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Abstract

One of the numerous results of recent developments in communication

networks and distributed systems has been an increased interest in the study

ofapplications and protocolsfor communications between multiple, as opposed

to single, entities such as processes and computers. For example, in replicated

file storage, a process attempts to store a file on several file servers, rather

than one. MUltiple entity communications, which allow one-to-many and

many-to-one communications, are known as multicast communications.

This thesis examines some of the ways in which the architectures of

computer networks and distributed systems can affect the design and

development ofmulticast communication applications and protocols.To assist

in this examination, the thesis presents three contributions. First, a set of

classification schemes are developed for use in the description and analysis of

various multicast communication strategies. Second, a general set of

multicast communication primitives are presented, unrelated to any specific

network or distributed system, yet efficiently implementable on a variety of

networks. Third, the primitives are used to obtain experimental results for a

study ofintranetwork and internetwork multicast communications.
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Chapter 1
Introduction

The rapid development of distributed computing systems during the past

ten years can be attributed to two forces acting in concert: technology (both

hardware and software) and requirements (both present and future). For

example, the dramatic change in the price/performance ratio of computing

elements (the technology) spurred the growth and availability of computing

power to individuals. This enabled the decentralization of computing power

within organizations, resulting in the need to distribute information which

had previously been localized. This requirement led, in turn, to further

developments in communications technology, partially in Wide Area

Networks (WANs), but primarily in Local Area Networks (LANs). These

developments are typified, for example, by network transmission speeds: these

have increased from thousands of bits per second in the early 1970's to

millions ofbits per secondat the present time.

The interconnection of computers or the like by networks required the

definition of communication protocols. These specify rules assuring

uniform and fair access by machines to networks for the transmission of

information. Appropriate protocols were developed to allow individual

processes on different machines to exchange information. Permitting

individual processes to access networks directly, however, demanded further

technological novelties, since, for example, applications written for a specific

protocol,hence a specificnetwork, could not easily be transferred tomachines

using different protocolson different networks.



INTRODUCTION 2

The requirement for portable software and the ability to communicate

though multiple networks using different protocols was met by the

development of layered architectures for distributed systems. Layered

architectures were intended, in part, to hide the underlying network and its

associated protocol from the communicating processes. By using layered

architectures, network specific features, such as packet cyclic redundancy

check calculations, can be hidden from the higher layers and features required

by an application but not offered by the network, such as file transfer

protocols, can be added. Although most distributed systems using layered

architectures support a wide variety of protocols (with some layers allowing

many different protocols), most, if not all, are intended for one-to-one or

unicast communications. For example, many network protocols allow a

transmitting machine to identify at most one receiving machine, while file

transfer protocols typically support the transfer of files from a single process to

a single file server.

Recently however, applications have been developed which require

multicast communications or communications between multiple processes.

For example, in some fault tolerant applications it is necessary to store

multiple copies of the same file on separate file servers. Although there are an

increasing number of applications which require multicast communications,

support for multicast communications is not usually found in distributed

systems, or at least, it is not provided for directly. Therefore, multicast

communications are often emulated using unicast protocols - making

communications to multiple processes a potentially inefficient operation

because the same message must be transmitted repeatedly to each possible

receiver.

Fortunately, multicast communications are not restricted to processes -

many local area networks are already capable of transmitting messages from
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one machine to all machines (a broadcast transmission) or to many machines

(a multicast transmission). However, even when implemented on local area

networks that actually provide facilities for multicast or broadcast

communications, many existing distributed systems do not ordinarily support

protocols for multicast communications, at either the process layer or the

network layer.

1.1Thesis Aims

This thesis describes the results of a research project which examined how

existing technologies (both hardware and software) could best be used or

modified to support multicast communications. The aims of this project were:

a) to describe a set of taxonomies or classification schemes which could be used
in the description and analysis of various multicast communication
strategies,

b) to develop a general set of multicast communication primitives, unrelated
to any specific network or distributed system, yet efficiently
implementable on a variety of networks, and

c) to implement and test a multicast communication facility, based upon these
primitives, on a variety of network architectures.

1.2Thesis Contents

The thesis is organized as follows. Chapter Two is divided into four

Sections, the first of which introduces some of the terminology associated with

multicast communications. The second Section presents a set of three different

models for describing communications, to be used in subsequent Chapters for

developing multicast communication taxonomies and multicast

communication primitives. The third Section consists of a survey of several

multicast communication implementations on different networks and

distributed systems. In the final Section, a series of multicast applications is
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discussed, demonstrating some of the potential uses of multicast

communications.

Chapter Three presents a series of classification schemes to assist in the

understanding and development of intranetwork and internetwork multicast

communication systems. The first Section of the Chapter presents a multicast

transmission taxonomy employing a simple Transmitter-Receiver paradigm.

The second Section develops a multicast response handling taxonomy based

upon a Source-Destination model. The third Section discusses the problems

associated with identifiers in multicast communications using distributed

systems. The Chapter is concluded with a discussion of the possible uses of the

taxonomies that have been presented.

Chapter Four describes the design and development of a set of general

purpose multicast communication primitives which approach optimal

multicast communications, irrespective of the underlying network or

internetwork. The primitives themselves are based, in part, upon the needs of

the applications described in the second Chapter as well as the taxonomies

described in the third Chapter. The Chapter contains four Sections. The

primitives required for the management of multicast communications and

multicast set membership are discussed in the first Section, while in the

second, a series of examples are presented, showing possible uses of the

primitives. The third Section compares the proposed primitives with

primitives used in existing multicast communication implementations. The

Chapter concludes with a review of the primitives and suggests methods of

implementation.

Chapter Five describes the implementation and evaluation of the

primitives in a distributed UNIX environment using four different network

architectures. In the first Section of this Chapter, the facilities (both hardware
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and software) available in the Computing Laboratory for the implementation

and evaluation of the primitives are discussed. The second Section describes

the implementation of the primitives using these facilities. In the third

Section, performance measurements are presented, comparing multicast

communications in the different intranetwork communication environments.

The Chapter concludes with some general comments on how the different

performance results were obtained and what the results indicate.

Chapter Six examines how different internetwork communication

environments can affect multicast communications. The Chapter first

presents different methods of identifying Gateways. It then examines the

problems associated with identifying Destinations on remote networks. The

third Section of the Chapter discusses the design and implementation of

several different multicast Gateways in terms of the multicast communication

primitives, while performance measurements are presented for three different

multicast Gateways in the fourth Section. The final Section reviews the

contents of the Chapter, outlining some of the issues that should be considered

when performing internetwork multicast communications.

Chapter Seven reviews the aims of the thesis, discusses possible

developments of the work presented, and concludes with some final

observa tions.
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Chapter2
Background

This Chapter expands upon the simple description of multicast

communications presented in Chapter One through a series of definitions,

models, and surveys.

The Chapter is organized as follows. In the first Section, some of the

terminology associated with multicast communications is introduced, while in

the second Section, methods of describing communications (including

multicast) are presented using a series of three different models. A review of

many of the known multicast communication implementations is presented in

the third Section. In the fourth Section, a series of applications demonstrating

some of the uses of multicast communications are discussed. The contents of

this Chapter are reviewed in the final Section.

2.1 Terminology

Communications are traditionally discussed in terms of a single

transmitting entity (the Transmitter) and a single receiving entity (the

Receiver). For example, the process ofcommunication is frequently described

as involving a Transmitter transmitting a message to a Receiver, which thus

receives a copy of the message. This single Transmitter to single Receiver

paradigm, although often satisfactory, represents a special (albeit common)

type ofcommunication known as a unicast communication.

There are in fact two general cases of communication, both of which are

nowconsidered. The first involves a single Transmitter transmitting messages
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to many Receivers (where "many" can indicate any number ofReceivers, from

one Receiver through all possible Receivers) and is commonly known as a

multicast transmission. There are two "special" classes of multicast

transmission, those involving a transmission to a single Receiver (Le. a

unicast transmission) and those involving a transmission to all possible

Receivers (known as a broadcast transmission).

The second case involves many Transmitters (as before, "many" can

indicate any number of Transmitters, from one Transmitter through all

Transmitters), transmitting messages to a single Receiver and is known as a

multicast reception. The term unicast reception is used when describing

the reception of a message sent by a single Transmitter. The term broadcast

reception, indicating that the Receiver receives messages from all

Transmi tters is rarely, if ever, used.

In both multicast transmission and reception, the set of Receivers (in a

multicast transmission) or the set of Transmitters (in a multicast reception)

make up the multicast set. A multicast set is said to be static if the

membership is known and doesnot change over a periodoftime. Similarly, the

membership of the set is considered to be dynamic if the membership can

change over time.

2.2 Models

Multicast communication, like many other types of communication, can be

described using various models which detail different aspects of the

communication such as the transmission or reception of messages. In this

Section, three such communicationmodelsare examined. Thesemodelswill be

used in subsequent Sections and Chapters to assist in the development of
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several multicast taxonomies and a set of multicast communication

primi tives.

2.2.1 Transmitter-Receiver Model

As shown above, communications are usually discussed in terms of

Transmitters and Receivers. For example, a simple unicast communication

was described as involving a single Transmitter sending a message to a single

Receiver. However, since there may be many potential Receivers in any

communication, the Transmitter is usually required to identify the intended

Receiver using a unique identifier (such as a name or an address

[Shoch1978a])which is transmitted with the message.

However, in a multicast communication, the Transmitter is to transmit a

message to a multicast set consisting of one or more Receivers. The number of

message transmissions performed by the Transmitter depends, in part, upon:

a) how the Receivers are identified, and

b) the number of Receiver identifiers that can be associated with the
transmission ofthe message.

It is possible to define two general types of identifier that can be used to

identify the intended Receiver(s)ofa message:

a) a unique identifier which identifies at most one Receiver, and

b) a group identifier which identifies a set ofone ormore Receivers.

For example, in a multicast communication where there are "R" Receivers,

R unique identifiers will be required to represent the members of the

multicast set. However, when using group identifiers, anywhere from 1 to R

identifiers may be required (1, if all members share the same identifier and R,

if the members use group identifiers that are not shared).
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The number of identifiers that can be associated with the transmission of a

message is either:

a) one identifier per message, or

b) many identifiers per message.

It is also assumed that with regard to the number of identifiers that can be

associated with a message (i.e. one or many), the maximum is fixed (in that

neither Transmitter nor any Receiver can vary it), and is known (to the

Transmitter and all possible Receivers). In addition, when many identifiers

are allowed, the number of identifiers that can be associated with a message

can vary from one to a maximum of "many".

The Transmitter-Receiver model is useful in that it can describe the (ideal)

number of messages that must be generated to ensure that all members of the

multicast set can receive a copy of the message. For example, if Receivers can

only be identified with unique identifiers and only one identifier can be

supplied with each message, the Transmitter will be forced to send as many

messages as there are members of the multicast set. However, if all the

intended Receivers share a common group identifier, the Transmitter need

only send one message.

2.2.2 Source-Destination Model

In certain applications, a Transmitter may expect to receive messages from

one or more Receivers. For example, a Transmitter may request the current

time of day by transmitting a "time request" message. Upon receipt of the

"time request" message, a Receiver could transmit its time of day to the

original Transmitter.

To avoid the confusion of describing a Transmitter (or a Receiver) as both a

Transmitter and a Receiver, network designers have developed models in
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which the communicating entities have the properties of both Transmitters

and Receivers. Such models include the Source-Destination model, the

Client-Server model and the Contractor-Bidder model to name but three.

For example, in the Source-Destination model, the Source is first a

Transmitter and then (possibly) a Receiver, whilst the Destination is first a

Receiver, then (possibly)a Transmitter:

Source

Receiver

Request Destination

ReceiverTransmi tter

Transmi tter
Response (Optional)

Figure 2-1:The Source-Destination Model

In a typical unicast communication, the Source transmits a message (the

Request) to a Destination which is acting as a Receiver. Depending upon the

application, the Destination may be expected to respond with another message

(the Response) to the Source, nowacting as a Receiver.

However, in a multicast communication, the number ofResponses expected

by the Source can vary from none (in which no Responses are anticipated) to as

many as there are Destinations (if all Destinations are expected to respond).

Depending upon the application, the number and identity of the Destinations

responding may be important. For example, a Source may request the

members of a multicast set to respond once they have completed a certain task.

If the membership of the multicast set is known to the Source (for example,

using a static multicast set), determining which members have not responded

is a simple matter. However, if the membership of the multicast set is

dynamic, identifying the Destinations which have not responded is clearly a

more difficult operation, requiring, for example, the use ofa protocol.
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The Source-Destination model can therefore be used in comparing different

multicast response handling implementations given that the method of

identifying the members of the multicast set is known.

2.2.3Layered Architectures

The need for and uses of layered architectures were outlined in Chapter

One. However, there is not a single, universal layered architecture model

(contrary to what some network designers would have us believe

[CohenI983aD, instead, various layered models exist, supporting a wide range

of layers.

Although the models themselves may differ, the individual layers within

any architecture exhibit similar characteristics. For example, each layer has

its own protocol and types of identifier. Any communications between the

entities that make up a layer (known as the (N)-Layer) take place using the

communication services offered by the next lower layer (the (N-l)-Layer».

The following diagram illustrates the interaction between any two adjacent

layers (the (Ni-Layer and the (N-I)-Layer) [BochmanI985a]:

1 (N)-Entity 1· .. ······· .... ····· .. · .... ··· .. · .. ··• 1 (N)-Entity 1 (Nj-Layer

- - -- -- - -1- --- - - ---- - -- -- -- - --- -- -- -- - --- -r -- -- - -- - (N-l)-Service Layer

(N-I)-Layer

Figure 2-2: Interaction ofAdjacent Layers

As an example, consider the following three layer model (based upon the

Arpanet [PadlipskyI985aD which can be used to convey the basic concepts of a

layered architecture:

Process (or Application) Layer: consisting of Processes which can receive
transmissions from other Processes (on this or other Hosts) or can
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perform transmissions to Processes (once again, on this or other Hosts).
Hosts usually support many Processes and distinguish between them
using sometype ofProcess identifier;

Communication Layer: the Communication Layer hides the idiosyncrasies
of the various networks to which the Host may be connected and
attempts to offer a uniform view of the different networks to the
Process(es) requiring the use of Processes on other Hosts. There is
normally only one Communication Layer on each Host and it is
responsible for directing messages between the Network and Process
Layers;

Network Layer: is responsible for the transmission and reception of
messages on a specific network. A Host can be connected to many
networks.

In a layered architecture, it is possible that an identifier is expanded into

several more identifiers [Watson1983a]. For example, in the Arpanet model

described above, a transmitting Process could send a message to a receiving

Process using the lower layers to perform the transmission. In this case, the

identifier supplied by the Process would be required to map into at least two

additional identifiers: the first identifies the receiving Host (to allow the

message to be sent across a network to the correct Host) and the second

identifies the receiving Process (to allow the receiving Communication Layer

to supply the message to the intended Process).

It is important to note however, that in most layered architecture models,

the receiving Process is not explicitly identified as suggested above. Instead,

the transmitter ofthe message often identifies a destination Port, rather than

a specificProcess - since it is assumed that a Port number can be kept static,

whereas Process identifiers are usually dynamic. In a layered architecture

such as the one described above, Processes are often identified using a

Host-Port identifier.
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Layered architectures should be considered when dealing with multicast

communications. For example, the number ofmessages generated by anyone

layer in support of a multicast transmission depends, in part, upon how the

layer's receiving entities are identified. Similarly, in a multicast reception,

the (Nl-Layer Receiver may require the (N-l)-Layer Receiver to queue

messages until they can be processed,potentially affecting the performance of

the machine.

2.3 Survey of Existing Systems

In the followingSection, several existing networks and distributed systems

are discussed in light of how they support multicast communications. This

survey is presented in three parts. First, those implementations designed for

the Ethernet, a local area network which can support an efficient form of

multicast communications, are considered. Second,multicast communication

implementations intended for the Cambridge Ring, a local area network not

directly supporting an efficient form of multicast communications, are

examined. Finally, a series of multicast communications implementations

primarily intended for specific research networks other than the Ethernet or

the Cambridge Ring are presented.

2.3.1The Ethernet [Metcalfe1975a,Hopper1986a, Chorafas1984a]

The Ethernet is a bus-structured local area network, developed by Xerox,

allowing up to 1024stations on a single network. Each Ethernet station can be

associated with its own unique identifier (allowing unicast communications),

a group identifier shared by all stations (permitting broadcast

communications) and, in some implementations, several group identifiers

which can be shared by any number of stations [DEUNA1983a] (thus making

efficient multicast communications possible).
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Messages are transmitted across the Ethernet in packets. The format of

the packet depends upon the version of the Ethernet in use. The Xerox

Ethernet packet format is as follows [DIXI980a]:

Preamble Destination Source TypeAddress Address

.............. ~------,
Frame

Data Check
Sequence

.............. ---1. ----'

8 bytes 6 bytes 6 bytes 2 bytes 46 to 1500
bytes

4 bytes

Figure 2-3: Xerox Ethernet Packet Structure

However, the IEEE 802.3 standard [IEEEI982a] replaces the Type field

(used to indicate the type of message, thereby allowing a number of different

protocols to be supported) with a Length field (indicating the number of bytes

in the Data field).

Since the Ethernet is a bus structured network, all stations on the network

receive a copy of the transmitted packet. However, it is the responsibility of

each station to determine whether the message should be kept or ignored by

examining the Destination address.

Because of the Ethernet's ability to support both unique and group

identifiers many network designers have utilized the Ethernet in the

development of multicast communication protocols as the following examples

demonstrate.

2.3.1.1 Pup [Boggs1983a]

PUP is a packet structure designed to be transmitted in an Ethernet

packet. While the Destination address with the Ethernet packet only specifies

a Host, the PUP address specifies both a Host and a Port. For a Process to

receive a PUP packet, it must first be associated with a Port; thereafter, any
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packets arriving at the Host with a Port number the same as that of the

Processwill bemade available to the Process.

PUP supports a form of multicast transmission by allowing the Source

Process to broadcast a message with a Port number which is common to

Processes on different Hosts on the Network. It is the responsibility of each

Destination Host to filter the incoming packet using the PUP Port number to

determine if the requested Port is available.

2.3.1.2 The V.System [CheritonI984a, Cheritonl985b]

The V-System is a distributed kernel developed at Stanford University

which uses an Ethernet as an "extended backplane" to connect a group of

diskless SUN workstations and server machines.

The V-System utilizes the underlying Ethernet broadcast address and its

own packet structure to transmit multicast messages to servers belonging to

multicast sets. As in the case of PUP, it is the responsibility of each

Destination Host to determine whether it supports the requested service by

examining the group identifier supplied with each message.

The need to support multicast reception has been recognized by the

designers of the V-System in that a Process can request the kernel to discard

all incoming messages, return the first message received (discarding the rest)

or return all messages (individually, as they are received).

2.3.1.3 MP [Ahamad1985a]

MP is a multicast transmission implementation developedat SUNY, Stony

Brook which uses an Ethernet to connect a series of UNIX Hosts. The

implementation has extended UNIX 4.2 sockets to allow a message to be sent

from a Source Process to one or more Destination Processes. As in other
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Ethernet implementations, multicast transmissions are achieved USIng

broadcast transmissions.

2.3.2 Cambridge Ring [JNTIS1982a,JNTPS1982a, Needham1982a]

The Cambridge Ring is a slotted-ring local area network consisting of Upto

254 stations (or nodes). Each node on the network is associated with its own

unique address (allowing unicast communications). For a communication to

take place, the Source Cambridge Ring node first waits for a free "slot" to

become available; it then supplies the network with the address of a

Destination Cambridge Ring node and two bytes of data in a mini-packet.

When the mini-packet arrives at the Destination, a copy of the data is taken

and a pair of Response bits (within the mini-packet) are set to indicate

whether the mini-packet was accepted or rejected. The mini-packet then

returns to the Source node which reads the Response bits and frees the mini-

packet (making it a free slot once again).

Because the Cambridge Ring was intended for unicast communications,

there have been few multicast communication implementations for the

Cambridge Ring described in the literature. However, one implementation

using the Cambridge Ring which does support a form of multicast

communications is the UNIVERSE project [Leslie1984a, Waters1984a], which

links several Cambridge Rings by a satellite broadcast channel. Network

Layer multicast communication is achieved by the use of protocols which

allow the receiving satellite stations to determine whether the intended

Destinations reside on the local Cambridge Ring before transmitting the

message on the local ring.
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2.3.3Other Implementations

Metanet [AguilarI984a] is an extension of the United States' Department

of Defense Internet Protocol (LP) intended, in part, to allow multicast

communications. By utilizing some of the spare space within the header of an

Internet Protocol packet, Metanet can transmit an additional eight

destination addresses. How these additional addresses are used depends upon

the underlying network address structure. For example, in a broadcast

network, each Destination Host receiving a copyof the packet could examine

the eight addresses to determine ifits own address was included in the list.

The Admiralty Surface Weapons Establishment (ASWE) Serial Data

Highway [LakinI982a], is a local area network developed to provide fault

tolerant communications between distributed computers for ship borne

command and control systems. The highway connects up to 63 devices (known

as terminals), each of which may communicate with any other, and a Poller,

which controls the traffic between the terminals. Terminals do not transmit

unless they have been polled by the Poller. Oncepolled, the terminal responds

with one of: a null message, a message for a specific terminal, or a multicast

message for a group of terminals. Terminals receiving the broadcast message

act a Servers, returning responses when they are polled.

Shoshin [TokudaI983a] is an experimental system designed at the

University ofWaterloo to study the development and evaluation ofdistributed

software. The Shoshin system consists of two PDP-11145sand ten LSI-11123s,

all connected by a high speed parallel bus. Shoshin has a layered archi tecture

with Source applications sending requests to one, many, or all possible

Destinations.

The IBM Token Ring [JansonI983a] supports both intranetwork

multicast communications (i.e. multicast communications within a single
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network) and internetwork multicast communications (Le. multicast

communications across several networks) using a hierarchical identifier

structure. The identifier consists essentially of two parts, a ring identifier

(which can identify the current ring, a specific ring, or all rings) and a station

identifier (which can indicate a specific station, all stations, or a group of

stations). Depending upon the identifier structure chosen, unicast, multicast,

or broadcast communications can be achieved between a transmitting station

and receiving station(s) on a specific ring or all rings.

MIKE (Multicomputer Integrator KErnel) [TsayI983a] is a distributed

network developed at the Ohio State University. The network connects a

series ofLSI-l1l23s and a PDP-lO using a double-loop ring. Although the main

emphasis of the research on MIKE is the development of guardians for

distributed processors, the underlying network does permit multidestination

transmissions.

Hubnet [Leel983a] is a network developed at the University of Toronto

based upon fibre-optic links. Both transmitters and receivers are

interconnected via a "hub" consisting of two parts: a selection hub and a

broadcast hub. A transmission involves a transmitting Host sending a

message to its selection hub, which in turn transmits the message to all Hosts

(and possibly other selection hubs) attached to the broadcast hub (including

the Host which originally transmitted the message - thereby allowing the

Host to determine whether the hub accepted or ignored the message). Since

each message transmitted by the hub is sent to all Hosts (i.e. a hub

transmission is a Network Layer broadcast transmission), Hubnet has the

potential of supporting multicast communications.
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2.4 Applications

In the previous Section, several examples of the technology available for

the support ofmulticast communications were discussed. In this Section, four

applications are presented, each of which illustrate some of the different

requirements that a multicast communication facility could be expected to

support.

2.4.1 A Time-Signal Generator

The simplest type of multicast communication is one in which the Source

transmits a message to the members of the multicast set and none of the

Destinations are to respond. In the following example, the Source is a "time-

signal generator", that is, a Process that continuously supplies the time to the

members of a multicast set. A Destination in this example is any Process that

happens to need the time. The time value is obtained by "tuning into" the

multicast set associated with the time-signal generator.

The Source Process (Le. the time-signal generator) algorithm is as follows:

repeat
GetTime;
SetupTimeSignalPacket;
SendTimeSignalToTimeReceiverSet;

until
NetworkOrClockFails;

(It is assumed that before each call to GetTime, there is a brief pause which

stops the Source Process from flooding the network with time values that

hardly differ fromeach other.)

For a Process to obtain a time value, it must first become a member of the

multicast set to which time signals are sent. The Destination Process (Le. one

requiring the time) must then wait for a message containing the time value
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(the "Time Signal") to arrive. Should the Destination miss the current time-

signal, it is assumed that there will be another sent by the time-signal

generator after a brief interval (since new time-signals are continually being

transmitted). The Destination Process algorithm is as follows:

WaitForATimeSignal;
SetupTimeFromTimeSignal;

This codefragment takes the first "TimeSignal" that is received and uses it to

establish the Process's current time.

Although the above algorithms are intended to allow a Process to receive a

time value from a time-signal generator, the accuracy of the received time

value can depend upon how the Destinations are identified. For example,

should the underlying network use unique identifiers, significant delays could

occur during the repeated transmission of a time-signal (with the same time

value), rendering the received value very inaccurate. Boggs [Boggs1983a]has

suggested that time servers (Le. the time-signal generator) send an error

value with each (broadcast) message, thereby allowing the Process requiring

the time to choose the most accurate time value possible. However, if the

multicast transmission is simulated by a series of unicast transmissions, the

concept of a single error value is meaningless since the error increases with

each message sent.

2.4.2 A Time Server

In this Section, another time-server application is presented. However,

unlike the previous example, the Source is the Process requesting the time and

the Destinations are Processes which return their current time value as

Responses.
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The Source Process (Le. the Process requesting the time) could be written

as follows:

SendTimeRequestMessageToTimeServers;
ReceiveFirstAvailableTimeMessage;
SetupTimeFromTimeMessage;

In the above algorithm, the Source Process accepts the first available time-

message, ignoring any subsequent time-messages.

However, there are situations where the time value accepted from the first

received time-message may not be sufficiently accurate for the Source Process.

For example, a user may be satisfied obtaining a time value accurate to the

nearest minute, whereas some applications may require a time value accurate

to within a few milliseconds. To overcome this problem, the incoming time-

messages couldbe filtered.

Filtering can be performed either by the Source Process directly or by a

time-message reception procedure supplied by the Source. In this and

subsequent multicast application examples, filtering will be performed by a

supplied function, thereby freeing the Source of having to explicitly program

items such as exception handling.

For example, a Source Process could be supplied with a function which

returns a success indication if a time-message was received satisfying the

required accuracy (in this algorithm, the ReceiveTimeMessage function

accepts a value indicating the number ofmilliseconds ofaccuracy required):

SendTimeRequestMessageToTimeServers;
ifReceiveTimeMessage(FiftyMilliseconds) = Success then

SetupTimeFromTimeMessage
else

error("No sufficiently accurate time value found.");
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The Destination Process (i.e. the Process supplying the time-message)

could bewritten as follows:

repeat
WaitForATimeRequestFrom(Source);
GetTime;
SetupTimeMessage;
SendTimeMessageTo(Source);

until
NetworkOrClockFails;

Note, in this algorithm, the Destination Processmaintains a variable "Source"

which identifies the originator of the Request. This allows the Destination

Process to return the time-message to the requesting SourceProcess.

2.4.3A Triple-Modular Redundant File-Server

A Triple-Modular Redundant (or TMR) File-Server consists of three

Destinations (the file-servers) responsible for storing separate copiesof a file

sent by a Source. The file transfer continues until either the file has been

successfully received by the file-servers or the number of file-servers falls

below two (that is, the file transfer will continue with two or three file-

servers). In this example, it is assumed that for the duration of the file transfer

there is only a single Source Process (Le.other Processes requiring the use of

the file-server must wait until any file transfers in progress have completed)

and lost messages are not retransmi tted.

In the following algorithm, the rules governing the transmission of

messages by the SourceProcess are as follows:

- a Destination must respond within a certain time period otherwise it is
assumed to be inactive;

-if a Destination is found to be inactive, it should be ignored (Le. not
transmitted to and have any subsequent Responsesdiscarded);
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- if two or more Destinations are found to be inactive (that is, Responses are
not received from them within a certain time period), the transmission is to
be stopped.

These rules are enforced by the function ReceiveAndFilterReplies, which

returns a status value to the Source Process of either "TMRContinue" if the

transmission can continue or "TMRFailed" if the transmission is to be aborted.

The Source Process (Le.the Process requiring the services of the TMRFile-

Server) algorithm could be written as follows:

GetFileHeader;
SendToTMRFileService(FileHeader);
status: = ReceiveAndFilterReplies;
if status < > TMRFailed then
repeat

GetFileBlock;
SendToTMRFileService(FileBlock);
status: = ReceiveAndFilterReplies;

until
(status = TMRFailed) or (FileBlock = EndOfFile);

The Source Process first sends the file header and then a series of file

blocks, the last of which contains an end of file indicator. After each

transmission, the Source Process waits for the function

ReceiveAndFilterReplies to respond with a status value, indicating whether to

continue the file transfer. The ReceiveAndFilterReplies function collects

Responses from those Destinations still involved in the transfer and which

respond within a fixed time period. Should the file transfer fail, the Source

Process simply stops transmitting. (It is assumed that the Destinations will

also eventually "time-out" and abort the file transfer if messages are not

received from the Source Process within a corresponding time period.)
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The Destination Process (Le. the File-Server) algorithm couldbe written as

follows:

repeat
WaitForFileHeader;
SetupFileHeader;
ReplyDoneMessage;
repeat

status: =WaitForFileBlock;
if status = Okay then
begin

PutFileBlock;
ReplyDoneMessage;

end·,
until
(FileBlock = EndOfFile) or (status < > Okay);
if status < > Okay then

AbortFileCrea tion;
until
HostOrNetworkFail ure;

The File-Server creates a new file from the supplied file header and then

proceeds to write each received file block to the newly created file. The File-

Server uses two different receive functions. The first, WaitForFileHeader,

waits indefinitely for a file header. Once the transmission has started, a

second receive function, WaitForFileBlock, expects a File Block to be made

available within a certain time period - this is to ensure that the File-Server

does not wait indefinitely for a slow or inactive Source. File Blocks received

within this period are returned with a status of "Okay", otherwise an error is

returned and the creation of the file is aborted.

The TMR File-Server example demonstrates the need for an "intelligent"

multicast filter, which, unlike the filter presented in Section 2.4.2, must

maintain state information, allowing it to determine which Responses are

valid and which are to be ignored. In addition, it demonstrates the simplicity

of a multicast transmission in that the Source need only send one message
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which is to be received by the members of the multicast set, rather than

repeatedly transmitting the same message to each member.

2.4.4 A Two-Phase Commit Protocol

A Two-Phase Commit protocol attempts to ensure that a transaction, such

as a database update, is either executed entirely or not at all by the

Destinations (or Participants) offering the service. Briefly, the first phase

consists of a Source (the Commit Coordinator) asking all Participants

whether they can commit themselves to performing a specific (common)

action. Those that can indicate by a "yes" vote and those that cannot respond

with a "no" vote. Should one or more Participants indicate that they cannot

commit themselves to perform the required action, the Commit Coordinator

transmits an "Abort Request", to which all Participants must also respond.

However, if all Participants indicate "yes", the Commit Coordinator then

issues a "Commit Request", in which the Participants guarantee the

performance of the required action - this is the secondphase ofthe protocol.

The following algorithms, which are adapted from [Bennett1984a],

describe a Two-Phase Commit protocol. The CommitCoordinator (the Source)
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algori thm is as follows:

{First Phase}
SendCan YouCommitMessage;
answer:= WaitForResponses;
if answer = Yes then
begin

{Second Phase}
set(COMMIT);
repeat

SendMessage(DoCommi t);
answer: = WaitForResponses;

until
answer = Yes;
reset(COMMIT);

end
else
begin

repeat
SendMessage(DoN otCommi t):
answer: =WaitForResponses;

until
answer = Yes;

end;

The Wai tForResponses procedure used by the Commit Coordinator returns

either a "yes" or "no" answer, depending upon the number of Responses (and

their values) received within a certain time period. A "yes" indicates that all

possible Destinations responded with a "yes" vote, while a "no" indicates that

one or more Participants could not ensure completion of the Two-Phase

Commit.

Once the decision is taken to either commit or abort the transaction, the

Commit Coordinator continues to transmit "DoCommi t" messages (if the

commit is to take place) or "DoNotCommit" messages (if the commit is not to

take place) until all Participants have responded with a "yes" indication. (The
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statements ttset(COMMIT)" and ffreset(COMMIT)" are specific to the Two-

Phase Commit protocol and are not considered here.)

A Participant (i.e. a Destination) has the following algorithm:

WaitForACan YouCommitMessage;
Ensure UndoRedo;
if CannotEnsure then

SendMessage(N 0Vote);
else

SendMessage(Y esVote);
Wai tForVerdict;
if Verdict = DoCommit then
begin

DoUpdate;
SendMessage(Y esVote);

end
else
begin

UndoUpdate;
SendMessage(N 0Vote);

end;

The Participant initially waits (indefinitely) for a commit request. When a

commit request arrives, the Participant attempts to ensure that it can

actually commit itself. Once the decision is taken (to either commit or abort),

the Participant must wait for the Commit Coordinator to indicate the verdict.

(The procedures "Ensurel.lndoftedo", "Dolfpdate" and "UndoUpdate" as well

as the Boolean variable "Cannotlsnsure" are all specific to the Two-Phase

Commit protocol.)

The Two-Phase Commit protocol described in this Section has shown how

multicast communications can assist in the implementation of atomic events.

That is, the multicast transmission is treated as a single event which is either

completed or ignored, rather than burdening the application with the details

of the success or failure of individual communications.
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2.5 Concluding Remarks

In this Chapter, some of the basic concepts associated with multicast

communications such as the terminology and ways of describing multicast

communication implementations have been covered. In addition, a survey of

many of the known multicast communication implementations was presented,

demonstrating that both hardware and software facilities do exist which can

support multicast communications. Finally, a set of applications were

discussed, showing that there are many different requirements which must be

considered in a multicast communication.

In the next two Chapters, several of the topics covered in this Chapter will

be expanded to further our understanding of multicast communications. In

Chapter Three, the communication models will be used to develop a series of

taxonomies which will, in turn, be used to describe the implementations and

applications discussed in this Chapter. In addition, in Chapter Four, the

following commonfeatures, described in Section 2.4, will be used to to develop

a set ofmulticast communication primitives comprising of:

a) the ability to send a message to the members ofmulticast set;

b) the ability to receive multiple messages sent by one of more transmitters,
and to filter those messages not required;

c) the ability to join (or become a member) of a multicast set and receive
messages which are destined to the members of the set;

d) the ability to leave a multicast set, thereby ignoring any subsequent
messages sent to the members of the set.
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Chapter3
Methods of Classifying

Multicast Communications

In Chapter Two, three different models of describing a multicast

communication were presented: a Transmitter-Receiver model, a Source-

Destination model, and a Layered Architecture model. In this Chapter, these

models are used to develop a set of classification schemes for describing

different aspects of multicast communications. These classification schemes

will be used in subsequent Chapters for the development, implementation and

testing ofa set ofmulticast communication primitives.

A multicast transmission taxonomy is presented first, based upon the

Transmitter-Receiver model. A multicast reception taxonomy is then

developed using the Source-Destination model. Finally, the Layered

Architecture model is examined and used to describe both multicast

transmission and the reception of multicast messages in some types of

distributed systems.

3.1 A Multicast Transmission Taxonomy

The Transmitter-Receiver communications model presented in Chapter

Twodescribes two factors which can influence any communication - the type

of identifier used to identify the Receiver (Unique or Group) and the number

of identifiers that can.be associated with a single message (One or Many). By

enumerating these two factors, a multicast transmission taxonomy can be
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developed and used to describe several different aspects of multicast

communications.

3.1.1 The Basic Taxonomy

The multicast transmission taxonomy developed in this Section is intended

to establish an ideal lower and upper bound for the number of transmissions

required by a Transmitter in order that all members of the multicast set

receive a copy of the message. (Note, the present analysis does not take into

account acknowledgments or message retransmission.) The taxonomy itself is

made up of four different classifications based upon the number of identifiers

that can be associated with a message (One or Many) and the type of identifier

used to identify the Receivers (Unique or Group). Table 3-1 (below) lists the

different classifications and their associated minimum and maximum number

of transmissions:

Number of

Classification
Transmissions

Minimum Maximum

One-Unique R R

One-Group 1 R

Many- Unique 1 S

Many-Group 1 S

Table 3-1: The Basic Taxonomy

where:

R - is the total number of Receivers in the multicast set, and

S - is the ceiling of R / N, where N is the number of identifiers (i.e. "many")
which can be associated with the transmission of a single message.
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There now follows a discussion of each of the classifications in terms of the

minimum and maximum number of transmissions required:

One-Unique: a Transmitter in the One-Unique category can associate at most
one identifier with each message, while the Receivers are represented
using unique identifiers. In this category, the minimum and maximum
number of transmissions are the same, that is H, since each Receiver
must be transmitted to individually;

One-Group: a Transmitter in the One-Group category can associate at most
one identifier with each message, while the Receivers are represented
using group identifiers. The number of transmissions depends upon the
number of group identifiers required to represent the members of the
multicast set - if all members share the same group identifier, then only
one transmission is required. However, in the worst case, where each
Receiver is identified using its own group identifier, a total of R
transmissions are required;

Many-Unique: a Transmitter in the Many-Unique category can associate
many identifiers with each message, while the Receivers are represented
using unique identifiers. The number of transmissions depends upon the
number of multicast set members (H), and the number of identifiers that
can be associated with the message (N):

R < N: resulting in a single transmission;
R = N: resulting in a single transmission;
R > N: resulting in multiple transmissions, to a maximum ofS.

Many-Group: a Transmitter in the Many-Group category can associate many
identifiers with each message, while the Receivers are represented using
group identifiers. The number of transmissions depends upon the
number of group identifiers required to represent the members of the
multicast set G (with a value between 1 and R), and the number of
identifiers that can be associated with the message (N):

G < N: resulting in a single transmission;
G = N: resulting in a single transmission;
G > N: resulting in multiple transmissions, to a maximum of S
(when each Receiver is identified with its own group identifier, i.e.
G = R).
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Finally, it is worth noting that some systems may support hybrid schemes

whereby a multicast set is represented by both types of identifier (i.e. Unique

and Group). In these situations, the taxonomy still can be used, however all

identifiers should be considered as group identifiers (since a Group identifier

is assumed to represent one or more Receivers).

The following examples demonstrate how the multicast transmission

taxonomy can be used to classify different networks and distributed systems.

3.1.1.1 The Cambridge Ring [Needham1982a]

A transmission on the Cambridge Ring involves a Source station (the

Transmitter) supplying two bytes of data and the address of a single

Destination station (the Receiver) in a mini-packet to the Cambridge Ring.

The mini-packet travels around the ring, past the intended Destination (which

takes a copy of the mini-packet and sets the Response bits) and back to the

Source (which checks the Response bits and frees the mini-packet).

From this description of a Cambridge Ring transmission, the Cambridge

Ring can be classified as a One-Unique multicast transmission network.

Therefore, in a multicast transmission involving "R" Cambridge Ring

stations, a total of R transmissions would be required.

Note, the Cambridge Ring can also support One-Group multicast

transmission by performing a broadcast transmission to all stations. However,

since Cambridge Ring broadcast transmissions are rarely discussed in the

literature (in part because all stations access the same pair of Response bits,

potentially destroying the previous value [JNTIS1982a]), One-Group

multicast transmission on the Cambridge Ring is not considered in detail

here.
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3.1.1.2 The Ethernet [Metcalfe1975a]

On an Ethernet, messages are transmitted in packets containing a single

Receiver identifier. However, because of the bus structure of the Ethernet, the

packets are potentially available to all stations on the network. The identifier

itself can be either Unique, identifying a single receiving station, or Group,

identifying a group of receiving stations. Depending upon the type of receiving

hardware available, the Group identifier can either be recognized by all

possible Receivers or a subset of them (for example, see [DEUNA1983a]).

Clearly the Ethernet can be classified using the multicast transmission

taxonomy as either a One-Unique or a One-Group multicast transmission

network. For example, it is One-Unique ifall stations belonging to a multicast

set can only be identified by their Unique station identifier - causing the

transmitting Ethernet station transmit a copy of the message to each station

in turn. However, it is One-Group if all stations share the same Group

identifier, minimizing the number of messages the transmitting Ethernet

station must send.

3.1.1.3 Metanet [Aguilar1984a]

A Metanet station is designed to support both the transmission and

reception of messages associated with up to nine identifiers (either Unique or

Group, depending upon the station identification scheme of the Destination

network). Therefore, depending upon the type of identifier the Destination

Metanet stations are represented by, Metanet can be classified as either a

Many-Unique or a Many-Group multicast transmission network.

3.1.1.4 The V-System [Cheriton1984a]

A V-System Client Process (i.e. a Transmitter) on one machine sends a

message to a multicast set consisting of one or more Server Processes (i.e.
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Receivers), all sharing a common "Group Identifier". Interprocess multicast

transmission in the V-System can therefore be classified as One-Group. In

addition, since the Client uses a single Group Identifier to identify all possible

Servers in the multicast set, the V-System guarantees a minimum number of

transmissions by the Client.

3.1.1.5Summary

In this Section a taxonomy has been developed which allows the

description of multicast communications between a Transmitter and a

multicast set consisting ofone or more Receivers. The taxonomy is based upon

the number of identifiers (either One or Many) and the type of identifier

(either Unique or Group) which can be associated with the transmission of a

message.

However, the taxonomy as presented does not describe the effect that

layered architectures can have upon multicast transmissions, nor does it allow

an examination of the overheads involved in message distribution. These

features will be discussed at length in the next Section.

3.1.2The Multicast Transmission Taxonomy and Layered
Architectures

Since distributed systems may consist of a variety of networks, it is often

desirable to hide the underlying network and its associated protocols from

application Processes, thus permitting commonsoftware to be run on different

machines on different networks. In order to allow the portability of software

and to allow entities on different machines to communicate, most distributed

systems are designed in a layered fashion [Watson1983a].

In Chapter Two, it was shown that although communications in a layered

system between two (Nj-Entities may appear to occur at the (Nl-Layer, the
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communication is in fact using the communication services of the next lower

layer, the (N-l)-Layer. It is the (Nvl j-Layer that dictates the number and type

of identifiers which can be used by the (Nl-Layer.

The following assumptions are made regarding layered architectures:

a) the transmitting (Nl-Entity supplies the transmitting (N' l j-Entity with a
message, and the number and type of identifiers which the (N-I)-Service
Layer allows. For example, if the (N-l)-Service Layer supports Many-
Unique transmission (that is, the transmitting (Nl-Entlty can supply many
unique identifiers with each message), then each message is supplied to the
transmitting (N -I)-Entity with many unique identifiers;

b) when the transmitting (N-I)-Entity receives a message, plus identifier(s),
from the (N)-Entity, the message is transmitted immediately without
waiting for additional messages or identifiers. For example, if the
(Nl-Layer supports One-Unique transmission and the (Nvl.j-Layer supports
Many-Unique transmission, each message supplied by the transmitting
(Nj-Entity is transmitted with a single unique (N-l)-Identifier by the
transmitting (N-l)-Entity (even though the (N' l j-Message could have been
associated with more (N-I)-Identifiers);

c) the number of receiving (N-l)-Entities is always less than or equal to the
number of receiving (Nj-Entities, That is, a receiving (Nl-Entity can be
associated with at most one (N-I)-Entity, whereas a receiving (N-l)-Entity
can be associated with any number of'(Nj-Entities.

The amount of processing required by the system to support the

communication depends, in part, upon how the individual layers are classified

by the multicast transmission taxonomy. For example, if a single

(Ni-Identifier is used to identify all receiving (Nl-Entities (that is, the

(Nl-Layer supports One-Group multicast transmission) but the transmitting

(N-l)-Entity must use separate (N-I)-Identifiers to identify each receiving

(N-l)-Entity (that is, the (N-l)-Layer only supports One-Unique multicast

transmission), then the One-Group (Nl-Identifier must be mapped into a series

of One-Unique (N-l)-Identifiers (by either the transmitting (Nl-Entity or the
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transmitting (N-l)-Entity). Similarly, little or no processing may be required

ifboth the transmitting (Nl-Entity and the transmitting (N-l)-Entity support

the same number and type ofidentifier.

Clearly, additional processing may be required when either or both of the

following situations arise:

a) the (Nl-Identifier type and the (N' Ll-Identifier type differ. For example, the
(Nl-Identifier may be group (unique) and the (N-l)-Identifier may be
unique (group);

b) the number of (Nl-Identifiers required to identify the receiving (Nl-Entities
differs from the number of (N-l)-Identifiers required to identify the
receiving (N-l}-Entities. For example, one (many) (Nl-Identifiers are used
at the (Nl-Layer while many (one) (N-l)-Identifiers are required by the
(N-l}-Layer. Similarly, the layers may support different numbers of
"many" identifiers.

In both of these circumstances, it may be necessary to change one or both of:

a) the identifier types - from group to unique or unique to group;

b) the numberofidentifiers- from one to many, many to one, or many to many.

The processing requirements of the adjacent layers within a system can be

expressed in a tabular form, based upon how the layers are classified by the
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multicast transmission taxonomy developed in the previous Section:

Classifica tion of (N)-Layer
Classification

of One Many
(N-l}-Layer

Unique Group Unique Group.
One-Unique U-+U G-+U U-+U G-+U

1: 1 1:1 m:l m:l

One-Group U-+G G-+G U-+G G-+G
1 : 1 1:1 m: 1 m:l

Many-Unique U-+U G-+U U-+U G-+U
l:n 1: n m:n m:n

Many-Group U-+G G-+G U-+G G-+G
l:n 1: n m:n m:n

Table 3-2: Processing Requirements ofAdjacent Layers

Each entry in Table 3-2 describes the changes associated with the (N)-

Identifieris), in terms of identifier type and number of identifiers, if they are to

be mapped into (N-I)-Identifiers.

Identifier translation, when required, is represented by the arrow (-+).The

four possible identifier translation combinations should be read as follows:

U -+U - each unique (Nl-Identifler supplied with the message is mapped into a
unique (N-I)-Identifier;

U -+G - each unique (Nl-Identifler supplied with the message is mapped into a
group (N-I)-Identifier;

G -+U - each group (Nl-Identifier supplied with the message is mapped into
one (or more) unique (N-l}-Identifiers;

G -+G - each group (Nj-Identifier supplied with the message is mapped into
one (or more) group (N-l}-Identifiers.

The change in the number of identifiers (that is, the difference between the

number required to identify the receiving (Nl-Entities and the number
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required to identify the receiving (N-l)-Entities) associated with each message

is represented by the colon (:) and is in the form m : n, where m indicates the

maximum number of (Nl-Identifiers allowed with each message by the

(Nl-Layer, and n is the maximum number of (N-l)-Identifiers allowed with a

single message by the (N-l}-Layer. The possible identifier changes and their

impacts are:

1 : 1 - One (Nl-Identifier per message to One (N-l}-Identifier per message.
Both the (Nl-Layer and the (N-l)-Layer support at most one identifier with
each message, irrespective of the number of (N-l)-Identifiers produced by
any mapping. For example, if the identifier type changes from Group to
Unique (G --+ U) or group to group (G --+ G), each (N-l}-Identifier produced
must be sent with its own copy of the message, even though only one
message is supplied by the (Nl-Entity. This can result in many (repeated)
transmissions of the same message to the receiving (N-l}-Entities.

1 : n - One (Nl-Identifier per message to Many (N-l)-Identifiers per message.
The (Nl-Layer allows at most one (Nl-Identifier per message, but the
(N-l}-Layer allows many (N-l}-Identifiers with each message. When the
one (Nl-Identifier maps into several (N-l)-Identifiers (such as Group to
Unique (G --+ U) or possibly Group to Group (G --+ G», then the number of
repeated transmissions of the message by the transmitting (N-l)-Entity
can be less than the 1 : 1 case (above).

m: 1 - Many (Nl-Identifiers per message to One (N-l)-Identifier per message.
The (Nl-Layer allows many (Nl-Identifiers with each message, but the
(N-l)-Layer allows at most one (N-l)-Identifier with each message. If the
(Nl-Identifiers are Unique, the maximum number of messages sent by the
transmitting (N-l)-Entity will equal the total number of (Nj-Identifiers
supplied by the (Nl-Entity if Unique to Unique (U --+ U), but the total can be
less if several Unique identifiers map into a single Group identifier
(U --+ G). However, if the (Nl-Identifiers are group identifiers, the number of
messages sent by the (N-l)-Entity will depend upon the number of
(N-l}-Identifiers produced by the Group identifier mapping (either Group
to Unique (G --+ U) or Group to Group (G --+ G».

m : n - Many (Nj-Identiflers per message to Many (N-l}-Identifiers per
message. Both the (Nj-Layer and the (N-l)-Layer allow many identifiers
with each message. The number of messages sent by the transmitting
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(Nvl l-Entity depends upon the number of (NvLl-Identifiers produced by
mapping the m (Nl-Identiflers into (N-I)-Identifiers. The number of
(N-l)-Identifiers produced (say M) depends upon the types of identifier
used by the two layers. Therefore, the number of messages sent will depend
upon M (the number of (N-I)-Identifiers produced) and n (the maximum
number of (NvLl-Identifiera that can be associated with the (N-I)-Message):

M < n - only one message need be sent by the transmitting (Nvl l-Entity
since the number of (N-I)-Identifiers produced is less than the number of
(Ns l l-Identifiers that can be associated with the message;

M = n - only one message need be sent by the transmitting (N' Ll-Entity
since the number of (NvLl-Identifiers produced is equal to the number of
(N -D-Identifiers that can be associated with the message;

M > n - the ceiling of M / n messages will be sent by the transmitting
(N-I)-Entity since the number of (NvLl-Identifiers produced are more
than the number of (N-I)-Identifiers which can be associated with the
message.

This layered view of multicast communications can be applied to many

varied, yet important aspects of multicast communications such as

intranetwork communications, internetwork communications, and message

distribution within a Host.

3.1.2.1 Intranetwork Communications

In any layered architecture there will exist an (Nl-Layer which has no

supporting (N-I)-Layer. This (Nl-Layer is the lowest layer of the architecture

and is often referred to as the Physical Layer since it allows the physical

connection of machines [ISO 198Ia]. A distributed system consisting of a single

Physical Layer is said to support intranetwork communications (that is,

communications on a single network). In an intranetwork communication it is

assumed that all entities at a specific (Nl-Layer support the same number and

type of identifiers. Note however, that an (NvLl-Layer need not support the

same number and type of identifiers as the adjacent (Nl-Layer.
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For example, a V-System Host consists of two layers: an application layer,

consisting of Clients and Servers, and a kernel layer, through which all

communication takes place (using an Ethernet as the underlying network).

Both the application and kernel layers use One-Group multicast

transmissions for the distribution ofmulticast messages. Since the members of

a multicast set (consisting of Servers) are accessed with a One-Group

transmission, the kernel layer is supplied with a single message and a single

(Group) identifier, irrespective of the number ofmembers of the multicast set.

The kernel transmits the message and the supplied multicast set identifier to

all other V-System Hosts on the network using a single Ethernet broadcast

transmission. Clearly, from the discussion of layered multicast transmission,

the One-Group to One-Groupmethod ofmulticast transmission used by the V-

System is highly efficient, requiring the minimum amount of message

handling.

However, with a different underlying network, the V-System would not

necessarily produce the minimum number ofmessages. Consider the following

(hypothetical) example in which the Cambridge Ring is used in place of the

Ethernet. In this example, the application layer would still use a single One-

Group multicast transmission, however, the kernel layer would be forced to

use One-Unique transmissions for the message to reach the intended Servers.

This One-Group to One-Unique mapping would result in one or more

transmissions of the message on the Cambridge Ring - clearly not as efficient

as when using the Ethernet.

From these examples it is apparent that if the goal of a multicast

implementation is to minimize the amount ofmessage processing in a layered

architecture, a method of multicast transmission should be chosen which

minimizes the number ofseparate messages produced. This can be achieved in
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a number of ways, for example, by ensuring that the number and type of

identifiers donot vary between the different layers.

3.1.2.2Internetwork Communications

Distributed systems allowing communications between entities on

different networks are said to support internetwork communications. The

different networks in an internetwork communication are interconnected by

Gateways. Unlike intranetwork communications, the transmitting and

receiving entities on the different networks need not support the same number

and type ofidentifier, even though they are at the same layer. Although this is

not directly an inter-layer problem, the multicast transmission taxonomy can

be used to describe the actions ofa Gateway when interconnecting networks.

Consider, for example, the following situation: an (Nr-Layer on one

network supports One-Group multicast transmission, while a corresponding

(Nl-Layer on a separate network supports One-Unique multicast

transmission. To permit a communication between these entities, the One-

Group identifier must be converted into a list of one or more One-Unique

identifiers. The identifier conversion can occur in a number of places, for

example:

a) at the transmitting (N-l)-Layer. Individual messages must be sent to the
receiving (N' Ij-Entities through the Gateway, resulting in repeated
message transmission from the transmitter's network, through the
Gateway, to the Receiver's network;

b) at the intervening Gateway. By performing the identifier conversion at the
Gateway, only one message need be sent from the transmitter to the
Gateway. The Gateway would then be responsible for converting the One-
Group identifier into a list ofOne-Unique identifiers.

As a further example, MP [AhamadI985a] supports both intranetwork and

internetwork multicast communication between Processes on UNIX 4.2BSD
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hosts. In MP, One-Group multicast transmission occurs at both the Process

and UNIX-kernel layers - similar to that described in Section 3.1.2.1

regarding the V-System. However, when transmissions occur between

networks, a single transmission is used to supply the Gateway with the

message and a single Group identifier. The Gateway then generates the

number and type of identifier expected by the receiving network using the

supplied Group identifier.

If the goal of the multicast implementation is to minimize the amount of

network traffic, the identifier type supported between the Transmitter and the

Gateway should be chosen as to minimize the number of messages required.

Network inefficiencies should not be allowed to spread across an en tire

internetwork - they should be kept local to a network.

3.1.2.3Message Distribution

Another aspect of multicast transmission to be considered is the

distribution of multicast messages by an (NvLl-Entf ty to the receiving

(Nl-Entities. Message distribution from the (NvLl-Layer to the (Nl-Layer

exhibits similar characteristics to that of multicast transmission from the

(Nl-Layer to the (N-l)-Layer and can be described using the multicast

transmission taxonomy. For example, a receiving (N-l)-Entity may be

expected to distribute messages to any receiving (Nl-Entitiea using a single

group identifier. However, if the receiving (Nl-Entities can only be identified

using individual unique identifiers, the receiving (NvLl-Entity may be forced

to map the group identifier into a series of one or more unique identifiers

before message distribution can take place.

This problem is common to all multicast implementations in which a lower

layer is required to use a series of One-Unique transmissions to distribute

messages to Entities in a higher layer. The problem has been recognized by
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several designers of distributed systems. For example, in [CheritonI984b], a

method of fast message distribution is described whereby 32-byte messages

are distributed using some of the CPU's registers. Similarly, the Accent

Distributed Operating System [RashidI985a] uses a form of shared memory to

reduce the amount of unnecessary message handling.

Clearly, the overall time required to deliver a message to all Destinations

in a multicast set is affected by the time taken by the slowest Host to

distribute its message.

3.1.3 Summary

This Section has shown the design, development, and possible usages of a

multicast transmission taxonomy based upon:

a) the number and type of (Nl-Identiflers used by a transmitting (Nj-Entity in
order to identify the receiving (Nj-Entities, and

b) the mapping of the (N)-Identifier(s) (supplied by the transmitting
(Nl-Entity to the (N-I)-Server Layer) into (N-l}-Identifiers which can be
used to identify the intended receiving (N-l)-Entities.

The usefulness of the multicast transmission taxonomy was demonstrated

in several ways. First, the taxonomy was shown to facilitate the comparison of

existing or proposed multicast transmission schemes. Second, the taxonomy

proved useful in describing the amount of message handling required in

layered architectures when, for example, performing intranetwork and

internetwork multicast communications.

In addition, when using the taxonomy to describe layered architectures,

the following observations were made:

a) multicast message handling within a layered architecture could be
minimized if the different layers used the same type of identifier;
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b) the number of messages generated in an internetwork multicast
transmission is determined both by how the Receivers on the remote
network are identified as well as whether the Transmitter or the Gateway
is responsible formaintaining the list ofReceiver identifiers;

c)the speed of a multicast transmission is determined by the number of
receivers, their location, and the speed of message distribution, both over
the network and within the Host.

These three points will be discussed further in Chapters Five and Six,

when examining various multicast communication implementations.

3.2AMulticast Response Taxonomy

A multicast reception, as defined in Chapter Two, consists of a Receiver

receiving messages sent by many Transmitters. In this Section some of the

problems associated with multicast reception using the Source-Destination

model are considered.

In the Source-Destination model, the Source transmits a Request to set of

multicast Destinations. The Source mayor may not expect Responses from the

Destinations. If Responses are not expected, the Source has no indication as to

the success of the transmission (unless some subsequent communication takes

place). However, if Responses are expected, the Source can, at best, only expect

Responses from those Destinations which received the Request. Of the

Responses that are received, different Sources will handle the Responses in

different ways. For example, a Sourcemay require:

- a single specificResponse,with all other Responses being ignored;

- a certain number ofResponses to be received;

- Responses fromeach Destination.

How Responses are handled is influenced by the type of Destination

identification used by the Source. For example, if Destinations are uniquely
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identified, the Source has an exact indication as to the number and identity of

the possible Destinations. However, if all members of the multicast set share a

common (Group) identifier, the Source is forced to explicitly inquire as to the

membership of the multicast set, since, it is assumed, a Group identifier does

not normally offer any indication as to the number or identity of the

Destina tions.

3.2.1 Types of Multicast Response Handling

A basic division in any communication system in terms of Response

handling is simply whether or not the Source expects a Response. It is possible

to develop a simple table describing the actions of the Source based upon its

Response expectations and the Response it actually receives (each member of

the following table should be read as Source Expects - Source Receives, where

NR indicates NoResponse and R indicates Response):

Source
Source Expects

Actually
NoReceives ResponseResponse

No Response NR-NR R-NR

Response NR-R R-R

Table 3-3: Unicast Response Handling

where the possible Response combinations are described as follows:

NR - NR: the Source does not expect a Destination to respond;

NR· R: the Source is not expecting a Response, but nevertheless receives one.
This is an exception condition which can be resolved using a protocol;

R . NR: the Source, though expecting a Response to the Request, does not
receive one. This again is an exception condition which can be resolved
using a protocol;
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R· R: the Source both expects and receives a Response to the Request.

In a multicast communication, Response handling is considerably more

complex because there are more categories of possible Responses which need to

be distinguished:

No Response: the Source expects no Destination to Response;

Single Response: the Source expects a Response from a single Destination;

Many Responses: the Source expects Responses from more than one
Destination;

All Responses: the Source expects Responses from all possible Destinations.

The single communication table described above can be expanded to

include the various types of Responses possible in a multicast communication.

The Response handling types are based upon what the Source expects, while

the actions within each type are dictated by what the Source actually receives:

Responses Response Expected by Source
actually

received by
No Single Many AllSource

No OK None None None

Single Unexpected OK Not-Many Not-All

Many Unexpected Not-Single OK Not-All

All Unexpected Not-Single Not-Many OK

Table 3-4: Multicast Response Handling

where the contents of Table 3-4 should be read as follows:

OK: the Source received what it was expecting;

Unexpected: the Source is not expecting a Response, however at least one
Destination returned a Response. This is an exception condition;

None: the Source is expecting some type of Response (one of Single, Many, or
All) but no Response is received. This is an exception condition;
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Not-Single: the Source is expecting a Response from a single Destination. If
the number of Responses received is greater than one, this is an
exception condition;

Not-Many: the Source is expecting Responses from Many Destinations. If the
number of Responses received do not equal the number expected, this is
an exception condi tion;

Not-All: the Source is expecting Responses from all possible Destinations. If
the number of Responses received are less than the total number of
Destinations, this is an exception condition.

The recognition and resolution of the exception condition could be handled by,

for example, a protocol.

The above taxonomy is now examined in terms of two issues that can affect

multicast Response handling: identifying Destinations and exception

condi tions.

3.2.1.1 Identifying Destinations

Although the multicast Response handling taxonomy described above

enumerates all possible Response situations, it does not take into account the

different types of Destination identification possible: Unique identification or

Group identification.

If the Source uses Unique identifiers when transmitting a Request to the

Destinations, it has available both the number of Destinations and their

(Unique) identifiers. From this information it is clearly a trivial matter for the

Source to determine which Destinations are responding - allowing all four

possible Response types (No, Single, Many, or All) to be supported. For

example, if Responses are expected from all Destinations but one does not

respond, the Source can immediately identify the Destination in question

since its identity is known.
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However, the Source is at a disadvantage when using Group identifiers

since it is not normally possible to determine the number or identity of the

Destinations from a Group identifier. This means that the only types of

Response that a Source using a Group identifier can be sure of are

No-Response and Single-Response (assuming that at least one Response is

received). It is not possible to guarantee the success ofMany or All Response

types since the total number ofDestinations are not known.

Frank [Frank1985a] has proposed that by using a "static" list of

Destinations (that is, a Group identifier is used in the transmission of the

message, but the Source also maintains a list of the individual Destinations

making up the multicast set), Many-Response and All-Response handling can

be supported using group identifiers. Admittedly, this proposal does remove

the possibility of unwanted or unexpected Destinations joining the multicast

set, however it does not take into account the possibility of Destinations

leaving the multicast set because oferrors such as machine crashes.

Clearly, the designer of a multicast system is presented with a series of

choices when considering the most efficient form of multicast reception. For

example, additional protocolsmay be required when performing a One-Group

transmission if All-Response handling is expected, since a list of unique

identifiers would first have to be constructed before the communication could

commence. However, in a One-Unique multicast transmission, the

membership is already known, but the overhead of performing individual

tra.nsmissionsmay be sogreat as to outweigh this potential advantage.

3.2.1.2 Exception Handling

The multicast Response handling taxonomy as presented at the start of

this Section implies that the Source must handle all the Responses that are
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received. However, it is possible, in a layered architecture, to filter the

incoming messages before they are received by the Source.

For example, a Source Process may require a specificResponse from a set of

Destinations - expecting all other Responses to be ignored. In order to offer

such a feature to the Source Process, a lower layer would be required to filter

the Responses, blocking all but the last.

In Section 3.2.2, exception handling and the filtering of messages will be

discussed further with respect to specific networks, implementations, and

applications.

3.2.1.3 Summary

In this Section, a taxonomy has been developed that can be used to describe

the Response handling of a Source entity. The basic taxonomy is simply an

enumeration of all possible combinations ofResponses that the Source expects

to receive: No Response, Single Response, Many Responses, or All Responses.

In addition, the examination of this taxonomy has raised other issues with

respect to multicast communications. For example, although a One-Group

multicast transmission may require less transmissions than a One-Unique

multicast transmission, additional processing may be required (in the One-

Group transmission) since the list of members making up the multicast set

may not be known and may have to be created before the communication can

continue.

3.2.2Multicast Response Handling Examples

The following Section uses the multicast Response handling taxonomy to

describe multicast response handling in several different networks,

implementations and applications.
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3.2.2.1 Networks

From the description of the Ethernet given in Chapter Two, it should be

apparent that an Ethernet Source is a No-Response type since an Ethernet

packet is sent without provision for a response. (Note that if the Source uses an

Ethernet Group address to communicate with the Destinations there can be

problems when attempting to handle the Many-Response or All-Response

types by a higher level of protocol, as suggested in Section 3.2.1.1).

The Cambridge Ring, as described in Chapter Two, allows communications

involving a single Source and a single Destination. Since each transmission of

a mini-packet is returned to the Source with a response indication (in the

Response bits), it is clear that Cambridge Ring Response handling can be

described as a Single-Response type. Ifa Response is not returned after a mini-

packet is sent, the Source does nothing other than signal a higher layer of

protocol that an error has occurred (each Cambridge Ring has a monitor node

which is designed to catch any erroneous mini-packets and correct them

[JNTIS1985a]). Any Responses that are generated by the Destination Process

(as opposed to the Destination Cambridge Ring node) are returned in another

series of mini-packets - these Responses are described by higher levels of

protocol [Needham1982a1.

A multicast communication on the Cambridge Ring can be obtained using

any of several techniques. For example, it is possible to simulate a multicast

transmission by a series of repeated One-Unique transmissions of the Request.

This requires additional layers of software - where the lowest layer is simply

performing a single Source to single Destination communication. The higher

layers of software can implement different types of filtering as required by the

application and described by the taxonomy.
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3.2.2.2 Multicast Communication Implementations

Someof the (few)multicast implementations described in the literature are

now examined. Reasons for this sparsity include the lack ofunderstanding and

development of protocols formulticast implementations [Gopa11984a]and the

existence ofEthernet. which offers one particular form ofmulticast facilities-

allowing designers to implement certain types of multicast transmission

schemes quickly and easily.

In this Section. the different networks and distributed systems presented

in Chapter Twoare examined with respect to response handling.

3.2.2.2.1 The V.System [Cheritonl983a. Cheritonl984a]

The V-System is divided into twodistinct layers: an application layer and a

kernel layer. A Source application (or Client) can request one of three

Response types from the kernel: No-Response. Single-Response. and Many-

Response. Response handling requires the interaction of the Client with the

kernel:

No-Response:ARequest to which no Responses are expected is sent with a flag
indicating to each Destination that Responses are not to be returned.
This filtering is performed by the Destination kernel;

Single-Response: The first Response received by the Client's kernel is
returned to the Client. All subsequent Responses are discarded by the
kernel;

Many-Response: Each Response received is queued by the kernel. When the
Client requires a Response, the kernel removes the first available
Response from the queue (the onus is on the Client rather than the
kernel to determine if the correct number of Responses have been
received - a primitive exists which allows the membership of the
multicast set to be determined). Should the Client transmit another
Request to the same Group address, all queued Responses are discarded.
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(Note: the All-Response type is not supported by the V-System kernel for two

reasons. First, the overhead of an application supplying the kernel with a list

of unique addresses or the kernel maintaining such as list was decided to be

too complex. And second, the cost of retransmitting packets to non-responding

Destinations was considered to be potentially too costly to implement directly

in the kernel.)

The different types of V-System applications which have been described in

the literature can be divided into two categories: Sources that do not expect

Responses and Sources that do expect Responses.

The most widely publicized V-System No-Response type application is

Amaze, a network game designed for multiple users on different machines

[Cheriton1984a, Berglund1985a]. Briefly, the game consists of users moving

"monsters" around their own screens, attempting to destroy other users'

monsters. Each station transmits the status of its monster as a message to the

other stations (sharing a group address). The transmitting station does not

expect a Response to the message, since it is assumed that if a message is lost,

another will be generated within a short period of time.

Other applications designed to test the Single and Many Response types

have also been described. Single Response type applications have been

developed allowing a Source to request a generic service and take the first

Response supplied. More sophisticated applications have also been tested

using the Many Response type handling. These include a Source transmitting

a Request to a group of Destinations which return status information about

themselves (such as processor load) as Responses. The Source can then choose

a single Destination to communicate with based upon the information in the

Response.
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3.2.2.2.2 ASWE Serial Data Highway [Lakin1982a]

The ASWE Serial Highway supports a layered architecture which allows a

Source Process to send a message to one or more Destination Processes. After a

Request is sent, a Source Process can be expecting any of the four Response

types. However, most applications only use the Single-Response type - with

the Serial Highway interface filtering the returned Responses.

The services offered by the Destination Processes vary quite widely and

include database managers, file servers, and processors performing specific

mathematical functions. The most common way that a Source Process can

access a particular service is to multicast to all the Destination Processes

offering a particular service and accept only the first Response (taken as a

"bid"). The Source then deals exclusively with the Destination Process that

returned the first Response. Should the Destination prove unreliable or no

longer provide the service, the Source Process can disregard the original

Destination and reissue the Request.

3.2.2.2.3 Shoshin [Tokuda1983al

Shoshin has a layered architecture with Source applications sending

Requests to one, many, or all possible Destinations through the Source's

communication manager. The communication manager applies filtering to the

returned Responses based upon the type of Responses the application is

willing to accept:

No-Response: since all transmissions suspend Process execution until a
Response is received or an exception condition occurs, No-Response can
be obtained by waiting for a Response from a non-existent Destination;

Single-Response: is possible by indicating to the communication manager
which Destination the Response is expected from. All other Responses
are discarded;
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Many-Response: can be implemented in two separate ways. First, it can be
implemented in a simple first-come, first-served fashion, where each
Response is queued by the communication manager until required by the
application. And second, it is possible to exclude a specificDestination's
Response and accept Responses from all other Destinations.

The All-Response type is not available on the Shoshin system. (Although

not discussed explicitly in the Shoshin paper, it is assumed that a multicast

communication uses a Group address, making the handling of the

All-Response type extremely difficult.)

3.2.2.2.4 MIKE [Tsay1983aJ

Although the main emphasis of the research on MIKE is in the

development of guardians for distributed processors, the underlying network

does permit multidestination communications:

No-Response: a Source can send a message to multiple Destinations without
expecting a Response;

Single and Many Response:are referred to as "reliable" communications. That
is, a message is sent to several Destinations and Responses are expected
from all those that are currently active. Destinations that do not return
Responses within a timeout period are assumed to be inactive;

All-Response: are referred to as "guaranteed" communications. In this
situation, MIKE ensures that every Destination that is to receive a copy
of the Request receives one and returns a Response - there is no time
limit imposed upon the Destinations.

In order to allow all four possible Response types to be supported, MIKE

must either use a combination ofgroup and unique addresses or lists ofunique

addresses to represent Services. Unfortunately, this is not made apparent in

the MIKE paper.
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The authors do not describe any multicast applications which they have

specifically examined during their testing.

3.2.2.2.5 Other Implementations

In [Gopa11984a], the authors do not describe an implementation, but

rather the design of a system which allows a Request sent to several

Destinations to be acknowledged as efficiently as possible. The basic

algorithm assumes that the Source sends a series of Requests, each with a

unique sequence number. The Destinations return acknowledgments (as

Responses) if the Requests were accepted, otherwise negative

acknowledgments are returned (Responses must be returned within a timeout

period, otherwise any missing Responses are assumed to be negative

acknowledgments>. When a negative acknowledgment (or a timeout) is

received, the Source performs a "Go-Back-N" retransmission algorithm, which

means that all Requests, starting with the one that was not received correctly,

are retransmi tted.

Three different types of "Go-Back-N" (GBN) algorithms are proposed. The

first, Memoryless GBN, requires that all Destinations respond with an

acknowledgment to each of the retransmitted Requests - requiring that the

Source handle the All-Response type. The second, Limited Memory GBN,

expects acknowledgments only from those Destinations that did not

acknowledge the retransmitted message (the Source is to handle either Single

or Many Response types). However, all other retransmitted Requests must be

acknowledged by all the Destinations - once again making the Source handle

the All-Response type. Finally, there is Full Memory GBN, which accepts

Responses only from those Destinations that have not yet responded to any

outstanding Requests. In this case, the Source is to handle Single, Many, or
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All Response types, depending upon the number of acknowledgments still

outstanding for each Request.

There have been other multicast communication implementations

described in the literature, however, the problems and applications of

multicast Response handling have, for the most part, not been addressed by

their authors. For example, three recent papers on multicast communications

either mention Response handling only in passing [Ahamad1985a] or not at

all [Chang1984a, Frank1985a].

In each of the above three papers, the underlying network was assumed to

be an Ethernet, and in all cases, Group identification was used. Therefore, at

the lowest layer, the Ethernet would be offering a No-Response type of

Response handling - any other type would have to be incorporated into a

higher level of protocol. Note however, the problems that were described in

Section 3.2.1.1. regarding the identification of Destinations using Group

identifiers would exist in each of these implementations.

The UNIVERSE Project [Leslie1984a, Waters1984a], which attempts to

link several Cambridge Rings by a satellite broadcast channel, is another case

of the designers describing multicast transmission but not Response handling.

However, from the description of the Cambridge Ring (see Section 3.2.2.1 and

Chapter Two), it is clear that at the Source's interface to the Ring it must be a

Single Response type. Once again, at higher layers, a protocol could present a

different Response handling interface to the application.

3.2.2.3 Applications

In Chapter Two, four applications were presented as "typical" examples of

multicast communication requirements. In this Section, each of these

application are now discussed in terms of the multicast response taxonomy.
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The first application, the "time-signal generator", consisted of the Time-

Signal generator transmitting time-signals to any Process which required a

time value. Since no responses were expected by the Source, the Time-Signal

generator was clearly a No-Response type application.

The second application involved a Source Process transmitting a request to

a multicast set consisting of one or more Time-Servers. The Source then

waited for responses, the first of which was accepted. To the original Source

Process, since only one message was returned, this was clearly a One-

Response type application. Note however, that to the lower layers responsible

for the filtering of the incoming Responses, this could be a Many-Response or

All-Response type application.

The third application, the TMR File-Server, is an example of a Many-

Response type application since the application will continue as long as there

are two or three (Le. many) Destinations responding.

The Two-Phase Commit Protocol, the final application example, required

all the Destinations to respond with indicators as to the success (or failure) of

the invocation of the different phases. Since the Source expects each

Destination to respond, the Two-Phase Commit Protocol is an example of an

All-Response type application.

3.2.2.4 Summary

This Section has presented a taxonomy which can be used to describe the

actions of a Source after it has transmitted a message to one or more

Destinations. Itwas shown that how Destinations are identified (using either

Unique or Group identifiers) has a major impact on the type of Response

handling available to the Source. Destinations accessed by Unique identifiers

permit the Source to handle any of the four different Response types. However,
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since, it is assumed, the number of Destinations and their identity cannot

easily be established from a Group identifier, only the No-Response and

Single-Response types (and in some cases, Many-Response) could be used with

Group identifiers without the development of additional protocols.

The multicast response taxonomy also demonstrated the need for different

types of message filtering by the lower layers of a Receiver. For example, it is

possible for one layer to perform one type of Response handling and a lower

layer to perform another. This was shown in all of the Response handling

implementations examined, the lowest layer handled Many or All Response

types, while at a higher layer, an application may be expecting, for example,

the No-Response or Single-Response type.

The taxonomy also proved useful in describing the response handling

capabilities of networks, distributed systems and various applications. From

this type of information it should be possible for the designer of an application

requiring multicast communications to determine the type of filtering

required.

3.3 Multicast Communications in Layered Distributed
Systems

In Chapter Two, a means of describing Process-to-Process communications

using a simple layered architecture model was presented. In this model, the

transmitting Process transmits its message with the Host-Port identifier

associated with the receiving Process. By enumerating different Host-Port

identifier combinations, it is possible to develop a taxonomy for describing the

effect of using Host-Port identifiers for multicast transmission. In addition, it

is possible to use the Host-Port enumeration to describe the probable amount

ofmessage handling required by a receiving Communication Layer.
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In this Section, these taxonomies are developed and discussed in terms of

several existing layered architecture implementations.

3.3.1Host Identifiers

By using the multicast transmission taxonomy developed in Section 3.1

and applying it to a Host in a layered architecture, one finds the following:

a) the Transmi tter is a single Host;

b) the Receiver is one (ormore)Host(s);

c)the communication services are supplied by a Network;

d)Receivers (Hosts) are identified by some type of Host identifier, often
referred to as a network address.

The efficiency of a Network Layer multicast transmission is dictated (in

part) by how the receiving Host(s) are identified. To allow a Host to be

identified on a Network, all Networks support at least one of the following

three types ofHost identifier:

Unicast: identifying a single Host. A message transmitted with a Unicast
Host identifier is received by at most one Host (i.e. it is a One-Unique
transmission);

Multicast: identifying a set ofHosts, sharing a commonidentifier. A message
sent with a Multicast Host identifier is a One-Group transmission in
which only those Hosts belonging to the Group receive a copy of the
message;

Broadcast: identifying all possible Hosts on a Network. Amessage sent with
a Broadcast Host identifier is another One-Group transmission where
the Group encompassesall Hosts.

In terms of transmission efficiency, using a Multicast or Broadcast

identifier may be more efficient than using a Unicast identifier, since a

message sent with a Multicast or Broadcast identifier (ideally) need only be

sent once, whereas a message sent with a Unicast address must be sent
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separately to each receiving Host (as shown by the multicast transmission

taxonomy).

3.3.2Port Identifiers

It is also possible to use the multicast transmission taxonomy to describe

the identification of'Processtes) using Ports:

a) the Transmitter is a Process on a Host;

b) the Receiver(s) are one (or more) Processtes) residing on one (or more)
Hostts);

c) the communication services consist of the underlying Communication and
Network Layers on the transmitting and receiving Hosts;

d) Processes are identified, indirectly, by some type of Port identifier.

As in the case of Host identification, the efficiency of the communication is

dictated by how the receiving Ports are identified. Four methods of identifying

a Port are proposed:

Unique: the Port identifier is a Unique identifier, unique to one Process on
one Host. The identifier does not exist on any other Host;

Shared: the Port identifier is a Unique identifier, accessible by at most one
Process on a Host. However, the identifier can exist on all Hosts on the
network;

Local: the Port identifier is a Group identifier, which can be accessed by any
number of Processes on one Host. The identifier does not exist on any other
Host;

Global: the Port identifier is a Group identifier, which can be accessed by any
number of Processes on all Hosts.

There are advantages and disadvantages to each of the Port identification

methods described here. Unique Port identifiers can be costly in terms of the

number of messages that the Communication and Network Layers, on both

the transmitting and receiving Hosts, are expected to handle. For example, if
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Unique Port identifiers are used and a Host supports "n" Processes, all of

which belong to a particular multicast set, then, in the worst case, the

receiving Communication Layer can be expected to handle n copies of the

message.

Although using Shared, Local, or Global Port identifiers can decrease the

number of transmissions required, there is the disadvantage that the

transmitting Process has no indication as to the number of receiving

Processes. This can produce a variety of problems should the transmitting

Process ever expect messages to be returned by the receiving Processtes), as

for example, in the Source-Destination modeldescribed in Section3.2.

3.3.3Host-Port Identifiers and Multicast Transmission

In this Section, the number of message transmissions required by a

transmitting Communication Layer are discussed in terms of Host-Port

identifiers. First, the maximum number of transmissions required for a

message to reach all members of a multicast set are considered for all Host-

Port identifier combinations (assuming no retransmissions). This is followed

by an examination of how the different Port identifiers can be used to support

the minimum number of transmissions to the members of a multicast set. In

each of the following cases, it is assumed that there are N possible receiving

Processes.

Clearly, the maximum number of message transmissions required by the

transmitting Communication Layer occurswhen each receiving Process in the

multicast set is associated with a Unique Port, irrespective of how the Host is

identified. In this situation, the transmitting Communication Layer must

send "N" copies of the message, one to each receiving Process. However, in a

network which allows many identifiers to be associated with a message, the
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number of transmissions can decrease to (ideally) one, as shown by the basic

multicast transmission taxonomy in Section 3.1.1.

Ideally, the transmitting Communication Layer should only transmit one

message which is then received by the various Processes making up the

multicast set. However, the number of transmissions can vary fromone to "N",

depending upon the how the Host-Port identifier identifies the intended

receiving Processes.

3.3.3.1 Unique Ports

To achieve the minimum number of message transmissions when dealing

with a multicast set consisting ofProcesses which can only be accessedusing a

Unique Port identifier, the multicast set could only have one member,

irrespective of how Hosts are identified since at most one Process can be

associated with a Unique Port identifier. However, if the network permits

many Host-Port identifiers to be associated with each message, the number of

messages to be transmitted could be decreased. Further reductions could be

achieved by using a Multicast or Broadcast Host identifier with multiple Port

identifiers, since the transmitting Communication Layer would not be

expected to transmit to each Host individually.

The problems associated with receiving messages on Hosts which do not

support members of the multicast set after a transmission with Multicast or

Broadcast Host identifiers are discussed further in Section 3.3.4.

3.3.3.2 Shared Ports

AShared Port can exist on any number ofHosts, but like the Unique Port,

only one Process on each Host is allowed to access it. Therefore, in order to

minimize the number of message transmissions on the part of the
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transmitting Communication Layer, all receiving Processes should reside on

separate Hosts and be accessedby a Multicast or Broadcast Host identifier.

However, if more than one Process resides on the same Host, the

transmitting Communication Layer is forced to send multiple messages

(unless the network allows many identifiers per messages, in which case the

number of transmissions depends upon the number of identifiers that can be

associated with the message). In both of these situations, the number of

Process identifiers depends upon the maximum number of receiving Processes

on a Host and whether their Port identifiers are Shared or Unique. For

example, on a network allowing a maximum of one Port identifier to be sent

with each message, if four Processes belonging to the multicast set reside on

two Hosts (twotProcesses per Host), the minimum number of transmissions

would be two - occurring when each Process was using a Shared Port (i.e.

sharing it with one other Process on the other Host), whereas the maximum

number of transmissions would be three: one, using a Shared Port identifier

and the other two, using a pair ofUnique Port identifiers.

3.3.3.3 Local Ports

A Local Port identifier allows many Processes to share a Port on a single

Host; the Port identifier does not exist on any other Host. Clearly, in this

situation, the transmitting Communication Layer need not send more than

one message if all the receiving Processes reside on a single Host. Itwould be

sufficient to use a Unicast Host identifier in this situation - thereby avoiding

unnecessary message reception by Hosts not supporting LocalPort identifiers.

However, should the receiving Processes reside on different Host, the

transmitting Communication Layer is forced to either transmit a series of

messages with Unicast Host identifiers, one to each Host which supports

members of the multicast set or to transmit message with a Multicast or
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Broadcast Host identifiers if the network allows many identifiers to be

associated with each message.

Unlike Shared Ports where the number of transmissions is dictated by the

number of Processes on a single Host, the number of transmissions using a

Local Port identifier is determined by the number of receiving Hosts which

support members ofthe multicast set.

3.3.3.4Global Ports

A Global Port identifier can be associated with any number of Process on

any number of Hosts. The number of transmissions by the Communication

Layer depends, in part, upon the type of Host identifier supported. For

example, if the network only allows Unicast Host identifiers, Global Ports are

degraded into LocalPorts.

Ideally, Global Ports should be used with Multicast or Broadcast Host

identifiers, since only one transmission would be required. However, as in the

other Port types, if members of the multicast set happen to use different

Global Port identifiers, the transmitting Communication Layer may be

required tomake additional transmissions.

3.3.4Host-Port Identifiers and Multicast Message Handling

From the discussion on Host-Port identifiers and multicast transmission in

the previous Section, three broad categories for describing Host-Port

identifiers and how they affect message distribution by a receiving

Communication Layer are proposed:

Repeated - any receiving Communication Layer which must receive more
than one message in order to ensure that all possible Process(es) receive
a copy of the message can be classified as Repeated. For example, any
Communication Layer handling messages supplied with a Unique Port
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identifier (that is, Unicast-Unique, Multicast-Unique, and Broadcast-
Unique) may be classified in this category if there is more than one
receiving Process on the Host in question;

Unnecessary - a receiving Communication Layer which receives a message
for a Port that it does not support can be classified as Unnecessary. Any
message supplied with a Broadcast Host identifier may be classified in
this category. This category exists because of the nature of the Broadcast
identifier - all Hosts, irrespective of the Processes they support, receive a
copyof a message sent with a Broadcast Host identifier.

Note, this situation can also arise if a Port which is normally available
on a Host is unavailable for some reason. Should this occur, the receiving
Communication Layer can be classified as "unnecessary" since there is
no Port to direct it to;

Required - this category occurs when just one message is received by the
receiving Communication Layer and is required by one or more
Processes. Clearly, in this category, if there is only one possible receiving
Process, all Host-Port identification combinations can be classified in
this category.

However, should the number of receiving Processes be greater than one,
then only Local and Global Port identification ensure that the receiving
Communication Layer receives no more than one copy of the message
(assuming that all Processes access the same Port).

3.3.5Host-Port Identification Examples

In this Section, a series of examples using the two Host-Port classification

models developed in Section 3.3.3 and 3.3.4 are presented, describing how

multicast communications between Processes on different Hosts could be

realized using existing layered archi tectures.

3.3.5.1Cambridge Ring Ports

The Cambridge Ring Packet Protocol [Banerjee1985a, Panzieri1985al

allows a transmitting Process to identify a Port on the receiving Host (note,

this assumes that a Host is equivalent to a station). The Port is associated with
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a Process. A Port number is not unique to a Host, that is, many different Hosts

on the network can use the same Port Number. However, the Processes

associated with these Ports on the different Hosts need not receive the same

multicast transmission, because of the unicast nature ofthe Cambridge Ring.

For a communication to take place on the Cambridge Ring using the

Cambridge Ring packet protocol, the Source Host can only supply a unicast

station (Host) address and a Port number. Port numbers can be Unique to a

Host or (in theory) be Shared across all Hosts on the network receiving the

same multicast transmission.

For a multicast communication therefore, when using the Cambridge Ring

Packet Protocol, a total of N transmissions of the same packet will be required

(that is, one for each Process - or simply a series of Unicast-Unique

transmissions). Alternately, each receiving Process could be made to reside on

a separate Host; if each potential receiving Process accessed the same Port

number, the packet protocol could be described as Unicast-Shared. Note that

the same number of transmissions are required on the part of the transmitting

Host, irrespective ofwhether the Port is Unique or Shared.

3.3.5.2 Ethernet Sockets

The Ethernet is designed for Unicast, Multicast, and Broadcast Host

identification. Several successful Process identification schemes have been

built on top of the Ethernet, such as PUP [Boggs1983a] and UNIX sockets

[Leffier1983al. A socket Port cannot be shared on a Host, meaning that

Process-to-Process transmissions must use Unique Port identifiers. However,

since a Port can be "well-known" and shared by Processes on different Hosts;

and the Ethernet supports Broadcast Host identification, sockets can be
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described as offering Broadcast-Shared identification, since only one Process

per Host may receive a copyof the message.

Ahamad and Bernstein [Ahamad1985a] have modified the existing UNIX

socket software to allow multiple Processes on the same Host to receive copies

of a multicast message (a Broadcast-Local implementation). However, if the

Port is made available on all machines, this version ofsockets can be described

as Broadcast-Global.

Finally, the problems associated with unnecessary reception of messages

can be eliminated in all but a few cases by using specialized Ethernet

hardware which supports Multicast-Host identification. This hardware

[DEUNA1983a] permits an Ethernet station to selectively receive up to ten

different (Multicast) Host identifiers. Although no implementations have been

described in the literature, the DEUNA hardware potentially permits the

design ofMulticast-Global identification.

3.3.5 Host-Port Identifiers and Multicast Sets

A common requirement of many of the applications discussed in Chapter

Two was the ability to send a message to one or more Receivers. In all cases,

the Transmitter not only sent the message, but identified (implicitly, if not

explicitly) the intended Receivers. In this Section, one of the problems

associated with multicast sets in terms of Host-Port identifiers, notably how

multicast sets are formed, is examined.

There are twoways in which a Process can become a member of a multicast

set. First, the Process can ask to join an existing multicast set (several

examples of applications in which Processes join multicast sets have already

been discussed). How this facility is offered is an implementation problem - for

example, a multicast set might have a predefined identifier, which the Process
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could simply assume, or a Process could join a multicast set by informing all

possible Source Processes (or a series ofname servers) ofits existence.

A Process can also be asked to join a multicast set. In this situation it is

assumed that there exists another Process which requires the creation of a

newmulticast set or wishes to increase the membership of an existing set.

As shown in this Section, for a multicast transmission to occur, the Source

Process must have access to one or more Destination Host-Port identifiers. For

an optimal multicast transmission, the Destination Process(es) should be

identified using either a Multicast-Global or Broadcast-Global identifier.

Therefore, it is not sufficient for Processes about to join a new multicast set to

return their own unique Host-Port identifiers - as this would probably

increase the number of transmissions required since the various Destination

Processes would be identified using Unique Port identifiers.

Ideally, the Process creating the new multicast set should generate a new,

unique Global Port identifier which could be supplied to the new members of

the multicast set and be used to identify them in subsequent transmissions.

The Global identifier must be unique in order to avoid having messages arrive

at the wrong Destination Processes. The generation of a new Global Port

identifier to uniquely identify the new multicast set may be easier said than

done - for example, it implies that the Port number is not already in use. (The

problems associated with generating unique identifiers for use as multicast

set identifiers will be returned to in Chapters Four and Five.)

However, the Source Process often has less control over Host identifiers

than it does over the Port identifier since, in some distributed systems, Hosts

can only be accessed using unique Host identifiers. At the other extreme,

certain Hosts may support hardware which allows them to recognize a number

of Host identifiers, implying that, for example, the Host identifier could be
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made identical to the Global Port identifier, allowing Multicast-Global

Destination identification.

Whatever method of Host identification is used, it must be conveyed back

to the Source Process to permit the creation of a list of the Host-Port identifiers

making up the new multicast set. This list can be used by the Communication

Layer when messages are to be sent to the members ofmulticast set.

The following example demonstrates some of the requirements for the

creation of a new multicast set by a Source Process and a series of Destination

Processes. The Source Process algorithm is as follows:

GetAN ewGloballdentifier;
SendRequestToPotentialN ewMembers;
Wai tForResponses;
CreateN ewMulticastSet;
SendConfirmationMessageToN ewMembers;

The Source Process (the creator of the new set) must send a message to those

Processes which may be able to become members of the new multicast group.

(To allow this, it is assumed that a series of Processes exist which can join new

multicast sets when requested.) The Source Process, after transmi tting a

message with the associated Global Port identifier requesting Processes to join

a new multicast set, waits for responses from the members of the multicast set

which can join the new multicast set. Once the responses are available, the

Source Process can create a list of the (Destination) Host-Port identifiers. The

size of this list depends upon how Destination Processes are identified. Ideally,

the list contains one entry, a Multicast-Global (or Broadcast-Global)

identifier. However, in the worst case, it contains a series of Unicast-Unique

identifiers, one for each Destination Process. Once the multicast set has been

created the Source Process may then transmit messages to members of the
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new set - the first message of which should be a confirmation of the new

member's membership in the new multicast set.

The following describes a Process which can join a new multicast set:

JoinTheCanBecomeAMemberSet;
repeat

WaitForARequestToJoinANewSet;
SendBestHostAndProcesslden tifier;
JoinTheN ewMulticastSet;
WaitForConfirmationOfMembership;
if Confirma tion < > Yes then

LeaveNewMulticastSet;
until

Confirmation = Yes;
WaitForSubsequen tMessages;

The Destination Process (Le. a Process which can join a new multicast set)

must first join a multicast set which will receive requests to become a member

of a new multicast set. Once joined, the Process waits indefinitely until a

RequestToJoinANewSet message (which includes the new Global Port

identifier) is made. The Destination Process then responds to the Source

Process with an indication that it is willing to join and its optimal Host-Port

identifier (ideally this should be a Broadcast-Global or Multicast-Global

identifier). To allow the Destination Process to determine whether or not it

has been accepted into the new multicast set, it joins the new set and waits for

a Confirmation message. The Confirmation message is expected to arrive

within a certain time period, otherwise the Destination Process assumes that

it was not included in the set and leaves. If the Process is accepted into the set,

it stays as a member of the new multicast set and waits for subsequent

messages.
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3.3.6 Summary

In this Section, it was shown that a multicast communication In a

distributed system is affected by the type of:

a) Host identification used by a network when supporting Host to Host
communications, and

b)Port identification used by the Communication Layer when supporting
Process to Process communications.

By combining the different types of identification (Le. Host and Port), it

was shown which pairs of combinations are the most efficient in terms of

multicast transmission. From the most to least efficient, these are:

a) Multicast-Global or Broadcast-Global: in which the transmitter need only
send one message which is received by the intended Hosts. The receiving
Communication Layer can keep the amount of message handling to a
minimum since the intended Process(es) all share the same Port identifier;

b)Unicast-Global, Unicast-Local, Multicast-Local, or Broadcast-Local: in
which the transmitting Host is required to send many messages, but only
one to each receiving Host. Only one message need be sent to each Host,
since at each Host, should there be multiple Processes, these can all be
accessed using the Local (or Global, in the case of Unicast-Global) Port
identifier. The number of transmissions depends upon the number ofHosts;

c)Multicast-Shared or Broadcast-Shared: if all Destination Processes are on
separate Hosts, the transmitting Communication Layer need only send one
message. However, in the worst case, when all Destinations reside on the
same Host, the transmitting Communication Layer is forced to send
individual message to each Process;

d)Unicast-Unique, Multicast-Unique, Broadcast-Unique, or Unicast-Shared:
the worst case is the transmission of a message to receiving Process(es)
which must be accessedusing a Unique Port identifier. In these situations,
each message must be sent repeatedly with a different Port identifier, even
if the receiving Process(es) happen to reside on the same Host. The number
of transmissions depends upon the number of Processes and the number of
identifiers that can be associated with a message.
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In addition, the amount of message handling required by a receiving

Communication Layer can be discussed using the Host-Port paradigm since

message handling is also affected by the type of Port identification, and in

some cases, the type of Host identification used. For example, a receiving

Communication Layer will perform the minimum amount of message

handling when it need only receive one message to ensure that all the

intended Processes receive a copy.

Finally, by using the Host-Port paradigm, it was possible to describe some

of the requirements ofmulticast set management. Specifically, the ability to:

- generate a new Global Process identifier, which can be used to identify the
members of the newmulticast set;

- create a new multicast set, based upon the Host and Process identifiers

supplied by the members ofthe new set;

- to supply the best Host-Port identifier to the Process creating the new
multicast set to ensure that the most efficient means of multicast
communication are used.

From this discussion of multicast identifiers, one can conclude that two

ways of reducing the cost ofa multicast communication are:

a)maximize the number ofreceivers represented by a single identifier;

b)minimize the number ofmessages supplied to the Communication Layer by
the Transmitter.

3.4Concluding Remarks

In this Chapter, by using some of the basic divisions of communication,

notably transmission and reception, a set of multicast communication

taxonomies were developed.
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Two multicast transmission taxonomies were presented. The first, based

upon the Transmitter-Receiver model, was used to describe the different types

of identifier handling required in a multicast transmission. The second

allowed the enumeration of different types of identifiers for multicast

communications in (layered) distributed systems using Host-Port identifiers.

A multicast reception taxonomy was also presented. The reception

taxonomy outlined the different types of message handling possible and its

effects on a receiving Process.

In all of the taxonomies presented, it was shown that the type of identifier

used could greatly affect the performance of the communication. In

subsequent Chapters, these classification schemes and the different types of

identifier will be used to develop and implement a set of multicast

communication primitives.
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Chapter4
Multicast Primitives

For a distributed system to support multicast communications, facilities

should exist at the various layers (such as the Process Layer or the Network

Layer) which permit multicast communications. For example, if the

applications presented in Chapter Two were to be implemented on a

distributed system supporting multicast communications, one would expect to

find a set of common facilities which would permit a standard form of

multicast communication between, say, Processes.

In this Chapter, a series ofnine such facilities or primitives are presented

and it is shown how they can support Process-to-Process multicast

communications. These primitives are intended, for the most part, to be

unrelated to any specificnetwork or distributed system. Chapters Five and Six

will include examples of how these primitives could be implemented on a

variety ofnetworks and distributed systems.

This Chapter is organized as follows. In Section Two, the proposed

multicast communication primitives are discussed in terms of interprocess

communications. Several examples of how the primitives can be used are

presented in Section Three. In Section Four the proposed primitives are

compared with other existing multicast communication primitive

• implementations. The Chapter is concluded with a review of the proposed

primi tives.
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4.1Multicast Primitives

In Chapters Two and Three, various requirements were presented which

described some of the features that should be supported in a distributed

system ifit was to permit multicast communications. For example, in Chapter

Twoit was shown that facilities should exist to allow a Process to send a single

message to the members of a multicast set, while in Chapter Three the need to

support different types of filtering was demonstrated. In this Section, these

and other features which motivated the choice of a set of general purpose

interprocess multicast communication primitives are expanded upon.

The examination ofthe primitives is divided into twobroad categories:

a) multicast set management primitives, and

b)multicast communication primitives.

4.1.1Multicast Set Management Primitives

In this Section, a set of primitives for supporting the management of

multicast sets are proposed. Specifically, this Section examines how a Process

can join or leave existing multicast sets as well as how new multicast sets can

be formed. However, prior to examining the primitives, the different types of

identifier to be supported are discussed.

4.1.1.1Identifiers

A requirement of many of the applications discussed in Chapter Twowas

the ability of a Transmitter to transmit a message to one or more Receivers. In

all cases, the Transmitter not only sent the message, but also identified the

intended Receivers either explicitly or implicitly. In addition, from the

examination of identifiers in Chapter Three, it is proposed that the multicast



MULTICAST PRIMITIVES 76

communica tion primi tives should support the following types of iden tifier:

a) an identifier which represents a individual Transmitter or Receiver. For
example, in a distributed system, a Process could be identified using a
Unique identifier such as a Unicast-Unique Host-Port identifier. This
identifier type allows a Process to transmit a message to a specific Process
or a receiving Process to identify the Process transmitting a message. This
type of identifier will be referred to as a unicast identifier;

b) an identifier which identifies all the members of a multicast set. This single
(Group) identifier or multicast set identifier is equivalent to an alias or
shorthand method of identifying the members of the set. The multicast set
identifier will be used in two ways. First, a transmitting Process can use it
to send a message to a set of Processes belonging to a multicast set, and
second, a Process can use it to indicate the multicast set to which it belongs.

The exact format of the proposed identifiers is an implementation detail which

will be returned to in Chapter Five. However, for the purposes of this Chapter,

it will be assumed that both unicast identifiers and multicast set identifiers

are numeric.

4.1.1.2 Accessing Existing Multicast Sets

Clearly, before a multicast communication can take place, both the

Transmitter and the Receiver must obtain a common multicast set identifier.

In this Section, three primitives are presented which are necessary to allow

access to existing multicast sets (an "existing" multicast set is assumed to be a

multicast set which already has a multicast set identifier associated with it).

4.1.1.2.1 Obtaining an Existing Multicast Set Identifier

In many distributed systems, application services are often referred to by

textual names, primarily for the benefit of (human) users of the system

[Shoch1978a]. Although the names used may vary, they often refer to the

same application or service (for example, a time-server may be called "Clock"
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by one user but "TimeServer" by another). To allow users to identify

applications by a textual name rather than by multicast set identifier, the

getid primitive is proposed:

ReturnCode: = getid (Name, var Identifier)

where:

Name: is the character string which identifies the multicast set;

Identifier: is the identifier associated with the supplied name and is returned
by the getid primitive. The identifier can be either a unicast identifier or
a multicast set identifier;

ReturnCode: an indication as to the successor failure of the getid primitive.

A "null" Name (Le. a string of zero length) causes getid to return the unicast

identifier of the Processwhich invoked the primitive. This is intended to allow

a Process to receivemessages destined to itself.

Should the supplied name not exist, getid is to return an error code of

"NameNotFound" otherwise it returns a codeof"Success".

Note that getid is not restricted to multicast set identifiers. For example,

the Name could be associated with a unicast identifier, identifying a single

Process. The association ofName and Identifier is discussed further in Section

4.1.1.2.3.

For the remainder of this Chapter, it is assumed that a name server exists

which maintains the list ofNames and related Identifiers.

4.1.1.2.2 Joining a Multicast Set

Ideally, once a Process has obtained a multicast set identifier, using, for

example, the getid primitive, it should be able to either transmit messages to

the multicast set or receive messages destined to a particular multicast set.
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However, there are situations where a Process must announce that it wishes

to become a member of a multicast set before it can receive messages intended

for the multicast set in question.

For example, if the Process about to become a member of a multicast set

can only be identified with a unicast identifier, all potential transmitting

Processes must be informed of the identifier associated with the new member

of the multicast set. The same problem can exist on a network which supports

an efficient form of multicast transmission (such as One-Group), but uses a

distribution facility to supply messages to the members of the multicast set

within the Host. In both of these situations, the receiving Process should have

a mechanism whereby it can inform the facilities supporting multicast

communications that it expects to receive messages destined to a particular

multicast set.

To overcome this problem, a join primitive is proposed which allows a

Process to join a specificmulticast set. How the join primitive is implemented

is clearly dependent upon the lower layers supporting multicast

communications; however, at the Process Layer, the primitive is simply:

ReturnCode := join (Identifier)

where:

Identifier: an identifier (assumed to be a multicast set identifier), indicating
which multicast set the Process wishes tojoin;

ReturnCode: a value indicating the successor failure ofthejoin primitive (see
below).

If the supplied Identifier is not a multicast set identifier or, for some reason,

the multicast set could not be joined, the join primitive returns a ReturnCode

of"CannotJoin", otherwise "Success" is returned.
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There is no limit to the number of multicast sets that can be joined by a

Process. Note however, messages are only made available when the receive

primitive is invoked (seeSection 4.1.2.2).

4.1.1.2.3Leaving a Multicast Set

Once a Process has performed whatever tasks are required of it and there is

no need for it to remain a member of a multicast set, it is assumed that the

Process can leave the multicast set. As in the case of the join primitive, a leave

primitive is proposed to assist in the maintenance of the membership of the

multicast set:

ReturnCode := leave (Identifier)

where:

Identifier: an identifier (assumed to be a multicast set identifier) indicating
the multicast set which is to be left;

ReturnCode: a value indicating the success or failure of the leave primitive
(seebelow).

When a Process has left a multicast set, subsequent messages will not be made

available (Le. the receive primitive will fail if called with this multicast set

identifier).

A ReturnCode of "NothingToLeave" is returned if the identifier is not a

multicast set identifier or the multicast set has not been previously joined,

otherwise a ReturnCode of"Success"is returned.

4.1.1.3Creating New Multicast Sets

The primitives described in the previous Sections all deal with existing

multicast sets. Clearly, there are situations where new multicast sets are

required - for example, the addition ofa new service, unrelated to any already
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existing in the distributed system. In these situations, not only are new

members required, but also new, unique multicast set identifiers.

In this Section, a discussion ofseveral aspects ofmulticast set membership,

notably the creation of new multicast set identifiers, the identification of

multicast set members and the association of names with multicast set

identifiers is presented.

4.1.1.3.1Generating New Multicast Set Identifiers

As it stands, no primitive has yet been proposed which allows the

generation ofnewmulticast set identifiers - the getid primitive simply returns

an existing unicast identifier (identifying a single Process) or multicast set

identifier (identifying an existing multicast set).

However, when a new multicast set is formed, it requires a unique

multicast set identifier if confusion over multicast set membership is to be

avoided. A single primitive is available for this operation:

newid (var Identifier)

where:

Identifier: is a new unique identifier returned by the newid primitive which
can be used as a multicast set identifier.

The identifier returned by the newid primitive must be unique within the

context of the network in which it is used. Various methods exist for the

creation of unique identifiers, for example, the concatenation of a Process's

unicast identifier with the current time-of-day.
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4.1.1.3.2 The Identification of Multicast Set Members

Thus far it has been assumed that the various members of a multicast set

are identified with a single multicast set identifier. This assumption has been

made to ensure that in a multicast transmission a Process sends nomore than

one message. However, as shown in the discussion of Host-Port identifiers in

Chapter Three, not all distributed systems support the concept of a single

identifier identifying a set of receiving Processes. For example, in many

distributed systems, the single multicast set identifier supplied by the

transmitting Process many have to be expanded into several Host-Port

identifiers by the underlying Communication Layer. This mapping (from

multicast set identifier to a series of Host-Port identifiers) should be as

efficient as possible, generating the minimum number ofHost-Port identifiers

in an attempt at reducing the number ofmessages being transmitted.

By way of an example, consider a distributed system which supports both

Unicast-Host and Broadcast-Host identification but allows at most one

Process to be associated with a Port. A Process attempting to set up a new

multicast set may request the potential members to associate themselves with

the Host-Port pair <Broadcast, 2000> - thereafter all messages would be

broadcast to Port 2000. However, should Port 2000 already be in use or two

Processes on the same Host attempt to join the multicast set, but only one

actually succeeds in accessing Port 2000, the Process unable to access the

specificPort should have a mechanism to inform the Source that it could not

be associated with Port 2000, but could access (say) Port 2001. The Source

Process, upon receiving the responses could then create a membership list

consisting of the identifiers <Broadcast, 2000> and < Unicast, 2001>,

causing the send primitive to send twomessages with each transmission, one
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to the broadcast address «Broadcast, 2000» and the other to the unique

address «Unicast, 2001».

Therefore, to support the minimal identification of the members of a

multicast set, a single primitive, bestid is proposed which, given a multicast

set identifier, returns either a multicast set identifier or a unicast identifier,

which "best" identifies the Process as a member of the multicast set:

bestid (Identifier, var BesUdentifier)

where:

Identifier: should be a multicast set identifier which has been previously
generated by the newid primitive;

BesUdentifier: is the "best" identifier which identifies the Process and is
returned by the bestid primitive.

The value of "Bestldentifier" is clearly dependent upon the underlying Host

and Process identification schemes supported by the distributed system.

Ideally, the value of the multicast set identifier supplied by bestid should be

returned. For example, in a distributed system using Host-Port identifiers to

identify receiving Processes, the following would be the preferred order of

BesUdentifier to be returned:

a)Multicast-Global or Broadcast-Global, potentially allowing the minimum
number of transmissions if all possiblemembers return the same Host-Port
pair;

b)A Shared Port identifier, which can result in one transmission if all
Processes are on different Hosts and Multicast or Broadcast Host
identifiers are allowed;

c)A Local Port identifier, which can reduce the number of transmissions to a
single Host;
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d)A Unique Port identifier, which requires the layer supporting multicast
transmission to transmit individual messages to all possible receiving
Processes.

The implementation of the bestid primitive will be discussed further in

Chapter Five.

4.1.1.3.3Creating a Multicast Set

Once the Source Process has the list of "best" identifiers (supplied by those

Destination Processes willing to join the new multicast set), it should be able

to associate the "best" identifiers with the multicast set identifier. This is

intended to permit the Process to refer to the multicast set identifier, while the

layers supporting the multicast transmission would have the list of "actual"

identifiers required for the transmission.

To allow this association between the multicast set identifier and the list of

"best" identifiers, the following primitive, create, is proposed. Create binds a

textual name (allowing, for example, the use of the getid primitive to access a

particular multicast set) and the multicast set identifier with the list offtbest"

identifiers:

ReturnCode := create (Name, Identifier, BestList)

where:

Name: is a character string, allowing the identification of the multicast set by
textual name, rather than by a numeric identifier;

Identifier: a multicast set identifier;

BestList: a list of (best) identifiers, supplied by the various members of the
multicast set;

RetumCode: an indication as to the success or failure of the create primitive
(seebelow).
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It is assumed that the create primitive searches BestList for duplicate entries

and removes them, ensuring the minimum number of identifiers for any

transmission.

The ReturnCode simply indicates whether the creation took place

C'Success") or whether it failed C'Unable'I'oflreate"). The create primitive

could fail if, for example, a name server was being used and insufficient space

existed for the storage of the information.

Note that create need not be restricted to multicast sets. For example,

create could be supplied with a name to be associated with a single receiving

Process, a dummy multicast set identifier and the Process's unicast identifier.

4.1.1.3.4 Deleting a Multicast Set

When a Process no longer requires a multicast set, it should be able to

remove the information relating to that multicast set. For example, to free

unwanted storage on a name server. Therefore, to complement the create

primitive, the remove primitive is proposed:

ReturnCode := remove (Name)

where:

Name: a character string, indicating the name of the multicast set which is to

be removed;

RetumCode: a value indicating the success or failure of the remove primitive

(see below).

The ReturnCode indicates "Success" if the Name and its associated identifiers

were removed. A ReturnCode of "CannotRemove" is returned if, for example,

the Narne did not exist.
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4.1.2Multicast Communication Primitives

In the second Chapter, two fundamental communication operations were

demonstrated in the discussion ofmulticast applications:

a) the ability to transmit a message to one ormore Receivers, and

b) the ability to receive messages sent by oneor more Transmitters.

The next two subsections describe the primitives intended for multicast

transmission and multicast reception.

4.1.2.1Transmission

The transmission primitive should allow the transmitting Process to

transmit a message to either a specific receiving Process using a unicast

identifier, or to a group of receiving Processes using a multicast set identifier.

In order to avoid having two transmission primitives, one for sending a

message to a specific Process (Le. a unicast transmission) and the other for

transmissions to Processes belonging to a multicast set (Le. a multicast

transmission), a single primitive, the send primitive, is proposed:

ReturnCode: = send (Identifier, Message, Size)

where:

Identifier: an identifier identifying the intended Receiver(s) of the message.
Since the send primitive is to support both unicast and multicast
transmission, the identifier must be either a unicast identifier or a
multicast set identifier;

Message: the message to be transmitted to the Receiver(s) indicated by the
Identifier;

Size: the number ofbytes in the message;

RetumCode: an indication as to the success or failure of the execution of the
send primitive (seebelow).
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The send primitive is to offer a best effort datagram transmission facility

only, Since the number of destinations may be unknown, the send primitive

can only indicate whether the message was sent (with a ReturnCode of

"Success"), not whether it was received correctly, However, should the

identifier be unrecognized by the send primitive or some other failures occur

when attempting to perform the transmission, the transmission is aborted and

the transmitting Process informed of the failure with a ReturnCode of

"NotSent",

Finally, it is assumed that the underlying layers supporting the send

primitive are responsible for both transmitting the message as well as

including an identifier which identifies the intended receiving Process(es) and

the unicast identifier of the transmitting Process. This second identifier is

necessary to allow receiving Processes to identify the transmitter of the

message (should responses be required).

4.1.2.2 Reception

The requirements for reception are somewhat more complex than simply

the ability to receivemessages destined for a specific receiving Process (using

a unicast identifier) or group of Processes (using a multicast set identifier).

For example, in the Time-Server applications described in Chapter Two,only

certain time values may have been accurate enough for the Receiver, causing

those values deemed inaccurate to be discarded. Itwas therefore decided that

the reception facility should have the ability to filter the incoming messages-

keeping only those that met certain predefined conditions. In addition, since a

single reception could entail receiving many messages, as determined by the

filter, it was proposed that each received message and the unicast identifier

associated with the transmitter of the message should be stored in a linked

data structure.
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As with the send primitive, in order to avoid having several different

primitives all essentially performing the same task, a single primitive, the

receive primitive, is proposed:

ReturnCode: = receive (Identifier, var MessageList, Filter, TimeLimit)

where:

Identifier: the means by which the receiving Process is identified. Messages
received with an identifier matching "Identifier" are to be made
available to the Process executing the receive primitive. The identifier
supplied by the receiving Process can be either a multicast set identifier,
indicating the multicast set to which the Process belongs, or a unicast
identifier, indicating that the Process is only expecting messages for
itself;

MessageList: a list, returned by the receive primitive, consisting of any
messages which have been received. Exactly which messages are to be
kept and the order of storage of the messages in the list is determined by
the Filter (see below).Ifno Filter is supplied, MessageList is to point to a
data structure containing the first message received and the unicast
identifier of the Transmitter of the message. If a Filter is supplied, the
data structure pointed to by MessageList and the number and order of
the messages is determined by the Filter;

Filter: a function, supplied by the Receiver, which is used to accept or reject
messages based upon some criteria. A null Filter value indicates that no
filtering is required and that the first message to be received should be
returned in the MessageList. (See below for a further discussion of the
Filter);

TimeLimit: the maximum amount of time that the Receiver is willing to wait
for a message to be received. When the TimeLimit expires, the Filter
function is called (ifit has been supplied) with an indication that a time
out has occurred. This allows the Filter function to determine the value
of the ReturnCode. Should the TimeLimit expire without a supplied
Filter function (and therefore no messages were received), receive
returns an error codeof'Timeout" to the calling Process.
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An indefinite wait can be caused using a TimeLimit of "<L", while a
simple poll, to determine if any messages are available, can be achieved
with a TimeLimit ofzero;

ReturnCode: an indication from either the receive primitive itself or the
supplied Filter function as to the success or failure of the receive
operation (see below).

Control remains with the receive primitive until one of the following events

occur (at which point control wouldbe returned to the receiving Process):

a) a message is received and the receiving Process has not supplied a Filter
function. This message is made available to the receiving Process through
MessageList;

b) a message is received and the Filter detects that a predefined condition has
been met (for example, a certain number of messages might have been
received or accepted). The number of messages, if any, and their order in
the list ofmessages are determined by the Filter;

c) the TimeLimit has been reached (irrespective of the number of messages
accepted). Note that if a Filter is not supplied and an infinite TimeLimit is
indicated, control will only return to the receiving Process when a message
is received.

The receive primitive supplies the Filter function with four parameters: the

Transmitter's unicast identifier, the received message, the MessageList

pointer, and a time out indicator. Which messages are accepted and placed in

the message list depends upon the Filter; however, once the Filter has finished

processing the message, it is expected to observe the following rules regarding

returning control to the receive primitive:

a) a positive return value indicates to the receive primitive that the message
was accepted;

b) a negative return value indicates to the receive primitive that the message
was not accepted;
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c) a return value with an absolute value of "L" indicates that more messages
are expected and control is to remain with the receive primitive and is not
to be returned to the receiving Process;

d) a return value with an absolute value other than "I" indicates that no more
messages are expected and control is to be returned to the receiving
Process.

When a Filter signals that no more messages are expected, the receive

primitive returns the absolute value of the Filter's return value to the

receiving Process in the ReturnCode.

In addition to the possible ReturnCode values supplied by the Filter, the

receive primitive has three predefined ReturnCodes:

-1: indicating that the receive primitive has detected an error. This
ReturnCode can occur whether or not a Filter is supplied;

0: a timeout has occurred (without a Filter being supplied);

1:a message has been received (without a Filter being supplied).

4.2 Examples

A transmission (either unicast or multicast) could be implemented using

two of the primi tives, assuming that the transmitting Process has the name

associated with the intended Receiver(s):

if getid (ttExamplel", Examplelld) then
send (Example lid, Message, sizeof(Message»

else
error('1dentifier 'Examplel' is unknown");

In this example, "N" bytes of "Message" are sent to the receiving Process(es)

identified by the identifier "Example lid". Had the identifier "Example lid"

been previously available, there would have been no need to invoke getid. The

number of Processes actually receiving a copy of the message depends, in part,
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upon the type of the identifier (either unicast or multicast set) and whether

the message reaches the intended Processtes).

The receive primitive can be used in several different ways to allow a

Process to receive messages. In the following example, the receiving Process is

not a member of a multicast set and is to receive messages associated with its

own unicast identifier. The first message to be received is returned to the

Process, since the timeout value indicates an indefinite wait and no filter is

supplied:

getid (U", MyIdentifier);
MessageList := NIL;
receive (MyIdentifier, MessageList, NoFilter, Indefinite);

As in the previous example, getid need only be called once, to establish which

identifier is to be used by receive. Note that this example is somewhat spurious

since the identifier supplied by getid may not be known to any transmitting

Processes. In an actual .application, the Process, prior to receiving, would

probably distribute its identifier to potential Transmitters (using, for

example, the send primitive).

In the following example, a filter function is required to inspect each

message that is received for the string "Time-Please". When this string is

found, control is returned to the time-server (see below) by returning the value

"-2" to the receive primitive. Invalid messages are to be discarded, indicated to
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the receive primitive by a return value ofn-l":

function Filter(UnicasUd, Message, var SourceId, TimeOut): integer;
begin

if Message = "Time-Please" then
begin

new(SourceId);
SourceId . Requester: = UnicasUd;
Filter: = -2 {Discard Message and return}

end
else

Filter: = -1 {Discard Message and continue receiving}
end;

Note that the message itself is not kept, instead, the transmitter's unicast

identifier (Unicastld) is returned to the time-server in the variable SourceId.

The time-server consists of a loop in which it waits (indefinitely) for a valid

request to have been received; valid requests cause the filter function to return

a value of "-2", to which the time-server responds to the requester of the time

with the current time value. Should the receive primitive fail for some reason,

an error message is generated and the time-server leaves the Time Service

multicast set:

getid ("Time-Service", TimeServiceGroup);
join (TimeServiceGroup);
while receive (TimeServiceGroup, SourceId, Filter, Indefinite) = -2 do
begin

{Obtain time from local clock}
send (Sourceld . Requester, CurrentTime, sizeoflflurrent'I'imel):
dispose(SourceId)

end;
error("Time-Service stopped");
leave (TimeServiceGroup);

The Process requesting the time from the time servers would also require

the multicast set identifier of the time servers. Note however, that the Process

would not be required to join the time-server multicast set since it is only
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requesting the time. In the following example, the Process requesting the time

accepts the first time value received within five seconds and ignores the rest:

getid CTime-Service", TimeServers);
getid cm, SeIO;
Message: = "Time-Please";
send (TimeServers, Message, sizeoffMessagej):
if receive (Self, SuppliedTime, NoFilter, FiveSeconds) = Timeout then

wri te(ttN 0 response from Time Servers")
else

writef'Time is: ", SuppliedTime);

In the next example, the multicast communication primitives are used to

develop an application which is to create a new multicast set consisting of one

or more members. The following assumptions will be made regarding this

application:

a) there is a Process requiring the generation of a new multicast set, and

b) there is an existing multicast set consisting of one or more Processes which
allows its members to join new multicast sets.

The Process requiring the new multicast set must first generate a unique

multicast set identifier by which the new multicast set will be identified, and

then transmit this identifier to the potential new members with a request that

they join this new multicast set. The receive primitive is called with a filter

which is to create a list of new members pointed to by NewMemberList - ifno

members are found, NewMemberList will remain NIL after the call to receive.

Only after the list of identifiers associated with new members has been
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created can the Process start to transmit messages to the new multicast set:

getid (''PotentiaIMembersSet'', PotentialId);
getid ("", MyId);
newid (NewMulticasUd);

Request. Type: = CanYouJoin;
Request. NewId := NewMulticasUd;
send (PotentialId, Request, sizeoftltequesti):

NewMemberList:= NIL;

receive (MyId, NewMemberList, Filter, FiveSeconds);

ifNewMemberList = NIL then
error("No members for new group")

else
begin

create C'New-Set", NewMulticasUd, NewMemberList);
send (NewMulticasUd, Confirmation, sizeoftConfirmationj);
{Send and Receive subsequent Messages}

end;

Responses received within the first five seconds are included in the list of new

members.
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The filter required by the Process is to create a list of the "best" identifiers

supplied by the responding new members:

function Filter (Xmitld; Message; NewMemberList; TimeOut) : integer;
begin
if NOT TimeOut then
begin

if Message. Type = YesICan then
begin

new (NewMember);
NewMember. Id := Message. BesUd;
NewMember. Next:= NewMemberList;
NewMemberList:= NewMember;
Filter: = -1; {Dispose ofmessage but keep receiving}

end
else

Fil ter := -1; {Wrong message type - ignore}
end
else

Filter: = 2; {Timeout occurred - all done}
end;

As each new member's best identifier is received, indicated by the message

type of "YesfCan", it is included in a list of identifiers, the first element of

which is pointed to by NewMemberList.

Before a Process can receive requests to join a new multicast set, it must

first join the "PotentiaIMembers" multicast set. Once joined, it can wait

indefinitely for requests of type "Can YouJoin" (handled in this example by a

filter). The Process must now respond to the requests with a "YesICan" type

message and its "best" identifier. After joining the new multicast set, the

Process waits ten seconds for a confirmation - if one is not received, it leaves

the new multicast set, otherwise it waits for subsequent messages sent to the
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(new) multicast set:

getid ("PotentiaIMembers", PotentiaIMember);
join (PotentiaIMember);
if receive (PotentiaIMember, NewList, Filter, -1) = 2 then
begin

NewMulticastid := NewList. Newld;
Response. Type: = YesICan;
bestid (NewList . NewId, Response. BestId);
send (NewList. Requester, Response, sizeoflfcesponsej);
join (NewMulticastId);
if receive (NewMulticastId, Reply, NULL, TenSeconds) <> -1 then
begin

if Reply . Answer = Yes then
begin

leave (PotentiaIMember);
{Wai t for subsequent messages}

end;
end;
leave (NewMulticastId);

end;
leave (PotentiaIMember);

It is worth noting that if this algorithm were to be used in an actual

distributed system, the PotentialMember multicast set would rapidly

disappear after the first few requests to join new multicast sets. Therefore, in

trial implementations, the above algorithm was modified so that it spawned



MULTICAST PRIMITIVES 96

another Process upon receipt of a "Can YouJoin" message:

getid ("PotentiaIMembers", PotentiaIMember);
join (PotentialMember);
repeat

rc: = receive (PotentiaIMember, NewList, Filter, -1);
ifrc = 2 then
begin

{Spawn new Process}
{Perform "joining new multicast set" (as described above) }

end
until
re < > 2;
errorf'Potential Member error");
leave (PotentialMembers);

This ensures that each Host which supports the PotentialMembers multicast

set can continuously set up new multicast sets.

4.3 Related Work

Although in previous Chapters other multicast communication

implementations have been described, only one, the V-System developed at

Stanford, has been published with a detailed description of the available

primitives. Therefore in this Section, the primitives associated with the V-

System are compared with the multicast communication primitives that have

been proposed in this Chapter.

The V-System supports multicast communications using a Broadcast-

Global identifier scheme (Le. all Processes which are members of a multicast

set share a Global identifier and all Hosts on the Ethernet receive a copy of

every message sent, irrespective of whether they support members of the set or

not).

The V-System implements a Client-Server model of communications. That

is, a Client Process is initially a Transmitter, transmitting a multicast
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message to the Server Processtes), acting as Receivers. Once the message has

been processed, the Servers become transmitters, while the Client Process

becomesa Receiver.

The V-System supports a total often primitives [Cheriton1985a]:

CreateGroup: creates a multicast set in which the Process creating the
multicast set becomesthe first member;

JoinGroup: allows a Server to join an existing multicast set;

LeaveGroup: allows a Server to leave a multicast set of which it is currently a
member;

QueryGroup: allows a Process to determine the membership of a multicast set;

Send: used by the Client to send a Request to a multicast set;

Reply: used by a Server to reply to a Client;

ReceiveSpecific: allows a Process to receive Requests destined to a specific
address;

GetReply: used by a Client to obtain a reply from the queue of replies
maintained by the kernel;

DestroyProcess: allows a member of a multicast set to destroy any other
member of the multicast set (there are certain access privileges required
to perform this primitive);

ForceException: allows a Client to send an exception condition (Le. a break
signal) to the members ofthe multicast set.

There now follows a brief comparison of the V-System's multicast

communication primitives with those proposed in this Chapter.

4.3.1 Send and Reply

Unlike the V-System, the proposedprimitives make no distinction between

a "Client send" and a "Server reply", treating both as transmissions requiring

the proposed send primitive.
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There is at least one argument supporting the inclusion of the reply

primitive- it allows the kernel to recyclemuch of the information and storage

associated with the original message, thereby reducing communication times.

For example, the Server doesnot need to supply the address of the Client since

the kernel has access to it, nor does the kernel have to reformat an Ethernet

packet, since the original packet is still available.

4.3.2 ReceiveSpecific and GetReply

The V-System also makes a distinction between a "Client ReceiveSpecific"

and a "Server GetReply", which are simply variations of the proposed receive

primitive.

For example, if a specificmessage is required, the receive primitive allows

the Process to supply a filter which can discard all those messages not wanted

(Le. a ReceiveSpecific). Similarly, the next available message can be obtained

by invoking the receive primitive without a filter, resulting in the next

available message to be returned (i.e. a GetReply).

4.3.3 ForceException and DestroyProcess

The proposed primitives do not directly support facilities corresponding to

either of the V-System's ForceException orDestroyProcess primitives. Instead,

it was assumed that the Processes using the proposed primitives would

implement a remote procedure call facility (using the send primitive) which

would use existing system calls to support features such as destroying

Processes or forcing exceptions.

4.3.4 JoinGroup and LeaveGroup

The JoinGroup primitive and the LeaveGroup primitive are essentially

identical to the proposedjoin and leave primitives, respectively.
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4.3.5 QueryGroup

The proposed primitives do not directly support the V-System's

QueryGroup primitive. Instead, a Source Process is expected to use the send

primitive to transmit an inquiry message, which (assuming the protocol

existed) would cause the various Destinations to respond with their unicast

identifiers. The Source could either filter the replies to build up a list of

unicast identifiers or it could receive each identifier individually and store it

in a list.

4.3.6 CreateGroup

Multicast set creation differs quite widely between the proposed primitives

and the V-System. The V-System's CreateGroup primitive involves the

following four steps:

1. generate a random number and use this as the Group Number (Le. a
multicast set identifier);

2. send this Group Number to the network;

3. if replies are received (within an allotted period of time), the Group Number
generated was not unique, therefore repeat from step 1;

4. the Group Number is assumed to be unique, and the initiator of the
CreateGroup primitive nowjoins the new group.

This approach differs from proposedprimitives in two respects:

a) the Group Number is generated randomly and, to ensure its uniqueness, is
transmitted - allowing the CreateGroup primitive to determine just how
unique the Group Number is, and

b) the creator of the group becomesits first member.

CreateGroup can be emulated, more rapidly, using the newid and join

primitives. This approach is more attractive in that it involves no network

traffic when generating the new multicast identifier. The proposed primitives
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also avoid the possibility of having duplicate multicast set identifiers (which

are possible in the V-System if Processes which are members of an existing

multicast set (Le. with the same Group Number) do not respond within the

allotted period because ofproblems such as network traffic or machine crashes

[Zwaenepoel1985a]).

4.3.7 Summary

The proposed primitives differ from those supported by the V-System in

several ways:

a) the filtering capabilities supported by the proposedprimitives considerably
reduce the amount of unnecessary message handling by a receiving
Process;

b) the generation of unique identifiers for multicast set identification (using
the newid primitive) ensures that members of the multicast set are
uniquely identified. This approach seems considerably more flexible than,
for example, the method adopted by the V-System in which the Process
"randomly" generates multicast set identifiers until a unique one is
produced;

c) the proposed primitives support a simple Transmitter-Receiver model
rather than, for example, a Client-Server model such as the one used by the
V-System. This potentially allows more design flexibility since, as shown
in Chapters Two and Three, not all applications are easily described using
the Client-Server model and models such as the Client-Server can be built
out of the Transmitter-Receiver model.

4.4 Concluding Remarks

In this Chapter, a set of nine multicast communication primitives have

been proposed, the design of which was influenced by the various taxonomies

introduced in Chapter Three. In addition to proposing the primitives, it was

also shown how the primitives could be used by describing some of the

applications presented in Chapter Two.
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When comparing the proposed primitives with those of the V-System, it is

apparent that a great deal of functional commonalty exists (such as

transmitting to a set of receivers using a single primitive and the ability to

join and leave a multicast set). However, the proposed primitives seem more

flexible than those used in the V-System for several reasons:

a) by using the Client-Server model, the V-System does not directly support
multicast reception - rather it supports a form of filtered unicast reception;

b) by recognizing that there are different types of identifier possible, the
proposed primitives are not necessarily tied to one type of network.

The next two Chapters will demonstrate how the proposed primitives can

be implemented on a variety ofintranetworks and internetworks.
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Chapter5
Intranetwork

Multicast Communications

With the exception of the bestid primitive, the primitives developed in

Chapter Four were discussed in terms of Processes rather than of specific

distributed systems or networks. However, since one of aims of this study of

multicast communications is to demonstrate how the primitives could be

implemented on a variety of networks and distributed systems, the proposed

primitives must be discussed in a wider context.

The purpose of this Chapter is twofold. First, to discuss how different

intranetwork architectures affect the implementation of the primitives and

second, to compare the transmission and reception overheads of the primitives

implemented on these architectures.

By considering an intranetwork as simply a layer, the number of different

intranetworks that need examination is reduced to four, since, as the

multicast transmission taxonomy demonstrated, there are only four different

types of communication possible within a layer (One-Unique, One-Group,

Many-Unique, and Many-Group). Therefore, to illustrate the problems

associated with implementing the primitives, only four different intranetwork

architectures (one fromeach category) are required.

This Chapter is organized as follows. In the next Section, the facilities

available within the Computing Laboratory for the implementation of the

multicast communication primitives are presented. Since the available
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facilities did not support all four possible intranetwork architectures, it was

necessary to develop (layered) software to emulate some of the different

categories. These different intranetwork communication architectures are

described in Section Three. In Section Four, the problems associated with

implementing the primitives on each of the different intranetwork

architectures are then discussed. In the fifth Section, the performance of the

send and receive primitives in the different implementations are compared.

The Chapter is concluded with a series of observations and comments

regarding the performance results.

5.1 Facilities

In this Section, the hardware and software facilities available in the

Computing Laboratory for the implementation and testing of the multicast

communication primitives are described.

5.1.1 Hard ware

Six hosts were available for the implementation and testing of the

multicast communication primitives. These were (ranging in speed, from

fastest to slowest [Parrington1986a]): a SUN-3, an Orion, twoVAX-750's,and

two Whitechapels. A 10Mb Ethernet interconnected all the machines. The

Ethernet interface hardware on each of the Hosts supported a unicast (Host)

address and the Ethernet broadcast address (these two addresses being

"predefined" byXerox [DIX1980a]).

5.1.2 Software

All six Hosts used in these experiments supported UNIX (oneVAX-750 ran

8th Edition UNIX, while the remaining Hosts ran UNIX Version 4.2). Both
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versions ofUNIX provided sockets, a mechanism which permits interprocess

communications [Leffier1983al.

Briefly, a socket is a Host-Port identifier bound to a Process. It is a general

purpose communication mechanism usually associated with either of the

followingprotocols:

a) UDP, or User Datagram Protocol, which does not guarantee the arrival of
the message to the intended receiving Process;

b)TCP, or Transmission Control Protocol,which ensures that messages arrive
at the receiving Process in the order they are sent without loss or
duplication.

Normally only one Process can access a socket. The one exception to this rule

is that any Child Process spawned by a Parent Process can share access to the

Parent's socket.

In an interprocess communication (or IPC), the transmitting Process

supplies its Socket Layer with a message and the Host-Port identifier to

which the message is addressed. The Host identifier is used by the Socket

Layer in determining the routing of the message; this usually involves

mapping the Host identifier (or Internet Address) into the physical

Destination (Host) address supported by the underlying network. The Host-

Port identifier and the message are then transmitted using whatever packet

structure and protocol are required by the underlying network to the Host

indicated by the Destination address. For example, a socket transmission on

the Ethernet involves building an Ethernet packet consisting of the Source

and Destination Host-Port identifiers and the message. The packet is then

transmitted with the Destination Host's Ethernet address (which is not

necessarily the same as the Destination's Internet Address).
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Upon receipt of a message, the Ethernet interface supplies the message to

the receiving Socket Layer on the Destination Host. The Destination Internet

Address from the message is then examined by the Socket Layer. If the

Destination Host Internet Address from the message corresponds to that of the

receiving Host, the message is kept. The Port identifier (from the message) is

then used to determine which Process (if any) the message is to be supplied to.

For example, consider the following scenario, using a simplified version of

UDP, in which Process-Ion Host-1 is to send a message addressed to Port 4321

on Host-2:

1. Process-l supplies a message
for <"Host-2", 4321> to
Host-l's Socket Layer.

1. Process-2 binds to
<"Host-2", 4321>.

2. Host-1's Socket Layer maps
"Host-2" into Host-2's Ethernet
Address.

2. Process-2 waits for any message
to arrive at <"Host-2", 4321>.

3. Host-l's Socket Layer sends the
message and <"Host-2", 4321 >
with Host-2's Ethernet Address.

3. Host-2's Ethernet hardware
recognizes its Ethernet Address
in the packet and takes a copy.

4. Host-2's Socket Layer recognizes
the Internet Address as its own
and keeps the message.

5. Host-2's Socket Layer supplies
the message to Process-2, bound
to Port 4321.

Figure 5-1: Socket Communication
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Port identifiers can either be assigned dynamically to a Process by the

Socket Layer itself or the Process can request a specific Port identifier. A

message arriving at a Socket Layer with a Port identifier which is not

currently associated with a Process is discarded by the Socket Layer.

Clearly, from this discussion of sockets, one can conclude that sockets offer

One-Unique transmission at the Network Layer (i.e. Host-to-Host) and One-

Unique transmission at the Socket Layer (Le. Process-to-Process), It is

possible however to obtain One-Group transmission at the Network Layer by

setting the Host identifier to a well known (predefined) broadcast value and to

transmit the message using the UDP protocol. Messages sent with the

broadcast (Host) identifier are received by all Hosts on the network. As in the

case of One-Unique Network Layer transmissions, the message is made

available to the Process associated with the Port indicated in the Host-Port

identifier. Now however, instead of a single Process on a specific Host

receiving a copy of the message, all Processes on all Hosts which have access to

the specified Port receive a copy of the message. For example, if Process-I on

Host-1 in Figure 5-1 (above) had transmitted its message to <"AIr', 4321>,

all Processes associated with Port 4321 on all Hosts would have received a

copy of the message. (This technique is used by several socket utility programs

such as rwho, for the distribution of network information to well known

system Ports [Linton1986al.)

Interprocess communication within a Host is also possible using sockets.

For example, ifProcess-1 on Host-1 in Figure 5-1 had transmitted its message

to <"Host-l", 4321> (instead of "Host-z"), the Process associated with Port

4321 on Host-I would have received a copy of the message. On UNIX 4.2

Hosts, socket transmissions between Processes on the same Host do not

proceed onto the network, instead they remain on the Host in question.
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5.2 Intranetwork Architectures

The communication facilities offered by sockets conform to the Host-Port

model described in Chapters Two and Three. That is, for a Process to

communicate with another Process, it must supply the Communication Layer

(Le. the Socket Layer) with an identifier consisting of two parts - a Host

number and a Port number (to which the receiving Process is expected to

associate itself).

The basic socket facilities allow, at best, a One-Unique type of multicast

transmission (Le. both the Host and Port identifiers indicate unique

destinations). Therefore, a multicast transmission using the basic socket

facilities would require that the message be sent repeatedly, a copy to each

possible receiving Process.

Fortunately, as indicated earlier, sockets do support a form of One-Group

multicast transmission, in that the Host identifier can be set to indicate all

Hosts and then be mapped by the Socket Layer into the Ethernet's broadcast

identifier. A transmitting Process can therefore send a message to all Hosts.

However, as before, only a single Port can be identified.

As it stands, only a restricted form of One-Group multicast transmission

can be implemented (in addition to One-Unique multicast transmission), since

sockets allow at most one receiving Process on a single Host. Consequently, to

examine the implementation of the primitives on One-Group (allowing

multiple receiving Processes on a single Host), Many-Unique, and Many-

Group intranetwork architectures, the following design alternatives were

considered:

a) to modify (or replace) the existing socket software so that all four of the
intranetwork architectures couldbe supported, or
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b) to add a layer of software between the communicating Processes and the
Socket Layer. This new layer would then emulate the required type of
multicast transmission using the underlying socket interface.

Of these alternatives, the first (replacing or modifying the existing socket

software) was rejected for three reasons. First, it was assumed that the effort

associated with changing the existing socket software would be too time

consuming. Second, by creating our own version of sockets it was probable that

the new socket software would be incompatible with the socket software at

other UNIX sites. Third, some of the UNIX Hosts were not supplied with

source code - making software changes to the sockets all but impossible.

Therefore, the remaining alternative, adding a layer of software, was the only

possible choice.

The requirements, design and implementation of a series of software layers

which require those types ofintranetwork architectures not directly supported

by sockets (that is, One-Group, Many-Unique, and Many-Group) are now

considered.

5.2.1 The Multicast Communication Layer

From the discussion in the previous Section, it is apparent that additional

layers of software would be required for each of the intranetwork architectures

that could not be directly supported by sockets (Le. One-Group, Many-Unique,

and Many-Group). This new layer, the Multicast Communication Layer,

would be responsible for supporting the management of the multicast sets as

well as the transmission and distribution of messages on each Host. The

Multicast Communication Layer would lie between the Process and Socket
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Layers:

Process Layer

Multicast Communication Layer

Socket Layer

Figure 5-2:The Multicast Communication Layer

In order to avoid having the One-Group, Many-Unique and Many-Group

intranetwork architectures being emulated by a series of One-Unique (Le.

unicast socket>transmissions, it was decided to:

a) have each receiving Multicast Communication Layer share a commonPort,
and

b) transmit all multicast messages with a broadcast identifier to this
commonPort.

For testing purposes, it was assumed that a Host could support any of the four

multicast communication classifications. However, three receiving Multicast

Communication Layers were developed for the distribution of messages on a

receiving Host (one each for One-Group, Many-Unique and Many-Group).

Each of the Multicast Communication Layers were associated with a separate

Port (note, One-Unique did not have a separate receiving Multicast

Communication Layer since messages were to be sent directly to the Process

in question):

Classification Port

One-Group 9999
Many-Unique 9989
Many-Group 9979

Figure 5-3:Multicast Layer Port Assignment
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For example, socket Port 9999 on all the UNIX hosts supporting multicast

communications would be used by the receiving One-Group Multicast

Communication Layer.

A multicast transmission would therefore consist of the transmitting

Process supplying its transmitting Multicast Communication Layer with a

multicast set identifier and the message to be transmitted. The transmitting

Multicast Communication Layer would then store the message and its

associated identifier(s) (either Unique or Group, see Section 5.2.2) in a socket

message and broadcast it to the receiving Multicast Communication Layer

under test (as indicated by the Port number). For example, in the One-Group

intranetwork architecture, the transmitting Process would supply the One-

Group Multicast Communication Layer with a multicast set identifier and a

message. The transmitting Multicast Communication Layer would then

broadcast the message and the multicast set identifier to Port 9999.

To allow the receiving Multicast Communication Layers to determine

which, if any, Processes were to receive a copy of the multicast message, a

standard multicast message format was developed for each type of multicast

transmission. The Multicast Communication Layer message formats were as

follows (note, since the One-Unique intranetwork architecture used sockets

directly, no special message format was required):

One-Group:

L...1_Id_e_n_t_ifi_le_r--l._S_o_u_r_ce_......____ D~~~:=J
Figure 5-4: One-Group Message Format

where:

Identifier - a Group identifier (see Section 5.22), indicating the multicast set to
which the Data is to be distributed to,
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Source - a Unicast-Unique Host-Port (socket) identifier, identifying the Source
of the message,

Data - the information to be transmitted to the members of the multicast set.

Many-Unique:

Figure 5-5: Many-Unique Message Format

where:

Count - the number ofUnique identifiers associated with the message,

Identifiers - a series of one or more Unique identifiers (each stored as a
Unicast-Unique Host-Port identifier, see Section 5.2.2), indicating the
in tended Receivers,

Source - a Unicast-Unique Host-Port (socket) identifier, identifying the Source
of the message,

Data - the information to be transmitted to the members of the multicast set.

Many-Group:

L..1_c_o_u_n_t~_I_d~~:ti~~r_s_L-S_o_u_r_c_e---'L-_:?~~~~
Figure 5-6: Many-Group Message Format

where:

Count - the number ofGroup identifiers associated with the message,

Identifiers - a series of one or more Group identifiers, indicating the intended
Receivers,

Source - a Unicast-Unique Host-Port (socket) identifier, identifying the Source
of the message, and

Data - the information to be transmitted to the members of the multicast set.

Upon receipt of a multicast message, the receiving Multicast

Communication Layer would examine the identifier(s) associated with the

multicast message and determine which Processes on its Host, if any, were to
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receive a copyof the message. Message distribution by the receiving Multicast

Communication Layer was done by performing a series of One-Unique

(Process-to-Process) socket transmissions on the Host in question. For

example, a Many-Unique Multicast Communications Layer would examine

each Host-Port pair, from the multicast message, to determine if:

a) the supplied Host identifier matched that ofthe receiving Host, and

b) a Process associated with the supplied Port identifier existed on the
receiving Host.

Only if both the Host and Port identifiers supplied with the message matched

a Host-Port pair maintained by the receiving Multicast Communication Layer

would the message be distributed to the destination Process (associated with

the Host-Port pair).

5.2.2Identifier Structures

In addition to the different Multicast Communication Layers and their

associated packet structures, it was also necessary to develop identifier

structures suitable for each of the Multicast Communication Layers.

Each of the Multicast Communication Layers were influenced by the type

of identifier used by the surrounding layers. For example, to support the

Process Layer, the Multicast Communication Layer had to allow both

multicast set identifiers and unicast identifiers, while when dealing with the

Socket Layer, the Multicast Communication Layer used Host-Port socket

identifiers.

5.2.2.1Transmission Considerations

In a unicast transmission (by a Process using any of the architectures), the

message was passed directly to the Socket Layer by the Multicast

Communication Layer with the Host-Port identifier supplied by the Process.
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The Socket Layer was then expected to transmit the message to the specified

Destination indicated by the supplied Host-Port pair by performing a standard

UDP transmission.

However, multicast transmission (by a Process on any of the architectures)

required that the transmitting Multicast Communication Layer map the

supplied multicast set identifier into a list of either Unique identifiers or

Group identifiers. Then, depending upon the type of transmission under

consideration, it had to transmit the message to the intended Destinations,

either by unicasting the message (Le. when considering One-Unique

intranetworks) or by broadcasting the message (Le. when considering any of

One-Group, Many-Unique, or Many-Group intranetworks).

5.2.2.2Reception Considerations

In a unicast reception, the Process expects to receive messages sent with a

specific unicast identifier. A multicast reception is similar, with the exception

that the Process expects to receive messages sent with a specific multicast set

identifier.

5.2.2.3Identifier Design

The identifier structure decided upon was a simple linked data structure:

List -+ MID
nn ~I~:I

Figure 5-7: Identifier Structure

Idl

To distinguish between unicast and multicast set identifiers, the identifier in

the first element of the list (MID) could contain either a zero value, indicating

a unicast identifier, or a non-zero value, indicating a multicast set identifier.
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The subsequent identifiers within the list (Id1 through Idn) were treated by

the Multicast Communication Layer as either Unique identifiers or as Group

identifiers, depending upon the type of transmission being performed. For

example, when performing a transmission with a unicast identifier (Le.when

the MID was zero), Id1 through Idn represented Unique identifiers, while a

transmission with a multicast set identifier (i.e. when MID was not equal to

zero), Idl through Idn represented Group identifiers.

Unique identifiers were stored as Unicast-Unique Host-Port (i.e. socket)

identifiers and consisted of a 32-bit Host number and a 32-bit Port number.

Although the Group identifiers were treated as single 64-bit identifiers, they

were stored as pairs of32-bit integers (a high part and a lowpart). Id1 through

Idn represented a series of either Host-Port identifiers or multicast set

identifiers - depending upon the type ofnetwork under examination (Le.Host-

Port on Unique intranetworks and multicast set onGroup intranetworks).

The multicast set identifier, MID, was also stored as a pair of 32-bit

integers. However, how it was used depended upon whether the Process was

transmitting or receiving.

For example, when requested to transmit a message with an MID of zero,

the transmitting Multicast Communication Layer would treat each identifier

in the identifier list as a Host-Port identifier. The supplied message would

therefore be transmitted repeatedly to the Process(es) indicated by the

Host-Port identifiers. Note, normally an identifier list with an MID of zero

would only contain a single Host-Port identifier - indicating a specificProcess.

However, if the MIDwas non-zero,the interpretation of the identifiers and

the number of identifiers to be transmitted with each message would be

determined by the type ofintranetwork architecture under consideration. For

example, if the intranetwork architecture was, say, Many-Group, then the
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transmitting Multicast Communication Layer would transmit a broadcast

message to Port 9979 with as many of the (Group) identifiers as could be

inserted into the Many-Group multicast message. If the list (Id1 through Idn)

contained more identifiers than the message could support, additional

messages would be transmitted.

The identifier list was used differently for reception. An MID of zero

indicated that the Process was not a member of a multicast set and was

expecting a unicast message; the first identifier in the list (i.e. Id1) was taken

as the unique Host-Port identifier of the Process.A non-zeroMIDwas taken as

the multicast set identifier to which the Process belonged - messages intended

for this multicast set (received by the receiving Multicast Communication

Layer) would then be supplied to the Process, assuming that it had previously

joined the multicast set in question.

5.3 Implementation of the Primitives

To demonstrate that the proposed primitives could operate on any of the

four intranetwork architectures, it was decided to implement and test the

primitives on each of the architectures. In this Section, the implementation of

each primitive is discussed, given the constraints imposed by UNIX sockets,

the Ethernet, the Multicast Communication Layers, and the intranetwork

archi tectures.

5.3.1 send

There now followsa description of each of the implementations of the send

primitive. In each case, it is assumed that a message and a pointer to a list of

identifiers were supplied by the transmitting Process.

In the One-Unique intranetwork, both unicast and multicast

transmissions could use the same software, which transmitted a copy of the
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message to each receiving Process as indicated by the list of (Unique)

identifiers:

Message. Data: = DataFromProcess;
Current: = List A. Next; {Skip MIDfield}
while Current < > NIL do
begin

{Transmit the Message to Current A. UniqueIdentifier}
Current: = Current A. Next;

end;

Note, each Unique identifier represented a Unicast-Unique Host-Port

identifier.

In the One-Group intranetwork architecture, the send primitive was to

support both unicast and multicast transmissions, as required by the

definition of the send primitive. Therefore, the unicast transmission was

identical to that described for the One-Unique network (above)and used if the

MID value was zero. The multicast transmission was similar to the One-

Unique unicast transmission, with the exception that each identifier was

assumed to be a Group identifier and was therefore broadcast to the receiving

One-GroupMulticast Communication Layer (associated with Port 9999):

Message. Data: = DataFromProcess;
Current: = List A. Next; {Skip MIDfield}
while Current < > NIL do
begin

Message. Identifier: = Current A. GroupIdentifier;
{Transmi t the Message to <Broadcast, 9999> }
Current: = Current A. Next;

end',

Transmitting messages on a Many-Unique intranetwork, as in the One-

Group case, also required two distinct types of transmission - unicast and

multicast, as indicated by the value of MID. Unicast transmissions were

handled in the same way as One-Unique (above). Multicast transmissions
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were somewhat more involved because they entailed storing a number of

Unique identifiers (i.e. Host-Port identifiers) in the Many-Unique multicast

message and then broadcasting the message (and the identifiers) to Port 9989:

Message. Data: = DataFromProcess;
Current: = List A. Next; {Skip MIDfield}
while Current < > NIL do
begin

1:= 0;
while (Current <> NIL) and (I <> MaxId)do
begin

Message. Identifier [I] := Current A. UniqueIdentifier;
1:=1+1;
Current: = Current A. Next;

end;
Message. Count: = I;
{Transmi t the Message to <Broadcast, 9989> }

end;

Transmissions on a Many-Group intranetwork were essentially identical

to those on a Many-Unique intranetwork with the exceptions that the

identifiers were assumed to be Group identifiers and the message was to be

broadcast to Port 9979:

Message. Data: = DataFromProcess;
Current: = List A. Next; {Skip MIDfield}
while Current < > NIL do
begin

1:= 0;
while (Current <> NIL) and (I <> MaxId)do
begin

Message. Identifier [I] := Current A. GroupIdentifier;
1:=1+1;
Current: = Current A. Next;

end;
Message. Count: = I;
{Transmi t the Message to <Broadcast, 9979> }

end;
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Note also, that since the GroupIdentifier field and the UniqueIdentifier field

have identical structures, it was possible (in theory) to perform a multicast

transmission involving a mixture of identifiers (both Unique and Group).

5.3.2join

The join primitive implementation depended upon the type of

intranetwork architecture being supported.

Intranetworks supporting Unique identifiers (i.e. One-Unique and Many-

Unique) required that the join primitive supply the identifier of the Process to

all possible Processes intending to use the multicast set. This was achieved

using a simple name server which maintained a list of Host-Port identifiers

and the multicast set identifier of the multicast set in question.

In Group intranetworks (Le.One-Group and Many-Group) as well as in the

Many-Unique intranetwork, the join primitive supplied the Multicast

Communication Layer with a Host-Port identifier of the Process joining the

multicast set and the multicast set identifier in question. With this

information, the Multicast Communication Layer was able to examine

incoming identifiers and distribute the message to the intended members of

the multicast set (see Section 5.3.3,below)

5.3.3 receive

The receive primitive is discussed in two parts - first, the Multicast

Communication Layer, and second,the processofreceiving messages.

5.3.3.1The Receiving Multicast Communication Layer

Before a Process could receive a message sent to a multicast set, the

message was first required to pass through the receiving Multicast

Communication Layer on the Process's Host (note, this Section does not
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pertain to the One-Unique intranetwork architectures since One-Unique

transmissions were sent directly to the Process associated with the supplied

Unique (i.e. Host-Port) identifier).

The function of the receiving Multicast Communication Layer was to

distribute the message to the intended destination Processes by examining the

identifier(s) supplied with the message. Although the type and number of

identifier stored within each message structure could differ (depending upon

the intranetwork architecture in question), the basic function of the receiving

Multicast Communication Layer was as follows:

{ReceiveMessage from Socket Layer}
repeat

ExtracUden tifierFromMessage;
IdPtr := StartOfProcessAndMul ticastSeUden tifierList;
while IdPtr < > NIL do
begin

ifIdPtr ". Identifier = ExtractedIdentifier then
{Send a Copyof the Message to IdPtr ",Process}

IdPtr: = IdPtr '. NexUdentifier;
end;

until
NoMoreIdentifiersInMessage;

The process of sending a copyof the message to the intended Process involved

a One-Unique socket transmission within the receiving Host.

For example, in a One-Group Multicast Communication Layer, the

ExtractedIdentifier would be a Group identifier. Once extracted, the

ExtractedIdentifier would then be compared with the Group identifiers (i.e.

multicast set identifiers) supplied by the different Processes which had joined

the various multicast sets. When an identifier supplied by a Process matched

the ExtractedIdentifier, a copy of the message, including the transmitter's
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Unique identifier (i.e. Host-Port identifier) would be sent to the Process using

a One-Unique socket transmission.

5.3.3.2Message Reception by the Process

All receptions, both unicast and multicast, used the receive primitive.

Unicast and multicast reception was distinguished by the value of the MID

field within the identifier list (a zero value indicating a unicast reception,

while a non-zero value indicated a multicast reception). Unicast reception was

implemented as a standard socket reception - allowing messages to be

received from any transmitting Process. However, a multicast reception was

intended to receive messages only from the Multicast Communication Layer.

Once a message (unicast or multicast) was received, it was stored in a

structure to allow the message to be linked to other messages by any filter the

Process might supply:

Link to Next Message

Size ofMessage r+ Host-Port

Source 0 NIL
Identifier

Message

Figure 5-8: Received Message Structure

Note, the Source Identifier was stored in the same format as any other unicast

identifier, with an MID of zero (see Section 5.2.2). This was to allow the

receiving Process to reply to the transmitting Process by supplying a pointer

to the Source Identifier field.
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If no filter was supplied, the received message (stored in the structure

shown in Figure 5-8) would be returned directly to the receiving Process.

However, if a filter was available, the message would be supplied to the filter

for additional processing. Depending upon the return code returned by the

filter to the receive primitive, the message would either be kept or discarded

and the receive primitive would either continue waiting for additional

messages or would return the list ofmessages to the receiving Process.

Since the received message structure now contained both the message and

the transmitting Process's unicast identifier, the number of parameters

supplied to the filter function was reduced to:

a) the message structure described above (Le. the message, its size and the
Source identifier);

b) the message list (towhich the messages could be linked into);

c)a timeout indicator.

5.3.41eave

The leave primitive implementation, like that of the join primitive,

depended upon the type of intranetwork architecture in use. When leaving a

multicast set on a Unique intranetwork, the leave primitive informed the

name server; which removed the Process's Host-Port identifier from the list of

identifiers associated with the multicast set, thereby stopping any new users

of the multicast set from sending messages to the Process.

On Group intranetworks, it was only necessary to inform the Multicast

Communication Layer that the Process was leaving the multicast set. In

addition, in the Many-Unique implementation, the Multicast Communication

Layer was also informed, thereby ensuring that messages arriving with the

"old" identifier would be ignored and not transmitted to the receiving Process.

In both ofthese cases, the Multicast Communication Layer removed the socket
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identifier and the multicast set identifier associated with the Process from the

list ofmulticast set identifiers that it main tained.

5.3.5 getid

The getid primitive implementation was common to all four types of

network in that it accepted a name and returned a list of identifiers. Basically,

getid accessed a name server which returned the most up-to-date list of

identifiers associated with the multicast set. The list of identifiers returned by

the name server (consisting of a multicast set identifier, MID, and a list of one

or more Unique (Le. Host-Port) identifiers or Group (Le. multicast set)

identifiers), were formatted by the getid primitive into the identifier list

structure expected by the Process (see Section 5.2.2).

5.3.6 newid

The newid primitive returned a unique 64-bit value constructed from the

Process's Host identifier, its Process number and the current time of day

(expressed in milliseconds). As with the getid primitive, the primitive did not

require special implementations on any ofthe networks.

This method of constructing the identifier was found to be unique in that:

a) Processes on different Hosts would not produce the same Host identifier,
since within the context of the network, all Host identifiers were assumed
to be unique;

b)Processes on the same (UNIX)Host always have a unique Process number
(at least for the duration of their existence). It was assumed that there
would be a significant delay between freeing a Process number and the
reissuing of it in the generation ofa newmulticast set identifier;

c)the time of day value was assumed to be always increasing, even after a
machine crash.
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However, a Process could get the same value if newid was called within the

same clock period. Therefore, to avoid a Process obtaining the same value

twice, a short time delay was introduced into the newid primitive after the

generation of a new identifier. This ensured that different multicast set

identifiers would be produced after each call to newid.

5.3.7 create

The create primitive was implemented as described in Chapter Four. That

is, given a textual name and a list of identifiers, it associated the name with

the list of identifiers. As in the case of getid, create accessed a name server,

supplying it with the textual name of the multicast set, the multicast set

identifier and the list of identifiers to be associated with the multicast set.

The create primitive accepted three parameters: a name, a 64-bit multicast

set identifier, and a linked list of identifiers (Unique or Group), as described in

Section 5.2.2.3.

As with the two previous primitives, the implementation of the create

primitive was commonto all four intranetwork architectures.

5.3.8 remove

The remove primitive was implemented as described in Chapter Four -

given a textual name associated with an identifier, remove attempted to

remove the name from the list of identifier names. As with create and getid,

the supplied name was supplied to a name server, which removed the

information associated with the name.

The implementation of the remove primitive was common to all four

intranetwork architectures.
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5.3.9bestid

The bestid primitive returned a 64-bit identifier, the type of which

depended upon the type ofnetwork being examined.

In the case of Unique intranetworks, the unique Host-Port identifier

associated with the Process was returned as the "bestid". However, in the case

of Group intranetworks, the multicast set identifier supplied by the Process

was returned as its "best" identifier.

5.4Performance Results

After all nine primitives were successfully implemented and tested on the

four different intranetwork architectures, it was decided to contrast the

observed performances of the implementations with those expected from the

multicast transmission taxonomy in Chapter Three.

To this end, three tests were devised to compare:

a) the overheads associated with using the Multicast Communication Layer;

b) the costs of distributing a multicast message to Processes residing on a
single Host;

c)the costs of distributing a multicast message to Processes residing on
different Hosts.

All the tests were fundamentally the same, consisting of a Source Process

transmitting a message (of 4 or 512 bytes in length) and receiving a 4-byte

response from one or more Destination Processes (determined by the number

of Destinations being tested). One thousand of these message cycles (Request-

Response) were timed and recorded for subsequent analysis.

The Source Process used in these tests consisted of two parts, a Source

procedure which transmitted the message, recording the total time taken for
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the round trip and a filter function, which received messages from the

responding Destinations until all the Destinations had been heard from (or a

time limit was exceeded).

The filter function was written as follows:

var
Responded, Total, MsgNo: integer; {Global- see below}

function Check(Response, List: MsgPtr; Timeout: Boolean);
begin
if Timeout then

Check: = -3 { Failure indication - stop processing}
else
if Response A. SeqNo = MsgNo then
begin

Responded: = Responded + 1;
if Responded = Total then

Check: = -2 { Success indication - stop processing}
else

Check: = -1; {Don't keep response but keep receiving}
end
else

Check:= -1; {Wrong sequence number - keep trying}
end;

The Check function was called by the receive primitive each time a message

was received. If the sequence number in the Response (SeqNo) agreed with the

expected sequence number (MsgNo), the number of responses (Responded) was

increased and if the number of responses were found to equal the number of

Processes under test (Total), control was returned to the calling Process (with

a return code of "-2", indicating successful completion), otherwise the receive

function was to keep receiving. If the wrong sequence number was detected,

the message was discarded (return code "-1") and the receive routine continued

waiting for messages. Finally, should a timeout occur, control was returned to
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the calling sequence with an indication that not all messages were received in

the allotted time (return code tt_3").

The Source procedure, below, recorded the total time required to send a

message to the members of the multicast set and to receive responses from all

of them. Each message was sent with a sequence number (MsgNo) which was

to be returned by each responding Destination:

procedure Source(NumberInSet, MsgSize: integer; TestGroup: string);
var
int rc;
Message: TestRecord;
Elapsed: real;
Groupld, Self: IdentifierType;
begin
getid ('m, SeIO;
getid (TestGroup, Groupld);
Total: = NumberInSet;
for MsgNo := 1 to 1000 do
begin

Message. SeqNo: = MsgNo;
Responded: = 0;
StartClock;
send (Groupld, Message, MsgSize);
rc := receive (Self, StartOfList, Check, FiveSeconds);
Elapsed: = StopClock;
if re = Success then

write("Success", Elapsed)
else

wrltet'Tailure", Elapsed)
end;
end;

In the tests performed and described in this Chapter, the clock was found to

have an accuracy of plus or minus 10milliseconds [UNIX1983a].

The Destination Process was essentially an echo facility, echoing the

sequence number it received from the Source Process. The Destination Process

first joined a specific multicast set and then waited for the arrival of a



INTRANETWORK MULTICAST COMMUNICATIONS 127

message. Upon receipt of a message, the sequence number was returned to the

Source:

procedure Destination(TestGroup : string);
var
re : integer;
GroupId : IdentifierType;
Message: MsgPtr;
begin
getid (TestGroup, Groupld):
join (Groupld);
repeat

rc: = receive (Groupld, Message, NoFilter, WaitForever);
ifrc = 2 then

send (Message A. Source, Message A. SeqN 0, Four'Bytes);
dispose(Message);

until
re < > 2;
leave (Groupld);
end;

5.4.1 Multicast Set Membership Representation

In each of the performance tests, the number of members of anyone

multicast set (Le. the number of Destination Processes) was varied from one to

five (five was chosen as the upper limit since there were only six hosts

available for testing, one of which had to support a Source Process - the

remaining five Hosts were therefore available to support Destination

Processes).

For the purposes of the performance tests, the number of Unique or Group

identifiers allowed with each message, the type (Le. Unique or Group) of each

identifier, and the number of identifiers required to represent all five

members of the multicast set on each of the different intranetwork
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architectures were as follows:

Number of
Intranetwork Identifiers Identifiers
Architecture per message required to Comments

represent all
members

One-Unique 1 5 Each Process is identified by a
single Unique (Host-Port)
identifier.

Many-Unique 4 5
Each Process is identified by a
single Unique (Host-Port)
identifier.

One-Group 1 1
All Processes share a single
Grouh (Mu) ticast Set)
identi ier.

Many-Group 4 5 Each Process is identified "fe a
separate Group (Multicast et)
identifier.

Figure 5-9:Multicast Set Membership Representation

The maximum number of identifiers per message (Le. "many") was set at

four to allow an examination of the effect ofmultiple message transmission to

multicast sets on Many-Unique and Many-Group intranetwork architectures.

To achieve this on the Many-Group intranetwork architecture, each member

of the multicast set was represented by its ownmulticast set identifier (Le. the

multicast set used by the Source Process was created out of other, existing

multicast sets).

All members of the multicast set on the One-Group intranetwork

architecture were represented by a single multicast set identifier (irrespective

of the number of members). This helped establish a lower limit on the

transmission time required by those intranetwork architectures not directly

supported by sockets (i.e.One-Group,Many-Unique, and Many-Group).
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5.4.2Multicast Communication Layer Overheads

The object of this test was to determine the overheads associated with the

different Multicast Communication Layers compared to that of performing a

One-Unique transmission using sockets directly. The test consisted of sending

a four byte message to a single Destination Process using whatever method of

multicast transmission the specific intranetwork architecture supported. A

four byte message was chosen for two reasons: first it represented a small

percentage of the overall socketmessage size, and second, it was the size of the

integer sequence number associated with each message. The Destination

Process returned the same four byte message as a response using a unicast

transmission. (Note that all Multicast Communication Layers performed

unicast transmissions using a UDP socket transmission directly.)

Two tests were performed. The first was conducted between a pair of

Whitechapels, the slowest of the available UNIX machines, while the second

consisted of a Whitechapel sending messages to a SUN-3, the fastest of the

UNIX machines.

The tables in Figure 5-10 show the results of the tests. The round trip time

is expressed in milliseconds, while the overheads (that is, the difference

between the round trip time and the One-Unique round trip time) are

expressed as a percentage of the overall round trip time. Note that in addition

to the four intranetwork architectures discussed in this Chapter, Many-

Unique and Many-Group transmissions were tested in two different

configurations:

a)Many-Unique-A and Many-Group-A:consisted of transmitting the message
with a single identifier (Unique or Group), that ofthe intended Destination
Process, and

b)Many-Unique-B and Many-Group-B:consisted of transmitting the message
with the maximum number of identifiers (four) and the intended
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Destination Process's identifier stored as the last identifier in the list -
thereby requiring the receiving Multicast Communication Layer to scan
the entire list of identifiers.

If the obvious speed differences between the machines are ignored, one

finds, not surprisingly, that the One-Unique architecture using sockets

directly is the fastest, since there is no overhead associated with the handling

and distribution of messages by the receiving Multicast Communication

Layer. The communication times associated with Many-Unique-A, One-

Group, and Many-Group-A are similar because these messages only contained

a single identifier, requiring the receiving Multicast Communication Layer to

perform the minimum amount of processing. Similarly, the overheads

associated with Many-Unique-B and Many-Group-B are slightly higher than

Many-Unique-A and Many-Unique-B because of the additional processing

required to scan the entire list of identifiers in the message.

From these results, one can conclude that multicast transmissions to the

Whitechapels are limited by the rate at which messages can be distributed on

the machine, rather than the speed of the Ethernet. On the other hand,

because of the speed of the SUN, the overheads associated with any of the

Multicast Communication Layer implementations was small compared to the

overall communication time.

The large difference in communication times between the Whitechapel and

the SUN may not have been entirely due to machine speeds. For example, it is

known that the socket implementation on the SUN has been designed to

operate with the minimum of overheads. Similarly, the time required for

context switching (Le. changing from User space to Kernel space) on the

Whitechapel is quite large, which may also explain some of the overheads

associated with performing message distribution.
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5.4.3Destinations on a Single Host

In the following set of tests, the overheads associated with the Multicast

Communication Layer distributing messages to the members of a multicast

set all residing on a single Host are examined. The tests involved transmitting

a multicast message to a multicast set consisting of an increasing number of

receiving Processes and determining the round trip time of the message. All

four intranetwork architectures were examined (One-Unique, One-Group,

Many-Unique, and Many-Group).

The timings were taken for a varying number of destination Processes

(starting at one and increasing to five) and different message sizes (4-byte and

512-byte). Since the maximum number of identifiers allowed with the "many"

identifier packet was four, the effect of the number of receivers exceeding the

number of identifiers per message was also examined.

In Figures 5-11 and 5-12, transmissions between a VAX-750 and a SUN-3

are presented, illustrating the round trip transmission times for 4-byte and

512-byte messages respectively. In Figure 5-13, the various transmission

speeds are shown for a VAX-750 transmitting a 4-byte message to a

Whitechapel. The followingobservations are made from these graphs:

a) not surprisingly, the speed of the machine affects the overall message
distribution time;

b) if the Process-to-Process transmission time on the network is less than the
Process-to-Process transmission time on a Host, it can be more efficient to
use a One-Unique multicast transmission (i.e. using the network) rather
than having the Destination Host distribute the messages;

c) if the Process-to-Process transmission time on the network is greater than
the Process-to-Process transmission time on a Host, it can be more efficient
to have the Destination Host perform the distribution of the messages (i.e.
using the Multicast Communication Layer) rather than have the Source
perform the distribution;
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400
Round trip time
(milliseconds)

350
One-Unique

One-Group

Many- Unique

Many-Group

300

250

200

150

100

o
1 2 3 4 5

Figure 5-11: VAX-750 to SUN-3 (4 byte message)

Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number of destinations is increased to five.
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One-Group

Many-Unique

Many-Group
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1 2 3 4 5

Figure 5-12: VAX-750 to SUN-3 (512 byte message)

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number ofdestinations is increased to five.
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Round trip time
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Figure 5-13: VAX-750 toWhitechapel (4 byte message)

Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number ofdestinations is increased to five;

b) the destination Whitechapel was not able to receive more than four One-
Unique transmissions - hence the number of One-Unique transmissions
stopping at four.



INTRANETWORK MULTICAST COMMUNICATIONS 136

d) in Many-Unique and Many-Group networks, additional message
transmissions may be required if the number of Destinations exceed the
number of identifiers that can be associated with a message (as illustrated
by the increase in transmission times when increasing the number of
destination Processes from 4 to 5).

These observations confirm what was suggested by the multicast

transmission taxonomy - that the speed of a multicast transmission to a single

Host consisting of "R" receiving Processes depends upon both the speed at

which messages are distributed across the network and the speed at which

messages could be distributed within the Host. In addition, the size of the

message also affects the distribution time.

This point is further exemplified if transmissions from a slow Host (a

Whitechapel) to a fast Host (the SUN-3) are considered. In Figure 5-14, the

graph shows quite clearly that if the overall interprocess transmission time

(across the network) is slow, more dramatic results can be obtained by using a

multicast layer to distribute the messages.

5.4.4 Destinations on Separate Hosts

In the following set of tests, the overheads associated with distributing

messages to Destinations on separate Hosts were examined. As in the tests

involving destinations on a single Host, these tests entailed transmitting a

multicast message to a multicast set consisting of an increasing number of

receivers and determining the total trip time (Le. Request and Response). All

four intranetwork architectures were examined (One-Unique, One-Group,

Many-Unique, and Many-Group).

As in the previous set of tests, the multicast set membership increased

from one Destination to a maximum of five, with each new (Destination)

Process being placed on a (new) separate Host. To ensure that the tests were
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Figure 5-14: Whitechapel to SUN-3 (4 byte message)

a) Many-Unique and Many-Group transmissions allow at most four identifiers
to be associated with a single transmission, hence the increased slope when
the number of destinations is increased to five.



INTRANETWORK MULTICAST COMMUNICATIONS 138

conducted under similar conditions, the same ordering of Hosts was used for

each of the different multicast transmission types being examined.

The Host ordering was from the fastest to the slowest in terms of CPU

speed (that is, SUN, Orion, VAX-750, and the pair ofWhite chapels). As in the

previous tests, two sets of observations are presented, first, a 4-byte Request

and a 4-byte Response, and second, a 512-byte Request, and a 4-byte Response.

The Source Process ran on a VAX-750.

Figures 5-15 and 5-16 show the round trip times for a 4-byte message and a

512-byte message respectively. The following observations are made from

these graphs:

a)the speed of the machines within the multicast set affects the overall
message distribution time;

b) in a multicast transmission, the order in which the members are
transmitted to is important. For example, had the tests begun with the
Whitechapels, the overall transmission time would have been higher to
begin with and much closer to the horizontal, since the speed of the
Whitechapels would have been the limiting factor;

c) when dealing with machines of comparable speeds (for example, Hosts 2 and
3 (Orion and VAX-750) and Hosts 4 and 5 (the pair of White chapels», the
overheads associated with repeated One-Unique transmissions suggests
that using the Multicast Communication Layer for message distribution
may be attractive in homogeneous networks;

d) Many-Unique and Many-Group multicast transmission follow the same
curve as does One-Group since all three use similar algorithms for message
distribution. However, when the number of identifiers required to identify
the members of the multicast set exceed the number of identifiers that can
be associated with a single message, additional message transmissions are
required, hence the (not surprising) increase in slope between Hosts 4 and
5.

All these observations confirm what was suggested by the multicast

transmission taxonomy, that in general, the time taken for a message to reach
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Figure 5-15: VAX-750 to Separate Hosts (4 byte message)

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number ofdestinations is increased to five.
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Figure 5-16: VAX-750 to Separate Hosts (512 byte message)

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number ofdestinations is increased to five.
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all members of a multicast set is dictated by the speed of the slowest machine

on the network.

5.5 Concluding Remarks

The purpose ofthis Chapter was to showhow the proposedprimitives could

be implemented on a variety of intranetworks. Since the majority of the

proposed intranetworks were not supported by the facilities available for use

in the Computing Laboratory, it was necessary to design and implement a

series ofintranetwork architectures to allow the testing ofOne-Group, Many-

Unique, and Many-Group intranetworks.

Once the intranetworks were implemented, it was then possible to

implement and test the proposed primitives using the Multicast

Communication Layer. The tests showed that the primitives could be

implemented successfully on intranetworks supporting different numbers and

types of identifier.

In addition to the comments already made in this Chapter regarding the

results of the various tests, one can conclude that the time taken to distribute

a message to the members of a multicast set is governed by the time required

to supply the message to the slowest member of the multicast set. For

example, when transmitting a multicast message to a multicast set consisting

of a variety of Hosts, the speed of the slowest Host determines the overall

message distribution time.

Therefore, when considering multicast communications in a layered

distributed system, a network designer should consider the following:

a) avoid using intranetworks consisting of Hosts with widely varying speeds.
Instead, an intranetwork supporting a homogeneous collection of Hosts
should be considered, since this may result in faster distribution times. For
example, if the members of the multicast set are uniformly distributed
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amongst the various Hosts, a single One-Group transmission would
probably be faster than a series ofOne-Unique transmissions;

b) attempt to ensure that members of a multicast set reside on different Hosts
if the cost ofmessage distribution on the receiving Host is high. (Clearly,
this is not always possible in a truly distributed system, since members of
the multicast set may migrate between the various Hosts);

c)use One-Group transmissions if the members of the multicast set can be
identified using a single identifier, whereas Many-Unique or Many-Group
transmissions should be used if the members of the multicast set are
identified with a variety of identifiers;

d)Many-Group transmissions should be considered ifit appears that users will
build multicast sets fromother, existing multicast sets.
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Chapter6
Internetwork

Multicast Communications

In light of recent trends in distributed systems, it is generally assumed

that instead of using a single monolithic network, many organizations will

employ a series of small networks for reasons such as security and reliability

[Shepherd1985a] and because of decentralized or incremental acquisition of

equipment. In certain situations these individual networks will be

interconnected, thereby allowing internetwork communications, that is,

communications between networks.

The point at which two (or more) networks are interconnected is known,

generically, as a Gateway. The specific functions of a Gateway can vary,

depending upon the networks it interconnects. For example, a Gateway

interconnecting a pair of Ethernets may simply transmit each message it

receives from one Ethernet onto the next, whereas a Gateway interconnecting

a Cambridge Ring and an Ethernet may be responsible for changing message

formats (from, say, an Ethernet packet into a series of Cambridge Ring mini-

packets) or changing identifier formats (from 48-bit Ethernet identifiers into

eight-bit Cambridge Ring identifiers) or both.

Communications can be further complicated in an internetwork multicast

communication since there may now be many Destinations, rather than one,

on the remote network. Consider, for example, a situation in which a multicast

set consists of members on two networks. Ideally, a Source Process on one of
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the networks, using the multicast send primitive, could transmit a message to

all Destinations (both local and remote):

LocalDestination Remote Destination

Source

LocalDestination Remote Destination

ILocalNetwork I IRemote Network I
Figure 6-1:Relationship between LocalNetwork, Remote Network and

Gateway in a Multicast Transmission

However, at the Communication Layer (or the Network Layer), the task of

performing the communication may not be so simple since Destination

identification may differ between the two networks. For example, the Local

Network may support One-Group transmissions between Hosts, whereas the

Remote Network may require One-Unique transmissions. In situations such

as these, a network designer is facedwith problems such as:

-should the Source or the Gateway manage the list of remote Destination
identifiers?

- if the list of identifiers are managed by the Source, should it transmit
individual messages, via the Gateway, to the remote Destinations, or
should it pass all the identifiers and a single message to the Gateway for
transmission by the Gateway?

- if the Gateway is responsible for maintaining the list of remote Destination
identifiers, how should the Source indicate that a certain message is to be
transmitted to the members ofthe multicast set on the remote network?
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This Chapter will attempt to answer these questions by examining:

a) how different methods of internetwork multicast communications affect the
design of Gateways;

b) how the proposed primitives can be used to support internetwork multicast
communications;

c) what methods of multicast transmission, if any, are best suited to
internetwork multicast communications.

The Chapter is organized as follows. In the next Section, the different ways

in which a Source can transmit a message to a Gateway are discussed, while in

the third Section the problems associated with identifying Destinations on

remote networks are examined. In the fourth Section, different methods of

performing internetwork multicast communications are discussed, with an

emphasis on multicast gateway design and how the proposed multicast

communication primitives could be used in their design. The performances of

the different types of Gateway are compared in the fifth Section. In the final

Section, the findings presented in this Chapter are reviewed.

8.1 Gateway Identification

In any internetwork communication, before the message reaches the final,

intended Destination, the message must pass through one or more Gateways.

The exact function of the Gateway varies, depending upon the situation. For

example, a Gateway connecting two identical networks (Le. networks

supporting the same protocol, identifier and message structures) need only act

as a bridge between the networks [Shepherd1985a].

However, when connecting networks which support different protocols,

identifier types or message structures, the Gateway is forced to perform

additional functions such as protocol or identifier conversion. Once a Gateway

has received a message, it must then attempt to transmit the message to the
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intended Destinations using the facilities available on the remote network.

The purpose of this Section is to examine two different methods in which a

Source (acting as a transmitter) can transmit a message to a Gateway.

As in the intranetwork communication case, the Source must supply the

message and some form of identification which allows the message to reach

the intended Gateway. There are two broad divisions of multicast Gateway

identification: implicit and explicit.

6.1.1 Implicit Gateway Identification

An implicitly identified Gateway does not require a separate message

transmission by the Source. Instead, it is assumed that the Gateway is able to

determine the Destination(s) from the identifier used to reach the Gateway.

For example, if the Source transmitter performed a One-Group multicast

transmission on the local network, an implicitly identified Gateway would be

expected to receive a copy of the message. From the single Group identifier

used to identify the members of the multicast set on the Source's (local)

network, the Gateway would then be expected to identify all the members of

the multicast set on the remote network.

In the V-System [Cheriton1983a], the Gateway is implicitly identified

since multicast messages are broadcast to all Hosts (including Gateway

Hosts). Upon receipt of a message, a V-System Gateway determines if the

message should be transmitted onto the Destination network by inspecting

the Group identifier. If the Gateway determines that the multicast set exists

on the Destination network, the Group identifier (supplied by the Source) is

mapped into an equivalent Group identifier (used by the members of the

remote multicast set) and transmitted on the Destination V-Systemnetwork.
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6.1.2Explicit Gateway Identification

When the Gateway is to be identified explicitly, the Sourcemust transmit a

separate message (explicitly) to the Gateway in question (in addition to those

sent to the local Destinations). For example, on a network supporting One-

Group multicast transmissions, at least two transmissions would be required,

one to the local Destinations making up the local multicast set, accessible

using a One-Group transmission, and the other to the Gateway, using a One-

Unique transmission. (Note, this assumes transmission to a single Gateway, if

there were more Gateways, additional One-Unique transmissions might be

required or possibly a single One-Group transmission to Gateways belonging

to a Gateway group.)When a Gateway is explicitly accessed,it is assumed that

the Gateway requires additional routing information to enable it to transmit

the message to the intended Destinations:

GatewayMessage =
record

Gwld: IdStructure;
FDld: IdStructure;
Data: array [0 ..MaxSizel ofBytes;

end;

where:

GwId: the Gateway Identifier, which allows the routing of the message to the
Gateway;

FDld: the Final Destination Identifier, which allows the routing of the
message, by the Gateway, to the intended Destinations. Depending upon
how the Gateway identifies the intended Destinations, the identifier
combination can be any of One-Unique, One-Group, Many-Unique, or
Many-Group (how these identifiers can be used will be discussed in the
next Section);

Data: the information to be transmitted.
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For example, in MP [AhamadI985a], Gateways are explicitly identified by

the Source. The Source performs two transmissions, the first on its local

network (an Ethernet, using a One-Group transmission) and the second to the

Gateway in question. The Gateway is supplied with the message and a single

Group identifier which the Gateway maps into another Group identifier for

transmission on the remote network (another Ethernet).

8.1.3 Summary

In this Section, two methods of Gateway identification have been

discussed: implicit identification and explicit identification. From this

discussion wemake the followingobservations:

a) implicit identification of the Gateway minimizes the number of
transmissions required on the Source network (since, ideally, only one
transmission is required). However, the Source has no method of
controlling which of the Destinations receive a copy.For example, a Source
could not transmit a message to only those Destinations on its own local
network since the message is transmitted by all Gateways to all
Destinations. This problem is further illustrated in a situation where a
Destination can be reached by two implicitly identified Gateways - the
Destination in this example can receive two copiesof the same message.

b) explicit identification of the Gateway avoids the aboveproblem by requiring
the Source to explicitly identify the Gateways through which the
transmission is to occur. This obviously results in additional message
generation on the Source network, a potentially undesirable feature, if, for
example, there are multiple Gateways and each must be explicitly
identified.

In the next Section, an examination of how the different types of Gateway

identification affect the identification of the members of the multicast set on

the remote network is presented.
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6.2 Identifying the Destination Members of the Multicast Set

In addition to identifying the Gateway, it is also necessary for the

transmitting Source to identify the intended Destinations, both local and

remote. Obviously, the initial identification of the particular multicast set in

question is determined by the Source using either Unique or Group identifiers.

However, the maintenance of the identifier(s) used to indicate the members of

the multicast set can be performed by either the Source or the Gateway. For

example, if the members of a multicast set on a certain remote network are

identified using Unique identifiers, the management of the list of these

identifiers may be the responsibility ofeither the Gateway or the Source.

In this Section, some of the problems relating to Source and Gateway

multicast set membership identification are examined.

6.2.1Multicast Set Identification by Source

Source membership identification means that the Source maintains the

actual identifiers of the Destinations (either Unique or Group) rather than the

Gateway. For example, if the members of a multicast set are to be accessedby

a series of One-Unique transmissions, the Source would maintain the list of

Unique Destination identifiers. This does not necessarily mean that the

Gateway is passive and simply forwards each message it receives onto the

Destination network as the followingexamples illustrate:

a) the Gateway can act as a bridge, simply transmitting the supplied message
on the remote network. For example, in the worst case, if the multicast set
members on the remote network require One-Unique transmissions, the
Source would be required to transmit the same message to each
Destination on the remote network through the Gateway. Similarly, if the
Destination network allowed One-Group transmissions, the Source would
only be required to transmit a single message via the Gateway to the
remote Destinations.
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b) situations such as those described above, in which the Source must transmit
individual messages to the intended Destinations, can be avoided if the
Gateway is given additional functionality. For example, if the intended
(remote) Destinations can only be accessed using One-Unique
transmissions, the number of Source transmissions can be reduced if the
Gateway is supplied with the message and a list of many unique
identifiers. The Gateway can then be responsible for transmitting the
message to the individual Destinations.

c) if the Gateway is promiscuous (i.e. it receives all messages transmitted on
the Source network - implying implicit Gateway identification), it can also
act as a bridge, forwarding messages to the remote network. Given
additional functionality, the Gateway could filter those messages not
intended for the Destination network (for example, messages for multicast
sets not supported on the remote network could be discarded).

6.2.2Multicast Set Identification by Gateway

Although Gateway multicast set identification implies that the actual

multicast set identifiers are maintained by the Gateway, the Source is still

(not surprisingly) responsible for supplying the message and indicating which

multicast set is to be transmitted to. For example, the members of a multicast

set on a remote network may require a series of One-Unique transmissions,

but the Source may use a single Group identifier to indicate the identity of the

multicast set to the Gateway. It would therefore be the responsibility of the

Gateway to map the supplied Group identifier into the Unique (remote)

Destination identifiers.

When the Gateway is used to identify the intended Destinations of the

multicast set, the Source can use either implicit or explicit Gateway

identification, since both techniques supply the Gateway with the identifiers

which allow the transmission to occur. Both the V-System and MP are

examples ofmulticast set identification by the Gateway.
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6.2.3Comparing Source and Gateway Destination
Identification

If the objective of the multicast implementation is to minimize the amount

of internetwork traffic on the Source network (Le. the traffic between the

Source and the Gateway), an internetwork transmission technique should be

used which produces the minimum number of Source messages. For example,

by using a promiscuous Gateway (which receives copies of all messages) and

identifying the remote Destinations with a single group identifier, the

minimum number of messages will be sent across the local network to the

Gateway (ideally, one). This technique is used by the V-System.

However, the above technique does have certain drawbacks. For example,

the technique does not allow the Source to perform a multicast transmission

on its local network only, avoiding Gateway transmissions, since the

Gateways always transmit the multicast messages they receive onto remote

networks. The obvious solution to this problem is to use a separate multicast

identifier for messages on the local network and another for messages destined

to the Gateway. This technique is used by MP.

There are other arguments for having the Source maintain a list of

Destination identifiers. For example, by maintaining a list of the Unique

identifiers of all possible members of a multicast set, the Source is able to

determine which Destinations are responding. For example, if responses are

expected from all Destinations, the Source must maintain a list of the Unique

identifiers of each of the possible Destinations. However, it would seems more

sensible to develop protocols which, as a first step, build a list of Destination

identifiers based upon the Destinations which respond to the initial

transmission, rather than attempting to rely on possibly outdated multicast

set membership information. By taking this approach, it becomes apparent
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that it may not be necessary for the Source to maintain anything other than a

single Group identifier which is used by the Gateway to identify the intended

remote Destinations, mapping the Group identifier into the required number

and type of identifiers of the remote network. Not only does this approach

result in the minimum of traffic on the local network, it also isolates any

network inefficiencies on the remote network. For example, if the remote

network only supports One-Unique transmissions, having the Gateway

perform the mapping (such as One-Group to One-Unique) would keep the One-

Unique transmissionts) on the remote network.

6.2.4Summary

From the discussion In this Section, one can make the following

observations:

a) identifying internetwork multicast transmissions separately from the
intranetwork multicast transmissions allows additional flexibility in that
the Source can selectively perform its multicast transmission;

b) Source network traffic can be kept to a minimum if remote Destination
multicast set members are identified using a Group identifier;

c) network transmission inefficiencies should not be allowed to migrate
beyond the network on which they exist.

The next Section contains an examination of how Gateways such as those

proposed in this Section could be implemented using the multicast

communication primitives and what changes, if any, would be required of the

primitives.

6.3The Design, Implementation and Testing of Several

Multicast Gateways

In this Section, the design, implementation and testing of several multicast

Gateways using the multicast communication primitives developed in
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Chapter Four is presented. In addition, extensions to the existing primitives to

allow the implementation of the Gateways will be discussed when required.

6.3.1 Implicitly Identified Gateways

6.3.1.1Design Considerations

Implicitly identified Gateways are to receive all (multicast) messages

transmitted on a specific network. This is equivalent to joining all possible

multicast sets which may exist on a network and receiving all multicast

messages transmitted on the network. An implicitly identified Gateway could

therefore be written as follows (using the existing multicast communication

primitives):

join (ALL);
repeat

receive (ALL, Message, NULL, Indefinite);
Outgoinglds: = map (lncominglds);
ifOutgoingIds < > NULL then

send (Outgoinglds, Message, sizeof(Message»;
until
Fail ureDetected;
leave (ALL);

In the above example, the Gateway first joins all possible multicast sets

(with ajoin (ALL) - see Section 6.3.1.2 on Primitive Changes). Any multicast

message received from the Source's network is made available to the Gateway.

The incoming multicast set identifier is then mapped into the equivalent

multicast set identifier used on the remote network, ifit exists. The message is

then transmitted on the remote network. This cycle continues until an error is

detected.

The map function is intended to take the incoming identifier(s) and, from

their values, produce the equivalent identifier(s) used on the remote network.

The operations performed by the map function depend upon the identifier(s)
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available to the Gateway from the Source and how the remote Destinations

are identified.

For example, in the simplest case, if the remote Destinations are identified

by the same Group identifier as the local Destinations (and the Gateway), the

map function would not be required to make any changes to the identifier.

However, if the Gateway can only be uniquely identified (Le. the join (ALL)

primitive supplies a name server with the Unique identifier of the Gateway), a

protocol must be devised to ensure that the Gateway not only receives the

message, but also receives an identifier(s) to allow identification of the remote

Destinations.

Clearly, in situations other than where the local and remote multicast set

identifiers are identical, the map function must have access to the multicast

set identifiers of the remote network. This could be achieved by using the getid

primitive. For example, if the incoming identifier could be used to represent a

name, the name could be supplied to the getid primitive, which could, in turn,

supply the identifier(s) associated with the intended Destinations.

To avoid the cycle of accessing the name server (or the file containing the

Destination identifiers) each time a message for the same multicast set is

received, the map function should also have the ability to cache the most

recently used identifiers. This issue will be discussed further in Section

6.3.1.3.

6.3.1.2 Primitive Changes

The implicitly identified Gateway presented in Section 6.3.1.1 illustrates

some of the limitations of the existing primitives with respect to internetwork

multicast communications.
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For the implicitly identified Gateway to function, it must join all possible

multicast sets. If the present implementation of the join primitive were to be

used by the Gateway, the Gateway wouldbe required tojoin each multicast set

individually - a potentially slow and error prone activity given that the

number ofmulticast sets could be changing over time. However, by modifying

thejoin primitive it is possible to allow a Process to join all multicast sets:

a) a special multicast set identifier, ALL, is required which indicates to the
join primitive that all multicast sets are to bejoined;

b) how the primitive is implemented clearly depends upon how the Gateway is
identified. For example, if the Gateway is uniquely identified, a name
server must be informed of the Gateway's (Unique) identifier and that the
identifier is to be supplied with every request for a multicast set that is
made. However, if the Multicast Communication Layer can receive all
Network Layer messages (for example, all multicast messages are
broadcast to all Hosts), then the Multicast Communication Layer must be
informed (using the join primitive) to supply all received messages to the
Gateway.

Upon receipt of a message (either through a filter or directly from the

receive primitive), the Gateway has no indication of the multicast set to which

the message was intended since the receive primitive supplies only the

message, its size and the identifier of the Source. Therefore, the receive

primitive must be modified in order to allow it supply the multicast set

identifier.

Multicast set identifiers do not indicate the network to which they refer.

That is, when a Gateway transmits or receives using a multicast set identifier,

the Multicast Communication Layer has no indication as to the network the

identifier is intended for. Therefore, multicast set identifiers must be modified

to permit the send and receive primitives to determine the network in

question.
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Finally, the send primitive must be modified so that the (Source) identifier

supplied with the message is the Source identifier of the original transmitter,

not the Gateway's identifier. This is to ensure that the Destination receives

the identifier of the original transmitter of the message, not the identifier of

an intermediate Gateway.

6.3.1.3 Implementation and Testing

In order to examine implicitly identified Gateways and test the modified

primitives described in this Section, an internetwork environment was

required. However, the facilities available in the Computing Laboratory made

such tests impossible to perform directly since only a single Ethernet existed

(without any bridges or Gateways).

Fortunately, it was possible to create logically separate networks by

assigning different Port numbers to different Multicast Communication

Layers, thereby ensuring that multicast transmissions on one "network" were

not received on the other "network", For example, for intranetwork testing,

One-Group transmissions were sent to the Multicast Communication Layers

associated with Port 9999. By using a different Port identifier for a One-Group

Multicast Communication Layer on the second "network", say 8999, it was

possible to partition the network:

r----- Network 1 ----. ,---- Network 2 --_

(Ethernet)

Figure 6-2: Logical Partitioning ofEthernet into Two Networks
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The above architecture was used to examine two different implicitly

identified Gateway configurations:

- a One-Group transmission network to a One-Group transmission network,
and

- a One-Group transmission network to a One-Unique transmission network.

The first, One-Group to One-Group, was implemented as a simple bridge

requiring the minimum amount of processing on the part of the Gateway.

Briefly, an incoming local network multicast set identifier available to the

Gateway using the modified receive primitive was mapped into the equivalent

multicast set identifier of the remote network by the map function. This new

identifier was then used for transmitting the message on the remote network.

Note that the send primitive was also modified to allow the Gateway to

indicate that the Source identifier was not to be altered when transmitted.

The second implementation examined a Gateway in which the supplied

multicast set identifier was mapped into a series ofUnique identifiers. In this

example, the incoming multicast set identifier from the Source was first

turned into an ASCn string and used by the getid primitive to obtain the list of

unique identifiers associated with the remote Destination members of the

multicast set. Once the list of Unique identifiers were made available, the

Gateway performed a multicast transmission to the multicast set consisting of

the uniquely identified remote Destinations.

A simple identifier caching method was also developed whereby the list of

identifiers associated with the remote multicast set would be kept in the

Gateway's main memory, as opposedto a file or a name server, for about thirty

minutes. If no messages were received for the multicast set after the

expiration of the time period, the storage was released. For example, in the

second Gateway examined (One-Group to One-Unique), upon receipt of a
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multicast set identifier, the map function would examine a list multicast set

identifiers. If the incoming multicast set identifier was not found, the getid

primitive would be used to generate the list of unique Destination identifiers.

The list of unique identifiers were then stored in the list of multicast set

identifiers:

Start MID 100 Id 1 rr:...

r

MID567

NIL

Figure 6-3:Cached Identifier Lists

When subsequent (identical) multicast set identifiers were received, the list

would be scanned again, and the list of unique Destination identifiers would

be made available (without using the getid primitive).

Although the cached identifier list doesallow the Gateway faster identifier

accessing, it can lead to difficulties. For example, if the membership of the

multicast set changes over a period of time, the cached identifier list could

become out of date. This problem is overcomeby shortening the time cached

lists were kept in main memory.
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6.3.2Explicitly Identified Gateways

6.3.2.1Design Considerations

Explicitly identified Gateways only receive those messages which are

explicitly transmitted to them. A network designer can therefore implement a

Gateway so that it can either join a gateway multicast set (and wait for

messages sent to the multicast set) or wait for messages sent directly to the

Gateway (Le. a unicast transmission). In the following example, the explicitly

identified Gateway joins a specificmulticast set:

join (GatewayGroup);
repeat

receive <GatewayGroup,Message,NULL, Indefinite);
Outgoingld := map(SuppliedIds);
ifOutgoingld < > NULL then

send (Outgoingld, Message,sizeof(Message»;
until
Fail ureDetected;
leave (GatewayGroup);

(Note, the above Gateway could have been implemented as a uniquely

identified Gateway - requiring the Source to send individual messages to each

Gateway.)

In the above example, once the Gateway has joined the GatewayGroup

multicast set, it waits for messages transmitted with the Gateway multicast

set identifier. Upon receipt of a message, the identifier(s) supplied with the

message are then mapped into the remote Destination identifiers. If the

(remote) identifiers exist for the multicast set indicated, the Gateway

transmits the message on the Destination network. This cycle is repeated

until a failure is detected.
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As with the implicitly identified Gateways, the map function is to generate

the remote Destination identifier(s) from the supplied identifiers.

6.3.2.2Primitive Changes

Other than the requirement that the multicast set identifier indicate the

network to which it refers and the send primitive not overwrite the Source

identifier, no changes were required of the multicast primitives. In addition,

the «ALL" identifier was no longer required.

6.3.2.3Implementation and Testing

The test internetwork environment described in Section 6.3.1.3, whereby

the Ethernet was logically partitioned into subnetworks by using different

Port numbers for the same multicast layer on the different "networks", was

used in the implementation and testing ofexplicitly identified Gateways.

Three different types of internetwork communications were considered:

- the Source supplies a Group identifier, while the Destination network
supports One-Group transmissions;

- the Source supplies a Group identifier, while the Destination network
supports One-Unique transmissions;

- the Source supplies a series of Unique identifier(s), while the Destination
network supports One-Unique transmissions.

In the first implementation, Group identifier to One-Group internetwork

communications, the supplied Group identifier was mapped into the Group

identifier of the intended remote Destinations, in the same manner as

described for One-Group to One-Group in Section 6.3.1.3. However, unlike the

implicitly identified Gateway which had to be identified by the multicast set

identifier of the local network, the explicitly identified Gateway permitted the
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Source to supply actual identifier of the remote multicast set - thereby

eliminating the overheads associated with the map function.

The second implementation, Group identifier to One-Unique internetwork

communications, was implemented in the same fashion as that described for

the One-Group to One-Unique implementation in Section 6.3.1.3. The

technique ofcaching the identifiers was also used in this implementation.

In the final implementation, the Source supplied the actual identifiers of

the intended remote Destinations. Two implementations were examined. The

first involved the Source sending each message with a single Unique

Destination identifier which was supplied directly to the send primitive by the

Gateway with the message for transmission on the remote network, while in

the second implementation, the Source supplied a series of Unique identifiers

with the message, thereby requiring the Gateway to perform multiple

transmissions. In both of the implementations examined, the map function

was not required, since the Source maintained the list of the actual

Destination identifiers.

8.3.3 A Hybrid Implementation

A hybrid Gateway, combining some of the features of both implicitly and

explicitly identified Gateways was also considered in the examination of

internetwork multicast communications as an attempt at reducing the

overheads associated with mapping the incoming identifier(s) into the

equivalent remote network identifiers.

In the hybrid Gateway, two Gateways were required. The first, the parent

Gateway, was designed to accept an explicitly identified message from a

Source containing the multicast set identifier used by the Source to identify

the members on the local network. This identifier was mapped into the
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identifier(s) used by the members of the remote multicast set. At this point, a

child Gateway Process was spawned which joined the multicast set on the

local network using the join primitive and the multicast set identifier supplied

by the Source:

getid C'Gatewayflroup", ParentGateway);
join (ParentGateway);
repeat

receive (ParentGateway, Message, SetUpMessageOnly, Indefinite);
Remotelds := map (Message A. LocalMID);
spawn (Child, Message A. LocalMID, RemoteIds);

until
NetworkError;
leave (ParentGateway);

Thereafter, the Source transmitted all messages with the local multicast

set identifier, a copy of which would be received by the child Gateway, acting

as an implicitly identified Gateway. Since the child Gateway already has the

remote multicast set identifier (supplied by the original parent Gateway), the

overheads associated with the map function were eliminated - resulting in a

faster Gateway:

join (LocatGroup):
repeat

receive (LocaIGroup, Message, NoFilter, CacheLimit);
send (Remotelds, Message A. Data, Message A. Size);

until
NoMoreMessages;
leave (LocalGroup):

To ensure that the child Gateways did not exist indefinitely, they were

"cached" in much the same way as the identifier list (described in Section

6.3.1.3). That is, the receive primitive was timed - if a message was not

received from the Source within a thirty minute period, it was assumed that

the Source was no longer transmitting messages to the remote multicast set

and the child Gateway was terminated. To give the Source the opportunity to
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reestablish contact with the members of the remote multicast set, via the

parent Gateway, the child Gateway was designed to inform the Source of its

termination.

Subsequent versions of the hybrid Gateway have been developed in which

the Source transmits a special Gateway message indicating that the child

Gateway should be terminated by the parent Gateway (in much the same way

a virtual circuit is closedonce it has been determined that the communication

is to stop). As an example, consider the followingSourceProcess:

getid ("GatewayGroup", Gateway);
getid ("MulticastGroup", Destinations);

Message. Type:= SetUpGateway;
Message. ID := Destinations A. MID;
send (Gateway, Message, sizeof(Message»;

{Child Gateway setup - transmit to the multicast set "Destinations" }
repeat

send (Destinations, Data, sizeof(Data»;

until
AllDone;

Message. Type: = ShutDownGateway;
Message. ID := Destinations A. MID;
send (Gateway, Message, sizeof(Message»;

The Source initially transmits a SetUpGateway message to the Gateway(s)

belonging to the "Gateway" multicast set. Thereafter, all messages sent to the

multicast set "Destination" are received by both the members of the local

multicast set and any child Gateway(s). Once the Source has finished

transmitting to the multicast set, it indicates that no more messages will be

sent with a ShutDownGateway message.
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The hybrid Gateway has several advantages over the other types of

Gateway discussed in this Chapter:

a) no changes are required to thejoin primitive;

b) the "parent" Gateway only receives requests to spawn "child" Gateways -
thereby reducing its workload (unlike the implicitly identified Gateway
which receives all multicast messages, including those without members
on the remote network);

c) the Source Process has the option of including the remote networks in its
multicast transmission since the Gateway must be explicitly identified to
set up the child Gateway;

d) the overheads associated with constantly mapping the incoming identifier
into a remote identifier are eliminated, since the child Gateway is only
associated with a single multicast set.

Finally, for those transmissions which, because of size, do not warrant the

setting up a child Gateway, a Source should have the ability to bypass the

spawning Gateway either by sending its messages to a different Gateway or

indicating to the spawning Gateway that the message should be transmitted

directly onto the remote network with the appropriate mapping.

8.3.4 Summary

In this Section several different multicast Gateway designs have been

considered, all based upon either implicit or explicit Gateway identification.

Both the implicitly and explicitly identified Gateways had certain overheads

associated with them, making many of them costly in terms of the amount of

processing required by the Source (e.g. transmitting a series of One-Unique

messages from the Source), or the amount of processing performed by the

Gateway (e.g. repeated scanning through lists of multicast set identifiers).

Similarly, the amount of traffic produced on the local network could affect the

overall performance of the communication (e.g. in a congested network,
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explicitly identifying the Gateway could prove an expensive proposition since

additional messages are required from the Source to the Gateway).

It was found that many of these problems were eliminated by using a

hybrid Gateway which allowed an explicitly identified "parent" Gateway to

spawn a "child" Gateway which acted as an optimized implicitly identified

Gateway. The price for this feature was an addition protocolon the part ofboth

Source and Gateway.

6.4.Performance Results

In order to allow a comparison of the three different types of Gateway

described in this Chapter, a simple round trip test (similar to that described in

Chapter Five for comparing the different intranetwork configurations) was

devised. This test consisted of a Source Process transmitting a message to a

Gateway, which then transmitted the message to the destination multicast set

on the "remote" network using a One-Group multicast transmission. The

Destination Process then responded directly to the SourceProcess:

Source
Process

Destination
Process

Figure 6-4:Gateway Testing Configuration

Each Gateway was subjected to the same test, notably the transmission of one

thousand 512-byte messages. In all tests, the Gateway's map function

performed a simple caching operation, mapping the supplied identifier into

the Destination's multicast set identifier from a list containing a single

identifier The average time taken for the round trip of each message is shown

in Figure 6-5. Two sets of tests were performed, the first was to a "slow"
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Gateway (a Whitechapel) while the second was to a "fast" Gateway (the SUN-

3). In all tests, the Source Process resided on a VAX-750 and the Destination

Process was on the Orion.

Type ofGateway

Gateway
HybridHost Implicit Explicit

(Round trip) (Round trip)
Round trip Setup Time

Whitechapel 142 161 142 1370

SUN-3 78 97 77 790

Figure 6-5: Comparison ofGateway Speeds

The following observations can be made regarding the results from Figure

6-5:

- as one would expect, the faster the Gateway, the faster the throughput;

- Implicit Gateways are, not surprisingly, the fastest, since only one
transmission is required by the Source;

- Explici t Gateways are the slowest, since two transmissions are required in
order that both local and remote Destinations receive a copy of the
message;

- Hybrid Gateways are as fast, if not faster, than Implicit Gateways - if the
time required to set the Child Gateway is ignored. This is because the child
Gateway no longer requires the map function.

From these observations, one can conclude that if the number of messages

to be transmitted is small, the overheads associated with using the Hybrid

Gateway may make using the Implicit Gateway more attractive to use.

However, if the Gateway is to cache a large number of identifiers, the time

required to search for each identifier within this list may make the Hybrid

Gateway faster than the Implicit Gateway.
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6.5 Concluding Remarks

The objective of this Chapter was to consider different methods of

internetwork multicast communications and to determine which, if any,

offered the best form of (multicast) communications.

Two basic techniques were considered - those in which the Gateway was

explicitly identified (i.e. the Source explicitly transmitted a message to the

Gateway, in addition to those already transmitted on its local network) and

implicit identification (i.e. the Gateway was promiscuous and received all

multicast messages transmitted on the local network).

From this examination, the following observations were made:

a) irrespective of how the Gateway is identified, any network inefficiencies on
the remote Destination network should be isolated to that network. For
example, a Source on a One-Group network should not be expected to
repeatedly transmit a message to Destinations on a One-Unique network
since this can lead to network congestion on the local (Source) network;

bHf a Source expects to transmit a large number of messages through a
Gateway, the proposed hybrid multicast Gateway should be considered
since it reduces the amount of work required by the Gateway (and
potentially the Source);

c) protocols should be developed which permit a Source to use a group
identifier to identify the intended Destinations, but use a list of unique
identifiers for Destination identification.

d) the proposed multicast communication primitives could, with minor
changes, be used with multicast Gateways;

e) although implicitly identified Gateways resulted in less traffic on the local
(Source's) network, all multicast messages sent on the local network were
also distributed on remote networks by the Gateways. This problem was
overcome using explicitly identified Gateways, at the expense of having
additional traffic on the local network.
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After several detailed examinations of different Gateway

implementations, a hybrid Gateway was developed. The hybrid Gateway was

attractive in that it allowed the Source to determine whether the message

should be sent to remote networks (an explicitly identified Gateway feature),

but the actual message transmission was performed by implicitly identifying

the Gateway. The cost of this simple extension was the development of a

protocol which required the Source to inform the Gateway that messages were

to be supplied for a specificmulticast set on a remote network.
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Chapter 7
Concluding Remarks

The purpose of this Chapter is threefold. First, to review the issues and

concepts relating to multicast communications in light of the original aims of

the thesis. Second, to discuss the research presently underway at the

Computing Laboratory which is utilizing the work described in this thesis.

And finally, to suggest directions for future research into multicast

communications.

7.1 Discussion

The following Section reviews the aims originally outlined in the

Introduction to the thesis and presents a discussion of these aims in light of

the various issues regarding multicast communications that have been

examined.

7.1.1Multicast Taxonomies and Classification Schemes

The first aim was to devise taxonomies which would allow network

designers to describe different types of multicast communications. Three

taxonomies were developed.

The first of these taxonomies, a multicast transmission taxonomy, was

developed to permit the description ofmulticast transmission in terms of the

types of identifier and the numbers of identifier that can be associated with a

message. Initially, the multicast transmission taxonomy was used for

describing the costs of performing multicast transmissions in a single layer of
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a distributed system (using the Transmitter-Receiver model). However, by

applying the taxonomy to a layered architecture, it was possible to describe

the actions required in many different situations requiring multicast

communications, such as inter-layer communications, communications with

Gateways, and message distribution.

The second taxonomy described different methods of multicast response

handling using a Source-Destination model. This taxonomy was simply an

enumeration of the different types of Response that a Source could expect to

receive after transmitting a Request. When applied with the types of identifier

possible in a multicast transmission, the taxonomy proved a useful tool for

comparing how different distributed systems and networks allow a Source to

determine which members of a multicast set received a copy of a previously

transmitted message.

The final taxonomy used a Host-Port model and the multicast transmission

taxonomy to describe multicast communications in distributed systems where

transmitting and receiving entities were identified using a pair of identifiers

(one to identify the intended destination Host, the other the Port, to which the

entity is associated). This taxonomy proved particularly useful in the

development of the various multicast communication layers using UNIX

sockets.

All of the taxonomies developed in this thesis have been shown to be useful

in the analysis and comparison of various existing and proposed multicast

schemes, as well as suggesting other interesting possibilities such as the

development of the multicast communication primitives.
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7.1.2 Multicast Primitives

The second aim of this thesis was to develop a set of multicast primitives

that would be implementable on a variety of distributed systems and

networks, without being specific to any particular distributed system or

network. By using the multicast transmission and reception handling

taxonomies as well as considering several different multicast communication

applications, a set of eight multicast communication primitives were

developed.

The primitives were described in terms of multicast communications and

multicast set management. The primitives formulticast communication (send

and receive), unlike "unicast" primitives, supported both unicast and multicast

communications directly. The receive primitive, unlike the receive primitives

in other multicast implementations, allowed a "filter", enabling the Receiver

to indicate which messages, if any, were to be accepted (the development of the

receive primitive was a direct result of the multicast reception taxonomy).

The multicast set management primitives were developed to allow an

entity (such as a Transmitter or a Receiver) to have control over the

membership of multicast sets. Although many of the multicast set

management primitives developed were similar to primitives developed

elsewhere, the basic design did allow implementation on a variety of

networks. For example, the newid primitive was developed in such a manner

as to allow the creation of new, unique multicast set identifiers without

requiring additional network traffic to determine ifit was unique.

Finally, although the intention of the development of the primitives was to

make them independent of any particular network, it was shown that in some

situations, it was necessary to have access to the type of identifier used to

identify the member of a multicast set. The bestid primitive was an example of
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such a case, returning either a multicast set identifier or a unique identifier,

depending upon the type of network being used.

7.1.3 Implementations and Results

The final aim of the thesis was to demonstrate that the proposed multicast

primitives could be supported on a variety of distributed systems,

intranetworks, and internetworks.

Before any implementation of the primitives could take place, it was

necessary to develop a set of four intranetworks. This was done by adding a

layer of software onto the existing UNIX socket software to permit the

emulation of the intranetworks. With the design of the multicast

communication layer complete, it was then possible to implement and test the

multicast primitives on a variety ofintranetworks.

The intranetwork tests confirmed many of the ideas suggested by the

multicast transmission taxonomy, such as the speed of a multicast

transmission is governed by the speed of the network and the speed at which

messages can be distributed on the receiving Host. In addition, from the

observations made of the internetwork tests, a set of guidelines were proposed,

permitting a network designer to tailor the type of multicast implementation

to the equipment available.

With minor modifications, it was shown that the primitives could be

extended to support internetwork multicast communications. It was shown

that in an internetwork multicast communication, two types of Gateway

identification were possible - implicit, where the message sent by the Source

was received by the Gateway without a special transmissions and explicit, in

which the Source sent messages to both the members of the multicast set and

the Gateway. Although both methods were shown to have advantages and
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disadvantages, such as the number of transmissions required and the changes

required to the primitives, both required a mapping function that added

additional overhead to the Gateway, since each incoming local identifier

(usually) had to be mapped into one ormore remote identifiers.

An interesting outcome of the examination of internetworks was the

development of a "hybrid" multicast Gateway which combined many of the

features of both the implicitly and explicitly identified Gateways. With minor

changes to the primitives and the development of a multicast Gateway

protocol, efficient internetwork multicast communications were shown to be

possible.

7.2 Ongoing Research

One of the benefits of the research described in this thesis has been the

development and implementation of a multicast communication facility which

has proved suitable for the ongoing research into reliable distributed systems

at the Computing Laboratory. A version of the Multicast Communication

Layer has been implemented and optimized to support One-Group

intranetwork multicast communications using the Computing Laboratory's

Ethernet. The major optimization of this Multicast Communication Layer is

the restriction that the members of a multicast set are all identified with a

single (One-Group) identifier. At present, the principal user of the new

Multicast Communication Layer (commonly known as MCL) is a research

project examining remote procedure calls and orphan detection to multiple

destinations [Shrivastava1986a].

Inaddition to specific research projects using the multicast communication

facilities, the author has developed several applications intended specifically
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as "communication tools" for multicast communications. These applications

include [Hughes1986a]:

a) a conference call facility which allows any number of users to
simultaneously communicate with one another;

b) a file distribution service which transmits a copy of a file from one machine
to the set ofmachines specified by the user;

c) a facility to list the names of the currently active users are on the different
machines on the network.

These applications have been developed to demonstrate other potential uses of

multicast communications.

7.3 Directions for Future Research

As well as the ongoing research and applications described in the previous

Section, there are other areas of communications which can both benefit from

and contribute to the study of multicast communications. For example,

another area of research soon to be undertaken in the Computing Laboratory

which may require the use of MeL is a study of message distribution on a

series of capability machines [Mancini1986al. In addition, members of the

COSMOS research project at Lancaster University intend to use the

primitives as part of their research into distributed systems [Nico11986a,

Shrivastava1986b].

Several directions for future research into multicast communications

which the author believes are worthy of consideration include:

a) the development of additional multicast applications and multicast
protocols, and

b) the development of computer architectures which allow message
distribution within a machine.

Although many different multicast applications have been discussed and

implemented in the course of this thesis, there are obviously other
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applications which could also benefit from the use of multicast

communications. This applies equally to multicast protocols, since few have

been described in the literature, possiblybecausemany distributed systems do

not actively support multicast communication facilities. The primitives

discussed in this thesis are intended to help overcomeboth ofthese anomalies.

As it now stands, "true" One-Group multicast transmission can only occur

at the network level (as demonstrated by the Ethernet), but the distribution of

messages within the machine requires a series of One-Unique transmissions.

Two interesting projectscould possibly be developedfrom this:

a) implement a shared socket facility in UNIX to allow multiple, unrelated
processes to have access to a single message (i.e. allow the Processes to
become members of a "true" Process group -- something UNIX does not
presently support other than through implementations such as MeL). To
reduce the amount of message handling required by the distribution
facility, sockets could be implemented with the "copy-on-write" semantics
described for the Accent Network Operating System [Rashid1985a]. By
adding this feature, not only would sockets offer One-Group multicast
reception within the Host, but the amount ofunnecessary message copying
would be reduced;

b) implement, within a machine's hardware, the ability to perform true One-
Group interprocess communications on a single machine in order to reduce
the overheads associated with multicast message distribution. This project,
probably implementable in VLSI, would reduce or possibly even eliminate
the distribution overheads discussed in Chapter Five.
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