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Abstract 
With the arrival of many general purpose shared memory multiple processor 

(multiprocessor) computers into the commercial arena during the mid-1980's, a 

rift has opened between the raw processing power offered by the emerging 

hardware and the relative inability of its operating software to effectively deliver 
this power to potential users. This rift stems from the fact that, currently, no 

computational model with the capability to elegantly express parallel activity is 
mature enough to be universally accepted, and used as the basis for programming 
languages to exploit the parallelism that multiprocessors offer. To add to this, 

there is a lack of software tools to assist programmers in the processes of designing 
and debugging parallel programs. 

Although much research has been done in the field of programming languages, 
no undisputed candidate for the most appropriate language for programming 

shared memory multiprocessors has yet been found. This thesis examines why this 
state of affairs has arisen and proposes programming language constructs, 
together with a programming methodology and environment, to close the ever 

widening hardware to software gap. 

The novel programming constructs described in this thesis are intended for use 
in imperative languages even though they make use of the synchronisation 

inherent in the dataflow model by using the semantics of single assignment when 

operating on shared data, so giving rise to the term shared values. As there are 
several distinct parallel programming paradigms, matching flavours of shared 

value are developed to permit the concise expression of these paradigms. 
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Chapter 1 

Introduction 

Ever since the first general purpose digi tal computers were constructed around 
the early 1950's, the users of computers have sought greater processing power 
than that which was currently available. Despite the tremendous leaps made in 
processing speeds, due mainly to rapid advances in hardware technology, users' 
expectations for performance have always outstripped the supply. Early 
requirements for processing speeds in the range of thousands of operations per 
second have now been replaced by requirements for processing speeds approaching 
thousands of millions of operations per second. Experience has shown that no 

matter how powerful a computer may be, there will always be some large 
application, or for that matter, a combination of many small applications, that will 
either consume or even exhaust its entire processing potential. 

Over the last forty years, hardware technology (involving processors, memory 
and peripherals) has undergone rapid transformations. Huge increases in 
performance have been obtained over the first generation of valve-based systems, 
with this increase not only helping to offset, but at the same time fuel, the demand 
for more performance. The advent of the transistor in the 1960's, and LSI (Large 
Scale Integration) in the 1970's (subsequently VLSI in the 1980's) have had a 
twofold effect on the computer generations they heralded. Each new generation of 
components was faster, cheaper, smaller and more reliable than its predecessors. 
Therefore, initially, the main attraction was an improved price/performance 
characteristic, but later this gave way to the idea of constructing new machines 
more powerful than ever before. This was in part made possible by the higher 
reliability of the new components as it was not unreasonable for some early 
computers to crash daily (if not more frequently) resulting in high operating costs 
and maintenance bills. But .improvements in both hardware and software 
technologies have meant that failures now happen far less frequently. 
Undoubtedly the two seductive factors of good price/performance and high 
reliability have contributed to the wide scale acceptance of computers into society 
and thus have ultimately secured their future. 

Computers have been applied to a diverse range of tasks and the number of 
applications in which computers are being used is rapidly increasing. As more 
powerful machines become available, new and more challenging software 
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applications are being devised to take advantage of the high processing 

performances now on offer. Moreover, existing applications are being scaled up to 

match the new availability of processing power. For example, in weather 

forecasting more accurate predictions than ever before are being obtained. This is 

happening because the process of forecasting [Kaln791 is centred around solving 

partial differential equations represented on a three dimensional mesh. A 

reduction in the mesh size, which while tremendously increasing the amount of 

processing required for a solution, also gives rise to more accurate results. 

For a significant proportion of applications the real bottleneck in a computer 

system is the processor, as it actually does the work of executing programs. An 

obvious path to greater processing power is to simply employ a faster processor, 
but this is not quite so simple in practice. If a significantly faster processor is to be 

used, then the other components of the computer system (memory and disks) may 

also have to be upgraded. Adding a faster processor to a system can change its 

balance from being compute-bound to memory or input-output bound, thus 
reducing the overall benefit gained from the introduction of the new processor. 
Furthermore, faster processors based on the leading edge of technology are often 

very expensive and if further components have to be upgraded, then this merely 
compounds the cost. While the economic cost of performance is important there is 

another more important long term factor to be considered. The electronic-based 
technologies that produced the computer revolution are rapidly being extended to 

their physical limits and will unable to be a continuing source of performance 

increase. Hence, new sources of performance improvement must be found to meet 

ever increasing performance requirements. 

Naturally one could turn to technologies other than electronics in the pursuit 

of faster machines, as in the case of optical computers. However, a large amount of 
research regarding the construction and manufacture of optical computers 

remains to be completed before such far-ranging steps can be taken. A more 

technologically conservative approach 'to the problem, however, is not to build a 

faster traditional computer from superior technology, but instead, to improve 

upon the original computer model by re-examining the fundamental way in which 

it works. Originally, computers were envisaged as functioning in a serial fashion 

executing a single operation at a time. As the study of computer systems 

developed, intra-processor parallelism (e.g. instruction pipelining) and system 

level parallelism (e.g. multiprogramming by overlapping input and output 

requests) were introduced. From the user programming point of view, these kinds 

of parallelism were buried in the hardware and operating systems so no changes 
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in programming style were needed. Furthermore, in large machines special 

purpose processors were added to off-load inputJoutput activity from the central 
processor (e.g. channels on IBM 360 series). These uses of parallelism in single 

processor systems have been applied very successfully over the years and continue 
to be very important, even so, greater performance is needed still. Thus, the next 
logical step is to introduce multiple central processors into processing systems to 

form true multiprocessors. Although this is quite straightforward in theory, there 
are many engineering and other pragmatic problems that have to be solved to 
produce viable multiprocessors and therefore to put parallel processing into 
practice. Parallel processing can be described as the process of parti tioning an 
application into a number of components, and distributing the components over a 

group of processors so that each component can execute concurrently, with a view 
to executing the application as efficiently as possible. 

1.1 Applications and Technology 

One of the most influential factors on the design of commercially viable 
computer systems has been the projects or application domains in which the 
resulting computers were intended to be used. Parallel processing has tended to be 
used in applications that deal with massive amounts of possibly distributed data, 
or in applications that have real-time constraints. Recent areas where parallelism 
has been exploited include: structural analysis, weather forecasting, petroleum 
exploration, fusion energy research, medical diagnosis, aerodynamics 
simulations, artificial intelligence, expert systems, industrial automation, remote 
sensing, military defence, genetic engineering and socioeconomics. 

Projects can constrain the performance, physical size and most importantly the 
cost of prospective computer systems. For example, the flight control system of an 
aircraft must be able to operate in real time, be accommodated by the aircraft, and 
be paid for out of the total cost of the aircraft. The other major influence on 
computer design, mentioned earlier, is technology. The factors of technology and 
application domains have caused a broad spectrum of widely differing computers 

to be produced. Almost all commercially available machines are aimed at general 
purpose work and are based on the traditional computing model (i.e. the von 
Neumann model described in chapter two), with variatfons in price largely 
accruing from the sizes, speeds and complexities of central processors, main 

memories and peripherals. 
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There have been many attempts at producing parallel architectures in the pa~t 

with varying degrees of success [Fern81, Stok81, Thor81]. But no parallel architecture 

has been generally accepted as being universally superior to the traditional von 

Neumann model. One reason for this lack of architectural change, which was 

especially true in the 1960's, was that the technology for the effective construction 

of parallel architectures was simply not available. The extra components 
necessary for a parallel machine were too expensive and with the extra 

components there were just too many failures for acceptable machine reliability. 
Later, in the 1970's when technology had advanced, reliability was not the main 
drawback, but instead, it was primarily the cost of manufacture that prevented 

the spread of parallel machines. Multiprocessing relies on employing mUltiple 

processing units, but at that time processors were expensive and it was often the 

case that it was cheaper and more efficient to build a bigger, faster processor than 

to use multiple processors. Evidence to support this claim can be gained from 

Grosh's Law [Knig66]. Fortunately in the early 1980's with the advent and 

proliferation of cheap, reliable microprocessors the converse situation arose. 
Microprocessor (CMOS and NMOS) based multiprocessors have become more 

economic than fast uniprocessors due to the rapid surge in microprocessor 
technology [Dong85]. The rate at which this technology is advancing is significantly 

faster than that which is associated with traditional mainframes (bipolar 
technology), hence the future of microprocessors seems very bright indeed. 

Consequently, as long as microprocessors flourish, the multiprocessors that utilise 

them will at least in theory be able to offer aggregate performances superior to 

those of the fastest uniprocessors. 

However, not all multiprocessors are simply based on standard 

microprocessors and at the moment a variety of parallel architectures exist, with 

no single parallel architecture really dominating. The main reason for the 

diversity found in parallel architectures is that the traditional von Neumann 

model has to be generalised or abandoned to give a model that incorporates 

parallelism from the outset. Furtherrtiore, parallel processing is associated with a 

number of specialist markets, such as supercomputing and fault tolerance, which 

have to apply parallelism in a manner that most suits their application area's 
needs. (Further information regarding parallel architectures can be found in 

chapter two.) Parallel machines currently available include shared memory 

multiprocessors (e.g. Encore Multimax and Sequent Symmetry), distributed 

memory multiprocessors (e.g. Intel hypercube and NCube), mini-supercomputers 
(e.g. Stardent Titan and Alliant FXl80) and fully fledged supercomputers (e.g. 
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Cray Y-MP and NEC 10). While these machines differ greatly in design and 

capability they have all evolved from the basic von Neumann model. 

There have been many proposals put forward, and several machines built, 

along completely different lines as alternatives to the von Neumann model. These 

machines include array processors (e.g. DAP and Connection Machine) and other 

exotic machines such as the Manchester Dataflow Machine. Although these 

machines are described as being general purpose computers it is common to find 
them being used exclusively for special purposes such as image processing or 

computer science research. For reasons that will be explored next, this thesis 
focuses on the evolutionary architecture of the shared memory multiprocessor, 

that extends the von Neumann model through the use of multiple processing 
units, while retaining the concept of a single global memory. 

Although there is a wide variety of multiprocessors now becoming available, a 
large proportion of every-day computing is carried out by traditional uniprocessor 
machines. With the exception of the parallel supercomputers, symmetric shared 
memory multiprocessors (SMMs) have a number of advantages over these 

established uniprocessor systems which include: 

• high performance, 

• low cost, 
• reconfigurabili ty, 

• availability. 

The price versus performance measure for SMMs compares very favourably to 

mainframes. This stems from the fact that multiprocessors are generally 

constructed from off-the-shelf microprocessors, therefore, allowing them to 

incorporate the very latest microchips and to ride the technology curve as 

microprocessor speeds increase. Following on, it is quite common for the imminent 

need to upgrade a computer system to be recognised during its lifetime. This 

ideally means substituting an existing processor type for a faster one, given that 

the architecture can withstand the change. Most multiprocessor systems are 

designed so that they are constructed in a modular fashion, which enables 

processor and memory boards to be replaced with relative ease. In large 

uniprocessor systems, it is usually much harder to replace processing elements 

because they can be closely tied to other components of the system. Finally, many 

multiprocessor systems can operate with less than a full complement of processors, 
allowing processors to be bought only if they are required and in the case of 

processor failures, the multip"rocessor remains functional, albeit in a degraded 
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state. Thus, SMMs can be seen as strong contenders to be the successors to_ 
uniprocessors, at least in the traditional mainframe market. To bolster this claim 

further, SMMs in common with other 'multiprocessors based on standard 

microprocessors have an economic advantage over some of their rival parallel 

architectures. More specifically, standard processing components are cheap, 
reliable and widely available due to the proven technology of their construction, as 

opposed to some of the more exotic parallel machines that rely on customised VLSI 
chips. In addition, a shared memory multiprocessor can be viewed as a group of 
tightly coupled uniprocessors executing a variant of a common operating system 
like the Unix operating system. This simplifies the job of migrating existing 
software from uniprocessors to a shared memory multiprocessor, which is not 
always such a straightforward task in the case of other multiprocessor 
architectures such as private memory machines. 

Even though parallel programming has been studied for many years it is still a 
rapidly expanding subject made all the more so by the current proliferation of 
multiprocessors. Parallel programming is a very challenging area to research, 
with many important questions remaining unanswered, and ultimately will have 
an effect on the shape of future computing systems. Further to this, it can be 
observed that multiprocessors, are growing in importance and frequency in 
common use. Good methods of programming and operating these machines have to 
be researched in order to satisfy the demand generated by the rapidly expanding 
community of users. At the current time, the growth of parallel programming is 
being stifled as it is often considered a taxing process with its application 

restricted to expert users. With the introduction of new programming languages 
and operating systems, the appeal of parallel programming will broaden and 

multiprocessors will be able to fulfil their role as high performance computing 
engines. 

1.2 The Software Shortfall 

At the current time it is quite possible to design and code programs that 
execute concurrently on multiprocessors. Notwithstanding this, the crux of the 
matter is that the techniques that are being used in the construction of parallel 

programs do not always make the best use of the paralleiism inherent in an 
algorithm or the parallelism provided by a machine. What is more, some of the 
widely used techniques are at odds with some of the established cornerstones of 
good programming practice. Great advances have been made in areas of software 
engineering such as high level languages, the information structuring techniques 
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found in object-oriented programming, and the elegance of declarative 

programming. Unfortunately, in many cases practical parallel programming has 

failed to keep pace with these innovations and remains more or less unchanged 

since its inception. This has happened partly because many of the applications to 

which parallelism has been applied are based on existing sequential codes almost 

exclusively written in Fortran. Since these codes are often very old and were 

written by non-computer specialists, it is generally impractical to rewrite them, 

and thus parallelisation code must be added in a way which changes the original 
Fortran source code as little as possible. This has had the repercussions that any 
poor structure or bad programming in the original program is retained in the 
parallel version, and the growth of new parallel programming languages is being 

stifled as often people see no necessity to change over to using them. 

In contrast many interesting research concepts for parallel languages and 

constructs have been entertained and much work has been carried out discovering 

their strengths and weaknesses. Many of the problems that plagued early parallel 
programming, such as maintaining mutual exclusion when working with shared 
data, have been countered with mechanisms such as monitors or more radically by 

message passing techniques. However, parallel programming still seems to be as 
difficult as ever it was and for many practical programming jobs the older and 

more basic techniques are still used. For example, when dealing with shared data 
variants of locking are the most commonly used synchronisation mechanisms 

because of their expressive power and simplicity. But by the same token, they are 

also one of the least structured synchronisation mechanisms and therefore the 

most open to abuse. 

1.2.1 The Roots of the Problems of Exploiting Parallelism 

There are some links between the largely separate evolutions of computer 

hardware and programming languages. This is not very surprising since each 

component needs the other in order for them both to offer an effective computing 

platform. There is little point, other than for research, in having a programming 

language that cannot be effectively executed, or a machine that cannot be 

effectively programmed. In general, when an important adva~ce has been made in 

one field, this had led to a corresponding advance being made in the other. For 

example, the advent of vector processors led to the development of vectorising 

compilers for Fortran and the creation of vector programming languages such as 
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Actus [Perr79], and the invention of LISP led to the construction of symbolic-­

processors for its effective execution, albeit some years later. 

The recent emergence of general purpose multiprocessors has been driven by 
the availability of the hardware necessary for their construction. As mentioned 

earlier, the VLSI revolution that yielded faster smaller components, spurred 

supercomputer designers, and also assisted in conventional microprocessor design. 

Over the last five years, refinements in manufacturing techniques have led to 

order of magnitude advances being made in microchip performance and to large 
quantities of relatively cheap, high performance processor and memory chips 

becoming available. With such excellent building blocks, computer designers have 
once again turned to multiprocessor architectures to form the next generation of 
general purpose computers. 

The concept of multiprocessing is a straightforward extension to the von 

Neumann model. Instead of a single processor executing the instructions held in a 
memory, multiple processors are employed executing multiple instructions, 

possibly held in different memories. Such a concept for greater system 

performance is appealing and intuitive but therein lies the problem. Although it is 
possible to visualise how such a processing systems works, it is relatively difficult 

to write programs to take full advantage of the parallelism offered by such 

systems. For instance, on a parallel machine with N processors each with a 
sequential performance of K MIPS (Millions of Instructions Per Second), the 

theoretical peak performance of a single job is NK MIPS. With a small number of 
processors (1 to 3) this peak can often be achieved but for larger numbers (10 to 20) 

it may take more intricate programming, and for massive parallelism (100 to 

200+) only a few specialised algorithms can achieve peak performance. Thus, 

while it may be straightforward and economical to assemble vast collections of 

processors and memories, it is no easy task to take an arbitrary application and 

implement a parallel program which runs on such a multiprocessor, and achieves 

even a decent fraction of the machine's' theoretical peak performance. Broadly 

speaking the roots of the problems involved with parallel computation are 

connected with the distribution of a program and its data over a number of 

processors and coordination of the resulting separate threads of control. 

1.2.2 Bridging the Gap 

The task of exploiting the parallelism offered by multiprocessors can be 

described by three major characteristics: (i) the distribution of a computation over 
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a number of processors (and memories); (ii) the synchronisation of the­

communications between the separate parts of the computation; (iii) and the form 

that the communications should take. Thus, the way to exploit parallelism is to 

derive a series of programming abstractions that are elegant, efficient and easy to 

use, to govern the factors that underlie the three characteristics. 

The main ideas behind parallel programming have been developed over thirty 

years from stimuli originating from both hardware and software sources. Many 

classic problems in concurrency, such as the dining philosophers problem [Holt831, 

originated from the solutions to real problems found in timesharing operating 

systems. A major factor in shaping the style of operation of a parallel 

programming language has been the hardware and software environment in 
which it was to be used. Essentially, in common with other pragmatic themes, the 

designers of parallel languages have had to make tradeoffs between sometimes 
conflicting concerns. For example, the most common tradeoff is between speed of 

operation and the degree of program abstraction. Simple but primitive 
mechanisms, such as semaphores, have the attribute of fast operation. However, 

because they have little inherent structure associated with them, their misuse can 

lead to unstructured and error-bound programs. Conversely, well formed 
abstraction mechanisms, such as monitors, can lead to clear and concise programs, 

though sometimes at an undesirable penalty in performance. Thus, the challenge 

set to parallel language designers is to devise programming mechanisms that are 

convenient for the programmer to work with and to some degree portable, but at 

the same time, are efficiently matched to their underlying target parallel 

archi tectures. 

In a similar vein, in order to retain efficiency, programmers should employ 

algorithms that are well matched to their implementation language. If certain 

operations were considered to be efficient in a particular language and others less 

so, then it would seem sensible in the pursuit of high performance to maximise the 

use of the faster operations, even if ch'anges had to be made to the original 

algorithm. Unfortunately, the real world is not always so accommodating and it 

may happen that no algorithmic changes can be made. Thus, this would tend to 

imply that in order to accommodate different emphases there ~ust be a variety of 
different parallel programming constructs. Hence, what is required to redress the 

disparity in capability between the current parallel hardware and programming 

languages, is a range of well defined parallel programming abstractions that 
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allow programmers to use parallelism constructs that have the appropriate­

structure for their applications. 

1.3 Areas for Research 

The hardware basis for this thesis is the shared memory multiprocessor and 

the problems addressed are primarily software concerns, yet having said this, 
there is still a wide choice of the particular area for research. There have been 
many attempts at producing parallelism-exploiting programming languages, but 
for several reasons (discussed fully in chapters two and three) no single language 
or family of languages have emerged into general use. One of the reasons for this 

is that the job of effectively exploiting parallelism cannot solely be addressed by a 
programming language alone, but instead, must be considered in terms of a 

complete programming environment. Given a bare multiprocessor, five basic 
areas must be considered: program design, programming languages, operating 
system software, program moni toring tools, and architectural extensions. 

For this thesis the most important of the five areas is the parallel 
programming language. A programming language assumes the role of a boundary 
between users and the system; it defines the base abstractions out of which 
programs are constructed by guaranteeing the properties of its programming 
constructs, thereby setting requirements for the operating system and hardware 
to fulfil. For instance, if a portable parallel language allows the existence of 

shared global variables, each valid implementation of the language must preserve 
the shared variable semantics irrespective of whether physically shared memory 
is available on a particular machine. In the past, most parallelism constructs have 
been designed bottom-up by starting with features that the hardware provides 
directly and evolving constructs that are easily implementable into programming 
languages. This style of development has led to efficient but non-portable 
programs. Therefore, it is the responsibility of the language designer to provide 

constructs geared more towards the needs of the programmer than to the system, 
while at the same time not making unreasonable implementation requests of the 
hardware and operating system. So, once a hardware platform and a style of 
programming language have been fixed is it feasible to desi~ a run time system 
and set of tools to comfortably support parallel programming. Thus, while this 
thesis concentrates mainly on parallel programming language issues, a brief 

outline of the alternative research areas of the environment follows. 
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Traditionally, program design has been a paper and pencil exercise, but­

increasingly through the advent of software design tools programmers are turning 

towards more automated design methods. It is now possible to assemble elaborate 
parallel programs via the use of graphically based tools that permit the 

visualisation of the structure of an emerging parallel program [Dong86J. Another 
prominent issue in program design is that parallel programming is not simply 

founded on an expressive language, but in addition, programmers should design 
parallel programs to work to standard models or paradigms. Using a well 
understood model as the basis for a program's design often means that the 
debugging and optimisation of the program can be done very quickly as the 
programmer is already familiar with the kinds of problems that can arise. 

Furthermore, certain algorithm design styles can be evolved so that they 
implicitly take advantage of the underlying hardware. An example of this can be 

seen in the design of the LAPACK numerical library [Demm87]. This library 
provides parallelised linear algebra routines which have been purposely designed 
to work at the highest level of parallelism possible, so minimising the time 
overheads associated with moving massive amounts of data between processors 
and memories. Parallel program design can benefit enormously from tools and 
standard techniques because they help to manage the increased complexity that 
can result from parallel programs, but they are only an aid to programming and 

cannot solve some of the fundamental problems associated with parallel 
programming. 

In a timesharing environment (e.g. the Unix operating system), the operating 

system must play the role of resource manager and share finite hardware 
resources amongst a number of users and provide programming interfaces (system 

calls) to enable programmers to access these resources. In a timesharing parallel 
programming environment the job of the resource manager is made harder as 
special care must be taken when scheduling groups of cooperating processes. This 
is because there can be hidden user-defined synchronisation dependencies 
between concurrently executing processes that could lead to poorer than expected 
performance from the processes if the operating system blindly rescheduled them. 
For instance, if a process that held a crucial lock was suspended by the operating 

system, all the processes that wanted to acquire the lock could waste their 
timeslices by waiting for the lock to be relinquished. Clearly, what is needed is an 
operating system which offers attractive (quick and efficient) parallel system calls 

to programmers, such as Mach [Acce86], allowing some central control to be applied 
to ensure that user-level and system-level synchronisation policies do not compete 
against one another. In addition, other facilities such as secure memory 
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management, workload partitioning, error recovery, and remote distribution of ~ 

processes could be provided to make the implementation of parallel languages 

easier. 

Even though a program may have been designed to a standard pattern, coded 
in an elegant language and executed by an advanced run time system, 

programming errors can of course still occur. An error in a parallel program can 

either give rise to an incorrect result, or it can cause the program to execute more 
slowly than anticipated (a performance error). The primary tools of a programmer 

in tracing and fixing these errors have been debuggers and program profilers. If 
parallel languages and operating systems are developed, then programming tools 

must also be developed commensurably or the job of examining the behaviour of 
parallel programs will become intolerable. A programmer should be able to 

monitor a program in the abstract forms found in its design, taking into account 

the sharing and partitioning of data, as this kind of approach is the natural 

continuation of debugging techniques that have evolved from absolute to source 

level debugging. 

Finally, during the course of the development of computer architectures, it has 

been noted that in some cases certain key operating system functions, such as 
memory management, are best delegated to the hardware for efficiency reasons. 

This idea can be extended so that certain critical constructs of programming 

languages also have direct hardware support. For example, consider the atomic 

test-and-set operation, and the research currently being undertaken to produce 

VLSI chips to support the Linda parallel programming language [Ahuj86]. 

Naturally, due care must be taken to identify the exact functions to be locked into 

the hardware. Experience has shown that this approach can have its pitfalls, as in 

the case of the ill-fated Ada based Intel 432 [Orga82]. Further to this, the RISe 

school of microprocessor design aims towards producing processors that are 

operated by a minimum of instructions by shifting as much complexity as possible 

into the compiler. Clearly, research into architectural extensions must be founded 

on a wealth of practical knowledge about the operational behaviour of parallel 

programs on shared memory multiprocessors which implies, in turn, that research 

of this kind is an ongoing and long term process. Thus, since the demands of 

parallel programming are not thought to be well enough understood at this time, 

hardware extensions are paid scant attention in the bulk of this thesis. 
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1.4 A Portent of the Chapters 

This thesis is organised into seven chapters and explores the implementation 

and exploitation of parallelism. It focuses latterly on shared· memory 

multiprocessors but continues with the second chapter which is a broad survey of 

parallelism issues, intended to illuminate the reader regarding the diversity and 

depth of research into parallel processing. The chapter is divided into three 

sections dealing in turn with parallelism in computer architectures, computer 
operating systems and system software, and parallel programming languages. As 

a substantial amount of research has been undertaken to investigate parallel 
processing, it is unrealistic to compile a definitive survey of parallel processing 

here. Nevertheless, key issues can be identified and hence the material that is 

presented sets out the main hardware and software options faced by someone who 

wishes to exploit parallel processing. The third chapter puts the material 
presented in the survey into perspective by identifying the important common 

characteristics found in parallel activities. As parallel architectures and their 
indigenous styles of programming appear at first sight to differ widely, it is 
somewhat rewarding to find a large degree of commonality between the competing 

approaches. In addition, the methods of designing parallel algorithms are 

discussed with a view to showing how such parallel algorithms can best be 

supported by programming language constructs and parallel architectures. In the 
final part of the chapter, a basis (or framework) is developed that can be used in 

the design of new parallel programming concepts. 

The fourth chapter is a presentation of new work relating to the exploitation of 

parallelism. A parallel programming model is developed that uses a form of single 

assignment variable, called a shared value, to specify and synchronise information 

exchange between parallel threads of control. The aim of designing the model is to 
abstract away the essence of parallel programming from a single language or 

architecture so that it can be applied across a range of languages. Drawing on 

previous work and paying attention to the framework from chapter three, shared 

values are discussed and their capabilities and limitations outlined. During this 

discussion, two similar parallel programming languages that employ shared 

values are used to illustrate short example programs. As this research is aimed at 

solving a real programming problem, chapter five is a short overview of an 

implementation of a programming language that supports the use of shared 

values. Information is presented on the process of compiling source programs and 

how shared values can be efficiently implemented on shared memory 

multiprocessors. The testing and evaluation of several parallel programs written 
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using shared value constructs is discussed in chapter six. The evaluation is -

primarily achieved by comparing shared value-based programs with their 

counterparts written in current parallel programming languages. Some comments 

are made on the implementation of shared values and how these affect the results 
observed. Finally chapter seven concludes the thesis by summarising its goals and 

attainments. The latest work on shared values is presented, which reflects the 
current thinking and new directions that could be explored. In addition, some brief 

comments are made on the overall success of this work and how the shared value 
approach to parallelism compares to other work on parallelism that has emerged 
over the last four years. 
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Chapter 2 

The Nature of Parallelism 

The task of compiling a complete survey of parallelism research is only 

marginally less difficult than trying to net all the fish in the North Sea with a 

single cast. The notion of parallel activity is present throughout many aspects of 

computing science, ranging from software examples such as a parallelised 
quicksort algorithm, to hardware examples such as a central processor operating 

concurrently with its peripheral devices. Over the last five years parallel 

processing has grown into a mature research area encompassing a wide range of 
topics so this survey chapter has been divided into three sections: 

• parallelism creation by hardware, 
• parallelism management by operating systems and tools, 
• parallelism exploitation by programming models and constructs. 

The hardware section of this chapter describes some of the notable parallel 
architectures, yielding interesting material to allow the successes of the different 
approaches to be compared. Moreover, information is presented about the kinds of 

applications that classes of parallel architectures are aimed at supporting and the 

corresponding operational tradeoffs that are made. The section on operating 

systems describes the importance of the operating system to the exploitation of 

parallelism, resulting from its job as a process and resource manager; and the role 

of software tools in development of pr.ograms. Software tools have also been 

included in this section because they can be viewed as part of the system software. 

One reason for this choice is that the architectural abstraction portrayed by an 

operating system should be fully integrated into the software tools it supports, so 

that the tools can relay pertinent system information to users in a convenient 

format. The section on parallel languages concludes this chapter by listing 

existing programming constructs that allow the exploitation of parallelism. This 

is the most important section of the chapter, but even so, only the main concepts of 

parallel programming are presented as there are too many parallel languages to 

discuss each one individually. Issues arising from these three sections is discussed 

further in the third chapter and is used to form the requirements for parallel 
processing mechanisms. 

- 15 -



The Nature of Parallelism - 2 

2.1 Parallel Architectures 

The central hardware theme of this thesis is shared memory multiprocessors, 

but inspiration can be drawn from the examination of alternative multiprocessor 

architectures. There have been many proposals for the design of computers based 

on parallel architectures. Some architectures have included parallelism for 

reliability by replicating important components; such as is typically found in fault 

tolerant systems (e.g. Tandem NonStop'· [Katz78]). However, the primary reason 
for the use of parallelism in a computer design is to obtain an increased 

performance over a sequential design for a given hardware technology. 

As the reliability and complexity of the constituent components of computers 
have increased and their size decreased, it is now possible to put complete 

functional units on a single VLSI chip. Hence, it is now possible to construct 
parallel architectures that contain hundreds or even thousands of processors. 

Parallel computer architectures based on arrays of dedicated processors are direct 
offshoots from VLSI technology and have limited general use [Mead80], but others 

such as the dataflow architectures highlight important concepts of general 
applicability. As computer architectures have developed, many classification 

systems have been devised to try and capture the most important characteristics 
of each machine [Feng72, Shor73, Hund77, Hock81, Skil88]. In this chapter only the 

general issues are presented in a simple categorisation to give a flavour of parallel 

architecture research, with there being no attempt at a formal analysis. 

2.1.1 Flynn's Categorisation 

The basic classification scheme introduced by Flynn for computer architectures 

[Flyn66] groups together architectures with similar modes of operation. The scheme 

does not go into specific details regarding the hardware breakdown of individual 

architectures, but nevertheless, it has proven useful as a method of identifying 

architectures with related operating characteristics. Other more complex 

categorisations and extensions to the basic scheme [Kuck78, Dunc90] have been 

proposed to capture more quantative information, though these are not discussed 
here. 

Flynn proposes that all computer architectures can be classified as one of four 

types according to the way in which their processing elements handle instructions 
and data. 
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• The single-instruction stream single-data stream (SISD) representing -
conventional scalar processing systems. 

• The single-instruction stream multiple-data stream (SIMD) including most 
array processors such as Solomon and Illiac IV. 

• Multiple-instruction stream single-data stream organisations CMISD), 

• Multiple-instruction stream multiple-data stream (MIMD) including 
multiprocessor organisations. 

The simplicity of the categorisation is its main advantage, but it is flawed in so 
much that no widely recognised architecture can be fitted into the MISD category. 

2.1.2 SISD . Conventional Processors 

One of the earliest views of a digital computer architecture came from John 
von Neumann [vonN58]. He proposed an effective computing system model that is 
still in use today. His model consists of a store and a processing element that 
perpetually perform a fetch-execute cycle, see Figure 2.1. The processing element 
selects and fetches an instruction from a sequence of instructions held in the store. 
The element then decodes the instruction and finally executes it. With the store 
being used as an updatable memory to hold the instructions and the partial results 
of a computation, it can be said to hold the state of the computation. This follows 
from the side-effect nature of the model which means that the action of an 
assignment has the side-effect of modifying the data object bound to a global 
variable. It is this notion of state and the ordering of events necessary to achieve a 

particular state that is the cause of many difficulties when considering parallel 
programming. For example, the idea of a global variable that can be modified by 
many parts of a program is an efficient mechanism for intra-program 
communication, but the unconstrained use of global variables can produce 
unstructured programs that are very hard to understand. 

Communications 

Processing bus Program and 
Element (PE) Data Memory 

Figure 2.1- von Neumann model. 

As has been mentioned in the first chapter, parallelism has been introduced 
into von Neumann systems in many ways most of which are invisible to an 

- 17 -



The Nature of Parallelism - 2 

applications programmer. Dedicated processors have been attached to the bus to -

handle the execution of instructions to interface to external media such as disks 
and networks, and to execute instructions involving floating point numbers. 

Memory interleaving allows several memory requests to be active simultaneously 
permitting the overlapping (pipelining) of several fetch-execute cycles. A 

pipelined cycle can consist of: instruction fetch, decode, operand fetch, arithmetic 
execution and result storage. Arithmetic and logical operations inside the central 
processor have also been parallelised by using techniques found in devices such as 
carry-look ahead and carry-save adders. 

Nearly all scalar processors are descended from the von Neumann model and 
this hardware trend has to some extent been mirrored by traditional 
programming languages. A large proportion of programming languages are based 
on control flow models that utilise active agents to execute a stream of 
instructions which act upon passive memory locations. For multiprocessors the 
picture is the same; many multiprocessors extend the von Neumann model simply 
by adding extra processors and memories, and parallel programming languages 
likewise by supporting multiple threads of control with additional scoping rules 
for multiple memories. Thus, it can be seen that the von Neumann model has had 
a profound effect on both sequential and parallel computer systems. Even so, it is 
not the only model that can be used as the basis for parallel programming nor is it 

the best, as shall be seen later. 

2.1.3 SIMD 

There are three basic types of SIMD processor, that is, processing systems 
characterised by the synchronous application of a master instruction over a 

number of related operands. The different types are: array processors, vector and 
pipe lined processors, and associative processors. 

Array Processors 

An array processor consists of one control unit and a number of directly 
connected processing elements. Each processing element is independent, having 
its own registers and storage, but only operates on command from the control unit. 
Three examples of actual array processors are Solomon [Greg63], Illiac IV [Barn68] 

and the DAP [Hock81]. 
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Vector and Pipelined Processors 

Although the two types of machine in this category are completely different it 

is very common to find machines that combine both of these parallel processing 

techniques for maximum efficiency. 

By using vector processing a machine operation can take vectors as operands 

and can return a result that is also a vector, as opposed to scalar processing in 

which only scalar operands can be manipulated. Vector operations cut out the 
need for the separate operand fetches and instruction fetches/decodes that would 

be needed to operate on each element of a vector if similar operations were to be 

performed by a scalar processor. Vector processors can be grouped into two classes 
according to the way in which vectors can be referenced. In the first group, 

memory-to-memory, source, intermediate and result vectors can be directly 
retrieved from memory (e.g. TI-ASC). In the second group, register-to-register, 

operands have to be accessed indirectly through special vector registers (e.g. Cray-
1, Fujitsu VP-200). As vector operations can take many machine cycles to set up 

and many more to execute, several vector operations can be in progress 
simultaneously by the use of pipe lining. 

Although pipelining techniques do not fall under the strict definition of SIMD 

they are presented here because they are often matched with vector 
multiprocessors. Pipelining has been incorporated into three areas of computer 

operation and can be classified as one of the following: arithmetic, instruction or 

processor. Arithmetic pipelining is found in the computational units of machines 

such as the Star-lOO, Cray-l and Cyber-205 and is concerned with speeding up the 

execution of arithmetic and logical operations. Instruction pipelining, as 

mentioned before, is very common and is found on most machines including 

uniprocessors. Processor pipelining, as it name suggests, operates at the much 

larger scale of inter-processor parallelism. 

A pipelined arithmetic unit is a time-multiplexed version of the array 

processor with a number of functional units which can either be tailored to a 

particular operation (e.g. Cray-1) or can perform different operations, in some 

cases simultaneously (e.g. TI-ASC). These units are arranged in a production line 

fashion, staged to accept a pair of operands every ~t time units. The memory in a 

pipelined system is arranged to facilitate high-speed data transfer to produce the 

Source operands which are entered a pair every ~t time units into the designated 
pipeline. The resulting stream of operands can then be returned to memory or fed 

into another pipeline, a procedure called chaining. If sufficiently large vectors are 
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entered into a pipeline, the speed up over a scalar processor is approximately -

equal to the number of pi peline stages. The total execution time is longer for a 
pipelined processor than that for a completely parallel processor, but fewer 

hardware components are needed. However, as the length of a pipeline grows, its 
set up and flushing times increase proportionally, which means high overheads 

are incurred when operating with small vectors. 

Vector pipe lined machines have proved to be very effective at floating point 
computation, but only rarely do these machine achieve a high percentage of their 
theoretical peak performances. Two of the reasons for this are that often the 
quantities involved in real applications do not map well into the fixed vector sizes 
of a machine (e.g. a problem of size 65 is a bad match for a vector pipeline of size 
64), and the task of moving data between registers, memories and secondary 

storage becomes so complex and congested that valuable processing time is wasted 
waiting for data to be shunted around. 

Associative Processors 

The characteristic of associative processors is that the processing elements are 
not directly addressed by location or sequence, but rather by content. Processing 
elements are activated when a generalised match relation is satisfied between an 
input register and the characteristic data contained in each of the processing 
elements. Only the elements that match perform the control unit's operation 

during which time the other elements remain idle. Associative processors have 
been constructed since the 1950's but technological limitations meant that early 
machines were not cost effective [Slad56, Meil8l], though newer machines have been 
more successful (e.g. STARAN, MAP, and MPP [Batc80]). 

Analysis of the SIMD approach to Parallelism 

An obvious comment that can be made about SIMD machines is that they 
sacrifice some generality to other parallel processing models, and by implication 
some performance, when executing certain problems because of the master-slave 
configuration of the processing elements. Nevertheless, SIMD machines such as 

the Cray processors, GF-ll and Illiac IV have been used ver.y successfully for 
intensive floating point applications and machines such as the Connection 
Machine [Hill85] likewise for symbolic applications. From the hardware 
perspective, SIMD machines only require a single complex (expensive) master 
processor making do with simpler processors as the slaves, while MIMD machines 
generally replicate all processors evenly. Operationally, Beetem [Beet87] argues 
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that SIMD machines are more effective at multiprocessing than MIMD machines -

because of the synchrony of the processors which obviates the need for explicit 
additional synchronisation. In a similar vein, machine and program designs are 

simpler as the rules for sharing data are very rigid: either all processors get the 
data or none of the processors get the data. These sharing rules a~e qualified 
though, as many SIMD machines have masking instructions to allow a processor 

to ignore data that is not intended for it. As a consequence of using regular 
sharing rules, however, resulting programs have structures that can be easily 
debugged because of the uniformity of processing found in their algorithms. In 
addition, each processor needs only a relatively small private memory to hold data 
as program instructions are held in a single program memory. This compares 

favourably against conventional distributed memory architectures who must 
replicate program instructions for each processor, but is about the same for 
conventional shared memory machines who can similarly share program code. 

A negative point, however, is that the optimal allocation of work when 
mapping a large problem onto a fixed size array is known to be NP-complete 
[Nico88l so even potentially highly parallel algorithms may not perform well on 
SIMD processors. To summarise, SIMD machines offer a viable parallel processing 
architecture both economically and operationally, but the choice of a particular 
architecture must be made with respect to its intended role, as some applications 
will work very well while others will achieve little better than scalar performance. 

2.1.4 MIMD· Conventional Multiprocessors 

Two very different types of computer system fall under the MIMD 

classification. The first is a multicomputer system defined by Hwang and Briggs 
[Hwan85] as: 

a multiple computer system consists of several autonomous computers which 
mayor may not communicate with each other; 

while the second type, a multiprocessor system, is defined as: 

a multiprocessor system is controlled by one operating system, providing 
interaction between processors at the process, data set and data element levels. 

Parallel processing can be attempted on mUlticomputer systems but 
multiprocessors generally accumulate much smaller overheads when handling 
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the parallelism, boasting superior software and run time support permitting the -

construction and execution of highly efficient parallel programs. 

A MIMD multiprocessor architecture is composed out of a group of processors, 
some memory and a connection layout to allow the processors and the memory to 
communicate. The processor configuration differs from the SIMD model in that all 

of the processors are nominally of equal status and capability, not master-slave or 

add-on processors, enabling each processor to operate asynchronously and 
independently. Furthermore, if a MIMD multiprocessor is composed of identical 
processors, then processing can be performed symmetrically, in that computations 
are not tied to an individual processor and can migrate between processors as 

desired. In contrast though, the types of processors in a MIMD multiprocessor can 
be varied, mixing general purpose processors with those that have specialised 
capabilities. 

There are two schools of multiprocessor design: one view is that the processors 
share a single memory and use it for mutual communication, whereas the other 
view is that there need be no shared memory and communication takes place by 
means of message passing. Machines that use shared memory are often described 
as being tightly coupled with there being many interactions between its 
processors, while conversely, distributed memory machines are loosely coupled 

with there being fewer interactions because of the higher communication cost. In 
addition, Arvind and Ianucci [Arvi83] have pointed out that architectures that 

provide a shared memory abstraction must: (i) make provision to tolerate long 
latencies for memory requests; and (ii) achieve unconstrained, yet synchronised, 
access to shared data. 

To address the former problem many solutions have been tried out including: 
arranging for small uniform memory access times, using special task switching 
hardware to suspend tasks until their data arrives, or more fundamentally, by 
using a data driven model (i.e. dataflow). T.o address the latter problem there have 
been several solutions including, once again, special hardware at both the 
instruction and memory location levels (e.g. in the HEP), and sharing and 

synchronisation techniques based on coherent caches. Thus, maintaining a shared 
memory abstraction is a severe test for an architecture, though, if shared memory 
is given up in favour of a distributed memory model, new problems arise at the 
programming level regarding the partitioning and transference of data between 
memories. As each approach to memory addressing has some meri ts, but also some 
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drawbacks, some machines have been designed combining both shared and -

distributed memory. 

Shared Memory Multiprocessors 

A shared memory multiprocessor architecture is characterised by having a 

single, physical global memory which is directly accessible to all its processors, i.e. 

a single shared address space. In addition, the key idea behind true shared 

memory systems is that the access time to a piece of data is independent of the 
processor making the request, that is, there is a uniform access time for fetching 

and storing memory elements. With this being the case, the actual 

interconnection scheme between memory and processors can be completely hidden 

from application software. However, because of the complete sharing of all 

memory, these systems suffer most from effects such as memory bank and bus 
contention. Hence, the limiting factor on the maximum number of processors the 

system can usefully accommodate is the aggregate memory bandwidth. In order to 
minimise memory contention, processors often have large cache memories to 

reduce the number of memory requests. If suitable caching strategies are 
employed then the shared memory architecture works very well in practice 
allowing the current generation of multiprocessors to utilise up to thirty 

processors. Interestingly enough, however, the use of cache memories makes 

shared memory machines seem more like distributed memory machines, as cache 

accesses are much faster than memory references, but no explicit programming of 

the cache can be done. Further information on caching techniques is presented in 

chapter five. 

As each processor must be able to reference any memory location only 

connection layouts that allow full interconnection of processors and memories can 

be used. Conceptually the simplest way of achieving a full system interconnection 

is to use a single shared bus. This has the advantages of being relatively cheap and 

easy to configure but set against these is the drawback that the bandwidth of the 

bus restricts the system to a small number of processors when compared to 

distributed memory machines; with the bus being a potential single point of 

failure. A modest extension to the single bus scheme is to employ two buses, one 

for reading the other for writing. This may seem attractive but in practice not 
much is gained as often memory requests need to use both buses, with multiport 

memory being required to support the multiple buses. Using multiport memory 

means that multiple control, switching and arbitration logic is needed for each 

memory unit to synchronise the accesses from separate buses. This makes 
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multi port memory a most expensive and limited commodity (due to physical space ~ 

requirements) but it has been implemented on several older machines including 

the Univac 1100/90 and the IBM System 370/168. A more radical method of 

increasing the bandwidth, however, is to make a separate bus available from each 

processor to each memory unit, an arrangement called a crossbar as found in the 

Alliant FX/8. This method gives the best bandwidth and reliability but can still 

suffer from contention if multiple requests are received at a memory unit 

simultaneously. Other disadvantages with the crossbar switch are the high 
complexity of the interconnection components and the associated high cost. 
Sample interconnection schemes are shown in Figure 2.2. Shared memory has 
been used in the construction of many multiprocessors ranging from 

supercomputers such as the Cray X-MP [Lars841 and the IBM 3090 [IBM851 to more 

economical systems like the Encore Multimax [Enco871 and the Alliant FX/8 [Alli86, 

Perr861. 

P 

Crossbar Bus 

M M 

Figure 2.2 - Shared memory architectures. 

Distributed Memory Multiprocessors 

A distributed memory system is configured so that each processor has its own 

local memory, forming a node, with there being no globally accessible memory. 

Thus, the only way in which data can be shared between a group of nodes is to 
move it explicitly between them, a technique which is often called message 

passing. The time taken for the movement of data is dependent on the node 

connection layout, from which a measure of distance between nodes can be 
derived. As the connection layout may be visible to application programmers this 

distance factor is of importance in algorithm design when considering the usage of 

data relative to its position. A large number of connection schemes have been used 
in distributed memory multiprocessors [Feng811, ranging in complexity from a 

linear array with each node communicating with adjacent nodes, to a hypercube, 
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in which there are n connections to each of a node's n nearest neighbours [Ratt85, 

Seit851; three connection schemes are shown in Figure 2.3. 

Distributed memory machines have the advantages over shared memory 

machines that they are easier to built, requiring only simple point-to-point 

communication buses, and they are more extensible as there need be no complete 

in terconnection of nodes and therefore no shared bottlenecks. However, with the 

restriction of private memories, programming can become more difficult as 
consideration must be given to the efficient distribution of program and data to 

minimise inter-node communication costs. Two well known message passing 
multiprocessors are the Intel iPSe [Gehr881 and the transputer-based Meiko 

Computing Surface. 

Complete Interconnection Hypercube Mesh 

Figure 2.3 - Distributed memory architectures. 

Hybrid Multiprocessors 

Hybrid systems possess attributes from both shared memory and message 
passing systems. Such a system may be organised so that all the memory is 

divided into local sections for each processo·r, with the operating system or special 

routing hardware simulating a single shared global memory. Memories and 

processors are interconnected by a series of multistage switches that must allow, 

through some sequence of stages, every processor access to every.memory. Switch 

structures need not be of regular design, see Figure 2.4, as long as a switch 

structure can claim complete processor to memory interconnection. From the 
programmer's viewpoint, programs for hybrid systems are coded like shared 

memory systems though the actual performance considerations resemble those of 

message passing systems (Le. a shared memory abstraction with non-uniform 
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access times); but in most cases the penalties for poor data distribution are 

considerably less. This deception is permissible for most applications, however, 

the programmer must be aware of the details of the hardware layout in order to 

produce efficient code. As the illusion of shared memory has to be maintained, the 

limiting factor on the number of processors in a system is the aggregate 

communication speed. This limitation, however, is not as extreme as with shared 

memory systems because, in the case of the BBN Butterfly, for instance, adding 

extra processors incorporates the addition of extra memory bandwidth [Crow85]. 

Other examples of machines of this type are the IBM RP3 [Pfis851, NYU 
Ultracomputer [Gott83], C.mmp [Wulf72], Cedar [Gajs84] and the Denelcor Hep 

[Smit81] whose special support for parallel programming is mentioned in the third 

section of this chapter. 

Multistage Switches 

Figure 2.4 - Switch-interconnected shared memory architecture. 

Analysis of the MIMD approach to Parallelism 

In general, it is easier to build yet harder to program private memory machines 

as opposed to shared memory machines of similar processing potential. This is 

because in shared memory machines, engineers do the hard work of designing and 

building memory arbitration and coherency protocols so that programmers can 

work with a single shared memory. In turn, this means that programmers do not 

have to be concerned with the precise location of programs and their data, in order 

to produce efficient or even working programs. Conversely, private memory 

machines can have greater total memory, CPU to memory bandwidth, and 

number of processors as they are freed from the task of maintaining a true shared 

memory abstraction. Similarly, private memory machines built on hierarchical 

structures such as trees are scalable so that arbitrarily large machines can be 

constructed. Hybrid multiprocessors offer a good compromise between the two 

extremes, but currently they have been developed largely as research machines, 

with only a few machines making inroads into the commercial marketplace. 
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In comparison to SIMD machines, MIMD multiprocessors are used for 

mainstream computing tasks as well as more specialised parallel applications. 

This results from the MIMD model being perceived as being a closer match to the 

SISD model than SIMD. Applications have been easily ported to MIMD machines 

from SISD giving MIMD machines a good general appeal as opposed to SIMD 

machines which are largely viewed as special purpose devices. To redress this 

balance somewhat, certain machines combine both SIMD and MIMD approaches 

(e.g. Cray Y-MP), retaining generality, and offering great computational power. 

2.1.5 Exotic Architectures 

While it may be possible to place every architecture into a category in Flynn's 
classification scheme it is more productive to split off a number of architectures 

and look at them separately. Although there are many architectures that could be 

mentioned at this point only four models are discussed here: VLIW, systolic 

arrays, the dataflow model, and graph reduction, all of which are radical 
departures from the von Neumann approach. 

VLIW Architectures 

Machines of this type are highly parallel architectures that offer an alternative 

to more conventional multi and vector processors. Whilst resembling ordinary 

multiprocessors VLIW's (Very Long Instruction Word) utilise a tightly coupled, 

single flow of control mechanism that can be thought of as being similar to the 

. operation of horizontal microcode. The pioneering VLIW architecture, the ELI-

512, consisted of 16 32-bit RISC microprocessors with access to a combination of 

local and global memory. Programs specified very fine grained control over 

virtually every resource of the machine with each long word instruction 

containing operation fields to control all of the individual processors. Sequencing 
was performed by a single flow of control as found in SIMD architectures. 

However, each processor could perform a different operation from its neighbours, 

unlike vector instructions, with all processor communication being controlled by 

the instructions. As a practical point there was no central program store, rather 

each processor fetched the relevant portion of the instruction word from its own 

program store. Figure 2.5 shows the outline of a VLIW architecture. 

The intended method of programming a VLIW is by using a trace scheduling 
compiler. Trace scheduling is a process for predicting the control flow in programs 

so that very long instructions can be generated from sequential source code. If this 

process can be done successfully then effective VLIW machine code can be 
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Local/Global Memory 

Processor Interconnection 

Figure 2.5 - VLIW architecture. 

constructed, however, if not (due to complex control flow in the code) then some 

potential parallelism may be lost. Only one company (Multiflow) has exploited 

VLIW hardware technology, but the novel approach of trace scheduling for 

instruction execution has had some influence on the design of optimising 

compilers. 

Systolic Arrays 

Due mainly to the advances made in VLSI technology it is now cost effective to 

build arrays of dedicated processors to perform specialist functions. One such type 
of processing array is the systolic array described by Kung and Leiserson [Kung78]. 

A systolic array is a regular set of interconnected cells each capable of performing 

some simple fixed operation upon data which flows through the array at regular 

beats. This kind of processing is similar to arithmetic pipelining but far more 

complex functions can be computed by systolic arrays than by simple arithmetic 

pipelines. Array configurations that have been suggested include the one 

dimensional linear array, the two dimensional square array, the triangular and 

hexagonal arrays, and binary trees. Applications for these arrays have included 
matrix addition, matrix multiplication, equation solving, and searching. 

Other designs that have been proposed for processing arrays include some for 

reconfigurable arrays (e.g. CHiP [Snyd82]"). Such an array consists of three 

components: processors, a switch lattice and an array controller. The ability to 

reconfigure an array greatly expands the range of functions it can compute. 

Arrays of processors can often compute functions in the minimum t.ime-complexity 

(e.g. matrix mUltiplication in O(n2) rather than O(n3» but in general they are 

perceived as being difficult to design as no widely recognised language is used to 

specify their layout. In addition, arrays of processors suffer from mapping 
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difficulties similar to SIMD machines when mapping large problem sizes onto 

smaller fixed array sizes. 

Dataflow Architectures 

Dataflow was first proposed by Dennis [Denn79] with a view to providing a 

technology-independent computing model which could offer better 

programmability than the von Neumann model in application areas. The principle 

idea behind dataflow systems is that only the availability of operands should 
influence the order in which program statements are executed. Conventional 

machines operate by taking instructions one at a time from a memory and 

executing them, a process known as control flow. With dataflow, instructions can 

be executed as soon as their operands become available. This is accomplished by 
compiling a dataflow program into a dataflow graph where nodes represent 
instructions and arcs are the program structure (data dependencies). During 

program execution data tokens flow along the arcs of the graph between nodes. 
Tokens are held at a node until all the tokens necessary for that statement to 
execute have arrived. When this happens the node is said to fire, consuming the 

first token from each of the input arcs and emitting data tokens along all of its 
output arcs. As there is no explicit ordering of the firing of statements, other than 

the data dependencies, statements can be executed as soon as their data tokens 

arrive, possibly in parallel. 

There are two working designs for dataflow architectures. The first is static 

dataflow due to Dennis where only one token can exist on an arc at a time, there 

being no method for distinguishing between tokens. Control tokens are used to 

send acknowledgements to guarantee proper timing when transferring data 

tokens from node to node. A drawback with static dataflow is that separate 

iterations of an iteration construct cannot be unfolded if the total number of 

iterations is not known at compile time, as only one iteration can be in progress at 

a time due to the restriction that only one data token can exist on an arc at a time. 

In dynamic dataflow [Gurd85, Arvi80] data tokens are tagged enabling multiple 

tokens to exist on an arc. This allows iterations to be unfolded making this a 

maXimally parallel model. Figure 2.6 shows architectures for both static and 
dynamic models in which data tokens circulate along the arrows. 

Several dataflow machines have been built, including the Manchester 

Dataflow Machine [Gurd85], but they have run into interesting difficulties. As 

parallelism is exploited at the smallest level, that is individual instructions, it is 
possible for many computations to proceed in parallel given a suitably parallel 
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Figure 2.6 - Dataflow architectures. 

application. This can be bad if the machine's memory becomes filled with 

computations waiting for data tokens and no new tokens (to fire the waiting ones) 
can be accommodated. Hence, the problem is one of throttling the computation to 
control the degree of parallelism and this is now a major research area [Sarg87]. 

Graph Reduction Architectures 

Graph reduction [Wads71] can be used as an efficient method for implementing 

functional languages. Executing a program written in a functional language 

consists of evaluating a series of expressions that have a natural representation as 

a graph. Evaluation proceeds by means of a sequence of simple steps called 

reductions that are local transformations of the graph. Due to the non-interfering 

nature of the reductions, described in the Church-Rosser Theorem [Chur41], 

reductions may safely take place in a variety of orders. The evaluation terminates 
when there are no further reducible expressions. Figure 2.7 shows the evaluation 

off7in the functional language Miranda where fx = (x+2)*(x-5). 

Graph reduction is an inherently parallel activity as at any moment a graph 

may contain a number of red exes (reducible expressions) and it is very natural to 

reduce them simultaneously. On a shared memory multiprocessor the process of 

graph reduction poses fewer synchronisation problems over a conventional 

approach. This follows from there being only one shared graph in the reduction 

model as opposed to shared program text and data structures in the conventional 

model. Graph reduction is also inherently distributed as a reduction is a local 

transformation of the graph and no shared bottlenecks, such as an environment, 
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@-fn application applying f to 7 gives after reduction gives result 

Figure 2.7 - Graph reduction. 

need be consulted to perform a reduction. As a usable model, graph reduction 

introduces no new parallelism constructs and so may be easier to understand than 
the complex interdependencies found in current parallel programs. Moreover, at 

all stages of a reduction the computation is well defined, which cannot always be 

said of imperative style parallelism. (Additionally, the graph is in a form which is 

more suitable for the analysis of the data dependencies than a conventional 
program.) However, graph reduction does have some drawbacks, similar to 

dataflow, in that parallelism is exploited at the level of single instructions which 

can have the serious side-effect of high memory usage. Some graph reduction 
architectures are being built such as the Rediflow machine [Ke1l84] and the Grip 

Machine [Peyt90], though these are actually implemented on von Neumann 

machines and are not available commercially. 

2.1.6 Architecture Summary 

Of the many types of parallel architecture the MIMD systems derived from the 

von Neumann model proliferate, except for the parasitic incursion of vector 

processors. Many SIMD processors have been constructed but almost by definition 

are regarded as specialised and deemed to be separate from mainstream 

computing. The argument of SIMD versus MIMD can be thought of as one which 

sets many small simple processors against fewer larger more complex processors. 
In the main, current programming languages have tended to favour the MIMD 

approach as it has been easier to divide a problem into tens of pieces that 

synchronise after many hundreds of instructions for MIMD machines rather than 

the hundreds or thousands of pieces necessary for SIMD machines that 

synchronise after every instruction. 

Shared memory multiprocessors are vying with distributed memory machines 

to satisfy the demand for parallel processors and it seems that technology will 

probably have the final say over which will dominate. Plans have been made for 
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large shared memory machines (around 100 processors), and hybrid machines 

already exist that contain several hundred processors to compete with the large 

distributed memory machines. In contrast, advanced operating system techniques 

and increases in inter-node communication speeds are helping distributed 

memory machines become more like hybrid multiprocessors. This. allows a 

hitherto unknown degree of portability between distributed memory machines as 

the interconnection layouts are submerged beneath the operating system. 

Moreover, with fast communication speeds future distributed memory machines 
will be able to offer very efficient support for shared address spaces. 

Thus, the precise future of computer architectures is unclear but two points of 

note have emerged: 

(i) Future high performance architectures will be multiprocessors so that they 
can take full advantage of parallel processing. Such machines may consist 

of a group of asymmetrical processors (perhaps to allow fast floating point 
or vector operations), or may in fact be symmetrical processors given that 

fast floating microprocessors can now be manufactured (e.g. Intel i860). 

(ii) Many future high performance architectures will support a shared address 
space either directly, or indirectly via the operating system or special 

routing hardware (i.e. non-uniform shared memory access time - NUMA). 

Multiprocessors are a very attractive (cost effective) and natural method of 

obtaining high processing performance, and with peripheral benefits such as fault 

tolerance, seem too important to be ignored. In addition, physically shared 

memory can be used to integrate microprocessors and tightly coupled SIMD 

processors, such as vector processors, permitting a powerful combination of SIMD 
and MIMD parallel processing techniques. Furthermore, the shared memory 

abstraction is emerging as a more usable programming model than private 

memory because it avoids many of the prob~ems in distributing applications over 
hundreds of memories, and some parallel programming languages require it 

(more information in chapters two and three). Of course, distributed memory 

machines could be used to simulate shared memory machines in order to support 

shared memory languages. However, this job is difficult to carry out efficiently for 

many real applications without some direct programmer intervention. 
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2.2 Operating System Issues and Tools 

This section covers two areas of operating system influence on parallel 

programming: (i) resource management and parallel processing primitives, and 

(ii) tool support. The first area describes the role of the operating system as a 

resource manager in a parallel processing environment and outlines the facilities 

it should offer to application programmers and compiler writers. Software tools 

have been shown to be useful in the development of programs, all the more so 
when considering parallel software, and there is a wide variety of tools currently 

in use. Tools range from specification and design aids, to much needed monitoring 

and debugging facilities. Auto-parallelising compilers and program restructurers 

also fall into this category. 

Before commencing this discussion on operating systems this is a reasonable 
juncture to introduce some terminology. Due to the wide range of research into 

parallelism many terms are used interchangeably and it can sometimes be 
confusing if terms are used loosely. The fundamental definition of interest here is 
that which is used to represent control flow. 

Definition: A sequential program specifies the sequential execution of a list of 

statements, the execution of which gives rise to a thread of control 

that is sometimes called a process. 

There are two ways to implement process concurrency, one uses only one 

processor, the other many. 

Definition: In multiprogramming, many processes share the same processor and 

each receives a share of the time available [Dijk68] - this is termed 

pseudo concurrency. 

Definition: In multiprocessing (multitasking), many processes are distributed 

over a number of processors with each process executing on its own 

processor [Jone80] - this is termed real concurrency. 

Multiprogramming is used in uniprocessor systems to simulate concurrency by 

interleaving the execution of processes on a single processor. It is also used by 

some multiprocessor operating systems to perform load balancing when the 

number of processes able to be run exceeds the number of available processors, 

though this too is commonly called multiprocessing. From the definition 
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multiprocessing also takes place when the number of processes able to be run is 

less than or equal to the number of available processors. 

When a parallel program is analysed in terms of its component processes no 

assumptions can be made about the rate at which each process execu~es, except 

that they notionally make progress toward completion. This is known as the finite 

process assumption and using this assumption the correctness of a program is 

independent from the number of processors, but not the number of processes, a 

program in executed on. 

One further definition added at this point makes a distinction between 

parallelism in a single job and parallelism between a group of jobs. 

Multiprocessing would seem to cover both types of parallelism, but they are 

fundamentally different at the programming level and at the level of the 

operating system. 

Definition: In parallel processing, the constituent processes of an application are 
distributed over a number of processors with each process actively 

executing on its own processor. 

One way in which parallel processing differs from simple multiprocessing is 

that in parallel processing, one can talk about a linear speedup with respect to the 

number of processes being applied to a problem. Clearly this can only happen if all 

the processes of a job execute on their own processors, and do not have to share 

processors with other processes of the same or other jobs. 

In general, a process is assumed to be' an entity similar in functionality to a 

process found in operating systems that support virtual memory, such as the Unix 

operating system. This assumption carries with it some implementation details 

about such processes which makes a process something more than just a simple 

thread of control. A thread of control can be represented, minimally, by some code, 

a heap, a stack and some register values, whereas the representation of a process 

is a superset of such a thread of control with additional operating system state 

such as page, process and file table entries. When a process context switch takes 

place, the data structures maintained by an operating system have to be updated, 

as well as the change over to the new thread of control. This has given rise to 

processes of this kind being called heavyweight, due to the relatively long time it 

takes to perform operations on them such as context switches, creation and 

deallocation. 
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2.2.1 Resource Management 

Operating systems have played a dual role in the development of parallel 

processing. Historically, operating systems have provided the stimulus for 

parallel programming research, as often their job has been thought of in terms of a 

collection of concurrent activities. (Parallel languages designed for the 

construction of operating systems include: Concurrent Pascal [Brin75], Edison 

[Brin81], and Modula-2 [Wirt80].) More recently, however, operating systems are 
being written with application-level parallel processing in mind. Hence, system 

call facilities and tools are being provided to support efficient parallel processing 
and multiprocessing rather than the multiprogramming of old. 

The range of jobs for which operating systems are expected to take 

responsibility has grown as computer architectures have developed. 

Responsibilities for virtual and real memory management, file structures, 
input/output peripherals, reconfiguration (in the case of partial failure or 
expansion), exception handling and not least process management have all fallen 

to the operating system. Two underlying principles, identified by Finkel [Fink861, 

have been followed during the evolution of operating systems. 

The resource principle: an operating system is a set of algorithms that allocate 

resources to processes. 

The beautification principle: an operating system is a set of algorithms that 

hide details of the hardware and provide a more abstract environment which is 

uniform across architectures and implementations. 

Operating systems responsible for implementing parallel processing on 

multiprocessor machines have a more difficult job than those merely 

implementing multiprocessing. Conventional operating systems must follow the 

principles set down by Finkel making sure that dynamic problems such as 

deadlock and starvation do not arise (these terms are explained further in chapter 

three). Operating systems committed to parallel processing must also perform 

these duties, but at the same time try to ensure tangible benefits can be obtained 

from the use of intra-job parallelism. Clearly, conflicts may arise between the 

interests of a parallel job and those of the remainder of the system. However, there 

is no algorithmic set of rules to follow to obtain the optimum system throughput 

with optimum parallel program performance. Moreover, it seems unlikely any 

such rules will be formulated, except in special cases, due to the high complexity 

and the influence of unpredictable fa.ctors such as the execution times of programs. 
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Nevertheless, heuristic methods are used to resolve the situation by, in some 

cases, simply reducing the priority of parallel jobs when the system is busy (e.g. 

Encore Umax [Enco87]), or more forcefully by partitioning up the available 

resources so that parallel jobs execute in their own mini-environments (e.g. BBN 

Butterfly Chrysalis [Thom8S]). Neither of these solutions seems' entirely 

satisfactory as each one is biased too much in favour of one extreme. This may be 

precisely what is wanted when considering timesharing or real-time systems, but 

in general a less extreme solution would be better. 

Multiprocessor Operating Systems 

There are three classes of multiprocessor operating systems, with each having 
a completely different level of support for parallel processing: (i) separate 

supervisors, (ii) master-slave, (iii) symmetric. 

Separate supervisors is the simplest scheme to implement as it is a natural 
outgrowth from sequential operating systems. Each processor in the system has 
its own private memory, so it runs its own copy of the operating system, maintains 

its own files and accesses its own input/output devices. In effect, this is a 

multicomputer organisation as the operating systems are loosely coupled with 
there being no direct support for parallel processing. 

A master-slave operating arrangement is an attempt to off-load processing 

from a master processor to several subordinate processors. Operationally, the 

master processor assumes responsibility for running the operating system itself, 

performing tasks such as servicing interrupts and communicating with 

peripherals, while the slave processors run user programs. This scheme has the 

advantage that it supports some parallel programming, but it does have the 

limitation that all the operating system calls have to go to the master processor. 

This can have the effect of choking the parallelism as slave processors wai t idly for 

the master processor to come round to seryicing their requests. Investigations 

have been carried out to find out the extent to which the master processor can 

bottleneck the system [Ensl77]. Their conclusions were, that the performance 

advantages gained from adding slave processors diminished very rapidly, so 

discrediting this method of multiprocessing. 

In a symmetric operating system, similar to a symmetric processing system, 

each processor has equal status and can run either the operating system or user 
programs. There is only one shared copy of the operating system and similarly all 

peripheral resources are pooled allowing equal access. There are many variants of 
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symmetric operating systems with the simplest being the floating master. In this 

subclass, only one process is allowed to enter the operating system kernel at a 

time, forcing all others to wait. This can be viewed as a master-slave arrangement 

with temporary mastery passing between processes. Other more complex variants 

allow concurrent accesses to operating system data structures, wit.h special 

synchronisation code used to ensure consistency (e.g. Encore Umax and Sequent 

Dynix [Oste86]). These operating systems are run on tightly coupled shared 

memory multiprocessors. 

In addition to the classes of operating system mentioned previously, 
distributed operating systems have also been used with multiprocessors. A 

distributed operating system is one that runs on many machines simultaneously 
but gives users the illusion of a single machine. Such systems are similar to pure 

multiprocessor operating systems but must use a form of message passing to 
exchange data between processes, as it is possible for a group of cooperating 

processes to be located on several heterogeneous and physically distributed 
machines. Mainly, effective distributed processing is considered not to be 
communication intensive (Le. it is loosely coupled), as opposed to parallel 

processing which sometimes is. This stems from the underlying process models 
that are used to communicate between remote machines (e.g. client-server 

models). When the distribution of an application is necessitated because key 

resources are only available on selected machines, often, processes on a machine 

will have to wait while operations are performed remotely - meaning that there is 

no real parallelism as only one thread of control is active at a time. Furthermore, 

the distribution of applications can have significant communication and 

synchronisation overheads making it an unsuitable approach for many problems. 

Distributed operating systems have been an active research area in many 

universities yielding many rival systems including: Agora [Bisi88], Argus [Lisk82], 

Ameoba [Mu1l86], Eden [Alme85], Isis [Birm85], Mach [Acce86] and V [Cher85]. 

Parallelism Support 

Multiprocessor operating systems support parallel programming by offering 

the hardware resources of a machine to programmers in a palatable form and by 

handling some of the more mundane parts of parallelism management. In a 

symmetric operating system running on a shared memory multiprocessor, one of 

the most useful abstractions to give to a programmer is of course shared memory. 
Thus, memory protection must be maintained between users but relaxed between 

processes cooperating on a shared job. Two examples of models of sharing are the 
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Umax shareO call that allows a process to share memory with its children, and 

System V shared segments that allow a block of shared memory to be linked into 

the address space of an arbitrary process. Other interprocess communication 

mechanisms include sockets and pipes. 

Fundamental process handling facilities are provided by operating systems for 

the creation and deletion of processes. In symmetric operating systems, facilities 

are also provided for multiprogramming and multiprocessing processes. These 

facilities are often optimised so that parallel programs can be load-balanced over 

the available processors. Figure 2.8 gives an indication of the kind of scheduling 

that is performed by an operating system by illustrating a typical process state 

diagram. The systems calls that are necessary to support such an environment 
include: create, destroy, suspend, resume, change priority, block, wakeup, and 

dispatch. 

I/O or event 

completion 

Figure 2.8 - Process state diagram. 

To synchronise a group of cooperating processes synchronisation mechanisms 

such as System V semaphores have been developed. Additional mechanisms for 
the provision of exception and signal handling are also common. 

Another of the responsibilities of an operating system is its role in debugging 

and the gathering of statistics. Both of these activities can be simplified if an 
operating system provides interfaces whereby relevant system information can be 

easily obtained. If this is not the case, the onus of collecting information about a 
parallel program is left entirely on a user, which can lead to further complications 

in already complex programs. In addition, the ability to checkpoint a parallel 
program can give usability and·· fault tolerance benefits. This is because 
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checkpointed programs can be restarted from the last checkpoint, obviating the 

need to reexecute any costly computations needed to reach that point. (Further 

information on debugging parallel programs can be found at the end of this 

section.) 

Alternatives to Processes 

Although processes have been used as the standard units of control flow they 

are unsuitable for many parallel programming applications. As far back as the 
early 1970's some operating systems contained lightweight threads of control, 

commonly called threads, to implement asynchronous input/output operations. A 

thread can be viewed as an activation of a procedure and differs from a process in 

two major ways: (i) many threads can execute in the same address space, and (ii) 

threads have much less associated state information. Moreover, lightweight 
threads are generally implemented on top of the operating system giving an 

additional level of software support to applications. (If this is the case then 
processes are still created and scheduled by the operating system with the 
lightweight threads executing in the address spaces of the processes.) 

Using the facilities of a user-level threads package for parallel processing has 

some advantages over using similar facilities provided by an operating system, 

including: 

• functionality, 

• portability, 

• efficiency, 
• abstraction. 

One of the most important reasons for using a user-level threads library is that 

different functionality can be provided by constructing superior interfaces to 

standard system calls. Furthermore, with parallelism expressed in higher level 

constructs a certain degree of freedom can be obtained from the underlying 

operating system, allowing portability across systems. As user-level constructs 

use only a minimum of system calls, and have less operating state overhead, 

programs are more efficient as less time is spent in the management of 

parallelism. For example, with the Brown Threads Package on an Encore 
Multimax typical times for user-level (thread) operations are often measured in 

microseconds, while the times for similar (process) operations performed via the 

operating system, in milliseconds. If all parallel programming were done at the 

kernel level, every system call would require a context switch to system mode as 
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well as the time for the operation itself. Thus, user-level threads provide a greater 

degree of abstraction than the base operating system allowing the construction of 

more understandable programs. However, this benefit is not without its 

drawbacks. 

One of the foremost penalties of forsaking the operating system is the 

according loss of security through memory protection. As threads execute in the 

same address space it is possible to get unintentional memory interference 
between them. This can take the form of threads accidentally corrupting user data 

structures or even other threads' data structures, such as their stacks. In addition, 

it is likely that no information about the internal structure of a threads program 

can be communicated to the operating system. Thus, a thread responsible for 
coordinating a group of worker threads would be suspended if the operating 

system suspended the process that was executing it - thereby forcing all the 

workers to wait until that process (and the thread) were restarted. Furthermore, if 

a thread running in a process together with several other threads page-faults, that 
process and all of the threads it is supporting will be suspended until the page is 

brought into memory. Solutions to some of these problems have been implemented 
in operating systems such as Umax, which allows gang scheduling so that either 
all the processes in a gang run or none of them do, and Mach, which allows user­

level handling of page-faults. These are steps in the right direction but more 
comprehensive support for threads is needed. 

There have been many instances of lightweight threads with properties 

accorded to them by their intended roles. Threads have been used inside operating 

system kernels to implement non-blocking operations, and at the user-level to 

provide alternatives to process-level concurrency. Threads execute in a shared 

address space, therefore requiring shared memory (generally physically shared), 

and seem a natural method for exploiting parallelism on shared memory 

multiprocessors. Operating systems that support lightweight threads include: 
Amoeba, Mach, Topaz [McJo87] and V. Portable lightweight threads libraries 

include: Brown Threads [Doep87), C Threads For Unix (CMU), ConcurrentC 
(Perdue) and Presto [Bers88]. 

2.2.2 Tool Support 

The idea of using tools to assist programmers in the construction of programs 

has been around for many years. Tools have been provided as aids to programmers 

to help them manage the complexity that is associated with developing correct and 
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efficient software. Tools come in many different forms, with each having a specific 

job - just like the tools in a conventional tool bag. Every tool has its part to play in 

contributing to the process of developing high quality software, hopefully, in the 

shortest possible time. Of the many different types of tools, ranging from editors to 

source code management systems, only a few are especially relevant to parallel 

programming, and these can be broadly classified as: 

• auto-parallelising compilers and restructurers, 

• design tools, 
• monitoring and debugging tools. 

Tools that allow programs to be distributed across several machines (e.g. 

Avalon [Det188] and Arjuna [Shri89]) are not mentioned here as they have more to do 

with issues of physical distribution and reliability than parallel processing. Also, 
tools that facilitate parallel programming by providing programming constructs 

are not covered here, as they are mentioned in the first section on operating 
systems and are revisited later in the software section of this chapter. 

Auto-parallelising Compilers and Restructurers 

The aim of the tools discussed in this section is to produce code, that runs 

efficiently in parallel at run time but starting with ordinary sequential code. 

Many different techniques fall under this heading, with vectorisation being the 

most well known. Almost all the work carried out on tools of this kind has been 

undertaken with conventional procedural languages such as C and Pascal, with by 

far the largest proportion on variants of the Fortran language. Fortran has been 

used for the majority of numerical software, and therefore almost by default, is 

currently the most frequently used language for parallel processing reSUlting from 

the widespread use of auto-parallelising tools. 

To initiate this discussion on compilatiop techniques a short overview of the 
process of compilation is presented from Almasi and Gottlieb [Alma89]. This 

overview is intended to explain some of the terminology and is referenced in 

chapter five in connection with compiler optimisations. After the overview several 

parallelisation methods are discussed starting with vectorisation. -

Modern compilation can be envisaged as a two stage process, a front end that 

analyses programs and a back end that generates machine instructions so that 
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programs can be executed on a particular machine. More specifically, Aho and 

Ullman [Aho86] list the stages of compilation as: 

1. Lexical analysis. 
2. Syntax analysis. 

3. Intennediate code generation. 

4. Code optimisation. 

5. Code generation. 
6. Table management. 
7. Error handling. 

The first five stages proceed more or less in sequence, while the last two go on 

in parallel with them. The accepted border between the two parts of a compiler is 

the fourth stage, which can involve both parties. 

In the first stage, a lexical analyser takes a program written in a high level 
language and breaks it down into tokens which represent atomic symbols such as 

constants, operators, separators and identifiers. These tokens are then passed to a 

syntax analyser which builds a parse tree to check the grammatical structure of the 
program, signalling errors if necessary. The parse tree consists of basic blocks, 

which are straight-line sections of code, with no jumps out except at the end and no 

jumps in except at the beginning. The flow of control among the basic blocks 

within a procedure is represented by a flow graph, with the calling relationships 

between procedures in a program shown via a call graph. In addition, special 

tables are constructed to hold infonnation corresponding to the names used by the 
program, together with type and other related data. The process of generating all 

these tables and graphs is called semantic analysis, and when this is complete, 

intennediate code can be generated. 

Intermediate code preserves the semantics of the (syntactically correct) 

original program but expresses them in a for;mat that can be more easily analysed 
and translated into machine code for a variety of machines. Hence, it contains no 

references to hardware resources such as registers or specific memory locations. 

Code optimisations are geared towards making programs run faster, or to use 

less memory, occasionally combining the two. Effective optimisation can be 

accomplished by using the knowledge acquired in the front end of the compiler to 

suggest possible valid code transfonnations, and the built-in knowledge of the 

back end of the compiler to assess which transformations are profitable. 

Knowledge from the front end comes in the form of an extensive set of 
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interprocedural (global) and intra-basic block dataflow and dependence analyses. 

Some of this analysis is straightforward and is described in the following steps. 

1) Divide the program into basic blocks. 

2) Construct a control flow graph where nodes represent basic bloc~s and arcs 

represent possible paths of control. 

3) Divide the control flow graph into structured subparts called intervals made 

up of one or more basic blocks. Such an interval might correspond to a loop 
and expressing it in this form makes it more amenable to dependency 

analysis. 
4) Within each basic block, categorise the occurrence of each variable as one 

of: 
(a) Variables whose use is confined to the basic block (e.g. temporary 

variables). 

(b) Those USED in the basic block but defined elsewhere. 

(c) Those DEFINED in the basic block and potentially used elsewhere. 
5) For every USED variable in each block, find all possible definitions in other 

blocks. This is the process of finding the reach of each variable, sometimes 
called u-d (use-definition) chaining, and forms the core of global data 

dependency analysis. 

With this information the back end of the compiler can perform further 

analyses to implement specific parallelisations, the form of which are dependent 

on the target hardware. Other optimisations, common to sequential machines 

[Hwan85], are also performed such as: (i) common expression elimination, (ii) 

invariant expression movement, (iii) strength reduction, (iv) register 

optimisation, and (v) constant folding. 

Finally, or perhaps during the optimisation stage, code is generated for the 

target architecture by the back end of the compiler. Code generation is a 

straightforward process given that all the hard work has been done in the 

semantic analysis and code optimisation stages. 

Vectorisation 

Vectorisation is a code optimisation process performed by a compiler to 

generate vector instructions for vector processors. The idea was introduced by 
Muraoka [Mura71] and was subsequently implemented by Kuck [Kuck72,Kuck74]. 
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Essentially, the job of the front end of a vector compiler is to look for potential 

parallelism in a sequential program, while the back end, must subsequently try to 

turn the promises of parallelism into reality by selecting and scheduling vector 

instructions. Effective vectorisation of complex programs can be a very difficult 

job, as not only must algorithmic transformations be applied to produce 

potentially vectorisable code, but also these transformations must yield code that 

precisely suits the target architecture, with respect to vector lengths and the 

timing of vector operations. Optimisations are usually performed in two phases 
[Hwan85]. 

Extended Optimisation 

(i) Intrinsic function integration (e.g. SQRT, SINE). 
(ii) Subprogram inlining. 

(iii) Reductions of iteration numbers in nested DO loops. 

(iv) Reordering of the execution sequence to reduce pipeline overhead. 

(v) Temporal storage management. 

Vector Extended Optimisation 
(i) Full vectorisation. 
(ii) Pipeline chaining. 

(iii) Pipeline antichaining. 

(iv) Vector register optimisation. 

(v) Parallelisation (e.g. using multiple pipes simultaneously). 

To vectorise a piece of code, the dependency graph generated by u-d chaining 

for that piece of code is first checked for cycles. In practice, u-d chaining can lead to 

conservative estimates of dependency which can prohibit potential parallelism. 

Other tests which are faster and more accurate have been described by Kuck 

[Kuck84]. Four types of dependency may exist between statements Sv' Sw (w > v): 

(a) Flow dependence: the value of a varial;>le computed by Sv is read in Sw' 

(b) Control dependence: Sv and Sw are in separate branches of a conditional Su' 

with u < V,w (e.g. ifSu then Sv else Sw)' 

(c) Antidependence: a value of a variable read by Sv is recomputed in Sw' 

(d) Output dependence: both Sv and Sw compute values for the same variable. 

Direction vectors can be computed, holding the sense of the dependency 

between statements, to be used for cycle checking. If no cycles are found, the 
statements of a vectorisable loop are then inspected to see if they can be mapped 

into vector instructions of the target architecture. If cycles exist in the code, 
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however, further analysis can be done to see if they can be broken down or 

classified as one of a known type of reduction or recurrence operation, that can be 

executed with a vector instruction or replaced by a subroutine call. For example, 

dependencies in the forms (c) and (d) can be removed by recoding. 

In order for a Fortran compiler to automatically vectorise an inner DO loop, the 

code contained by the loop must meet certain criteria [Myer86]: 

• it must reference at least one array, 
• it must use either arithmetic, relational, or logical statements, 

• it must not contain any GO TO instructions, IF tests, subroutine calls, or 

inputJoutput statements, 

• it must not contain a mUltiply dimensioned array; only one index may vary 

at a time within the loop, 

• it must not contain any irreducible data dependencies within the loop. 

If the code meets all these conditions then it can be vectorised, but in many 

cases the code will not meet one or two criteria. This situation can be improved by 
giving the programmer some written guidelines on how to write code that avoids 

unnecessary dependencies and can be vectorised more efficiently. Further to this, 
almost all hardware vendors have their own parallelising compilers that accept 

directives from a programmer to indicate what should be vectorised. Some of the 

more advanced compilers, such as Alliant's [Alli86], have a feedback mechanism 

whereby a programmer is told where there are data or control dependencies 

prohibiting vectorisation - the idea being that these can be removed later by 

recoding. In addition, compilers often support an ad-hoc extended language with 

extra constructs for explicit parallel programming. This basically transfers all the 
responsibility for parallel programming to the user, making the compiler's job 

much simpler. In contrast, the most recent version of the Fortran language, the 8X 

standard [Pau182], contains extensions so that operations can be applied directly to 

arrays and vectors. This is a kind of halfway-house between auto-parallelisation 

and explicit parallel programming, making vectorisation more explicit and 

hopefully a more efficient process, but no full implementations of a Fortran 8X 

compiler have yet been released. (Other vector programming languages have been 

proposed and are discussed in the final section of this chapter.) 

As an example of vectorisation only the first of the following two code 

fragments can be easily vectorised. 
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DO 101 = 1, N 

10 A(I) = B(I) + e(I) 

After vectorisation the loop above is A(l:N) = B(1:N) + C(l:N), while next 

fragment has a flow dependence attached to the vector A, 

A(1) = 1 

DO 101 =2,N 

10 A(I) = B(I) + A(I-l) 

Auto-parallelisation and Restructuring 

Much of the analysis that is performed by vectorising compilers can be applied 
to generate code for MIMD machines. Often compilers offer both vectorisation and 

concurrentisation facilities, as some machines such as the Cray Y-MP and the 

Alliant FX/80 combine both MIMD and vector processing capabilities. Similar 

restrictions to those described for vectorisation apply on the format of code for it to 
be concurrentisible. However, there is a major difference between the two methods 

of parallel execution, which is that vector operations function at instruction level 
parallelism, whereas MIMD machines must process much larger chunks of work 

in order to overcome the set up times for their threads of control. Once again, the 

major source of work in programs is loops, which have to be partitioned so that 

some loop iterations are executed by one processor, some more by the next, and so 

on. This process is called loop spreading and is returned to in the fourth chapter. 

Another major source of parallelism that can be exploited by MIMD machines 

is interprocedural parallelism. Not surprisingly, the task of dependency analysis 

is more complex than before as procedures can modify non-local data. Moreover, 

the parameter interface is not always well defined as difficulties arise when 
dealing with pointers. Nevertheless, some research has been done in this area and 

working tools such as the Parafrase-2 restructurer have been devised [Poly89]. 

Parafrase-2 is a source to source program restructurer, that takes sequential 

programs written in high level languages (currently Fortran, C and Pascal) and 

transforms them, over a series of stages, into high level code. which can be 

parallelised easily by an auto-parallelising compiler. The difference between this 

kind of approach and simple auto-parallelisation is that it is more portable, in the 

sense that it supports multiple languages and theoretically, can be used in 

conjunction with almost any MIMD/SIMD machine's auto-parallelising compiler. 
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The restructuring works by first translating the input code into an 

intermediate representation, then optimising the code over a number of stages 

towards a given target architecture, and finally translating the massaged code 

back into the input language. Data dependency analysis is performed by variants 

of Banerjee's gcd and bounds tests [Bane881 with adaptations to handle symbolic 

terms. Another major analysis section of the tool is the Static Program Analyser 

(SPA). The role of the SPA is to provide estimates of a program's execution time 

that can be (i) communicated to the user; (ii) used to make a prediction of the 
maximum theoretical speedup; and most importantly (iii) used to assist in 

subsequent program transformations. Several methods are available for making 
timing estimates. 

In the simplest model, it is assumed that there are unlimited processors 

available for use and there are no delays for synchronisation and memory 

accesses. This gives the theoretical shortest time for execution and can be used as 
the basis for comparison with other models. A more realistic model assumes that 
memory accesses are the overriding factor in the execution of a program. In this 

model, the types and the number of memory accesses are collated, leading to fair 
approximations of actual execution times [Gall881. Alternatively, another model 

assumes that all memory references take unit time and it is the operations that 

can take variable amounts of time. This approach has limited use, but if used in 

conjunction with actual timings, can give some indication of the effects of memory 

contention. 

To provide actual estimates of a program's run time, the longest path (in the 

case of multiple) through a program is analysed; a variant on this method uses an 

average based on many different routes through the program. Timings can then be 

used together with the code paralleliser to check if a parallelisation leads to a 

quicker execution of the program, or if the overheads in the parallelisation 

outweigh the gains. 

Interprocedural analysis is the other major area of dependency analysis in 

Parafrase-2. The aim here is to parallelise loops which contain calls to subroutines 

which would otherwise be passed over in parallelisation. ~rocedures, by 

definition, try to hide information and are a source of difficulties for dependency 

analysis. The three main objectives of this analysis are: 

• Reference Information: how and when objects are referenced, including the 

specific part of the object for structured object like arrays. 

- 47 -



The Nature of Parallelism - 2 

• Aliasing Information: when two or more apparently different references to 

objects actually refer to the same object. This can happen directly if two 

names refer to the same object or more subtly, when two names refer to 

objects that overlap in storage. Aliasing in languages like C, that allows 

pointers to objects, is worse than in Fortran though some work has been 

done in this area [Weih80). 

• Constant Propagation: propagating constants across procedure boundaries 
to lead to more accurate dependency analysis within procedures. 

There are two ways of performing the dependency analysis for procedures. The 

first is to insert an entire procedure at the point of call, expanding it so that it is 
completely inline. This gives very accurate dependency information but has 

several serious flaws. For instance, it is time and space inefficient - both 
potentially increasing exponentially [Sche77), and fails for recursive calls. Another, 

more effective method, is to analyse each point of call by trapping all of the 
information flow in and out of the procedure. 

In summary, Parafrase-2 is a source restructurer that can automatically 
perform transformations enabling vectorisation and more general auto­

parallelisation. Most research has been done with the Fortran language because of 

its dominant position as a numerical programming language and because its 

semantics do not contain troublesome entities such as pointers. Similar work is 
being carried out with language like C, which makes considerable use of pointers, 

as many of the underlying analysis techniques employed are still applicable. 

Related research on program restructuring has been carried out by the PSC 

[Alle84), KAP [Davi86), VAST [Brod81) and PTRAN [Alle88) projects. 

Other Research 

In this section three other approaches, to add to the two more prominent 

techniques of automatic parallelisation, are briefly discussed. These are: (i) Tree 
Height Reduction, (ii) Trace Scheduling, (ii) APL-parallelism. 

Tree height reduction works by making use of the associativ~, commutative 

and distributive properties in algebraic expressions. The process involves splitting 

up complex expressions into functionally independent parts for parallel 

evaluation by multiple processors. A comprehensive algorithm has been developed 
by Baer and Bovet [Baer68) which uses only associativity and commutativity -
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though tree height reduction is not a widely used technique due to the small 

amounts of parallelism it yields in comparison to other methods. 

Ideally, it would be convenient if there was sufficient parallelism inside each 
basic block of a program to make it profitable to execute such inst:r,-uctions in 

parallel. However, block sizes tend to be small, implying that the speedups that 

can be obtained are also small, around three at maximum for Fortran programs. 

The Bulldog compiler [Elli85] tries to increase this amount of parallelism by 
discerning the control paths through a program (traces) so that several basic 

blocks can be executed in parallel, a technique called trace scheduling. This has 

the advantage over vectorisation in that only standard inter-basic block 

dependencies have to be investigated as opposed to complex loop dependencies. In 
general, the compiler only guesses with high probability which way a conditional 

branch will follow, so it has to generate a trace for each eventuality. This can lead 
to many traces being generated for a group of basic blocks but this turns out to be 

an acceptable method of trading memory for performance. Further parallelism is 
obtained by unrolling inner loop bodies to give a form of vector parallelism. Trace 

scheduling has been around for many years and is the intended method for 

compiling code for VLIW machines mentioned earlier. However, it does not seem 
to have caught on and is not as popular as vectorisation or auto-parallelisation. 

The high level language APL has also been the subject of a research effort into 

automatic parallelisation. One of its inherent advantages over other languages is 

its rich semantics which allow operations to be performed on entire vectors and 

arrays. Furthermore, it contains no loop constructs or conditional branches. This 

means that large blocks of parallelism are implied in APL programs and can 

easily be exploited to give parallel execution without intricate dependency 

analysis. Unfortunately, almost all APL systems are based on interpreters, as 

opposed to using compilers which are more efficient. The reason for this is APL's 

flexibility, which allows objects to change type and size during a program's 

execution, and APL also supports some functions which are very difficult to 
compile. Nevertheless, an experimental compiler called the E-compiler [Chin86] 

has been produced which generates vector instructions from APL source for the 

IBM 3090 VF. A recent study has been done to compare parallel execution times 

for vectorised Fortran against times for vectorised APL [Chin88]. The somewhat 

pleasing conclusion of the study was that APL derived vector code did execute as 

fast or faster than the Fortran derived vector code. APL is not a widely used 

language, nor is it ever likely to be, but evidence now points to the conclusion that 
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working with high-level operations and compound objects such as arrays, provides 

a good starting point for the exploitation of parallelism. 

Design Tools 

To write a good parallel program one must start with a good design. If it has 

been decided that auto-parallelisation is not suitable for an application, possibly 

because no such tool is available for the implementation language, a parallel 
program must be hand crafted to do the job. This task can be made much easier by 

the provision of software tools to assist in the specification of the parallelism. 

Design tools give programmers the flexibility to come up with clear designs, by 

abstracting away some of the fine detail regarding the implementation of the 
parallelism in favour of more high level approaches. This is also true of newer 

high level parallel programming languages. However, using a tool allows a 

programmer to continue using current languages by retrofitting additional 

functionality. Design tools are also useful when coming to grips with 
programming multiprocessors that use a revolutionary programming model, such 

as in the case of the Poker Environment [Snyd84] for the CHiP systolic array. 

One might argue that interacting with an auto-parallelising compiler is in 

some sense designing a parallel program - but this process is simple compliance to 

the compiler's model of parallelism, which in all probability is nothing more than 

vectorisation. For example, Parafrase-2 can display a dependency graph side by 

side with its corresponding piece of code. This facility allows a programmer to 

adjust the code until extraneous dependencies are removed from it, possibly 

enabling vectorisation. However, this interaction would not be necessary at all, if 

the compiler could perform the transformations on the code by itself. 

To specify more elaborate parallel systems with arbitrary structure, more 

flexible methods of interaction are needed for programmers. An example of such a 

tool is the Scheduletrrace package [Dong86]. 'The package allows a programmer to 

describe a parallel program graphically and it will generate the control code 

necessary to implement the parallelism. Naturally, there are some restrictions on 

the format of the parallel programs as not all types of inter process ~nteractions are 
supported. 

The other area of influence covered by design tools is program simulation. 

Paraphrase-2 has a facility for predicting the time taken to execute a program, but 

this estimate can only be given after the code has been written - albeit that not all 

of the program has to be written, only the segment of interest. A more specialised 
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tool for designing programs is Transim, which is used for specifying Occam 

programs for execution on transputers. This tool uses a fixed language and 

hardware but does accept abstract descriptions of programs and generates fairly 

accurate performance predictions. Probably the major drawback with this tool is, 

though, that users must supply appropriate data to govern some of the timings. 

Naturally, if these data values are not representative of actual data, nonsensical 

timing predictions will be returned. 

Monitoring and Debugging Tools 

The tools useful for monitoring programs can be classified into two groups: 
debuggers and profilers. Debugging is often described as the process of locating, 
analysing and correcting faults. More specifically, debuggers assist in the process 

of examining what a program does, making it helpful in locating algorithmic 

faults that cause programs to produce incorrect results. Along side a debugger, the 

role of a profiler is to help understand how programs execute, so that their 
operational behaviour can be optimised to give maximal efficiency. In actuality, 
this is not a disjoint classification as often algorithmic and operational 
information can be gained from the same tool. 

Parallel Pro filers and Visualisers 

As one of the primary uses of multiprocessors is for the execution of large 

computationally intensive numerical applications, it seems essential to carry out 

performance tuning through the use of software tools. A large number of 

monitoring tools and techniques exist and a comprehensive survey has been 

compiled by McDowell & Helmbold [McDo891. 

One of the oldest program monitoring tools is the profiler. Its function is to 

indicate to a programmer where a program has spent most of its execution time, so 

enabling subsequent optimisation. In the ca$e of the Unix profilers prof and gprof, 

data is collected during a program's execution and is displayed in the form of a list 

of procedure names, together with the percentage and absolute execution times 

spent in each one. This information can be augmented by adding the procedure 

call graph and calling frequency. Procedure data is collected by procedure call 

counting, and timing information is collected by sampling the program counter 

periodically and applying some statistical properties of the program to produce 

figures for the entire run. There are a few problems with this kind of profiling, as 

sometimes due to statistical errors and certain program behaviour, such as 
recursion, the profiler will return wildly inaccurate times. Sequential profiling of 
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this kind can be extended to parallel programs so that each process collects its own 

information. 

However, in parallel programs, other factors that do not arise in sequential 

programs, such as interprocess communication, are of vital importance and have 

to be measured. Events such as interprocess communications are indicative of the 

data flow within a program, which is something that is not covered at all by 

conventional control flow profilers. Some of the most important information about 
a program that uses message passing is the data regarding the sending and 

receiving of messages, where such messages are used to control the execution of 

the program (the details of this are discussed in the last section of this chapter). As 

an additional general problem, profiling user level threads is difficult if profiling 
information is only collected at the process level. 

Problems Encountered in Monitoring Parallel Programs 

The most obvious difficulty in monitoring a parallel program is the potential 

for it to generate huge amounts of monitoring data. This can happen because 
parallel programs, by their nature, tend to have more complex data and control 
flow than sequential programs, meaning that more information has to be collected 

to capture the precise state of a computation. Moreover, the adage that correct 

results do not imply a correct program is certainly true, as the total number of 

program behaviours can grow exponentially with the number of processes a 

parallel program uses. In addition, there are several other problems more specific 

to parallel processing: 

Non-determinism: this happens when the outcome of a particular operation 

cannot be predicted in advance, because it is dependent upon time factors 

prevalent at the instant of its execution. More often that not, faulty behaviour of 

this kind may be difficult to repeat or in fact may be non-repeatable. 

Probe effect: exact information cannot be gathered about a program without 

disturbing its underlying computations. This usually comes to light in time 

critical code, which can have its behaviour altered due to the overhead of 

executing the monitoring code. For instance, tracing a parallel program can 

sometimes remove the occurrence of errors by forcing the serial execution of 

program code. Alternatively, hopefully to reduce this influence, an external 

process can be used to snoop on a program. This mechanism can work quite well on 

shared memory systems [Ara188] but is less useful with distributed memory 
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systems. Time critical code can be found in real-time systems, or in more 

commonplace locations such as run time scheduling. 

Clock synchronisation: in the absence of a single global clock, it is difficult to 

reason about the state of a program at any given instant. Spatially ,distributed 

events happen at their own pace, making it difficult to take an accurate snapshot 

of how a program is progressing. This means that is it not possible to single-step a 

program in the traditional sense so that one event occurs at a time. 

Visualisation Tools 

To combat the problems of trying to unravel parallel program profiling data, 

potentially approaching megabytes in size, graphical interfaces to profilers have 

been developed. These allow events in a program to be filtered and displayed in a 

palatable fashion so that crucial events can be identified. Visualisation can either 

be performed during the execution of a program or at some later date. Naturally, if 
real-time visualisation is used, some interference (probe effect) will perturb the 

working of a program. This is especially true of distributed memory systems, as 
profiling data has to be exchanged between nodes in competition with real data, 
before it becomes out of date. Of course, even postprocessing of the data has some 

impact on a monitored program's performance, as the data still has to be collected. 

Bernstein et al describe two visualisation tools [Bern891 that have been designed 
to work with the Preface Fortran preprocessors [Bern881. These tools are intended 

for use on shared memory multiprocessors and cover the three aspects of program 

visualisation. 

(1) Collection of data at time of call, possibly by interacting with the operating 

system or a hardware monitor. 

(2) Preprocessor support so that tracking routines can be inserted for every 

instance of a parallelism construct. 

(3) Viewing of data, in real-time or after program execution has finished. 

Timing data generated from a profiled run can be attributed to one of the 
following sources: 

(1) Application work - user program, system time and idle time. 

(2) Waiting (e.g. at barriers). 

(3) Parallelisation/synchronisation routines. 
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To display this information succinctly, timings can be converted into a two 

dimensional bar for each process of a program, with each bar subdivided vertically 

into periods of parallel and serial activity. Bar sections are horizontally divided 

into time components for: (i) parallel activity, (ii) serial activity, (iii) 

parallelisation overhead, (iv) system time, (v) idle time. An example of the type of 

output generated by the Preface-2 display tool for a parallel program consisting of 

three processes is shown in Figure 2.9. 

MASTER SLAVE 1 SLAVE 2 

........... ........... ........... .....••.... 

Figure 2.9 - Visualisation of a parallel program. 
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Other visualisation work has been carried out by Dongarra et al [Brew88] in the 

Memory Access Package (MAP). In this model, references to array elements are 

displayed instead of control flow information. For instance, every time an array 

element is read or written, a corresponding change is made to a screen display. 

This tool is meant to be used as a post processor, necessarily, because of its high 

cost of collecting the information. Even so, information from the tool can be used to 

check the memory accessing behaviour of an algorithm so that it can be compared 

to access patterns of rival algorithms. 

Summary 

Program monitoring tools come in many different forms, with one of the first 

[Russ69] being an interactive system which presented a graphical display of 

potential parallelism in Fortran programs together with any detected bottlenecks. 

The analysis of early Fortran programs led to the discovery that most programs 

spend most of their time in a few loops [Knut71], and work was also done by Kuck 

[Kuck72, Kuck74] which showed the speed up of programs and the utilisation of 

processors for a number of standard problems. 

As the motivation behind parallel programming is greater program 

performance, the areas of performance evaluation and improvement are being 
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integrated into debugging. A parallel program that does not run as quickly as 

expected can sometimes have a performance fault. The methods for examining the 

execution of a program, and rectifying the problem, are in essence the same as 

those used in tracking algorithmic errors. Information such as memory access 

patterns and thread waiting times are common to both disciplines, though 

performance monitoring also entails collecting some more specialised data such 

as: message passing statistics, message send/receive delay times, excessive 

synchronisation waiting, memory channel utilisation and system snapshots. 

Parallel Debuggers 

In recent years, many programmers have obtained practical parallel 

programming experience through the increasing availability of multiprocessors. 

Academic and commercial surveys have identified that a large proportion of the 
time spent in the development of software is spent during the testing and 

debugging phases, with most programmers agreeing that a good debugger is an 
indispensable tool when writing complex programs. Parallel programming has 
traditionally been thought of as being a more demanding discipline than that of 

sequential programming because of its very nature, i.e. many operations 

happening at the same time. However, the main source of errors in parallel 

programs comes not so much from the operation of the threads of control 
themselves, but from the communication framework between them. 

Problems and Errors F6und in Parallel Programming 

For shared memory machines, the Il10st common fault involves errors in 

accessing shared variables. Either a value is shared when it should be private, or 

private when it should be shared. This situation can arise through improper 
(unintentional) data sharing either, (i) temporally or (ii) locationally. In a 

temporal error, because of faulty synchronisation, data is shared incorrectly 

between threads of control when its access ,should be controlled. For example, if 

several threads that update a shared sum are permitted to access the sum at the 

same time, it is likely that the value of the sum will become inconsistent, with 

updates being lost. In a location error, data is placed in a region that is not 
suitable for its use, in which it is made unintentionally shared or p'rivate. This can 

result from an oversight of the compiler or from programming errors due to a lack 

of understanding of the shared memory mechanism. For example, if an operating 

system allowed memory to be shared at the page level, errors would occur if 
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intended private variables were allocated on the same memory page with data 

that was shared, or if subsequently, the page was to be shared. 

Distributed memory machines do not have the same type of sharing faults 

found in shared memory machines, but instead errors can arise in the flow of 

messages between nodes. One of the most common of these flow-errors is 

mismatched messages, where a thread is expecting one type of message but 

receives another. This can cause the node to get out of step with its partners, 
leading to a partial or complete failure of the program. 

Some parallel programs contain unwanted non-determinism in the form of race 

conditions. Such a condition can arise when the correctness of executing a 

statement is dependent upon the prevailing timing conditions. These situations, 

generally, occur in shared memory systems, because of their need to specify 
synchronisation to control access to shared data. Nevertheless, message passing 

systems can also contain race conditions resulting from poorly designed inter-node 
communication protocols. 

Apart from the faults which parallel programming can introduce, there are 
also some difficulties in the mechanics of debugging. One such difficulty is that an 

error can occur in one part of a program and reveal its symptoms in a completely 

different section of the code. This problem can occur in serial programs, but in 

parallel programs it can be much worse, as different code sections can be executed 

by separate processors. The programmer is then faced with the problem of 

tracking backwards through the execution of a program, which may have 

behaviour that is hard to reproduce or is non-deterministic. Moreover, this cannot 

always be done, as the original error can be quickly obscured by the actions of 

other threads before it can be investigated by a debugger. 

In problems that have faulty timing or synchronisation, the number of 

processors that a parallel program is exec\lted on can be a factor in its correct 
functioning. Most parallel programs start life running sequentially or with 

limited parallelism. Once some confidence has been achieved, large amounts of 

parallelism are used, where possible, but this can lead to the uncovering of latent 

faults. This problem originates from not being able to thoroughly test all routes 

and combinations in a program and can come as a nasty surprise to a supposedly 
correct program. 

As might of been gathered, not all today's parallel software started life as 

parallel code, as many existing dusty deck serial programs have been parallelised. 
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Moreover, almost all the numerical algorithms that are used in parallel programs 

are simple modifications of existing (serial) algorithms and are not customised 

parallel algorithms as such. Therefore, although it may be quicker, it has been 

observed that it is generally harder to hand parallelise and debug parallel 

programs that originated from serial programs, than to write new parallel code 

from scratch. The leading reason for this is that serial programs were largely 

designed with no thought to parallelism, with the result that tangled control flow 

and the use of certain data structures often seem to conspire to force unnecessary 
serialisation. Furthermore, when serial code is parallelised, programmers often 

have to contend with bad programming practice, such as poor modularity of data, 

coupled with a lack of understanding about what the code actually does. 

Fortunately, these problems reflect the transition in writing software, from serial 

to parallel code, and may become less severe as newer code gradually replaces the 

old. 

Methods of Debugging 

There are a number of techniques that have been used for debugging parallel 
programs. These methods include: 

Traditional debuggers: sometimes called breakpoint debuggers, these tools operate 

by permitting a user to stop a program during its execution, examine the state, 
then continue, or reexecute from the beginning in order to stop at an earlier point 

in the execution. This method of working is called cyclic debugging as it involves 

examining repeatable states and state transitions. Tools of this type have been 

extended to cover multiple processes simultaneously (e.g. cdb and pdbx) but fall 

foul of the fact that parallel programs often have non-repeatable behaviour. 

Event-based debuggers: these tools view the execution of a program as a sequence 

of events and are generally concerned with analysing event histories (in a similar 

way as event-based monitoring). Determ,inistic replay of non-deterministic 

programs can be obtained if events can be recorded simultaneously. Event data 
can be used in several different ways: (i) browsing, (ii) replay, (iii) simulation. To 

browse the information, filters are needed to select events of note. Sometimes all of 

the events can be examined by producing what amounts to -a movie of the 

execution of a program. When a program is replayed, events are used to control the 
reexecution of the program, allowing the use of traditional debuggers without 

changing the program's behaviour. Following on from this, events can be used to 
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simulate the environment of a program, enabling further debugging to take place, 

without reexecution of the program. 

As an alternative approach to using events, the occurrence of events can be 

used to control the execution of a program. This can be achieved by defining 

sequences of events with corresponding actions, in a similar style to path 

expressions [Bate88]. Thus, when an event occurs some action can be taken, such as 

signalling the event, or perhaps if the event was signalled as a result of an 

oversight in its specification, the specification could be altered and the execution 

of the program con tin ued. 

Static Analysis: tools of this kind perform similar checks to those performed in the 

dependency analysis phases of auto-parallelising compilers. Checks are made for 

structural faults in programs, arising from synchronisation and data-usage errors. 
Examples of such errors are deadlock and the reading of uninitialised variables. 

Note that, such analysis does not prove that a program works - as it does not 
examine a program's function. However, analysis of this kind can be useful in 

locating non obviously faulty code, and in circumstances where other debuggers 

cannot be used because of the probe effect. Other research is being carried out into 
formal methods, whereby parallel programs are translated into a formal model of 

concurrency, such as Petri-nets, to permit more comprehensive program analysis 

to take place [Ha1l90]. 

Operating System Support for Parallel Debuggers 

It may be all very well to reason about the functionality of a debugger, but 

many of its capabilities are derived from the facilities offered by its host operating 

system. A sequential debugger is expected to provide the following operations, 

either implemented in hardware or by the operating system [McDo89]: 

• to read or write a register or memory location, 

• to set and trap breakpoints, 

• to trap program exceptions, 

• to single step a program, 

• to trap memory accesses. 

A parallel debugger must supply all of these facilities for each process that it 

supports and furthermore provide: 

- 58-



The Nature of Parallelism - 2 

• the ability to trap on any interprocess communication, 

• the ability to modify/insertldelete such messages, 

• the ability to control environment factors such as timers. 

Hence, there are lessons to be learnt for operating system designers., to provide 

mechanisms to enable the collection and dissemination of both program and 

system wide statistics. Failure to do so creates an unnecessary barrier between the 

execution of a program and the ability of a programmer to monitor it. This may be 
deemed acceptable when working with high levels of program abstraction, but it is 

in effect a false reality, as no low level information is available to effectively 
support the monitoring and debugging of such abstractions. 

Summary of Monitoring Tools 

As tools become more elaborate and offer more functionality, there is a 

tendency to combine the role of several tools under the banner of a single notional 
tool. By starting at the design stage, tool designers can simplify their job if there is 

some common framework for tools to be integrated to exchange information about 
the characteristics and implementation details of programs. Moreover, the jobs of 
monitoring and debugging a program are becoming intrinsically linked by 

sharing common data and techniques, with graphical front-ends permitting high 

levels of user interaction. Some tools allow programs to be monitored in terms of 

complex objects and opera..tions [Shen90, LeB190] rather than the low level machine 

approach common to old-style debugging. Admittedly, the performance tuning of a 

program can involve the examination of some rather esoteric data, but the ways in 

which this data can be collected and displayed is merely an outgrowth of more 
common monitoring techniques. 

Probably the most useful attributes of a parallelism monitoring tool are a 
method to unobtrusively observe a parallel program, and a way to meaningfully 

sequence the events so observed. These attdbutes are especially important when 
considering scalability in parallel programs. Currently, monitoring tools 

generally deal with only a few threads of control. In the machines of the future, 

methods will have to be developed so that hundreds or possibly thousands of 

threads of control can be represented if necessary, without an appreciable loss of 

usability. Thus, one of the capabilities of such a tool would be to allow the 

debugging of a single or a group of threads, while the other threads continue as 

normal. This may not be too difficult for some programs, but for others which have 

time-dependent constructs such as timeouts, things will not be quite so simple. 
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2.3 Parallel Programming Mechanisms 

Many surveys, almost too numerous to mention, have been made of parallel 

programming constructs and techniques [Alma89, Andi77, Andr82b, Ba189, Bald87a, 

Blo079, Karp87, Perr87]. But, given the rapid pace of research no survey· could ever 

claim to be complete, except perhaps at the time of its writing. With the evolution 

of the understanding of parallel systems, and software engineering practices such 

as data abstraction, parallel programming styles have changed so that these 
interests might be reconciled. However, even as the earliest constructs of parallel 
programming have become so well known that they have nearly passed into 

folklore, the fickle nature of parallel programming means that it is common to 

find them appearing thinly disguised even in the newest of languages. 

Furthermore, due simply to the huge number of parallel languages, there is not 

the time to make a complete survey of them here. Thus, this section concentrates 

on the central techniques of parallel programming while omitting some of their 
derivatives. 

When designing a parallel programming notation, Ghezzi [Ghez85] has 

identified that there are three main issues to be addressed. These can be expressed 
in a slightly modified form to give: (i) how threads of control are specified, (ii) how 

these threads communicate, and (iii) how they synchronise their operation. Over 

the next five sections it ~ill become apparent that many different parallel 

programming techniques can be applied to solve the same problem. Of course, 

each method has its own merits and tradeoffs, but as such, there are no definitive 
guidelines to producing the most effective parallel software. 

2.3.1 Specifying Parallel Execution 

There have been many proposals for syntactic notations for specifying parallel 

execution in a program. In some of the early attempts, no differentiation was made 

between the definition of a thread of controi and its synchronisation constraints. 

This lead to a succession of mechanisms which imposed specific synchronisation 

policies that attempted to trade expressive power for ease of use. 

Coroutines 

Coroutines were devised as a means of obtaining concurrency in programs by 

exploiting the pseudo concurrency offered by a single processor. Coroutines allow 
the transfer of control among a collection of routines (procedures) that do not 

exhibit a hierarchical relationship with respect to the transfer of control [Conw63a]. 
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The transfer of control between coroutines is achieved by the resume command 

whose syntax is "resume routine". The execution of this command transfers 

control to the named routine after saving enough state information so that control 

can return to the instruction following the resume. This enables control to be 

transferred back to the original routine by the named routine executing another 

resume. The coroutine model allows many threads of control to exist but allows 

only one thread to be active at a time. Coroutines have been implemented in a 

number of older languages including SIMULA [Nyga78], BLISS [Wulf71] and 
Modula-2 [Wirt80]. 

Fork and Join 

The syntax of the fork statement [Denn66, Conw63b] is "fork routine", the action 

of which creates a new thread of control that runs concurrently with the forking 

thread. The join statement, is a control flow synchronisation construct whose 

invocation "join", causes the suspension of the calling thread until all of its 
children (forked threads) have terminated. There is a more primitive variant of 

the join construct "join m,g" , which has a more complex interpretation. The 
execution of this form of the command indivisibly subtracts one from m (normally 

a shared variable) and either goes to the statement labelled g if m is zero, or 

otherwise executes the statement that follows the join, usually a quit that 

terminates the program. 

The fork and join constructs are the most powerful mechanisms for creating 

and terminating threads of control as there are no encumbering rules or syntax for 

their use. Consequently, programs that scatter such statements throughout their 

code, executing them conditionally and iteratively, become hard to understand 

because there are no inherent relationships between any pair of fork or join 

statements. Software that makes use of these constructs includes the Unix 

operating system [Ritc74], and the languages PLil and Mesa [Mitc79]. 

Cobegin 

The cobegin statement is a parallelism construct similar in operation to the 

fork statement, allowing the denotation of a block of statements that are to be 

executed concurrently. Declarations take the form of "cobegin 8 1 II 8 2 II .. II 8 n 

coend", which means that each of the statements 8 1 .. 8 n are to be executed in 

parallel. Each of the 8 i may be of any statement type including another cobegin. 

The cobegin-coend constructs are more structured and less powerful than the fork­
join combination, as each cobegin must be matched with a corresponding coend. 
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Variations of this statement, first introduced as parbegin by Dijkstra [Dijk65a], 

have been included in the languages Edison [Brin81] and Argus [Lisk82]. 

DoaH 

This construct can be thought of as a specialisation of the cobegin statement, in 

which statements marked for parallel execution must appear inside a loop 

construct that allows the programmer to use an index mechanism to identify 

eligible statements, rather than writing each one out explicitly. Often as a result 

of this, the number of parallel statements in a doall is generally determined at run 

time as it is expressed as a parameter, as opposed to cobegin whose number of 

statements is fixed at compile time. 

There are many variations on the basic do all that can be used to specify a 

variety of loop behaviours [Wolf89]. For example, the sequential Fortran DO 

statement will execute loop (a) deterministically, while the results of loop (b) are 
non-deterministic as loop iterations may be executed in parallel in an unspecified 
order with no synchronisation enforced between them. 

(a) 

(c) 

DO (I = 2, N-l) 
A(I) = A(I+l) + A(I-l) 

ENDDO 

FORALL (I = 2, N-l) 
8

1
: A(I) = B(I) + ccn 

8
2

: .. 

ENDFORALL 

(b) 

(d) 

DO ALL (I = 2, N-l) 
8

1
: A(I) = A(I+!) + A(I-l) 

END DO 

DOACROSS (I = 2, N -1) 
A(I) = B(I) + C(I) 

ENDDOACROSS 

In loop (c), all the values of BaJ and e(l) are fetched, all the additions are done, 

then all the values of A(l) are stored. Furthermore, the semantics of forall force 8 1 

to be executed for all values of i before 82 is executed. In loop (d), iterations are 

executed concurrently with the provision that indexes are allocated to threads in 
strict ascending order. 

Process declaration~ 

In this scheme, some of the procedures that comprise a program have a special 

denotation marking them as procedure bodies for threads of control that will 

execute in parallel. Pratt [Prat84] gives a discussion of how progressive relaxation 

of the constraints on the sequential calling and execution of procedures eventually 

leads to parallel threads of control. Process declarations provide a more modular 

approach for declaring parallelism than say the cobegin statement because of 

their ability to support data abstraction, therefore aiding understandability and 

modifiability. Some examples of this kind of construct are to be found in the 
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languages Concurrent Pascal [Brin75), Modula [Wirt77], CSP [Hoar78), PLITS 

[Feld791, Ada [DoD80), and SR (Synchronising Resources) [Andr82a). 

2.3.2 Thread Communication and Synchronisation 

There are essentially two ways in which threads of control can communicate, 

either they make use of shared memory and share variables directly, or shared 

memory is not used (it may not be available) and they communicate by making 
procedure calls to explicitly exchange messages. Threads of control may need to 

synchronise their operation for two reasons. Firstly, to moderate accesses to 

shared data, and secondly to moderate their control flow. Control synchronisation 

affects only the control flow of the participating threads, while data 

synchronisation represents a synchronisation point and an information exchange. 

As a general observation, on one hand programs that make use of shared memory 
have to be concerned about synchronising accesses to shared data by selectively 

delaying the execution of threads. On the other hand, those that make use of 
message passing need to be concerned with the distribution of data and the form of 

message exchange between threads of control, and not with synchronisation which 
happens automatically. 

When shared variables are used for interthread communication, 

synchronisation must be enforced between threads to ensure that they access the 

shared data in a consistent manner. It is useful to identify two types of 

synchronisation: mutual exclusion and conditional synchronisation. Mutual 

exclusion ensures that the execution of a sequence of statements can be treated as 

a single indivisible operation when considering thread interleavings. Such a 

sequence of statements that must be executed indivisibly in order to preserve 

program consistency is called a critical region. Mutual exclusion is achieved by 

only letting one thread operate inside a critical region, with any others being 

blocked from entering the region until that thread has left. The term mutual 

exclusion, naturally enough, refers to the subsequent mutually exclusive 

executions of the critical region. For example, consider a group of threads that 

sum a vector. Each thread sums a portion of the vector, then updates a counter 

representing the number of elements summed and the sum itself.- When a thread 

updates the counter and the sum, this should be treated as an indivisible (or 

atomic) action so that the relationship - the counter holds the number of elements 

summed and the sum holds the total, always holds true for other threads. Mutual 

exclusion is a method for making the effect of simultaneous accesses be the same 
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as if they had been made in some unspecified but legitimate sequential order. This 

requirement is known as the serialisation principle. 

Conditional synchronisation is used to delay a thread until some specified 

condition is met. This can be viewed as being a generalisation of mutual exclusion 

by using an arbitrary condition to block competing threads. A sample application 

that uses conditional synchronisation is the implementation of a shared buffer. 

The semantics of reading from the buffer are: if the buffer is not empty remove a 
value, or else wait until a value arrives. The semantics of writing are: if the buffer 

is not full then insert a value, or else wait until there is space in the buffer. To 
guarantee consistency when operating on the buffer, both reading and writing 

operations must of course be executed atomically. 

Four constraints are imposed on the operation of primitives and algorithms to 

solve critical region problems. Firstly, machine instructions are executed 

indivisibly and memory references are serialised to create predictably reliable 
machine operations. Secondly, the finite process assumption holds, so that a 

critical region is executed in a finite time. Thirdly, threads operating outside of 
their critical regions cannot prevent other threads from entering their own critical 

regions. Finally, threads must not be indefinitely postponed from entering their 

critical regions. A synchronisation mechanism must be able to demonstrate that it 

does not violate any of these constraints when attempting to synchronise a given 

problem. 

Algorithmic solutions to critical region problems have abounded for many 

years but many have contained several minor flaws. Dekker's algorithm was one 

of the earliest to demonstrate a good (but not complete) solution [Rayn86], with 

improvements made subsequently by Dijkstra [Dijk65b] and later Lamport 

[Lamp74]. One of the difficulties that was encountered in writing good mutual 

exclusion algorithms was that solutions were written using only conventional 

sequential instructions, such as conditionals ('if tests) and assignments. As 

research into synchronisation progressed, special purpose synchronisation 

constructs were developed, sometimes implemented by hardware, to make 

synchronisation code much easier to write. Moreover, as the use of parallel 

programming became more widespread, new languages supporting ever more 

elaborate synchronisation constructs have become available. 

The synchronisation constructs described in the following sections take an 

operational view of synchronisation behaviour. That is, the execution of a parallel 

program is viewed as a sequence of indivisible steps formed by merging the 
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sequences generated by the program's threads of control. Not all interleavings of 

the steps will produce correct results, hence a synchronisation mechanism is 

needed to enforce constraints on the possible interleavings to ensure correctness. 

This technique of viewing synchronisation as such an ordering of events is useful 

when explaining how synchronisation mechanisms work. However, as the number 

of threads increases, the number of possible interleavings grows very rapidly 

making exhaustive analysis very difficult. Formal methods for describing 

synchronisation in terms of axioms and inference rules have been developed to 
counter this situation [Floy67, Hoar69], though these are not discussed here. 

Hard ware Synchronisation Primitives 

To ease the task of writing purely software based synchronisation protocols, 

computer architectures have sometimes offered support in the form of special 

hardware instructions which are executed atomically, even though they may 

notionally consist of several individual machine instructions. 

Busy-waiting 

Busy-waiting is the most basic synchronisation mechanism of all. When a 

thread wishes to enter a critical region it makes a procedure call that operates on a 

variable known as a lock (or spinlock). Hardware support in the form of an atomic 

test-and-set instruction is provided to implement operations on locks as they must 

be performed atomically. If a lock variable is unset when the spin lock procedure is 

invoked, the calling thread sets it, and then returns to continue with its execution. 

If the lock is set when spinlock is invoked, however, the thread waits (spins) by 

repeatedly testing and trying to set the lock until it is successful. When the thread 

leaves a critical region it calls another procedure (spinunlock) to unset the lock. 

Busy-waiting is best suited to applications where critical sections of code 
consist only of a few short instructions LHoog83] or when alternative thread 

scheduling operations take a relatively long time. It is inefficient for threads to 

busy-wait for long periods of time, as they consume useful processor cycles that 

could be otherwise employed by other threads. For simple synchronisation 

protocols, busy-waiting is an acceptable synchronisation mechanism; however, for 

more complex problems, such protocols can be very difficult to design, understand 

and therefore prove correct. This follows from the basic nature of the mechanism 

which places great responsibility on a programmer to decide what synchronisation 

is required and how to provide it. Moreover, programming mistakes can be easily 

made by placing calls to spinlock operations in the wrong position or by omitting 
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them altogether. Machines that provide test-and-set operations include the IBM 

370 series and the Encore Multimax. A related operation, compare-and-swap, can 

also be used to represent locks with this being found in mM 370/168 machines. 

Fetch-and-Add 

Ifmany threads of control compete for access to a shared variable, it is possible 

for these threads to find themselves being blocked for a large proportion of their 

execution time. A non-blocking primitive, fetch-and-add(S,P), seeks to reduce the 

time spent in synchronisation by allowing multiple threads to go ahead and 

execute instead of just one. This mechanism can be viewed as extending the test­

and-set mechanism by returning an integer value rather than a boolean. This is 

done by adding an integer P to a shared variable S and returning the old value of 

S. These semantics are useful for implementing programs where threads need to 

simultaneously access separate parts of shared data structures such as queues. 

The fetch-and-add instruction is being implemented on the NYU Ultracomputer 
and the IBM RP3. 

Denelcor HE P 

This computer architecture has a variety of special features and instructions to 

support efficient synchronisa\ion. Every location in shared data memory and 

every general-purpose register has an extra bit used to indicate its access state, 

either full or empty. Furthermore, a load instruction can be made to wait until its 

source location is full and then indivisibly set the access state to empty. Similarly, 

a store instruction can be made to wait until its storage location is empty and then 

indivisibly set the access state to full. Instructions involving registers can be even 

more elaborate, as requirements for both the source to be full and the destination 

empty, can be imposed. To implement the atomicity of these register operations an 

extra bit is used to indicate that the register is reserved and that its value is on the 
way. 

These low-level synchronisation instructions are translated into higher-level 

operations by HEP Fortran. A variable can take one of three states: full, empty or 

reserved. For example, given Fortran variables A, Band C· the following 

statements can be executed: 

A = $C 

$C= A 

A = VALUE($C) 

wait for C to become full, assign to A, set C to empty, 

wait for C to become empty, assign to C, set C to full, 

read the value ofC regardless of access state, 

- 66-



A = SETE($C) 

A = WAIF($C) 

B = FULL($C) 

B = EMPTY($C) 

PURGE($C) 

Supplemental Note 

The Nature of Parallelism - 2 

read the state ofC regardless, set C to empty, 

wait for full, do not empty C, 

test for full, return result, 

test for empty, return result, 

emptyC. 

Recent work carried out by Herlihy et al [Herl90] has produced a formal way of 
describing the properties of synchronisation mechanisms in terms of their 

linearizability. The use of this measure has allowed a hierarchy of the power of 

synchronisation mechanisms to be drawn up, and has led to the development of 

the idea of wait free synchronisation based on manipulating shared queue data 

structures. 

Software Synchronisation Primitives 

Even if there is no hardware support available, effective synchronisation 

primitives still can be written. However, the implementation of these primitives is 
not always straightforward as a number of factors such as blocking, buffering and 

determinism have to be taken into account. 

Blocking Mechanisms 

In busy-waiting, threads that are blocked consume resources while they are 

waiting and also appear to a thread manager as active threads of control. If a 

critical region consists of a large number of instructions, synchronisation 

mechanisms that suspend threads in a queue can be more efficient. In the case 

where there are more processors than threads of control, busy-waiting is 

acceptable. However, if the converse situation is true, suspension of threads is 

generally better. That is, threads that are blocked give up their share of processor 

time until they are unblocked and can run. This behaviour can lead to the 

avoidance of certain faults when using busy-waiting. For example, consider a non­

preemptive scheduler that has to schedule t threads on p processors (t > p). If P 

threads busy-wait on spinlocks there is no way that any other thread can execute 

to release them. Hence, almost all software-based synchronisation mechanisms 

are either non-blocking or instead suspend threads that are not ready to execute in 

some kind of a queue. 
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Buffering Mechanisms 

In a message passing system, it is sometimes inconvenient for a thread to wait 

to communicate with a thread that is not ready. Hence, two styles of message 

passing synchronisation have been developed. In a traditional synchronous 

message passing system, when a thread wishes to send a message it is blocked 

(suspended) until after the receiving thread has executed its receive command. 

Moreover, when a thread wishes to receive a message, it is blocked until after the 
sending thread has executed its send command. In an asynchronous message 

passing system, threads that send messages do not wait until they are received 
before continuing their execution. This can happen because messages are 

implicitly stored in some order (buffered) by the message passing mechanism, 
allowing senders and receivers to execute at their own rates, provided enough 

storage is available for undelivered messages. 

Asynchronous message passing systems often have rules governing the 
management of their thread message queues. Facilities that are generally 
provided are methods for a thread to selectively discard messages from its queue 
without having to read them, and the implementation of message priority 

schemes. Simple priority schemes may store the messages in a single ordered 

queue, with more complicated schemes maintaining multiple queues. Provision 
\ 

can also be made for messages that are sent to threads that do not exist. For 

example, they may be discarded or perhaps queued until such time as a receiving 

thread is created or may even cause a receiving thread to be created. 

Non-deterministic Choice 

In many parallel programs, a thread of control may have to perform anyone of 

a number of actions depending upon the state of the computation. For example, 

consider a thread responsible for updating a screen display that receives messages 

from a group of worker threads. To implement the display thread, a construct is 

needed to continually check if any of the workers have produced a message 

without blocking indefinitely while checking on anyone worker. A mechanism to 

do this was suggested by Dijkstra in the form of guarded commands [Dijk75]. There 

are two guarded command tests, a one-off conditional and an i"terator. For the 

conditional, each of the guards (boolean tests) is evaluated then one statement 

corresponding to one of the true guards is executed - the choice of statement being 

made non-deterministically. For the iterative construct, execution occurs while 
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any of the guards are true, non-deterministically choosing a statement to execute 

from among the true guards at each iteration. 

if e.g. if x Sy~ m:=x 
guard

1 
: statement

1 ] execute one of 
0 guard

2 
: statement2 the true guards y ~ x~m:=y 

ti 
ti 

do e.g. do ql > q2 ~ ql,q2:= q2,ql 
guard

1 
: statement

1 ] execute while 
guardz : statement2 any are true 0 q2 > qs ~ Q2,q3 := Q3' Q2 

od 0 Q3 > Q4 ~ Q3,Q4 := Q4' Q3 

od 

Figure 2.10 - Guarded commands. 

Figure 2.10 illustrates the templates of the two forms of guarded commands, 
with accompanying examples from the original paper. Parallel programming 

languages that exploit variants of guarded commands include Occam (ALT 
statement) and Ada (select statement). 

2.3.3 Communication and Synchronisation via Shared 

Variables 

Although the idea of communication between threads of control via shared 
variables is conceptually trivial, ensuring that meaningful and correct 

communication takes place, however, 'is not. A hierarchy of software-based 

synchronisation mechanisms have evolved, progressively offering more 

abstraction and comfort to programmers. The cost of this process of abstraction, 
though, has been borne by the implementations of these mechanisms, often 

resulting in large operating overheads at run time. This tradeoff is quite 

acceptable when the intended use of these mechanism is considered, which is the 

programming of resource allocation problems (e.g. dining philosophers). In such 

problems the emphasis is on elegantly and reliably expressing a correct solution, 

rather than a need for absolute efficiency. However, there are many other types of 

problems to which parallel programming can be applied that have quite different 

emphases on their requirements. 
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Semaphores 

Semaphores provide a more abstract view of synchronisation than simple busy­

waiting and do not need any special hardware instructions for their 

implementation [Dijk65a, Dijk68]. A semaphore is an initially non-negative, integer­

valued variable on which two operations are defined: P (wait) and V (signal). 

Given a semaphore 8, a thread calling P(8) is delayed until 8>0 and then executes 

8:=8-1; the test and decrement being executed as an indivisible operation. A call to 

V(8) performs, as an indivisible operation, 8:=8+1 and wakes up a thread suspended 

on 8 if there is one. Hence, when a thread issues a wait operation on a semaphore 

and encounters either zero or a negative value it will be suspended until another 

thread has signalled on that semaphore and given it a positive value. 

There are many variations on the basic semaphore scheme, such as binary 
semaphores and counting semaphores, but all implementations of semaphores are 

assumed to exhibit fairness. This guarantees that no thread delayed while 
executing a P operation will be delayed forever if V operations are performed 
infinitely often. This fairness condition has to be imposed because many threads 

can wait on the value of a semaphore, and if events were left to chance, it would be 

possible for a thread never to be released if other threads were allowed to proceed 
in precedence. In practice, fair:p.ess is easy to obtain, as threads waiting on a 

semaphore can be stored in a first-in-first-out queue. 

While semaphores can be used to express almost any kind of synchronisation 

behaviour, they remain unstructured primitives with a high potential for misuse. 

Similar to busy-waiting, the execution of each critical region must begin with a 

wait operation and end with a signal operation. If this is not done the mechanism 

breaks down, in all likelihood causing program failure. Furthermore, there are no 

inherent differences in the way in which mutual exclusion and conditional 

exclusion are expressed, making the interpretation of a piece of synchronisation 

code more difficult. 

Read and Write Locks 

This mechanism is more flexible than busy-waiting, differing by using two 

distinct lock types. If a variable is not locked, a thread can apply either a read lock 

or a write lock. A thread wishing to read a variable may do so ifit is not locked or if 

there is only a read lock. If there is a write lock, however, the thread must wait 
until the write lock is relinquished. In the case of a thread wishing to write, if 
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there is any kind oflock, the thread must wait until it is given up and then apply a 

write lock of its own. 

This kind of locking can provide a more convenient method for programming 

some problems, such as readers-and-writers [Holt83, Deit84], than. other less 

structured mechanisms like semaphores. Programs are more understandable 

because some idea of the intention of a thread towards shared data can be noted 

from the types of locks. it employs. Locking of this kind has been greatly extended 

by introducing many new lock types and rules, examples of which can be readily 

found in database systems [Gray78]. 

Barriers and the Force 

The barrier construct was developed to synchronise programs that operate by 

partitioning large data structures over a number of processors (sometimes called 

the single program multiple data SPMD paradigm). A barrier is used to 
synchronise threads of control by forcing them to wait at a common point in their 
shared code, the barrier, until a specified number of them are waiting. A barrier is 
initialised with an integer value that represents the number of threads that it will 

stop. When a thread arrives at a barrier, it checks the number of waiting threads. 

If this value is one less than the initial setting of the barrier, it continues 
\ 

execution after waking up all of the waiting threads, otherwise it suspends itself. 

The force [Jord84,Jord85] is a generalisation of the barrier. Here, all threads wait 

at the barrier until the final one arrives. When this occurs, this thread executes 

the code between the barrier and its end barrier statement, while the others 

remain waiting. After the active thread has finished executing its block of 

statements, all threads continue executing at the statement following the end 

barrier statement. Notice, if there is no code between the barrier and its end 

barrier statement, the construct behaves like a normal barrier that traps all the 

threads. Figure 2.11 illustrates how calls to.barrier routines, with a barrier X, are 

used in source program code. 

Conditional Critical Regions 

Conditional critical regions (CCRs) [Hoar72, Brin72, Brin73b] were designed to 

overcome some of the structuring problems associated explicit locking-type 

synchronisation mechanisms. Shared variables are declared in groups called 
resources, to allow a compiler to check that shared variables are only referenced 

from CCRs associated with the corresponding resource. Code generated by the 
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statements 

barrier(X) 
statements executed 
by only one thread 

end barrier 
statements 

Figure 2.11- (a) Barrier construct and (b) Force construct. 

compiler guarantees mutually exclusive execution of the CCRs associated with a 

given resource. A resource is declared as follows, "resource r: VI' V2' ... , Vn ", with 

variables VI' V2' ••• , V n being accessed by means of CCR statements. These take the 
form of "region r when B do S", where B is a boolean expression that references 

only variables that are in r and local to its own thread of control, and S is a list of 

statements. Furthermore, a variable can be in at most one resource and variables 
in resource r can be accessed only in CCR statements that name r. 

Conditional critical regions are good at providing synchronisation but they 

have two operational drawbacks. Firstly, they have been shown to be costly to 
implement, because of the large amount of run time checking required to enforce 

\ 

the synchronisation. In addition, program listings can be quite hard to follow as 

statements performing operations on resource variables are dispersed throughout 

the code, meaning that the entire program has to be studied to discover how a 

resource is used. 

Monitors 

The monitor concept was developed independently by Hoare [Hoar74] and 

Brinch Hansen [Brin73a] as an extension of the secretary concept [Dijk65a]. A 

monitor is an example of a modular design, encapsulating the definition of a 

resource and the operations that manipulate it. This overcomes one of the 

drawbacks of conditional critical regions by decoupling the details of a monitor's 

implementation from the ways in which it can be used. Hence, monitors and their 

descendants feature in parallel programming languages that are !lsed to program 

applications which contain numerous shared resources, such as operating 

systems. 

A monitor consists of a collection of permanent variables that are used to store 

the state of the resource, and some procedures to implement operations on the 

resource. The values of the permanent variables are retained between activations 
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of monitor procedures and can only be accessed from inside the monitor. There is 

an initialisation section inside a monitor that must be invoked before any of the 

monitor procedures can be called. This section of code, for example, may be 

responsible for initialising internal synchronisation variables, or may in fact be 

empty. Monitor procedures are written as conventional procedures, possibly using 

parameters and local variables, but they have the additional property that 

execution of monitor procedures is guaranteed to be mutually exclusive. This 

property means that if multiple threads try to make calls to monitor procedures, 
only one will succeed, and the others will have to wait, making it impossible to 

access resource variables concurrently. The syntax of the declaration of an 

example monitor mname and procedures mpl' ... , mPN is presented in Figure 2.12. 

mname : monitor 

varDeclarations of permanent variables 

procedure mP
1 
(parameters) 

varDeclarations of the variables local to mPl 
begin 

Code to implement mP
1 

end 

procedure mP
N 

(parameters) \ 
varDeclarations of the variables local to mPN 
begin 

Code to implement mP
N 

end 

begin 
Code to initialise the permanent varia.bles of mname 

end 

Figure 2.12 - Monitor declaration. 

Calls to monitor procedures are made by prefixing the name of the monitor to 

the name of the procedure. For example, .mname.mp(arguments) will activate 
procedure mp of monitor mname upon invocation. 

There have been a number of proposals for realising the internal conditional 

synchronisation required for monitors. The earliest proposal is based on condition 

variables on which two operations are defined, wait and signal [Hoar741. The 

execution of condition. wait causes the invoking thread to be blocked and to 

relinquish its control of the monitor. The execution of condition. signal causes a 

blocked thread to wake up if there is one, with the invoker proceeding as normal. 

(This is similar to events that have been developed for use outside of the monitor 
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environment.) More control over thread scheduling can be obtained by using the 

conditional wait statement, which takes the form wait(B), where B is a boolean on 

which the invoking thread waits. Further extensions and refinements to these 

synchronisation operations can be found in Concurrent Euclid [Holt8!, Holt83], 

Concurrent Pascal, Mesa [Lamp80], Modula, Modula-2 and Pascal-Plus rWels79]. 

Unfortunately, the synchronisation properties of monitors are not so attractive 

as might seem at first glance. Admittedly, monitors provide a tidy abstraction of a 
resource manager with a well defined interface - but therein lies the problem. 

Consider two threads that have to access two shared resources controlled by 
monitors. As a result of their programming, the first thread enters the first 

monitor and at the same time the second thread enters the second monitor. Now, 
assuming that both threads are successful in obtaining their respective monitor 

ownerships, then if they have to access the other's monitor before relinquishing 

their own, both threads will be suspended indefinitely as neither can give way. 

This deadlock scenario is not limited to pairs of threads and monitors, and can be 
generalised to many threads and many monitors. Hence, the implications of 
nested monitor calls have been investigated [List77, Hadd77] and it turns out that 

this kind of synchronisation fault can occur with almost any non-trivial 

synchronisation construct. 

Serializers 

A serializer [Atki77] completely encapsulates the resource it manages, to form a 

protected resource, but with the resource itself remaining a distinct object within 

the serializer. Serializers are descended from monitors in that they inherit many 

of the latter's attributes. Serializers consist of a set of descriptions of internal 

objects, with operations to manipulate the objects, and the guarantee that the 

execution ofserializer operations is mutually exclusive. However, serializers also 

incorporate a mechanism for increasing concurrency when working with resource 

data by enabling the invocation of resource'operations from outside the control of 

the synchronisation mechanism. This is achieved by enabling threads to 

temporarily leave the serializer and enter the resource to perform the operations. 

Serializers have two native features, queues and crowds". The enqueue 

operation specifies the queue a thread should wait in and the corresponding 

condition to leave that queue. A serializer automatically restarts the thread at the 

head of a queue if its condition is met. Crowds are unordered collections of threads 
used to handle synchronisation resource state information, i.e. they keep track of 

what threads are in the resource and what operations are currently being 
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executed. The normal sequence of events for a thread requesting access to a shared 

resource is: 

enter 

enqueue 

dequeue 

join_crowd 

leave_crowd 
exit 

gain possession of the serializer, 

release possession of the serializer andjoin a queue, 

leave the queue and regain possession of the serializer, 

release possession of the serializer and enter resource, 

leave the resource and reenter the serializer, 

release the serializer. 

Figure 2.13 is an example of a serializer, written in CLU, to realise the readers 

and writers problem with a first-come-first-serve priority scheme [Blo079]. 

first_come_first_serve = serializer is read, write, create; 

rep = record[ waiting_q 
readers_crowd : 
writers_crowd : 
db 

queue, 
crowd, 
crowd, 
data_base ]; 

create = Initialisation code for the serializer to create the wait queue and, 
read and write crowds. 

read = proc<s:cvt, k:key> returns<data>; 
queue$enqueue < s. waiting_q > until 

< crowd$empty < s. writers3rowd > >; 
d: data 
crowd$join < s.readers_crowd > then 

d:= data_base$read < s.db,k >; 
end; 
return <d> 

end read; 

write = Code to handle write requests. 

end first_come_first_serve; 

Figure 2.13 - Serializer for FCFS server. 

Serializers present a more structured approach to writing resource 
management software than monitors, by way of maintaining a more supportive 

client-server abstraction. Serializers have established methods for handling 

request type information (e.g. request times) by the use of queues, and use the 

crowd construct to handle resource management. These improvements lead to a 

mechanism that is easier to use and more reliable than the basic moni tor 

mechanism [810079]. Other monitor-like mechanisms (e.g. Pascal-Plus envelopes) 

can give similar improvements in usability, however, the overhead involved with 

the operation of these mechanisms can make them unsuitable when resource 
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operations consume only small amounts of time, i.e. less than the time spent in 

synchronisation. Hence, monitors and their derivatives can be thought of as being 

good for coding heavyweight resource management problems - but inappropriate 

for the exploitation oflightweight parallelism. 

Path Expressions 

Path expressions are a synchronisation mechanism that was first defined by 

Campbell and Habermann [Camp74], though many extensions and variations to the 
original concept have followed [Habe75, Laue75, Camp76, Flon76, Laue78, And1791. The 

particular variation discussed here is taken from the Path Pascal programming 
language [Camp791. 

Path expressions are a centralised declaration of all the synchronisation 

constraints for a resource. These definitions are clearly divorced from their 

implementation and are enforced by code generated by a compiler. A path 
controller keeps track of the operations executed on each instance of a resource, 
and ensures that the operations executed on that resource conform to some legal 

ordering. When path expressions are used, a module that implements a resource 
has a structure like that of a monitor. The structure contains permanent variables 

which store the state of the resource, and procedures which realise the operations 

on the resource. One or more path expressions in the header of each resource 

define constraints on the order in which operations are executed, as no 

synchronisation is programmed in the procedures. The syntax of a path expression 

is "path path-list end", where a path-list is a mixture of operation names and path 
operators. Path operators include «c." for concurrency, u;" for sequencing, un:(path­

list)" to specify up to n concurrent executions of path-list, and U[path-listl" to 

specify an unbounded number of concurrent executions of path-list. Figure 2.14 

illustrates the use of path expressions to provide the synchronisation for a 

bounded producer-consumer buffer. 

The path expression indicates that: (i) executions of put() are mutually 

exclusive; (ii) executions of get() are mutually exclusive; (ii) a getO operation is 

always preceded by a putO operation; and (iv) at most N putO's have not been 

followed by a getO operation. 

Path expressions are an elegant notation for expressing synchronisation 
constraints expressed operationally (i.e. in terms of procedure executions), but 

they are poorly suited for specifying conditional synchronisation. Many problems 
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module buffer 
path N:(l:(put); l:(get» end 

var Local state variables for buffer 

procedure getO 

procedure putO 

begin 
Initialisation code for buffer 

end 

Figure 2.14 - Path expressions for a bounded buffer. 

that require conditional synchronisation, such as scheduling problems, can only 

be coded with path expressions by the introduction of additional mechanisms. 

2.3.4 Communication and Synchronisation via Message 

Passing 

A message passing system can be viewed as a derivative of the semaphore 

mechanism that has been extended so that when a message passing procedure is 
invoked, data is transferred as well as synchronisation provided. Typical forms for 

these calls are "send expression~list to destination-designator" and "receive 

variable-list from source-designator". In a message passing system, all 

communication and synchronisation can be performed by exchanging messages, so 

there is no need for any shared variables, making message passing systems ideal 

for use in distributed memory environments. The two main issues in the design of 

message passing systems are how the source and destination designators are 

specified, and how communication is synchronised. 

Specifying Channels of Communication 

When viewed together the source and destination designators of a pair of send 
and receive commands form a communications channel. The simplest kind of 

channels are those that permit one-to-one communication between threads, 

sometimes called point-to-point communication. More adv~nced forms of 

communication include broadcasts, in which a thread sends a message to all 

threads (one-to-many) and multicasts, in which a thread send a message to a group 

of threads. Various schemes have been proposed for naming channels, with the 

simplest method being direct naming. In this scheme, thread names are simply 

used as the source and destination designators. However, direct naming can be 
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inhibiting as implementation information about precise names and numbers of 

threads have to be hardwired into program code. For example, a resource server 

would not be expected to know in advance the identities of all its clients. 

A more flexible approach to channel naming is mailboxes, where a list of global 

names exists. Each name can appear as a destination address in any send and as 

the source address in any receive command. This scheme allows some degree of 

anonymity between threads and easily permits many-to-many thread 
communication. Unfortunately, for distributed memory systems it has been 

reported that there is a high communication overhead associated with this 
mechanism [Gele82]. There is a special case of mailboxes, though, in which a name 

may appear as the source designator in receive commands of only one thread. Such 
mailboxes are known as ports [Balz71] and allow many-to-one communication and 

selective many-to-many communication if ports can be shared. 

The source and destination designators can be fixed at compile time, which is 
static channel naming, or run time, which is dynamic channel naming. Dynamic 
naming is more powerful and can lead to more elegant and flexible programs than 

static naming. Unfortunately, this power has the respective penalty of making 

some programs much harder to u!1derstand and to reason about. In addition, in 

common with dynamic behaviour of any sort some run time overheads are 

incurred in the management of the dynamic naming. 

Not all message passing systems operate by using pairs of explicit send and 

receive commands. In an implicit receipt system, when a message arrives for a 

thread, a new thread of control is created to automatically invoke the receive 

procedure. Such a mechanism is useful in the construction server processes that 

contain multiple threads of control. 

Many parallel programming languages have chosen message passing as their 

interthread communication mechanism. Fpr example, one of the early notations, 

CSP [Hoar78], uses synchronous message passing via direct statically named 

channels. Thus, an output command takes the form of destination!expression, 

where destination is a thread name and expression is a simple or structured value. 

An input command takes the form of source?target, where source is a thread name 

and target is a simple or structured variable local to the thread containing the 

input command. Two threads communicate if they execute a matching pair of 

input/output statements (target and expression match if they have the same type). 
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The result of the communication is that the value of the expression is assigned to 

the target variable, with both threads then proceeding asynchronously. 

Due to the large volume of research into distributed systems, many distributed 

programming languages have been proposed that exploit message .passing for 

interprocess communication. The idea here is to hide the distribution of threads by 

restricting their interactions to message-based communication. (Other research 

has investigated the provision of virtual shared memory across a number of 
machines (e.g. Agora), though difficulties can arise if programmers are unaware of 

the non-uniform access times that occur.) Message-based languages include: 
Argus [Lisk82), Distributed Processes (DP) [Brin78), Gypsy [Good79), PLITS [Feld79), 

StarMod [Cook80), and SR [Andr82a). Further information on distributed 
programming languages can be found in a recent survey [Ba189). 

Message Passing Abstractions 

There are some higher level mechanisms that are commonly associated with 
message passing systems. These represent convenient abstractions that make 

certain distributed programming tasks easier for the programmer. All of the 

abstractions described can be implemented with variations of the basic send and 

receive primitives. 

Remote Procedure Call 

The remote procedure call is a convenient mechanism for the implementation 

of client-server systems. The idea behind. the client-server model is that resources 

are completely encapsulated and administered by threads of control known as 

servers. Other threads that wish to access a resource, the clients, send messages to 

the server thread instructing it to perform the desired operations on the resource, 

possibly returning results. Remote procedure calls are often used in distributed 

systems to hide the fact that clients and servers can be located on separate 

machines. 

Remote procedure calls can take the form of "call service(value-args, 

result-args)", where service is the name ofa channel, value-args is the data sent to 

the appropriate server, with result-args being the values returned. On the other 

side of the service, there are two basic approaches to designing server interfaces. 

In one approach the remote procedure is declared like a normal procedure with 

annotations to say that it is a server, and to indicate which parameters are used to 

supply inputs and which should return results. At run time the remote procedure 
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is executed as a server thread which waits for the receipt of a message. A thread 

that wishes to invoke a remote procedure sends a message to the server and then 

blocks until the results of the remote procedure call are returned. When the server 

receives a message, it examines its input parameters, executes its body, and then 

returns a reply message via its result parameters. 

A different approach for implementing servers is taken in the Ada 

programming language [DoD80]. Threads of control in Ada are called tasks, and 
remote procedures are called entries; which are ports into a server thread specified 

by means of an accept statement. Ada also offers another mechanism for 

interthread communication, which is that tasks declared in the same procedure 

can share variables. An example of an Ada task, named ResourceController, 

designed to control access to a given resource is presented in Figure 2.15. 

task ResourceController is 
entry GetControl; 
entry RelinquishControl; 
entry GetStatus(Y : inout INTEGER); 

end ResourceController; 

task body ResourceController is 
begin 

loop 
select 

when Condition! => accept GetControl 
-- entry GetControl's statements; 

or when Condition2 => accept RelinquishControl 
-- entry RelinquishControl 's statements; 

or when Condition3 => accept GetStatus(Y : inout INTEGER) 
.. entry GetStatus ' statements; 

else 
.- default statements; 

end loop; 
end ResourceController; 

ResourceController. GetControl; 
.- use the resource 

ResourceController.RelinquishControl; 

Figure 2.15 - Ada resource controller task. 

The resource controller loops indefinitely accepting calls to the entries 

GetControl, RelinquishControl and GetStatus. When the select statement is 

executed, each of the boolean guards is evaluated. If a guard is true, an accept 

sequence is said to be open. (If several sequences are open, Ada does not specify 
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which entry will be accepted.) Here, the guards are used to ensure that if and only 

if, a call to GetControl has been accepted only calls to RelinquishControl will be 

accepted - enforcing mutual exclusion on the resource and implying that 

GetStatus can only be called when no task is using the resource. If several tasks 

call GetControl simultaneously, only one call will be accepted and other calls will 

wait in a first-come-first-serve queue. This remote procedure call mechanism is 

called a rendezvous and an example ofa call to GetStatus is shown in Figure 2.16. 

task client task server 

call GetStatus of server 
pass parameter X 1----.. 

GetStat us 
, 

.. accept call to entry 
GetStatus from whomever 

wait wait 

" X y , 
at GetStatus 

,-

accept parameter Y 

• execute body of 
GetStatus 

Y • send value of Y 
X 

back to client -
resume resume , .. 

Figure 2.16 - Ada Rendezvous. 
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In a rendezvous, if the first task does not wish to wait for the second task, it has 

the option of doing something else and trying to establish the rendezvous again 

later. This is achieved either by polling the other task or by using timeouts to 

check if the other task is ready to rendezvous. 

Atomic Actions 

Just as individual statements can be regarded as being executed atomically, 
arbitrarily large operations can be executed atomically if they are packaged in 

atomic actions. A major use of atomic actions is the implementation of transaction 
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processing on distributed systems, particularly in connection with fault-tolerance 

[KohI81]. An atomic transaction [Reed79, Lamp81], is an all-or-nothing computation 

that either succeeds, installing a complete collection of changes to some variables 

or aborts, installing no changes. (For purists, atomic actions also have a number of 

secondary requirements related to partial failures, though these are not discussed 

here.) 

The motivation behind atomic transactions is that in a concurrent 
environment many independent objects may have to be updated at the same time 

so that the information they hold is consistent. Atomic actions provide a method of 

wrapping up a group of transactions so that they are seen to execute together as an 

indivisible operation. Implementations of atomic actions often use variants of the 
two-phase commit protocol to synchronise the changes to objects. Even so, atomic 

actions are not a foolproof synchronisation mechanism as deadlocks similar to 
those found in nested monitor calls can occur in nested atomic actions. Additional 

mechanisms can be employed, however, to circumvent these problems by defining 
the relationships between atomic actions [Shri90]. 

2.3.5 High Level Models of Parallelism 

The parallelism mechanisms that have been discussed up until now have been 

viewed more or less as extensions to existing languages providing functionality for 

parallel programming. The models presented in this section, however, take more 

radical views of parallelism, sometimes using no explicit parallelism commands at 

all. The models described briefly here are: Linda, vector languages, object-oriented 

languages, functional languages, logic languages, and dataflow languages. These 

languages represent a large proportion of the higher level models used for parallel 

programming, but do not represent all of them as special purpose mathematical 

languages such as DINO [Rosi891 and DEQSOL [Kono89] are not covered. 

Linda Primitives 

The Linda primitives [Gele82, Carr85] provide a method of communication 

between threads that is both flexible and portable. The primitives form a parallel 

processing language that can be inserted into almost any prograinming language, 

with implementations having been successfully performed on both shared memory 

and distributed memory multiprocessors. The model assumes the existence of a 

tuple space, which is conceptually, a globally accessible associative memory. The 
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tuple space can be manipulated by the four primitives inO, outO, rdO and evalO, 

defined as follows: 

inC •. ) 
rd( .. ) 

out( .. ) 

eval( .. ) 

returns a matching tuple and withdraws it from the tuple space, 

returns a matching tuple but leaves it in the tuple space, 

adds a tuple to the tuple space, 

forks a new thread of control to add a tuple to the tuple space. 

The first three primitives execute atomically so that race conditions do not 
occur when adding or removing tuples from the tuple space. The new thread that 

is created by evalO is not executed atomically, however, as it may perform many 

operations during the course of its execution, including any of the Linda 

primitives. 

Tuples can be thought of as ordered collections of fields, where fields can be of 
any primitive type. For example, 

5 a tuple of one integer field, 

"hello" a tuple of one field of characters, i.e. "hello", 

"A", 1,2,3.1 a tuple offour fields of types character, integer, integer, real. 

Tuples are entered into the tuple space by means of the appropriate Linda 

primitives and remain there until they are withdrawn or the program ends. It is 

possible to have multiple tuples with the same template and even with exactly the 

same values in their fields. When this happens, identical tuples are treated as 

being indistinguishable from each other. Tuples are withdrawn from the tuple 

space by matching them against a supplied template. For a match to occur all of 

the following condi tions must hold: 

• a tuple and a template must have the same number of fields, 

• corresponding fields of the tuple and template must be type consonant, 

• corresponding data items must be equal, 

• there must be no corresponding formal fields, i.e. all fields have values. 

If a rdO or an inO command is executed and there is no matching tuple in the 

tuple space, the calling thread is suspended. However, if a matching tuple is 

found, each field of the tuple is bound to its corresponding field of the template. In 

the case of there being many possible matches for a template, a tuple is selected at 

random. Non-blocking versions ofrdO and inO are also supported which return the 

value one and a matching tuple, or the value zero otherwise. 
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Vector Programming Languages 

As the dependency analysis involved in vectorisation can, in some 

circumstances, be very complicated, vector-level parallelism can be exploited 

explicitly by vector programming languages. Many such languages have been 

proposed (e.g. VECTRAN [PauI75]), though most are machine dependent (e.g. Illiac 

IV CFD Fortran), but Actus [Perr79] contains a suite of constructs that try to 

abstract way from the underlying hardware while still retaining efficiency for 
parallel execution. A brief description of Actus is presented which outlines some of 

its parallel processing features.This is followed by a short overview of Fortran 8X 

which contains many Actus-like features for parallelism but extends them to 

multidimensional arrays. 

Actus allows the declaration of vectors, arrays and related parallel constants 
such as sequences. For example, 

scalar 
parallel 

array[1..m, l..n) of integer; 
array[1:m, l..n] of integer; 

{ two dimensional integer array} 
{one dimensional array (1..n)} 

Furthermore, as Actus is based on Pascal, vectors can be of compound types 
(i.e. records) and can be indexed bX any ordinal type. Assignment and arithmetic 

operators in Actus are overloaded so that they can be applied to vector operands. 

Moreover, existing Pascal constructs, such as if, case, while and for, are 

overloaded to operate on either vectors or scalars. For example, 

A[1:N] = B[1:N) + C[1:N); 
if A[1:N) > 0 then 

A[#) = A[#) -1; 
else 

A[#) = A[#) + 1; 

{ vector addition/assignment} 
{test each element of A[1:N)} 
{for those elements> 0 } 

{for those elements <= O} 

A sequence is a parallel constant, which can be used in vector assignment, with 

its template for declaration being "parconst identifier = start:(increment) finish;". 

For example, 

parconst biglist = 1:100; 
parconst gaplist = 10:[10]100; 

{values 1..100} 
{values 10, 20, 30, .. , 100} 

One of the most important features of the language are index sets, which are 

used to identify individual data elements from vectors. Index sets can be 

manipUlated like conventional sets by arithmetic operators (e.g. +, -, *), and link 

neatly with the specialised Actus control constructs any, all and within. For 
example, 
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within 1:100 do 
if A[ #] < 0 then A[ #] = A[ #] + 1; 

if any (B[1 :N] > A[1 :N)) then 

{in the range of values 1..100} 
{test each each, assign if true } 
{ succeed if any are true} 

B[I:N] = 0.0; 
if all (C[I:N] > A[I:N]) then 

C[I:N] = 0.0; 
{ succeed if all are true} 

As mentioned earlier, the Fortran 8X language also contains many facilities 

for supporting parallel execution. The idea behind Fortran 8X is to make 

parallelism in programs easier to declare, detect and therefore exploit. It does this 
by allowing operations to be applied to entire arrays and by providing array 

manipulating functions (similar to APL) which can be internally parallelised. 

For example, "REAL, ARRA Y( -10:5) :: VECTORl", declares an array called 

vectorl, size 16, with subscripts ranging from -10 to 5. The shape of an array is 

defined by its rank (number of dimensions) and its extents (sizes of those 
dimensions). Fortran 8X supports the reshaping of arrays and the specification of 

sub arrays from larger ones. In addition, elements can be selectively masked. 

Array constants are supported by a variety of notations, for example, 
[0,0,0,1,0,0,0,1] can be written as [2[3[0],1] or [2[0,0,0,1]]. Furthermore, array 

ranges have shorthand notations,~for example, [1,2,3,4,5] = [1:5] and [2,4,6,8] = 
[2:8:2] where the final digit is the step factor. 

Assignment and arithmetic operators are overloaded to work with arrays, and 

many built-in array handling functions are provided. For example, 

ALL 

ANY 

COUNT 

MAXVAL 

MINVAL 

PRODUCT 

SUM 

ifall elements are .TRUE. the result is .TRUE., 

if any ele ments are. TR UE. the result is . TR UE., 

number of. TR UE. elements, 

maximum value in an array, 

minimum value in an array, 

multiplies all elements together, 

sums up all elements. 

Further operations are included to check on the sizes of the extents of arrays 

and to perform array storage management operations (e.g. PAC~ and UNPACK). 

Other research is also looking at specifying parallelism through the use of 

array valued operations, culminating in a language called Booster [Paa189]. This 

language is a sub-language centred around data structures and their methods of 

access, and has been designed to be used with existing imperative languages like 

C and Fortran. In Booster an array data structure is represented by a shape and 
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can be accessed by means of several user-defined views. Further syntax is provided 

for accessing the individual elements of a shape. Thus, the intention is to provide a 

method for specifying the operations to be performed on a shape in a 

understandable yet abstract setting, so that an optimising complier for an 

arbitrary parallel architecture can extract the maximum amount of parallelism 

from a program. 

Finally, a generalisation of the idea of vector and matrix programming can be 
found in the data-parallel programming model [Breu88, Rose871. Data-parallel 

computation is aimed at exploiting the parallelism offered by SIMD array 

processors, such as the Connection Machine, and therefore uses a notion of tightly 

coupled, fine grain computation. Basically programs are written in an imperative 
language, such as C, which has been extended to allow the explicit declaration of 

parallel data objects and incorporates a suite of operators (some new, some 

overloaded) to manipulate such parallel objects. Parallel data objects can be 
structured types like vectors or matrices, or can be made up from groups of 
individual records. A program begins execution on the master processor of a SIMD 

machine operating sequentially, but any parallel objects used by the program are 
distributed over the SIMD proces~ors, being held in local memories, so that 

operations involving the parallel objects can be executed concurrently. Thus, the 

data-parallel model operates at a higher level of abstraction than simple vector 

operations by taking advantage of the greater functionality and the local memory 

of each processing element. 

Object-Oriented Languages 

Object-oriented languages, such as Smalltalk, are traditional languages in 

which the set of variables defining a program's state is partitioned into small 

subsets called objects. An object-oriented programming language enables 

programmers to define new classes of object, where each object is an instance of 

one class. The internal state of an object is represented by a collection of instance 

variables as defined by the class. Each class defines a set of named operations that 

can be performed on instances of that class. Objects interact with each other by 

sending messages. A message causes one of the recipient object'$ procedures to be 

activated, possibly making it change state, and may result in further messages 

being sent to other objects. 

The construction of software using object-oriented techniques is distinguished 
by its ability to reuse program code by: (i) supporting data abstraction (via 

encapsulation), (ii) supporting generic operations, and (iii) using inheritance to 
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derive new objects. For example, if a class C directly inherits from a class B, then 

class B is the parent and C is a child class. Object-oriented languages therefore 

possess a collection of powerful mechanisms for program construction that may 

well cause the von Neumann languages to be usurped as the standard 

programming model. 

Object-oriented programming is one of the major research areas in parallel 

programming as it combines parallelism with leading edge programming 
language research. Many models of parallelism (e.g. Actors [Agha86D are based 

around the idea of collections of objects that execute concurrently. Although it is 

not possible to cover all the models here, a short list of some of the major 

techniques is presented. To obtain parallelism in an object-oriented model one can: 
(i) allow objects to be active without receiving a message; (ii) allow a receiving 

object to continue after it produces its result; (iii) send messages to several objects 

at once; and (iv) allow the sender of a message to proceed in parallel with the 

receiver. (This happens until the sender actually uses any result from the receiver, 
at which time the sender blocks until the result is produced). In addition, some 
models of parallelism allow an object to be multithreaded and so internally exploit 

parallelism. 

However, although object-oriented languages are a good starting point for 

parallel programming, this pathway to the production of effective parallel 

programs is not always an easy road to follow. For instance, partitioning a 

program into concurrently executing objects can be a difficult task, suffering from 

the same problems encountered in the construction of message passing programs. 

Likewise, if an object utilises multiple threads of control, this can sometimes be 

undesirably exposed by derived objects thus breaking the rules on object 

encapsulation [Snyd871. This is especially true for parallel object oriented 

languages that are mere extensions of existing sequential languages, though, 

purposely designed parallel languages do fare better. Object-oriented languages 

have often been seen as a good way or' expressing distributed programming 

applications and this has given rise to the development of many such languages. 

Some examples of parallel object-oriented languages include: Beta [Kris871, 

Concurrentsmalltalk [Yoko871, Emerald [Hutc871, Orca [BaI881, and POOL-T 
[Amer871. 

Logic Languages 

Logic programming languages are declarative languages in which programs 

are sets of relationships between terms, i.e. they are Horn clauses involving 
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objects such constants, variables and structures. Constants are represented by 

strings of alphanumeric characters that start with lower case letters, while 

variables start with upper case letters. Relationships are either stated as facts 

(predicates) or rules. A fact states that a relationship holds between two terms 

(e.g. father(algol, pasca!).). A rule takes the form A ~ B1, B2, •• , Bn ., which means 

that A holds if Bl holds and B2 holds and so on (e.g. grandfather(X,Y) ~ 

father(X,Z), father(Z,Y).). The head of a clause is the term which is implied to be 

true, i.e. in a rule it is the term to the left of the arrow and in a fact it is the term 
itself. 

The execution of a logic program is a query to see if a specific relationship holds 

between certain terms, which is known as the goal. Clauses are activated by a 
process called unification [Nils80] which finds the most general substitutions of 

variables that make two expressions identical. A clause is called if its head 

matches the current goal. When this happens the predicates in its body are called 

sequentially. If they all succeed, the clause is exited as in a conventional 
procedure call, otherwise, if a predicate fails, the system backtracks to the most 
recent decision point and follows an alternative path from that point. If no paths 

lead to success then the clause has failed. The total path traced out by the system 
is called the execution graph. 

The most well known logic programming language is Prolog [Ster86], but what 

is somewhat surprising is that there are three distinct generations of the 

language, Prolog I-ill. In Prolog II, extensions are made to allow the expression of 

the idea of difference (as opposed to equality) and to allow the delayed execution of 

goals. In Prolog ill, rules can be annotated with constraints to speed up their 

execution by rejecting incorrect solutions as soon as possible. The solution of such 

constraints can itself be used as the basis for a programming model and is 

considered to be a highly parallel activity. Some research has been carried out into 

the parallel execution of constraint languages [Bald87b] though this is not 

discussed further here. 

At least three types of parallelism can be exploited implicitly by the parallel 

implementation oflogic programming languages: 

• and-parallelism, 

• or-parallelism, 
• unification parallelism. 
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And-parallelism exploits the fact that for a rule to be true, its subgoals must 

evaluate to true. From the previous example, "grandfather(X, Y)" is only true if 

"father(X,Z)" is true and "father(Z,Y)" is true. Hence, both queries can be explored 

in parallel, returning false if either one or both fail, or returning true if they both 

succeed. To implement and-parallelism the variables of a clause must be able to be 

typed as input or output variables, so that the information flow between threads of 

control can be determined. This allows the construction of thread pipelines of the 
form "produce( ... , X), consume(X, ... )". 

Or-parallelism exploits the fact that for a rule to be true, at least one of its 

subgoals must evaluate to true. Hence, separate branches of a query can be 

explored in parallel returning true if one or both succeed, or false otherwise. As all 
the alternatives for a goal are examined simultaneously, there is no need for 

backtracking to be used. However, the implementation of or-parallelism is quite 

tricky because separate branches of a query can make independent bindings to 

variables that are shared between the branches. Thus, some form of scoping must 
be enforced so that queries following separate branches do not interfere with one 

another. In addition, if all the separate branches of a program were to be explored 
in parallel, large demands for memory can be created (as each thread of control 
must maintain its own copies of shared data). Thus, as a solution a fixed number of 

threads of control can be used but a load balancing mechanism should exist to 

enable threads with lots of available work to release some of it to otherwise idle 

threads of control. 

In unification parallelism, the mechanics of the pattern matching that 

underlies the execution of logic programs is parallelised. If a program consists of 

many clauses then it is natural to examine them in parallel to speed up the 

unification process. However, this is not always a straightforward task to perform 
as in conventional Prolog the ordering of clauses is significant and there is a 

control flow command called the cut. Moreover, due to the optimised nature of the 
unification process very little parallelism" can be effectively exploited, because of 

the small grain size of the work, and arguments have also been put forward in 

favour of sequential unification [Mitz86]. 

As noted above exploiting parallelism in logic languages is not an easy task, as 

many semantic and implementation difficulties can arise. Some research has 

focussed on automatically parallelising conventional Prolog, while other research 

has taken an easier option of defining a subset of Prolog and parallelising that 

(e.g. Datalog). By way of contrast many researchers have proposed extensions and 
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new logic languages to enable explicit parallel programming. For example, CS 

(Communicating Sequential) Prolog uses a notion of time and can suspend the 

execution of goals until certain conditions are met. A Concurrent Prolog program 

extends sequential Prolog by introducing read-only annotation of variables 

(shared logical variables) and a commit operator "I". Resulting programs are a 

finite set of guard clauses which operate in a fashion that closely resembles 

guarded commands, with the resulting synchronisation mechanism being that 

threads are suspended on undetermined read-only variables. For example, if 
separate threads are used to evaluate each of the goals "goal1(X,Y), goaI2(X,Z), 

goal(X)", if any thread binds X, its value is immediately made available to the 

other two threads. However, problems arise in the implementation of the guarded 

commands. The semantics of the guarded commands dictate that there should be 

no effects on a program's environment until after a guard has committed. But, in 

languages that allow guards to bind shared variables, conflicts can arise due to 

mUltiple threads trying to bind the same variable. This can be resolved by 
excluding variables from guards as in Flat Concurrent Prolog; or by making 

temporary bindings and then making them permanent on commitment as in 
Parlog; or as in Concurrent Prolog by making any changes visible outside the 

clause only if the guard commits. 

Multiple messages can be passed between threads by using a form of shared 

logical variable known as a stream. A stream consists of two parts, a head, which 

is a message, and a tail which is a stream. Hence, because of the recursive 

definition of streams they can be used to send an unlimited number of messages. 

Further information on the semantics .and the development of concurrent logic 

programming languages can be found in a survey paper by Shapiro [Shap89]. 

Functional Languages 

At present there are many avenues of research into parallel programming 

based on functional languages. Functional languages support a model of 

computation that is based upon pure mathematical functions. There is no notion of 

assignment, variables, or control flow mechanisms such as conditional or iterative 

constructs. Programs are entirely composed of expressions and functions which 

can be evaluated by a process called graph reduction (mentioned earlier). In graph 

reduction, no parallelism constructs are used to direct program execution, as 

parallelism comes naturally from the process of reducing a program graph. Hence, 

programmers need not be concerned with performing detailed program tuning, 

nor is there any need to originate new parallel programming languages. However, 
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an arbitrary functional program is not guaranteed to have many parallel 

reductions, even if the application being programming could be phrased as a 

parallel problem. 

Other work in the automatic parallel execution of functional programs has 

focussed on parallelising Lisp dialects such as Scheme. In the approach followed 

by ParaTran [Tink88] a preprocessor introduces parallelism into sequential code at 

points determined by static analysis. Normally, analysis of this kind is quite hard 
to carry out effectively in languages like Lisp due to their use of pointers. 

However, ParaTran optimistically schedules code for parallel execution without 

regard for possible side-effects resulting from accesses to shared data. At run time, 

though, the ParaTran system detects and corrects data dependency violations 
using an automatic history and rollback mechanism. Nevertheless, the 

parallelism offered by auto-parallelisation and graph reduction is only 
algorithmic parallelism (i.e. that which is inherent in the algorithm). Hence, other 

approaches in parallel functional programming follow more aggressive courses of 
action in the exploitation of parallelism allowing the coding of explicitly parallel 

algori thms. 

Parafunctional Languages 

The next stage in complexity after implicit parallelism is an approach using 

what are termed parafunctional languages. These languages accept functional 

programs annotated with commands to control the location and sequencing of 

operations. In the ParAlfllanguage [Huda87], annotations take the form of mapped 

expressions and synchronising expressions. Mapped expressions are used for 

indicating the points in a program where parallelism can be exploited. For 

example, the sequential expression f(x) + g(y) can written as the parallel form (f(x) 

on 0) + (g(y) on 1), where 0 and 1 are processor identifiers. This is a static 

declaration of parallelism and has the drawback that it binds the functions to 

specific processors, so reducing portability. A more flexible form of the expression 
can be written as (f(x) on left(self) + (g(y) on right(self), where self is a processor 

identifier and left and right are functions that return the identifier of the processor 

in the specified direction (assuming a mesh layout of processors) .. 

ParAlfl uses lazy evaluation in common with other functional languages which 

means that expressiOns are not evaluated until they are needed. In order to 

increase efficiency, however, eager evaluation can be used to force evaluation of 

expressions before they are needed. Synchronising expressions provide a 

mechanism for imposing an ordering on a sequence of events. For example, the 
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expression "synch (ab) in a: f(x) + b : f(y)", indicates that the operation labelled a 

should proceed the operation labelled b. In the following example the 

synchronisation expression permits zero or more evaluations of the expression 

labelled a followed by the expression labelled b. 

synch (ab) * in fCI) + g(l) 
where fCIst) = ifnull(lst) then nil 

else ... a : fCtail(lst» ... 
g(lst)= ifnull(lst) then nil 

else ... b : g(tail(lst» ... 

The kind of lock-step behaviour generated by synch expressions is similar to 

that specified by path expressions and regular expressions. 

Parafunctional languages separate the functional aspects of a program, that 

are concerned with the computation, from the operational aspects (Le. 
parallelism). In common with implicit parallelism, parafunctional programs 

contain no side-effects, meaning that timing issues are not a problem. 
Furthermore, program annotations can be considered to be natural and concise, do 

not affect the correctness of a program, and are portable to a number of functional 
languages. 

Extended Functional Models 

Conversely, many functional programming languages have been modified, or 

extended, to include explicit parallel programming commands. Blaze [Meth85] is a 

Pascal-based language for parallel scientific programming that supports 

algorithmic parallelism as well as explicit parallelism through the use of a 

parallel loop construct. Modified languages include MultiLisp [Hals87], and Qlisp 

[Gold88] which contain several mechanisms for supporting parallel execution. For 

example, Qlisp provides the qlet and qlamba constructs to fork and join threads 

of control, with locks and events being used for additional synchronisation. In 

addition, there is the catch and throw ~ontrol flow construct which is used to 

implement dynamic exits, and the futures control construct (first described in 

MultiLisp). Futures allow a thread of control to manipulate unevaluated objects as 

along as the objects are referenced indirectly (through pointers). A thread will 

block if it directly references an unevaluated object until the· object have been 

evaluated. Unfortunately, the use of these explicit parallel programming 

mechanisms can be just as problematic as similar mechanisms in imperative 

languages, resulting in common difficulties such as deadlock and non­
seriali sabili ty. 
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Dataflow Languages 

Dataflow languages are quite similar to functional language with the 

exception that one assignment can be made to each value. Statements can be 

executed as soon as their operands become available, which means that once again 

algorithmic parallelism can be exploited. Some examples of early dataflow 

languages include LUCID [Wadg85] and VAL [McGr82]. 

The single assignment rule means that side-effects cannot cause problems, and 
in common with functional languages, locality of effect can be exploited when 

executing programs. That is, once a value is fixed it cannot be changed anywhere 

else in a program therefore limiting the interactions between program segments. 

Moreover, dataflow languages do not have the aliasing problems encountered with 

procedural languages. Unfortunately, early dataflow languages encountered 
problems in efficiently supporting large data structures such as arrays, because a 

completely new copy of such a data structure needed to be produced after every 
write operation on the data structure. In response to this problem newer dataflow 
languages such as ID [Arvi88] make use of data structures called I-structures, 

which allow an array to absorb one write per array element - thus improving 

storage management efficiency. 

Other prominent work has been carried out in the parallelisation of SISAL 

programs [McGr83] taking the form of translating a SISAL program into an 

intermediate code for subsequent compilation and optimisation [Feo90]. 

Optimisations are geared towards efficient storage allocation, the elimination of 

extraneous copy instructions, and of course parallelisation. After optimisation, the 

intermediate code is translated into C code for final compilation into an executable 

program. Such executable programs have been demonstrated to have performance 

comparable to similar sequential Fortran, with promising results also having 

been obtained from parallel runs [Feo90]. One important feature of the SISAL 

compilation process is that with the output consisting of C code, SISAL programs 

can be effectively targeted to a wide range of parallel architectures and take 

advantage of the optimising compilers available for those machines. Other 

research into dataflow languages includes Strand, which uses a. parallel model of 

statement execution. 

Strand 

Although the syntax of Strand [Fost90] makes it appear like a logic language, 

and indeed it can trace its origins back to PARLOG, it is in fact a functional 
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language. The computational model it uses dispenses with backtracking and 

states that all statements that are activated in a program execute concurrently. In 

practice, activated statements are suspended until their value operands become 

available - as with conventional dataflow. However, due to performance 

limitations in the Strand virtual machine, statements are only' executed in 

parallel if they are annotated in a fashion similar to that employed in 

parafunctional languages. Hence, the onus of identifying useful parallelism is 

transferred to the programmer, with the system dumbly following those 
instructions. 

There are three methods whereby parallelism can be exploited with Strand. 

Fine grain parallelism can be exploited by executing individual statements in 
parallel. Medium grain parallelism can be exploited by executing procedures in 

parallel that communicate via streams. Finally, coarse grain parallelism can be 

exploited by using the foreign language interface. This allows a Strand program to 
act as a parallel harness to call and schedule procedures written in other 
languages. 

The notation used by Strand is similar to that used in Prolog, which is 

somewhat confusing to readers as program interpretation is quite different. 
Strings starting with upper case letters are variables and those starting in lower 

case are constants. Synchronisation in Strand is achieved by the use of single 

assignment variables, which suspend threads that read them until the values of 

the variables are determined. Figure 2.17 shows a full implementation of a 

bounded buffer written in Strand. Communication is realised between the 

producer and consumer by the use of a shared stream called Buffer. Initially, 

Buffer has three free slots which will accommodate three messages before the 

producer thread has to wait for the consumer thread to read those messages and 
extend the buffer. 

The interpretation of the program is as follows. When the producer thread is 

first called, the parameters in its invocation are matched against the first 

definition of the producer body. As the parameters match those in the formal 

template, the guard test of the first definition of the producer boq,y is evaluated. As 

this succeeds the first time round (N=100), the corresponding body is executed. 

This code generates a new message then calls itself to generate the remaining 

messages, remembering that in Strand recursion does not involve backtracking. 

Meanwhile, when the consumer thread is first called, its parameters are matched 

against those in the first definition of the consumer body. If [msg/Tail] is found to 
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% invocation code 
Buffer := [Ml, M2, M31 Tail] 
producer(100, Buffer) 
consumer(Buffer, Tail) 

% code for the producer 
producer(N, [Message I Tail]) :-

N>OI 
NewN is N -1, 
Message := msg, 
producer(NewN, Tail). 

producer(O, [Message I Tail):­
Message := done. 

% code for the consumer 
consumer([msgITaill, N extSlot):­

NextSlot:= [XIOtherSlots], 
consumer(Tail,OtherSlots). 

consumer([doneIOtherSlots], _ ). 

The Nature of Parallelism - 2 

% create a buffer with 3 slots and a tail 
% start producer generating 100 messages 
% start consumer 

% wait for buffer space 
% check generation count 
% decrement count 
% generate a message 
% recurse to generate remainder 

% no more messages to send 
% close stream 

% wait for message 
% extend buffer 
% consume rest of messages 

% terminate 

Figure 2.17 - Bounded buffer in Strand. 

be unbound when the match is made the consumer thread waits until it receives a 
value (Le. from the producer) before continuing. When the consumer thread 

executes its body, it turns out that, in this case, the message is ignored and only 

the buffer is extended. 

Eventually, when the producer thread recurses and the guard test of the first 

definition fails (Le. when N=O), the second definition of the producer body is 

matched and executed. This results in a special data value being sent to the 

consumer signalling the end of data. When the consumer thread comes to read this 

message, its secondary body definition is matched and executed (which in this case 
is empty). 
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Chapter 3 

Parallelism Issues 

The aim of this chapter is twofold: firstly, to explore what can be expected from 

the application of parallel processing to the execution of programs, and secondly, 

to discover how parallelism can best be exploited on shared memory 
multiprocessors. The construction of effective parallel programs relies on three 

things: 

• a sufficient set of programming constructs must be provided to allow the 
coding of a desired algorithm, 

• a collection of paradigms for parallel programming should exist, to enable 
the explicit design of parallel programs, 

• there should be some guidelines about matching paradigms to constructs, 
with references to the efficiency of one paradigm over another for solving a 

given type of problem. 

The first section of this chapter describes a measure for characterising parallel 

computations in terms of the ratio of useful work performed by a thread of control 

to its synchronisation overhead. This measure is very helpful when matching 

parallel algorithms to parallel programming language constructs and eventually 

to parallel architectures. Subsequent sections describe the different approaches to 

parallel programming and relate the types of parallelism that they exploit to the 

architectures to which those approaches are most suited. After this, the faults that 

can arise in parallel processing are discussed followed by a description of a set of 

requirements that the designers of parallel programming mechanisms may wish 

to follow. These requirements are intended as a set of guidelines rather than 

golden rules, because some of them are in some sense in conflict with each other, 

as in the case of efficiency versus safety. Thus, the final choice over which 

requirements to adhere to is partly specific to the problem being solved and also 

somewhat subjective. The final section in the chapter summarises the approaches 

that have been used to enable parallel execution, such as auto-parallelisation and 

explicit parallel languages, discussing what it means to adopt one approach in 

preference to another. 
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In a paper exploring the limits to the efficiencies of parallel computations 

Cvetanovic lists eight major factors that can influence the performance of a 

parallel program executing on a given multiprocessor architecture [Cvet87]. 

(1) The amount of parallelism inherent in the application. 

(2) The method for decomposing a problem into smaller subproblems. 

(3) The method applied to allocate these subproblems to processors. 

(4) The grain size ofa subproblem executed on each processor. 
(5) The possibility of overlapping processing with communication. 

(6) The data-access mode where data items are accessed either directly from 
global memory, or first copied to local memories then accessed from there. 

(7) The interconnection structure (hardware). 
(8) The speed of processors, memories, and an interconnection network. 

The first five factors in the list are concerned with the properties of the problem 

being solved and the way in which the problem is programmed. From the point of 
view of this thesis these are the most important factors, with the remaining three 

being fixed by the choice of multiprocessor architecture. Methods for decomposing 
problems into subproblems for subsequent execution in parallel and matters 

pertaining to how these subproblems are scheduled are discussed later in this 

chapter. However, besides the parallelism in the application itself, the grain size 

of the useful work that is performed in parallel can have the overriding say on the 

effectiveness of a parallel program. For in order to be efficient, a parallel 

programming mechanism must schedule the work that it defines as suitable for 

parallel execution into threads of control to be executed in parallel with as little 

overhead as possible. 

3.1 Parallelism Granularity 

One of the most frequently used measures applied to parallel computation is 

the grain size or granularity of the parallelism that is exploited. This is a measure 

of the number of instructions in a parallel computation between synchronisation 
points. Figure 3.1 is a modified table of grain sizes from an original table by Bell 

[Lee891. 

For shared memory multiprocessors the lowest level of granularity that can be 

effectively exploited is medium grain, resulting from the not insignificant 

overhead costs of setting up and synchronising multiple threads of control. Of 

course, greater efficiency can be obtained by executing parallelism with larger 

grain sizes due to an increase in the ratio of useful work to parallelism overhead. 
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Synchronisation Typical Grain Size Interval Source of Parallelism 
(instructions) Archi tecture 

fine < lOs parallelism inherent in a vector processors 
single instruction 

or data stream 

medium 100s parallel processing within a shared memory 
single application program multiprocessors 

coarse 1000s multiprocessing concurrent distributed memory 
processes multiprocessors 

very coarse 100000s distributed processing groups of workstations 
across local area networks (multicomputers) 

infinite 00 independent computations all multiprocessors 

Figure 3.1- Grain size classification for parallel architectures. 

Shared memory multiprocessors optimistically need 0(100) instructions to set up 
a lightweight thread of control, with 0(10) instructions to perform 
synchronisation. Parallel programming mechanisms that can spawn sufficient 

threads of control to permit the parallelism available in an application to be 
exploited by the hardware, but are large enough to amortise the overheads, will be 

considered to be effective for shared memory multiprocessors. This idea is touched 

on again in the fourth and fifth chapters and is demonstrated experimentally in 

chapter six. 

At the vector level, fine grained parallelism necessitates synchronisation after 

every vector operation, while for processes, synchronisation points in coarse grain 

parallelism do not occur for many thousands of operations. Figure 3.2 is a map 

that shows the relationship between the degree of parallelism available at a given 

granularity [Alma89], in which shaded regions indicate hardware exploitation, 

with clear regions representing softwar~ parallelism. (The scale on the map is 

broadly representative of real figures but should not be taken literally in all 
cases.) 

One of the main ideas contained within this map is that problems which are 

based on manipulating objects like arrays, traditionally operated on by iteration 

constructs, are good areas for looking to apply many processors in parallel. A 

natural way to achieve this is by spreading the object over the processors, though 

sometimes the amount of work done by a thread of control can be quite small. 

Alternatively, in problems which can be decomposed into functionally separate 
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tasks, by way of contrast these are relatively few in number but individually tend 

to involve more instructions. 

A variety of synchronisation mechanisms have been added to the map to 

indicate the relative cost of each mechanism. Those mechanisms that have 

hardware support take anything from, one instruction to around twenty. Those 

that are more elaborate take tens to hundreds of instructions, while those that 

make operating system calls can take several thousand instructions. 

If the grain size of the potentially parallel parts of a problem suggests that the 

problem is not suitable for parallel execution on a given architecture, operations 

can sometimes be blocked together to reduce overheads. For example, scheduling 

the individual parts of a vector instruction on separate processors of a shared 

memory multiprocessor does not sound very appealing, even if there are sufficient 

processors to enable a completely parallel (one-to-one) execution. However, 

blocking together many parts of the vector instruction so that each processor 

executes many such parts without stopping for synchronisation can lead to useful 

performance gains being obtained given sufficiently long vectors. This technique 

can be applied to many problems where the granularity of the parallelism is less 

than the optimum size for an architecture, if there are no inhibiting dependencies 

- 99-



Parallelism Issues - 3 

~ 

between computations and there are sufficient operations to make blocking 

worthwhile. Several experiments with the grain size and blocking properties of 

sample problems are investigated in chapter six. 

3.2 Programming Styles and Constructs 

Before discussing the methods by which parallel programs can be produced a 

short overview of the styles of programming languages that can be used to code 
such programs is presented. Currently, now more than ever before, many models 

for programming are being investigated and used practically by researchers. For a 
gi ven programming model, there are often several languages in use to cover its 

spectrum of thought, the exact number depending on that model's perceived 
importance. Parallelism is an issue in programming that cuts across established 

language boundaries, as it is deemed a feature of a programming language rather 

than an end in itself. Thus, as many different language styles purport to 

supporting parallel execution, the task of choosing the best one, or even a good 
one, is not easy. 

In his book, Wadge in a slightly tongue-in-check way characterises five types of 
programmer by the languages that they use [Wadg85]: 

• Cowboys who exploit the quick and dirty features of von Neumann 
languages and their underlying hardware. 

• Wizards who use formal methods for program specification and design, 
together with logic and functionally based programming languages. 

• Preachers who put their faith in adherence to structured programming to 
tame the excesses of von Neumann languages. 

• Boffins who don't care about using a particular style of programming 
language but rely on software tools to produce correct programs. 

• Mr. Fixit who believes the von Neumann languages are not fundamentally 
flawed and can be made more presentable by cleaning up some of their 

unpleasant side-effects. 

These classes correspond quite closely to genuine approaches to programming 

philosophy, and illustrate the quite deep divisions that exist between the separate 

camps. Basically, there are three views on the shape of the near term future of 
programming. Firstly, there are the fundamentalists who believe in staying with 

traditional methods of programming because of the large investment that has 
been made in existing software and the training of personnel. Secondly, there are 

the evolutionaries who believe that in order to accommodate an ever expanding 
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and broadening range of demands, programming must change with the times. 

This does not entail the wholesale abandonment of old techniques, rather a change 

of emphasis and the inclusion of some new ideas. Thirdly, and finally, there are 

the revolutionaries who believe that traditional methods were a product of their 

time and the future for programming lies only in a complete break with the past. 

From one viewpoint this revolutionary message seems very attractive, because 

new models give a fresh start to include new ideas, and liberation from some of the 

problems that plague traditional programming. From another viewpoint, 
however, some of the promise held by these languages has not been realised 

because of difficulties in producing efficient software and hardware to execute 

these languages. Hence, there is often a high degree of inertia in switching to 

revolutionary models, as some people are loath to change from what they know 
(and think they understand) to more abstract programming models. 

To reinforce the difference between evolutionary and revolutionary models, it 

is useful to classify programming languages as either of the imperative or 
declarative style. Broadly speaking imperative languages represent the heart of 
traditional programming, with declarative languages representing the new blood 

(although the lambda calculus which is the foundation for functional 
programming has been around since the 1930's [Chur41j). Figure 3.3 shows the 

breakdown of programming languages as either imperative or declarative in 

nature [Bald87al. 

Programming Languages 

Imperative Languages Declarative Languages 

von Neumann 
Languages 

Object-Oriented 
Languages 

Functional 
Languages 

Dataflow Logic 
Languages Languages 

Figure 3.3 - Breakdown of programming languages. 

Imperative (procedural) languages are those that are most widely used and 

understood. Languages such as Fortran, Algol and their descendants are 

imperative because their programs take the form of a series of steps (a solution 
path), which if executed correctly and in a valid ordering, will compute the 

solution to some problem. One criticism that has been levelled at imperative 

languages is that this need to specify an exact solution path by giving primitive 
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machine directives and having to consider the order of every program statement is 

an extra burden on programmers who could be more productively engaged in 

problem solving. Moreover, some solution paths are so complicated, and in some 

sense over specified and serialised, that potential parallelism in an algorithm is 

obscured and not exploitable by auto-parallelisation. 

On a more positive side, imperative languages have attracted a reputation for 

being an effective programming model because they often allow programming 

down to the level of a bare machine in order to promote storage or execution 

efficiency. This can happen because imperative languages are based on direct 

abstractions from the von Neumann model and can let hardware features such as 

the existence of mUltiple processors and shared memory percolate up to the 
programming level. The control flow model of imperative languages is a flexible 

platform for exploiting parallelism, with a wide range of parallelism constructs 

having been developed (see chapter two). Moreover, often new control flow 
constructs can be added (with care) to imperative languages while maintaining 

the semantics of existing programming language constructs. Thus, in general, 
parallel algorithms can be expressed in whatever format thought most 
appropriate, enabling the grain size of an algorithm to be precisely and explicitly 

tuned to match that of the underlying hardware. 

Declarative languages by way of contrast take a much higher level view of 

problem solving as they hide away the details of the underlying hardware. In such 
languages (e.g. Miranda and Prolog), only a goal and a sufficient set of 

relationships between program objects are required. These allow the abstract 

machines (interpreters) employed by declarative languages to generate solution 

paths by themselves. This bodes well for auto-parallelisation and for naturally 

parallel languages because there is not the over-specification found in imperative 
languages to restrict program analysis. However, the efficient realisation of 

parallelism can still be difficult because of problems in efficiently matching the 

potential parallelism in a program to its underlying hardware (in most cases von 

Neumann machines). Here, the abstract model used by a language may be a poor 

model for execution on a von Neumann machine, with the mismatch being 

exacerbated by the importance of matching the grain size as well. Furthermore, 

explicit parallelism constructs that can improve the matching between software 

and hardware generally have to follow a different approach to normal (e.g. 

parafunctionallanguages in chapter two), as declarative languages abandon the 

traditional notion of control flow. 
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If good (efficient) implementations of declarative languages are available, the 

sequential solution of problems that are basically procedural or algorithmic in 

nature can be executed as well as corresponding solutions written in sequential 

imperative languages. For example, searching and list manipulation problems are 

on the whole handled very well by declarative languages, with the advantage that 

the resulting programs are easier to read and write than their imperative 

counterparts. But, whether this is true for the implementation of parallel 

programs is an open question. A more clear point, though, is that for applications 
that interact with their environment (e.g. hardware devices) or applications that 
are controlled in real time, good solutions come from the flexibility of imperative 

languages because of their immediacy to their hardware environment. By the 

same token declarative languages often offer more convenient semantic notation 

to express complex behaviour to abstractly model the physical world, but 

nonetheless seem to lack the capability to link such a model to its environment 

without resorting to imperative style constructs. Thus, while declarative 
languages may offer the promise of easy parallelism, whether this is best exploited 
by shared memory multiprocessors or specialist hardware is not a cut and dried 
issue. 

Merely saying that a programming language is imperative or declarative can 

imply some information about the nature of a language, but further insight can be 

gained from other classification schemes. Figure 3.4 shows Treleaven's 

classification, which groups programming languages according to their control 

mechanism (how instructions are sequenced) and data mechanism (how 

information is structured) [Tre1821. 

Data Mechanism 
Control Mechanism 

Shared Memory Private Memory 

control driven von Neumann communicating processes 

pattern driven logic actors 

demand driven graph reduction string reduction 

data driven dataflow (I-structures) dataflow (tokens) 

Figure 3.4 - Treleaven's language classification. 

Basically Figure 3.4 can be thought of as a high level summary of the types of 

programming language available to a parallel language designer. For control 
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driven languages, the main method of exploiting parallelism is by using explicit 

control constructs. Nevertheless, auto-parallelising compilers are rapidly 

becoming more widely available and will prolong the lifetime of existing 

languages by providing almost direct routes to portable parallel software. For the 

other types of control mechanism, parallelism has most often been exploited 

implicitly by an interpreter or run time system. This has happened because the 

model of evaluation, be it pattern, demand or data driven, only specifies the 

orderings of the events crucial for a program to work correctly, leaving the others 
to be determined by the run time system. Thus, these models at first seem to 
provide much better starting points for auto-parallelisation than control driven 

languages, however, sometimes the reality falls somewhat short of the dream as 

difficulties have been encountered in the implementation of such parallel run time 

systems (see chapter two). Hence, hybrid languages have been developed which 

combine multiple control mechanisms. Parallelism in these languages can be 

expressed explicitly by special control constructs such as in Qlisp, or implicitly 
such as in Strand which is pattern driven with data driven synchronisation. 

Historically, the majority of work carried out in parallel programming has 

been focussed on control driven shared memory designs, although private memory 
designs now seem in vogue. Research into the other models of programming has 

been steady, though there is some reluctance to adopt one of these models when 

progress is still being made in improving the familiar control driven languages. 

3.3 Algorithms and Models for Parallel Programming 

When designing an effective parallel program it is productive to use a 

naturally parallel algorithm. This is true whether the parallelism is exploited 

directly by explicit parallelism constructs, or implicitly by a compiler or an 

interpreter. As luck would have it, the choice of the best algorithm is not always 

easy as in some applications, such as those involving numerical analysis, a variety 

of similar algorithms may be available to do the job. When an algorithm is 

executed sequentially, it is generally straightforward to give bounds for its time 

and space complexities. For a parallel algorithm, however, it is sometimes hard to 

reason about its performance because such an algorithm may have a poor 
sequential performance (as compared to rival algorithms), but may out perform its 

rivals when executed in parallel [Wrig90]. Nevertheless, one of the most important 

lessons to be followed when writing a parallel program is to use an appropriate 
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algorithm and data structure [Bent86]. Doing so can greatly improve the quality 

and efficiency of a solution. 

Parallel algorithms can be constructed by following one of the recognised 

methods, of which there are many classifications, though most are variations on a 

few basic themes. This state of affairs has arisen because almost all these 

classifications are based upon intuitive reasoning originating from practical 

experience, rather than some set of absolute rules rooted in formalism. Thus, 
classification schemes tend to reflect programming models loosely based on their 

authors' favourite parallel programming languages, as opposed to being true 

abstractions of parallel processing. Nevertheless, some formal work has been 

carried out into parallel algorithm design. 

Analytical Models 

An analytical model of a computer is one in which abstractions of its hardware 
capabilities such as the instruction set, number of processors, and physical layout 
of memory and processors are used for algorithm design. The most basic machine 
model is that of the Random Access Machine [Aho74] which models a serial 

computer. This can be extended in a number of fashions to form a Parallel-RAM 
machine (PRAM), which is essentially a collection of RAMs all accessing the same 

memory [Boro82, Fort78, Snir82]. Basically, PRAM models differ according to the 

level of concurrency that is permitted when performing operations and accessing 

memory locations. Models such as Message Passing-RAM also exist representing 

machines with private memories. 

Analytical models are used to specify algorithms in terms of individual low 

level instructions. Thus, typical algorithms that can be specified in this way are 

those pertaining to numerical analysis, those for searching and sorting, and those 

used in special hardware devices such as systolic arrays. Hence detailed analysis 

of these algorithms at the level of instruction counting is possible, to determine 

their efficiencies and limitations. However, because of the low-level approach to 

algorithm design, analytical models are not suitable for expressing abstract 

problems where information is structured in terms of groups of complex objects. 

Moreover, the analytical models can also be very architecture dependent as they 

are constructed out of primitive machine operations. Thus, algorithm designers 

should have other methods to fall back on to represent problems that are too 

complicated to reduce to the basic machine level. 
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Models for Parallel Algori thms 

The following classification scheme for parallel algorithms tries to draw out 

the strands of truth from several classifications by not specialising or focussing on 

a particular processing model. This it does reasonably successfully,.although as a 

classification scheme it is neither rigorous nor complete. 

Expressed most simply, parallel activity can be competitive, cooperative or 
independent. In competitive parallelism, threads of control executing different 
programs compete for time on shared hardware resources. Here, there is no 

cooperation or synchronisation between threads of control. In cooperative 

parallelism, separate programs or more commonly separate parts of the same 

program execute together, cooperating and synchronising in the joint execution of 

some shared job. In real life applications, however, it is possible for an algorithm 
to be both competitive and cooperative, through the use of more active threads of 

control than processors. Finally, threads of control executing by themselves on 
separate processors, sharing no resources, exhibit independent parallelism. 

In most cases cooperative parallelism is the most tenable method for gaining 

significant performance benefits for an application, with there being two obvious 

strategies for exploiting this parallelism. One strategy is to design a parallel 

algorithm in terms of a network of concurrently executing, specialist threads of 

control. This approach is known as functional partitioning, as the overall function 

of an algorithm is partitioned into subfunctions for execution by separate threads 

of control. Here, it is normal for each thread to have a single role and for data to 

flow between threads as required. Models such as pipelining, and large-scale or 

macro dataflow are good examples of this paradigm. 

The other strategy for implementing cooperative parallelism is to replicate 

program code by having it executed by multiple concurrent threads of control, and 

then to distribute the data across them .. This is known as data partitioning, as 

program data structures or parts of a large data structure are partitioned into 

substructures for manipulation by replicated workers. In some sense, the data 

structures can be viewed as :)eing static and control is passed over them by the 

worker threads, making this paradigm the dual of functional partitioning. Vector 

processing and its multiprocessor equivalent of loop spreading are the two most 

representative examples of this paradigm. 

Of course, many real life parallel programs are a combination of both 

parallelism models. For example, consider a pipeline that consists of several 
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stages, with each stage being executed by a separate thread which transforms 

elements from an input stream to form an output stream. A program may have 

several such pipelines to efficiently compute a wide range of functions. If one such 

function was found to be required more frequently than the others, perhaps 

multiple copies of the appropriate pipeline could be employed to enable multiple 

data streams to be processed in parallel. As a dual example, consider a group of 

replicated threads that service infrequent but identical transactions. If greater 

throughput is required, increasing the number of replicated workers is not a 

solution, as it is the complexity and not the number of transactions that is the 
bottleneck. Hence, a solution may be found by pipelining the processing of a 

transaction so that the work previously done by a single thread is partitioned into 
several threads. 

A more specialised, though more informative, scheme comes from Carriero and 
Gelernter [Carr89] which classifies parallel concepts as: (i) result parallelism, (ii) 

agenda parallelism, and (iii) structure parallelism. These roughly equate to data 
partitioning, a combination of data and functional partitioning, and functional 
partitioning in that order. 

A program that uses result parallelism is, unsurprisingly, designed around the 

production of some final result, usually a complex or large data structure such as 

an array. Threads of control are created with the purpose of calculating individual 

data items that will be deposited in their respective positions in the final result 

data structure. Thus, a thread may perform many types of operation before 

producing its final result. In many cases one thread of control is created to produce 
a single element, therefore fixing the number of threads for a given problem size 

and making resulting programs of this type highly parallel for large problem 

sizes. For example, in ray tracing computer graphics the displayable image can be 

represented by a two dimensional array of pixels, which can be computed in 

parallel by assigning an individual thread of control to compute each pixel. 

Agenda parallelism involves a transformation or a series of transformations 

which are to be applied to all elements of some set in parallel. Algorithms of this 

type consist of a number of discrete stages. At each stage, all threads cooperate to 

complete the available work on a particular data structure before moving onto the 

next stage, and possibly another data structure. This means the number of threads 

that can be engaged to perform processing is flexible and the work can be 

partitioned at run time for good load balancing. 
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An algorithm that uses structure parallelism (also called specialist 

parallelism) is broken down into a logical network of cooperating threads with 

each thread having a single specialised role. Under the strictest interpretation, 

the group of threads employed by such an algorithm is fixed in both size and 

function, however, it seems reasonable to include algorithms' that can be 

decomposed into specialist units, but can dynamically alter their processing 

configuration by creating and terminating threads of control on demand. 

Speculative versus Conservative Parallelism 

The models for parallelism just described cover how parallelism is exploited by 

an algorithm, however, one must also consider what parallelism is to be exploited. 

On one hand, the conservative view could be taken to only execute the work that is 

absolutely necessary to compute a program's results. That is, the work that lies on 
the solution path of the program. On the other hand, one could speculate about the 

form of a solution path and perform operations (in parallel) that may lie on the 
solution path. As an example of speculative parallelism consider a conditional 
statement that has two branches. Both branches of the conditional could be 

evaluated in parallel ahead of the conditional being evaluated, data dependencies 
permitting, even though only one branch would ever be needed. Highly significant 

speculative performance gains, relating to a combinatorial implosion, have been 

reported in artificial intelligence applications based on searching algorithms 

[Korn821. Here, a choice of searching techniques exists (e.g. top-down, breadth-first) 

and it is not possible to tell in advance which algorithm will perform best. Hence, 

the best solution is to execute a combination of both search techniques taking the 

answers from whatever search completes first. In fact, this approach gives 

improved performance even if the searches are multi programmed, and when it is 

executed in parallel, gives rise to superlinear performance gains over both of the 
original purely sequential searches. 

SpeCUlative parallelism is the basis of trace scheduling and OR-parallelism, 

and can be naturally exploited by other parallel computation techniques such as 

graph reduction [Peyt861. However, there are some complications in the 

implementation of such systems. For instance, identifying sui~able instructions 

for speculative execution can be quite difficult because the work must be of a 

suitable grain size. Moreover, even when speculative parallelism can be 

identified, controlling its evaluation can be quite involved. For instance, at any 

given time during the execution of a program there will be tasks that must be done 

and those that may be done. If sufficient resources are available, speculation can 
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occur, but this must happen in such a way that any changes to the state of a 

program made by a speculating thread are not observed by other threads until 

that work is actually needed. In addition, in cases when it has been determined 

that a branch of a computation is not needed, the thread of control following the 

branch may have to be terminated and its results discarded. If there is only one 

level of speculation this does not cause too many problems, but in the case of many 

levels of speculation (e.g. nested conditionals) several threads of control may have 

to be stopped which could involve a considerable amount of time overhead from 
housekeeping processing. 

Techniques of Parallel Programming 

Once a model for a parallel algorithm has been decided upon, it must be coded 

using an appropriate parallel programming technique. In many cases this 
technique will be a natural extension of the parallel model that has been used, but 

in other cases a variety of techniques will be applicable. 

The most influential factor in the choice of parallel programming technique 
concerns whether the algorithm that is to be coded requires shared or distributed 

memory. Lauer and Needham [Laue791 argue that the expressive power of 
techniques based on shared variables is equivalent to that based on message 

passing. However, not as much can be said about the efficiency of choosing shared 

memory or message passing without direct recourse to the problem. At a higher 

level of abstraction, Carriero and Gelernter [Carr891 classify parallel programming 

techniques as: (i) message passing, (ii) live data structures, and (iii) distributed 

data structures. They make the point that these three techniques closely 

correspond to their classification of parallel concepts. 

According to Carriero and Gelernter if message passing is used to structure a 

parallel program, all data values are encapsulated within separate threads of 

control that communicate only by excha.nging messages. A thread may contain 

many data items and can only reference others by making explicit send and 

receive calls to their respective managing threads. 

A live data structure can be viewed as a special case of message passing in 

which there is one thread of control per data value. Moreover, such threads only 

send one message representing their final data value upon termination. These 

message are usually left in some global area so that they can be subsequently 

collected by some other thread of control. 
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Distributed data structures are manipulated by threads of control that 

communicate by referencing shared data objects rather than by coupled pairs of 

send and receive operations. Such a data structure is said to be distributed in the 

sense that many threads of control can operate on it simultaneously, with the data 

structure residing in shared memory. For example, the process bible in a time 

sharing operating system, and blackboard systems [Fost90] can be thought of as 

distributed data structures. 

Carriero and Gelernter argue that the process of writing a parallel program 

starts with the choice of a natural parallel concept for its design. Once this has 

been decided, a parallel program can be coded and tested so that its performance 

can be assessed. Finally, if the program has proven ineffective, it may be 
transformed into an alternative parallel program that uses a more efficient but 

less obvious concept. Figure 3.5 illustrates the perceived relationships between 

the different methods of implementing parallel algorithms. 

Delocalised Data Objects 

Captive Data Objects 
Explicit+Blocking 

Implicit+U nblocking 

Figure 3.5 - Transforming parallel algorithms. 

Practically, the changes that are made to ineffective parallel programs relate 

to matching the grain size of the parallelism executed by threads of control more 

closely to that preferred by the target architecture. On one hand, in shared 

memory machines, distributed data structure programs that lack parallelism can 

be recoded as live data structure programs because of the fast inter-thread 

communication mechanism shared memory provides. On the other hand, if the 

same problem were to be recoded for a distributed memory machine, message 
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passing may provide a better model because expensive interthread 

communications can be managed more carefully. 

Issues in Parallel Algorithms 

Although classifying models for parallel algorithms can lead to clear ways of 

designing parallel programs, often important implementation details are glossed 

over. For example, whether a parallel algorithm is deterministic and if not, what 
this implies about the behaviour of the algorithm. However, several important 

characteristics of parallel algorithms can be identified and used to classify them. 

These properties are: 

• the nature of the thread control structure (hierarchical or peer), 

• the nature of the work allocation (static or dynamic), 

• the nature of thread synchronisation (regular or irregular), 

• the nature of the work (uniform or non-uniform), 

• the extent of the parallelism available. 

Note that the nature of the communication between threads (shared memory 

or message passing) is not present in the above list because it is an 
implementation technique covered in the previous section. In addition, there is no 

mention of processor utilisation in terms of useful work executed, because this is a 

system measurement and is not specific to an individual problem. 

Thread Control Structure 

There are two methods for structuring threads of control in a parallel program. 

Firstly, if the threads are arranged in a master-worker configuration, this is a 

hierarchical structure with the master being responsible for creating, terminating 

and possibly synchronising its workers. Hence, the master thread usually has a 

more complex implementation than its lightweight children. Secondly, if there is 

no hierarchical relationship between threads, then they are peer threads. In 

practice, an algorithm that uses this form of control distributes responsibility for 

controlling a program over its threads. Programs of this kind often have good load 

balancing and fault tolerance properties because important worker threads can be 

easily replicated. 

Not surprisingly many real life applications are best solved by combinations of 

hierarchical and peer thread structures. Examples of combined control structures 

can be found in recursive thread structures that are produced by unwinding 

recursion, and replacing it by a combination of recursion and thread creation. For 
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example, quicksort [Hoar62] can be parallelised in this way. However, if recursion 

is unwound then it is possible to create too many threads unless some throttling is 

applied, as the amount of useful work done by a thread can be less than the 

overhead needed to set it running. 

Work Allocation 

If a static work allocation algorithm is used as the basis for a parallel program, 
the number and function of its threads of control are fixed at compile time, 

resulting in a fixed thread graph. Programs of this form are easier to write and 

reason about than similar programs written using dynamic behaviour, as the 

interactions between threads can be predicted more easily. One implementation 

point is that, as almost all of the threads of control in a static model are created at 

the same juncture, less overheads can be incurred than if they are created in a 
piecemeal fashion. Furthermore, if the work can be evenly distributed over the 

workers and there is no external load on the system, then static work allocation is 
more efficient than dynamic allocation as there are less run time overheads. 

In a dynamic work allocation algorithm, the number and possibly the function 
of its threads are determined at run time or can change during the execution of a 
program, resulting in a mutable thread graph. Algorithms of this type are more 

flexible and adaptable than static algorithms, but pay the price in terms of greater 

program complexity and potentially higher overhead costs. However, in cases 

where the amount of work cannot be determined at compile time or otherwise 

cannot be equally distributed among the threads of control, it may be such that the 

penalties of poor load balancing far outweigh the overheads of dynamic work 

allocation. This is also true for situations where a parallel program has to share 

resources with other programs. When this happens, static thread arrangements 
are limited by the speed of the slowest worker, while dynamic arrangements can 

compensate for external loading, provided they have a sufficiently elaborate work 

allocation mechanism. Examples where dynamic work allocation can be 

effectively employed are adaptive equation solving algorithms. These algorithms 

operate iteratively by homing in on a solution by focusing on an ever decreasing 

part of the original solution space. If only one division of the sol~tion space were to 

be made then it is likely that towards the end of the algorithm only a few of the 

original threads of control would be actively employed. However, if the solution 

space is repartitioned at every iteration then the maximum number of threads can 

be employed for the entire duration of the algorithm. 
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Synchronisation and Work Distribution 

Although these are separate issues it is constructive to combine them into a 

table and examine the types of algorithm model that are generated. Figure 3.6 is 

such a table and contains typical example algorithm models for each class. 

Basically non-uniform work distribution corresponds to functional partitioning 

(i.e. different threads doing different jobs) whereas uniform work distribution 

corresponds to data partitioning (i.e. different threads doing the same job). 

Work Distribution 
Synchronisation Interval 

Regular Irregular 

N on-Uniform pipelines & networks logical networks & transactions 

Uniform static data partitioning & SIMD dynamic data partitioning 

Figure 3.6 - Classification of models for parallel algorithms. 

In practice, the easiest algorithms to debug and code are those that operate 
synchronously with uniform work distribution, however, efficiently matching 

such algorithms to real applications can be quite difficult. On the other side of the 

coin, real applications tend to have natural analogues in asynchronous systems 

that combine threads of control with varied roles. In general, while it may be easy 

to design such processing groups, it is not easy to code and debug such systems 

because of the complexity which arises from executing multiple operations in 

parallel, and the resulting interactions between such operations. 

Parallelism Extent 

This is a dual measure of an algorithm combining its properties which reflect 

the number and complexity of the processors that could be usefully employed in its 

execution. One of the reasons why these .factors have been joined is so that they 

mirror one aspect of the classification of multiprocessors as SIMD versus MIMD, 

i.e. very many simple processors versus fewer more complex processors. Likewise, 

even among MIMD machines similar comparisons can be made between 

microprocessor-based supercomputers and their rivals like the C"ray Y-MP. 

Parallelism extent is partitioned into five categories that are related to the 

computer architectures that are most appropriate for exploiting each extent of 

parallelism, without excessive multiprogramming. The categories are defined 

intuitively rather than by more common methods for measuring computational 
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power such as MIPS, MFLOPS and KLIPS. This is so because these measures are 

notoriously bad indicators of computer performance as there is no standard way 

for comparing the figures that are quoted. Moreover, figures can vary significantly 

between the normal rate (sustained) and that which only can be obtained under 

theoretical conditions (peak rate). Formal methods for quantifying the processing 

capacity of computing systems are emerging that permit architectural designs to 

be analysed for their operational characteristics [Lipo87]. However, such methods 

are not needed here because of the intuitive nature of the categories, but they may 
be of use if the classification is subsequently refined. 

The main reason why different architectures appear in separate parallelism 

extent categories is that, in general, architectures cannot be effectively scaled up 
or down by arbitrary amounts. Hence, architectures only feature in the categories 

for which they were purposely designed. It is simply not possible to multiply up 

the number of processors and the amount memory in an architecture to get a more 
powerful one because physical limitations cannot be scaled so conveniently. For 

instance, bus-based shared memory machines are limited by the transmission rate 
of the bus (ultimately the speed of light), and distributed memory machines, such 

as hypercubes, are limited by the number of physical connections that can be made 
to a given node. Research is going on to build scalable multiprocessors out of 

replicated units with structures like those of trees to remedy these problems (e.g. 

NON-VON [Shaw84] and TRAC [Lipo87]), but as might be expected, writing parallel 

programs for these machines will not be easy. 

In the limited parallelism category programs are mainly thought of as being 

sequential because they are based on sequential algorithms that provide little 

scope for explicit parallelisation. However, even in these programs some 

parallelism can be exploited even though a program is executed by a single 

processor. Uniprocessor architectures described in chapter two often include 

support for parallelism in the form of instruction pipelining and multiple 

functional units. For superscalar processors, optimising compilers can reorder 

instruction streams so that several arithmetic operations can be in progress 

simultaneously. This means that programs that were thought to be sequential or 

possess only a small number of independent instructions can be effectively 

executed by exploiting what limited parallelism is available. 

The moderately parallel category covers the parallelism that can be exploited 

by up to say thirty non-trivial processors. Respectable performance gains over 

sequential programs can be obtained from parallel programming at this level and 
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many types of multiprocessor architecture are capable of providing these kinds of 

performance gains, ranging from groups of workstations to tightly coupled shared 

memory multiprocessors. 

The parallelism in the highly parallel category is expressed in terms of tens of 

processors. Here, only hybrid and distributed memory machines are viable 

architectures, though there are plans for shared memory machines of this size. 

Specialist array and vector processors also operate at this level of parallelism, 
though at a much smaller level of granularity. 

The very highly parallel category covers parallelism in the range of hundreds 

of processors. The machines that are capable of supporting this level of parallelism 

are distributed memory multiprocessors that offer supercomputer performance. 

Hence, these machines tend to be used for specialist numerical work or run more 
general work by being partitioned into smaller multiprocessors. 

The machines that operate in the massively parallel category are generally 
radical departures from the von Neumann model, giving parallelism in terms of 
(tens of) thousands of processors. The processors found in such machines are very 

simple, with small instruction sets, and are capable of operating on very small 

pieces of data at a time (e.g. individual bits giving very fine grained parallelism). 

Such an architecture of this type is the DAP mentioned in chapter two. 

3.4 Problems in the Parallel Execution of Programs 

When designing parallel programming constructs it is important to be aware of 

the kinds of parallel processing errors that can arise. Two types of fault are linked 

particularly with parallel processing, which can be termed performance faults and 

operational faults. A performance fault causes a parallel program to execute more 

slowly than its algorithmic implementation would suggest. Sometimes, in very 

extreme cases, performance faults cal). affect the correctness of a program by 

highlighting limitations in time dependent synchronisation. For example, 

consider a program that makes use of message passing implemented with 

timeouts. Certain runs of the program could fail if random delays caused timeout 

periods to be unexpectedly exceeded. More significantly though, an operational 

fault such as deadlock can cause the complete failure of a program by stopping 

some or all of its threads of control from proceeding with their execution. 

Operational faults are really a subset of algorithmic faults, which are common to 
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both sequential and parallel programs, and correspond to algorithmic flaws in a 

program that prevent it from producing a correct result. 

A large proportion of the time spent developing complex parallel software can 

be spent correcting performance faults. When a parallel program is designed, 

implicit assumptions are made about the lengths of time sections of code will take 

to execute, so that program threads can be efficiently distributed over system 

processors. If this estimation is done badly, then a parallel program can execute 
slower in parallel than it does sequentially. Even if a good allocation of threads to 

processors can be made, for many very large problems the speedups obtained by 

parallel processing begin to decline when tens or hundreds of processors are used. 

Many possible reasons for this exist, some of which (such as contention) are 
architecture dependent, but others come from the serialisation and overhead 

attributable to the operating system. In moderately parallel applications it is 

possible that this effect is not noticeable, but for highly parallel systems serious 

problems can arise, effectively putting a premature upper bound on the 
parallelism that can be exploited. Other performance related issues include 
creating the optimum number of threads for a parallel program, and choosing the 
most appropriate form of synchronisation for coordinating these threads of control. 

If threads of control have unsynchronised read and write access to a shared 

resource, then a race condition can occur between such threads of control. Such a 

condition corresponds to an error in a program's logic where synchronisation 

should have been used to enforce consistency. Race conditions can lead to 

operational faults of which the most well known is deadlock. When this 

phenomena occurs, the threads that are deadlocked cannot make any further 

progress towards completion without external intervention. Deadlock has been 

researched for many years and the conditions for it arising are well documented 
[Coffil]: 

• mutual exclusion, 
• non preemption of threads in critical sections, 

• waiting for other resources while in critical sections, 

• circular waiting. 

The two basic approaches that have been developed to handle deadlock are the 

techniques of prevention and avoidance. In deadlock prevention, the prevailing 

operating conditions of a concurrent system are such that some or all of the 
necessary conditions for deadlock are inhibited. Hence, it is possible to prove that 

any program operating in such an environment can never deadlock. When it is 
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undesirable or not possible to remove the necessary conditions for deadlock from a 

system, a strategy of avoidance can sometimes be used instead. In such a system, 

concurrent programs are executed under the aegis of some application specific 

rules. These rules ensure that a program can complete itsjob, but in so doing must 

avoid situations where deadlock could occur. For example, in problems of resource 

allocation (e.g. devices or memory) Dijkstra's Banker's Algorithm [Dijk65b] models 

the state of a resource by labelling it as either being in a safe or an unsafe state. If 

the resource is in a safe state, threads using it are guaranteed that they will not 
deadlock and will complete in a finite time (assuming that critical section rules 
apply). However, if the resource is in an unsafe safe, there is a chance that threads 

using the resource will deadlock if events occur in a particular sequence. 

Therefore, the Banker's Algorithm only grants those requests that result in the 

resource remaining in a safe state. Unfortunately, the algorithm only works under 

a strict set of rules, some of which are unreasonable for many applications. For 

instance, the Banker's Algorithm is unsuitable for programs that cannot, in 
advance, accurately predict their resource requirements, or that must adhere to 
strict time deadlines. Thus, if for some reason neither of the two basic techniques 

of overcoming deadlock can be used, detection and recovery mechanisms also exist 
to locate and break deadlocks, hopefully returning at least some threads of control 

to operating states. 

Although deadlock is fairly well understood there is a similar problem called 

livelock, which is more insidious and occurs mainly in transaction systems. 

Consider a thread of control whose execution is progressing toward its goal, but 

discovers that it cannot complete its task because another thread holds some vital 

resource. In an attempt to resolve this conflict, the first thread then tries to 

recover by recommencing its execution. In some situations this strategy will 

overcome the problem, however, if the second thread turns out to need a resource 

held by the first thread, a livelock can occur. Here both threads need a resource 

held by the other, and both threads never terminate as they cycle endlessly trying 

to avoid a deadlocked state. As the threads of control do not stop executing live lock 

can be difficult to detect unless there is some mechanism for monitoring the 
progress of a program. 

Even though a parallel algorithm may withstand careful scrutiny it can still 

fail due to problems of thrashing. Once again, threads do not necessarily cease 

execution but become so bogged down executing synchronisation or 

communication code that they cannot make progress towards their goals. For 

example, consider a producer thread that sends a stream of messages to a 
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consumer once the consumer signals that it is ready, and stops once the consumer 

signals that it is busy. If the producer sends messages too quickly, the consumer 

may not have time to signal to producer to stop sending messages, asit is too busy 

fielding the incoming messages. Clearly, thrashing problems are influenced by the 

timing and storage properties of the hardware environment in which programs 

are executed, bringing in an element of non-determinism into the execution of 

such programs. Furthermore, thrashing (and live lock) can occur through improper 

scaling of problems, in which programs may appear to work correctly by producing 
correct results in one configuration, but may fail in a larger or different 
configuration. 

A more subtle operational fault is indefinite postponement. This relates to 
certain threads never getting an opportunity to execute due to some bias in a 

scheduling or work partitioning algorithm. Other terms that have been applied to 

this phenomena are starvation and fairness. In most cases, this problem is 

confined to system software, as thread scheduling is generally handled 
automatically and is not the responsibility of a user. However, unfairness can 
occur in dynamic algorithms, such as work allocation strategies that allocate work 

on a first-come-first-serve basis. 

3.5 Requirements For Explicit Parallelism Constructs 

Some years ago Andrews [Andr761 suggested that the following areas must be 

addressed when designing new parallel programming constructs: 

• expressi veness, 

• reliabili ty, 

• security, 
• verifiability. 

The expressiveness of a language must be sufficiently rich to enable a wide 

variety of operational policies to be naturally expressed. Thus, programmers 

should have the freedom to design programs using an appropriate paradigm, and 

not be constrained to using a potentially obtuse model for solving the problem in 

hand. In practice, this means being evenhanded in the provision of language 

constructs by not trying to build in features that preclude a more efficient 

implementation in alternative styles or omit them altogether. Furthermore, 

constructs should exhibit uniformity, whereby similar concepts have compatible 

representations and similar operations have the same general interpretation. 
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The reliability goal is directed towards the compile time detection of time 

dependent faults arising from parallel activity. This can be realised through the 

use of high level (structured) constructs which are suitably constrained in their 

capabilities, to exclude or minimise the effects of parallelism features such as 

dynamic process structures and non-determinism. The use of such features has to 

be restricted because static compile time checking is, on the whole, unable to 

accurately predict the errors that dynamic behaviour can lead to. Only the 
possibility of faulty behaviour can be detected, which if used as an indicator of 
faults would lead to the classification of many working programs as being 

incorrect. Moreover, in any case, no indication is given of the likelihood of an 

erroneous state being reached. In general, the laudable aim of compile time 

reliability is difficult to achieve for real-world programs. Even so, it can have an 

important structuring effect on programs, hopefully leading programmers to a 

better understanding of their code. 

Early reliability checkers were used to detect multiple references to shared 

variables in the hope of highlighting faulty accesses. Two examples of compilers 
that enforce more elaborate reliability checks are Concurrent Pascal and Linda. In 
Concurrent Pascal, references to shared variables must only occur in special parts 

of a program (conditional critical regions), which enables the compiler to generate 

special code to enforce mutual exclusion. In the Linda compiler, simple matching 

is performed on the tuple communication primitives. This is to check whether 

tuples that are written by an output primitive can subsequently be read, and 

conversely, to see if tuples that are read, have at some stage been written. Tuple 
analysis of this kind is not rigorous, in so much that it simply looks for the 

existence of the primitives and does not examine actual program control flow to 

see if the primitives are executed in some correct ordering. However, quick checks 

of this kind are easy to implement and do pick up some of the more obvious 

programming errors. 

The motivation behind the security (integrity) goal, is to enforce access 

restrictions and to offer a guaranteed service. Access restrictions are enforced to 

offer a secure service which prohibits unintentional accesses to shared data and 

excludes external tampering. Consider a server in a concurrent system that 

handles a device or manages some data. This server must offer a clearly defined 

interface to its resource, with there being no other ways of obtaining access. The 

idea here is to stop malicious or naive users from corrupting the shared data or 

simply viewing it when it is in an inconsistent state. Often the complexity of a 

concurrent system is such that there is no global understanding of the interactions 
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between its atomic parts. Thus, to counter such systems, in a guaranteed service, 

valid resource operations are expected to execute as specified, taking whatever 

actions are available to avoid errors and inconsistency resulting from possibly 

unforeseen circumstances. 

Some of the checking that is needed to enforce access restrictions can be 

performed at compile time, for efficiency, and is related to the analysis employed 

to ensure reliability. However, other checking must be done at run time to handle 
dynamically occurring problems. Moreover, additional run time checking must be 

used to ensure a guaranteed service. This may take the form of arbitrating 

execution problems such as deadlock and livelock, handling exceptions, or 

enforcing policy decisions such as fairness on scheduling mechanisms. 

The verification of a program is the process of proving its correctness by 
showing that it always meets its specification. As parallel programming becomes 

more commonplace, it is useful to be able to reason about the correctness of a 
program in a formal way. Certain language constructs make this task easier, 

while others make it more difficult. Constructs that encapsulate data, so reducing 
interactions and side-effects, are a boon to verifiability, while capabilities that 

allow the run time bindings of variables, such as passing procedures as 

parameters, are a hindrance. For example in the general case, programs written 

in CSP can be formally analysed, while those written in C cannot. 

It is widely accepted that the ability to prove a program correct can be useful, 

giving a programmer confidence that a program will actually do what it is 

supposed to do. But, there is no general agreement about the relative importance 

of this program property with regard to other program properties such as 

efficiency and usability. When designing a parallel programming style or model it 

is advantageous not to preclude the ability to perform a formal analysis, but in all 

probability the force of the other considerations will win out. 

While it would be nice to believe that it is possible to evenhandedly satisfy all 

of the requirements set out for parallel programming mechanisms, experience has 

shown that language designers must trade off one requirement against another. 

Thus, one conclusion that can be drawn is that parallel progrrimming may be best 

served by a collection of complementary mechanisms, with each mechanism 

focussing on doing its job as well as possible. Following this policy, it should be 

possible to develop simple and intuitive programming abstractions that can be 
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used for a large proportion of parallel programming (easing the current situation), 

but nevertheless are not all things to all men. 

3.6 Methods of Exploiting Parallelism 

From the material that has been presented in this and the previous chapter, it 

should be apparent that there are many ways in which parallelism can be 

exploited. Even when considering only one parallel architecture, i.e. shared 
memory multiprocessors, the choice is not made much simpler because many of 

the software methods for exploiting parallelism are independent from the 

underlying hardware. To summarise, to address the problem of exploiting 

parallelism described in this thesis one could consider the following: 

Auto-parallelising Solutions 

• writing tools to transform sequential programs into parallel programs, 
• devising abstract machines (interpreters) to execute programs in parallel. 

Programming Language Solutions 

• writing new programming languages (explicitly parallel, implicitly parallel 
or sequential), 

• devising specialist parallel programming languages for use with existing 
languages. 

Hybrid Solutions 

• using graphically based tools for program construction, that automatically 
generate the parallelism code required to implement a given design. 

Software Libraries 

• the utilisation prewritten parallel codes. 

Auto-parallelising Solutions 

The auto-parallelisation of imperative programs at first seems a painless way 

of exploiting parallelism in a convenient and portable manner. The fundamental 

technique of auto-parallelisation is vectorisation, whose success relies on three 

factors: (i) the code is vectorisable, (ii) the compiler can spot this, and (iii) the 

target hardware has appropriate instructions to exploit the parallelism. Thus, 

vectorisation (and its associated techniques) cannot guarantee effective parallel 
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programs, because such techniques are essentially a serIes of stepwise 

transformations that produce concurrent programs by starting with sequential 

programs. 

Auto-parallelising interpreters (for declarative languages) similarly rely on 

three factors: (i) there is parallelism implicit in a program (algorithmic 

parallelism), (ii) the available parallelism can be exploited by the interpreter's 

model of parallelism, and (iii) the grain size of the parallelism exploited by the 

interpreter can be efficiently matched to its target architecture. Hence, the 

limitations of these techniques are similar to those encountered in vectorisation. 

One of the characteristics of auto-parallelisation is that it hopefully leads to 

the exploitation of parallelism via an existing sequential programming model. On 

one hand this makes the job of the programmer easy and the job of the 
parallelising tool writer quite hard, as the parallelising tool has to do all of the 

work of detecting and exploiting the parallelism. On the other hand, however, a 
programmer may have chosen an algorithm that has very limited parallelism, 
giving an auto-parallelising no scope to work, where in fact a parallel algorithm 

could have been used instead. Thus, to promote effective parallel software 

programmers have to be steered towards using parallel algorithms and one of the 
most successful ways of doing this is by providing sui table programming 

constructs. 

Programming Language Solutions 

As the scope of programming language design encompasses far more than 

issues of parallelism, the task of defining the definitive parallel programming 

language cannot be undertaken in isolation from other programming language 

research. Over the last twenty years many programming languages have been 

proposed that either use parallelism as a feature, or were purposely designed to 
exploit parallelism. Unfortunately, as people have continued to use more 

traditional languages or moved to other languages (e.g. object oriented languages) 

much of the impact of these parallel languages has been lost, although some of 

their ideas for parallelism mechanisms have been perpetuated in later languages. 

Thus, for this thesis, while it would be desirable to p·ropose a complete 

programming language, it is somewhat impractical due to the large volume of 

work that would be involved. 

At the current time a large proportion of parallel programming is undertaken 

using sequential languages which include parallelism extensions in the form of 
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library calls and compiler directives. Extensions have been made to both 

declarative and imperative languages. For example, in the case of Fortran 

extensions have been made in an disorderly fashion which has led to many 

different but similar language dialects. While diversity of this kind encourages 

competitive research, in many situations effort is wasted in producing equivalent 

but incompatible constructs. A more productive approach to extending existing 

languages is to define a specialist parallel programming language (e.g. Linda), 

and then apply its use equally when it is used in conjunction with its host 

languages. Hence, this route to parallelism has the attribute of uniformity across 
a range of languages, and also means the programmers can continue to use 
familiar languages (which may be the most suitable for the job in hand). Thus, the 

parallel programming constructs that are developed in this thesis are intended to 

be viewed as a parallel programming sub-language, that can be used with existing 

imperative languages. Nevertheless, at some later time it may be expedient to 
design a complete programming language, purpose built, to harness the new 
parallelism constructs. 

Imperative languages are used as the host languages for this research because 
the work is centred around producing shared data structures that can be 

manipulated in parallel. This kind of shared memory programming model is the 
one which is most suitable for efficient execution on shared memory 

multiprocessors (and is also quite efficient for hybrid architectures as well). In 

addition, the work carried out into data structuring techniques (in object-oriented 

systems) seems to be an important programming area and using imperative 

languages allows the freedom to explore various parallelism constructs. Having 

said this though, declarative languages and styles of programming offer high 

levels of abstraction that are liberated from the details of the underlying 

hardware. Moreover, declarative programming can naturally lead to programs 

that exhibit high locality of reference and low coupling between procedures, which 

means that such programs can be ex~cuted very efficiently taking maximum 

advantage of hardware facilities such as caching. Thus, while imperative 
languages are used as the staple programming languages for the research in this 

thesis, the influence of declarative languages on the form of the parallelism 

constructs is evident. 

Hybrid Solutions 

Software tools are an important aspect of a programming environment, but 

nonetheless at the current time programming languages seem to be a more 
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important area for parallelism research. At some time in the future, programming 

metaphors (bases for programs) may be able to be expressed visually, without 

recourse to any code, and at that time parallel programming will be liberated from 

textual programming languages. However, in the short term programming 

language development seems to be the best way to evolve parallel programming 

styles for the future. 

Software Libraries 

One method of creating a parallel program is to make use of pre written library 
routines, devised by an expert, that execute in parallel. A good example of an 

application of this technique is the Lapack numerical library [Demm87]. Many key 

numerical analysis functions are encoded within the library, and so for many 

scientific problems some parallelism will be automatically exploited when library 
functions are invoked. Using software libraries is a very attractive approach to 

parallelism because it offers a quick route to often very effective parallel 
programs. However, libraries are not without their faults as tradeoffs must be 
made in their implementations because of the general lack of portability between 

different types of parallel architecture. Moreover, the programming effort to 
construct a library may be considerable as libraries may have to be modified for 

each new machine that is supported (even if they have similar architectures). In 

addition, the use of parallelised library routines written in imperative languages 

can lead to nasty side-effects when the routines interact with the rest of a 

program. Errors such as these can be very unpredictable and difficult to pin down, 

especially if a programmer does not have a good working knowledge of how the 

parallelised library works. 

At the current time, large standard software libraries are used for specialised 

computing concerned with numerical analysis or computer graphics. With 

advances in software engineering it may be possible in the future to maintain 

libraries of parallelism routines with general purpose capabilities to widen the 

accessibility of this route to parallelism. In addition, the notion of software reuse 

itself is one that some people believe is a ready answer to some of the problems in 

engineering large pieces of software - saving both time and money. Nevertheless, 

the problem remains that libraries must be written in some programming 

language, so it is the implementation language of a library that must overcome 

most of the problems associated with parallel processing. 
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Chapter 4 

Shared Values 

Over the course of the previous two chapters aspects of parallelism ranging 

from multiprocessor hardware to parallelism constructs and parallel algorithms 

have been discussed. Much of this information is generally applicable to the study 
of parallelism, though some of it is more specifically aimed toward specialised 

multiprocessor architectures and parallel language approaches. The focus of this 
chapter is to present original material on the concept of using shared values as a 

method of explicitly exploiting parallelism in programs. The ideas behind the 
semantics of shared values are drawn from a diverse range of sources and as a 

result, the use of shared values is thought to be widely applicable to parallel 

programming rather than being just an approach specialised for certain types of 
applications. Likewise, from a hardware perspective, although shared values are 

most suitable for use with shared memory multiprocessors, there are no 
fundamental reasons why they cannot be used successfully with other 

multiprocessor architectures. 

Thus, the main body of this chapter is devoted to an explanation of the 

operation of shared values. This explanation is opened by a short overview of the 

ideas behind the use of shared values and considers the types of problem that 

shared values are designed to solve. Following on, a description of the semantics 
and syntax of shared values is presented, interleaved with examples explaining 

how shared values can be used for parallel programming. This description is the 

basis of the Tyger parallel programming model, which is the model of parallelism 

specifically developed to support shared values. Finally, the closing section of this 

chapter departs a little from the shared value theme. It tackles some of the 

problems in the production of effective parallel software, not addressed directly by 
shared values, taking the form of a gen:eral outline of the remainder of the system 

software envisaged for a complete shared value environment. 

4.1 Philosophy of Shared Values 

One way in which parallelism can be exploited by multiprocessors is through 
the expression of application programs in terms of groups of cooperating threads of 

control. As noted in earlier chapters, two strategies for creating parallel programs 

are possible. Firstly, explicit parallelism constructs can be written directly into 
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programs to force parallel execution. Secondly, software tools can be used either to 

analyse a program and automatically generate the parallelism code (e.g. 

vectorisation), or be used to execute a program in a way that is naturally parallel, 
with only algorithmic dependencies controlling the exploitable parallelism (e.g. 

dataflow). Nevertheless, no matter which method is used to exploit parallelism, 

effective parallel programs cannot be produced by arbitrarily partitioning 

programs into multiple threads of control. 

In point of fact, any program can theoretically be partitioned such that there is 

one thread of control per instruction. If such a program is executed correctly in 
parallel on a shared memory multiprocessor (as opposed to pseudo concurrent 

execution), in all but trivial cases coordination between threads is necessary to 
reflect the dependencies between statements, to ensure correct instruction 

sequencing, and to manage the execution of the threads themselves. When these 

overheads for communicating data and synchronising multiple threads of control 

are taken with the overheads for thread creation and management, such 
overheads will more than outweigh the useful work performed by such a program. 
From the viewpoint of efficiency, this makes parallel execution of this kind very 

unattractive. A more likely scenario for parallel execution, therefore, is that the 
number of actual threads of control is bounded by the number of processors on a 

multiprocessor and not only by the problem size. Thus, although conceptually 

there may be many threads of control in a program these will be partitioned for 

execution by a smaller number of actual threads of control. For example, this 

technique is essentially the one followed by loop spreading when simulating 

vector operations, and while it is somewhat better than the totally parallel 

approach it can still be inefficient if an allocation of work to an actual thread of 

control is smaller than the time taken to make the allocation. Thus, if a program is 

analysed, certain activities may be identified as being suitable for parallel 

execution according to some efficiency criteria, and it is only these activities that 

are partitioned and executed in parallel, the rest being executed sequentially. 

If lightweight threads of control are employed to execute a parallel program, 

thread management overheads can be kept to a minimum. More importantly 

though, the amount of useful work computed by a thread- should exceed the 

amount of work taken to create and manage that thread, so that some 

performance benefit will be obtained if sufficient numbers of threads can be 

utilised. Ideally, if there are no interactions between parallel threads of control 

the maximum efficiency benefit can be derived from their parallel execution. That 

is, no time is wasted on the overheads of communication and synchronisation, and 
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as a result, the ratio of useful work performed by a program to its parallelism 

overheads is as high as possible. In many programs, however, assuming there are 

no thread interactions is impractical as few applications can be decomposed into 

completely independent parts. Many parallel programs are composed from threads 
that interact with each other by exchanging information and synchronising their 

execution, producing complex overall patterns of control and data flow. 

Interactions between threads of control can occur for many reasons, though these 

can be linked to the low level types of dependency between statements identified 
by Kuck (see chapter two). However, at a conceptual level, threads can interact by 

transferring program data, by propagating thread control information 

(synchronising). or by a combination of both (e.g. as in message passing). Thus, to 

produce effective parallel programs, the aim of a parallelisation strategy is to 

yield sufficient threads of control to enable allow a reasonable number of 

processors to be applied in the execution of a program, but with the proviso that 

the threads of control should interact as infrequently as possible. Moreover, as an 

aid to designing and debugging parallel programs it is advantageous if the 
patterns of communication and dependency between threads of control are regular 

and one directional. 

To recap, parallelism can be obtained from a program by partitioning its data 

structures such that worker threads, perhaps independently, compute their own 

parts of some result. Techniques which have taken up the data parallelism 

approach include SIMD processing (e.g. vectorisation) and at a higher level of 

granularity MIMD processing (e.g. loop spreading). Data parallelism can be 

viewed as a natural extension to von Neumann programming that redresses some 

of the unnecessary sequentiality that is propagated by conventional programming 
languages when operating on regular data structures. As an alternative 

paradigm, parallelism can also be obtained by distributing the function of a 

program across a group of threads, with each thread performing some unique 

transformation on its data. More often than not, however, threads have to 

communicate with each in order to produce a result. A good example of functional 

parallelism exploited in this way is pipelining. No clear cut rules exist for 

clarifying which decomposition is preferable for an algorithm, as either 

decomposition can sometimes be used successfully, or occas"ionally they can be 

combined and used together. However, in some cases, the use of either approach 

can lead to parallel solutions that contain a large degree of parallelism overhead, 

in the form of communication and synchronisation, which may prove unacceptable 

for certain applications. 
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One factor that is important in the design of parallel algorithms is the 

regularity of the work performed by the threads. Analysis of a program can be 

made easier if its threads of control perform similar functions. Moreover, 

specifying that hundreds of threads perform one function is somewhat easier than 

expressing that hundreds of threads should perform different fUnctions. In the 

same vein, parallel algorithms based on data partitioning have been shown to 

exhibit scalable amounts of parallelism. In chapter three, Figure 3.1 showed a 

map of granularity versus number of threads of control. One of the main points 
contained in this map is that, in general, data parallelism provides more scope for 

effective parallelism than functional parallelism. This stems from the observation 

that as problems are scaled in size, so increasing the size of their data structures, 

more data parallelism can be applied, data dependencies permitting. However, in 

the case of a program that exploits functional parallelism, increasing the size of a 

data structure, does not necessarily increase the scope for parallelism, as it can 

only be increased if the program can be decomposed into smaller functional units. 
Irrespective of whether such a decomposition can be performed, undoubtedly the 

repeated functional decomposition of a program will lead to threads of control 
which have complex interdependencies and correspondingly complex interactions. 

For a significant number of applications, exploiting parallelism in a program 

by data partitioning is a technique that can provide a sufficient number of 

realisable threads of control to enable worthwhile performance benefits to be 

obtained. Moreover, these threads of control may well have few interactions, 

leading to small parallelism overheads. Hence, the objective for shared values in 

the Tyger programming model is the provision of an elegant notation for 

expressing parallel activity, that pays particular attention to the efficient 
exploitation of data parallelism. 

4.2 Tyger Parallel Programming Model 

A Tyger program starts off as a single thread of control executing in its own 

address space called a shared value space (SVS). Over the course of its execution, a 

Tyger program may consist of many concurrently executing threads of control, 

spawned from the original thread, that can communicate with each other by 

reading and writing shared values in their single communal SVS. There are two 

fundamental types of shared values called static and dynamic shared values. 

Static shared values can be thought of, and declared in the same manner, as 

conventional variables, but with the proviso that they are automatically shared 

amongst a group of threads of control that share a SVS. Moreover, static shared 
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values have single assignment semantics which allow them to act as an 

interthread communication and synchronisation mechanism. Conversely, 

dynamic shared values are not rooted and lexically scoped to any section of 

program code like conventional variables, but instead are passive free agents 

created at run time. After their creation, dynamic shared values reside in the SVS 

during the execution of their parent parallel program, and can be referenced 

associatively and manipulated by Tyger constructs in a manner similar to Linda 
tuples (see chapter two). 

Shared values and their associated constructs form the programming part of 

the Tyger model, but the model extends to cover part of the thread implementation 

and operating system's view of a parallel program. Information on the structure 
and external appearance of a group of threads that forms a Tyger program is 

presented in the global environment section towards the end of this chapter. 

One important axiom of the Tyger model is that the process of identifying and 
coding parallel execution should be an explicit process, deriving benefits from a 
programmer's experience and knowledge of his intentions regarding how a 

program should operate. One consequence of this axiom is that a programmer 
could have in mind the effect parallel execution will have on the performance of a 

program, to enable performance tuning of the program if desired. However, this 

explicit approach to parallel programming is qualified by the expectation that 

software tools, primarily compilers, will off-load many of the details regarding the 

implementation of parallelism, leaving programmers to concentrate on designing 

and expressing parallel algorithms. Of course, this is easier said than done, but as 

shared value constructs are geared towards exploiting the regularity offered by 

data parallelism, the implementation of parallel threads is made much easier 

than if shared values constructs claimed to efficiently support all types of parallel 
programming. Thus, the Tyger model can offer a high level view of parallelism to 

programmers by concentrating on supporting one important type of parallelism 

very well, and in so doing does not have to make unreasonable requirements for 

any underlying implementation. 

The Tyger model is intended as a vehicle, or pool of ideas, (or exploring ways in 

which parallelism can be exploited in imperative programs through the use of 

shared values. The model is evolutionary in nature, changing with the 

introduction of new ideas, rather than being a fixed concrete model. The decision 

to make the Tyger model mutable was taken to reflect the fact that the provision 

of programming constructs is always a compromise between design 
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-
considerations, therefore making it difficult to arguably obtain the best suite of 

constructs at the first attempt. The Tyger programming language has been 

developed to, test out practically, the idea of using shared values for parallelism 

put forward in the Tyger model. 

The Tyger language is a compact parallel programming language that deals 

exclusively with parallel programming, and hence, has to be embedded in a host 

language for general use. The execution model followed by the Tyger language is 
based on procedural control flow, so suitable host languages are imperative 

languages such as Fortran, Algol and their derivatives. The objective of the Tyger 

language is to describe parallel control flow and information sharing 

relationships, and in consequence, the Tyger language cannot be packaged as a 
black box that can be retrofitted blindly to any imperative language. Tyger 

mechanisms have to be carefully integrated into a language, to ensure uniformity 

of operation across Tyger constructs and thereby ease of use, and cannot be 
thought of as merely an adjunct. In practice, this may mean having to compromise 

some of the Tyger constructs or restrict some of the host language features. As an 
example, consider the implementation of Tyger constructs in an object-oriented 
language such as C++. Here, one reason for using the Tyger constructs would be to 

allow objects implemented with shared values to be operated on in parallel. 

Object-oriented languages are based around the manipulation of objects created to 

a pattern defined by their class. C++ allows the declaration of static data which is 

shared between all objects of a class by maintaining only a single copy of this 

static data and making all objects of the class refer to it when necessary. If a C++ 

program that exploits this feature is executed concurrently, then problems can 

arise with sharing and synchronising accesses to this static data that do not arise 

in a sequential execution. This is because static data is implicitly shared and 

unless explicit steps are taken to share and synchronise accesses to it, programs 

that use static data cannot work correctly. However, due to the nature of 

information structuring and hiding u~ed in object-oriented languages, explicit 

changes cannot always be made to references to static data as the implementation 

of a class is hidden from its users. Hence, the only safe solution is to disqualify the 

static data feature from the language. Thus, although it would be convenient to 
think of the Tyger language as being self contained, restrictions may have to be 

placed on the host language, and details of the Tyger language itself may vary, 

according to which language is acting as the host. 

Two languages have been chosen as host languages for Tyger constructs to 

date, C and C++. These languages were chosen as examples of imperative 
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languages that are in common use but have received little attention from the point 

of view of automatic parallelisation, therefore requiring any exploitation of 

parallelism to be done explicitly. This situation has arisen because programs 

written in C and C++ can suffer from the aliasing of variables and can make 

considerable use of pointers, which makes the dependency analysis for automatic 

parallelisation very difficult. This fact has been recognised by many other 

researchers who have produced explicit parallel programming tool kits in the form 
of thread libraries for these languages (see chapter two). This work has been 

useful for carrying out research into parallel programming, but in the main has 
been too low level when compared with other more integrated approaches followed 

by other parallel object-oriented languages (e.g. Argus) and parallel declarative 

languages (e.g. Strand). Thus, Tyger constructs are a method for building on the 

earlier work done with threads libraries, in order to provide much higher levels of 

parallel programming abstraction for C and C++ that can rival other high level 

approaches to parallel programming. 

4.2.1 Programming Language Constructs 

When designing a parallel programming language, three types of 

programming mechanism have to be addressed: (i) how multiple threads of control 

are created; (ii) how they communicate; and (iii) how they are synchronised. The 

Tyger parallel programming language supports the creation of multiple threads of 

control via parallel iteration constructs to enable data partitioning, and by a 

general parallelism operator to support functional partitioning. Communication 

between multiple threads of control.is realised by shared values, which are also 

the method of synchronisation. Shared values come in two varieties, static and 

dynamic, with static shared values being the most influential part of the Tyger 
model. 

4.2.2 Static Shared Value Se,mantics 

A single assignment variable has the property that it can only be bound to a 

value (assigned) once in its lifetime during the execution of a program. This 

property is exploited by dataflow systems as a method for controlling program 

execution, with operations being executed as soon as the values of their operands 

are made available. The idea of controlling program execution by data 

availability, however, is not confined to dataflow languages (e.g. it occurs in 

Strand) and also can be found in languages that make use of synchronous message 

passing such as CSP (see chapter two). In CSP, if a thread wishes to send a 
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message to a companion, it must wait until the companion is ready to receive it. 

Similarly, if a thread wishes to receive a message it must wait until one has been 

produced. These synchronisation semantics for the flow of data are more 

specialised than those for one directional dataflow as not only must a consumer 

thread wait until its data is available, but also a producer thread'must wait until 

its consumer is ready. Thus, dataflow semantics can be used to provide a dual 

mechanism serving for both interthread communication and synchronisation. 

One of the goals of the Tyger model is to produce an interthread 

communication mechanism that is both elegant and efficient. Shared memory 
provides an excellent starting point for efficient communication. However, 

detailed synchronisation code is sometimes needed to ensure that operations occur 
in a correct sequence. Consider an elementary example of two threads of control 

using shared memory to communicate, operating under the classic writer to 

reader relationship. In Scenario 0 no explicit synchronisation construct is used to 
enforce correct program execution, though is it assumed that operations on shared 

memory locations are executed atomically. The shared data in this scenario are 
the shared variables X and XControl. 

II Scenario 0 

int X, XControl = 1; 

WriterO 
{ 

} 

x = 100; 
XControl = 0; 

ReaderO 
{ 

do {} while (XControl != 0); 
1* use the value of 'X' directly *1 

} 

When the Writer() and Reader() procedures are executed by separate threads of 

control, the thread executing the ReaderO procedure will be held in a loop until 

the value of XControl is changed by the writing thread. Further on in the 

execution of the reader the value of X will be used directly in some computation. 

One of the drawbacks in using the above synchronisation scheme is that two 

shared variables have to be created, where conceptually there should only be one. 

A more serious flaw, however, is that the semantic link between a synchronising 

variable and a data variable is one made entirely by the programmer, therefore, 

opening an a ven ue for programming errors. More specifically, one of the common 

errors in using this form of synchronisation is that program statements can be 

ordered incorrectly causing synchronisation errors, and possibly leading to 

program failure due to deadlock. 
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In Scenario 1, locking is used to control access to shared data in much the same 

way as before, though this time resulting in a simplified ReaderO procedure. The 

shared data in this scenario consists of X and a lock XLock. 

1/ Scenario 1 

lock 
int 

XLock = locked; 
X· , 

WriterO 
{ 

} 

X= 100; 
unlock(XLock); 

ReaderO 
{ 

lock(XLock); 
1* use the value of 'X' directly *1 

} 

The interpretation of the execution of the new program is exactly as before, 
with the benefit of using locking being that more of the sense of the 

communication between the threads is captured. However, locking is a very 
powerful, yet unstructured, synchronisation mechanism so it can be difficult to 

use in practice, and faces problems similar to those outlined in Scenario O. An 
aesthetic improvement over Scenario 1 is to use an event based mechanism for 
synchronisation. The use of an event mechanism provides a more tailored 

expression of the synchronisation between the threads of control than does 

locking, in that the reader waits for the event that corresponds to the arrival of a 
value for X. The syntax for an implementation using an event is illustrated in 
Scenario 2. 

II Scenario 2 

event XSignal = cleared; 
int X; 

WriterO 
{ 

} 

x = 100; 
signal(XSignal) ; 

ReaderO 
{ 

wait(XSignal); 
1* use the value of , X' directly *1 

} 

Once again the same interpretation of the program applies, though normally a 

thread is suspended and does not consume processor cycles while it waits on an 

event. This process of program refinement could be continued using mechanisms 

such as barriers and monitors, however, two fundamental problems will remain. 
While events (and their ilk) provide an intuitive method of synchronisation for 

this problem, it is still possible to make programming mistakes when ordering 

signalO and waitO operations. Moreover, each of the approaches described need to 

have a synchronisation variable explicitly initialised to a correct state before 

execution of the procedures is commenced. If a message passing mechanism is 

used to communicate information between writer and reader, however, the former 
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problem is alleviated as communication and synchronisation are enmeshed into a 

single pair of commands. Furthermore, no explicit initialisation may be needed, 

although a programmer must ensure that there are no messages already present 

on the communication channel. The syntax of such a message passing 

arrangement is illustrated in Scenario 3. 

II Scenario 3 

channel XChannel; 

WriterO 
{ int X; 

send(XChannel, X = 100); 
} 

ReaderO 
{ int Y; 

receive(XChannel, Y); 
1* use the value of 'X' indirectly by referencing Y *1 

} 

When the Writer() procedure is executed by a thread of control, it puts a copy of 

the value of X on the shared communication channel (XChannel) and then 
continues execution (with the channel buffering the value in a FIFO queue). When 

the ReaderO procedure is executed by a thread of control, that thread will be 
suspended until a value can be obtained from XChannel. Once a value has been 
made available it is removed from the channel and bound to the local variable Y, 

with the reader then continuing and using the value of Y in some subsequent 

computation. 

Message passing neatly combines communication and synchronisation by 

replacing direct sharing semantics with copy semantics. However, although one 

source of programming errors is removed another source of errors is created, as 

there is the need for a programmer to deliberately partition the set of program 

variables between threads of control. Moreover, consideration must be given to 

how data is to be explicitly moved between threads of control when it is required. 
The tasks of partitioning and designing protocols for moving data around in 

message passing systems can be an integral part of problems that require a model 

of physical distribution (e.g. fault-tolerant program replication across multiple 

machines), but for problems that use a model of conceptually shared data, such 

tasks are just extra work for programmers. 

One of the aims of using static shared values is to combine the immediacy of 

access found in shared memory systems with the compact synchronisation 

mechanism found in message passing systems. Hence, static shared values 

combine aspects of dataflow synchronisation behaviour with shared memory 

accessibility. In the single assignment model utilised by dataflow systems, only 

one assignment can logically be made to each variable. Further assignments to 

the same variable are treated as invalid and are disallowed; this rule is also 
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followed for shared values. Thus, it may seem that static shared values are 

nothing more than single assignment variables, though while this is partly true, 

shared values exhibit some semantic differences that will be described in coming 

sections. Scenario 4 illustrates a static shared value solution to the writer to 

reader problem. 

/I Scenario 4 

SVintX; 

WriterO 
{ 

X= 100; 
} 

ReaderO 
{ 

1* use the value of X directly *1 
} 

A static shared value X is declared as shared to the Writer() and the Reader() 

procedures. When the ReaderO procedure is executed by a thread of control, that 

thread will execute until it needs to use the value of X, at which time, it will be 

suspended until the value of X is available. As soon as the value of X is 
determined, it will be used immediately by the reader in some calculation. When 
the WriterO procedure is executed by a thread of control, the thread assigns a 

value to X, thereby making this value available to any thread that needs it, and so 
releases any suspended threads. Thus, the use of a static shared value permits a 

once-and-for-all communication between threads of control, as the value held by a 

shared value cannot be changed once is has been set, though it can be read as often 
as required. 

Shared Value Description 

A simplified view of the Tyger programming model permits the existence of 

two elementary types of variables. Firstly, there are those that are treated as 

conventional variables, being local to the thread that uses them and not shared 

between multiple threads of control (i.e. traditional variables). Therefore, there 
are no synchronisation constraints on operating with these variables, and no race 

conditions or thread interleavings to be considered. Thus, for efficiency reasons, it 

is safe to reassign these variables when necessary as this cannot affect other 

threads of control. Secondly, there are shared values, which are shared between 

threads of control, acting as an interthread communication and synchronisation 

mechanism, that can only be bound to a single value. An attempt to bind another 
value to such a variable will raise an exception, while references to an unbound 

shared value result in the suspension of the referencing threads until a value is 

made available (i.e. the shared value is bound to a value). Thus, the name "shared 

value" represents that fact that only write-once values can be shared between 
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threads not rewriteable variables. One important point to note regarding the 

notion of sharing of data between threads of control is that it is selective and 

modular. That is, shared values do not have to be declared as global variables and 

can appear as local variables that a thread can share with its children, via a 

parameter passing mechanism. 

Using single assignment variables as a communication and synchronisation 

mechanism seems an attractive way of extending imperative languages to 
encompass parallelism. However, there are two drawbacks in using the basic 

single assignment scheme. Firstly, there is the matter of storage management. As 

many potentially parallel programs are based on the manipulation of large data 

structures, making new versions of such data structures because of repeated 
alterations to certain parts of the structures could be prohibitive in terms of the 

memory required unless adequate techniques for the reclamation of unwanted 

storage are available (garbage collection). Secondly, as many imperative 

programs are based on manipulating data structures by using iterative rather 

than recursive methods, the naming of variables can be problematical in the case 
of multiple assignment to temporary or intermediate variables. In addition, the 
reuse of storage is one of the strong efficiency points of the von Neumann 

architecture, from which shared memory multiprocessors are derived, and should 

be given due consideration. Furthermore, from the point of view of time efficiency, 

maintaining multiple copies of data structures may lead to excessive copying 

overhead, which can have a disproportionately negative effect on parallel program 

performance if, as a result, the processor-to-memory communication links become 

saturated. 

To ease the transition to the single assignment property of variables in 

imperative languages, the Tyger language offers a compromise between using 
single or multiple assignment values to support thread interactions, combatting 

the storage and naming problems men~ioned before. The key observation which is 
exploited in the Tyger model is that much of the parallelism in a program can be 

exploited in a series of discrete bursts of parallel activity. For example, a program 

starts executing with a single thread of control, performs some work involving 

multiple threads of control, but returns to a single thread of control to perform 

some final work. This simple example can be generalised to encompass programs 

that contain many bursts of parallelism, returning to sequential activity after 

each one. 
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A Tyger program consists of a sequence of intervals, called stripes, that 

correspond to alternate blocks of program statements in which a program is either 

operating in a sequential or concurrent manner. Stripes are delimited by 

parallelism constructs which change the state of a program from being sequential 

to parallel and vice versa, though otherwise need no explicit denotation. The 

Tyger model defines that it is not possible to have consecutive sequential stripes, 

as these are coalesced into a single sequential stripe, nor is it possible to have 
consecutive parallelism stripes. The former observation is quite natural but the 
latter requires a little explanation. At the very start and very end of a parallelism 

stripe there is only a single thread of control, any others having terminated. Thus, 

the end of one parallelism stripe and the start of the next, delimits a sequential 

stripe that may, or may not, contain any user program instructions. 

The reason why a Tyger program is cast into this seemingly strange mould of 

alternate sequential and parallel intervals is to allow the reuse of the 
communication and synchronisation mechanism provided by static shared values. 
During a sequential stripe, there is no need for the communication and 

synchronisation semantics of a shared value to be in effect, so it can behave 
precisely like a conventional variable, with the capability to be assigned multiple 

times. However, when a parallelism stripe commences, all shared values take on 

an uninitialised state so that their dataflow semantics can come into force, 

allowing them to act as an interthread communication mechanism. When a 

parallelism stripe terminates, that is all but one of the threads has terminated, a 

shared value reverts back to being a normal variable, ready for immediate reuse 

or for reuse in a subsequent parallelism stripe. 

The stripe model of parallelism employed by Tyger programs envisages that 

conceptually there is one master thread of control that persists throughout the 
execution of the entire program. This thread of control represents the activation of 

a procedure which corresponds to the II?-ain body of the program, and is called the 
spine (similar to the term used in graph reduction). There are Tyger constructs 

that allow the activation of procedures as new threads of control, which execute in 

parallel with the parent main thread of control. However, the parent cannot 

terminate the execution of a thread creation construct until all of the newly 

created worker threads have themselves terminated. Figure 4.1 shows the 

relationship between a thread diagram on the far right, and its corresponding 

sequence of Tyger stripes, for a Tyger program consisting of five stripes. 
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Time Control Flow Spine 

Sequential Interval 

Coworker threads 

Coworker threads 

Sequential Interval 

Figure 4.1- Tyger stripes. 

As an example main program, the following code fragment describes a Tyger 

program that consists of three stripes. An opening sequential stripe in which an 

initialisation routine (doMasterStartUp() is executed, a parallelism stripe where 

doMasterWorkO runs in parallel with doSlaveWork(), and a closing sequential 

stripe in which a concluding procedure (doMasterCloseDown() is executed: 

void mainO 
{ 

} 

doMasterStart U pO; 
doMasterWorkO 1&1 doSlaveWorkO; 
doMasterCloseDownO; 

/* sequential stripe */ 
/* parallelism stripe */ 
/* sequential stripe */ 

The" 1&1" symbol is called the parallel-and operator and is one of the Tyger 

thread creation operators. In the above program it will cause the creation of a new 

thread of control to execute the doSlaveWorkO procedure in parallel with the 

doMasterWorkO procedure, which is executed by the master thread of control. 

Furthermore, in common with all Tyger parallelism thread creation operators, the 

parallel-and operator requires the master thread of control to wait, if necessary, 

until the worker thread of control has terminated. Further information regarding 

this operator is presented later in this chapter. 
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Parallelism stripes can be viewed as a series of fork and join statements in 

which all of the workers are forked at the beginning and joined at the end of each 

parallelism stripe. In the current Tyger model, a program can contain only one 

spine, which means that worker threads cannot themselves create other threads to 

form substripes. (The reasons for this restriction are presented later in this 

chapter.) The rules for the creation of threads of control imposed by the Tyger 

model constrain the way in which parallel programs can be structured, by making 

them express parallelism in a number of discrete parallelism stripes. Moreover, 
the threads of control in a parallelism stripe take the form of an asymmetric 

master-worker configuration. However, as subsequent example code fragments 

show, these restrictions do not unduly detract from the expressive power of the 

Tyger constructs, as many parallel applications can be expressed in a single 

parallelism stripe. Furthermore, the master thread can perform useful work 

during a parallelism stripe and does not have to remain idle waiting for its 

workers to finish. 

Static Shared Value Histories 

As the Tyger model of parallelism allows static shared values to be reused over 

the course of a number of stripes, it may be useful to examine a past value held by 

a shared value. Such contingencies arise in iterative numerical applications when 

the next state of a variable is computed as some function of its previous states. 

This need to access past state information has been recognised in other languages 

based on single assignment such as SISAL [McGr83, Feo90], where there is an 

operator to retrieve the previous state of an iterator variable. In the Tyger model, 

a past value taken by a shared value, SV, in a previous stripe can be accessed by 

encapsulating references to sv in the function oldO. This function takes a shared 

value as a parameter and returns a shared value as a result. The interpretation of 
what the oldO function returns is dependent on whether it is invoked from a 

sequential stripe or a parallelism str~pe. Consider a thread To operating in a 
sequential stripe with a shared value sv which is acting as a normal variable. The 

following statements are always true: 

To readssv 
To reads old(sv) 

To binds sv to a value 

To binds old(sv) to a value 

~ To obtains the current value ofsv. 
~ To obtains the previous value of sv, otherwise 

an exception is raised. 

~ sv is bound to a new current value. 

~ an exception is raised. 
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As with normal variables the current value of a static shared value can be 

inspected, even in cases where a shared value may be undefined when it has yet to 

be assigned. Thus, intuitively, the oldO function operates by returning the 

previous value held by a shared value, or by raising an exception when this value 

does not exist or when an attempt is made to alter it. 

In a parallelism stripe the oldO function operates in the following manner. 

Consider a group of n threads To .. Tn executing in a parallelism stripe. The role of 
To is to produce a shared value, sv, that the T/s (0 < i s n) will use in their own 

computations, with the T/s possibly binding other shared values as well. The 

following statements are always true: 

To binds sv before Ti reads sv 

Ti reads sv before To binds sv 
To binds sv before Ti reads old(sv) 

Ti reads old(sv) before To binds sv 
To binds sv after binding sv 
To binds old(sv) 

=> Ti obtains the latest value of sv. 

=> Ti blocks until sv is bound to a value. 
=> Ti obtains the previous value ofsv. 

=> Ti obtains the current value of sv. 
=> an exception is raised. 
=> an exception is raised. 

Whereas in a sequential stripe old(sv) always returns the previous value of sv. 
in a parallelism stripe it will either return the previous value of sv or the current 

value ofsv, depending on whether sv has been bound to a value in that stripe. The 

way to look at this behaviour is to assume that sv gets a new current state 

immediately upon entry to the parallelism stripe. This state is undefined and 

cannot be examined until it has been bound to a value by a thread, but this means 

that old(sv) is always defined. Unfortunately, there is a minor shortcoming in the 

usage of the oldO function which occurs if old(sv) is referenced during a 

parallelism stripe in which sv is not written. In this case, a call to old(sv) from the 

following sequential stripe will return the previous value ofsv and not the current 

value ofsv that was returned by the call to old(sv) in the parallelism stripe. 

The oldO function can be generalised to "old(i, sv)" where i is an integer (i>O), 

sv is a shared value, and i is used to select the ith oldest value of sv. For example, 

assuming sv has taken the values {2, 4, 6, 8} ranging from the oldest on the left to 

the current value on the right. The value of sv is 8, the value" of old(l,sv) is 6, the 
value of old(2,sv) is 4, and the value of old(3,sv) is 2. An equivalent but more 

unwieldy notation for multiple histories can be obtained from nesting calls to the 

oldO function. For example, old(3, sv) is equivalent to old(old(old(sv»). As before, 

an attempt to read an old shared value that does not exist or an attempt to write to 

an old shared value will cause an exception to be raised. Figure 4.2 illustrates a 
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snapshot of a Tyger program's execution in which it is executing in stripe i, 

reading and writing shared values, but it can also read previously written shared 

values from earlier stripes. 

Active Stripe 

I Stripe
1 II Stripe

2 I I Stripe
3 I Stripe 

1 
Stripe

n
_1 ~ Stripe 

n 

write 

t 
: 

: : oldO read w y y y rite 

Previous Current 
Values Values 

Figure 4.2 - A snapshot of a Tyger program's execution. 

Using the history facility provided by the oldO function means that static 
shared values can be initialised at compile time, as compile time can be regarded 
as part of the initial sequential stripe. However, if there is a special need to obtain 

the initial state of a shared value rather than some intermediate state, a call can 
be made to the oldO function with a special read only variable. Calls take the form 
of "old(lnitiaIValue, sv)". Thus, the InitialValue read only variable is not a 

constant, but instead is a count which represents the number of assignments made 

to a static shared value. This mechanism can be used to retrieve the initial state 

held by a static shared value irrespective of whether it was made at compile time 
or not. 

Figure 4.3 illustrates a sample Tyger-C program with two parallelism stripes. 

The first two lines of the main procedure declare and initialise two shared values 

sumA and sumT. Next, three worker procedures doA(), doBO and doC() are listed. 

The worker procedures are denoted by the keyword "PAR" which means that they 

can be executed in parallel, but do not have to be. The main reason why the 

keyword is necessary is to take the place of any return type, as no provision is 

made in the current Tyger model for the return of a value from a thread that 

returns a non-void result. When the main procedure is executed it creates a 

worker thread of control and executes doAO and doBO in parallel. The thread 

executing doAO binds the shared value referenced by its parameter called 

outResult (i.e. sumA). The thread executing doBO reads the value of its parameter 

called in (also sumA) and uses this value in a part of its own computation. In the 

second parallelism stripe, a thread executing doAO is executed in parallel with a 

thread executing doCO. As before, the shared value sumA is used to communicate 
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data between the threads, only this time the previous value of sumA is also 

needed. 

void mainO 
{ SV floatsumA = 0,0; 

} 

float sumT = 0,0; 

doA(&sumA, 1) 1&1 doB(sumA, &sumT); 
print£(" The first sum is %f\n". sumT); 
doA(&sumA, 2) 1&1 doC(sumA, &sumT); 
print£(" The total sum is %f\n", sumT); 

PAR doA(outResult, data) 
SV float *outResult; 

int data; 
{ float LocalSum ; 

1* parallelism stripe *1 

1* parallelism stripe *1 

II perform some local work with 'data' storing temporary result in LocalSum 
*outResult = LocalSum; 

} 

PAR doB(in, outRe suIt) 
SV float in; 

float *outResult; 
{ float LocalSum ; 

II perform some local work referencing 'in' and storing temporary results in LocalSum 
*outResult = LocalSum; 

} 

PAR doC(in,outResult) 
SV float in; 

float *outResult; 
{ float LocalSum ; 

II perform some local work referencing 'in' and storing temporary results in LocalSum 
*outResult = LocalSum + old(in); 

} 

Figure 4.3 - Sample Tyger-C program. 

One important observation to make about the previous states held by a static 

shared value that are returned by the oldO function is that they do not have a 

direct correspondence to the number of stripes in a program. That is, "old(i, sv)" 

returns the ith oldest state of sv, if it exists, which may not have been written in 

the ith previous stripe. This is so because a shared value may take many values 
during a sequential stripe or may not be referenced at all during a stripe. Hence, 

to retrieve a particular shared value history, a programmer should count the 

number of assignments made to the shared value, rather than the number of 

stripes in the program between the past value of interest and its current value. 

The main reason why the retrieval of old shared values is linked to the actual 

number of distinct old values in a shared value history and not to the number of 

stripes in a program is to make program code more portable. For instance, the 
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reference "old(sv)" assumes that an assignment, executed in some past stripe, has 

made at least one update to sv. However, under some alternative stripe semantics 

using a fictitious operator called, say, "previous(sv)", it is assumed that there has 

been at least one assignment to sv and that it was made in the last stripe. Of 

course, there may be counter examples where a programmer may wish to know 

the value taken by a shared value in some previous stripe. So, prudently, both 

history mechanisms can be provided for extra flexibility, as this can be carried out 

for very little implementation cost. 

Programming Language Considerations 

Up until this point the discussion of the Tyger model has been couched in quite 

abstract terms, shying away from the realities encountered in the implementation 

of Tyger languages. Unfortunately, adequate descriptions of the remaining Tyger 
programming constructs cannot be supplied without some recourse to some 

specific implementation language details. 

The first implementation of the Tyger model used the C language as a host and 
was called Tyger-C. As C is a fairly small language, not supporting a high degree 

of data abstraction, new syntax was developed for the Tyger constructs. To 

produce executable Tyger-C programs it was envisaged that source programs 

would be passed through a preprocessor generating C programs as output, that 

contained explicit lightweight thread constructs to implement the parallelism. 

Some of the simple Tyger constructs were implemented in this way, but 

unfortunately, due to complexities in the Tyger model, it was discovered that a 

complete preprocessor would take on a complexity approaching that of an 

optimising compiler, hence this route was abandoned. 

The object-oriented language C++ was chosen as the next Tyger language. In 

an object-oriented language, the syntax and semantics of its operations are much 

richer than those of a simple imperativ.e language, which means in this case, that 

almost all of the Tyger model can be implemented on top of C++ without 

introducing any additional syntax. Thus, the use of an object-oriented model 

provides an excellent short term method for building Tyger constructs for 

evaluation, though a true Tyger compiler is needed to produce the most efficient 

code. 

As a consequence of using C++ as a language to implement Tyger constructs, 

shared value objects are created by instancing the shared value class with a 

parameter denoting the number of shared values to be held inside the object 
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(accessed as a linear array). In addition, all shared value operations are described 

as being member functions of a shared value object, and can be thought of as being 

tied to a shared value object and not free-floating as before. 

Shared Value Notation 

Individual static shared values can be used to express fine grained parallel 

activity, though in many cases to obtain real benefits from parallel execution on 
shared memory multiprocessors this parallel activity must be blocked into sizes 

yielding medium grain parallelism or better. One of the easiest ways to 

accomplish this is to parallelise algorithms that process regular data structures 

such as arrays. Hence, the array assumes the position of the primary data 

structure in the static shared value model, and forms the basis for the discussion 

in the remaining part of this chapter. 

A notation to declare and manipulate arrays is not really part of the Tyger 
model, as it has more to do with the data structures of a Tyger host language. 

Nevertheless, it is included here as the parallel manipulation of arrays can be 

made much easier by the provision of suitable syntax. Two areas of array notation 
need to be addressed. Firstly, arrays of shared values must be declared; and 

secondly, sections of arrays of shared values need to be specified as parameters to 

Tyger constructs. In the latter case, a high level mechanism is needed to identify 

shared value array elements so that information can be exchanged between 

threads without actually having to examine the value ofa shared value. (This idea 

is quite similar to that of Halstead's Futures in MultiLisp [Hals87], where 

references to variables can be manipulated on the promise that values for those 

variables will eventually become available.) For example, consider a master 

thread that allocates shared value array elements to worker threads. The master 

thread needs to be able to reference groups of shared values so that it can allocate 
them as input parameters to the worker threads that compute the actual values 

(this idea is returned to later in the description of the Tyger iterators). 

The notation that has been chosen to manipulate arrays is, unremarkably, 

modelled on that found in vector and array processing languages. Array elements 

or sequences of array elements can be identified by using index sets. Such sets 

provide a tidy and compact method of element identification, taking the form of an 

integer triple lower-bound: upper-bound: step or simply a pair of bounds with a 

default step equal to one. 

- 144-



Shared Values - 4 

Tyger-C notation: here the SV qualifier in an array or variable declaration 

appropriately takes the place of the storage class of the variable. This not only 

makes parsing such declarations easier, but also means that the shared value 

qualifier can be easily thought of as a property of a variable, which it is, rather 

than a specific variable type. Sample declarations of shared values in Tyger-C are: 

SV int signal 

SV int work[1:100] 
SV float work[I:20][2:10] 

1* integer shared value *1 

1* array 1-100 of integer shared values *1 

1* 2-d array of single precision real shared values, 

indexed 1-20 and 2-10 *1 

Tyger-C++ notation: here shared value objects are created by instancing the 

shared value class and supplying the number of shared values that the object 

contains. For example, an array of shared values work{O:n-l] can be created by 
invoking the shared value constructor via the statement "SV work(n)". Notice 

that the use of index sets in Tyger-C++ shared value declarations has degenerated 
to the point where only an upper bound need be specified, with the lower bound 

and step defaulting to 0 and 1 respectively. Naturally, complete index sets could 
be used in shared value declarations, though, in many cases their presence would 
not add appreciably to the readability or functionality of a program. 

One drawback of the shared value class is that it can only be used to represent 

shared values of a single base type at a time (e.g. integer or float), unless elaborate 

and none too reliable steps are followed in its implementation. Alternatively, 

other similar shared value classes could be used to represent different base types 

such as SVF vector(n) for floating point shared values. However, subsequent 
releases of C++ promise parameterisable (generic) types in which "SV vector(float, 

n)" would create an array called vector of floating point shared values, and "SV 

list(int, n)" would create an array called list of integer shared values. 

4.2.3 Control Flow Partitioning Functions 

To express the data partitioning of an array of shared values a supplementary 

mechanism has been provided to coordinate the creation and termination of 

multiple threads of control; because shared values by the-mselves are only a 

mechanism for expressing communication and synchronisation. Of course, one 

could question the need for an additional thread creation notation; as the task of 

adding thread creation code could be automated and performed by an auto­

parallelising compiler using the techniques that have been described in the 

software tools section of chapter two. A point in favour of this approach is that the 
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dependency analysis of the auto-parallelisation should be simpler than that 

normally encountered in programs written using imperative languages because of 

the restrictions on the use of shared variables, due to the single assignment 

property. A negative point, however, is that the host languages in which Tyger 

constructs have been implemented make use of pointers for accessing structures 

and arrays, which severely complicates the analysis. In addition, the philosophy 

behind shared values is that an explicit approach to parallelism should be followed 

that encourages programmers to design programs with parallelism in mind and to 
this end, explicit programming language support should be provided to express 
that parallelism. 

Essentially, two types of construct are needed for controlling the creation and 
termination of multiple threads of control. Firstly, and most importantly, a 

mechanism is needed to specify the points in a program where multiple threads of 

control are to be employed. Secondly, a mechanism is needed to limit the number 
of threads of control that will be used at those points. The specification of parallel 
activity is supported by the parallel-and operator (introduced earlier in the 
sample programs) and the Tyger iterators. The semantics of the parallel-and 

operator are quite simple so they are discussed first, even though the iterators are 

the primary thread creation mechanism in the Tyger model. 

The thread creation mechanism provided by the parallel-and operator "1&1" 
allows named procedures to be executed in parallel. Basically, the operator takes 

two arguments and executes them in parallel as separate threads of control. When 

the execution of both arguments has terminated, the instruction on the next line 

following the invocation of the parallel-and operator is executed. The use of the 

parallel-and operator can also be cascaded permitting many procedures to be 

executed in parallel. Thus, the syntax of its use is 

where the FN _CALL term can be a procedure or Tyger call. The main use of the 

parallel-and operator is to express functional partitioning, where several distinct 

procedures are executed in parallel. 

Conversely, the Tyger iterators are designed for use in data partitioning 

applications in which replicated workers execute code that operates on parts of a 

shared value data structure. The original idea of an iterator comes from the 
programming language CLU [Lisk771. In CLU, an iterator is a data abstraction 

mechanism that is used to select some part of a data structure. For example, a 
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sparse matrix can be represented by a linked list of values; the role of an iterator is 

to provide a mechanism for scanning such a list, without revealing to a user the 

details of the list's implementation. In the Tyger model, the role of an iterator is 

similarly to scan over a data structure, only this time, procedures operating on the 

data structure are executed in parallel under the auspices 'of the iterator. 

However, a limitation of this model is that all the worker threads execute the 

same procedure body. Thus, to perform functional partitioning a programmer 

must write additional selection code for the thread bodies that will determine a 
thread's function from an examination of its input parameters. This is somewhat 

irritating from an aesthetic point of view, as writing the extra selection code is an 

extra burden on programmers which may prove awkward in some circumstances. 

For instance, the parameter list of a thread must be the union of all initial thread 

parameter lists for that parallelism stripe. Hence, the parallel-and operator, 

described previously, was included in the Tyger model as a more general thread 

creation operator. 

The CONTROL() procedure allows a programmer to explicitly set the number of 
concurrent threads of control that will be employed in a parallelism stripe created 

by an iterator. The syntax of an invocation of the CONTROLO procedure is 
"CONTROL(THREADS, TRACE)", where the THREADS parameter is a positive 

integer representing the number of worker threads to be used by an iterator, and 

the TRACE parameter is a boolean flag (ON/OFF) controlling the printing of 

debugging information regarding the allocations of work made to each worker 

thread by an iterator. 

Tyger-C Shared Value Iterators 

For the implementation of the Tyger iterators in Tyger-C some unusual syntax 

was devised to reinforce the bonding between arrays of shared values and the 

iterators that were used to operate upon them. Basically, the model of parallelism 

was one where a procedure that was to 'be replicated and executed in parallel took, 

upon its invocation, an initial parameter consisting of an iterator and an array of 

shared values. For example, consider using data partitioning to concurrently 

operate the procedure workerO, which uses the read only parameters contained in 

ParameterList, on an array of shared values X[1 :nJ. This can be brought about by 

a call to an iterator called DOALL in the form of 

worker( < DOALL X[l:n] >, ParameterList) 
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When the procedure workerO is called, as above, the role of the iterator is to 

invoke mUltiple copies of the procedure workerO, with each copy being executed by 

a separate thread of control. In addition, each invocation of the procedure workerO 

receives a reference to the array of shared values (in this case X[l:nJ), and a 

unique triple oflower bound, upper bound and step integer indexes to a section of 

this array; the intention being that a thread computes the values in the section of 

the array it is allocated. The corresponding declaration of the header of procedure 
workerO is below, with the parameters Y (an array of shared values), lower 

(integer), upper (integer) and step (integer) being filled in by the iterator 

PAR worker(Y, lower, upper, step, ParameterList) 

Two types of iterator have been provided in Tyger-C: a static iterator called 

DOALL, and a dynamic iterator called FOREACH. The DOALL iterator makes a 
single, approximately equal, allocation of work to each thread it creates. The 

FOREACH iterator allocates work one index at a time to each thread it creates, and 
then threads request new work from the iterator until the work to be done is 
exhausted. This iterative process increases the overhead of work allocation, but at 

the same time permits a degree of load balancing. A syntax diagram for these 
iterators follows. 

ITERATOR_CALL: 

ITERATOR 

PID 

SV_ID 

INDEX_SET 

PARAM LIST 

DIRECTIVE 

PID"( < ., ITERATOR SV _ID DIRECTIVE" >" PARAM_LIST .,)., ; 

FOREACHIDOALL; 

II the identifier of any procedure declared as a PAR ; 

IDENTIFIER .,[ ., INDEX_SET .,] "; 

INTEGER: INTEGER; 

II any other read only parameters to the function named PID ; 

"'?'" I" -t·,,· . ., 

The DIRECTIVE term is used to select the method for determining the number of 

threads that an iterator will use in a parallelism stripe. The "?" character signifies 

that an iterator should use a heuristic to arrive at the number of workers, based on 

the array size supplied to the iterator and on the external system load (number of 

available processors). Intuitively, these factors have some part to play in the 

choice of the optimum number of threads, but one factor that is missing is the 

complexity involved in computing each array element. If only a few operations are 

needed to compute an array element, it may be appropriate for a thread of control 

to compute many hundreds of elements. At the other extreme, if it takes many 

thousands of operations to compute an array element, perhaps one thread of 

control per element computation is more appropriate. Clearly, finding the 
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optimum number of threads that balances thread overheads, the available 

algorithmic parallelism, and the available machine parallelism is very difficult. 

Therefore, it would be convenient for a programmer not to have to be concerned 

with the number of threads that a program uses, leaving this task to the compiler 

and iterator. To support this view, some research has been done in the area of 

complexity analysis (see Parafrase-2 in chapter two); but for many problems 

analysis of the kind performed is insufficient and the only sure way to effectively 

exploit the parallelism of an application is for the programmer to intervene. This 

is precisely what the presence of the "!" character in an iterator call allows a 
programmer to do (this is the default). When this character is passed as a 

parameter to an iterator, the iterator uses a value for the number of workers set by 

the CONTROLO procedure, using one thread per processor ifit cannot find one. This 

allows a programmer total control over the number of threads that are created, so 

that a parallel program can be executed repeatedly and the number of workers 

varied, perhaps to find the optimum number of workers empirically. 

For a taste of iterator usage the following two examples are presented. 
Consider the execution of the procedure initialiseO which sets every element of the 

array of shared values Y[1:N][l:N} to initialvalue. This can be specified by the 

statement below, with the choice over the number of threads to be used being left 

to the iterator 

initialise( < DOALL Y[l:N*N] I?' >, initialvalue); 

Some time later, the execution of 5 threads of control that use the procedure 

workerO with the same array Y, partitioning Y at run time, can be specified by 

CONTROL(5); 

worker( < FOREACH Y[l:N*N] I!' »; 

Notice that in the above examples,. only one dimensional array partitioning is 

used to divide the array. The argument for this now follows. In the allocation of 

shared value references to threads the references themselves are merely integer 

indexes and not actual pointer references to specific array elements. Moreover, the 

form of the correspondence between indexes and array elements is one made by a 

programmer and not by an iterator. For example, if a thread receives a range of 

indexes, say 1:5:1, it may use these directly, referencing the array elements 

subscripted from 1 to 5, or may transform them for use to 2:10:2, referencing the 

array elements SUbscripted as 2, 4, 6, 8, 10. One consequence of making the 

programmer devise the mapping between indexes and array elements is that no 
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automatic error checking can be performed at the thread level to check that a 

thread assigns the shared values allocated to it. This is true irrespective of 

whether the checking is done by the compiler or at run time by an iterator, unless 

the mapping function between indexes and shared values is also known. At first 

sight this may seem a shortcoming of an iterator, in that the programmer is 

responsible for the job of mapping indexes to actual values. However, there are a 

number of reasons why the programmer is best suited to undertake this task. 

First of all, using indexes means that iterator functions merely have to 

partition a set of integers corresponding to the array bounds supplied in the 
iterator call. This simplifies the implementation of an iterator, cutting run time 

overhead to a minimum. What is more, dealing with higher dimensional arrays is 
not an easy thing to visualise or even express in terms of array partitioning. 

However, flattening the subscripting of such an array into a single stream of 

integers is the lowest common denominator, and allows a programmer to compute 

whatever mapping is most appropriate for the application being solved. For 
example, consider partitioning the two dimensional array table[O:9]{O:9], to a 
procedure called worker(). The following iterator invocation examples illustrate 

the form of the partitioning instances that are allowed under the existing Tyger-C 

partitioning semantics extended to two dimensions. 

worker( < DOALL table[O:9][O:9] » 
worker( < DOALL table[i][O:9] » 
worker( < DOALL table[O:9]U] » 

/* partition every element */ 

/* partition the ith row */ 

/* partition the ith column */ 

While the forms of partitioning shown above may prove useful in some 

applications, it is unwise to make them the only method of partitioning. In 

particular, if a programmer insists that a thread should receive a higher 

dimensional array as a partition or perhaps an irregular shaped partition, then 

the existing syntax alone is not capable of fulfilling these requirements. 

Furthermore, the overhead in implementing two dimensional partitioning is 

higher than that associated with one dimensional partitioning, especially for 
dynamic partitioning. Thus, implementing the most general partitioning scheme 

means that every partitioning call pays the higher overhead price, even if such a 

call does not need the extra sophistication. In addition, there is a further 

argument in favour of the programmer defining a mapping between a thread's 

work partition and the actual work it does. Although this discussion has focussed 

on arrays as the data structures to be partitioned, it may be possible for a 

programmer to devise a mapping between integers and data elements so that an 
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arbitrary data structure, such as a tree, can be partitioned. In the light of this, it 

seems reasonable to take the most flexible line and merely treat work partitioning 

as operating on a single stream of integers. 

Figure 4.4 shows a Tyger-C implementation of Conway's g~e of life [Gard70). 

The program works by setting a two dimensional array of cells to some given 

initial state. Next, the state of the array of cells is evolved a fixed number of times 

by computing the next state of each cell as a function of its previous state, and the 
previous states of its immediate neighbours. After all the computations have been 

completed the final state is printed out. 

The Tyger program illustrated uses a two dimensional array of shared value 

integers to simulate the array of cells. At the first invocation of the DOALL 

iterator, the makeworldO procedure is executed by two threads of control. Each 
thread assigns a number of complete rows of the array of shared values, the exact 

number depending upon the values of upperBound and lowerBound that are 
supplied by the iterator. In the second invocation of the DOALL iterator, five 
threads execute copies of the worker() procedure, once again assigning complete 

rows of shared values. The program as it stands does not make use of the 
synchronisation properties of shared values, but could do so if the computation and 

printing were to be overlapped by executing the printworld() procedure in parallel 

with the workerO procedure during the desired generations. However, some 

peripheral debugging benefit is gained by using shared values in that checks are 

made to the effect that no cell is ever assigned more than once during a 
generation. 

Tyger-C++ Shared Value Iterators 

After the initial research had been carried out with the iterators in Tyger-C it 

was decided that an enlarged number of it era tors should be provided in Tyger-C++. 

Five iterator functions have been ,included in Tyger-C++ to facilitate the 

expression of a variety of work allocation policies. As before, iterators fall into two 

classes: either they make a single static allocation of work to each thread, or they 

make a series of dynamic allocations to form a pool of work for a group of threads. 

The first two iterators, called block and stride, allocate work to threads using 

deterministic methods which are explained later. These static iterators are 

invoked by calling the DoAllBlockO and DoAllStrideO member functions of a 

shared value object. For example, given a shared value object X[O:N-l] and a 
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/* A Tyger-C program to play the game of life in parallel */ 

#define 
#define 
#define 

MAXGENERATION 10 
nprocessors 5 
SIZE 100 

/* each thread computes a number of rows */ 
PAR makeworld(myworld, upperBound, lower Bound) 
SV int myworld[SIZE][]; 
int upper Bound, lowerBound; 
{ int r,C; 

} 

for (r = 10werBound; r <= upperBound; r++) 
for (c = 0; c < SIZE; c++) 

myworld[r][cl = SomelnitialValue; 

/* each thread computes a number of rows */ 
PAR worker(myworld, upperBound, lower Bound) 
SV int myworld[SIZE][]; 
int upperBound, 10werBound; 
{ int r,C; 

} 

for (r = 10werBound; r <= upperBound; r++) 
for (c = 0; c < SIZE; c++) 

myworld[r][cl = SomeFunction(old(myworld[r][c]), r, c); 

void printworld(myworld) 

Shared Values - 4 

int myworld[SIZE][l; /* only used from a sequential stripe so no need for an SV */ 
{ int r,c; 

} 

for (r =0; r < SIZE; r++) 
{ 

} 

for (c = 0; c < SIZE; c++) 
printf("%d It, myworld[r][c)); 

printf(It\n"); 

void mainO 
{ SV int world[0:SIZE-1][0:SIZE-l]; 

int generation; 

} 

/* the initialisation time per element is small so while much can be done in parallel, */ 
/* it is not efficient to do so, hence the small number of threads */ 
CONTROL(2); 
makeworld( < DOALL world[O:SIZE-l] »; /* parallelism stripe */ 

/* more work is involved per element so increase the number of threads accordingly */ 
/* to take full advantage of the parallelism */ 
CONTROL(nprocessors); /* sequential stripe */ 
for (generation = 0; generation < MAXGENERATION; generation++) 
{ 

worker« DOALLworld[O:SIZE-ll »; /* parallelis~ stripe inside a loop */ 
} 
printworld(world); 

Figure 4.4 - Tyger-C game oflife. 
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thread body called worker(), a call to create multiple worker threads is 

"X.DoAlIBlock(O, N-l, worker)". 

As C++ is an object-oriented language it has much richer semantics and syntax 

than that ofC, so the Tyger iterator syntax was modified to make it conform with 

existing C++ syntax. When the shared value class is instanced and a shared value 

object is created, a parameter must be supplied which represents the extent of the 
shared value. For example, a call to the constructor "SV list(lOO)", creates one 
hundred shared values indexed by array notation, i.e. list[O] to list[99]. The 

iterators are declared as member functions of the shared value class, and so are 

considered to be part of every instance of a shared value object. Thus, the Tyger-C 
"worker( < DOALL list[O:99] '?' > )" now becomes "list.DoAll(O,99, worker, '?')" in 

Tyger-C++. What is more, the CONTROLO procedure is also bound to shared value 

object, so the number of threads must be set for each instance. For example, the 

Tyger-C call "CONTROL(nprocs, OFF)" becomes "X.control(nprocs, OFF)". 

The remaining three iterators in Tyger-C++, called hunk, point and stream, 

allocate work dynamically using variations of a non-deterministic first-come-first­

served algorithm, also explained later. These dynamic iterators are invoked by 

calling the ForEachHunk(), ForEachPoint() , and ForEachStream() member 

functions of shared value object. For example, given the shared value object 

X[O:N-l] and a thread body called workerO, a call to create multiple worker 
threads is "X.ForEachHunk(O, N-l, worker)". 

With the provision of a wider range of iterators, a programmer can now more 

accurately match the run time behaviour of an iterator to that of the problem 

being solved. In chapter six, some comparative data is presented to contrast the 

effects on performance of parallel programs obtained by using different iterators 

on the same problem. 

Static Allocation Iterators 

The block iterator is the realisation of a simple work allocation policy under 

which the host array of shared values is partitioned into continuous sections of 

approximately equal size, there being one section per worker thread. When a 

worker thread is started it is passed two integers, lower and upper, that represent 

the limits of its array section. An additional parameter, the stride, is also supplied 

for consistency with the other iterators and always takes the value one in this 

instance. For all the iterators the interpretation of these three input parameters is 

the same. It is that processing should commence with the element indexed by the 
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lower bound as a starting point, and continue with the next element indexed by 

adding the stride while this quantity is less than or equal to the upper bound. 

Thus, the important observation is that if a thread uses the three parameters 

correctly, all the iterators can be used interchangeably - if there are no restrictions 

on the order in which the resulting shared values are produced. . 

If the extent of the shared value object does not divide exactly by the number of 

worker threads that will be used by the block iterator, the remaining work is 

allocated one element at a time, together with the original work, to threads upon 

their creation until the remainder is exhausted. The idea behind this strategy is 

that, hopefully, allocating the extra work to those threads that are started first 

will have a good load balancing effect, and will negate some of the overhead costs 

of starting up the worker threads. As an example of iterator usage, given the 

shared value object X[O:n-l], the operation "X.DoAllBlock(O, n-l, Operation)" 

invokes user code of the form shown below. A reference to the parent shared value 

object is passed as the first parameter to the worker procedure. The integers 

lowerBound, upperBound and stride are filled in by the iterator and are passed to 

the worker procedure in a manner that is implementation dependent. All that it is 

important to note is that values for the specially named parameters are supplied 

by the iterator and then can be used by a thread of control as normal parameters. 

II procedure OperationO is a worker thread body, not necessarily a member function ofX[] 
II the code computes the values of a part of an array of shared values called X[] 
PAR Operation(SV X, int lowerBound, int upperBound, int stride, .. ) 
{ 

for ( int i = lowerBound; i <= upperBound; i+= stride) 
X[ij = SomeFunction(i); 

In the case of a shared value object where the CONTROLO procedure has set the 

number of threads equal to five and n = 62, five threads of control labelled 0 to 4 

will be used as workers, with thread 0 initially running the iterator code. The 

number of array elements allocated to each thread is 13, 13, 12, 12 and 12, 

implemented as thread 1 receiving the triple (0:12:1), thread 2 (13:25:1), thread 3 

(26:37:1), thread 4 (38:49:1), and thread 0 (50:61:1). 

The stride iterator does not allocate continuous blocks of the host array to a 

thread, but instead provides an algorithmic way of partitioning array elements. 

As before a lower bound, upper bound and stride are supplied to each worker 

thread, however, this time the stride is equal to the number of worker threads. For 

example, given the shared value objectX[O:n-l], the operation"X.DoAllStride(O, 

n-l, Operation)" invokes user code of precisely the same format as with the block 
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operator. Once again using the scenario of 5 threads and n = 62, the number of 

array elements allocated to threads is again 13, 13, 12, 12 and 12. However, this 

time the allocation of indexes to thread 1 is the triple (0:61:5) giving a sequence (0, 
5,10, ... ,45,50,55,60), thread 2 (1:61:5) giving (1,6,11, ... ,46,51,56,61), thread 

3 (2:61:5) giving (2,7,12, ... ,47,52,57), thread 4 (3:61:5) giving (3,8, 13, ... ,48, 

53,58) and thread 0 (4:61:5) giving (4, 9,14, ... ,49,54,59). 

Dynamic Allocation Iterators 

The hunk iterator continuously allocates hunks of the host array to worker 

threads during the execution of a program. The partitioning algorithm is based on 

the Guided Self-Scheduling work of Polychronopoulos and Kuch [Poly871 which is 

reported to have good load balancing properties. The main idea of the algorithm is 

to allocate hunks of work in decreasing size to reduce the chance that threads will 
be idle for long periods after processing their allocations, waiting for the other 

threads to finish their own computations. The method that has been implemented 

operates as follows: given a remaining work load Ri (R1 = n) at time i with t 

threads allocate elements Xi by 

Alternatively Xi can be computed by 

x. = LR/ tJ if LR/tJ ~ 0 else 1, R+l ~ R - X. 
1 1 1 1 1 1 

Once again the information supplied to a thread at run time, every time it 

requests work, takes the form of three parameters: lower bound, upper bound and 
stride (which for this iterator is always equal to one). Given a shared value object 

X[O:n-l] the invocation syntax is "X.ForEachHunk(O, n-1, Operation)" with the 

worker procedure written as illustrated before for the static iterators. Although it 

is not possible to predict which thread will obtain which work allocation it is 

possible to say what the allocations will be. In the case of 5 threads and n = 62 the 
partitioning of indexes for threads (using the alternative method for x) is Xl 

(0 .. 11), x2 (12 .. 21), xa (22 .. 29), ... , x16 (60 .. 60), X17 (61..61). 

Like the hunk iterator, the stream iterator also allocates work continuously at 

run time, only in this case the block size is fixed at one. This method has 

potentially the best load balancing properties because of its fine granularity of 

work distribution, but this also means that it has the highest cost in 
synchronisation overhead. As an example of this iterator's usage consider a shared 

value object X[O:n-l] with invocation syntax "X.ForEachStream(O, n-1, 
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Operation)" and a worker thread as before. In the case of 5 threads and n = 62 the 

partitioning of indexes for threads is Xl (0 .. 0), ... , Xi (i-1..i-l), ... , ,X62 (61..61). 

The point iterator is an optimisation of the stream iterator that uses work 

pre allocation to reduce the run time synchronisation overhead. At run time a 

tentative allocation of work to threads is made by using the mechanism employed 

by the block iterator. Later on, however, when a thread completes its quota of 

work it can look for additional work by inspecting the quotas of other threads. As a 
consequence of this, the actual work assignment is handled in a manner similar to 

the stream iterator, but with the advantages of there being less synchronisation 
contention and as a result a faster streamlined version of the point iterator work 

allocation code can be employed. Given a shared value object X[O:n-l] the 
invocation syntax is "X.ForEachPoint(O, n-l, Operation)" with the worker 

thread syntax as before. In the case of 5 threads and n = 62 the partitioning of 

indexes is similar to that for the stream iterator, except that each thread has a 
pre allocation of indexes made by the block iterator. 

4.2.4 Summary of the Tyger Model 

This section briefly summaries the capabilities of Tyger-C++ by presenting a 
short programming example, and then goes on to reveal some of the advantages of 

combining data abstraction with parallel programming. However, a final example 

warns against the unconstrained introduction of parallelism into procedural 

languages. 

Consider a Tyger-C++ program that performs a transformation on a two 
dimensional array X[O:n-lJ[O:n-l] (n>O). The nature of the transformation is to 

average each array element with its eight neighbouring elements. A shared value 

object can be used to represent X and the averaging operation can be applied in 

parallel to the object via a Tyger iterator. As the current iterators support only one 

dimensional partitioning, X is referenced as a one dimensional array which makes 

the indexing code look a little untidy, but otherwise does not affect the program. 

Four user defined ancillary functions (shiftUp() , shiftDownO, shiftLeftO and 

shiftRight() are used to calculate the indexes of neighbouring elements, hiding 

the details of how the array wraps along its edges. The following program 

fragment in Figure 4.5 illustrates how the transformation can be coded by using 

static shared values. 

The program fragment consists of a mainO procedure, a worker procedure 

average(), and a global variable n which is accessible from both procedures. The 
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II declaration of the shared array size, assuming a square array 
int n = 100; 

II worker code to compute a block of rows of the shared array 
PAR average(SV Y, int lowerBound, int upperBound, int stride) 
{ 

} 

ArrayType tmp; 

for Gnt row = lowerBound; row <= upperBound; row+= stride) 
for (int col = 0; col <= n; col++) 
{ 

} 

tmp = (ArrayType) 0; 
for (int s = shiftDown(row); s <= shiftUp(row); s++) 

for (int t = shiftLeft(col); t <= shiftRight(col); t++) 
tmp += old(Y[s*n + t]); 

Y[row*n + col] = tmp I 9; 

II code to declare the shared array and create worker threads 
void mainO 
{ 

II shared array ofn2 elements 

Shared Values - 4 

SV X(n*n); 

readData(X, n); 
X.DoAll(O, n, average); 

II sequential stripe to input data 
II parallel stripe to compute result 

} 

Figure 4.5 - Tyger C++ program excerpt. 

mainO procedure declares a shared value object X of size n*n which is used to 
represent the shared array of elements. Data is acquired for X by invoking the 

readDataO procedure. The call to the DoAll iterator partitions X among a group of 

worker threads executing the averageO procedure. Each worker thread is passed 

three values which the programmer has taken to represent the group of rows of 

the shared array that the thread has to compute. Therefore, for every element of 

each row in its range, a thread finds the average of the element and its neighbours 
by working with a local variable, and then makes a single update to the shared 

array X. This short example program could have been easily coded using 

conventional library calls, however~ the resulting program would have been 

nearly twice as long. Moreover, such a program may have contained many 

implementation details (e.g. the size of shared memory regions) therefore loosing 

portability, and perhaps increasing its maintenance requirements as changes to 

the underlying operating system force changes to the program code. 

In terthread Communication 

A static shared value is an elegant method for expressing a single one way 
communication between a reader and writer thread of control because it retains 
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its value throughout a parallelism stripe. Ifmultiple communications are required 

between threads, however, one way in which this can be accomplished is by using 

an array of shared values. The use of an array, though, means that the maximum 

number of messages has to be known in advance (i.e. fixed array size). In addition, 

using an array means both the reader and writer have to maintain counters to 

index the current communication, which can lead to some rather untidy 

programming little better than communication via shared buffer. Fortunately, by 

the use of appropriate data abstractions, shared values can be used to represent a 
shared communication stream, which is an efficient mechanism for interthread 

communication adopted by many declarative parallel programming languages 
(e.g. Strand). 

Consider a class called SVStream, that a user can define, consisting of a pair of 

data items, namely a shared value and a reference to a shared value. Hence, a 
chain of SVStream elements can be constructed to represent a sequence of 
messages passing between threads of control. With the overloading properties of 

Tyger-C++, the syntax ofSVStream can be arranged such that assignments can be 
made to an SVStream via the assignment "=" operator and SVStream elements 

can be dereferenced as if they were instances of a primitive type. In the following 
example two threads communicate via a shared SVStream. 

PAR producer(SVStream pipe) 
{ 

} 

pipe = 1000; 
for (int i = 0; i < 1000; i++) 

pipe = i; 

PAR consumer(SVStream pipe) 
{ 

} 

int noMessages = pipe; 
for (intj = O;j < noMessages;j++) 

cout« pipe«" "; 

The basic operation of the threads is for the producer thread to send the 

number of messages, followed by the messages themselves, to a consumer that 
prints them out. Synchronisation is handled by the shared value portion of the 
SVStream class which confers shared value semantics on SVStream elements. In 

this implementation of the SVStream, once a value has been read from a stream it 

is discarded. While this is an intuitive model, it deviates a little from the shared 

value theme of persistence which assumes that a shared value is always available 
for use during a parallelism stripe once the value has been determined. An 
alternative implementation of SVStream (SVQueue)", which retains the 

persistence of stream values, gives rise to the following consumer. 

PAR consumer(SVQueue pipe) 
{ 

SV QueueHandle nextMessage = pipe->HandleO; 
int noMessages = nextMessage; 
for (intj = 0; j < noMessages;j++) 
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cout < < nextMessage < < " "; 
} 

In this implementation of a stream, pipe can be assigned as before but when its 

value is examined only the first assignment will ever be seen. To obtain the values 

of subsequent assignments, the consumer maintains a local reference to the next 

message to read (nextMessage) and uses this to scan the stream. An initial call is 

made to the HandleO function of pipe to obtain a reference to the start of the 

stream. Subsequent dereferencing of the handle returns the data part of the 
current stream element and implicitly moves the reference to the next element in 

the stream. An application for such a stream with nondestructive reading is the 

implementation of a communication channel that is shared amongst multiple 

threads of control. A thread can select values from the stream at its own rate, 
confident in the knowledge that other threads cannot interfere by removing 

unread values from the stream. (As an optimisation it is possible to modify the 

SVQueue class, under certain circumstances, so that stream elements are 
removed after the last thread has read them in order to reclaim the storage.) 

Thus, by using the shared value class as a starting point it is possible to 

develop user defined data structures that not only have the desired operating 

characteristics (e.g. variable size, repeatable reading, and shared value 
synchronisation), but at the same time, retain aspects of the familiar original 

shared value syntax. Hence programmers can continue to think about parallel 

programs in tenns of shared values, and not be concerned about using new 

notation that may make programs harder to write down and understand. 

Nested Stripes 

The Tyger model so far described pennits the construction of parallel programs 

that consist of a series of independent parallelism stripes in which there is a single 

level of thread creation. If more than one level of thread creation is allowed in a 

parallelism stripe, that is a worker thread can itself create new threads of control, 

several choices are possible for the exact interpretation and semantics of shared 

value operations within such stripes. For example, consider a shared value object 

X[O:n-l] (n>2) and four thread declarations named A to D coded as follows: 

PAR A(SV X, ... ) 
{ 

PAR B(SV x, ... ) 
{ 

X[O) = 1 ; X[I) = X[O); 
C(X, ... ) 1&1 D(X, ... ) } 

} 
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-
Given that the threads AO and BO are created by some main procedure and 

execute in the same parallelism stripe, the action of thread AO will be to bind a 

value for X[O], create two new threads of control, CO and DO, and then wait for 

them to terminate. The action of thread BO will be to obtain a value for X[O] and 

bind it to X[l]. The action of thread CO will be to bind a value to X[O], while thread 

DO operates on some completely separate part of X. The flow of control for this 

arrangement of threads is shown in Figure 4.6. 

The sequence of Tyger stripes in the main program body: Ms, Mp, Ms 

.-.-.-.-.-.~.-.-.-.-.-... 

Threads: {M}, {A, B}, {C, D} . 

.................. 

Figure 4.6 - Nested control structure. 

Assuming that nested stripes are not allowed, but worker threads can create 

new threads of control that execute in the current parallelism stripe, leads to the 

following interpretation of the execution of the thread bodies AO to DO. After 

being created by the master thread, AO binds X[O] and then creates threads CO 

and DO. Meanwhile, after being created by the master thread BO looks for a value 

for X[O] and will find one after AO has executed its first statement. When CO 

starts executing, in the same stripe as AO, it attempts to rebind X[O] causing an 
exception to be raised and program failure. 

In the alternative scenario, with nested stripes, the execution of the thread 

bodies is as follows. The threads AO and BO begin execution as before. However, 

this time AO itself consists of three stripes: a sequential stripe where X[O] is bound 

to a value; a parallelism stripe where the threads CO and'DO are started; and a 

closing sequential stripe containing no instructions. In addition, the binding made 
by thread CO to X[O] is a legal operation since no other binding of X[O] is made in 

CO's stripe, as AO's binding to X[O] was made in its previous sequential stripe. 

Unfortunately, a question arises as to the value of X[O] obtained by BO. If BO 

executes its read operation on X[O] before CO binds X[O], BO sees the value set by 
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AO, otherwise it sees the value set by CO. Clearly, this is a race condition and not 

something that should be permitted by a structured parallel programming 

mechanism. A possible solution to this problem and other issues raised by the 

possibility of nested stripes is discussed in the future work section of chapter 

seven. 

4.2.5 Dynamic Shared Values 

Originally, the Tyger model was envisaged as being solely based on static 

shared values. This route was followed primarily because the algorithms that 
were parallelised exploited strong data partitioning. In such parallel algorithms, 

there are no data dependencies between concurrently executing computations so it 
should be possible to obtain linear speedups proportional to the number of 

processors applied to a problem, given sufficiently large problems. Furthermore, 

static shared values also provide support for weak data partitioning, in which 
computations involve read or write dependencies, through their dataflow 

synchronisation mechanism. However, static shared values provide less support 
for parallel algorithms that operate on complex shared data structures of the kind 

classified as distributed data structures by Carriero (see chapter three). Examples 
of data structures that can be operated on in this way include shared queues, 

tables and other abstract data structures (e.g. trees). 

Using static shared values to represent such structures can be problematic, 

because if multiple changes have to be made to a field of such a data structure 

during a parallelism stripe, an entirely new copy of the whole data structure must 

be produced each time due to the single assignment rule. (This problem is 

similarly encountered in dataflow languages.) Perhaps what is more of concern 

though, is that since a conceptually local change to a data structure forces the 

production of a completely new data structure, only one thread at a time can 

manipulate the shared data structure. That is, multiple threads cannot make 

changes in parallel that will result in the production of new data structures, 

because threads cannot view a consistent overall picture of the data structure. 

But, strict serialisation of the kind necessary to guarantee correctness when 

operating in parallel on distributed data structures is often inappropriate because 

it is often too conservative for many potentially parallel algorithms. 

One solution to this problem is to encapsulate distributed data structures 

inside caretaker threads of control, and to operate threads as clients and servers. 

However, algorithms of this kind need a more flexible method of sharing 
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information and synchronising communication than simple static shared values to 

support efficient spontaneous data transfer. Therefore, in an attempt to follow the 

expressiveness guideline for parallelism constructs mentioned in chapter three, 

dynamic shared values were devised to enable the expression of a variety of 

parallel program behaviours without recourse to unnatural or untidy program 

code. In particular, dynamic shared values were developed to act as a flexible 

communication mechanism to give extra support for distributed data structures. 

Programming Model 

At the time that dynamic shared values were developed, static shared values 

had only been implemented via Tyger-C. Through the advent of Tyger-C++, with 

the capability to develop new data types (e.g. streams), the need for dynamic 

shared values has been somewhat diminished. Hence, only a Tyger-C version of 
dynamic shared values is presented. 

Many of the ideas in the dynamic shared value model came from the Linda 

programming model described in chapter two. The elements of the Linda model 
that were thought to be important were the ideas of using associative naming to 
perform pattern matching on data values, and the necessity of limiting the 

operations on shared data to a small set of named procedures. These two concepts 

are important because pattern matching can be a flexible way of referencing parts 

of shared abstract data structures, and using named operations to reference 

shared data allows communication and synchronisation to be combined to simplify 

the task of writing parallel program code. However, one of the aims in developing 

dynamic shared values was to take these key aspects from the Linda model and 

specialise them so that extra performance could be obtained through the use of 

physically shared memory. 

The central idea of dynamic shared values, in common with Linda, is the 

notion of there being a single shared address space within a parallel program. This 

shared address space, in fact, can be regarded as a container object for shared 

values and is called a shared value space (SVS). A SVS possesses some intrinsic 

operations for data manipulation in a similar way that a conventional stack has 

operations pushO and popO. A SVS operation returns a status code indicating its 

success or failure, and where possible, operations are executed in parallel. 

A dynamic shared value is formally made up of two parts: an identifier part 

and an optional data part. Each part of a dynamic shared value consists of a 
number of typed fields giving dynamic shared values a structure similar to 
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conventional records and Linda tuples (see chapter two). Identifier fields are used 

to match dynamic shared values against templates (described later) and can be 

constituted from strings of characters and all primitive types (e.g. integer, 

character, float). For example, in Tyger-C an element from a linear array of 

integers can be represented by the triple Name, Index, Value. If the triple is 

represented by two identifier fields and a data field, the corresponding value 

signature is char*, int, (int) with the parenthesis indicating that matching is not 
performed on the last field. One advantage of using a data field in this way is for 
efficiency, in that signature matching (of the Linda kind) only applies to identifier 

fields, with no matching operations being carried out for the data field. In 

addition, it also allows a certain amount of decoupling between threads, as only 

the key identifier fields need to be known about precisely by a group of cooperating 

threads, and not the exact format of any optional data. 

Primitive Operations 

There are four kinds of conceptual operation that one may wish to perform on 

elements of a data structure that is represented in terms of dynamic shared 

values. These conceptual operations are: single read, single write, shared read, 
and shared write. However, the shared write operation is really the compound 

operation of element replacement, which can be emulated by first locating, 

deleting, and then creating a new data structure element. The mechanics of the 

conceptual operations can be divided into three activities: locating a value; 

obtaining/giving data from/to a value (binding); and controlling the accessibility 

of a value. It is possible to derive. separate functions to perform each of these 

activities and then to emulate the conceptual operations. For example, a shared 

read operation is a search followed by a binding. However, splitting the conceptual 

operations in this way can lead to problems with atomicity. For example, a shared 

value could be located by a thread, but this value could then be deleted by another 

thread before the first thread could ,make its binding. This by itself is not a 

problem but it makes using such programming mechanisms very difficult because 

each communication call must be checked to ensure that it is not in a race 

condition with other competing calls. Hence, the constructs that were developed 

are a compromise between the appeal of a functional specialisation and the 

requirements of atomicity. 

Every Tyger-C program contains a globally accessible object called SVS which 

has three intrinsic operations defined for it to support dynamic shared values: 

{indO, holdO, and releaseO. SVS operations are invoked by name and implicitly 
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operate on a program's SVS object. Alternatively, the optional SVS identifier, 

LOCAL or GLOBAL, can be used to qualify each SVS operation invocation to select 

the SVS to which the operation is to apply. For example, "LOCAL:find( .. )" looks 

for a shared value in the local SVS. The LOCAL SVS (the default) refers to the SVS 

of the parallel program being executed, while the GLOBAL SVS refers to the SVS of 

the operating system's environment. Thus, the GLOBAL context can be used to 

communicate between concurrently executing programs (further elaboration is 

presented later in the global environment section of this chapter). 

In addition to the three intrinsic SVS operations there are two helper 

operations: svO and expand(). The svO operation constructs a dynamic shared 

value from a list of identifier and data fields, returning a dynamic shared value 
handle to the newly created value. For example, "sv("Day", ("Monday"))" creates a 

shared value with the identifier field "Day" and the data field "Monday". A 

dynamic shared value handle is a reference to a single dynamic shared value and 

cannot be changed once it has been set. The releaseO operation (single write) 
takes a dynamic shared value handle and inserts its associated shared value into 
the SVS. The operation will succeed if a duplicate shared value does not exist in 

the SVS, and it will fail returning an error code if one does. For example, 

"release(sv("Go"))" writes the dynamic shared value {"Go"} into the local SVS. 

The findO operation (shared read) takes a shared value signature or template 

and blocks until it can find a matching value in the SVS. When one has been 

found, the operation atomically binds any unbound fields in the template to fields 

in the matching value. The findO operation does not return a handle because the 

shared value it would refer to could be deleted by another thread, therefore 

leaving an empty handle. For example, the operation "release(sv("bin", 1, 100))" 

creates a new dynamic shared value whose fields can be retrieved by "find("bin", ? 

&X, ? & Y)" where X and Y are integer variables. Note that the "&" character 
means "take the address of' and the "?" character is used to distinguish between 

value and variable fields. 

The holdO operation (single read) searches for and binds a shared value in the 

same way as the findO operation, but it also returns a hand.Ie to the shared value 

that it matched in the SVS and makes this shared value otherwise inaccessible. 

One intended use of the holdO operation is to help implement the conceptual 

shared write operation. Consider a binary tree represented by dynamic shared 

values as nodes. Nodes are inserted into the tree by searching for their correct 

position, modifying the shared value that will be the parent of the new node, and 
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then creating the new node itself. The point of insertion of the new node is found 

by holding a node (starting at the root) and testing whether the node to be inserted 

should be a left son or a right son. If a son already exists on the appropriate 

branch, the current node is released back to the SVS and the son located. When 

the appropriate position has been located, a new version of the father node is 

created from the existing node and it is released together with its son into the 

SVS. 

One point to note is that during the search for the insertion position only key 

identifier fields of the node have to be matched, not any of the data fields, 

therefore, cutting down on the amount of communication overhead. When the 

insertion point has been found the handle of the matched node and a full node 
template of empty fields can be passed to the expandO operation which will bind 

the fields of the template to the values of the fields of the node referenced by the 
handle. This allows the full contents of the existing node to be retrieved and a new 

parent node to be subsequently constructed. For example, given a shared value 
handle Parent which references a shared value {"node", 6, 10, 20, (1, 5, 3)}, 
"expand(Parent, "node", nodeld, Ison, rson, ? &d1, ? &d2, ? &d3)" binds the 

variables dl to d3 to their corresponding fields. The expandO operation returns a 

status code, but still carries out the bindings (see matching rules), if there is some 

mismatch in the number of the fields of the shared value supplied by a handle, and 
the number of fields specified to retrieve those values. 

While the three intrinsic SVS operations give the impression of a message 

passing environment they actual operate in terms of shared memory. Associative 

naming is used as a flexible method for building and manipulating data 

structures, but also it raises the memory abstraction from that of simple shared 

memory. During the execution of a program, SVS operations construct dynamic 

shared values in shared memory and arbitrate accesses to them by setting flags 
controlling their visibility (or availability) in the shared associative address space. 

The best example of this is the holdO operation which does not actually delete a 

shared value, but instead makes it unobtainable except via its handle. When a 

thread terminates and relinquishes any shared value handles it holds, the 

corresponding shared values are deleted as they can longer be accessed. Thus, 
shared memory efficiency is exploited at the low level, while message passing 

semantics at the top level challenge programmers to devise models that overcome 

the partitioning difficulties encountered in dealing with complex concurrent 

applications. 

- 165-



Shared Values - 4 

Matching Rules 

When a SVS operation is invoked to manipulate dynamic shared values a 

template must be supplied to identify those values of interest from others in the 
SVS. The same rules employed by the Linda model are used for matching 

identifier fields and are not discussed further here. For data fields different 

matching rules apply. Here, fields either all act as receptors for data or all act as 
transmitters depending upon the sense of the operation. For reading, fields are 
matched left to right with values being bound to available fields using a shared 

value matched on the identifier fields. If there are insufficient data fields in the 

donor shared value, the operation still succeeds using the bindings it can make, 

but returns a status code indicating the situation. Similar action is taken if there 
are too many fields in the supplying value. A positive return value indicates the 

number of excess donor fields and a negative return value indicates the number of 
missing donor fields. 

For example, the operation "find("Row", 1, (? &X»" with integer data variable 
X can match the value {"Row", 1, (l00)} binding X to 100, or the value {"Row", 1, 

(50, 200)} binding X to 50 and returning an appropriate status code. In addition, 
the operation "find("Row", 1, (? &X, ? &Y»" with integer data variables X and Y 
can match {"Row", 1, (l00)} binding X to 100, but leaving Y alone and returning 

an appropriate status code. 

Programming Example 

One of the quickest ways to sort a list of integers is to use a statistically based 

partition sort [Noga85]. Such a sorting technique can be made to execute efficiently 

in parallel by using a combination of static and dynamic shared values. To start 

with the unsorted list is represented as an array of shared static values, on which 
some short statistical sampling is undertaken (possibly in parallel) to estimate the 

range of values in the list. Once this has been carried out, a range of sorting bins is 
created (represented by dynamic shared values), with each bin covering a unique 

range of values determined from the sampling so that every list element can be 

put into just one bin. Next, each element in the unsorted list is inserted, in order, 

into its bin. Finally, the sorted list, which can again be represented by an array of 

static shared values, is created from the ordered concatenation of every bin. 

One way in which parallelism can be applied to this algorithm is to use a 

thread of control to manage each bin data structure, and for a separate group of 

threads to partition the unsorted list by creating dynamic shared values that will 
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be read by the appropriate bin manager threads. One problem with this 

implementation is that many threads can be involved, leading to high parallelism 

overheads. Of course, it is possible to make threads responsible for fielding 

dynamic shared values for more than one bin but this has two disadvantages. 

Firstly, the code to do this can be a little untidy, and secondly poor load balancing 

may result if a few threads end up doing all of the work. 

An alternative implementation strategy is once again to have a group of 
threads partition the unsorted list, but this time each thread inserts values into 

bins directly (Le. a distributed data structure approach). Here, the most 

appropriate number of threads can be used, though poor load balancing can result 

if threads have to repeatedly compete with one and other when inserting values 
into a bin. To reduce the time it takes to insert a value into a bin, bins can be 

stored as dynamic shared values representing binary trees. For example, a 

dynamic shared value to represent a bin can be made from six fields "bin", Bin/d, 

Node/d, LeftSon, RightSon, Data <though the first field is not strictly necessary). If 
-1 is taken to mean no son, then given in order the data values 20, 30,10,60,50 for 

bin B, the corresponding bin binary tree is: 

{"bin", B, 1, -1,2, 20}, {"bin", B, 2, 3, 4, 30}, {"bin", B, 3, -1, -1, 10}, 

{"bin", B, 4, 5, -1, 60}, {"bin", B, 5, -1, -1, 50}. 

Of course executing the operations to generate and retrieve dynamic shared 
values for a bin can be quite expensive so a simpler data structure such as a linear 
linked list may be more efficient. However, this is difficult to assess in advance of 

actually executing a test program because timings are sensitive to factors such as 

the distribution of the numbers that are sorted and algorithmic parameters such 
as the number of bins. Nevertheless, using dynamic shared values is a tidy and 
flexible way to represent the shared bins that allows a programmer to alter the bin 
data structure without too much recoding. 

Epilogue 

Dynamic shared values by themselves are quite a low level mechanism for 

parallel programming, in common with Linda tuples. They are good for specifying 

the nuts and bolts parts of operating on shared data, but some skill in using them 

is needed to code higher level operations such as insert-into-treeO because it is 
relatively easy to make mistakes in, ordering the communication operations, or in 
realising potential parallelism. As such, it can be quite difficult to devise effective 

parallel programs using these mechanisms because often insufficient support is 
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given to programmers to help them structure their programs. To address this 

problem, research has been carried out to devise paradigms and models for 

parallel programs that have natural implementations with tuples or dynamic 

shared values (see Carriero's classification of parallel concepts and techniques in 
chapter three). Nevertheless, this is only a partial solution and it is probable that 

more language support is in fact needed. Only a part of the research carried out on 

dynamic shared values has been presented here, with ideas on conditional value 

matching and special control shared values being omitted. While such ideas hold 

the promise of improving the utility of dynamic shared values, the emphasis of the 
Tyger model now rests firmly on static shared values as a better (more structured) 

route to effective parallel software. 

4.3 System Components 

One of the central ideas of this thesis is that effective parallel programming 
cannot be solely addressed by a programming language but instead must be 

considered in terms of some larger computing environment. For this thesis, given 

the shared memory multiprocessor architecture as a hardware platform, the next 
level up in the computing environment is the operating system. Its role is to make 
the hardware resources of a machine more accessible to users, by assuming 

responsibility for managing hardware resources, software resources such as files, 

and to undertake some of the housekeeping functions to support multiple threads 

of control. Once the system environment has been established, a compiler or 
interpreter for a parallel programming language can be written, to marry the 
cosseted abstractions of the program designer to the hard realities of actual 

implementation. 

As it turns out, the design and implementation of parallel programming 

abstractions in a language are the most important aspects of the environment in 
this thesis and so have been covered first, commensurately being paid the most 

attention. Nevertheless, when the form of the programming language and system 
abstractions have been determined, software tools can be constructed for program 

design and monitoring. Such tools must not only operate correctly and 

meaningfully, but must be capable of exchanging information and being 

integrated together. Thus, a uniform high level approach should be taken across a 

set of software tools, founded on collecting low level system information and other 

implementation details and translating them into the familiar terms found in 

high level programming abstractions. Hence, three software components, namely 
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the operating and run time systems, programming language, and software tools, 

make up a complete computing environment. 

4.3.1 Ideal Thread Environment 

Only a brief outline of the idealised operating system and Tyger run time 

system, collectively called the global environment, are presented here as the main 

emphasis of this chapter is on shared values. The reason why this material is 
presented is to sketch the underlying models that are thought to be appropriate for 

supporting the Tyger model. The intended host architectures for the global 

environment are shared memory multiprocessors, but it should be possible to 

support the global environment on distributed memory multiprocessors or across 
networks of multiprocessors. The global environment is conceptualised as a 

symmetric multiprocessor operating system that executes jobs by using two tiers 

of addressing to support parallelism between jobs and parallelism inside jobs. In 
addition, as the distribution of the global environment is largely hidden, load 

balancing should be permitted to enable jobs to migrate between host machines. 
Contemporary operating systems such as Mach [Acce861 and CHORUS [Rozi881 

already provide similar levels of functionality, so these seem good starting points 
for the global environment. Using the Mach terminology, a task corresponds to a 

shared address space where many lightweight threads may be executing, with the 

operating system itself containing many such tasks at anyone time. Likewise, the 

global environment consists of many such tasks that correspond to the activations 

of programs, with an activation of a Tyger program being given the special name 

of an errand. 

Internally, an errand consists of a notional master thread of control, some 

worker threads, and some helper threads. All of the threads of control have equal 

functionality as regards their capability to manipulate the operating system, 

though the three types of thread have different roles. All threads communicate 

and synchronise with each other via shared variables, as it is envisaged that 

threads of control inside an errand are tightly coupled, interacting frequently. 

Basically, the master thread of control corresponds to the activation of the main 

procedure of a Tyger program. Its role is to oversee the execution of the errand and 

to take action to terminate the errand in the case of an unrecoverable error such as 

a program deadlock. As it turns out, a master may not be a single thread of control 

as it may create helper threads, delegating roles such as deadlock detection and 

statistics collection to them. Worker threads correspond to the threads created in a 

Tyger program by the Tyger iterators or the parallel-and operator. These threads 
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are used to execute Tyger procedures efficiently in parallel and largely leave 

administrative duties to the master. Helper threads are invisible to the program 

level as they are used to simplify the implementation of the run time system. 

Thus, an errand is an abstraction for a parallel program that hides the details of 
its implementation, in terms of its number of threads of control, from other 

programs, and acts as a common repository for operational information for those 

threads executing inside of it. 

Although an errand is a vehicle for executing a Tyger program with internal 
parallelism, inter-program parallelism can be modelled by a group of concurrently 

executing errands. Two levels of inter-errand communication need to be 

addressed. At the bottom level, the operating system must have some 
fundamental inter-task communication mechanism. Rozier et al [Rozi88] argue that 

message passing is probably the best method for achieving this. Moreover, 
message passing seems to be a natural solution for overcoming the logical 

distribution of tasks into separate address spaces and the physical distribution of 
tasks across separate machines. At the top level, programmers need a 

communication mechanism that can be used to express complex concurrent 

behaviour in a familiar and convenient way. Dynamic shared values seem then to 
be a plausible candidate for this mechanism as they can model parallelism in a 

way that can be straightforwardly mapped on to a group of errands. At the 

programming level, it is envisaged that errands are loosely coupled, interacting 

less frequently and less predictably, so they do not need a direct sharing 

mechanism for extra efficiency. Instead dynamic shared values provide a 

conceptually shared associative name space between errands that can be mapped 
down into the operating system's message passing framework. 

To create a dynamic shared value which is shared between several errands two 

steps are necessary. Firstly, the errands that are to cooperate need to be grouped 

together so that they share a common GLOBAL shared value space (SVS), which 
was earlier mentioned under dynamic shared values. Secondly, an appropriate 

command must be issued by a thread in an errand to create a shared value which 

should be directed to its GLOBAL SVS. The GLOBAL SVS is disjoint from the LOCAL 

SVSs of all the cooperating errands and is also disjoint from those belonging to any 

other groups. Thus, there are in fact three levels of addressing within the global 

environment, namely: intra-task, inter-task and intra-group. 

- 170-



Shared Values - 4 

4.3.2 Supporting Tools 

Although the design of the Tyger model has grown out of the familiar control 

flow models found in conventional programming languages, transforming an 

algorithm into an effective Tyger parallel program is not always a straightforward 

undertaking. Fortunately, research with other parallel programming approaches 

suggests that software design tools can ameliorate this situation. For instance, it 

is quite common to find interactive software tools that can display information 
about the control flow and thread structure of a parallel program. For Tyger 
programs, such a tool would be very useful as it could be used to display the 

sequence of stripes in a parallel program (also substripes with an extended model). 

Moreover, ifsuch a tool were to be coupled to an editor, code for a spine thread and 

its workers could be entered in a window driven fashion rather like the folding 

editor used with Occam systems. This has the twofold effect of only allowing the 

expression of valid stripe and thread structures, and allowing programmers to 
achieve a good overall understanding of the thread control relationships within a 
program. Another potential capability of such a design tool is the visualisation of 

the scope of shared information. This could be primarily used as a method of 

assisting programmers to check the scope of shared and local information to make 
the job of run time debugging easier. 

One of the easiest software tools to implement to support the Tyger model is a 

run time monitoring tool. Here, low level information can be gathered about the 

access patterns of a group of shared values merely by examining their 

synchronisation variables. This means that no extra information gathering code 

has to be added to a parallel program to be monitored, minimising the 

perturbation effects on the run time behaviour of the program. In addition, the use 

of static shared values means that programs will not (intentionally) contain 

statements that overwrite shared data during a parallelism stripe, making it 

easier to trace the execution of such a program. However, an external viewing 

mechanism must be provided to log or display in real time the changes in the 

synchronisation variables, which may have some small effect on the performance 

of a test program (due to contention). In a similar vein, if the static shared value 

history mechanism is exploited by a parallel program,· facilities for limited 

program playback can be easily constructed by providing a viewing mechanism for 

the shared value histories. Moreover, monitoring and debugging could be 

arranged conveniently so that a parallel program could be debugged by advancing 

it a stripe at a time. 
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Summary of the use of Shared Values 

Shared values and their attendant control constructs are useful mechanisms 

for the construction of parallel programs. Static shared values provide the most 

support for the data partitioning programming paradigm, whicl:l is thought to be 

the most important method of exploiting significant amounts of parallelism. 

However, by allowing a programmer to define new classes of object with 

synchronisation properties based on shared value semantics, two major benefits 
are gained. Firstly, it is possible to effectively support parallel programs that 

follow functional decomposition. Secondly, a programmer can structure a parallel 

program in an appropriate way to carry out its application, rather than some other 

way to accommodate the basic shared value constructs. Dynamic shared values 
are also capable of effectively supporting parallel programs that follow data and 

functional decomposition. But such programs should be constructed by working to 

standard models for algorithms because dynamic shared values do not provide 
much help for parallel program structuring. 

To enable the effective use of shared values an operating system must offer 

services similar to those provided by the global environment. Key services include 

the provision of shared memory and the management of multiple lightweight 

threads of control. Finally, software tools can be used in the design of programs 

that use shared values to exploit parallelism, and in turn, can be used to inspect 

the operation of such programs. The use of such tools can lead programmers to a 

better understanding of their programs which will hopefully dispel some of the 

mystique surrounding parallel processing . 
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ChapterS 

Implementation of Shared Values 

After discussing the Tyger model in chapter four the purpose of this chapter is 

to explain an actual implementation of some of the Tyger constructs. The chapter 

starts by giving a description of the shared memory multiprocessor architecture 
that is used to execute shared value based parallel programs, and continues with a 

description of how static shared values can be implemented mentioning the 
tradeoffs that can be made. Only static shared values are covered here, as the 

implementation of dynamic shared values is similar to the Linda work carried out 
by Carriero [Carr87]. Finally, a short section examines the potential compile time 

optimisations to static shared values that are possible. 

5.1 Multimax Multiprocessor 

To set the context for the experiments in chapter six, the hardware platforms 

used to obtain the empirical performance figures are described. These systems 
were Encore Multimax multiprocessors running the Umax 4.2 operating system (a 
parallelised version of Unix 4.2). The central component of a Multimax 

multiprocessor is the system bus. It has a true data transfer rate of 100 Mbytes/s 

and can accommodate up to twenty function cards. A function card can be a dual 

processor card, a shared memory card (4 or 16 Mbytes), a mass storage/ethernet 

card, or the system control card. Various combinations of cards can be used to form 

a system with the provisos that one system control card is used with up to eight 

shared memory cards (maximum 128 Mbytes) and eleven processor/mass storage 

cards (maximum 20 processors). Each dual processor card houses some cache 

memory (local memory) with logic to ensure cache consistency throughout the 

entire processing system. 

During the course of this research test programs were run on four Multimax 

configurations derived from two basic machines. Initially, eight National 

Semiconductor NS32032 processors were configured with 16.Mbytes of memory in 

one machine, subsequently expanded to eight NS32332 processors with 64 Mbytes 
of memory (320 system). A second Multimax was acquired with six NS32532 25 

MHz processors and 48 Mbytes of memory, later increased to fourteen NS32532 30 
MHz processors with 96 Mbytes of memory (520 system). (The problem studies 
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focus only on the two final systems (320 and 520), although data from experiments 

carried out on the earlier systems is presented in some of the summary tables.) 

The allocation of cache memory associated with each generation of processors 

was altered by the manufacturer to offset the increased frequency of bus traffic as 

processor speeds increased. For the 320 system, 64 kbytes of write through cache 

memory were provided per processor card, while in the 520 system this was 

updated to 256 kbytes per card using write deferred cache memory. The 
availability of cache memory is very influential on the performance of shared 

values as their implementation has been coded to take advantage of the quicker 
read and write times. Hence, caching is of paramount importance to successful 

multiprocessing on shared memory multiprocessors, and of commensurate 
importance to the success of shared values, so a brief summary of cache operation 

follows. 

5.1.1 Caching Strategies and Cache Coherency 

When constructing early multiprocessors experimenters found that contention 

on a shared bus could limit the effectiveness of employing multiple processors, 
therefore nullifying the benefits gained through the use of parallelism. However, 

later research has shown that if multiprocessor systems are constructed with 

sufficiently large cache memories, the sequential performance can be improved 

because a processor can work out of a cache memory rather than main memory. 

Moreover, as a direct result of this, in most instances where multiple processors 

are active there are no serious bus contention problems so enabling effective 

parallel processing to take place. Nevertheless, it is still possible for pathological 
behaviour to invalidate the advantages of caching and this phenomenon IS 

explored later in the next chapter. 

Cache memories operate by providing fast access to frequently used data items, 

but in a shared memory multiprocessor system caches are used to allow processors 

to maintain their own private copies of memory locations so obviating the need to 

request them from shared memory, with the potential to cause bus and memory 

bank contention. Problems can arise with multiple cache.memories because a 

consistent system wide picture of the contents of each shared memory location 

must be maintained at all times. That is, if a processor changes the value of a 

memory location which is held in its cache and the value of same location also 
happens to be residing in another cache, the other copy must be marked as invalid 

as it no longer holds the current state of the location. This problem of maintaining 
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consistency between caches is known as cache coherency. A solution to this 

problem often adopted in shared bus multiprocessors is to empower the caches to 

monitor bus transfers and to act on the information accordingly. This kind of 

design gives rise to the term snoopy cache, and several authors have published 

details on how such devices actually work [Good83, Fie184, Fran84, Papa84, Rudo84, 

Katz85, Arch86]. 

The two protocols used for the snoopy caches in the two Multimax systems are 
write-through caching and write-deferred caching. In both methods, when a 

processor requests the value of a location and the most up to date value is present 
in that processor's cache it is just read from the cache. On a cache miss, the value 

is read from the location in shared memory; but in the write-deferred protocol, a 
special cycle has to be executed in order to force the current state of the location 

back to shared memory. For cache writes the protocols also differ because of 

optimisations geared towards reducing the of number bus uses. In the simplest 

scheme, write-through, each write operation that updates a value in a cache 
memory forces an update to be made to the corresponding memory location in 

main memory. All other caches observe this update and if they are holding the old 

value then they mark it as invalid. If subsequently, the value is needed and the 
value in the cache is invalid, a read operation has to be done to main memory. In 

an attempt to minimise the bus traffic resulting from write operations several 

schemes have been proposed [Fran84, Papa84, Rudo84, Katz85] including Goodman's 

write-once scheme [Good83]. This protocol dictates that if a processor writes to a 

value held in its cache then only the first write generates any bus traffic with 

subsequent writes executing more quickly as they are deferred and only proceed 

as far as the cache. If a processor writes to a location owned by a remote cache, a 

special bus cycle must be executed in which the current value of the memory 

location is written back to main memory so that the requesting processor can 

write to it. In practice some 15-20% of memory requests are write operations so the 

optimisations brought about by wri~e-deferred caching reduce bus traffic by one 
sixth according the manufacturer's estimates. 

5.1.2 Operating System 

The operating system run on the Multimax systems used in the experiments 

appears to a user as a conventional Unix 4.2 operating system. The overall 

structure is the same but much of the kernel was rewritten to allow concurrent 

accesses and several additional system calls were added to manage areas such as 

shared memory and System V shared segments. Unix processes are 
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multiprogrammed according to the current load and the number of available 

processors, and housekeeping jobs, such as daemons, are executed to perform 

system administration activities. 

When a program is executed its performance is subject to ~umerous external 

factors common to all timesharing systems such as bus and memory contention, 

paging, and the anomalies of physical storage devices such as disk drives. The 

effects of these intrusions on the performance of test programs has been kept to a 
low level by running programs at quiet times to reduce interference from other 

activities. Due to the large amount of computing resources required for testing, 

however, some programs were run on busy systems with the proviso that the total 

number of active CPU-intensive processes did not exceed the number of 
processors. This yields acceptable performance results though the results are 

coloured somewhat by the other activities present on the system. For example, 

programs using a large block of shared memory may suffer adversely due to poorer 
caching and paging behaviour under a heavier system load than under a lighter 

load. In the case where there are more CPU-intensive processes than processors 
the interpretation is more open because of the large variations in timings. Some 

research has been carried out to examine the underlying trends here [Bert89], but 

in this thesis results of this type were discarded as they were thought too difficult 
to reason about convincingly. 

5.1.3 Lightweight User Level Threads Library Model 

All of the parallel programs considered in the next chapter have been 

implemented twice via two user level threads libraries. The explicitly parallel test 

programs (gold parallel programs) use the libraries directly, while shared value 

constructs use them implicitly, that is explicitly in their implementation. The 

purpose of a threads library is to act, in effect, as a small operating system formed 

out of lightweight calls and components. Hence, a library may offer services such 

as thread creation, thread manipulation, synchronisation, and memory allocation. 
Figure 5.1 shows a mapping between lightweight tasks, Umax processes and 

processors. At the user level many tasks can be created by a programmer and 

these are scheduled for execution by Umax processes via the task management 

portion of the lightweight threads library. Similarly, at the system level, Umax 

processes are scheduled for execution on real processors by the operating system. 

The major advantage gained from using a user level threads library is that a 

programmer can easily produce a desired concurrent system, which can execute 
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very efficiently, and is fairly independent from the underlying operating system 

(therefore in principle, portable across machines with similar architectures). 

However, the big drawback is that there is no guaranteed way of enforcing 

protection between concurrently executing threads of control, so careful memory 

management is needed to stop threads from interfering with -each other's data 

structures. 

Processor Processor 

Figure 5.1- Hierarchy of parallelism. 

Two threads libraries were available for use, the Encore tasking library which 

uses threads of control called tasks, and the Encore Parallel Threads library (EPT, 

based on the Brown Threads package [Doep87]) which uses threads of control 

naturally called threads. Although shared value constructs have been 

implemented via both libraries, only the results for task based programs are 

presented. This is because the tasks library more closely resembles an ideal 
library capable of supporting shared values rather than the more heavyweight 

threads. 

5.1.4 System Characteristics 

When analysing the run time behaviour of programs it is useful to have order 

of magnitude estimates for the times taken to execute certain fundamental 

operations. Equipped with this knowledge it should be possible to predict the time 

overheads involved in say forking several processes at the start of a parallel 

computation. 
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System Process Thread User Level OS-Level 
(Processors) Creation Creation Synch. Synch. 

NS32032 600/50 ms 1000/30011S 70 liS -
NS32332 250/100 ms 350/250 liS 13 liS 0.6ms 

NS32532 150/50 ms 200/100 liS 7 liS 0.5ms 

Figure 5.2 - Parallelism characteristics. 

The figures presented in Figure 5.2 are mean sequential times to perform the 

specified operations, none of the operations themselves were internally 

parallelised. (One entry is omitted as data was not collected when the system was 
available.) Two figures are presented for process and thread creation times. The 
first figure represents the time to create an initial thread of control, which incurs 

an extra overhead for factors such as storage allocation. The second figure relates 

to the times for creating subsequent threads of control that do not have so great an 

overhead. 

Each timing includes a component for a procedure call overhead which is 
significant only in the case of user level synchronisation. For the user level 

synchronisation, the fastest method of synchronisation (spinlocking) was 

measured. When operating a spinlock only one or two memory references have to 

be made in order to implement a lock operation (if the lock is acquired). For more 

elaborate user level mechanisms such as barriers, events and semaphores, several 
spinlock operations may be needed thereby increasing the synchronisation times 

accordingly. For the operating system synchronisation, System V semaphores 

were used as no suitable alternatives were available. These are quite a 

sophisticated mechanism, though the times recorded were for the simplest 
operations, such as signalling a semaphore, and do not represent the very much 

larger times that can occur if several processes have to be manipulated by a single 

call. For example, several processes could be waiting (blocked) on the value of a 

semaphore, and if it was necessary to unblock all these processes the total 

execution time of a semaphore operation would be very much longer in comparison 

to those for other operations on the semaphore. 

The important observation from Figure 5.1 is that user level operations are on 

average two to three orders of magnitude faster than operating system level calls, 

therefore permitting more effective parallelisations of small data sizes or small 

grain sizes. Nonetheless, the initial one time cost of creating processes to run the 
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lightweight threads must always be taken into consideration. However, once the 

heavyweight processes have been created they can be reused throughout the 

duration of a program to execute lightweight threads at lightweight costs. 

5.2 Implementing Shared Values 

Most of the work in implementing the shared value constructs is 

straightforward though sometimes obtuse, but the process of designing and coding 
an efficient implementation for a Multimax multiprocessor is quite demanding. A 

shared value can be notionally represented as a (value, synchronisation-check) 

pair. The challenge that is set is how to physically store and intraconnect each 

shared value pair such that both the time taken to operate on the synchronisation 
check and the total storage requirement are minimised. The time constraint is 

quite natural in so much that the overheads of operating on shared values should 

be kept to a minimum to firstly, retain the ability to perform some fine grained 

work efficiently, and secondly not to add massive overheads when dealing with 
large numbers of shared values. The storage constraint only really applies to large 

problems, but it is these very problems that are likely to yield the most rewarding 

gains through the use of parallelism and should not be precluded because a shared 

value based program exceeds the amount of addressable storage whereas a 

conyentional storage model may be accommodated. For example, consider a dusty 
deck style program that takes one week to run and needs 50 Mbytes of storage out 

of a system pool of 100 Mbytes. If this program were parallelised using poorly 

represented shared value constructs, then the program's memory requirement 

could potentially double or even triple making it unexecutable without memory 

extension. Unfortunately, buying extra memory is not a good solution to this 

problem because real applications are often scaled up to take advantage of any 

increase in hardware resources. 

5.2.1 Representation of S~ared Values 

One of the important considerations in writing efficient programs is the real 

memory requirement. If a shared memory requirement is very high, excess paging 

may occur at run time and any benefits gained through the-use of parallelism may 

be lost. Thus, a compact, yet easy to access representation for shared values must 

be chosen. Two representations come to mind, 

(a) Bit representation. A shared value is stored as a loosely coupled pair 

consisting of a value and a remote tag. Each of the tags is represented by a 
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single bit with separate a single lock byte used for synchronisation. The 

advantage of this scheme is that with n shared values, wordlength w, only 

rnlwl+l extra bytes are needed. A modification to this scheme is to allocate 

more locks, up to one per value, to reduce contention on the lock. 

(b) Byte representation. A shared value is stored as a tightly coupled pair 
consisting ofa value and an adjacent tag, with each of the tags represented 

by a byte. This uses more storage than a bit based method, but 

consequentially has a shorter operating time as the seek time for an 

individual tag is shorter. Again separate storage is required for 
synchronisation variables. 

Both methods were implemented on a trial basis and it was observed that a bit 

representation resulted in order of magnitude slower access times than a byte 
representation. Henceforth, a byte representation was chosen, although the 

underlying representation should really be parameterisable depending on a user's 
desire for storage or speed. 

A concern that has been overlooked up until now is the time taken to create a 
shared value object when its constructor is invoked. Normally, when shared 

memory is allocated only a single call has to be made, which is albeit quite costly 

for large memory requests, but is nevertheless sufficient to provide a pool of 

shared memory for all a program's needs. If n calls have to be made to a shared 

value constructor or n*n for an array, the overhead of the procedure calls alone 

can be prohibitive in cases of limited parallelism. Fortunately, all of this extra 

work can be neatly side-stepped by taking advantage of the properties of the 

memory allocation system call. It returns zero-filled pages which, as it happens 

can be directly mapped onto initialised shared values without any additional 

processing. 

5.2.2 Synchronisation for Shared Values 

If shared values are actually used to communicate between threads of control, 

rather than being used for holding a shared result, appropriate synchronisation 

code must be used when referencing them. This synchronisation cannot be 

optimised away by a compiler because it is needed to enforce the correctness of a 

program. Thus, efficient implementation of shared value synchronisation is 

required. 
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A shared value has two states full and empty, implying that synchronisation 

must be provided so that the correct actions are taken when a shared value is read 

or written in a given state. The Encore Multimax provides hardware support in 

the form of a test-and-set operation which, it turns out, is sufficient to implement 

very efficient shared value synchronisation. The test-and-set rrperation works on 

variables that are regarded as locks as they also have two states locked and 

unlocked. Two implementation strategies come to mind for synchronisation based 

on locks which are termed locked-first and unlocked-first synchronisation. 

Locked-first Synchronisation 

Upon allocation, shared value synchronisation locks are set to the locked state. 
Threads that wish to read a shared value continually test the state of its lock until 

the lock is found to be in the unlocked state. A thread that wishes to write to a 
shared value firstly tries to set the corresponding lock to the locked state. After it 

fails, as the lock is already locked, it sets the value portion of the shared value and 
changes the state of the lock to be unlocked. 

After a shared value has been written, its lock will be in the unlocked state. 
Threads wishing to read a shared value test its lock and upon finding the lock 

unlocked, read the value and continue normally. Now, a thread that wishes to 

write, incorrectly, to a shared value firstly tries to set the corresponding lock to 

the locked state. After it succeeds, that is lock was unlocked, it raises an exception 

indicating multiple write operations to a shared value. 

Although the locked-first algorithm appears to satisfy shared value semantics 

there is in fact a fault whereby write operations to a shared value can be lost. 

Consider the case of multiple threads wishing to write to an empty shared value. 

One potential interleaving of events is that the writing threads test the lock and 

finding it locked, all set the value portion of the shared value. Hence, updates to 
the shared value are lost and what is worse, this is not detected by the final 

operation of unlocking the lock. The algorithm can be modified, however, by 

checking the state of the lock before terminating the write operation and raising 

an exception if the state of the lock is found to be unlocked. However, adding the 

extra check increases the time to operate on a shared value, and a small problem 

that still remains is that all but one of the values written in a multiple write are 

lost, meaning that potentially valuable debugging information can be destroyed. 
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U nlocked-first Synchronisation 

Upon allocation shared value synchronisation locks are set to the unlocked 

state. Threads that wish to read a shared value continually test the state of the 

lock until the lock is found to be in the locked state. A thread that wishes to write 

to a shared value firstly sets the value portion of the shared value and then tries to 

set the lock to the locked state. If it succeeds, that is the lock was unlocked, it 

continues as normal. Otherwise if it failed, that is the locked was locked, it raises 
an exception indicating multiple write operations to a shared value. 

After a shared value has been written, its lock will be in the locked state. 

Threads wishing to read a shared value test its lock and upon finding the lock 

locked, read the value and continue normally. Threads that wish to write, now 

incorrectly, proceed as before. 

Once again, the values written by multiple write operations will be lost but an 
exception will be correctly raised indicating the presence of a multiple write. 

Unlocked-first synchronisation was implemented for the C++ version of shared 

values because it is a simpler, and therefore a quicker, method of synchronisation 
than locked-first. 

5.3 Compile Time Optimisations 

As a general comment on current microprocessor and compiler technology, it 

seems that some of the complexity that was previously supported in hardware is 

now being integrated into the optimising stages of modern compilers. This trend is 

typified by RISC microprocessors and their compilers. The kinds of optimisations 

that are performed by such compilers are on the whole language independent but 

the dependency information that they work with can be further exploited to 

enable tuning of specific language constructs. 

One of the most well known compile time optimisations is the inlining of 

procedures. Although this technique has some drawbacks (mentioned in chapter 

two) very real performance benefits can be realised for shared values. In point of 

fact, consider calls to enforce shared value semantics on read and write operations 

to static shared values. Every reference to a shared value would involve a 

procedure call to check the synchronisation unless the synchronisation code could 

be inlined. As it turns out, the synchronisation code amounts to little more than a 

- 182-



Implementation of Shared Values - 5 

, 

few instructions which means that the procedure call alone amounts to fifty 

percent of the overall performance cost of implementing static shared values. 

A more Tyger specific optimisation that can be accomplished, however, is the 

removal of unnecessary synchronisation. The most striking opportunity for this to 

occur is when threads read a group of shared values in an interval but do not write 

to them. Here, no synchronisation is necessary as there are no problems in 

maintaining consistency with parallel read operations. Other cases where 
synchronisation is not required can also be identified (e.g. a thread reading a 

value it has just written). Optimisations of this kind can be accomplished by 

performing dependency analysis (e.g. Kuck's dependency tests) of the form 

described in chapter two. However, problems can arise ifmultiple procedures have 
to be analysed. In the case of optimising read operations to shared values made 

from a procedure, all calling instances of that procedure must be checked before it 

can be determined that it is safe not to include synchronisation code. In general, 
program complexity makes it very difficult to do this effectively, implying that 
synchronisation code must always be generated. However, there are a number of 

compromise solutions. Firstly, code for two copies of a procedure could be 
generated with one containing synchronisation code and the other not. When a 

call of the procedure had been determined to be safe the unsynchronised procedure 

would be called, otherwise the synchronised procedure would used instead. As an 

alternative solution, in cases where no synchronisation is necessary the entire 

procedure (omitting synchronisation) could be inlined, though some analysis 

would have to be carried to assess the impact this would have on the performance 

of a program. The performance costs of not removing unnecessary synchronisation 
are described for several test problems in chapter six. 

To reduce the time taken to locate and fix synchronisation faults in a program, 

some checking to detect multiple write operations to a shared value during a 

parallelism stripe can be carried out. This is merely a convenience for a 
programmer as this checking is performed at run time. In addition, other checking 

can be employed to detect the presence of indefinite postponement (e.g. a thread 

reads a value that is never written) and other related parallel programming faults 

such as deadlock, where threads wait for the other to write a value. 

Further compile time optimisations can be made to check the Tyger constructs 

that manipulate dynamic shared values. Work of this kind is similar to that 
performed for Linda tuples described by Carriero [Carr87] and is not discussed 

further here. 
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Chapter 6 

Performance Evaluation of Shared Values 

This chapter explores the pragmatics of using an implementation of some of 
the static shared value constructs as a parallel programming model. The aim of 

this chapter is to establish that it is possible to produce an implementation of 

static shared values that can be used as a serious replacement, as regards 

efficiency, to imperative languages that explicitly exploit parallelism through the 
use oflightweight threads libraries. This chapter is a description of a series of four 
simple programming scenarios in which programs written using shared value 
constructs from Tyger-C++ are contrasted against similar C++ programs written 

using parallelism facilities from a user level threads library (gold programs), and 
sequential C++ programs. 

Other parallel programming languages, such as Linda and Strand88, were also 
considered for inclusion in the programming scenarios, but their inclusion was 

rejected for two reasons stemming from the nature of the scenarios. Essentially, in 
each scenario the efficiencies of several test programs are examined and the 
overheads that appear in the parallel programs are explained and countered 

where necessary. The explanation of program behaviours sometimes makes 

recourse to some low level implementation details, which in the case of the 

software mechanisms found in C++ and the threads libraries, can be done 

successfully on an intuitive level because of the low level of abstraction used in the 
implementation of these mechanisms. However, with programming models such 

as Linda and Strand88 , the analysis can only be done at the program level because 

the details of implementation are hidden. Thus, it is somewhat unfair to compare 

a model with an undisclosed implementation and potentially higher overhead 

costs to finely tuned shared value constructs. The other reason why a performance 
comparison between multiple languages might be somewhat unfair stems from 

the facts that shared values are aimed at exploiting medium grained data 

parallelism and the problems that are examined are prime candidates for data 

parallel execution. Other parallel programming approaches may well have the 

expressive power to produce elegant and succinct solutions to data parallel 

problems, but it is uncertain if the implementation of these solutions can really 

deliver optimal parallel performance. Of course, one could question the veracity of 

undertaking a performance based study rather than, for example, a usabili ty 

based study. However, the usability of a programming mechanism is a somewhat 
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subjective quality and is coloured to some degree by the level of experience and 

degree of proficiency attained by a programmer. Moreover, the choice of suitable 

test problems is again important as no practical parallel programming mechanism 

can claim perfect solutions for all problems. Similar statements can be made about 
the expressiveness of a programming mechanism, though more formal analysis 

can be applied. Thus, while it would have been possible to investigate practically 

the limits to the expressiveness of shared values by programming a series of well 
known test problems, the limitations to shared values that exist have been 
described in chapter four and so are not discussed further here. 

Parallel processing experiments were carried out on two similar shared 

memory multiprocessor systems (Multimax 320 and 520 systems), enabling an 
investigation into how much the architectural characteristics of a particular 

machine could influence the results. Components such as processor speed, the 

number of processors and the amount cache memory differed between the systems, 

as described in chapter five, making it possible to explore some of the time critical 

factors in the operation of shared values. 

6.1 Measuring Parallel Processing Performance 

There are several methods for measuring the performance of a parallel 

algorithm and its attendant parallelism constructs on a given parallel processor. 

This implies that no single measure can capture enough information to 
adequately describe the true cost of a computation, which is not surprising as the 

cost of a computation can have different meanings depending on its context. For 

example, the cost of a computation could refer to the time taken to run a job, or the 

resource utilisation, or even the financial cost. The most commonly used measures 

of performance include: the elapsed wall-time, the price/performance, the speedup, 

and the efficiency. 

The elapsed wall-time of ajob is the time taken to execute the job as measured, 

say, by a clock on the wall. This method of measurement can differ from the total 

elapsed time because the total time may be the sum of many partial times that 

originate from the concurrently executing sub tasks of tl?-e job. From a system 

manager's (or computer scientist's) perspective it may be useful to know the total 

resource consumption of a job in terms of processor cycles, but in general the most 

useful measure of the effectiveness of a parallel algorithm on a given parallel 

processing system is simply the time it takes to run. 
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The price/performance characteristic of a program and system is the elapsed 

wall-time ofajob divided by the cost of the system which ran the job. For instance, 

the price performance of a top of the range supercomputer may be relatively high 

despite the fact that the system may have a peak performance of several gigaflops. 

In contrast, however, the price/performance of a microprocessor based 

multiprocessor could be up to three orders of magnitude better. But, the crucial 

flaw in using this measure as an architectural guide comes if there is an upper 

bound on the actual elapsed run time of a job, such as in weather forecasting 
where currently the only tenable candidate systems are supercomputers. 

One of the most frequently quoted measures of parallel program performance 

is the speedup, which is measured by recording the elapsed run times of a program 
while varying its number of threads of control. The speedup s is calculated from 

the formula s = T /r p where Tl is the time taken for a single thread's run and T pis 
the time taken for a p thread run. There is some debate about whether T 1 is the 
time for a sequential program or the time for a parallel program running with 
only one thread. The difference between these two times comes from the overhead 

inherent in the parallel program. This overhead can be significant, leading to a 

misleading impression of a program when moderately parallel runs are slower 

than the sequential time, but still show a reasonable speedup with respect to 

parallel runs using only one or two threads. In this chapter, true sequential times 

are used for T 1 giving a fairer cost of the parallelism, with the exception of the last 

scenario which does not have a sequential version. Nevertheless, this is not quite 

the end of the story. The greatest point of contention in the interpretation of a 

program's speedup comes if Tl is taken to be the time for the best sequential 

program. This may mean T2 .. Tp are generated by a parallel program based on a 
different algorithm to the sequential program, implying that the absolute time to 

process an application is being measured. Thus, as the goal of this chapter is to 

evaluate shared values, both the sequential and parallel algorithms for each 

problem are the same so that the effects of parallelising the sequential program 

can be examined, rather than the properties of the problem. 

A related measure to the speedup is efficiency calculated from the formula e = 

sip where s is the speedup and p is the number of processes. This metric gives a 

direct measure of how good a utilisation of the processing resources has taken 

place but again has some fallibilities similar to speedup. More precisely, with low 

numbers of processes high efficiency is essential for good performance but with 

very large numbers of processes a lesser efficiency may be acceptable. 
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Without doubt the most celebrated result in parallel program performance 

evaluation is Amdahl's Law [Amda671 which can be used to put an upper bound on 

the speedup a parallel program can hope to achieve. The law can be stated as 

where Ts is the sequential time component and Tp is the parallelisable part of a 

program. The exact interpretation of the law is sometimes seen as an open issue 
because for some problems quantities such as Tsare not constant for a given p and 

there is the assumption that Tp is divided equally amongst the p processes. These 
questions have given rise to a new metric called the serial fraction [Karp901 which 

examines the changes in Ts' The serial fraction can be computed from 
experimental figures using the formula 

f = (lis - lip) / (1 - lip) 

where s is the speedup for a given number of processes p. The intended use of this 
new metric is as a diagnostic tool in conjunction with, say, the speedup, to help 

attribute the cause of the lack of success of a particular parallel algorithm. For 
example, if the speedup of a given parallel program falls off while the serial 

fraction increases proportionally, one could argue that the extra work in 

managing the parallelism is responsible. Alternatively, if the speedup falls off and 

the serial fraction remains constant, the interpretation could be that the limit of 
parallelism in the program was being reached. 

6.2 Primitive Shared Value Operations 

The two intrinsic operations that can be performed on static shared values are 

the read operation and the write operation. The average times to perform these 

operations were measured together with the times taken to read and wri te 

conventional variables. The programs that were devised to measure these times 

were coded to allow for cached and" non-cached effects. In addition, steps were 

taken to eliminate the effect of prefetching. This normally occurs on a Multimax 

system while reading consecutive locations from memory, when in the event of a 

cache miss, the next eight bytes of memory are fetched fr-om shared memory. If 

four byte integers are read then only half the expected memory fetches are 

required with the other fetches coming from the fast cache memory, thus reducing 

the average fetch time. The results from programs written using static shared 
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values were compared against those produced by similar programs written to 

benchmark conventional variables and are summarised below. 

On the 320 system the mean time to read a four byte integer from shared 

memory was approximately 1.7 microseconds, while the time. to read the same 

value from cache memory was 0.8 microseconds. Write operations took 0.4 and 0.4 

microseconds respectively. On the 520 system the times for reading were 2.0 and 

0.2 microseconds, and 1.7 and 0.1 microseconds for writing. These results were 
obtained by assigning/reading from an array and were corrected to allow for the 

overhead of the array scanning loop and to negate the influence of prefetching. 

Having said this, the quoted values have small inaccuracies due to bus pipelining, 

which allows several memory operations to proceed in a partially overlapped 
manner. This means that the time to perform several consecutive operations was 

less than if they were performed in an independent piecemeal manner. 

Difficulties were encountered in the measurement of the times for operations 
on static shared values because of the detailed interpretation that was needed to 
unravel the low level implementation used to support the operations. The time to 

write to a shared value on the 320 system was 11.3 microseconds, with the initial 
fetch of the shared value being made from shared memory. (If a shared value 

constructor had just performed operations on a shared value, then it is likely that 

the shared value would have been fetched from the cache.) The time to read the 

value of a shared value on the 320 system was 11.1 microseconds, which is faster 

than expected as it is likely that the value was cached, after having previously 

been fetched and written. For the 520 systems the times were 5.1 and 3.3 

microseconds for writing and reading respectively. (The times recorded for reading 

a shared value include a time component for a procedure call, of around one 

microsecond, that was not inlined; in a more complete implementation this 
overhead would not be present.) 

In a perfect world it would be convenient to believe that the times reported for 

these basic references to shared data were more or less constant, but 

unfortunately, it was possible to observe a wide degree of variation in these times 

if the operations were invoked on data that was shared ~etween several active 

processors. Some experiments were carried out to examine the worst case 

behaviour in which multiple processes competed to read and write every element 

of a shared array [Lee90]. In the slower 320 system, eight competing processes did 

not significantly alter the times for reading or writing to cache or to shared 

memory, but for the faster 520 system the picture was very different. Here, 

- 188-



Performance Evaluation of Shared Values - 6 

,r 

processors were able to generate bus requests far more quickly so leading to bus 

(and memory) contention. This contention linearly increased the operating times 

for fetch and store operations to shared memory, which resulted in a more than 

trebling of the basic times when large numbers of processors were active. Clearly, 

behaviour of this kind can make the interpretation of the' efficiency of the 

execution of parallel programs very difficult, though the use of shared values is 

thought not to make the situation any worse. 

6.3 Programming Scenarios 

The effectiveness of a new parallel programming language can best be gauged 

from experience drawn from its extensive use in programming sample and real 
applications. Part of this assessment process is a subjective criticism of how easy a 

language is to use and how well it can be applied to the expression of 

programmers' designs. Unfortunately, any subjective comments regarding the 

usability of Tyger-C++ made by the author may be biased, so these will be limited 
and instead some figures are presented to make a case for concluding that the 
implementation of shared values can be achieved successfully. 

Although the choice of content for the scenarios was very large and varied, four 

numerically oriented programming examples that were thought amenable for 

parallel execution were examined. These were chosen because a large proportion 
of today's computing workload, that is suitable for parallel processing, can be 

linked to specific scenarios for the purposes of comparison in terms of speedup and 

efficiency. More specifically, each scenario examines the effectiveness of shared 

values at a different level of granularity of parallelism. Thus, the results provide 

insights into the best ways in which shared values can be used for delivering 

effective parallel processing performance. 

The first scenario investigates the trivial array assignment operation. This 

represents O(n) processor operations with O(n) data elen.ents. This kind of 

operation is easily parallelised by vector processors but is thought, in general, to 

be too fine grained for MIMD multiprocessors. The second scenario is a bit more 

appealing for parallelisation as it is matrix addition wi~h O(n2) operations on 

O(n2) data. The third scenario is matrix multiplication and should provide the best 
improvements from the use of parallelism as its characteristics are O(n3 ) 

operations on O(n2) data. The fourth scenario, the generation of fractals, is 

somewhat different to the other scenarios in so much that the number of 

operations to compute a result cannot be accurately predicted, though, an upper 
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bound can be fixed. Difficulties arise with parallelising problems of this type 

because of the complexity of efficiently allocating work to threads. 

All the programs in the scenarios were tested over the same range of data sizes 

to enable comparisons to be made between the different probl~ms. (For the 320 

system the data sizes were 50 to 500 in steps of 50 and for the 520 system the data 

sizes were 100 to 1000 in steps of 100.) Furthermore, only computation times were 

reported in each scenario, excluding time components for input/output operations. 
This means that total program run times were not considered, however, this was 

thought to be appropriate as it was the methods of parallel ising the problems that 

were being measured and not the absolute properties of the problems themselves. 

All the execution times presented for the test programs represent the observed 

minimum execution times in each case. Timings were selected from a series of 
trials and are therefore representative of the best performance figures that were 

obtained from the test programs. Mean values for timings are not presented 

because of the difficulty in calculating sensible values due to the variance in the 

observed timings. This variance arose because separate runs of the programs 
encountered different operating system states in which other programs were 
executing and taking up memory. Steps were taken to minimise the effects of 

other programs by executing the tests at quiet times, but due to the symmetric 

nature of the operating system it was not possible to exclude it altogether. As a 

consequence of being unable to calculate mean timings, no confidence intervals 

are presented to give an idea of the range of timings that were possible. However, 

it was observed that repeated minimum timing trials gave largely consistent 

answers, varying by less than one percent for midrange data values (e.g. about 250 

for the 320 system and 500 for the 520 system), with slightly higher variations for 

very small data sets. Thus, as the degree of random variation in the minimum 

timings was very small, shared value and gold parallel programs that were within 

one percent were said to take the same time. Fortunately, where a noticeable 

variation in execution times did occur between the shared value and gold parallel 

programs, this variation was much bigger than one percent and so ultimately 

random variation did not have a significant impact upon the results. 

6.3.1 Array Assignment 

The explicit parallelisation of a collection of individual assignment statements 

IS believed to be unsuitable as a parallel programming style for MIMD 

multiprocessors. Firstly, the overhead of creating even lightweight threads of 
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control is massively, typically 70 times, greater than the time taken to execute an 

assignment. Furthermore, advances in microprocessor design and optimising 

compilers have meant that parallelism of this kind can be exploited by modern 

superscalar microprocessors through instruction pipelining and the utilisation of 

multiple functional units. Hence the next level of granularity that one may 

consider parallelising is the domain of array and structure valued operations. 

Method 

Given a source array A[0:n-1] assign the values 0:n-1 to the corresponding 

elements of the array A. The following C++ code fragment states precisely what 

should happen 

for (int value = 0; value < n; value++) 
{ 

A[valuel = value; 
} 

The time taken for this loop accrues from executing the loop test and branch, 
plus the time taken to assign the values of A[i]. (It is assumed that the values of i 

and n are held in registers.) It is possible to try to factor out the loop overhead in 
this experiment leaving only the time for the assignment, but this is hard to do 

accurately as the overhead is very small and can vary appreciably from run to run 

due to operating system effects. 

A shared value based program which used the block iterator (described in 

chapter four), and a gold parallel program which used an equivalent work 

allocation strategy with shared variables, were written to generate execution 

times to compare against those from the original loop. 

Observations and Conclusions 

Given that the time to store an integer was of the order of a microsecond, the 

execution times of the sequential program were expected to range over 100's of 

microseconds. From Figure 5.2 in chapter five it can be seen that the time to fork a 

process is 0(100) milliseconds which leads to the conclusion that process creation 

is the overwhelming factor in this problem. Surprisingly, the timings for the 

parallel programs were not as bad as was expected as they peaked when three 

processes were created and did not increase linearly as one might have thought. 

The first reason behind this behaviour was that process forking could itself 

proceed in parallel, as a child process could carryon the activity of forking in 

parallel with its parent. The second reason was that one of the major time 
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components in forking a process was the setup time for the shared memory region. 

This time could only be incurred once, which explains the constancy over the times 

for the runs with more than three processes. In addition, it also accounts for 

superior times being obtained from the shared value program over the gold 

program. This observation was quite unexpected, but resulted from a policy 

decision in the implementation of shared values which dictated that the minimum 

amount of shared memory should be used when creating shared values. In 

contrast, quite by chance, the gold program used generous estimates for the 
amounts of shared memory it required, which meant that it had a higher initial 
overhead cost. Now, in real terms these overhead costs are very small O( 1 00) 

milliseconds, but due to the very small amount of useful work carried out in the 

array assignments, this overhead component is very large in proportion to the 

operation times being measured. As an final experiment a modified version of the 

gold parallel program was tested which confirmed this interpretation. 

Some differences were noted in the relative performances between the 320 and 
the 520 systems. The original per system timing ratios of sequential.' gold.' shared 

value programs were 1: 16: 11 for the 520 system and 1: 31: 14 for the 320 system 
indicating that the extra processing associated with the introduction of 

parallelism could be more easily absorbed by the faster processors. 

If the setup times for the Umax processes are factored out of the timings then 

the only major overhead is the time to create the lightweight threads of control. 

This is a significantly smaller overhead to be absorbed by a parallel execution but 

for the range of array lengths in this study no speedups could be obtained for 

either the gold or shared value programs. (As an aside, larger vector lengths were 

tried and speedups were obtained around 0(10000) elements.) Thus, as expected 

no performance benefits could be derived from using heavyweight processes to 

exploit fine grained parallelism, and even lightweight threads of control had to be 

used with care. 

6.3.2 Matrix Addition 

The next level up after the linear array is the matrix which should provide 

more scope for effective parallelisation because n times more work is involved in 

simply operating on a matrix than on a linear array. 
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Method 

Given two sources matrices A[O:n-1][O:n-1], B[O:n-1][O:n-1] and a result matrix 

C[O:n-1][O:n-1] compute the sum of the two matrices as 

for (int row = 0; row < n; row++) 
for (int column = 0; column < n; column++) 
{ 

C[row)[column) = A[row)[columnl + B[row)[column); 
} 

As there are two loops which can be parallelised two corresponding data 
parallelisation methods are clear, both of which can be blocked in order to tailor 

the number of threads precisely to the number of physical processors. Blocking 

obviates the need for multiprogramming by instead of creating one thread of 

control per unit of work, many of units of work are blocked together so that there 
is commonly one thread of control per physical processor. 

(a) N2 - fold parallelisation 

For every ordered pair (ij), where ij are O:n-1, create a thread of control to 

evaluate C[ij]. This is, conceptually, the simplest method of computing the 
result matrix and leads to a highly parallel solution with n2 threads being 

utilised. This method is the equivalent of replacing the two loops of the 

sequential version with a construct to create n2 threads. The disadvantages of 

this approach are that, the lightweight thread creation time is relatively large 

compared to the computation time for an element, and it is in addition, 

wasteful to create so many threads of control as it is unlikely that a 

multiprocessor will have sufficient processors to support this method without 
some degree of multiprogramming. 

(b) N- fold parallelisation 

In this method a thread of control is created to evaluate CEil, where i is O:n-1 

and CEil represents either a row or a column of the result matrix. The 

advantage of this method over the previous one is that only n threads are 

created leading to less creation and synchronisation overhead. In addition, it is 

more likely that a multiprocessor can allocate these threads to processors 

without having to multi pro gram them for appropriately sized matrices. 
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To reduce to a minimum the parallelism-associated overheads in this problem, 

a blocked version of strategy (b) was employed for both the gold and shared value 

programs. In the shared value program only the result matrix had to be declared 

as a matrix of shared values, the other two being stored in shared memory and 

regarded as read only during the parallelism stripe. Hence, the overheads that 

were measured in the shared value program were attributed to the operation of 

the shared value run time system and the times for each of the write operations to 

the elements of result matrix. 

Observations and Conclusions 

The characteristic times for matrix addition obtained from both systems are 

shown in Figure 6.1. In each of the system graphs the times for the sequential, 

gold parallel and shared value programs are illustrated. The data points for the 
parallel programs come from the maximally parallel runs for each system, which 

were not necessarily the fastest times observed. As it turned out the best times 
were observed when using around half the total number of available processors 

depending upon the problem size - as demonstrated later in Figure 6.2. 

The interpretation of each of the system graphs is the same. The work for the 
sequential program increases in proportion to the square of the matrix size. For 

small matrix sizes the memory setup time component of the processes forking 

makes the shared value program more efficient than the gold parallel program 

(for the same reason as in the last scenario). But this situation changes as the 

matrix size increases and the overhead in the operation of the shared values 

increases proportionally. 

Figure 6.2 shows a parallelism map obtained by varying both the problem size 

and the number of processors applied to computing a problem. The shape of the 

optimum parallelism map is a pyramid that steps up equally as processors are 

added, corresponding to a linear sp~edup. However, the map that was obtained 

illustrates that the overheads of thread creation eventually outweigh the gains 

made from the use of parallelism. The best results were obtained when around 

half the total number of processors were used, given sufficiently large matrices to 

overcome the initial overheads. Nevertheless, these results fall far short of linear 

speedup and highlight the unsuitability of parallelising this problem. 

Fortunately, though, the true picture is not quite so bad as in a real application 

many such array operations may be required, therefore offsetting the initial 
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Figure 6.1 - Matrix addition: 320 and 520 systems. 
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Figure 6.2 - SV Matrix Addition. 
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overhead component resulting from the creation ofUmax processes and leading to 

improved speedups overall. 

To gain further insight into the operating characteristics of shared values the 

shared value program was modified so that all three of the matrices were declared 

as matrices of shared values. If only computation times are considered, as before, 
then three shared value operations would have to be performed per result element 

calculation (2 reads and 1 write). 

A summary of the comparison between the gold program and shared value 

programs is presented in Figure 6.3. Both Multimax systems are covered with the 

entries for I-parallel runs and N-parallel runs (N=No. of processors in system) 

being scaled relative to the respective gold parallel program entry in each case. 

The table entries reflect timings recorded after the programs had settled down 
into more stable patterns after overcoming the effects of process creation. (The 

shared value* entries represent observations from the modified shared value 
program.) 

Gold Parallel Shared Value Shared Value* 
System 

i-parallel N-parallel i-parallel N-parallel i-parallel N-parallel 

320 100% 100% 200% 130% 350% 200% 

520 100% 100% 200% 130% 330% 150% 

Figure 6.3 - Scaled relative times for matrix addition. 

From Figure 6.3 it can be seen that using shared values adds significant 

overhead when operating serially, but in parallel, where the problem size permits, 

this overhead can be amortised into a more bearable quantity. This happens 

because the overhead itself can be ~reated as parallelisable work and if sufficient 

processors are available it may be possible to reduce this overhead to the level of 

that associated with the gold parallel program. 

6.3.3 Matrix Multiplication 

One of the most fruitful areas of parallelism research is numerical analysis and 

in particular matrix computation. In order to absorb the overheads incurred in 

setting up multiple threads of control it is important that the work specified by an 

algorithm can be partitioned into appropriately sized portions. The conventional 
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method for multiplying two matrices A and B of rank n (n by n) is known to have a 

complexity of O(n3) operations and furthermore, there need be no read or write 

dependencies in calculating any of the elements of the result matrix, making it a 

good candidate for parallel execution. 

Algorithm A 

Given two source matrices A[O:n-l][O:n-l], B[O:n-l][O:n-l] and a result matrix 

C[O:n-l][O:n-l], C = AB can be calculated by the following algorithm 

for (int row = 0; row < n; row++) 
for (int column = 0; column < n; column++) 
{ 

ArrayType tmp = 0; 
for (int k = 0; k < n; k++) 
{ 

tmp += A[row l[kl * B[k][columnl 
} 
C[row][columnl = tmp; 

} 

Once again the occurrence of nested loops permits several parallelisations of 

Algorithm A, all of which can be blocked as desired. Each of the parallelisation 

strategies for matrix addition can be extended to matrix multiplication, though 

this time there is an extra parallelisation that can be performed which pertains to 

the inner loop. 

(a) N2 - fold parallelisation 

This is identical to the corresponding case for matrix addition with the 

clarification that the two outermost loops are the ones replaced by the 

parallelising construct. It is a more viable strategy than before, though, 

because of the greater amount of work involved in the computation of each 

element. 

(b) N- fold parallelisation 

This is similar to the corresponding case for matrix addition, except that 

once again more work is involved in computing each row or column. 

(c) Scalar product parallelisation 

In this strategy the inner loop is parallelised making it a less attractive 

proposition than the other strategies as there must be interthread 

synchronisation. Let A[i] = aT be a row from matrix A, and Bfj] = b be a column 
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from matrix B, and C[i][j] = c be the corresponding element from C. The scalar 

product is calculated by c = ab, and can be decomposed such that c = a l b l + a2b2 
+ ... + anbn, which can be blocked to the required level of parallelism. Accesses 

to the shared sum c must be synchronised so that it remains consistent. In 

practice, this means using a mechanism in the gold program such as locking to 

enforce mutual exclusion with an additional variable acting as a lock. In the 

shared value program, either a number of static shared values can be used to 

represent c or a single dynamic shared value. Despite the fact that significant 
work can be associated with each blocked computation, experiments have 
indicated that it still remains insufficient to enable economical parallelisation 

to take place for the vector lengths in the study. 

Observations 

To compute Algorithm A, a sequential program was written together with a 

gold parallel program that employed a blocked version of strategy (b). When the 
computation times for the gold parallel program runs were compared to those for 

the true sequential runs, near linear speedups were obtained in the computation 

of suitably sized matrices. The startup times to create multiple threads of control 
(U max processes and user level tasks) were, in general, very much smaller than 

the times taken to multiply matrices and very much smaller than the naturally 

occurring random timing variations (e.g. the fluctuations in the times of reading 

and writing the data values). In terms of total program execution time, however, 

linear speedups were not possible because of the large proportion of a program's 

time spent in serial activity such as reading and writing the O(n2) data values. 

In a comparative program written using shared values the two source matrices 

A and B, as in the previous scenario, were not declared as matrices of shared 

values because they were not changed during the parallelism stripe. Thus, the 

only overheads that the shared value program incurred over the gold program 

were those of the shared value run time system and the final (single) assignment 

of each element of the result matrix. In practice this meant that the shared value 
program ran on average between 6% slower for I-parallel runs and 0% slower for 

N,-parallel runs (where N was 8 or 14). 

Although the parallel execution of Algorithm A meant that large matrix 

products could be computed in much reduced times from the sequential times, the 

basic times for the algorithm were still quite high. So that these times might be 
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reduced some algorithmic tuning was performed to yield an algorithm that was 

more suitable for execution on the shared memory multiprocessors. 

AlgorithmB 

Given two sources matrices A[0:n-1][0:n-1], B[0:n-1][0:n-1] and a result matrix 

C[0:n-1][0:n-1], transpose B giving BT then calculate C = ABT using the following 

algorithm 

for (int row = 0; i < n; row++) 
{ 

for (int column = 0; column < n; column++) 
{ 

ArrayType tmp = 0; 
for (int k = 0; k < n; k++ ) 
{ 

tmp += A[row](k] * B[column][k] 
} 
C[row][column] = tmp; 

} 
} 

Observations and Conclusions 

As matrix B was stored in transpose format a new method of indexing its 

elements was required in Algorithm B. The new method of indexing meant that 

elements from matrix B were fetched by row rather than by column, reaping the 

benefits of simplified address calculation, reduced paging, and maximised cache 

prefetching. The net effects of these performance advantages were that sequential 

execution times were on average 30% faster than before, even taking in account 

the time taken to first transpose matrix B. Two corresponding parallelised 

versions of Algorithm B was also coded and the experiments repeated. 

Fortunately, similar, but not quite as impressive gains were made by the shared 

value and gold parallel versions, with there once again being almost no difference 

in performance between the shared value and gold parallel programs. 

Although the switch from Algorithm A to Algorithm B yielded a noteworthy 

increase in performance, further program tuning was possible because of the way 

in which C++ could be used to represent arrays. In the fir~t two algorithms array 

elements are referenced by subscripts (e.g C[i][j]), but alternatively, pointers can 

be used to directly reference array elements (e.g. *C). A sequential version of a 

program using this direct accessing method based on Algorithm B executed 

around 15% faster with similar improvements observed for a gold parallel 

program. Unfortunately, the current implementation of shared values did not 
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support such direct access to elements so no comparative shared value program 

was written. (This limitation was a side-effect of the implementation and was not 

a fundamental limitation imposed by the shared value constructs.) 

To continue the search for a faster method of multiplying matrices, Strassen's 

method for fast matrix multiplication was investigated [High891. The idea behind 

the algorithm is to decompose the source matrices into submatrices and use these 

submatrices in several equations to compute the submatrices of the product 
matrix. As it turned out, the sequential implementation of the algorithm proved to 

be bounded by the time taken for the matrix decomposition and the allocation of 

temporary matrices to hold intermediate results. Thus, the problem was more one 

of storage management rather than anything else, so no parallel versions were 
coded. In addition, the algorithm makes use of many submatrix addition, 

subtraction and multiplication operations which if parallelised, would result in 

many (though quite small) overheads in setting up and synchronising all the 
necessary threads of control. Nevertheless, it seems likely that a parallel 

implementation Strassen's method could be of benefit for very large matrices 
though testing this hypothesis fell outside the scope of test data for this scenario. 

The performance tuning of data referencing is endemic to high performance 

computing as it is often memory accessing which accounts for a large percentage of 

the total computation time. It is hoped that shared value based programs can be 

tuned in similar fashion to conventional programs to allow some continuity of a 

programmer's knowledge and experience. The results from this scenario seem to 

lend some justification to this claim. 

Figure 6.4 shows the characteristic times of the 520 system for sequential 

program using Algorithms A and B, together with shared value based versions of 
these two algorithms. The corresponding gold parallel program curves are not 

shown on the graph because these curves would have been coincident with the 

shared value curves. Similar results were obtained from the 320 system. The 

parallelism map of Figure 6.5 shows the almost linear speedup of the shared value 

program using Algorithm B. The data in the map was scaled to the best sequential 
version of Algorithm B, but if the speedups had been scaled relative to the results 

from a I-parallel shared value run, even better speedups would have been 

obtained. 

To conclude the experiments with matrix multiplication, the same technique of 

declaring all the matrices as matrices of shared values was employed again. Here, 

2N read operations and one write operation were needed to produce every element 
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Time in Seconds Matrix Multiplication: 520 System 

5,500 

5,000 

4,500 

4,000 

True Sequential A 

3,500 
-'-'-'- True Sequential B 

Shared Value (14) A 
3,000 

Shared Value (14) B 
, .. _ .. 

I 

I 

2,500 
I 

I 

I 
2,000 I 

I 

I 

I 

I 

1,500 ; 

" " I 

" 1,000 ~ 

" " " .I 

'" 500 " 

0 
. _. 

100 200 300 400 500 600 700 800 900 1,000 

Matrix Size 
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. Figure 6.5 - SV Matrix Multiplication. 
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of the result matrix. The comparison of the gold program and the two shared value 

programs for Algorithm A is shown in Figure 6.6. Once again the results were 

scaled relative to the gold results for both I-parallel and N-parallel runs. 

Gold Parallel Shared Value Shared Value* 
System 

I-parallel N-parallel I-parallel N-parallel I-parallel N-parallel 

320 100% 100% 106% 101% 260% 280% 

520 100% 100% 105% 100% 340% 290% 

Figure 6.6 - Scaled relative times for matrix multiplication (A). 

As mentioned earlier, the basic shared value program performed excellently 
only incurring very small overheads with respect to the gold parallel program. 

Unfortunately, as expected, the modified shared value program did rather poorly 

reSUlting from all of the shared value read operations it had to perform. 

6.3.4 Fractal Generation 

Many interesting problems relating to real world situations, such as weather 

and economic modelling, can be represented by dynamic systems. Although 

programs based on dynamic systems have the potential to allow the exploitation of 

massive parallelism, implementation problems such as work partitioning and 

thread scheduling can become prohibitive. Some of the most well known work in 

dynamic systems has been done by Mandelbrot and it is the calculation of fractal 

images that provides the stimulus for the final suite of test programs. The fractal 

examples and methods examined here are taken from Mandelbrot's book "The 

Fractal Geometry of Nature" [Mand82]. Due to the scalable and unpredictable 

nature of fractal images, other researchers have also used the calculation of 
fractals for parallel processing research [Vaug89]. 

Algorithm 

The essential process that is being followed in the c{)mputation of a fractal 

image is a feedback process where the k-th point (xk' Y.,) generates the (k+l)-st 

point (Xk+1'Yk+l) by means ofa given law: 

Xk+l = f(xk , Yk ; p) 

Yk+l = g(xk , Yk ; q) 
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where p and q are parameters held constant during each iteration, 

The actual fractals produced in the experiments, Julia sets, were computed 

from the complex feedback process z ~ z2 + c. A decomposition of the complex 

numbers z and c into their real and imaginary parts gives z = x + iy, c = p + iq. 

Hence the process can be described by: 

X =x2 _y2 +p 
k+l k k 

Yk+l = 2XkYk + q 

A coloured image can be produced by plotting a pixel in a colour corresponding 
to the number of iterations it takes for that point (x,y) to escape towards infinity. 

Method 

As the calculation of each of the pixels can be done independently several 

parallel execution strategies are possible. However, a condition that was imposed 

was that the resulting image had to be able to be displayed as it was being 

calculated to provide a form of program visualisation. That is to say, the progress 

of the program could be monitored by looking at the current state of completion of 

the displayed image. In practice this meant that the image had to be sent a row at 

a time to the display device to reduce the amount of data being transferred 

between the host and the device, and therefore the latency in the time taken to 

display the image. Since the amount of work required to compute a row could vary 

dramatically from row to row and this work could be non-trivial, it was decided to 

partition each row equally amongst the threads, so ideally, the time to compute a 

row with t threads is Trojt. The form of a worker thread was as follows 

for (int row = 0; row < N; row++) 
{ 

for (int column = lower Bound; column < upperBound; column++) 
{ 

II calculate value for pixelX[rowJ[column] 
} 

} 

A gold parallel program and shared value based program were written 

following the above outline. No sequential program was written for this problem 

as the pixels were displayed upon their calculation by a separate display thread. 

(When the experimental timings were carried out the display thread performed no 

operations so that the timings were not influenced by external factors.) The gold 
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program needed some synchronisation code so that display thread could tell when 

a row of pixels had been completed, no extra synchronisation code was needed for 

the shared value program. 

Observations and Conclusions 

One of the features that differentiates this scenario from its predecessors in 

this chapter is that the number of calculations required to compute a result is not 
fixed for a given problem size. Alterations to the parameters of the problem can 
significantly alter the work involved in computing an image so to ensure a 

representative study, two distinctly different data sets were examined. The first 

image (A) appears as a classic Julia set image, but the second image (B), appears 
as a series of coloured bands (see Appendix A). The characteristic times to compute 

each Julia set (A and B) on the 520 system are shown in Figure 6.7. As before the 

times for the sequential, gold parallel, and shared value runs are illustrated using 
the maximally parallel cases for the latter two programs. (Note that the gold 

parallel and shared value curves are almost coincident.) Even though the two 
images are completely different, the characteristic work curves for each image 

have the same shape, but with smaller times for the second image. Similar graphs 
were obtained for the 320 system though these are not shown for brevity. 

For Julia set A, the speedups obtained from parallel programs using the static 
block iterator for work partitioning, while being useful were rather disappointing, 

given the highly parallel nature of the problem. This stemmed from an unequal 

distribution of work over the parallel threads due to the inability of the allocation 

strategy to adapt to the different work concentrations in the fractal. In Figure 6.8 

the speedup map for the shared value program is displayed. One point to note is 

that the speedup is actually slightly less with three processes than with two 

processes and this poor performance is repeated for odd numbers of processes until 

the number of processes become lar~e. The reason for this is that when the fractal 

is divided amongst the threads, if there is an odd number of threads, then the 

middle thread ends up executing the largest amount of work because of the form of 

the particular fractal image. When an even number of threads is used, the most 

computationally intensive part of the fractal is split over two threads, giving a 

better overall work distribution. Nevertheless, the speedups shown on the map are 

quite poor, being around half the maximum theoretical values. Other allocation 

strategies were tested and the one which came out the best was the hunk iterator. 
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Figure 6.7- Julia sets (A and B images). 

- 207-



Performance Evaluation of Shared Values - 6 

Figure 6.9 shows the speedup map for a shared value program using this iterator, 

which shows very respectable speedups across the board. 

For Julia set B, the work distribution is quite regular, so it was possible to get 

very good speedups using only the block iterator. Figure 6.10 shows the 

parallelism map for a shared value program computing this fractal. The speedups 

indicated are much better than those for Julia set A using the same iterator. 

Figure 6.11 compares the relative performances of the gold parallel program 

against a shared value program using two different iterators on Julia set A. In the 
case of the block iterator the shared value program performs quite well, only 

incurring small additional overheads. However, merely by using a different 
iterator (and no other code changes) runs of the program using the hunk iterator 

yielded much better parallel results. 

An optimisation in the computation of a Julia Set that could have been made 
was to take advantage of the symmetry of an image. This would have meant that 

only 50% of the original computation would have been necessary, with the 
remaining percentage of the image being computed by a rotation. As it happens, 

with the entire image being computed each time, a form of symmetric load 

balancing can sometimes take place. It occurs when a thread starts by computing 

a block with high/low time complexity say B and another thread at the opposite 

end of the image computes a block with time complexity B* low/high respectively. 

After completing its block the first thread then computes a block of complexity B* 

and likewise the other thread computes a block with complexity B after 

completing its initial block. Hence, the total computation time for the first thread 

is B+B* which equals the time for the other thread's computation B*+B. This 

behaviour became clear in the results for the block iterator, as superior speedups 

were obtained for runs with even numbers of threads over those with odd numbers 

(as mentioned earlier). 

6.4 Summary 

As might of been expected from the discussion of grain size in chapter three, 

shared memory multiprocessors need quite a large grain size of parallel 
computation before appreciable gains can be realised from parallel processing. 

This is true irrespective of whether shared values are used as a parallel processing 

mechanism or if hand coded parallelism constructs are used instead. 
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Figure 6.10 - SV (Block) Fractal B. 
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Gold Parallel Shared Value Shared Value 

System 
(Block) (Hunk) 

I-parallel N-parallel I-parallel N-parallel' I-parallel N-parallel 

320 100% 100% 102% 104% 104% 65% 

520 100% 100% 104% 104% 104% 58% 

Figure 6.11 - Scaled relative times for fractal (A). 

From the viewpoint of ease of use, shared values are a tidy method for coding 

the simple programming scenarios explored in this chapter. Their use is much 

preferable to using explicit constructs which require detailed specification and 

make resulting source programs less readable as the real code that solves the 
problem is obscured by the code used to drive the parallelism. In addition, the wide 

range of iterators provided for use with shared values allows a variety of work 

allocation policies to be evaluated by only trivially recoding a test program. 

In many cases the extra overhead of using shared values is acceptable for 
problems that have sufficient work to enable efficient parallel execution on shared 

memory multiprocessors. From the supplementary tests carried out with matrix 

additions and multiplications, however, it was noted that unconstrained use of 

shared values could lead to parallel programs that had quite large overheads due 

to unnecessary synchronisation. Two solutions to this problem are possible. 

Firstly, programmers could be urged to be more careful in the use of shared 

values, so as not to introduce unnecessary synchronisation and serialisation. This 

line of argument is only a partial solution, however, as programmers cannot be 

expected to shoulder all the burden for parallel programming as this could mean 

programmers spending too much time arranging for efficient data sharing and not 

enough on the algorithm itself. Hence, the second method of reducing 

synchronisation overhead is for a compiler or preprocessor to simply eliminate 

shared value synchronisation where it is not needed. 
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Chapter 7 

Conclusions 

From the outset the aims of this thesis have been to examine why the 

parallelism that is offered by shared memory multiprocessors has not been 

effectively exploited by mainstream computing and to suggest ways of 
ameliorating this situation. In the first part of this thesis evidence was presented 

to argue that multiprocessors are an economically viable architecture. Moreover, 
it was suggested that mainstream computing should be interested in 

multiprocessors because they hold the promise of high performance and high 
reliability for relatively low cost. 

The next part of the thesis went on to describe the types of multiprocessor 

architecture that have been constructed and their operating characteristics, as the 
SIMD approach to parallelism at first seems to be very different from the MIMD 

approach. Having defined the base parallel architectures, an extensive survey of 
the software used to program these systems was presented. This was divided into 

two sections covering both the system software which operates the hardware, and 

the user software which uses the hardware (via the system software) to execute 

applications. One important point that comes out of this survey is that good 

system software is a key component in effective multiprocessing. This is because 

good system software can simplify the job of implementing and executing user 

level parallel software by simulating an abstract multiprocessor that is easier to 

use than the underlying hardware. Other researchers have recognised this process 

of defining a hierarchy of virtual machines so this observation is not too surprising 

[Tane87]. The other important point that comes from the survey is that there are 

essentially three main approaches to exploiting parallelism: 

• In auto-parallelism, software tools are used to generate parallel programs 

from imperative sequential programs (e.g. "dusty decks") either by using a 

parallelising compiler or through the use of some parallel program 

construction tools. 

• In natural parallelism, an abstract (and possibly parallel) model of 
computation is used which is completely divorced from any underlying 

hardware details. Parallelism is extracted and implemented implicitly by 

an interpreter or compiler. 
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• In explicit parallelism, specially designed parallelism constructs specify 

precise details about parallel execution, possibly making use of specific 

hardware capabilities (e.g. test-and-set operations). 

Thus, there is a wide range of approaches available for para.llel programming 

but the question that arises is which approach is the best and why? Clearly, there 

is no short answer to this question because various degrees of success have been 

achieved using each approach. Nevertheless, one can outline briefly the problems 
that each approach faces. 

To produce an effective auto-parallelising compiler, one must restrict the 

semantic capabilities of source language constructs to minimise the effects of 
phenomena such as aliasing, which can ultimately prevent a compiler from 

constructing a model of the inter-statement dependencies within a program. In 
practice, source programs are written in dialects of primitive languages such as 

Fortran, splitting off this form of language research from more mainstream work 
(e.g. object-oriented techniques). While this may not be perceived as a serious 

disadvantage there is another problem. Basically, the effectiveness of the 
parallelisation techniques employed by compilers is dependent upon the amount 

of recoverable parallelism in a source program and how that parallelism can be 

mapped to the underlying hardware. In some cases these tasks are not easy to 

accomplish automatically, so some interaction with users is required. Interactions 

can sometimes be simple for a user, however, on other occasions detailed working 

knowledge of the operating system and the underlying hardware may be needed to 

solve a problem. Thus, auto-parallelisation is not a panacea for parallel 

programming because while it can lead to some effective portable parallel 

software, it can also have a stifling effect on the development of programming 

languages and can require expert programming which belies its boast of 

automatic parallel processing. 

In natural parallelism, abstr'act models of computation are used for 

programming, which stimulate programming language development and redress 

one of the problems of auto-parallelisation. However, the problem of mapping 

potential parallelism to underlying hardware still remains and even takes on a 
more disturbing form. As there is little linkage between source programs and 

their underlying parallel hardware it can be difficult to control and monitor the 

parallel execution of a program without adding a few extra constructs or 

commands, or by providing some software tools. Even so, it may turn out that the 

effective execution of a particular programming model cannot be accomplished on 
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a given architecture because of the top-down nature of this route to parallelism. 

Thus, the problem with this route to parallelism is that it is not easy to select the 

best model (because best cannot easily be defined) from the many abstract 

programming models, and then derive an implementation for this model that is 

very efficient for shared memory multiprocessors. 

Thus the stage is set for the explicit route to parallelism. Here research 

commenced by developing constructs that operated at the basic hardware level 
(e.g. test-and-set) but rapidly started to evolve constructs that did not reference 

specific machine features and were instead more abstract and portable; though not 

with too great a loss in efficiency. Unfortunately, the case for adopting the explicit 

route to parallelism is not cut and dried because explicit parallel programming 
has, in some cases, deservedly attracted a reputation for being complicated, with 

programmers being forced to carry out lots of work managing details such as data 

access control and control flow. Moreover, controversy has raged about which of 
the information sharing paradigms of shared memory or message passing is the 

better. Fortunately, as advances have been made in both hardware and software 
technologies it is now possible to hide away many of the underlying hardware 
characteristics, and blur the distinction between physically and virtually shared 

memory. Hence, this bottom-up approach to parallelism was the one followed in 

this thesis because it allows for the evolution of parallel programming constructs 

towards the goals set by natural parallelism, but at the same time does not lose 
sight of what is practical on a given hardware base. Of course, there are other 

important factors in the choice of programming approach, such as ease of use, so 

these issues were tackled in the next part of the thesis in chapter three. 

When designing a parallel program that is expected to execute efficiently in 

parallel on a multiprocessor it seems reasonable to work with a parallel or 

potentially parallel algorithm. The way in which these algorithms are designed 

and expressed is influenced to so~e degree by the final type of programming 

model. In a naturally parallel model, one can design algorithms that can be 

executed in parallel, but it may be difficult to accomplish this without the aid of 

some programming paradigms. In an explicit programming model, help is 

available in the form of programming constructs as well as through the use of 

parallelism paradigms. Hence, by using an explicit approach to parallelism a 

programmer can purposefully direct his programming efforts towards producing 

effective parallel software. 
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To state clearly then, the problems addressed by this thesis are those that are 
responsible for the current lack of effective parallel software for shared memory 

multiprocessors. These problems are: 

• programs have not been designed to follow suitable parallel algorithms, 

• there is no clear choice for the best parallel language (or style of language) 
to implement such algorithms, 

• it has been difficult to efficiently match algorithms and parallel 
programming techniques to the underlying parallel hardware. 

It is easy to lay the blame for the lack of effective parallel software on these 

three factors but to find a remedy one must examine these issues more carefully. 

To produce a parallel program, one must arrive at an algorithm that can be 

partitioned such that the separate parts can be executed by separate processors. 

The partitioning does not necessarily have to be explicit, if the inclusion of 
parallelism constructs detracts from the clarity of the algorithm, but in some cases 
explicit partitioning is useful for modelling concurrent behaviour. To partition an 

algorithm two broadly based techniques have emerged (though some algorithms 
exploit both techniques simultaneously): (i) the functional aspects of an algorithm 

are partitioned, and (ii) the data values operated on by an algorithm are 

partitioned. 

Once an algorithm has been partitioned it can be executed in parallel but there 
are no guarantees that any performance benefits will be derived from this; other 

factors govern its efficient parallel execution. Experimental work in chapter six 

confirms the belief that the grain size of the parallelism that is exploited by a 

parallel program is a key factor. In addition, algorithmic factors such as 

intercomputation dependency and hardware related factors such as patterns of 
memory usage are also important. Hence, a parallel processing mechanism must 

support the expression of a para~lel algorithm that is appropriate for the 

application being programmed and must also make provision for such an 

algorithm to be executed efficiently. Furthermore, when a program is partitioned 

and executed in parallel, it is desirable that many operations execute 

simultaneously so that a large proportion of the useful parallelism is utilised. 

However, with many operations executing in parallel the complexity of a program 

can grow dramatically making it difficult to write, debug and monitor. Hence, a 

parallel processing mechanism must also address these factors of usability as well 

as issues of expressiveness. 
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To this end the Tyger parallel programming model, discussed in chapter four, 

was envisaged as being part of some larger software environment that consisted of 

an operating system, a compiler, and a set of tools for program design and 

monitoring. Moreover, the Tyger model and program design tools were aimed at 

promoting a particular style of parallel program design, with emphasis on 

regularity and modularity (e.g. that commonly found in data partitioning). This 

approach is somewhat similar to a large grain SIMD model of parallelism, though 
the intention was also to support MIMD computation in the form of functional 

partitioning as well. Undoubtedly, some applications may give rise to intricate 
patterns of interaction between concurrent threads of control, but in these cases 

the complexities and subsequent programming difficulties originate from the 

algorithms themselves. Therefore, the best that an explicit parallel programming 

mechanism can do is not to make a programmer's task any harder by making its 

facilities difficult to use. 

The Tyger model presents a programmer with a simple, fixed, view of parallel 

computation in which a program consists of a sequence of alternate intervals 

(stripes) of sequential or parallel activity. Inside a parallelism stripe, threads of 

control execute in a shared address space communicating and synchronising by 

using shared values. Shared values themselves are a relatively simple mechanism 
so this encourages programmers to have simple regular interactions between 

threads of control, to help manage the complexity inherent in parallel activity. 

The Tyger model is reasonably easy to visualise but is also powerful enough to 

express arbitrarily complex forms of parallel activity. Hence it gives a 
programmer a starting point from· which to design a parallel program. Either the 

program will execute largely in a single parallelism stripe where threads of 

control are spatially distributed, or will consist of a series of disjoint parallelism 

stripes where threads of control are temporally distributed. Shared values permit 

the communication of data between threads of control in each case by firstly 

exploiting single assignment semantics and secondly by the use of a history 

facility. 

Shared values are a double edged mechanism for parallel programming. On 

one hand static shared values are a simple, neat and" code-efficient way of 
expressing data parallel algorithms and simple functionally parallel algorithms. 

More complicated interactions between threads of control can be modelled by 

custom built data abstractions descended from static shared values, or by dynamic 

shared values. On the other hand, the implementation of shared values can take 
advantage of the underlying parallel hardware so that performance-efficient 
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programs can be written. For instance, with the single assignment property 

maximal locality of reference can be exploited as local copies of variables can be 

maintained in cache memories. Moreover, contention for shared memory can be 

minimised by working out of a cache memory, so obviating the need to always get 

the current value of a shared variable from shared memory~ Further to this, 

shared values raise the level of memory abstraction in programs by decoupling 

references to variables from actual physically shared memory and replacing them 
by references to shared value objects such as static shared values, dynamic shared 

values, and higher level objects like streams. Hence, this raises the possibility 
that shared values could also be implemented efficiently on a distributed memory 

multiprocessor, with the cache memories mentioned before being replaced by local 

memories. 

In chapter six, an implementation of static shared values was measured 

against lower level parallel programming facilities to gauge the efficiency of 
shared values. For certain types of problem shared values and their iterators are a 

good mechanism for parallel programming, leading to clear programs that incur 
only slight overheads over more explicit approaches. To add to this, though, it was 

also noted that the use of shared values could prove costly as in the case of matrix 
multiplication where the source matrices were only shared in a parallelism stripe 

and not written. Hopefully, difficulties such as these can be overcome by the use of 

optimisation techniques in source program analysis, or perhaps even by hardware 

solutions at the level of the cache or local memory. 

7.1 Future Work 

Although the Tyger model is capable of expressing many forms of interaction 

between parallel threads of control there remain several areas where additional 

research could be usefully undertaken. These areas include: 

• new control constructs, 

• an extended Tyger model, 
• a Tyger-C++ compiler and accompanying software tools. 

Shared value semantics dictate that when a thread tries to read the value of a 
shared value that thread will be blocked until a value is made available. Using a 

non-blocking strategy has long been recognised as being useful in message 

passing, for amongst other things, as a way of increasing the concurrency in 

programs. More specifically, if a value is not immediately available for use by a 

thread, that thread may be able to look elsewhere for another value it can use, or it 
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may perform some other useful work until the requested value is made available. 

Non-blocking behaviour could be incorporated into the Tyger model by the 

introduction of guarded commands, where the guard tests are non-blocking. Using 

the guarded command mechanism obviates the need for special non-blocking 

versions of existing shared values constructs and side steps many of the problems 

of using non-blocking primitives (e.g. their ability to give rise to race conditions). 

The capabilities for parallel programming provided by static and dynamic 
shared values allow the natural expression of many parallel algorithms. However, 

there is a class of methods that is not supported particularly well by either shared 

value mechanism. Such methods involve parallelising algorithms that perform in­

place manipulation of data, in which a final result data structure is obtained by 
performing a series of in-place transformations to some or all of the original data 

structure. For example, in linear algebra an algorithm may conceptually partition 

a matrix into submatrices and operate separately on each submatrix, before using 
the entire matrix in a completely different way in a later process. The most 

awkward algorithms of this type to handle are those that are expressed 
recursively (e.g. Strassen's method for matrix multiplication extended to 
rectangular matrices [High89] and symbolic applications such as quicksort 

[Hoar62]). Here, only limited parallelism can be applied initially at the top level of 

the recursion, constrained by the number of top level recursive calls. As the 

recursion develops, however, there is scope for farming out recursive calls to 

separate threads. Nevertheless, using static or even dynamic shared values can 

lead to much copying of data when each new thread is started and when the 

results are collected. Not surprisingly, the program code to perform this data 

movement can look rather unwieldy as well. The key observation regarding the 

efficient implementation of in-place methods, that can be used to ease the 

situation, is that often threads of control need exclusive access to contiguous and 

logically separate parts of a data structure to perform their transformations. A 

brief outline of a mechanism that could be used to support in-place 

transformations now follows. 

When a thread of control is started it is given ownership of the static shared 

values it ultimately wishes to write. During the course of its execution a thread 

may write many times to a shared value that it owns to perform in-place 

transformations. When a thread terminates it relinquishes the ownership of its 

shared values, which then become unowned. If a thread wishes to read the value of 

a shared value, it is suspended until that shared value is no longer owned by 

another thread and the shared value has been bound to value, i.e. there is no 
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possibility of there being a thread waiting to write to it. Hence, to an observing 

thread that reads a shared value (previously owned by another thread) there is 

only one assignment ever made to the shared value - its final value. 

The shared value ownership scheme could also be used to extend the expressive 

power of the Tyger model by enabling child threads in a parallelism strip to create 

their own threads of control. When a new thread of control is created during an 

existing parallelism stripe, this thread of control executes in the same stripe as its 
parent thread of control and its parent's peer threads. When a thread creates a 

new thread of control, it can pass on the ownership of the shared values that it 

owns to the child or can terminate and lose the ownership as before. Thus, while a 

thread has ownership of a shared value it can write to the shared value as desired. 

Alternatively, a thread can create a child thread and selectively transfer 

ownership of its shared values to the child, for child to perform further write 

operations. The transfer of value ownership should be regarded as an indivisible 
operation, and furthermore, it should not be possible for multiple threads to own 

the same shared value simultaneously. The idea of shared value ownership is 

essentially an application of atomic actions described in chapter two. 

As was mentioned in chapter five, although a large proportion of the Tyger 

model can be implemented at run time, several performance benefits can be 

gained by carrying out as much work as possible at compile time. The future 

implementation of a Tyger compiler would be a boon to the production of high 

quality code, though, it is dispensable when working in a research environment. 

In chapter four, a brief overview was presented of other software tools that would 

be beneficial to programmers working with the Tyger model. Future work could be 

devoted to implementing such tools which could be used most aptly in 

development of large pieces of parallel software. 

7.2 Closing Summary 

The original goal of this thesis was to discover ways in which shared memory 

multiprocessors could deliver the power of parallel processing to users. The 

conclusion of this work is that effective exploitation of parallelism is dependent on 

several factors with the most important being a notation to express parallel 

activity. To this end a model of programming, the Tyger model, was developed to 

enable the specification of parallel activity in a precise yet uncluttered way. The 

Tyger model builds on the notion of there being some shared name space wi thin a 

parallel program, but separates this idea from the underlying memory model. 
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Moreover, the Tyger model emphasises locality of effect, to reduce interthread 

dependencies and also to retain efficiency by operating out of fast memory when 

possible. This decision is fortuitous in that emerging and future multiprocessors 

will probably be built along of the lines of hybrid multiprocessors (distributed 

memory simulating shared memory), because of the rapid increase in the ratio of 

processor to communication speed. 

Many of the ideas put forward in the Tyger model are in use in other research 
efforts into parallel programming. The idea of using single assignment variables 

for communication and synchronisation has been taken up by many languages in 

both the imperative and declarative fields. For example, PCN [Chan90] uses the 

single assignment rule when writing to shared data but allows multiple 
assignments to local data. In addition, tuple based communication and 

synchronisation has been around for a number of years (e.g. Linda), but research 

is still ongoing. Distributed data structures have also been recognised as an 
important parallelism metaphor and a new language has been developed to 

support them [Zeni90]. Finally, in one extreme, a research language has three 
separate types of parallel programming mechanism to support different 

programming styles. These mechanisms are: (i) single assignment variables, (ii) 

tuple communication, and (iii) object based concurrency. Thus, it seems that no 

single definitive method of parallel programming has yet emerged. 

The view of control flow during the parallel execution of a program developed 

under the Tyger model is similar to that in other parallel imperative languages. 

For instance, the idea of sticking ~o a fixed number of threads of control that are 

reused during the execution of a program is exploited in the Force [Jako90] parallel 

programming language and the successor to Fortran 8X - Fortran 90 [Lytt90]. 

Moreover, Fortran 90 contains many synchronisation constructs, such as events, 

to enable the expression of crude dataflow synchronisation. The Tyger model 

approaches parallel programming i~ much the same way as these languages but 

does not suffer from their main disadvantage. More specifically, the Tyger model 

is not locked into a particular language (e.g. Fortran) and is therefore free to be 

implemented in much higher level languages to give superior levels of abstraction 

and ease of use. This leads to more readable, but not necessarily less efficient, 
source program code. 

When research was directed away from using C as an implementation 

language for shared value constructs to C++, the advantages of using carefully 

chosen data abstractions became clear. The immediate advantage was that data 
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abstraction could be used to hide implementation details and so help combat the 

complexity associated with parallel programming. Hence, a programmer could 

design an algorithm, code it using shared values, and not be too concerned over its 

efficiency compared to using more primitive parallel programming methods. This 

came about because the synchronisation built into shared values could be directly 

mapped into efficient low level synchronisation constructs (for shared memory 

multiprocessors) by the Tyger run time system. However, perhaps the major 

advantage of using data abstraction was to allow the concept of a shared value to 
be applied as a property to a given data structure. This allowed the construction of 
data structures with type-specific synchronisation properties. For example, 

instead of waiting for every element in each row of a matrix, a thread can wait for 
an entire row of the matrix. This has a twofold effect of making such programs 

more understandable, and making them more efficient, as synchronisation is 
applied at the row level (increasing the granularity), rather at the element level. 

One point to notice, however, is that similar structured application of shared value 
synchronisation can also be achieved by the use of the shared value ownership 
scheme proposed in the previous section. 

Thus, shared values seem to be a useful mechanism for parallel programming 

as they retain the notion and the efficiency of information sharing, while 

liberating programmers from an actual need to use physically shared memory. 

Shared value constructs such as iterators are a good way for coding parallelism in 

the form of data partitioning and simple functional partitioning. Experimentation 

with object-oriented techniques has given Tyger-C++ the capability to define new 

data objects that possess inherent shared value semantics, giving added flexibility 

to the shared value method of inter thread communication and synchronisation. In 
addition, the Tyger model itself can be seen as a way of again extending the power 

of shared values by allowing them to be reused over the course of a parallel 

program, but the model also serves as a useful framework for parallel program 

design. So, while the last word in flhared values may not have been said, the 

existing ideas have proved to be an excellent starting point to further parallel 

programming research. 
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Appendix A - Julia Set Fractals 

Appendix A 

Julia Set Fractals 

To give some impression of the difficulties encountered in partitioning the 

work for the fractal parallel programs both the Julia sets used in chapter six are 
displayed on the next page. The upper image is the A image, which having a high 
concentration of work in its middle group of columns helps to explain why 
statically allocating blocks of columns to workers leads to poor speedups being 

obtained. The lower image is the B image, which has the same amount of work per 
column and therefore gives good speedups when blocks of columns are computed in 
parallel. However, this is not necessarily true if rows are allocated to threads 

instead of columns, because some rows take significantly more iterations to 
complete than others, although this is not obvious from the diagram. 

Sequential Julia Set Algorithm 

This algorithm is taken from Mandelbrot's book 'The Fractal Geometry of 
Nature' [Mand82]. An image has a times b points and 0 to K possible colours. Given 

values for p and q where c = p + iq, x where xmin S X S xmax' y where y min S y S Y max 
and Mis 100, 

(0) Set ~x = (xmax - xmin)/(a - 1), ~y = (y max - y min)/(b - 1), for all the pixels 
(nx' ny) with nx= 0, ... , a -1 and ny= 0, ... , b -1 do the following, 

(2) Calculate (xk+l' Yk+l) from (xk' Yk) using the law in chapter six, k += 1. 

(3) Calculate r = xk
2 + Yk 2 

if(r S M) and (k < K) go to step-(1) 

else if (r > M) then choose colour k 

else choose colour 0 (black) (k = K). 

(4) Assign colour k to the pixel (nx' ny)' compute next pixel starting from (1). 

A image: p = 0.4, q = O.4i, x = -1.25 to 1.25, Y = -1.25 to 1.25, M = 100, K = 100. 

B image: p = -0.257, q = -0.89i, x = 0.0 to 0.0, y = -2.0 to 2.0, M = 100, K = 100. 
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Appendix B - Test Program Listings 

Appendix·B 

Test Program Listings 

The programs listed in this appendix are some of the Tyger-C++ programs that 

were used for the testing reported on in chapter six. Four programs are presented: 

(i) the vector assignment program, 
(ii) the matrix addition program, 
(iii) the matrix multiplication program (with transpose), 

(iv) the fractal program (in three parts). 

Some of the programs reference program text in the form of header files via the 
"#include" preprocessor directive. Where appropriate these header files have been 
shown either in this appendix or in the next, though with the exceptions of system 
header files, the timing header file, and the graphics header file which are not 
shown for brevi ty. 



/ / parallel vector assignment program 

#include "sv.h" 

extern "c" { 
#include "timelib.h" 
} 

void printvector(SV& vector, int n) 
{ cout < < "\n"; 

} 

for (int i = 0; i < n; i++) 
cout < < vector[i] < < " "; 

cout < < "\n"; 

PAR dostore(struct list* prms) 
{ int lower = prms-> index; 

int upper = prms->ceiling; 
SV& vector = *(prms->host); 

for (int i = lower; i < upper; i++) 
vector[i] = (SVTYPE) i; . 

} 

int main(int argc, char* argv[]) 
{int n; / / size of vector 

int procs; II number of processes 
rawTime start; / / first timing point 
rawTime secs; II second timing point 

if (argc == 3) 
{ n = atoi(argv[1]); 

procs = atoi(argv[2]); } 
else 
{ cerr« "Usage: " « argv[O] « " size procs\n" « "\n"; 

exit(1); } 

start = start_timer(); 
SV vector(n); 
secs = raw ticks(start); 
cerr « "Result after" « raw micros(secs) « " microsecs\n"; 

} 

start = elapsed ticks(); 
vector. Clones(procs); 
vector.DoAll(O,n-l,dostore); 
secs = raw ticks(start); 
cerr « "Ending time" « raw_micros(secs) « " microsecs\n"; 

printvector(vector,n); 

II parallel square matrix addition program 

# include "sv.h" 

int n II the order of the matrices 
SVTYPE *matrixl 
SVTYPE * matrix2 

/ / pointer to 1st value of 1st matrix 
/ / pointer to 1st value of 2nd matrix 

void getmatrix(SVTYPE* matrix, int n) 
{ int row; 

} 

for (int i = 0; i < n; i++) 
{ row = i*n; 

} 

for (int j = 0; j < n; j++) 
cin > > matrix[row + j); 

void printmatrix(SV& matrix, int n) 
{ int row; 

} 

[1] 

cout < < "\n"; 
for (int i = 0; i < n; i++) 
{ row = i*n; 

} 

for (int j = 0; j < n; j++) 
cout « matrix[row+j) « " "; 

cout < < n\n"; 

cout < < "\n"; 



PAR dosum(struct list *prms) 
{ int lower = prms-> index; 

int upper = prms->ceiling; 
int row = lower*n; 
SV& matrix3 = *(prms->host); 

for (int i = lower; i < upper; i++) 
{ for (int j = 0; j < n; j++) 

matrix3[row+j] = matrixl[row+j] + matrix2[row+j); 
row += n; 

} 
} 

extern "c" { 
#include "timelib.h" 
} 

int main(int argc, char *argvO} 
{ int procs; 

timeUnits start, secs; 

if (argc == 3) 
{ n = atoi(argv[1]); 

procs = atoi(argv[2]); } 
else 
{ cerr « "Usage: " « argv[O] « " size procs\n" « "\n"; 

exit(1); } 

matrix} = new SVTYPE[n*n]; 
matrix2 = new SVTYPE[n*n]; 

start = start timer(); 
SV matrix3(n*n); 
secs = seconds(start); 
cerr « "Result matrix created in " « secs « " s\n"; 

getmatrix(matrix1,n); 
getmatrix(matrix2,n}; 
secs = seconds(start); 
cerr « "Data read in after" « secs « " s\n"; 

} 

start = elapsed_time(); 
matrix3.Clones(procs); 
matrix3.DoAll(O,n-l,dosum); 
secs = seconds(start); 
cerr « "Ending time" « secs « " s\n"; 

print matrix(matrix3, n); 

1/ parallel square matrix multiplication program 

#include "sv.h" 

extern "c" { 
#include "timelib.h" 
} 

int n II the order of the matrices 
SVTYPE *matrixl 
SVTYPE *matrix2 

II pointer to 1st value of 1st matrix 
II pointer to 1st value of 2nd matrix 

void getmatrix(SVTYPE* matrix, int n) 
{ int row; 

} 

for (int i = 0; i < n; i++) 
{ row = i*n; 

} 

for (int j = 0; j < n; j++) 
cin > > matrix[row + j); 

void printmatrix(SV& matrix, int n) 
{ int row; 

[2] 

cout « "\n"; 
for (int i = 0; i < n; i++) 
{ row = i*n; 

for (int j = 0; j < n; j++) 
cout « matrix[row+j] « " "; 

cout < < "\n"; 



} 
eout « "\n"; 

} 

void transpose(SVTYPE *matrix, int n) 
{ SVTYPE *ptr1, *ptr2, *ePtr, *rPtr, *ePtr; 

SVTYPE swap; 

} 

int offset = n + 1; 

ePtr = ptr2 = matrix + n; 
for (ptr1 = matrix+ 1; ptr1 < matrix + n*n; ptr1 += offset) 
{ for (ePtr = ptr1, rPtr = ptr2; ePtr < ePtr; cPtr++, rPtr += n) 

{ swap = *ePtr; 

} 

*ePtr = *rPtr; 
*rPtr = swap; 

} 
ptr2 += offset; 
ePtr += n; 

PAR doproduet(struct list *prms) 
{ SVTYPE sum; / / working value of sum 

int row, eol; II offsets for array indexing 
int lower = prms-> index; 
int upper = prms->eeiling; 
int step = prms->stride; 
SV& matrix3 = *(prms->host); 

for (int i = lower; i < upper; i += step) 
{ row = i*n; 

for (int j = 0; j < n; j++) 
{ eol = j*n; 

} 

sum = (SVTYPE) 0; 
for (int k = 0; k < n; k++) 

sum += matrix1[row+k] * matrix2[eol+k]; 
matrix3[row+j] = sum; 

} 
} 

int main(int argc, ehar *argv[]) 
{ int proes; 

} 

timeUnits time, sees; 

if (arge == 3) 
{ n = atoi(argv[1]); 

procs = atoi(argv[2]); } 
else 
{ eerr« "Usage: " « argv[O] « " size proes\n" « "\n"; 

exit(1); } 

matrix1 = new SVTYPE[n*n]; 
matrix2 = new SVTYPE[n*n]; 

start = start timer(); 
SV matrix3(n*n); 
sees = seeonds(start); 
eerr « "Result matrix created in " « sees « " s\n"; 

getmatrix(matrix1,n); 
getmatrix(matrix2,n); 
sees = seeonds(start; 
eerr « "Data read in after" « sees « " s\n"; 

start = elapsed time(); 
transpose(matrTx2, n); 
matrix3.Clones(procs); 
matrix3.ForEachPoint(0,n-1,doproduet); 
sees = seeonds(start); 
eerr « "Ending time" « secs « " s\n"; 

printmatrix(matrix3,n); 

[ 3 ] 



I I Julia Set program: fractalMain.C, fractal.C, fractal.h. 
II fractalMain.C 

#include "fractal.h" 

Julia *drawing; I I image to compute 

int main(int argc, char* argv[]) 
{ extern PAR JuliaCompute(struct list *Prms); 

drawing = new Julia(argc,argv); 
drawing-> Picture-> DrawImage(JuliaCompute); 

} 

I I fractal. C 

# include "fractal.h" 

extern "C" { 
#include "timelib.h" 
} 

void JuliaCompute(struct list *Prms) 
{ extern Julia *drawing; 

(void) drawing-> Compute(Prms); 
} 

I I Constructor for Fractallmage and attendant variables 
FractalImage::FractalImage(int argc, char* argvD, int workers, 

int columns, int rows) 
{ II create new drawing surface 

host = new WorkStation(argc, argv); 

I I save away the dimensions of the image 
Rows = rows; 
Columns = columns; 
MaxColours = 15; 

} 

I I scale for pixels 
RowSize = MaxRows/Rows; 
ColSize = MaxCols/Columns; 

I I create shared values to represent image 
Image = new SV(Rows*Columns); 
I mage-> Clones( workers); 

PAR Fractallmage::DisplayO 
{ if (RowSize == 1) 

} 

PixelPlot(); 
else 

RectPlot(); 

void Fractallmage:: RectPlot() 
{ int p I I current position in line 

} 

[4] 

int sp I I start of plateau 
int value I I colour of plateau 
int row = 0 I I current row offset 
int y = 0 II position of row on screen 

for (int rows = 0; rows < Rows; rows++) 
{ row += Columns; 

} 

y += RowSize; 
p = 0; 
while (p < Columns) 
{ value = (*Image)[row+p]; 

sp = p; 

} 

while «p < Columns) &:&: «*Image)[row+p] == value» 
++p; 

host-> Rectangle(sp*ColSize, y, p*ColSize:-l, 
y+ RowSize-l, value); 

host-> Refresh(); 



void Fractall mage::PixelPlotO 
{ int value / / colour of plateau 

} 

int sp / / start of plateau 
int p /I current position in line 
int row = 0 / / current row offset 

for (int rows = 0; rows < Rows; rows++) 
{ row += Columns; 

} 

p = 0; 
while (p < Columns) 
{ value = (*Image)[row+p]; 

sp = p; 

} 

while «p < Columns) && «*Image)[row+p] == value» 
++p; 

host-> Line(sp, rows, p, rows, value); 

host-> RefreshO; 

void Fractallmage::Drawlmage(void (*w)(struct list *Prms» 
{ timeUnits start; / / first timing point 

} 

timeUnits end /I second timing point 

start = start timerO; 
Image-> DoAllBlock(O, Columns-I, w); 
end = seconds(start); 
cout « "Computed Image in " « end « "\n" « flush; 
DisplayO; 

Julia::Julia(int argc, char **argv) 
{ if (argc < 9) 

{ cerr« "Usage: " « argv[O] « " workers x y p q x y k\n"; 
exit(l); 

} 

Picture = new Fractallmage(argc, argv, atoi(argv[1]), 
atoi(argv[2]), atoi(argv[3])); 

} 

sscanf(argv[4], "%F" ,&P); 
sscanf(argv[5], "%F" ,&Q); 
sscanf(argv[6], "%F" ,&X _Min); 
sscanf(argv[7], "%F" ,& Y Min); 
MaxK = atoi(argv[8]); -
X_Max = -X_Min; 
Y Max = -Y Min; 
Delta X = (X Max - X Min)/(Picture->Columns - 1); 
Delta=Y = (Y=Max - Y=Min)/(Picture->Rows - 1); 
M = 100; 

PAR Julia::Compute(struct list *Prms) 
{ int i, j, k; 

} 

[ 5 ] 

double x, y, xl, y1, r, yvalue; 
int row; 

for (j = 0; j < Picture-> Rows; j++) 
{ row = Picture->Columns*j; 

} 

yvalue = Y_Min + j * Delta_Y; 
for (i = Prms->index; i < Prms->ceiling; i += Prms->stride) 
{ x = X_Min + i * Delta_X; 

} 

y = yvalue; 
k = 0; 
do 
{ xl = x * x - y * y + P; 

y1 = 2 * x * y + Q; 
x = xl; 
Y = yl; 
k++; 
r=x*x+y*y; 

} 
while «r <= M) && (k < MaxK»; 
(*(Picture->Image»[row+i] = (r >M)?«k % 

(Picture-> MaxColours - 1» + 1):(0); 



I I fractal.h 

# ifndef fractal h 
#define -=.fracta()-=. 

#include "graphics.hlt 

#include Itsv.h" 

const int MaxRows = 480; I I on screen 
const int MaxCols = 640; I I on screen 

class Fractallmage 
{ public: 

}; 

I I constructor for image 
Fractallmage(int argc, char* argv[], int w, int c, int r); 

I I procedure to drive computation 
void Drawlmage(void (*workercode)(struct list *»; 

SV *Image I I final image 
int Rows I I no. of image rows 
int Columns I I no. of image columns 
int MaxColours I I no. of colours 
int RowSize I I length of screen point (pixels) 
int ColSize I I height of screen point (pixels) 

private: 

WorkStation *host 
void PixelPlot() 
void RectPlot() . 
PAR Display() 

I I drawing surface 
I I drawing operation 
I I drawing operation 
I I begin drawing 

class Julia 
( public: 

}; 

II constructor for fractal 
Julia(int argc, char **argv); 

I I routine to compute points of fractal 
PAR Compute(struct list * Prms); 

Fractallmage *Picture 

private: 

int 
double 
double 
double 
double 
double 
double 
double 
double 
int 

M 
X Min 
X Max 
Y Min 
Y Max 
Delta X 
Delta Y 
P 
Q 
MaxK ; 

I I image data structure 

I I parameters of fractal 

#endif !_fractal h 
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Appendix C - Shared Value Classes 

Appendix C 

Shared Value Classes 

The listings presented in this section represent the program code used to 
implement static shared values in Tyger-C++. The files presented are: 

(i) sv.h vel) header file for shared values used during the testing. 
(ii) sv.C v(1) implementation file for v(1) shared values. 
(iii) sv.h v(2) header file for more advanced shared values. 
(iv) sv.Cv(2) implementation file for v(2) shared values. 

(v) MultiTask.h - header of thread library to support shared values. 
(vi) MultiTask.C- implementation file for thread library. 

(vii) SVStream.h - an example stream class based on shared values. 
(viii) tStream.C an example program showing the use ofSVStreams. 

All of this code has been written in the form of straight C++ classes, however, 

subsequent implementations of Tyger-C++ may be a combination of classes and a 
source program preprocessor. 

A similar combined approach to language implementation was the one 

followed in the implementation of Tyger-C, based around the Unix compiler 

writing utilities of yacc and lex. Although the Tyger-C files are not included here, 

the freely available yacc and lex files for a C grammar (around 800 lines of C) 

formed the basis of a preprocessor that outputed C code containing Tyger library 

calls to implement the parallelism. The preprocessor itself was quite small, 

around 500 lines of C, with the Tyger library being somewhat larger at around 

1300 lines of C. 



/I sv.h v(l), single assignment, no multiple stripes 

#ifndef sv h 
#define -:='sv-:='h-:=' 

#define SVTYPE int 
#include "MultiTask.h" 

extern void spin idle(LOCK *lock); 

const int SVsvALLOC = 1; 
const int svBAD = 999; 

II failed to get array of sv 
I I multiple write to location 

class sv 
{ friend ostream&: operator « (ostream&: outS, sv&: data); 

friend istream&: operator» (istream&: inS, sv&: data); 

}; 

public: 

svO 0 
-svO 0 

1/ null body for constructor 
/I null body for destructor 

I I overload assignment from a 'sv' to a SVTYPE 
SVTYPE&: operator = (SVTYPE value) 
{ svData = value; 

if (spin_condlock(&:svSync) != PAR_ACQUIRED) 
svError(svBAD); 

return svData; } 

operator SVTYPEO 
{ spin _ idle(&:svSync); 

return svData; } 

void* operat~r new (size _ t size) { return (void *) NULL; } 
void* operator new (size t size, sv* allocAddress); 
void operator delete (vOid *ptr, size_t size) 0 

private: 

LOCK sVSync /1 synchronisation for 'sv' 
SVTYPE svData; /1 actual data value for 'sv' 
void svError(int error_code); 

class SV 
{ friend ostream&: operator « (ostream&: outS, SV&: data); 

friend istream&: operator > > (istream&: inS, SV &: data); 

}; 

public: 

SV (int array_size = 1); 

sv&: operator [] (int index) 
{ return SVData[index]; } 

SVTYPE&: operator = (SVTYPE value) 
{ return SVData[O] = value; } 

operator SVTYPE() 
{ return SVData[O]; } 

int Clones() 
{ return SVWorkers; } 

void Clones(int n) 
{ SVWorkers = n; } 

void DoAll(int lb, int ub, void (*worker) (struct list * ), 
doAliCodes patt = svBlock) 

{ SVWorld->mtDoAll(lb, ub, worker, this, patt); } 

void ForEach(int lb, int ub, void (*worker) (struct list * ), 
forEachCodes patt = svHunk) 

{ SVWorld->mtForEach(lb, ub, worker, this, patt); } 

private: 

sv 
int 
int 
MultiTask* 
void 

*SVData II array of 'sv' 
SVDataSize /I size of array 
SVWorkers II number of workers for SV 
SVWorld ; II tasking environment 
SVError(int error_type); 

#endif !_sv_h_ 
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II sv.C v(l), single assignment, no multiple stripes 

#include "sv.h" 

I I allow 'sv' to be printed out by using « 
ostream& operator « (ostream& outStream, sv& data) 
{ spin _ idle(&data.svSync); 

return outStream « data.svData; 
} 

I I allow 'sv' to be read in by using > > 
istream& operator» (istream& inStream, sv& data) 
{ if (spin condlock(&(data.svSync» != PAR ACQUIRED) 

data.svError(svBAD); -
return inStream » data.svData; 

} 

I I overloaded new operator for efficient storage 
void* sv::operator new (size t size, sv* Address) 
{ Address += 1; -

I I constructor used by a user 
SV::SV(int array_size) 
{ sv *lastUsed; 

I I attach tasking environment 
SVWorld = new MultiTask(array_size*sizeof(sv»; 

I I allocate storage for array of sv 
SVDataSize = array_size; 
if «SVData = (sv *) malloc(sizeof(sv)*SVDataSize» == NULL) 

SVError(SVsv ALLOC); 

I I initialise array of sv if necessary 
if (PAR UNLOCKED != 0) 
{ last Used = SVData - 1; 

} 

for (int i = 0; i < SVDataSize; i++) 
last Used = new (last Used) sv; 

Address->svSync.field[O] = (unsigned char) PAR_UNLOCKED; } 
return Address; 

} 

void sv::svError(int error code) 
{ switch(error code) -

} 

{ case svBAD : fprintf(stderr, "Multiple write to address 
96d\n", &svData); break; 

default: fprintf(stderr, "svError: caught internal error\n"); 
} 
fflush(stderr); 
exit( error_code); 

void SV::SVError(int error code) 
{ switch (error code) -

} 

{ case SVsvALLOC:fprintf(stderr, "Failed to allocate SV\n"); 
break; 

} 

default : fprintf(stderr, "SVError: caught internal error\n"); 
break; 

fflush(stderr ); 
exit(error _code); 
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II sv.h v(2), multiple stripes, one level of history 

'ifndef sv h 
'define - sv - h 

'define SVTYPE int 

'include "MultiTask.h" 

I I level of history storage 
const int svHistory = 2; 

I! error code for class SV, failed to get array of sv 
const int SVsvALLOC = 1; 

I I error code for class sv, multiple write to location 
const int svBAD = 999; 

I I values for svThreshold 
const int svParallel = 1; 
const int sVSequential = 0; 

I I internal shared value class never seen by a user 
class sv 
{ I I dec. of friend class ostream to overload stream output 

friend ostream& operator « (ostream& outStream, sv& data); 

I I dec. of friend class istream to overload stream input 
friend istream& operator » (istream& inStream, sv& data); 

public: 

sv() 0 I! null body for constructor 
-sv() Ol! null body for destructor 

I! overload assignment from a 'sv' to a SVTYPE 
SVTYPE& operator = (SVTYPE value) 
{ svData[svCurrent] = value; 

} 

if (spin condlock(&svSync) < svThreshold) 
svError(svBAD); 

return svData[svCurrent]; }; 
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I I explicit type conversion from a 'sv' to a SVTYPE 
operator SVTYPE() 
{ while (svSync.field[O] < svThreshold); 

return sv Data[svCurrent]; 
} 

SVTYPE& oldO 
{ return svData[svOld]; } 

I! reset synchronisation tag for next stripe 
void clear(); 

I! setup for parallelism stripe 
void parallelO 
{ svThreshold = svParallel; 

svOld = svCurrent; 
svCurrent = (svCurrent + 1) 96 svHistory; 

} 

I! setup for sequential stripe 
void sequential() 
{ svThreshold = sVSequential; } 

I! overload 'new' 
void* operator new (size t size) { return (void *) NULL; } 
void* operator new (size = t size, sv* allocAddress); 

I I overload 'delete' operator with a null operation 
void operator delete (void *ptr, size _ t size) 0 

private: 

LOCK 
SVTYPE 
static 
static 
static 

svSync; 
svData[svHistory]; 
int svCurrent; 
int svOld; 
int svThreshold; 

II synchronisation for 'sv' 
I! actual data values for 'sv' 
I I index to current 'sv' 
I I index to last 'sv' 
I I toggle single assignment 

void svError(int error_code); 



II shared value class seen and used by a user 
class SV 
{ II dec. of friend class ostream to overload stream output 

friend ostream&: operator « (ostream&: outS, SV&: data) 
{ return outS « data.SVData[O]; } 

II dec. of friend class istream to overload stream input 
friend istream&: operator » (istream&: inS, SV &: data) 
{ return inS» data.SVData[O]; } 

public: 

II default parameter allows implicit size of 1 
SV (int array size = 1); 

II overload [] operator 
sv&: operator [] (int index) 
{ return SVData[index]; } 

II overload assignment operator 
SVTYPE&: operator = (SVTYPE value) 
{ return SVData[O] = value; } 

II overload reading by defining type conversion 
operator SVTYPEO 
{ return SVData[O]; } 

II number of workers that an iterator will use 
int Clones() 
{ return SVWorkers; } 

void Clones(int n) 
{ SVW orkers ,= n; } 

II entry procedure to parallelism stripe (reenterant) 
void beginStripeO; 

II exit procedure for parallelism stripe (reenterant) 
void endStripeC); 

}; 

II iterators 
void DoAll(int lb, int ub, void (*worker) (struct list * ), 

doAlICodes patt = svBlock) 
{ beginStripe(); 

SVWorld->mtDoAll(lb, ub, worker, this, patt); 
endStripe(); 

} 

void ForEach(int lb, int ub, void (*worker) (struct list * ), 
forEachCodes patt = svHunk) 

{ beginStripe(); 
SVWorld->mtForEach(lb, ub, worker, this, patt); 
endStripeC); 

} 

II cheat routine to start stripe explicitly 
void Start(void* worker) 
{ beginStripe(); 

SVWor ld-> U nbound( worker, SVW orkers); 
} 

II cheat routine to end stripe explicitly 
void EndO 
{ SVWorld->BindO; 

endStripeO; 
} 

private: 

sv 
int 
int 
MultiTask* 

*SVData; 
SVDataSize; 
SVWorkers; 
SVWorld; 

II array of 'sv' 
II size of array 
II number of workers for SV 
II tasking environment 

void SVError(int error_type); 

#endif !_sv_h_ 

[4 ] 



//sv.C 

#include "sv.h" 

II static initialisations 
int sv::svCurrent = 0; 
int sv::svOld = 0; 
int sv::svThreshold = sVSequential; 

ostream& operator « (ostream& outStream, sv& data) 
{ while (data.svSync.field[O] < data.svThreshold); 

return outStream « data.svData[data.svCurrent]; } 

istream& operator » (istream& inStream, sv& data) 
{ if (spin condlock(&(data.svSync» < data.svThreshold) 

data.svError(svBAD); 
return inStream » data.svData[data.svCurrent]; } 

void sv::clear() 
{ svSync.field[O] = PAR_UNLOCKED; } 

/ / overloaded new operator for ef.ficient storage 
void* sv::operator new (size _ t size, sv* allocAddress) 
{ allocAddress += 1; 

allocAddress->clear(); 
return allocAddress; } 

void sv::svError(int error code) 
{ switch(error code) -

} 

{ case svBAD : fprintf(stderr, "Multiple write to address 
96d\n", &svData); break; 

default: fprintf(stderr, "svError: caught internal error\n"); 
} 
fflush(stderr); 
exit(error _code); 

II constructor used by a user 
SV::SV(int array_size) 
{ sv *last Used; 

} 

SVWorid = new MultiTask(array_size*sizeof(sv»; 
SVDataSize = array_size; 

if «SVData = (sv *) malloc(sizeof(sv)*SVDataSize» == NULL) 
SVError(SVsv ALLOC); 

if (PAR UNLOCKED!= 0) 
{ last Used = SVData - 1; 

} 

for (int i = 0; i < SVDataSize; i++) 
lastUsed = new (lastUsed) sv; 

void SV::beginStripe() 
{ if (SVWorld->Parallel == 0) 

} 

{ for (int i = 0; i < SVDataSize; i++) 
SVData[i].clear(); 

SVData[O].parallel(); 
} 

void SV::endStripe() 
{ if (SVWorld->Parallel == 0) 

SVData[O].sequential(); 
} 

void SV::SVError(int error code) 
{ switch (error code) -

} 

{ case SVsvALLOC:fprintf(stderr, "Failed to allocate SV\n"); 
break; . 

default: fprintf(stderr, "SVError: caught internal error\n"); 
} 
fflush(stderr); 
exit(error code); 
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II MultiTask.h 

#ifndef MultiTask h 
#define -='MultiTask-='h-=' 

#define PAR void 

#include <stdlib.h> 
#include <iostream.h> 
# include < malloc.h> 
# include' <stdio.h> 

/ / compatibility between threads libraries 
# ifdef TASKS 
#define malloc share malloc 
#endif 

/ / hack for Encore C compiler to generate inline spinlocks 
extern "c" { 
# include "parallel.h 
int cspinlock(LOCK *lock); 
void spinlock(LOCK *lock); 
void spinunlock(LOCK *lock); 
} 

#define spin_condlock 
#define spin_lock 
#define spin_unlock 

/ / front-ends to iterators 
#define DoAllBlock(a, b, c) 
#define DoAllStride(a, b, c) 
#define ForEachHunk(a, b, c) 
#define ForEachPoint(a, b, c) 

/ / work distribution parameters 
typedef int strtng ndx; 
typedef int clsing - ndx; 
typedef int strd_ ndx; 

cspinlock 
spinlock 
spinunlock 

DoAll(a, b, c, svBlock) 
DoAll(a, b, c, svStream) 
ForEach(a, b, c, svHunk) 
ForEach(a, b, c, svPoint) 

/ / work allocation codes 
enum forEachCodes { svHunk = 0, svPoint = 1, svStream = 3 }; 
enum doAllCodes { svBlock = 4, svStride = 5 }; 

class SV; II forward reference 

/ / Structure template used to pass parameters to a master thread 
struct masterStruct 
{ int start 

}; 

int finish 
int workers 
SV *host 
void (*proc)(struct list *) 
union 
{doAllCodes stag; 

forEachCodes dtag; 
}; 

/ / lower bound 
/ / upper bound 
/ / no of threads to use 
/ / sv to operate on 
/ / worker body 

/ / structure for passing parameters to worker thread 
struct list 
{ strtng_ ndx 

}; 

clsing_ndx 
strd ndx 
SV 
void 

class MultiTask 

index 
ceiling 
stride 
*host 
**args 

{ friend class SV; 
private: 

MultiTask(int valueSize); 

/ / starting point (inclusive) 
II ending point (exclusive) 
/ / stride between values 
II calling variable 
II additional arguments 

void Task(void (*w), int w, struct masterStruct* prms); 

void Unbound(void (*w), int nw); 

void Bind(); 
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}; 

void mtForEach(int lb, int ub, void (*w)(struct list *), 
SV *host, forEachCodes patt = svHunk); 

void mtDoAll(int lb, int ub, void (*w)(struct list *), 
SV *host, doAllCodes patt = svBlock); 

private: 

static int DataSize ; 
static int Operational 
static int Parallel 

/I total memory used 
/I tasking status 
/I stripe status 

void CleanUp(char *message); 

/ / amount of system and spare shared memory for tasking env. 
extern int UNIVERSE_SIZE; 

/I macro to allocate shared memory and create tasking env. 
#define SHARE(X) (void) new MultiTask(UNIVERSE_SIZE = X); 

#endif !_MultiTask_h_ 
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II MultiTask.C 

#include "MultiTask.h" 
#include "sv.h" 

// static member initialisations 
int UNIVERSE SIZE = 5*1024*1024; 
int MultiTask::Operational = 0; 
int MultiTask::Parallel = 0; 

// Implementation declarations 
const int mStack = 1024*20; 
const int wStack = 1024*20; 
#ifdef TASKS 
// determines the size of an object in 4-byte words 
#define nw(x) (int) sizeof(x)/sizeof(int) + 1 
const int mtError = -1; 
const int goFailed = -1; 
#else 
extern "c" { 
# include "thread.h" 
} 
const int tP = 2; 
#endif 

//******************************************************* 
/ / Non member functions of class MultiTask used to implement 
/ / the parallelism - no implicit class data parameter to pass 

/ / tidyThreads - non member function called to shut down threads 
void tidyThreads(char *message) 
{ cout < < flush; 

cerr « "MultiTask: " « message « "\n" « flush; 
#ifdef TASKS 

task _ stope); 
#else 

THREADkil1(THREADcurrent); 
#endif 
} 

// staticMaster - Driver thread for the static work distribution. 
static void staticMaster(struct masterStruct *mstrPrms) 
{int wrkrs = mstrPrms->workers; 

int top = mstrPrms->start; 
int ld = (mstrPrms->finish - top + 1) / wrkrs; 
int xcss = (mstrPrms->finish - top + 1) % wrkrs; 
SV *hst = mstrPrms->host; 
int nwthrds = wrkrs - 1; 
void (*proc)(struct list *) = mstrPrms->proc; 

/ / create an array of parameter structures for children 
struct list *plist; 

#ifdef TASKS 
if «plist = (list *) malloc(sizeof(list)*wrkrs» == NULL) 

tidyThreads("Failed to allocate static work list"); 
#else 

plist = new struct list[wrkrs]; 
#endif 

/ / initialise parameter array and fork children 
for (int tc = 0; tc < wrkrs; tc++) 
{ switch(mstrPrms->stag) 

{ case svBlock : 

}; 

{ plist[tc].index = top; 

} 

plist[tc].ceiling = top += «xcss > tc) ? (ld + 1 ) : (ld»; 
plist[tc].stride = 1; 
plist[tc].host = hst; 
break; 

case svStride : 
{ plist[tc].index = tc + top; 

plist[tc].ceiling = mstrPrms->finish+ 1; . 
plist[tc].stride = wrkrs; 
plist[tc].host = hst; 
break; 

} 
default: tidyThreads{"error in work specifier"); break; 
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if (tc < nwthrds) 
{ 

#ifdef TASKS 
if «task_start(proc, wStack, 1, &plist[tc])) == NULL) 

#else 
if (THREADcreate(proc, &plist[tc], 0, ATTACHED, 

wStack, tP) == NULL) 
#endif 

{ cerr« "MultiTask: thread " « tc; 
tidyThreads("failed to start thread"); 

} 

} 
} 
else /I master allocation 

(*proc)(&plist[tc]); 

/I wait until children have terminated 
#ifdef TASKS 

task _join(); 
# else 

THREAD handle; 
do 
{ handle = THREADjoin(); } 
while (handle != NULL && THREADfree(handle»; 

#endif 
} 

I I structure used to pass information to hunk processing workers 
I I lock must be declared as the first field for rapid access 
struct wBoard 
{ LOCK lock 

int workload 
int start 
SV *host 
int workers 
void (*proc)(struct list *) 

}; 

I I lock field for wBoard 
I I work remaining 
I I next item to process 
I I host variable 
I I no of workers 
I I worker code 

I I structure used to pass information to point processing workers 
II lock must be declared as the first field for rapid access 
struct bBoard 
{ LOCK lock I I lock field for bBoard 

I I first item to process 
I I last item to process 
I I next item to process 
I I host variable 

int head 
int tail 
int top 
SV *host 
int workers I I no of workers 
int id II worker id 
void (*proc)(struct list *) I I worker code 

}; 

PAR hunkDriver(struct wBoard *Brd) 
{ struct list mylst; 

} 

[9] 

mylst.stride = 1; 
mylst.host = Brd->host; 
do 
{ spin lock«LOCK *) Brd); 

if (Brd->workload <= 0) 

} 

{ spin_unlock«LOCK *) Brd); 
break; 

} 
else 
{ mylst.index = Brd->start; 

} 

if «my 1st. ceiling = Brd->workload/Brd->workers) == 0) 
mylst.ceiling = 1; 

Brd->workload -= mylst.ceiling; 
mylst.ceiling += mylst.index; 
Brd->start = mylst.ceiling; 
spin unlock«LOCK *) Brd); 
(*(Brd->proc»(&mylst); 

while (1); 



PAR streamDriver(struct wBoard *Brd) 
{ struct list mylst; 

} 

mylst.stride = 1; 
mylst.host = Brd->host; 
do 
{ spin lock«LOCK *) Brd); 

if (Brd->start >= Brd->workload) 
{ spin_unlock«LOCK *) Brd); 

} 

break; 
} 
else 
{ mylst.index = Brd->start; 

Brd->start += 1; 

} 

spin unlock«LOCK *) Brd); 
mylSt.ceiling = mylst.index + 1; 
(*{Brd->proc»{&mylst); 

while (I); 

/ / Function for allocation of points - it is inlined for speed 
inline int pointAllocate{struct bBoard* Brd, struct list* prms) 
{ spin lock«LOCK *) Brd); 

} 

if (Brd->top < Brd->tail) 
{ prms->index = Brd->top; 

Brd->top += 1; 

} 

spin unlock«LOCK *) Brd); 
prms->ceiling;: prms->index+ 1; 
return 1; 

else 
{ spin_unlock«LOCK *) Brd); 

return 0; 
} 

static PAR pointDriver{struct bBoard *Brd) 
{int nid = Brd->id; 

} 

struct list mylst; 

mylst.stride ;: 1; 
mylst.host = Brd->host; 
do 
{ if (pointAllocate{Brd, &mylst) != 0 ) 

(*{Brd->proc»{&mylst); 
else 

break; 
} 
while (l); 

do 
{ nid = (nid + 1) 96 (Brd->workers); 

} 

while (pointAllocate{Brd + (nid - Brd->id), &mylst) !;: 0) 
(*(Brd->proc»{&(mylst»; 

while (nid !;: blckBrd->id); 

static PAR dynamicMaster(struct masterStruct *Prms) 
{ / / copy parameters out of masterStruct 

int wks = Prms->workers; 
int top ;: Prms->start; 
int wrk = (Prms->finish - top + 1); 
int ld ;: wrk / wks; 
int xcss = wrk 96 wks; 
int nwthrds;: wks - 1; 
SV *hst ;: Prms->host; 
void (*proc)(struct wBoard *); 

if (Prms->dtag =;: svPoint) 
{ / / create an array of parameter structures for children 

struct bBoard *BBrd; 
#ifdef TASKS 
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if «BBrd = (bBoard *) malloc(sizeof(bBoard)* wks» == NULL) 
tidyThreads("Failed to allocate bBoard"); 



HeIse 

Hendif 
BBrd = new struct bBoard[ wks]; 

/ / initialise parameter array and fork children 
for (int tc = 0; tc < wks; tc++) 
{ 

BBrd[tc].top = BBrd[tc].head = top; 
BBrd[tc]. tail = top += «xcss > tc) ? ( Id + 1 ) : ( ld »; 

Hifdef TASKS 

Hendif 

if (spin init(&(BBrd[tc].lock),P AR UNLOCKED) == NULL) 
tidYThreads("failed to initialise lock"); 

BBrd[tc].proc = Prms->proc; 
BBrd[tc].id = tc; 
BBrd[tc]. workers = wks; 
BBrd[tc].host = hst; 

if (tc < nwthrds) 
{ 

Hifdef TASKS 

HeIse 

Hendif 

if «task_start(pointDriver, wStack, 1,&BBrd[tc]» == NULL) 

if (THREADcreate(pointDriver, &(BBrd[tc]),O, ATTACHED, 
wStack, tP) == NULL) 

} 

{ cerr« "MultiTask: thread" « tc; 
tidyThreads("failed to start thread"); 

} 

else / / master allocation 
pointDriver(&BBrd[tc]); 

} 

/ / wait until children have terminated and delete params 
Hifdef TASKS 

task.JoinO; 
share _ free(BBrd); 

HeIse 

Hendif 
} 

while (THREADjoin(»; 
delete [wks] BBrd; 

else 
if (Prms->dtag == svHunk II Prms->dtag == svStream) 
{ 

Hifdef TASKS 
struct wBoard *WBrd; 

if «WBrd = (wBoard *) malloc(sizeof(struct wBoard»)==NULL) 
tidyThreads("Failed to allocate wBoard"); 

HeIse 

if (spin init(&(WBrd-> lock), PAR UNLOCKED) == NULL) 
tidYThreads("failed to create lock"); 

struct wBoard* WBrd = new wBoard; 
Hendif 

WBrd->proc = Prms->proc; 
WBrd->start = top; 
WBrd->host = hst; 
WBrd->workers = wks; 

if (Prms->dtag == svHunk) 
{ WBrd-> workload = wrk; 

proc = hunkDriver; 
} 
else / / Prms->dtag == svStream 
{ WBrd->workload = Prms->finish+1; 

proc = stream Driver; 
} 

for (int tc = 0; tc < nwthrds; tc++) 
Hifdef TASKS 

if «task start(proc, wStack, 1, WBrd» == NULL) 
HeIse 

if (THREADcreate(proc, WBrd, 0, ATTACHED, wStack, \ 

[ 11 ] 



#endif 
tP) == NULL) 

{ cerr« "MultiTask: thread II « tc; 
tidyThreads("failed to start thread"); 

} 

II do own allocation of work 
(*proc)(WBrd); 

#ifdef TASKS 

#else 

#endif 
} 

II wait until children have terminated 
task~oin(); 
share _ free(WBrd); 

while (THREADjoin()); 
delete WBrd; 

else 
tidyThreads("dynamicMaster invalid work specifier"); 

} 

//******************************************************* 
I I Member functions of class MultiTask 

I I Constructor for class MultiTask 
M ul t iTask:: M ul tiTask(int valueSize) 
{ if (!Operational) 

{ DataSize = UNIVERSE SIZE + valueSize; 
#ifdef TASKS -

if (malloc init(DataSize) == -1) 
CleanUp(IIFailed to allocate shared memoryll); 

#endif 
Operational = 1; 

} 
} 

# ifdef TASKS 
1/ Procedure Cleanup the forced exit function 
void MultiTask::CleanUp(char *message) 
{ cout« flush; 

cerr « "MultiTask: II « message « "\n" « flush; 
exit(mtError); 

} 
#endif 

void MultiTask::Task(void (*w), int p, struct masterStruct* ps) 
{ if (Parallel == 0) 

{ Parallel = 1; 
#ifdef TASKS 

if «task init(DataSize, p, w, mStack, nw(ps), ps» 
== goFailed) 
CleanUp("Failed to create dynamic master thread"); 

#else 
THREADgo(p, DataSize, w, ps, sizeof(ps), mStack, tP); 

#endif 
Parallel = 0; 

} 
else 
{ 

#ifdef TASKS 
Parallel += 1; 
if (ps == NULL) 
{ 

#else 

#endif 

} 

if (task start(w, wStack, 0) == NULL) 
tidyThreads("failed to start sole thread\n"); 

else 
if (task_start(w, wStack, nw(ps), ps) == NULL) 

if (THREADcreate(w, ps, 0, ATTACHED, wStack, tP) 
== NULL) 

tidyThreads("failed to start sole thread\n"); 
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} 
} 

void MultiTask::Unbound(void (*workercode), int w) 
{ Task(workercode, w+l, NULL); } 

void MultiTask::BindO 
{ 
# ifdef TASKS 

task join(); 
#else 

while(THREAD ---ioin(}); 
#endif 
} 

/ / Procedure Foreach the dynamic paritioning procedure 
void MultiTask::mtForEach(int lb, int ub, void 
(*workercode)(struct list *), SV *host, forEachCodes patt) 
{ / / Allocated on stack but no problems should arise - not shared 

struct masterStruct mstrStrct; 

mstrStrct.start = Ib; 
mstrStrct.finish = ub; 
mstrStrct. workers = host->ClonesO; 
mstrStrct.proc = workercode; 
mstrStrct.host = host; 
mstrStrct.dtag = patt; 

Task(dynamicMaster, host-> ClonesO, & mstrStrct); 
} 

/ / Procedure DoAll the static partitioning procedure 
void MultiTask::mtDoAll(int Ib, int ub, void 
(*workercode)(struct list *), SV *host, doAllCodes patt) 
{ / / Allocated on stack but no problems should arise - not shared 

struct masterStruct mstrStrct; 

mstrStrct.start = Ib; 
mstrStrct.finish = ub; 
mstrStrct.workers = host->Clones(); 
mstrStrct.proc = workercode; 
mstrStrct.host = host; 
mstrStrct.stag = patt; 

Task(staticMaster, host->ClonesO, &mstrStrct); 
} 
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/ / SVStream.h, implements single writer multiple reader 

#include "sv.h" 

/ / actual data elements in stream 
class SVStreamElement 
{ public: 

}; 

SVStreamElementO 
{ next = (SVStreamElement *) NULL; } 

-SVStreamElement(} 0 
SVStreamElement* next 
SV data 

/ / method by which a user can read stream elements 
class SVSHandie 
{ / / overload « operator to allow 'cout' to work 

friend ostream& operator < < (ostream& outS, SVSHandle& s) 
{ s.current = s.ptr; . 

} 

while (s.ptr == (SVStreamElement*) NULL); 
s.ptr = s.ptr->next; 
return outS « s.current->data; 

pUblic: 

SVSHandle(SVStreamElement* head) 
{ ptr = head; } 

-SVSHandle(} 0 
/ / type conversion to SVTYPE (reading operation) 
operator SVTYPE(} 
{ current = ptr; 

} 

while (ptr == (SVStreamElement*) NULL); 
ptr = ptr->next; 
return current->data; 

}; 

private: 
SVStreamElement* ptr; 
SVStreamElement* current; 

/ / stream class used by a user 
class SVStream 
{ / / overload > > to allow 'cin' to work 
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friend istream& operator > > (istream& inS, SVStream& s) 
{ s. tmp = s. tail; 

} 

s.tail = s.tail->next; 
s. tail = new SVStreamElement(); 
s.tmp->next = s.tail; 
return inS» s.tmp->data; 

public: 
SVStream() 
{ head = new SVStreamElement(); 

tail = head; 
} 

-SVStream() 
{ while (head != (SVStreamElement *) NULL) 

{ tmp = head; 

} 
} 

head = head->next; 
delete tmp; 

/ / overload assignment operation 
SV& operator = (SVTYPE value) 
{ tmp = tail; 

} 

tail = tail->next; 
tail = new SVStreamElement(); 
tmp->next = tail; 
tmp->data = value; 
return tmp->data; 



}; 

/ / type conversion to SVSHandle (reading operation) 
operator SVSHandle() 
{ return *(new SVSHandle(head»; } 

private: 

SVStreamElement* head; 
SVStreamElement* tail; 
SVStreamElement* tmp; 

/ / tStream.C - sample program using SVStream 

:# include "SVStream.h" 

int main() 
{ int n = 10 

} 

SVStream 
SVSHandle 

X 
XValues = X 

for (int i = 0; i < n; i++) 
cin » X; 

for (int j = OJ j < nj j++) 
cout « XValues « " " ; 

cout < < "\n"; 

[ 15 ] 
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