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Abstract

One of the numerous results of recent developments in communication
networks and distributed systems has been an increased interest in the study
of applications and protocols for communications between multiple, as opposed
to single, entities such as processes and computers. For example, in replicated
file storage, a process attempts to store a file on several file servers, rather
than one. Multiple entity communications, which allow one-to-many and

many-to-one communications, are known as multicast communications.

This thesis examines some of the ways in which the architectures of
computer networks and distributed systems can affect the design and
development of multicast communication applications and protocols. To assist
in this examination, the thesis presents three contributions. First, a set of
classification schemes are developed for use in the description and analysis of
various multicast communication strategies. Second, a general set of
multicast communication primitives are presented, unrelated to any specific
network or distributed system, yet efficiently implementable on a variety of
networks. Third, the primitives are used to obtain experimental results for a

study of intranetwork and internetwork multicast communications.
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Chapter 1
Introduction

The rapid development of distributed computing systems during the past
ten years can be attributed to two forces acting in concert: technology (both
hardware and software) and requirements (both present and future). For
example, the dramatic change in the price/performance ratio of computing
elements (the technology) spurred the growth and availability of computing
power to individuals. This enabled the decentralization of computing power
within organizations, resulting in the need to distribute information which
had previously been localized. This requirement led, in turn, to further
developments in communications technology, partially in Wide Area
Networks (WANSs), but primarily in Local Area Networks (LANs). These
developments are typified, for example, by network transmission speeds: these
have increased from thousands of bits per second in the early 1970's to

millions of bits per second at the present time.

The interconnection of computers or the like by networks required the
definition of communication protocols. These specify rules assuring
uniform and fair access by machines to networks for the transmission of
information. Appropriate protocols were developed to allow individual
processes on different machines to exchange information. Permitting
individual processes to access networks directly, however, demanded further
technological novelties, since, for example, applications written for a specific
protocol, hence a specific network, could not easily be transferred to machines

using different protocols on different networks.
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The requirement for portable software and the ability to communicate
though multiple networks using different protocols was met by the
development of layered architectures for distributed systems. Layered
architectures were intended, in part, to hide the underlying network and its
associated protocol from the communicating processes. By using layered
architectures, network specific features, such as packet cyclic redundancy
check calculations, can be hidden from the higher layers and features required
by an application but not offered by the network, such as file transfer
protocols, can be added. Although most distributed systems using layered
architectures support a wide variety of protocols (with some layers allowing
many different protocols), most, if not all, are intended for one-to-one or
unicast communications. For example, many network protocols allow a
transmitting machine to identify at most one receiving machine, while file
transfer protocols typically support the transfer of files from a single process to

a single file server.

Recently however, applications have been developed which require
multicast communications or communications between multiple processes.
For example, in some fault tolerant applications it is necessary to store
multiple copies of the same file on separate file servers. Although there are an
increasing number of applications which require multicast communications,
support for multicast communications is not usually found in distributed
systems, or at least, it is not provided for directly. Therefore, multicast
communications are often emulated using unicast protocols - making
communications to multiple processes a potentially inefficient operation
because the same message must be transmitted repeatedly to each possible

receiver,

Fortunately, multicast communications are not restricted to processes -

many local area networks are already capable of transmitting messages from
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one machine to all machines (a broadcast transmission) or to many machines
(a multicast transmission). However, even when implemented on local area
networks that actually provide facilities for multicast or broadcast
communications, many existing distributed systems do not ordinarily support
protocols for multicast communications, at either the process layer or the

network layer.
1.1 Thesis Aims

This thesis describes the results of a research project which examined how
existing technologies (both hardware and software) could best be used or
modified to support multicast communications. The aims of this project were:
a) to describe a set of taxonomies or classification schemes which could be used

in the description and analysis of various multicast communication
strategies,

b) to develop a general set of multicast communication primitives, unrelated
to any specific network or distributed system, yet efficiently
implementable on a variety of networks, and

c) to implement and test a multicast communication facility, based upon these
primitives, on a variety of network architectures.

1.2 Thesis Contents

The thesis is organized as follows. Chapter Two is divided into four
Sections, the first of which introduces some of the terminology associated with
multicast communications. The second Section presents a set of three different
models for describing communications, to be used in subsequent Chapters for
developing multicast communication taxonomies and multicast
communication primitives. The third Section consists of a survey of several
multicast communication implementations on different networks and

distributed systems. In the final Section, a series of multicast applications is
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discussed, demonstrating some of the potential uses of multicast

communications.

Chapter Three presents a series of classification schemes to assist in the
understanding and development of intranetwork and internetwork multicast
communication systems. The first Section of the Chapter presents a multicast
transmission taxonomy employing a simple Transmitter-Receiver paradigm.
The second Section develops a multicast response handling taxonomy based
upon a Source-Destination model. The third Section discusses the problems
associated with identifiers in multicast communications using distributed
systems. The Chapter is concluded with a discussion of the possible uses of the

taxonomies that have been presented.

Chapter Four describes the design and development of a set of general
purpose multicast communication primitives which approach optimal
multicast communications, irrespective of the underlying network or
internetwork. The primitives themselves are based, in part, upon the needs of
the applications described in the second Chapter as well as the taxonomies
described in the third Chapter. The Chapter contains four Sections. The
primitives required for the management of multicast communications and
multicast set membership are discussed in the first Section, while in the
second, a series of examples are presented, showing possible uses of the
primitives. The third Section compares the proposed primitives with
primitives used in existing multicast communication implementations. The

Chapter concludes with a review of the primitives and suggests methods of

implementation.

Chapter Five describes the implementation and evaluation of the
primitives in a distributed UNIX environment using four different network

architectures. In the first Section of this Chapter, the facilities (both hardware
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and software) available in the Computing Laboratory for the implementation
and evaluation of the primitives are discussed. The second Section describes
the implementation of the primitives using these facilities. In the third
Section, performance measurements are presented, comparing multicast
communications in the different intranetwork communication environments.
The Chapter concludes with some general comments on how the different

performance results were obtained and what the results indicate.

Chapter Six examines how different internetwork communication
environments can affect multicast communications. The Chapter first
presents different methods of identifying Gateways. It then examines the
problems associated with identifying Destinations on remote networks. The
third Section of the Chapter discusses the design and implementation of
several different multicast Gateways in terms of the multicast communication
primitives, while performance measurements are presented for three different
multicast Gateways in the fourth Section. The final Section reviews the
contents of the Chapter, outlining some of the issues that should be considered

when performing internetwork multicast communications.

Chapter Seven reviews the aims of the thesis, discusses possible
developments of the work presented, and concludes with some final

observations.
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Chapter 2
Background

This Chapter expands upon the simple description of multicast
communications presented in Chapter One through a series of definitions,

models, and surveys.

The Chapter is organized as follows. In the first Section, some of the
terminology associated with multicast communications is introduced, while in
the second Section, methods of describing communications (including
multicast) are presented using a series of three different models. A review of
many of the known multicast communication implementations is presented in
the third Section. In the fourth Section, a series of applications demonstrating
some of the uses of multicast communications are discussed. The contents of

this Chapter are reviewed in the final Section.
2.1 Terminology

Communications are traditionally discussed in terms of a single
transmitting entity (the Transmitter) and a single receiving entity (the
Receiver). For example, the process of communication is frequently described
as involving a Transmitter transmitting a message to a Receiver, which thus
receives a copy of the message. This single Transmitter to single Receiver
paradigm, although often satisfactory, represents a special (albeit common)

type of communication known as a unicast communication.

There are in fact two general cases of communication, both of which are

now considered. The first involves a single Transmitter transmitting messages
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to many Receivers (where “many” can indicate any number of Receivers, from
one Receiver through all possible Receivers) and is commonly known as a
multicast transmission. There are two “special” classes of multicast
transmission, those involving a transmission to a single Receiver (i.e. a
unicast transmission) and those involving a transmission to all possible

Receivers (known as a broadcast transmission).

The second case involves many Transmitters (as before, “many” can
indicate any number of Transmitters, from one Transmitter through all
Transmitters), transmitting messages to a single Receiver and is known as a
multicast reception. The term unicast reception is used when describing
the reception of a message sent by a single Transmitter. The term broadcast
reception, indicating that the Receiver receives messages from all

Transmitters is rarely, if ever, used.

In both multicast transmission and reception, the set of Receivers (in a
multicast transmission) or the set of Transmitters (in a multicast reception)
make up the multicast set. A multicast set is said to be static if the
membership is known and does not change over a period of time. Similarly, the
membership of the set is considered to be dynamic if the membership can

change over time.
2.2 Models

Multicast communication, like many other types of communication, can be
described using various models which detail different aspects of the
communication such as the transmission or reception of messages. In this
Section, three such communication models are examined. These models will be

used in subsequent Sections and Chapters to assist in the development of
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several multicast taxonomies and a set of multicast communication

primitives.
2.2.1 Transmitter-Receiver Model

As shown above, communications are usually discussed in terms of
Transmitters and Receivers. For example, a simple unicast communication
was described as involving a single Transmitter sending a message to a single
Receiver. However, since there may be many potential Receivers in any
communication, the Transmitter is usually required to identify the intended
Receiver using a unique identifier (such as a name or an address

[Shoch1978a]) which is transmitted with the message.

However, in a multicast communication, the Transmitter is to transmit a
message to a multicast set consisting of one or more Receivers. The number of

message transmissions performed by the Transmitter depends, in part, upon:

a) how the Receivers are identified, and

b) the number of Receiver identifiers that can be associated with the
transmission of the message.

It is possible to define two general types of identifier that can be used to

identify the intended Receiver(s) of a message:

a) a unique identifier which identifies at most one Receiver, and

b) a group identifier which identifies a set of one or more Receivers.

For example, in a multicast communication where there are “R” Receivers,
R unique identifiers will be required to represent the members of the
multicast set. However, when using group identifiers, anywhere from 1 to R
identifiers may be required (1, if all members share the same identifier and R,

if the members use group identifiers that are not shared).
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The number of identifiers that can be associated with the transmission of a

message is either:

a) one identifier per message, or

b) many identifiers per message.

It is also assumed that with regard to the number of identifiers that can be
associated with a message (i.e. one or many), the maximum is fixed (in that
neither Transmitter nor any Receiver can vary it), and is known (to the
Transmitter and all possible Receivers). In addition, when many identifiers
are allowed, the number of identifiers that can be associated with a message

can vary from one to a maximum of “many”.

The Transmitter-Receiver model is useful in that it can describe the (ideal)
number of messages that must be generated to ensure that all members of the
multicast set can receive a copy of the message. For example, if Receivers can
only be identified with unique identifiers and only one identifier can be
supplied with each message, the Transmitter will be forced to send as many
messages as there are members of the multicast set. However, if all the
intended Receivers share a common group identifier, the Transmitter need

only send one message.
2.2.2 Source-Destination Model

In certain applications, a Transmitter may expect to receive messages from
one or more Receivers. For example, a Transmitter may request the current
time of day by transmitting a “time request” message. Upon receipt of the
“time request” message, a Receiver could transmit its time of day to the

original Transmitter.

To avoid the confusion of describing a Transmitter (or a Receiver) as both a

Transmitter and a Receiver, network designers have developed models in
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which the communicating entities have the properties of both Transmitters
and Receivers. Such models include the Source-Destination model, the

Client-Server model and the Contractor-Bidder model to name but three.

For example, in the Source-Destination model, the Source is first a
Transmitter and then (possibly) a Receiver, whilst the Destination is first a

Receiver, then (possibly) a Transmitter:

Source Destination
Request
Transmitter > Receiver
Receiver + Transmitter
Response (Optional)

Figure 2-1: The Source-Destination Model

In a typical unicast communication, the Source transmits a message (the
Request) to a Destination which is acting as a Receiver. Depending upon the
application, the Destination may be expected to respond with another message

(the Response) to the Source, now acting as a Receiver.

However, in a multicast communication, the number of Responses expected
by the Source can vary from none (in which no Responses are anticipated) to as
many as there are Destinations (if all Destinations are expected to respond).
Depending upon the application, the number and identity of the Destinations
responding may be important. For example, a Source may request the
members of a multicast set to respond once they have completed a certain task.
If the membership of the multicast set is known to the Source (for example,
using a static multicast set), determining which members have not responded
is a simple matter. However, if the membership of the multicast set is
dynamic, identifying the Destinations which have not responded is clearly a

more difficult operation, requiring, for example, the use of a protocol.
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The Source-Destination model can therefore be used in comparing different
multicast response handling implementations given that the method of

identifying the members of the multicast set is known.
2.2.3 Layered Architectures

The need for and uses of layered architectures were outlined in Chapter
One. However, there is not a single, universal layered architecture model
(contrary to what some network designers would have us believe
[Cohen1983a]), instead, various layered models exist, supporting a wide range

of layers.

Although the models themselves may differ, the individual layers within
any architecture exhibit similar characteristics. For example, each layer has
its own protocol and types of identifier. Any communications between the
entities that make up a layer (known as the (N)-Layer) take place using the
communication services offered by the next lower layer (the (N-1)-Layer)).
The following diagram illustrates the interaction between any two adjacent

layers (the (N)-Layer and the (N-1)-Layer) [Bochman1985a]:

(N)_Entity .................................... > (N)_Entity (N)‘Layer
""""" l ‘““"““‘““““""“""“}'“""- (N-1)-Service Layer
(N-1)-Entity — | (N-1)-Entity (N-1)-Layer

Figure 2-2: Interaction of Adjacent Layers

As an example, consider the following three layer model (based upon the
Arpanet [Padlipsky1985a]) which can be used to convey the basic concepts of a

layered architecture:

Process (or Application) Layer: consisting of Processes which can receive
transmissions from other Processes (on this or other Hosts) or can
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perform transmissions to Processes (once again, on this or other Hosts).
Hosts usually support many Processes and distinguish between them
using some type of Process identifier;

Communication Layer: the Communication Layer hides the idiosyncrasies
of the various networks to which the Host may be connected and
attempts to offer a uniform view of the different networks to the
Process(es) requiring the use of Processes on other Hosts. There is
normally only one Communication Layer on each Host and it is
responsible for directing messages between the Network and Process
Layers;

Network Layer: is responsible for the transmission and reception of
messages on a specific network. A Host can be connected to many
networks.

In a layered architecture, it is possible that an identifier is expanded into
several more identifiers [Watson1983a]. For example, in the Arpanet model
described above, a transmitting Process could send a message to a receiving
Process using the lower layers to perform the transmission. In this case, the
identifier supplied by the Process would be required to map into at least two
additional identifiers: the first identifies the receiving Host (to allow the
message to be sent across a network to the correct Host) and the second
identifies the receiving Process (to allow the receiving Communication Layer

to supply the message to the intended Process).

It is important to note however, that in most layered architecture models,
the receiving Process is not explicitly identified as suggested above. Instead,
the transmitter of the message often identifies a destination Port, rather than
a specific Process - since it is assumed that a Port number can be kept static,
whereas Process identifiers are usually dynamic. In a layered architecture
such as the one described above, Processes are often identified using a

Host-Portidentifier.
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Layered architectures should be considered when dealing with multicast
communications. For example, the number of messages generated by any one
layer in support of a multicast transmission depends, in part, upon how the
layer's receiving entities are identified. Similarly, in a multicast reception,
the (N)-Layer Receiver may require the (N-1)-Layer Receiver to queue
messages until they can be processed, potentially affecting the performance of

the machine.
2.3 Survey of Existing Systems

In the following Section, several existing networks and distributed systems
are discussed in light of how they support multicast communications. This
survey is presented in three parts. First, those implementations designed for
the Ethernet, a local area network which can support an efficient form of
multicast communications, are considered. Second, multicast communication
implementations intended for the Cambridge Ring, a local area network not
directly supporting an efficient form of multicast communications, are
examined. Finally, a series of multicast communications implementations

primarily intended for specific research networks other than the Ethernet or

the Cambridge Ring are presented.
2.3.1 The Ethernet [Metcalfe1975a, Hopper1986a, Chorafas1984a]

The Ethernet is a bus-structured local area network, developed by Xerox,
allowing up to 1024 stations on a single network. Each Ethernet station can be
associated with its own unique identifier (allowing unicast communications),
a group identifier shared by all stations (permitting broadcast
communications) and, in some implementations, several group identifiers
which can be shared by any number of stations [DEUNA1983a] (thus making

efficient multicast communications possible).
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Messages are transmitted across the Ethernet in packets. The format of
the packet depends upon the version of the Ethernet in use. The Xerox

Ethernet packet format is as follows [DIX1980a]:

Preamble | Destination | Source Type Data I&ieclf
Address Address Sequence
8 bytes 6 bytes 6 bytes 2bytes 46;'03500 4 bytes
ytes

Figure 2-3: Xerox Ethernet Packet Structure

However, the IEEE 802.3 standard [IEEE1982a] replaces the Type field
(used to indicate the type of message, thereby allowing a number of different
protocols to be supported) with a Length field (indicating the number of bytes
in the Data field).

Since the Ethernet is a bus structured network, all stations on the network
receive a copy of the transmitted packet. However, it is the responsibility of
each station to determine whether the message should be kept or ignored by

examining the Destination address.

Because of the Ethernet's ability to support both unique and group
identifiers many network designers have utilized the Ethernet in the
development of multicast communication protocols as the following examples

demonstrate.

2.3.1.1 Pup [Boggs1983al

PUP is a packet structure designed to be transmitted in an Ethernet
packet. While the Destination address with the Ethernet packet only specifies
a Host, the PUP address specifies both a Host and a Port. For a Process to

receive a PUP packet, it must first be associated with a Port; thereafter, any
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packets arriving at the Host with a Port number the same as that of the

Process will be made available to the Process.

PUP supports a form of multicast transmission by allowing the Source
Process to broadcast a message with a Port number which is common to
Processes on different Hosts on the Network. It is the responsibility of each
Destination Host to filter the incoming packet using the PUP Port number to

determine if the requested Port is available.
2.3.1.2 The V-System [Cheriton1984a, Cheriton1985b]

The V-System is a distributed kernel developed at Stanford University
which uses an Ethernet as an “extended backplane” to connect a group of

diskless SUN workstations and server machines.

The V-System utilizes the underlying Ethernet broadcast address and its
own packet structure to transmit multicast messages to servers belonging to
multicast sets. As in the case of PUP, it is the responsibility of each
Destination Host to determine whether it supports the requested service by

examining the group identifier supplied with each message.

The need to support multicast reception has been recognized by the
designers of the V-System in that a Process can request the kernel to discard
all incoming messages, return the first message received (discarding the rest)

or return all messages (individually, as they are received).

2.3.1.3 MP [Ahamad1985a]

MP is a multicast transmission implementation developed at SUNY, Stony
Brook which uses an Ethernet to connect a series of UNIX Hosts. The
implementation has extended UNIX 4.2 sockets to allow a message to be sent

from a Source Process to one or more Destination Processes. As in other
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Ethernet implementations, multicast transmissions are achieved using

broadcast transmissions.
2.3.2 Cambridge Ring [JNTIS1982a, JNTPS1982a, Needham1982a]

The Cambridge Ring is a slotted-ring local area network consisting of up to
254 stations (or nodes). Each node on the network is associated with its own
unique address (allowing unicast communications). For a communication to
take place, the Source Cambridge Ring node first waits for a free “slot” to
become available; it then supplies the network with the address of a
Destination Cambridge Ring node and two bytes of data in a mini-packet.
When the mini-packet arrives at the Destination, a copy of the data is taken
and a pair of Response bits (within the mini-packet) are set to indicate
whether the mini-packet was accepted or rejected. The mini-packet then
returns to the Source node which reads the Response bits and frees the mini-

packet (making it a free slot once again).

Because the Cambridge Ring was intended for unicast communications,
' there have been few multicast communication implementations for the
Cambridge Ring described in the literature. However, one implementation
using the Cambridge Ring which does support a form of multicast
communications is the UNIVERSE project [Leslie1984a, Waters1984al, which
links several Cambridge Rings by a satellite broadcast channel. Network
Layer multicast communication is achieved by the use of protocols which
allow the receiving satellite stations to determine whether the intended

Destinations reside on the local Cambridge Ring before transmitting the

message on the local ring.
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2.3.3 Other Implementations

Metanet [Aguilar1984a] is an extension of the United States' Department
of Defense Internet Protocol (IP) intended, in part, to allow multicast
communications. By utilizing some of the spare space within the header of an
Internet Protocol packet, Metanet can transmit an additional eight
destination addresses. How these additional addresses are used depends upon
the underlying network address structure. For example, in a broadcast
network, each Destination Host receiving a copy of the packet could examine

the eight addresses to determine if its own address was included in the list.

The Admiralty Surface Weapons Establishment (ASWE) Serial Data
Highway [Lakin1982al], is a local area network developed to provide fault
tolerant communications between distributed computers for ship borne
command and control systems. The highway connects up to 63 devices (known
as terminals), each of which may communicate with any other, and a Poller,
which controls the traffic between the terminals. Terminals do not transmit
unless they have been polled by the Poller. Once polled, the terminal responds
with one of: a null message, a message for a specific terminal, or a multicast
message for a group of terminals. Terminals receiving the broadcast message

act a Servers, returning responses when they are polled.

Shoshin [Tokudal983a] is an experimental system designed at the
University of Waterloo to study the development and evaluation of distributed
software. The Shoshin system consists of two PDP-11/45s and ten LSI-11/23s,
all connected by a high speed parallel bus. Shoshin has a layered architecture
with Source applications sending requests to one, many, or all possible

Destinations.

The IBM Token Ring [Janson1983a] supports both intranetwork

multicast communications (i.e. multicast communications within a single
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network) and internetwork multicast communications (i.e. multicast
communications across several networks) using a hierarchical identifier
structure. The identifier consists essentially of two parts, a ring identifier
(which can identify the current ring, a specific ring, or all rings) and a station
identifier (which can indicate a specific station, all stations, or a group of
stations). Depending upon the identifier structure chosen, unicast, multicast,
or broadcast communications can be achieved between a transmitting station

and receiving station(s) on a specific ring or all rings.

MIKE (Multicomputer Integrator KErnel) [Tsay1983a] is a distributed
network developed at the Ohio State University. The network connects a
series of LSI-11/23s and a PDP-10 using a double-loop ring. Although the main
emphasis of the research on MIKE is the development of guardians for
distributed processors, the underlying network does permit multidestination

transmissions.

Hubnet [Leel983a] is a network developed at the University of Toronto
based upon fibre-optic links. Both transmitters and receivers are
interconnected via a “hub” consisting of two parts: a selection hub and a
broadcast hub. A transmission involves a transmitting Host sending a
message to its selection hub, which in turn transmits the message to all Hosts
(and possibly other selection hubs) attached to the broadcast hub (including
the Host which originally transmitted the message - thereby allowing the
Host to determine whether the hub accepted or ignored the message). Since
each message transmitted by the hub is sent to all Hosts (i.e. a hub
transmission is a Network Layer broadcast transmission), Hubnet has the

potential of supporting multicast communications.
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2.4 Applications

In the previous Section, several examples of the technology available for
the support of multicast communications were discussed. In this Section, four
applications are presented, each of which illustrate some of the different
requirements that a multicast communication facility could be expected to

support.
2.4.1 A Time-Signal Generator

The simplest type of multicast communication is one in which the Source
transmits a message to the members of the multicast set and none of the
Destinations are to respond. In the following example, the Source is a “time-
signal generator”, that is, a Process that continuously supplies the time to the
members of a multicast set. A Destination in this example is any Process that
happens to need the time. The time value is obtained by “tuning into” the

multicast set associated with the time-signal generator.

The Source Process (i.e. the time-signal generator) algorithm is as follows:

repeat
GetTime;
SetupTimeSignalPacket;
SendTimeSignalToTimeReceiverSet;
until

NetworkOrClockFails;
(It is assumed that before each call to GetTime, there is a brief pause which
stops the Source Process from flooding the network with time values that

hardly differ from each other.)

For a Process to obtain a time value, it must first become a member of the
multicast set to which time signals are sent. The Destination Process (i.e. one

requiring the time) must then wait for a message containing the time value
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(the “Time Signal”) to arrive. Should the Destination miss the current time-
signal, it is assumed that there will be another sent by the time-signal
generator after a brief interval (since new time-signals are continually being

transmitted). The Destination Process algorithm is as follows:

WaitForATimeSignal;
SetupTimeFromTimeSignal,;
This code fragment takes the first “TimeSignal” that is received and uses it to

establish the Process's current time.

Although the above algorithms are intended to allow a Process to receive a
time value from a time-signal generator, the accuracy of the received time
value can depend upon how the Destinations are identified. For example,
should the underlying network use unique identifiers, significant delays could
occur during the repeated transmission of a time-signal (with the same time
value), rendering the received value very inaccurate. Boggs [Boggs1983a] has
suggested that time servers (i.e. the time-signal generator) send an error
value with each (broadcast) message, thereby allowing the Process requiring
the time to choose the most accurate time value possible. However, if the
multicast transmission is simulated by a series of unicast transmissions, the
concept of a single error value is meaningless since the error increases with

each message sent.
2.4.2 A Time Server

In this Section, another time-server application is presented. However,
unlike the previous example, the Source is the Process requesting the time and

the Destinations are Processes which return their current time value as

Responses.
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The Source Process (i.e. the Process requesting the time) could be written

as follows:

SendTimeRequestMessageToTimeServers;
ReceiveFirstAvailableTimeMessage;
SetupTimeFromTimeMessage;

In the above algorithm, the Source Process accepts the first available time-

message, ignoring any subsequent time-messages.

However, there are situations where the time value accepted from the first
received time-message may not be sufficiently accurate for the Source Process.
For example, a user may be satisfied obtaining a time value accurate to the
nearest minute, whereas some applications may require a time value accurate
to within a few milliseconds. To overcome this problem, the incoming time-

messages could be filtered.

Filtering can be performed either by the Source Process directly or by a
time-message reception procedure supplied by the Source. In this and
subsequent multicast application examples, filtering will be performed by a
supplied function, thereby freeing the Source of having to explicitly program

items such as exception handling.

For example, a Source Process could be supplied with a function which
returns a success indication if a time-message was received satisfying the
required accuracy (in this algorithm, the ReceiveTimeMessage function
accepts a value indicating the number of milliseconds of accuracy required):

SendTimeRequestMessageToTimeServers;
if ReceiveTimeMessage(FiftyMilliseconds) = Success then

SetupTimeFromTimeMessage

else
error("No sufficiently accurate time value found.”);
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The Destination Process (i.e. the Process supplying the time-message)

could be written as follows:

repeat
WaitForATimeRequestFrom(Source);
GetTime;
SetupTimeMessage;
SendTimeMessageTo(Source);

until

NetworkOrClockFails;

Note, in this algorithm, the Destination Process maintains a variable “Source”

which identifies the originator of the Request. This allows the Destination

Process to return the time-message to the requesting Source Process.

2.4.3 A Triple-Modular Redundant File-Server

A Triple-Modular Redundant (or TMR) File-Server consists of three
Destinations (the file-servers) responsible for storing separate copies of a file
sent by a Source. The file transfer continues until either the file has been
successfully received by the file-servers or the number of file-servers falls
below two (that is, the file transfer will continue with two or three file-
servers). In this example, it is assumed that for the duration of the file transfer
there is only a single Source Process (i.e. other Processes requiring the use of
the file-server must wait until any file transfers in progress have completed)

and lost messages are not retransmitted.

In the following algorithm, the rules governing the transmission of

messages by the Source Process are as follows:

-a Destination must respond within a certain time period otherwise it is
assumed to be inactive;

-if a Destination is found to be inactive, it should be ignored (i.e. not
transmitted to and have any subsequent Responses discarded);
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-if two or more Destinations are found to be inactive (that is, Responses are
not received from them within a certain time period), the transmission is to
be stopped.

These rules are enforced by the function ReceiveAndFilterReplies, which
returns a status value to the Source Process of either “TMRContinue” if the
transmission can continue or “TMRFailed” if the transmission is to be aborted.

The Source Process (i.e. the Process requiring the services of the TMR File-

Server) algorithm could be written as follows:

GetFileHeader;
SendToTMRFileService(FileHeader);
status : = ReceiveAndFilterReplies;
if status <> TMRFailed then
repeat
GetFileBlock;
SendToTMRFileService(FileBlock);
status : = ReceiveAndFilterReplies;
until
(status = TMRFailed) or (FileBlock = EndOfFile);

The Source Process first sends the file header and then a series of file
blocks, the last of which contains an end of file indicator. After each
transmission, the Source Process waits for the function
ReceiveAndFilterReplies to respond with a status value, indicating whether to
continue the file transfer. The ReceiveAndFilterReplies function collects
Responses from those Destinations still involved in the transfer and which
respond within a fixed time period. Should the file transfer fail, the Source
Process simply stops transmitting. (It is assumed that the Destinations will

also eventually “time-out” and abort the file transfer if messages are not

received from the Source Process within a corresponding time period.)
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The Destination Process (i.e. the File-Server) algorithm could be written as
follows:
repeat
WaitForFileHeader;
SetupFileHeader;
ReplyDoneMessage;
repeat
status : = WaitForFileBlock;
if status = Okay then
begin
PutFileBlock;
ReplyDoneMessage;
end;
until
(FileBlock = EndOfFile) or (status < > Okay);
if status <> Okay then
AbortFileCreation;

until
HostOrNetworkFailure;

The File-Server creates a new file from the supplied file header and then
proceeds to write each received file block to the newly created file. The File-
Server uses two different receive functions. The first, WaitForFileHeader,
waits indefinitely for a file header. Once the transmission has started, a
second receive function, WaitForFileBlock, expects a File Block to be made
available within a certain time period - this is to ensure that the File-Server
does not wait indefinitely for a slow or inactive Source. File Blocks received
within this period are returned with a status of “Okay”, otherwise an error is

returned and the creation of the file is aborted.

The TMR File-Server example demonstrates the need for an “intelligent”
multicast filter, which, unlike the filter presented in Section 2.4.2, must
maintain state information, allowing it to determine which Responses are
valid and which are to be ignored. In addition, it demonstrates the simplicity

of a multicast transmission in that the Source need only send one message
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which is to be received by the members of the multicast set, rather than

repeatedly transmitting the same message to each member.
2.4.4 A Two-Phase Commit Protocol

A Two-Phase Commit protocol attempts to ensure that a transaction, such
as a database update, is either executed entirely or not at all by the
Destinations (or Participants) offering the service. Briefly, the first phase
consists of a Source (the Commit Coordinator) asking all Participants
whether they can commit themselves to performing a specific (common)
action. Those that can indicate by a “yes” vote and those that cannot respond
with a “no” vote. Should one or more Participants indicate that they cannot
commit themselves to perform the required action, the Commit Coordinator

transmits an “Abort Request”, to which all Participants must also respond.

However, if all Participants indicate “yes”, the Commit Coordinator then
issues a “Commit Request”, in which the Participants guarantee the

performance of the required action - this is the second phase of the protocol.

The following algorithms, which are adapted from [Bennett1984a],

describe a Two-Phase Commit protocol. The Commit Coordinator (the Source)
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algorithm is as follows:

{ First Phase }
SendCanYouCommitMessage;
answer : = WaitForResponses;
ifanswer = Yes then
begin
{ Second Phase }
set(COMMIT);
repeat
SendMessage(DoCommit);
answer : = WaitForResponses;
until
answer = Yes;
reset(COMMIT);
end
else
begin
repeat
SendMessage(DoNotCommit);
answer : = WaitForResponses;
until
answer = Yes;
end;

26

The WaitForResponses procedure used by the Commit Coordinator returns

either a “yes” or “no” answer, depending upon the number of Responses (and

their values) received within a certain time period. A “yes” indicates that all

possible Destinations responded with a “yes” vote, while a “no” indicates that

one or more Participants could not ensure completion of the Two-Phase

Commit.

Once the decision is taken to either commit or abort the transaction, the

Commit Coordinator continues to transmit “DoCommit” messages (if the

commit is to take place) or “DoNotCommit” messages (if the commit is not to

take place) until all Participants have responded with a “yes” indication. (The
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statements “set(COMMIT)” and “reset(COMMIT)” are specific to the Two-

Phase Commit protocol and are not considered here.)

A Participant (i.e. a Destination) has the following algorithm:

WaitForACanYouCommitMessage;
EnsureUndoRedo;
if CannotEnsure then
SendMessage(NoVote);
else
SendMessage(YesVote);
WaitForVerdict;
if Verdict = DoCommit then
begin
DoUpdate;
SendMessage(YesVote);
end
else
begin
UndoUpdate;
SendMessage(NoVote);
end;

The Participant initially waits (indefinitely) for a commit request. When a
commit request arrives, the Participant attempts to ensure that it can
actually commit itself, Once the decision is taken (to either commit or abort),
the Participant must wait for the Commit Coordinator to indicate the verdict.
(The procedures “EnsureUndoRedo”, “DoUpdate” and “UndoUpdate” as well
as the Boolean variable “CannotEnsure” are all specific to the Two-Phase

Commit protocol.)

The Two-Phase Commit protocol described in this Section has shown how
multicast communications can assist in the implementation of atomic events.
That is, the multicast transmission is treated as a single event which is either
completed or ignored, rather than burdening the application with the details

of the success or failure of individual communications.
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2.5 Concluding Remarks

In this Chapter, some of the basic concepts associated with multicast
communications such as the terminology and ways of describing multicast
communication implementations have been covered. In addition, a survey of
many of the known multicast communication implementations was presented,
demonstrating that both hardware and software facilities do exist which can
support multicast communications. Finally, a set of applications were
discussed, showing that there are many different requirements which must be

considered in a multicast communication.

In the next two Chapters, several of the topics covered in this Chapter will
be expanded to further our understanding of multicast communications. In
Chapter Three, the communication models will be used to develop a series of
taxonomies which will, in turn, be used to describe the implementations and
applications discussed in this Chapter. In addition, in Chapter Four, the
following common features, described in Section 2.4, will be used to to develop

a set of multicast communication primitives comprising of:

a) the ability to send a message to the members of multicast set;

b) the ability to receive multiple messages sent by one of more transmitters,
and to filter those messages not required;

c) the ability to join (or become a member) of a multicast set and receive
messages which are destined to the members of the set;

d) the ability to leave a multicast set, thereby ignoring any subsequent
messages sent to the members of the set.
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Chapter 3

Methods of Classifying
Multicast Communications

In Chapter Two, three different models of describing a multicast
communication were presented: a Transmitter-Receiver model, a Source-
Destination model, and a Layered Architecture model. In this Chapter, these
models are used to develop a set of classification schemes for describing
different aspects of multicast communications. These classification schemes
will be used in subsequent Chapters for the development, implementation and

testing of a set of multicast communication primitives.

A multicast transmission taxonomy is presented first, based upon the
Transmitter-Receiver model. A multicast reception taxonomy is then
developed using the Source-Destination model. Finally, the Layered
Architecture model is examined and used to describe both multicast
transmission and the reception of multicast messages in some types of

distributed systems.
3.1 A Multicast Transmission Taxonomy

The Transmitter-Receiver communications model presented in Chapter
Two describes two factors which can influence any communication - the type
of identifier used to identify the Receiver (Unique or Group) and the number
of identifiers that can be associated with a single message (One or Many). By

enumerating these two factors, a multicast transmission taxonomy can be
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developed and used to describe several different aspects of multicast

communications.
3.1.1 The Basic Taxonomy

The multicast transmission taxonomy developed in this Section is intended
to establish an ideal lower and upper bound for the number of transmissions
required by a Transmitter in order that all members of the multicast set
receive a copy of the message. (Note, the present analysis does not take into
account acknowledgments or message retransmission.) The taxonomy itself is
made up of four different classifications based upon the number of identifiers
that can be associated with a message (One or Many) and the type of identifier
used to identify the Receivers (Unique or Group). Table 3-1 (below) lists the

different classifications and their associated minimum and maximum number

of transmissions:
Number of
Transmissions
Classification
Minimum | Maximum
One-Unique R R
One-Group 1 R
Many-Unique 1 S
Many-Group 1 S
Table 3-1: The Basic Taxonomy
where:

R - is the total number of Receivers in the multicast set, and

S - is the ceiling of R / N, where N is the number of identifiers (i.e. “many”)
which can be associated with the transmission of a single message.



METHODS OF CLASSIFYING MULTICAST COMMUNICATIONS 31

There now follows a discussion of each of the classifications in terms of the

minimum and maximum number of transmissions required:

One-Unique: a Transmitter in the One-Unique category can associate at most
one identifier with each message, while the Receivers are represented
using unique identifiers. In this category, the minimum and maximum
number of transmissions are the same, that is R, since each Receiver
must be transmitted to individually;

One-Group: a Transmitter in the One-Group category can associate at most
one identifier with each message, while the Receivers are represented
using group identifiers. The number of transmissions depends upon the
number of group identifiers required to represent the members of the
multicast set — if all members share the same group identifier, then only
one transmission is required. However, in the worst case, where each
Receiver is identified using its own group identifier, a total of R
transmissions are required;

Many-Unique: a Transmitter in the Many-Unique category can associate
many identifiers with each message, while the Receivers are represented
using unique identifiers. The number of transmissions depends upon the
number of multicast set members (R), and the number of identifiers that

can be associated with the message (N):

R < N:resultingin a single transmission;
R = N:resulting in a single transmission;
R > N:resulting in multiple transmissions, to a maximum of S,

Many-Group: a Transmitter in the Many-Group category can associate many
identifiers with each message, while the Receivers are represented using
group identifiers. The number of transmissions depends upon the
number of group identifiers required to represent the members of the
multicast set G (with a value between 1 and R), and the number of
identifiers that can be associated with the message (N):

G < N:resultingin a single transmission;
G = N:resulting in a single transmission;
G > N: resulting in multiple transmissions, to a maximum of S
(when each Receiver is identified with its own group identifier, i.e.

G = R).
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Finally, it is worth noting that some systems may support hybrid schemes
whereby a multicast set is represented by both types of identifier (i.e. Unique
and Group). In these situations, the taxonomy still can be used, however all
identifiers should be considered as group identifiers (since a Group identifier

is assumed to represent one or more Receivers).

The following examples demonstrate how the multicast transmission

taxonomy can be used to classify different networks and distributed systems.
3.1.1.1 The Cambridge Ring[Needham1982a]

A transmission on the Cambridge Ring involves a Source station (the
Transmitter) supplying two bytes of data and the address of a single
Destination station (the Receiver) in a mini-packet to the Cambridge Ring.
The mini-packet travels around the ring, past the intended Destination (which
takes a copy of the mini-packet and sets the Response bits) and back to the

Source (which checks the Response bits and frees the mini-packet).

From this description of a Cambridge Ring transmission, the Cambridge
Ring can be classified as a One-Unique multicast transmission network.
Therefore, in a multicast transmission involving “R” Cambridge Ring

stations, a total of R transmissions would be required.

Note, the Cambridge Ring can also support One-Group multicast
transmission by performing a broadcast transmission to all stations. However,
since Cambridge Ring broadcast transmissions are rarely discussed in the
literature (in part because all stations access the same pair of Response bits,
potentially destroying the previous value [JNTIS1982a]), One-Group

multicast transmission on the Cambridge Ring is not considered in detail

here.
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3.1.1.2 The Ethernet [Metcalfe1975a]

On an Ethernet, messages are transmitted in packets containing a single
Receiver identifier. However, because of the bus structure of the Ethernet, the
packets are potentially available to all stations on the network. The identifier
itself can be either Unique, identifying a single receiving station, or Group,
identifying a group of receiving stations. Depending upon the type of receiving
hardware available, the Group identifier can either be recognized by all

possible Receivers or a subset of them (for example, see [DEUNA1983al).

Clearly the Ethernet can be classified using the multicast transmission
taxonomy as either a One-Unique or a One-Group multicast transmission
network. For example, it is One-Unique if all stations belonging to a multicast
set can only be identified by their Unique station identifier - causing the
transmitting Ethernet station transmit a copy of the message to each station
in turn. However, it is One-Group if all stations share the same Group

identifier, minimizing the number of messages the transmitting Ethernet

station must send.

3.1.1.3 Metanet[Aguilar1984a]

A Metanet station is designed to support both the transmission and
reception of messages associated with up to nine identifiers (either Unique or
Group, depending upon the station identification scheme of the Destination
network). Therefore, depending upon the type of identifier the Destination
Metanet stations are represented by, Metanet can be classified as either a

Many-Unique or a Many-Group multicast transmission network.

3.1.1.4 The V-System [Cheriton1984a]

A V-System Client Process (i.e. a Transmitter) on one machine sends a

message to a multicast set consisting of one or more Server Processes (i.e.
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Receivers), all sharing a common “Group Identifier”. Interprocess multicast
transmission in the V-System can therefore be classified as One-Group. In
addition, since the Client uses a single Group Identifier to identify all possible
Servers in the multicast set, the V-System guarantees a minimum number of

transmissions by the Client.

3.1.1.5 Summary

In this Section a taxonomy has been developed which allows the
description of multicast communications between a Transmitter and a
multicast set consisting of one or more Receivers. The taxonomy is based upon
the number of identifiers (either One or Many) and the type of identifier

(either Unique or Group) which can be associated with the transmission of a

message.

However, the taxonomy as presented does not describe the effect that
layered architectures can have upon multicast transmissions, nor does it allow
an examination of the overheads involved in message distribution. These

features will be discussed at length in the next Section.

3.1.2 The Multicast Transmission Taxonomy and Layered

Architectures

Since distributed systems may consist of a variety of networks, it is often
desirable to hide the underlying network and its associated protocols from
application Processes, thus permitting common software to be run on different
machines on different networks. In order to allow the portability of software
and to allow entities on different machines to communicate, most distributed

systems are designed in a layered fashion [Watson1983a].

In Chapter Two, it was shown that although communications in a layered

system between two (N)-Entities may appear to occur at the (N)-Layer, the
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communication is in fact using the communication services of the next lower
layer, the (N-1)-Layer. It is the (N-1)-Layer that dictates the number and type
of identifiers which can be used by the (N)-Layer.

The following assumptions are made regarding layered architectures:

a) the transmitting (N)-Entity supplies the transmitting (N-1)-Entity with a
message, and the number and type of identifiers which the (N-1)-Service
Layer allows. For example, if the (N-1)-Service Layer supports Many-
Unique transmission (that is, the transmitting (N)-Entity can supply many
unique identifiers with each message), then each message is supplied to the
transmitting (N-1)-Entity with many unique identifiers;

b) when the transmitting (N-1)-Entity receives a message, plus identifier(s),
from the (N)-Entity, the message is transmitted immediately without
waiting for additional messages or identifiers. For example, if the
(N)-Layer supports One-Unique transmission and the (N-1)-Layer supports
Many-Unique transmission, each message supplied by the transmitting
(N)-Entity is transmitted with a single unique (N-1)-Identifier by the
transmitting (N-1)-Entity (even though the (N-1)-Message could have been

associated with more (N-1)-Identifiers);

¢) the number of receiving (N-1)-Entities is always less than or equal to the
number of receiving (N)-Entities. That is, a receiving (N)-Entity can be
associated with at most one (N-1)-Entity, whereas a receiving (N-1)-Entity
can be associated with any number of (N)-Entities.

The amount of processing required by the system to support the
communication depends, in part, upon how the individual layers are classified
by the multicast transmission taxonomy. For example, if a single
(N)-Identifier is used to identify all receiving (N)-Entities (that is, the
(N)-Layer supports One-Group multicast transmission) but the transmitting
(N-1)-Entity must use separate (N-1)-Identifiers to identify each receiving
(N-1)-Entity (that is, the (N-1)-Layer only supports One-Unique multicast
transmission), then the One-Group (N)-Identifier must be mapped into a series

of One-Unique (N-1)-Identifiers (by either the transmitting (N)-Entity or the
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transmitting (N-1)-Entity). Similarly, little or no processing may be required
if both the transmitting (N)-Entity and the transmitting (N-1)-Entity support

the same number and type of identifier.

Clearly, additional processing may be required when either or both of the

following situations arise:

a) the (N)-Identifier type and the (N-1)-Identifier type differ. For example, the
(N)-Identifier may be group (unique) and the (N-1)-Identifier may be

unique (group);

b) the number of (N)-Identifiers required to identify the receiving (N)-Entities
differs from the number of (N-1)-Identifiers required to identify the
receiving (N-1)-Entities. For example, one (many) (N)-Identifiers are used
at the (N)-Layer while many (one) (N-1)-Identifiers are required by the
(N-1)-Layer. Similarly, the layers may support different numbers of

“many” identifiers.
In both of these circumstances, it may be necessary to change one or both of:

a) the identifier types - from group to unique or unique to group;

b) the number of identifiers - from one to many, many to one, or many to many.

The processing requirements of the adjacent layers within a system can be

expressed in a tabular form, based upon how the layers are classified by the



METHODS OF CLASSIFYING MULTICAST COMMUNICATIONS 37

multicast transmission taxonomy developed in the previous Section:

Classification of (N)-Layer
Classification
of One Many
(N-1)-Layer
Unique Group Unique Group
One-Unique 1:1 Gi : IU [xi): }I ?n : }I
U-G G-G U- -
One-Group 1:1 1:1 mil At
. -U -U U-U -
Many-Unique U;:n G‘i:n m:n ?nrllJ
vy aup | G20 | G0 | 58 | 98

Table 3-2: Processing Requirements of Adjacent Layers

Each entry in Table 3-2 describes the changes associated with the (N)-

Identifier(s), in terms of identifier type and number of identifiers, if they are to

be mapped into (N-1)-Identifiers.

Identifier translation, when required, is represented by the arrow (-). The

four possible identifier translation combinations should be read as follows:

U - U - each unique (N)-Identifier supplied with the message is mapped into a
unique (N-1)-Identifier;

U - G - each unique (N)-Identifier supplied with the message is mapped into a
group (N-1)-Identifier;

G - U - each group (N)-Identifier supplied with the message is mapped into
one (or more) unique (N-1)-Identifiers;

G - G - each group (N)-Identifier supplied with the message is mapped into
one (or more) group (N-1)-Identifiers.

The change in the number of identifiers (that is, the difference between the

number required to identify the receiving (N)-Entities and the number
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required to identify the receiving (N-1)-Entities) associated with each message
is represented by the colon (:) and is in the form m : n, where m indicates the
maximum number of (N)-Identifiers allowed with each message by the
(N)-Layer, and n is the maximum number of (N-1)-Identifiers allowed with a

single message by the (N-1)-Layer. The possible identifier changes and their

impacts are:

1:1 - One (N)-Identifier per message to One (N-1)-Identifier per message.
Both the (N)-Layer and the (N-1)-Layer support at most one identifier with
each message, irrespective of the number of (N-1)-Identifiers produced by
any mapping. For example, if the identifier type changes from Group to
Unique (G~ U) or group to group (G - G), each (N-1)-Identifier produced
must be sent with its own copy of the message, even though only one
message is supplied by the (N)-Entity. This can result in many (repeated)
transmissions of the same message to the receiving (N-1)-Entities.

1:n - One (N)-Identifier per message to Many (N-1)-Identifiers per message.
The (N)-Layer allows at most one (N)-Identifier per message, but the
(N-1)-Layer allows many (N-1)-Identifiers with each message. When the
one (N)-Identifier maps into several (N-1)-Identifiers (such as Group to
Unique (G » U) or possibly Group to Group (G — G)), then the number of
repeated transmissions of the message by the transmitting (N-1)-Entity
can be less than the 1: 1 case (above).

m : 1 - Many (N)-Identifiers per message to One (N-1)-Identifier per message.
The (N)-Layer allows many (N)-Identifiers with each message, but the
(N-1)-Layer allows at most one (N-1)-Identifier with each message. If the
(N)-Identifiers are Unique, the maximum number of messages sent by the
transmitting (N-1)-Entity will equal the total number of (N)-Identifiers
supplied by the (N)-Entity if Unique to Unique (U - U), but the total can be
less if several Unique identifiers map into a single Group identifier
(U - G). However, if the (N)-Identifiers are group identifiers, the number of
messages sent by the (N-1)-Entity will depend upon the number of
(N-1)-Identifiers produced by the Group identifier mapping (either Group
to Unique (G - U) or Group to Group (G -~ G)).

m : n - Many (N)-Identifiers per message to Many (N-1)-Identifiers per
message. Both the (N)-Layer and the (N-1)-Layer allow many identifiers
with each message. The number of messages sent by the transmitting
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(N-1)-Entity depends upon the number of (N-1)-Identifiers produced by
mapping the m (N)-Identifiers into (N-1)-Identifiers. The number of
(N-1)-Identifiers produced (say M) depends upon the types of identifier
used by the two layers. Therefore, the number of messages sent will depend
upon M (the number of (N-1)-Identifiers produced) and n (the maximum
number of (N-1)-Identifiers that can be associated with the (N-1)-Message):

M < n - only one message need be sent by the transmitting (N-1)-Entity
since the number of (N-1)-Identifiers produced is less than the number of
(N-1)-Identifiers that can be associated with the message;

M = n- only one message need be sent by the transmitting (N-1)-Entity
since the number of (N-1)-Identifiers produced is equal to the number of
(N-1)-Identifiers that can be associated with the message;

M > n - the ceiling of M / n messages will be sent by the transmitting
(N-1)-Entity since the number of (N-1)-Identifiers produced are more
than the number of (N-1)-Identifiers which can be associated with the

message.

This layered view of multicast communications can be applied to many
varied, yet important aspects of multicast communications such as

intranetwork communications, internetwork communications, and message

distribution within a Host.
3.1.2.1 Intranetwork Communications

In any layered architecture there will exist an (N)-Layer which has no
supporting (N-1)-Layer. This (N)-Layer is the lowest layer of the architecture
and is often referred to as the Physical Layer since it allows the physical
connection of machines [ISO1981a]. A distributed system consisting of a single
Physical Layer is said to support intranetwork communications (that is,
communications on a single network). In an intranetwork communication it is
assumed that all entities at a specific (N)-Layer support the same number and
type of identifiers. Note however, that an (N-1)-Layer need not support the

same number and type of identifiers as the adjacent (N)-Layer.
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For example, a V-System Host consists of two layers: an application layer,
consisting of Clients and Servers, and a kernel layer, through which all
communication takes place (using an Ethernet as the underlying network).
Both the application and kernel layers use One-Group multicast
transmissions for the distribution of multicast messages. Since the members of
a multicast set (consisting of Servers) are accessed with a One-Group
transmission, the kernel layer is supplied with a single message and a single
(Group) identifier, irrespective of the number of members of the multicast set.
The kernel transmits the message and the supplied multicast set identifier to

all other V-System Hosts on the network using a single Ethernet broadcast
transmission. Clearly, from the discussion of layered multicast transmission,
the One-Group to One-Group method of multicast transmission used by the V-
System is highly efficient, requiring the minimum amount of message

handling.

However, with a different underlying network, the V-System would not
necessarily produce the minimum number of messages. Consider the following
(hypothetical) example in which the Cambridge Ring is used in place of the
Ethernet. In this example, the application layer would still use a single One-
Group multicast transmission, however, the kernel layer would be forced to
use One-Unique transmissions for the message to reach the intended Servers.
This One-Group to One-Unique mapping would result in one or more
transmissions of the message on the Cambridge Ring - clearly not as efficient

as when using the Ethernet.

From these examples it is apparent that if the goal of a multicast
implementation is to minimize the amount of message processing in a layered
architecture, a method of multicast transmission should be chosen which

minimizes the number of separate messages produced. This can be achieved in
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a number of ways, for example, by ensuring that the number and type of

identifiers do not vary between the different layers.
3.1.2.2 Internetwork Communications

Distributed systems allowing communications between entities on
different networks are said to support internetwork communications. The
different networks in an internetwork communication are interconnected by
Gateways. Unlike intranetwork communications, the transmitting and
receiving entities on the different networks need not support the same number
and type of identifier, even though they are at the same layer. Although thisis
not directly an inter-layer problem, the multicast transmission taxonomy can

be used to describe the actions of a Gateway when interconnecting networks.

Consider, for example, the following situation: an (N)-Layer on one
network supports One-Group multicast transmission, while a corresponding
(N)-Layer on a separate network supports One-Unique multicast
transmission. To permit a communication between these entities, the One-
Group identifier must be converted into a list of one or more One-Unique

identifiers. The identifier conversion can occur in a number of places, for

example:

a) at the transmitting (N-1)-Layer. Individual messages must be sent to the
receiving (N-1)-Entities through the Gateway, resulting in repeated
message transmission from the transmitter's network, through the

Gateway, to the Receiver's network;

b) at the intervening Gateway. By performing the identifier conversion at the
Gateway, only one message need be sent from the transmitter to the
Gateway. The Gateway would then be responsible for converting the One-
Group identifier into a list of One-Unique identifiers.

As a further example, MP [Ahamad1985a] supports both intranetwork and

internetwork multicast communication between Processes on UNIX 4.2BSD
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hosts. In MP, One-Group multicast transmission occurs at both the Process
and UNIX-kernel layers - similar to that described in Section 3.1.2.1
regarding the V-System. However, when transmissions occur between
networks, a single transmission is used to supply the Gateway with the
message and a single Group identifier. The Gateway then generates the
number and type of identifier expected by the receiving network using the

supplied Group identifier.

If the goal of the multicast implementation is to minimize the amount of
network traffic, the identifier type supported between the Transmitter and the
Gateway should be chosen as to minimize the number of messages required.
Network inefficiencies should not be allowed to spread across an entire

internetwork - they should be kept local to a network.
3.1.2.3 Message Distribution

Another aspect of multicast transmission to be considered is the
distribution of multicast messages by an (N-1)-Entity to the receiving
(N)-Entities. Message distribution from the (N-1)-Layer to the (N)-Layer
exhibits similar characteristics to that of multicast transmission from the
(N)-Layer to the (N-1)-Layer and can be described using the multicast
transmission taxonomy. For example, a receiving (N-1)-Entity may be
expected to distribute messages to any receiving (N)-Entities using a single
group identifier. However, if the receiving (N)-Entities can only be identified
using individual unique identifiers, the receiving (N-1)-Entity may be forced
to map the group identifier into a series of one or more unique identifiers

before message distribution can take place.

This problem is common to all multicast implementations in which a lower
layer is required to use a series of One-Unique transmissions to distribute

messages to Entities in a higher layer. The problem has been recognized by
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several designers of distributed systems. For example, in [Cheriton1984b], a
method of fast message distribution is described whereby 32-byte messages
are distributed using some of the CPU's registers. Similarly, the Accent
Distributed Operating System [Rashid1985a] uses a form of shared memory to

reduce the amount of unnecessary message handling.

Clearly, the overall time required to deliver a message to all Destinations

in a multicast set is affected by the time taken by the slowest Host to

distribute its message.

3.1.3 Summary

This Section has shown the design, development, and possible usages of a
multicast transmission taxonomy based upon:
a) the number and type of (N)-Identifiers used by a transmitting (N)-Entity in
order to identify the receiving (N)-Entities, and

b) the mapping of the (N)-Identifier(s) (supplied by the transmitting
(N)-Entity to the (N-1)-Server Layer) into (N-1)-Identifiers which can be
used to identify the intended receiving (N-1)-Entities.

The usefulness of the multicast transmission taxonomy was demonstrated
in several ways. First, the taxonomy was shown to facilitate the comparison of
existing or proposed multicast transmission schemes. Second, the taxonomy
proved useful in describing the amount of message handling required in
layered architectures when, for example, performing intranetwork and

internetwork multicast communications.
In addition, when using the taxonomy to describe layered architectures,
the following observations were made:

a) multicast message handling within a layered architecture could be
minimized if the different layers used the same type of identifier;
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b) the number of messages generated in an internetwork multicast
transmission is determined both by how the Receivers on the remote
network are identified as well as whether the Transmitter or the Gateway
is responsible for maintaining the list of Receiver identifiers;

c)the speed of a multicast transmission is determined by the number of
receivers, their location, and the speed of message distribution, both over
the network and within the Host.

These three points will be discussed further in Chapters Five and Six,

when examining various multicast communication implementations.

3.2 A Multicast Response Taxonomy

A multicast reception, as defined in Chapter Two, consists of a Receiver
receiving messages sent by many Transmitters. In this Section some of the
problems associated with multicast reception using the Source-Destination

model are considered.

In the Source-Destination model, the Source transmits a Request to set of
multicast Destinations. The Source may or may not expect Responses from the
Destinations. If Responses are not expected, the Source has no indication as to
the success of the transmission (unless some subsequent communication takes
place). However, if Responses are expected, the Source can, at best, only expect
Responses from those Destinations which received the Request. Of the
Responses that are received, different Sources will handle the Responses in

different ways. For example, a Source may require:

- a single specific Response, with all other Responses being ignored;
- a certain number of Responses to be received;

- Responses from each Destination.

How Responses are handled is influenced by the type of Destination

identification used by the Source. For example, if Destinations are uniquely
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identified, the Source has an exact indication as to the number and identity of
the possible Destinations. However, if all members of the multicast set share a
common (Group) identifier, the Source is forced to explicitly inquire as to the
membership of the multicast set, since, it is assumed, a Group identifier does
not normally offer any indication as to the number or identity of the

Destinations.
3.2.1 Types of Multicast Response Handling

A basic division in any communication system in terms of Response
handling is simply whether or not the Source expects a Response. It is possible
to develop a simple table describing the actions of the Source based upon its
Response expectations and the Response it actually receives (each member of
the following table should be read as Source Expects - Source Receives, where

NR indicates NoResponse and R indicates Response):

Source Expects
Source
ﬁ‘ctu.ally No
ives
ece Response Response

No Response | NR-NR R-NR
Response NR-R R-R

Table 3-3: Unicast Response Handling

where the possible Response combinations are described as follows:

NR - NR: the Source does not expect a Destination to respond;

NR - R: the Source is not expecting a Response, but nevertheless receives one.
This is an exception condition which can be resolved using a protocol;

R - NR: the Source, though expecting a Response to the Request, does not
receive one. This again is an exception condition which can be resolved

using a protocol;
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R - R: the Source both expects and receives a Response to the Request.

In a multicast communication, Response handling is considerably more
complex because there are more categories of possible Responses which need to

be distinguished:

No Response: the Source expects no Destination to Response;
Single Response: the Source expects a Response from a single Destination;

Many Responses: the Source expects Responses from more than one
Destination;

All Responses: the Source expects Responses from all possible Destinations.

The single communication table described above can be expanded to
include the various types of Responses possible in a multicast communication.
The Response handling types are based upon what the Source expects, while

the actions within each type are dictated by what the Source actually receives:

Responses Response Expected by Source
actually
received by ]
Source No Single Many All
No OK None None None
Single Unexpected OK Not-Many Not-All
Many Unexpected | Not-Single OK Not-All
All Unexpected | Not-Single | Not-Many OK

Table 3-4: Multicast Response Handling
where the contents of Table 3-4 should be read as follows:

OK: the Source received what it was expecting;

Unexpected: the Source is not expecting a Response, however at least one
Destination returned a Response. This is an exception condition;

None: the Source is expecting some type of Response (one of Single, Many, or
All) but no Response is received. This is an exception condition;
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Not-Single: the Source is expecting a Response from a single Destination. If
the number of Responses received is greater than one, this is an
exception condition;

Not-Many: the Source is expecting Responses from Many Destinations. If the
number of Responses received do not equal the number expected, this is
an exception condition;

Not-All: the Source is expecting Responses from all possible Destinations. If
the number of Responses received are less than the total number of
Destinations, thisis an exception condition.

The recognition and resolution of the exception condition could be handled by,

for example, a protocol.

The above taxonomy is now examined in terms of two issues that can affect
multicast Response handling: identifying Destinations and exception

conditions.
3.2.1.1 Identifying Destinations

Although the multicast Response handling taxonomy described above
enumerates all possible Response situations, it does not take into account the
different types of Destination identification possible: Unique identification or

Group identification.

If the Source uses Unique identifiers when transmitting a Request to the
Destinations, it has available both the number of Destinations and their
(Unique) identifiers. From this information it is clearly a trivial matter for the
Source to determine which Destinations are responding - allowing all four
possible Response types (No, Single, Many, or All) to be supported. For
example, if Responses are expected from all Destinations but one does not

respond, the Source can immediately identify the Destination in question

since its identity is known.
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However, the Source is at a disadvantage when using Group identifiers
since it is not normally possible to determine the number or identity of the
Destinations from a Group identifier. This means that the only types of
Response that a Source using a Group identifier can be sure of are
No-Response and Single-Response (assuming that at least one Response is
received). It is not possible to guarantee the success of Many or All Response

types since the total number of Destinations are not known.

Frank [Frank1985a] has proposed that by using a “static” list of
Destinations (that is, a Group identifier is used in the transmission of the
message, but the Source also maintains a list of the individual Destinations
making up the multicast set), Many-Response and All-Response handling can
be supported using group identifiers. Admittedly, this proposal does remove
the possibility of unwanted or unexpected Destinations joining the multicast
set, however it does not take into account the possibility of Destinations

leaving the multicast set because of errors such as machine crashes.

Clearly, the designer of a multicast system is presented with a series of
choices when considering the most efficient form of multicast reception. For
example, additional protocols may be required when performing a One-Group
transmission if All-Response handling is expected, since a list of unique
identifiers would first have to be constructed before the communication could
commence. However, in a One-Unique multicast transmission, the
membership is already known, but the overhead of performing individual

transmissions may be so great as to outweigh this potential advantage.

3.2.1.2 Exception Handling

The multicast Response handling taxonomy as presented at the start of

this Section implies that the Source must handle all the Responses that are
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received. However, it is possible, in a layered architecture, to filter the

incoming messages before they are received by the Source.

For example, a Source Process may require a specific Response from a set of
Destinations - expecting all other Responses to be ignored. In order to offer
such a feature to the Source Process, a lower layer would be required to filter

the Responses, blocking all but the last.

In Section 3.2.2, exception handling and the filtering of messages will be
discussed further with respect to specific networks, implementations, and

applications.
3.2.1.3 Summary

In this Section, a taxonomy has been developed that can be used to describe
the Response handling of a Source entity. The basic taxonomy is simply an
enumeration of all possible combinations of Responses that the Source expects
to receive: No Response, Single Response, Many Responses, or All Responses.
In addition, the examination of this taxonomy has raised other issues with
respect to multicast communications. For example, although a One-Group
multicast transmission may require less transmissions than a One-Unique
multicast transmission, additional processing may be required (in the One-
Group transmission) since the list of members making up the multicast set

may not be known and may have to be created before the communication can

continue.
3.2.2 Multicast Response Handling Examples

The following Section uses the multicast Response handling taxonomy to

describe multicast response handling in several different networks,

implementations and applications.
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3.2.2.1 Networks

From the description of the Ethernet given in Chapter Two, it should be
apparent that an Ethernet Source is a No-Response type since an Ethernet
packet is sent without provision for a response. (Note that if the Source uses an
Ethernet Group address to communicate with the Destinations there can be
problems when attempting to handle the Many-Response or All-Response
types by a higher level of protocol, as suggested in Section 3.2.1.1).

The Cambridge Ring, as described in Chapter Two, allows communications
involving a single Source and a single Destination. Since each transmission of
a mini-packet is returned to the Source with a response indication (in the
Response bits), it is clear that Cambridge Ring Response handling can be
described as a Single-Response type. If a Response is not returned after a mini-
packet is sent, the Source does nothing other than signal a higher layer of
protocol that an error has occurred (each Cambridge Ring has a monitor node
which is designed to catch any erroneous mini-packets and correct them
[JNTIS1985a]). Any Responses that are generated by the Destination Process
(as opposed to the Destination Cambridge Ring node) are returned in another
series of mini-packets - these Responses are described by higher levels of

protocol [Needham1982a].

A multicast communication on the Cambridge Ring can be obtained using
any of several techniques. For example, it is possible to simulate a multicast
transmission by a series of repeated One-Unique transmissions of the Request.
This requires additional layers of software — where the lowest layer is simply
performing a single Source to single Destination communication. The higher
layers of software can implement different types of filtering as required by the

application and described by the taxonomy.



METHODS OF CLASSIFYING MULTICAST COMMUNICATIONS 51

3.2.2.2 Multicast Communication Implementations

Some of the (few) multicast implementations described in the literature are
now examined. Reasons for this sparsity include the lack of understanding and
development of protocols for multicast implementations [Gopal1984a] and the
existence of Ethernet, which offers one particular form of multicast facilities —
allowing designers to implement certain types of multicast transmission

schemes quickly and easily.

In this Section, the different networks and distributed systems presented

in Chapter Two are examined with respect to response handling.
3.2.2.2.1 The V-System [Cheriton1983a, Cheriton1984a]

The V-System is divided into two distinct layers: an application layer and a
kernel layer. A Source application (or Client) can request one of three
Response types from the kernel: No-Response, Single-Response, and Many-

Response. Response handling requires the interaction of the Client with the

kernel:

No-Response: A Request to which no Responses are expected is sent with a flag
indicating to each Destination that Responses are not to be returned.
This filtering is performed by the Destination kernel;

Single-Response: The first Response received by the Client's kernel is
returned to the Client. All subsequent Responses are discarded by the

kernel;

Many-Response: Each Response received is queued by the kernel. When the
Client requires a Response, the kernel removes the first available
Response from the queue (the onus is on the Client rather than the
kernel to determine if the correct number of Responses have been
received - a primitive exists which allows the membership of the
multicast set to be determined). Should the Client transmit another
Request to the same Group address, all queued Responses are discarded.
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(Note: the All-Response type is not supported by the V-System kernel for two
reasons. First, the overhead of an application supplying the kernel with a list
of unique addresses or the kernel maintaining such as list was decided to be
too complex. And second, the cost of retransmitting packets to non-responding
Destinations was considered to be potentially too costly to implement directly

in the kernel.)

The different types of V-System applications which have been described in
the literature can be divided into two categories: Sources that do not expect

Responses and Sources that do expect Responses.

The most widely publicized V-System No-Response type application is
Amaze, a network game designed for multiple users on different machines
[Cheriton1984a, Berglund1985a]. Briefly, the game consists of users moving
“monsters” around their own screens, attempting to destroy other users'
monsters. Each station transmits the status of its monster as a message to the
other stations (sharing a group address). The transmitting station does not
expect a Response to the message, since it is assumed that if a message is lost,

another will be generated within a short period of time.

Other applications designed to test the Single and Many Response types
have also been described. Single Response type applications have been
developed allowing a Source to request a generic service and take the first
Response supplied. More sophisticated applications have also been tested
using the Many Response type handling. These include a Source transmitting
a Request to a group of Destinations which return status information about
themselves (such as processor load) as Responses. The Source can then choose

a single Destination to communicate with based upon the information in the

Response.
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3.2.2.2.2 ASWE Serial Data Highway [Lakin1982a]

The ASWE Serial Highway supports a layered architecture which allows a
Source Process to send a message to one or more Destination Processes. After a
Request is sent, a Source Process can be expecting any of the four Response
types. However, most applications only use the Single-Response type - with

the Serial Highway interface filtering the returned Responses.

The services offered by the Destination Processes vary quite widely and
include database managers, file servers, and processors performing specific
mathematical functions. The most common way that a Source Process can
access a particular service is to multicast to all the Destination Processes
offering a particular service and accept only the first Response (taken as a
“bid”). The Source then deals exclusively with the Destination Process that
returned the first Response. Should the Destination prove unreliable or no

longer provide the service, the Source Process can disregard the original

Destination and reissue the Request.
3.2.2.2.3 Shoshin [Tokudal983al

Shoshin has a layered architecture with Source applications sending
Requests to one, many, or all possible Destinations through the Source's
communication manager. The communication manager applies filtering to the

_returned Responses based upon the type of Responses the application is

willing to accept:

No-Response: since all transmissions suspend Process execution until a
Response is received or an exception condition occurs, No-Response can
be obtained by waiting for a Response from a non-existent Destination;

Single-Response: is possible by indicating to the communication manager
which Destination the Response is expected from. All other Responses

are discarded;
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Many-Response: can be implemented in two separate ways. First, it can be
implemented in a simple first-come, first-served fashion, where each
Response is queued by the communication manager until required by the
application. And second, it is possible to exclude a specific Destination's
Response and accept Responses from all other Destinations.

The All-Response type is not available on the Shoshin system. (Although
not discussed explicitly in the Shoshin paper, it is assumed that a multicast
communication uses a Group address, making the handling of the

All-Response type extremely difficult.)
3.2.2.2.4 MIKE [Tsay1983a]

Although the main emphasis of the research on MIKE is in the
development of guardians for distributed processors, the underlying network

does permit multidestination communications:

No-Response: a Source can send a message to multiple Destinations without
expecting a Response;

Single and Many Response: are referred to as “reliable” communications. That
is, a message is sent to several Destinations and Responses are expected
from all those that are currently active. Destinations that do not return
Responses within a timeout period are assumed to be inactive;

All-Response: are referred to as “guaranteed” communications. In this
situation, MIKE ensures that every Destination that is to receive a copy
of the Request receives one and returns a Response - there is no time

limit imposed upon the Destinations.

In order to allow all four possible Response types to be supported, MIKE
must either use a combination of group and unique addresses or lists of unique

addresses to represent Services. Unfortunately, this is not made apparent in

the MIKE paper.
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The authors do not describe any multicast applications which they have

specifically examined during their testing.
3.2.2.2.5 Other Implementations

In [Gopall984al], the authors do not describe an implementation, but
rather the design of a system which allows a Request sent to several
Destinations to be acknowledged as efficiently as possible. The basic
algorithm assumes that the Source sends a series of Requests, each with a
unique sequence number. The Destinations return acknowledgments (as
Responses) if the Requests were accepted, otherwise negative
acknowledgments are returned (Responses must be returned within a timeout
period, otherwise any missing Responses are assumed to be negative
acknowledgments). When a negative acknowledgment (or a timeout) is
received, the Source performs a “Go-Back-N” retransmission algorithm, which

means that all Requests, starting with the one that was not received correctly,

are retransmitted.

Three different types of “Go-Back-N” (GBN) algorithms are proposed. The
first, Memoryless GBN, requires that all Destinations respond with an
acknowledgment to each of the retransmitted Requests - requiring that the
Source handle the All-Response type. The second, Limited Memory GBN,
expects acknowledgments only from those Destinations that did not
acknowledge the retransmitted message (the Source is to handle either Single
or Many Response types). However, all other retransmitted Requests must be
acknowledged by all the Destinations - once again making the Source handle
the All-Response type. Finally, there is Full Memory GBN, which accepts
Responses only from those Destinations that have not yet responded to any

outstanding Requests. In this case, the Source is to handle Single, Many, or
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All Response types, depending upon the number of acknowledgments still

outstanding for each Request.

There have been other multicast communication implementations
described in the literature, however, the problems and applications of
multicast Response handling have, for the most part, not been addressed by
their authors. For example, three recent papers on multicast communications
either mention Response handling only in passing [Ahamad1985a] or not at

all[Chang1984a, Frank1985al.

In each of the above three papers, the underlying network was assumed to
be an Ethernet, and in all cases, Group identification was used. Therefore, at
the lowest layer, the Ethernet would be offering a No-Response type of
Response handling - any other type would have to be incorporated into a
higher level of protocol. Note however, the problems that were described in
Section 3.2.1.1. regarding the identification of Destinations using Group

identifiers would exist in each of these implementations.

The UNIVERSE Project [Leslie1984a, Waters1984a], which attempts to
link several Cambridge Rings by a satellite broadcast channel, is another case
of the designers describing multicast transmission but not Response handling.
However, from the description of the Cambridge Ring (see Section 3.2.2.1 and
Chapter Two), it is clear that at the Source's interface to the Ring it must be a
Single Response type. Once again, at higher layers, a protocol could present a

different Response handling interface to the application.

3.2.2.3 Applications

In Chapter Two, four applications were presented as “typical” examples of
multicast communication requirements. In this Section, each of these

application are now discussed in terms of the multicast response taxonomy.
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The first application, the “time-signal generator”, consisted of the Time-
Signal generator transmitting time-signals to any Process which required a
time value. Since no responses were expected by the Source, the Time-Signal

generator was clearly a No-Response type application.

The second application involved a Source Process transmitting a request to
a multicast set consisting of one or more Time-Servers. The Source then
waited for responses, the first of which was accepted. To the original Source
Process, since only one message was returned, this was clearly a One-
Response type application. Note however, that to the lower layers responsible
for the filtering of the incoming Responses, this could be a Many-Response or

All-Response type application.

The third application, the TMR File-Server, is an example of a Many-
Response type application since the application will continue as long as there

are two or three (i.e. many) Destinations responding.

The Two-Phase Commit Protocol, the final application example, required
all the Destinations to respond with indicators as to the success (or failure) of
the invocation of the different phases. Since the Source expects each

Destination to respond, the Two-Phase Commit Protocol is an example of an

All-Response type application.

3.2.2.4 Summary

This Section has presented a taxonomy which can be used to describe the
actions of a Source after it has transmitted a message to one or more
Destinations. It was shown that how Destinations are identified (using either
Unique or Group identifiers) has a major impact on the type of Response
handling available to the Source. Destinations accessed by Unique identifiers

permit the Source to handle any of the four different Response types. However,
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since, it is assumed, the number of Destinations and their identity cannot
easily be established from a Group identifier, only the No-Response and
Single-Response types (and in some cases, Many-Response) could be used with

Group identifiers without the development of additional protocols.

The multicast response taxonomy also demonstrated the need for different
types of message filtering by the lower layers of a Receiver. For example, it is
possible for one layer to perform one type of Response handling and a lower
layer to perform another. This was shown in all of the Response handling
implementations examined, the lowest layer handled Many or All Response
types, while at a higher layer, an application may be expecting, for example,

the No-Response or Single-Response type.

The taxonomy also proved useful in describing the response handling
capabilities of networks, distributed systems and various applications. From
this type of information it should be possible for the designer of an application

requiring multicast communications to determine the type of filtering

required.

3.3 Multicast Communications in Layered Distributed

Systems

In Chapter Two, a means of describing Process-to-Process communications
using a simple layered architecture model was presented. In this model, the
transmitting Process transmits its message with the Host-Port identifier
associated with the receiving Process. By enumerating different Host-Port
identifier combinations, it is possible to develop a taxonomy for describing the
effect of using Host-Port identifiers for multicast transmission. In addition, it
is possible to use the Host-Port enumeration to describe the probable amount

of message handling required by a receiving Communication Layer.
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In this Section, these taxonomies are developed and discussed in terms of

several existing layered architecture implementations.

3.3.1 Host Identifiers

By using the multicast transmission taxonomy developed in Section 3.1

and applying it to a Host in a layered architecture, one finds the following:

a) the Transmitter is a single Host;
b) the Receiver is one (or more) Host(s);
c) the communication services are supplied by a Network;

d) Receivers (Hosts) are identified by some type of Host identifier, often
referred to as a network address.

The efficiency of a Network Layer multicast transmission is dictated (in
part) by how the receiving Host(s) are identified. To allow a Host to be
identified on a Network, all Networks support at least one of the following

three types of Host identifier:

Unicast: identifying a single Host. A message transmitted with a Unicast
Host identifier is received by at most one Host (i.e. it is a One-Unique

transmission);

Multicast: identifying a set of Hosts, sharing a common identifier. A message
sent with a Multicast Host identifier is a One-Group transmission in
which only those Hosts belonging to the Group receive a copy of the
message;

Broadcast: identifying all possible Hosts on a Network. A message sent with
a Broadcast Host identifier is another One-Group transmission where

the Group encompasses all Hosts.

In terms of transmission efficiency, using a Multicast or Broadcast
identifier may be more efficient than using a Unicast identifier, since a
message sent with a Multicast or Broadcast identifier (ideally) need only be

sent once, whereas a message sent with a Unicast address must be sent
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separately to each receiving Host (as shown by the multicast transmission

taxonomy).
3.3.2 Port Identifiers

It is also possible to use the multicast transmission taxonomy to describe

the identification of Process(es) using Ports:

a) the Transmitter is a Process on a Host;

b) the Receiver(s) are one (or more) Process(es) residing on one (or more)
Host(s);

c) the communication services consist of the underlying Communication and
Network Layers on the transmitting and receiving Hosts;

d) Processes are identified, indirectly, by some type of Port identifier.

Asin the case of Host identification, the efficiency of the communication is

dictated by how the receiving Ports are identified. Four methods of identifying

a Port are proposed:

Unique: the Port identifier is a Unique identifier, unique to one Process on
one Host. The identifier does not exist on any other Host;

Shared: the Port identifier is a Unique identifier, accessible by at most one
Process on a Host. However, the identifier can exist on all Hosts on the

network;

Local: the Port identifier is a Group identifier, which can be accessed by any
number of Processes on one Host. The identifier does not exist on any other

Host;

Global: the Port identifier is a Group identifier, which can be accessed by any
number of Processes on all Hosts.

There are advantages and disadvantages to each of the Port identification
methods described here. Unique Port identifiers can be costly in terms of the
number of messages that the Communication and Network Layers, on both

the transmitting and receiving Hosts, are expected to handle. For example, if
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Unique Port identifiers are used and a Host supports “n” Processes, all of
which belong to a particular multicast set, then, in the worst case, the

receiving Communication Layer can be expected to handle n copies of the

message.

Although using Shared, Local, or Global Port identifiers can decrease the
number of transmissions required, there is the disadvantage that the
transmitting Process has no indication as to the number of receiving
Processes. This can produce a variety of problems should the transmitting
Process ever expect messages to be returned by the receiving Process(es), as

for example, in the Source-Destination model described in Section 3.2.
3.3.3 Host-Port Identifiers and Multicast Transmission

In this Section, the number of message transmissions required by a
transmitting Communication Layer are discussed in terms of Host-Port
identifiers. First, the maximum number of transmissions required for a
message to reach all members of a multicast set are considered for all Host-
Port identifier combinations (assuming no retransmissions). This is followed
by an examination of how the different Port identifiers can be used to support
the minimum number of transmissions to the members of a multicast set. In

each of the following cases, it is assumed that there are N possible receiving

Processes.

Clearly, the maximum number of message transmissions required by the
transmitting Communication Layer occurs when each receiving Process in the
multicast set is associated with a Unique Port, irrespective of how the Host is
identified. In this situation, the transmitting Communication Layer must
send “N” copies of the message, one to each receiving Process. However, in a

network which allows many identifiers to be associated with a message, the
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number of transmissions can decrease to (ideally) one, as shown by the basic

multicast transmission taxonomy in Section 3.1.1.

Ideally, the transmitting Communication Layer should only transmit one
message which is then received by the various Processes making up the
multicast set. However, the number of transmissions can vary from one to “N”,
depending upon the how the Host-Port identifier identifies the intended

receiving Processes.

3.3.3.1 Unique Ports

To achieve the minimum number of message transmissions when dealing
with a multicast set consisting of Processes which can only be accessed using a
Unique Port identifier, the multicast set could only have one member,
irrespective of how Hosts are identified since at most one Process can be
associated with a Unique Port identifier. However, if the network permits
many Host-Port identifiers to be associated with each message, the number of
messages to be transmitted could be decreased. Further reductions could be
achieved by using a Multicast or Broadcast Host identifier with multiple Port
identifiers, since the transmitting Communication Layer would not be

expected to transmit to each Host individually.

The problems associated with receiving messages on Hosts which do not
support members of the multicast set after a transmission with Multicast or

Broadcast Host identifiers are discussed further in Section 3.3.4.

3.3.3.2 Shared Ports

A Shared Port can exist on any number of Hosts, but like the Unique Port,
only one Process on each Host is allowed to access it. Therefore, in order to

minimize the number of message transmissions on the part of the
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transmitting Communication Layer, all receiving Processes should reside on

separate Hosts and be accessed by a Multicast or Broadcast Host identifier.

However, if more than one Process resides on the same Host, the
transmitting Communication Layer is forced to send multiple messages
(unless the network allows many identifiers per messages, in which case the
number of transmissions depends upon the number of identifiers that can be
associated with the message). In both of these situations, the number of
Process identifiers depends upon the maximum number of receiving Processes
on a Host and whether their Port identifiers are Shared or Unique. For
example, on a network allowing a maximum of one Port identifier to be sent
with each message, if four Processes belonging to the multicast set reside on
two Hosts (two Processes per Host), the minimum number of transmissions
would be two - occurring when each Process was using a Shared Port (i.e.
sharing it with one other Process on the other Host), whereas the maximum
number of transmissions would be three: one, using a Shared Port identifier

and the other two, using a pair of Unique Port identifiers.

3.3.3.3 Local Ports

A Local Port identifier allows many Processes to share a Port on a single
Host; the Port identifier does not exist on any other Host. Clearly, in this
situation, the transmitting Communication Layer need not send more than
one message if all the receiving Processes reside on a single Host. It would be
sufficient to use a Unicast Host identifier in this situation - thereby avoiding

unnecessary message reception by Hosts not supporting Local Port identifiers.

However, should the receiving Processes reside on different Host, the
transmitting Communication Layer is forced to either transmit a series of
messages with Unicast Host identifiers, one to each Host which supports

members of the multicast set or to transmit message with a Multicast or
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Broadcast Host identifiers if the network allows many identifiers to be

associated with each message.

Unlike Shared Ports where the number of transmissions is dictated by the
number of Processes on a single Host, the number of transmissions using a
Local Port identifier is determined by the number of receiving Hosts which

support members of the multicast set.

3.3.3.4 Global Ports

A Global Port identifier can be associated with any number of Process on
any number of Hosts. The number of transmissions by the Communication
Layer depends, in part, upon the type of Host identifier supported. For
example, if the network only allows Unicast Host identifiers, Global Ports are

degraded into Local Ports.

Ideally, Global Ports should be used with Multicast or Broadcast Host
identifiers, since only one transmission would be required. However, as in the
other Port types, if members of the multicast set happen to use different
Global Port identifiers, the transmitting Communication Layer may be

required to make additional transmissions.
3.3.4 Host-Port Identifiers and Multicast Message Handling

From the discussion on Host-Port identifiers and multicast transmission in
the previous Section, three broad categories for describing Host-Port
identifiers and how they affect message distribution by a receiving

Communication Layer are proposed:

Repeated - any receiving Communication Layer which must receive more
than one message in order to ensure that all possible Process(es) receive
a copy of the message can be classified as Repeated. For example, any
Communication Layer handling messages supplied with a Unique Port



METHODS OF CLASSIFYING MULTICAST COMMUNICATIONS 65

identifier (that is, Unicast-Unique, Multicast-Unique, and Broadcast-
Unique) may be classified in this category if there is more than one
receiving Process on the Host in question;

Unnecessary - a receiving Communication Layer which receives a message
for a Port that it does not support can be classified as Unnecessary. Any
message supplied with a Broadcast Host identifier may be classified in
this category. This category exists because of the nature of the Broadcast
identifier - all Hosts, irrespective of the Processes they support, receive a
copy of a message sent with a Broadcast Host identifier.

Note, this situation can also arise if a Port which is normally available
on a Host is unavailable for some reason. Should this occur, the receiving
Communication Layer can be classified as “unnecessary” since there is
no Port to direct it to;

Required - this category occurs when just one message is received by the
receiving Communication Layer and is required by one or more
Processes. Clearly, in this category, if there is only one possible receiving
Process, all Host-Port identification combinations can be classified in

this category.

However, should the number of receiving Processes be greater than one,
then only Local and Global Port identification ensure that the receiving
Communication Layer receives no more than one copy of the message
(assuming that all Processes access the same Port).

3.3.5 Host-Port Identification Examples

In this Section, a series of examples using the two Host-Port classification
models developed in Section 3.3.3 and 3.3.4 are presented, describing how

multicast communications between Processes on different Hosts could be

realized using existing layered architectures.

3.3.5.1 Cambridge Ring Ports

The Cambridge Ring Packet Protocol [Banerjee1985a, Panzieri1985a]
allows a transmitting Process to identify a Port on the receiving Host (note,

this assumes that a Host is equivalent to a station). The Port is associated with
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a Process. A Port number is not unique to a Host, that is, many different Hosts
on the network can use the same Port Number. However, the Processes
associated with these Ports on the different Hosts need not receive the same

multicast transmission, because of the unicast nature of the Cambridge Ring.

For a communication to take place on the Cambridge Ring using the
Cambridge Ring packet protocol, the Source Host can only supply a unicast
station (Host) address and a Port number. Port numbers can be Unique to a
Host or (in theory) be Shared across all Hosts on the network receiving the

same multicast transmission.

For a multicast communication therefore, when using the Cambridge Ring
Packet Protocol, a total of N transmissions of the same packet will be required
(that is, one for each Process - or simply a series of Unicast-Unique
transmissions). Alternately, each receiving Process could be made to reside on
a separate Host; if each potential receiving Process accessed the same Port
number, the packet protocol could be described as Unicast-Shared. Note that
the same number of transmissions are required on the part of the transmitting

Host, irrespective of whether the Port is Unique or Shared.

3.3.5.2 Ethernet Sockets

The Ethernet is designed for Unicast, Multicast, and Broadcast Host
identification. Several successful Process identification schemes have been
built on top of the Ethernet, such as PUP [Boggs1983a] and UNIX sockets
[Leffler1983a]. A socket Port cannot be shared on a Host, meaning that
Process-to-Process transmissions must use Unique Port identifiers. However,
since a Port can be “well-known” and shared by Processes on different Hosts;

and the Ethernet supports Broadcast Host identification, sockets can be
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described as offering Broadcast-Shared identification, since only one Process

per Host may receive a copy of the message.

Ahamad and Bernstein [Ahamad1985a] have modified the existing UNIX
socket software to allow multiple Processes on the same Host to receive copies
of a multicast message (a Broadcast-Local implementation). However, if the
Port is made available on all machines, this version of sockets can be described

as Broadcast-Global.

Finally, the problems associated with unnecessary reception of messages
can be eliminated in all but a few cases by using specialized Ethernet
hardware which supports Multicast-Host identification. This hardware
[DEUNA1983a] permits an Ethernet station to selectively receive up to ten
different (Multicast) Host identifiers. Although no implementations have been
described in the literature, the DEUNA hardware potentially permits the
design of Multicast-Global identification.

3.3.5 Host-Port Identifiers and Multicast Sets

A common requirement of many of the applications discussed in Chapter
Two was the ability to send a message to one or more Receivers. In all cases,
the Transmitter not only sent the message, but identified (implicitly, if not
explicitly) the intended Receivers. In this Section, one of the problems
associated with multicast sets in terms of Host-Port identifiers, notably how

multicast sets are formed, is examined.

There are two ways in which a Process can become a member of a multicast
set. First, the Process can ask to join an existing multicast set (several
examples of applications in which Processes join multicast sets have already
been discussed). How this facility is offered is an implementation problem - for

example, a multicast set might have a predefined identifier, which the Process
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could simply assume, or a Process could join a multicast set by informing all

possible Source Processes (or a series of name servers) of its existence.

A Process can also be asked to join a multicast set. In this situation it is
assumed that there exists another Process which requires the creation of a

new multicast set or wishes to increase the membership of an existing set.

As shown in this Section, for a multicast transmission to occur, the Source
Process must have access to one or more Destination Host-Port identifiers. For
an optimal multicast transmission, the Destination Process(es) should be
identified using either a Multicast-Global or Broadcast-Global identifier.
Therefore, it is not sufficient for Processes about to join a new multicast set to
return their own unique Host-Port identifiers — as this would probably
increase the number of transmissions required since the various Destination

Processes would be identified using Unique Port identifiers.

Ideally, the Process creating the new multicast set should generate a new,
unique Global Port identifier which could be supplied to the new members of
the multicast set and be used to identify them in subsequent transmissions.
The Global identifier must be unique in order to avoid having messages arrive
at the wrong Destination Processes. The generation of a new Global Port
identifier to uniquely identify the new multicast set may be easier said than
done - for example, it implies that the Port number is not already in use. (The
problems associated with generating unique identifiers for use as multicast

set identifiers will be returned to in Chapters Four and Five.)

However, the Source Process often has less control over Host identifiers
than it does over the Port identifier since, in some distributed systems, Hosts
can only be accessed using unique Host identifiers. At the other extreme,
certain Hosts may support hardware which allows them to recognize a number

of Host identifiers, implying that, for example, the Host identifier could be
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made identical to the Global Port identifier, allowing Multicast-Global

Destination identification.

Whatever method of Host identification is used, it must be conveyed back
to the Source Process to permit the creation of a list of the Host-Port identifiers
making up the new multicast set. This list can be used by the Communication

Layer when messages are to be sent to the members of multicast set.

The following example demonstrates some of the requirements for the
creation of a new multicast set by a Source Process and a series of Destination

Processes. The Source Process algorithm is as follows:

GetANewGloballdentifier;

SendRequestToPotentialNewMembers;

WaitForResponses;

CreateNewMulticastSet;

SendConfirmationMessageToNewMembers;
The Source Process (the creator of the new set) must send a message to those
Processes which may be able to become members of the new multicast group.
(To allow this, it is assumed that a series of Processes exist which can join new
multicast sets when requested.) The Source Process, after transmitting a
message with the associated Global Port identifier requesting Processes to join
a new multicast set, waits for responses from the members of the multicast set
which can join the new multicast set. Once the responses are available, the
Source Process can create a list of the (Destination) Host-Port identifiers. The
size of this list depends upon how Destination Processes are identified. Ideally,
the list contains one entry, a Multicast-Global (or Broadcast-Global)
identifier. However, in the worst case, it contains a series of Unicast-Unique

identifiers, one for each Destination Process. Once the multicast set has been

created the Source Process may then transmit messages to members of the
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new set — the first message of which should be a confirmation of the new

member's membership in the new multicast set.

The following describes a Process which can join a new multicast set:

JoinTheCanBecomeAMemberSet;
repeat

WaitForARequestToJoinANewSet;

SendBestHostAndProcessldentifier;

JoinTheNewMulticastSet;

WaitForConfirmationOfMembership;

if Confirmation < > Yes then

LeaveNewMulticastSet;
until
Confirmation = Yes;
WaitForSubsequentMessages;

The Destination Process (i.e. a Process which can join a new multicast set)
must first join a multicast set which will receive requests to become a member
of a new multicast set. Once joined, the Process waits indefinitely until a
RequestToJoinANewSet message (which includes the new Global Port
identifier) is made. The Destination Process then responds to the Source
Process with an indication that it is willing to join and its optimal Host-Port
identifier (ideally this should be a Broadcast-Global or Multicast-Global
identifier). To allow the Destination Process to determine whether or not it
has been accepted into the new multicast set, it joins the new set and waits for
a Confirmation message. The Confirmation message is expected to arrive
within a certain time period, otherwise the Destination Process assumes that

it was not included in the set and leaves. If the Process is accepted into the set,

it stays as a member of the new multicast set and waits for subsequent

messages.



METHODS OF CLASSIFYING MULTICAST COMMUNICATIONS 71

3.3.6 Summary

In this Section, it was shown that a multicast communication in a

distributed system is affected by the type of:

a) Host identification used by a network when supporting Host to Host
communications, and

b) Port identification used by the Communication Layer when supporting

Process to Process communications.

By combining the different types of identification (i.e. Host and Port), it
was shown which pairs of combinations are the most efficient in terms of

multicast transmission. From the most to least efficient, these are:

a) Multicast-Global or Broadcast-Global: in which the transmitter need only
send one message which is received by the intended Hosts. The receiving
Communication Layer can keep the amount of message handling to a
minimum since the intended Process(es) all share the same Port identifier;

b) Unicast-Global, Unicast-Local, Multicast-Local, or Broadcast-Local: in
which the transmitting Host is required to send many messages, but only
one to each receiving Host. Only one message need be sent to each Host,
since at each Host, should there be multiple Processes, these can all be
accessed using the Local (or Global, in the case of Unicast-Global) Port
identifier. The number of transmissions depends upon the number of Hosts;

¢) Multicast-Shared or Broadcast-Shared: if all Destination Processes are on
separate Hosts, the transmitting Communication Layer need only send one
message. However, in the worst case, when all Destinations reside on the
same Host, the transmitting Communication Layer is forced to send

individual message to each Process;

d) Unicast-Unique, Multicast-Unique, Broadcast-Unique, or Unicast-Shared:
the worst case is the transmission of a message to receiving Process(es)
which must be accessed using a Unique Port identifier. In these situations,
each message must be sent repeatedly with a different Port identifier, even
if the receiving Process(es) happen to reside on the same Host. The number
of transmissions depends upon the number of Processes and the number of

identifiers that can be associated with a message.
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In addition, the amount of message handling required by a receiving
Communication Layer can be discussed using the Host-Port paradigm since
message handling is also affected by the type of Port identification, and in
some cases, the type of Host identification used. For example, a receiving
Communication Layer will perform the minimum amount of message
handling when it need only receive one message to ensure that all the

intended Processes receive a copy.

Finally, by using the Host-Port paradigm, it was possible to describe some

of the requirements of multicast set management. Specifically, the ability to:

- generate a new Global Process identifier, which can be used to identify the
members of the new multicast set;

- create a new multicast set, based upon the Host and Process identifiers
supplied by the members of the new set;

- to supply the best Host-Port identifier to the Process creating the new
multicast set to ensure that the most efficient means of multicast

communication are used.
From this discussion of multicast identifiers, one can conclude that two

ways of reducing the cost of a multicast communication are:

a) maximize the number of receivers represented by a single identifier;

b) minimize the number of messages supplied to the Communication Layer by
the Transmitter.

3.4 Concluding Remarks

In this Chapter, by using some of the basic divisions of communication,

notably transmission and reception, a set of multicast communication

taxonomies were developed.
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Two multicast transmission taxonomies were presented. The first, based
upon the Transmitter-Receiver model, was used to describe the different types
of identifier handling required in a multicast transmission. The second
allowed the enumeration of different types of identifiers for multicast

communications in (layered) distributed systems using Host-Port identifiers.

A multicast reception taxonomy was also presented. The reception
taxonomy outlined the different types of message handling possible and its

effects on a receiving Process.

In all of the taxonomies presented, it was shown that the type of identifier
used could greatly affect the performance of the communication. In
subsequent Chapters, these classification schemes and the different types of
identifier will be used to develop and implement a set of multicast

communication primitives.
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Chapter 4
Multicast Primitives

For a distributed system to support multicast communications, facilities
should exist at the various layers (such as the Process Layer or the Network
Layer) which permit multicast communications. For example, if the
applications presented in Chapter Two were to be implemented on a
distributed system supporting multicast communications, one would expect to
find a set of common facilities which would permit a standard form of

multicast communication between, say, Processes.

In this Chapter, a series of nine such facilities or primitives are presented
and it is shown how they can support Process-to-Process multicast
communications. These primitives are intended, for the most part, to be
unrelated to any specific network or distributed system. Chapters Five and Six
will include examples of how these primitives could be implemented on a

variety of networks and distributed systems.

This Chapter is organized as follows. In Section Two, the proposed
multicast communication primitives are discussed in terms of interprocess
communications. Several examples of how the primitives can be used are
presented in Section Three. In Section Four the proposed primitives are
compared with other existing multicast communication primitive

implementations. The Chapter is concluded with a review of the proposed

primitives.
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4.1 Multicast Primitives

In Chapters Two and Three, various requirements were presented which
described some of the features that should be supported in a distributed
system if it was to permit multicast communications. For example, in Chapter
Two it was shown that facilities should exist to allow a Process to send a single
message to the members of a multicast set, while in Chapter Three the need to
support different types of filtering was demonstrated. In this Section, these
and other features which motivated the choice of a set of general purpose

interprocess multicast communication primitives are expanded upon.

The examination of the primitives is divided into two broad categories:

a) multicast set management primitives, and

b) multicast communication primitives.

4.1.1 Multicast Set Management Primitives

In this Section, a set of primitives for supporting the management of
multicast sets are proposed. Specifically, this Section examines how a Process
can join or leave existing multicast sets as well as how new multicast sets can
be formed. However, prior to examining the primitives, the different types of

identifier to be supported are discussed.

4.1.1.1 Identifiers

A requirement of many of the applications discussed in Chapter Two was
the ability of a Transmitter to transmit a message to one or more Receivers. In
all cases, the Transmitter not only sent the message, but also identified the
intended Receivers either explicitly or implicitly. In addition, from the

examination of identifiers in Chapter Three, itis proposed that the multicast
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communication primitives should support the following types of identifier:

a)an identifier which represents a individual Transmitter or Receiver. For
example, in a distributed system, a Process could be identified using a
Unique identifier such as a Unicast-Unique Host-Port identifier. This
identifier type allows a Process to transmit a message to a specific Process
or a receiving Process to identify the Process transmitting a message. This
type of identifier will be referred to as a unicast identifier;

b) an identifier which identifies all the members of a multicast set. This single
(Group) identifier or multicast set identifier is equivalent to an alias or
shorthand method of identifying the members of the set. The multicast set
identifier will be used in two ways. First, a transmitting Process can use it
to send a message to a set of Processes belonging to a multicast set, and
second, a Process can use it to indicate the multicast set to which it belongs.

The exact format of the proposed identifiers is an implementation detail which
will be returned to in Chapter Five. However, for the purposes of this Chapter,

it will be assumed that both unicast identifiers and multicast set identifiers

are numeric.
4.1.1.2 Accessing Existing Multicast Sets

Clearly, before a multicast communication can take place, both the
Transmitter and the Receiver must obtain a common multicast set identifier.
In this Section, three primitives are presented which are necessary to allow
access to existing multicast sets (an “existing” multicast set is assumed to be a

multicast set which already has a multicast set identifier associated with it).
4.1.1.2.1 Obtaining an Existing Multicast Set Identifier

In many distributed systems, application services are often referred to by
textual names, primarily for the benefit of (human) users of the system
[Shoch1978a]. Although the names used may vary, they often refer to the

same application or service (for example, a time-server may be called “Clock”
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by one user but “TimeServer” by another). To allow users to identify
applications by a textual name rather than by multicast set identifier, the

getid primitive is proposed:
ReturnCode : = getid (Name, var Identifier)

where;

Name: is the character string which identifies the multicast set;

Identifier: is the identifier associated with the supplied name and is returned
by the getid primitive. The identifier can be either a unicast identifier or

a multicast set identifier;

ReturnCode: an indication as to the success or failure of the getid primitive.

A “null” Name (i.e. a string of zero length) causes getid to return the unicast
identifier of the Process which invoked the primitive. This is intended to allow

a Process to receive messages destined to itself.

Should the supplied name not exist, getid is to return an error code of

“NameNotFound” otherwise it returns a code of “Success”.

Note that getid is not restricted to multicast set identifiers. For example,
the Name could be associated with a unicast identifier, identifying a single

Process. The association of Name and Identifier is discussed further in Section

4.1.1.2.3.

For the remainder of this Chapter, it is assumed that a name server exists

which maintains the list of Names and related Identifiers.

4.1.1.2.2 Joining a Multicast Set

Ideally, once a Process has obtained a multicast set identifier, using, for
example, the getid primitive, it should be able to either transmit messages to

the multicast set or receive messages destined to a particular multicast set.
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However, there are situations where a Process must announce that it wishes
to become a member of a multicast set before it can receive messages intended

for the multicast set in question.

For example, if the Process about to become a member of a multicast set
can only be identified with a unicast identifier, all potential transmitting
Processes must be informed of the identifier associated with the new member
of the multicast set. The same problem can exist on a network which supports
an efficient form of multicast transmission (such as One-Group), but uses a
distribution facility to supply messages to the members of the multicast set
within the Host. In both of these situations, the receiving Process should have
a mechanism whereby it can inform the facilities supporting multicast
communications that it expects to receive messages destined to a particular

multicast set.

To overcome this problem, a join primitive is proposed which allows a
Process to join a specific multicast set. How the join primitive is implemented
is clearly dependent upon the lower layers supporting multicast

communications; however, at the Process Layer, the primitive is simply:

ReturnCode : = join (Identifier)

where:
Identifier: an identifier (assumed to be a multicast set identifier), indicating
which multicast set the Process wishes to join;

ReturnCode: a value indicating the success or failure of the join primitive (see
below).

If the supplied Identifier is not a multicast set identifier or, for some reason,

the multicast set could not be joined, the join primitive returns a ReturnCode

of *CannotJoin”, otherwise “Success” is returned.
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There is no limit to the number of multicast sets that can be joined by a
Process. Note however, messages are only made available when the receive

primitive isinvoked (see Section 4.1.2.2).
4.1.1.2.3 Leaving a Multicast Set

Once a Process has performed whatever tasks are required of it and there is
no need for it to remain a member of a multicast set, it is assumed that the
Process can leave the multicast set. As in the case of the join primitive, a leave

primitive is proposed to assist in the maintenance of the membership of the

multicast set:

ReturnCode : = leave (Identifier)

where:

Identifier: an identifier (assumed to be a multicast set identifier) indicating
the multicast set which is to be left;

ReturnCode: a value indicating the success or failure of the leave primitive

(see below).

When a Process has left a multicast set, subsequent messages will not be made

available (i.e. the receive primitive will fail if called with this multicast set

identifier).

A ReturnCode of “NothingToLeave” is returned if the identifier is not a
multicast set identifier or the multicast set has not been previously joined,

otherwise a ReturnCode of “Success” is returned.
4.1.1.3 Creating New Multicast Sets

The primitives described in the previous Sections all deal with existing
multicast sets. Clearly, there are situations where new multicast sets are

required - for example, the addition of a new service, unrelated to any already
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existing in the distributed system. In these situations, not only are new

members required, but also new, unique multicast set identifiers.

In this Section, a discussion of several aspects of multicast set membership,
notably the creation of new multicast set identifiers, the identification of
multicast set members and the association of names with multicast set

identifiers is presented.

4.1.1.3.1 Generating New Multicast Set Identifiers

As it stands, no primitive has yet been proposed which allows the
generation of new multicast set identifiers - the getid primitive simply returns
an existing unicast identifier (identifying a single Process) or multicast set

identifier (identifying an existing multicast set).

However, when a new multicast set is formed, it requires a unique
multicast set identifier if confusion over multicast set membership is to be

avoided. A single primitive is available for this operation:

newid (var Identifier)

where:

Identifier: is a new unique identifier returned by the newid primitive which

can be used as a multicast set identifier.

The identifier returned by the newid primitive must be unique within the
context of the network in which it is used. Various methods exist for the
creation of unique identifiers, for example, the concatenation of a Process's

unicast identifier with the current time-of-day.
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4.1.1.3.2 The Identification of Multicast Set Members

Thus far it has been assumed that the various members of a multicast set
are identified with a single multicast set identifier. This assumption has been
made to ensure that in a multicast transmission a Process sends no more than
one message. However, as shown in the discussion of Host-Port identifiers in
Chapter Three, not all distributed systems support the concept of a single
identifier identifying a set of receiving Processes. For example, in many
distributed systems, the single multicast set identifier supplied by the
transmitting Process many have to be expanded into several Host-Port
identifiers by the underlying Communication Layer. This mapping (from
multicast set identifier to a series of Host-Port identifiers) should be as
efficient as possible, generating the minimum number of Host-Port identifiers

in an attempt at reducing the number of messages being transmitted.

By way of an example, consider a distributed system which supports both
Unicast-Host and Broadcast-Host identification but allows at most one
Process to be associated with a Port. A Process attempting to set up a new
multicast set may request the potential members to associate themselves with
the Host-Port pair <Broadcast, 2000> - thereafter all messages would be
broadcast to Port 2000. However, should Port 2000 already be in use or two
Processes on the same Host attempt to join the multicast set, but only one
actually succeeds in accessing Port 2000, the Process unable to access the
specific Port should have a mechanism to inform the Source that it could not
be associated with Port 2000, but could access (say) Port 2001. The Source
Process, upon receiving the responses could then create a membership list
consisting of the identifiers <Broadcast, 2000> and <Unicast, 2001>,

causing the send primitive to send two messages with each transmission, one
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to the broadcast address (<Broadcast, 2000>) and the other to the unique
address (<Unicast, 2001 >).

Therefore, to support the minimal identification of the members of a
multicast set, a single primitive, bestid is proposed which, given a multicast
set identifier, returns either a multicast set identifier or a unicast identifier,

which “best” identifies the Process as a member of the multicast set:

bestid (Identifier, var Bestldentifier)

where:

Identifier: should be a multicast set identifier which has been previously
generated by the newid primitive;

BestIdentifier: is the “best” identifier which identifies the Process and is
returned by the bestid primitive.

The value of “Bestldentifier” is clearly dependent upon the underlying Host
and Process identification schemes supported by the distributed system.
Ideally, the value of the multicast set identifier supplied by bestid should be
returned. For example, in a distributed system using Host-Port identifiers to
identify receiving Processes, the following would be the preferred order of

Bestldentifier to be returned:

a) Multicast-Global or Broadcast-Global, potentially allowing the minimum
number of transmissions if all possible members return the same Host-Port

pair;

b) A Shared Port identifier, which can result in one transmission if all
Processes are on different Hosts and Multicast or Broadcast Host
identifiers are allowed;

¢) A Local Port identifier, which can reduce the number of transmissions to a

single Host;
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d) A Unique Port identifier, which requires the layer supporting multicast
transmission to transmit individual messages to all possible receiving

Processes.

The implementation of the bestid primitive will be discussed further in

Chapter Five.
4.1.1.3.3 Creating a Multicast Set

Once the Source Process has the list of “best” identifiers (supplied by those
Destination Processes willing to join the new multicast set), it should be able
to associate the “best” identifiers with the multicast set identifier. This is
intended to permit the Process to refer to the multicast set identifier, while the
layers supporting the multicast transmission would have the list of “actual”

identifiers required for the transmission.

To allow this association between the multicast set identifier and the list of
“best” identifiers, the following primitive, create, is proposed. Create binds a
textual name (allowing, for example, the use of the getid primitive to access a

particular multicast set) and the multicast set identifier with the list of “best”

identifiers:

ReturnCode : = create (Name, Identifier, BestList)

where:

Name: is a character string, allowing the identification of the multicast set by
textual name, rather than by a numeric identifier;

Identifier: a multicast set identifier;

BestList: a list of (best) identifiers, supplied by the various members of the
multicast set;

ReturnCode: an indication as to the success or failure of the create primitive

(see below).
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It is assumed that the create primitive searches BestList for duplicate entries
and removes them, ensuring the minimum number of identifiers for any

transmission.

The ReturnCode simply indicates whether the creation took place
(*Success”) or whether it failed (“UnableToCreate”). The create primitive
could fail if, for example, a name server was being used and insufficient space

existed for the storage of the information.

Note that create need not be restricted to multicast sets. For example,
create could be supplied with a name to be associated with a single receiving

Process, a dummy multicast set identifier and the Process's unicast identifier.

4.1.1.3.4 Deleting a Multicast Set

When a Process no longer requires a multicast set, it should be able to
remove the information relating to that multicast set. For example, to free

unwanted storage on a name server. Therefore, to complement the create

primitive, the remove primitive is proposed:

ReturnCode : = remove (Name)

where:

Name: a character string, indicating the name of the multicast set which is to

be removed;

ReturnCode: a value indicating the success or failure of the remove primitive

(see below).

The ReturnCode indicates “Success” if the Name and its associated identifiers

were removed. A ReturnCode of “CannotRemove” is returned if, for example,

the Name did not exist.
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4.1.2 Multicast Communication Primitives

In the second Chapter, two fundamental communication operations were

demonstrated in the discussion of multicast applications:

a) the ability to transmit a message to one or more Receivers, and

b) the ability to receive messages sent by one or more Transmitters.

The next two subsections describe the primitives intended for multicast

transmission and multicast reception.

4.1.2.1 Transmission

The transmission primitive should allow the transmitting Process to
transmit a message to either a specific receiving Process using a unicast
identifier, or to a group of receiving Processes using a multicast set identifier.
In order to avoid having two transmission primitives, one for sending a
message to a specific Process (i.e. a unicast transmission) and the other for
transmissions to Processes belonging to a multicast set (i.e. a multicast

transmission), a single primitive, the send primitive, is proposed:
ReturnCode : = send (Identifier, Message, Size)

where:

Identifier: an identifier identifying the intended Receiver(s) of the message.
Since the send primitive is to support both unicast and multicast
transmission, the identifier must be either a unicast identifier or a

multicast set identifier;

Message: the message to be transmitted to the Receiver(s) indicated by the

Identifier;
Size: the number of bytes in the message;

ReturnCode: an indication as to the success or failure of the execution of the

send primitive (see below).
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The send primitive is to offer a best effort datagram transmission facility
only. Since the number of destinations may be unknown, the send primitive
can only indicate whether the message was sent (with a ReturnCode of
“Success”), not whether it was received correctly. However, should the
identifier be unrecognized by the send primitive or some other failures occur
when attempting to perform the transmission, the transmission is aborted and
the transmitting Process informed of the failure with a ReturnCode of

“NotSent”.

Finally, it is assumed that the underlying layers supporting the send
primitive are responsible for both transmitting the message as well as
including an identifier which identifies the intended receiving Process(es) and
the unicast identifier of the transmitting Process. This second identifier is
necessary to allow receiving Processes to identify the transmitter of the

message (should responses be required).

4.1.2.2 Reception

The requirements for reception are somewhat more complex than simply
the ability to receive messages destined for a specific receiving Process (using
a unicast identifier) or group of Processes (using a multicast set identifier).
For example, in the Time-Server applications described in Chapter Two, only
certain time values may have been accurate enough for the Receiver, causing
those values deemed inaccurate to be discarded. It was therefore decided that
the reception facility should have the ability to filter the incoming messages -
keeping only those that met certain predefined conditions. In addition, since a
single reception could entail receiving many messages, as determined by the
filter, it was proposed that each received message and the unicast identifier

associated with the transmitter of the message should be stored in a linked

data structure.
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As with the send primitive, in order to avoid having several different
primitives all essentially performing the same task, a single primitive, the

receive primitive, is proposed:
ReturnCode : = receive (Identifier, var MessageList, Filter, TimeLimit)

where:

Identifier: the means by which the receiving Process is identified. Messages
received with an identifier matching “Identifier” are to be made
available to the Process executing the receive primitive. The identifier
supplied by the receiving Process can be either a multicast set identifier,
indicating the multicast set to which the Process belongs, or a unicast
identifier, indicating that the Process is only expecting messages for
itself;

MessageList: a list, returned by the receive primitive, consisting of any
messages which have been received. Exactly which messages are to be
kept and the order of storage of the messages in the list is determined by
the Filter (see below). If no Filter is supplied, MessageList is to point to a
data structure containing the first message received and the unicast
identifier of the Transmitter of the message. If a Filter is supplied, the
data structure pointed to by MessageList and the number and order of

the messages is determined by the Filter;

Filter: a function, supplied by the Receiver, which is used to accept or reject
messages based upon some criteria. A null Filter value indicates that no
filtering is required and that the first message to be received should be
returned in the MessageList. (See below for a further discussion of the

Filter);

TimeLimit: the maximum amount of time that the Receiver is willing to wait
for a message to be received. When the TimeLimit expires, the Filter
function is called (if it has been supplied) with an indication that a time
out has occurred. This allows the Filter function to determine the value
of the ReturnCode. Should the TimeLimit expire without a supplied
Filter function (and therefore no messages were received), receive
returns an error code of “Timeout” to the calling Process.
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An indefinite wait can be caused using a TimeLimit of “-1”, while a
simple poll, to determine if any messages are available, can be achieved
with a TimeLimit of zero;

ReturnCode: an indication from either the receive primitive itself or the
supplied Filter function as to the success or failure of the receive

operation (see below).

Control remains with the receive primitive until one of the following events

occur (at which point control would be returned to the receiving Process):

a) a message is received and the receiving Process has not supplied a Filter
function. This message is made available to the receiving Process through

MessageList;

b) a message is received and the Filter detects that a predefined condition has
been met (for example, a certain number of messages might have been
received or accepted). The number of messages, if any, and their order in
the list of messages are determined by the Filter;

¢) the TimeLimit has been reached (irrespective of the number of messages
accepted). Note that if a Filter is not supplied and an infinite TimeLimit is
indicated, control will only return to the receiving Process when a message

is received.

The receive primitive supplies the Filter function with four parameters: the
Transmitter's unicast identifier, the received message, the MessageList
pointer, and a time out indicator. Which messages are accepted and placed in
the message list depends upon the Filter; however, once the Filter has finished

processing the message, it is expected to observe the following rules regarding

returning control to the receive primitive:

a)a positive return value indicates to the receive primitive that the message
was accepted;
b) a negative return value indicates to the receive primitive that the message

was not accepted;
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c)a return value with an absolute value of “1” indicates that more messages
are expected and control is to remain with the receive primitive and is not

to be returned to the receiving Process;

d) a return value with an absolute value other than “1” indicates that no more
messages are expected and control is to be returned to the receiving

Process.

When a Filter signals that no more messages are expected, the receive

primitive returns the absolute value of the Filter's return value to the

receiving Process in the ReturnCode.

In addition to the possible ReturnCode values supplied by the Filter, the
receive primitive has three predefined ReturnCodes:
-1:indicating that the receive primitive has detected an error. This
ReturnCode can occur whether or not a Filter is supplied;
0: a timeout has occurred (without a Filter being supplied);

1: a message has been received (without a Filter being supplied).
4.2 Examples

A transmission (either unicast or multicast) could be implemented using
two of the primitives, assuming that the transmitting Process has the name

associated with the intended Receiver(s):

if getid (“Examplel”, Examplelld) then
send (Examplelld, Message, sizeof(Message))
else

error(“Identifier Examplel' isunknown”);
In this example, “N” bytes of “Message” are sent to the receiving Process(es)
identified by the identifier “Example1ld”. Had the identifier “Examplelld”
been previously available, there would have been no need to invoke getid. The

number of Processes actually receiving a copy of the message depends, in part,
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upon the type of the identifier (either unicast or multicast set) and whether

the message reaches the intended Process(es).

The receive primitive can be used in several different ways to allow a
Process to receive messages. In the following example, the receiving Process is
not a member of a multicast set and is to receive messages associated with its
own unicast identifier. The first message to be received is returned to the

Process, since the timeout value indicates an indefinite wait and no filter is

supplied:

getid (*”, Myldentifier);

MessageList : = NIL;

receive (Myldentifier, MessageList, NoFilter, Indefinite);
As in the previous example, getid need only be called once, to establish which
identifier is to be used by receive. Note that this example is somewhat spurious
since the identifier supplied by getid may not be known to any transmitting

Processes. In an actual application, the Process, prior to receiving, would

probably distribute its identifier to potential Transmitters (using, for

example, the send primitive).

In the following example, a filter function is required to inspect each
message that is received for the string “Time-Please”. When this string is
found, control is returned to the time-server (see below) by returning the value

*.2” to the receive primitive. Invalid messages are to be discarded, indicated to
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the receive primitive by a return value of “-1”;

function Filter(Unicastld, Message, var Sourceld, TimeOut) : integer;

begin
if Message = “Time-Please” then
begin
new(Sourceld);
Sourceld . Requester : = Unicastld;
Filter:= -2 { Discard Message and return }
end
else
Filter:= -1 { Discard Message and continue receiving }
end;

Note that the message itself is not kept, instead, the transmitter's unicast

identifier (UnicastlId) is returned to the time-server in the variable Sourceld.

The time-server consists of a loop in which it waits (indefinitely) for a valid
request to have been received; valid requests cause the filter function to return
a value of “-2”, to which the time-server responds to the requester of the time
with the current time value. Should the receive primitive fail for some reason,

an error message is generated and the time-server leaves the Time Service

multicast set:

getid (“Time-Service”, TimeServiceGroup);
Join (TimeServiceGroup);
while receive (TimeServiceGroup, Sourceld, Filter, Indefinite) = -2do
begin
{ Obtain time from local clock }
send (Sourceld . Requester, CurrentTime, sizeof(CurrentTime));
dispose(Sourceld)
end;
error(“Time-Service stopped”);
leave (TimeServiceGroup);

The Process requesting the time from the time servers would also require
the multicast set identifier of the time servers. Note however, that the Process

would not be required to join the time-server multicast set since it is only
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requesting the time. In the following example, the Process requesting the time

accepts the first time value received within five seconds and ignores the rest:

getid (“Time-Service”, TimeServers);
getid (7, Self);
Message : = “Time-Please”;
send (TimeServers, Message, sizeof( Message));
if receive (Self, SuppliedTime, NoFilter, FiveSeconds) = Timeout then
write(“No response from Time Servers”)
else
write(“Time is: ”, SuppliedTime);
In the next example, the multicast communication primitives are used to
develop an application which is to create a new multicast set consisting of one

or more members. The following assumptions will be made regarding this

application:

a) there is a Process requiring the generation of a new multicast set, and

b) there is an existing multicast set consisting of one or more Processes which
allows its members to join new multicast sets.

The Process requiring the new multicast set must first generate a unique
multicast set identifier by which the new multicast set will be identified, and
then transmit this identifier to the potential new members with a request that
they join this new multicast set. The receive primitive is called with a filter
which is to create a list of new members pointed to by NewMemberList - if no
members are found, NewMemberList will remain NIL after the call to receive.

Only after the list of identifiers associated with new members has been
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created can the Process start to transmit messages to the new multicast set:

getid (“PotentialMembersSet”, Potentialld);
getid (*”, Myld);
newid (NewMulticastld);

Request . Type := CanYoudJoin;
Request . Newld : = NewMulticastld;
send (Potentialld, Request, sizeof(Request));

NewMemberList : = NIL;
receive (Myld, NewMemberList, Filter, FiveSeconds);

if NewMemberList = NIL then
error(“*No members for new group”)
else
begin
create (“New-Set”, NewMulticastld, NewMemberList);
send (NewMulticastld, Confirmation, sizeof{ Confirmation));
{ Send and Receive subsequent Messages }
end;

Responses received within the first five seconds are included in the list of new

members.
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The filter required by the Process is to create a list of the “best” identifiers

supplied by the responding new members:

function Filter (Xmitld; Message; NewMemberList; TimeOut) : integer;

begin
if NOT TimeOut then
begin
if Message . Type = YesICan then
begin
new (NewMember);
NewMember . Id : = Message . Bestld;
NewMember . Next : = NewMemberList;
NewMemberList : = NewMember;
Filter:=-1;  {Dispose of message but keep receiving }
end
else
Filter:= -1; { Wrong message type —ignore }
end
else
Filter := 2; { Timeout occurred - all done }
end;

As each new member's best identifier is received, indicated by the message

type of “YesICan”, it is included in a list of identifiers, the first element of

which is pointed to by NewMemberList.

Before a Process can receive requests to join a new multicast set, it must
first join the “PotentialMembers” multicast set. Once joined, it can wait
indefinitely for requests of type “CanYoudJoin” (handled in this example by a
filter). The Process must now respond to the requests with a “YesICan” type
message and its “best” identifier. After joining the new multicast set, the
Process waits ten seconds for a confirmation - if one is not received, it leaves

the new multicast set, otherwise it waits for subsequent messages sent to the
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(new) multicast set:

getid (“PotentialMembers”, PotentialMember);
Join (PotentialMember);
if receive (PotentialMember, NewList, Filter, -1) = 2 then
begin
NewMulticastld : = NewList . NewlId;
Response . Type : = YesICan;
bestid (NewList . Newld, Response . Bestld);
send (NewList . Requester, Response, sizeof(Response));

Join (NewMulticastld);
if receive (NewMulticastld, Reply, NULL, TenSeconds) < > -1 then
begin

if Reply . Answer = Yes then

begin

leave (PotentialMember);
{ Wait for subsequent messages }
end;
end;
leave (NewMulticastld);
end;
leave (PotentialMember);

It is worth noting that if this algorithm were to be used in an actual
distributed system, the PotentialMember multicast set would rapidly

disappear after the first few requests to join new multicast sets. Therefore, in

trial implementations, the above algorithm was modified so that it spawned
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another Process upon receipt of a “CanYouJoin” message:

getid (“PotentialMembers”, PotentialMember);
Join (PotentialMember);
repeat
rc:= receive (PotentialMember, NewList, Filter, -1);
ifrc = 2then
begin
{ Spawn new Process }
{ Perform “joining new multicast set ” (as described above) }
end
until
re <> 2;
error(*Potential Member error”);
leave (PotentialMembers);
This ensures that each Host which supports the PotentialMembers multicast

set can continuously set up new multicast sets.

4.3 Related Work

Although in previous Chapters other multicast communication
implementations have been described, only one, the V-System developed at
Stanford, has been published with a detailed description of the available
primitives. Therefore in this Section, the primitives associated with the V-
System are compared with the multicast communication primitives that have

been proposed in this Chapter.

The V-System supports multicast communications using a Broadcast-
Global identifier scheme (i.e. all Processes which are members of a multicast
set share a Global identifier and all Hosts on the Ethernet receive a copy of
every message sent, irrespective of whether they support members of the set or

not).

The V-System implements a Client-Server model of communications. That

is, a Client Process is initially a Transmitter, transmitting a multicast
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message to the Server Process(es), acting as Receivers. Once the message has
been processed, the Servers become transmitters, while the Client Process

becomes a Receiver.

The V-System supports a total of ten primitives [Cheriton1985a]:

CreateGroup: creates a multicast set in which the Process creating the
multicast set becomes the first member;

JoinGroup: allows a Server to join an existing multicast set;

LeaveGroup: allows a Server to leave a multicast set of which it is currently a

member;
QueryGroup: allows a Process to determine the membership of a multicast set;
Send: used by the Client to send a Request to a multicast set;
Reply: used by a Server to reply to a Client;

ReceiveSpecific: allows a Process to receive Requests destined to a specific

address;

GetReply: used by a Client to obtain a reply from the queue of replies

maintained by the kernel;

DestroyProcess: allows a member of a multicast set to destroy any other
member of the multicast set (there are certain access privileges required

to perform this primitive);
ForceException: allows a Client to send an exception condition (i.e. a break
signal) to the members of the multicast set.
There now follows a brief comparison of the V-System's multicast

communication primitives with those proposed in this Chapter.

4.3.1 Send and Reply

Unlike the V-System, the proposed primitives make no distinction between

a “Client send” and a “Server reply”, treating both as transmissions requiring

the proposed send primitive.
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There is at least one argument supporting the inclusion of the reply
primitive - it allows the kernel to recycle much of the information and storage
associated with the original message, thereby reducing communication times.
For example, the Server does not need to supply the address of the Client since
the kernel has access to it, nor does the kernel have to reformat an Ethernet

packet, since the original packet is still available.
4.3.2 ReceiveSpecific and GetReply

The V-System also makes a distinction between a “Client ReceiveSpecific”
and a “Server GetReply”, which are simply variations of the proposed receive

primitive.

For example, if a specific message is required, the receive primitive allows
the Process to supply a filter which can discard all those messages not wanted
(i.e. a ReceiveSpecific). Similarly, the next available message can be obtained

by invoking the receive primitive without a filter, resulting in the next

available message to be returned (i.e. a GetReply).
4.3.3 ForceException and DestroyProcess

The proposed primitives do not directly support facilities corresponding to
either of the V-System's ForceException or DestroyProcess primitives. Instead,
it was assumed that the Processes using the proposed primitives would
implement a remote procedure call facility (using the send primitive) which

would use existing system calls to support features such as destroying

Processes or forcing exceptions.

4.3.4 JoinGroup and LeaveGroup

The JoinGroup primitive and the LeaveGroup primitive are essentially

identical to the proposed join and leave primitives, respectively.
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4.3.5 QueryGroup

The proposed primitives do not directly support the V-System'’s
QueryGroup primitive. Instead, a Source Process is expected to use the send
primitive to transmit an inquiry message, which (assuming the protocol
existed) would cause the various Destinations to respond with their unicast
identifiers. The Source could either filter the replies to build up a list of

unicast identifiers or it could receive each identifier individually and store it

in a list.

4.3.6 CreateGroup

Multicast set creation differs quite widely between the proposed primitives
and the V-System. The V-System's CreateGroup primitive involves the

following four steps:

1.generate a random number and use this as the Group Number (i.e. a
multicast set identifier);

2. send this Group Number to the network;

3.if replies are received (within an allotted period of time), the Group Number
generated was not unique, therefore repeat from step 1;

4.the Group Number is assumed to be unique, and the initiator of the
CreateGroup primitive now joins the new group.

This approach differs from proposed primitives in two respects:

a) the Group Number is generated randomly and, to ensure its uniqueness, is
transmitted - allowing the CreateGroup primitive to determine just how

unique the Group Number is, and

b) the creator of the group becomes its first member.

CreateGroup can be emulated, more rapidly, using the newid and join
primitives, This approach is more attractive in that it involves no network

traffic when generating the new multicast identifier. The proposed primitives



MULTICAST PRIMITIVES 100

also avoid the possibility of having duplicate multicast set identifiers (which
are possible in the V-System if Processes which are members of an existing
multicast set (i.e. with the same Group Number) do not respond within the
allotted period because of problems such as network traffic or machine crashes

[Zwaenepoel1985a)).
4.3.7 Summary

The proposed primitives differ from those supported by the V-System in

several ways:

a) the filtering capabilities supported by the proposed primitives considerably
reduce the amount of unnecessary message handling by a receiving
Process;

b) the generation of unique identifiers for multicast set identification (using
the newid primitive) ensures that members of the multicast set are
uniquely identified. This approach seems considerably more flexible than,
for example, the method adopted by the V-System in which the Process
“randomly” generates multicast set identifiers until a unique one is

produced;

c) the proposed primitives support a simple Transmitter-Receiver model
rather than, for example, a Client-Server model such as the one used by the
V-System. This potentially allows more design flexibility since, as shown
in Chapters Two and Three, not all applications are easily described using
the Client-Server model and models such as the Client-Server can be built

out of the Transmitter-Receiver model.
4.4 Concluding Remarks

In this Chapter, a set of nine multicast communication primitives have
been proposed, the design of which was influenced by the various taxonomies
introduced in Chapter Three. In addition to proposing the primitives, it was

also shown how the primitives could be used by describing some of the

applications presented in Chapter Two.
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When comparing the proposed primitives with those of the V-System, it is
apparent that a great deal of functional commonalty exists (such as
transmitting to a set of receivers using a single primitive and the ability to
join and leave a multicast set). However, the proposed primitives seem more
flexible than those used in the V-System for several reasons:

a) by using the Client-Server model, the V-System does not directly support
multicast reception - rather it supports a form of filtered unicast reception;

b) by recognizing that there are different types of identifier possible, the
proposed primitives are not necessarily tied to one type of network.

The next two Chapters will demonstrate how the proposed primitives can

be implemented on a variety of intranetworks and internetworks.
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Chapter 5

Intranetwork
Multicast Communications

With the exception of the bestid primitive, the primitives developed in
Chapter Four were discussed in terms of Processes rather than of specific
distributed systems or networks. However, since one of aims of this study of
multicast communications is to demonstrate how the primitives could be
implemented on a variety of networks and distributed systems, the proposed

primitives must be discussed in a wider context.

The purpose of this Chapter is twofold. First, to discuss how different
intranetwork architectures affect the implementation of the primitives and
second, to compare the transmission and reception overheads of the primitives

implemented on these architectures.

By considering an intranetwork as simply a layer, the number of different
intranetworks that need examination is reduced to four, since, as the
multicast transmission taxonomy demonstrated, there are only four different
types of communication possible within a layer (One-Unique, One-Group,
Many-Unique, and Many-Group). Therefore, to illustrate the problems

associated with implementing the primitives, only four different intranetwork

architectures (one from each category) are required.

This Chapter is organized as follows. In the next Section, the facilities
available within the Computing Laboratory for the implementation of the

multicast communication primitives are presented. Since the available
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facilities did not support all four possible intranetwork architectures, it was
necessary to develop (layered) software to emulate some of the different
categories. These different intranetwork communication architectures are
described in Section Three. In Section Four, the problems associated with
implementing the primitives on each of the different intranetwork
architectures are then discussed. In the fifth Section, the performance of the
send and receive primitives in the different implementations are compared.
The Chapter is concluded with a series of observations and comments

regarding the performance results.

5.1 Facilities

In this Section, the hardware and software facilities available in the
Computing Laboratory for the implementation and testing of the multicast

communication primitives are described.

5.1.1 Hardware

Six hosts were available for the implementation and testing of the
multicast communication primitives. These were (ranging in speed, from
fastest to slowest [Parrington1986a]): a SUN-3, an Orion, two VAX-750's, and
two Whitechapels. A 10Mb Ethernet interconnected all the machines. The
Ethernet interface hardware on each of the Hosts supported a unicast (Host)

address and the Ethernet broadcast address (these two addresses being

“predefined” by Xerox [DIX1980al]).

5.1.2 Software

All six Hosts used in these experiments supported UNIX (one VAX-750 ran
8th Edition UNIX, while the remaining Hosts ran UNIX Version 4.2). Both



INTRANETWORK MULTICAST COMMUNICATIONS 104

versions of UNIX provided sockets, a mechanism which permits interprocess

communications [Leffler1983al.

Briefly, a socket is a Host-Port identifier bound to a Process. It is a general
purpose communication mechanism usually associated with either of the
following protocols:

a) UDP, or User Datagram Protocol, which does not guarantee the arrival of
the message to the intended receiving Process;

b) TCP, or Transmission Control Protocol, which ensures that messages arrive
at the receiving Process in the order they are sent without loss or
duplication.

Normally only one Process can access a socket. The one exception to this rule
is that any Child Process spawned by a Parent Process can share access to the

Parent's socket.

In an interprocess communication (or IPC), the transmitting Process
supplies its Socket Layer with a message and the Host-Port identifier to
which the message is addressed. The Host identifier is used by the Socket
Layer in determining the routing of the message; this usually involves
mapping the Host identifier (or Internet Address) into the physical
Destination (Host) address supported by the underlying network. The Host-
Port identifier and the message are then transmitted using whatever packet
structure and protocol are required by the underlying network to the Host
indicated by the Destination address. For example, a socket transmission on
the Ethernet involves building an Ethernet packet consisting of the Source
and Destination Host-Port identifiers and the message. The packet is then
transmitted with the Destination Host's Ethernet address (which is not

necessarily the same as the Destination's Internet Address).
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Upon receipt of a message, the Ethernet interface supplies the message to
the receiving Socket Layer on the Destination Host. The Destination Internet
Address from the message is then examined by the Socket Layer. If the
Destination Host Internet Address from the message corresponds to that of the
receiving Host, the message is kept. The Port identifier (from the message) is

then used to determine which Process (if any) the message is to be supplied to.

For example, consider the following scenario, using a simplified version of

UDP, in which Process-1 on Host-1 is to send a message addressed to Port 4321

on Host-2:
1. Process-1 supplies a message 1.Process-2 binds to
for <“Host-2”,4321> to <“Host-2”, 4321 >.

Host-1's Socket Layer.
2. Process-2 waits for any message

2. Host-1's Socket Layer maps to arrive at <“Host-2”, 4321 >,
“Host-2” into Host-2's Ethernet
Address.

3. Host-1's Socket Layer sends the
message and <“Host-2”, 4321 >

with Host-2's Ethernet Address.
3. Host-2's Ethernet hardware

recognizes its Ethernet Address
in the packet and takes a copy.

4. Host-2's Socket Layer recognizes
the Internet Address as its own
and keeps the message.

5. Host-2's Socket Layer supplies
the message to Process-2, bound
to Port 4321.

Figure 5-1: Socket Communication
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Port identifiers can either be assigned dynamically to a Process by the
Socket Layer itself or the Process can request a specific Port identifier. A
message arriving at a Socket Layer with a Port identifier which is not

currently associated with a Process is discarded by the Socket Layer.

Clearly, from this discussion of sockets, one can conclude that sockets offer
One-Unique transmission at the Network Layer (i.e. Host-to-Host) and One-
Unique transmission at the Socket Layer (i.e. Process-to-Process). It is
possible however to obtain One-Group transmission at the Network Layer by
setting the Host identifier to a well known (predefined) broadcast value and to
transmit the message using the UDP protocol. Messages sent with the
broadcast (Host) identifier are received by all Hosts on the network. As in the
case of One-Unique Network Layer transmissions, the message is made
available to the Process associated with the Port indicated in the Host-Port
identifier. Now however, instead of a single Process on a specific Host
receiving a copy of the message, all Processes on all Hosts which have access to
the specified Port receive a copy of the message. For example, if Process-1 on
Host-1 in Figure 5-1 (above) had transmitted its message to <"All”, 4321>,
all Processes associated with Port 4321 on all Hosts would have received a
copy of the message. (This technique is used by several socket utility programs
such as rwho, for the distribution of network information to well known

system Ports [Linton1986a].)

Interprocess communication within a Host is also possible using sockets.
For example, if Process-1 on Host-1 in Figure 5-1 had transmitted its message
to <*Host-1”, 4321 > (instead of “Host-2"), the Process associated with Port
4321 on Host-1 would have received a copy of the message. On UNIX 4.2
Hosts, socket transmissions between Processes on the same Host do not

proceed onto the network, instead they remain on the Host in question.
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5.2 Intranetwork Architectures

The communication facilities offered by sockets conform to the Host-Port
model described in Chapters Two and Three. That is, for a Process to
communicate with another Process, it must supply the Communication Layer
(i.e. the Socket Layer) with an identifier consisting of two parts - a Host
number and a Port number (to which the receiving Process is expected to

associate itself).

The basic socket facilities allow, at best, a One-Unique type of multicast
transmission (i.e. both the Host and Port identifiers indicate unique
destinations). Therefore, a multicast transmission using the basic socket
facilities would require that the message be sent repeatedly, a copy to each

possible receiving Process.

Fortunately, as indicated earlier, sockets do support a form of One-Group
multicast transmission, in that the Host identifier can be set to indicate all
Hosts and then be mapped by the Socket Layer into the Ethernet's broadcast
identifier. A transmitting Process can therefore send a message to all Hosts.

However, as before, only a single Port can be identified.

As it stands, only a restricted form of One-Group multicast transmission
can be implemented (in addition to One-Unique multicast transmission), since
sockets allow at most one receiving Process on a single Host. Consequently, to
examine the implementation of the primitives on One-Group (allowing
multiple receiving Processes on a single Host), Many-Unique, and Many-
Group intranetwork architectures, the following design alternatives were
considered:

a) to modify (or replace) the existing socket software so that all four of the
intranetwork architectures could be supported, or



INTRANETWORK MULTICAST COMMUNICATIONS 108

b) to add a layer of software between the communicating Processes and the
Socket Layer. This new layer would then emulate the required type of
multicast transmission using the underlying socket interface.

Of these alternatives, the first (replacing or modifying the existing socket
software) was rejected for three reasons. First, it was assumed that the effort
associated with changing the existing socket software would be too time
consuming. Second, by creating our own version of sockets it was probable that
the new socket software would be incompatible with the socket software at
other UNIX sites. Third, some of the UNIX Hosts were not supplied with
source code — making software changes to the sockets all but impossible.
Therefore, the remaining alternative, adding a layer of software, was the only

possible choice.

The requirements, design and implementation of a series of software layers
which require those types of intranetwork architectures not directly supported

by sockets (that is, One-Group, Many-Unique, and Many-Group) are now

considered.
5.2.1 The Multicast Communication Layer

From the discussion in the previous Section, it is apparent that additional
layers of software would be required for each of the intranetwork architectures
that could not be directly supported by sockets (i.e. One-Group, Many-Unique,
and Many-Group). This new layer, the Multicast Communication Layer,
would be responsible for supporting the management of the multicast sets as
well as the transmission and distribution of messages on each Host. The

Multicast Communication Layer would lie between the Process and Socket
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Layers:

Process Layer

Multicast Communication Layer

Socket Layer
Figure 5-2: The Multicast Communication Layer
In order to avoid having the One-Group, Many-Unique and Many-Group
intranetwork architectures being emulated by a series of One-Unique (i.e.
unicast socket) transmissions, it was decided to:

a) have each receiving Multicast Communication Layer share a common Port,
and

b) transmit all multicast messages with a broadcast identifier to this
common Port.

For testing purposes, it was assumed that a Host could support any of the four
multicast communication classifications. However, three receiving Multicast
Communication Layers were developed for the distribution of messages on a
receiving Host (one each for One-Group, Many-Unique and Many-Group).
Each of the Multicast Communication Layers were associated with a separate
Port (note, One-Unique did not have a separate receiving Multicast
Communication Layer since messages were to be sent directly to the Process

in question):

Classification Port

One-Group 9999
Many-Unique 9989
Many-Group 9979

Figure 5-3: Multicast Layer Port Assignment
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For example, socket Port 9999 on all the UNIX hosts supporting multicast
communications would be used by the receiving One-Group Multicast

Communication Layer.

A multicast transmission would therefore consist of the transmitting
Process supplying its transmitting Multicast Communication Layer with a
multicast set identifier and the message to be transmitted. The transmitting
Multicast Communication Layer would then store the message and its
associated identifier(s) (either Unique or Group, see Section 5.2.2) in a socket
message and broadcast it to the receiving Multicast Communication Layer
under test (as indicated by the Port number). For example, in the One-Group
intranetwork architecture, the transmitting Process would supply the One-
Group Multicast Communication Layer with a multicast set identifier and a
message. The transmitting Multicast Communication Layer would then

broadcast the message and the multicast set identifier to Port 9999.

To allow the receiving Multicast Communication Layers to determine
which, if any, Processes were to receive a copy of the multicast message, a
standard multicast message format was developed for each type of multicast
transmission. The Multicast Communication Layer message formats were as
follows (note, since the One-Unique intranetwork architecture used sockets

directly, no special message format was required):

One-Group:

Identifier Source Data

Figure 5-4: One-Group Message Format

where:

Identifier - a Group identifier (see Section 5.22), indicating the multicast set to
which the Data is to be distributed to,
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Source - a Unicast-Unique Host-Port (socket) identifier, identifying the Source
of the message,

Data - the information to be transmitted to the members of the multicast set.

Many-Unique:

Count | Identifiers Source Data

Figure 5-5: Many-Unique Message Format
where:

Count - the number of Unique identifiers associated with the message,

Identifiers - a series of one or more Unique identifiers (each stored as a
Unicast-Unique Host-Port identifier, see Section 5.2.2), indicating the
intended Receivers,

Source - a Unicast-Unique Host-Port (socket) identifier, identifying the Source
of the message,

Data - the information to be transmitted to the members of the multicast set.

Many-Group:

Count Identifiers Source Data

Figure 5-6: Many-Group Message Format

where:
Count - the number of Group identifiers associated with the message,

Identifiers - a series of one or more Group identifiers, indicating the intended

Receivers,

Source - a Unicast-Unique Host-Port (socket) identifier, identifying the Source
of the message, and

Data - the information to be transmitted to the members of the multicast set.

Upon receipt of a multicast message, the receiving Multicast
Communication Layer would examine the identifier(s) associated with the

multicast message and determine which Processes on its Host, if any, were to
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receive a copy of the message. Message distribution by the receiving Multicast
Communication Layer was done by performing a series of One-Unique
(Process-to-Process) socket transmissions on the Host in question. For
example, a Many-Unique Multicast Communications Layer would examine

each Host-Port pair, from the multicast message, to determine if:

a) the supplied Host identifier matched that of the receiving Host, and

b) a Process associated with the supplied Port identifier existed on the
receiving Host.

Only if both the Host and Port identifiers supplied with the message matched
a Host-Port pair maintained by the receiving Multicast Communication Layer
would the message be distributed to the destination Process (associated with

the Host-Port pair).
5.2.2 Identifier Structures

In addition to the different Multicast Communication Layers and their
associated packet structures, it was also necessary to develop identifier

structures suitable for each of the Multicast Communication Layers.

Each of the Multicast Communication Layers were influenced by the type
of identifier used by the surrounding layers. For example, to support the
Process Layer, the Multicast Communication Layer had to allow both
multicast set identifiers and unicast identifiers, while when dealing with the

Socket Layer, the Multicast Communication Layer used Host-Port socket

identifiers.
5.2.2.1 Transmission Considerations

In a unicast transmission (by a Process using any of the architectures), the
message was passed directly to the Socket Layer by the Multicast

Communication Layer with the Host-Port identifier supplied by the Process.
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The Socket Layer was then expected to transmit the message to the specified
Destination indicated by the supplied Host-Port pair by performing a standard

UDP transmission.

However, multicast transmission (by a Process on any of the architectures)
required that the transmitting Multicast Communication Layer map the
supplied multicast set identifier into a list of either Unique identifiers or
Group identifiers. Then, depending upon the type of transmission under
consideration, it had to transmit the message to the intended Destinations,
either by unicasting the message (i.e. when considering One-Unique
intranetworks) or by broadcasting the message (i.e. when considering any of

One-Group, Many-Unique, or Many-Group intranetworks).
5.2.2.2 Reception Considerations

In a unicast reception, the Process expects to receive messages sent with a
specific unicast identifier. A multicast reception is similar, with the exception

that the Process expects to receive messages sent with a specific multicast set

identifier.
5.2.2.3 Identifier Design

The identifier structure decided upon was a simple linked data structure:

List — | MID ',—-y Idl | — - —»{ Idn
___I NIL

Figure 5-7: Identifier Structure

To distinguish between unicast and multicast set identifiers, the identifier in
the first element of the list (MID) could contain either a zero value, indicating

a unicast identifier, or a non-zero value, indicating a multicast set identifier.
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The subsequent identifiers within the list (Id1 through Idn) were treated by
the Multicast Communication Layer as either Unique identifiers or as Group
identifiers, depending upon the type of transmission being performed. For
example, when performing a transmission with a unicast identifier (i.e. when
the MID was zero), Id1 through Idn represented Unique identifiers, while a
transmission with a multicast set identifier (i.e. when MID was not equal to

zero), Id1 through Idn represented Group identifiers.

Unique identifiers were stored as Unicast-Unique Host-Port (i.e. socket)
identifiers and consisted of a 32-bit Host number and a 32-bit Port number.
Although the Group identifiers were treated as single 64-bit identifiers, they
were stored as pairs of 32-bit integers (a high part and a low part). Id1 through
Idn represented a series of either Host-Port identifiers or multicast set
identifiers - depending upon the type of network under examination (i.e. Host-

Port on Unique intranetworks and multicast set on Group intranetworks).

The multicast set identifier, MID, was also stored as a pair of 32-bit

integers. However, how it was used depended upon whether the Process was

transmitting or receiving.

For example, when requested to transmit a message with an MID of zero,
the transmitting Multicast Communication Layer would treat each identifier
in the identifier list as a Host-Port identifier. The supplied message would
therefore be transmitted repeatedly to the Process(es) indicated by the
Host-Port identifiers. Note, normally an identifier list with an MID of zero

would only contain a single Host-Port identifier - indicating a specific Process.

However, if the MID was non-zero, the interpretation of the identifiers and
the number of identifiers to be transmitted with each message would be
determined by the type of intranetwork architecture under consideration. For

example, if the intranetwork architecture was, say, Many-Group, then the
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transmitting Multicast Communication Layer would transmit a broadcast
message to Port 9979 with as many of the (Group) identifiers as could be
inserted into the Many-Group multicast message. If the list (Id1 through Idn)
contained more identifiers than the message could support, additional

messages would be transmitted.

The identifier list was used differently for reception. An MID of zero
indicated that the Process was not a member of a multicast set and was
expecting a unicast message; the first identifier in the list (i.e. Id1) was taken
as the unique Host-Port identifier of the Process. A non-zero MID was taken as
the multicast set identifier to which the Process belonged - messages intended
for this multicast set (received by the receiving Multicast Communication
Layer) would then be supplied to the Process, assuming that it had previously

joined the multicast set in question.
5.3 Implementation of the Primitives

To demonstrate that the proposed primitives could operate on any of the
four intranetwork architectures, it was decided to implement and test the
primitives on each of the architectures. In this Section, the implementation of
each primitive is discussed, given the constraints imposed by UNIX sockets,

the Ethernet, the Multicast Communication Layers, and the intranetwork

architectures.

5.3.1 send

There now follows a description of each of the implementations of the send
primitive. In each case, it is assumed that a message and a pointer to a list of

identifiers were supplied by the transmitting Process.

In the One-Unique intranetwork, both unicast and multicast

transmissions could use the same software, which transmitted a copy of the
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message to each receiving Process as indicated by the list of (Unique)

identifiers:

Message . Data : = DataFromProcess;

Current := List *. Next; {Skip MID field }

while Current <> NIL do

begin
{ Transmit the Message to Current . Uniqueldentifier }
Current : = Current . Next;

end;

Note, each Unique identifier represented a Unicast-Unique Host-Port

identifier.

In the One-Group intranetwork architecture, the send primitive was to
support both unicast and multicast transmissions, as required by the
definition of the send primitive. Therefore, the unicast transmission was
identical to that described for the One-Unique network (above) and used if the
MID value was zero. The multicast transmission was similar to the One-
Unique unicast transmission, with the exception that each identifier was
assumed to be a Group identifier and was therefore broadcast to the receiving
One-Group Multicast Communication Layer (associated with Port 9999):

Message . Data : = DataFromProcess;

Current : = List “. Next; {Skip MID field}

while Current <> NIL do

begin
Message . Identifier : = Current “. Groupldentifier;
{ Transmit the Message to <Broadcast, 9999> }
Current : = Current *. Next;

end;

Transmitting messages on a Many-Unique intranetwork, as in the One-
Group case, also required two distinct types of transmission - unicast and

multicast, as indicated by the value of MID. Unicast transmissions were

handled in the same way as One-Unique (above). Multicast transmissions
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were somewhat more involved because they entailed storing a number of

Unique identifiers (i.e. Host-Port identifiers) in the Many-Unique multicast

message and then broadcasting the message (and the identifiers) to Port 9989:
Message . Data : = DataFromProcess;

Current := List *. Next; {Skip MID field}
while Current < > NIL do

begin

I1:=0;

while (Current <> NIL) and (I < > MaxId) do

begin
Message . Identifier [I]: = Current “. Uniqueldentifier;
I:=1+1;
Current := Current *. Next;

end;

Message . Count:=I;
{ Transmit the Message to <Broadcast, 9989> }

end;

Transmissions on a Many-Group intranetwork were essentially identical
to those on a Many-Unique intranetwork with the exceptions that the
identifiers were assumed to be Group identifiers and the message was to be

broadcast to Port 9979:

Message . Data : = DataFromProcess;
Current := List *. Next; {Skip MID field}
while Current <> NILdo
begin
I:=0;
while (Current < > NIL) and I <> MaxId) do
begin
Message . Identifier [I] := Current °. Groupldentifier;,
I:=1+1,
Current : = Current *. Next;
end;
Message . Count:=1I;
{ Transmit the Message to <Broadcast, 9979> }

end;
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Note also, that since the Groupldentifier field and the Uniqueldentifier field
have identical structures, it was possible (in theory) to perform a multicast

transmission involving a mixture of identifiers (both Unique and Group).
5.3.2 join

The join primitive implementation depended upon the type of

intranetwork architecture being supported.

Intranetworks supporting Unique identifiers (i.e. One-Unique and Many-
Unique) required that the join primitive supply the identifier of the Process to
all possible Processes intending to use the multicast set. This was achieved
using a simple name server which maintained a list of Host-Port identifiers

and the multicast set identifier of the multicast set in question.

In Group intranetworks (i.e. One-Group and Many-Group) as well as in the
Many-Unique intranetwork, the join primitive supplied the Multicast
Communication Layer with a Host-Port identifier of the Process joining the
multicast set and the multicast set identifier in question. With this
information, the Multicast Communication Layer was able to examine
incoming identifiers and distribute the message to the intended members of

the multicast set (see Section 5.3.3, below)

5.3.3 receive

The receive primitive is discussed in two parts - first, the Multicast

Communication Layer, and second, the process of receiving messages.
5.3.3.1 The Receiving Multicast Communication Layer

Before a Process could receive a message sent to a multicast set, the
message was first required to pass through the receiving Multicast

Communication Layer on the Process's Host (note, this Section does not
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pertain to the One-Unique intranetwork architectures since One-Unique
transmissions were sent directly to the Process associated with the supplied

Unique (i.e. Host-Port) identifier).

The function of the receiving Multicast Communication Layer was to
distribute the message to the intended destination Processes by examining the
identifier(s) supplied with the message. Although the type and number of
identifier stored within each message structure could differ (depending upon
the intranetwork architecture in question), the basic function of the receiving
Multicast Communication Layer was as follows:

{Receive Message from Socket Layer }
repeat
ExtractldentifierFromMessage;
IdPtr : = StartOfProcessAndMulticastSetldentifierList;
while IdPtr < > NIL do
begin
if IdPtr *. Identifier = ExtractedIdentifier then
{ Send a Copy of the Message to IdPtr *. Process }
IdPtr : = IdPtr . NextIdentifier;
end;
until
NoMoreldentifiersInMessage;

The process of sending a copy of the message to the intended Process involved

a One-Unique socket transmission within the receiving Host.

For example, in a One-Group Multicast Communication Layer, the
ExtractedIdentifier would be a Group identifier. Once extracted, the
ExtractedIdentifier would then be compared with the Group identifiers (i.e.
multicast set identifiers) supplied by the different Processes which had joined
the various multicast sets. When an identifier supplied by a Process matched

the ExtractedIdentifier, a copy of the message, including the transmitter's
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Unique identifier (i.e. Host-Port identifier) would be sent to the Process using

a One-Unique socket transmission.
5.3.3.2 Message Reception by the Process

All receptions, both unicast and multicast, used the receive primitive.
Unicast and multicast reception was distinguished by the value of the MID
field within the identifier list (a zero value indicating a unicast reception,
while a non-zero value indicated a multicast reception). Unicast reception was
implemented as a standard socket reception - allowing messages to be
received from any transmitting Process. However, a multicast reception was

intended to receive messages only from the Multicast Communication Layer.

Once a message (unicast or multicast) was received, it was stored in a

structure to allow the message to be linked to other messages by any filter the

Process might supply:
Link to Next Message
Size of Message Host-Port
Source 0 NIL
Identifier

Message

| ]

Figure 5-8: Received Message Structure

Note, the Source Identifier was stored in the same format as any other unicast
identifier, with an MID of zero (see Section 5.2.2). This was to allow the
receiving Process to reply to the transmitting Process by supplying a pointer

to the Source Identifier field.
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If no filter was supplied, the received message (stored in the structure
shown in Figure 5-8) would be returned directly to the receiving Process.
However, if a filter was available, the message would be supplied to the filter
for additional processing. Depending upon the return code returned by the
filter to the receive primitive, the message would either be kept or discarded
and the receive primitive would either continue waiting for additional

messages or would return the list of messages to the receiving Process.

Since the received message structure now contained both the message and
" the transmitting Process's unicast identifier, the number of parameters
supplied to the filter function was reduced to:

a) the message structure described above (i.e. the message, its size and the
Source identifier);

b) the message list (to which the messages could be linked into);

c) a timeout indicator.
5.3.4 leave

The leave primitive implementation, like that of the join primitive,
depended upon the type of intranetwork architecture in use. When leaving a
multicast set on a Unique intranetwork, the leave primitive informed the
name server; which removed the Process's Host-Port identifier from the list of
identifiers associated with the multicast set, thereby stopping any new users

of the multicast set from sending messages to the Process.

On Group intranetworks, it was only necessary to inform the Multicast
Communication Layer that the Process was leaving the multicast set. In
addition, in the Many-Unique implementation, the Multicast Communication
Layer was also informed, thereby ensuring that messages arriving with the
*old” identifier would be ignored and not transmitted to the receiving Process.

In both of these cases, the Multicast Communication Layer removed the socket
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identifier and the multicast set identifier associated with the Process from the

list of multicast set identifiers that it maintained.

5.3.5 getid

The getid primitive implementation was common to all four types of
network in that it accepted a name and returned a list of identifiers. Basically,
getid accessed a name server which returned the most up-to-date list of
identifiers associated with the multicast set. The list of identifiers returned by
the name server (consisting of a multicast set identifier, MID, and a list of one
or more Unique (i.e. Host-Port) identifiers or Group (i.e. multicast set)
identifiers), were formatted by the getid primitive into the identifier list

structure expected by the Process (see Section 5.2.2).

5.3.6 newid

The newid primitive returned a unique 64-bit value constructed from the
Process's Host identifier, its Process number and the current time of day
(expressed in milliseconds). As with the getid primitive, the primitive did not

require special implementations on any of the networks.

This method of constructing the identifier was found to be unique in that:

a) Processes on different Hosts would not produce the same Host identifier,
since within the context of the network, all Host identifiers were assumed

to be unique;

b) Processes on the same (UNIX) Host always have a unique Process number
(at least for the duration of their existence). It was assumed that there
would be a significant delay between freeing a Process number and the
reissuing of it in the generation of a new multicast set identifier;

¢) the time of day value was assumed to be always increasing, even after a

machine crash.
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However, a Process could get the same value if newid was called within the
same clock period. Therefore, to avoid a Process obtaining the same value
twice, a short time delay was introduced into the newid primitive after the
generation of a new identifier. This ensured that different multicast set

identifiers would be produced after each call to newid.

5.3.7 create

The create primitive was implemented as described in Chapter Four. That
is, given a textual name and a list of identifiers, it associated the name with
the list of identifiers. As in the case of getid, create accessed a name server,
supplying it with the textual name of the multicast set, the multicast set

identifier and the list of identifiers to be associated with the multicast set.

The create primitive accepted three parameters: a name, a 64-bit multicast
set identifier, and a linked list of identifiers (Unique or Group), as described in

Section 5.2.2.3.

As with the two previous primitives, the implementation of the create

primitive was common to all four intranetwork architectures.

5.3.8 remove

The remove primitive was implemented as described in Chapter Four -
given a textual name associated with an identifier, remove attempted to
remove the name from the list of identifier names. As with create and getid,
the supplied name was supplied to a name server, which removed the

information associated with the name.

The implementation of the remove primitive was common to all four

intranetwork architectures.
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5.3.9 bestid

The bestid primitive returned a 64-bit identifier, the type of which

depended upon the type of network being examined.

In the case of Unique intranetworks, the unique Host-Port identifier
associated with the Process was returned as the “bestid”. However, in the case
of Group intranetworks, the multicast set identifier supplied by the Process

was returned as its “best” identifier.

5.4 Performance Results

After all nine primitives were successfully implemented and tested on the
four different intranetwork architectures, it was decided to contrast the
observed performances of the implementations with those expected from the

multicast transmission taxonomy in Chapter Three.

To this end, three tests were devised to compare:

a) the overheads associated with using the Multicast Communication Layer;

b) the costs of distributing a multicast message to Processes residing on a

single Host;

c) the costs of distributing a multicast message to Processes residing on
different Hosts.

All the tests were fundamentally the same, consisting of a Source Process
transmitting a message (of 4 or 512 bytes in length) and receiving a 4-byte
response from one or more Destination Processes (determined by the number
of Destinations being tested). One thousand of these message cycles (Request-

Response) were timed and recorded for subsequent analysis.

The Source Process used in these tests consisted of two parts, a Source

procedure which transmitted the message, recording the total time taken for
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the round trip and a filter function, which received messages from the
responding Destinations until all the Destinations had been heard from (or a

time limit was exceeded).

The filter function was written as follows:

var
Responded, Total, MsgNo : integer; { Global - see below }

function Check(Response, List : MsgPtr; Timeout : Boolean);

begin
if Timeout then
Check := -3 { Failure indication - stop processing }
else
if Response “. SeqNo = MsgNo then
begin

Responded : = Responded + 1;
if Responded = Total then

Check := -2 { Success indication - stop processing }
else
Check :=-1; {Don't keep response but keep receiving }
end
else
Check : = -1; { Wrong sequence number - keep trying }
end;

The Check function was called by the receive primitive each time a message
was received. If the sequence number in the Response (SeqNo) agreed with the
expected sequence number (MsgNo), the number of responses (Responded) was
increased and if the number of responses were found to equal the number of
Processes under test (Total), control was returned to the calling Process (with
a return code of “-2”, indicating successful completion), otherwise the receive
function was to keep receiving. If the wrong sequence number was detected,
the message was discarded (return code “-1”) and the receive routine continued

waiting for messages. Finally, should a timeout occur, control was returned to
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the calling sequence with an indication that not all messages were received in

the allotted time (return code “-3”).

The Source procedure, below, recorded the total time required to send a
message to the members of the multicast set and to receive responses from all
of them. Each message was sent with a sequence number (MsgNo) which was

to be returned by each responding Destination:

procedure Source(NumberInSet, MsgSize : integer; TestGroup : string);
var
int rc;
Message : TestRecord;
Elapsed : real;
Groupld, Self : IdentifierType;
begin
getid (*”, Self);
getid (TestGroup, Groupld);
Total : = NumberInSet;
for MsgNo:= 1to0 1000 do
begin
Message . SeqNo : = MsgNo;
Responded : = 0;
StartClock;
send (Groupld, Message, MsgSize);
rc : = receive (Self, StartOfList, Check, FiveSeconds);
Elapsed : = StopClock;
ifrc = Success then
write("Success”, Elapsed)
else
write(“Failure”, Elapsed)
end;
end;

In the tests performed and described in this Chapter, the clock was found to

have an accuracy of plus or minus 10 milliseconds [UNIX1983a].

The Destination Process was essentially an echo facility, echoing the
sequence number it received from the Source Process. The Destination Process

first joined a specific multicast set and then waited for the arrival of a
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message. Upon receipt of a message, the sequence number was returned to the

Source:

procedure Destination(TestGroup : string);

var

rc : integer;

Groupld : IdentifierType;

Message : MsgPtr;

begin

getid (TestGroup, Groupld);

Join (Groupld);

repeat
rc : = receive (Groupld, Message, NoFilter, WaitForever);
ifrc = 2 then

send (Message . Source, Message . SeqNo, FourBytes);

dispose(Message);

until

re <> 2;

leave (Groupld);

end;

5.4.1 Multicast Set Membership Representation

In each of the performance tests, the number of members of any one
multicast set (i.e. the number of Destination Processes) was varied from one to
five (five was chosen as the upper limit since there were only six hosts
available for testing, one of which had to support a Source Process - the

remaining five Hosts were therefore available to support Destination

Processes).

For the purposes of the performance tests, the number of Unique or Group
identifiers allowed with each message, the type (i.e. Unique or Group) of each
identifier, and the number of identifiers required to represent all five

members of the multicast set on each of the different intranetwork
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architectures were as follows:

Numbfgr of
. Identifiers
Intranetwork | Identifiers h
Architecture | per message rle‘;?,g;;;% :31 Comments
members
. Each Process is identified by a
One-Unique 1 5 single Unique (Host-Port)
identifier.
) Each Process is identified by a
Many-Unique 4 5 single Unique (Host-Port)
identifier.
All Processes share a single
One-Group 1 1 Grou (Mu)ticast Set)
identifier.
Each Process is identified by a
Many-Group 4 5 separate Group (Multicast Set)
identifier.

Figure 5-9: Multicast Set Membership Representation

The maximum number of identifiers per message (i.e. “many”) was set at
four to allow an examination of the effect of multiple message transmission to
multicast sets on Many-Unique and Many-Group intranetwork architectures.
To achieve this on the Many-Group intranetwork architecture, each member
of the multicast set was represented by its own multicast set identifier (i.e. the
multicast set used by the Source Process was created out of other, existing

multicast sets).

All members of the multicast set on the One-Group intranetwork
architecture were represented by a single multicast set identifier (irrespective
of the number of members). This helped establish a lower limit on the
transmission time required by those intranetwork architectures not directly

supported by sockets (i.e. One-Group, Many-Unique, and Many-Group).
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5.4.2 Multicast Communication Layer Overheads

The object of this test was to determine the overheads associated with the
different Multicast Communication Layers compared to that of performing a
One-Unique transmission using sockets directly. The test consisted of sending
a four byte message to a single Destination Process using whatever method of
multicast transmission the specific intranetwork architecture supported. A
four byte message was chosen for two reasons: first it represented a small
percentage of the overall socket message size, and second, it was the size of the
integer sequence number associated with each message. The Destination
Process returned the same four byte message as a response using a unicast
transmission. (Note that all Multicast Communication Layers performed

unicast transmissions using a UDP socket transmission directly.)

Two tests were performed. The first was conducted between a pair of
Whitechapels, the slowest of the available UNIX machines, while the second
consisted of a Whitechapel sending messages to a SUN-3, the fastest of the

UNIX machines.

The tables in Figure 5-10 show the results of the tests. The round trip time
is expressed in milliseconds, while the overheads (that is, the difference
between the round trip time and the One-Unique round trip time) are
expressed as a percentage of the overall round trip time. Note that in addition
to the four intranetwork architectures discussed in this Chapter, Many-

Unique and Many-Group transmissions were tested in two different

configurations:

a) Many-Unique-A and Many-Group-A: consisted of transmitting the message
with a single identifier (Unique or Group), that of the intended Destination

Process, and

b) Many-Unique-B and Many-Group-B: consisted of transmitting the message
with the maximum number of identifiers (four) and the intended
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Destination Process's identifier stored as the last identifier in the list -
thereby requiring the receiving Multicast Communication Layer to scan
the entire list of identifiers.

If the obvious speed differences between the machines are ignored, one
finds, not surprisingly, that the One-Unique architecture using sockets
directly is the fastest, since there is no overhead associated with the handling
and distribution of messages by the receiving Multicast Communication
Layer. The communication times associated with Many-Unique-A, One-
Group, and Many-Group-A are similar because these messages only contained
a single identifier, requiring the receiving Multicast Communication Layer to
perform the minimum amount of processing. Similarly, the overheads
associated with Many-Unique-B and Many-Group-B are slightly higher than
Many-Unique-A and Many-Unique-B because of the additional processing

required to scan the entire list of identifiers in the message.

From these results, one can conclude that multicast transmissions to the
Whitechapels are limited by the rate at which messages can be distributed on
the machine, rather than the speed of the Ethernet. On the other hand,
because of the speed of the SUN, the overheads associated with any of the
Multicast Communication Layer implementations was small compared to the

overall communication time.

The large difference in communication times between the Whitechapel and
the SUN may not have been entirely due to machine speeds. For example, it is
known that the socket implementation on the SUN has been designed to
operate with the minimum of overheads. Similarly, the time required for
context switching (i.e. changing from User space to Kernel space) on the
Whitechapel is quite large, which may also explain some of the overheads

associated with performing message distribution.
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5.4.3 Destinations on a Single Host

In the following set of tests, the overheads associated with the Multicast
Communication Layer distributing messages to the members of a multicast
set all residing on a single Host are examined. The tests involved transmitting
a multicast message to a multicast set consisting of an increasing number of
receiving Processes and determining the round trip time of the message. All
four intranetwork architectures were examined (One-Unique, One-Group,

Many-Unique, and Many-Group).

The timings were taken for a varying number of destination Processes
(starting at one and increasing to five) and different message sizes (4-byte and
512-byte). Since the maximum number of identifiers allowed with the “many”
identifier packet was four, the effect of the number of receivers exceeding the

number of identifiers per message was also examined.

In Figures 5-11 and 5-12, transmissions between a VAX-750 and a SUN-3
are presented, illustrating the round trip transmission times for 4-byte and
512-byte messages respectively. In Figure 5-13, the various transmission
speeds are shown for a VAX-750 transmitting a 4-byte message to a

Whitechapel. The following observations are made from these graphs:

a) not surprisingly, the speed of the machine affects the overall message

distribution time;

b) if the Process-to-Process transmission time on the network is less than the
Process-to-Process transmission time on a Host, it can be more efficient to
use a One-Unique multicast transmission (i.e. using the network) rather
than having the Destination Host distribute the messages;

c)if the Process-to-Process transmission time on the network is greater than
the Process-to-Process transmission time on a Host, it can be more efficient
to have the Destination Host perform the distribution of the messages (i.e.
using the Multicast Communication Layer) rather than have the Source

perform the distribution;
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Figure 5-11: VAX-750 to SUN-3 (4 byte message)
Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number of destinations is increased to five.
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Figure 5-12: VAX-750 to SUN-3 (512 byte message)
Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number of destinations is increased to five.
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Figure 5-13: VAX-750 to Whitechapel (4 byte message)
Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number of destinations is increased to five;

b) the destination Whitechapel was not able to receive more than four One-
Unique transmissions - hence the number of One-Unique transmissions

stopping at four,
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d)in Many-Unique and Many-Group networks, additional message
transmissions may be required if the number of Destinations exceed the
number of identifiers that can be associated with a message (as illustrated
by the increase in transmission times when increasing the number of
destination Processes from 4 to 5).

These observations confirm what was suggested by the multicast
transmission taxonomy - that the speed of a multicast transmission to a single
Host consisting of “R” receiving Processes depends upon both the speed at
which messages are distributed across the network and the speed at which
messages could be distributed within the Host. In addition, the size of the

message also affects the distribution time.

This point is further exemplified if transmissions from a slow Host (a
Whitechapel) to a fast Host (the SUN-3) are considered. In Figure 5-14, the
graph shows quite clearly that if the overall interprocess transmission time

(across the network) is slow, more dramatic results can be obtained by using a

multicast layer to distribute the messages.
6.4.4 Destinations on Separate Hosts

In the following set of tests, the overheads associated with distributing
messages to Destinations on separate Hosts were examined. As in the tests
involving destinations on a single Host, these tests entailed transmitting a
multicast message to a multicast set consisting of an increasing number of
receivers and determining the total trip time (i.e. Request and Response). All
four intranetwork architectures were examined (One-Unique, One-Group,

Many-Unique, and Many-Group).

As in the previous set of tests, the multicast set membership increased
from one Destination to a maximum of five, with each new (Destination)

Process being placed on a (new) separate Host. To ensure that the tests were
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Figure 5-14: Whitechapel to SUN-3 (4 byte message)
Notes:

a) Many-Unique and Many-Group transmissions allow at most four identifiers
to be associated with a single transmission, hence the increased slope when
the number of destinations is increased to five.
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conducted under similar conditions, the same ordering of Hosts was used for

each of the different multicast transmission types being examined.

The Host ordering was from the fastest to the slowest in terms of CPU
speed (that is, SUN, Orion, VAX-750, and the pair of Whitechapels). As in the
previous tests, two sets of observations are presented, first, a 4-byte Request
and a 4-byte Response, and second, a 512-byte Request, and a 4-byte Response.
The Source Process ran on a VAX-750.

Figures 5-15 and 5-16 show the round trip times for a 4-byte message and a

512-byte message respectively. The following observations are made from

these graphs:

a) the speed of the machines within the multicast set affects the overall

message distribution time;

b)in a multicast transmission, the order in which the members are
transmitted to is important. For example, had the tests begun with the
Whitechapels, the overall transmission time would have been higher to
begin with and much closer to the horizontal, since the speed of the
Whitechapels would have been the limiting factor;

c¢) when dealing with machines of comparable speeds (for example, Hosts 2 and
3 (Orion and VAX-750) and Hosts 4 and 5 (the pair of Whitechapels)), the
overheads associated with repeated One-Unique transmissions suggests
that using the Multicast Communication Layer for message distribution
may be attractive in homogeneous networks;

d) Many-Unique and Many-Group multicast transmission follow the same
curve as does One-Group since all three use similar algorithms for message
distribution. However, when the number of identifiers required to identify
the members of the multicast set exceed the number of identifiers that can
be associated with a single message, additional message transmissions are
required, hence the (not surprising) increase in slope between Hosts 4 and

5.

All these observations confirm what was suggested by the multicast

transmission taxonomy, that in general , the time taken for a message to reach
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Figure 5-15: VAX-750 to Separate Hosts (4 byte message)
Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number of destinations is increased to five.
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Figure 5-16: VAX-750 to Separate Hosts (512 byte message)
Notes:

a) Many-Unique and Many-Group transmissions allowed at most four
identifiers to be associated with a single transmission, hence the increased
slope when the number of destinations is increased to five.
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all members of a multicast set is dictated by the speed of the slowest machine

on the network.
9.5 Concluding Remarks

The purpose of this Chapter was to show how the proposed primitives could
be implemented on a variety of intranetworks. Since the majority of the
proposed intranetworks were not supported by the facilities available for use
in the Computing Laboratory, it was necessary to design and implement a
series of intranetwork architectures to allow the testing of One-Group, Many-

Unique, and Many-Group intranetworks.

Once the intranetworks were implemented, it was then possible to
implement and test the proposed primitives using the Multicast
Communication Layer. The tests showed that the primitives could be

implemented successfully on intranetworks supporting different numbers and

types of identifier.

In addition to the comments already made in this Chapter regarding the
results of the various tests, one can conclude that the time taken to distribute
a message to the members of a multicast set is governed by the time required
to supply the message to the slowest member of the multicast set. For
example, when transmitting a multicast message to a multicast set consisting

of a variety of Hosts, the speed of the slowest Host determines the overall

message distribution time.

Therefore, when considering multicast communications in a layered

distributed system, a network designer should consider the following:

a) avoid using intranetworks consisting of Hosts with widely varying speeds.
Instead, an intranetwork supporting a homogeneous collection of Hosts
should be considered, since this may result in faster distribution times. For
example, if the members of the multicast set are uniformly distributed
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amongst the various Hosts, a single One-Group transmission would
probably be faster than a series of One-Unique transmissions;

b) attempt to ensure that members of a multicast set reside on different Hosts
if the cost of message distribution on the receiving Host is high. (Clearly,
this is not always possible in a truly distributed system, since members of
the multicast set may migrate between the various Hosts);

c) use One-Group transmissions if the members of the multicast set can be
identified using a single identifier, whereas Many-Unique or Many-Group
transmissions should be used if the members of the multicast set are

identified with a variety of identifiers;

d) Many-Group transmissions should be considered if it appears that users will
build multicast sets from other, existing multicast sets.
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Chapter 6

Internetwork
Multicast Communications

In light of recent trends in distributed systems, it is generally assumed
that instead of using a single monolithic network, many organizations will
employ a series of small networks for reasons such as security and reliability
[Shepherd1985a] and because of decentralized or incremental acquisition of
equipment. In certain situations these individual networks will be
interconnected, thereby allowing internetwork communications, that is,

communications between networks.

The point at which two (or more) networks are interconnected is known,
generically, as a Gateway. The specific functions of a Gateway can vary,
depending upon the networks it interconnects. For example, a Gateway
interconnecting a pair of Ethernets may simply transmit each message it
receives from one Ethernet onto the next, whereas a Gateway interconnecting
a Cambridge Ring and an Ethernet may be responsible for changing message
formats (from, say, an Ethernet packet into a series of Cambridge Ring mini-

packets) or changing identifier formats (from 48-bit Ethernet identifiers into
eight-bit Cambridge Ring identifiers) or both.

Communications can be further complicated in an internetwork multicast
communication since there may now be many Destinations, rather than one,
on the remote network. Consider, for example, a situation in which a multicast

set consists of members on two networks. Ideally, a Source Process on one of
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the networks, using the multicast send primitive, could transmit a message to

all Destinations (both local and remote):

Local Destination Remote Destination
Source - P1 Gateway
Local Destination Remote Destination
Local Network Remote Network

Figure 6-1: Relationship between Local Network, Remote Network and
Gateway in a Multicast Transmission

However, at the Communication Layer (or the Network Layer), the task of
performing the communication may not be so simple since Destination
identification may differ between the two networks. For example, the Local
Network may support One-Group transmissions between Hosts, whereas the
Remote Network may require One-Unique transmissions. In situations such

as these, a network designer is faced with problems such as:

-should the Source or the Gateway manage the list of remote Destination
identifiers?

-if the list of identifiers are managed by the Source, should it transmit
individual messages, via the Gateway, to the remote Destinations, or
should it pass all the identifiers and a single message to the Gateway for
transmission by the Gateway?

- if the Gateway is responsible for maintaining the list of remote Destination

identifiers, how should the Source indicate that a certain message is to be
transmitted to the members of the multicast set on the remote network?
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This Chapter will attempt to answer these questions by examining:

a) how different methods of internetwork multicast communications affect the
design of Gateways;

b) how the proposed primitives can be used to support internetwork multicast

communications;

c) what methods of multicast transmission, if any, are best suited to
internetwork multicast communications.

The Chapter is organized as follows. In the next Section, the different ways
in which a Source can transmit a message to a Gateway are discussed, while in
the third Section the problems associated with identifying Destinations on
remote networks are examined. In the fourth Section, different methods of
performing internetwork multicast communications are discussed, with an
emphasis on multicast gateway design and how the proposed multicast
communication primitives could be used in their design. The performances of

the different types of Gateway are compared in the fifth Section. In the final

Section, the findings presented in this Chapter are reviewed.

6.1 Gateway Identification

In any internetwork communication, before the message reaches the final,
intended Destination, the message must pass through one or more Gateways.
The exact function of the Gateway varies, depending upon the situation. For
example, a Gateway connecting two identical networks (i.e. networks
supporting the same protocol, identifier and message structures) need only act

as a bridge between the networks [Shepherd1985a].

However, when connecting networks which support different protocols,
identifier types or message structures, the Gateway is forced to perform
additional functions such as protocol or identifier conversion. Once a Gateway

has received a message, it must then attempt to transmit the message to the
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intended Destinations using the facilities available on the remote network.
The purpose of this Section is to examine two different methods in which a

Source (acting as a transmitter) can transmit a message to a Gateway.

As in the intranetwork communication case, the Source must supply the
message and some form of identification which allows the message to reach
the intended Gateway. There are two broad divisions of multicast Gateway

identification: implicit and explicit.
6.1.1 Implicit Gateway Identification

An implicitly identified Gateway does not require a separate message
transmission by the Source. Instead, it is assumed that the Gateway is able to
determine the Destination(s) from the identifier used to reach the Gateway.
For example, if the Source transmitter performed a One-Group multicast
transmission on the local network, an implicitly identified Gateway would be
expected to receive a copy of the message. From the single Group identifier
used to identify the members of the multicast set on the Source's (local)
network, the Gateway would then be expected to identify all the members of

the multicast set on the remote network.

In the V-System [Cheriton1983a), the Gateway is implicitly identified
since multicast messages are broadcast to all Hosts (including Gateway
Hosts). Upon receipt of a message, a V-System Gateway determines if the
message should be transmitted onto the Destination network by inspecting
the Group identifier. If the Gateway determines that the multicast set exists
on the Destination network, the Group identifier (supplied by the Source) is
mapped into an equivalent Group identifier (used by the members of the

remote multicast set) and transmitted on the Destination V-System network.
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6.1.2 Explicit Gateway Identification

When the Gateway is to be identified explicitly, the Source must transmit a
separate message (explicitly) to the Gateway in question (in addition to those
sent to the local Destinations). For example, on a network supporting One-
Group multicast transmissions, at least two transmissions would be required,
one to the local Destinations making up the local multicast set, accessible
using a One-Group transmission, and the other to the Gateway, using a One-
Unique transmission. (Note, this assumes transmission to a single Gateway, if
there were more Gateways, additional One-Unique transmissions might be
required or possibly a single One-Group transmission to Gateways belonging
to a Gateway group.) When a Gateway is explicitly accessed, it is assumed that
the Gateway requires additional routing information to enable it to transmit
the message to the intended Destinations:

GatewayMessage =
record
Gwld : IdStructure;
FDId ; IdStructure;
Data : array [0 .. MaxSize] of Bytes;

end;

where:

Gwld: the Gateway Identifier, which allows the routing of the message to the
Gateway;

FDId:; the Final Destination Identifier, which allows the routing of the
message, by the Gateway, to the intended Destinations. Depending upon
how the Gateway identifies the intended Destinations, the identifier
combination can be any of One-Unique, One-Group, Many-Unique, or
Many-Group (how these identifiers can be used will be discussed in the

next Section);

Data: the information to be transmitted.
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For example, in MP [Ahamad1985a], Gateways are explicitly identified by
the Source. The Source performs two transmissions, the first on its local
network (an Ethernet, using a One-Group transmission) and the second to the
Gateway in question. The Gateway is supplied with the message and a single
Group identifier which the Gateway maps into another Group identifier for

transmission on the remote network (another Ethernet).

6.1.3 Summary

In this Section, two methods of Gateway identification have been
discussed: implicit identification and explicit identification. From this

discussion we make the following observations:

a)implicit identification of the Gateway minimizes the number of
transmissions required on the Source network (since, ideally, only one
transmission is required). However, the Source has no method of
controlling which of the Destinations receive a copy. For example, a Source
could not transmit a message to only those Destinations on its own local
network since the message is transmitted by all Gateways to all
Destinations. This problem is further illustrated in a situation where a
Destination can be reached by two implicitly identified Gateways - the
Destination in this example can receive two copies of the same message.

b) explicit identification of the Gateway avoids the above problem by requiring
the Source to explicitly identify the Gateways through which the
transmission is to occur. This obviously results in additional message
generation on the Source network, a potentially undesirable feature, if, for
example, there are multiple Gateways and each must be explicitly

identified.
In the next Section, an examination of how the different types of Gateway

identification affect the identification of the members of the multicast set on

the remote network is presented.
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6.2 Identifying the Destination Members of the Multicast Set

In addition to identifying the Gateway, it is also necessary for the
transmitting Source to identify the intended Destinations, both local and
remote. Obviously, the initial identification of the particular multicast set in
question is determined by the Source using either Unique or Group identifiers.
However, the maintenance of the identifier(s) used to indicate the members of
the multicast set can be performed by either the Source or the Gateway. For
example, if the members of a multicast set on a certain remote network are
identified using Unique identifiers, the management of the list of these

identifiers may be the responsibility of either the Gateway or the Source.

In this Section, some of the problems relating to Source and Gateway

multicast set membership identification are examined.
6.2.1 Multicast Set Identification by Source

Source membership identification means that the Source maintains the
actual identifiers of the Destinations (either Unique or Group) rather than the
Gateway. For example, if the members of a multicast set are to be accessed by
a series of One-Unique transmissions, the Source would maintain the list of
Unique Destination identifiers. This does not necessarily mean that the
Gateway is passive and simply forwards each message it receives onto the
Destination network as the following examples illustrate:

a) the Gateway can act as a bridge, simply transmitting the supplied message
on the remote network. For example, in the worst case, if the multicast set
members on the remote network require One-Unique transmissions, the
Source would be required to transmit the same message to each
Destination on the remote network through the Gateway. Similarly, if the

Destination network allowed One-Group transmissions, the Source would
only be required to transmit a single message via the Gateway to the

remote Destinations.
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b) situations such as those described above, in which the Source must transmit
individual messages to the intended Destinations, can be avoided if the
Gateway is given additional functionality. For example, if the intended
(remote) Destinations can only be accessed using One-Unique
transmissions, the number of Source transmissions can be reduced if the
Gateway is supplied with the message and a list of many unique
identifiers. The Gateway can then be responsible for transmitting the
message to the individual Destinations.

c)if the Gateway is promiscuous (i.e. it receives all messages transmitted on
the Source network - implying implicit Gateway identification), it can also
act as a bridge, forwarding messages to the remote network. Given
additional functionality, the Gateway could filter those messages not
intended for the Destination network (for example, messages for multicast
sets not supported on the remote network could be discarded).

6.2.2 Multicast Set Identification by Gateway

Although Gateway multicast set identification implies that the actual
multicast set identifiers are maintained by the Gateway, the Source is still
(not surprisingly) responsible for supplying the message and indicating which
multicast set is to be transmitted to. For example, the members of a multicast
set on a remote network may require a series of One-Unique transmissions,
but the Source may use a single Group identifier to indicate the identity of the
multicast set to the Gateway. It would therefore be the responsibility of the
Gateway to map the supplied Group identifier into the Unique (remote)

Destination identifiers.

When the Gateway is used to identify the intended Destinations of the
multicast set, the Source can use either implicit or explicit Gateway
identification, since both techniques supply the Gateway with the identifiers
which allow the transmission to occur. Both the V-System and MP are

examples of multicast set identification by the Gateway.
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6.2.3 Comparing Source and Gateway Destination

Identification

If the objective of the multicast implementation is to minimize the amount
of internetwork traffic on the Source network (i.e. the traffic between the
Source and the Gateway), an internetwork transmission technique should be
used which produces the minimum number of Source messages. For example,
by using a promiscuous Gateway (which receives copies of all messages) and
identifying the remote Destinations with a single group identifier, the
minimum number of messages will be sent across the local network to the

Gateway (ideally, one). This technique is used by the V-System.

However, the above technique does have certain drawbacks. For example,
the technique does not allow the Source to perform a multicast transmission
on its local network only, avoiding Gateway transmissions, since the
Gateways always transmit the multicast messages they receive onto remote
networks. The obvious solution to this problem is to use a separate multicast

identifier for messages on the local network and another for messages destined

to the Gateway. This technique is used by MP.

There are other arguments for having the Source maintain a list of
Destination identifiers. For example, by maintaining a list of the Unique
identifiers of all possible members of a multicast set, the Source is able to
determine which Destinations are responding. For example, if responses are
expected from all Destinations, the Source must maintain a list of the Unique
identifiers of each of the possible Destinations. However, it would seems more
sensible to develop protocols which, as a first step, build a list of Destination
identifiers based upon the Destinations which respond to the initial
transmission, rather than attempting to rely on possibly outdated multicast

set membership information. By taking this approach, it becomes apparent
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that it may not be necessary for the Source to maintain anything other than a
single Group identifier which is used by the Gateway to identify the intended
remote Destinations, mapping the Group identifier into the required number
and type of identifiers of the remote network. Not only does this approach
result in the minimum of traffic on the local network, it also isolates any
network inefficiencies on the remote network. For example, if the remote
network only supports One-Unique transmissions, having the Gateway
perform the mapping (such as One-Group to One-Unique) would keep the One-

Unique transmission(s) on the remote network.

6.2.4 Summary

From the discussion in this Section, one can make the following

observations:

a)identifying internetwork multicast transmissions separately from the
intranetwork multicast transmissions allows additional flexibility in that
the Source can selectively perform its multicast transmission;

b) Source network traffic can be kept to a minimum if remote Destination
multicast set members are identified using a Group identifier;

¢) network transmission inefficiencies should not be allowed to migrate
beyond the network on which they exist.

The next Section contains an examination of how Gateways such as those
proposed in this Section could be implemented using the multicast

communication primitives and what changes, if any, would be required of the

primitives.

6.3 The Design, Implementation and Testing of Several

Multicast Gateways

In this Section, the design, implementation and testing of several multicast

Gateways using the multicast communication primitives developed in
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Chapter Four is presented. In addition, extensions to the existing primitives to

allow the implementation of the Gateways will be discussed when required.
6.3.1 Implicitly Identified Gateways

6.3.1.1 Design Considerations

Implicitly identified Gateways are to receive all (multicast) messages
transmitted on a specific network. This is equivalent to joining all possible
multicast sets which may exist on a network and receiving all multicast
messages transmitted on the network. An implicitly identified Gateway could
therefore be written as follows (using the existing multicast communication
primitives):

Join (ALL);

repeat
receive (ALL, Message, NULL, Indefinite);

Outgoinglds : = map (Incominglds);
if Outgoinglds < > NULL then
send (Outgoinglds, Message, sizeof(Message));

until
FailureDetected;
leave (ALL);

In the above example, the Gateway first joins all possible multicast sets
(with a join (ALL) - see Section 6.3.1.2 on Primitive Changes). Any multicast
message received from the Source's network is made available to the Gateway.
The incoming multicast set identifier is then mapped into the equivalent
multicast set identifier used on the remote network, if it exists. The message is

then transmitted on the remote network. This cycle continues until an error is

detected.

The map function is intended to take the incoming identifier(s) and, from
their values, produce the equivalent identifier(s) used on the remote network.

The operations performed by the map function depend upon the identifier(s)



INTERNETWORK MULTICAST COMMUNICATIONS 154

available to the Gateway from the Source and how the remote Destinations

are identified.

For example, in the simplest case, if the remote Destinations are identified
by the same Group identifier as the local Destinations (and the Gateway), the
map function would not be required to make any changes to the identifier.
However, if the Gateway can only be uniquely identified (i.e. the join (ALL)
primitive supplies a name server with the Unique identifier of the Gateway), a
protocol must be devised to ensure that the Gateway not only receives the

message, but also receives an identifier(s) to allow identification of the remote

Destinations.

Clearly, in situations other than where the local and remote multicast set
identifiers are identical, the map function must have access to the multicast
set identifiers of the remote network. This could be achieved by using the getid
primitive. For example, if the incoming identifier could be used to represent a
name, the name could be supplied to the getid primitive, which could, in turn,

supply the identifier(s) associated with the intended Destinations.

To avoid the cycle of accessing the name server (or the file containing the
Destination identifiers) each time a message for the same multicast set is
received, the map function should also have the ability to cache the most

recently used identifiers. This issue will be discussed further in Section

6.3.1.3.
6.3.1.2 Primitive Changes

The implicitly identified Gateway presented in Section 6.3.1.1 illustrates

some of the limitations of the existing primitives with respect to internetwork

multicast communications.



INTERNETWORK MULTICAST COMMUNICATIONS 155

For the implicitly identified Gateway to function, it must join all possible
multicast sets. If the present implementation of the join primitive were to be
used by the Gateway, the Gateway would be required to join each multicast set
individually - a potentially slow and error prone activity given that the
number of multicast sets could be changing over time. However, by modifying

the join primitive it is possible to allow a Process to join all multicast sets:

a) a special multicast set identifier, ALL, is required which indicates to the
Join primitive that all multicast sets are to be joined;

b) how the primitive is implemented clearly depends upon how the Gateway is
identified. For example, if the Gateway is uniquely identified, a name
server must be informed of the Gateway's (Unique) identifier and that the
identifier is to be supplied with every request for a multicast set that is
made. However, if the Multicast Communication Layer can receive all
Network Layer messages (for example, all multicast messages are
broadcast to all Hosts), then the Multicast Communication Layer must be
informed (using the join primitive) to supply all received messages to the

Gateway.

Upon receipt of a message (either through a filter or directly from the
receive primitive), the Gateway has no indication of the multicast set to which
the message was intended since the receive primitive supplies only the
message, its size and the identifier of the Source. Therefore, the receive

primitive must be modified in order to allow it supply the multicast set

identifier.

Multicast set identifiers do not indicate the network to which they refer.
That is, when a Gateway transmits or receives using a multicast set identifier,
the Multicast Communication Layer has no indication as to the network the
identifier is intended for. Therefore, multicast set identifiers must be modified

to permit the send and receive primitives to determine the network in

question.
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Finally, the send primitive must be modified so that the (Source) identifier
supplied with the message is the Source identifier of the original transmitter,
not the Gateway's identifier. This is to ensure that the Destination receives

the identifier of the original transmitter of the message, not the identifier of

an intermediate Gateway.
6.3.1.3 Implementation and Testing

In order to examine implicitly identified Gateways and test the modified
primitives described in this Section, an internetwork environment was
required. However, the facilities available in the Computing Laboratory made
such tests impossible to perform directly since only a single Ethernet existed

(without any bridges or Gateways).

Fortunately, it was possible to create logically separate networks by
assigning different Port numbers to different Multicast Communication
Layers, thereby ensuring that multicast transmissions on one "network” were
not received on the other “network”. For example, for intranetwork testing,
One-Group transmissions were sent to the Multicast Communication Layers
associated with Port 9999. By using a different Port identifier for a One-Group

Multicast Communication Layer on the second “network”, say 8999, it was

possible to partition the network:

— Network 1 =——— — Network 2 ———
Host 1 Gateway Host 2
9999 9999 8999 8999
(Ethernet)

Figure 6-2: Logical Partitioning of Ethernet into Two Networks
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The above architecture was used to examine two different implicitly

identified Gateway configurations:

-a One-Group transmission network to a One-Group transmission network,

and

- a One-Group transmission network to a One-Unique transmission network.

The first, One-Group to One-Group, was implemented as a simple bridge
requiring the minimum amount of processing on the part of the Gateway.
Briefly, an incoming local network multicast set identifier available to the
Gateway using the modified receive primitive was mapped into the equivalent
multicast set identifier of the remote network by the map function. This new
identifier was then used for transmitting the message on the remote network.
Note that the send primitive was also modified to allow the Gateway to

indicate that the Source identifier was not to be altered when transmitted.

The second implementation examined a Gateway in which the supplied
multicast set identifier was mapped into a series of Unique identifiers. In this
example, the incoming multicast set identifier from the Source was first
turned into an ASCII string and used by the getid primitive to obtain the list of
unique identifiers associated with the remote Destination members of the
multicast set. Once the list of Unique identifiers were made available, the
Gateway performed a multicast transmission to the multicast set consisting of

the uniquely identified remote Destinations.

A simple identifier caching method was also developed whereby the list of
identifiers associated with the remote multicast set would be kept in the
Gateway's main memory, as opposed to a file or a name server, for about thirty
minutes. If no messages were received for the multicast set after the
expiration of the time period, the storage was released. For example, in the

second Gateway examined (One-Group to One-Unique), upon receipt of a
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multicast set identifier, the map function would examine a list multicast set
identifiers. If the incoming multicast set identifier was not found, the getid
primitive would be used to generate the list of unique Destination identifiers.

The list of unique identifiers were then stored in the list of multicast set

identifiers:

Start —{ MID 100 —1d1 ’- ------- —»{Idn

g

L,/ MID 567 —»[1d1 r ....... —»{Idn

NIL

NIL

Figure 6-3: Cached Identifier Lists

When subsequent (identical) multicast set identifiers were received, the list

would be scanned again, and the list of unique Destination identifiers would

be made available (without using the getid primitive).

Although the cached identifier list does allow the Gateway faster identifier
accessing, it can lead to difficulties. For example, if the membership of the
multicast set changes over a period of time, the cached identifier list could
become out of date. This problem is overcome by shortening the time cached

lists were kept in main memory.
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6.3.2 Explicitly Identified Gateways
6.3.2.1 Design Considerations

Explicitly identified Gateways only receive those messages which are
explicitly transmitted to them. A network designer can therefore implement a
Gateway so that it can either join a gateway multicast set (and wait for
messages sent to the multicast set) or wait for messages sent directly to the
Gateway (i.e. a unicast transmission). In the following example, the explicitly
identified Gateway joins a specific multicast set:

Join (GatewayGroup);

repeat
receive (GatewayGroup, Message, NULL, Indefinite);

Outgoingld : = map(Suppliedlds);
if Outgoingld <> NULL then
send (Outgoingld, Message, sizeof(Message));

until
FailureDetected;
leave (GatewayGroup);

(Note, the above Gateway could have been implemented as a uniquely

identified Gateway - requiring the Source to send individual messages to each

Gateway.)

In the above example, once the Gateway has joined the GatewayGroup
multicast set, it waits for messages transmitted with the Gateway multicast
set identifier. Upon receipt of a message, the identifier(s) supplied with the
message are then mapped into the remote Destination identifiers. If the
(remote) identifiers exist for the multicast set indicated, the Gateway

transmits the message on the Destination network. This cycle is repeated

until a failure is detected.
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As with the implicitly identified Gateways, the map function is to generate

the remote Destination identifier(s) from the supplied identifiers.

6.3.2.2 Primitive Changes

Other than the requirement that the multicast set identifier indicate the
network to which it refers and the send primitive not overwrite the Source

identifier, no changes were required of the multicast primitives. In addition,

the “ALL” identifier was no longer required.
6.3.2.3 Implementation and Testing

The test internetwork environment described in Section 6.3.1.3, whereby
the Ethernet was logically partitioned into subnetworks by using different
Port numbers for the same multicast layer on the different “networks”, was

used in the implementation and testing of explicitly identified Gateways.

Three different types of internetwork communications were considered:

-the Source supplies a Group identifier, while the Destination network

supports One-Group transmissions;

-the Source supplies a Group identifier, while the Destination network

supports One-Unique transmissions;

- the Source supplies a series of Unique identifier(s), while the Destination
network supports One-Unique transmissions.

In the first implementation, Group identifier to One-Group internetwork
communications, the supplied Group identifier was mapped into the Group
identifier of the intended remote Destinations, in the same manner as
described for One-Group to One-Group in Section 6.3.1.3. However, unlike the
implicitly identified Gateway which had to be identified by the multicast set
identifier of the local network, the explicitly identified Gateway permitted the
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Source to supply actual identifier of the remote multicast set — thereby

eliminating the overheads associated with the map function.

The second implementation, Group identifier to One-Unique internetwork
communications, was implemented in the same fashion as that described for
the One-Group to One-Unique implementation in Section 6.3.1.3. The

technique of caching the identifiers was also used in this implementation.

In the final implementation, the Source supplied the actual identifiers of
the intended remote Destinations. Two implementations were examined. The
first involved the Source sending each message with a single Unique
Destination identifier which was supplied directly to the send primitive by the
Gateway with the message for transmission on the remote network, while in
the second implementation, the Source supplied a series of Unique identifiers
with the message, thereby requiring the Gateway to perform multiple
transmissions. In both of the implementations examined, the map function

was not required, since the Source maintained the list of the actual

Destination identifiers.

6.3.3 A Hybrid Implementation

A hybrid Gateway, combining some of the features of both implicitly and
explicitly identified Gateways was also considered in the examination of
internetwork multicast communications as an attempt at reducing the
overheads associated with mapping the incoming identifier(s) into the

equivalent remote network identifiers.

In the hybrid Gateway, two Gateways were required. The first, the parent
Gateway, was designed to accept an explicitly identified message from a
Source containing the multicast set identifier used by the Source to identify

the members on the local network. This identifier was mapped into the



INTERNETWORK MULTICAST COMMUNICATIONS 162

identifier(s) used by the members of the remote multicast set. At this point, a
child Gateway Process was spawned which joined the multicast set on the
local network using the join primitive and the multicast set identifier supplied
by the Source:

getid (“GatewayGroup”, ParentGateway);

Join (ParentGateway);

repeat
receive (ParentGateway, Message, SetUpMessageOnly, Indefinite);

Remotelds : = map (Message ". LocalMID);
spawn (Child, Message *. LocalMID, Remotelds);
until
NetworkError;
leave (ParentGateway);

Thereafter, the Source transmitted all messages with the local multicast
set identifier, a copy of which would be received by the child Gateway, acting
as an implicitly identified Gateway. Since the child Gateway already has the
remote multicast set identifier (supplied by the original parent Gateway), the

overheads associated with the map function were eliminated - resulting in a

faster Gateway:

Join (LocalGroup);
repeat
receive (LocalGroup, Message, NoFilter, CacheLimit);
send (Remotelds, Message . Data, Message °. Size);
until
NoMoreMessages;
leave (LocalGroup);

To ensure that the child Gateways did not exist indefinitely, they were
“cached” in much the same way as the identifier list (described in Section
6.3.1.3). That is, the receive primitive was timed - if a message was not
received from the Source within a thirty minute period, it was assumed that
the Source was no longer transmitting messages to the remote multicast set

and the child Gateway was terminated. To give the Source the opportunity to
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reestablish contact with the members of the remote multicast set, via the
parent Gateway, the child Gateway was designed to inform the Source of its

termination.

Subsequent versions of the hybrid Gateway have been developed in which
the Source transmits a special Gateway message indicating that the child
Gateway should be terminated by the parent Gateway (in much the same way
a virtual circuit is closed once it has been determined that the communication

is to stop). As an example, consider the following Source Process:

getid ("GatewayGroup”, Gateway);
getid (“MulticastGroup”, Destinations);

Message . Type : = SetUpGateway;
Message . ID : = Destinations “. MID;
send (Gateway, Message, sizeof{Message));

{Child Gateway setup — transmit to the multicast set “Destinations” }
repeat

send (Destinations, Data, sizeof(Data));

until
AllDone;

Message . Type : = ShutDownGateway;

Message . ID : = Destinations “. MID;

send (Gateway, Message, sizeof(Message));
The Source initially transmits a SetUpGateway message to the Gateway(s)
belonging to the “Gateway” multicast set. Thereafter, all messages sent to the
multicast set “"Destination” are received by both the members of the local
multicast set and any child Gateway(s). Once the Source has finished

transmitting to the multicast set, it indicates that no more messages will be

sent with a ShutDownGateway message.
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The hybrid Gateway has several advantages over the other types of

Gateway discussed in this Chapter:

a) no changes are required to the join primitive;

b) the “parent” Gateway only receives requests to spawn “child” Gateways —
thereby reducing its workload (unlike the implicitly identified Gateway
which receives all multicast messages, including those without members

on the remote network);

c) the Source Process has the option of including the remote networks in its
multicast transmission since the Gateway must be explicitly identified to

set up the child Gateway;

d) the overheads associated with constantly mapping the incoming identifier
into a remote identifier are eliminated, since the child Gateway is only

associated with a single multicast set.

Finally, for those transmissions which, because of size, do not warrant the
setting up a child Gateway, a Source should have the ability to bypass the
spawning Gateway either by sending its messages to a different Gateway or

indicating to the spawning Gateway that the message should be transmitted

directly onto the remote network with the appropriate mapping.

6.3.4 Summary

In this Section several different multicast Gateway designs have been
considered, all based upon either implicit or explicit Gateway identification.
Both the implicitly and explicitly identified Gateways had certain overheads
associated with them, making many of them costly in terms of the amount of
processing required by the Source (e.g. transmitting a series of One-Unique
messages from the Source), or the amount of processing performed by the
Gateway (e.g. repeated scanning through lists of multicast set identifiers).
Similarly, the amount of traffic produced on the local network could affect the

overall performance of the communication (e.g. in a congested network,
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explicitly identifying the Gateway could prove an expensive proposition since

additional messages are required from the Source to the Gateway).

It was found that many of these problems were eliminated by using a
hybrid Gateway which allowed an explicitly identified “parent” Gateway to
spawn a “child” Gateway which acted as an optimized implicitly identified
Gateway. The price for this feature was an addition protocol on the part of both

Source and Gateway.

6.4. Performance Results

In order to allow a comparison of the three different types of Gateway
described in this Chapter, a simple round trip test (similar to that described in
Chapter Five for comparing the different intranetwork configurations) was
devised. This test consisted of a Source Process transmitting a message to a
Gateway, which then transmitted the message to the destination multicast set
on the “remote” network using a One-Group multicast transmission. The

Destination Process then responded directly to the Source Process:

Source Destination
Process Gateway Process

Tl EI )

Figure 6-4: Gateway Testing Configuration

Each Gateway was subjected to the same test, notably the transmission of one
thousand 512-byte messages. In all tests, the Gateway's map function
performed a simple caching operation, mapping the supplied identifier into
the Destination's multicast set identifier from a list containing a single
identifier The average time taken for the round trip of each message is shown

in Figure 6-5. Two sets of tests were performed, the first was to a “slow”
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Gateway (a Whitechapel) while the second was to a “fast” Gateway (the SUN-
3). In all tests, the Source Process resided on a VAX-750 and the Destination

Process was on the Orion.

Type of Gateway
Gateway
Hybrid
Host Implicit | Explicit yor
Round tri Round tri
(Round trip) | (Round trip) Round trip | Setup Time
Whitechapel 142 161 142 1370
SUN-3 78 97 ki 790

Figure 6-5: Comparison of Gateway Speeds

The following observations can be made regarding the results from Figure

6-5:

- as one would expect, the faster the Gateway, the faster the throughput;

-Implicit Gateways are, not surprisingly, the fastest, since only one

transmission is required by the Source;

- Explicit Gateways are the slowest, since two transmissions are required in
order that both local and remote Destinations receive a copy of the

message;

- Hybrid Gateways are as fast, if not faster, than Implicit Gateways - if the
time required to set the Child Gateway is ignored. This is because the child
Gateway no longer requires the map function.

From these observations, one can conclude that if the number of messages

to be transmitted is small, the overheads associated with using the Hybrid

Gateway may make using the Implicit Gateway more attractive to use.
However, if the Gateway is to cache a large number of identifiers, the time

required to search for each identifier within this list may make the Hybrid

Gateway faster than the Implicit Gateway.
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6.5 Concluding Remarks

The objective of this Chapter was to consider different methods of
internetwork multicast communications and to determine which, if any,

offered the best form of (multicast) communications.

Two basic techniques were considered - those in which the Gateway was
explicitly identified (i.e. the Source explicitly transmitted a message to the
Gateway, in addition to those already transmitted on its local network) and
implicit identification (i.e. the Gateway was promiscuous and received all

multicast messages transmitted on the local network).

From this examination, the following observations were made:

a) irrespective of how the Gateway is identified, any network inefficiencies on
the remote Destination network should be isolated to that network. For
example, a Source on a One-Group network should not be expected to
repeatedly transmit a message to Destinations on a One-Unique network
since this can lead to network congestion on the local (Source) network;

b)if a Source expects to transmit a large number of messages through a
Gateway, the proposed hybrid multicast Gateway should be considered
since it reduces the amount of work required by the Gateway (and
potentially the Source);

¢) protocols should be developed which permit a Source to use a group
identifier to identify the intended Destinations, but use a list of unique
identifiers for Destination identification.

d) the proposed multicast communication primitives could, with minor
changes, be used with multicast Gateways;

e) although implicitly identified Gateways resulted in less traffic on the local
(Source's) network, all multicast messages sent on the local network were
also distributed on remote networks by the Gateways. This problem was
overcome using explicitly identified Gateways, at the expense of having

additional traffic on the local network.



INTERNETWORK MULTICAST COMMUNICATIONS 168

After several detailed examinations of different Gateway
implementations, a hybrid Gateway was developed. The hybrid Gateway was
attractive in that it allowed the Source to determine whether the message
should be sent to remote networks (an explicitly identified Gateway feature),
but the actual message transmission was performed by implicitly identifying
the Gateway. The cost of this simple extension was the development of a
protocol which required the Source to inform the Gateway that messages were

to be supplied for a specific multicast set on a remote network.
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Chapter 7
Concluding Remarks

The purpose of this Chapter is threefold. First, to review the issues and
concepts relating to multicast communications in light of the original aims of
the thesis. Second, to discuss the research presently underway at the
Computing Laboratory which is utilizing the work described in this thesis.
And finally, to suggest directions for future research into multicast

communications.
7.1 Discussion

The following Section reviews the aims originally outlined in the
Introduction to the thesis and presents a discussion of these aims in light of

the various issues regarding multicast communications that have been

examined.
7.1.1 Multicast Taxonomies and Classification Schemes

The first aim was to devise taxonomies which would allow network
designers to describe different types of multicast communications. Three

taxonomies were developed.

The first of these taxonomies, a multicast transmission taxonomy, was
developed to permit the description of multicast transmission in terms of the
types of identifier and the numbers of identifier that can be associated with a
message. Initially, the multicast transmission taxonomy was used for

describing the costs of performing multicast transmissions in a single layer of



CONCLUDING REMARKS 170

a distributed system (using the Transmitter-Receiver model). However, by
applying the taxonomy to a layered architecture, it was possible to describe
the actions required in many different situations requiring multicast
communications, such as inter-layer communications, communications with

Gateways, and message distribution.

The second taxonomy described different methods of multicast response
handling using a Source-Destination model. This taxonomy was simply an
enumeration of the different types of Response that a Source could expect to
receive after transmitting a Request. When applied with the types of identifier
possible in a multicast transmission, the taxonomy proved a useful tool for
comparing how different distributed systems and networks allow a Source to
determine which members of a multicast set received a copy of a previously

transmitted message.

The final taxonomy used a Host-Port model and the multicast transmission
taxonomy to describe multicast communications in distributed systems where
transmitting and receiving entities were identified using a pair of identifiers
(one to identify the intended destination Host, the other the Port, to which the
entity is associated). This taxonomy proved particularly useful in the

development of the various multicast communication layers using UNIX

sockets.

All of the taxonomies developed in this thesis have been shown to be useful
in the analysis and comparison of various existing and proposed multicast
schemes, as well as suggesting other interesting possibilities such as the

development of the multicast communication primitives.
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7.1.2 Multicast Primitives

The second aim of this thesis was to develop a set of multicast primitives
that would be implementable on a variety of distributed systems and
networks, without being specific to any particular distributed system or
network. By using the multicast transmission and reception handling
taxonomies as well as considering several different multicast communication
applications, a set of eight multicast communication primitives were

developed.

The primitives were described in terms of multicast communications and
multicast set management. The primitives for multicast communication (send
and receive), unlike “unicast” primitives, supported both unicast and multicast
communications directly. The receive primitive, unlike the receive primitives
in other multicast implementations, allowed a “filter”, enabling the Receiver
to indicate which messages, if any, were to be accepted (the development of the

receive primitive was a direct result of the multicast reception taxonomy).

The multicast set management primitives were developed to allow an
entity (such as a Transmitter or a Receiver) to have control over the
membership of multicast sets. Although many of the multicast set
management primitives developed were similar to primitives developed
elsewhere, the basic design did allow implementation on a variety of
networks. For example, the newid primitive was developed in such a manner
as to allow the creation of new, unique multicast set identifiers without

requiring additional network traffic to determine if it was unique.

Finally, although the intention of the development of the primitives was to
make them independent of any particular network, it was shown that in some
situations, it was necessary to have access to the type of identifier used to

identify the member of a multicast set. The bestid primitive was an example of
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such a case, returning either a multicast set identifier or a unique identifier,

depending upon the type of network being used.
7.1.3 Implementations and Results

The final aim of the thesis was to demonstrate that the proposed multicast
primitives could be supported on a variety of distributed systems,

intranetworks, and internetworks.

Before any implementation of the primitives could take place, it was
necessary to develop a set of four intranetworks. This was done by adding a
layer of software onto the existing UNIX socket software to permit the
emulation of the intranetworks. With the design of the multicast
communication layer complete, it was then possible to implement and test the

multicast primitives on a variety of intranetworks.

The intranetwork tests confirmed many of the ideas suggested by the
multicast transmission taxonomy, such as the speed of a multicast
transmission is governed by the speed of the network and the speed at which
messages can be distributed on the receiving Host. In addition, from the
observations made of the internetwork tests, a set of guidelines were proposed,
permitting a network designer to tailor the type of multicast implementation

to the equipment available.

With minor modifications, it was shown that the primitives could be
extended to support internetwork multicast communications. It was shown
that in an internetwork multicast communication, two types of Gateway
identification were possible - implicit, where the message sent by the Source
was received by the Gateway without a special transmissions and explicit, in
which the Source sent messages to both the members of the multicast set and

the Gateway. Although both methods were shown to have advantages and
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disadvantages, such as the number of transmissions required and the changes
required to the primitives, both required a mapping function that added
additional overhead to the Gateway, since each incoming local identifier

(usually) had to be mapped into one or more remote identifiers.

An interesting outcome of the examination of internetworks was the
development of a “hybrid” multicast Gateway which combined many of the
features of both the implicitly and explicitly identified Gateways. With minor
changes to the primitives and the development of a multicast Gateway
protocol, efficient internetwork multicast communications were shown to be

possible.
7.2 Ongoing Research

One of the benefits of the research described in this thesis has been the
development and implementation of a multicast communication facility which
has proved suitable for the ongoing research into reliable distributed systems
at the Computing Laboratory. A version of the Multicast Communication
Layer has been implemented and optimized to support One-Group
intranetwork multicast communications using the Computing Laboratory's
Ethernet. The major optimization of this Multicast Communication Layer is
the restriction that the members of a multicast set are all identified with a
single (One-Group) identifier. At present, the principal user of the new
Multicast Communication Layer (commonly known as MCL) is a research
project examining remote procedure calls and orphan detection to multiple

destinations[Shrivastaval1986al.

In addition to specific research projects using the multicast communication

facilities, the author has developed several applications intended specifically
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as “communication tools” for multicast communications. These applications
include [Hughes1986a]:
a)a conference call facility which allows any number of users to

simultaneously communicate with one another;

b) a file distribution service which transmits a copy of a file from one machine
to the set of machines specified by the user;

c) a facility to list the names of the currently active users are on the different

machines on the network.

These applications have been developed to demonstrate other potential uses of

multicast communications.

7.3 Directions for Future Research

As well as the ongoing research and applications described in the previous
Section, there are other areas of communications which can both benefit from
and contribute to the study of multicast communications. For example,
another area of research soon to be undertaken in the Computing Laboratory
which may require the use of MCL is a study of message distribution on a
series of capability machines [Mancini1986a]. In addition, members of the
COSMOS research project at Lancaster University intend to use the

primitives as part of their research into distributed systems [Nicol1986a,

Shrivastaval986b].

Several directions for future research into multicast communications

which the author believes are worthy of consideration include:

a) the development of additional multicast applications and multicast
protocols, and

b) the development of computer architectures which allow message
distribution within a machine.

Although many different multicast applications have been discussed and

implemented in the course of this thesis, there are obviously other
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applications which could also benefit from the use of multicast
communications. This applies equally to multicast protocols, since few have
been described in the literature, possibly because many distributed systems do
not actively support multicast communication facilities. The primitives

discussed in this thesis are intended to help overcome both of these anomalies.

As it now stands, “"true” One-Group multicast transmission can only occur
at the network level (as demonstrated by the Ethernet), but the distribution of
messages within the machine requires a series of One-Unique transmissions.

Two interesting projects could possibly be developed from this:

a)implement a shared socket facility in UNIX to allow multiple, unrelated
processes to have access to a single message (i.e. allow the Processes to
become members of a “true” Process group -- something UNIX does not
presently support other than through implementations such as MCL). To
reduce the amount of message handling required by the distribution
facility, sockets could be implemented with the “copy-on-write” semantics
described for the Accent Network Operating System [Rashid1985a]. By
adding this feature, not only would sockets offer One-Group multicast
reception within the Host, but the amount of unnecessary message copying

would be reduced;

b) implement, within a machine's hardware, the ability to perform true One-
Group interprocess communications on a single machine in order to reduce
the overheads associated with multicast message distribution. This project,
probably implementable in VLSI, would reduce or possibly even eliminate
the distribution overheads discussed in Chapter Five.
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