
.'

SEMANTICS, VERIFICATION AND DESIGN
OF CONCURRENT PROGRAMS USING ATOMIC ACTIONS

by

E. BEST

PhD Thesis
Submitted to the University of Newcastle upon Tyne

August 1981 -NEWC,I\STlE UPON TYNE
,_ UNIVEP,'!"'Y UBfiARY I------jACCESSI~:::-I

.•. 1

LOCATION J<>.

)L,df~
.......... L.__?)_~ ",.;;;:::_j __

Dedicated to the memory of

ATHANASSIOS KAPPOS

Acknowledgements .
In the first place, I would like to extend my thanks to my supervi-

sors, Peter Lauer and Brian Randell. Peter's and Brian's sympathy and
readiness for discussions have guided me throughout the time I spent on
this work and have greatly influenced its outcome. I am grateful for
their comments on many drafts and "first versions" of this thesis. I am
also happy to have been a member of their respective Research Projects
during the five enjoyable years I spent in Newcastle. I am grateful for
having had the opportunity to learn what I did learn during this time.

I would also like to thank my colleagues in these Projects who
always had ope~ minds for my problems and worries. Flaviu Cristian was
instrumental in getting me to think about program specifications in the
way described in section 2.5. Discussions with Graham Wood and Santosh
Shrivastava have helped in finding the present form of chapters 3 and 4.
Graham, in particular, drew my attention to the fact that the notion of
an "immediate predecessor" needs to be modified for cyclic graphs (sec-
tion 3.3.5); Santosh found a mistake in an earlier definition of a "con-
traction" (section 4.4). I also owe thanks to Pete Lee for critically
reading drafts of chapters 3 and 4, and for giving me the right informa-
tion at the right time, about an Operating System whose name shall
remain unquoted. Section 6.4 is an outgrowth of many pleasant discus-
sions I had with Fabio Panzieri about the algorithm described there.
Finally, but by no means least, it is a pleasure for me to recall
several enjoyable conversations with Mike Shields; sadly, it seems we
didn't make as much of these as we possibly could have done. The influ-
ence of Mike's work, in particular his "firing sequence" formalism, on
this thesis needs no further pointing out (section 5.2.2).

I am also indebted to Professor E.W. Dijkstra and Dr. H. Broy, dis-
cussions with whom (on the occasion of the 1981 Summer School on Func-
tional Programming) helped me to appreciate the role of auxiliary vari-
ables in the Owicki-Gries proof method (section 5.2.5). The ideas on
backtracking described in section 2.6 partly originate from discussions
with Peter Henderson and one of his students, Simon Jones. My efforts
in understanding the program described in section 6.2 were shared by
P.J. Smith, a student in Newcastle. lowe thanks to John Rushby for
kindly letting me use some of his many utility programs.

My warmest thanks are reserved for my wife, Honika, and my two lit-
tle children, David and Robert, who regretfully all too often had to put
up with an absent-minded husband/father. I sincerely appreciate all the
support given to me by Honika; and David and Robert were foremost in my
mind when I wrote the closing remarks of this thesis.

This work has been supported by the Science Research Council of
Great Britain.

ABSTRACT

In this thesis we investigate the semantics and the design of con-
current programs using atomic actions.

On the semantic side, we define and compare two semantics for
atomic actions: one which characterises atomic actions in terms of the
executions they may give rise to and one which characterises atomic
actions in terms of the effect relations associated with them.

We also give a relational semantics for "backtrack" programs which
are claimed to be, in effect, simple concurrent programs.

We also study the semantic independence of programs.

On the design side, we present the design and proof of a few small
but substantial concurrent programs.

2. RELATIONAL
2.1
2.2
2.3
2.4
2.5
2.6

CONTENTS

L
1.1
1.2
1.3

INTRODUCTION •• 1
Motivating Remarks ••.••••••••••••••••••••••••••••••• ·•••••••• ······1
Thesis Structure •••..•.••••••••••••••••••••••••••.••.••..••.•••••• 13
History and Relation to Other Work •••••••••••••••••••••••••••••••• 17

SEMAN'TICS ••• 22
Introductory Remarks •• 22
Forward Relational Semantic s•••.•••.....•.•.....•••.•.••.••• 25
Predicate Transformers •••••••• · .••....•••.•..••.•• 31..............
Non-Determinac y ••..•.•....•.........••..••.•
Correctness· Criteria and Examples •••••••••••

· .•...........•..... 35
· .•............•..•. 39

Pure Backtrack Programs •.•••.••••.•••..•••.••••.••......•.••.••••. 49
..•....••• 62

Introductory Remarks •••••••••••••••••• •·•••••·••••··•..•. 62

Motivation ..•....•..•......•........•..•. ..•...•.••.•..••.•• 73
. .•.•.....•••.•••.. 75Collapsing of Subgraphs ••••••••••••••••••••

Structured Occurrence Graphs and Levels of Abstraction ••••••••77
Immediate Predecessors and Maximality Axiom ••••••••••••••••••• 81

K-Densityand Bounded Non-Determinacy •••...•.....•......•......... 83

. • • . • • • . • • . • . . 894. DYNAMIC ATOMICITY CRITERIA ••••••••••••••••
4.1
4.2
4.3
4.4
4.5

5. RELATIONAL SEMANTICS OF PROGRAMS USING ATOMIC ACTIONS ••••••••••••••• 120
5.1
5.2 Syntax, Semantics and

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

5.3 Relational
5.3.1
5.3.2
5.3.3

5.4
5.5

Motivation •••••••••••• . .••.•.• 89Introduction and
Global Atomicity Criterion:
Local Atomicity Criterion: Interference-Freeness ••••••
Inherently Atomic Occurrences and Two-Phase Occurrences •••••••••• l09

.........
Serialisability •••••••••••••••••••••• l0l

•••••104

Discussion•...........•.... 116

Introduc tion 120
Correctness of Concurrent Programs •••••••••122

Syn tax •.•••.•••••....••••.••...••.•••..••••.•••••.•••.••••••• 122
Semantics. •.•.••••••....•.•• ••.•.••.•.••.••.•.••..•.••.... 129
Two Remarks•............................•••••• ·•· ••••• 146
Correctness •• 148
Relation to The Owicki-Gries Method •••••••••••••• •••••••••••• 149

Characterisation of Atomic Actions ••• •••••••••••••• 159
Introductory Remarks........................ •.•.••.•••.••. 159
Effect-Replaceability •• 160
Relationship Between Static and Dynamic Atomicity Criteria •••166

Semantic Independence of Actions •••••••
Possible Syntactic Extensions ••••••••••

•..•..•.•.•••.•..•••.• 179
• •.•.••..•.•...•..•••. 187

6. CASE STUDIES IN THE DESIGN AND VERIFICATION OF CONCURRENT PROGRAMS ••l90
6.1 Introduc to r y Remarks•...........•.....••.•.......•• 190
6.2 A Concurrent Fixpoint Program •••••••••••••••••••••••••••••••••••• 191

6.2.1
6.2.2
6.2.3
6.2.4 Discusslon ••••••.••••••.•..••••••.•.••.••••••••••••.••••••••• 200

6.3 Finding an Euler Cycle ••• 201
6.3.1 Introduction and Sequential Solution ••••••••••••••••••••••••• 201
6.3.2 Concurrent Solution Using Vertex Processes ••••••••••••••••••• 203
6.3.3 Concurrent Solution Using Edge Processes ••••••••••••••••••••• 207
6.3.4

6.4 A Fail-Safe Distributed Extrema-Finding Algorithm •••••••••••••••• 212
6.4.1
6.4.2
6.4.3

Introduction ••••••••.••••••••••••••••••••••••••••••.•...••••• 191
Derivation of Dijkstra's Proof ••••••••••••••••••••••••••••••• 194
A Control Sequence Proof ••••••••••••••••••••••••••••••••••••• 198

Discussion ••• 210

Introduc tion•.................... 212
The Basic Algorithm •••••••...•..•••.••..••••••.••••••.•.••••. 213
A Fail-Safe Algorithm .•.•.••.••.•.•.•••.••••••.•••••••••••••• 222

7. CONCLUSION AND GENERAL DISCUSSION ••••••••••••••••••••••••••••••••••• 224

A. APPENDIX

REFERENCES

1. INTRODUCTION

1.1 Motivating Remarks

By a "concurrent program" I do not have in mind the opposite of a
."sequential program". Rather, I tend to take the view that every (non-
trivial) program contains elements of concurrency. A sequential pro-
gram, for instance, usually involves two or more coexisting and at least
partly independent variables. In a sequential program, concurrency is
restricted in a special way, relating to the "flow of control". In my
understanding, th~ adjective "sequential" merely refers to the "stan-
dard" order in which the commands contained in such a program can be
executed; by "at andard order" I mean the order in which the commands in'
question are arranged by control constructs such as concatenation, which
is also usually the order in which they are executed on a sequential
machine.

This standard order of executing a sequential program to achieve a
desired effect does not necessarily have to be the only way in which the
same effect can be achieved. For example, the standard way of executing
the simple program P1.1 below would involve the setting of x to 0, fol-
lowed by the setting of y to 1.

x:-O; y:-l

Program Pl •.!.

However, if one is only interested in the end result established by
Pl.l, i.e. in the relation

x-O & y-l (1.1)

then a different order, say first setting y to 1 and then setting x to
0, would be equally acceptable.

Of course, there are programs whose order of execution really
matters. For example, in

- 2 -

x:=x+1j x:-2*x

Program .!!_._!

the order of executing the two assignments is indeed vital; executing
first x:-2*x and then x:-x+1 will give a different result, whatever the
initial value of x. In general, the straightforward sequential execu-
tion of a sequential program will always establish the "strongest
postcondition" which can be associated with that program; not neces-
sarily, however, does there exist any other ordering with the same pro-
perty.

If a programmer wishes to specify that two commands should occur in
strict sequence then the "semicolon" sequencing operator, which is part
of almost all programming languages, is an adequate tool. If, however,
the programmer does not wish to specify any particular ordering between
the commands he wishes to be executed then ordinary programming
languages, as a rule, do not allow him to avoid doing so. In my under-
standing, the "parallel operator" II serves, in the first place, the
purpose of allowing this sort of abstraction; i.e. it allows the pro-
grammer to group together a set of commands all of which he wishes to be
executed in an unspecified order (or in no order at all).

There may be many reasons why a programmer should wish to make
explicit use of this abstraction facility. An important one is effi-
ciency. Any standard implementation of the above program PI.1, say,
would first lead to the setting of x to 0 and then to the setting of y
to 1. A more clever and efficient implementation can be conceived which
somehow "detects" that these two commands are independent and translates
them, perhaps on a "concurrent machine", into two concurrent (i.e. unor-
dered) write accesses to x and y, respectively.

It can be imagined that the detection of such "independencies"
between commands is a difficult task in general (we shall have more to
say about this later).
explicitly, by using

The programmer may therefore wish to indicate
the parallel operator, which commands could be

- 3 -

executed concurrently. For example, in

x :-0 II y:-1

Program Pl.!

it does not require so much of a "clever" implementation in order to
realise that the two assignments could be executed in parallel.

Whatever the reasons for using the parallel operator may be, I
would like to: stress my understanding of its important properties: it
requires all of the commands it connects to be executed eventually, but
leaves the order in which they can be executed unspecified. This latter
property holds with some qualifications as to what should happen in case
those commands are not independent. Indeed the main body of this thesis
is concerned with the parallel .combinations of commands which partly
interact, and partly are independent. We discuss interaction shortly.

Thus, in this view the parallel operator is a means of abstraction
(to abstract from irrelevant orderings), much similar to the usual non-
deterministic operator which is also a means of abstraction (to abstract
from irrelevant choices). The important difference between the parallel
operator and the non-deterministic operator is that the former requires
the execution of all commands it connects While the latter requires only
the execution of one of the commands it connects. We shall find cause
for discussing this distinction in great detail in this thesis.

If, in a parallel combination

(1.2)

the two commands cl and c2 are independent then (1.2) is (by defini-
tion!) semantically equivalent to either c1;c2 or c2;c1 (independence
ensures that the latter two are equivalent as well). If, however, cl
and c2 are not independent (let us say, through accessing a common vari-
able) then (1.2) is, as yet, ill-defined.

- 4 -

Let us (for the sake of the argument) contemplate the definition of
the parallel op~rator in such a way as to require the commands it con-
nects to be independent. This would be attractive on more than one
count. Firstly, its semantics then become trivial: we can just equate
it with anyone arbitrarily chosen sequential concatenation of the same
commands. To all intents and purposes, the properties of the parallel
combination of independent programs come out as the sum of their indivi-
dual properties. Secondly, its implementation may become easier: we
know then that there must exist a concurrent implementation.

However, I would not like to adopt this approach on the following
two grounds. Firstly (and we shall go into this in more detail in this
thesis) the notion of "independence" between commands is in itself
surprisingly difficult to capture. The condition that the commands in
question operate on different sets of variables is only a sufficient
condition for the independence of these commands; it is however by no
means necessary. We can see this immediately by comparing the two com-
mands x:-Y*0 and y:-l which are independent but operate on a common
variable. On the other hand. the condition that all possible sequential
concatenations of the programs in question are equivalent (which is also
sometimes called the "Church-Rosser" property) is only.! consequence of
the independence of these commands; it is by no means sufficient for
them to be independent. Thus, we seem to need a fairly elaborate argu-
ment in order to characterise precisely this notion of independence.

Another (for me much more important) reason for allowing interact-
ing programs to be combined by the parallel operator is that this is by
far the more interesting, as well as practically useful, case. Very
frequently one wishes to structure one's system into a set of commands,
or "processes", which are independent "except for certain points of
interaction". For the moment we can take "interaction" to mean simply
the opposite of "independence". Depending on the form these interac-
tions may take, we may distinguish various "models of interaction", and
perhaps introduce (in addition to the parallel operator but to be used
in connection with it) certain "primitives" which the programmer is free
to use in order to effect the interaction he desires.

- 5 -

One such "model of interaction", which we will be particularly
interested in, is what I call the "shared data model". This model, in
its simplest form, is based on the assumption that all variables are
"global" in the sense of being globally accessible by all parts of the
program. It is evident that there must then be a rule governing the
simultaneous accesses to those variables. Atomic actions, as I see
their role, are in the first place a means by which the programmer can
control and regulate such accesses. "Shared data programs" have fre-
quently been considered, notably by OWicki and Gries in [88] and by Lam-
port in [67];:. we outline the connections between our work and other
related work in section 1.3 below. Throughout this thesis, I shall use
the angular brackets < and> to enclose atomic actions; we shall con-
sider an example in a moment.

Let me first stress that, with the above, I view atomic actions
firmly as a notational tool which the programmer is free to use in order
to express certain intentions. Atomic actions are therefore on a con-
ceptual par with other programming tools such as, say, the conditional
statement or, perhaps more fittingly, the Algol 60 block brackets
begin-end. This is as opposed to a different possible view, whereby
atomic actions are something "hardware-given" which the programmer is
allowed to take account of, but is not allowed to redefine or otherwise
interfere with. Our notion of an atomic action, emphatically, does not
have any hardware connotation at all. The programmer thus being given
the freedom in defining his own atomic actions as he needs them, we have
to make sure that this freedom is exploited properly. For example: can
we allow the nested use of atomic actions? This, and other related
questions, will be answered in this thesis.

Let us now consider an example. Suppose that the action x:=O in
program Pl.3 is to be implemented in the (admittedly stupid) way of
loading the value of y into x and then subtracting y from x:

(x:-y; x:-x-y) II y:-l

Program !!_.~

- 6 -

In Pl.4 there are now three explicit accesses to the variable y. Even
granted that these three accesses are mutually excluded amongst each
other, there is still the possibility that first x:=y occurs, followed
by y:-l and finally x:-x-y. In this case, assuming y has a well-defined
value other than 1 initially, Pl.4 behaves differently from Pl.3.

If we want to make Pl.4 and Pl.3 equivalent, we need some means of
expressing that the two assignments x:-y and x:-x-y "belong together".
The atomic action brackets <> provide this means. By writing

<x:-y; x:-x-y> I I <y:-l>

Program Pl.~

the programmer is allowed to explicitly combine wi thin an I "atomic
action" those pieces of program which he wants to "belong together". We
postulate that, by definition of the semantics of the atomic action
brackets, the program Pl.S is semantically equivalent to Pl.3 (and thus
also to Pl.1). (This is, of course, under the assumption that y has a
well-defined value initially.)

Programs using the parallel operator and atomic .actions are the
main subject of this thesis. Before focussing on such programs, I would
like to point out briefly other instances of what I have called "models
of interaction". We shall marginally discuss the notation called CSP
(for ··communicating sequential processes"), developed by Hoare [52] and
others. In this model, variables are local to individual processes and
cannot be accessed by others except through well-defined channels of
communication. Communication occurs "handshake-wise", i.e. output and
matching input are fully synchronised. Similar models are Lauer's COSY
[73] and Milner's CCS [84].

In the above description, CSP seems to differ drastically from the
shared data model outlined earlier. However, I think that as the formal
semantics of CSP continues to be developed, we shall come to realise
that programs written in CSP can be translated into programs written in
the shared data notation, and vice versa. I believe, therefore, that it

- 7 -

will become a question of convenience rather than principle which nota-
tion can best be used to solve any given problem. We shall discuss the
translation of CSP programs into shared data programs very briefly in
this thesis.

We now concentrate on programs using, in addition to the more con-
ventional sequential control structures, the parallel operator and the
atomic action facility. The core of this thesis consists of formal
definitions for a syntax, an associated semantics, and the correctness
of such programs~ Besides, we also discuss the design and proof of
several small example programs.

In defining the formal semanti~s of such programs, we shall lay
particular stress on the semantics of the atomic action brackets.
Intuitively, atomic actions "occur instantaneously" (or "as single
shots", as I once heard Dijkstra say in one of his lectures). These
intuitive phrases did not, and do not, satisfy me because I felt it
should be possible to find a more precise definition for the property
they circumscribe. To find such a definition is one of the objectives
of this thesis.

Frequently, one can find atomic actions being described by a sen-
tence involving an "as if•••" clause; such as: "atomic actions occur as
if they did not take up time." Such descriptions often strike me as beg-
ging the question. Let us examine some of the literature for existing
definitions of atomic actions. The first one I came across was the one
by Lomet which can be found in [77]. I reproduce Lomet's definitions in
~ull (using his numbering) because they illustrate the sorts of ques-
tions to be investigated in this thesis:

"The important properties of atomic actions can be expressed in a
number of equivalent ways. We illustrate three.

1. An action is atomic if the process performing it is not aware of
the existence of any other active process (can detect no spon-
taneous state change) and no other process is aware of the
activity of this process (its state changes are concealed)

- 8 -

, \

during the time the process is performing the action.
2. An action is atomic i,sthe process performing it does not com-

municate with other processes while it is executing the action.
3. Actions are atomic if they can be considered, so far as other

processes are concerned, to be indivisible and instantaneous,
such that the effects on the system are as if they were inter-
leaved as opposed to concurrent."

To my mind, these definitions raise more questions than they answer.
For a start, it :seems premature to call them "'equivalent", since several
key phrases used in them, such as "communication", have not been made
precise. Granted that we know how to make 'these definitions precise,
the statement that they are equivalent then seems to me a rather
interesting theorem which I would have liked to see in full proof.

But let us examine (1)-(3) individually. As to (1), the phrase
"being aware of the existence ofis so loose that I can associate
almost nothing with it. The phrase "is aware" does not seem to be the
same as the phrase "can detect"; why? And what about "spontaneous"?
Presumably, (1) is intended to mean that other processes should refrain
from "interfering" with the process in question while its atomic action
is being executed. Understood in this way, (1) begins to make sense to
me, and interference-freeness will indeed serve as one of our character-
isations of atomicity.

Let us examine (2). By "communication" I always tended to under-
stand communication in the "proper" sense, i.e. a process producing some
value (of a variable) which is then read by another process. However,
we shall presently show an example of a non-atomic action in which, in
contradiction to (2), no such communication takes place. Consider

<x:-O;y:-O> I I <y:-l;x:-1>

Program Pl.~

According to our understanding of atomic actions, this program will
establish the final relation

- 9 -

(x=O & y-O) V (x=L & y-l) (1. 3)

However, let us consider an execution of P1.6 in which first the two
.assignments x:-O and y:-1 occur (perhaps concurrently) and then the two
assignments y:-O and x:-1. This establishes (x-l & y-O), contradicting
(1.3); yet no communication in the above sense has taken place.

It follows that we have to be very careful in defining what is
meant by "communication"; it is not clear to me how this could easily be
done. But let us turn to Lomet's third characterisation (3). The
reference to indivisibility and instantaneity, of course, begs the ques-
tion. The phrase that "the effects on the system are as if atomic
actions were interleaved as opposed to concurrent" is however useful and
can indeed, slightly rephrased, serve as an intuitive description of the
atomicity criteria we.will develop. A similar characterisation can be
found in [34]: "We ••• postulate that the net effect of our concurrently
operating processes is as if atomic actions were mutually exclusive,
i.e. the execution periods of atomic actions don't overlap."

The questions I associate with this definition are the following.
Firstly, I am still unhappy with the rather informal "as if.....clause.
Secondly, we are now defining the semantics of atomic actions, not in
terms of their individual properties, but in terms of their surround-
ings; no longer do we have a definition of the form "an action is atomic
if but we have "actions are atomic ifor "processes using
atomic actions behave as if Can we not find a defining property
associated with an atomic action all by itself? Thirdly, what is the
above a property of? Is it purely a program which we are examining,
i.e. are we defining the properties of atomic actions purely in terms of
the program text? Or are we considering the set of executions of such a
program, defining atomic actions in terms of these executions?

We may also consider Lamport's comments in [67]. He states that
..atomic actions do not have internal control points". However, we can
perfectly well imagine, say, program Pl.6 to be executed in the follow-
ing way:

- 10 -

x:~O; y:mO; y:-1; x:-1

which establishes (1.3) and gives rise to three well-defined intermedi-
ate states; we can, for example, without problem define the state "after
y:-l" (which is an internal control point for the second atomic action
in Pl.6!) as (x,y)-(O,l). Perbaps it would be more to the point to say
that "atomic actions behave as if they did not have internal control
points". Here again, we have to elaborate on the phrase "as if

Our approach to the definition of atomic actions will be based on a
distinction between programs and their executions. We will first con-
sider a single execution of a given program and define what it means for
action executions to "occur atomically". This I call the "dynamic"
characterisation of atomicity. Next we will consider a program as a
whole and define what it means for one of its parts to be an "atomic
action". This I call the "static" or "textual" characterisation of
atomicity. We shall also derive a set of simple propositions linking
dynamic and static atomicity criteria to each other.

Let me briefly describe the content of these criteria. Our dynamic
criterion states that, in essence, atomic action executions must be
interference-free with respect to each other. For the entire execution,
this means that atomic action executions must form a partial order. Our
static criterion states that atomic actions must be "effect-
replaceable". That is to say, whenever an atomic action is replaced by
a piece of program with the same "overall effect", then the semantics of
the program in which the action is embedded does not change. This we
shall have reason to consider as the characteristic property of atomic
actions.

In formulating this latter criterion, we need to define precisely
what is meant by "overall effect". To this end, we shall make use of
what is known as "relational semantics". We shall work out an intimate
connection between relational semantics and atomic actions. On the
other band, for our dynamic characterisation we need the notion of an
"ordering" between atomic action executions. We capture this notion by
making use of the so-called occurrence net model for the description of

- 11 -

executions • Both relational semantics and occurrence nets will be dis-
cussed in detail in this thesis.

Before giving a more detailed overview of the thesis, I wish to
mention briefly some other issues which are also discussed in it.
Returning to the parallel operator II, I have said that this operator is
similar to the non-deterministic operator (say, "OR") in the sense that
both provide a means of abstraction (the former from ordering, the
latter from choice). Their essential difference is that the II requires
all commands it connects to be executed while the OR operator requires
only one of. the commands it connects to be executed. We will discuss
this distinction in some detail. In particular, we shall argue that an
operator which is known as the "backtracking choice" operator (see for
example Cohen in [27]) is very akin to the parallel operator, rather
than to OR. We ~hall define an operator called AND which behaves like
the backtracking choice and is formally dual to OR. However we will not
completely clear up the connections between AND and the usual 1I.

The requirement that all commands connected by the 1 1 operator must
eventually be executed gives rise to a special problem in connection
with infinite loops. This is known as the "fairness problem" and we
shall discuss our approach to it. Consider the following program, taken
from [90].

<x:-l> lido <x-o> ~ <y:ay+l> od

Program PI.z.

(In paasdng , we will also define precisely the semantics of an "atomic
guard" such as <x-o> in PI.7.) Suppose (x,y)-(O,O) initially. TIleques-
tion is whether or not Pl.7 should be required to terminate always, or
whether it should be allowed to enter an infinite loop.

If we require Pl.7 to terminate then some value of y must be a
result, but it could be any value. The "weakest precondition" of such a
program violates the "continuity proper ty" accorded to weakest precondi-
tions in [30]. This fact has been reason for some to reject this

- 12 -

approach, i.e. to allow the possibility that Pl.7 does not terminate.
Pl.7 would loop. forever if there were a "daemon" which would always
unfairly choose the actions in the loop but would neglect the action
<x:-l>.

My own position is, in line with Park's in [90], that Pl.7 should
be required to terminate. I would require the "daemon" (if we wish to
think in such terms, which I do not particularly like because the "dae-
mon" in question looks to me conspicuously like a euphemism for "sequen-
tial implementation") to be so fair as to choose <x:-l> eventually. I
would postulate this as being in line with our requirement that the II
operator leads to the execution of all of the commands it connects. If
we allow the "daemon" to be unfair then we could hardly complain if in
the case of

<x:-l> I I <y:-l>

Program Pl.!

(again with (x,y)-(O,O) initially) it chooses only to execute <y:-l> but
refuses to execute <x:-l> and proclaims (x,y)-(O,l) to be a final state.

As an expense in "buying" fairness, I am quite willing to sacrifice
the continuity of the wp, as I can find no cogent reason for insisting
on it. I shall however also show, not only that fairness can be intro-
duced in such a way, but that it can even be introduced fairly easily;
all we need is a generalisation of a "maximality" property stating that
all components of a concurrent program should be executed as far as pos-
sible. Thus, one loses the continuity of the wp, but one gains in
exchange another "nice" property, namely that of maximality. I shall
also show that by introducing fairness in concurrent commands one does
not have to give up the usual [30] "unfair" interpretation of non-
deterministic commands: the "daemon" which chooses between two simul-
taneously executable commands connected by the non-deterministic OR can
continue to be as "erratic" as it likes (i.e. always choose one of them
to the exclusion of the.other).

- 13 -

I have said above that I consider there to be an essential differ-
ence between the parallel operator I I and the non-deterministic OR.
Nonetheless, the (rather imprecise) question has frequently been asked
-whether or not "concurrency can be explained by non-determinacy". That
is to say: can we always translate a program using I I into an equivalent
program using only OR? Because the latter lead to continuous wp (unless
some special statements are admitted) this is not possible: Pl.7, under
the fair interpretation, cannot be translated into a guarded command
program. However, "except for the infinite case" this translation is
always possible'..as will easily follow from our discussions.

1.2 Thesis Structure

There are two more or less introductory chapters, chapters 2 and 3.
Two chapters (4 and 5) follow which, in the main, discuss the semantics
of our programming language. Chapter 6, finally, contains three pro-
gramming examples. Chapter 7 is the "obligatory" conclusion, but con-
tains also some thoughts which I consider absolutely central to computer
science (indeed to all science) and which worry me much more than the
question of whether or not fairness should be adopted.

Chapter 2 describes relational semantics. We distinguish forward
and backward semantics (of the latter, weakest precondition semantics
are an instance). We investigate certain statements of equivalence
between forward and backward semantics and we argue that the wp is some-
what restrictive in that it does not allow to distinguish between "pos-
sible non-termination" and "certain non-termination". We define a
slightly more general semantics which we then continue to use in chapter
5.

Also in chapter 2 we develop an, in my opinion, rather attractive
calculus for proving the correctness of programs, which distinguishes
itself from the wp calculus in that it takes the initial values of vari-
ables into account as well. Thus, one becomes able to manipulate binary
predicates in the same way as the more usual unary predicates. Further,

. -we discuss non-determinacy. In particular, we discuss the OR operator,

- 14 -

and we define a dual AND operator which acts as a "disjoint split"
operator. We show a connection between AND and backtrack programs.

In chapter 3 we introduce Petri nets in general and occurrence nets
in particular. The latter will be used in order to describe executions
of programs containing atomic actions. The atomic actions will act on
the occurrence net as though ••collapsing" parts of it; applied recur-
sively, such collapsing gives rise to what we call ••structured
occurrence neta'", We define a slight variant of the latter, which we

call "structured occurrence graphs".

Chapter 3 also contains a short section on a property of infinite
occurrence nets, which I believe to be connected to the continuity pro-
perty of the wp mentioned earlier. Continuity of the wp has been postu-
lated by Dijkstra in [30] with the intention, amongst others, of making
it impossible to write a program which "aakes within a finite time a
choice amongst infinitely many possibilities·'. I shall argue that while
there is reason to exclude sequential programs which "make a choice out
of infinitely many possibilities", there is however no reason to extend
this ban on concurrent programs.

In chapter 4 we define our dynamic atomicity criteria. We give a
detailed motivation for our definitions in section 4.1. We aim at a
definition as to when an execution of a given action, or piece of pro-
gram, "occurs atomically".

We define a first criterion which, in essence, states that if the
occurrence graph describing an execution is acyclic then it contains
only atomic occurrences (section 4.2). We call this a "global" cri-
terion because it is formulated as a property of an execution as a
whole. Our second criterion (section 4.3) states that a portion of a
given execution "occurs atomically·' if it is not interfered with by its
surroundiugs (in a sense to be made precise). This we call the "local"
criterion. The correspondence between local and global criteria is also
given in section 4.3.

Further, I attempt to relate these two criteria to what is known as
the "two-phase lock protocol" [37]. I claim that the latter leads to

- 15 -

somewhat stronger forms of "atomic occurrences" which are context-
independent (again in a sense to be made precise). We describe this
connection in section 4.4.

Chapter 5 contains the formal definitions of our language: syntax
in section 5.2.1, semantics in section 5.2.2, and correctness in section
5.2.4. Our syntax is rather general in that it allows the arbitrary
nesting of concurrent programs within atomic actions, and involves a
general scheme for combining atomic actions with other control con-
structs such ~s conditionals and loops. We define the semantics of our
programs in the form of a relation between initial and final states.

In this definition, we use a mixture of "relational" and "opera-
tional" methods. We start with the idea that for the atomic actions
contained in a program, all that matters as far as their environment is
concerned is their effect relation. We therefore assume the effect
relations of the atomic actions contained in the program to be given
(perhaps calculated independently of each other) and we define the
semantics of the whole program in terms of these effect relations and
the way in which atomic actions are interconnected. The definitions of
(partial and total) correctness then follow as a matter of course. In
section 5.2.5 we discuss the connection between our semantics and the
Owicki-Gries proof method.

By defining our semantics in section 5.2.2 we also implicitly
define the 'semantics of the atomic actions contained in a concurrent
program. This we call the "global static" atomicity criterion because
atomic actions are defined only implicitly and because we derive their
properties purely from the program text. In section 5.3 we work out a
corresponding "local" criterion which, as discussed earlier, will be the
property that one can replace an atomic action by any effect-equivalent
piece of program without changing the semantics of the enclosing pro-
gram. Section 5.3 is also the place where the connection between our
various (four, to be precise) atomicity criteria is discussed.

In section 5.4 we turn to a question which has been mentioned pre-
viously, namely the."semantic independence" of two programs. We do no
more than venturing an idea as to how this notion could best be captured

- 16 -

precisely. This idea involves the notion of variables being
"transformed" into other variables so that the "semantic independence"
of two actions becomes "syntactically visible". This is hoped to have a
bearing on the determination of "maximally parallel" executions, but
must largely be left to future research.

Finally, in chapter 6 we discuss the design and proof of three pro-
gramming examples. The first example (section 6.2) concerns a fixpoint
program first proved "in assertional style" by Dijkstra in [33]. We
repeat his proof with a different derivation, and we 'add a proof con-
ducted "in operational style". This is to show that our semantic frame-
work can be used in a rigorous way. We also give a more detailed com-
parison between the two proofs.

Our second example (section 6.3) consists of a series of programs
which compute an Euler cycle in a directed graph. Here we lay stress on
the design process itself. In the proof of our last solution we use a
combination of operational and assertional arguments.

In section 6.4 we present the design and proof of a fail-safe dis-
tributed extrema-finding algorithm, which is an extension of the
Chang/Roberts algorithm described in [25]. Again, we lay stress on the
design and on a fairly detailed proof. Also, in this section we make
the more general point announced earlier, to the effect that CSP-type
programs can be translated into shared data programs.

When planning the sections containing examples, I had hoped to be
able to extract from these (and other) examples a number of design
heuristics which could be collected together as possible general guide-
lines in the design of concurrent programs. I have, to my regret, not
been able to do so, chiefly because the writing of everything else has
taken such a long time that I could not get to the treatment of further
examples. Unfortunately, therefore, the design aspects for the programs
under consideration are less extensively investigated than their formal
aspects. I hope, however, that future work will continue to provide
insight into how concurrent programs can best be designed.

Chapters 3 and 4 of the thesis form a logical unit, referring to

- 17 -

the rest of the thesis only in an intuitive way. Chapter 5 is logically
as much a sequel.to chapter 2 as it is to chapter 4; for the understand-
ing of sections 5.1 and 5.2, chapters 3 and 4 can be skipped. When the
size of chapter 5 grew out of proportion, it occurred to me that it
could without harm, and probably with benefit, have been split into two
different parts, one (comprising section 5.2) located between chapters 2
and 3 and another one (comprising sections 5.3-5.5) following chapter 4.
But it was then too late to make such a substantial change. I apologise
to the reader for any inconvenience caused. Perhaps the short summaries
can be of use which have been appended to every relevant subsection
throughout chapters 2-5.

I should finally also mention that parts of this thesis have
already appeared in print. In [9] some ideas are described which are
also contain~d in section 6.2; however, section 6.2 is more detailed and
contains also a different proof of the program in question. In [10] a
program is described which occurs as an intermediate solution in section
6.3; however the final solution described in section 6.3 is new. The
main ideas of chapters 3 and 4 have appeared in [11] and will also be
contained in a forthcoming article [16]. However the motivation in
chapters 3 and 4 (in particular section 4.1) has been extended; moreover
[16] discusses error recovery, a topic which is not covered at all in
this thesis.

1.3 History and Relation to Other Work

My interest in atomic actions stems from the work I have been doing
in the two Research Projects I have been employed in. I started to work
on path expressions [71,72] in 1976 while David Lomet was staying for a
Sabbatical in Newcastle. David was at that time particularly interested
in atomic actions and error recovery. He had proposed the idea [77]
that a programming language should allow.the programmer to declare, if
he so wishes, any procedure he writes as atomic. When learning of this
work, I thought it a good idea to use it in order to define a fully
fledged concurrent language. I thought that one could benefit from
replacing the "monitor" facility in Concurrent Pascal by a feature

- 18 -

whereby the entry procedures of a Concurrent Pascal process could be
declared atomic, and another feature whereby the names of such processes
could be grouped together into paths to achieve some desired synchroni-
sation.

However, rather than pursuing this idea any further, I got
interested in Lomet's three characterisations of atomic actions which
are quoted in section 1.1 (originally, he even had four such proper-
ties). I felt that these characterisations left lot to be desired, or,
in other wor~s,.to be found out. I thought that because atomic actions
are intuitively so well-defined, it should be possible to find an agreed
formal definition.

The second influence in my at first not very painstaking efforts
aimed at such a definition came with a three-month-visit to Newcastle by
Philip Merlin in 1977. He and Brian Randell came up with yet another
idea of how to define atomic actions, described in [81]. Though I felt
that their definition was very close to "the right thing" intuitively, I
still found fault with it; this will be discussed in section 4.1 of the
present thesis. In many ways, this thesis can be regarded as the result
of my dissatisfaction with earlier definitions af atomicity.

In the meantime, it has been possible for me to establish several
other connections, in particular that between atomic actions and rela-
tional semantics. Perhaps the outside work most closely related to the
subject matter of this thesis is that of Owicki and Gries, described in
[88], and that of Lamport, described in [67]. They consider the same
sorts of programs, namely "shared data programs", as well as the same
sorts of problems, namely formal semantics and correctness.

It is not possible for me to single out anyone particular "result"
or "new idea" contained in this thesis but not in such earlier work. I
am quite sure that many people have previously had the same sorts of
ideas as are described in this thesis. What I do claim, however, is
that the semantic formalism developed in this thesis is altogether more
comprehensive than similar previous approaches. In particular, we make
formally precise several concepts which (to the best of my knowledge)
have previously just been taken for granted without formal definitions,

- 19 -

such as the concept of an atomic action. In the remainder of this sec-
tion I shall briefly describe the relationship to Owicki and Gries'
work.

Let a concurrent program

c -
be given. Owicki and Gries ask the question what properties can be
deduced for c from the properties of cl and c2• In the first instance,
"property of c";means the "attachment of input/output assertions to coo.
In particular, in [88] they answer the question under what conditions
the input/output assertions of c are just the logical conjunction of the
respective input/output assertions of cl and c2• This work thus yields,
in the first place, a proof method for c.

We, on the other hand, ask ourselves the question what is the pre-
cise semantics of c. By (relational) semantics I mean, roughly, the
strongest input/output statements that can be asserted about c. Our
approach to defining this will be to take the relational semantics of
the atomic actions contained in cl and c2 (as opposed to taking the
relational semantics of cl and c2 as a whole!) and to define the seman-
tics of c in terms of the way in which these atomic .actions are grouped
together in cl and c2•

This approach is based on the idea that the atomic actions con-
tained in cl and c2 are just those parts whose relational semantics
"really matters". One can put input/output assertions round an atomic
action and study the behaviour of this action individually, knowing that
(by their very properties) if an atomic action starts with an input
assertion holding then it will end up with such an output assertion as
can be calculated from its internal ,structure only.

Because Owicki and Gries propose to derive properties of c from
input/output assertions around cl and c2' and because cl and Cz may be
split up into several atomic actions, it may so happen that, using their
method, certain statements about c cannot be proved without account
being taken of the "internal control points" between these atomic

- 20 -

actions. In the Owicki/Gries method, it is necessary to introduce auxi-
liary variables ~or the purpose of expressing "internal control", and it
may also be necessary to write down the strongest possible "intermedi-
'ate" assertions, lest counterintuitive results be obtained. We shall
discuss this in section 5.2.5.

Our approach differs from theirs chiefly in that internal control
is taken into accout without the use of auxiliary variables. This is
achieved by the use of "control sequences" which are defined in section
5.2. Control. sequences describe internal control points "between"
atomic actions, which (1 will argue) are the only invariant properties
of individual processes against outside interference, and as such must
enter any semantic framework which claims to be appropriate. Internal
control, to repeat, enters explicitly in our framework and implicitly in
the Owicki/Gries approach.

Besides this difference in kind, there is also a difference in pur-
pose. The Owicki/Gries theory is in the first place a proof method
while our semantic formalism is in the first place a means for defining
the semantics of the programs under consideration. However, there is
also a proof method associated with our formalism, which will be illus-
trated on some examples in chapters 5 and 6.

I suppose that some people might call the proof method derived from
our semantic formalism "operational" as opposed to the "assertional"
method of Owicki/Gries. However, if any connotations of
"implementation-dependency" or "informality" are associated with this
term then I would reject it. Our formalism is just as "textual" as
Owicki/Gries'. The difference is that the emphasiS is shifted on how
control can best enter the formalism. In the end, I think, both proof
methods will come out as two sides of the same coin, or possibly two of
the many sides of the "coin" under consideration. In every individual
case, a decision has to be made as to which method can best be used.
Thus, our work can perhaps also be seen as putting the Owicki/Gries
method into perspective.

It should finally be mentioned that the term "atomic action" has
also been used with a different connotation, referring to a program

- 21 -

which either achieves its desired effect or else "does nothing" (leaves
the initial state intact) [68,28]. This "all-or-nothing" property seems

.'to me a slightly extended property of correctness, which can be defined
~nly with respect to the specification of a program and is therefore
conceptually not related to our notion of atomicity. However there may
well be practical connections in the sense that one may wish to design
one's atomic actions in a concurrent program to have, in addition, the
"all-or-nothing" effect. However, although the "all-or-nothing" pro-
perty could easily be defined in terms of the concepts developed in sec-
tion 2.5, we restrict our attention to atomic actions in the sense dis-
cussed informally throughout this introduction.

- 22 -

2. RELATIONAL SEMANTICS

~.! Introductory Remarks

For the purposes of our discussion a semantic formalism is under-
stood to be "relational" if it employs relations between the initial
states and the final states of a program in order to characterise the
semantics of the program. This is in contrast to other possible
approaches (which loosely speaking may be called "operational") which
would either take some intermediate states into account as well, or go
as far as characterising a program by the "execution sequences" it gen-
erates.

Relational semantics in this general sense has a long history and
bas been so widely used that it is impossible to cite all references to
it. Amongst the early papers in which the use of relational semantics
has been suggested, perhaps the best known is [38] by Floyd. Hoare in
[53] and Manna in [78] have advocated the reasoning about programs in
terms of relations. Relational semantics has been further developed by
Lauer in [70] and by Hoare and Lauer in [54]. Relational reasoning also
pervades several important textbooks on program correctness, such as
Manna's book [79], Dijkstra's well-known opus [30], and the more recent
book by de Bakker [6].

The main reason for our present interest in relational semantics is
that there is a natural connection between the relational formalism and
atomic actions. This connection is to be explored in chapter 5 of this
thesis. Besides, I also consider the present section to be interesting
in its own right as a contribution to the relational semantics of non-
deterministic and backtrack programs.

I propose to distinguish between two different forms of relational
semantics, "forward semantics" and "backward semantics" (the same dis-
tinction has been made, for example, by King in [66] and by de Bakker in
[6]). Forward relational semantics involves the association of a (set
of) final state(s) to a given (set of) initial state(s), and vice versa
for backward semantics.

- 23 -

The weakest precondition semantics [30] can, as we shall see (and
as is well known) '.'be viewed as a form of backward relational semantics.
We shall describe a form of forward relational semantics in section 2.2
while weakest preconditions are described in section 2.3. These two
semantic formalisms are "equivalent" in a sense also to be discussed in
section 2.3. The reason for defining two essentially equivalent formal-
isms is that their practical application as calculi for the derivation
of statements about programs is different. We shall also find (in sec-
tion 2.6 and in chapter 5) that the forward semantics is, for our pur-
poses, somewhat ~asier to manipulate.

The programs under consideration in this section may be non-
deterministic. Non-determinacy is discussed in detail in section 2.4,
with two aims in mind: firstly, ,to amplify some of the remarks made in
section 1.1 about so-called bounded non-determinacy and continuity of
the wp, and secondly, to prepare the ground for section 2.6 where 'we
shall introduce a form of concurrency in a manner which is "dual" to the
introduction of non-determinacy.

The semantic formalism expounded in sections 2.2-2.4 can be
extended to so-called "binary predicates". This leads to a formal
definition of a "specification" and of the "correctness" of a program
with respect to a specification, formalising two concepts which are
widely used in practice. This extension, described in section 2.5,
forms the basis of a relational calculus for the total correctness of
programs, which is illustrated on a few simple examples.

In our discussion throughout this chapter the "interpretation"
aspects of the semantic formalism will be stressed. By this I mean all
aspects of the formalism not relating to mathematical definitions and
their consequences. In our final section 2.6 we discuss how the rela-
tional formalism, with very little changed mathematically, can be turned
into a tool to describe a rather different (but nonetheless interesting)
class of programs, simply by changing radically its interpretation. The
class of programs in question is that of "pure backtrack programs"
(again, a paper by Floyd [39] may be cited as one of the early refer-
ences). Pure backtracking can, as it will turn out, be viewed as a

- 24 -

convenient method of implementing essentially concurrent programs, and a
formal duality between concurrency and "ordinary" non-determinacy (of
the kind discusse~ in section 2.4) can thus be established.

The programming language whose semantics is to be considered in
this. chapter is a slightly restricted form of the "guarded command"
language of [30]. Our programs ("commands") have the following (hope-

I

fully self-explanatory) syntax, where capital letter words denote syn-
tactic metavariables:

COMMAND ::-: skip I abort I ASSIGN I IF I DO I
COMMAND; COMMAND

ASSIGN ::- VARIABLE:- EXPRESSION

IF ::- if BOOL1 -~ COMMANDl [] ••• [] BOOLn -~ COMMANDn .!!.

DO : : - do BOOL ~ COMMAND od ,

The language defined in [30] allows in addition a "guarded list" to be
included within the brackets do ••• od. However via the equivalence

do (3 j: BOOLj) -~.!! BOOL1 -~ cl
[]

-
[] BOOL -~ cn n
od

[] BOOL -~ cn n
f1

the more general case can easily be reduced to our less general case.

We assume that to every variable that can occur in a program there
is associated a specific set of values which it may take. This set of
values may in general be given by a "variable declaration", say as in
Algol 60 or in Pascal. In the absence of such a declaration, we assume

- 25 -

a variable to range over the set of integers.

A "state" of a program is a mapping from the variables used in the
.program to their values. The set of all possible states is called the
"state space" and is denoted by S. The state space itself can be viewed
as a composite variable, its values being m-tuples of the values of its
constituent variables. In other words, the state space can be viewed as
the Cartesian product of the variables occurring in the program.

We assume (or make sure) that the evaluation of all expressions and
assignments in- a program always leads to values within the relevant
value domains. If we drop this assumption then we enter the realm of
"run time errors" and "exception handling". A discussion of this more
general case is beyond the scope of this thesis, but extensive discus-
sions are contained in [1,17,28].

2.2 Forward Relational Semantics

Our first aim is to associate to every program c arelational mean-
ing" or "effect relation" m(c) defined as

m(c) c S x S (2.1)

where the first S refers to the initial states and the second S refers
to the final states of c. (This latter convention being the reason for
calling m(c) a "forward semantics" of c ,)

The relation m(c) is meant to capture the "input/output behaviour"
of c. We adopt the following interpretation of m(c). The program c,
when started in an initial state s' e s, must terminate in some final
state s such that (s' ,s) e m(c). If c may fail to terminate when
started in s' then s'm(c) -~. This interpretation follows Wand's in
[100]. We discuss it in detail in the sequel because it is important to
be kept in mind that there are different possibilities for interpreting
m(c). Failure to realise this may lead to confusion about the role of
m(c).

- 26 -

We are at present interested in programs which are possibly non-
deterministic. Let us define the general "prototype" of a non-
deterministic command connective, denoted by "OR", as follows:

c OR c' - if true -~ c [J true -~ c' fie

We imagine an
deterministically

execution
choosing"

of c OR c" taking place
If this

by "non-
choice isbetween c and c'.

resolved in favour of c then c is executed and c' is ignored; con-
versely, if c':is chosen then c' is executed and c is ignored.

Let us now see to what extent m(c) captures the input/output
aspects of such a behaviour. In the simple example

skip OR (x :- x+l)

Program P2.!.

our interpretation of m(c) requires to include in m(P2.l) those pairs
(s',s) of states for which

s'(x) - sex) V s'(x) - s(x)-l (2.2)

This is because given an arbitrary initial state s', P2.l is indeed
guaranteed to terminate in a final state s for which (2.2) holds. In
this way, m(P2.l) captures the "overall behaviour" of P2.l.

Let us discuss our interpretation of m(c) on another example. We
consider the program

skip OR abort

Program P2.!

To reiterate, our intuitive understanding of this program is that there
is non-deterministic choice between "skip" and "abort"; if "skip" is
chosen then P2.2 terminates properly, leaving the initial state intact,

- 27 -

and if "abort" is chosen, P2.2 does not terminate properly.

Because P2.2 may fail to terminate properly for every initial state
.s', our above interpretation of m(c) requires that in m(P2.2) the empty
set 0 be assigned to s'. In other words, knowledge of m(c) under its
above interpretation does not allow us to distinguish between P2.2 and
"abort". More generally, the above definition of m(c) leads to the two
aspects "poaafb Ie non-termination" and "certain non-termination" of the
overall behaviour of a program to be treated equivalently.

For a comparison of this particular interpretation of m(c) with
other possible ones we quote Har~l in [49], p. 8:

it is plausible to define the meaning of a program as a binary
relation on states, including the pair (s' ,s) in that relation iff
the program in question started in s' can indeed terminate in state
"s.

Because of the phrase "can ••• terminate", it is clear that for the
above program P2.2 the pairs (s' ,s') (but no other pairs) should be
included in this (Barel's) relation. In other words, no distinction is
now made between P2.2 and "skip". More generally, in Harel's interpre-
tation, the two aspects "possible termination" and "certain termination"
are not distinguished.

The point of this discussion is to show that there are indeed dif-
ferent possibilities of interpreting m(c), leading to quite different
characterisations of the overall behaviour of a non-deterministic pro-
gram. In fact, however, there are only two (namely the above two) pos-
sible interpretations of m(c) which reasonably reflect the non-
deterministic behaviour intuitively pronounced above. This is because
there is no other reasonable possibility than equating P2.2 either with
"abort" (by letting the empty set 0 correspond to every initial state)
or to "skip" (by letting {s"} correspond to every initial state s').

It follows that in order to distinguish properly between "skip",
P2.2 and "aborr? , the simple definition (2.1) of m(c) is mathematically
unsatisfactory: it does not leave enough room for interpretations other

- 28 -

than the above two. One way out, advocated frequently (for example, in
[5,50,23]), would .be to add to the state space a special element called
"bottom" (1) denoting the special "output state" in case the program
fails to terminate.

With the help of such an element, programs could now be described
by relations

(2.1"')

:

which would enable •.skip" , "abort" and P2.2 to be distinguished [23]:

- { {s'"} for c - skip
s"'m(c) { I} for c - abort

{s'",l} for c - P2.2.

We shall find in chapter 5 the form (2.1"')of the forward semantics more
appropriate than (2.1) to capture the input/output properties of the
concurrent programs we consider.

Despite its evident usefulness in (2.1"'),I have always had misgiv-
ings about the "bottom" element, because just adding another element to
the state space "feels" so arbitrary. Much rather than adding a special
element to the state space I would prefer to be able to define a richer
mathematical structure than (2.1), say relations over subsets of S, as
relational semantics, thus admitting more room for interpretation. Such
an approach seems possible and is sketched below at the end of section
2.6. It will turn out, amongst other things, that the addition a la
(2.1"')of a special element to the state space can be considered a
consequence of a meaningful limiting property of such a "richer" seman-
tics.

We return to a discussion of (2.1). We have seen that there are
essentially two different possible interpretations of m(c). Without
giving a value judgment, I claim that the first (i.e. Wand"'s and our)
interpretation is the "forward counterpart" of weakest preconditions
[30]. This claim is justified by the following two remarks. Firstly,

- 29 -

as will be seen in section 2.3, relations m(c) of the form (2.1) and
weakest preconditions are interchangeble mathematical objects, i.e. a
1-1 correspondence can be found. Secondly, the interpretation of weak-
est preconditions agrees with ours: in weakest precondition semantics
also, P2.2 is equated with "abort" rather than with "skip".

Because the second (Harel's) interpretation can apparently be for-
mulated more smoothly than the first one, it tends to come to mind more
easily and people may therefore be tempted to think that it is the only
one. Because it does not however tie up with weakest preconditions,
problems may arise if used in connection with it. Such is the case in
[49] where Harel, in his chapter 5, has difficulties in squaring his
interpretation with Dijkstra's and has to resort to different execution
methods of non-deterministic programs in order to do so.

We now judge which one of the two interpretations is preferrable.
There is in fact quite a clear-cut case. For correctness arguments we
certainly cannot afford to treat a program which only possibly ter-
minates, on an equal footing with a program which always terminates:
this would be too "optimistic" and would leave room for possible unac-
ceptable behaviour of the program under consideration. On the other
hand, we are on the safe side if possible non-termination is treated as,
certain non-termination: this being a "pessimistic approach" would leave
room for unexpectedly "good" behaviour.

To conclude this section, we give the relational semantics for our
small language defined in section 2.1. (The reader is encouraged to
check that P2.2 is indeed assigned the empty relation.)

m(skip) - Id

m(abort) - ~

s'm(x:-E) - {s}, where s(x)-value of E in 5'

and s(y)-s'(y) for all variables y+x.

Define IF - if BI -~ cl [] ••• [] B -~ c fi,- n n-

for which

- 30 -
Bi denote those subsets of S
BOOL

j
' is true;

\...here the

."
(s",s) e m(IF) <..> Vj: (s" e B > .. ()_it1)j - s m cj T~ &

3 j: (s" e Bj & (s" ,s) e m(cj».

(s" ,s) e m(do B ~ c od) <-> 31<>0, SO' •• ~'Sk s s t ,

(i) sO" ••,sk-l e B~ sk t B
(11)\jj e {O,••• ,k-l}: (Sj,sj+l) e m(c)

(iii) s'=sO' sk=s
&..., 3 SO' Sl ' ••• :

(i)\-t J' ~ 0: 5. E Band (5., 5 .) E m(c)
V J J J+1

(H) 5'=50

&..., 3k~ 0, 50'·" ,5k:

(i) sO,•••,5k E B
(ii)'V . E {0, ••• ,k-1}: (s.,s.) E m{e)

. J J J+1
(iii) 5'=SO and skm(c)=~

(s",s) e m(c1;c2) (=> s'm(cl) ~ Dom(m(c2» &
(s",s) e m(cl) 0 m(c2)·

The last three formulae may seem unfamiliar (and it is hard work to
prove the associativity of the semicolon •••.!). The reason for them
being unfamiliar is that they have been so defined that they correspond,
under our interpretation, precisely to the better known and accepted
weakest precondition definitions of [30] (see proposition 2.3 in section
2.3).

Notice, for example, .that the definition of the concatenation
operator "semicolon" does not just consist of the relational composition
of its two constituent operations. There is also the requirement that
the first operation leads into the domain of the second operation. This
is because we wish to
from the' meaning of

••" I

ensure ccnsdstency of interpretation, 1.e. that
the component operations a similar meaning for the

whole operation is to be defined. In Hare1's book [49], for example,
the formula for the semicolon is different (it is just the relational
composition); this is because of the difference in our respective
interpretations of m(c) , not because we are talking about different con-
catenation operators.

The fact that the forward counterpart of weakest preconditions does
not give rise to "the natural" semantic definition of the semicolon
(i.e. the relational composition) was also noted, rather as a matter of
regret, by Hoare in [55]. In our discussion we have clarified Why this
~necessarl1y 50, why this should surprise nobody, and we have also

- 31 -

seen that the "natural" definition of the semicolon can be restored when
another interpretation of m(c) is considered.

"

'Summary of section 2.2

We define forward relational semantics as a relation over the state
space. This does not admit the three programs "skip", "abort" and
"skip OR abort" to be properly distinguished. The latter program is
equated either with "skip" or with "abort". The second possibility is
taken in weakest preconditions. By introducing a special "bottom" ele-,
ment the three programs can be distinguished.

2.3 Predicate Transformers

Predicate transformers [30] are so called because they are func-
tions whose domain and range are the set of output predicates ("postcon-
ditions") and the set of input predicates ("preconditions") of a pro-
gram, respectively. A predicate Q is defined as a function

Q: S --~ {true,false} (2.3)

We also call such predicates "unary", to distinguish them from the more
general objects to be defined in section 2.5.

Recall that the state space S can also be viewed as the Cartesian
product over the variables of a program. Predicates are often
represented as (first order) logical formulae involving these variables
which evaluate to "true" or "false" for a given state, i.e. for a given
assignation of values to variables. Predicates Q and subsets X ~ S thus
correspond uniquely to each other; this equivalence can be written as:

Q(s) - true <-> sex (2.4)

If (2.4) holds then Q is also called the "characteristic predicate" of
X, and X is called the "truth domain" of Q.

- 32 -

SThe set 2 of subsets of 5 forms a Boolean algebra [18] with the
operations of set union and set intersection, and with the empty set
o € 25 and the fd1l set S € 25 as minimal and maximal elements, respec-
tively. Via the equivalence (2.4), the set of predicates over 5 forms
an isomorphic Boolean algebra with the corresponding operations of "log-
ical or" and "logical and". Its minimal element (1.e. the characteris-
tic predicate of 0) is traditionally [30] denoted by F (for "ddentIcakLy
false··); similarly, its maximal element is denoted by T (for "Ldeutd+
cally true·'). Because of this isomorphism between subsets and predi-
cates, we use the two interchangeably, in the sense that all definitions
and statements' about one can without problems be translated into
corresponding definitions and statements about the other.

Let a program c and its effect relation m(c) be given. Two predi-
cate transformers are of particular interest. We define for a subset
X ~ 5,

wlp(c,X) - {s' € si s'm(c) c X}
wp(c,X) - {s' € S I ~ c s'm(c) ~ X}

(2.5a)
(2.5b)

Both the "veake st liberal precondition" wlp(c,.) and the "weakest
precondition" wp(c,.) are thus functions from subsets of 5 into subsets
of 5, i.e. predicate transformers. As a consequence of the convention
that m(c) relates initial states of c to final states of c, both
wlp(c,.) and wp(c,.) relate (sets of) final states of c to (sets of)
initial states of c, which justifies our calling them "backward seman-
tics" of c.

Given our interpretation of m(c) in section 2.2, the formulae (2.5)
determine the interpretations of wlp and wp. If X is a set of final
states then (2.5a) indicates that wlp(c,X) contains all of those initial
states s' such that if c terminates when started in s' then the final
state will be a member of X. On the other hand, (2.5b) indicates that
wp(c,X) contains all of those initial states s' such that c when started
in s' is indeed guaranteed to terminate in a state in X.

The interpretation of m(c) was of course just so defined that these

- 33 -

interpretations of wlp and wp coincide with those given in [30]. I
would like to stress that the other (i.e. Harel's) interpretation of
m(c) would not have allowed m(c) and wlp(c,.) and wp(c,.) to be related
by a simple relationship as in (2.5). Wand in [100] has in fact esta-
blished that, in a certain sense, formula (2.5b) can be inverted. My
next aim is to recall, and slightly generalise, Wand's result.

Using formula (2.5b) one notes that the follOWing always holds:

Proposition !.!~(c,0) - 0
wp(c,X,", Y) - wp(c,X) nwp(c,Y)

(2.6a)
(2.6b)

Let us call any function f from subsets of S into subsets of S (i.e.
f: 2S ~ 2S) "strict" iff

f(0) - 0

and "multiplicative" iff

f(X "Y) ,.f(X) '" fey) for all subsets X,Y ~ S.

Proposition 2,1 then states that wp(c,.) is strict and multiplicative.

Wand's theorem states:

S SProposition !.!Every strict and multiplicative function f: 2 -~ 2 is
of the form (2.5b) for a suitable relation m(c).

Wand's result [100] is actually slightly less general than proposition
2.2, because he takes the continuity property (see section 2.4) into
account as well.

Proposition 2.2 establishes a 1-1 correspondence between relations
(2.1) and strict multiplicative functions from 2S into 2S• Since, as we
have seen, the interpretations of m(c) and wp(c,.) are also compatible,
it follows that the "forward semantics" m(c) (as defined by formula
(2.1) and its interpretation) and the "backward semantics" wp(c,.) are

- 34 -
fully equivalent semantic descriptions of a (possibly non-deterministic)
program c. It remains to be added that an analogue to proposition 2.2
cannot be found for weakest liberal preconditions.

Proof of proposition 2.2:

s SLet a strict multiplicative function f: 2 ~ 2 be given.
a relation m c S x S by putting, for s' e S:

Define

s'm -
if s' • f(S)

(2.7)
s" e f(X)} otherwise

It can be shown (by an argument similar to that employed in [100]) that
f(X) - {s' e S I ~ c s'm eX}.

To prove this for infinite state spaces one actually needs the
infinite multiplicativity of f, i.e. the property that

for an infinite collection of sets Xi ~ S. Infinite multiplicativity of
the wp does not seem to be provable from (2.6) only. We therefore just
assume the property of infinite multiplicativity to hold. At any rate,
we will not be interested too deeply in the infinite case, except for a
few (marginal) discussions on the finite delay property and the property
of unbounded non-determinism.

We end this section by recalling the wp definitions for our simple
programming language [30].

wp(skip,X) - X

wp(abort,X) - ~

WP(x:-E,Q) - Q[x~E],
where Q[x~E] is a copy of the predicate Q in which

- 35 -

all free occurrences of x are replaced by E.

wp(do B ~ c od,Q) - 3Qi'
where QO - not B & Q

Qi+l -(B & WP(c,Qi» V QO

-
These definitions are consistent with the definitions given in section
2.2; more precis~ly:

Proposition !.! (i) For the weakest precondition of a program c it is
immaterial whether it is calculated directly by the
formulae just given, or indirectly by calculating
m(c) by the formulae given in section 2.2 and then
transforming m(c) into wp(c,.) via (2.5b).

(ii) Conversely, m(c) is the same whether calculated
directly or indirectly via (2.7).

The proof of proposition 2.3 is omitted.

Summary of section !.!

Weakest preconditions with their two main properties, i.e. strict-
ness and multiplicativity, and forward relational semantics (2.1) are
equivalent semantic descriptions of a program. The formulae transform-
ing one into the other are given in this section «2.5b) and (2.7».

2.4 Non-Determinacy

It is reasonable to call a program c "deterministic" iff

Vs' e S: Is'm(c)1 i 1 (2.8)

- 36 -

In other words, c is "non-deterministic" if via m(c) two or more dif-
ferent possible final states are related to a single initial state: c
must then halt in one of these states, but it is not determined a priori
which one will be the actual final state.

This definition does not always accord with intuition. For
instance, the program P2.2 - skip OR abort (section 2.2) turns out to be
deterministic, contradicting the operational understanding. Similarly,
the program

if x~y ~ max :- y
[] x>y ~ max :- x
fi

Program P2.l: Maximum .

is also deterministic, even though if x-y initially then both branches
of the conditional are eligible for execution.

The reason for this is quite simply that (2.8) characterises only
such non-determinacy which can be asserted by inspecting the final
state(s) after the program's assured termination. In P2.2, termination
is not assured, and in P2.3 the two possible execution sequences do not
lead to different final states.

The determinacy property can also be expressed in terms of weakest
preconditions:

Proposition ~.~ m(c) is deterministic iff wp(c,.) is additive,

where a function is called "additive" iff
f(XUY) - f(X)U fey) holds for all subsets X,Y c S. Proposition 2.4 can
be proved by observing the behaviour of formula (2.8) under the
transformations (2.5b) and (2.7). Additivity of the wp is of course
just the (intuitive) characterisation of determinacy given in [30]. I

The prototype non-deterministic command connective "OR", defined in
section 2.2, can be expressed in terms of weakest preconditions:

- 37 -

wp(c OR c' ,X) - wp(c,X) & wp(c' ,X)

We return to this connective in section 2.6.

The notion of "bounded non-determinacy" [30] makes sense only for
infinite state spaces S. It refers to the property that in m(c) only a
finite number of final states correspond to any given initial state. We
define a program c to be "of bounded non-determinacy" iff

\:/ s'" e s. Is"'m(c) I < 00 (2.9)

In fact, as shown in [30], the language defined in the previous sections
always leads to programs of bounded non-determinacy.

In [30], chapter 9, two arguments are. given as to why programs
"ought to" be of bounded non-determinacy. Dijkstra"'s first arglUDent
r~fers to his (and our present) semantics of the loop construct; he
notes that this semantics becomes intuitively invalid if programs of
unbounded non-determinacy are admitted. In his second argument he rea-
sons that a program of unbounded non-determinacy would be able to make
"within a finite time a choice out of infinitely many possibilities" and
would not therefore be implementable.

As noted in section 1.1, however, our position is indeed to allow
concurrent programs of unbounded non-determinacy. To discuss the argu-
ments for and against the axiom of bounded non-determinacy in more
detail, we reconsider the following program [90]:

(x,y):-(O,O);
<x:-1) I I do <xaO -~ y:-y+1) od

Program P2.~

Because it is desirable to ensure that the left hand assignment of 1 to
x will not be delayed indefinitely, i.e. that it will eventually be exe-
cuted (see section 1.1), the program P2.4 must be guaranteed to ter-
minate. But it is surely not possible to give an a priori bound on the

- 38 -

final value of y; this would introduce an intolerable element of arbi-
trariness. The effect relation m(P2.4) can thus be defined as contain-
ing, for any initial state, all of the infinitely many final states

(x,y) - (1,0),(1,1),(1,2), •••,

which violates (2.9). Our semantics which will be defined in chapter 5
gives exactly this result.

This example. shows that the finite delay property for concurrent
programs contradicts the axiom of bounded non-determinacy. This conclu-
sion has also been reached by Chandra in [23] and by Park in [90].
Since we want the finite delay property to hold, it follows that the
axiom of bounded non-determinacy ought to be dropped for concurrent pro-
grams in general, and it also follows that Dijkstra's two arguments in
favour of this axiom must in some way be answered.

His first objection, that the semantics of the loop construct is
too restrictive, can be overcome by finding an acceptable change in, or
a generalisation of, the loop semantics. This line has been taken by
Park in [90], Boom in [20] and by Back in [4]. Back arrives at the
interesting conclusion that a loop semantics permitting unboundedly
non-deterministic programs must of necessity be operational. I am not
sure, however, whether this conclusion is really stringent; perhaps a
"richer" relational semantics as briefly discussed in sections 2.2 and
2.6 will enable unbounded non-determinacy to be incorporated smoothly.
At any rate, in chapter 5 we will define a loop semantics which does
allow unbounded non-determinacy and therefore seems to be more general
than the loop semantics defined in this section.

Dijkstra's second objection, that making a choice between infin-
itely many possibilities in a finite time is not imp1ementable, is
further discussed in section 3.4. The outcome of that discussion will
be that his argument seems to make sense only if one has a sequential
implementation in mind; for concurrent programs the argument in this
form seems to be no longer valid.

- 39 -

Again, property (2.9) can be expressed in terms of weakest precon-
ditions. A function f: 2S -~ 2S is called "continuous" iff for every
ascending chain Xl ~ X2 ~ ••• of subsets
Uf(Xj)- fdj~) holds. We then have:

of S, the equality

Proposition !.~m(c) is of bounded non-determinacy iff wp(c,.) is con-
tinuous.

Continuity is of course just the characterisation of bounded non-
determinacy given in [30]. Proposition 2.5 can be proved by using
(2.5b) and (2.7). This result has also been noted previously, for exam-
ple by Guerreiro in [46].

Summary of section ~.~

Non-determinacy (Nd) of the forward function characterises such Nd
as can be asserted by inspecting final states after the program's
assured termination. Nd corresponds to additivity of wp. Bounded Nd
corresponds to continuity of wp; this axiom should be dropped for con-
current programs. Dijkstra's two arguments in its favour can both be
overcome.

2.S Correctness Criteria and Examples

In this section we describe a simple extension of the wp formalism.
We consider the case in which the "goa1"'of a program is given as a
relation between initial states and final states. Such relations occur
frequently in practice as the specifications of the tasks to be per-
formed by a program.

Our aim is to make precise this particular concept of a "formal
specification" and then to define the "correctness" of a program with
respect to its specification. We also illustrate some correctness
proofs using the extended wp calculus.

- 40 -

Let us consider as an example the simple problem of writing a pro-
gram to exchange the values of two variables x and y. More formally, we
are required to find to every initial state s' a final state s such that
s(x)-s'(y) and s(y)-s'(x) (recall that states are functions from vari-
ables to values).

When unambiguous we follow the widely accepted notational conven-
tion of denoting the initial value of a variable x by "x'" (x primed)
rather than s'(x) and its final value by "x" (x unprimed) rather than
s(x)•• Our simp1e problem can then be stated as follows:

x - s" & Y - x' (2.10)

Formulae such as (2.10), expressing a relation between the initial
values and the final values of a number of variables, are frequently
used as specifications of programs.

We consequently call such a formula a "specification" or a "goal";
formally we define a specification G as a "binary predicate"

G: S x S --~ {true,false} (2.11)

over the state space S where, as in (2.1), the first S stands for the
initial states (expressed in G by primed quantities) and the second S
stands for the final states (expressed in G by unprimed quantities).

Via the equivalence

G(s' ,s) - true <-> (s' ,s) e m (2.12)

• This convention must however be regarded as unsatisfactory, be-
cause it may lead to confusion if a variable and its values are
denoted by the same symbol (which is like denoting a set and its
elements by the same symbol). It would be preferrable in the long
roo to settle for a notation such as "preval(x)" and "postval(x)"
to denote the initial and final values of x, respectively.
Although I consider it important to find a solution to this nota-
tional problem, I would however not like to advocate any particu-
lar solution in this thesis.

- 41 -

there is again a natural isomorphism between binary predicates (2.11)
and relations m'c S x S which is analogous to the isomorphism (2.4)
between unary predicates and subsets of S. As a result, we can hen-
ceforth use relations and binary predicates as interchangeable mathemat-
ical objects (where the emphasis is on "mathematical": by no means must
we confuse the interpretation of m(c) given in section 2.2 and the
interpretation of a specification given belowl). All definitions about
relations can therefore be transferred without problems to binary predi-
cates, and vice,versa.

In particular, a binary predicate G is called "deterministic" iff

'V s" e S: card({s e s I (s' ,s) e GD i 1 (2.13)

Unary predicates (2.3) can be viewed as special cases of binary predi-
cates, involving either only unprimed quantities ("postconditions") or
only primed quantities ("preconditions").

Recall that in the wp formalism the function wp has been defined as
a "predicate transformer" transforming a postcondition (which is a unary
predicate) into a precondition (which is also a unary predicate). In
this section we generalise the "wp" to a function which can have binary
rather than unary predicates both as its arguments and as its results.
It will be shown that binary predicates can be used quite analogously to
unary predicates, and that this extension gives rise to a calculus of
the "total correctness" of programs which is similar to that expounded
by Manna in [79] in that it takes the initial values of variables into
account in a satisfactory way.

Let us suppose that the specification G of a program is given as a
binary predicate, as in (2.10):

G(Swap) - (x - y') & (y - x') (2.10)

We interpret this as imposing the following obligation on the implemen-
tor of G. If his program c is started in an initial state s' to which a
final state s satisfying G exists (i.e. s'G + ~) then c is required to

- 42 -

terminate in such a final state (due to non-determinacy of G there may
be two or more such final states, anyone of which is acceptable). If
·to s'"no such s can be found (Le. s"'G- ") then no particular behaviour
is required of c, i.e. we don't care what c does if started outside
Dom(G)*. Notice that the domain of G(Swap) in our example (2.10) equals
the entire state space, so that any implementation of G(Swap) is always
required to terminate.

We have ju~t given an informal account of what we would like to
define as the "correctness" of an implementation c with respect to a
specification G. To reiterate: within the domain of G, c is required to
terminate in a state satisfying G. This definition is similar to the
notion of "total correctness" defined in [79]. Formally, we call a pro-
gram ca" (correct) implementation" of a specification G iff

\ts' e Dom(G): 0 c s"'m(c)c s"'G (2.14)

Note that the definition (2.14) is weak in the sense that it allows a
deterministic program c to implement a non-deterministic specification
G. In the special case that any result of G could also be a result of
its implementation c, it is plausible to call c a "precise implementa-
tion" of G. Formally,

Vs'" e Dom(G): s"'m(c)- s'G (2.15)

It is in fact a .very frequently occurring case that the specifica-
tion of a program can most easily be stated as a non-deterministic
binary predicate (stating: "we want a result but we don"'tcare which one
out of a class of equivalent results"), while the implementation of this
specification is deterministic, resolving the non-determinacy in the
most convenient way; an example of this is given below. In fact, I con-
sider the chief usefulness of non-determinacy to be its applicability at

* This last requirement can be strengthened. It is one of the
chief objectives of "exception handling" to make programs well-
behaved for all possible inputs by prescribing their behaviour
outside the domain of their specifications [17,28]. The treatment
of this question falls beyond the scope of this thesis.

- 43 -

the specification level where implementation detail can be disregarded.

We show as an example that the following program is a correct (and
even a precise) implementation of (2.10):

x :- x-y;
y :- x+y;
x :- y-x

Program P2.~: Swap

We will not in fact give the correctness proof of P2.5 by direct appli-
cation of (2.14), but rather we will show how binary predicates can be
used in a calculus which is rather similar to that of deriving precondi-
tions by "backsubstitution" [30]. This method will be formally justi-
fied later.

Our method requires the specification G to be written at the end of
the program c whose correctness with respect to G is to be checked. G
is then backsubstituted through the program to its beginning. This
backsubstitution follows exactly the same rules as the well-known method
of backsubstituting unary predicates [53,30], except that the primed
quantities of G (indicating initial values) are treated as constants;
the substitution rules thus act only on unprimed quantities.

In each step of this backsubstitution, a new specification is
obtained which may also contain a mixture of primed and unprimed quanti-
ties. The unprimed quantities indicate the "current states" while the
primed quantities continue to indicate the initial states. After the
last step, i.e. at the beginning of the program, initial states and
current states can be identified, which can be done by "priming" all
unprimed variables, thus transforming the originally binary predicate
into a unary predicate.

We illustrate this method on our example:

- 44 -

1 {y=y' & x=x"}

2 x :- x-y;
3 {y-y' & x+y-x'}
4 y :- x+y;
5 {y-x-y' & y-x'}
6 x :- y-x
7 {x-y' & y-x'} - G(Swap)

Program P2.1 (annotated)

Notice that line 5 has been obtained from line 7 by substituting the
unprimed occurrence of x only, by the expression (y-x); similarly for
1ines 3 and 1. .

We transform the binary predicate in line 1 into a unary predicate
by "priming" all unprimed quantities, and obtain:

which is of course always true and hence the characteristic predicate of
the state space S. From this, the correctness of P2.5 can immediately
be inferred, because the domain of G{Swap) (see (2.10» also equals S.
The general rule is that c implements G iff the unary predicate obtained
after backsubstituting and "priming" equals the domain of G; this rule
is justified below in proposition 2.8.

We now proceed to justify this method formally. First we extend
weakest preconditions such that they are functions from binary predi-
cates to binary predicates. To this end, we consider the general situa-
tion that c is sequentially composed of Cl and c2 (see Figure 2.1); we
are interested in the "weakest specification" for cl needed to ensure
that c2 will accomplish the goal G:

G·

- 45 -

s" initial state

ws

t current state

s final state

Figure .~..!

In this situation we define the weakest specification for cl which
guarantees that G is implemented by c - cl;c2 as a relation

satisfying

(2.16)

An initial state s" and an intermediate state t thus stand in relation
ws(c2,G) iff c2' when started in t, terminates in some final state s
satisfying the global goal G. As an example, if c denotes the command
in line k (-2,4,6) in the annotated version of program P2.5 and G
denotes the specification in line k+1 then the specification in line k-l
equals ws(c,G).

From the considerations of section 2.3, especially when (2.16) is
compared with formula (2.5b), it can immediately be appreciated that
ws(c,.) is indeed a generalisation of wp(c,.). In general, we have for
all specifications G:

Proposition ~.!wp(c,Cod(G» - Cod(ws(c,G» •
.

We have thus formally described the backsubstitution of binary
.predicates. It remains to describe the "priming" of a binary predicate.
We have:

- 46 -

Proposition !.2_When a binary predicate G ~ S x S is "primed" then the
~aracteristic predicate of the set {s € S I (s,s) € G}
is obtained.

Because apparently this set has some significance we coin a name for it:
we define, for an arbitrary specification G,

Core(G) - {s € S I (s,s) e G} (2.17)

We can now state the justification for our correctness argument
above as follows:

Proposition !.! A program c correctly implements a specification G iff
Dom(G)-Core(ws(c,G».

Proposition 2.8 follows immediately from the definitions (2.14), (2.16)
and (2.17).

The intuitive meaning of the set Core(ws(c,G» is that it contains
all initial states for which c is indeed guaranteed to terminate in a
final state satisfying G, even if c doesn't implement G as defined in
(2.14); we therefore call the set Core(ws(c,G» the "implementation
domain" or the "standard input domain" of c with respect to G [17]. The
standard input domain may in general be a proper subset of the domain of
G. Proposition 2.8 states that if and only if these two domains are
equal then c does indeed implement G.

Next in this section we give an example of a non-deterministic
specification and a deterministic implementation, taken from [17,28].
Suppose that a program for the allocation of one out of N resources has
to be written, N>l. Suppose that the resources are represented by an
array

Var A: array (O••N-l) of {free,busy}.

The program should assign to a variable i the index of a "free"
resource, and should turn the status of this resource into "busy".

- 47 -

The formal specification of this can be written as

G(Allocate) - (0<i~N-1) & (A'[i]-free) & (A[i]-busy) (2.18)

Note that G(A1locate) is non-deterministic if more than one of the
resources is free initially. The characteristic (unary) predicate of
its domain is

(2.19)

We prove by the same method as previously that the deterministic program

i :- 0;

do A[i]-busy ~ i :- i+1 od;

A[i] :- busy

Program P2.!: Allocate

correctly implements G(A11ocate) as defined in (2.14).

Note that the behaviour of P2.6 is undefined outside the domain of
G(Allocate); this does not however impede its being a correct implemen-
tation of G(Allocate) according to formula (2.14). In [17] a method is
described supporting the insertion of tests Which check for initial
states outside the implementation domain.

The proof is conducted by annotating the program in the following,
now hopefully self-explanatory, way:

- 48 -

1

2

3

4

5
6

7

{3j: (O<j<N-l) & (A'[j]-free) & (A[j]-free}
i :- 0;
{3j: (i<j<N-1) & (A'[j]-free) & (A[j]-free}
do A[i]-busy ~ i :- i+1 od;

{(0<i<N-1) & (A'[i]-free)}
A[i] :- busy
{(0<i<N-1) & (A'[i]-free) & (A[i]-busy)}

Program P2.! (annotated)

Again, by "priming" the binary predicate shown in line 1, the charac-
teristic predicate (2.19) of the domain of G(Allocate) can be obtained,
which by proposition 2.8 proves the correctness of P2.6.

In this section we have extended the wp calculus to binary predi-
cates. We have shown that this yields a satisfactory calculus for prov-
ing the correctness of a program with respect to its (input/output)
specification. In practice, of course, not all proofs will be as
straightforward as the ones given, and the method outlined here should
not be considered as a general recipe.

Note that only part of the equation of proposition 2.8 needs to be
checked in order to prove correctness: because Core(ws(c,G» ~ Dom(G)
always, only Dom(G) ~ Core(ws(c,G» needs to be proved. Such a proof
may in practice be quite different in style from the two proofs given,
using, for example, loop heuristics such as advanced in [63]. The
points made in this section are that binary predicates can be used in
such proofs (whatever their style) quite analogously to unary predi-
cates, and that the "Core" operation plays a special role in proofs of
the total correctness property (2.14).

The "Core" operation (Le. the "priming" of a binary predicate) has
also been defined in a recent paper [36] in which its above significance
has however not been discussed. The question of how to incorporate ini-
tial values in the predicate calculus has also been tackled by Gries and

- 49 -

Levin in [45]; in my opinion their solution is less elegant than the
calculus of binary predicates presented in this section, because they
make a distinction between "real variables" and "logical variables"
Which seems unnecessary.

The reader may ask what the difference is between binary predicates
and unary predicates using primed variables as "constant" symbols (or
"logical variables"). My answer is that, mathematically speaking, no
difference can be made. However, conceptually the use of binary predi-
cates is in my opinion an improvement over using unary predicates with
constants. Not only can "correctness" (2.14) be defined elegantly using
binary predicates, but also other statements concerning the relation
between the initial and the final values of variables can be formulated
more elegantly; as an example, the reader is invited to rephrase the way
in which initial values have been introduced in chapter 8 of [30] in
terms of binary predicates. Furthermore and finally, whether binary
predicates or unary predicates with constants are used, the "Core"
operation must be defined similarly as above; it does seem to be easier
to define it in terms of binary predicates.

Summary of section ~.1
The wp formalism is extended to "binary predicates" involving ini-

tial states and final states. A criterion for total correctness is
defined and it is shown how the wp calculus can be extended to check
this criterion. The extended calculus is illustrated on two examples.

2.6 Pure Backtrack Programs

In this section we consider a relational semantics which is in a
certain sense "dual" to that defined in section 2.2. So far we have
been concerned with the usefulness, and the limitations, of relations of
the form (2.1) for the characterisation of the input/output behaviour of
non-deterministic programs. By changing radically their interpretation,
we can forge such relations to describe a different class of programs

- 50 -

which will here be called "pure backtrack programs" (for reasons to.
become clear later). Such programs have been studied extensively in the
,literature, for which the reader is referred to [27,19,39,104].

We aim at obtaining formal semantics and correctness criteria for
pure backtrack programs. The ideas outlined here are not strictly used
in later parts of the thesis, so that this section can be skipped. The
reason for its inclusion is mainly its possible general interest.
Besides, I shall argue that the programs considered here are effectively
simple concurrent (rather than non-deterministic) programs, which allows
us to classify them under the title of the thesis. However the connec-
tion to concurrent programs using atomic actions is not clear to me. We
shall also present an argument by which the special "bo ttom" element
used in (2.1') can be derived, rather than has to be introduced ad hoc.

Wirth in [104] characterises backtrack programs as programs in
which

.. steps towards the total solution are attempted that may later
taken back when it is discovered that these steps lead into abe

"dead end street'''.

Such programs often usefully arise in exhaustive search type problems.
One particularly famous problem of this kind is the "8 Queens Problem·'
(see for example [39]) which, in its simplest form, asks for the
enumeration of all possible ways in which eight queens can be positioned
on a chessboard such that no queen attacks any other queen.

Backtracking techniques can usefully be employed in the solution of
all kinds of other problems as well. However we shall concentrate at
first on exhaustive search type problems, such as the 8 Queens Problem.
These problems, in general, ask for the enumeration (or ··production··,as
we shall say) of all of a set of ··solutions". We use the adjective
"pure" to indicate that backtracking is used in connection with such
problems; the reason for this will become clear later.

To help in the concise formulation of a backtrack program the
introduction of a special •.choLee" operator has been. found convenient

- 51 -

[39,60,27]. This choice operator connects a list of "program branches".
On its execution, one particular branch is chosen and executed until by
means of some criterion this execution either "succeeds" (in which case
;its result is added to the list of "solutions") or "fa11s" (in which
case it is just forgotten about). Upon establishing whether or not the
execution of the most recent branch succeeds, the program then "back-
tracks" to the point where this branch had originally been chosen (i.e.
the choice operator) and goes on sel~cting the next branch, until the
list of branches is exhausted.

Because the order in which the program branches are selected may
not be determined, programs using the "backtrack choice" operator just
described have often been called "non-deterministic". I would however
maintain that this kind of "non-determinacy" should not be confused with
the non-determinacy which has been of interest in section 2.4. It is
therefore very unfortunate that the same term has been used for two
quite different things.

I wish to present my informal argument why the "backtrack choice"
operator should not be called "non-deterministic". As described above,
one of its characteristic features is that all of the program branches
it prescribes have to be tried exhaustively for it to be validly exe-
cuted. This is in stark contrast to the non-deterministic operator "OR"
(see section 2.2) for whose valid execution it is sufficient that only
one of its constituent commands be executed, to the exclusion of the
other(s). Seen in this way, the backtrack "choice" operator behaves
more like an "and" operator whose net effect it is to produce all of the
solutions of the "successful" branches. The awareness of this distinc-
tion is not new and has been expressed, for example, in [21].

Because of this conjunctive property of the backtrack choice opera-
tor, a convenient way to think of its implementation would be the fol-
lowing. At the point of its execution the state space of the program is
"split" into as many disjoint and independent copies as there are
"branches" of the choice operator. Each one of these copies would serve
as a starting point for executing the branch it corresponds to. If the
execution of this branch succeeds, its final state is recorded as a

- 52 -

solution, and if it fails it is thrown away; in the end all of the solu-
tions are collected together.

In effect, therefore, the backtrack choice operator could be viewed
as a concurrent operator which "produces" all solutions simultaneously.
Seen in this way, the above sequential description (i.e. that branches
are chosen one at a time, separated by backtracking phases) can be
viewed as but a sequential method (perhaps as the most natural such
method) of achieving the same effect. The internal non-determinacy of
the backtrack choice carries no significance with respect to its global
effect: the important thing is that all solutions are produced, no
matter in which order they are produced. That this kind of concurrency
is a convenient way of looking at the backtrack choice operator has also
been recognised early, perhaps most clearly in [60] Where an Algol 60
extension incorporating backtrack choice is described and where the fol-
lowing quote can be found:

-choice' (which refers to our backtrack choice.EB) is not a
magic function but a means of expressing parallel computation."

In sum, we may contrast the non-deterministic "disjunctive" choice
operator "OR" (section 2.2) and the backtrack" conjunctive" choice
operator whose net effect can be described as though all solutions were
produced concurrently and which we therefore consider different from the
OR. We call the latter operator "AND", in an obvious reference to its
conjunctive properties. In this section we define the syntax and seman-
tics of a simple language which incorporates the AND operator but no
form of OR; i.e. all programs are "globally" deterministic but may con-
tain concurrency in the form of AND (which the reader, if he so wishes,
can think of as being implemented by backtracking). The programs writ-
ten in this language will again be abbreviated by the letter "c".

Thus, we are interested in programs which produce, not one out of a
set of equivalent results, but all results with a given property. The
way to capture the semantic effec t of such programs will actually con-
sist, not in a change in the formula (2.1), but in a change in its
interpretation. Previously, we have included (s" ,s) in m(e) if e,

- 53 -

started in s', ~ produce s (give or take the problem of termination
discussed in section 2.2). Now we include (s' ,s) in the input/output

.'relation of c if c, started in s', is guaranteed to produce s. Thus,
,if, say, both (s' ,SI) and (s' ,s2) are members of the input/output rela-
tion then c produces both sI and s2 from s'.

In order to minimise confusion we use a different letter for rela-
tions with our new interpretation. We characterise the input/output
effect of a backtrack program c by a relation

b(c) c S·x S (2.20)

over the state space, where again the first S refers to the initial
states and the second S refers to the final states (and "bOOstands for
"backtracking") •

If (s' ,s) e b(c) for an initial state s' and a final state s then
we say that c "produces s from s'''. The set of all final states pro-
duced by c from s' is s'b(c). Thus, when started in an initial state s'
then c produces all of the final states s'b(c). In what way they are
produced (one at a time with a label "success" attached to them or con-
currently all at once) does not interest us.

In the special case in which Is'b(c)1 -ex> we may imagine that the
production process be of infinite length and therefore non-terminating.
One could here see an analogy to the case s'm(c)-~ for non-deterministic
c. We do not however in this section wish to enter into a discussion of
this case, and we therefore rule it out by making the overall assumption
that S is finite.

In analogy to the considerations of section 2.5 we may also intro-
duce "specifications" for backtrack programs, again as binary relations

H c S x S (2.21)

For s' e s, we call a final state s a "solution" iff (s' ,s) e H. We
interpret H as requiring that an implementation c of H should produce
all of the solutions specified by H.

- 54 -

We state the correctness of a backtrack program c with respect to a
backtrack speci~lcation H in analogy to the formulae (2.14) and (2.15)

given in the previous section. We call c a "(weak) implementation" of H

·iff

v s...e S: s"'H~ s"'b(c) (2.22)

(2.22) requires that c produces all solutions but admits that c may pro-
duce some more than specified. One is in the case of backtrack programs
probably more interested in programs which produce precisely the solu-
tions specified by H:

'1s'" e S: s"'H - s"'b(c) (2.23)

We call such programs "(precise) implementations" of H.

We define our language first and give some examples later. Since
for deterministic non-concurrent programs c our interpretations of m(c)
and b(c) cOincide, all deterministic constructs have the same semantics,
as before. The semantic formula b(c) for the AND operator is similar to
the previous semantic formula m(c) for the OR operator. However, the
interpretation of these formulae is different as discussed above. This
is the reason for calling the programs defined here "dual" to those
defined earlier.

skip: s"'b(skip) - {s"'}.
Intuitively, skip acts as expected: it produces s'"from s....

abort: s"'b(abort) - ~.
Thus, the program "abort" produces nothing out of S'i it acts as
though "throwing away" s', and it could therefore be used to
indicate the "failure" of a particular branch in backtracking.

x:-E: As before (we consider only terminating and deterministic assign-
ments).

if B ~ c fi: (s'",s) e b(if B -~ c!!) <-> s...e B & (s'",8) e b(c).

- 55 -

This "deterministic conditional" acts as abort if B is
false and as c if B is true.

do B ~ c od: Same as before.

Define ANDCLAUSE - cl AND ••• AND c :n

This is where the production of possibly more than one solution
comes in.

We define (s' ,s) e b(ANDCLAUSE) <-> ~ j: (s' ,s) e b(cj).

Thus, for the whole program ANDCLAUSE to produce a solution s, it
suffices that one of the cj produces s. The program ANDCLAUSE
therefore produces all solutions that can be produced individually
by the cj. Note the similarity between this definition of AND and
the previous definition of OR. Implicit in the definition of AND
is that at its point of execution the entire state space is copied
(not just the variables occurring in the c

j
).

We now turn to a few examples. Let us consider the problem of pro-
ducing all indices i in an array A[l ••N] which point to negative array
entries. We therefore have the specification

H(Negentries) - (A'[i] < 0) (2.24)

This could be implemented by the program

1

2

i:-l AND ••• AND i:-Ni
if A[i]<O -~ skip !!

Program P2.l: All Negative Entries

In line 1, N copies of the variable i are created, each pointing to a
different array element. In line 2 of P2.7, all those indices are

- 56 -

collected for which the specification (2.24) holds; all others are
thrown away. Th~ program terminates with as many final states as there
are negative entries in A[l ••N]. Thus, P2.7 is a precise implementation
'of (2.24). The doubting reader might like to show, using the semantics
of the language constructs just given, that indeed for every initial
state s', the set s'b(P2.7) contains as many elements as there are nega-
tive array elements in s'.

As a more interesting example we reconsider the problem of the
eight queens. ,Knowledge about this problem allows us to state a priori
that no two queens can be placed on the same row. We are therefore ask-
ing to create, as many times as there are different solutions, an array
Q[1 ••N] which contains for every row the column on which the queen of
this row is placed. This specification assumes the form

H(8queens) - Vi e {1, ••• ,8}: safe(i,Q[i]) (2.25)

where "safe(i,j)" captures the condition that a queen on position j in
row i is not attacked by any other queen on rows less than i:

safe(i ,j) - V k e u,...,i-1}: j-+Q[k] & 1j-Q[k] 1-+1i-kl (2.26)

The following program solves the eight queens problem:

1

2

3

4

i:-l;
do i~8 -~ j:-l AND AND j:-8;

if safe(i,j) -~ Q[i]:-j fi;-- --
i:-i+l

od

Program P2.!: Eight Queens

Intuitively, the program works as follows. For every row (from i-I to
i-8), eight copies of j are created in line 2 to represent the eight
possible positions on this row. (The arrays Q are also copied.) These
copies are saved in the arrays Q iff a queen can safely be placed on
that square (line 3), otherwise they ·are thrown away (together with

- 57 -

their corresponding Q's).

The reader can, if he so wishes, use the formal semantics of our
language to show that, indeed, s'b(P2.8) contains all 92 solutions and
nothing else, i.e. that p2.8 precisely implements H(8queens). We do not
in this section give a proof of this fact. Note that the program can
easily be extended to the NxN case.

Many combinatorial problems can be solved by programs of a similar
type as P2.8. We may mention the "knight's tour", "nonequal adjacent
sequences" and "binary circle" problems (see [43]), all of which can be
solved easily and transparently by similar programs. A general form of
such solutions is

"initialisation""; .
do "no t exhausted" -~ "branch1"" AND ••• AND "branchn";

if "partLaI solution"" -~ "record Lt " fi;-- --
"next st ep"

od

Figure !.!

This closely resembles the ""general backtrack scheaea" defined, for
example, in [19] and [43]. Note however that the scheme shown in Figure
2.2 does not involve either recursion or implicit backtracking, in con-
trast to those other schemes. In fact, as argued above, backtracking
can be seen as but a sequential method of implementing essentially con-
current programs, and I would further argue that recursion is but an
elegant way of achieving backtracking. Note also that the use of AND is
not limited to this case.

The ideas described in this section originate from an observation
which came up in discussions between P. Henderson, S. Jones and the
author, concerning the semantics of recovery blocks. I briefly describe
this observation. Suppose that one wishes to define a program connec-
tive "AND""by forming the formal dual of the defining weakest precondi-
tion equation for "OR"" (see section 2.4):

- 58 -

wp(c OR c' ,X) - wp(c,X) & wp(c' ,X)
wp(c AND c',X) - wp(c,X) V wp(c' ,X)

(2.27a)
(2.27b)

Within the weakest precondition calculus, OR as defined in (2.27a)
is a well-defined construct. However, AND as defined in (2.27b) is not
well-defined. This can be inferred from the fact that formula (2.27b)
does not preserve the property (2.6b), i.e. the multiplicativity, of
weakest preconditions. That is to say, if wp(c,.) is multiplicative and
wp(c' ,.) is multiplicative then it does not necessarily follow that
wp(c AND c' ,.) as defined in (2.27b) is also multiplicative.

Nevertheless, if one pursues, in a purely formal way, the possi~il-
ity of defining such an AND connective by means of (2.27b) then it turns
out that such a connective must have properties similar to those
ascribed to the "backtrack choice" operator. This is docuaent ed in
[12]. Of course, when (2.27b) is seriously considered as a definition
of AND then the wp framework is transcended. The question therefore
arises whether or not this framework can be generalised to accommodate
the AND operator.

I have tried to generalise the wp function for programs containing
both OR and AND (assuming their semantics to be given intuitively as
above), such that both (2.27a) and (2.27b) hold true, but have found
this to be a rather intricate enterprise. I have therefore attempted at
first to confine attention to programs using only AND but not OR, which
I have here called "pure backtrack programs". The ideas contained in
this section are the result of this limited approach. In particular, it
has been easier to change the forward semantics rather than the backward
semantics. The formulae (2.5), linking forward and backward semantics,
can however also be redefined with b(c) in place of m(c) and given a
correspondingly changed meaning; this is however beyond the scope of the
present section.

I shall finally in this section outline how I would imagine the
forward semantics of programs containing both AND and OR to look like.
Such programs might be called "mixed" type programs, being in general
neither purely non-deterministic nor pure backtrack (i.e. concurrent)
programs. In practice there is likely to be some interest in mixed type

- 59 -

programs. For instance, suppose that one out of a set of results is to
be produced but that the easiest way to produce this result is by first
producing all results (say involving backtracking) and then selecting
?ne of them; the solution could involve an AND program followed by an OR
clause •.

In general, we are now looking for a suitable forward semantics of
a "mixed" program c such that the new semantics contains both m(c) (and
its interpretation) and b(c) (and its interpretation) as special cases.
An appropriate way to approach this objective seems to define a rela-
tion, which for obvdous reasons I call "mb", over sets of states as fol-
lows:

mb(c) c S x 2S (2.28)

The intention behind this definition is to include a pair (s' ,X) (X ~ S)

in mb(c) iff c, when started in s', ~ produce all of the states in X.
Thus, non-determinacy arises in the sense that if (s' ,Xl) e mb(c) and
(s' ,X2) e mb(c) then it is not determined whether c will produce Xl or
X2• Concurrency arises in the sense that any of the sets X which can be
in s'mb(c) can contain more than one element.

We show how m(c) is included as a special case in mb(c).
impose on mb(c) the condition

If we

Vs' e s. X e s'mb(c) -) Ixl < I (2.29)

then either only singleton sets or the empty set 0 can correspond to an
initial state s'. In this case mb(c) could equivalently be viewed as a
relation

mb(c) c S x (S V {f6}) , (2.28')

where the empty set 0 now has the same function (and the same advan-
tages) as the "bottom" element (1) discussed in section 2.2 (compare
formula (2.28') with formula (2.1'».

- 60 -

(2.29) is a "no overall concurrency" or "no backtracking" condi-
tion. As such it may be related to a corresponding condition in [65],

» >

but (as this work has been done independently) I have not considered
.this possibility any further. However this possible connection is cer-
tainly to be looked at in further work.

On the other hand, b(c) is a special case of mb(c) in case the fol-
lowing condition holds:

Vs' e s: !Is'mb(c)I < 1 (2.30)

In this case mb(c) could equivalently be viewed as a relation of the
form (2.20), corresponding to an overall deterministic program c. In
fact (2.30) is just a generalisation of (2.8).

These remarks give rise to hope that the forward relational seman-
tics of "mixed" programs containing both AND and OR could suitably be
defined by mathematical objects of the form (2.28). It is particularly
satisfying that the addition of a special "bottom" element (see (2.1')
and (2.28'» can be justified in a systematic, rather than an ad hoc,
way as a consequence of the restriction (2.29). Note thst objects of
the form (2.28) are more general than weakest preconditions because, as
seen in section 2.3, weakest preconditions are equivalent to a proper
subset of S x 2S•

The generalisation considered in the form of (2.28) requires a
corresponding generalisation (both intuitively and formally) of the
basic language constructs. This is straightforward except for loops.
To end this section, we give the generalised semantics for skip, abort,
concatenation and the two operators AND and OR, and leave the loop
semantics for future investigation.

(s' ,X) e mb(skip) iff X - {s'}

(8' ,X) e mb(abort) iff X - ~

(s',X) e mb(c OR c') iff (s' ,X) e mb(c) "y (s'",X) e mb(c')

- 61 -

(s' ,X) e mb(c AND c') iff X - Xl V X2' where
(s' ,Xl) e mb(c) and (s' ,X2) e mb(c')

Note the formal similarity between the definitions of OR and AND: both
are defined,· essentially, by disjunctive formulae. However the
interpretation of mb(c) ensures that OR corresponds to our non-
deterministic connective while AND corresponds to the backtracking (or
concurrent) connective.

(s',X) e mb(cl;c2) iff 3Y: (s',Y) e mb(cl) and X - U{Xy}
for some Xy such that Vy e Y: (y,xy) e mb(c2).

The above formulae for AND and OR can easily be generalised for
conditional branching and splitting, respectively. As there are now two
"conditional" constructs, it would seem plausible also to introduce two
kinds of loop constructs. One kind of loop would correspond to the one
used so far, e.g. in programs P2.6 and P2.S. The other would perhaps
most conveniently act as though "producing" not'only the very last final
state after termination, but also all (or some) of the intermediate
states which arise after full executions of the loop body. With such a
loop, for instance, the assignments in line 1 of P2.7 and line 2 of P2.S
could be written more succinctly in loop form. However we defer the
discussion of such an extension to future work.

Summary of section ~.!

By a change in interpretation, relations over the state space can
be used to characterise backtrack programs. The change consists in
switching from programs which produce one out of a set of results to
programs which produce all results. Syntax and semantics of a simple
backtrack language are given, illustrated by two examples. A possible
extension to programs containing both non-determinacy and backtrack
features is sketched.

- 62 -

3. PETRI NETS AND STRUCTURED OCCURRENCE GRAPHS
.'

.3.1 Introductory Remarks

Petri net theory (or, as we shall prefer to say, "net theory") is
an outgrowth of a strand of reserach into concurrent systems which has
been conducted since the early 60's [92,93,105,94,91,41]. We may quote
[94] as to the general purpose of net theory:

"The main purpose of net theory is to supply us with descriptive,
deductive and conceptual devices:

- descriptive devices for demonstrating the structure of systems;
...

- deductive devices for solving application problems; •••
- conceptual devices producing precise concepts on many levels, or

promoting the communication between the computer expert and other
people. •••"

The net formalism is based upon an underlying notion of "concurrency"
which is defined as a symmetric (but not necessarily transitive) rela-
tion. At base, therefore, net theory is the study of symmetric rela-
tions [96].

A frequent way of applying nets is to describe the structure of a
given system of interest by a net, while a "marking" of the net is used
to represent the "current state" of the system (by indicating which sys-
tem "elements" are "currently" holding). Changes in the system's state
are modelled by a "transition rule" which governs the transformation of
markings into one another. Nets used in this manner are usually called
"system nets" [41]. A system net, its markings and the possible
transformations of markings into one another are thus analogous, respec-
tively, to a program, its states and the possible state sequences
involved in an execution of the program.

As a consequence of the special form of the transition rule, every

- 63 -

possible marking transformation traces out of the system net a certain
substructure of t'henet known as an "occurrence net". An occurrence net
thus corresponds to one particular "execution" of the system net; as we
shall see, it can be thought of as an ·'unwrapping" or "unfolding" of the
original net. It so happens that the definition of a net can be cast in
such general terms that both system nets and occurrence nets are "nets"
in the sense of that definition (occurrence nets satisfying special pro-
perties) •

The reason ··.forour interest in nets is that in chapter 4 we intend
to describe atomic actions in terms of the possible executions, or com-
putations, they may give rise to. We explore the extent to which
occurrence nets, in their capacity of corresponding to individual execu-
tions, are a suitable means for this purpose. The use of occurrence
nets in this way has first been suggested by Merlin and Randell in [82].
It has been suggested in [82] as well as in [97] that the way in which
atomic actions can best be represented is by the (possibly nested)
"dynamdc structure" they impose on the computation in question. To cap-
ture this idea, we use, in chapter 4, not plain occurrence nets but a
more general concept called "structured occurrence nets".

In all, the present chapter contains a few general definitions and
preliminary results in preparation of chapter 4. In section 3.2 we
define nets in general, markings, the transition rule, and occurrence
nets, and we motivate these definitions by an example. We further
define structured occurrence nets in section 3.3; actually, for purposes
to be explained in subsection 3.3.1, we define a slightly, and unsub-
stantially, modified version of occurrence nets which we call
"occurrence graphs".

Section 3.4 is an "aside" or, more precisely, a "left over". It

contains an argument, announced in section 2.4, to the effect that the
axiom of bounded non-determinacy makes sense only for sequential pro-
grams, thus implying that it can be dropped for concurrent programs
(that it should be dropped has already been argued in sections 1.1 and
2.4). The reader can omit section 3.4 without any loss of continuity.
In order to understand the main ideas described in chapter 5, the reader

- 64 -

can also omit chapters 3 and 4 altogether,

3.2Nets and Markings

This section contains the relevant definitions from 142] in insig-
nificantlymodified form. A "net" is defined as a triple (S,T,F) where

S is a nonempty set of "state elements" or "places"
T is a nonempty set of "transitions" (S 1"'\ T - ~)

F c S x TV T x S is the "flow relation".
(3.1)

If (as is common practice 141]) places are represented by circles and
transitions are represented py boxes then it is convenient (and usual)
to represent F by arrows between boxes and circles. The definition of F
requires that an arrow belonging to F may only lead from circles to
boxes or vice versa (never from a circle to a circle or from a box to a
box), Examples may be found below.

The role of a place is to model any aspects pertaining to the
"states" of a system. In a program, for instance, the possible values
of a variable could be represented by a set of places. as shown below on
an example. Transitions, on the other hand, serve to model any aspects
relating to state changes, such as the "commands" of a program.

This duality between state elements and transitions I consider to
be one of the distinguishing and most useful aspects of net theory. The
subject matter of duality can be, and has been, developed much further;
the reader is asked to consult [74.75,56.40.80]. In case no distinction
is to be made between states and transitions we use the neutral term
..element" and define the set of all elements as X - S UT.

Notationally, there does not, unfortunately, seem to be any easy
way around using the same symbol S for the set of places in a net and
for the set of states in a program (chapter 2). However no confusion
will arise from this, because we shall, except in this section, not use
the (S,T,F) form of nets. These two set" as seen above, may in any
case play quite similar roles.

- 65 -

To end the definition of nets we note that nets can, mathematically
speaking, be co~sidered as directed bichromatic graphs [8] whose nodes
are the elements of Sand T, respectively, and whose edges are the ele-
ments of F. All of the usual graph theoretic definitions such as strong
connectedness and cycle-freeness can therefore be transferred without
problems to nets as well. When referring to nets, we shall always use
such definitions in agreement with established terminology.

A "marking" of a net (S,T,F) is defined as a function

(3.2)

wheremo is the set of non-negative integers., A marking can be
represented pictorially by placing as many "tokens" on a place s as its
marking M{s) indicates. If two places are both marked in a marking
(i.e. their token content is greater than 0) then they are said to "hold
coneurrently" •

In a marked net a transition t e T is called "enabled" iff

M(s»O for all s € Ft.

An enabled transition can "occur" or "fire", thus (by definition)
transforming the marking M into a new marking B defined by

{

M(s)-l
H(s) - M(s)+l

M{s)

if s € Ft' tF
if s € tF'Ft (3.3)
otherwise

We illustrate this transition rule by the following example:

- 66 -

M Pi

Figure l.!

A marking PI is called a "successor marking" of M if there is a
sequence of transition firings transforming M into PI. For system nets,
a marking M and the set of its successor markings [61,48] form the pos-
sible "behaviour" of the system, given that M is its initial marking.
Not very surprisingly, the set of successor markings of M is usually
enormously complicated (by its sheer size alone). It is therefore one
of the chief objectives of net theory to discover statements which allow
one to deduce from properties of the system net itself (the "static
structure") certain properties of the marking graph (the "dynamic struc-
ture"). Most of the work relating to nets involves such statements.

In this section we shall be interested in the links between static
structure and dynamic structure only to the extent of pointing out on an
example that the definition of an "occurrence net", being a formalisa-
tion of the notion of markings being transformed into one another, fol-
lows from the transition rule. We give the example first and define
occurrence nets afterwards.

Consider the following net:

- 67 -

x-o x-l

y-o y-1

Figure !._!

With the inscriptions shown, this net can serve as a representation of
the following program:

.!!!:.x,y:0••1;

(X,y) :- (0,0); % set up initial marking
do pI -~x :- ° % tl
[] y-l -~Y :- ° % t4
[] (x,y)-(O,O) ~ (x,y) :- (1,1) % t2
[] (x,y)-(1,0) -~ (x,y) :- (0,1) % t3
od.

Program P3 •.!.

The net shown in Figure 3.2 and program P3.1 correspond to each
other in that every firing sequence in the net corresponds to a valid
execution of the program, and vice versa. Let us consider the state
reached after executing t2 and t4; the state is then (x,y)-(1,0). The
next occurrence from this state could either be the occurrence of tl or
the occurrence of t3, but not bothl In other words, both the net and

- 68 -

the program contain proper non-determinacy.

In state (x,y)-(l,l), on the other hand (reached after firing t2
only), .tl can occur concurrently with t4, a possibility which is expli-
cit in the net but only implicit in the program. This distinction is
due to the fact that the concurrency implicitly present in the program
in the form of two variables (compare section 1.1) manifests itself in
the net by the explicit presence of two tokens.

When the firing of transitions in a particular firing sequence
(i.e. a single "execution" of the net) is accounted for by keeping track
of the actual "movement" of tokens, then this can be represented by an
"unwrapping" of the net which connects the transitions and the places of
the net in the order in which they actually occurred or held, respec-
tively.

As the net may be repetitive, such an "unwrapping" may contain
several distinct occurrences of the same transition, as well as several
distinct holdings of the same place. We call any single occurrence of a
transition an "event" and any single holding of a place a "condition"
[41] •

If events and conditions are again represented as boxes and cir-
cles, respectively, then the "unwrapping" itself can be represented as a
net. The following Figure shows an example of such a "single execution"
in Which the actual occurrences have been distinguished by running upper
indices:

- 69 -

.';

1
(1),x- \ x-1 (2) x-O(3),

\,
\
\ tel)
\ 1,
\
\
\
\
\

t(3)\

Figure !.l

We call such a representation of an execution an "occurrence net". To
be quite precise, only the "net" part of this, without the inscriptions,
is usually called an occurrence net [41]; if the inscriptions, i.e. the
links between the occurrence net and the system from which it ori-
ginates, are taken into account as well, then the resulting structure is
called a "process net" [41]. We shall at present, however, find little
cause for distinguishing sharply between the two (but see the discussion
in section 5.3.3).

The occurrence net depicted in Figure 3.3, then, shows an execution
of the original net in which t2, t4, t3, t4, t2 occur in serial order,
and then t1 and t4 concurrently, leading back to the initial state
(x,y)-(O,O). In this execution, the choice in state (x,y)-(l,O) (indi-
cated in Figure 3.3 by broken lines) is shown to be resolved both possi-
ble ways. First (after the first time (x,y)-(l,O) holds) t3 is chosen
instead of t1, then (after the second time (x,y)-(l,O) holds) tl is
chosen instead of t3.

We see that the possibilities of non-deterministic choice which are

- 70 -

apparent in the system net disappear in the occurrence net because the
latter records the actual decisions taken. As a result, in an
occurrence net no condition will have more than one input event or more
·than one output event. We also see that by its very construction an
occurrence net will not be cyclic.

It is therefore reasonable to define an occurrence net as a net
(B,E,F) (where B is the set of "conditions", E is the set of "events"
and F c B x EuE x B as before) such that the following hold:

Vb e B: IbF I < 1 & IFb I < 1
+F is irreflexive

(3.4a)
(3.4b)

where F+ is the transitive (non-reflexive) closure of F (see Appendix
A.l.4). (3.4a) reflects our requirement that no condition bas more than
one input event or more than one output event. (3.4b) requires that an
occurrence net be acyclic.

Two relations, both defined on the set of elements X - B u E, are of
particular interest. For any two elements x,y e X we write

x < y ("x before y") iff x F+ y, (3.5)
i.e. iff there is a directed F-chain from x to y;

x co y (..x concurrent to y") iff neither x < y nor y < x

That these two relations correspond to what one intuitively associates
with them can be checked on our example. Their definition is also jus-
tified in [96], to which no further words need being added.

Note two properties of the concurrency relation. Firstly, as
defined in (3.5) it is symmetric but not necessarily transitive (as
declared at the beginning of section 3.1). Secondly, for occurrence
nets the concurrency relation can meaningfully be determined from the
net alone, without recourse to a marking. This follows mathematically
from the special properties (3.4) of occurrence nets, and it indicates
that to each occurrence net its "marking class" can be naturally
defined.

- 71 -

Occurrence nets have first been studied extensively by Holt and
others in [105]'and later by Petri in [95]. More recent research (for
example, by Janicki [58,59]) has gone into the direction of extending
the property that occurrence nets have a natural marking class to more
general nets.

This completes our list of definitions and remarks about nets in
general. In the remaining two sections of this chapter we concentrate
on occurrence nets in particular. In section 3.3 we define "structured
occurrence ne~s··, a generalisation of occurrence nets which is of
interest in chapter 4; we also give a few basic results about structured
occurrence nets. Section 3.4 contains a discussion of some special pro-
perties of infinite occurrence nets.

Summary of section !.!

We define nets, markings, marking sequences and occurrence nets.
For occurrence nets, we define the "before" and "concur-rency" relations.

3.3 Structured Occurrence Graphs

3.3.1 Notational Prelude

According to formula (3.4a), a condition in an occurrence net may
have no more than one input event and no more than one output event.
The only case of real interest is when a condition properly connects two
events. For the purposes of both this section and chapter 4 it is con-
venient to ignore "Lnf tLak" conditions which have no incoming events and
"final" conditions which have no outgoing events. We thus postulate the
follOwing stronger version of (3.4a):

V b e B: IbF I - IFb I - 1 (3.4a')

Because of (3.4a'), the set B could now equivalently be described
as a binary relation over the set E of events. Or, pictorially speak-
ing, all conditions could equivalently be replaced by single arrows

- 72 -

between the two events they connect. We shall in this section and in
chapter 4 prefer ~o use this latter structure, consisting of a set E of
events and a relation over events, which we shall call "occurrence
graphs".

The reasons for preferring to use occurrence graphs rather than
occurrence nets are purely practical ones. For one thing, some defini-
tions can be formulated more conveniently using occurrence graphs, and
for another thing, the pictures get smaller. Thirdly, we shall in our
characterisatio~ of atomicity in chapter 4 be concerned with the

'."before" relation < much.more than with individual conditions of B.

An "occurrence graph", then, is here defined as a pair (E,B) where
E is a non-empty set of events and B c E x E is a relation over E (B is
again interpreted as the set of conditions). We allow B to be empty, in
order to include a single event as a "degenerated" occurrence graph. We
define

e - head(b) and e' - tail(b) iff b - (e,e').

For occurrence graphs, we drop the requirement (3.4b). That is, we
allow occurrence graphs to contain directed cycles. This is because in
chapter 4 we make .a connection between such cycles and atomic actions;
we do not however use these cycles to describe "repetitive" behaviour.

To sum up: acyclic occurrence graphs and occurrence nets for which
(3.4a') holds are completely interchangeable objects, subject to the
above translation into one another. Occurrence nets are more general
than occurrence graphs in that (3.4a) rather than (3.4a') may hold (this
is however insignificant as every occurrence net having initial and
final conditions can easily be translated into an occurrence graph con-
taining a special "infinite" event). Occurrence graphs, on the other
hand, are more general in that they may contain cycles.

These definitions contradict some previous terminology. In [105]
"occurrence graphs" have been defined as acyclic occurrence graphs in
the above sense. In [82] "occurrence graphs" have been defined as
occurrence nets in the above sense. In [95], occurrence nets in the

- 73 -

above sense have been called "causal nets". In [102] acyclic occurrence
graphs in the above sense have been called "event structures". In [86]
"occurrence nets" have been defined in a sense substantially different
from the above.

Our definition of an occurrence net has followed [42], where the
concept of an occurrence graph is however not defined. In view of the
discord in established terminology described above, I feel justified in
giving the notion of an occurrence graph yet another meaning, in partic-
ular since very ~ittle confusion is likely to arise from this.

Summary of section !.!.!

Occurrence graphs are defined as, essentially, occurrence nets
which may be cyclic •.

3.3.2 Motivation

We show on an example the intentions behind the definitions in this
section. Consider the following occurrence graph:

Figure !.~

We shall consider an atomic action as having the effect of grouping
together certain subsets of the events of an occurrence graph and then
"collapsing" these subsets into a single event. If atomic actions are

- 74 -

nested (which we allow to be only in a well-nested fashion) then such
grouping together' and collapsing can also take place in a well-nested
fashion.

Let us assume that in Figure 3.4 the events to be collapsed are
{el,e2} on the one hand, {e3,e4} on the other hand, and that the result
is then to be collapsed altogether. We then obtain the following col-
lapsed versions of our original net, respectively (see Figure 3.5).
Graph GI arises from collapsing {el,e2} but not {e3,e4}; graph G2 arises
from collapsingJe3,e4} but not {el,e2}; graph G3 arises from collapsing
both {el,e2} and {e3,e4} simultaneously; finally, graph G4 arises from
collapsing the two events of G3 into a single event.

o

Figure 1.1

We do not interpret the cyclic graphs G2 and G3 as indicating the
possibility of repetitive behaviour; but rather, we think of all of the

- 75 -

graphs G1-G4 as "versions" of the original graph shown in Figure 3.4.
All of these graphs describe the same computation, albeit on "different

"'levels of abstraction". The original graph shown in Figure 3.4 is the
"baafc" graph showing the largest degree of detail. All other graphs
are more abstract versions of the basic graph, G4 being the least
detailed, or "most abstract", version.

As we shall take the basic graph as the most detailed description
of the computation under consideration, we are not interested in the
"interior" of the events in the basic graph. We therefore always assume
the basic graph" to be acyclic; any cycle in the basic graph would indi-
cate an event being its own cause (which is impossible). This is con-
sistent with later reasoning when cycle-freeness will be taken as a
"basicness" criterion (section 4.2).

In subsection "3.3.3 which follows we define the collapsing opera-
tion, while in subsection 3.3.4 structured occurrence graphs are
defined. The above concepts of different occurrence graphs being asso-
ciated with different levels of abstraction are also defined in subsec-
tion 3.3.4.

Summary of section l.l.!

Atomicity specifications introduce run-time structure in the form
of a structured occurrence graph.

3.3.3 Collapsing of Subgraphs

Let an occurrence graph G - (E,B) and a non-empty subset E' ~ E be
given. We define the subgraph A generated by E' as the set E' together
with all arrows that have both endpoints in E'. Formally,

A - (E' ,B') where B' - {b e B I tail{b) e E' & head(b) e E'} (3.6)

We also denote the set of events E' generating the subgraph A by i. We
usually enclose the set E' in a rectangle (see Figure 3.6).

- 76 -

"

A

Figure l.!

As A is again an occurrence graph, all the definitions relating to
occurrence graphs can be transferred to subgraphs; in particular, a
"before" relationship <A - B'+ can be defined for A which may not coin-
cide with < - B+ on A. Note also that A may be disconnected and/or that
B' may be empty. For example, in Figure 3.6, A is disconnected, B' is
empty and e1 < e2 in G but not e1 <A e2 in A.

We define the "collapsing" of A as the construction of a new graph
G[A] from G such that A is replaced by a single new event and all arrows
leading into and out of A are replaced by arrows ending and starting,
respectively, with the new event. We assume the new event to be
uniquely named and call it "A" for the purpose of this definition. For-
mally, G[A] - (E[A],B[A]) where

E[A] - (E\ ~bu {A} (3.7)

B[A] - {(e,e') e B let i & e, • i }
{(e,A) leti&3a e i: (e,a) e B}
{(A,e) I etX&3a e X: (a,e) e B}

In the remainder of this section we present two
the collapsing operation. The first one indicates

simple facts about
that collapsing does

- 77 -

not tear the graph apart, in the sense that paths leading into and out
of a subgraph A in G change into paths ending and starting with A,
respectively. .'

Lemma 1..!. 3a e X: e < a in G <->
3a e X: a < e in G <->

e < A in G[A]
A < e in G[A].

Our next lemma shows that the order of collapsing two disjoint sub-
graphs is immaterial. We call two subgraphs A and A' of G disjoint iff
in i' -".

Lemma 3.2 If A and A' are disjoint subgraphs of G then A'~is a subgraph
of G[A], A is a subgraph of G[A'], and G[A][A'] - G[A'][A].

The proofs of lemmata 3.1 and 3.2 follow immediately from the definition
of the·collapsing operation.

Summary of section 1.1.1
"Collapsing" formally defined as a consequence of the specification

of atomic actions.

3.3.4 Structured Occurrence Graphs and Levels of Abstraction

Let an acyclic occurrence graph G - (E,B) be given which we refer
to as the "basic graph", E being the set of "basic events". We define a
"tree structure" (or "well-nested structure") over G to be a finite set
T of sets of events (T ~ 2E) such that

E e T and {e} e T for all e eE
V El'E2 e T: El" E2 - " V El ~ E2 V E2 ~ El

(3.8a)

(3.8b)

As an example,

- 78 -

is the tree structure discussed in subsection 3.3.2.

The sets in,T will be used in chapter 4 to model the executions of
atomic actions. We therefore call them "atomic activities" or just
"activities". Condition (3.8a) is motivated by the wish to consider
both the computation as a whole and all basic events as atomic activi-
ties. Condition (3.8b) ensures that nested atomic activities do not
overlap.

We call a pair (G,T) where G is an acyclic occurrence graph and T
is a tree structure over G, a "structured occurrence graph", and we
define its structure tree as follows. The nodes of the tree are the
activities in T, and a node E" is called a "parent" of.another node E....
iff E" is the smallest superset of E....in T. As a consequence of (3.8a)
and (3.8b),

Lemma 3.3 There is a unique smallest superset for all sets in T except
E.

The "parent" relationship therefore defines a tree with root E and
leaves {el, e e E. For E" e T we define the set of "sub-activities" of
E" ,

~.. • {E e TIE" is parent of E.... }.

Our next aim is to capture the notion of a structured occurrence
graph describing a computation at different levels of abstraction. To
this end we define levels of abstraction formally and then associate an
occurrence graph with each level. Such a graph describes how the events
of this level are related to each other, generalising the remarks made
in subsection 3.3.2.

For a given structured occurrence graph (G,T), we call a subset
L c T a "level (of abstraction)" iff

E - U{E'IE' e L}

VEI,E2 e L: E1",E2 • ~ V El - E2
(3.9a)
(3.9b)

- 79 -

(3.9a) requires that all basic events are considered and (3.9b) requires
that none of them is considered more than once. Levels can be visual-
ised as "cuts" th~ough the structure tree. For our example discussed in
section 3.3.2 we derive the following s~ructure tree and five levels of
abstraction LO, ••• ,L4 (where for simplicity the leaves of the tree are
labelled with the names of the basic events they represent):

------ -- ---------

_________ L1_

Figure 1.1.

We further define:

the "baaf c lever' La - {{e} lee E}.
the "most abstract level" Lt - {E}, andop
for any E' e T the level~, - {E'}\J{{e} e e E\ E'}

containing E' and all basic events outside E'.

We define L' a: L for two levels L' and L iff

L' - (L' {E'})\Jf' for some E' eT,

i.e. iff L' arises from L by substituting the sub-activities of E' for
E'. We also write L' - [E']L in this case; for instance, L1 - [E2]L3 in
Figure 3.7. We call L "more abat.ract " than L' iff L' c: L, where c: is
the transitive closure of tr.

Lemma l.!. The t:: relationship turns the set of
with La as the minimal element

levels into a lattice
and Ltop as the maximal

- 80 -

element.

~or our example we have the following lattice:

Figure 3.8

Finally we define the occurrence graph associated with a level L by
induction over the lattice of levels as follows.

(01) The graph associated with LO is the basic graph.

(02) Whenever L' - [E')L, G' is the graph associated with L' and A
is the subgraph of G' generated by ~', then the graph associ-
ated with L is G'[A). We give the new event of G[A') the name
"E'" , so as to make step (02) repeatedly applicable; the
events of the graph associated with L are thus just the
activities in L.

As a consequence of lemma 3.2 which shows that the order of collapsing
disjoint subgraphs is immaterial and the requirement that all activities
be non-overlapping, we have:

Lemma 1.1 (01) and (02) properly define an occurrence graph for each
level.

For our example discussed in subsection 3.3.2 we obtain the five level

· - 81 -

graphs depicted in Figures 3.4 and 3.5.

Due to the association of an occurrence graph with every level, all
concepts defined for occurrence graphs (the < relationship, for example)
now become level-dependent. We use the phrase "at level L" in order to
avoid confusion about which level is meant.

If the convention of regarding basic events as trivial subgraphs is
introduced, a one-to-one relationship between activities E' E T and 8ub-
graphs (generate~ by~' if E' is non-basic) can be established. We
therefore use the term "activity" for subgraphs AI,A2, ••• as well and
extend all definitions accordingly. In particular, L'-[A]L means that A
is a subgraph at L' which is collapsed at L; LA denotes the level con-
taining A and all basic events outside Aj and an activity A is said to
"contain" another activity A' iff A' is a descendant of A in the struc-
ture tree.

Summary of section l.l.!

We define structured occurrence graphs so as to capture the possi-
bility of hierarchical well-nested collapsing. Derived notions: levels
of abstraction, the occurrence graph associated with a level.

3.3.5 Immediate Predecessors and Maximality Axiom

In section 4.4 of chapter 4 we shall wish to be able to identify to
an event in an occurrence graph its "immediately preceding" events.
When defining the notion of an "immediate predecessor" precisely, care
must be taken because our graphs may contain cycles. We devote the
present subsection to a suitable definition of "immediate predecessors",
showing that for acyclic graphs our definition agrees with the esta-
blished definition [87].

Usually a node (or an event in our case) e is called an "immediate
predecessor" of another event e' if e <. e' but for no e", e < e" < e'.
By this definition, in Figure 3.9 below el is not an immediate predeces-
sor of e3, contrary to our subsequent intentions.

- 82 -

.t

Figure l.!

We are therefore led to the following different definition of an immedi-
ate predecessor.

We call a path from an event e to an event e'" a "(proper) exten-
sion" of another path from e to e'"iff the former contains the same
events in the same order as the latter, and besides also at least one
other event. In Figure 3.9, for example, (e1,e2,e1,e3) is a proper
extension of (epe3). We call a path "maximal" iff it cannot be prop-
erly extended. In Figure 3.9, for example, (e1,e2,e2,e3) is a maximal
path.

We define e e E to be an "immediate predecessor" of e" e E (or e'"
an "immediate successor" of e), and write e ~ e"',iff there exists a
maximal path (eO, •••,en) in which e and e'"are neighbours, i.e. e-ei
and e"'-ei+lfor some i e {O, •••,n-l}. Note that by this definition, e1
is an immediate predecessor of e3 in Figure 1 because they are neigh-
bours in the maximal path (e1,e2,el,e3).

The following lemma shows that this definition agrees, for acyclic
graphs, with the usual one referred to above.

Lemma 3.6 (i) e < e'"and -,3 e......: e < e.....< e" implies e ~ e".
(ii) For acyclic graphs, the converse of (i) also holds.

- 83 -

We finally require all occurrence graphs under consideration to
.'

satisfy the property that every path can be extended to a maximal path •
.This is a discreteness property which we subsequently refer to as the
"maxima1ity axiom". It is always satisfied for finite graphs.

Summary of section !.l.~

We define ·'immediate predecessors" for cyclic nets. The maximality
axiom excludes pathological infinite nets.

3.4 K-Density and aounded Non-Determinacy

In this section we concern ourselves with infinite occurrence nets
and with some axioms which serve to exclude certain "unnatural" nets.
Our objective is to make a connection between such axioms and the axiom
of bounded non-determinacy discussed previously in sections 1.1 and 2.4.
This section is self-contained and can be skipped without any loss of
continui ty.

In particular, we are concerned with Dijkstra's second argument in
defence of the axiom of bounded non-determinacy, which states that a
program of unbounded non-determinacy would be able to make, within a
finite time, an infinite number of decisions. Our reasoning will be
that this argument is valid only for sequential programs and that there
is no justification in carrying it over to concurrent programs. It fol-
lows that this particular argument presents no obstacle against dropping
the axiom of bounded non-determinacy for concurrent programs.

As seen in section 3.2, we can define the notion of the "state" of
an occurrence net without recourse to a marking. For a given occurrence
net (B,E,F), we define a "cut-set" to be a set of elements (of X - BuE)
any two of which are concurrent (see definition (3.5». A "cut" [42] is

defined as a maximal cut-set, i.e. a cut-set which is not a proper sub-
set of any other cut-set. A cut is taken to formalise the notion of a
"(global) state". In the net shown in Figure 3.3, for instance, the
sets {~O(l) ,y_O(l)} and {x-O(3},y-O(4}} as well as the two broken lines

- 84 -

shown, are cuts.
.'

The dual notion to that of a cut is the notion of a "line" [42].
We define a "line-set" as a set of elements such that no two distinct
elements are concurrent. A line is then defined as a maximal line-set.
Lines are taken to formalise the notion of "sequential subprocesses" of
the process under consideration. For example, in Figure 3.3 all
..actions on x" ,

{x-o(l) tU') x-l (1) tel) x-O(2) t(2) x-l (2) tel) x_O(3)}
'2' '3' '2' '1'

as well as all "actions on y",

{tel) tel) tel) t(2) t(2) t(3) and corresponding conditions}2'4'3'4'2'4 '

are maximal line-sets, i.e. lines.

For any cut c and line 1 we have [95]:

Lemma 3.7 Ic "" 11 < 1.

For if there were two different elements x and y in c 1"'1 1 then both
x co yand (x<y or y<x) Which contradicts (3.5).

If the
lc ",,11 - I

above intersection is always non-empty (i.e. iff
for all cuts c and lines 1) then the occurrence net is

called "K-dense" [95]. K-density has been proposed in [95] as an axiom
to be satisfied by every occurrence net of interest. The motivation for
postulating K-density is that at every "time" (- cut c) the "local
state" of any given sequential process (- line 1) should be determined
uniquely (namely as the unf.queelement in c 1"'1 1).

K-density is one of the axioms referred to at the beginning of this
section, which serve to exclude certain unnatural occurrence nets. K-
density excludes, for example, the following net (Which is supposed to
be infinite as indicated by the ellipses):

- 85 -

..

• • •

Figure !.10

The reason why K-density excludes this net is the existence of a cut Co
and a line 10 which are disjoint, defined as follows:

- {bi 'b2 'b3 '•••}
{el,al,e2,a2,···,e}

(3.10a)
(3.l0b)-

The net shown in Figure 3.10 and the relationship between K-density and
other axioms in general is discussed at length in [13] and [14]. As a
matter of interest in the present context, it can be added that K-
density and the maximality axiom (section 3.3.5) are not related, in the
sense that there are K-dense occurrence nets violating the maximality
axiom as well as occurrence nets which satisfy the maximality axiom but
violate the axiom of K-density.

There are in fact good reasons (discussed in [103]) not to accept
K-density as an axiom. However, whether or not one accepts K-density,
it is certainly true that nets such as the one shown in Figure 3.10
should be excluded from consideration (this net not only violates K-
density but also the maximality axiom). For, such a net would describe
a "sequential process" (namely 10 of (3.10b» which is at the same time
infinite (el,e2, •••) and terminates with the distinct event "e" which
occurs after all of the ei•

- 86 -

We postulate that there is no such thing as a "terminating non-.'terminating sequential process" and that the net shown in Figure 3.10 is
not therefore a valid process description. (There is nothing wrong in
principle with a "terminating non-terminating" concurrent process: some
of its sequential subcomponents may come to a halt while others may
not.)

Let us now consider the process envisaged in Dijkstra's second
argument, making a choice out of infinitely many possibilities. Impli-
cit in this specification is the requirement that the process always
terminates. We envisage a sequential process implementing this specifi-
cation. For the sake of illustration, assume that there is an infinite
succession of choices between "red" and "green" branches as depicted in
Figure 3.11:

stop

•
•
•

Figure! ._!!_

When a decision is made in favour of a "red" branch then the process
stops; when a decision is made in favour of a "green" branch then the
succedding choice is considered next.

The requirement that this process always stops implies in particu-
lar that it stops even in case all of its choices are resolved in favour
of the "green" branch. But in that case the "stop" event evidently
occurs "after" the infinite succession of "green" choices, which exactly

- 87 -

reproduces the occurrence net shown in Figure 3.10. Thus, provided that
this latter net 'is rejected as a "process description", it follows that
an infinite number of decisions cannot be made in a finite time by a
sequential process.

So far we have reconstructed Dijkstra's argument in more detail.
The point of this discussion is to show that the presupposition of the
choice process being sequential is essential. We arrived at the above
conclusion only by assuming that the choices be arranged in succession;
any other arrangement would not necessarily have allowed that conclu-
sion.

Indeed, the unboundedly non-deterministic program

. (x,y) :-(0,0);

<x:-1) II if <x-O> -~ <y:-y+1> fi

generates, under the fairness assumption, occurrence nets of the form

y:-K

Figure l.g

where the line-set from "y e=L" to ··y:-K" is of variable but finite
length. Such an occurrence net is perfectly K-dense and satisfies all
other constraints that could reasonably be imposed on occurrence nets
[14,103].

- 88 -

This ends our discussion of K-density and its connection to the
"axiom of bounded non-determinacy. We conclude that Dijkstra's second

argument does not seem to stand in the way of considering unboundedly
non-deterministic concurrent programs.

Summary of section l._!

We exclude ,"terminating non-terminating" sequential processes. The
point was made that rejecting such "processes" means accepting the axiom
of bounded non-determinacy for sequential processes. However there is
no justification for carrying over this argument to concurrent
processes.

- 89 -

4. DYNAMIC ATOMICITY CRITERIA

4.1 Introduction and Motivation

In this chapter our aim is to characterise atomic actions in terms
of the set of executions they may give rise to. Such executions will be.
assumed to be describable by a structured occurrence graph as defined in
section 3.3 (and as will be spelt out in more detail in section 5.3.3).
Under this assumption our characterisation consists of outlawing a cer-
tain set of ••atomicity-violating" occurrence graphs.

Section 4.2 is devoted to defining the set of "admissible"
occurrence graphs. As will be seen, this definition is in essence a
generalisation of the "serialisability" criterion [37,106]. This defin-
ition is "global" in the sense that an execution as a whole is con-
sidered as the basic object of interest. A corresponding "local" atomi-
city criterion is described in section 4.3. In section 4.4 we discuss
the relationship between our atomicity criterion and so-called "two-
phase" actions [37,77].

The reason for calling our atomicity criteria "dynamic" is that our
basic object of interest is a single execution rather than a program.
This can be contrasted with the "static" atomicity criterion discussed
in chapter 5 where our objects of interest will be programs rather than
executions.

Our dynamic criterion can be thought of as determining the task of
an "implementation" of atomic actions. We intend to generalise state-
ments such as the following one, taken from [33]: "Atomic actions
can be implemented by ensuring between their executions mutual exclusion
in time." Our more general version of this statement will be that atomic
actions can be implemented by any method ensuring the truth of our atom-
icity criterion (and we add that actual mutual exclusion is but one of
these methods). It is desirable to obtain an overview of such methods
because of possible gains in concurrency (especially if the actions are
"large").

- 90 -

The present chapter describes the outcome of the pursuit by the
.'author of an idea by Merlin and Randell which can be found in [81] but

not in [82]. We recall their idea as a starting point for our motivat-
ing discussion. On p , 26 of [81] a "functional activity" is defined as

a subnet of an occurrence net in which: (4.1)

1. given any two elements of the subnet, all elements which are on
a directed path between these two elements are also members of
the subnet;

2. all elements outside the subnet which have outgoing or incoming
arcs to the subnet are conditions."

(This quotation has been changed insignificantly. EB).

The reason why functional activities are interesting is stated in
[81], p. 27, as follows:

"In fact we regard the concept of a functional activity as gen-
eralising and formalising the essence of the notion of an atomic
action, ••• i.e. an activity which appears 'logically instantane-
ous' to its environment, and from within which the environment
seems 'logically unchanging'."

The idea behind (4.1) is to exclude subnets of the kind labelled
"A" 10 Figure 4.1, in which a directed path leads out of A and back into
A.

- 91 -

A

e

e'

Figure ~.!:A Non-Functional Activity

The reason for excluding A is that the events e and e' occur strictly
after a part of A but also strictly before another part of A. In this
way, e and e' "interfere" with A, and as a consequence, A cannot be con-
sidered as an "atomic occurrence" all by itself.

Put differently, it is impossible in the net shown in Figure 4.1 to
partition the environment of A into a set of events that can be con-
sidered as occurring "before A" and another set of events that can be
considered as occurring "after A" , with only A "in between" the two
sets. This is in contrast to the situation depicted in Figure 4.2
where, even though both e and e' occur concurrently with parts of A, it
is possible to view the original execution as having taken place in the
order e,A,e' (and therefore A as having "occurred atomically"). This is
illustrated by the addition of some "insignificant" arrows (shown by
broken arrows in Figure 4.2).

- 92 -

A e A e

e' e'

Figure !.!: A Functional Activity

Note that A is here a functional activity because neither e nor e' lie
on a directed path from A back to A.

Put yet another way, we are interested in the property that if A is
"collapsed" into a single event (cf. section 3.3.3) then it must be pos-
sible to view the resulting net again as a ··valid" description of the
underlying execution. This is possible in Figure 4.2: if A is collapsed
then the strict ordering e,A,e' is obtained. It is however not possible
in Figure 4.1: if A is collapsed then a cycle is obtained. We shall
take such cycles as indicative of interferences between actions.

Does this discussion correspond to anything which one would intui-
tively associate with atomic actions? The answer is yes, as we will
next show on an example. We need only reconsider the well-trodden prob-
lem of the parallel addition [29,88]:

(x:-x+l) II (x:-x+l)

Program P4.!: Parallel Incrementation

Intuitively, as discussed on other simple examples in section 1.1, one
would expect P4.1 to be a (precise) implementation of the specification

- 93 -

x .. x'+2 (4.2)

.where (as in section 2.5) the initial value of x is denoted by ,x • In
section 5.2, we will formally define (4.2) as the relational semantics
of P4.l.

Let us now (reasonably) assume that each assignment in p4.l con-
sists of an event •.rooof reading the value of x, followed by an ("inter-
nal" and hencef~rth irrelevant) addition, followed by an event "w" of
overwriting the'value of x. We call the read/write events corresponding
to the left hand assignment "r ..

1 and "WI" and the two events correspond-
ing to the right hand assignment "r " and2

"w2"·

The rule of the assignment requires that r1 always occurs before WI
and similarly that r2 always occurs before w2• Because of the conflict
over the common variable x there must be further orderings as well. We
introduce the rule that no "write" access may occur concurrently with
any other "read" or "write" access to the same variable. In our example
this means that only rl and r2 are allowed to occur concurrently while
all other pairs of events must occur in some (in general undetermined)
order. This rule is a very commonplace one; we discuss it briefly in
section 5.4.

We represent the four events rI' wI' r2 and w2 as events in an
occurrence graph. The above rules (i.e. the rule of the assignment and
the rule about the exclusion of read/write accesses to common variables)
then allow eight possible orderings, four of which are shown in Figure
4.3; the other four may be obtained symmetrically after reversing the
order between WI and w2•

- 94 -

(1) (2)

(3) (4)

Figure ~.1

Let us consider the four orderings shown in Figure 4.3 in turn.
(1) represents a linear ordering r1,w1,r2,w2• As such it could also
correspond to a standard execution of the progtam

x:-x+1; x:-x+l

Program P4.!: Sequential Incrementation

which evidently implements (4.2). Ordering (1) therefore represents a
valid execution of program p4.1.

Ordering (2), on the other hand, would violate (4.2): the initial
value of x would be read concurrently by r1 and r2, then WI would lead
to x being overwritten by this value plus one, whereafter w2 would lead
to x being overwritten again by the ~ value. Hence the total effect
of ordering (2) would be an incrementation of x by 1 rather than by 2 as
required. The same is true for orderings (3) and (4) which are effec-
tively only more sequential versions of (2) with the two reads occurring

- 95 -

sequentially rath~r than concurrently.

Let us consider ordering (2) in more detail, in order to see how
the violation of atomicity comes about (see Figure 4.4).

Figure _!._!

The atomicity brackets in p4.l indicate that the reading and writing of
which a single incrementation of x is composed should be considered as
two events which "belong together".

Let us first consider the two events rl and in Figure 4.4.
Because there is no other "dnt.erferIng" activity between rl and wi' it
is indeed possible to consider them as "belonging together". Therefore
it is plausible to consider rl and wl as an "atomic occurrence".

However, consider r2 and w2• In between r2 and w2 another activity,
occurs, namely wl' As it were, this latter write action invalidates the
value read by r2: either the reading r2 should have occurred after wl'
or the writing w2 should have occurred before wl' As it stands, there-
fore, r2 and w2 together cannot be considered an "atomic occurrence".

We have seen, in sum, that certain occurrence graphs may have to be
excluded as a consequence of the atomicity requirements in a program
containing atomic actions. We have also seen that in such excluded
occurrence graphs it may still be possible that some activity may be
viewed as "occurring atomically" while other activity cannot be so

- 96 -

viewed. Our chief objective in this chapter is to make precise this
"

notion of an "atomic occurrence".

As the reader may have noticed, the subgraph Al generated by r1 and
wI in ordering (2) is a .0 functional activity" as defined in (4.1), while
the subgraph generated by r2 and w2 is not a functional activity (see
Figure 4.5).

Figure ~.1
This not only shows that functional activities may indeed correspond to
what one would intuitively associate with atomic actions, but it also
shows that in this example they already capture precisely the desired
notion of an "atomic occurrence".

Next in ~his introduction we show that, despite the last remark,
the notion of a functional activity does not yet (not quite, one might
say) suffice to capture "atomic occurrences". We show this on another
example. Let us consider the following somewhat contrived (but syntac-
tically and semantically well-defined) program

<x:-y> I I <y:-X>

Program P4.!

which (intuitively and according to the semantics of section 5.2.2) has

- 97 -

the effect relation

x-y-x'" V x-y-y'" • (4.3)

Again, two reads and two writes can be distinguished in P4.3: r1 (a read
on y), wI (a write on x), r2 (a read on x) and w2 (a write on y). We
consider again an execution of P4.3 which obeys the two rules mentioned
above (i.e. the rule of the assignment and the read/write rule on common
variables) but violates (4.3) (see Figure 4.6).

The particular execution shown in Figure 4.6 causes the values of x and
y to be exchanged and therefore (except in case x-y initially) a viola-
tion of (4.3). It follows that such an ordering has to be excluded as a
violation of the atomicity requirements present in p4.3.

We observe, however, that both Al and A2 in Figure 4.6 are ..func-
tional activities" in the sense of (4.1). (4.1) cannot therefore be an
intuitively correct general definition of an ·'atomic occurrence". We
analyse the last example in some more detail in order to arrive at an
improved definition.

Figure ~.!

We aim at a general definition which allows us, given a subgraph,
to determine whether or not this subgrapb represents an atomic

- 98 -

occurrence. Such 8 definition must for both Al and A2 in Figure 4.6
give the result that they are non-atomic occurrences. Our way to
c'haracterise a non-atomic occurrence A has been by the property that
some other activity "interferes" with A, i.e. occurs strictly after a
part of A but also strictly before another part of A.

This characterisation can be generalised for the situation shown in
Figure 4.6 as follows. Let us first of all consider AI. While it is
true that neithex: r2 nor w2 individually "interfere" with Al in the way
described, still the "event" A2 as a whole can be thought of as
"interfering" with AI. To see this, let us suppose that A2 but not Al
is "collapsed":

Figure ~.!....

Were we ignorant about the internal structure of A2 then A2 would appear
just as a "single event" which interferes with Al in the atomicity-
violating way described earlier. Symmetrically, the argument can be
made that Al as a whole interferes with A2• It is this property which
we shall attempt to capture with our definition of an "atomic
occurrence" •

This concludes our motivating discussion. Before proceeding, we
mention explicitly a few assumptions which we make about our occurrence
graph model. We firstly assume that each execution of a concurrent pro-
gram can be described in detail by an acyclic occurrence graph, called

- 99 -

the "basic graph" •.,We do not assume the basic graph to be unique; we
only assume its existence. It is plausible that such a "basic" graph
should be acyclic; any cycles would indicate the contradiction that some

,of the elementary events precede themselves.

Our second assumption is that the specification of an action as
atomic can be represented in the occurrence graph as the "collapsing" of
the subgraphs it corresponds to. This assumption is evidently reason-
able since the:collapsing operation allows one to view whole subgraphs
as "single atomic events".

Our third assumption is that atomic actions don't "overLap'", in the
sense that they should lead to a well-nested structure. More con-
cretely, the programmer is not allowed to write "prcgraaa" such as the
following:

<1 x:-x-1 II <2 y:-y-1 >1;
z :-z+1 >2'

Program P4.~: A Nonsensical Program?

where the angular brackets are supposed to match each other as indicated
by their subscripts. This assumption follows the argument contained in
[97] where on p. 131 we find the statement that

atomic actions, by their very nature, cannot overLap ,"

We return to p4.4 in section 5.5.

Our fourth (and last) assumption will be that there is always an
(implicit or explicit) outermost atomicity bracket around our programs.
This assumption does not usually hold true in practice; for instance,
none of the programs considered in chapter 6 has such outermost brack-
ets. The assumption is made purely for reasons of convenience and car-
ries no great significance; all subsequent statements can easily be
reformulated and,remain valid when it is dropped.

- 100 -

Together, th~se four assumptions allow the executions of all pro-
grams under consideration to be described by a structured occurrence
'graph as defined in section 3.3.4. Henceforth, a structured occurrence
graph (G,T) and the "ac tdvdt fes" in T (which, according to the last
remarks in section 3.3.4, can be viewed as subgraphs) will be our basic
objects of interest.

We mention finally two restrictive assumptions which are not made;
we also illustrate on an example that it may well be sensible to drop

"these restrictive assumptions. Firstly, we do not restrict "internal"
concurrency within atomic actions. This is in contrast to [37] and [44]
where atomic actions ("transactions") are implicitly restricted to be
"straight-line" (1.e. loop-free, branch-free and concurrency-free)
sequences of more basic actions.

The second assumption we do not make is that of restricted nesting
which can often be found in the literature. In line with the reasoning
in [97] and [77] we allow an atomic action to contain smaller atomic
actions, as well as to be contained in larger atomic actions. Such
proper nesting has been prohibited implicitly in [44] and explicitly,
but without justification, in [34].

As an example displaying both internal concurrency and proper nest-
ing of atomic actions we consider the program

«x:-rH) II (x:-X+l» II (x:-2*X>

Program P4.1

This program makes sense as a precise implementation of

x-2*x'+2 'V x-2*(x'+2) (4.4)

It may be compared with the following program:

- 101 -

«x:-x+l> I I <x:-X+1» II <x:-2*X>

Program P4.!

P4.6, being a precise implementation of

x-2*x'+2 V x-2*x'+3 V x-2*(x'+2) (4.5)

indeed differs from P4.5.

I consider the possibility of (well-)nesting atomic actions in an
unrestricted way as one of the potentially valuable advantages of atomic
actions. In this way, atomic actions can serve to "build new primi-
tives" out of "given primitives". Proper nesting occurs implicitly any-
way if one wishes to consider ,.system-defined" elementary actions as a
special class of atomic actions.

Summary of section ~.l
Dynamic atomicity criteria are intended to capture the notion of an

"atomic occurrence" as exemplified on two simple examples. We intend to
characterise "atomic occurrences" as "occurrences not interfered with by
other activity", Executions are assumed to be describable by structured
occurrence graphs. No restrictions are imposed on internal concurrency
or depth of nesting of atomic actions,

4.2 Global Atomicity Criterion: Serialisability

A straightforward generalisation of our considerations in the pre-
vious section leads us to characterise atomicity by prohibiting what has
there been called ••cycles of interference". For a given struc tured
occurrence graph (G,T) we thus take the characteristic property of atom-
icity to.be that events are partially ordered on all levels of abstrac-
tion induced by atomicity specifications (not just the basic level).

- 102 -

Thus we define a structured occurrence graph and the computation it
describes to "satisfy atomicity" iff none of its level graphs (see sec-
tion 3.3.4) contains a directed cycle.

By forming the level graphs for our examples the re~der can easily
check the intuitive validity of this definition. The structured
occurrence graph corresponding to the ordering shown in Figure 4.3(1)
does indeed satisfy atomicity, while neither the orderings shown in Fig-
ure 4.3(2)-(4) nor the one shown in Figure 4.6 satisfy atomicity. We
show the level graphs for Figure 4.6 in full in Figure 4.8 below.

. Lo

L2 L3

r
1

A2 Al A2

wl

Figure ~.!
The "cycle of interference" perceivable at level L3 is the reason for
this ordering to violate atomicity.

Our definition generalises the so-called "serialisability"

- 103 -

criterion [37,106]. Under some very weak conditions [7] which are here
assumed to hold, every partial order can be ..serialised", i.e. extended
to a linear order. More precisely, for each acyclic occurrence graph

+ +G - (E,B) a graph Glin - (E,Blin) can be found such that B ~ Blin and E
+is linearly ordered under Blin• More generally, we have:

Proposition ~.!:A structured occurrence graph (G,T) satisfies atomicity
if and only if the basic graph G can be serialised such
that the resulting structured occurrence graph (Glin,T)
describes a linear order on all levels.

Proof: Assuming that (G,T) satisfies atomicity, we may serialise the
basic events by processing the structure tree in the following
way. Starting with the root of the tree we arrange all sub-
activities of non-basic activities in linear order, which is pos-
sible by assumption. This process stops when all basic events
have been reached. Eventually all level graphs describe a linear
order.

Conversely, assume that (G,T) does not satisfy atomicity. Then
there exists a cycle at some level, the events of which cannot be
serialised.

The term "serialisation" is perhaps misleading in that it may sug-
gest that atomicity can only be implemented by actual strict sequencing
(i.e. mutual exclusion in time) of the atomic actions of a program.
This is not true according to our criterion which allows for the paral-
lel execution of independent atomic actions. Even if atomic actions
fail to be independent a partly concurrent execution does not neces-
sarily violate atomicity.

On the other hand, it may be suggested that strict sequencing can
always be employed to implement atomicity. However, programs such as
the following cannot be serialised, i.e. are not implementable:

- 104 -

(x,y) :- (0,0);
(x:-1; do y-O -~ skip od> II (y:-1; do x-O -~ skip od>.

Program P4.!_

A reasonable response would be to equate such programs semantically with
"abort", which is what we shall do in section 5.2.2. Typically, in such
programs the successful termination of one atomic action depends on the
progress of others in a cyclic manner. To prohibit this altogether, it
may also seem reasonable to postulate that atomic actions always ter-
minate (this is indeed one of the key axioms in [89]). We shall however
find this ~stu1ate to be unnecessarily restrictive.

The atomicity criterion defined in this section enables one to
tell, given an entire execution, whether or not atomicity is satisfied.
This is the reason for our calling it a "global" criterion. The global
criterion does not enable us to distinguish between "atomic occurrences"
such as A1 in Figure 4.5 and "non-atomic occurrences" such as A2 in Fig-
ure 4.5. It will be the aim of the next section to describe a "local"
criterion which characterises atomic occurrences.

Summary of section ~.!

Serialisability generalised to be our global atomicity criterion.
We also generalise the result that every partial order can be extended
to a linear order.

4.3 Local Atomicity Criterion: Interference-Freeness

In this section we take a closer look at which activities in an
atomicity-violating execution are ""interfered with"" and which are not.
Our aim is to capture precisely the situation that 1n an atomicity-
violating execution (for example, the one shown in Figure 4.9) some of
the activities (such as Al) can be viewed as "occurring atomically""

- 105 -

while others (such ~s A2) cannot be so viewed.

Figure i.!

We define an event e to "interfere with" an activity A if it occurs
strictly after part of A and strictly before another part of Ai thus, wl
interferes with ~ in Figure 4.9. We shall define A to "occur atomi-
cally" if it is not interfered with in this fashion.

Interference of e with A can also be characterised by the fact that
at some level L, e and A stand in a cyclic relationship which disappears
when A is opened, i.e. at [A]L. For example, wI and A2 are in a cycle
at L2 (cf. Figure 4.9) which disappears when A2 is opened, i.e. at
LO - [A2]L2•

By way of generalisation, we are led to the following general

- 106 -

definition of
graph (G,T),

.'an atomic occurrence. In a given structured occurrence

(AI) Basic events occur atomically.
(Al) An activity A occurs atomically iff

(a) \1a e X: a occurs atomically, and
(b) for all levels L, whenever e < A < e at L

then 3a eX:' e < a < eat [A1L •

This definition is inductive in parts (AI) and (Ala), in order to disal-
low activities to be atomic even though subactivities are not atomic.

Clause (Alb) reflects our above requirement that whenever e and A
stand in a cyclic relationship at L then this relationship must not
disappear when A is opened, i.e. at [AlL. If (Alb) is violated for some
event e and level L then e is one of the "outside activities" that
interfere with A, making it non-atomic. The reader can easily check
that this is in agreement with our intuitive discussions so far.

Before exhibiting the relationship between the "local" criterion
(Al)-(Al) and the global criterion defined in the previous section, 1
would like to point out a certain subtlety in (Alb) • Ife<A< e at L
then there is at least one cycle at L leading from e back to e. The
requirement (Alb) does not exclude one or more of these cycles to be
broken when A is opened, but rather it requires that at least one of
these cycles remains intact. The definition in [11 1 is ambiguous on
this count. We show an example to underline this point (see Figure
4.10) •

.'

- 107 -

Figure ~.10

In this example it is all too obvious that A2 is not an "atomic
occurrence". However, Al i8 a perfectly atomic occurrence, both intui-
tivelyand according to our definition (Al)-(A2). Nevertheless, Al is

- 108 -

contained in four different cycles at L3, one of which (namely the one
excluding el and e2) disappears when Al is opened, i.e. at L2•

We finally show that the local criterion (Al)-(A2) and the global
cycle-freenes criterion are interrelated, in the way one would expect.
We have:

Proposition ~.!:(i) If for no level either A or one of the activities
it contains is involved in a cycle then A occurs
atomically.

(ii) Let e < e at L;
then3 A: e < A <
ically.

e at L and A does not occur atom-

Proposition 4.2(11) is a weak converse of (i); as the example shown in
Figure 4.9 demonstrates, the immediate converse of (i) does not neces-
sarily hold true. We also have the following immediate consequence of
proposi tion 4.2:

Corollary: A structured occurrence graph satisfies atomicity if and only
if all of its activities occur atomically.

Proof: (i) If neither A nor any of the activities contained in it is
involved in a cycle then (Alb) cannot be violated for A.

(ii) Let e < e at L.
Because of the maximality axiom, there exists a maximal sim-

ple cycle (e-Ao, •••,An-e) at L.
Suppose that all of the Ai occur atomically.
This means that there exist ai e Ri such that aO < ••• < an

and aO - an at [AO)··.[An_1)L.
Again we choose a maximal simple cycle (aO, •••,an) which must

consist of sub-activities of the ii only (otherwise
(AO, •••,An) would not itself be maximal).

This argument is thus repeatable and leads to a contradiction
because of the cycle-freeness of the basic graph.

Hence for some i, Ai does not occur atomically, q.e.d •.

- 109 -

The local at?micity criterion just described in a sense answers a
question posed in section 1.1. Since (it was asked) no piece of program
'ever occurs without taking up actual time, what then is the special pro-
perty which enables one to look upon an atomic occurrence such ~ if it
did not take up time? We may measure the actual time consumption of an
activity (a subgraph) by any reasonable standard (say just by counting
the basic events it contains, or more reasonably by measuring the length
of the longest "line" it contains). However large this measure may come
out to be, the ~ctivity in question can still be considered as not tak-
ing up any time iff it is an atomic occurrence according to our cri-
terion.

Summary of section ~.!
We define "atomic occurrences" as our local atomicity criterion.

We also prove (proposition 4.2) that (i) Absence of interference implies
atomic occurrence, and (ii) Presence of interference implies at least
one non-atomic occurrence.

4.4 Inherently Atomic Occurrences and Two-Phase Occurrences

As characterised in the previous sections, the atomic occurrence or
otherwise of an activity depends not only on its internal structure but
also on its environment at large. This is perfectly plausible because
interference between activities pertains not to activities in isolation
but to the way in which they are interrelated.

On the other hand, let us suppose that the programmer specifies an
action as atomic and that there is no system-provided implementation of
atomicity. In this case it would be too optimistic to hope that the
environment of the action in question is always so well-behaved as not
to interfere with its executions. Rather, the programmer should prevent
unwanted interference by explicit programming. Typically, a set of
system-provided primitives such as semaphores [29], "test and set"
instructions [47J or "locks" [37] can be used for this purpose.

- 110 -

Depending on the availability of more or less knowledge about the
surrounding environment, more or less sophisticated "lock protocols" can
be employed to safeguard an action against unwanted interference. One
of the simplest protocols of this kind, which depends on no knowledge
about the environment, is the "two-phase lock protocol" of [37]. This
protocol, as do others such as the protocol described in [99], ensure
atomic occurrences without regard to the environment.

In this section we explore the salient properties of such
occurrences Which are atomic regardless of the particular form of their
environment. We call such occurrences "inherently atomic", or "contrac-
tions" ·for short. The two-phase lock protocol guarantees inherent atom-
icity by ensuring that every execution of the action in question con-
sists of a "growing phase" followed by a "shrinking phase", whereby the
conceptual moment of occurrence lies between the two phases [77]. We
consider our definition of a contraction to generalise this property.
This claim will be substantiated below where it will be shown that an
activity is a contraction iff it contains an "internal state" which can
be thought of as the moment of its occurrence. First we define contrac-
tions and exhibit their relationship to atomic occurrences.

Our definition can be motivated as follows. Every (maximal) cycle
through A must also pass through an immediate predecessor of A and an
immediate successor of A. If A is 80 structured that from every immedi-
ate predecessor of A a path leads through i to every immediate successor
of A then the opening of A can never break that cycle.

By way of generalisation, we define that in a structured occurrence
graph (G,T),

(Cl) Basic events are contractions.
(C2) An activity A is a contraction iff

(a) Va eX: a is a contraction, and
(b) whenever el ~ A ~ e2 at LA

then ~a eX: el < a < e2 at lA]LA•

In (C2b) we consider only the level LA as defined in section 3.3.4.

- 111 -

However in the proof of proposition 4.3 below it will become apparent
that if (C2b) holds for LA then it holds for all other levels as well.

As an example, we reconsider ~ in F1gure 4.11:

L1 r2 L r12
A1 A2

w2 w1

Figure ~.~

At Ll - LAl we have r2 ~ Al ~ w2 and at LO - [Al]Ll, r2 < wI < w2•
Hence Al is a contraction. Its collapsing can be thought of as "con-
tracting" it into wI - hence the name. By contrast, wI ~ A2 ~ wl at L2
but wI ~ wl at LO; hence A2 is not a contraction.

With the definition (CI)-(C2) we have the following:

Proposition ~'l:(i) Contractions occur atomically.
(ii) If A is not a contraction then a structure T' can

be defined containing the same subtree rooted at A
as 1s contained in T, such that A does not occur
atomically in (G,T').

Proposition 3(1i) is again a weak converse of (1), signifying not that
non-contractions occur non-atom1cally, but that based merely on the
internal structure of a non-contract1on, nothing can be inferred about
its atomic occurrence.

- 112 -

Proof: (i) Let e <.A < e at L.
Because of the maxtmality axiom, there exists a simple cycle

(e, •••,A1,A,~, •••,e) such that A1 ~ A and A ~ A2 at L.
Because A1 < A at L, by repeated applications of lemma 3.1

one sees that A1 must contain a basic event d1 such that
d1 < A at LA·

Again because of the maxima1ity axiom, there exists a basic
event e1 with dl ~ el ~ A, which is also contained in Al
(otherwise Al would not immediately precede A at L).

Similarly, A2 contains a basic event e2 such that A ~ e2 at
~.

Property (C2b) for A requires the existence of an a e R such
that e1 < a < e2 at [A]LA•

For this a we also have, again by lemma 3.1:
e ~ A1 < a < A2 < e at [A]LA•

(ii) Since A is not a contraction there exist basic events el' e2
outside A such that for no a eR, el < a < e2 at [A]LA•

We define T' as containing {el for all e e E, E, the entire
subtree rooted at A and the set {el,e2}.

T' is a tree structure and A does not occur atomically in
(G,T').

Proposition 4.3(i) ensures that inherently atomic occurrences are
indeed also atomic occurrences (and therefore, by proposition 4.2, a
structured occurrence graph containing only contractions is serial is-
able). Proposition 4.3(ii) signifies that nothing less than the con-
traction property will do when a programmer wants to ensure atomic
occurrences without relying on any system-provided implementation of
atomicity. In this way, proposition 4.3 can be seen as a generalisation
of the result contained in [37]. As mentioned above, there may be a
multiplicity of ways to ensure the contraction property, depending on
more or less knowledge about the system; the authors of [99], for
instance, are able to exploit the property that the data base model they
consider is hierarchical. in order to obtain a lock protocol which is
more efficient than the simple two-phase protocol.

- 113 -

We have seen-that in the structured occurrence graph s~own in Fig-
ure 4.11, Al is a contraction and the event wI can be thought of as the
conceptual moment of the occurrence of AI. As announced above, we now
show in general that it is characteristic for a contraction to contain a
"state" which can be thought of as the moment of its occurrence. The
example shown in Figure 4.12 serves to illustrate this point:

Figure 4.12

In this example, Al is a contraction while A2 is not. The broken
line through Al represents a "cut" with the property that from every
immediate predecessor of Al (el or e2) to every immediate successor of
Al (el or e4) there is a path which crosses this cut. No cut with this
property can be found for~. As in section 3.4 we interpret cuts as
"internal states" of an activity and we go on to show that an activity A
is a contraction iff it contains a cut with the property just mentioned.

To define internal states formally, let an occurrence graph
G - (E,B) and a subgraph A - (E',B') of G be given. We first define

B> :- {b e B I tail(b) • X & head(b) e X}
(the set of arrows leading into A), and

- 114 -

<B :- {b e'B I tail(b) e ~ & head(b) • ~}
(the set of arrows leading out of A).

B> and <B can be considered the interface between A and its environment.
+The relation <A - B' (see section 3.3.3) can be extended to elements of

the set

if x,x' e X, define x <A x' iff a directed path inside A leads from x to
x'. Two elements x,x' e X are said to be "A-concurrent" iff neither
x <A x' nor x' <A x. We call a subset C ! X an "A-state" iff its ele-
ments are pairwise A-concurrent and it is a maximal set with this pro-
perty (for instance, the
C - {b3,b4,bS,a2}).

shown in Figure 4.12 is

We are now ready to state:

Proposition !.!: Condition (C2b) in the definition of a contraction can
be equivalently replaced by:
(C2b') There exists an A-state C at [AlLA such that

Whenever el ~ A ~ e2 at LA
then 3 c e c. e1 < c < e2 at [A1LA·

Proof: (C2b') implies (C2b):
Let an A-state C be given and let el ~ A ~ e2 at LA and

el < c < e2 at lAlLA with c e C.
Because C is a subset of X and hence contains only elements in A

or bordering on A, one of the following must hold:
either c e ~, in Which case (C2b) is satisfied with a-c;
or c e Band head(c) e ~, in Which case el < head(c) < e2;
or c e Band tail(c) e ~, in Which case el < tail(c) < e2•

Conversely, (C2b) implies (C2b'):
Because every path from bl e B> to b2 e B> must include

tail(b2) • ~ , the elements of B> are pairwise A-concurrent.
We define Co as the first A-state including B> ; formally,

- 115 -

Co - {x e'x l\tb e B> : x is A-concurrent to b
and ..:,3 x'"ex: x'" <A xl.

In the example shown in Figure 4.12, Co - B> - {b1.b2.b3l.
The elements of Co are pairwise A-concurrent by definition. and

Co is maximal because no xe X concurrent to all elements of
Co can have an A-predecessor x'" <A x" in X.

We show that Co satisfies the requirements of (C2b').
Let el ~ ~ ~ e2 at LA·
Because A'1s a contraction.

a e i : el < a < e2 at [A]LA•
Every path from el to a must contain a pair of neighbours

(ei,ei+l) with ei • i and ei+l e i.
Hence c - (ei,ei+l) e Co and el < c < e2 at [A]LA, q.e.d.

The A-state C which exists by (C2b') can be thought of as a "moment
of occurrence" of A. C is by no means unique; in the proof of proposi-

<tion 4.4, the set Cl defined as the last A-state including B would have
done a similar service as CO. Co and Cl are in fact the "first" and
"last" A-states, respectively, which satisfy the property required in
(C2b') •

Thus, in general, the occurrence of a contraction A can be viewed
as consisting of the occurrences of its immediate predecessors, CO' all
intermediate A-states, Cl' and its immediate successors, in that order.
In other words. A occurs quasi-sequentially, again illustrating the
context-independence of its atomic occurrence.

Summary of section ~.!

We define "inherently atomic occurrences" as a stronger form of
atomic occurrences. Inherently atomic occurrences are atomic regardless
of the form of their environment. Also, we prove that inherently atomic
occurrences are "two-phase" in the sense that their "internal states"
could be taken as their "moment of occurrence".

- 116 -

4.5 Discussion
"

We discuss the extent to which the formal notion of an atomic
occurrence defined in section 4.3 can be taken to capture the (an?)
intuitive notion of an "atomic occurrence". We split this question into
two parts to be discussed separately:

(a) Is every occurrence which satisfies the local atomicity criterion
(AI)-(Al).also intuitively an atomic occurrence?

Cb) Does every intuitively atomic occurrence satisfy (AI)-(Al)?

Both questions will be discussed in more detail in section 5.3.3 where
we will not be forced to rely on an "intuitive" notion of atomicity but
will have at hand the relational characterisation which will be defined
in sections 5.2 and 5.3. The discussion in 5.3.3 will lead to agreement
with the more informal arguments that will be presented in this section.

We consider question (a) first. It seems reasonable to postulate
that, indeed, to an intuitively non-atomic occurrence there should be
some "outside" activity which interferes with it. This is just what has
been prohibited in the definition (Al)-(A2). The motivation given on
the occasion of defining (AI)-(Al) therefore quite suffices, I think, to
convince the reader that the answer to question (a) should be an unqual-
ified "yes".

Question (b), however, must in general be answered in the negative.
In the remainder of this section we show why this is so, but also why
one should not be surprised at this being the case. Consider, for exam-
ple, the program

<x:-x+l) II <y:-y+l)

Program P4.!: Disjoint Incrementation

whose effect relation is given by

x - x'+l &.y - y'+l

- 117 -

(4.6)

Again we assume an execution of P4.8 to consist of two reads (rl - a
read on x, r2 - a read on y) and two writes (wI - a write on x, w2 - a
write on y).

Consider the following execution of P4.8:

Figure 4.13

Formally, A2 violates (Al)-(A2) and is not therefore an ""atomic
occur-rence" • However, the ordering shown in Figure 4.13 does not
violate (4.6) and should therefore be admitted as a valid execution.

The reason for this discrepancy is that the "cross-dependencies"" in
Figure 4.13 (i.e. the links from r2 to rl and from WI to w2) are not
"0 significant" in the sense that they could be omitted without changing
the overall effect of the execution. The property of a dependency being
significant cannot be determined from a given occurrence graph alone,
which is why it is not surprising that there may exist intuitively
atomic occurrences which do not, however, satisfy (Al)-(A2).

The fact that a dependency is insignificant may be obvious, as in
Figure 4.13; it may however also be hidden, as we shall show on another
example. Consider a program in which variables appear in the right hand
side of an assignment but do not contribute semantically to the result,
as in:

- 118 -

.<

<x:-X+y+l-y> II <y:-y+x+l-X>

Program P4.!

P4.9 implements, obviously, just the same specification (4.6) as p4.8.
However the appearance of x in the second action and of y in the first
action will normally (i.e. unless the implementation is "clever") cause
cross-dependencies between the two actions which are insignificant.

Suppose, for instance, that an execution of the first command in
P4.9 consists of two concurrent reads (r~ - a read on x, ri - a read on
y) followed by a write wl on y, while the second command gives rise to
two reads (r~ and r~) followed by a write w2 on y. Then the following
"atomicity-violating" execution is in fact perfectly harmless:

Figure ~.~

Thus, the semantic independence of two actions may not be "visible"
in the variables in terms of which the actions have been programmed. A
more subtle case of semantic independence is considered in section 5.4.
Semantic independence is related to the logic of the program in ques-
tion, and it is therefore small wonder that the occurrence graph model
is not rich enough for it to be captured precisely. Semantic

- 119 -

.\independence, and for that matter also the property of event dependen-
cies being "significant", is scrutinised further in section 5.4.

- 120 -

.'5. RELATIONAL SEMANTICS OF PROGRAMS USING ATOMIC ACTIONS

5.1 Introduction

In this chapter our attention will be focussed on the semantic
characterisation of atomic actions, and more generally on the semantics
of concurrent p~ograms containing atomic actions, in terms of the rela-
tional formaliSm expounded in chapter 2. To begin with, we recall that
we conceive of atomic actions as "programming language tools" (section
1.1), on a conceptual par with other linguistic constructs such as, say,
the conditional command if •••fi. Atomic actions are perhaps most
closely analogous to the begin •••end brackets of a language supporting
block structure. In particular, two programs which agree in everything
except the placing of atomicity brackets will in general have to be
regarded as two different programs (sometimes, as we shall see in sec-
tion 6.2, emphatically different).

Why relational semantics? For one thing, even for concurrent pro-
grams we are frequently interested in "final states" belonging to cer-
tain "initial states". Secondly, relational semantics play a particu-
larly important role in connection with atomic actions. We shall see
that if an atomic action is textually replaced by another piece of pro-
gram with the same overall effect (i.e. the same relational semantics)
then the meaning of the program in which the atomic action in question
is embedded remains unaffected, no matter how strongly the second pro-
gram may otherwise differ from the one it replaces. In other words, as
far as the environment of an atomic action is concerned, all that
matters is the latter's effect relation; or, put still differently, in
the calculation of the semantics of a program only the effect relations
of its atomic parts need to be taken into account.

We shall develop the relational semantics of atomic actions in two
stages. Firstly, we define syntax and semantics of an example con-
current language. This language consists, in essence, of guarded com-
mands augmented by the parallel operator and atomic actions. All of our
example programs are written in this language. There will be

- 121 -

.'restrictions on the way in which atomicity brackets can be inserted
~thin a program; for instance, we continue to disallow the proper over-
lapping of atomic actions~ However, we do allow the proper nesting of
atomic actions. Syntax, semantics and correctness criteria for our
language will be defined in section 5.2.

Our way of defining the semantics of this language will involve the
assumption that the relational semantics of the constituent atomic
actions of a given program can be calculated in isolation and then used
in the calculation of the semantics of the program itself. Thus, by
defining the parallel operator we also very implicitly define the seman-
tic properties of atomic actions.

The second stage in our definition of atomic actions will consist
of extracting those semantic properties more explicitly. As described
above, we shall be interested in the property that for the environment
of an atomic action, only the latter's effect relation carries signifi-
cance, while its internal details can be abstracted from. We call this
the property of "effect-replaceabllity" and discuss it in section 5.3.
We will argue that effect-replaceability is the characteristic "static"
semantic property of atomic actions. The replaceability property forms
the basis for a, by now, well-known proof method using atomic actions:
to prove the invariance of an assertion, one proves its initial truth
and then investigates whether every atomic action preserves its truth
[33]. This proof method is also discussed in general terms in section
5.3.

Also in section 5.3 we relate our relational characterisation of
atomic actions to the "dynamic" characterisation given in chapter 4, We
shall in essence show that whenever an execution of a concurrent program
"satisfies atomicity" (in the sense of chapter 4) then it relates an
initial state to a final state such that the two states stand in the
relation prescribed by the relational semantics (in the sense of section
5.2). A weak converse of this result will also be proved. These
results depend upon the assumption that every actual execution of a con-
current program can be described by a structured occurrence graph.

- 122 -

The possible '~resence of "insignificant" event dependencies has in
~ection 4.5 been identified as one of the reasons why the immediate con-
verse of the result outlined in the last paragraph does not hold. The
question of which dependencies are significant has in section 4.5 been
identified as a question about the semantic interplay between actions
and has been postponed until section 5.4. We discuss this problem, to
an extent, in section5.4 where our aim is to find a precise meaning for
the notion of the "semantic independence" of actions.

5.2 Syntax, Semantics and Correctness of Concurrent Programs

5.2.1 Syntax

The syntax of a programming language is bound to be influenced by
the intended semantics of the programs written in that language. The
block structure of Algol 60, for instance, is already reflected in its
syntax. Similarly, the syntax of our concurrent programs is guided by
an intuitive idea about their meaning. Before giving the syntax in full
we first discuss a few design decisions that were made before it was
arrived at.

Perhaps at first the most "bewildering" aspect of atomic actions is
the extent to which they do not easily fit into the conventional frame-
work of programming language constructs such as conditionals and loops.
One can write programs in which atomic actions "overlap" with condi-
tional clauses and loops, and yet have such programs making perfectly
good sense. We shall discuss some of the ways in which such overlapping
may take place, and we shall then try to understand the principle which
causes such at first sight ,"queer" programs to be well-formed.

Consider as a first example the program

- 123 -

.~
1 if <x-1 -~z:-O>
2 [] <rh -~ x:-x-1>;
3 <z:-l>

f1.

Program PS •.!.

-The two atomic actions in lines 1 and 2 of PS.1 mean that the evaluation
of the conditions "x-1" or "X+1", respectively, and the subsequent
assignments are to be considered atomic. The atomic action in line 3 is
however to be executed only if x+1 previously, event if "between lines 2
and 3" the value of x has been set to 1 by some other program.

We may wish to allow the separation of the atomic evaluation of a
guard and the subsequent command(s). In that case a program such as the
following could be written:

1 <12x:-x-1;
2 if x-O>1 -~ <z:-O>
3 [] x+o -~ skip>2;
4 <z:-1>

f1.

Program PS.!

In PS.2the opening bracket <12 has two closing brackets >1 and >2'
depending on which alternative becomes elected. It can be appreciated
that PS.2, like PS.1, is in principle a well-formed program with a
well-defined and unambiguous intuitive meaning.

I would like to point out that in line 2 of PS.2 the atomic action
< •••>1 terminates with the evaluation of a condition. Intuitively, PS.2
should be so defined as to execute <z:-O> once x has been recognised to
be 0, regardless of whether or not the value of x has subsequently been
changed by a different program. The evaluation of x to 0 must therefore
in some way be understood as committing PS.2 to the first alternative of

- 124 -

the conditional cl'ause, so that there can be no "second thoughts" • We
shall adjust our semantics (section S.2.2) to this problem by, in
essence, viewing atomic guards as special "commands" with no effects
other than to •.transfer control".

Matters get still worse when loops are considered.
the following program also makes intuitive sense:

For instance,

1 ~ <Ii :- 1;
2 do i+N>12 -~ <body>;
3 <2i :- i+l

od

Program PS.1

In PS.3 the second atomic action < •••>2 "wraps", as it were, "around the
loop", so that in the first iteration the action

<i :- 1; i+N?>

and in all subsequent iterations the action

<i :- i+l; i+N?>

should be regarded as atomic.

One might object that the programmer of PS.3 ought reasonably to
make sure that no other component can affect his loop control variable.
However we relegate this correctness consideration to be the responsi-
bility of the programmer and do not here let it influence the design of
our language. Putting this argument to one side, PS.3 is therefore a
perfectly reasonable program.

It is clear that some order must be introduced in this apparent
chaos concerning the possible placing of atomicity brackets. For the
literature this usually goes without saying. In (69], for instance,
only atomic actions of the form

- 12S -

.' (5.1)

are allowed, where B is a guard and c is a command.
. r

In [89], on the
other band, we find the constraint that in loops the guard and subse-
quent commands must be separate atomic actions:

 -~ <c> (5.2)

We introduce the syntactic rule to allow, in essence, both (5.1) and
(S.2) in our language but none of the somewhat more awkward structures
exemplified by PS.2 and PS.). This rule is dictated by the empiric
observation that the forms (5.1) and (5.2) occur frequently in examples,
and by the fact that their syntax remains reasonably manageable.

Of course this rule does not lack a certain arbitrariness. However
we will now examine the common principle which makes the programs PS.1-
PS.3 (and othe~s like them) intuitively well-defined. What is more, we
shall tailor the semantics of our language to fit this principle. This
ensures that if somebody wanted to generalise our language to include
also programs of the type exemplified by PS.2 and PS.), a few minor
changes to the syntax given below and the semantics given in section
5.2.2 could be expected to be sufficient.

We envisage our programs to consist of a number (say m) of sequen-
tial components connected by the "parallel"' operator. Further, we
envisage a complete execution of the entire program to consist, in some
sense, of m complete individual executions of its m components. Every
execution of a sequential component would in turn simply consist of a
succession of the executions of certain atomic actions contained in that
component.

Thus, for instance, a general execution of PS.) could be viewed as
a succession of one instance of <"'>1 followed by zero or more
instances of <bodY>< •••>2' Similarly, an execution of PS.2 could be
viewed as either the string <' ••>l<z:-O> or the string <.">2<z:-1>.
depending on the alternative chosen. The common principle for all of
P5.1-PS.l to make semantic sense we therefore take to be the property

- 126 -

.'that their executions can be described as strings of atomic actions.

To sum this discussion up, we shall, in general, allow the placing
of atomicity brackets in such a way' that the above principle is

respected; this would permit all of PS.l-PS.3 as valid programs. But we
shall, in particular, limit ourselves to programs containing only the
structures (5.1) or (5.2) as basic building blocks. Sequential "pro-
grams" whose executions cannot be described as strings of atomic actions
are outlawed. In particular, the proper overlapping of atomic actions
as in PS.4 below is disallowed (see also P4.4 in section 4.1).

Program PS.!

The overlapping of atomic actions is further discussed in section 5.5.

We shall add to our formal syntax the rule that every variable
(whether "shared" or not) has to be protected by being enclosed within
an atomic action. This rule is introduced purely for convenience pur-
poses in defining the semantics of our programs. It will turn out (pro-
position 5.1 in section 5.2.3) that sequential programs containing
atomic actions have the same meaning as sequential programs in which
these brackets are omitted. It follows that we can safely omit brackets
around "local" variables, and we shall then feel free to do so in subse-
quent examples.

As in section 2.1, we use capital letters to denote syntactic meta-
variables. Our metavariables are the following:

PROG: "(concurrent) program"
SEQPROG: "sequential program"
ELPROG: "elementary program"
IF: to condi tional clause"
DO: "loop··
GC: "guarded command··
GCLIST: "guarded command list"

- 127 -

V: "var Iab.l e"

E: ..expression"
B: "Boolean expression,"

We do not explicitly give the syntax of V, E and B but. instead appeal to
the reader to add appropriate clauses if he so desires. Our main con-
cern is the semantic definition of the parallel operator rather than the
design of a language; we shall not therefore feel completely bound to
the syntax which follows but will appeal, whenever applicable, to an
obvious extension. For instance, with our syntax a program (such as
P4.7 in section 4.2) cannot be written in which a single assignment is
followed by a parallel clause. However. it requires but a trivial
extension of our syntax and semantics' to allow such programs as well.

(SYN1) PROG ::- SEQPROG SEQPROG IIPROG

(SYN2) SEQPROG ::- ELPROG ELPROG;SEQPROG

(SYN3) ELPROG ::- skip abort
V :- E
IF
DO
<PROG)

(SYN4) IF ::- if GCLIST fi

(SYN5) DO ::- do GC od

(a)

(b)

(c)

(d)

(e)

(SYN6) GCLIST ::- GC GC[]GCLIST

(SYN7) GC ::- <B) -~ SEQPROG
<B ~ SEQPROG)
<B ~ SEQPROG);SEQPROG

(a)

(b)

(c)

Matching non-overlapping pairs of atomicity brackets may be introduced
by rules (SYN3e) and (SYN7). We refer to the construCt <B) introduced

- 128 -
"

in (SYN7a) as "atomic condition" or "atomic guard" and to the construct
<~~SEQPROG) introduced in (SYN7b,c) as ·'atomic guarded command". To
(SYNl)-(SYN7) we add the further rule that every variable must, at its
level of nesting, be enclosed within an atomic action. (The "level of
nesting" refers to the possibility of full recursion in (SYN3e).)

Rules (SYN1)-{SYN3a) should be self-explanatory. The appropriate
binding precedence will be indicated either textually or by the use of
"0·· bracket pairs. Rule (SYN3b) deserves the comment that we allow the
writing of

<v :- E) (5.3)

but not the writing of

cs» :- <E> (5.4)

or of assignments in which the expression E is broken up still further
into smaller atomic expressions. Of course, the latter programs may
also make good sense [67]. However, our previous remarks apply: while
we do restrict ourselves to (5.3), there is not the least difficulty in
extending our syntax and semantics to the more general case (5.4). The
only (obvious) rule to be kept in mind for the assignment is that, con-
trary to its textual appearance, the evaluation of E has to take place
prior to the assignment of the result to V.

Rule (SYN3e) is the place where our understanding of atomic actions
comes out in its fullest. We are going to define the relational seman-
tics of a concurrent program in terms of the relational semantics of its
constituent atomic parts. In this way we implicitly decree the essen-
tial property of an atomic action to be that with respect to its
environment only its effect relation is important. Defining the rela-
tional semantics of PROG implies (by recursion) that we are safe in
assuming to know already the relational semantics of the atomic action
<PROG) introduced by rule (SYN3e). We can therefore without problems
allow the unrestricted general recursion in thi8 rule. Thus, in the
terms of [57], we allow not only "combination" but a180 "abstraction".

- 129 -

Finally, rules (SYN4)-(SYN7) should again be self-explanatory. In
accordance with the language defined 1n section 2.1 we define a slightly
restricted form of loops in (SYNs). The three alternatives in (SYN7)
correspond to the various possibilities by which guard constructs of the
form (5.1) or (5.2) may, or may not, be followed by further commands
within the same guarded command.

As regards ~ariables, we retain the rule that all
global integer variables, unless otherwise specified.
shall wish to introduce "local" variables whose scope

variables are
Occasionally we

will usually
encompass no more than one of the sequential components. Such local
variables can easily be translated into global variables with a unique
name, whose actual use is limited to their scope (see section 5.2.3).

Summary of section ~.!.!

We define concurrent programs as consisting of sequential com-
ponents. The sequential components contain atomic actions in such a way
that their executions can be described by sequences of atomic actions.
We allow full recursion (i.e. nesting) of programs within atomic
actions.

5.2.2 Semantics

Let a program c derived from our syntax (SYNl)-(SYN7) be given.
Our aim in this section is to define its meaning m(c) as a relation

m(c) c Sx(Su{l}) (5.5)

Thus we settle not for the relational semantics (2.1) but for the more
general form (2.1') or, equivalently, (2.28'). This is in the interest
of distinguishing "possibly non-terminating programs" from "certainly
non-terminating programs" (see section 2.2). As (2.1) can easily be
retrieved from (2.1'), we lose nothing; on the contrary, we give for our
concurrent programs a semantics which 1s more general than weakest
precondition semantics (see proposition 5.1 1n section 5.2.3).

- 130 -

We do not, on the other hand, use the still more general formula
(Z.28) in order to describe the semantics of c. This is because for the
programs considered here we retain the notion that c, when started in an
initial state s', either fails to terminate, or else results in pre-
ciselyone final state (which may not, of course, a priori be deter-
mined). The parallel operator II is therefore different from the AND
operator discussed in section 2.6 which allows a program to terminate
properly in two. or more final states. As I have already remarked in
section 2.6, I do not at present very well understand the connection
between the I I and AND operators.

Let us at first consider a parallel program c with two sequential
components as our object of interest:

(5.6)

By analogy with the definition of the concatenation operator, it would
be nice if one could deduce the relational semantics of c from the
respective relational semantics of Cl and c2 only. However, this is not
satisfactorily possible. We shall discuss the reasons for this in sec-
tion 5.2.5 where ye relate our way of defining (5.5) to the Owicki-Gries
method of proving parallel programs.

In our present definition we will not in general pay attention to
the effect relations of cl and c2, but rather we will use the effect
relations of the atomic actions contained in cl and c2• To motivate our
definition, let us take another look at this "interference" which may
prevent the effect relations of cl and c2 from being useful. Let us
reconsider the by now familiar example of an unboundedly non-
deterministic program:

<x:-1> I I do <x-O> -~ <y:-y+1> od

Program P5.1

Suppose that (x,y)-(O,O) initially and that x has been recognised to be° in the loop, i.e. the atomic guard <x-O> has been executed. As we

- 131 -

have said before, x may subsequently be set to 1 and yet the assignment
<y:-y+l> should be executed regardless. In fact, "in between" two
atomic actions, another component is free to change the entire state.
From the point of view of a single component, therefore, the only thing
that remains invariant if it is "between" two atomic actions is just
this fact: that "control" resides between these two actions and remains
there unless changed by the component in question.

We draw two conclusions. Firstly, the points at which interference
is excluded are just the atomic actions of a program. Secondly, "in
between" atomic actions, "control" is the only invariant with respect to
a given sequential component and as such must enter the semantics.
"Control" must be defined ind,ependently of the existing state variables.
More precisely, suppose one component has just completed one of its
atomic actions. We need a means of expressing that, regardless of other
possible state changes, the control of this component is and resides
after the atomic action just completed (until the execution of the next
atomic action of that component is begun).

Sometimes [69,88] so-called "auxiliary variables" have been sug-
gested for the purpose of expressing control. We shall discuss this in
section 5.2.5 where we will show that, and why, the Owicki-Gries proof
method for concurrent programs actually necessitates the use of auxili-
ary variables. Instead of auxiliary variables, Lamport introduces spe-
cial predicates ("at •••" and "after •••") with a similar effect in [67].

None of this work provides us with a ready-made answer to our prob-
lem, namely the definition of m(c). We take a different approach and
compare it to known approaches afterwards (section 5.2.5). Our means of
expressing control will involve so-called "control sequences" which
model "possible control sequences" within a sequential component. This
approach reflects just what has been identified in section 5.2.1 as the
salient property of the well-formed use of atomic actions: namely that
the executions of the sequential programs in question can be described
as sequences of atomic actions. Further, it also reflects our principle
that atomic actions "behave according to their effect relations". The
control sequence formalism which we will develop is very akin to a

- 132 -

corresponding foni~lism of "firing sequences" for path expressions
i~vestigated by M.Shie1ds [98,15]. Similarities and differences will be
worked out later.

Let us now attack the definition of m(c) for a general concurrent
program c with m sequential components:

(5.7)

Because of our full recursion property (see section 5.2.1) we can assume
that in c there are no nested atomic actions (and therefore no nested
parallel operators either). Keeping our rule that every variable has to
be enclosed within an atomic action in mind, cl, •••,cm can therefore be
assumed to be sequential programs consisting of a set of atomic actions;
"skip" and "abort" are assumed atomic by default. We refer to the set
of atomic actions contained in c by the names al, •••,ak• Every ai
(l~i~k) is contained in one and only one of the components cj, say in
"cpt(ai)"•

We assume that for each atomic action ai we already know its effect
relation m(ai). For assignments <V:-E>-we have to extend slightly the
semantic definition given in section 2.2. This can be done in the obvi-
ous way: (s' ,s) e m(V:-E) iff the assignment can be properly executed
and s is s' with the value of V replaced by the value of E, and
(s' ,1) e m(V:-E) otherwise (we consider only deterministic assignments).

Because we may have atomic guards (introduced by (SYN7» we also
need to define the effect relation of a Boolean B. We define

-

{I} if the evaluation of B
does not terminate properly

s'm(B) {s'} if the evaluation of B
terminates properly and B(s')-true

(5.8)

otherwise

- 133 -
."

Note that by (5.8) the non-termination of B and the falsehood of Bare
properly distinguished: in ,the former case, B acts as though effecting a
state transition from s' to I and in the latter case, s' has no succes-
sor state (i.e. s'm(B)-~). In this case (i.e. when the evaluation of B
terminates and yields B(s')-false) we call B "disabled"; we shall have
to fix the behaviour of our programs in this case.

Finally, we have to define the effect relation of a guarded command
"B~c" (where c is a SEQPROG) which, by (SYN7b,c), may also be enclosed
within atomicity brackets. This can be done as an obvious extension
(consider the arrow ~ as a sequential concatenation) of the rule (5.8)
just given. If B(s')-false we call the guarded command in question
"disabled"; again, we'shall have to fix the semantics of our programs in
this case.

The definition of m(c) comes in two parts (formulae (5.l6a) and
(5.16b) below). First (in (5.l6a», we define the conditions for
(s' ,s) e m(c) when s + I, i.e. we define the conditions for a proper
final state s being reachable from an initial state s'. Secondly (in
(5.16b», we define the conditions for (s' ,1) e m(c), i.e. for c to fail
to terminate properly when started in s'. The question of termination
involves problems of deadlock and "fairness".

Our aim is to define (s' ,s) e m(c) if s can be reached from s' via
a sequence of atomic action executions such that in some sense all m
components of c have been "validly" and "completely" executed in the
transition from s' to s. Let us illustrate this on our example program
P5.5. We represent any serial execution in the form of a string in
which states and atomic actions alternate. Consider the following exe-
cution of PS.5, starting in the initial state (x,y)-(O,O):

(S.9)

(O,O)<x-O>(O,O)<y:-y+l>(O,l)<x-O>(O,l)<x:-l>(l,l)<y:-y+1>(l,2)<X+O>(l,2)

We have here abbreviated "(x,y)-(i,j)" to "(i,j)". It is intuitively
clear that the sequence (5.9) is a valid and complete execution of PS.S

- 134 -
.'

and that the pair of states «0,0),(1,2» should therefore be contained
in m(P5.5). In order to state this formally, we analyse the general
properties of sequences such as (5.9). Let us consider a general
sequence

u - (5.10)

in which states ·si e Su{l} (O<i<n) and atomic actions ai (1,5,i<n)alter-
nate.

We identify three properties which must be satisfied for such
sequences to be "vafId complete executions". Firstly, every atomic
action contained in such a sequence must relate its two neighbouring
states in accordance with its effect relation. This reflects our under-
standing that atomic actions "behave according to their effect rela-
tions" • Formally, this requirement can be stated as follows:

(5.11)

It can be checked that (5.9) satisfies (5.11). Note in particular that
this is true for the atomic conditions contained in (5.9). Note also
that as a consequence of (5.11), si ~ 1for l~i<n.

The second condition we impose on sequences (5.10) in order that
they be valid execution sequences is the following. If we "split" (or
"project") such a sequence into component subsequences according to the
components in c then each subsequence must be a valid "control sequence"
of its respective component. This property, to be made formal below, is
reminiscent of a similar property in M.Shie1ds' formalism [98]. We
check it in (5.9). Consider first the component sequence <x:-1> which
has been underlined in (5.9): this evidently is a valid execution of the
first component of PS.S. Consider next the remaining non-underlined
subsequence in (5.9):

(5.12)

(5.12) is indeed a possible valid execution of the second component of

- 135 -
.'

P5.5. We refer to strings of atomic actions such as (5.12) as "control
sequences"; this distinguishes them from "execution sequences" by which
we mean strings in which atomic actions and states alternate. We shall
refer to the property that the "projections" of our execution sequences
must be valid control sequences of the components as the "validity·' pro-
perty.

It is esseri~ial that in forming the projections (e.g. in going from
(5.9) to (5.12» we forget about the intermediate states of the original
sequence. This reflects the restriction on "control", i.e. the possi-
bility of other components being free to change the state in between two
atomic action executions. Let, in general, a
of the form (5.10) be given. We define

sequence u -

proj(cj,u) (5.13)

as the subsequence of al •••an obtained by deleting all ai (l~i~n) with
cpt(ai) ..cj•

The validity property can then be formally expressed as

'V j e {1,•••,m}: proj(cj,u) is a control sequence of cj (5.14)

where the notion of a control sequence is still to be formalised. In
general, we then call a sequence u a "valid execution" of c iff it
satisfies (5.11) and (5.14).

But (5.11) and (5.14) are not yet strong enough to characterise,
say, (5.9) as an execution which leads to the final state (1,2). Any
subsequence of (5.9) ending with an intermediate state would likewise
satisfy both (5.11) and (5.14). We need (as our third property) to cap-
ture the further condition that (5.9) is a "complete" execution of all
of its components, in the sense that all component programs have been
"textually exhausted". For the first component this is obvious: <x:-l)
is clearly a complete execution of it. For the loop we require that the
loop termination condition <x.f.0)be explicitly present.

- 136 -
.'

Thus, we call (5.12) a "complete control sequence" of the second
component of P5.5, in contrast, say, to the sequence

(5.12')

The distinction is that (5.12') could be part of an infinite execution
of the loop if x-O always, while in (5.12) the loop termination condi-
tion <x>f.0) is pa"rtof the sequence, explicitly indicating the termina-
tion of the loop.

In general, then, we call any sequence u - sOal •••ansn a "complete
execution" iff it satisfies (5.11) and, in addition, the following pro-
perty Which is stronger than (5.14):

"'1j e {l,•••,m}: proj(cj,x) is a complete control sequence of cj (5.15)

where, again, the notion of a complete control sequence is still to be
defined.

With these definitions we can now give the first part of the defin-
ition of m(c). Let s',s e S. Then

(s' ,s) e m(c) iff there exists a complete execution (5.16a)

We can now concentrate on an individual component cj of c and
define the 00 control sequences" and the "complete control sequences" of
cj. Before doing so we have to settle what it should mean if in a con-
ditional clause the guards do not cover the input state. We consider,
say,

if <B -7 c> fi (5.17)

In a sequential context there are
(5.17). One possibility (taken

two meaningful ways of defining
in Algol 60) is to equate (5.17) to

"skip" in case B is false. Another possibility (taken in guarded com-
mands) is to equate (5.17) with "abort" if B is false. In the

- 137 -

"
concurrent context a third possibility presents itself, namely the rule
that (5.17) cannot be executed if B is false, i.e. is equivalent to a
"wait" command. This would make the if clause rather similar to the
usual await clause (see for example [88]).

For reasons to be explained below, we settle for the third possi-
bility. Note that there is a definite distinction between waiting and
aborting, even t~ough in a sequential context both could be regarded as

'.equivalent. To see the distinction we compare the following two pro-
grams.

<x :- 1>;
«x :- 0> II if <X-O -~ skip>~)

Program 'PS.!

<x :- 1>;
«x :- 0) II if <X-O -~ skip> [] <x+O -~ abort> ~)

Program PS.!_

Under the "wait"" interpretation, PS.6 terminates properly, in contradis-
tinction to PS.7 which may fail to terminate. Under the "abort"
interpretation, however, PS.6 and PS.7 are equivalent.

There are several reasons why we prefer the "wait"' interpretation
rather than any of the other possibilities. Firstly, nothing is lost in
the sense that the other two possibilities can easily be programmed
explicitly. This is not true vice versa: under anyone of the other two
interpretations a "'wait" can be programmed only by explicitly program-
ming a "busy wait" loop. Secondly, the "wait" is of practical impor-
tance. For instance, the semaphore operation pes) can now simply be
progralllDedas

pes) - if <s greater 0 ~ s :- s-l> fie

•

- 138 -
.'

A third reason for preferring the "wait" is tha t'.as it will turn out.
its semantics are the easiest to formulate in terms of control
sequences. (This came as a pleasant surprise to me.)

Analogously. we specify the semantics of a disabled guarded com-
mand, say <B~C>, as a "wait". Thus, as promised, we have fixed the
behaviour of our. programs for disabled guards. Summing up, a disabled
if clause will' be equivalent to a "wait", while a disabled loop guard
will (as usual) enable the successful termination of the loop.

We define "control sequences" (abbreviated c.s.) and "complete con-
trol sequences" (abbreviated c.c.s) simultaneously as strings of atomic
actions. It is understood throughout that the empty string is always a
cos. (but not a c.c.s.) of any program. Let a sequential component cj
be given. We define the .set of its c.s. and c.c.s. by induction over
its syntactic structure.

Let cj-c';c" where c' is an ELPROG and c" is a SEQPROG.
A c.s. of c

j
is either a c.s. of c' or a c.c.s. of c' followed by a

c s s , of c".
A c.c.s. of cj is 8 c.c.s. of c' followed by a c.c.s. of c"

For ELPROGs:
A c.s. (c.c.s.) of "skip" is <skip>
A c.s. (c.c.s.) of "abort" is <abort>
A c.s. (c.c.s.) of <V:-E> is <V:-E>
A c.s. (c.c.s.) of <PROG> is <PROG>

Let cj - if GCl [] ••• [] GCk fi
A c.s. of cj is a c.s. of GCl (for some 1, l(l<k)
A c.c.s. of cj is a c.c.s. of GCl (for some 1, l~l~k)

Let cj - do GC od
Define the infinite string Z 8S Z - rlr2r3 ••• ,

where every ~l, is a c.c.s. of GC.
A c.s. of cj is either a (not necessarily proper) prefix of z

or a c.c.s. of cj

.' - 139 -

A c.c.s. of cj is a finite string r1•••rk followed by <not B>,
where every r1 (l<l<k) is a c.c.s. of GC
and "B" is the guard in GC (see below).

For guarded commands GC:
Let gc - <B) -~ c' where c' is a SEQPROG1 :

A c.s. of gCl is <B) followed by a c.s. of c'
A c.c.s. of gCl is followed by a c.c.s. of c'

Let gC2 - <B ~ c'>
A c.s. (c.c.s.) of gC2 is <B ~ c')

Let gc3.- <B ~ c');c"
A c.s. of gC3 is <B ~ c'> followed by a c.s. of c"
A c.c.s. of gC3 is <B ~ c'> followed by a c.c.s. of c"

This completes our definition of (complete) control sequences and
thereby also our main definition (5.16a).

We make three remarks relating to these definitions. Our first
remark is that, somewhat contrary to their name, control sequences
should be taken as "textual" or ·'syntactic" entities, merely
the possible points of control within a sequential program.

expressing
To illus-

trate this remark, we note that in the program P5.8 (see below) the
sequence

<x:-D><X+O)<skip) (5.18)

is a control sequence according to our definition.

<x:-O>;
if <x-O> -~ skip
[] <x+O> -~ skip
fi

Program PS.!

It is of course contrary to intuition that the sequence (S.lS) should be
allowed to be a control sequence if PS.S is considered as a sequential

- 140 -

component on its own. The reason for admitting (5.18) lies in the pos-
sibility that th~, value of x may be changed by another component in
between <x:-O> and <~O>, in which case (5.18) could be extended to a
valid execution sequence of P5.8. The way in which (5.18) is excluded
if such a change does not occur is by the additional "semantic" require-
ment (5.11): no single state can be inserted between <x:-O> and <x+O> in
(5.18) so as to satisfy (5.11).

Our second remark is that the "wait" interpretation for disabled
conditional clauses comes in because control sequences other than ones
which actually lead to the execution of programmer-defined guard have
not been defined. In other words, an execution sequence containing a
disabled guard is simply disallowed. If we wished, say, to change the
if according to the "abort" interpretation then we would have to add the
rule that

can be an additional c.s. (where the Bj are the existing guards). Thus
the "wait" interpretation introduces the least number of rules. This is

the reason why I have called it the "easiest" to define in terms of con-
trol sequences.

Our third remark concerns the connection between the control
sequence formalism expounded here and M. Shields' semantic formalism for
path expressions [98]. In our case, because we take into account real-
istic guarded commands, we have slightly more difficulty in defining
control sequences, which are otherwise very similar to Mike's "firing
sequences" • We do not, on the other hand, admit operations which are
shared by way of a "handshake" synchronisation, as are allowed in path
expressions as well as in CSP [52]. Such handshake synchronisation can
in our programs be simulated by interlocked "wait" statements. We do
not in this thesis give general rules for such a simulation but we
illustrate the correspondence in section 6.4 on an example.

We now turn to the second stage in our definition of (5.5), which
is to determine the conditions in which (s' ,1) e m(c). We are asking

- 141 -

under which circumstances c should be considered as not properly ter-
minating when starred in s'. For this we need an overview of the possi-
bilities of non-termination.

There is first of all the possibility that anyone of the ai pro-
duces I as its output, be it because ai aborts or because ai contains an
'internal infinite loop or an internal deadlock. In such a case we shall
consider the component cpt(ai) in which ai i8 embedded a8 having
aborted, and we shall introduce the rule that this entails the abortion
of the program a~ a whole. We can envisage this condition to be defin-
able in some way as before, i.e. provided

u -

is a valid execution and sn - 1then (so,l) e m(c).

The rule that the abortion of a single component implies the abor-
tion of the whole program i8 a rather strong simplification. More
refined approaches are possible and are under investigation. In sec-
tions 6.3 and 6.4 we shall find examples of programs which "terminate
properly" with some components deadlocking. However in order to capture
this more formally. the simple form (5.5) of m(c) would no longer be
sufficient. How (5.5) could be generalised to distinguish various pos-
sible partial deadlock situations is beyond the scope of this thesis.

A second possibility for c to fail to terminate properly is by a
deadlock. This can arise if a conditional clause becomes and remains
disabled, as for instance in P5.9 in case x+O initially:

if <X-O ~ skip> f1

Program PS.!

<x:-O> II if <X-O -~ skip> i!

Program P5.!Q_

- 142 -

Thus, (x-1,1) should be in m(P5.9). But (x-1,1) should not be in
m(P5.10). This is'because the first component <x:-O) of P5.10 is some-
time going to occur, thus enabling the second component.

Apparently, therefore, in diagnosing a deadlock we have to make
sure that a currently disabled command does not at some later stage
become enabled again. We reflect this by considering "maximal" execu-
tions, by which we mean executions which cannot be extended any further
by any other atomic action executions. We call a state a "deadlock
state" if it can be reached by a maximal execution but is not at the
same time a final state; i.e. the execution in question is maximal but
not at the same time complete.

The maximal execution in question may also be infinite. Possible
infinite executions are the third case in which we would like to define
that (s' ,1) is contained in m(c). We first extend the notion of an
"execution" to the infinite case. Let

u -

be an infinite sequence in which states and atomic actions alternate.
We call u a "(valid) execution" iff the obvious generalisation of
(5.11), Le.

holds, as well as the obvious generalisation of (5.14).

Our objective is to define (s' ,1) e m(c) if (not iff) there is an
infinite execution. Here we have to deal with the finite delay pro-
perty. To see the problem, consider the following execution of P5.5 (we
reproduce P5.5 below):

(O,O)<x-O)(O,O)<y:-y+I)(O,1)<x-O>(O,1)<y:-y+1)(O,2)<x-O) ••• (5.19)

- 143 -

Program PS.1

(S.19) satisfies our definition of a valid execution of PS.5 because it
satisfies the generalised properties (5.11) and (5.14); its projection
onto the first component of P5.S, for instance. is the empty sequence.
i.e. a valid control sequence of the first component. However. we wish
to exclude (S.19) as a valid execution because (intuitively) the finite
delay property requires that <x:-1) occurs "sometime" during that execu-
tion. We incorporate this requirement into the "maximality" property
and we call (5.19) not maximal because it contains infinitely often a
state in which <x:-l) could. but does not. actually occur.

Let us collect these definitions together. Let us first consider a
finite execution u - sOal •••ansn• We call u "maximal" iff there is no
an+l and sn+l such that sOal •••ansnan+lsn+l is again a valid execution.
Complete executions are thus always maximal; the reverse is however not
necessarily true. On the other hand. we call an infinite execution

"maximal" iff it does not contain an inUni te subse-
quence sil.si2 •••• of states all of which enable a certain atomic
action. say ak, but there is no actual occurrence of ak subsequent to
si1· The phrase •.si enables ak" is a shorthand for

3 s e sutI}: so •••siaks is a valid execution sequence.

The latter condition is a slight variant of Karp and Miller's "fin-
ite delay property" [61], translated into our language. It is bound to
be related to Park's "fair merge" [90], but the exact relationship is a
matter for future research. Our finite delay property does not impinge
on the usual interpretation of the guarded command non-determinism as
"erratic" [30]. To see this, consider the program

- 144 -

if <y-1) -~ <x:-1) fi I I do <x-O) -~ <if true -~ y:-O
.' U true -~ y:-1

f1)
od

Program PS.!!.

Call the right hand if clause "<if)" for the moment. Our finite delay
property continues to allow that in <if) the first alternative is always
chosen to the exclusion of the second alternative. In other words,

(O,O)<x-O)(O,O)<if)(O,O)<x-O)(O,O)<if)(O,O)... (S.20a)

is an infinite execution which is perfectly valid as well ,as maximal
(though not complete). Because of the existence of such an execution,
we would like to define «0,0),1) e m(P5.11).

Suppose, on the other hand, that the choice in <if) is resolved
alternatingly. In this case we can consider the sequence

(O,O)<x-O)(O,O)<if)(O,I)<x-O)(O,l)<if)(O,O) ••• (S.20b)

which is infinite and valid but neither maximal nor complete. The maxi-
ma1ity property is violated because (S.20b) contains infinitely often
the state (0,1) which enables the first component of PS.1l, but no
actual occurrence of that component.

This example also shows that in considering "execution sequences" u
it does not suffice to define u just as a string of atomic actions. The
atomic actions in (S.20a) and (5.20b) are the same ones in the same
order, and yet (5.20a) is maximal while (5.20b) is not.

I do not claim the above "maximality" property to be the last word
on the fairness problem. Fairness is at present very much a research
subject on its own (see for instance [3,22,90,89]), and I believe some
time will have to pass until all aspects of the issue can be considered

- 145 -

as clarified. I have introduced the maxima1ity property with two pur-
poses in mind. Firstly, it seems to be sufficiently strong in order to
satisfy the intuition expressed in sections 1.1, 2.4 and 3.4, to the
effect that programs such as PS.S always terminate. (The exact rela-
°tionship between the maxima1ity property defined here and the properties
of maxima1ity and K-density defined in sections 3.3.5 and 3.4, respec-
tively, is not at present clear to me.) Secondly, our definition serves
to show that fairness can be introduced as a rather straightforward gen-
eralisation of the intuitive notion of an execution being maximal in the
sense that it cannot be extended by any further action executions.

Sometimes it has been argued (for example, by Apt and Olderog in
[3] and by Broy in [22]) that fairness assumptions are "messy" because
they lead to the non-continuity of the wp. While it is true that by
assuming fairness one leaves the realm of continuous wp, I would argue
(see also section 1.1) that not necessarily need this to be worrying, in
particular since by giving up one "utce" property, i.e. continuity, one
seems to gain another "nfce" property, i.e. maxima1ity.

We then finally are in a position to define

(5.16b)

(s" ,1) e m(c) iff either there is a finite execution
u - sOal •••ansn with s..-sO and sn-l,
or there is a maximal execution starting with
s" which is not at the same time complete.

The latter requirement encompasses both deadlocks and infinite looping,
or any mixture of both. (5.19) is not thereby admitted as an execution
of P5.S because it is not maximal. This means that p5.5 does not have
any infinite executions and does not therefore contain I as one of its
possible output states; this is in accordance with the intuition
expressed earlier (sections 1.1, 2.4 and 3.4).

This concludes our definition of m(c). It should perhaps be added
that I do not claim m(c) to be a "full semantics" of a concurrent

- 146 -

program c. One might, for instance, be interested in the properties
distinguishing a certain infinitely looping program from another such
program (any two"such programs will have the same relational semantics).
Operating systems are often quoted as examples of programs where rela-
tional semantics does not matter so much.

If the reader wishes to obtain a fuller semantics for c he may, for
instance, switch to sets of executions rather than relations (5.5).
Sets of executions are similarly well-defined mathematical objects.
However, relations are much easier to handle mathematically and, more-
over, fit the '!goal-oriented" approach to program correctness adopted
here (see section 5.2.4). Furthermore, in connection with atomic
actions relational semantics is just appropriate (see section 5.3.2).

Summary of section ~.!.!

We define the relational semantics of concurrent programs in terms
of the relational semantics of the atomic actions contained in them and
the way in which these are interconnected. The semantic definition
(5.16) consists of a "semantic part" (5.11) which requires atomic
actions to behave according to their effect relation and a "control
part" (5.14) which requires every sequential component to be validly
executed. Fairness is also defined and briefly discussed.

5.2.3 Two Remarks

Our first remark is that the semantics given in section 5.2.2 is
consistent with the semantics given in section 2.2. Let c be a sequen-
tial program without parallel operators (atomicity brackets can then
also be omitted) and let m(c) be its semantics as calculated by the fir-
ing sequence formalism given in section 5.2.2. Let moreover mO(c) be
the relation

if 1e s'm(c)

otherwise,

- 147 -

for all s" e S. Then we have

Proposition 1.!~(c) coincides with the relational semantics of c given
in section 2.2.

The proof of proposition 5.1 is straightforward. For a disabled 1f
clause we have I e s'm(c) because of the existence of a maximal non-
complete execution. Due to the above formula we then have s'UU(c)-~,
which means that the disabled if acts as "abort", as required.

Our second remark is that, as can be expected, one can safely omit
brackets around atomic actions that access only "local" variables. Let
us call a variable "local" if it is used only in one of the sequential
components c

j
• Let us consider an atomic action ai which accesses only

variables local to its component cpt(a!). Then ai can be replaced by
any finer-grained copy of itself without affecting the overall seman-

1 2 1 2tics. For instance, if ai-<ai;a1> and both a1 and a1 access only local
1 2variables then ai can be replaced by <a1>;<a1> to give an equivalent

overall program. The reason for the latter program being equivalent to
the former is that the <a~ (k-l,2) commute in all executions with any
other action of other components, so that, say, if d is an atomic action
and

(It-1,2)

is an execut10n, then so is

We state this as the following proposition:

Proposition 1.!If a accesses only local variables
then m(c)-m(c[a ~ a'),

- 148 -

where a' is any f~ner-grained copy of a and c[a ~ a'l is c with a (tex-
tually) replaced by a'. We do not go into the details of the proof of
'proposition 5.2. The only use we make of proposition 5.2 is to feel
free to omit atomicity brackets around local variables.

The above is, in fact, not the only situation in which two actions
commute with each other. Whenever two actions are "independent" then
they commute; even mutually dependent actions may commute. This and the
property of independence are further discussed in section 5.4.

Proposition 5.2 is important in that parts of a component which are
local (i.e. access only local variables) may constitute the real time
gains through concurrency. It is therefore to be considered how a pos-
sible compiler for our language could best be ma~e aware of them. This
may be done by declaring shared variables or else by declaring local
variables. I do not in this thesis propose any syntactic means for
this. As far as the semantics are concerned there is no trouble as long
as one can translate all local variables into global ones with a unique
name. In our examples in chapter 6, we frequently use the notation
x[cj1 or x[j] when referring to "the variable x local to component cj".
Conceptually, the notions of creating and deleting a local variable
would thereby no longer apply; rather, the locality of a variable would
be expressed by the fact that only a single component accesses it.

Summary of section ~.!.!

The semantics given in section 5.2.2 is consistent with that given
in section 2.2. Atomicity brackets around actions which access only
local variables can be omitted.

5.2.4 Correctness

Having secured the definition of the relational semantics (5.5) for
a concurrent program there is then no difficulty in defining the
correctness of a concurrent program c with respect to a goal G. We do
tbis in complete analogy to the definitions of section 2.5. Let a goal

- 149 -

G c S x S.' (5.21)

'be given (say by a binary predicate involving primed and unprimed quan-
tities). A program c is called "totally correct" (or just "correct")
with respect to G iff

Vs' e Dom(G): I. s'm(c) & s'm(c) c s'G (5.22a)

On the other hand, we call c "partially correct" with respect to G iff

Vs' e Dom(G): SI\s'm(c) .£ a'G. (S.22b)

(S.22a) can immediately be recognised as an analogue of (2.14). We have
in section 2.5 however not defined any analogue of (S.22b).

Given the semantics of c, the formulation of its correctness has
been very easy. This can be compared with the situation a few years ago
when one could find statements such as the following by Keller [64]:

"It is ••• true that there is as yet no widely accepted definition
of 'correctness' for parallel programs."

Summary of section ~.!.i

Partial and total correctness of a concurrent program can be
defined by analogy to corresponding definitions for sequential programs.

5.2.5 Relation to the Owicki-Gries Method

The sorts of programs considered here, and their correctness, have
also been considered by Owicki and Gries in [88], Lamport in [67] and
Owicki and Lamport in [89]. I will in the sequel attempt to show the
connections and differences between their approach and mine, and at the
same time compare the relative merits of either approach.

The basic question treated in the aforementioned papers is the fol-
lowing. Let a concurrent program

- 150 -

De given and let some proof rules for cl and c2 be given. What proof
rules can then be derived for c? "Proof rule" refer. to the attachment
of input/output assertions

{pI c {Q}

to the programs:in question. We take {PI c {Q} to mean what Owick.! and
Gries have taken it to mean in [88], p. 320:

"If P is true before execution of c then Q is true after execution
of c. Nothing is said of termination; Q holds provided (their
emphasis.EB) c terminates." (Quotation changed insignificantly.EB)

That is, {p} c {Q} denotes a "partial correctness" statement.

The answer to this question usually (for instance in [88]) runs as
follows. Let

be valid statements about cl and c2' respectively. Suppose further that
Cl (c2) does not disturb the statement about c2 (cl' respectively).
Then

(5.23)

is a statement about c.

Of course, the property of interference-freeness circumscribed by
the phrase "does not disturb" is of key importance. If cl and c2 are
fully independent (e.g. operate on disjoint sets of variables) then this
property is always satisfied (see for example [51]). If however Cl and
c2 interact then it is only satisfied for carefully chosen Pi and Qi; as
a rule, the more cl and c2 interact the weaker the Pi and Qi have to be.

- 151 -

We shall nex~ present an argument which shows that for the general
applicability of the Owicki-Gries method, two assumptions are of crucial
"importance. Firstly, one has to introduce auxiliary variables and
attach intermediate assertions which involve these auxiliary variables
"between the atomic actions of cl and c2". Secondly, all assertions
must be the strongest possible assertions weak enough to satisfy
interference-freeness. (In some cases,· the assertions are thereby
uniquely determined.) It has been pointed out in [88] that auxiliary
variables are necessary, but the requirement that all assertions be as
strong as possible occurs only very implicitly. If the reader already
knows about these two assumptions then he can skip the remainder of this
section, except for the last few paragraphs.

Let us consider an example.

- «x:-X+l>;
<x:-X+l»

-
II «x:-X»

Program Ps •.!!

Our semantic formalism easily gives

m(ps.12) - (x--x'-2) V (x--x')V (x--x'+2) (5.24)

as the relational semantics of P5.l2 (where x', as before, denotes the
initial value of x).

Suppose that we want to prove (5.24) by using the Gries-Owicki
method. Thus our aim is to prove

{x=x"} P5.12 {(x--x'-2) V (x--x') V (x--x'+2)} (5.25)

as a statement over P5.12. We shall arrive at the conclusion that such
a proof is impossible without introducing auxiliary variables.

Let us proceed as though we were trying to derive a proof of
(5.25). We are looking for individual proofs

- 152 -

Which are interference-free in the sense of [88] and imply (5.25). More
precisely. we are looking for Pi and Qi such that the following hold:

(ii) the two statements do not interfere with each other; and

(iii) {x-x'} implies P1 & P2• and Ql & Q2 implies (5.24).

Because both cl and c2 terminate. (i) means that the weakest
precondition of ci with respect to Qi must be implied by Pi:

P ->i

This gives for cl and c2• respectively:

(i1) P1 -> Q1[x ~ x+2]
(i2) P2 -> Q2[x ~ -xl

where Q[x ~ E] again denotes Q in which all free occurrences of x have
been replaced by E.

The obligation (ii) implies that Q1 must be invariant under the
change of sign of x by c2:

and that Q2 is left invariant when x is increased by 1. By induction it
follows that Q2 must be invariant over any increase of x. Formally. if
we define

for k - 0.1.2 ••••

then we require the truth of

- 153 -

The obligation (iii) can be expressed directly as:

(iii1)
(iii2)

P1 & P2
(x--x'-2) V (x--x') V (x--x'+2).

Our problem can now be stated as that of finding Pi and Qi such that
(i1)-(i1i2) bold true.

We can eliminate PI and P2 by deleting (1ii1) and reducing (i1) and
(i2), respectively, to

(i1') {x-x'} -> Q1[x ~ x+2]
(i2') {x-x'} -> Q2[x ~ -x]

It remains to determine some Qi satisfying (11'), (12'), (ii1), (ii2)
and (iii2). Because of (1ii2) we want to define the Qi as strong as
possible. We try to do so by successively approximating them by two
series Q~j), j-O,l, •••• keeping the Q~j) as strong as possible. Our
initial choice is

which satisfies everything except (il') and (i2'). To satisfy (i1') and
(i2') we weaken the Q~O) to

However, now Q~l) fails to satisfy (ii1) and Q~l) fails to satisfy
(ii2). In order to remedy this we have to add to Q~l) a term with x
replaced by -x:

Q(2)1 - {lxl-x'+2},

and to Q~l) we have to add an infinite series of terms with x replaced
by x-1, x-2, etc. We thus arrive at

- 154 -

Q~2) and Q~2) are the strongest choices implied by Q~l) and Q~l),
respectively, which satisfy (iil) and (ii2). Yet they are already too
weak to allow the desired conclusion (iii2) because by setting k:-2*x'+2
we see that

and {x-x'+2} is not a term on the right hand side of (iii2).

We have thus arrived at the conclusion that there can be no direct
Owicki-Gries style proof for the statement (5.25) about the concurrent
program P5.l2. The snag has been our requirement that Q2 must be
invariant over any increase of x by 1. We really only need the weaker
requirement that Q2 be invariant over at most two increases of x. In
order to express this, we need an auxiliary variable which counts the
number of times x has been increased and thereby expresses the points of
control of cl'

Such auxiliary variables can be introduced in a systematic manner.
To see this on our example, I reproduce (by courtesy of E.W. Dijkstra)
an Owicki-Gries proof of (S.2S). We define two auxiliary program
counters i and j (for Cl and c2, respectively), both initialised to 0,
and amend PS.12 as follows.

- 155 -

.<

cl: PI ~ {i-O & (j-O & x-x' V j-l & x--x')}
<x:-rH; i:-l>;
{i-l & (j-O & x-x'+l V j-l & (x--x'+l V x--x'-l»}
<x:-X+l; i:-2>

Q - {i-2 & (j-O & x-x'+2 V j-l & (x--x' +2 V x--x' V x--x' -2»}1-

c ' P - {j-O & (i-O & x-x' V i-I & x-x'+l V i-2 & x-x'+2)}2' 2-
<x:-x; j :-1>

Q2 ~ {j-1 & (i-O & x--x' V i-1 & (x--x'-1 V x--x'+l)
i-2 & (x--x' -2 V x--x' V x--x'"+2» }

Owicki-Gries Proof of (5.25)--- --- --- _" --
The assertions of this proof have been constructed as the strongest pos-
sible assertions (including program counters) which are weak enough to
satisfy the interference-freeness property.

We show that these assertions have to be as strong as possible. To
this end, let us reconsider PS.12 with the "interfering" case fixed as a
default. We can easily do so by using a variable

~ y: 0•• 1

initialised to 0, as a sequencing device:

ci - «(x,y):-{X+1,1»;
if <y-O -~ x:-X+l».ft II- -

c2 -
(if <y-l -~ (x,y):-(-x,O» fi

Program PS •.!1

(The ~s in PS.13 are, in accordance with the semantics defined in sec-
tion 5.2.2, to be interpreted as awaits.) Intuitively, PS.13 transforms
x=x" into x"-x'", which also agrees with our semantics because of the
existence of the following (but no other) execution:

(x'",O)<x,y:-X+l,l>(x"'+1,1)<y-l~x,y:--x,O)(-x"'-1.0)<y-0-~x:-X+1>(-x'" ,0)

- 156 -

However, let us consider the following statements:

(5.26a)

{x-x" & y-O} ci (true) (5.26b)

Surely, both are valid (partial correctnessl) statements because under
the assumption y-O initially neither ci nor ci by themselves terminate.
If the two state~ents (5.26a) and (5.26b) satisfy the interference-
freeness property defined in [88] then the parallel operator rule (5.23)
allows us to conclude that

{x-x' & y-O} P5.l3 {lxl-x"+2}

is a statement over P5.13, a result Which is manifestly counterintuitive
(Whether or not taken as a partial correctness statement) and contrary
to our semantics.

This result depends, of course, on whether or not (5.26a) and
(5.26b) are indeed interference-free. Intuitively they should not be.
To enable the reader to judge for himself, I reproduce the Owicki-Gries
interference-freeness formulae by quoting from [88], pp. 322-323, tem-
porarily using their paragraph numbers:

"(3.4) Given a proof {p} S {Q} and a statement T with precondition
pre(T), we say that T 'does not interfere with' {p} S {Q} if
the following two conditions hold:

(a) {Q & pre(T)} T {Q}

(b) Let S' be any statement within S but not within an await.
Then {pre(S') & pre(T)} T {pre(S")}.

the following holds. Let T be an await or assignment state-
Thenment (which does not appear in an await) of process Si.

for all j, j+i, T does not interfere with {Pi} Si {Qi}."

- 157 -

To make this definition applicable to our programs we may rewrite P5.1l
by replacing the atomic actions by corresponding await statements (await
true ••• for the first action in ci). Preconditions pre(T) are defined
in [88] simply as "assertions preceding T". It seems to me that in the
case of PS.13 and (5.26) the clause (3.4b) does not apply and (3.4a) is
always satisfied, thus giving the (counterintuitive) result that (5.26a)
and (5.26b) are interference-free.

The correct proof of P5.13 should bave taken into account the
intermediate values of x and y as well. The assertions (5.26) should
accordingly be strengthened and an intermediate assertion involving the
values of y should be placed between the two statements of ci. The
above argument serves to show that it is essential for the general
applicability of the Owicki-Gries method, not only that auxiliary vari-
ables are introduced, but also that all assertions are as strong as per-
mitted by the interference-freeness property. Weaker local assertions
will not just (as one could have expected) give rise to weaker global
assertions, but may even (as this example shows) encourage incorrect
deductions.

It would of course be interesting to have at hand a statement to
the effect that for every program c one can introduce auxiliary vari-
ables and assertions with the above characteristics between atomic
actions, such that these assertions form a proof for the statement m(c).
I conjecture that this is true and that it should not be too difficult
to prove. We would then know that there are two different but
equivalent ways of looking at the same semantics.

The auxiliary variables so defined tend to express the control
points within sequential components. Thus control is introduced in a
roundabout way, sometimes leading to circumstantial proofs of simple
facts. Since, it seems, control bas to be taken into account in some
way or other, I think it is just as well to do so in the first place,
which is what I consider to have been achieved by the control sequence
formalism. Thus, I think this work can also be seen as putting the
Owicki-Gries method into the perspective of being but one method for
proving concurrent programs. (1 would, on this account, disagree with

- 158 -

Andrews who seems to imply in [2] that the Owicki-Gries method underlies.'
all proofs of concurrent programs.)

In writing a proof{P1\c1tQl\we implicitly set up a relation between
the initial states aod the ijinal states of cl. I would argue that cl
may not be an appropriate substructure of c at which to apply relational
reasoning. This is manifestly true for P5.l3: the fact that ci' by
itself, transforms x-x' into x-x'+2 is of no significance whatsoever in
its proof. And in particular, ~he relational meaning (that is, the
"strongest proor') of a general c cannot be given from the relational
meaning of its constituent cj only.

With the semantics given in section 5.2.2, I have proposed to view
the atomic actions in c as (by definition) accurately those portions of
c whose relational semantics really matters. This is why in this thesis
the semantics of c has been defined in terms of the m(ai) rather than
the m(cj).

In the "control sequence" approach the usual input/output proof
rules for if clauses and loops ([30] and sections 2.2 and 2.3) break
down. This is however only to be expected. As the discussion relating
to program P5.8 in section 5.2.2 shows, we cannot expect that in an if
clause which is not itself an atomic action, the usual relations hold
between its input and output states. The control sequences of a sequen-
tial component, by capturing all of its "control" but none of its
"state", represent precisely those aspects of that component which are
invariant which respect to interference by other components. Our addi-
tional condition (5.11) allows for interference unless the state is
transformed "atomically".

Perhaps it should be added that our semantic formalism does not, of
course, preclude proofs of concurrent programs being conducted as "stat-
ically" as possible. Indeed t I think that one should always (whichever
technique is used) strive for ways of avoiding to have to consider all
possible execution sequences one by one. But I claim that because con-
trol is taken into account explicitly and because relational semantics
is applied where it matters (namely for the atomic actions of c), the
approach taken here is convenient for the purposes of defining the

- 159 -

semantics of the programs under consideration. Just the fact that we

use the word "execut Ion" does not warrant any charge that the formalism
advanced in section 5.2.2 is "unmathematical" or "implementation-
dependent"; everything has been defined purely in terms of the program
text.

Because of the present separation between semantics and correctness
criteria, our formalism appears to give little general insight into how
correctness can best be established in every individual case. However,
even though a methodology for proving concurrent programs correct has
not been our immediate concern, a "proof method" can be associated with
the control sequence formalism. This consists, not of enumerating all
execution sequences, but of examining the properties of one or a few
general execution sequences. A proof conducted in this manner is
described in section 6.2.3.

Summary of section ~.!.~
We relate our semantic formalism to the Owicki-Gries method of

proving parallel programs and we expose some difficulties in the latter.
We show that their method requires, in general, both the introduction of
auxiliary variables and the consideration of the strongest possible
intermediate assertions. We show that this is a consequence of the fact
that the sequential components of a concurrent program may not be
appropriate substructures for the application of relational reasoning.

5.3 Relational Characterisation of Atomic Actions

5.3.1 Introductory Remarks

The previous section 5.2 has been devoted to the syntactic and
semantic definition of the class of programs which are the main subject
of this thesis. We have, in particular, defined the parallel operator
II in terms of the relational semantics of the atomic actions used in

- 160 -

connection with it. Thereby we have also, implicitly, defined the
.'semantic properties of those atomic actions. The present section is

intended to work out these properties more explicitly. and to establish
a relation to the atomicity criteria defined in chapter 4.

Accordingly. it has two parts. In the first part (subsection
5.3.2) a property of atomic actions will be identified which I call
"effect-replaceability". We shall argue with the help of two proposi-
tions (5.3 and 5.4) that effect-replaceability is the characteristic
"static" semantic property of atomic actions. We then discuss effect-
replaceability in connection with the invariant-assertion proof method
for concurrent programs (proposition 5.5). In the second part (subsec-
tion 5.3.3) we establish a link between the "static" atomicity criteria
discussed in the present chapter and the "dynamic" criteria defined in
chapter 4. In particular. with propositions 5.6 and 5.7 we establish an
equiValence of sorts between the two criteria.

5.3.2 Effect-Replaceability

In order to avoid talking about the proper nesting of atomic
actions all the time we concentrate on the set of atomic actions on a
particular level of nesting and their enclosing actions. We can safely
do so because of the general recursion property associated with rule
(SYN3e) in section 5.2.1. Thus. let a concurrent program c and one of
its atomic actions ai be given. We denote by encl(ai) either the atomic
action immediately enclosing ai• or (if ai is already an outermost
atomic action) c itself. Further. we call two atomic actions al and a2
"on the same level of nesting" iff encl(al}-encl(a2}.

Henceforth we concentrate on a set of atomic actions al,a2 •••• all
of which are on the same level of nesting. together with their enclosing
action. To be explicit, we can take all outermost atomic actions and
their enclosing action c. The discussion in this subsection is con-
ducted under the assumption that all of the ai are actual programs. i.e.
syntactically derivable from PROG. However. our discussion can easily
be extended for atomic conditions or atomic guarded commands.

- 161 -

Because in our definition (5.16) of the semantics of c only the
m(ai) with c-encl(ai) are used, it follows that if any such ai is
replaced by another a' with the same effect relation (i.e. m(a')-m(ai»
then the semantics of c remains unaffected. We state this as

Proposition 1.1Va': (m(ai)-m(a') -> m(c)-m(c[ai~-a']»

where c-encl(ai) and c[ai~-a'] is c in which ai is textually replaced by
a' (outer atomicity brackets are assumed to remain around a').

I call the property described in proposition 5.3 the "effect-
replaceability" of an atomic action ai with respect to its environment
c. Further, I claim that effect-replaceability is, in a certain sense,
the characteristic property of atomic actions. To see this, let us
define effect-replaceability more generally, not just applying to atomic
actions. Let therefore d be any textual part of c which is by itself a
syntactic entity derivable from PROG; d may not be a single atomic
action. We call d "effect-replaceable with respect to c" iff

'1d': (m(d)~m(d') -> m(c)-m(c[d~-d']» (5.27)

For instance, the assignment "x:-xH to is effect-replaceable with respect
to P5.l4 (see below); the same is true for the second assignment "x r=x-

2".

x:-x+l;
x:-x-2

Program PS •.!:!

Proposition 5.3 then simply states that every atomic action satisfies
(5.27).

In order to substantiate our claim that (5.27) is the characteris-
tic property of an atomic action we need some kind of converse of propo-
sition 5.3, stating roughly that whenever a program d satisfies (5.27)
then it is atomic. This can be inferred from taking the special case

- 162 -

d'-(d) in (5.27). Clearly, m(d)-m«d» and therefore, by (5.27),
m(c)-m(c[d~-<d»))We state this as

Proposition 1.!Let d be effect-replaceable with respect to Cj
then m(c)-m(c[d~-<d)]).

Proposition 5.4 states that enclosing any d satisfying (5.27) in atomi-
city brackets will not alter the semantics of its environment c. Thus d
can itself be viewed as an atomic actionj for instance, both assignments
in PS.14 can be viewed as atomic actions. As atomicity brackets have
not actually been put around them, they can be called "unplanned atomic
.actions" [97).

Caution must be observed when the effect-replaceability property is
applied in a circumstance in which atomicity brackets have been omitted
due to the local variable rule discussed in section 5.2.3. Let us con-
sider the example

x:-x+l II <y:-y+l)

Program PS •.!1

which has (by definition) the same semantics as program PS.16 below.

<x:-X+l) II <y:-y+l)

Program PS.~

Intuitively, we would like to view the first assignment in PS.lS, i.e.
"x r=x+L'", as an "unplanned atomic action" satisfying the effect-
replaceability property (5.27). However it doesn't. If we replace
"x:-X+1", say (as in [67]), by the effect-equivalent piece of program

<y:--y)jx:-x+lj<Y:--Y> (5.28)

then the resulting program

- 163 -

."«y:--y> :
x:-x+l: II
<y:--y»

Program PS •.!!..

differs drastically from both PS.lS and PS.16.

Apparently, we cannot admit (5.28) as a replacement for "x:-X+1" in
the context of PS.IS. A reasonable way out would be to admit only such
pieces of program as a replacement for "x:-X+I" which do not have side-
effects on other variables, even if those side-effects are only "tem-
porary". Thus, we would admit

x:-x-1:x:-X+2

as a replacement for "x:-X+1", but not (5.28). However, this require-
ment leads us straight to the question of what "other variables" and
"side-effects" mean: these "other" variables may not as easily as in our
present example be determined syntactically. We are thus bound to enter
the same discussion as is going to be conducted in section S.4.

There is also the following less painful way out. We already know
that "x:-X+1" in PS.lS is an "unplanned atomic action" because the rule
in section 5.2.3 implies that (by definition) the overall semantics of
PS.IS does not change if "x:-X+I" is enclosed within atomicity brackets.
Before replacing "x:-X+I" we have to reinsert those brackets. In par-
ticular, we are thus allowed to replace "x:-X+1" by the single atomic
action

<y:--y:x:-x+l:y:--y)

(as opposed to (5.28» and we know already (proposition 5.31) that the
resulting program, i.e. PS.18 below, is effect-equivalent with PS.1S.

- 164 -

<y:~y;

x:-X+l; II
y:-y>

Program PS.!!

Property (5.27) characterises the "semantic well-behavedness" of
atomic actions. According to it, atomic actions are not only syntactic,
but also meaningful semantic substructures of a concurrent program.
This can be taken advantage of in the proof of a concurrent program
using atomic actions by the following frequently applicable proof method
for Buch programB (which has perhapB first been stated in general terms
in [33]). In order to prove the invariance of an aSBertion one has to
prove its initial truth and the fact that it is an invariant over all
atomic actions contained in the program. Thus, one is in general free
to consider atomic actions individually, one by one, thus factoring out
a large proof into many different smaller proofs. We shall see thiB
method applied in chapter 6.

Let UB state its justification more precisely. To this end, we
call a (unary) predicate P: S ~ {true,false} an "invariant over a pro-
gram c" iff

Vs,s' e s. (P(s') & (B' ,s) e m(c» -> pes) (5.29)

We then have:

Proposition 5.5 Let c be a program and P an invariant over all
c-encl(ai) •
Then P is an invariant over c.

with

Proposition 5.5 follows immediately from the fact that, under the
aasuapt Lons given, the truth of P "propagates" through all execution
sequences (5.10).

- 165 -

Again, (5.27) can be seen as the characteristic property of atomic
actions which makes'proposition 5.5 hold. For effect-replaceability of

·ai.means that ai is replaceable, as it were, by a single atomic assign-
ment statement which, applied to a state in which P is true would
preserve the truth of P. Any execution can then be viewed as a succes-
sion of such assignment statements, clearly leaving P true if P was true
initially.

It is perhaps possible to view (5.27) as an instance of a rather
more general "semantic well-behavedness" axiom. I have in mind to allow
the substitution, in place of the relational semantics m(c), of any
other semantics of interest, say "sem(c)". (1 am aware - see the final
remarks in section 5.2.2 - that the relational semantics is not a "com-
plete" semantics.) We may thus contemplate the following property:

'id': (sem(d)-sem(d') -> sem(c)-sem(c[d~d']» (5.30)

applicable to syntactically well-defined portions d of c. Property
(5.30) would seem to express a general semantic "induction" property,
namely that, within the context c, d behaves exactly as it would accord-
ing to its semantics sem(d) as calculated independently of c' i.e. out
of context. In other words, in order to calculate the semantics sem(c)
of c one would be able to reason about d in isolation, derive sem(d) and
then use only the latter in the calculation of sem(c).

(5.30) can then be specialised to whatever particular semantics one
may be interested in; in this way, one may obtain different sorts of
semantically well-behaved "portions" of a program. In particular, if
sem(.) is specialised to mean the relational semantics m(.) then one
obtains the characteristic property (5.27) of atomic actions. This
illustrates anew the remark (made, e.g., at the end of section 5.2.2)
that relational semantics is just appropriate for atomic actions.

It seems to me that a property very akin to (~.30) can be found
several times in other literature. In [84], for instance, Milner uses
such a property to define the notion of
this case we have an equivalent of

"behavioural congruence". In
(5.30) where sem(.) is not the

- 166 -

relational semantics. Also, we may quote Habermann from [47], page 70:

"It must be possible to replace a functional unit without affecting
the rest of the system as long as the external specifications of
that function remain the same."

Apparently, Habermann here had in mind a property similar to our "seman-
tic well-behavedness" property (5.30).

This completes our discussion of the effect-rep1aceability property
(5.27) ~ If the reader so wishes, he could take (5.27) as a "local"
static atomicity criterion (as opposed to the "global" static atomicity
criterion (5.16» and see an analogy to the two dynamic criteria defined
in sections 4.2 and 4.3. Propositions 5.3 and 5.4 would then be analo-
gous to the two parts of proposition 4.2. Of course, two different sets
of atomicity criteria having been given, there need now to be a few
remarks as to their relationship. This is what we turn to in the next
subsection.

Summary of section ~.1.!

We identify "effect-rep1aceability" as a characteristic property of
atomic actions. Also we briefly -discuss the invariant-assertion proof
method for our programs.

5.3.3 Relationship Between Static and Dynamic Atomicity Criteria

This section contains some thoughts on the relationship between our
various atomicity criteria defined in chapters 4 and 5. In chapter 4 we
have discussed a pair of what I have called "dynamic" atomicity cri-
teria. The reason for calling these criteria "dynamic" was that our
basic objects of interest wer~ executions, represented in the form of
occurrence graphs. Our first dynamic criterion (defined in section 4.2)
has been called "global" because it expresses a property of an execution
as a whole. The second dynamic criterion (defined in section 4.3) has
been called "local" because it expresses a property of those parts of a

- 167 -

structured occurrence graph which correspond to atomic action execu-.~
tt,ons. The relationship between these two criteria has been given by
proposition 4.2.

Similarly, in the present chapter we have discussed a pair of what
might be called "static" atomicity criteria. The reason for calling
these criteria "static" is that our basic objects of interest are pro-
grams rather than executions. Again, we have defined a criterion
(namely, (5.16», which could be called "global" because it expresses the
semantic properties of atomic actions implicitly in terms of the seman-
tics of the enclosing program. We have then defined a corresponding
"local" static criterion (5.27) which has been so called because it
expresses the semantics of atomic actions directly rather than impli-
citly. The relationship between these two static criteria has been
given by propositions 5.3 and 5.4.

The objective of this section is to relate these pairs of static
and dynamic criteria to each other. Ideally, one would like to have at
hand a set of propositions showing the equivalence (or essential
equivalence) of the respective global and local criteria. We shall give
such propositions in some detail only for the two global criteria. The
relationship between the two local criteria will be discussed in general
terms only.

Recall that the global dynamic criterion (section 4.2) postulates
the cycle-freeness of the structured occurrence graph describing an exe-
cution. The global static criterion (5.16a), on the other hand, postu-
lates the existence of a serial execution leading from an initial state
s' to a final state s in order for (s' ,s) to be in m(c). In the
interest of relating these two criteria to each other, we first of all
have to get a clash of terminology out of the way. So far, we have
reserved the word "execution" for two different purposes: both to denote
a (structured) occurrence graph and to denote a sequence of the form
(5.10). We shall see below that the latter can meaningfully be viewed
as a specially inscripted occurrence graph, 80 that no terminological
confusion will arise.

- 168 -

Our aim is to,establish the following connection between these two
criteria. We shall first show (proposition 5.6 below) that if an execu-
tion of c, described by a cycle-free structured occurrence graph, leads
from an initial state s' to a final state s then (s' ,a) e m(c). As dis-
cussed in section 4.5, the immediate converse of this result doea not in
general hold true. However we will show the following weak converse
(proposition 5.7 below): given a cyclic structured occurrence graph then
one can construct a program c such that this structured occurrence graph
can be viewed as an execution of c leading from an initial state s' to a
final state s but (s' ,s) • m(c).

Intuitively, these two propositions are obvious enough. The main
difficulty in proving them lies in actually drawing up a correspondence
between our two underlying models, i.e. the occurrence graph model of
chapter 4 and the control sequence formalism of section 5.2. We need
the notion of a structured occurrence graph describing a "valid and com-
plete" execution of a program c. Our plan is to define this notion in
analogy to the examples discussed in chapter 4. The "trick" for relat-
ing occurrence graphs and programs will be inscriptions on the events of
the graph which give information about the actions in the program Whose
executions these events represent.

We illustrate this definition by the following example.

«x:-x+l> I I <x:-2*X» I I <x:-x-l>

Program PS •.!!

Let us abbreviate the first atomic action in P5.l9 by "a1". i.e.

a1 - «x:-x+l> II <x:-2*X»

Consider the following execution of P5.l9 which starts with x-I:

(5.31) shows that (~l.x-3) e m(P5.19). The fact that (~l.~4) e meal)

- 169 -

which is essential (5.111) for the validity of (5.31) can be inferred.'
from the existence of the following sequence:

(~1)<x:-X+l>(x-2)<x:-2*X>(x-4) (5.32)

Each of the two assignments in (5.32) can. in analogy to the examples in
chapter 4, be further decomposed into a read event on x. say "r H. fol-x
lowed by a write event on x, say HW". In total. (5.31) could be decom-

x
posed in the way shown in Figure 5.1.

(1)

r
x

w
x

(2) r
x

w
x

(4) rx wx
(3)

<x:-x+l> <x:-2*X> <x:-x-l>

Note: "(x-j)" has been abbreviated to "(j)"

This decomposition need of course not be unique. However (as in section
4.1) we can assume that there always exists such a decomposition down to
the level of single reads and writes.

The graph (Gl,Tl) shown in Figure 5.1 satisfies all of the axioms
of a "structured occurrence graph" (section 3.3), except (unimportantly)
the requirement that there is a single outermost atomic activity. The
activities and the conditions of the graph bear inscriptions showing
which actions of the program P5.19 are "presently" being executed and.
respectively, which state the system i8 "presently" in.

- 170 -

Without the~e inscriptions there could be no way of deciding which
state transformation bas actually been effected by the execution
described by the graph. Indeed, the graph (G2,T2) shown in Figure 5.2
below describes the same basic events in the same order as (G1,T1).

(1)
(2)

<x:-X+l> <x:-x-1>

However, due to the reversed order of the occurrence of the first two
actions, (G2,T2) transforms (x-l) into (x-2) rather than (x-3).

Of course, all operations defined in section 3.3 can be applied to
these graphs as well, in particular the "collapsing" operation. For
example, (G1,T1), can be collapsed to give

- 171 -

(4)

(1) (3)

(x:-x-l>

Figure ~.!

which represents the sequence (S.3l) as an inscripted occurrence graph.
Similarly, (G2,T2) can be collapsed to give

(3)

(1) (2)

(x:-x-l>

Figure ~.!

which is a description of the following valid .(and complete) execution:

(5.33)

Note that the graphs shown in Figures 5.3 and 5.4 can again only be dis-
tinguished by their inscriptions.

Thus we have seen how every execution sequence (5.10) can be
represented by an inscripted occurrence graph. If desired the latter
can be refined down to the detail of actual reading and writing of vari-
ables; thus one may obtain an (inscripted) structured occurrence graph
(G,T). If u - sOa1 •••ansn is the execution sequence in question then we

write

(5.34)

- 172 -

in order to express the fact that the structured occurrence graph (G.T)
constructed as above transforms the initial state So into the final.'
state s • For example, we haven

(~l) (GI,TI) (~3) ~d (x-l) (G2,T2) (x-2),

respectively, for the structured occurrence graphs shown in Figures 5.1
and 5.2.

We do not ~nterpret (5.34) as expressing a "relation" between ini-
tial states and final states. (G,T) represents only a single execution
from So to sn. It may so happen that from another initial state there
does not exist any execution which could be described by (G,T). Furth-
ermore, we assume the final state sn to be uniquely determined by the
initial state So and the details of the inscripted graph (G,T).

We now generalise and consider any arbitrary (inscripted) struc-
tured occurrence graph (G,T). Our objective is to define the conditions
for (G,T) to be a description of an execution of a given program c
starting in a given initial state s'. We require the basic events of
(G.T) to be read or write events to variables of c, according to the
rule that the Boolean expressions in c generate a number of read events
and the assignments V:-E of c generate a number of read events to vari-
ables in E followed by a single write event to V. We require the fol-
lOwing three additional conditions to hold for (G,T):

(i) No two write/write or read/write events to the same variable
are concurrent.

(ii) The basic graph G (is acyclic and) describes a complete execu-
tion of c. starting in s'.

(iii) The activities in T correspond to atomic actions in c (and
can therefore be inscripted in the same way as illustrated in
the above example graphs).

We do not go into any formal detail in defining these conditions. (1)

- 173 -

and (iii) should be self-explanatory. (ii) can be defined analogously
to the propeties of ··validity" and "completeness" defined in section
5.2. We require that when only those parts of (G,T) which correspond to
a given sequential component are considered then the inscriptions on
this part describe a valid and complete execution of this component.
The completeness condition implies in particular that for loops

do B ~ c od ,

the last event(s) generated is (are) read events on the variable(s) con-
tained in B, determining the ultimate falsehood of B.

The requirement that (G,T) be so refined a8 to contain the read and
write events to individual variables of c ensures that the initial state
s' together with (G,T) and its inscriptions determine uniquely all
intermediate states as well as the final state s holding after the exe-
cution described by (G,T). Again, we may express this by writing

s" (G,T) s, (5.35)

thus generalising (5.34). Because of their association with execution
sequences u, the structured occurrence graphs under consideration in
(5.34) are linearly ordered on all levels of abstraction. In (5.35), by
contrast, the only ordering requirements imposed on (G,T) are (i) and
(ii) above.

Thus we may, for instance, consider the following graph which
satisfies (i)-(iii) for P5.19.

- 174 -

(x-l)

rx rx

wx w
x

<x:-X+l) <x:-2*X> <x:-x-1)

(x-O)

(G3,T3) satisfies the properties of a complete execution of PS.19
because all of its basic read and write events occur in an order satis-
fying the individual requirements of the assignments contained in PS.19.
On the other hand, (G3,T3) does not "satisfy atomicity" in the sense of
section 4.2, and sure enough it transforms (x-I) into (x-O) which is not
in (x-1)m(PS.19).

We can now state our first result more formally as follows. Let c
be a program and s' an initial state. Let (G,T) moreover be an
inscripted occurrence graph satisfying (i)-(iii) for c and s'. Then

Proposition 1.~If (G,T) satisfies atomicity and s' (G,T) 8

then (s' ,s) e m(c).

- 175 -

The proof of proposition 5.6 may make use of proposition 4.1. Because
(G,T) satisfies atomicity it can be serialised so that it describes a
linear order on all levels of abstraction. This holds in particular for

" the outermost level. But the inscriptions on the events of this level,
together with the (uniquely determined) intermediate states, can then be
arranged in an execution sequence (5.10) from s to s' Which is complete
because (G,T) satisfies (li). Its validity follows from considering the
graph recursively down to lower levels of abstraction. Hence (s' ,s) e
m(c).

As already stated several times, the immediate converse of proposi-
tion 5.6 does not necessarily hold. To see this again on the present
example, we may consider the structured occurrence graph shown in Figure
5.6 below which violates atomlefty but nevertheless transforms (x-1)
into (x-2), and (x-2) e (x-l)m(P5.l9).

- 176 -

(x-l)
a

r
x

rx

w
x w

X

<x:-xH) <x:-2*X> <x:-x-l)

(x-2)

Figure 1.!

However, for every atomicity-violating structured occurrence graph we
can easily construct a program c, an initial state s' and suitable
inscriptions, such that the resulting inscripted graph describes a com-
plete execution of c leading to a final state not in s'm(c).

We state this more formally as

Proposition 1.1 If (G,T) violates atomicity
then3c,s' ,s: (s' (G,T) s & (s' ,s) • m(c».

We will not give the general proof of proposition 5.7. It consists
essentially of a generalisation of the following argument. Suppose
there is a cycle between two activities Al and ~ of (G,T). Then Ai
must contain events ei and fi (i-l,2) with e1<f2 and e2<f1 (see Figure

5.7).

- 177 -

_,

Of course, el,fl • {e2,f2l and e2,f2' {el,fl} because T4 Is well-

nested; however, possibly et-ft (1-1,2). Depending on whether ei~fl '
fi~ei or ei co fi (1-1,2), we can take the ei and fi to be the
read/write events to suitably defined variables. For example, in Figure
5.7 where ei co fi (i-1,2) we may decide that el and e2 should be writes
to variables x and y, respectively, and that f1 and f2 should be reads
to y and x, respectively. We introduce two auxiliary variables zl and
z2 and consider the program

<x:-l II zl:-y> II <y:-l II z2:-X>

Program P5.~

Abbreviating (x,y,zl,z2)-(i,j,k,l) to (i,j,k,l), we see that

(O,O,O,O)m(P5.20) - {(l,l,O,l),(I,I,l,O)l

but that, with the inscription el: x:-l, and

- 178 -

Taken together, propositions 5.6 and 5.7 establish an equivalence
of sorts between the,global dynamic atomicity criterion defined in sec-
tion 4.2 and the global static criterion (5.16a) defined in section
5.2.2. In practical terms, propositions 5.6 and 5.7 signify the follow-
ing. Proposition 5.6 states that even though the semantics of a con-
current program c has been phrased in terms of linear sequences, any
particular implementation of c does not necessarily have to actually
sequentia1ise (i.e. mutually exclude in time) the atomic actions con-
tained in c. Rather, any (concurrent) execution of c is acceptable if
it satisfies atomicity in the sense of section 4.2. Proposition 5.7
states that any implementation of c which admits atomicity-violating
executions runs the risk of producing final states outside the effect
relation of c, i.e. incorrect results. In order to avoid this, more
semantic knowledge about the program WQuld be required. A similar con-
clusion has already been arrived at in section 4.5.

For aesthetic reasons, it would be nice if an analogue of the last
two propositions could be found for the two local atomicity criteria.
We would then be in possession of a full set of correspondences between
our four criteria. I have however not tried to obtain such a result,
mainly because I believe that this question is rather marginal for the
present investigation. We are here chiefly interested in whether or not
an execution as a whole satisfies atomicity, rather than in pinpointing
(if it doesn~t) exactly which one(s) of its activities is (are) at
fault. This latter question may become important if atomicity is to be
implemented by error recovery methods as stipulated, for example, in
[16]; it is however beyond the scope of this thesis.

Summary of section ~.!.!

We establish an equivalence of sorts between the global dynamic
atomicity criterion (section 4.2) and the global static atomicity cri-
terion (section 5.2.2): (i) An execution which satisfies atomicity
effects a desired state transition, and (ii) An execution which violates
atomicity effects an undesired state transition for some suitably con-
structed program.

- 179 -

5.4 Semantic Ind~pendence of Actions

In thic section we address ourselves to the following question:
what are the conditions for two atomic actions to be "semantically
independent"? It should be clear from earlier discussions, say in sec-
tion 4.5, why this question could be of interest. In particular, if two
actions are seman~ically independent then there exists a fully con-
current implementation (no cross-dependencies in the occurrence graph).
We will not give:.a full answer to this question; rather, the ideas con-
tained in this section are very tentative only. The question of seman-
tic independence is related to questions about information flow in pro-
grams, as discussed by Cohen in [26] and Furtek in [40]. A PhD Thesis
by Lengaur on this topic is forthcoming [76].

We focus our attention on two concurrent assignments:

(5.36)

where Vl and V2 are variables (not necessarily different) and El and E2
are expressions. We shall examine the semantic independence or other-
wise of these two assignments.

We consider some examples in order to illustrate the notion we wish
to capture. In P5.21 below we would like to define the two assignments
as "not independent" (or "interacting", as the word has been used in
section 1.1).

<X:-X+l> II <X:-X+l>

Program Ps.!!.

In this section we use capital letters X,Y,Z for variables.

Programs P5.22-P5.27 below provide examples for what we would like
to call ..sematically independent" actions.

- 180 -

<X:-X+l) II (Y:-Y+l)

Program PS.22

<X:-Z) II (Y:-Z)

Program PS.~

Program PS.24

<X:-Y) II (y:-y>

Program PS.2S

~ Z: {O,l};

«X,Y):-(X*Z,Y*(Z.l») II «X,Y):-(X*(Z.l),Y*Z»

Program PS.26

~ X,Y: {0,1,2,3};

<X:-2*(Y mod 2)+(X mod 2» II (Y:-2*(X mod 2)+(Y mod 2»

Program PS.27

Let us discuss PS.22-PS.27 in order. The two assignments in P5.22
operate on entirely different variables and are therefore independent.

- 181 -

In P5.23, the common variable is only read but not changed. In P5.24
there is a commort'variable (namely, Y) which is both read and overwrit-
ten but the reading "has no semantic effect"". In P5. 25, again Y is both
read and overwritten but the writing "has no effect".

In P5.26 (where. denotes binary addition) we have two cases. If
Z-O then the left hand assignment overwrites only X while Y i. left
unchanged, and the right hand assignment overwrites only Y while leaving
X intact. If Z-l it is just the other way round. Thus, although the
two actions in ~5.26 "look" interacting, they are "really" independent.

P5.26 is an example for two independent assignments to the same
variable. This shows that mutual exclusion of writes to the same vari-
able may not be necessary. Thus it may be possible to refine our rule
(sections ·4.1 and 5.3.3) that write/write accesses to a common variable
must be mutually exclusive.

A similar remark is true for P5.27. We can appreciate the semantic
independence of the two actions in PS.27 by imagining the two variables
X and Y to be split into two bitsXi and Yi, respectively (i-O,l), so
that X-2*Xl+XO and Y-2*YI+YO (see Figure 5.8). The left hand assignment
in PS.27 reads only YO and overwrites only Xl while the right hand
assignment reads Xo and overwrites Yl•

X Y

Figure 1.!

Thus, P5.27 could be rewritten as follows:

Program P5.27'"

- 182 -

In PS.27', the semantic independence of the two assignments is obvious
(i.e. syntactically visible). However, since the two assignments are
independent even if X and Y cannot be decomposed into bits (say if X and
Y have five values, but not if they have only three values initi.llyl)
we would like to define semantic independence without recourse to bit
decompositions.

Nevertheless, I think that the last example can give us. clue as
to how our definition of independence could be approached. If S is the
state space of PS.27 then we have two different decompositions of S.
One is defined by the programmer as follows:

S - X x Y (5.37)

giving 4*4-16 states. The other can be viewed as being "imposed by 'the
assignments in PS.27" as follows:

S (5.38)

(again, of course, giving 2*2*2*2-16 states).

From a semantic point of view we are not interested in the struc-
ture given to the state space by the programmer (which might be called
the "syntactic" or "subjective" structure), but rather we are interested
in the structure imposed on the state space by the program itself (which
might be called the "semantic" or "objective" structure). It remains to
be seen Whether or not such a semantic structure, generalising our exam-
ple PS.27', can always be well-defined.

Let us assume that it can. Thus, let us assume that for every
assignment

V:-E (S.39)

we can always find two variables Vin and Vout, denoting its "semantic
input" and "semantic output", respectively. Vin and Vout would be
required to be such that (S.39) is effect-equivalent to

- 183 -

(5.40)

~erhaps, in order to achieve such a transformation, we would need to
generalise the notion of a "variable".

Suppose, for the moment, that we can always arrange for a general
transformation of (5.39) into (5.40). The "semantic independence"
between two different assignments <V1:-El> and <V2:-E2> could then be
defined as follows. Given the two assignments, calculate the four
"variables" v~ut, v~n, v~ut and v~n, and check. whether the following
three conditions hold:

(i) Vout d Vout are independent;1 an 2

(ii) Vout d Vin independent;1 an 2 are

(iii) Vout and Vin are independent.2 1

Thus we reduce the independence of actions to the independence of "vari-
ables" to be defined. The independence of variables is a better under-
stood notion; we can call two variables V1 and V2 "independent" if by
fixing a value of VI one does not also at the same time fix part of a
value of V2 and vice versa. Thus the three variables X, Y and Z would
be mutually independent, but the two variables (X,Z) and (Y,Z), though
different, would not be independent (unless Z has only one possible
value) •

The rationale for (i)-(iii) consists in a consideration of the fol-
lowing two assignments:

which are by assumption equivalent to our initial two assignments
(5.36). (i) expresses the absence of overlapping output; (ii)
represents the absence of information transfer from the second assign-
ment to the first assignment, and vice versa for (iii). For P5.27,
Vout __in out. __in.1 -Xl' VJ: -yo' V2 -.Yl'Y2 -XO' and (i)-(iii) are satisfied.

- 184 -

This definition of "semantic independence" should satisfy the fol-.'
lowing two properties:

Property1.1 If VI and V2 are independent variables and neither Vl
occurs in E2 nor V2 occurs in El
then Vl:-E1 and V2:-E2 are semantically independent.

Property 1.! If Vl:-El and V2:-E2 are semantically independent then
m(V.l:-El;V 2:-E2) - m(V2:-E2;V1:-El)
(i.e. the two assignments commute, or satisfy the Church-
Rosser property).

As seen on our examples, neither the opposite of property 5.1 nor the
opposite of property 5.2 need to bold. P5.24 shows a program whose
actions are independent but V2 occurs in El; P5.2l shows an example in
which the actions commute but are not independent.

The above have been stated as "properties" rather than "proposi-
tions" because, of course, they cannot be proved yet. The missing link
is the definition of the two "semantic variables" vin and Vout in the
transformation of (5.39) into (5.40). In the remainder of this section
I describe the way in which (I would imagine) this concept can be prop-
erly captured.

The state space of P5.27 has 16 elements and can therefore easily
be dissected into four bits Xo etc., showing the independence between
the two actions. But even if X and Yare, say, five-value variables
initially (giving a 25-value state space) then the two actions are
independent. In this case we cannot so easily find a decomposition into
bits to show the independence.

Therefore we need to generalise. I think the key concept could be
that of the "transformation" of variables. Even in case

~ X,Y: {O,l,2,3,4} (5.41)

initially, we can define two variables Xl and Xo for X (and similarly,

- 185 -

Y1 and YO for Y) ~~ch that the transformation equations

(5.42)

bold. For this we may use the following correspondence:

x X X-I1 0

0 0 0

1 0 1

2 1 0

3 1 1

4 2 0

Figure 1._!

For a 1-1 correspondence between X and the pair (Xl,XO) we need the
further rule that Xl-2 implies XO-O. In all, we define

(5.43)

such that (5.42) holds. Correspondingly, we define Y1 and YO for Y.

With these four variables, P5.27 under the initial condition (5.41)
can again be transformed into the program

(5.44)

which shows the independence between the two actions. (i) holds because
the variables Xl and Y1 are independent. Because YO+2 by (5.43), tbe
assignment of YO to Xl cannot destroy the truth of (5.43), whatever the
value of XO. This shows the independence of Xl and Xo in (5.44); simi-
larly, YO and Yl are independent in (5.44), which establishes, respec-
tively, (ii) and (iii).

We finally show how variable transformations can be used to estab-
lish the independence of the two actions in program P5.26, reproduced

- 186 -

below as PS.28 with X and Y restricted to be binary variables •.'
~ X,Y,Z: tc.n,

«X,Y):-(X*Z,Y*(~l»> II «X,Y):-(X*(Z.l),Y*Z»

Program PS.28

In the left hand ,assignment of P5.28, if Z-O then X is output and if Z-1
then Y is output. It therefore stands to reason to introduce a new
variable WI as follows:

WI - X*(~l) + y*Z, (S.4Sa)

and similarly a variable

(S.4Sb)

for the right hand assignment in PS.28.

With this convention, PS.28 can simply be transformed into

Program P5.~'"

We have to show that W1 and W2 are independent variables. This can be
seen by considering Figure 5.10 which is the truth table of the
transformation (5.45), showing that there is a 1-1 correspondence
between the values of the variable (X,Y,Z) and the values of the vari-
able (Wl'W2,Z).

- 187 -

.'
X Y Z W1 W2

0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 0 1 1

0 0 1 0 0
0 1 1 1 0
1 0 1 0 1

1 1 1 1 1

Fisure 1.10

Bence by choosing a value for WI we retain the freedom to choose any
value of W2, and vice versa. Thus (i)-(iii) are satisfied for P5.28',
whence the two assignments in PS.28 are independent.

I think that this method of variable transformation could be gen-
erally exploited in order to give a precise definition of the notion of
independence which we are looking for. However, I have not been able to
consider this any further. Variable transformations have occurred also
in [30] in the design of a small program.

Summary of section 1.~
We have shown on a few examples what is meant by "semantic indepen-

dence", and we have shown on these examples how independence could be
proved. The proofs involve transformations of the program's variables
into new but semantically "more transparent" variables. It was left
open whether such transformations can be generalised.

5.5 Possible Syntactic Extensions

Because semantics and proof methods have been discussed elsewhere,
I wish in this short discussion section to concentrate on possible

- 188 -

syntactic extensions of the notation described in this chapter. Apart
from introducing arrays, records etc., on which I will not comment,

··thereare also a few other conceivable ways in which atomic actions
.could be allowed to enter the language.

First an (admittedly very contrived) case could be made for allow-
ing the proper overlapping of atomic actions. Consider PS.29 below

Program PS.29

Suppose, for the sake of illustration, that there is a bank customer who
maintains a current account called My" in some town, a deposit account
"z" in the same town and a duplicate current account "x" in another
town. Suppose the customer wants to withdraw one unit from his current
account y and deposit it on his deposit account z. The above program
"expresses" that the withdrawal and the deposit must occur atomically,
as must the withdrawal and the simultaneous withdrawal at his duplicate
account x; no other requirements are specified.

It is doubtful whether such a program could be defined to make
semantic sense. Even if it could, it would be even more doubtful
whether the program would make practical sense. Be that as it may, we
have excluded such programs, and I see no reason why to allow them.

Another situation we have so far excluded is that in which an
atomic action overlaps with a parallel operator I I. This is even more
aWkward to express syntactically, but consider PS.30 below.

<x:-l>;

<x:-X+l II <y:-l>;

y:-y+l>

Program PS.30

PS.30 describes two "processes" consisting of two parallel atomic ini-
tialisations, followed by a "common atomic action". Again, we have

- 189 -

excluded this situa~ion; whether it might in the end be necessary to
extend our language in this way is open to doubt. As we do not use
tlieseextensions, this section serves no purpose other than illustrating
.the scope of our syntax.

- 190 -

6. _CA_S_E STUDIES, _IN__ THE_ DESIGN _AND_ VERIFICATION _OF_ ..::C..::,ON:,:.C.::,:URRE::..:.=.=:.::NT..:..PROGRAMS

'6.1 Introductory Remarks

Baving looked at concurrent programs using atomic actions from
various angles in tbe preceding sections, and having examined a maber
of trivial example programs, in tbis chapter we nOw turn to what I would
consider to be non-trivial application examples. We consider three dif-
ferent problem~ and their solutions, each time making specific points
along the lines which make a connection to previous chapters. Although
I would have liked to stress the actual design aspects of these pro-
grams, for example by working out a set of design heuristics, I have not
in all cases succeeded in doing so. However, we do concentrate on prov-
ing in detail the correctness of our m~in solutions.

In section 6.2 we reexamine a program known from [33]. This is a
short but surprisingly complicated program whose proof (of partial
correctness) requires razor-sharp reasoning. We sball give two separate
proofs for this program: one applying the invariant-assertion method and
another one using the control sequence semantics directly. The latter
proof is less elegant than the former, but elegance is not the reason
why I describe it. I wish to make the point that indeed control
sequence proofs are possible (even for relatively complicated programs)
with the same degree of formality as assertional proofs; in particular,
I show tha t we do not have to take into account an overwhelming number
of different executions, but rather that we can perfectly satisfactorily
work with only one "general" sequence.

In section 6.3 we describe the design of a concurrent program find-
ing Euler cycles in a graph. We give two concurrent solutions to this
problem, one of which coincides with the one described in [10]. The
other solution is an extension which differs from the first solution
both in efficiency and apparent ease of proof. We prove the correctness
of the second solution using a mixture of invariant assertions and con-
trol sequence type arguments. Again this serves to show that such
"mixed" reasoning can be perfectly rigorous; in this case, the further
point can be made that it seems to be convenient to include operational

- 191 -

arguments in the ~roof.

Our last example (to be discussed in section 6.4) concerna a small
distributed algorithm which has been described by Chang and Robert. in
[25]. We extend this algorithm to work alao in the case of siaple kind.
of failures, and we prove the correctness of the extended algorithm.
Apart from this, a more general point made in section 6.4 concerna the
translation of programs using buffered communication into program. u.ing
shared data; I ~laim that such a translation is always possible, even
for "handshake" communication.

6.2 A Concurrent Fixpoint Program

6.2.1 Introduction

When studying Dijkstra's proof of the fixpoint program described in
[33] I found his arguments at first extremely difficult to under.tand.
Naturally, I wondered whether this was because of the inherent complex-
ity of the proof or just because of my not being acquainted with such
proofs. Consequently I tried either to find a simpler proof or el.e to
convince myself that Dijkstra's proof is indeed the aimpleat possible.

As a result of this study, I am nOW satisfied that Dijkstra'a argu-
mentation is indeed the simplest and most elegant way of proving the
program. In particular, I have found a different way of deriving hia
proof, which I believe to be as stringent a8 possible. Thi. involvea
the weakening of predicates in a way which is rather analogous to the
introduction of auxiliary functions in the solution of a differential
equation. Dijkstra's proof and this derivation are dilcussed in section
6.2.2.

In section 6.2.3 we discuss a different proof of the same program.
This represents a first attempt (by me) to apply the control aequenc.
semantics rigorously in the proof of a serious program. I should aake
it clear that I do not consider this second proof to be any "better"
than the first one; in fact it is much less elegant. The .ajor point 1
wish to make is that proofs taking into account execution .equence. can

- 192 -

.'be conducted with the same degree of rigour and effectiveness as proof.
~y the inductive assertion method. This point is discussed in more
detail in section 6.2.4 where we compare the two proofs.

The following problem is to be considered. Let y be an integer
vector with components Y1' •••, YN (N)l) and let fey) be a vector-valued
function of ~ectors with component functions f1(y), •••, fN(y).
Throughout the text, we shall use indices i,j,k ranging from 1 to N.
Starting with some initial value of y, we wish to write a program which
performs a series of atomic assignments

(6.1)

with the objective of-establishing the fixpoint relation y-f(y), or, in
component equations:

(6.2)

We shall use the abbreviation "eqi" to denote the equation "Yi-f1(Y)"
throughout.

The program to be considered will consist of a parallel combination
of N sequential components ci (see P6.1 below), each of which is re.pon-
sible for one of the N assignments (6.1). For the purposes of termina-
tion, a Boolean vector "hOI is introduced, the initial values of whose N

components are "true".

ci: 10 do <3j: hl-~
20 if <eqi -~ hi:-false)
30 [] <not eqi ~ Yi:-fi(Y»;
40j V j: <hj :-true>

fi
od

Program P6.!

Line 40j is an abbreviation for N assignments the order of which 1.

- 193 -

unimportant.

The initial value of y and the function f may be such that no fix-
point may be produced by a series of assignments (6.1). However it la
asserted that the program is partially correct, i.e. if and when it ter-
minates then y is a fixpoint. Formally, we wish to prove that the for-
mula

(6.3)

is an invariant.

A straightforward attempt to prove the invariance of (6.3) reveal.
that this is not directly possible, the main obatacle being the ato.ic
action in the first alternative, i.e. line 20, of P6.1. We therefore
have to examine the problem more closely. One observation about the
proof can be made straight away. Because the assignment in line 30 ..y
render all equalities false, the fact is essential that thia poaaibility
is signalled to all components cj in line 40j. This fact must therefore
crucially enter the proof.

"

If the hj were set to true within the same atomic action as the
assignment to Yi, as in P6.2 below, then we would easily be able to
prove the invariant

(6.4)

which, being much stronger than (6.3), would be more than sufficient for
our purposes.

- 194 -

ci: 10 do <3j: hj> -~
20 if <eqi ~ hi:-fa18e)
30 [] <not eqi ~ Yi:-fi(y);
40j _ Vj: hj :-true)

fi
od

Program P6.!

Unfortunately, however, (6.4) is not invariant over P6.1. Thu.. the
proof of (6.3) over p6.l can be expected to elaborate on the difference
between P6.2/(6.4) and P6.l/(6.3), using only the fact that all h'. are
set to true in line 4~j.

6.2.2 Derivation of Dijkstra'~ Proof

We represent the fact that all h's are set to true in line 40j in
terms of auxiliary variables. For each component ci a Boolean N-vector
Sij is introduced which is "true" initially. The Sij are .et to falae
by the second alternative in line 30 and are reset to true one at a time
by line 40j, as in program P6.3 below.

ci: 10 do<3j:hj)-~
20 if <eqi ~ hi:-false)
30 [] <not eqi -~ 7i:-f1(y); 'f/ j: s1j:-falae)
40j 't/j: <hj:-true: sij:-true)

f1

od

Program P6.1

Thus, sij-false can intuitively be appreciated as stating that "the com-
ponent ci may have invalidated the j'th equality but ha. not yet reset
hj to true". Also, the Sij can be viewed as "control point variable.~
in the sense of section 5.2.5, sij-false stating that ~ci ia between

- 195 -

line 30 and line 40j".

Let us now attack the proof of (6.3) over P6.3. Aa we have aeen,
(6.4) is not an invariant. However, we could try to take (6.4) to be a
crude first approximation and try to "make it correct" by "adding" tera.

/

which cover the failing cases of (6.4). Thus we arrive at the improved
approximation

where the Pi are supposed to express the cases for Which (6.4) fail ••

The Pi must express that "some component, say the k'th, interfere.
by having executed its second alternative' but not yet set hi to true".
Thus our next guess immediately becomes:

(6.6)

Indeed, (6.6) is an invariant. It is trivially invariant over the firat
alternative, line 20. Further, after the second alternative (line 30)
the third term of (6.6) always holds. Finally, (6.6) is clearly invari-
ant over line 40j. But unfortunately, (6.6) i8 too weak for our pur-
poses because it does not imply (6.3)1

This leads us to consider whether it would be possible at .11 to
strengthen (6.6) by conjoining a factor involving the h'. to the third
term of (6.6), thus cancelling this term when all h'. are fal.e. The
most plausible way of doing so I can think of is the following:

(6.7)

Indeed, (6.7) implies (6.3). But unfortunately, (6.7) is not an invari-
ant at all! On the one hand, (6.7) is nicely invariant over line 20,
because during the execution of line 20 of ci'

(6.8)

- 196 -

.'.

always holds, sQ,that the setting of hi to false in line 20 csnnot
invalidate any third term of (6.7) (this is where the fact that all h'•
are set to true in line 40j comes in). On the other hand, (6.7) fail.
to be invariant over line 30. The offending caae ia when line 30 i.
executed with hi-false holding; (6.7) can then no longer be ensured.

(

But (6.6) and (6.7) are so "nearly enough" the solution of our
problem that we should not let go of them lightly. We can attempt to
find a suitable formula "between (6.6) and (6.7)" which ia weak enough
to be. invariant and strong enough to imply (6.3). To thia end we
replace the ~ in (6.7) by a dummy term ~:

(6.9)

so that both (6.6) and (6.7) are special caaes of (6.9) (with ~-true
and ~-~, respectively).

Let us analyse in detail the obligation that (6.9) be weak enough
to be an invariant. (6.9) is invariant over the firat alternative in
line 20 as long as (as with the h's in (6.7» the setting of hi to falae
cannot invalidate any third term of (6.9). The invariance of (6.9) over
the second alternative, i.e. line 30, can be ensured if in addition the
follOwing holds:

(6.10)

By postulating (6.10) can we thus avoid the failing casea of (6.7).

But (6.9) can itself be used to define the R'a in auch a way a. to
ensure (6.10)! (6.9) was to be our invariant, according to which
~ eqi implies hiV (3k: (~& not ski». If we define the Ri .uch
that the latter, in turn, implies Ri' then (6.10) i8 guaranteed, and
with it the invariance of (6.9) over line 30. Let us formulate this
condition on the R's:

(6.11)

- 197 -

This condition, to repeat, follows from our requirement that (6.9) be
.'weak enough to be invariant.

The other requirement that (6.9) be strong enough to imply (6.3)
" can be translated simply into the requirement that the a'. them.e1vea be

as strong as possible (i.e. as "false" as possible). We thus, in all,
define the R's as the minimal solution of (6.11). The unique minimal
solution can easily be constructed by setting the Ili to hi in the firat
place and then switching the third term(s) of (6.11) to tr~ whenever
necessitated by a second term of (6.11). It remains to be shown that
with the R's so defined, (6.9) is invariant over line 20. This is true
because when hi is set to false then Ri may become false but, because
(6.8) holds, no other ~ becomes false.

This completes the proof because we have shown that (6.9) and
(6.10) are invariants, and because if all h's are false then the alnim.l
solution of (6.11) gives all R's false, which by (6.10) implies all eq's
true as required. To see the connection to the proof given by Dijkatra
in [33], we may rewrite (6.11) as a set of two formulae:

and remark that these are the two formulae used by Dijkatra.

Because they satisfy (6.10) which is an analogue of (6.4), the a's
behave "almost" as the h's do ·in program P6.2; they are, in all, a
"slightly weaker" version of the h's. In fact the a's behave exactly .s
indicated in the program P6.4 below.

- 198 -

....

do <'3j: hj> -~ ,
if <eqi -~ hi :-false; Ri:-:3 k: ~ & not Bid>
(] <not eqi -~ Yi :-fi(y);'V j: «Bij,Rj):-(faIBe,true»>;

"j: <hj:-true; sij:-true>
fi

od

Program P6 •.!

This fact is another consequence of our arguments. In program P6.4 it
is apparent in what way the R's are "slightly weaker" than the h'., and
it is also clear that they satisfy (6.10).

6.2.3 ! Control Sequence Proof

The purpose of this'section is not to find any "better" proof of
P6.1 (1 don't think this is possible) but, first of all, to show that a
rigorous proof in terms of control sequences can be given, and secondly,
to enable a comparison between the two proofs (even though in this c•••
the comparison is unfavourable for the control sequence proof).

I reproduce the program once more below.

10 do <3j: hj> ~
20 if <eqi -~ hi:-false>
30 [] <not eqi -~ Yi:-fi(Y»;
40j '1j: <hj:-true>

fi

od

Program P6 •.!.

We conduct the proof of (6.3) by contradiction. Suppose there esiltl a
reachable state in which (6.3) does not hold, i.e. suppose there exilt.
a valid execution

- 199 -

u -

of the form (5.10) such that both (5.11) and the validity property
(5.14) are satisfied, and that in sn the following holds true:

(6.12)

By assumption, all h's are true in sO'

From these assumptions we construct a contradiction by working up
backwards the sequence u. We use the letters l,p and q to denote
indices in u and the letter i to denote indices in 1,•••,N.

By assumption (6.12), there exists a component with index iO such that
s •n

Because ~ hiO in sn and because hiO holds to start with, there must be
an index 1 (l~l<n) such that al is an execution of line 20 for CiO•
Define pO as the index of the latest such al (i.e. pO is maximal
amongst these indices 1).

)

Because not eqiO in sn there exists a component cil (possibly i1-iO)
such that some aqO' with pO<qO, is an execution of line 30 for cil•

We now consider the state SqO-l' i.e. the state just before aqO'
know that not eqil in this state because of the guard of aqO'
Suppose that hil-true in SqO-l' I!n order to switch hil to false in
sn' all of the lines 40j for cil must occur after aqO (otherwise u
would not be a valid control sequence of ci11); in particular, hiO
is set to true by this, which contradicts the maximality of pO.

We

Therefore, in the state SqO-l we have both not eqil and not hil'

We can now repeat this argument to show the existence of indices pl and
ql (pl<ql<qO) and a component ci2, such that both ~ eqi2 and
not hi2 hold in the state Sql-l (the assumption hi2-true in 8ql-l
can be shown to contradict either the maximality of pO or the

- 200 -

maximality of pI) •
•

In sum, we thus construct a never-ending descending sequence of indices
•••q2<qI<qO in u, in contradiction to the finite length of u.

This completes the control sequence proof. Note that our convention to
represent execution sequences as alternations between states and atomic
actions has in this case proved convenient.

,_

6.2.4 Discussion

The second proof using control sequences is quite evidently 10 much
less elegant than the one using assertions that it might just as well
immediately be forgotten. However I wish to use it to make a few gen-
eral remarks.

The first point I wish to make is that our second proof, though
"operational" in flavour, has not been based upon any "computational
mod eL" if the latter is understood to involve some ldnd of "interpreter"
or "implementation" of our language. Both proofs have been completely
rigorous and implementation-independent, the only difference being that
they use different tools; also, both proofs have been phrased in terms
of the program text only. Moreover, in the second proof we did not have
to take into account an exploding number of execution sequences; rather,
one general sequence was enough.

My second point is that though inelegant, the second proof may
still be useful. For just as different proofs of the same mathematical
theorem may expose different aspects about this theorem, so different
proofs about a program may lead to different insight. about the
behaviour of this program. To illustrate this on our example: we might
be interested in the fact that when, say, the second alternative of a
component ci is executed with not hi holding (which is the "bad" case)
then another component cj (j+i) must previously have entered it•• econd
alternative with hj holding. This fact follows immediately fro. our
second proof but seems to be difficult to extract from the first proof.

- 201 -

On the other hand, the first proof exhibits clearly the connections
between the two di~ferent programs P6.1 and P6.2, whereas no correspond-
ing insights can be derived from the second proof.

"

"
The fact that assertional and operational proofs may both be

acceptable rigorous and purely "textual" proofs of a program precludes
any preference being placed on either method on the grounds of one of
the methods being more "mathematical" than the other. In the example
treated in the present section, the assertional method must clearly be
favoured, while: the (admittedly much more trivial) program in section
5.2.5 has been easier to prove in terms of execution sequences.

/

I suspect that in the long run the assertional method will prevail,
simply because it allows one to argue explicitly in terms of "invari-
ants", i.e. more or less "static" and "general" statements, which (given
the exploding number and length of different executions) i8 what one,
directly or indirectly, is forced to do anyway; an operational proof
does of course not imply that one looks at all execution sequences one
by one. I think that this example teaches us that we do not necessarily
have to be afraid of using operational arguments, as these can be just
as rigorous and effective as arguments phrased in terms of assertions.
In the next section we study an example which, apparently most con-
veniently, uses a mixture of both types of arguments.

6.3 Finding an Euler Cycle

6.3.1 Introduction and Sequential Solution

Let an undirected, connected graph with N vertices and M edges be
given. For every undirected edge e (l<e<M) we introduce two opposite
edges labelled e and -e, respectively. The problem we consider in this
section is to find a single directed cycle which contains all directed
edges, each edge exactly once; in other words, an Euler cycle. Because
every vertex has the same number of incoming and outgoing edges, such
cycles exist.

- 202 -
",

Ore in (87] describes the following sequential solution. Starting
.I'(at an arbitrary vertex one follows a path, marking the traversed edges.

When one arrives at some vertex for the first time the entering edge is
marked especially. When one reaches a vertex one always follows next an
edge which has not previously been marked. However, the opposite of the
entering edge should be followed only as a last resort when there are no
other edges available.

This simple algorithm has been known for a very long time. The
famous "Ariadne's thread" method of finding one's wsy out of a labyrinth
is based on a rather similar principle. It is however not particularly
general, in the sense that, while some Euler cycle is indeed a result,
there are Euler cycles which could never be a result of its application.
A more general sequential algorithm is described in (62] in connection
with the problem of enumerating and classifying all possible Euler
cycles.

The sequential algorithm described above, traversing as it does all
edges sequentially, is of time efficiency proportional to the number M.
Since for connected graphs, N-l<M<N~(N-l)/2, the algorithm thus needs

--2
maximally time proportional to N. When learning of this algorithm, I
thought it nice and simple enough to be transformed into an "equivalent"
(or otherwise related) concurrent algorithm, both as an exercise in
atomic actions and with the aim of improving its efficiency. This sec-
tion describes the results of these efforts.

A reasonable way to decompose the problem, it seems, is by assuming
that at each vertex of the graph a process resides and that these
processes communicate in some way via the edges of the graph. A solu-
tion built in this way can indeed be found. This solution is described
in section 6.3.2. The same solution is also described, proved and
analysed in (10], where it is shown to be of time efficiency O(N). We
do not repeat its proof in section 6.3.2; instead we concentrate on its
design, showing how a set of "local" arguments can guide us in the
discovery of a solution which has the desired "global" effect.

When the arguments leading to this solution are scrutinised
further, it turns out that there are other possible strategies than

· .

- 203 -

locating the processes in the vertices of the grapb. We .bow thi. in
section 6.3.3 where, starting with our first concurrent solution, we
derive a second solution in which the processes .r. 1oe.ted .t the
~~~es, rather tban the nodes, of the graph. Tbis give. more proce ••••
but! also a greater degree of concurrency •
.<>'

In section6.3.3 we shall prove the correctness of th••• cond .110-
rithm in detail. The proof uses. mixture of inv.ri.nt- ••••rtion .nd
control-sequence type arguments. It may therefore be int.re.ting a. an
example for the convenient use of the two proof •• thod. in coabination.
Finally, in section 6.3.4 we show that our algoritba. are still not
"general" in the afore-mentioned sense that every Euler cycle can b. a
result.

6.3.2 Concurrent Solution Using Vertex Processes

Let the graph be given in some form, say by its incidence .atrix.
For every directed edge e e {-M, ••••-l}u{l, ••••M}, let head(.) and
tail(e) denote its head and tail vertices, respectively. Let further,
for any vertex V, the set of its incoming and outgoing edg•• be denot.d
by IN(V) and OUT(V), respectively. We wish to define a bijection ".ue"
on the set of edges such that by starting with an arbitrary edge and
following "suc" one obtains an Euler cycle. In particular, ".uc" muat
satisfy the equation

head(e) - tail(suc(e»

for all edges e.

As we have said earlier, we decide (a priori) to loe.t. our
processes at the vertices of the graph; thus we bave to iapl..ent • con-
current program consisting of N sequential component.. We d.riv. d••ign
heuristics for this program by comparing it to the sequential alloritha.
Consider a vertex V. In the sequential algorithm, vben V i. fir.t
reached, say through the edge e e IN(V), then the Eul.r cyc1. to b. con-
structed will lead through all outgoing edges of V and only then back



, .

204 -

'»,

through the "last exit" -e. If V is left via an edge e' e our(V) thea
/ the.same applies for tbe vertex head( e') •

It is therefore plausible to let the proces.es a.sociated with V be

responsible for the following task. Let a special "entrance" edge • to
V be given. The process in question considers it to be its responsibil-
ity to connect e to all so far "untraversed" outgoing edge. of V (in
some order), finally leading back to -e. If all vertex progr... behave
that way, an Euler cycle will ultimately result. To .ark the .pecial
entrance edges we may use a colouring; say, all edge. are "black" ini-
tially and become "white" when tbey could serve a. an eatrance to their
head vertices.

The question is then: when should edges becoae white? The whol.
process should start somewhere. We therefore arbitrarily select an iat-
tial vertex and add to it a single incoming edge, call tt eO' (and it.

opposite -eO' which is initialised to being "white". In general, an
edge should turn white when it could serve as an entrance for it. head
vertex, i.e. when its tail vertex has "traversed" it. We auat have
exclusion if the bead and tail vertices of a pair of untravers.d eda.s
which are both black, both want to "traverse" these edge. si.ultane-
ously.

It remains to be decided what should happen in case two (or aor.)
incoming edges of V are marked as "white" siaultaneously. Thi. aean.
that the tail vertices of these edges expect that their opposite. are
returned to. It apparently suffices that V chooses an arbitrary whit.
incoming edge and makes sure that all other white incoming edge. ar.
connected back to their opposites. This is the rationale behind our
first solution (see program P6.S below).

Before giving the solution we have to decide the preci.e fora in
which the graph is given initially. Thi. is rather arbitrary, and in
(10] I have decided to let tbe incidence aatrix be contained tn the ini-
tial value of "SUCH. This can be do~e by initiali.ing ·.uc· in .uch a
way that by selecting an incoming edge of a vertex V aad altarnat}taly
applying the functions suc,-C'minus"),suc, etc., one can anuaerate all
adjacent edges of V.



- 205 -

As an example, we consider the following graph and the initial con-
figuration in which the function suc i. represented by dotted line.:

Figure !.l: An Initial Configuration

Initially, only the edge eO is white. We denote the colour of an ad,. a
by col(e), and "B" denotes "black" while "W" denote. "white".

Under these assumptions, the algorithm for the vertex V beco. •• :



.'
- 206 -

" '.

/,
local ~ e,jl,j2: {-M, •••,-l}\J{l, •••,M};

if 3e e IN(V): col(e)-W ~
"choose an arbitrary e e IN(V) with col(e)-W·:
jl:-e; j2:-suc(jl);
do j2+-e ~ if (col(-j2)-B ~ col(j2):-W>;

jl:-j2: j2:-aue(jl)
[] col(-j2)-W ~ suc(jl):-suc(-j2):

suc(-j2):-j2;
j2:-suc( jl)

f1

od

f1

Program P6.1

Program P6.S is formally proved in [10] where it is also shown that it
produces an Euler cycle with O(N) average time efficiency.

Note that in P6.5 we have made extensive use of the local variable
rule of section 5.2.4. Even though the suc function looka like a alobal
variable, every component accesses only the suc of incomina edsea. ao
that suc can be partitioned into disjoint portion. local to the vertea
programs.

The program finishes with all edges white if and only if their
oppOsite edges are black, and an Euler cycle contained in aue. For
example, under the assuption that the vertex programs are executed in
the following order:

V2; V3; Vl; V4

and the choices in the third line of P6.5 are settled 80 that

e[V2]-eO' e[V3]-S, e[Vl]--l, e[V4]-3,



- 207 -

", tben the following Euler cycle results from an application of P6.5 to
I tbe initial configuration shown in Figure 6.1.
/

Figure !.!: A Final Configuration

6.3.3 Concurrent Solution Using Edge Processes

In our previous solution, the order in which the outgoing edgea of
a vertex are traversed was determined by tbe initial configuration. We
could equally well have left this order to be decided by a non-
deterministic command within the program. A less obvious chanae In tha
program can be motivated by the following reasoning.

Consider a vertex V with a number of white incoming edgea ('iaure
6.3(a». In P6.S, one of these white incoming edges la choaen aa the
"entrance" e to V to which all untraversed edgea of V (indicated by dot-
ted lines in Figure 6.3) are to be connected, while the other white
incoming edges of V are immediately turned back (Fiaure 6. 3(b».



." - 208 -

JLt ,• •• •
• • •

~-.<~

(a> (b)

Figure !._!

Rather than connecting all of the untraversed edge. just to ., we could
also allow some of them to be connected to 80IDeof the other whit.

incoming edges. This would leave the salient "external" properti.. of
the vertex program undisturbed but would lead away fro. the rather arbi-
trary preferential treatment of one particular white ineoains ed,••

Let us think about implementing this strategy. A v.rtex proee ••
could at any time maintain as many pairs of indiee. {jl,j2} (a. in P6.S)
as there are white incoming edges. This could be i.pleaented by .plit-
ting a vertex process into several parallel subproee ••e., One for .ach
white incoming edge, each maintaining a (set of) local pointer(.) and
trying to connect (in competition with the others) a•• any untraver ..d
edges as possible to "its" edge. From this reasoning, only one further
step leads to the realisation that we do not need the vertex proc •••••
at all as separate entities but rather, that we can think dir.ctl, tn
terms of the new edge processes. Because every edge could beco.. a
white incoming edge of its head vertex, we need a separate proee.. for
each edge of the graph, to be activated only If that edge turn. whit ••

The fine details of such a process can now readll, be iapl ..ent.d.
Because the edge e must eventually lead back to -e, it 1. rea.onabl. to
start with suc(e)--e and gradually to extend the path fro. e to -. with
further untraversed edges of V-head(e). Thus we a••ua. that lntttally



·.

- 209 -

V e: suc(e)--e (6.13)

and that eO is again the only edge which is white (all others are
black). The incidence matrix of the graph is given by the sets IN and
OUT. For the purposes of "linking in new edges" our edge processes
maintain local variables·' j". Our new solution, associsting a process
with every edge:e, is shown as program P6.6 below.

local var j: {-M, •••,-l}u{l, •••,M} (initially j--e);

10 if (col(e)-W> -~
20 do <uNTR(head(e»+~ -~
30 "choose e" e UNTR(head(e»";
40
50

(suc(e),j,suc(-e'» :- (e' ,e' ,j);
colee') :- W>

od

where UNTR(V) - {e' e OUT(V) I col(e')-co1(-e')-B}

Program P6.!

"UNTR(V)" stands for the "set of untraversed edges of V'·.

We prove P6.6 in two steps, (6.14) and (6.15):

There is a suc-cycle which contains precisely
all white edges and their opposites; (6.14)

Eventually. an edge is white iff its opposite is black. (6.15)

This suffices because under the assumption (6.15), the cycle which
exists by (6.14) is an Euler cycle. We prove that (6.14) is invariant
and then, using control sequences, we prove (6.15).

(6.14) is true initially because there is, by (6.13), a cycle con-
taining just the only white edge eO and its opposite -eO. But (6.14)



- 210 -

81so remains true over the atomic action in lines 20-50 of p6.6 because
the conditions under which the new white edge is created in line 50
ensure its truth; the new edge and its opposite are just "merged" into
the cycle that already exists.

It remains to prove (6.15). We shall show that a state in which
there exists a:pair of untraversed edges (i.e. edges which are opposite
and both black) cannot be a final state. Because the graph is con-
nected, if such edges exist at all then there exists, in particular, a
pair of untraversed edges bordering on some white edge.

Suppose col(~')-col(-e')-B and suppose e i. a white incoming edge,
say, of head(e') (the argument for tail(e')-head(-e') is, of course,
symmetric). Then the execution producing this state is not "complete"
in the sense of section 5.2.2 because its projection onto the edge pro-
cess of e is not a complete control sequence of the latter (if it were
then we would have UNTR(head(e»-UNTR(head(e'»-~, in contradiction to
both e' and +e" being black). On the other hand, suppose that e is a
white outgoing edge of head(e'). Then we can use the following auxili-
ary invariant:

V V: (3e' e OUT(V): col(e')-W) -> (3e e IN(V): col(e)-W) (6.16)

in order to deduce that head(e') must also have a white incoming edge,
and the argument can be repeated. The invariance of (6.16) follows from
its initial truth and the fact that a new white outgoing edge can only
be created under the condition (line ID!) that there already exists a
white incoming edge.

6.3.4 Discussion

The proof of P6.6 could quite nicely be partitioned into an invari-
ant (6.14), stating that an assertion is "always" true, and a termina-
tion condition (6.15), stating that "eventually" some other assertion
becomes true. We have proved the former in the assertiona1 style while
the latter was proved by showing that it is a consequence of the



- 211 -

"completeness" condition for execution sequences. I have found that
this follows a pattern of proof which can frequently be encountered, and
that the termination condition frequently involves a more explicitly
"operational" argumentation than the invariant.

I would like the proof of P6.6 to be seen as further evidence that
operational arguments, whenever convenient, may without loss of rigour
be used. Our proof of (6.15) can certainly not be accused of being "too
informal". It requires but a "mechanical" transformation for the rea-
soning contained in it to be couched in terms of the control sequence
formalism; this can be done to any desired degree of formality.

The three programs described in sections 6.3.1-6.3.3 are progres-
sively more general in the sense that any application of the first and
second program, leading to certain Euler cycles, can be simulated by
applications of the second and third program, respectively, leading to
the same cycles. The two concurrent algorithms are more general than
the sequential one, since they can produce the Euler cycle shown in Fig-
ure 6.2 which cannot result from an application of the sequential algo-
rithm.

However, the last algorithm is still not completely general because
it cannot produce the Euler cycle shown in Figure 6.3 below.

Figure !.!



- 212 -

I have so far not succeeded in finding a completely general concurrent
algorithm. However, I think this should be possible, perhaps by start-
ing with Kasteleyn's algorithm [62] rather than with the one given in
section 6.3.1.

Another possible generalisation concerns the graph itself. Any
directed graph in which the vertices have the same number of incoming
and outgoing edges possesses Euler cycles; our present algorithms how-
ever work only for a subclass of such graphs. I think a generalisation
along these lines should not prove too difficult.

6.4 ! Fail-Safe Distributed Extrema-Finding Algorithm

6.4.1 Introduction

In a small but very nice paper [25J, Chang and Roberts have
presented a simple distributed algorithm for finding the highest num-
bered node in a circular distributed system. Suppose that N nodes (N~l)
are arranged in a ring such that each node can send messages only to its
immediate successor and (by implication) receive messages only from its
immediate predecessor. Thus a node may send messages to itself only by
having them pass through all of the other nodes. We refer to the direc-
tion of message passing as "clockwise". The nodes are assumed to be
numbered from 1 to N so that no two nodes have the same number; however,
the distribution of node numbers on the ring is arbitrary (in particu-
lar, does not have to be clockwise ascending). The problem is for a
node i, having no knowledge about the other nodes, to determine whether
or not it has the highest number, i.e. whether or not i-N.

In the present section we reconsider this problem and give a
detailed proof for the solution by Chang and Roberts in section 6.4.2.
Furthermore, we extend their algorithm to make it work also in the csse
in which one or more nodes fail. We consider only very "kind" failures
by which the circular nature of the network is not destroyed (section
6.4.3).



.' - 213 -

This section is included for a number of reasons. Firstly, it
shows an application of the invariant assertion method for a distributed
algorithm. Secondly, we discuss how a "properly terminating" program
containing partial deadlock could be converted into one which "ter-
minates properly"" in the sense of section 5.2.2, i.e. with all component
processes terminating. Thirdly we have here an algorithm which can most
conveniently be expressed in a CSP[S2]-like notation but which can also
easily be translated into a "shared data" program as defined in section
5.2. We discuss this transformation in particular with a view to gen-
eralisation.

Let us define our problem more precisely. We assume N nodes to be
given which are linked via one-frame input/output buffers. Every node
has precisely one input buffer from which it can read and one output
buffer into which it can write. Of course, the output buffer of a node
is the input buffer of the immediately succeeding node. The buffers
being "one+frame" means that their state can be described by a Boolean
variable "·empty·.

Every node has at its disposal two actions denoted by IE and ?V,
where E is an expression and V a variable. IE can be executed if the
output buffer is empty and effects the transfer of the value of E to the
buffer and a switch of its state to empty-false. ?V can be executed if
the input buffer is not empty and effects the transfer of the value con-
tained in this buffer to V and a switch to empty-true. This understand-
ing makes the input/output actions !E and ?V somewhat different from
corresponding actions in [52J where output and matching input are
required to occur coincidentally (""handshake synchronisation"); more
about this can be found in the next section.

6.4.2 The Basic Algorithm

Under the assumptions given in section 6.4.1, the Chang/Roberts
algorithm can be written down as follows (program P6.7), where we abbre-
viate "do true ~ c od" to "do cod".



- 214 -

Node i: local var x: integer;

10 Ii;
20 do ?x;
30 if X<i -~ skip
40 [] x-i -~"success ..
50 [ ] vi -~ Ix

fi

od

Program P6.1.

P6.7 works as follows. Initially, all node numbers start circulating
(line 10). They keep circulating (lines 20 and 50) until they are taken
out of circulation by being dropped at nodes with a higher number (line
30). Only the highest number completes a full circle and its eventual
return to the sender indicates success (line 40). The program ter-
minates with node N executing "success" and all other programs waiting
for more input.

Before proceeding to prove the correctness of P6.7 formally, I wish
to make two remarks. Firstly, even though the deadlocking of one com-
ponent has in section 5.2.2 been taken as implying the non-termination
of the entire" program, I wish to point out that we can in the present
case without problem speak of the "proper termination" of the entire
program, even though eventually all but one components end up in
deadlock. If the reader feels uncomfortable about this then he can
easily transform the present program into one in which all components
terminate. To this end we may introduce a special value called "found"
for x, which is not an integer, and transform P6.7 into P6.8 below:



- 215 -

local var x: integerU{"found"};
exit, its me: Boolean;

5 (exit,its_me) :- (false ,false):
10 Ii:
20 do not exit -~ ?x;---
23 if x-"found" -~ Ix;
27 exit :-true
30 [ ] X+" found" & x<i -~ skip
40 [ ] X+"found" & x-i -~ I"found" ;
43 exit :-true:
47 its me:-true
50 [ ] X+"found" & X>i -~ Ix

fi
od

Program P6.!

Program P6.8 terminates with exit-true for
its_me-true only for node N.

all components and

The construction applied here, namely a special message sent out by
a terminating process to notify all others of its termination, can evi-
dently be generalised. The only precondition for its general applica-
bility seems to be that the network in question must be strongly con-
nected, so that the special message can be disseminated to every other
node. We do not explicitly transform the remaining programs in this
section according to this construction but assume that the reader can do
this for himself if he so desires.

My second remark 1s that the program P6.7 can easily be transformed
into one which uses global variables and atomic actions. To this end we
define a global array "buffer" (or Nb" for short) 8S follows:

var b: array 1••N of record value: integer,
empty: Boolean

end.-



." - 216 -

(Initially, b[j].empty-true for all l~j<N.)

For every node i we denote its input buffer by b[in,i] (or just
b[in] if i is known from the context) and its output buffer by b[out,i]
or just b[out]. :The two actions IE and ?V can be replaced by atomic
actions combined with an if command utilising our await interpretation.
The new program becomes, for node i:

local var x: integer;

10 <b[out] .value:-i;
b[out].empty:-false);

20 do if <not b[in] .empty ~ x:-b[ in] .value;
b[in].empty:-true)

fi:
30 if x<i -~ skip
40 [) x-i -~ "success"
50 [) lOi -~ if <b[out] .empty ~ b[out] .value:-x;

b[out].empty:-false)
fi

fi

od

Program P6.!

The programs P6.7 and P6.9, under our given assumptions, are evidently
equivalent. A priori, I would prefer P6.9 (even though it is longer)
because I know its precise semantics from section 5.2.2. This reason
disappears as soon as we have defined the commands IE and ?V just 80
that p6.7 is indeed equivalent to P6.9. We could also have defined IE

and ?V differently, for example as acting on a X-frame buffer (1)1): the
translation into atomic action8 would then not have presented any prob-
lems either.

Suppose that IE and ?V are defined on a HO-frame buffer", i.e.



- 217 -

output and matching input are coincident and none can occur without the.other occurring at the same time. This "handshake synchronisation" is
" just the semantics given to IE and ?V in [52], and I would now like to
, consider the question whether such operations can be translated into

atomic actions. Unfortunately this does not seem to be quite as
straightforward as in the K-buffer case for K>l. However I think the
following transformation will do the trick. Let cl and c2 be two
processes which are to communicate via the follwing two commands.

IE ?x

Figure ~.~

Thus, cl outputs, in a "synchronised assignment", the expression E into
the variable x of c2•

We introduce two shared Boolean variables Pl and P2 (-false ini-
tially) which are to be used only in connection with the communication
involving the two matching commands shown in Figure 6.4. We rewrite
these two commands, and introduce a third intermediate process cl2
(which contains the "synchronised assignment" explicitly), as shown in
Figure 6.5.



- 218 -

<PI:-true> j
!!. <not PI -~ skip> fi

(P2:-true>j
.!! (not P2 -~ skip> !!..

-;

•

c12: !!. <PI & P2 -~ x:-Ej
(Pl,P2):-(false,false»

fi

Figure !.~

If necessary, cl2 could be placed in a loop. This construction seems to
be rather generally applicable, leading to the transformation of every
eSP-type program into a program using shared variables and atomic
actions as defined in section 5.2.

This conclusion actually seems to contradict a result by de Nicola
et al [85], to the effect that there exist eSP-type systems which can-
not be expressed in terms of shared data. However, their result holds
good for a rather specialised abstract model, and it is not clear (to
me, at least) that programs written in esp or, for that matter, our
notation can readily be described by their models. This question, in
general, needs more researching. At any rate, the reader will find no
difficulty in translating all programs in this section into programs
using shared data and atomic actions. This being understood, we now
conduct our discussions interchangeably using either the IE and ?V nota-
tion or explicitly the (one-frame) buffer variables b[.].

After these deviations, we come back to our main concern, which is
the formal proof of P6.7. We reproduce P6.7 below for convenience.



- 219 -

10 Ii;

20 do ?x;
30 if x<i -~ skip
40 [ ] x-i -~"success"
50 [] vi -~ Ix

fi

od

Program P6.!_

We wish to establish the truth of the following two correctness cri-
teria:

If node i succeeds then i-Ni
Eventually, a node succeeds.

(6.17)
(6.18)

Alternatively, in terms of the variables contained in program P6.S,
(6.17) and (6.18) could be replaced by the requirement (or ·'specifica-
tion", in the terms of section 2.5) that eventually

izN <-> its_mel i)-true,

where its_meli] denotes the local Boolean its_me of component i.

We shall establish (6.17) and (6.18) by means of a series of
invariants, and we shall find it helpful to prove the termination condi-
tion (6.18) by the introduction of some auxiliary variables. We first
need a way of talking about a node number, j say, being "on the ring".
We say that j is ~ the ring iff either there exists a buffer containing
j (i.e. the buffer is not empty and its value equals j) or there exists
a node, i say, whose variable xli] equals j. We immediately have the
following invariant:

Every node number j, l~j~N, is at most once on the ring. (6.19)

Proof: (6.19) holds after line 10 which ensures that every node number



- 220 -

is exactly once on the ring. The sequence of input/outputs in lines
20/50 (in case x-j) cannot disturb the truth of (6.19) because it simply
effects the propagation of j on the ring.

For any two nodes y and z, we define j to be "(clockwise) between y
and z" if between y and z there is a buffer containing j, or between y
(exclusive) and ,z (inclusive) there 1s a node i such that x[i]-j. For
example, supposing j is exactly once on the ring then j must be either
between y and z or between z and y.

Our next invariant expresses the intuitive notion that no node
number can proceed further than its (clockwise) nearest higher succes-
sor. Let for y+N, nexthigh(y) denote the nearest higher node; let
nexthigh(N)-N. Then

v j: the number j is between
the node j and the node nexthigh(j). (6.20)

Proof: line 10 clearly establishes (6.20) to begin with, and (6.20) can-
not be violated by line 50 because of its guard. Aa a special case of
(6.20),we deduce that the number N is always on the ring. (6.17) also
follows from (6.20). Suppose node i succeeds and i~N. Then
nexthigh(i)+i and (6.20)is violated for j-1.

The intuitive argument for (6.18) runs as follows. Because every
execution of a loop cycle furthers the circulation of some node number
on the ring, and because (as we shall see) there can be no global
deadlock, some node must eventually see its own number again. Hore pre-
cisely, a given node number j can be propagated exactly as far as to the
node nexthigh(j) defined above. To capture this behaviour, it is con-
venient to define, for each j, an integer function t(j) expressing the
"dd atance " between the number j and the node nexthigh( j). We initialise
t( j) to

t(j) - number of nodes between the node j (exclusive)
and the node nexthigh(j) (inclusive)



- 221 -

apd amend the program so that t(j) is decreased whenever the number j is
being propagated (see P6.l0 below). We further claim that t(j) stays
non-negative for all j. This can be deduced from the assertions in
P6.l0.

10 lij

20. do ?Xj {t(x»O}
25 t(x):-t(x)-lj {t(x)~ & (t(x)-O -> X<i)}
30 if X<i ~ skip
40 [] x-i ~ "success"
50 [] vi ~ {t(x»O}

Ix

fi
od

Program P6.10

Using t(j) we can define the total termination function

t - Ns« j)
1

which is properly decreased each time a node executes its loop, and t)O
always on account of t(j)~O for all j.

All that is left to be proved is that there can be no deadlock. On

the ring, a global deadlock means that either

(a) all buffers are empty and all nodes are waiting for input, or

(b) all buffers are full and all nodes are waiting for output.

(a) cannot occur because (as a consequence of (6.20» N Is always on the
ring, and (b) cannot occur because, while all buffers are full ini-
tially, before any more numbers can ·be put on the ring, at least as many
numbers have had to be taken away.



- 222 -

6.4.3

We consider only what Chang in [24] calls "clean failures". That
is to say, we demand that the failure of a node leaves the circular
nature of the network intact; that no messages can be destroyed by a
failure; and that failed nodes do not recover. Such a failure can be
modelled by a node entering (and remaining in) a "failure mode" in which
it just performs a shift

do ?x; Ix od

from its input buffer to its output buffer. To avoid the possible loss
of messages, we assume that a failure mode cannot be entered while an
input is being processed in the normal way.

Our problem is to revise the basic algorithm so that it works
correctly for clean failures. More precisely, let LIVE denote the set
of all non-failed nodes (LIVE-{l, •••,N} initially) then our fail-safe
solution should satisfy the following two correctness criteria:

If node i succeeds then i-max(LIVE);
Eventually, either LlVE-~ or a node succeeds.

(6.21)
(6.22)

We first note that (6.21) and (6.22) are generalisations of (6.17) and
(6.18), respectively. We also observe that unless the number max(LlVE)
fails to be on the ring the basic algorithm already correctly implements
(6.21) and (6.22).

My intention was to use this close correspondence between these
respective correctness criteria in order to derive our fail-safe solu-
tion in a more or less systematic way. This was in fact the main reason
why I chose to prove the comparatively trivial statements (6.17) and
(6.18) to such an excessive degree of detail in section 6.4.2. Unfor-
tunately, owing to lack of time I cannot devote much thought on such a
derivation. I therefore just present the solution and sketch its proof.



- 223 -

local ~ x,m: integer;

5 m:-i;
10 Ii;

20 do ?x;
30 If X<i -~ skip
40 [] ~i -~ "success"
50 [] X>i -~ if x<m -~ skip
53 [] x-m -~ Ii

57 [] x>m -~ m:-x
fl;

60 Ix

fi

od

Program P6 •.!!.

Algorithm P6.ll works by singling out the highest number N as a res-
tart" mechanism. By the time a node i enters line 53, we have m[i]-N
and we can furthermore deduce that node N has failed and that the number
i is no longer on the ring. Hence node i can propose itself again by
re-emitting its own number.

The detailed correctness argument runs as follows. The proof of
(6.21) 1s but a trivial extension of the argument for (6.17) contained
in section 6.4.2, with N appropriately replaced by max(LlVE). For
(6.22) we need a slightly generalised termination function which may
become infinite iff LIVE-~ (the system then enters an infinite loop).

The absence of deadlock can also be shown. The ring can never
become empty because the number N remains on it. Overcrowding could
only occur as a consequence of the two successive outputs in lines 53
and 60; however, every time line 53 is entered, it is known that the
previously emitted number "1" has been taken off the ring, 80 that there
is at least one "gap" in the ring which ensures further progress. Thie
ends the proof sketch for P6.ll. It also ends our chapter describing 8

few examples.



- 224 -

7. CONCLUSION AND GENERAL DISCUSSION

What has been achieved and what remains to be done? In conclusion,
I would like to address this question. Also, I wish to discuss why I
think that the work described in this thesis can be relevant, and in
particular I wish to discuss some of the wider issues which I consider
to form part of the context of this work.

I consider that we have achieved the development of a comprehensive
formal framework for the semantic understanding of the programs under
consideration. In particular, we have arrived (1 claim) at an adequate
formal understanding of atomic actions.

We are in possession of the syntax and the semantics of a small
language supporting atomic actions, and we know roughly how this
language can be extended (say, with more complex data construction
facilities, but also with more elaborate kinds of atomic actions). In
giving its semantics, we have been led by the idea that there is a con-
nection between atomic actions and relational semantics, and we have in
detail explored this connection. We also know what it means for such
programs to be (partially or totally) correct with respect to a given
input/output specification.

Furthermore, we have given the programmer not only a formal seman-
tics which he can resort to when in doubt about the behaviour of his
program, but we have also shown on several examples how concurrent pro-
grams could be designed and how their correctness could be proved. For
some examples we have given alternative proofs and we have explored the
differences between these proofs. I have taken pains to make the
correctness arguments as clear as possible to myself: of course this
does not imply that I claim that programs "ought to" be designed or
proved that way.

We have also provided the implementor with a criterion as to how
programs using atomic actions can be implemented: namely, the executions
they generate should satisfy our dynamic atomicity criteria. We have
shown that, and why. this does not necessarily mean that atomic actions
are mutually excluded, thus giving the implementor a chance to find more



- 225 -

concurrent implementations (we have however not considered concurrency
in detail).

Finally, we have also shown connections to other work. In particu-
lar, we have discussed the relation to the Owicki/Gries proof method.
We have made the point that our semantics involves '"control" in a direct
way, rather than indirectly as the Owicki/Gries method. but that this
does not mean that it is based on any particular "model of computation".
Also, our semantics gives rise to an alternative but nonetheless precise
proof method.

We have also briefly compared concurrent programs using atomic
actions with concurrent programs using other mechanisms for interaction.
such as CSP programs. I have substantiated my belief that "shared data"
programs are so general that CSP programs can be "simulated" by them;
which is not to say a lot, because even sequential non-deterministic
programs are so general as to "almost" be able to simulate shared data
programs. The" almost" refers to the "finit~ delay property", i.e. the
fact that one can write concurrent programs which under the fairness
assumption (which we have adopted) cannot be simulated by boundedly
non-deterministic programs.

With all of this, my own curiosity about atomic actions is, in the
main, satisfied. I have given my answer to the question of what it
means that an action "occur s as if instantaneously"; the answer is that
this action behaves, as far as its environment is concerned. in accord
with its effect relation, as the latter can be calculated independently
by looking only at the action concerned. As the answer. in short. I
would submit formula (5.27) in section 5.3. l' ·1 {,I

There is perhaps one further important point which I am still unc-
ertain about in connection with atomic actions. This concerns the ques-
tion of the semantic independence of atomic actions. and the related
question of information flow between actions. which have been discussed.
but not solved, in section 5.4. In my opinion. variable transformations
as defined in section 5.4 could become a further important tool in the
design of programs, comparable perhaps to the use of the predicate cal-
culus. There is no reason why we should always have to work with a



- 226 -

constant set of variables which have been fixed at the beginning of the
program.

Throughout this thesis, I have tried to provide, at least for my
own benefit, a set of clearly defined "interface" points at which ques-
tions which have been answered give rise to new questions which have to
be investigated. Some of these questions are related to the theme of
the thesis and are considered by me to be important and interesting. I
wish to recollect these questions.

In section 2.6 we have defined the AND operator as a formal dual to
the non-deterministic OR operator. We have maintained that AND (which
is also related, to the "backtrack choice") can conveniently be under-
stood as a special "parallel" operator effecting the "splitting up" of
the entire state space into disjoint copies. We have advanced the for-
mula (2.28) for the relational semantics of programs containing both AND
and OR.

Because AND is a "parallel" operator the question arises as to how
it relates to the parallel operator I I which we have used throughout the
rest of the thesis. On the one hand, it would seem to be possible to
interpret AND as a special case of II, the former expressing "disjoint"
(non-interfering) parallelism, and the latter expressing possibly
interacting parallelism. This could perhaps be done by interpreting
every AND program as a program using I I whose initial state space has
been duplicated as many times as there are final state spaces for the
AND program.

On the other hand, it would also appear that programs using I I and
OR are special cases of programs using AND and OR. Intuitively, this is
so because the semantics (5.5) of shared data programs is, via (2.29)
and (2.28'), a subset of (2.28). But in this "argument" we have not
taken into account that (5.5) is not rich enough to express the abortion
of individual components, as opposed to the abortion of the whole pro-
gram. (2.28), however, can take account of this: abortion of a single
branch in an AND program just means that this branch does not contribute
to the end result. I am fairly certain that the connection between AND
and I I can be explored further, possibly to the point of yielding a



- 227 -

unified (relationa~) framework for concurrent, non-deterministic and
backtrack programs (which sounds nice).

A second problem area I am keen on knowing more about concerns
infinite computations in general. We have now a collection of proper-
ties all of which relate to infinite computations: continuity (in gen-
eral), bounded non-determinacy (i.e. continuity of the wp), the finite
delay property in various forms (in particular, the maximality property
of section 5.2.2 and Park's "fair merge" property (90]), several proper-
ties of infinite occurrence nets such as K-density (others are discussed
in [14] and in [103]), and, last not least, computability. We know of
connections between some of these properties, but there is a feeling
that more, and more important, connections can be madei 1 am for
instance uneasily aware that my argumentation in section 3.4 is not very
"stringent", in the sense that it does not capture very precisely the
intuitive point that the ban on processes which "make a choice out of
infinitely many possibilities" should not be extended to concurrent
processes.

Another issue, already mentioned above, which I consider to be
important is the semantic independence between actions. Perhaps related
to this, I would like to see in detail how data construction facilities
could best be incorporated into our small language. 1 have long thought
that one could possibly find a richer language allowing the, in some
sense, "harmonic" definition of variables together with atomic actions
which operate on these variables, perhaps a la "abstract data types".
Again, this has to be left to future work.

In my opinion the most serious issue that has to come under the
heading "to be investigated" is the actual design of concurrent pro-
grams. With the immense complexity of even "small" concurrent programs
in mind, it seems to me absolutely essential that there be not only for-
mal semantics, correctness criteria and proof methods which the program-
mer can apply a posteriori in order to verify his program, but that
there also be a set of a priori heuristics, or guidelines, which may aid
the programmer in developing a correct program. Such guidelines may
well be considered even more important than the necessary formal



- 228 -

semantic framework by itself. I am therefore rather unhappy that I have
not been able to work out such a set of guidelines.

Design heuristics cannot be derived by abstract reasoning in terms
of sets and functions. Rather, we need to have a lot of programming
experience, both in writing small programs and in studying the interac-
tions in larger programs. Once a certain amount of experience has been
accumulated, it may then perhaps be possible, by abstraction, to extract
a few principles which may guide the design of other programs.

Owing to extensive experience with sequential programming, it is by
now possible to discern a few rather general principles which are help-
ful in programming. These are, by and large, common knowledge. I might
mention the "linear search theorem" [30] which implies that if we want
to find the least element in an array with a certain property then we
best search through the indices in ascending order. Another extremely
useful principle is that of "weakening predicates". which can frequently
be employed to design a loop. This principle states that it is often
possible to find a weaker version of the (unary or binary) predicate
describing a given specification. which can serve as a loop invariant.
In [17], the development of a simple program using this principle is
described.

As far as concurrent programming is concerned, all I can say is
that I expect these principles to be just as helpful 8S they have turned
out to be for sequential programming. Indeed both in section 6.2 and in
section 6.4 we were led to "weaken" certain predicates in order to
obtain more general programs; in one case (the transition from program
P6.2 to program P6.l) the generalisation consisted of an increase in
concurrency. in the other case (the transition from program P6.7 to pro-
gram P6.11) it consisted of added fault tolerance.

Because my experience with concurrent programming is limited to a
few small examples, I find it hard to abstract and think of principles
other than the above, which could serve as design heuristics. However I
can clearly discern the need for these. Namely, there are design deci-
sions which need to be made in concurrent programming but which do not
arise in sequential programming. For example, the question may arise



- 229 -

how many sequential components the target concurrent program is going to
consist of (indeed, whether it is at all appropriate to split the solu-
tion into sequential components), and how these components can be dis-
tributed over the "problem area". This question came up in section 6.3
where our initial decision to associate processes with the vertices of
the graph could not a priori be justified.

So much for my answer to the question raised at the beginning of
this chapter. I had planned the remainder of this chapter to contain
the following points (a)-(f). Unfortunately, I was not able to finish a
detailed text with which I could be satisfied. I therefore only
describe very briefly the line of argument I would have wished to take.

(a) I agree with Dijkstra's verdict in [31] that the program specifica-
tions form a "logical firewall" between purely mathematical statements
on the one hand ("does the program meet its specification?") and less
formally defined questions on the other hand ("do the specifications
adequately reflect whatever use they are going,to be put to?").

(b) I disagree with De Millo, Lipton and Perlis [83] in their conclusion
that program verification is futile". One of the mistaken assumptions
these authors make in their article is that program specifications are
of neccessity informal.

(c) The argument for verification stands and falls with the assumption
that there be formal specifications and formal semantics for our pro-
grams. I consider that the work described in this thesis shows that
formal specifications and formal semantics can be defined for concurrent
programs just as well as for sequential programs, thus forestalling
arguments that concurrent programs are somehow "inherently unverifi-
able"; they are only usually much harder to verify than sequential pro-
grams of comparable length.

(d) Dijkstra maintains in [31] that the relationship between programs
and their specifications is "amenable to scientific treatment" while the
questions associated with the other side of the wall, i.e. the adequacy
of specifications, are not. I disagree with this use of the term



- 230 -

"scientific"; rather, I would say that the relationship between programs
and specifications is a mathematical one while those other questions
involve non-mathematical considerations. "Science", to my mind, covers
much more than just mathematics. The question whethe~specification
fulfils its purpose adequately is not per se non-scientific.

(e) Dijkstra (while explicitly avoiding to judge the relative "impor-
tance" of the two issues) goes on to consider it a waste of time for the
scientist to expend his thoughts on what he calls "the non-scientific
issue". I am afraid I cannot go along with this. What good are all our
nice formal methods, our techniques for effective reasoning and our
beautiful proof systems, if the use they are eventually put to is not in
itself good?

(f) With Weizenbaum [101], I am of the opinion that the scientist should
consider himself at least partly responsible for the products created by
other people using the methods he has developed. I think he should not
close his eyes either to the good use or to the misuse which his beauti-
ful theories may be undergoing. No one should delude himself that a
theory, merely by virtue of being beautiful, is invulnerable against
misuse. The most beautifully correct program could evoke an explosion
under which more than one proponent of program verification would die.
This is why I consider it not only time well spent but also of utmost
importance that we should start caring about the end results of our
efforts: to create the conditions under which beautiful theories can
safely be developed.



- 231 -

A. Appendix

A.l Usual Symbols

1. Set Theoretic Symbols

X,Yare sets.

e element of

not element of

c subset of

c proper subset of

XxY Cartesian product

X",y intersection

XvY union

X\ Y difference

Ixi or card(X) cardinality of X

o
{ ...}n { }
U{ }

empty set

set brackets

intersection quantifier

union quantifier

2. Logical Symbols
& logica1 ..and"

logical "or"

-, or not negation

-> implication

<-> equivalence

- equality

• equality by definition

for all ••• (universal quantifier)



- 232 -

3 there exists ••• (existential quantifier)

3. Functional Algebra

X, Xl' X2, Yare sets.
f: X -~ Y f is a function from X to Y

Let g: Xl x X2 --~ Y be a function from Xl x X2 to Y

Then by g(x!'.): X2 --~ Y (for fixed xl e Xl)

and g(.,x2): Xl --~ Y (for fixed x2 e X2)

we denote the two projection functions derived from g

4. Relational Algebra

S a set, R, RI' R2 ~ S x S relations over S, x,y e S.

(x,y) e R (-) x R y

transitive reflexive closure of R
transitive non-reflexive closure of R

Dom(R) {x e s 13y:XRy}

13x: x R y}

domain of R
Cod(R) - {yes codomain (range) of R

xR - {yes

Ry - {x e s

x R y}

x R y}

image of x under R

coimage of y under R

intersection

union

relational composition
(x,y) e Rl 0 R2 (-)3z e s. (x,z) e Rl & (z,y) e R2

empty relation

id identity relation

al - S x S all relation
head(x,y) - x

tai1(x,y) - y



- 233 -

A.2 Letter IndeL'

A atomic activity

B

E

F

G

H

I

L

M,PI

N

INO

P,Q

S

T

X,Y

X

a

b

c

e,e' ,e"

f

m(c)

m,n

set of conditions in an occurrence graph or occurrence net
(chapters 3 and 4)

condition in an !f or do clause (chapters 2 and 5)

set of events in an occurrence graph or occurrence net

set of arrows in a net

goal of a non-deterministic program
binary predicate

goal of a backtrack program (section 2.6)

author

set of levels in a structured occurrence graph

markings

constant number

set of nonnegative integers

unary predicates

state space
set of places in a net (only section 3.2)

set of transitions in a net (only section 3.2)
set of activities in a structured occurrence graph

subsets of the state space
set of "elements" in a net (only chapter 3)

atomic action (chapter 5)

conditions

a program ("command")
a cut (section 3.4)

events

a function

relational meaning of c

numbers



- 234 -

r a read event
.'s,t states

. s" initial state

s a place (section 3.2)
t a transition (section 3.2)
u an execution sequence (section 5.2)
w a write event

x,y,z variables in a program



- 235 -

References

1.. T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice,
Prentice Hall (1981).

2. G.R. Andrews, "Parallel Programs: Proofs, Principles and Practice."
CACM Vol. 24(3), pp.140-146 (March 1981).

3. K.R. Apt and E.R. Olderog, "Proof Rules Dealing With Fairness."
Bericht No.- 8104,
1981) •

Christians-Albrecht-Universitaet Kiel (March

4. R.J. Back, "Semantics of Unbounded Nondeterminism," Lecture Notes
in Computer Science Vol. 85, pp.51-63, Springer Verlag (1980).

5. J. de Bakker, "Semantics and Termination of Non-Deterministic
Recursive Programs," pp. 435-477 in Automata, Languages and Pro-
gramming, ed. S. Michaelson and R. Milner, Edinburgh (July 1976).

6. J. de Bakker, Mathematical Theory of Program Correctness. Prentice
Hall Series in Computer Science (1980).

7. J. Barwise (ed.), Handbook of Mathematical Logic, Springer Verlag
(1977).

8. C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam (1973).

9. E. Best, "A Note on TIleProof of a Concurrent Program," IPL Vol.
9(3) (October 1979).

10. E. Best, "Proof of a Concurrent Program Finding Euler Paths," Lec-
ture Notes in Computer Science Vol. 88, pp.142-153, Springer Verlag
(September 1980).

11. E. Best, "Atomicity of Activities," Lecture Notes in Computer Sci-
ence Vol. 84, pp.225-250, Springer Verlag (1980).



- 236 -

12. E. Best, "Notes on Predicate Transformers and Concurrent Programs,"
TR 145, Co~ting Laboratory, University of Newcastle upon Tyne
(1980) •

13. E. Best, "A Theorem on the Characteristics of Non-Sequential
Processes," Fundamenta Informaticae Vol. III(l), pp.77-93 (July
1980) •

14. E. Best, "The Relative Strength of K-Density," Lecture Notes in
Computer Science Vol. 84, Hamburg, pp.261-276, Springer Verlag
(1980) •

15. E. Best, "Adequacy of Path Programs," Lecture Notes in Computer
Science Vol. 84, Hamburg, pp.291-305, Springer Verlag (1980).

16. E. Best and B. Randell, "A Formal Model of Atomicity in Asynchro-
nous Systems," Acta Informatica (to appear) (1981).

17. E. Best and F. Cristian, "Systematic Detection of Exception
Occurrences," TR 165, Computing Laboratory, Universi ty of Newcas-
tle upon Tyne (1981).

18. G. Birkhoff, Lattice Theory, 1948.

19. J.R. Bitner and E.M. Reingold, "Backtrack Programming Techniques,"
CACM Vol. 18(11), pp.651-656 (November 1975).

20. H.J. Boom, "A Weaker Precondition For Loops," TR 104/78,
tisch Centrum, Amsterdam (1978).

Mathema-

21. M. Broy, P. Pepper, and M. Wirsing, "On Relations Between Pro-
grams," Lecture Notes in Computer Science Vol. 83, Paris, pp. 59-78,
Springer Verlag (1980).

22. M. Broy, "Are Fairness Assumptions Fair?," Proceedings of 2nd
International Conference on Distributed Computing Systems, Paris,
pp.116-125 (April 1981).



- 237 -

23. A.K. Chandra, "Computable Non-Deterministic Functions," Proceedings
of the 19th ~ Symposium ~ Foundations of Computer Science, Ann.'Arbor, MI, pp.127-131 (1978).

24. E. Chang, "Decentralised Algorithms in Distributed Systems," TR-
CSRG-l03, Computer Systems Research Group, University of Toronto
(October 1979).

25. E. Chang and R. Roberts, "An Improved Algorithm for Decentralised
Extrema-Finding in Circular Configurations of Processes," CACH Vol.
22(5), pp.281~283 (May 1979).

26. E. Cohen, "Information Transmission in Sequential Programs,"
Proceedings of Workshop on Foundations of Secure computation,
Atlanta (1977).

27. J. Cohen, "Non-Deterministic Algorithms," Computing Surveys Vol.
11(2), pp.79-94 (June 1979).

28. F. Cristian, "Robust Data Types," Acta Informatica (to appear)
(1981).

29. E.W. Dijkstra, "Cooperating Sequential Processes," pp. 43-112 in
Programming Languages, ed. F. Genuys, Academic Press, New York
(1968).

30. E.W. Dijkstra, A Discipline of Programming, Prentice Hall (1976).

31. E.W. Dijkstra, "A Position Paper on Software Reliability," ACM SIG-
SOFT, Software Engineering Notes, pp.3-5 (October 1977).

32. E.W. Dijkstra, "On a Political Pamphlet From the Middle Ages;' ACH
SIGSOFT, Sofware Engineering Notes Vol. 3(2), pp.14-l6 (April
1978) •

33. E.W. Dijkstra, "Finding the Correctness Proof of a Concurrent Pro-
gram," Proceedings of the KoninkUjke Nederlandse Akademie van
Wetenschappen Vol. 81(2), pp.207-215 (June 1978).



- 238 - °

34. E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and E.F.M.

Steffens, ·'On;;.the-Fly Garbage Collection: An Exercise in Coopera-

tion," CACMVol. 21(11). pp.966-975 (November 1978).

35. E.W. Dijkstra, "My Hopes of Computer SCience," Proceedings of

Fourth Software Engineering Conference, Munich, pp.442-448 (1979).

36. °G.W. Ernst and E.F. Ogden, "Specification of Abstract Data Types in

MODULA,"ACMTOPLASVol. °2(4), pp.522-543 (October 1980).

37. R. Eswaran, J. Gray, R. Lorie, and 1. Traiger, "On the Notions of

Consistency and Predicate Locks," CACMVol. 19(11), pp.624-633

(November 1976).

38. R.W. Floyd, "Assigning Meanings to Programs," Applied Mathematics

Vol. 19, AMSProvidence (1967).

39. R.W. Floyd, "Non-Deterministic Algorithms," JACM Vol.

pp.636-644 (October 1967).

14(4),

40. F. Furtek, "The Logic of Systems," PhD Thesis, MIT (1976).

41. H.J. Genrich, K. Lautenbach, and P.S, Thjagarajan, "Elements of

General Net Theory," Lecture Notes in Computer Science Vol. 84,

Hamburg, pp.21-163, Springer Verlag (1980).

42. H.J. Genrich and E. Stankiewicz-Wiechno, "A Dictionary of Some

Basic Notions of Net Theory," Lecture Notes in Computer Science

Vol. 84, pp.519-535, Springer Verlag (1980).

43. S.L. Gerhart and L. Yelowitz, "Control Structure Abstractions of

the Backtracking Programming Technique," IEEE Transactions on

Software Engineering Vol. SE-2(4), pp.285-292 (December 1976).

44. J.N. Gray, "Notes on Data Base Operating Systems," pp. 394-481 in

Operating Systems, Springer Lecture Notes in Computer Science,

Springer Verlag (1978).



- 239 -

45. D. Gries and G. Levin, "Assignment and Procedure Call Proof Rules,"
ACM TOPLAS Vol. 2(4), pp.564-579 (October 1980).-- .'

.46. P. Guerreiro, "A Relational Model for Non-Deterministic Programs
and Predicate Transformers," Lecture Notes in Computer Science Vol.
83, Paris, pp.136-146, Springer Verlag (1980).

47. A.N. Habermann, Introduction to Operating System Design, SRA Com-
puter Science Series (1976).

48. M.H.T. Hack, :"Decidability Questions for Petri Nets," TR-161, MAC,
MIT, Boston (June 1976).

49. D. Barel, "First-Order Dynamic Logic," Lecture Notes in Computer
Science Vol. 68, Springer Verlag (1979).

50. M. Hennessy and E.A. Ashcroft, "TIle Semantics of Nondeterminlsm,"
pp. 478-493 in Automata, Languages and Programming, ed. S. Michael-
son and R. Milner, Edinburgh (July 1976).

51. C.A. R Hoare, "Towards a Theory of Parallel Processing," pp. 61-72
in Operating Systems Techniques, Academic Press, New York (1972).

52. C.A.R Hoare, "Communicating Sequential Processes," CACM Vol. 21(8),
pp.666-677 (August 1978).

53. C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," CACM
Vol. 12, pp.576-583 (1969).

54. C.A.R. Hoare and P.E. Lauer, "Consistent and Complementary Formal
Theories of the Semantics of Programming Languages," Acta Informa-
tica Vol. 3, pp.135-153 (1974).

55. C.A.R. Hoare, "Some Properties of Predicate Transformers," JACM
Vol. 25(3), pp.461-480 (July 1978).

56. A. Holt, "A Petri-Net Based TIleory of Choice," Technical Report ADS
617/245-9540, Applied Data Research, Massachussetts (1977).



- 240 -

57. J.J. Horning and B. Randell, "Process Structuring," Computing Sur-
veys Vol. 5(1)•• pp.5-30 (March 1973).

58. R. Janicki, "A Characterisation of Concurrency-Like Relations,"
Lecture Notes in Computer Science Vol. 70, Evians-Ies-Bains,
pp.l08-l22, Springer Verlag (1979).

59.R. Janicki, "An Algebraic Structure of Petri Nets," Lecture Notes
in Computer Science Vol. 83, pp.177-192, Springer Verlag (1980).

60. P. Johansen; "Non-Deterministic Programming," BIT Vol. 7, pp.298-
304 (1967).

61. R.M. Karp and R.E. Miller, "Parallel Program Schemata," JCSS Vol.
3, pp.147-195 (1969).

62. P.W. Kasteleyn, "Graph Theory and Crystal Physics," in Graph Theory
and Theoretical Physics, edt F. Harary, Academic Press, London
(1967).

63. S. Katz and Z. Manna, "Logical Analysis of Programs." CACH Vol.
19(4), pp.188-206 (April 1976).

64. R.M. Keller, "Formal Verification of Parallel Programs." CACH Vol.
19(7), pp.371-387 (July 1976).

65. J.R. Kennawayand C.A.R. Hoare, "A Theory of Nondetermlnlsm," Lec-
ture Notes in Computer Science Vol. 85, pp.338-350, Springer Verlag
(1980) •

66. J. King, "Program Correctness: On Inductive Assertion Methods,"
IEEE Transactions ~ Software Engineering Vol. SE-6(5), pp.465-479
(September 1980).

67. L. Lamport, "The 'Hoare Logic' of Concurrent Programs," Acta Infor-
matica Vol. 14, pp.2l-37 (1980).



- 241 -

68. B.W. Lampson and H. Sturgis, ··Crash Recovery in a Distributed Data
Storage System;' Xerox PARC Internal Memorandum (1979).

~9. A. van Lamsweerde and M. Sintzoff, "Formal Derivation of Strongly
Correct Concurrent Programs," Acta Informatica Vol. 12, pp.I-31
(1979).

70. P.E. Lauer, "Conafatent;Formal Theories of the Semantics of Pro-
gramming Languages ," PhD Thesis, TR 25.121, IBM Laboratory,
Vienna (November 1971).

71. P.E. Lauer and R.H. Campbell, ·'Formal Semantics for a Class of
High-Level Primitives for Coordinating Concurrent Processes," Acts
Informatica Vol. 5, pp.247-332 (1975).

72. P.E. Lauer, E. Best, and M.W. Shields, ··On the Problem of Achieving
Adequacy of Concurrent Systems, ,.in Formal Description of Program-
ming Concepts, ed. E. Neuhold, North Holland (1978).

73. P.E. Lauer, P.R. Torrigiani, and M.W. Shields, ·'COSY a System
Specification Language Based on Paths and Processes," Acta Informa-
tica Vol. 12, pp.l09-l58 (1979).

74. K. Lautenbach, "DuaI Aspects of Process Coordination," Interner
Bericht 74/04, GMD-ISF (1974).

75. K. Lautenbach and E. Pless, ·'Grundmuster der Koordination von
Systemen," pp. 251-279 in Graphen, Algorithmen, Datenstrukturen,
Applied Computer Science, Hanser Verlag, Munich (1976).

76. C. Lengaur, "Title Not Known At Time of Writing," PhD Thesis,
University of Toronto, Canada (1981).

77. D.B. Lomet, "Process Struc turing, Synchronisation and Recovery
Using Atomic Act tons ," Proceedings of the ACM Conference on
Language Design for Reliable Software ACM SIGPLAN Notices Vol.
12(3), pp.128-137 (March 1977).



- 242 -

78. z. Manna, "The Correctness of Programs," JCSS Vol. 3, pp.119-127
(1969) •

79. z. Manna, Mathematical Theory of Computation, McGraw Hill Computer
Science Series (1974).

80. G. Memmi and G. Roucairol, "Linear Algebra in Net Theory," Lecture
Notes in Computer Science Vol. 84, Hamburg, pp.213-223, Springer
Verlag (1980).

81. P.M. Merlin and B. Randell, "Consistent State Restoration in Dis-
tributed Systems," TR 133, Computing Laboratory, University of
Newcastle upon Tyne (October 1977).

82. P.M. Merlin and B. Randell, "Consistent State Restoration in Dis-
tributed Systems," Digest of Papers FTCS-8, Toulouse, pp.129-l34
(June 1978).

83. R.A. De Millo, R.J. Lipton, and A.J. Perlis, "Social Processes and
Proofs of Theorems and Programs," CACM Vol. 22(5), pp.271-280 (Hay
1979).

84. R. Milner, "A Calculus of Communicating Systems," Lecture ~otes in
Computer Science Vol. 92, Springer Verlag (1980).

85. R. de Nicola, A. Martelli, and U. Montanari, "ColDlDunicationThrough
Message Passing Or Shared Memory; A Formal Comparison," Second
International Conference on Distributed Computing Systems, Paris,
pp.513-522 (April 1981).

86. M. Nielson, G. Plotkin, and G. Winskel, "Petri Nets, Event Struc-
tures and Domains," Lecture Notes in Computer Science Vol. 70,
Springer Verlag (1979).

87. o. Ore, Theory of Graphs, American Mathematical Society, Colloquium
Publications, Rhode Island (1962).



- 243 -

88. S. Owicki and D. Gries, "An Axiomatic Proof Technique for Parallel
Programs I," ,(\.ctaInformatica Vol. 6, pp.319-340 (1976) •.---

89. S. Owicki and L. Lamport, "Proving Liveness Properties of Con-
current Programs," Op. 57, Stanford University/SRI (October 1980).

90. D. Park, "On the Semantics of Fair Parallelism," Lecture Note. in
Computer Science Vol. 86, Copenhagen, pp.504-524, Springer Verlag
(1980).

91. J.L. Peterson, "Petri Nets;' Computing Surveys VoL 9(3), pp.223-
252 (September 1977).

92. C.A. Petri, "Kommunikation mit Automaten," PhD Thesis, Schriften
des 11M No 2, Rheinisch-Westfae1ische Universitaet, Bonn (1962).
Also: English Translation, Grifiss Air Force Base, RADC-TR-65-377,
Vol.1 (1966)

93. C.A. Petri, "Grundsaetzliches zur Beschreibung diskreter Prozesse,"
3. Colloquium ueber Automatentheorie, Basel, Birkhauser Verlag
(1967) •

94. C.A. Petri, "General Net Theory and Communication Disciplines,"
Computing Systems Design: Proc. Joint IBM/Univ. of Newcastle upon
Tyne Seminar (1976).

95. C.A. Petri, "Non-Sequential Processes," Technical Report 1SF-77-05,
GMD St. Augustin, W. Germany (1977).

96. C.A. Petri, "Concurrency," Lecture Notes in Computer Science Vol.
84, Hamburg, pp.251-260, Springer Verlag (1980).

97. B. Randell, P.A. Lee, and P.C. Tre1eaven, "Reliability Issues in
Computing System Design," Computing Surveys Vol. 10(2), pp .123-165
(June 1978).

98. M.W. Shields, "Adequate Path Expressions," Lecture Notes in Com-
puter Science Vol. 70, Springer Verlag (1979).



- 244 -

99. A. Silberschatz and Z. Kedem, "Consistency in a Hierarchical Data-
base System," JACM Vol. 27(1), pp.72-80 (January 1980).

100. M. Wand, "A Characterisation of Weakest Preconditions," JCSS Vol.
15, pp.209-212 (1977).

101. J. Weizenbaum, Computer Power and Human Reason, W.H. Freeman Co.
(1976) •

102. G. Winskel, "An Exercise in Processes With Infinite Pasts,"
Proceedings of the First European Workshop on Theory and Applica-
tions of Petri Nets, Strasbourg (September 1980).

103. G. Winskel, "Events in Computation," PhD Thesis,
Edinburgh (August 1980).

University of

·104. N. Wirth, Algorithms + Data Structures· Programs, Prentice Hall
(1976).

105. A.W. Holt et al., ·'Information System Theory Project," Final
Report, RADC-TR-68-30S, NTIS AD 676972, Princeton, N,J. (1968).

106. J.B. Rothnie et al., "Introduction to SDD-1," ACM Transactions on
Database Systems Vol. 5(1), pp.1-17 (March 1980).


