation in the testing of QR decomposition

using the Householder transformations and the Givens transformations. A

very significant factor affecting the times seems to be the representation of

the matrix (i.e. C++ Data Arrays, Newmat Matrix Package and Matrix

Class). These versions using the Newmat Matrix Package were significantly

slower than those using C++ Data Arrays or Matrix Class without array

bound checking. This is also expected since in the N ewmat Matrix Package

arrays involve array bound checking as well as access via functions. On the

90

Chapter 4 Direct Solution of Linear Equations

other hand, these versions using the N ewmat Matrix Package were slightly

better than those using Matrix Class with array bound checking particularly

for two processors.

The Householder method was generally faster than the Givens method

using C++ Data Arrays, Newmat Matrix Package, and Matrix Class. This

is expected from the operations count. There is a clear conclusion th':tt the

efficiency curves for the dynamic allocation Householder transformations

using C++ Data Arrays (HoudA) and Matrix Class (HoudC) are better

than those for the other representations. The efficiency curve for the

pre-determined allocation Householder transformations using Matrix Class

(H ouC) is also marginally better than other implementations and in most

cases it is quite close to curves of the H oudA and H oudC versions. As

the size of matrix increases, the graphs for all the versions rise rapidly with

matrix size for 2 processors as well as for 6 processors. These results are

shown in figures 4.4 and 4.5.

The only differences between the implementations H ouA and H ouC is in

the representations (i.e. the C++ Data Arrays or Matrix Class) since in both

versions the way of allocation of the columns to threads is the same. In spite

of this H ouC is more efficient than H ouA which is surprising because the

H ouC version involves more work than the H ouA version as H ouC accesses

the matrix elements via a function. C++ Data Arrays subscripting should

save time for reading and writing in data but additional waiting during the

process may be caused by contention for access to the shared memory. As

91

Chapter 4 Direct Solution of Linear Equations

we mentioned in chapter 1, the lack of direct control over the location of

data causes some difficulty in investigating this because the transfer of data

between shared and cache memory is controlled by the hardware.

Surprisingly, the dynamic allocation Householder version (H oudM)

using the N ewmat Matrix Package has poorer efficiency than the pre

determined allocation version (H ouM) for 2 processors. When the number

of processors and the size of the matrices is large, the efficiency for the

H oudM version is marginally better than that for H ouM for 6 processors.

This is shown in figure 4.4.

Other important remarks follow from the comparison between the results

using the Newmat Matrix Package and the Matrix Class with array bound

checking. The results show that the H ouM version gave significantly better

result than the cH ouG version. On the other hand, the H oudM and

cH oudG versions have only small differences in these efficiency curves for

more than 2 processors. Nevertheless the efficiency of the cH oudC version

is slightly better than H oudM for 1 and 2 processors. These can be seen in

figure 4.2.

For all versions, the larger the matrix size the better the efficiency,

particularly for larger numbers of processors. Comparing the results for

these versions shows that the H oudA and H oudG versions come out better

than the others, in most cases.

92

Chapter 4 Direct Solution of Linear Equations

4.4 Sequential Algorithms for L U Decomposition

We shall now consider L U decomposition. The sequential algorithm

producing a unit upper triangular Matrix is outlined below. To facilitate

later parallel implementation a number of modifications to the standard

Crout algorithm are introduced. The pivotal column is treated as in

the Crout algorithm but, following this, updates are applied only to the

immediately succeeding column, all the updates to this column being delayed

so that they can be performed together. Once a pivotal column has been

updated no further changes are made to this column. In particular no

interchanges are carried out on the pivotal column at this stage. The index

piv(j) indicates the row chosen as pivot at the ph pivotal stage.

The summary of the algorithm may be written:

for j = 1 : n
for i = 1 : j - 1

A(i, j) ~ A(piv(i), j)
A(i,j) = A(i,j)jA(i,i)
A(i + 1 : n,j) = A(i + 1 : n,j) - A(i + 1 : n,i)A(i,j)

endfor
Find p with j < P < n so I A(p,j) I = II A(j: n,j) 1100
A(j, j) ~ A(p, j)
piv(j) = p

endfor

Note that the forward substitution applied to the right-hand side is

carried out after the decomposition phase but the order is just the same as

that for a column of the matrix with the interchanges interleaved with the

elimination steps. As these steps are interleaved it follows that the Land

93

Chapter 4 Direct Solution of Linear Equations

U matrices produced by this method do not in general satisfy

LU=PA

for any permutation matrix P. We then carry out forward and backward

substitutions to find the solution x.

The algorithm giving a unit lower triangular matrix is equivalent to the

GAXPY Gaussian elimination described in [40] apart from the interchange

implementation. The structure of the algorithm is similar to that for the

unit upper triangular version except that the pivotal column is divided by

the pivot instead of the pivotal row.

4.4.1 Parallel implementations for L U Decomposition

We consider four types of implementation, applicable to both upper and

lower unit triangle versions. The first two are based on event synchronisation

to ensure that the updates to the columns are carried out in the correct

order. For any column, updates are carried out so long as the corresponding

pivotal columns have been completed. If they have not, then the process

waits until the pivotal columns are ready. In both algorithms the columns

are allocated in ascending order of column number. In the first algorithm

the columns are allocated dynamically by keeping the position of the next

untreated column. Any processor which finishes processing a column then

starts on the next one indicated. In the second method the columns are

allocated in a predetermined (scattered) fashion.

In the third algorithm processes avoid waiting for synchronisation by

94

Chapter 4 Direct Solution of Linear Equations

starting treatment of a new column when further progress in the column

currently being updated is not possible. The columns are allocated

dynamically to the processors by keeping an index for each column indicating

how many updates have been carried out, along with an indicator of whether

the column is currently being processed. When a thread finds that no more

updates to a column can be performed, a search is carried out for these

indices to find the first column which is not being processed and where the

updates can be performed. As with the other implementations there is an

index giving the position of the next pivotal column to be processed.

In [97] a number of algorithms for QR decomposition were compared and

ones using Householder transformations with multiple updates to columns

were found to be very effective. Most of the algorithms considered here for

LV decomposition use a similar idea though one simple implementation is

also used for comparison.

The fourth algorithm is a simple implementation carrying out all updates

corresponding to a pivotal column together in parallel, with the pivotal

columns treated sequentially. This is to provide a basis for comparison for

the other algorithms.

All four algorithms do precisely the same arithmetic, so that even the

rounding errors will be the same.

In addition to the algorithms described above which access the elements

of the matrix directly, variants of the algorithms were used in which the

columns of the matrix were copied to a local vector before processing and

95

Chapter 4 Direct Solution of Linear Equations

then copied back when all the updates currently possible had been carried

out. The tests were carried out using Matrix class with both row and column

representations of the matrices.

4.4.2 Experimental Results for L U Decomposition

In this section we present the numerical results (using C++) obtained

from seven different parallel versions of the LU decomposition algorithms.

These versions are outlined in section 4.4.1. Four of the algorithms use

Crout-like reduction and three of the algorithms use Doolittle like reduction.

The results use the notation cr for Crout-like and do for Doolittle

like algorithms. Implementation one is indicated by evd (dynamic event),

implementation two by evs (static event), implementation three by m

(column splitting), and the simple implementation four by s. The use of

copying a column to a vector is indicated by v, and the representation of

the matrix by columns is indicated by t. Results are only given for the

column representation as these were always better than those for the row

representation, and so as not to confuse the other comparisons.

We tested the algorithms using from one up to ten processors with

matrices of sizes 100(100)500. To illustrate the relative performance of

the algorithms graphs of efficiencies are displayed in the figures. For the

results without array bound checking a sequential version of the Crout

like reduction algorithm (crevst) was used for the sequential time as this

produced the best times (better than the standard Crout version). Similarly,

96

Chapter 4 Direct Solution of Linear Equations

the results with array bound checking used a sequential version of the

Doolittle-like reduction algorithm (doevst) for the sequential times as this

gave the best overall performance in this case. The parallel and sequential

times were obtained for the same sized matrices and the same environment.

Figures 4.6, 4.7, 4.8 and 4.9 display plots of mean efficiencies for the

over the matrix sizes against number of processors for different algorithms.

Figures 4.10 and 4.11 show actual efficiencies using 2 processors, and figures

4.12 and 4.13 present similar plots for 6 processors. Figures 4.14 and

4.15 display results for different sized matrices and different numbers of

processors for the Crout-like column splitting algorithms crmvt and crmt,

the first of which turned out to be the best algorithm overall.

The results of the experiments are generally as expected, in particular

that the simple parallel implementation is significantly slower than all other

versions. More surprising is the finding that the column copying versions

of all the algorithms are significantly better than the versions without

copying. It is perhaps also surprising that with processor number increase

the efficiencies decrease more rapidly when checking is used than when it

is not. The other differences between the implementations are relatively

small, though method three, the column copying Crout-like implementation

(crmvt), comes out best. However, without column copying, this algorithm

is not so good as the other versions.

97

>.
(.>
r:::
.~
:e w

(;-
r:::
.!!l
~ w

Chapter 4

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
2 3 4 5 6 7

Number of Processors

Direct Solution of Linear Equations

8 9 10

Algorithms

~crmvt

-E9- domv!
--E9- crevdv!
~ doevdv!
-+- crevsvt
~ doevsv!

Fig. 4.6 Mean Efficiency Graph: LV Dec. No Check and Copying Vector

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

2 3 4 5 6 7

Number of Processors

8 9 10

Algorithms

~ crmv!
-E9- domvt

--E9- crevdvt
~ doevdv!

-+- crevsvt
~ doevsvt

Fig. 4.7 Mean Efficiency Graph: LV Dec. Check and Copying Vector

98

Chapter 4

1.1

1.0

0.9

0.8
>.
(.)
c:

.!R 0.7
~ w

0.6

0.5

0.4

0.3
2 3 4 5 6 7

Number of Processors

Direct Solution of Linear Equations

8 9 10

Algorithms

~crmt

-e:l- domt
-E9- crevdt
-A- doevdt

-+- crevst

--*- doevst
~crst

Fig. 4.8 Mean Efficiency Graph: LV Dec. No Check and No Copying Vector

1.1

1.0

0.9

0.8
~ c:

~ 0.7
w

0.6 Algorithms

~crmt

0.5
-e:l- domt
-E9- crevdt
-A- doevdt

0.4 -+- crevst
--*- doevst
~crst

0.3

2 3 4 5 6 7 8 9 10

Number of Processors

Fig. 4.9 Mean Efficiency Graph: LV Dec. Check and No Copying Vector

99

>.
(.) c:

.S!!
~ w

()-
c:

.S!!

~

Chapter 4 Direct Solution of Linear Equations

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

100

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

100

200 300 400

Size of Matrix

500

Algorithms

~crmvt

-E3- domvt
~ crevdvt
--.!!r-- doevdvt
-+- crevsvt
__ doevsvt

Fig. 4.10 No Check and Copying Vector for 2 Processors

200 300 400

Size of Matrix

500

Algorithms

~crmt

-E3- domt
-f'7- crevdt
--.!!r-- doevdt

-+- crevst
__ doevst

~crst

Fig. 4.11 No Check and No Copying Vector for 2 Processors

100

>.
0 c:

~ w

>.
0 c:

~ w

Chapter 4 Direct Solution of Linear Equations

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

100

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

100

200 300 400

Size of Matrix

500

Algorithms

~crmvt

-t9- domvt
-e-- crevdvt
--6- doevdvt
-t-- crevsvt
~ doevsvt

Fig. 4.12 No Check and Copying Vector for 6 Processors

200 300 400

Size of Matrix

500

Algorithms

~crmt

-t9- domt
-e-- crevdt
--6- doevdt

-t-- crevst
~ doevst

~crst

Fig. 4.13 No Check and No Copy Vector for 6 Processors

101

Cbapter 4

1.1

1.0

0.9

0.8
>.
(.)
c=
.~ 0.7 (.)

:e w
0.6

0.5

0.4

0.3
2

1.1

1.0

0.9

0.8
g-
.~ 0.7
~ w

0.6

0.5

0.4

0.3
2

3 4 5 6 7

Number of Processors

Direct Solution of Linear Equations

8 9 10

Matrix Size
~n100

-E9-- n200
-A- n300

-+- n400
~n500

Fig. 4.14 No Check and Copying Vector "crmvt "

3 4 5 6 7

Number of Processors

8 9 10

Matrix Size
~ n100

-E9-- n200
-A- n300

-+- n400
~n500

Fig. 4.15 No Check and No Copying Vector "crmt "

102

Chapter 4 Direct Solution of Linear Equations

In the checking and no copymg case, method two, the static allocation

Doolittle-like (doevst) algorithm is best. In the 'no checking' and 'no

copying' case the dynamic allocation crevdt and doevdt algorithms gIve

almost identical results, significantly better than the other versions.

In most cases the Crout-like versions are more efficient than the

corresponding Doolittle-like versions and this may be because the former

only requires finding a pivot and interchanging two values at the pivotal

stage while the latter also requires divisions of the whole of the remainder

of the column by the pivot.

4.4.3 Conclusion for L U Decomposition

The good results for column copying indicate that the time needed for

this copying is possibly more than offset by the reduction in array subscript

calculations and better locality of data. The comparison of the three basic

implementations is less clear as there are a number of factors involved. For

the column splitting versions with column copying it appears that more time

is saved on avoiding waits than is lost in re-allocation of the columns, but

that this is not true when reference is made directly to the matrix. Perhaps it

is worth noting that separate experiments indicated that waiting or column

changing due to pivot columns not being available are relatively rare events,

so the overhead involved is not as important as might be thought at first.

Perhaps most important is the comparison of the new methods with

the simple implementation of the Crout algorithm. They gain firstly by

103

Chapter 4 Direct Solution of Linear Equations

avoiding THREAD joins at the end of each group of columns and secondly by

modifying the pivoting implementation and so avoiding different processors

writing to the matrix elements. In the 'event' implementations any matrix

element is only written to by one thread and no other thread reads this

element until its final value has been set, which means that good use of the

write-deferred cache is likely.

For all versions, the larger the matrix size the better the efficiency,

particularly for larger numbers of processors. In addition, the efficiencies for

all methods get closer as the matrix size increases, which is not surprising

as the arithmetic becomes relatively more important compared to overhead

as the matrix size increases. However, the methods found best here work

well even for medium sized matrices.

Overall the study shows that the column based approach to LU

decomposition using the modified pivoting implementation described here

does have significant advantages on a shared memory multiprocessor. It is

also clear that copying of columns which are to be updated to vectors is

worthwhile, and that using this the Crout-like column splitting version is

marginally the best.

104

CHAPTER 5

Red uction of a General Matrix to Hessenberg Form

5.1 Introduction

In this chapter we examine the reduction of a general matrix to upper

Hessenberg form. Such algorithms do not of themselves solve the eigenvalue

problem, but this approach does reduce the problem to a form that can

be manipulated inexpensively Watkins [93]. We describe an evaluation of

five parallel implementations using Householder transformations. We also

compare three different synchronisation mechanisms (these mechanisms are

introduced in chapter 3) when applied to this particular problem.

The chapter is organised as follows. A sequential algorithm for reduction

to Hessenberg form is described in section 5.2 and the data dependencies in

this algorithm are considered. In section 5.3 five parallel implementations

are described. Experimental result are presented in section 5.4. Conclusions

are given in section 5.5.

105

Chapter 5 Reduction to Hessenberg Form

5.2 Sequential Algorithm

The following algorithm reduces a general n x n matrix A to Hessenberg

form. H is a Householder matrix with form H = I - 2wwT where w is a

unit vector. An example of this type of algorithm is described in [43]. In

this algorithm a sequence of Householder matrices HIH2 ... Hn-2 are chosen

such that

is upper Hessenberg matrix. Each step in the reduction of A to an upper

Hessenberg matrix can be given as

A* =HAH

where H is a Householder matrix and A * indicates the new matrix.

The multiplication takes the form (H A)H, unlike the algorithm described

by Dongarra et al [27] which combines the two multiplications. This

combination has benefits in reducing data transfer but involves more

arithmetic. As good speed up with the simple algorithm is obtained and

the alternative algorithm will not be considered further.

The algorithm considered here chooses an H using the pivotal column,

headed by ak+l,k for k = 1,2, ... , n - 2, so that the elements below the

head of the new pivotal column are zero. The Householder transformation

is used to update the later columns k + 1, k + 2, ... ,n while the columns'

k = 1,2, ... , k -1 are not altered. When the column updates corresponding

to the first multiplication are completed, the row updates corresponding to

106

Chapter 5 Reduction to Hessenberg Form

the second multiplication are carried out for all the rows. Following this the

next pivotal column can be treated and the whole process repeated for the

next stage.

The algorithm below performs real Householder reduction to upper

Hessenberg form:

for k = 1 : n - 2
8 = Jr-A==-i-+.....:lk~+-A---::-i+-2-k-+-. -.. -+-A"7;-k

t = A(k + 1, k)
r = 1/(8(8 + Itl))1/2
if (t < 0)
8 =-8

u(k) = -8

A(k + 1, k) = r * (t + 8)
A(k + 2 : n, k) = r * A(k + 2 : n, k)
(Set up the Householder transformation H)

t(k + 1 : n)T = A(k + 1 : n, k)T * A(k + 1 : n, k + 1 : n)
A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n) - t(k + 1 : n)

*A(k + 1 : n,k)T
(Multiply on the left by H)

t(l : n) = A(l : n, k + 1 : n) * A(k + 1 : n, k)
A(l : n, k + 1 : n) = A(l : n, k + 1 : n) - t(l : n) * A(k + 1 : n, k)T
(Multiply on the right by H)

endfor

Before considering possible parallel implementations, it is useful to

consider the data dependencies of this algorithm. We consider updates

to pivotal columns, standard columns and rows rather than updates to

individual elements. This is a simplification of the situation but is sufficient

for the present discussion.

107

Chapter 5

I
I

V

Reduction to Hessenberg Form

I
I

V
I

V

Fig. 5.1 Dataflow Diagram for Hessenberg Form

I

I

V

In figure 5.1 the kth pivotal update is denoted by Pk, the update to the

column headed by ajk using Pj-l is denoted by ejk and the update to the

row starting with element ajk using Pk-l is denoted by Rjk. We can see

from the above diagram that the row updates at any particular stage can

be divided into two groups. The first group which will be denoted by rowa

consist of the rows with row numbers less than or equal to the latest pivotal

108

Chapter 5 Reduction to Hessenberg Form

stage number. The other rows are denoted by rowb. The rowb rows must

be completed before the next pivotal update can be made, while this is not

true for the rowa rows. This observation will be made use of in algorithms

4 and 5 described below.

5.3 Parallel Implementations

We consider five essentially different parallel implementations. The

first of these is a simple implementation carrying out the pivotal column

updates sequentially, followed by parallel column updates and then parallel

row updates. This is possible because all the column updates Ckk to Ckn are

independent of each other, and can be carried out once the pivotal update

Pk - 1 has been completed. Similarly, rows Rlk to Rnk are independent and

can be updated when the column updates Ckk to C kn have been completed.

Both these parallel updates are terminated with "THREADjoins", which

act as barriers. This simple implementation provides a basis for comparison

with the other algorithms.

The next two algorithms are based on the observation that at any stage

the updates to rowa rows can be carried out at the same time as the column

updates while the rowb row updates can not. The pivotal updates are again

carried out sequentially. The thread chooses columns for updating until

there are no more columns to be allocated. If all columns are allocated,

then a row is chosen from rows 1 to n taken in order. Updates are carried

out immediately for rowa rows, but for rowb rows the thread waits until all

the columns have been completed, as these row updates may only be carried

out if this has happened. The waiting is carried out by using a loop checking

a count of the number of columns (done) which have been completed. These

two algorithms avoid one of the "THREADjoins" needed at each stage of

the first algorithm.

109

Chapter 5 Reduction to Hessenberg Form

In the second algorithm the columns and rows are allocated to threads

dynamically. This should provide flexibility for the algorithm in a multi

user environment, for if one thread is held up others will carry out the work

instead. The variables used to control the allocation of work to threads

are only modified in critical regions. For this second algorithm the critical

region was initially controlled by locks, but in addition, we also use the

semaphore and monitor synchronisation mechanisms. This was done so that

the different mechanisms could be compared.

In the third algorithm the columns and rows are allocated in a

predetermined way (scattered ordering). This allows the pre-allocation

of tasks to threads, which should reduce the amount of interprocessor

communication as no lock is needed for the row and column allocation.

However, this gives less flexibility than algorithm 2. The parallel version of

algorithm 2 is outlined below:

for k = 1 : n - 2
Process pivotal column k sequentially
nxcol = k + 1 / / next column
nxrow = 1 / / next row
done = k / / number of columns completed

do in parallel
do

col = nxcol
nxcol = col + 1
Allocate column (col) to this thread and increment (col)
If (col <= n)

modify column (col)
then increment count (done)
If (done == n)
allow rows k to n to be processed
as all columns are completed

while (col < n)
end parallel

110

Chapter 5

do in parallel
do

row = nxrow
nxrow = row + 1

Reduction to Hessenberg Form

Allocate row (row) to this thread
If ((row> k) and (done < n)

wait until count done = n
modify row (row)

while (row < n)
end parallel

end

The fourth algorithm avoids the sequential updating of the pivotal

column by allowing a start on the next pivotal column while rowa rows

are still being processed. The calculations are still carried out in stages

corresponding to the pivotal updates. A stage starts after a pivotal update

is made and the previous rowa rows have been completed. The next set of

columns are allocated for update in parallel, with rowa rows allocated when

no more columns remain to be allocated. However, as soon as all the set

of column updates is completed, rowb rows are allocated for update even

though all rowa rows may not have been allocated. When the updates of

the rowb rows are completed, the next pivotal column is started, regardless

of whether all rowa rows are completed or not. The stage terminates by

completing any rowa row updates which have not been treated previously.

This implementation is expected to reduce the waiting time as rowa row

processing can take place at the same time as the pivotal column update.

Five counters and three Boolean flags are needed, one for completion of

columns (done), one for completion of rowb rows (doner), and the others

are used in the dynamic allocation of columns (nxcol), rows rowa (nxrowa)

and rows rowb (nxrowb). The flag rd indicates whether the rowb rows can

be updated, the second flag dopiv indicates whether the pivotal column can

be updated, the third one (test) indicates whether the pivotal column as

111

Chapter 5 Reduction to Hessenberg Form

well as rowa rows are completed. A "THREADjoin" is used before the next

set of columns is updated.

Note that this algorithm does not allow rowa rows to be allocated after

all rowb rows are allocated until all rowb rows are completed. This could

cause some extra waiting. This parallel version is outlined as algorithm 4

below:

Process first pivotal column sequentially and
set next pivot number (piv = 2)
for k = 1 : n - 2

nxcol = k + 1
nxrowa = 1
nxrowb = k + 1
done = k

/ / next column
/ / next rowa row

/ / next rowb row
/ / Number of columns completed

doner = k / / Number of the rowb rows completed

do in parallel
char rd, dopiv, test / / to arrange the rowa rows update
rd and dopiv = F ALB E
do

col = nxcol
nxcol = col + 1
Allocate column (col) to this thread and increment (col)
If (col <= n)

modify column (col)
then increment count (done)
If (done == n)
allow (rowb) rows to be updated
as all column are completed

while (col < n)

do
If (done == n)

row = nxrowb
nxrowb = row + 1
Allocate rowb (row) to this thread
rd = TRUE

else
row = nxrowa

112

Chapter 5 Reduction to Hessenberg Form

nxrowa = row + 1
Allocate rowa (row) to this thread

If ((rd) and (row <= n))
update row
increment count (doner)

If ((!rd) and (row <= k))
update row

while (doner! = n)

do
ra = 1 / / ra ~s rowa row
If (piv == k + 1)

then increment pivot count (piv = k + 2)
dopiv = TRUE

If ((dopiv) and (k < n - 2))
process pivotal column (k + 1)
dopiv = F ALS E

else
ra = nxrowa
row = ra
nxrowa = ra + 1
Allocate rowa (row) to this thread
If (row <= k)

update row
test = (piv = k + 2) and (ra > k)

while (!test)
end parallel

end

The fifth algorithm was designed to avoid the waiting problem in

algorithm four and also to avoid using any "THREADjoins" except on

completion of the whole reduction. The other important aim in the design

of this algorithm was to avoid splitting the algorithm into stages by making

use of the observation made clear in the dataflow diagram that the pivotal

column, column and rowb row updates are not dependent on the rowa row

updates being completed. In fact when this algorithm is run on a single

processor all the rowa row updates are left until all the other updates have

been completed.

113

Chapter 5 Reduction to Hessenberg Form

Work is allocated to threads m the order indicated in the left hand

column of the dataflow diagram, that is, a pivotal update is followed by a

set of column updates which is in turn followed by a set of rowb updates,

leading to the next pivotal update. However, when any thread finds none

of this work available for allocation, any rowa rows which are ready for

updating are allocated instead. When rowa rows are processed all updates

currently possible are carried out, that is all updates which depend on pivotal

columns which have been already treated excluding any updates that have

been previously carried out. This should allow transfer between cache and

shared memory to be reduced. To achieve this two integer vectors are kept.

The vector element ct(ra) is used to indicate the position of the last update

to row ra and the element of vector nactv(ra) is used to indicate whether

some thread is currently working on row ra. The corresponding element

of the vector nactv is set to FALSE (i.e. thread is working on row rowa)

whenever a rowa rows being updated. When the corresponding rowa rows

updates are completed, then vector element ct(ra) is incremented and the

element of vector nactv(ra) is set to TRUE.

The columns and rows are allocated dynamically to the threads, and

counts for the columns and the rowb rows are used as before. As we

indicated above, the rowa rows are updated independently. This should

ensure that the pivotal columns are given high priority in the early part of

the calculation when they are more critical, but gradually have less priority

as the calculation proceeds, as in the later stages when there will be plenty

of rowa rows ready for updating. Two implementations of this algorithm

which only differ in the way the reduction is terminated were developed and

tested. These implementations are expected to be more efficient than the

previous versions.

In the version H ella a thread terminates when all the rowa rows are

114

Chapter 5 Reduction to Hessenberg Form

completed. In the Helle version the thread terminates when all the rowa

rows are allocated and the current thread has no further work. In the H ella

version a delay loop was included which is activated when the thread finds

no work to carry out. This was with the aim of reducing contention for the

lock which is repeatedly accessed in the allocation phase. In practice this

delay made little difference to the results. Algorithm 5 (H ella version) is

outlined below:

Process first pivotal column sequentially and
set next pivot number (pv = 2)
rct = 0
for k = 1 : n - 2

ct(k) = k
nactv(k) = TRUE

end
nxcol = 2
nxrowa = 1
nxrowb = n + 1
done = 1
doner = 1

dopiv = FALSE
do in parallel
do

pw = pv

/ / Number of columns completed
/ / Number of the rowb rows completed

If ((dopiv) and (piv <= n - 2))
dopiv = F ALS E
process pivotal column (piv)
then increment pivot (pv = piv + 1)
nxcol = piv + 1
done = piv

else
col = nxcol
If (col <= n)

nxcol = col + 1
modify column (col)
increment count (done)
If (done == n)

115

Chapter 5

else

nxrowb = piv
doner = piv - 1

1'OW = nxrowb
If (row <= n)

nxrowb = row + 1
modify row (rowb)
increment count (doner)
If (doner == n)
dopiv = TRUE

else
ra = nxrowa
If (ra == piv - 1)
nxrowa = 1
else
nxrowa = ra + 1

Reduction to Hessenberg Form

If ((ra < piv) and (ct(ra) <= n - 2) and nactv(ra))
nactv(ra) = FALSE
while(ct(ra) < piv)

modify row (rowa)
increment number (ct(ra))

nactv(ra) = TRUE
If (ct(ra) == n - 1)

then increment row count (rc)
else

wait
while (rc < n - 2)
end parallel

end

The Helle implementation is a little more complicated due to the need

to ensure that all rowa row updates are completed while allowing a thread

to terminate before this has happened. This is done by checking at the

end of each row of rowa updates whether the final pivotal column has been

completed and if so continuing with this row until all updates have been

completed. When the final pivotal column is completed the indicator for

the next rowa (nxrowa) is set to one and the threads then process the rows

116

Chapter 5 Reduction to Hessenberg Form

in order. When row ra is allocated nactv(ra) is set to FALSE and is then

not reset to TRUE on completion of the updates so that threads do not

attempt to process a row which has already been completed.

5.4 Experimental Results

The results use the notation He for our implementations of parallel

upper Hessenberg reduction. The numerical results were obtained for the

five versions outlined in section 5.3. The first method (i.e. the simple

implementation) is denoted by ss, the second implementation using dynamic

allocation by Id (using locks), smd (using semaphores), and md (using

monitors). The third implementation using static allocation is denoted by

ls, the fourth implementation using pivotal processing done in parallel by

mml and the fifth implementations using delayed rowa allocation by lla and

lle. The representation of the matrix by columns is indicated by the final

character t, otherwise the representation is by rows.

The comparisons were carried out by measuring the elapsed time for a

general matrix to be reduced to upper Hessenberg form using each of the

implementations. Comparisons were carried out between the performance

of the five implementations. Comparisons were also carried out between the

performance of the three different synchronisation mechanisms in the second

implementation.

We tested the algorithms using from one up to ten processors

(1,2,4,6,8,10) with matrices of sizes 100(100)500. The sequential times were

obtained from the simple algorithm (H eseq) which was compiled without

array bound checking using the row representation version. This was slightly

better than the column representation version and as expected, significantly

better than the same version with array bound checking. The parallel and

sequential times were, of course, obtained for the same sized matrix.

117

Chapter 5 Reduction to Hessenberg Form

1.0

0.9

0.8

()- 0.7
c:

~ 0.6

0.5

0.4

0.3-L----.----------.--------~----------._------__.

2 4 6 8 10

Number of Processors

Algorithms

~Hess

~Held

-+- Hels
---*- Hemml
-e3- Hella
~Helle

Fig. 5.2 Mean Efficiency Graph: Hessenberg Form with No Check

1.0

0.9

0.8

~ 0.7
.!!!
~
lU 0.6

0.5

0.4

0.3-L----.----------.--------~----------._--------,

2 4 6 8 10

Number of Processors

Algorithms

~ Hesst
~Heldt

-+- Heist
---*- Hemmlt
-E9-- Hellat
~Hellet

Fig. 5.3 Mean Efficiency Graph: Hessenberg Form with No Check

118

Chapter 5 Reduction to Hessenberg Form

1.0

0.9

~ 0.7
c:

~ 0.6

0.5

0.4

0.3-L----r---------,,--------~----------._--------.

2 4 6 8 10

Number of Processors

Algorithms

~Hess

--A- Held

-+- Hels
--*- Hemml
-E9- Hella

--+- Helle

Fig. 5.4 Mean Efficiency Graph: Hessenberg Form with Check

1.0

0.9

0.8

g 0.7

~ 0.6

0.5

0.4

0.3-L----,---------,,---------.----------,---------,
2 4 6 8 10

Number of Processors

Algorithms

~ Hesst
--A- Heldt

-+- Heist
--*- Hemmlt
-E9- Hellat

--+- Hellet

Fig. 5.5 Mean Efficiency Graph: Hessenberg Form with Check

119

Chapter 5 Reduction to Hessenberg Form

1.0

0.9
0.8~--=;"'----

~ 0.7

I 0.6

0.5

0.4

0.3-r----------~------------._----------._--------__.

100 200 300 400 500

Size of Matrix

Fig. 5.6 No Check for 2 Processors

1.0

0.9L~~~~~
0.8

g 0.7
.!!!
~
lU 0.6

0.5

0.4

0.3-r-----------.-----------.----------,-----------,
100 200 300 400 500

Size of Matrix

Fig. 5.7 Check for 2 Processors

120

Algorithms

~Hess

-a- Held

-+- Hels
~Hemml

-E9- Hella
-+- Helle

Algorithms

~Hess

-a- Held

-+- Hels
~Hemml

-E9- Hella
-+- Helle

Chapter 5 Reduction to Hessenberg Form

1.0

0.9

0.8

(;- 0.7

~ 0.6

0.5

0.4

0.3~-----------,------------,-----------.-----------,

1.0

0.9

0.8

(;- 0.7
c:
.!!!

~ 0.6

0.5

0.4

100 200 300 400 500

Size of Matrix

Fig. 5.8 No Check for 8 Processors

0.3~----------.-----------.----------r----------,

100 200 300 400 500

Size of Matrix

Fig. 5.9 Check for 8 Processors

121

Algorithms

~Hess

---A- Held
-t- Hels
~Hemml

-£9-- Hella
-+- Helle

Algorithms

~Hess

---A- Held

-t- Hels
~ Hemml
-£9-- Hella
-+- Helle

Chapter 5 Reduction to Hessenberg Form

1.1

1.0

0.9

0.8
>.
<.> c:

.9.! 0.7
~
UJ

0.6

Matrix Size
0.5 ~nl00

--E9- n200

0.4 --a- n300

-t- n400
~n500

0.3
2 4 6 8 10

Number of Processors

Fig. 5.10 No Check "Hella"

Number of Processors

Fig. 5.11 No Check "Helle"

122

Chapter 5 Reduction to Hessenberg Form

To show the performance of the five different parallel versions, we plot in

figures 5.2, 5.3, 5.4, and 5.5 mean efficiencies against number of processors.

Figures 5.6 and 5.7 show actual efficiencies using 2 processors for results

with and without array bound checking and figures 5.8 and 5.9 show similar

plots for 8 processors. Figures 5.10 and 5.11 display results for different sized

matrices and different numbers of processors for the fifth method (version

Helle).

Also to show the performance of the three different synchronisation

mechanisms in the second implementations we plot in figures 5.12, 5.13,

5.14, and 5.15 mean efficiencies against number of processors, for results

with and without array bound checking. Figures 5.16 and 5.15 show actual

efficiencies using 2 processors for results with and without array bound

checking and figures 5.18 and 5.19 show similar plots for 8 processors. The

second method using lock (version Held) displays a good parallel efficiency

for all our versions.

1.0

0.9

0.8

g 0.7
.~

~
UJ 0.6

0.5

0.4

Algorithms

~Hess

-e:r Hemd
-A-- Held

0.3-'-----r----.------.-----.--------,
~ Hesmd

2 4 6 8 10

Number of Processors

Fig. 5.12 Mean Efficiency Graph with No Check

123

Cbapter 5

1.0

0.9

0.8

()' 0.7
.~

~ 0.6

0.5

0.4

Reduction to Hessenberg Form

Algorithms

~ Hessl
-E9- Hemdl
-6- HeidI
~ Hesmdl

0.3-L----~--------~--------_.----------._--------~

2

1.0

0.9

0.8

()' 0.7
c:

~ 0.6

0.5

0.4

4 6 8 10

Number of Processors

Fig. 5.13 Mean Efficiency Graph with No Check

Algorithms

~Hess

-E9- Hemd
-6- Held

0.3~----.---------~--------_.----------r-------~
~ Hesmd

2 4 6 8 10

Number of Processors

Fig. 5.14 Mean Efficiency Graph with Check

124

Chapter 5

1.0

0.9

0.8

~ 0.7
c:

.91

ffi 0.6

0.5

0.4

Reduction to Hessenberg Form

Algorithms

~ Hesst
-E9- Hemdt
-A- Heldt

-*- Hesmdt
0.3-L----~--------_.--------_.----------._--------.

2

1.0

0.9

0.8

~ 0.7
c:

~ 0.6

0.5

0.4

4 6 8 10

Number of Processors

Fig. 5.15 Mean Efficiency Graph with Check

Algorithms

~Hess

-E9- Hemd
-A- Held

-*- Hesmd
0.3~----------_.----------_.----------,,----------.

100 200 300 400 500

Size of Matrix

Fig. 5.16 No Check for 2 Processors

125

Cbapter 5 Reduction to Hessenberg Form

1.0

0.9

0.8

()' 0.7
.~

UJ~ 0.6

0.5

0.4

0.3~-----------.------------r-----------T-----------'

100 200 300 400 500

Size of Matrix

Fig. 5.17 Check for 2 Processors

1.0

0.9

0.8

()- 0.7

i 0.6

0.5

0.4

0.3-r-----------.------------.-----------.-----------,
100 200 300 400 500

Size of Matrix

Fig. 5.18 No Check for 8 Processors

126

Algorithms

~Hess

--E9- Hemd
--a- Held
~ Hesmd

Algorithms

~Hess

--E9- Hemd
--a- Held
~ Hesmd

Cbapter 5 Reduction to Hessenberg Form

1.0

0.9

0.8

() 0.7
c::

.91

ffi 0.6

0.5

0.4

0.3-+------.--------r-------r----.........,

100 200 300 400 500

Size of Matrix

Fig. 5.19 Check for 8 Processors

5.5 Conclusions

Algorithms

~Hess

--E9- Hemd
--.!r- Held
~ Hesmd

In this chapter we have investigated some parallel algorithms for the

reduction of a general matrix to upper Hessenberg form.

As expected, the first method (the simple parallel implementation Hess)

is slower than all the other versions. This is because the THREAD joins at

the end of each stage of column and row updates lead to significant waiting.

There is a clear conclusion that the fifth implementations (H ella and

Helle) are better than the other implementations, with little difference

between row and column versions. The efficiency graphs show that the

difference between the (H ella and Helle) implementations are very small

and very close to possible errors in measurement, though Helle seems to be

marginally better. It is notable that for larger numbers of processors with

these implementations even small sizes of matrix give significantly better

results than other versions. As the number of processors increases the graphs

127

Chapter 5 Reduction to Hessenberg Form

for this algorithm are very nearly horizontal indicating little loss. The high

efficiency indicates that losses due to critical areas controlled by locks are

very small.

Surprisingly, the fourth algorithm (H emml) including the pivotal

column done in parallel has poorer efficiency than the other implementations

except the simple parallel implementation (Hess), possibly due to more

overhead than Held and static H els, and more waiting than version H ella

and Helle, as rowa rows are not processed after all columns are processed

until all rowb rows are completed. In spite of this the H emml version is

still significantly better than Hess in most cases. The differences between

the implementations Held and H els which only vary in their method of

allocation to the threads are relatively small. Comparing the results for

these versions shows that the Held version comes out better in most cases,

except with array bound checking and using column representation of the

matrix, where version three HeIst is better than Heldt.

For all versions, the larger the matrix size the better the efficiency,

particularly for larger numbers of processors. In addition, the efficiencies for

the Held, H els and H emml methods get closer as the matrix size increases.

This is not surprising as the arithmetic becomes relatively more important

compared to overhead as the matrix size increases.

When we compare the "locks" and "semaphores" synchronisation

mechanisms for the second algorithm, we find that with no array bound

checking and both row and column representation the versions Held and

H esmd are very close particularly for 4 and 6 processors.

With array bound checking the lock version is significantly better than

the semaphore versions. This is shown in figures 5.12 and 5.13.

The monitor version is worse than the semaphore version with no check

128

Cha.pter 5 Reduction to Hessenberg Form

but it is better than the semaphore version with array bound checking case.

The monitor version in the checking case is still significantly poorer than

the lock version, and the difference increases with the number of processors.

Also with array bound checking the semaphore versions are some times

even poorer than the simple version Hess. With no array bound checking

the monitor versions H emd and H emdt give similar efficiencies to the simple

implementation Hess.

There is a clear conclusion about using the synchronisation mechanisms.

All implementations using "locks" are more efficient than those using

"monitors" or "semaphores". The "locks" version gives the best

efficiency in most cases. In conclusion, we have observed that the

parallel implementation of delayed rowa row allocation (H ella and Helle

versions) attain remarkably high efficiencies, with both row and column

representations of the matrix.

129

CHAPTER 6

Reduction of a Symmetric Matrix to Tridiagonal Form

6.1 Introduction

In this chapter we examine the reduction of a real symmetric matrix to

tridiagonal form. Such algorithms do not of themselves solve the eigenvalue

problem, but this approach does reduce the problem to a form that can

be manipulated inexpensively [93]. Reduction to tridiagonal form is a

major step in eigenvalue computations for symmetric matrices. Finding the

eigenvalues and eigenvectors of a tridiagonal matrix is significantly simpler

than computing those for a general symmetric matrix [95]. In recent years

a number of parallel implementations of algorithms for eigenvalue problems

have been widely investigated. Algorithms for shared memory architectures

([26] and [27]) and distributed memory architectures ([28],[55] and [13])

have been implemented for reducing a symmetric matrix to tridiagonal

form. Dongarra and Sorensen [26] present a method intended to be used

in conjunction with the initial reduction to tridiagonal form to compute the

complete eigensystem of the original matrix. Dongarra et al [27] consider

130

Chapter 6 Tridiagonal Form

block algorithms for the reduction of a real symmetric matrix to tridiagonal

form using Householder transformations.

Let B be an n x n symmetric matrix T. Our aim is to reduce a symmetric

matrix to tridiagonal form, that is a matrix described as follows:

Tij = 0 unless J = 1" i + 1, or i - 1.

The sequential Householder tridiagonalisation approach IS described III

[40],[93] and [95].

The algorithms for reduction of a general matrix to Hessenberg form can

also be used for the reduction of a symmetric matrix to tridiagonal form,

and there are some rather obvious savings which can be made by taking

the symmetry into account. However, if only half of the matrix is stored or

used, such algorithms have much greater data dependencies which limit the

possibilities for parallelisation.

The chapter begins with the description of a sequential algorithm for

reduction to tridiagonal form in section 6.2. The data dependencies in this

algorithm are also considered. In section 6.3 three parallel implementations

are described. Experimental results are presented in section 6.4 and

conclusions are given in section 6.5.

6.2 Sequential Algorithms

We consider the tridiagonalisation of an n x n real symmetric matrix

B, using Householder transformations. The method uses (n - 2) successive

131

Chapter 6 Tridiagonal Form

transformations to reduce a matrix to tridiagonal form. An example of

such an algorithm is described in [93]. We present below the Householder

transformation process and the tridiagonalisation of the symmetric matrix

B.

Let b = (bl' b2, ... ,bn)T be a vector such that not all of the entries

b2, b3,"" bn are zero, and suppose we want to transform b to a vector

q = (ql, q2,··· qn)T where q = Qb with Q orthogonal and such that

q2 = q3 = ... = qn = O. Define q = (u, 0 , ... O)T then lui = IIql12 = IIbl12
because Q is chosen an orthogonal matrix.

Before we summarise the algorithm for the reduction of a symmetric

matrix to tridiagonal form, let us point out one other potential danger. In

order to calculate u, we must calculate IIbl12 = (b~ + b~ + ... + b;_2)1/2 for

such a computation. Since squaring doubles the exponent of a number, an

overflow can occur if some of the entries of b are very large and an underflow

can occur if some of the entries are very small. An overflow will usually stop

the computation. An underflow mayor may not stop the computation,

depending on which compiler options are in effect. If the computation is

not stopped, the underflow will be set to zero which can be dangerous if this

makes u equal to zero.

The problem with overflows and underflows in the calculation of IIbl12

can be alleviated by the following simple method: Let m = maxl~k~nlbkl. If

m = 0, then IIbl12 = O. Otherwise let b = (l/m)b. Then IIbl12 = mllbl12. This

scaling statement eliminates the possibility of overflow because Ibk I < 1 for

132

Chapter 6 Tridiagonal Form

all k. Underflows can not cause problems as clearly a will be greater than

or equal to 1. Thus these underflows are harmless and can safely be set to

zero [93]. In this thesis the scaling statement is only used in the algorithm

for the reduction of a symmetric matrix to tridiagonal form, though it could

be applied in the other algorithms using Householder matrices.

To describe the algorithm for the reduction of a symmetric matrix to

tridiagonal form, we adopt the following notation introduced in [93]. We

begin with the matrix

In the first step of the reduction, we transform B to BI = QIBQI, where

1 0 0

o

o

and QI is a Householder transformation matrix chosen so that Qla

bl1 al 0 0

(bll a
TQl)

al

0 BI = Qla QIBQI
BI

0

We save a little bit here by not performing the computation aT QI, which

duplicates the computation Qla. The main saving is made in the calculation

133

Chapter 6 Tridiagonal Form

of i3t as described below. Finally, because the matrix B is symmetric, we

need only store the lower triangles of the matrices.

Ql is a Householder transformation matrix given in the form Ql

I -,uuT , where u = a- h = (al +u,a2,a3, ... ,an)T and, = 2/"ull~. Thus

6.2.1

The terms in this expression admit considerable simplification [93] if we

introduce the auxiliary vector

~

v = -,Bu. 6.2.2

Thus

6.2.3

and

6.2.4

Introducing the scalar

6.2.5

we can rewrite this last term as 28uuT . Thus

6.2.6

134

Chapter 6 Tridiagonal Form

The final manipulation is to split the last term into two pieces in order

to combine one piece with the term vuT and the other piece with the term

uvT . Specifically, let

w = v +8u 6.2.7

Then

6.2.8

In the algorithm below B(k,j : n) denotes the vector consisting of the

elements of B(k, i), i = j, ... , n, and the kth Householder vector u is stored

in B(k + 1 : n, k).

We assume that the Input for the algorithm is the lower triangular

portion of a real symmetric matrix B, which is updated

bl1

b21 b22

B= b31 b32 b33

bn l bn2 bnn-l bnn

The Output is the lower diagonal of a symmetric tridiagonal matrix T

represented by two vectors.

135

Chapter 6 Tridiagonal Form

In displaying input and output matrices, our convention is that empty

portions of the matrices are always zero. The above algorithm code segment

may be written as

Algorithm
for k = 1 : n - 2

Q (k) = B(k, k)
m = max(IB(j, k)l, j = k + 1 : n)
if (m /; 0)

B(k+ 1: n,k) = B(k + 1: n,k)/m
f3 (k) = V'L.ri=k+l B(i, k)2
if (B(k+ l,k) < 0)

f3(k) = -f3(k)
B(k + 1, k) = B(k + 1, k) + f3(k)
,(k) = 1/(f3(k) * B(k + 1, k))
f3(k) = f3(k) * m
(Set up the Householder transformations)
wa=O
for j = k + 1 : n

wa = a(j, j) * B(j, k)
v(j + 1 : n) = v(j + 1 : n) + B(j + 1 : n, j) * B(j, k)
wa = wa + B(j + 1 : n,j)T * B(j + 1 : n, k)
v(j) = v(j) + wa

endfor
(Calculate Bu, where u is stored in B(k + 1 : n, k))
8=0
v(k + 1 : n) = -,(k) * v(k + 1 : n)
8 = 8 + v(k + 1 : n)T * B(k + 1 : n, k)
8=,(k)*8/2
w(k + 1 : n) = v(k + 1 : n) + 8 * B(k + 1 : n, k)
(Calculate w (this could overwrite v instead))
for j = k + 1 : n

B(j: n,j) = B(j: n,j) + w(j: n) * B(j, k)
+B(j : n, k) * w(j)

endfor
(Update B)

endif
endfor

136

Chapter 6 Tridiagonal Form

a (n - 1) = -B(n - 1, n - 1)
a (n) = B(n, n) / / The main-diagonal of the output matrix
f3 (n -1) = - B (n, n -1) / / The off-diagonal of the output matrix

The implementations store the main-diagonal entries of the tridiagonal

matrix T in a separate one-dimensional array (a) and the off-diagonal entries

in a one-dimensional array (f3).

The second step of the reduction has no effect on the first row and

column of BI. This was not so in the non-symmetric case as there the

first row needs to be altered; it is this difference that makes the symmetric

reduction less than half as expensive as the non-symmetric reduction [93].

The second step is identical to the first step, except that it acts on the

su bmatrix RI .

Figure 6.1 represents the dataflow for this algorithm. This dataflow

diagram shows that in the first stage, the update to the components of the

vectors by Uj and Vi (i, j = k, k + 1, ... , n) are carried out. In the second

stage, the computation of the scalar 8 is carried out. This is a crucial point

as it is needed for the computation of the vector Wi (i = k, k + 1, ... , n), in

the third stage. The final stage, the update to R using Uk, Uk+}' ... , Un and

Wk, wk+I, . .. , Wn is denoted by Rk . After the kth reduction step the (k+ 1)th

step starts to update the reduction in the same way as the kth step. These

observations will be made use of in Algorithm I described below.

We consider three slightly different versions for the reduction of a

symmetric matrix to tridiagonal form. As only the lower triangle of B

is stored the scalar products in forming Bu split into two parts. The first

part uses the part of the row in the lower triangle of B. The other part

corresponding to the upper triangle uses its reflection, that is part of a

column of B. This mean that every element of the lower triangle B

137

Chapter 6

U
k

w
k

I \

I \

I \

I \

U ··r·"
k+I

, \

w
k+I

B
k+I

, , , , , ,

Tridiagonal Form

un y

Fig. 6.1 Dataflow Diagram for Tridiagonal Form

138

Chapter 6 Tridiagonal Form

contributes to two different scalar products. The first version uses a

modification of the Watkins algorithm [93] so that each element of B is

used only once in forming the scalar products Bu. The second version used

a further modification where all contributions to each scalar product in Bu

were calculated together. In the third version the formation of the scalar

products Bu, the multiplication of them by a constant scalar -, (i.e. to

find the vector v) and the calculation of 8 are included in the same loop.

6.3 Parallel Implementations

The sequential algorithms have been described above. Here we

will consider three types of parallel implementation. In all these

implementations, the tasks are allocated in a predetermined (scattered)

ordering. This allows the pre-allocation of tasks to threads.

In summary, in all three implementations the update of the pivotal

column is carried out sequentially as shown in figure 6.1. As soon as the

pivotal column has been updated, the computation of the matrix vector

products Bkuj can proceed. These need to be synchronised in the first

implementation because different threads contribute to the same scalar

product but synchronisation is not necessary for the other implementations.

The process is continued until all the scalar products required for BkUj are

completed. After that the resulting vector is multiplied by the constant

-, to get the vector v using 6.2.2. As the scalar product uT v is formed

in parallel, we store the partial result during the calculation of the scalar

product and then add the partial sums to the final total using a lock. Then

the scalar product uT v is multiplied by a constant -!, to get the scalar 8

using 6.2.5. This is done sequentially in all parallel implementations.

It is clear from figure 6.1 that the calculation of 8 is a bottle-neck as

the vector Wi can not be updated using 6.2.7 before its completion. After

139

Chapter 6 Tridiagonal Form

this computation of 8, the components of the vector ware updated. Notice

that the computation of the vector w components are independent of one

another and that they can be performed in parallel without using a lock.

Finally, from 6.2.8 we can see that Bk+1 can be updated either after each

element of the vector w is computed or after all components of vector w have

been evaluated. Following this, the next pivotal column can be treated in

the same way and the whole process is repeated for the next stage.

The first implementation starts by carrying out the pivotal column

updates sequentially. This is followed by the matrix vector product updates

6.2.2 done in parallel (i.e. forming v). Updating the matrix vector product

needs a lock because different threads contribute to the same scalar product.

When this is all completed then the calculation of the scalar 8 using 6.2.5 is

carried out in parallel and so we store the partial results which contribute to

the scalar 8. We used a lock in order to prevent simultaneous contribution

of the partial result to 8 by the different threads. The multiplication of the

scalar 8 by -,/2 is carried out sequentially. This is followed by forming the

vector w using 6.2.7. Bl is updated in parallel after all components of the

vector w have been evaluated using 6.2.8

For the calculation of Bu the parallel section is terminated with

"THREADjoin" s which ensures that all the components of v are computed

before commencing the calculation of the scalar 8 using 6.1.1.5 which is done

in parallel. The algorithm is as follows:

Algorithm I

prcount is the thread number
prcs is number of processor (threads)

For k = 1 : n - 2
(i) (pivotal column updates sequentially, as In sequential algorithm)

140

Chapter 6

for (i = k + 1; i < = n; i + +)
v(i) = 0.0
8 = 0.0

START PARALLEL
double wa = 0.0

(ii) for (j = k + preount; j <= n; j = j + pres)
wa = a(j,j) * b(j, k)
for (i=j+1; i<=n; i++)

lockO
v(i) = v(i) + b(i,j) * b(j, k)

unlock()
wa = wa + b(i, j) * b(i, k)

endfor
lock()

v(j) = v(j) + wa
unlock()

endfor
FINISH PARALLEL

Tridiagonal Form

(Matrix vector product using 6.2.2 updates in parallel)

START PARALLEL
double sa = 0.0

(iii) for (i = k + preount; i <= n; i = i + pres)
v(i) = -,(k) * v(i)
sa = sa + v(i) * b(i, k)

endfor
lockO

8 = 8 + sa
unlock()

FINISH PARALLEL
(Compute the scalar 8 using 6.2.5 in parallel)

8 = -, * 8 /2
START PARALLEL

(iv) for (i = k + preount; i <= n; i = i + pres)
w(i)=w(i)+8 *b(i,k)

endfor
FINISH PARALLEL
(Compute the vector w using 6.2.7 in parallel)

START PARALLEL

141

Chapter 6

(v) for (j = k + prcountj j <= nj j = j + prcs)
for (i = j j i < = nj i + +)

Tridiagonal Form

b(i,j) = b(i,j) + w(i) * b(j, k) + b(i, k) * w(j)
endfor
FINISH PARALLEL
(Update Busing 6.2.8 III parallel)

Endfor

Synchronisation is required when the scalar 8 is updated using 6.2.5,

because different threads contribute to the sums. This is done by first

computing partial results, followed by global summation of the partial

results. This synchronisation is necessary to avoid two processors attempting

to add into the sum at the same time and is carried out using a lock. When

all contributions to 8 have been added the parallel section is terminated.

We then update w using 6.2.7 in parallel and terminate this parallel section.

In the last stage we update Bl using 6.2.8 in parallel. This parallel

implementation uses four parallel sections and one lock which is used in

three places. The first implementation provides a basis for comparison with

the other implementations.

In the second implementation the algorithm is modified so that some

data dependency is avoided. The important point is that in the second

version in the calculation of Bu each processor only writes to one element

of v but each B value is read twice. These updates are independent and can

hence be carried out in parallel without the use of a lock. When a thread

finds that no more updates to a matrix-vector product Bu are completed,

then the parallel section is terminated. The calculation of the scalar 8 using

6.2.5, w using 6.2.7 and updating iiI using 6.2.8 are done in parallel as in the

first implementation. In this implementation we use four parallel sections

and one lock used in only one place.

142

Chapter 6 Tridiagonal Form

Algorithm II

prcount is the thread number
prcs is number of processor (threads)

For k = 1 : n - 2
(i) (pivotal column updates sequentially, as in sequential algorithm)

START PARALLEL
(ii) (Matrix vector product using 6.2.2 updates in parallel)

for (j = k + prcountj j <= nj j = j + prcs)
v(j) = 0
for (i = k + 1 j i < = j j i + +)
v(j) = v(j) + b(j, i) * b(i, k)
for (i = j + 1 j i < = nj i + +)
v(j) = v(j) + b(i, j) * b(i, k)

endfor
FINISH PARALLEL

(iii) (Multiply v by T and compute the scalar 6
using 6.2.5 in parallel, as in Algorithm I part (iii)).

(iv) (Compute the vector w using 6.2.7 in parallel,
as III Algorithm I part (iv)).

(v) (Update Busing 6.2.8 in parallel, as in Algorithm I part (v)).

Endfor

In the third implementation we combined the calculation of the products

Bu and the scalar 6. We use a lock when updating 6 because two processors

might add into the sum of 6 at the same time. The rest of the algorithm

which finds w using 6.2.7 and B1 using 6.2.8 are parallelised and terminated

in the same way as in the first implementation. We expected that this

implementation will be more efficient than the others because combining

the matrix-vector product and the evaluation of the scalar 6 decreases the

number of parallel sections. We use three parallel sections and one lock for

this implementation.

143

Chapter 6 Tridiagonal Form

Algorithm III

preount is the thread number
pres is number of processor (threads)

For k = 1 : n - 2
(i) (pivotal column updates sequentially, as in sequential algorithm)

8 = 0.0

(ii) (Matrix vector product using 6.2.2 and the scalar 8 using 6.2.5
are combined (i.e. (ii) and (iii)) and update in parallel)

START PARALLEL
double sa = 0.0
for (j = k + preountj j <= nj j = j + pres)

v(j) = 0
for (i = k + 1 j i < = j j i + +)
v(j) = v(j) + b(j, i) * b(i, k)
for (i = j + 1; i <= n; i + +)
v(j) = v(j) + b(i, j) * b(i, k)
v(j) = -,(k) * v(j)
sa = sa + v(j) * b(j, k)

endfor
lockO

8 = 8 + sa
unlock()

FINISH PARALLEL

(iii) (Compute the vector w using 6.2.7 in parallel,
as in Algorithm I part (iv)).

(iv) (Update Busing 6.2.8 in parallel,
as III Algorithm I part (v)).

Endfor

6.4 Experimental Results

Results illustrating the performance of the algorithms presented in this

chapter are reported in this section. These tests used both the simple Matrix

class used for a general Matrix and a special symmetric Matrix class written

144

Chapter 6 Tridiagonal Form

so that only half the matrix is stored. With the general Matrix class only

the lower triangular part is used which wastes storage. These classes were

used to access the matrices and the computations were carried out using

both row and column representations of the matrix. This was made easy by

the use of the C++ class facility.

The storage allocation is illustrated here using the elements of the matrix

to indicate the subscript used in the one dimensional array. Both row

and column storage are illustrated. In the illustrations the elements of the

matrices represent the subscripts for the corresponding elements in the one

dimensional array used for storage. For the n x n symmetric matrix only

the lower triangular part was considered.

The n x n lower triangular matrix defined by

{
0,

Bi; = B ..
~1 ,

j > i
j'5:i'

may be represented usmg a one-dimensional array ordered for the

representation by rows as follows:

0
1 2

Brow = 3 4 5
6 7 8 9
10 11 12 13 14

The same matrix can be represented by columns as follows:

0
1 5

Bcolumn = 2 6 9
3 7 10 12
4 8 11 13 14

145

Chapter 6 Tridiagonal Form

The C++ simple matrix class and symmetric matrix class only vary in

the way the matrix is stored. In the symmetric matrix class, only the lower

part of the matrix is stored but the calculation of the subscripts for the

matrix elements needs more arithmetic than the simple matrix class; so it

requires less storage but needs extra arithmetic. The value of the subscript

needed for the simple matrix class is calculated as position = (i -1) *n+ j-1

for the row representation and position = (j - 1) * n + i-I for the column

representation. The calculation of the subscript needed for the symmetric

matrix class is position = (i * (i-I) /2) + j - 1 for the row representation and

position = ((j -1) * (2 * n - j + 2)/2) + i - j for the column representation,

where i and j are indices of the matrix element and n is the matrix size.

In the results we used the notation Tri for our parallel implementations

of reduction to tridiagonal form. The numerical results were obtained for

the three versions outlined in section 6.3. The first method (the simple

implementation) is indicated by 1p, the second implementation by 2p and the

third implementation by 3p. The representation of the matrix by columns

is indicated by the final character t, otherwise the representation is by rows.

The elapsed time for the reduction of a real symmetric matrix to tridiagonal

form using each of the implementations was measured. Comparisons were

also carried out both with and without array bound checking.

We tested the algorithms using one to ten processors (1,2,4,6,8,10) with

matrices of sizes 100(100)500. In calculating the results using array bound

checking for the symmetric matrix class we used a sequential version of

the algorithm (Tri2) for comparison. For the simple matrix class we used

a sequential version of the algorithm (Trilt). Similarly, for the results

without array bound checking and using the symmetric matrix class we

used a sequential version of the algorithm (Tri3t). These sequential versions

gave times which were slightly better than those for other versions. Each

146

Chapter 6 Tridiagonal Form

efficiency calculation was carried out with the same representation and the

same compiler options. Normally, we expect the efficiency to be less than

one.

To show the performance of the three different parallel versions and their

representations of the matrix by columns and rows, we plot, in figures 6.2

and 6.3, mean efficiencies against number of processors for the simple C++

matrix class, and in figures 6.4 and 6.5 mean efficiencies against number of

processors for the C++ symmetric matrix class. Figures 6.6 and 6.7 show

actual efficiencies using 2 processors for the simple C++ matrix class with

and without array bound checking and figures 6.10 and 6.11 show similar

plots for 6 processors. Figures 6.8 and 6.9 show actual efficiencies using

2 processors for the C++ symmetric matrix class with and without array

bound checking and figures 6.12 and 6.13 show similar plots for 6 processors.

It can be seen from figures 6.6, 6.7, 6.8, and 6.9 that there is only a

very small increase in the efficiency values as matrix size increases. Even

when there is an increase in the efficiency (for example with Tri2p, Tri2pt

and Tri3p, Tri3pt) , this is followed by a fall in some cases (for example

with or without array bound checking, the symmetric matrix class using

2 processors performs as in figures 6.8 and 6.9). On the other hand, the

efficiency increases slightly with the size of matrix for the simple matrix

class (see figures 6.6 and 6.7) with or without array bound checking.

The results generally confirm our expectations, particularly when we use

the representation of the matrix by rows or by columns (i.e. the transpose

of the row representation of the matrix). In most cases the different

representations gave rise to very close efficiency curves when these tests used

the simple matrix class. This is because similar subscript arithmetic was

involved for the row and column representation and the other computations

would be the same with the representations of the matrix columns as well as

147

Chapter 6 Tridiagonal Form

rows. On the other hand, when these tests use the C++ symmetric matrix

class the efficiency curve of the transposed versions is marginally better than

the efficiency curve of the row versions. This improvement did not surprise

us because as we can see from the formulae for the subscripts of the matrix,

the calculation of the subscript requires extra arithmetic operations for the

column representation of the matrix.

Mean Efficiency

pr Tri1p Tri1pt Tri2p Tri2pt Tri3p Tri3pt

1 0.946 0.950 0.904 0.922 0.913 0.925

2 0.572 0.578 0.828 0.841 0.829 0.844

4 0.317 0.321 0.714 0.726 0.728 0.740

6 0.193 0.196 0.602 0.614 0.625 0.640

8 0.129 0.131 0.495 0.505 0.529 0.537

10 0.093 0.093 0.399 0.396 0.441 0.449

Table 6.1 No Check with Matrix Class.

Tables 6.1 and 6.2 show the mean efficiency of all the three versions. The

numbers in the tables are efficiency values based on times used to complete

the reduction to tridiagonal form of an n X n symmetric matrix using a simple

matrix class and symmetric matrix class. It is obvious from tables 6.1 and

6.2 that the difference between the two classes is small. The efficiency with

the symmetric matrix class is marginally better than that with the simple

matrix class using 1, 2, 4, and 6 processors for Tri2pt and Tri3pt versions

but not for 8 and 10 processors. Also with the symmetric matrix class the

efficiency is marginally better than that with the simple matrix class using

1 processor for Tri1p and Tri1pt versions but not using the other number

148

Chapter 6 Tridiagonal Form

of processors. In other cases, the efficiency values with simple matrix class

is marginally better than that with symmetric matrix class for all the other

versions (except for Tri2p with 4 processors where efficiencies are almost

identical) .

Mean Efficiency

pr Tri1p Tri1pt Tri2p Tri2pt Tri3p Tri3pt

1 0.937 0.890 0.944 0.872 0.957 0.906

2 0.628 0.631 0.835 0.752 0.897 0.814

4 0.364 0.359 0.712 0.681 0.771 0.716

6 0.240 0.236 0.620 0.591 0.673 0.632

8 0.169 0.167 0.525 0.508 0.585 0.551

10 0.121 0.121 0.425 0.425 0.502 0.474

Table 6.2 No Check with Symmetric Matrix Class.

For the implementations using the simple matrix class the lower and

upper triangular parts of matrix B are both stored but we need only update

the main diagonal and lower triangular matrix, whereas, for the symmetric

matrix class a lower triangular matrix was used to store B without storing

the elements above the main diagonal. This may have affected the storage

pattern but we do not have clear evidence for this. This is shown in table

6.2.

It is obvious from the efficiency graphs that the first implementation

using all representations of the matrix gave very poor times even for large

matrix sizes and numbers of processors.

149

Chapter 6

1.0

0.8

E)' 0.6
c:
.~
[j

0.4

0.2

Tridiagonal Form

Algorithms

~ Trl1p
~Trl1pt

-+- Trl2p
_Trl2pt

-e:J- Tri3p
--"!'-- Trl3pt

O.O-L----.-----------~--------_.----------_.--------__,

2

1.0

0.8

E)' 0.6
c:
.~
:e: w

0.4

0.2

0.0
2

4 6 8 10

Number of Processors

Fig. 6.2 No Check with Simple Matrix Class

4 6 8 10

Number of Processors

Fig. 6.3 Check with Simple Matrix Class

150

Algorithms

~ Trl1p
~ Tri1pt

-+- Trl2p
_ Tri2pt

-e:J- Trl3p

--"!'-- Trl3pt

Chapter 6

1.0

0.8

~ 0.6
c::
Q)
'0
:E
w

0.4

0.2

Tridiagonal Form

Algorithms

~Trllp

-6- Trllpt

--+- Trl2p
~ Trl2pt

-f9- Trl3p
-4'-- Trl3pt

O.O-L----,----------.----------,----------,----------,
2

1.0

0.8

~ 0.6
c::

~
UJ

0.4

0.2

0.0
2

4 6 8 10

Number of Processors

Fig. 6.4 No Check with Symmetric Matrix Class

4 6 8

Number of Processors

10

Algorithms

~Trllp

-6- Trllpt

--+- Tri2p
~Trl2pt

-f9- Trl3p
-4'-- Tri3pt

Fig. 6.5 Check with Symmetric Matrix Class

151

Chapter 6

1.0

0.8

g 0.6 i_---~~----.... --~==~====~
.~
:E
w

0.4

0.2

o.o-r-----------.-----------,,-----------.-----------,
100 200 300 400 500

Size of Matrix

Tridiagonal Form

Algorithms

~ Trl1p
-A- Trl1pt

-t- Trl2p
~ Tri2pt

--E9- Trl3p

-+- Trl3pt

Fig. 6.6 No Check with Simple Matrix Class for 2 Processors

1.0

~ 0.6 i_---===~===---'t-====~~========::::::€l
.~
:e w

0.4

0.2

o.o-r-----------.-----------.------------,-----------,
100 200 300 400 500

Size of Matrix

Algorithms

~ Tri1p
-A- Trl1pt

-t- Tri2p
~ Tri2pt
--E9- Tri3p

-+- Tri3pt

Fig. 6.7 Check with Simple Matrix Class for 2 Processors

152

Chapter 6

1.0

(;' 0.6
c:
Q)
'0
:E w

0.4

0.2

O.O~----------~-----------.------------.-----------.

100 200 300 400 500

Size of Matrix

Tridiagonal Form

Algorithms

~ Tri1p
~ Tri1pt

--+- Tri2p
~ Tri2pt
-E9- Tri3p

-+- Tri3pt

Fig. 6.8 Check with Symmetric Matrix Class for 2 Processors

1.0

0.8

(;- 0.6
c:

~
UJ

0.4

0.2

Algorithms

~ Trl1p
~ Tri1pt

--+- Tri2p
~Trl2pt

-E9- Tri3p

-+- Tri3pt
O.o~----------~-----------.------------.-----------.

100 200 300 400 500

Size of Matrix

Fig. 6.9 Check with Symmetric Matrix Class for 2 Processors

153

Chapter 6

1.0

0.8

() 0.6
c::
.~
:e
w

0.4

0.2 L--~----+----""'--~~

o.o~----------~-----------.------------~----------,

100 200 300 400 500

Size of Matrix

Tridiagonal Form

Algorithms

~Tri1p

~ Tri1pt

-+- Tri2p
~ Trl2pt
-e- Trl3p

----+- Trl3pt

Fig. 6.10 No Check with Simple Matrix Class for 6 Processors

1.0

0.8

() 0.6
c::
.~

m
0.4

0.2 L_-----tP---......--------..~--~

o.o~----------_.----------_,------------._--------__,

100 200 300 400 500

Size of Matrix

Algorithms

~Trl1p

~Trl1pt

-+- Trl2p
~ Trl2pt
-e- Trl3p

----+- Trl3pt

Fig. 6.11 Check with Simple Matrix Class for 6 Processors

154

Chapter 6

1.0

0.8

>- 0.6
g
Q)
'0
:E w

0.4

0.2 ~--~--~~--~--~

o.o-r-----------,-----------,------------r-----------,
100 200 300 400 500

Size of Matrix

Tridiagonal Form

Algorithms

~Tri1p

---A- Tri1pt

-+- Trl2p
~ Trl2pt
-e3- Trl3p

-+- Trl3pt

Fig. 6.12 No Check with Symmetric Matrix Class for 6 Processors

1.0

0.8

>- 0.6
<.>

j
0.4

0.2j...---.... -------$----------~

o.o-r-----------.-----------,------------r-----------,
100 200 300 400 500

Size of Matrix

Algorithms

~Trl1p

---A- Trl1 pt

-+- Tri2p
~Tri2pt

-e3- Tri3p

-+- Tri3pt

Fig. 6.13 Check with Symmetric Matrix Class for 6 Processors

155

Chapter 6 Tridiagonal Form

In addition, in most cases this implementation (Tri1p and Tri1pt) gave rise

to almost indistinguishable efficiency curves. As we mentioned in the section

6.2, this is because this version has greater data dependencies which limit

the exploitation of the parallel system. As we can see from the efficiency

graphs in figures 6.10-13, the performance of Tri1p and Tri1pt show little

improvement as the matrix size and the number of processors increase. On

the other hand, for the second and third implementations (Tri2p, Tri2pt

and Tri3p, Tri3pt) the efficiency improves as matrix sizes increase.

6.5 Conclusions

In this chapter we have investigated some parallel implementations of an

algorithm for the reduction of a real symmetric matrix to tridiagonal form.

As expected, the first implementation (Tri1p) is slower than all the other

versions. This is possibly because in this algorithm more T H READjoins

are needed. The other reason is that the algorithm uses an extra lock which

may also lead to extra waiting.

The efficiency graphs show that the difference between the Tri2p and

Tri3p implementations is very small, may be less than possible errors in

measurement, though Tri3p seems to be marginally better. It is notable

that the third version for larger numbers of processors and for larger sizes

of matrix gives marginally better results than the second version. This may

be because of using an extra set of T H READjoins in the second version.

Even with the extra subscript arithmetic the results of implementations

using the symmetric matrix class are marginally better than those using the

simple matrix class. The reason for the marginal improvement is possibly

due to a smaller storage demand. As we pointed out in the previous

section, the calculation of the subscripts for the matrix elements needs more

arithmetic operations in the symmetric matrix class than the simple matrix

156

Chapter 6 Tridiagonal Form

class.

Finally, it can be concluded from the experimental results of parallelising

this algorithm that some minor changes did give some improvements, but

all the efficiencies obtained were much poorer than those for algorithms

described in chapter 5.

157

CHAPTER 7

The Symmetric Tridiagonal Eigenproblem

7.1 Introduction

We implement Cuppen's method for finding all of the eigenvalues and

corresponding eigenvectors of real symmetric n x n tridiagonal matrix T. The

method uses a partitioning technique which reduces the original problem to

smaller ones of the same type, by a rank-one modification. Cuppen [17]

observed that there can frequently be deflation in the updating process as

the original matrix is rebuilt from the subproblems. Dongarra and Sorensen

[26] implemented a further deflation technique to make the algorithm more

efficient and more stable.

The implementation in [26] always computes the eigenvalues to high

accuracy, but some specific examples [6],[17] and [26] illustrate that it may

not compute fully orthogonal eigenvectors. To resolve this problem, Kahan

[54] suggests computing some key quantities more accurately using simulated

extended precision. Sorensen and Tang [83] presented an alternative

158

Chapter 7 The Symmetric Tridiagonal Eigenproblem

implementation scheme which was inspired by the earlier work of Kahan

[54]. They showed that this method is stable but that it requires extended

precision and so is machine-dependent [83]. Gu and Eisenstat [42] suggested

an alternative method using the same rank-one modification as [83] but

a different approach to finding the eigenvectors after all eigenvalues are

computed. This new way makes the simulated double precision unnecessary,

and they showed that the new method is backward stable.

The rest of this chapter is organised as follows. In section 7.2 we review

the description of the divide-and-conquer method presented in [17]. In

section 7.3 we discuss computing eigenvalues and eigenvectors of a rank

one modification of a diagonal matrix and exceptional cases are considered

in section 7.4. In section 7.5 we examine the arithmetic complexity

of the divide-and-conquer method. In section 7.6 we discuss a number

of sequential algorithms based on recursive and non-recursive versions.

We consider parallel implementations of these versions in section 7.7 of

which four are recursive and two are non-recursive. In addition we also

consider parallelisation of the matrix multiplication part of the algorithms

in section 7.7.3. Section 7.8 presents results of some numerical results

illustrating an experimental evaluation of the effect of deflation on accuracy,

comparison of the parallel implementations and comparison of the additional

parallelisation for matrix multiplication. Conclusions are given in section

7.9.

159

Chapter 7 The Symmetric Tridiagonal Eigenproblem

7.2 Cuppen's Divide-and-Conquer Algorithm

Let us consider a n X n symmetric tridiagonal matrix T as follows:

a1 f31
f31 a2 f32

T= f32 a3

f3n-l
f3n-1 an

Without loss of generality, we will assume f3i 1= O. Using a rank

one modification, Cuppen's Divide-and-Conquer method divides the given

symmetric tridiagonal matrix T replacing the original problem by two

problems with smaller matrices. The modification of the matrices is the

heart of this method.

The divide and conquer approach is to divide the original problem into

two simpler subproblems, solve each of these subproblems, and then combine

these two to form the solution to the original problem. The subproblems

can be solved in the same way and so the whole problem is recursive. As

indicated in [17], we can either carryon till we arrive at trivial 1 X 1 or

2 X 2 eigenvalue problems, or using an alternative method such as QR to

calculate the eigenvalues and the eigenvector matrix of small no X no blocks.

Here we only use the first alternative.

160

Chapter 7 The Symmetric Tridiagonal Eigenproblem

T can be written as

o

o
1 1

1 1

o

o

(7.2.1)

where 1'1 and 1'2 are of order n1 > 1 and n2 > 1 with n1 + n2 = n, f3 is the

nih off-diagonal element of T and the unit vector w is given by

1 T
w = v'2(0 ... 0 1 I 1 0 ... 0) (7.2.2)

where the non-zeros are in the i = n1 and i = n1 + 1 position.

This may be written T = l' + 2f3wwT where

T -. - = (1'1 0)
o T2

Let us assume that the eigenvalues and eigenvectors of l' are known, that

is we have an orthogonal Q and diagonal D such that l' = Q DQT . The

eigenvalues of l' consist of eigenvalues of 1'1 and 1'2. Suppose that the

solutions of the eigenproblem for the 1'1 and 1'2 matrices are given by

- - - -T - - - -T
T1 = Q1D1 Q1 and T2 = Q2D2Q2

161

(7.2.3)

Chapter 7 The Symmetric Tridiagonal Eigenproblem

which gives

For the next part of the process D and Q need to be reordered so that

the new diagonal elements are in ascending order. Suppose the permutation

matrix P is such that PDP has diagonal elements in order. We first permute

the elements of D and Q in such a way that we will replace the D with a

new D and the Q with a new Q. If D = PDP, then D = PDP and

T = QPDPQT so if we define Q = QP, then we have the following form

where p is the scalar 2f3 and z is the real vector of order n given by

-T
z=Q w.

(7.2.4)

(7.2.5)

From (7.2.4) it suffices to consider finding the eigenvalues and

eigenvectors of the matrix D + pzzT. A scheme for doing this is outlined in

[26]. We will consider this scheme as a numerical approach for calculating

the eigensystem in the next section.

Recursion is a very important tool in which a function invokes itself

and forms a natural means for implementing divide and conquer algorithms.

Such algorithm can simplify the solution of a problem by enabling us easily to

divide its solution into manageable pieces. A recursive solution to a problem

has to have at least one base case in order to terminate the recursion [80].

162

Chapter 7 The Symmetric Tridiagonal Eigenproblem

The computation consists of two stages for both recursive and non

recursive methods. In the first stage the subdivisions are formed. This

stage can also be further divided into two steps. The first step subdivides

and modifies the matrix, and in the second step the quadratic equations

for sizes the 2 X 2 eigenvalue problem are solved. In the second stage, the

method looks for ways to solve the original problem in terms of the pieces,

that is after the solution of the pieces, the sub-solutions must be combined

together in this stage.

7.3 Computing Eigenvalues and Eigenvectors of iJ + pzzT

In this section we consider the calculation of the eigenvalues and

eigenvectors of a matrix iJ + pzzT. The modification is based on the

following theorem due to Wilkinson [95]. Let C = iJ + pzzT, where iJ

is diagonal, IIzl12 = 1. Let d1 < d2 < ... < dn be the eigenvalues

of iJ, and let Al < Al < ... < An be the eigenvalues of C. Then

Ai = di + PJ.Li, 1 < i < n, where :Ei=l J.Li = 1, and 0 < J.Li < 1. Moreover,

Al < d1 < A2 < ... < An < dn if p < 0 and d1 < Al < d2 < ... < dn < An

if p > o. Finally, if the di are distinct and all the elements of z are nonzero,

then the eigenvalues of C strictly separate those of iJ.

In this section we will assume the di are distinct and also that all Zi

non-zero. Consider the matrix equation

(7.3.1)

where A is an eigenvalue and q is an eigenvector. The above equation can

163

Chapter 7 The Symmetric Tridiagonal Eigenproblem

be written as follows

(D -)..I)q + p(zT q)z = 0 (7.3.2)

where the scalar zT q f:. 0 because of the assumption that).. f:. di. Multiplying

(7.3.2) on the left by (D -)..I)-1, gives

multiplying (7.3.3) by zT / zT q on the left as zT q f:. 0, we obtain

).. must satisfy (7.3.4) and this equation may be written as

n z~
f()..) = 1 + P L _ z = 0

i=l di -)..

(7.3.3)

(7.3.4)

(7.3.5)

since (D -)..I)-l z = diag(d:~J. This equation which is referred to as the

secular equation in [38], gives the eigenvalues of D + pzzT as the roots

of f()..) = O. There are number of ways to solve the secular equation.

For simplicity, we found the numerical solution of equation (7.3.5) by the

bisection method. Newton's method is another possibility but since f()..) is

a rational function of).., Bunch et al [6] suggest a method based on rational

interpolation. Li [63] suggested a new improved method based on this idea.

Let us look at the behaviour of the function f. It is a rational function

with the n distinct poles db d2 , ••• , dn . The derivative of f is given by

(7.3.6)

Chapter 7 The Symmetric Tridiagonal Eigenproblem

If p < 0, !' (A) is negative for all values of A which are not poles. Therefore

each continuous piece of f is strictly decreasing. As A approaches the pole

- h 2
di, the function is dominated by the it term (d:~>')' Since each of the terms

z2
--..--=.L-(•) tends to zero as A ---+ ±oo, so
di->'

lim f(A) = 1,
>.~±oo

since also

lirp f(A) = -00
>'~di-

and

Hrp f(A) = +00 ,

>'~di+

it follows that if p < 0 then the secular equation f(A) = 0 has exactly

one solution between each pair of poles and one additional solution to the

left. Let the zeros of f(A) (i.e. the eigenvalues of iJ + pzzT) be denoted by

Al < A2 < ... < An [40]. This allows us to conclude that if p < 0 then f

has exactly n roots, one in each of the intervals

A similar argument shows that if p > 0 then f has precisely n roots, one in

each of the intervals

165

Chapter 7 The Symmetric Tridiagonal Eigenproblem

For p < 0 the graph of f(>-.) takes the form:

dn-I d n

!~ L ______ _ I _______ ...1

A. I

2

Fig. 7.1 f(>-.) = 1 + P L:i=l d;~A in the case p < o.

for p > 0 the graph is reflected in the y axis.

After calculating the eigenvalues of iJ + pzzT, it is not difficult to

compute the eigenvectors. Using equation (7.3.3) for any eigenvalue >-. we

can take the corresponding eigenvector as

q = c(iJ - >-'1)-1 z

where c = ±J f'fA) is a nonzero scalar chosen to normalise the vector. Thus

for each eigenvalue >-., the corresponding eigenvector has components given

by

1 <i < n. (7.3.8)

166

Chapter 7 The Symmetric Tridiagonal Eigenproblem

The above shows that we can find an orthogonal Q and a diagonal D such

that iJ + pzzT = QDQT. It follows that the original matrix Tusing (7.2.4)

can be expressed in the form T = Q DQT, where

Q=QQ, (7.3.9)

that is we have solved the original problem.

7.4 Exceptional Cases

In section 7.3, eigenvalues and eigenvectors are calculated when the

intermediate matrix iJ has distinct components along the diagonal and the

components of z are not zero. If some of the diagonal components of iJ

are equal or some components of z are zero, then we can use a deflation

technique. For equal diagonal components this technique involves altering

the Q matrices as there is additional freedom which can be used to make

some of the Zi zero.

As an example consider the 4 X 4 symmetric tridiagonal matrix

2 -1 0 0

-1 2 -1 0
T=

0 -1 2 -1

0 0 -1 2

Then for p = -2,

~C ~l) (~l ~l). Tl = and T2 =
-1

167

Chapter 7 The Symmetric Tridiagonal Eigenproblem

These two submatrices have the same eigenvalues 1.382 and 3.618, so the

intermediate matrix iJ is as follows:

1.382 0 0 0

- (DJ ~.) -
0 3.618 0 0

D=
0 0 0 1.382 0

0 0 0 3.618

and d1 = d3, d2 = d4. Let us choose a permutation matrix denoted by P as

100 0

o 0 1 0
P= o 100

000 1

We first permute the elements of jj and Q in such a way that new diagonal

elements are in order

dl 0 0 0

D=pjjp=
0 d2 0 0

0 0 d3 0

0 0 0 d4

where dl = db d2 = d3, d3 = d2, and d4 = d4 and to correspond the first

row of Q2 and the last row of Ql are interchanged so that

where Q = QP. Therefore,

T = Q(D + pzzT)QT

168

Chapter 7 The Symmetric Tridiagonal Eigenproblem

where z = QT w.

Note further that

where H is any orthogonal matrix of the form

with iIi, 2 x 2 matrices for this examples. Also iJ + pzzT will have the same

eigenvalues as

(7.4.1)

I.e. HiJHT +pz*z*T when z* = Hz. Using (7.2.4) we can write the original

matrix as follows

The orthogonal matrix H may be chosen so that z* has some zero

components, that is, it looks like z* = (Zl 0 Z3 O)T in the example. Then

the problem iJ + pz* z*T is as follows:

zi z*2
1 0 z*z* 1 3 0

0
O)=iJ+ p

0 0 0 0
D+p (zi 0 z3

z*z* z*2 z* 0 0 3 3 1 3

0 0 0 0 0

Let H be an orthogonal Householder matrix which transforms the first pair

of the components of z with iI1(Zl, Z2)T = (zi, O)T and the second pair of

169

Chapter 7 The Symmetric Tridiagonal Eigenproblem

the components of Z with H2(Z3, Z4)T = (zj, O)T. This implies that

If we now choose a new Q such that new Q old Q H T , then

In general when we have k of the components of D equal, that is

the basis for the eigenspace of these eigenvalues is not unique and can hence

be changed. Let us consider the k x k submatrix denoted by R

R= +p (Zi+l Zi+2 . .. Zi+k)

Let H be an orthogonal Householder matrix which transforms

(Zi+l Zi+2 ... Zi+k)T to (zi+l 0 ... O)T. Then, since the identity matrix

does not change with Householder transformation, i.e. HI HT = I,

+p (Zi+l 0... 0).

o
170

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Then

where z* has zero values in the i + 2, i + 3, ... ,i + k positions so that di

is a eigenvalue of multiplicity k - 1 for R. Alternatively all elements except

Zi+k could be made zero.

After permuting the columns of Q, the diagonal elements of D and

introduction of the zero components of z, it follows that corresponding to

the zero components of Z then D and iJ have common eigenvalues where D

are the eigenvalues of T. The original matrix T is expressed as

where matrix Q comes from (7.3.9). The eigenvalues of the original matrix

are the diagonal components of D while the eigenvectors of T are the

columns of

Q=QQ.

In effect this transformation allows the (i + 2)th to (i + k)th rows and

columns to be ignored. Consequently we may assume that if di = dj for

some i and j then Zi = 0 or Zj = 0 where j = i + 1 [17]. Furthermore, equal

iJ values along the diagonal components result in a significant reduction in

the work required to find the eigenvalues and eigenvectors of iJ + pzzT. The

above exceptional cases assume that k eigenvalues are exactly equal.

Suppose Zi = 0 for some i. Therefore, if q = (ql, q2, ... , qn)T is an

171

Chapter 7 The Symmetric Tridiagonal Eigenproblem

eigenvector of iJ + pzzT where q is a column of Q associated with some

eigenvalue A =J di, then qi = 0, so column i of Q is equal to column i of Q.

Otherwise column j of Q is Q times column j of Q.

With exact arithmetic only k = 2 should occur as no more than two

eigenvalues of iJ should be identical. Deflation may also be used when

di are approximately equal. In this case it is possible that k > 2 may

occur. It should be noted that in this case the Zi are still set to exactly

zero. The deflation technique for approximately equal eigenvalues has been

investigated in [26].

7.5 Arithmetic Complexity

We now consider the operations count in the divide-and-conquer

algorithm. To determine the arithmetic complexity of the algorithm, we

multiply the statement count by the number of times that the statement is

executed. Here we examine the total count of multiplications and divisions

required to compute the eigenvalues and corresponding eigenvectors of a

symmetric tridiagonal matrix when no deflation is used.

We first consider the join of two halves of a matrix of size n. The

arithmetic complexity of this algorithm can be formed as follows:

• Cuppen [17] makes the assumption that the root finding part of the

algorithm requires on average t function evaluations per zero. In one

rank-one modification step of order n this contributes tn2 operations

(see section 7.3.5 of [26]).

172

Chapter 7 The Symmetric Tridiagonal Eigenproblem

• The calculation of z requires n operations (see section 7.2.5). The

calculation of n eigenvectors of D+pzzT costs 3n2 operations (see section

7.3.8).

• Finally, the matrix multiplication of Q and Q require n 3 operations (see

section 7.2.9). For the matrix of order n, the total computation for

tridiagonal matrix T is

For the complete problem recursive and non-recursive versions have the

same operation count. The eigenvalue problem T of size n x n is solved in

terms of two independent ~ x ~ sized sub-problems, which in turn are solved

in terms of four independent I x I sized sub-problems, and so on. Thus,

the total work will be

l(n) + U(n/2) + 4l(n/4) + ...

Note that since l(n) '" n3 the total operation count will be

As can seen in the approximate total operation, most of the work takes place

at the top level.

It should be noted that a significant portion of the time in the eigenvalue

problem algorithm is spent in computing the columns of the eigenvectors

173

Chapter 7 The Symmetric Tridiagonal Eigenproblem

using (7.3.8) and multiplication of the Q and Q matrices (7.3.9). If only the

eigenvalues are required, then we can do better by saving the n 3 operations

required to compute the eigenvectors. Details of this are given in [91].

7.6 Sequential Algorithms

In this section we first present a recursive version of the algorithm that

calculates all the eigenvalues and corresponding eigenvectors of a symmetric

tridiagonal matrix T. Then non-recursive implementations of this algorithm

are considered.

In the recurSIve verSIOn of this algorithm the function to find the

eigenvalues and corresponding eigenvectors includes two calls of itself with

different parameter values. Suppose we consider a submatrix with its first

diagonal element in position index st and last index fin. We can partition

this matrix into two submatrices 1'1 and '1'2 where matrix '1'1 has subscript

st : mid and 1'2 has subscript (mid + 1): fin, where mid refers to the

middle index, that is mid = sHlin and st < mid < fin.

For clarification purposes, we can represent the recursive process as a

binary tree with each node representing a rank-one tear and hence a partition

into two subproblems. It consists of a node called the root together with

two binary trees called the left subtree and the right subtree of the root.

Thus, for example, in figure 7.2, a matrix of size 61 X 61 is on the top level

and the level number is zero and submatrices of size 31 X 31 and 30 X 30

are on the next to top level with level number one. The height of a tree is

174

Chapter 7 The Symmetric Tridiagonal Eigenproblem

the maximum level among all nodes in the tree. The tree in figure 7.2 is

of height 5 (including submatrices of size 1 X 1 and 2 x 2). Pictorially, we

use a tree illustrating the partitioning of the original matrix into a number

of submatrices using a number of levels. Thus, there are two symmetric

tridiagonal submatrices for which we need to find eigenvalues at each node

of the tree. For example consider a matrix size n = 61. The numbers in the

diagram indicate the sizes of the matrices. Subdivisions are represented by

the tree in figure 7.2.

61

Fig. 7.2 Computation Tree.

This tree illustrates that if the matrix size is an odd number, then

the partitioning scheme will not produce equal sized symmetric tridiagonal

submatrices at the next level. It also shows that at the lowest level (i.e. in

the fifth level) there are 32 submatrices and some submatrices are 1 x 1 and

175

Chapter 7 The Symmetric Tridiagonal Eigenproblem

some 2 x 2 which are both trivial eigenvalue problems. In the case of a 1 x 1

submatrix, the intermediate eigenvalue is the element of that submatrix and

for a 2 X 2 submatrix the eigenvalues are the solution of a quadratic equation.

Now let us begin by considering the tree of recursive calls and determine

the order in which the combinations are actually done. As mentioned before,

there are two recursive calls which are required at each subtree of the tree

in figure 7.2 to solve eigenvalue problems. Each of these subproblems may

be solved independently without fear of data conflict. The combination of

subproblems is started at the highest level (i.e. smaller submatrices). As

soon as the first two sub-matrices which are represented as the leftmost

two nodes in the tree are solved, they are then combined. Then the next

two sub-matrices are combined, and afterward the resulting sub-matrices of

these are combined and the node will become a node at the previous level.

In this way the process continues building up larger sizes of sub-matrix.

We also considered two non-recurSIve verSIOns. The important

distinction between them is that the partitioning in the two implementations

is different. The first version uses a different partitioning to the recursive

version as it seemed simpler to implement. The matrix is partitioned into

2 x 2 submatrices from the left. If the original matrix size is even then the

submatrices will all be of size 2 X 2. If its size is odd then the submatrices will

also be of size 2 X 2 except for the last one which will be 1 X 1. The second

implementation uses the same partitions as the recursive method but uses

a linked list to store the submatrices. The motivation for a non-recursive

176

Chapter 7 The Symmetric Tridiagonal Eigenproblem

version was to compare this with the recursive version and to investigate

the relationship between the recursive and non-recursive implementations

of Cuppen's divide-and-conquer method.

The first non-recursive version uses the simple partitioning scheme

carried out at the lowest level. This algorithm is carried out in stages

corresponding to each level. The first part of the algorithm carried out

partitioning and modification of the matrix followed by solution of the

quadratic equations. The second part of the algorithm combines the sub-

solutions for pairs of submatrices in each successive level. The algorithm is

as follows:

i, j, k are subscripts
nb is final index of the matrix
a a vector - matrix diagonal
j3 a vector off-diagonal elements of the matrix

j = OJ
(this is needed for nb < 2 case)
for (i = 2 j i < nbj i = i + 2)
{

}

(modify the matrix)
a(i) = a(i) - j3(i)j
a(i + 1) = a(i + 1) - j3(i)j

(solve quadratic equation)
quadr(i-I, i, a, j3, ld, Q)j
J = Zj

(solve quadratic equation or 1 x 1 matrix)
quadr(j + 1, nb, a, j3, ld, Q)j

(submatrices join process)
k = 2j (k represents submatrix size at current level)
do
{

177

Chapter 7 The Symmetric Tridiagonal Eigenproblem

}

}

for (i = 1; i < = nb - k; i = i + 2 * k)
{

ma = i; me = i + k - 1; mb = i + 2 * k - 1;
if (mb > nb) mb = nb
p = 2 * {3(mc)j

calculate wand z = QT w usmg (7.2.2) and (7.2.4)

use deflation if applicable

find the new eigenvalues

calculate qi using (7.3.8)

multiply Q = QQ using (7.3.9)

k = 2 * kj

while (k <= nb + 1);

It is important to note that the actual sizes of the submatrices used

by this "simple non-recursive" version are not the same as those used by

the recursive implementations. In order to illustrate the workload (i.e. the

actual size of the original matrix and submatrices) of the recursive (tree)

and simple non-recursive (tnree) versions we need to find out the relative

costs of matrix multiplication for the sizes of the matrices which are used in

this work. For simplicity, at the top and next to top level the work is

(7.6.1)

where n is the original matrix size and nl and n2 are the sizes of the

sub-matrices. Note that for the calculation of the relative costs of matrix

multiplication at the top (e.g. matrices of size n X n) and next to top (e.g.

matrices of size n/2 X n/2 and n X n) levels the formula is:

n 3 + n~ + n~
1.25n3 (7.6.2).

We will particularly consider the relative cost of the matrix sizes

100 X 100, 200 X 200, 300 X 300, and 400 X 400 for the matrix multiplication.

178

Chapter 7 The Symmetric Tridiagonal Eigenproblem

For n = 100,200, and 400, the ratio is approximately 1.047. Similarly, for

n = 300, the ratio is approximately 1.300.

For a further example we shall consider an extreme case. Suppose that

we have the original matrix of size 65 X 65. In the simple non-recursive

version the last combination is a 64 X 64 with a 1 X 1, while in the recursive

implementation this would be a combination of a size 33 X 33 with 32 X 32

at the top level. For n = 65 the ratio is approximately 1.563. So we can

conclude from the above calculation of the operation costs that the simple

non-recursive version involves much more work than the corresponding

recursive version. The former version also requires an extra level for some

matrix sizes.

It is clear that the relative cost here depends on the size of the matrix i.e.

how evenly or nearly evenly it is partitioned in the algorithm. In general,

a lower bound for the relative cost of the work is 1 for matrices with size a

power of 2 and an upper bound is 1.8 for matrices of other sizes.

The second non-recursive version used the same partition as the

recursive version and used a linked list structure to accomplish this. This

version can be run in virtually any programming environment but the

recursive implementation obviously requires one that supports recursion.

Some programming languages, such as FORTRAN and BASIC, do not

support recursion [59]. Furthermore, the non-recursive algorithm is also

useful even when the programming language used supports recursion, as

loops are usually more efficient than recursive calls.

The first step carried out in this verSIOn of the algorithm IS the

partitioning scheme and modification of the original matrix. The

partitioning is carried out till the submatrices are of dimension 1 x 1 or

2 x 2.

179

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Conventional linked lists are described, in [80]. Each node in a linked

list contains both the list user's data and an explicit link to the next node

using a pointer. We can depict a list not as a sequence of contiguous entries

but as a sequence of entries in an order that is determined solely by pointers

leading from one entry to another. Going through this sequence is called

traversing a list. To traverse a list, we must start at the list head and follow

the list pointers. Conventionally, the last node of the list is marked by a

Null pointer. An empty linked list is likewise represented by a Null pointer.

Figure 7.3 illustrates these conventions. Using a linked list structure in

the algorithm allows one to avoid data movement that would otherwise be

necessary to insert or delete an item from a list.

To illustrate how basic linked list primitives might be implemented in

C++, we begin by precisely specifying the format of the list nodes. The

following declaration illustrates the linked list in C++

typedeJ struct nodepars * PtrNode;
struct nodepars
{

},

int st;
int fin;
int lev;
PtrNode link;

The C++ name for a record is struct and the structure type allows the

programmer to assemble several items of data in a single structure, which is

very similar to a Pascal record. Each node in the linked list used here is a

record containing the position of the first and last diagonal elements of the

submatrices and level of the subdivision and a link to another node. The

st is the position of the first element and fin is the last diagonal element of

180

Cbapter 7 Tbe Symmetric Tridiagonal Eigenproblem

the submatrix. For example, from figure 7.3, st = 1 and fin = 2 in the first

node and st = 3 and fin = 3 in the second node and so on. lev indicates the

level of the node in the binary tree, and link is a pointer to point to the next

node. That is for the original matrix lev = 0 and every time a subdivision

is made lev is incremented by one.

Figure 7.3 illustrates how our data can be represented as a linked list.

The list consists of a sequence of nodes linked by pointers. Each list contains

an item of data and a link to the next node. As an example in figure 7.3 the

representations of the list is given for a 9 x 9 matrix after all subdivisions

have been carried out.

r--

lev=3 lev=3 lev=2 lev=2 lev=2
List -~ 1,2 -~ 3,3 - --;. 4,5 ------'J>o 6,7 It -~ 8,9 Nul

'---

Fig. 7.3 Linked list with pointers indicating order of items.

The submatrices are stored as a list in both the partitioning and the

modification stage. In the linked list implementation space is allocated

dynamically. This invokes a call to the constructor for the type. The nodes

are actually created only when the function new is called. The following line

of code is used for such a construction:

ptrb = new nodepars(mid + 1, fin, lev + 1,ptr- > link)

where lev is level number of the partition, and ptr- > link is a pointer

which points to the next node. (The (- » notation is used in C++ to

provide access to the members of a structure via a pointer.)

181

Chapter 7 The Symmetric Tridiagonal Eigenproblem

The submatrices are joined in the second part of the algorithm. In

order to combine submatrices, two integers are kept for checking the level

number; these are lev which indicates the level of the submatrix for each

node in the tree and mlv which indicates the maximum level of the nodes

in the whole list. The list is searched starting from its head for the first

pair of adjacent nodes with the same level number as the maximum level

number (lev == mlv). The matrices corresponding to the two nodes are

then joined, then the second of the nodes is deleted from the list and the

first of the nodes becomes a node with lev decremented by 1. When deleting

a node from the list it is returned to free store using the delete operator.

The node (submatrix) joining process proceeds to the next level of the tree

once the combination of all the nodes with lev == mlv level have been

completed. This occurs when the Null pointer is reached in the traverse of

the list, at which point the mlv (maximum level) number is decremented.

Note that the nodes with equal maximum level number always occur in

pairs, as a consequence of the way the tree is constructed.

7.7 Parallel Implementations

We consider parallel implementations of the Symmetric Tridiagonal

Eigenproblem, discussed in the previous section. The algorithms have some

natural parallelism which can be made use of in both the recursive and

the non-recursive versions. In section 7.6, the discussions help to see and

understand how to implement parallelisation of these algorithms.

182

Chapter 7 The Symmetric Tridiagonal Eigenproblem

7.7.1 Recursive Implementations

We consider four variant recursive parallel implementations. As

mentioned in section 7.5, the function makes two calls to itself and both

parts of the calculation are independent so that these calls can be done in

parallel without fear of data conflicts.

In the first implementation these calls are made usmg two

"THREADcreate"s and are terminated with two "THREADjoin"s, which

act as a barrier.

The second recursive parallel implementation was designed to reduce

the number of new threads created from that in the first implementation.

The first call is done by THREADcreate and the second is a conventional

call.

The third recursive implementation attempts to avoid creating more

threads than processors. This can be done by keeping a count of the number

of THREADcreate's. The count indicates the number of threads that have

been created. If the count is less than the number of processors then this

count is incremented and a "THREAD create" call is made; otherwise a

conventional recursive call is made. The termination is done with one

"THREADjoin" for each THREADcreate. The thread count is immediately

decremented after the "THREADjoin". As this count is used by different

processes, a lock is used when both incrementing and decrementing the

count.

In the fourth implementation we considered another approach to avoid

183

Chapter 7 The Symmetric Tridiagonal Eigenproblem

creating more threads than processors. The process is carried out by using

a counter to count the level of recursion and this level is multiplied by 2

after each recursion. The fourth implementation only creates new threads

at the top levels, and because it only checks the level it does not need to

use a lock so that it reduces the amount of interprocessor communication.

7.7.2 Non-recursive Implementations

We consider parallel implementations of the two non-recursive versions

outlined in section 7.5. The first one uses the simple partitioning scheme

carried out from right to left at the lowest level. This version is carried out in

stages corresponding to the level. In the first part the algorithm carried out

partitioning and modification of the original matrix sequentially. Solution of

the quadratic equations is then carried out in parallel. When the first part is

completed the second part of the algorithm combines pairs of submatrices,

and this is carried out in parallel.

The second implementation uses the same partitions as the recursive

method but a linked list is used to store information about the submatrices.

In the first part the modifications to the original matrix are carried out

sequentially but all the quadratic equation calculations are carried out in

parallel. When the first part is completed, then the submatrix joining is

carried out in parallel in the next part.

The parallelisation of the first implementation IS straightforward.

It simply involves parallelising a loop using "THREADcreate" and

184

Chapter 7 The Symmetric Tridiagonal Eigenproblem

"THREAD join". In the first part of the parallel implementation (quadratic

equations) threads are allocated to tasks in a predetermined (scattered)

ordering. We define task i to be the solution of the quadratic equations

formed from rows and columns i and i + 1 of the matrix. The thread chooses

pairs of 2 x 2 matrices and solves the corresponding quadratic equations until

there are no more pairs of matrices to be allocated.

The submatrices are combined in the second part of the algorithm.

The combination of the pairs is carried out from left to right until the

end of the list. In the second part of the parallel implementation threads

are also allocated to tasks in a predetermined (scattered) ordering. We

also define task i at the level k where the submatrix size is k to be

the combination of the sub-solutions formed from rows and columns with

subscripts (i, i + k -1), (i + k, i + 2k -1). When k = 2 then the sequence

of pairs will have indices (i, i + 1), (i + 2, i + 3) and so on. In the

parallelisation of the combination process, thread j carries out the following

tasks for (i = na + (2 * k * (j - 1)); i <= nb - k; i+ = 2 * pres * k), where

k is submatrix size (k = 2,4,8, ...), na is the first index of the matrix, pres

is number of processors, and j is the thread number.

The process is carried out with the step size (i.e. 2 * k * pres) increasing

in value by a factor of 2 for each consecutive level. This allows the pre

allocation of tasks to threads which should reduce the amount of inter-thread

communication as no lock is needed for the task allocation in this non

recursive version. This organisation is simple to implement in parallel. This

185

Chapter 7 The Symmetric Tridiagonal Eigenproblem

algorithm, in addition to the problem discused for the sequential version,

however, has a problem with lack of balance when the upper levels of the

tree are reached (if n is not a power of 2).

In order to illustrate the allocation of the task to threads (i.e. the actual

size of the submatrices) of the recursive (.erecp) and simple non-recursive

(.enrecp) versions, we can calculate the relative costs of matrix multiplication

at the top two levels using 2 processors with a modification of (7.6.1), that

IS

.enrecp(n) _ n 3 + n~
)

- 3 .erecp(n 1.125n
(7.7.2.1).

where nl is the larger of the two submatrix sizes.

We need to find out the relative costs of matrix multiplication for

the matrix sizes tested in this work using the formulae (7.7.2.1). For

n = 100,200, and 400 size of matrices the ratio is approximately 1.122.

Similarly, for n = 300 size of matrices the ratio is approximately 1.441.

The parallel relative costs is larger than the sequential one, because the two

levels can be done simultaneously by 2 processors.

When we consider the matrix multiplication ratio for 2 processors for

the extreme case with n = 65, the ratio of .enrecp(n) and .erecp(n) versions is

approximately 1.728.

The second version uses the same partitioning scheme as in the recursive

implementations, and parallelises the sequential linked list version described

in section 7.6. The parallel version of the linked list implementation carries

out the partitioning and modification of the original matrix sequentially.

186

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Solving the quadratic equations in the first part and combining the

submatrices in the second part of the algorithm are done in parallel.

The first part of the parallel implementation finds the solution of the

quadratic equations. The allocation of tasks (i.e. quadratic equations) to

threads is done in a pre-determined way. The tasks are allocated to threads

by searching from the head of the list for the first pair of nodes. This process

continues until the head of the list reaches a Null pointer.

The second part of the implementation carries out the combination of

the sub-matrices. In addition to keeping the integers (lev and mlv) as in

the sequential linked list version, a flag atv (active) is kept in the parallel

implementation, its purpose will be explained later. It is important to clarify

that the level (lev) and the active flag (atv) are associated with each node

(submatrix) while the maximum level (mlv) is associated with the whole

list, i.e. there is an atv flag in each node. The submatrices are allocated

to threads by each thread searching from the head of the list for the first

pair of nodes with the same level number as the maximum level number

(lev == mlv). The submatrices are combined, as in the sequential version.

Then the second of the two nodes is deleted from the list and the first of the

nodes will become a node at the previous level of the list. When the current

pointer points to Null, then mlv is decremented and the current pointer is

reset to point to the head and a new level is started. Whenever a submatrix

join process is carried out the lev number is decremented but mlv is only

updated when all submatrices on that level have been allocated but not

187

Chapter 7 The Symmetric Tridiagonal Eigenproblem

necessarily completed. Updating of the level number (lev) and maximum

level number (mlv) was done by only one thread at a time. We achieve this

using a lock. The list updates must also be done by only one thread at a

time, and again this is accomplished using the lock. The flag atv (active)

is kept in this parallel version and is initially set to FALSE for each node.

It is set to TRUE whenever a node is being processed. This is needed to

avoid the possibility of a THREAD attempting to start a new level from

using a node which is not yet ready. If a thread finds a node with the flag

atv==TRUE it terminates. Because this phenomenon is only likely to occur

at the lower levels (i.e. large submatrix sizes) and at those levels where there

are likely to be plenty of threads it seems sensible to terminate the threads

rather than to look for further work. The submatrix join process continues

until the mlv value (maximum level number) reaches zero and (head- >link

== Null).

Both the quadratic solution and submatrix combination part is

terminated with "THREADjoin" s, which act as barriers. Based on this

discussion, we depict below the parallel non-recursive version using a linked

list in the following code. This is used by each thread for the submatrix

combination process. In this version pars- > indicates the shared variables

in the code below.

int mlv, lev;
PtrNode ptr,ptra;
PtrNode head = pars- > head;
char stop = FALSE;
ptr- > atv = FALSE;

188

Chapter 7 The Symmetric Tridiagonal Eigenproblem

mlv = pars- > mlv;
while ((pars- > head- > link! = NULL)&&(!stop))
{

pars- > lck.lockO;
ptr = pars- > ptr;
lev = ptr- > lev;

if (ptr! = NULL)
{

stop = ptr- > atv;
if (!stop)
{

if (lev == mlv)
{

}

ptra = ptr- > link;
if (ptra! = NULL)
{

}

if (ptra- >atv)
{

}
else
{

}

stop=TRUE;
pars- > lck. unlock();

ptr- >atv=TRUE;
pars- >ptr=ptra- >link;/ /for other processors
pars- >lck.unlock();
(start to update the submatrices join process)
join{ ptr,pars);
pars- >lck.lock();
ptr- > fin =ptra- > fin;
ptr- > link=ptra- > link;
ptr- >lev=ptr- >lev-l;
ptr- >atv=FALSE;
pars- > lck. unlock();
delete ptra;

else
{

pars- >ptr=ptr- >link;

189

Chapter 7 The Symmetric Tridiagonal Eigenproblem

}

pars- >lck.unlock{};
}

}
else

}
else
{

}

pars- > lck. unlock{};

pars- >ptr=head;
pars- >mlv=mlv-l;
pars- > lck. unlock{};

7.7.3 Additional Parallelisation in Matrix

Multiplication Part QQ

/ / stop TRUE

In addition to the algorithms in sections 7.7.1 and 7.7.2 concerning

parallelisation of the recursive and non-recursive implementations, we also

parallelised the matrix multiplication part of the algorithms using (7.3.9)

in all the above parallel implementations. As observed in section 7.5, a

significant portion of the time in the eigenvalue problem algorithm is spent

in computing the product of the Q and Q matrices. The products are carried

out by a nest of loops, the first loop (subscript) is for the row of Q and the

second loop (subscript) is for the column of Q. The Procedure Matrix

Multiplication is the same for both the recursive and non-recursive versions.

It is also important to point out that allowance for the effect of deflation is

included. The parallel matrix multiplication part of the algorithm is given

below.

Procedure MATRIX MULTIPLICATION
na is first index of the submatrix
nb is last index of the submatrix

190

Chapter 7 The Symmetric Tridiagonal Eigenproblem

prcount is the thread number
prcs is number of processor (threads)

if (lev < prcs)
{

START PARALLEL SECTION
for (i = na + prcount - 1; i <= nb; i = i + prcs)
{

for (j = na; j <= nb; j + +)
{

if (z(j) = _ 0)
Q(i, j)=Q(i, j)

else
{

for (k = na; k <= nb; k + +)
Q(i,j) = Q(i,j) + Q(i,k) * Q(k,j)

} / /endelse
} / /endj

} / /endi
FINISH PARALLEL SECTION

} / /endif

else
{

(matrix multiplication zs done sequentially)
} / /endelse

For the matrix multiplication the allocation of the work to threads has

been done in a pre-determined way. We consider here an approach similar to

the fourth recursive parallel implementation in order to avoid creating more

threads than processors at the lowest level. This process is carried out by

using a counter for the level of the sub-matrices and this level is multiplied

by 2 after the completion of each level. This enables parallelisation of matrix

multiplication to be only used at the top levels. The parallel structure is

controlled in the following manner: if the level number (lev) is less than

the number of processors then the matrix multiplication is done in parallel,

otherwise it is done sequentially.

191

Chapter 7 The Symmetric Tridiagonal Eigenproblem

7.B Experimental Results

In this section we present and analyse the effect of deflation on the

accuracy of the sequential recursive and non-recursive versions in sub-section

7.8.1. A comparison of the results of the recursive and non-recursive parallel

implementations outlined in the previous sections is given in sub-section

7.8.2. An extra comparison is also presented for the results of the additional

parallelisation in the matrix multiplication part in sub-section 7.8.3.

7.B.1 Comparison of the Effect of Deflation on

Accuracy

This section presents an experimental evaluation of the effect of deflation

on accuracy of the eigenvalues (i.e. the accuracy of the eigenvectors are not

measured). A number of test matrices were used to test Cuppen's algorithm

since the amount of deflation in this method depends on the test matrix type

and this affects the timings.

Tables 7.1 and 7.2 show the raw times, deflation counts and the accuracy

for several orders of matrix types [-1, 2, -1] and [-1, u, -1] for solving

eigenvalue problems. These test matrices were introduced in chapter 2. For

the matrix [-1, u, -1] exact eigenvalues are unknown and hence the accuracy

of this matrix is not shown in the tables. We also use two tolerances: the

first tolerance (cr) is used in the root finding stage and the second tolerance

(Cd) is used to test for deflation. The first test matrix type [-1,2, -1] has

significant deflation in the root finding step. The second test matrix type

[-l,u,-l] has the value u = i X 10-6 in the itk diagonal position, and for

matrices of this type the intermediate matrix iJ has distinct components

along its diagonal at each stage and the components of z are ratios of the

diagonal components to the off-diagonal components which are small.

192

Chapter 7 The Symmetric Tridiagonal Eigenproblem

For the sizes tested little deflation (using ed > Ie - 6) or no deflation

(using ed < Ie - 8) occurs with this type of matrix. The times, the

deflation counts and accuracy tests are given in the tables below. The results

given in tables 7.1a, 7.1b, and 7.1c are obtained from the recursive version,

non-recursive (using linked list) version and simple non-recursive version

respectively. The recursive and non-recursive (using linked list) verSIOns

give the same amount of deflation and same accuracy.

The amount of deflation and hence the timing also depends on the size

of the tolerance ed which is used to test whether two eigenvalues are nearly

equal. When the difference between the two eigenvalues is less than ed we

consider the eigenvalues to be equal and then apply deflation otherwise we

will consider the eigenvalues not to be equal. The tolerance ed is also used

in the check for the value of Zi i.e. IZil < ed rather that IZil = o. An

important effect on the accuracy of the result is the size of the tolerance er

which is used to terminate the root finding loop. When the differences of

the absolute value of the (second and first) roots is less than or equal to er

then the loop terminates. These tolerances have an effect on the amount of

work required.

The accuracy of all the implementations is also tested. We test matrices

chosen from matrix type [-1,2 ,-1] using different tolerances. This matrix

type has known eigenvalues, so that the error can be directly evaluated. Let

.xi be the approximation of the exact eigenvalue Ai. Tables 7.1a, 7.1b, 7.1c,

7.2.a 7.2b and 7.2c give the times as well as the error

of eigenvalues computed by the recursive, non-recursive (linked list), and

simple non-recursive versions for the test problems.

From the point of view of numerical computation, in most cases the error

193

Chapter 7 The Symmetric Tridiagonal Eigenproblem

seems to be roughly max {cr, cd} and no advantage seems to be gained

if one epsilon is much larger than the other though choosing Cd slightly

larger than Cr seems to be helpful. We make several observations about

the experimental results. The accuracy is affected by the relationship of

the different tolerances (cd or cr). Firstly, we observe that when testing the

problems with Cd < Cr, the accuracy of all the implementations are very poor

and hence the accuracy of the implementations were not tested further, and

the results are not shown in the tables. The second observation is that when

testing the problems with Cd > Cr for all matrix sizes, the implementations

achieve better accuracy than when testing the problems with Cd = Cr for

Finally, when testing the problems with Cd ~ cr, in most cases the

implementations achieve good accuracy except the recursive and non

recursive (linked list) implementations which give very poor accuracy with

Cd = Cr = Ie - 8 for a 300 x 300 matrix.

The experimental results given in this section show that the accuracy

of the computed eigenproblem depends on the tolerances (cd and cr) used.

It appears that the simple non-recursive version achieves marginally better

accuracy than recursive and non-recursive (liked list) versions with matrices

of size 100(100)400. The total amount of deflation in the simple non

recursive version is much more than that in the recursive and non-recursive

(linked list) versions. This is because the matrix partitioning into 2 x 2

submatrices is from right to left, so that there are many identical submatrices

at the lowest level.

194

n

100

200

300

400

n

100

200

300

400

-
n -

100

200 -
300

400

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8

[-1,2 ,-1] [-l,u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

145 33.00 5.87e-09 - 43.95 127 32.50 1.86e-07 - 51.31

353 213.82 5.47e-09 - 332.61 330 236.48 2.62e-07 - 328.72

449 763.38 3.l1e-08 - 1180.48 298 1125.21 1.4ge-02 - 1153.24

869 1755.78 2.17e-08 - 2730.43 828 1950.35 8.87e-07 - 2765.73

cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

145 30.16 1.86e-07 92 49.15 128 30.70 9.45e-06 93 40.49

353 211.49 2.75e-07 197 330.84 325 230.59 1.83e-05 197 332.48

449 722.19 3.08e-07 230 1168.82 379 905.28 5.22e-05 228 1175.63

869 1776.43 8.87e-07 405 2694.18 825 1957.46 6.88e-05 405 2656.91

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

145 27.71 1.86e-07 145 27.39 145 26.87 9.45e-06 145 31.49

355 202.65 5.24e-05 355 206.31 355 202.15 5.60e-05 355 202.84

449 746.49 7.53e-04 449 793.95 449 745.52 7.51e-04 449 739.54

877 1720.35 6.12e-04 876 1707.76 875 1721.71 6.33e-04 876 1717.21

Table 7.1a: A Comparison of the Deflation Matrices Size of 100(100)400

Times for Recursive Version.

195

n

100

200

300

400

n

100

200

300

400

n

100

200

300
I--

400

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

145 29.60 5.87e-09 - 46.03 127 35.81 1.86e-07 - 50.56

353 213.20 5.47e-09 - 358.13 330 233.83 2.62e-07 - 352.48

449 801.27 3.11e-08 - 1261.33 298 1185.57 1.4ge-02 - 1216.48

869 1718.11 2.17e-08 - 2901.08 828 1928.01 8.87e-07 - 2822.26

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l]

count secs accur count secs count secs accur count secs

145 29.80 1.86e-07 92 44.48 128 38.57 9.45e-06 93 47.17

353 207.75 2.75e-07 197 347.07 325 253.17 1.83e-05 197 337.16

449 750.41 3.08e-07 230 1216.55 379 984.65 5.22e-05 228 1189.46

869 1799.64 8.87e-07 405 2855.54 825 1909.82 6.88e-05 405 2800.92

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l]

count secs accur count secs count secs accur count secs

145 29.73 1.86e-07 145 29.46 145 27.79 9.45e-06 145 28.15

355 208.80 5.24e-05 355 226.78 355 213.78 5.60e-05 355 214.04

449 753.29 7.53e-04 449 794.19 449 746.21 7.51e-04 449 758.41

877 1752.58 6.12e-04 876 1762.21 875 1743.79 6.33e-04 876 1699.27

Table 7.1b: A Comparison of the Deflation Matrices Size of 100(100)400

Times for Non-Recursive Version (Linked list).

196

n

100

200

300

400

n

100

200

300

400

n

100

200

300

400

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l]

count secs accur count secs count secs accur count secs

162 46.14 3.87e-09 - 51.06 162 46.18 8.08e-08 - 51.27

420 351.03 6.62e-09 - 359.08 420 341.86 3.07e-0/ - 378.79

714 1567.29 6.30e-08 - 1587.63 714 1564.17 2.51e-07 - 1534.43
I

1036 2946.54 2.13e-08 - 2938.49 1036 2854.02 1.6ge-07 - 2937.871

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6

[-1,2 ,-1] [-l,u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

162 44.59 8.08e-08 130 42.98 162 49.35 3.9ge-06 130 40.83

420 340.18 3.07e-07 277 325.96 420 350.20 1.27e-05 277 320.18

714 1519.49 2.51e-07 426 1491.53 714 1512.00 6.92e-05 426 1452.25

1036 2853.41 1.6ge-07 572 2949.06 1036 2866.08 2.77e-05 572 2705.67

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

162 44.49 8.08e-08 162 44.36 162 45.59 3.9ge-06 162 44.73

421 348.14 5.04e-04 421 320.10 421 335.49 4.01e-04 421 346.28

719 1512.33 4.21e-04 719 1493.55 719 1538.49 4.21e-04 719 1468.31

1044 2821.02 3.47e-04 1046 2835.49 1044 2809.16 3.48e-04 1046 2870.54

Table 7.1c: A Comparison of the Deflation Matrices Size of 100(100)400

Times for Simple Non-Recursive Version.

197

Chapter 7 The Symmetric Tridiagonal Eigenproblem

The test results also illustrate the times measured for matrix types [-

1,2,-1] and [-I,u,-I] with different amounts of deflation. For all problem

sizes tested when using Cd = Ie - 8 and Cd = Cr execution times are larger

than those using cd > Ie - 8 and cd > Cr for the matrix type [-1,2,-1] as

there is less deflation and so more arithmetic is needed. Note that even

though the non-recursive (linked list) version gives identical deflations to

the recursive version, in most cases the raw times are not quite the same. In

most cases, the raw times for the recursive version are relatively better than

the non-recursive (linked list) version. Moreover, even though the simple

non-recursive version gives more deflation than the recursive version and

the non-recursive (linked list) version (i.e. all cases except using Cd = Ie - 8

and Cr = le-9 with the matrix type [-I,u,-I]), the times are still significantly

worse.

The theory given by Dongarra and Sorensen in [26] suggests that it

would be appropriate to relate the two tolerances by

where p is the scalar 2 times the off-diagonal element of the original matrix.

This is consistent with the results obtained here.

The results for the simple non-recursive version shows substantial

improvements when the implementations are tested for power of 2 size of

matrices, when all the implementations have the same submatrices and the

same deflation. Comparing the raw times for all versions indicates that the

simple non-recursive version executes most efficiently. Overall the simple

non-recursive version is relatively better than the recursive and the non

recursive (linked list) versions in terms of raw time,using all values of Cd and

Cr for both test matrix types [-1,2,-1] and [-I,u,-I].

198

Chapter 7 The Symmetric Tridiagonal Eigenproblem

n

64

128

256

n

64

128

256

n

64

128

256

cd = Ie - 8 and Cr = Ie - 9 Cd = Ie - 8 and Cr = Ie - 8

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count sees accur count sees count sees accur count sees

100 7.94 4.92e-09 - 12.54 100 7.82 1.20e-07 - 14.88

260 56.11 5.38e-09 - 96.63 260 55.15 1.91e-07 - 92.95

644 455.7C 1.46e-08 - 753.06 644 451.46 5.30e-07 - 741.35

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-l,u,-l]

count secs accur count secs count secs accur count secs

100 7.78 1.20e-07 68 12.30 100 7.27 5.36e-06 68 10.82

260 54.83 1.91e-07 164 85.39 260 53.36 7.53e-06 164 87.50

644 457.17 5.30e-07 357 721.62 644 472.33 2.75e-05 356 719.49

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6

[-1,2 ,-1] [-l,u,-l] [-1,2 ,-1] [-l,u,-l]

count secs accur count secs count secs accur count secs

100 8.73 1.20e-07 100 7.71 100 8.68 5.36e-06 100 7.39

260 55.05 1.91e-07 260 55.47 260 56.02 7.53e-06 260 53.18

646 510.86 7.36e-04 646 457.59 646 465.00 7.37e-04 646 442.41

Table 7.2a: A Comparison of the Deflation Matrices Size of 2n

Times for Recursive Version.

199

Chapter 7 The Symmetric Tridiagonal Eigenproblem

n

64

128

256

n

64

128

256

n

64

128

256

cd = Ie - 8 and Cr = Ie - 9 cd = Ie - 8 and Cr = Ie - 8

[-1,2 ,-1] [-l,u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

100 8.32 4.92e-09 - 13.08 100 8.40 1.20e-07 - 14.67

260 56.80 5.38e-09 - 93.11 260 61.90 1.91e-07 - 91.15

644 456.99 1.46e-08 - 742.76 644 452.11 5.30e-07 - 741.10

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [--1, u, -1]

count secs accur count secs count secs accur count secs

100 8.15 1.20e-07 68 12.15 100 7.71 5.36e-06 68 11.36

260 56.83 1.91e-07 164 89.30 260 54.23 7.53e-06 164 85.17

644 449.91 5.30e-07 357 724.71 644 445.87 2.75e-05 356 713.92

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

100 9.70 1.20e-07 100 8.04 100 7.68 5.36e-06 100 7.70

260 58.87 1.91e-07 260 56.47 260 54.03 7.53e-06 260 54.14

646 447.93 7.36e-04 646 453.02 646 464.66 7.37e-04 646 445.36

Table 7.2b: A Comparison of the Deflation Matrices Size of 2n

Times for Non-Recursive Version (Linked list).

200

Chapter 7 The Symmetric Tridiagonal Eigenproblem

n

64

128

256

n

64

128

256

n

64

128

256

cd = Ie - 8 and Cr = Ie - 9 cd = Ie - 8 and Cr = Ie - 8

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

100 9.36 4.92e-09 - 12.69 100 7.71 1.20e-07 - 12.18

260 57.30 5.38e-09 - 97.09 260 54.93 1.91e-07 - 88.45

644 449.82 1.46e-08 - 741.03 644 448.26 5.30e-07 - 742.85

Cd = Ie - 6 and Cr = Ie - 8 Cd = Ie - 6 and Cr = Ie - 6

[-1,2 ,-1] [-l,u,-l] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

100 7.76 1.20e-07 68 13.86 100 7.21 5.36e-Oe 68 10.71

260 54.36 1.91e-07 164 89.17 260 52.72 7.53e-Oe 164 82.22

644 453.75 5.30e-07 357 726.11 644 437.26 2.75e-05 356 696.63

Cd = Ie - 4 and Cr = Ie - 8 Cd = Ie - 4 and Cr = Ie - 6

[-1,2 ,-1] [-1, u, -1] [-1,2 ,-1] [-1, u, -1]

count secs accur count secs count secs accur count secs

100 8.73 1.20e-07 100 7.69 100 7.21 5.36e-06 100 7.20

260 55.72 1.91e-07 260 54.66 260 52.04 7.53e-06 260 52.00

646 450.78 7.36e-04 646 459.55 646 462.62 7.37e-04 646 442.48

Table 7.2c: A Comparison of the Deflation Matrices Size of 2n

Times for Simple Non-Recursive Version.

201

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Comparing power of 2 size of matrices in tables 7.2, for recursive and

non-recursive (linked list) versions using Cd > Cr > le-9 for test matrix type

[-1,2,-1], we observe that the recursive version is marginally better than the

non-recursive (linked list) version in terms of raw time for small matrix sizes.

For larger matrix sizes the reverse is true. The accuracies are, however, the

same in both cases. On the other hand, for test matrix type [-l,u,-l] and

using cd > Cr > Ie - 9, the non-recursive (linked list) version is marginally

better than the recursive version for larger matrix sizes except when using

(cd = Ie - 6 and Cr = Ie - 8) and (cd = Ie - 4 and Cr = Ie - 6), but for

smaller matrix sizes the reverse is true. The other observation is that for all

matrix sizes the recursive version is relatively better than the non-recursive

(linked list) version when using cd = Cr for the matrix type [-1,2,-1] except

for n = 256. However, in most cases the opposite is true for the matrix type

[-I,u,-I]. These raw times are shown in tables 7.2a and 7.2b.

7.B.2 Comparison of the Parallel Implementations

Results were obtained from the four recursive versions and two non

recursive versions of the Cuppen's method outlined in section 7.6.

The results use the notation Tr for recursive implementations of

parallel recursive algorithms. The numerical results were obtained for

the four versions of the algorithm which are outlined in section 7.6.I.

The first method which simply implements the function calls using two

"THREAD creates" and terminates with two "THREADjoins" is indicated

by p. The second implementation using the same method but with the

first call done by THREADcreate and the second using a conventional call,

is indicated by pO. The third implementation which uses the processors

count, is indicated by pI. The fourth implementation which tests the level of

recursion, is indicated by p2. Results were obtained for the two non-recursive

202

Chapter 7 The Symmetric Tridiagonal Eigenproblem

versions outlined in section 7.6.2. The first implementation using the simple

non-recursive version is indicated by Tnrsp and the second implementation

using linked lists is indicated by Tnrlp.

We tested the algorithms using from one up to six processors with

matrices of sizes 100(100)400 and power of two size (i.e. 2n, 6 < n < 8).

The methods are not efficient when applied to smaller matrices because of

the parallel overheads.

For simplicity the results for the companson of the parallel

implementations used the same tolerance in the root finding stage and in

the deflation stage (i.e. e = er = ed)' In this section the comparison has no

matrix multiplication parallelism included.

The sequential times were obtained from the non-recursive linked list

algorithm (Tnrlp). This was slightly better than the other versions. The

parallel and sequential times were, of course, obtained for the same type

and size of matrix.

To show the performance of the four variant parallel recurSIve and

two different parallel non-recursive versions, we plot in figures 7.4 and 7.5

(e = Ie - 6), and 6 and 7 (e = Ie - 8) mean efficiencies against number of

processors for the matrix type [-1,2,-1]' and in figures 7.8 and 7.9 (e = 1e-6),

and 7.10 and 7.11 (e = Ie - 8) mean efficiencies against number of processors

for the matrix type [-l,u, -1]. Figures 7.12 (e = 1e-6) and 7.13 (e = 1e-8)

show actual efficiencies using 2 processors for the matrix type [-1,2,-1], and

figures 7.14 (e = Ie - 6) and 7.15 (e = Ie - 8) show similar plots for the

6 processors. Figures 7.16 (e = Ie - 6) and 7.17 (e = Ie - 8) show actual

efficiencies using 2 processors for the matrix type [-l,u,-l]' and figures 7.18

(e = Ie - 6) and 7.19 (e = Ie - 8) show similar plots and same matrix type

for 6 processors.

203

Chapter 7

1.0

0.8

>- 0.6
u c
Ql
·0
;t=
w

0.4

0.2

The Symmetric Tridiagonal Eigenproblem

Algorithms

~Trp

-6- TrpO

-!- Trp1
_Trp2

-E9-- Tnrsp

--'1"- Tnrlp
O.O-r---------r--------.---------~--------._------~

1.0

0.8

()' 0.6
c
Ql
·0
;t=
w

0.4

0.2

2 3 4 5 6

Number of Processors

Fig. 7.4 Mean Efficiencies of the c = Ie - 6,(-1,2,-1)

Algorithms

~Trp

-6- TrpO
-!- Trp1
_Trp2

-E9-- Tnrsp
--'1"- Tnrlp

O.O~--------~------_,--------_.--------._------_.

2 3 4 5 6

Number of Processors

Fig. 7.5 Mean Efficiencies of the c = Ie - 8,(-1,2,-1)

204

Chapter 7

1.0

0.8

>.
(.) 0.6 c
Q)
·0

== w

0.4

0.2

0.0
2

Fig.

1.0

0.8

l:) 0.6 c
Q)

~ w
0.4

0.2

0.0
2

Fig.

The Symmetric Tridiagonal Eigenproblem

3 4 5

Number of Processors

6

Algorithms
~Trp

-6- TrpO

--I- Trp1
~Trp2

--e:r- Tnrsp
-+- Tnrlp

7.6 Mean Efficiencies of the e = Ie - 6,(-I,u,-I)

3 4 5

Number of Processors

6

Algorithms
~Trp

-6- TrpO
--I- Trp1
~Trp2

--e:r- Tnrsp

-+- Tnrlp

7.7 Mean Efficiencies of the e = Ie - 8,(-I,u,-I)

205

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0

0.8

0.4 L.tt---------e::I-~

0.2

o.o~-----------,,--------------._------------_.

100 200 300 400

Size of Matrix

Algorithms
~Trp

-6- TrpO

-t- Trp1
~Trp2

-E9- Tnrsp

--+- Tnrlp

Fig. 7.8 Prcs 2 Efficiencies of the e = Ie - 6,(-1,2,-1)

1.0

0.8

0.4 q:t-------E9--------e3f--.---__ -Pl

0.2

O.O~------------r_----------_.----------__,

100 200 300 400

Size of Matrix

Algorithms
~Trp

-6- TrpO
-t- Trp1
~Trp2

-E9- Tnrsp

--+- Tnrlp

Fig. 7.9 Prcs 2 Efficiencies of the e = Ie - 8,(-1,2,-1)

206

Chapter 7

1.0

0.8

>- 0.6
g
Q)
'0

== w
0.4

The Symmetric Tridiagonal Eigenproblem

Algorithms

~Trp

-./!!r- T rpO

-+- Trp1

-*-- Trp2
-E9- Tnrsp

-+- Tnrlp
O.O~---------------r--------------.---------------,

1.0

0.8

>- 0.6
g
Q)

~ w
0.4

100 200 300 400

Size of Matrix

Fig. 7.10 Prcs 6 Efficiencies of the c = Ie - 6,(-1,2,-1)

Algorithms

~Trp

-./!!r- TrpO

-+- Trp1
-*-- Trp2
-E9- Tnrsp

-+- Tnrlp
O.O-r--------------Ir--------------,---------------,

100 200 300 400

Size of Matrix

Fig. 7.11 Prcs 6 Efficiencies of the c = Ie - 8,(-1,2,-1)

207

Chapter 7

1.0

0.8

0.2

The Symmetric Tridiagonal Eigenproblem

Algorithms

~Trp

-A- TrpO

-+- Trp1
~Trp2

--f9- Tnrsp
-+- Tnrlp

o.o-r---------------.--------------,---------------,
100

1.0

0.8

0.2

200 300 400

Size of Matrix

Fig. 7.12 Prcs 2 Efficiencies of the c = Ie - 6,(-I,u,-I)

Algorithms

~Trp

-A- TrpO

-+- Trp1
~Trp2

--f9- Tnrsp

-+- Tnrlp
O.O~--------------._------------_.--------------,

100 200 300 400

Size of Matrix

Fig. 7.13 Prcs 2 Efficiencies of the c = Ie - 8,(-I,u,-I)

208

Chapter 7

1.0

0.8

>- 0.6

.~
ffi

0.4

The Symmetric Tridiagonal Eigenproblem

Algorithms

~Trp

-6- TrpO
-r- Trp1
~Trp2

-E9- Tnrsp
--+- Tnrlp

o.o~---------------.--------------.---------------,

1.0

0.8

>- 0.6
Q

.m
~ w

0.4

100 200 300 400

Size of Matrix

Fig. 7.14 Prcs 6 Efficiencies of the e = Ie - 6,(-I,u,-I)

Algorithms

~Trp

-6- TrpO
-r- Trp1
~Trp2

-E9- Tnrsp

O.O~--------------r--------------.--------------~
--+- Tnrlp

100 200 300 400
Size of Matrix

Fig. 7.15 Prcs 6 Efficiencies of the e = Ie - 8,(-I,u,-I)

209

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0

0.8

>- 0.6
(.)
c:::

.92
(.)

IT]
0.4

0.2

Algorithms

~Trp

---6- TrpO

-+-- Trpl

--*- Trp2
--e- Tnrsp

--+-- Tnrlp

o.o~--------~-------.--------.--------,--------.

1.0

0.8

>- 0.6

~
·0
:e w

0.4

0.2

2 3 4 5 6

Number of Processors

Fig. 7.16 Power of 2, Mean Efficiencies of the c = Ie - 6,(-1,2,-1)

Algorithms

~ Trp
---6- TrpO

-+-- Trpl

--*- Trp2
--e- Tnrsp

--+-- Tnrlp
o.o~--------.---------.--------,---------,--------,

2 3 4 5 6

Number of Processors

Fig. 7.17 Power of 2, Mean Efficiencies of the c = Ie - 8,(-1,2,-1)

210

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0

0.8

>- 0.6
g

.Q!
<..> m

0.4

0.2

O.O~--------,-------~--------~-------'--------'

2 3 4 5 6

Number of Processors

Algorithms

~Trp

--A- TrpO

-+- Trp1
~Trp2

--e3- Tnrsp
--+- Tnrlp

Fig. 7.18 Power of 2, Mean Efficiencies of the e = Ie - 6,(-I,u,-I)

1.0

0.8

>- 0.6
<..>
~
·0
:E w

0.4

0.2

Algorithms

~Trp

--A- TrpO

-+- Trp1
~Trp2

--e3- Tnrsp

O.O~--------.---------r--------'---------.--------,
--+- Tnrlp

2 3 4 5 6

Number of Processors

Fig. 7.19 Power of 2, Mean Efficiencies of the e = Ie - 8,(-I,u,-I)

211

Chapter 7 The Symmetric Tridiagonal Eigenproblem

The differences between the parallel recursive versions are relatively

small, but overall the parallel recursive version (Trp2) seems to be

marginally better than the other versions. This may be because in this

version (Trp2) new threads are only created at the top levels, and threads

are not created for the lower levels where the amount of work is small. The

results do show that having a lot more threads than processors does not

cause a severe loss of efficiency due to the extra overhead.

In the non-recursive (linked list) version tasks are dynamically allocated

to the threads while the combination process is similar to the recursive

verSIOn. Another important point is that even though the sizes of

submatrices are the same the version Tnrlp is relatively better than the

recursive versions when using 1 or 2 processors. This is shown in figures 7.8,

7.9, 7.12, and 7.13. When using 4 or more processors, the version Tnrlp

gave quite similar efficiency to the recursive versions.

As expected, the simple non-recursive parallel implementation Tnrsp is

slower than all the other versions. The main reasons for this are firstly the

extra work involved in this method and secondly, the uneven allocation of

submatrix sizes to the available threads. Taking into account the analysis in

sections 7.6 and 7.7.2 where we have considered the relative costs of different

versions, we now compare here the ratio of the sequential and the parallel

times (e.g. for 2 processors) in order to see whether the ratio of the times

agree with theory. The first comparison is carried out testing the problems

with the matrix type [-1,2,-1] using c = Ie - 6 as follows:

212

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Matrix [-1,2 ,-1] Matrix [-l,u, -1]

n S equentialratio Parallelratio S equentialratio Parallelratio

100 1.409 1.430 1.155 1.123

200 1.505 1.481 1.134 0.977

300 1.613 1.765 1.289 1.280

400 1.581 1.524 1.051 1.013

Table 7.3: The Comparison for the Ratio of the Times

for f nree and free versions

Note that the ratio for 300 X 300 matrices is larger than the others, as

expected though it is not very close to the ratio predicted by the simplified

model. Possible reasons why the measured ratios are not close to the

predicted ones may be:

• The assumption that the time for root finding is equal for roots at

different levels, even though the calculation on different levels is not

identical,

• differences at higher levels are ignored,

• the effect of deflation on the timings.

As we pointed out in the previous section, even though the simple non

recursive version gives more deflation (i.e. for 2n problem size) than the

recursive version and the non-recursive (linked list) versions (i.e. in all cases

except using e = Ie - 8 with the matrix type [-l,u,-l]), the times are still

significantly worse. One possible additional reason for this may be that

tasks are allocated to threads in a predetermined (scattered) ordering which

gives less flexibility and so affects the performance of the implementation

Tnrsp. Thus, although one thread may encounter significant savings when

213

Chapter 7 The Symmetric Tridiagonal Eigenproblem

deflation occurs, the gain may not be shared by the calculation as a whole

unless the effects of deflation are evenly distributed to threads while solving

the deflated problem and multiplying matrices.

The parallel implementation Tnrsp executes most efficiently when its

workload (submatrix sizes) is evenly allocated to the available threads. This

is illustrated by matrix sizes a power of 2 in tables 7.2a, 7.2b, and 7.2c

as well as in figures 7.16-19. In some cases the implementation Tnrsp is

relatively better than the other implementations for one processor using

the two different test matrix types and epsilon values for these matrix

sizes. When the number of processors is increased the version Tnrsp is

still competitive with other versions for matrix type [-1,2,-1] and as well as

for matrix type [-l,u,-l]. This is shown in figures 7.16-19.

7.8.3 Comparison of the Additional Parallelisation

for Matrix Multiplication

In this section we consider the results of the verSIOns usmg parallel

matrix multiplication in all the implementations presented in this chapter.

The results in sub-section 7.8.2 show that without additional parallelisation

of the matrix multiplication the efficiencies of implementations are very

poor. Results in this section show that if we have computed the matrix

multiplication in parallel then the implementations can achieve moderate

efficiency.

The sequential times used for the companson of these parallel

implementations were obtained from the non-recursive linked list algorithm

(Tnrlp) as before for matrices of sizes 100(100)400. But in contrast, for

matrices of power of two size (i.e. 2n, 6 < n < 8) sequential times

were obtained from the simple non-recursive algorithm (Tnrsp) which were

slightly better than the other versions, whereas, in the previous section the

214

Chapter 7 The Symmetric Tridiagonal Eigenproblem

sequential times for the Tnrlp version were used for these power of 2 matrix

sIze.

The figures below show the performance of the four variant parallel

recursive and two different parallel non-recursive versions using parallel

matrix multiplication. We plot in figures 7.4a and 7.5a c = Ie - 6), and 7.6a

and 7.7a (c = Ie - 8) mean efficiencies against number of processors for the

matrix type [-1,2,-1]' and in figures 7.8a and 7.9a (c = Ie - 6), and 7.10a

and 7.11a (c = Ie - 8) mean efficiencies against number of processors for the

matrix type [-1, u, -1]. Figures 7.12a (c = Ie - 6) and 7.13a (c = Ie - 8)

show actual efficiencies using 2 processors for the matrix type [-1,2,-1]' and

figures 7.14a (c = Ie - 6) and 7.15a (c = Ie - 8) show similar plots for the

6 processors. Figures 7.16a (c = Ie - 6) and 7.17a (c = Ie - 8) show actual

efficiencies using 2 processors for the matrix type [-I,u,-I], and figures 7.18a

(c = Ie - 6) and 7.19a (c = Ie - 8) show similar plots and same matrix for

6 processors.

To show the performance for matrices with size a power of 2, we plot

mean efficiencies against number of processors for the matrix type [-1,2,-1]

in figures 7.16a (c = Ie - 6) and 7.17a (c = Ie - 8), and those for the matrix

type [-1, u, -1] in figures 7.18 and 7.18a (c = Ie - 6), and 7.19 and 7.19a

(c = Ie - 8).

The results for this extra parallelisation in the matrix multiplication

part show substantial improvements, and in fact when using 1 processor

some parallel recursive versions gave better times than the best sequential

implementation used for comparison. It is not obvious to us why this

abnormality occurred. When the number of processors increases, in

some cases the efficiency curves slightly decrease and then again increase

using matrix type [-1, 2, -1] as well as [-1, u, -1] for matrices with sizes

100(100)400.

215

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Again using additional parallelisation of the matrix multiplication, the

differences between the parallel recursive versions are relatively small. Note

that the parallel recursive version Trp2 does not seem to be the best

recursive version. It looks as though the parallel recursive version Trp is

marginally better than the other recursive versions.

The non-recursive linked list version (Tnrlp) is overall more efficient

than the other implementations using both matrix types [-1,2, -1] and

[-I,u, -1] when using more than one processor. The simple non-recursive

version (Tnrsp) displayed very poor performance when we tested the version

Tnrsp using matrix type [-1,2, -1] but when we tested this algorithm with

matrix type [-1, u, -1], the efficiency curve is improved and in some cases

is close to the efficiency curves of the recursive versions.

Comparing power of 2 size matrices efficiency curves in figures 7.16a-

19a we observe that in the recursive version there is a very rapid decrease

in the efficiency followed by a small increase, as the number of processors

increases when using c = Ie - 6 for test matrix type [-1,2, -1]. It is also

worth noting that the efficiency for 2 processors is especially low. This is

shown in figure 7.16a. But this decrease and increase in the efficiency curves

are small when using c = Ie - 8 value and matrix type [-1, u, -1]. The

non-recursive linked list (Tnrlp) version is still relatively better than other

versions as in the previous section. In some cases the simple non-recursive

version is relatively better than the other versions for 1 processor. When

the number of processors are greater than one, the efficiency curves is quite

close to the version Tnrlp.

216

E>
c
.~
u
iE
w

Chapter 7

1.0

0.8

0.6

0.4

0.2

0.0
2

The Symmetric Tridiagonal Eigenproblem

3 4 5

Nunber of Processors

6

Algorithms

~Trp

-A- TrpO

-t-- Trp1
__ Trp2

-E9- Tnrsp

--+- Tnrlp

Fig. 7.4a Mean Efficiencies of the e = Ie - 6, (-1,2,-1)

0.8

0.4

0.2

O.O+----r------,-----r-----,-------,
2 3 4 5 6

Number of Processors

Algorithms

~Trp

-A- TrpO

-t-- Trp1
__ Trp2

-E9- Tnrsp

--+- Tnrlp

Fig. 7.5a Mean Efficiencies of the e = Ie - 8, (-1,2,-1)

217

Chapter 7

1.0

0.8

C;- 0.6 c:
.~

== w

0.4

0.2

0.0
2

The Symmetric Tridiagonal Eigenproblem

3 4 5

Number of Processors

6

Algorithms

~Trp

-A- TrpO

-+-- Trp1
_Trp2

-E9- Tnrsp

--+- Tnrlp

Fig. 7.6a Mean Efficiencies of the e = Ie - 6,(-1, u,-I)

1.0

0.8

~ 0.6
.~

in
0.4

0.2

o.o~---------.--------,---------,---------,--------.

2 3 4 5 6

Number of Processors

Algorithms

~Trp

-A- TrpO

-+-- Trp1
_Trp2

-E9- Tnrsp

--+- Tnrlp

Fig. 7.7a Mean Efficiencies of the e = Ie - 8,(-1, u,-I)

218

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0~~~~
0.8

f 0.6 ;:L_-------t:::t--
·0

m
0.4

0.2

o.o~--------------._--------------~------------_.

100 200 300 400

Size of Matrix

Algorithms

~Trp

--A- TrpO

-+- Trp1
~Trp2

-E9- Tnrsp

-4- Tnrlp

Fig. 7.8a Prcs 2 Efficiencies of the c = Ie - 6, (-1,2,-1)

0.8

~ 0.6 rTI.-_
c
.~
u

m
0.4

0.2

0.0-+---------------,-------------"""""1--------,

100 200 300 400

Size of Matrix

Algorithms

~Trp

--A- TrpO

-+- Trp1
~Trp2

-E9- Tnrsp
-4- Tnrlp

Fig. 7.9a Prcs 2 Efficiencies of the e = Ie - 8, (-1,2,-1)

219

Chapter 7

1.0

0.8

i:)' 0.6
c::
CI>
'0

iTI
0.4

0.2

The Symmetric Tridiagonal Eigenproblem

Algorithms

~Trp

~TrpO

--+- Trp1
__ Trp2

-E9- Tnrsp

-+- Tnrlp
o.o-+--------r---------,--------,

1.0

0.8

>- 0.6
<.>
c::
CI>
'0

in
0.4

0.2

100 200 300 400

Size of Matrix

Fig. 7.10a Prcs 6 Efficiencies of the c = Ie - 6, (-1,2,-1)

Algorithms

~Trp

~TrpO

--+- Trp1
__ Trp2

-E9- Tnrsp

-+- Tnrlp
o.o-+---------------,---------------~-------------.

100 200 300 400

Size of Matrix

Fig. 7.11a Prcs 6 Efficiencies of the c = Ie - 8, (-1,2,-1)

220

Chapter 7 The Symmetric Tridiagonal Eigenproblem

0.8

0.4

0.2

0.0+-------,----------,--------,

100 200 300 400

Size of Matrix

Algorithms

~Trp

---A- TrpO

-+- Trp1
_Trp2

-E9-- Tnrsp
--+- Tnrlp

Fig. 7.12a Prcs 2 Efficiencies of the e = Ie - 6,(-I,u,-I)

1.0k~~~
0.8 rt::L_-

0.4

0.2

0.0+-------,----------,--------,

100 200 300 400

Size of Matrix

Algorithms

~Trp

---A- TrpO

-+- Trp1
_Trp2

-E9-- Tnrsp

--+- Tnrlp

Fig. 7.13a Prcs 2 Efficiencies of the e = Ie - 8,(-I,u,-I)

221

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0

0.8

(;' 0.6
<::
Q)
·0

m
0.4

0.2

o.o~---------------.---------------,---------------.

100 200 300 400

Size of Matrix

Algorithms

~Trp

---A- TrpO

-+- Trp1
~Trp2

--E9- Tnrsp
--4- Tnrlp

Fig. 7.I4a Prcs 6 Efficiencies of the e = Ie - 6,(-I,u,-I)

1.0

0.8~ ~~~
~06~
<::
Q)
·0
:E
w

0.4

0.2

O.O-+---------r---------,---------,
100 200 300 400

Size of Matrix

Algorithms

~Trp

---A- TrpO

-+- Trp1
-+- Trp1
~Trp2

--E9- Tnrsp
--4- Tnrlp

Fig. 7.I5a Prcs 6 Efficiencies of the e = Ie - 8,(-I,u,-I)

222

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0

0.8

(;' 0.6
c:
Q)
·0
:e w

0.4

0.2

O.O~---------r--------'---------'---------'--------'
2 3 4 5 6

Number of Processors

Algorithms

~Trp

-A- TrpO
~ Trp1
~Trp2

--E9- Tnrsp
-+- Tnrlp

Fig. 7.16a Power of 2, Mean Efficiencies of the c = Ie - 6,(-1,2,-1)

1.0

0.8

g 0.6
Q)
·0

m
0.4

0.2

O.O-t-----.-------.-----r------,----~

2 3 4 5 6

Number of Processors

Algorithms

~Trp

-A- TrpO

~Trp1

~Trp2

--E9- Tnrsp

-+- Tnrlp

Fig. 7.17a Power of 2, Mean Efficiencies of the c = Ie - 8,(-1,-2,-1)

223

Chapter 7 The Symmetric Tridiagonal Eigenproblem

1.0

0.4

0.2

O.O~--------.--------'r--------r--------'--------.

2 3 4 5 6

Number of Processors

Algorithms

~Trp

---A- TrpO

-+- Trp1
_Trp2

-E9- Tnrsp

-+- Tnrlp

Fig. 7.I8a Power of 2, Mean Efficiencies of the c = Ie - 6,(-I,u,-I)

1.0

0.8

0.4

0.2

O.O+-------r-------,--------,----...,..------,
2 3 4 5 6

Number of Processors

Algorithms

~Trp
---A- TrpO

-+- Trp1
_Trp2

-E9- Tnrsp

-+- Tnrlp

Fig. 7.I9a Power of 2, Mean Efficiencies of the c = Ie - 8,(-I,u,-I)

224

Chapter 7 The Symmetric Tridiagonal Eigenproblem

Comparing power of 2 size matrices efficiency curves in figures 7.16a-

19a we observe that in the recursive version there is a very rapid decrease

in the efficiency followed by a small increase, as the number of processors

increases when using c = Ie - 6 for test matrix type [-1,2, -1]. It is also

worth noting that the efficiency for 2 processors is especially low. This is

shown in figure 7.16a. But this decrease and increase in the efficiency curves

are small when using c = Ie - 8 value and matrix type [-1, u, -1]. The

non-recursive linked list (Tnrlp) version is still relatively better than other

versions as in the previous section. In some cases the simple non-recursive

version is relatively better than the other versions for 1 processor. When

the number of processors are greater than one, the efficiency curves is quite

close to the version Tnrlp.

The efficiency of the implementation Tnrsp, however, suffered badly

from the load imbalance for matrix size not a power of 2. As we pointed

out in section 7.7.2 for the 300 X 300 matrix, at the next to top level the

matrix multiplication operation costs are almost four times larger than these

for recursive and non-recursive linked list (Tnrlp) versions. The efficiency

depends very much on matrix sizes. Moreover, as we mentioned before,

when the tasks are evenly distributed to threads the version Tnrsp shows

significantly improved performance and competes with the other versions in

the case using the matrix sizes a power of 2.

7.9 Conclusions

In this chapter we have investigated some recursive and non-recursive

parallel divide-and-conquer methods on the shared memory machine. In

particular, recursive and non-recursive (Tnrsp) sequential versions are

compared in terms of deflation using different types of matrices. All

the implementations are much faster for matrix type [-1,2,-1] than for

225

Chapter 7 The Symmetric Tridiagonal Eigenproblem

matrix type [-l,u,-l] which indicates that the saving from the deflation is

considerable.

The implementation Tnrlp avoids the difficulty in allocating tasks evenly

across the available threads in the parallel implementation (Tnrsp). There

is a clear conclusion that the non-recursive parallel implementation using

linked lists Tnrlp is a good alternative algorithm to the recursive algorithm.

In most cases Tnrlp is marginally better than the recursive versions.

As expected, a significant decrease in the execution times occurs when

the matrix multiplications procedure is parallelised. The result was an

increase of efficiency of 40-55 % in most cases. This observation shows that

it is very important to include parallelisation of the matrix multiplication

in all these algorithms.

226

CHAPTER 8

Conclusions and Future Research

We have presented several algorithms in Numerical Linear Algebra on a

shared memory multiprocessor system. In this chapter, we summarise our

major contributions in this thesis. Extensions to the current work will be

suggested, plans for future work will be given, and closing remarks will be

stressed.

8.1 Summary

As pointed out earlier, the mam aIm of this thesis was to examme

the improvement of efficiency by implementing in parallel some algorithms

for numerical linear algebra which are widely used computational tools in

science and engineering research. This research is becoming increasingly

dependent upon the development and implementation of efficient parallel

algorithms. Numerical linear algebra algorithms are indispensable in science

and engineering research and this thesis has attempted to collect and

describe a selection of some of the more important algorithms and their

227

Chapter 8 Conclusions and Future Research

parallel implementations. The algorithms, including the solution of the

linear system of equations Ax = busing QR and L U decompositions,

reduction of a general matrix to Hessenberg form, reduction of a real

symmetric matrix to tridiagonal form, and Cuppen's divide-and-conquer

method for finding all of the eigenvalues and corresponding eigenvectors

of a real symmetric tridiagonal matrix were implemented on the system

available to us namely the Encore Multimax. Our evaluation focus was not

to rewrite an existing program but to restructure the algorithms in order to

produce efficient serial and parallel methods.

We have concentrated in particular on algorithms written in the C++

programming language. C++ is an object-oriented programming language,

which can provide various types of matrix classes. The use of C++ implies

some storage organisation for array elements. The primitive arrays provided

in C++ use storage by rows. As far as we are aware there is little

previous work on parallelising these algorithms using C++. Consequently

in this thesis we have considered implementation of the serial and parallel

methods using the object-oriented programming language C++. The

algorithms have been designed for the C++ programming language using

the Encore Parallel Threads [31] package. The package provides mechanisms

for synchronisation. The synchronisation strategy to use in any situation

depends on the program's structure and the computer system's flexibility.

Each strategy has its benefits and costs.

The comparisons were carried out by measuring the elapsed time for

228

Chapter 8 Conclusions and Future Research

each implementation. These comparisons were carried out using both row

and column representation of the matrix for most of the implementations

described in chapters 4, 5, and 6. This was made easy by the use of

some C++ matrix classes which were altered internally. Comparisons

were also carried out both with and without array bound checking. These

extra comparisons were included to compare the algorithms under different

conditions, and make spurious conclusions about the relative merits of the

algorithms less likely. Chapter 7 presents an experimental evaluation of the

effect of deflation on accuracy. A number of test matrices were used to test

Cuppen's algorithm since the amount of deflation in this method depends

on the test matrix. The results of the recursive and non-recursive parallel

implementations of this algorithm were compared. An extra comparison was

also presented for the results of the additional parallelisation in the matrix

multiplication part.

There are some general observations from the experiments carried out

using the shared memory architecture in this thesis and the following overall

conclusions can be drawn:

• Firstly, the experimental results presented show that dynamic task

allocation can sometimes be very effective on this machine, and that

very high efficiency is often obtainable with careful construction of the

parallel algorithms even for relatively small matrices.

• Secondly, as we pointed out in chapter 4, in the solution of algebraic

equations (or QR and LV decompositions) all column updates do not

229

Chapter 8 Conclusions and Future Research

need to be performed before the next pivotal column is treated. Various

alternative ways of allocating column updates were investigated where

pivotal and normal columns were treated simultaneously. The most

effective of these was an algorithm which carried out as many column

updates to a column as possible by the same processor, and when

no further updates were possible due to the relevant pivotal column

not having been treated, then starting on a different column. The

results show that the column based multiple column approach for LV

decomposition does have significant advantages on a shared memory

multiprocessor.

• Thirdly, restructuring the algorithms to avoid splitting the algorithms

into stages gives significant improvement particularly for reduction to

Hessenberg form (i.e. the fifth implementations H ella and Helle). The

idea here is that the columns and rows are allocated dynamically to the

threads, and counts for the columns and the rowb rows are used. This

was based on the observation made clear in the dataflow diagram that

the pivotal, column and rowb row updates are not dependent on the

rowa row updates being completed. When any thread finds no column

or rowb row available for allocation, then any rowa rows which are ready

for updating are allocated instead.

Comparisons were carried out between the performance of the five

implementations of algorithms for a general matrix to be reduced to

upper Hessenberg form. The fifth implementations, H ella and Helle

230

Chapter 8 Conclusions and Future Research

are clearly better than the other implementations. As the number

of processors increases the graphs for this algorithm are very nearly

horizontal indicating little loss and remarkably high efficiencies, with

both row and column representations of the matrix.

Comparisons were also carried out between the performance of the three

different synchronisation mechanisms in the second implementation. In

most cases the "Locks" synchronisation mechanism was more efficient

than those using "Monitors" or "Semaphores" at least for this particular

problem. The synchronisation mechanism to use in any situation

depends on the program's structure and the computer system's flexibility.

Each mechanism has its benefits and costs. In general locks are only

suitable for short waits, semaphores and monitors are more appropriate

for longer waits. Here we organised the program so that the waits are

usually short.

• Fourthly, the algorithm described for reduction to Hessenberg form can

also be used for the reduction of a symmetric matrix to tridiagonal

form, and there are some rather obvious savings from the symmetry.

However, the alternative algorithm described in chapter 6 involve less

arithmetic but has much greater data dependencies so limiting the

possibilities for parallelisation. It is concluded from the experimental

results of parallelising this algorithm that some minor changes did give

some improvements, but all the efficiencies obtained were much poorer

than those for the algorithms described in chapter 5.

231

Chapter 8 Conclusions and Future Research

• Finally, we have investigated some recursive and some non-recursive

parallel implementations of a divide-and-conquer method for finding all

of the eigenvalues and corresponding eigenvectors of a real symmetric

tridiagonal matrix in chapter 7. As we stated in that chapter,

the motivation for a non-recursive version was to compare this with

the recursive version and to investigate the relationship between the

recursive and non-recursive implementations of Cuppen's divide-and-

conquer method.

An important point that arIses III the implementation of Cuppen's

algorithm concerns the choices of tolerance Cr in the computation of the

root finding stage and tolerance Cd in the computation of the deflation

stage. From the point of view of numerical computation, in most cases

there is no advantage to be gained if one epsilon is much larger than the

other, although choosing Cd slightly larger than Cr seems to be helpful.

The experimental results illustrated that the differences between the

parallel recursive versions are relatively small. The experiments show

that having more threads than processors does not cause a severe loss of

efficiency due to the extra overhead.

There is a clear conclusion that the non-recursive linked lists serial and

parallel implementation is a good alternative algorithm to the recursive

algorithm. In most cases this algorithm is marginally better than the

. .
recurSIve versIOns.

232

Chapter 8 Conclusions and Future Research

As expected, a significant decrease in the execution times occurs when

the matrix multiplications procedure is parallelised. The result was

an increase of efficiency of 40-55 % in most cases. This observation

shows that it is very important to include parallelisation of the matrix

multiplication in all these algorithms. The experimental results illustrate

that the non-recursive linked list version is still relatively better than the

. .
recurSIve verSIOns.

8.2 Future Research

To extend the work reported in this thesis, we identify the following

areas that deserve further study.

All the above algorithms were implemented on a shared-memory Encore

Multimax using the C++ programming language. These algorithms can be

compared using the other popular parallel architectures such as distributed

memory machines and also shared memory machines with different relative

speeds for arithmetic and storage. This extra comparison should include the

comparison of the algorithms under different environments and to investigate

how generally applicable they are using different architectures.

The results described in this thesis indicate that for QR and LV

decomposition and Hessenberg reduction very high parallel efficiencies are

obtainable on the shared memory machine used, as long as care is taken in

the implementation of the algorithms. For reduction of a symmetric matrix

to tridiagonal form the results are not so good, but here a combination with

233

Chapter 8 Conclusions and Future Research

finding the eigenvalues as suggested by Dongarra et al [26] might compensate

for this problem. However, detailed study and experiments should be further

explored.

The divide-and-conquer method might also be applied to the related

problem of computing the singular value decomposition (SVD) of a real

bidiagonal matrix.

Comparison of the Cuppen method with the QL method, Sturm

sequence (or bisection with inverse iteration), and QR method for the

symmetric tridiagonal eigenvalue problem deserve to be considered.

8.3 Closing Remarks

In general, we encountered memory problems during our

implementation. For example, in the algorithms for QR decomposition the

memory fills up with large matrices when using the new mat matrix package

because when using this package for the manipulation of matrices we need

much more space than using a simple matrix class. The second example is

when the objects are declared in the parallel part of the programs. Then,

in most cases, a memory problem would occur with large matrix sizes. This

requires allocation of storage space on the heap. The memory problem is

disappointing and limits the size of the problem that we can use for testing

our algorithm. Although such problems could be somewhat avoided by

declaring the object before the parallel section and passing it as a reference

parameter and also addressed by improving the management of dynamic

234

Chapter 8 Conclusions and Future Research

structures, they would not be completely solved.

The objective of this research as pointed out from the outset was to

develop serial and parallel algorithms. From the research that we have

carried out and which is reported in this thesis we can conclude that

effective exploitation of parallelism with numerical linear algebraic problems

is dependent on several factors some of which include the nature of the

problem to be solved and the type of architecture on which we intend to

implement the problem.

235

Bibliography

1. Akl, S.G., The Design and Analysis of Parallel Algorithms, Prentice

Hall, 1989.

2. Almasi, G. S. and Gottlieb, A., Highly Parallel Computing, The

Benjamin/Cummings Publishing Company, 1989.

3. Bischof, C., QR Factorization Algorithms for Coarse-Grained

Distributed Systems, Tech. Rep. TR 88-939, Dep. of Computer Science,

Cornell University, Ithaca, NY, 1988.

4. Bischof, C. and Van Loan, C., The WY Representation for Products of

Householder Matrices, SIAM J. Statist. Comput., 8 (1987), pp. s2-s13.

5. Booch, G., Object-Oriented Analysis and Design with Applications, The

Benjamin/Cummings Publishing Company, 1994.

6. Bunch, J.R., Neilsen, C.P., Sorensen, D.C., Rank one Modification of

the Symmetric Eigenproblem, Numer. Math. 31 (1978) 31-48.

7. Burden,R.L. and Faires, J.D., Numerical Analysis, Fifth Edition, PWS

Publishing Company, 1993.

8. Bus, J.C. and Dekker, T.J., Two Efficient Algorithms with Guaranteed

Convergence for Finding a Zero of a Function, TOMS 1, (1975) pp 330-

345.

236

Bibliography

9. Businger, P.A., Reduction a Matrix to Hessenberg Form, Math. Comput.

23(1969) 819-821.

10. Bowdler, H., Martin, R., and Wilkinson, J., The QR and QL Algorithms

for Symmetric Matrices, Numer. Math., 11 (1968), pp. 227-240.

11. Calahan, D., Block-Oriented Local-Memory-Based Linear Equation

Solution on the Cray-2: Uniprocessor Algorithms, in Proc. IntI. Conf.

Par. Processing, IEEE Computer Society Press, New York, 1986, pp.

375-378.

12. Catanzaro, B., Multiprocessor System Architectures, Sun Microsystems,

1994.

13. Chang, H.Y., Utku, S., Salama, M., and Rapp, D., A Parallel

Householder Tridiagonalisation Stratagem Using Scattered Square

Decomposition, Parallel Comput. 6 (1988) 297-311.

14. Chu, E. and George, A., Gaussian Elimination with Partial Pivoting

and Load Balancing on a Multiprocessor. Parallel Computing 5, (1987)

pp. 65-74.

15. Coplien, J .0., Advanced C++ Programming Styles and Idioms,

Addison- Wesley, 1992.

16. Cosnard, M., Muller, J., and Robert, Y., Parallel QR Decomposition of

a Rectangular Matrix, Numer. Math., 48 (1986), pp. 239-249.

17. Cuppen, J.J.M., A Divide and Conquer Method for the Symmetric

237

Bibliography

Tridiagonal Eigenproblem, Numer. Math., 36 (1981), pp. 177-195.

18. Davies, R.B., Newmat05: An Experimental Matrix Package in C++,

DSIR, New Zealand, 1992.

19. Dijkstra, E. W., The Structure of the 'THE' Multiprogramming System.

Communications of the ACM 11, (1968) pp. 341-346.

20. Doeppner, T. W. Jr., Threads, A system for the Support of Concurrent

Programming. Brown University Department of Computer Science

Technical Report CS-87-11, 1987.

21. Dongarra, J.J. and Duff, I.S., Advanced Architecture Computers,

Argonne National Laboratory Report, ANL/MCS-TM-57, 1989.

22. Dongarra, J.J, Duff, I.S., Sorensen, D.C., and A. van der Vorst, H.,

Solving Linear Systems on Vector and Shared Memory Computers,

SIAM, Philadelphia, Second Printing 1993.

23. Dongarra, J.J, Gustavson, F.G., and Karp, A., Implementing Linear

Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine,

SIAM Review, 26 (1984), pp. 91-112.

24. Dongarra, J., Sameh, A., and Sorensen, D., Implementation of Some

Concurrent Algorithms for Matrix Factorization, Parallel Comput., 3

(1986), pp. 25-34.

25. Dongarra, J.J. and Sidani, M., A Parallel Algorithm for the

Nonsymmetric Eigenvalue Problem, SIAM J. Sci. Stat. Comput.

238

Bibliography

14(1993) 542-569.

26. Dongarra, J.J. and Sorensen, D.C., A Fully Parallel Algorithm for the

Symmetric Eigenvalue Problem, SIAM J. Sci. Stat. Comput. 8(1987)

s139-s154.

27. Dongarra, J.J., Sorensen, D.C., and Hammarling, S.J., Block reduction

of matrices to condensed forms for eigenvalue computations, J.

Computat. Applied Maths 27(1989) 215-227.

28. Dongarra, J.J. and Van de Geijn, R.A., Reduction to Condensed

form for the Eigenvalue Problem on Distributed Memory Architectures,

Parallel Comput. 18(1992) 973-982.

29. Eckel, B., C++ Inside and Out, McGraw-Hill, 1993.

30. Elden, L., A Parallel QR Decomposition Algorithm, Tech. Rep. Lith

MAT-R-1 988-02, Linkoping University, Linkoping, Sweden, 1987.

31. Encore Computer Corporation, Encore Parallel Threads Manual. No.

724-06210 Rev. A. 1988.

32. Flynn, M. J., 1966. Very High-Speed Computing Systems. Proceedings

of the IEEE 54, 12, pp. 1901-1909.

33. Gallivan, K., Jalby, W., Meier, U., and Sameh, A., Impact of

Hierarchical Memory Systems on Linear Algebra Algorithm Design, IntI.

J. Supercomputer Appl., 2(1988), pp. 12-48. Presented at the Level 3

BLAS Workshop, Argonne National Laboratory, January 1987.

239

Bibliography

34. Gallivan, K.A., Plemmons, R.J., and Sameh, A.H., Parallel Algorithms

for Dense Linear Algebra Computations. SIAM Review 32, (1990) pp.

54-135.

35. Geist, G.A. and Davis, G.J., Finding Eigenvalues and Eigenvectors

of Unsymmetric Matrices Using a Distributed-Memory Multiprocessor,

Parallel Comput. 13(1990) 199-209.

36. Geist, G.A. and Romine, C.H., LU Factorisation Algorithms on

Distributed-Memory Multiprocessors Architectures.

Statist. Comput. 9, (1988) pp. 639-649.

SIAM J. Sci.

37. Goles, E. and Kiwi, M., A Lower Bound on the Computational

Complexity of the QR Decomposition on a Shared Memory SIMD

Computer. Parallel Computing 18, (1992) pp. 345-354.

38. Golub, G. H., Some Modified Matrix Eigenproblem, SIAM Rev., 15

(1973), pp. 318-334.

39. Golub, G. and Ortega, J.M., Scientific Computing an Introduction with

Parallel Computing, Academic Press, 1993.

40. Golub, G.H., and Van Loan, C.F., Matrix Computations, 2nd Ed. Johns

Hopkins University Press, Baltimore and London, 1989.

41. Graham, N., Learning C++, McGraw-Hill, 1991.

42. Gu, M., and Eisenstat, S.C., A Stable and Efficient Algorithm for the

Rank-one Modification of the Symmetric Eigenvalue Problem, Research

240

Bibliography

Report YALEUjDCSjRR-916 30 September 1992.

43. Hager, W.W., Applied Numerical Linear Algebra, Prentice-Hall

International Editions, 1988.

44. Higham, N.J., A collection of Test Matrices in MATLAB. Numerical

Analysis Technical Report, No.172, Dept. of Maths., University of

Manchester (1989).

45. Hoare, C. A. R., Monitors: an Operating System Structuring Concept.

Communications of the ACM 17, (1974) pp. 549-557.

46. Huang, H., Parallel Algorithms for Symmetric Tridiagonal Eigenvalue

Problems, Tech. Rep. CAC Doc. 109, Center for Advanced

Computation, University of Illinois, Urbana, IL, 1974.

47. Hwang, K., Advanced Computer Architecture, McGraw-Hill, 1993.

48. Hwang, K. and Briggs, F. A., Computer Architecture and Parallel

Processing, McGraw-Hill, 1984.

49. Ipsen, I., and Jessup, E., Solving the Symmetric Tridiagonal Eigenvalue

on the Hypercube, SIAM J .Sci. Stat. Comput. 11 (1990) pp. 203-229.

50. Jalby, W. and Philippe, B., Loss of Orthogonality in a Gram-Schmidt

Process, Tech. Rep., IRISA, Rennes, France, 1987.

51. Jensen, R., Chaos in Atomic Physics, In Proceedings of the Xth

International Conference on Atomic Physics ICAP-X, 1987.

241

Bibliography

52. Jensen, R. and Shankar, R., Statical Behavior in Deterministic Quantum

Systems with Few Degrees of Freedom, Phys. Rew. Lett., 54 (1985), pp.

1879-1882.

53. Jessup, E.R. and Ipsen, I., Improving the Accuracy of Inverse Iteration,

SIAM J. Sci. Stat. Comput. 13 (1992) pp. 550-572.

54. Kahan, W., Rank-1 perturbed diagonal's Eigensystem. Unpublished

Man., Dept. Computer Science, Stanford University, July 1989.

55. Kalamboukis, T.Z., A Parallel Algorithm for the Dense Symmetric

Eigenvalue Problem on a Transputer Array, Parallel Comput. 18(1992)

207-212.

56. Kaya, D. and Wright, K., Parallel Algorithms for LU Decomposition

on Shared Memory Multiprocessor, Technical Report Series No. 450,

University of Newcastle upon Tyne, Computing Science, November,

1993.

57. Kaya, D. and Wright, K., Parallel Algorithms for Reduction of a General

Matrix to upper Hessenberg form on Shared Memory Multiprocessor,

Technical Report Series No. 490, University of Newcastle upon Tyne,

Computing Science, October, 1994.

58. Krishnakumar, A. and Morf, M., Eigenvalues of a Symmetric

Tridiagonal Matrix: A Divide and Conquer Approach, Numer. Math.,

48 (1986), pp. 348-368.

242

Bibliography

59. Kruse, R.L., Data structures and Program Design, Prentice-Hall, 1987.

60. Kuck, D. and Sameh, A., Parallel Computation of Eigenvalues of Real

Matrices, in Proc. IFIP Congress 1971, North-Holland, Amsterdam,

1972, pp. 1266-1272.

61. Kuttler, J. and Sigillito, V., Eigenvalues of the Laplacian In two

Dimension, SIAM Review, 26 (1984), pp. 163-193.

62. Lewis, T.G. and EI-Rewini, H., Introduction to Parallel Computing,

Prentice-Hall International, 1992.

63. Li, R. -C., Solving Secular Equations Stably and Efficiently, UC

Berkeley Math. Dept. Report, California 94720, 1993.

64. Liu, J.W.H., Computational Models and Task Scheduling for Parallel

Sparse Cholesky Factorisation. Parallel Computing 3, (1986) pp. 327-

342.

65. Lo, S.S, Philippe, B. and Sameh, A., A Multiprocessor Algorithm

for Symmetric Tridiagonal Eigenvalue Problem, SIAM J. Sci. Stat.

Comput. 8, (1987) s155-s165.

66. Modi, J.J., Parallel Algorithms and Matrix Computation. Oxford

University Press, 1989.

67. Modi, J. and Clarke, M., An Alternative Givens Ordering, Numer.

Math.,43 (1984), pp. 83-90.

243

Bibliography

68. O'Neil, P.V., Advanced Engineering Mathematics, Third Edition,

Wadsworth Publishing Company, 1991.

69. Ortega, J. and Voigt, R., Solution of Partial Differential Equations on

Vector and Parallel Computers. SIAM Review 27, (1985) pp.149-240.

70. Parlett, B., The Symmetric Eigenvalue Problem, Prentice-Hall,

Englewood Cliffs, NJ, 1980.

71. Pohl, I., Turbo C++, The Benjamin/Cummings Publishing Company,

1991.

72. Pohl, I., Object-Oriented Programming Using C++, The Benjamin/

Cummings Publishing Company, 1993.

73. Pothen, A. and Raghavan, P., Orthogonal Factorization on a Distributed

Memory Multiprocessor, Tech. Rep. CS-87-24, Pennsylvania State

University, Computer Science Dept., University Park, PA, 1987.

74. Pothen, A., Somesh, J., and Vemulapati, U., Orthogonal Factorization

on a Distributed Memory Multiprocessor, in Hypercube Multiprocessors

1987, M. T. Heath, ed., SIAM, Philadelphia, 1987, pp. 587-596.

75. Quinn, M.J., Designing Efficient Algorithms for Parallel Computers,

McGraw-Hill, 1987.

76. Rice, J.R., Experiments on Gram-Schimidt Orthogonalization, Math.

Compo 20, (1966) 325-328.

244

Bibliography

77. Sameh, A., Numerical Algorithms on the Cedar System, Presented at

Second SIAM Conference on Parallel Processing, 1985.

78. Sameh, A. and Kuck, D., On Stable Parallel Linear Systems Solvers,

JACM, 25 (1978), pp. 81-91.

79. Schreiber, R. and Van Loan, C., A Storage-Efficient WY Representation

for Products of Householder Transformations, SIAM J. Statist.

Comput., 10 (1989), pp. 53-57.

80. Sedgewick, R., Algorithms in C++, Addison-Wesley Publishing

Company, 1992.

81. Sevcik, K.C., Application Scheduling and Processors Allocation in

Multiprogrammed Parallel Processing Systems, Technical Report CSRI-

282, Computer Systems Research Institute University of Toronto, March

1993.

82. Sorensen, D.C., Analysis of pairwise pivoting in Gaussian Elimination.

IEEE Trans. Computers C34, (1984) pp. 275-278.

83. Sorensen, D.C., and Tang, P.T.P., On the Orthogonality of Eigenvectors

Computed by Divide-and-Conquer Techniques, SIAM J. Numer. Anal.

28 (1991) pp. 1752-1775.

84. Stark, S. and Beris, A.N., LU Decomposition Optimized for a Parallel

Computer with a Hierarchical Distributed-Memory. Parallel Computing

18, (1992) pp. 959-971.

245

Bibliography

85. Stewart, G. W., Introduction to Matrix Computation, Academic Press,

New York, 1973.

86. Stoker, M. A., The Exploitation of Parallelism on Shared Memory

Multiprocessors, PhD dissertation, University of Newcastle upon Tyne,

1990.

87. Stroustrup, B., Possible Directions for C++. Proceedings of the

USENIX C++ Workshop. Santa Fe, NM: USENIX Association

November 1987.

88. Stroustrup, B., What is Object-Oriented Programming? IEEE Software

val. 5 (1988), pp. 10-20.

89. Stroustrup, B., The C++ Programming Language, Second Edition,

Addison-Wesley, 1991.

90. Sun, X. and Bischof, C., A Basis-Kernel Representation of Orthogonal

Matrices, Tech. Rep. MCS-P431-0594, Argonne National Laboratory,

Mathematics and Computer Science Division, 1994.

91. Tadmor, E. and Gill, D., An O(N2) Method for Computing the

Eigensystem of N x N Symmetric Tridiagonal Matrices by the Divide

and Conquer Approach, SIAM J. Sci. Statist. Comput., 11(1990), pp.

s161-s173.

92. Van de Vorst, J.G.G., The Formal Development of a Parallel Program

Performing LU-Decomposition. Acta Informatica 26, (1988) pp. 1-17.

246

Bibliography

93. Watkins, D.S., Fundamentals of Matrix Computations, John Willey and

Sons, Inc., 1991.

94. Weston, J.S. and Clint, M., Two Algorithms for the Parallel

Computation of Eigenvalues and Eigenvectors of Large Symmetric

Matrices Using the ICL DAP, Parallel Comput. 13(1990) 281-288.

95. Wilkinson, J., The Algebraic Eigenvalue Problem, Claredon Press,

Oxford, 1965.

96. Wilkinson, J. and Reinsch, C., Handbook for Automic Computation:

Linear Algebra, Vol. 2, Springer-Verlag, Berlin, 1971.

97. Wright, K., Parallel Algorithms for QR Decomposition on a Shared

Memory Multiprocessor. Parallel Computing 17, (1991) pp. 779-790.

98. Wright, K. and Kaya, D., Parallel Algorithms for Linear Algebra on a

Shared Memory Multiprocessor, 3th Int. ColI. on Numerical Analysis,

pp. 209-218, VSP 1995.

99. Zhang, X. and Castaneda, R., Spin-Lock Synchronisation on the

Butterfly and KSR1. IEEE. Parallel & Distributed Tech. Vol. 2, Spring

Issue, (1994) 51-63.

100. Zhang, H. Moss, W.F., Using Parallel Banded Linear System Solvers in

Generalized Eigenvalue Problems. ICASE Report No. 93-71, September

1993.

101. Zhou, B.B. and Brent, R.P., Parallel Implementation of QRD

247

Bibliography

Algorithms on the Fujitsu AP1000. Report TR-CS-93-12, Computer

Sciences Laboratory, ANU, November 1993.

248

	281612_001
	281612_002
	281612_003
	281612_004
	281612_005
	281612_006
	281612_007
	281612_008
	281612_009
	281612_010
	281612_011
	281612_012
	281612_013
	281612_014
	281612_015
	281612_016
	281612_017
	281612_018
	281612_019
	281612_020
	281612_021
	281612_022
	281612_023
	281612_024
	281612_025
	281612_026
	281612_027
	281612_028
	281612_029
	281612_030
	281612_031
	281612_032
	281612_033
	281612_034
	281612_035
	281612_036
	281612_037
	281612_038
	281612_039
	281612_040
	281612_041
	281612_042
	281612_043
	281612_044
	281612_045
	281612_046
	281612_047
	281612_048
	281612_049
	281612_050
	281612_051
	281612_052
	281612_053
	281612_054
	281612_055
	281612_056
	281612_057
	281612_058
	281612_059
	281612_060
	281612_061
	281612_062
	281612_063
	281612_064
	281612_065
	281612_066
	281612_067
	281612_068
	281612_069
	281612_070
	281612_071
	281612_072
	281612_073
	281612_074
	281612_075
	281612_076
	281612_077
	281612_078
	281612_079
	281612_080
	281612_081
	281612_082
	281612_083
	281612_084
	281612_085
	281612_086
	281612_087
	281612_088
	281612_089
	281612_090
	281612_091
	281612_092
	281612_093
	281612_094
	281612_095
	281612_096
	281612_097
	281612_098
	281612_099
	281612_100
	281612_101
	281612_102
	281612_103
	281612_104
	281612_105
	281612_106
	281612_107
	281612_108
	281612_109
	281612_110
	281612_111
	281612_112
	281612_113
	281612_114
	281612_115
	281612_116
	281612_117
	281612_118
	281612_119
	281612_120
	281612_121
	281612_122
	281612_123
	281612_124
	281612_125
	281612_126
	281612_127
	281612_128
	281612_129
	281612_130
	281612_131
	281612_132
	281612_133
	281612_134
	281612_135
	281612_136
	281612_137
	281612_138
	281612_139
	281612_140
	281612_141
	281612_142
	281612_143
	281612_144
	281612_145
	281612_146
	281612_147
	281612_148
	281612_149
	281612_150
	281612_151
	281612_152
	281612_153
	281612_154
	281612_155
	281612_156
	281612_157
	281612_158
	281612_159
	281612_160
	281612_161
	281612_162
	281612_163
	281612_164
	281612_165
	281612_166
	281612_167
	281612_168
	281612_169
	281612_170
	281612_171
	281612_172
	281612_173
	281612_174
	281612_175
	281612_176
	281612_177
	281612_178
	281612_179
	281612_180
	281612_181
	281612_182
	281612_183
	281612_184
	281612_185
	281612_186
	281612_187
	281612_188
	281612_189
	281612_190
	281612_191
	281612_192
	281612_193
	281612_194
	281612_195
	281612_196
	281612_197
	281612_198
	281612_199
	281612_200
	281612_201
	281612_202
	281612_203
	281612_204
	281612_205
	281612_206
	281612_207
	281612_208
	281612_209
	281612_210
	281612_211
	281612_212
	281612_213
	281612_214
	281612_215
	281612_216
	281612_217
	281612_218
	281612_219
	281612_220
	281612_221
	281612_222
	281612_223
	281612_224
	281612_225
	281612_226
	281612_227
	281612_228
	281612_229
	281612_230
	281612_231
	281612_232
	281612_233
	281612_234
	281612_235
	281612_236
	281612_237
	281612_238
	281612_239
	281612_240
	281612_241
	281612_242
	281612_243
	281612_244
	281612_245
	281612_246
	281612_247
	281612_248
	281612_249
	281612_250
	281612_251
	281612_252
	281612_253
	281612_254
	281612_255
	281612_256
	281612_257
	281612_258
	281612_259
	281612_260
	281612_261
	281612_262
	281612_263
	281612_264

