A Language and Toolkit for the
Specification, Execution and Monitoring of

Dependable Distributed Applications

Ph.D. Thesis

by Frédéric Ranno

The University of Newcastle upon Tyne

Department of Computing Science

1998

BEST COPY

AVAILABLE

Variable print quality

Abstract

This thesis addresses the problem of specifying the composition of distributed applications
out of existing applications, possibly legacy ones. With the automation of business processes
on the increase, more and more applications of this kind are being constructed. The resulting
applications can be quite complex, usually long-lived and are executed in a heterogeneous
environment. In a distributed environment, long-lived activities need support for fault tolerance
and dynamic reconfiguration. Indeed, it is likely that the environment where they are run will
change (nodes may fail, services may be moved elsewhere or withdrawn) during their
execution and the specification will have to be modified. There is also a need for modularity,
scalability and openness. However, most of the existing systems only consider part of these
requirements. A new area of research, called workflow management has been trying to address
these issues.

This work first looks at what needs to be addressed to support the specification and
execution of these new applications in a heterogeneous, distributed environment. A co-
ordination language (scripting language) is developed that fulfils the requirements of specifying
the composition and inter-dependencies of distributed applications with the properties of
dynamic reconfiguration, fault tolerance, modularity, scalability and openness. The architecture
of the overall workflow system and its implementation are then presented. The system has been
implemented as a set of CORBA services and the execution environment is built using a
transactional workflow management system. Next, the thesis describes the design of a toolkit
to specify, execute and monitor distributed applications. The design of the co-ordination

language and the toolkit represents the main contribution of the thesis.

Acknowledgements

I am very grateful for all the support and encouragement that I have received during my
research. I would like in particular to thank Prof. Santosh Shrivastava for helping me to decide
which research topic to pursue, to proof-read this thesis and other papers, for his supervision,
help and suggestions regarding this project. I also would like to thank Dr. Stuart Wheater for
his help and suggestions as well as for the development of the Workflow Engine for which this
toolkit has been designed.

Many thanks also to the other members of the Arjuna group for building the platform that
was used to develop and validate this project, especially to Dr. Mark Little who has developed
the OTS version of Arjuna. I would also like to address some special thanks to Ms Shirley
Craig our departmental librarian, as well as to the staff of the Robinson Library.

I am grateful to Nortel Telecom and in particular to John Warne, Harold Toze, Samantha
Merrion, Dave Stringer and A. J. Tunnicliffe to provide us with a real example of a workflow
application as well as their ORB.

I would also like to address some special thanks to my family and Sarah for their support

during my Ph.D.

My research has been jointly funded by the UK Engineering and Physical Sciences Research
Council (EPSRC award 94315028) and by CaberNet, the ESPRIT network of excellence in
distributed computing systems architectures (European HCM Research Fellowship contract
ERBCHBGCT93). Northern Telecom (Nortel) and the European LTR project C3DS (project

no. 24962) also sponsor the workflow project.

Contents

ADSETACE eeuennnnnneniiieiriccsssecsnnssnsrstiensssssssssseescsssssasessaessessssssssssssnnsossrsssssssssnssnsnses
ACKNOWIEAZEMENLS......cccevsveererernssicsccssssssassoscssssssssssserssreensasssssassosssssssssesssssssessas
CONLENLS ceuvvrerrerriecsssssssssnnrorrecesssssesssssassssosssssossssssssssssssssssssssssssassassssssnssssansssssssose
List Of fIGUIES veeetrriieenncrsrsnnierieinenicsssssnsstiiscessssssnnsoseessosssssssssssssssseasssssessannsssacess

INErOAUCLION cecereneeecrnrnnerecrenseeserseesersssasssseessssessossrsensasassasssssssssssssssnsesssasssssssssnses

1.2- OBJECHIVES vttt st s st s san e

Co-ordination
Dependability

Dynamic reconfiguration
Scalability

Modularity

Openness

1.3- THESIS OVEIVIEW.eeeeeereeeeeeeeeeeeeeeese e esenaeeeeesssanessaseemmnennnnnmmeenamnnnmreeneee

Related work toeeesessseserenssrssesasansrnsnesesnsnnne erssssoronsansences

2.] AT ECIUIES. .. eeeeiiieee ettt et e eeeveesereneesansersasetanessannssaesessnsnsesnnares

2.1.1 The Workflow management Coalition Architecture

2.1.2 The ANSA framework

2.2- Build time ENVIFONMENE ...uvieniieiiiiiiiitieiee e eetetineenrseersensaenraneesnnasenseenasennns

2.2.1 Building environment based on general purpose scripting languages
2.2.2 Workflow specific build time environments
2.2.3 Commercial Workflows

2.2.4 Architecture Description languages (ADL)

iii

32

33

2.2.5 Discussion

2.3- Run time environment for workflows management Systemsccoeuven.. 40
2.3.1 Sagas 41
2.3.2 ConTract 41
2.3.3 ORBWork 42
2.3.4 Exotica or FlowMark on Message Queue Manager 44
2.3.5 RainMan 48
2.3.6 TOWE, Transaction-Oriented Workflow Environment 49

2.4- DISCUSSION.......oiiiiiiieiiteiittie ettt e et ee ettt e aee e e etee e e et eeeeateeeastee e sreae s srnaeeesaeeesereeesanes 52

ATCRILECIUTE c.cneneeecnrnnrenrriineinieesnecssstnesienissessossssrsssssnssssssssssstssssssessasssssssasssssassssansens 54

3.1- REQUITEMENLSooeiiiiiiiiiiie sttt ettt cteeste st see et e et et aeebeeere e sreeeeeereeeres 54
3.1.1 Modularity 54
3.1.2 Scalability 55
3.1.3 Interoperability 56
3.1.4 Dependability 56
3.1.5 Dynamic reconfiguration 57

3.2- SOftWAIE SLIUCIUIE.........ocveeeiieeieiiceecteeceieeteeaeeeesteesreebesreereeereeebeeaseereesneesresanens 58
3.2.1 Common Object Request Broker Architecture (CORBA) 59
3.2.2 Object Transaction Service (OTS) 62
3.2.3 Graphical User Interface 64
3.2.4 Workflow Repository Service 64
3.2.5 Workflow Execution Service 65
3.2.6 Workflow Administration Tasks 65
3.2.7 User Workflow Tasks 65
3.2.8 Script Servers 65

3.3= TaASK INOAEL c.ceeeiiieieiieiieeee et et eeee et e ee e e e e eee e e esesesssssssaaennans 66

3.3.1 Structure of a task 66

3.3.2 Types of task 72
3.4- RUN timMe ENVITONITIENL ...eveeeeeieeeiiiiiiiereeeeeiieeiiinteartieeteaaaesirrasssaeessassesaibsrebreaeaens 74
LANGUAEZE c.covrrreresrnsecsnisensesansassansssssssssssosisssasassssssstsssssessissssnsssssssnssssssssssssssssssessassanesase 79
B. 12 OVEIVIEW ..ooiiiiiiiieeiieeeeeiee e e ettt e et e sttt s s e tr s eaan e e aa e e s e e e essbbe s et e e 79
4.2- ODJECE CLASSESouetieieiirii ittt s 80
4.2.1. Overview 80
4.2.2 Grammar 81
4.2.3 Examples 81
O T 171 " O T L S OOt 81
4.3.1 Overview 82
4.3.2 Grammar 82
4.3.3 Examples 84
4.4- TaSK INSTANCES ..ceueuveiieeeiieieieiiciiriiii ittt re s e s s s ettt a s st st 86
4.4.1 Overview 86
4.4.2 Grammar 87
4.4.3 Examples 91
4.5- Extended transaction models and Workflowscccccoevviiiiiiiiniiiniii, 94
4.6- Comparison wWith METEORcccooviiiiiniiiiiin 95
EXamplesccovveecsseressaneessaeccsnn reseisesacasssnstesessessnsessestossiseessranissansessrnsesaansssnane 99
5.1- Example I: Customer order ProCeSSINEovuverieieeniiiniiiiinsieeiesineneseenieenenanens 99
5.2- Example II: A travel agEnCycceeiiiiiiiiiniiieiiiie e 106
5.3- Example III: Network fault managementcooniniiiininn 112
Toolkit .. 119
6.1 OVEIVIEW ..ccovvveervrreeiireeeieeeesieteiibtee it e e sbecsmesesabs e e abas s sbe e e saaesensbba s nessabeesannenss 120
6.2- ClasSES OF USEIS ...veeveiereuieercrieeiiteniitn i reesseressasesesabtessabe s e snesarsbsssss s sneesenneeas 121
6.3- Workflow model using the WIGUIcccooivivinininniniiiccc 121
6.3.1 ObjectClass model 121

6.3.2 TaskClass model 122

6.3.3 Basic task and compound task models 123
6.4- Workflow File System (WESS) ... 124
6.4.1 Connecting to a workflow script server 124
6.4.3 Loading a script 127
6.5- Composing a specification using the WfGui............c.ccoooeiii e, 129
6.5.1 Overview 129
6.5.2 Object classes 129
6.5.3 Task classes 130
6.5.4 Tasks 131
6.6- SIMUIALION.........ooiiiiiii e e 133
6.7- EXECULION. ...eiitiiitiiitieiciieer ettt et e s 135
6.7.1 Checking the specification 135
6.7.2 Storing in the Repository Service 139
6.7.3 Starting an application 141
6.7.4 Dynamic modifications 141
6.8- MONILOTINGouuviiiiiiiiiieiiirrtee s eee s it et e e e e s ssbrerae e et e ese s asaabtreeeseseeantbrnenaaananeas 142
Analysis ...cocerecrrerennne reteesssseesssssesnantesnttessstssssssisssastssstisattesssstessassesststesrssessratns 144
7.1- Analysis uSINg Petri-Nets..........ccccveirvenieriiiniiiiiiiiien e 144
7.1.1 Overview of B(PN)2 144
7.1.2 Modelling a workflow application 146
7.1.3 Usefulness for our system 150
7.2- Analysis using Finite State Processes..........ccccovviiiiirininencniiiiiiiieenne 151
7.2.1 Overview of FSP 152
7.2.2 Modelling a workflow application 153
7.2.3 Usefulness for our system 156

vi

Conclusions ANd FULUTE WOTK...e..ccceeeeeeieenieennreseeesoseesressessssasnssersssssssassessssssssssessssssse 157

APPENAIXES coveeeeieirunreriiirrsrrreressassneresrrennisessasnsesssssssnsesssssssssssssssssassesssssssssssasassssasnsasss 163

SCLIPES ettt e s 163
A.1 Script for the process ordering application described in chapter 5.1. 163
A.2 Script for the travel agent application described in chapter 5.2. 167

A.3 Scripts for the telecommunication application described in chapter 5.3. 176

OpenFlow Toolkit user manual..............ccccooiiiiiiiiiii 188

REFEIEIICES .eucvecereenrererrreereseerossressessressseesssessessessrassossessssnsosssssssosssssssssessossssrassosseossasses 189

vii

List of figures

Figure 1.1: Example of a workflow application..............cccciiiiiiiiiiiii e 3
Figure 1.2: The components of a workflow management SyStem.........c.ceeveviiiriiiiiiiiiieiiiir e, 5
Figure 1.3: Software structure of the tOOLKit...........ccooiiiiiiiiii e 9
Figure 2.1: Components and interfaces of the WIMC model.c.occooiniiiininnnini, 14
Figure 2.2: Architectural mOdel..........co.ueiiiiiiiiiiic e 18
Figure 2.3: Notations for GUIIn WIDEcccooiviiiiiiiii et 30
Figure 2.4: A component in Darwin........cccoocviiiiiiiiiiiiiiircee e 34
Figure 2.5: Composite component in Darwin............cccooceeiiieiiinciiiiiiiiice e 34
Figure 2.6: Dynamic reconfiguration in Darwincccoeeerierieniieneeienieneere e 36
Figure 2.7: A component in OLANc..cooiiiiiiiiieiee et es et 38
Figure 2.8: Comparison of the built time features associated to the languages considered 39
Figure 2.9: Run time architecture of FIOWMarkccocevveeeemeiiiininineienieeeie e 44
Figure 2.10: Process diagram in FIOWMark...........coocooviiiiiiiniiiiiiiniccecere e, 46
Figure 2.11: Specification of an OrganiSationcceecurveriuiiroieerineeeniteeireeseeesriteeesreeenee e 46
Figure 2.12: Specification 0f @ PErSON.......c.ccuiviiiiiiiiiiiniiiiitieite et 47
Figure 2.13: Worklists in FIowMarKc..occoiiiiiiiic e e 47
Figure 2.14: Monitoring of a FlowMark Workflowc.cceeceevieniiiiniiiiniinin e 48
Figure 2.15: The TOWE system archit€Ctureoceeevienineiienincnesceiececncee e 50
Figure 2.16: Library classes of the TOWE ... e 51
Figure 2.17: Comparison of the features supported by the different systems considered 52

viii

Figure 3.1: Distributed and centralised cO-0rdinationscccocceveeenieiiiiiiiiiiiiiniie e, 56

Figure 3.2: Software structure of the toolKit.................oiiiii 58
Figure 3.3: Relationship between the different components...............coccooiioioiniiniini, 59
Figure 3.4: Object Management Architectureccoooiiiiiiiii e, 60
Figure 3.5: Structure of an Object Request Brokercccocoviiiiiiiiiiiinniinice e, 61
Figure 3.6: From IDL specification to implementation and use..............cccccocoveniiinniiniene s, 62
Figure 3.7: OMG OTS archit@Ctureooiiiiiiiiiiiiiii e 63
Figure 3.8: OMG OTS eXeCution fIOWScoeiiiiiiiiiiiiiieiiiiiie et 64
Figure 3.9: Representation Of @ taskcceviiiviiiniininiiiiniiiii e 66
Figure 3.10: Domain of a task Specificationc.ccocvveviiiiiiiiiiiiciiii e 67
Figure 3.11: Inputs Of @ tasK........cooviiriiiiniiiiie e 67
Figure 3.12: Outputs 0f @ taskccovviiriiiiiiiiieciieesicsee ettt stae e sae e 68
Figure 3.13: Types of data-flow dependenciesooceeveriiieiiieenieniinienieriene v 70
Figure 3.14: Types of notification dependenciesceoveruerieriereneriesieerienenrinteeteeeeeeee e 71
Figure 3.15: Graphical representation of Workflow Tasks.cccceeeevieiieiiivericiieece s 74
Figure 3.16: Specification of a workflow applicationccccoeeevruieiirrieenirieenieeicie e, 75
Figure 3.17: Run-time representation of a workflow applicationccccovveeeeviruriieciiiicnnennns 76
Figure 3.18: Task State diagraml.......c...cocvrruirviiniiniinreieeiiete ettt st 77
Figure 3.19: Event NOIfICALIONS........ccccoiiiiiieniniie et etesre sttt st nee e 77
Figure 4.1: BasiC €XaAmMPIEc.ccoiiiiiiiiiiiiiiiee ettt ettt 80
Figure 4.2: Graphical notation for a task Classc.occcoviiiiniiinniiiniie e 81
Figure 4.3: Inputs of a task Classoccciiiiiiiiiiiiiiiiiictcs e e 83
Figure 4.4: Outputs of a taskClass........cccoccooiiiiiiiiiiiiice e 84
Figure 4.5: Specification of responsibilities for a task............ccccoouviniiiinnininncneee 86

ix

Figure 4.6: Saga modelled as a workflow ..., 95

Figure 5.1: Overall process ordering appliCationccoovviiniieeiniieniien e 100
Figure 5.2: Dependencies involving the processOrderApplication compound task.................... 104
Figure 5.3: Dependencies involving the checkStock taskcoooocviiiiinii, 105
Figure 5.4: Dependencies involving the paymentCapture taskc.ccoeevviieiiiiiiiiiiiiiiccce 105
Figure 5.5: Dependencies involving the paymentAuthorisation taskccccoccooooviiiiiin.n. 105
Figure 5.6: Dependencies involving the dispatch task..........c.cooeevieviiiiiiiiii . 105
Figure 5.7:Travel reservation Workflow...........cccccoiiiiniiiiniiiiiii e 106
Figure 5.8: Overview of the travel task...............cccciiiiiii e 107
Figure 5.9: Overview of the travelReservation task..........c.cccccevvivviiineniiennnnienieicce e, 107
Figure 5.10: Overview of the travelReservation task, using alternative tasks. 108
Figure 5.11: Details of the reliable hotelReservation task.ccccoccecinevinininninniniiiee, 108
Figure 5.12: Dependencies involving the bookHotelPartner task.........cccccovvvinviiiniivinninnennnn. 109
Figure 5.13: Dependencies involving the bookHotelTouristOffice taskccccoevevvieiiiinnennn. 109
Figure 5.14: Overview of the alarmResolution task...........c.ccccocoeii i, 113
Figure 5.15: Overview of the Service Impact Analysis task.............cccceevviieieiveieneiiie e, 113
Figure 5.16: Details of the dependencies involving the Service Impact Resolution task 114
Figure 5.17: Overview of the Service Level Agreement task............cccooevevvvneeneccniiceiiecnnn, 115
Figure 5.18: Overview of the Negotiation Resolution task.............cccooveeieeeeiiiniciccieeeeee 116
Figure 5.19: Overview of a round of negotiation of the SLAccceevieviniiiiiicicce 116
Figure 6.1: Graphical representation of the workflow system..............ccooceevveeeiininiiinicieene, 119
Figure 6.2: UML class diagram (excluding task components)cccceeeeeveveviiiniiireecnnn, 122
Figure 6.3: UML-like class diagram (excluding TaskClass components)c.eoecvevvenveneenene. 123
Figure 6.4: State transitions on server side of the WISScoooiiiiiiiiiiiiiee e 125

Figure 6.5: Simulation of the execution of a workflow applicationccc.ooovvviviiienc 134

Figure 6.6: Design for "Check task for LOOD” Process..........c.ccocevevveirieniiinin e, 136
Figure 6.7: Design for "Check compound task for LOOp™ process........cccceeeveevveuiirvirieeeeneeennn.. 137
Figure 6.8: Design for "Check basic task for Loop” processcocoovvviiiiuieieiiisieieeieeeee, 138
Figure 6.9: Run time representation of loop tasksc.ccccevreriiiniiiiiiiiniene e 140
Figure 6.10: Run-time representation of abort oUtCoOmEs...........ccccocuiririeinennieniiceceee 140
Figure 6.11: Graphical representation of the workflow system with Specification Service......... 143
Figure 7.1: Modelling the task INPULS...........oocoiiiiiiiiii e, 146
Figure 7.2: Modelling of the reaching of an output for a basic task.occooviieiin. 147
Figure 7.3: Example of workflow applicationcccccviiiriiiiieeniienii e 149

Xi

Introduction 1

Chapter 1

Introduction

1.1- Motivation

In a competitive market driven environment, enterprises must improve their productivity
and efficiency. Automation of business processes is therefore considered important. In this
thesis, a business process is defined as a set of organised activities aiming at reaching a
common business goal (for example, the activities needing to be performed by
“MyOwnComputers Ltd” to build a new computer given its parts form a business process).
More and more such processes are being automated. By automating their business processes,
companies try to gain efficiency and effectiveness.

In the last few years, global networks, such as the Internet, have grown considerably in
scale mainly due to the advances in telecommunication, and this has made it possible to access
information within seconds. More and more business processes are growing in complexity, and
are also becoming distributed. Automating the processes can also speed up access to the
information. For instance, you can keep the details of your products and their availability in a
database and have an instantaneous idea of the state of your stock.

Moreover, the information access has become worldwide and as a result processes are now
usually crossing enterprise-level boundaries. A typical example of such a process is ticket
bookings via a travel agency: the travel agent starts a booking process that involves his
company as well as some air-lines, railways companies, ferry companies, bus companies...
Most travel agencies now directly buy the tickets via computers from their providers. Their
system acts as a client that contacts some servers where they can check what is available, when
and at what price. If the customer is happy with what was found, then the proposed travel

arrangements can be booked.

Introduction 2

Other examples of applications being automated can be found in the field of electronic
commerce. Electronic commerce is a relatively new concept that deals with buying and selling
goods on the net. Typically that involves browsing an electronic catalogue, put the articles you
want to buy in an electronic basket, get the bill, pay it and then wait for the delivery. The most
famous example of a company trading by electronic commerce is amazon.com [3], the
“electronic” bookstore, from which you can order books at American prices from all over the
world by using your computer connected to the Internet. Another example is the emergence of
virtual shopping malls, such as the BarclaySquare [5] created by Barclays, where customers
can buy from companies such as Argos, Interflora or Thomas Cook. The customer selects the
goods that he wants to buy and then clicks on a retailer’s cash register to pay for the chosen
items. The payment is then carried out thanks to electronic money stored in an electronic
wallet linked to a BarclayCard account. The area of electronic commerce is growing fast, and
is estimated to be worth already up to $15 billion and is expected to reach $200 billion in the
year 2000 [62].

A variety of computer systems for automating the task of scheduling and executing
applications have been developed. These systems are known as workflow management systems
and the applications are called workflows. As we can see from the previous examples,
workflows can usually be divided into smaller units of work carried out by participants that can
be among others human beings, their agents (programs acting on their behalf) or even
computer programs. The participants have to collaborate to reach a common aim, the
achievement of the global process. This collaboration is usually carried out by exchanging data
and by ensuring that the dependencies between units of work are respected. Such dependencies
can usually be divided in two different types: temporal dependencies (e.g. a unit of work has to
be executed before another one) and data-flow dependencies (e.g. a unit of work needs some
data coming from another unit of work before starting). Similarly an increasing number of
applications are being built as a set of existing applications collaborating among them. The
resulting applications are usually rather complex and have a lot of dependencies between their
constituents. Another problem inherent to this new kind of applications is that the execution of
such applications may span long periods of time. Indeed, it may include long periods of
inactivity, usually due to component tasks requiring interactions with human users.
Furthermore, these applications are not only long-lived; they are also usually executed in a

heterogeneous environment, across company-level boundaries.

Introduction 3

Check Bank
References Payment
Order
Get
Order
Check Dispatch

Stock —» Order

Figure 1.1: Example of a workflow application

In figure 1.1, an example of workflow application in the area of commerce is shown. It
depicts the process of ordering, dispatching and paying an order. Initially, customer orders
some items (unit of work get order), then the stock as well as the bank references of this
customer are checked in parallel (units of work check stock and check bank reference). If both
checks are successful, the order is then dispatched (unit of work dispatch order), which
triggers the payment for the order (unit of work payment order).

In a distributed environment, long-lived activities do need support for fault tolerance and
dynamic reconfiguration. On one hand, the risk of encountering faults obviously increases
proportionally to the duration of the application. On the other hand, it is likely that the
environment in which they are run will change (nodes may fail, services may be moved
elsewhere or withdrawn) during their execution and the specification will have to be modified.
As a result, it is inevitable that workflows will need some support for fault tolerance and
dynamic reconfiguration. Furthermore, to be trusted workflow need to be reliable and ensure
correctness of the process.

As a result, an important problem for companies looking to automate their business
processes is to have a system to help them to specify, execute and monitor the resulting
application in an efficient manner. Moreover, this system should incorporate some tools for the
management of these processes, including monitoring, configuration and consistency checking
tools.

A lot of systems have been proposed in an effort to meet these requirements. The solutions
have ranged from email based system to extended database systems. In an email-based system
[15], some extra information is added to the email to specify the routing of the message. This
kind of system can be quite useful in an office environment where a form has to go through a
particular route (corresponding to a sequence of processing steps) to be accepted. Such a

system is however quite limited in scope as it only provides routing information. In particular

Introduction 4

there is no real support for inter-tasks dependencies. In database systems, different extensions
have been proposed to extend their capabilities. The first of these extensions was to add some
Event-Condition-Actions rules as objects in the database, and managed by the database
management system. When an event occurs (such as an object becoming available or the
completion of an activity), its associated condition is evaluated and if true, the associated
action is scheduled for execution. The resulting systems are known as active database
management systems. They allow the creation of multi-steps applications, where each step is a
transaction, and where access to data and synchronisation among transactions are managed by
the system. Another interesting approach is represented by the transactional workflow systems
that are closely related to work on extending transaction models. The idea behind extended
transaction models is to relax part of the ACID (Atomicity, Consistency, Isolation and
Durability) properties of conventional transactions. ACID transactions are well suited to
provide fault tolerance and consistency for short-lived interactions with shared objects; in
contrast, extended transactions are intended to provide similar functionality for long-lived
applications. A transactional workflow system provides facilities to define an application as a
set of co-ordinated transactions. By developing an underlying system for supporting flexible
transaction facilities, an efficient, reliable workflow management system can be developed.
Such a model is described in [76]. This system could be based on one of the extended
transactions model based on the relaxation of the Isolation property of the Atomic Transaction.

Workflow management Systems have been defined by the Workflow Management Coalition
- as “a system which provides procedural automation of a business process by management of
the sequence of work activities and the invocation of appropriate human and/or IT resources
associated with the various activity steps” [78]. Often seen as "collections of tasks organised to
accomplish some business processes” [24], workflows are intended to enable quick acquisition
of services and resources. Workflow management systems are good management tools as they
can co-ordinate and control business processes.

A workflow management system can be divided in several components [29] as depicted in
figure 1.2. The main division is between the build-time and the run-time components. The build

time components allow you to specify the workflow. They can usually be divided into two sets:

+ Workflow Management Coalition: industrial consortium set up to create an industry standard for Workflow

Management Systems.

Introduction 5

the conceptual model and the tools provided to facilitate the construction of workflow
specifications. The conceptual model itself is based on a workflow language, specified by its
syntax and semantics. The Workflow community [13] has been working on languages to
specify workflow applications, while the Software Design community [39] [35] [6] has been
working on Architecture Description languages. The other build time components, the build
time tools allow to check your specifications, simulate the execution of these specifications and

animate them.

Workflow Management System

— N

" .%Run’nme\‘
Workflow Model Build Time Tools Implementation Model Implementation Implementation Run Time Tools
Editor Architecture Work List
Browser o End User Tools
Syntax Sdmantics Cpmpiler Appllication Formats & Monitor
Simulator Prpgram Prptocols Analyzer
Animator Interface Administrator
Debugger Configurator
Workflow Language Administrator Functional

Figure 1.2: The components of a workflow management system

The run-time part of a workflow management system is itself sub-divided into four
components: the implementation model, the implementation architecture, the implementation
and the run-time tools. The implementation model is the conceptual basis for the run-time part
of the workflow system. It defines the functional components (tasks...) and the protocols
between them by specifying the application program interfaces and the formats and protocols.
The implementation architecture is the enactment of the functional components or in other
words how the functional components are mapped to active elements of the underlying system.
The implementation is the instantiation of this architecture. In order to support this
implementation, some run-time tools have to be provided. For instance, monitoring tools are
needed to find out what is going on and control the progress of the workflow. Analysis tools
can be provided to find out the history of a workflow execution. Work lists can also be
provided when you have human participants to let them know what they have to do. Given that
the requirements can change during the execution, some administration and configuration tools

have to be provided to handle those changes.

Introduction 6

1.2- Objectives

There is no real consensus on what a workflow is or on what kind of features a workflow
management system has to provide. A lot of different definitions [20] have been proposed for
workflows ranging from a business process, a software automating such a process, its
specification or a software that supports the co-ordination of people implementing such a
process. In this thesis, we define a workflow as a set of tasks arranged to form (complex)
organisational functions, where a task is defined as an application specific unit of work. A
workflow management system is defined as the software system that can be used to specify
and co-ordinate the execution and monitor of organisation functions.

The aim of this thesis is to provide an efficient build and run-time environment to specify,
execute and monitor reliable workflow applications constructed out of other existing
applications and workflows. It should allow the co-ordination of inter-dependent distributed
applications with the properties of fault tolerance, dynamic reconfiguration, modularity,
scalability and openness. Each of these requirements will now be further described starting
with co-ordination.

Co-ordination

Several types of approaches have been presented to specify the interactions between
component tasks. An active field of research has been on rule-based approaches, where the co-
ordination is expressed by Event-Condition-Action rules. In this model, the specified actions
are triggered by some events under certain conditions. For instance, in the electronic
commerce field, it is likely that the company selling the goods will want to be paid before
delivering the goods that a customer has ordered. This would be modelled by specifying that
the task “delivering goods” can only begin when the task “pay for goods ordered” has been
successfully completed. Approaches based on Petri-nets, extended SQL queries or email-based
have also been proposed. Another important approach is the Architecture Description
Language (ADL) based specifications which allow the description of the structure of the
components of a software system. These components communicate through connectors, and
are providing services for the other components. Those services are provided and obtained via
ports. However current ADLs do not capture the computation structure (run-time behaviour)
of an application. Our goal is to provide a way to capture this computational structure. The
language presented in this thesis does that by describing the application as a set of tasks (units

of work) that are linked among them by temporal dependencies. These dependencies are of

Introduction 7

two different types, notification dependencies specifying the temporal constraints among tasks

and input dependencies (data-flow dependencies) specifying the mapping of the inputs and

outputs of a task with the data available in the system.

Dependability

Organisations that are automating their processes using workflows must be able to rely

upon the workflow management system. Indeed when automating processes, the human

responsibility for these processes can be partly discharged to the corresponding workflows. Of

course, to be trusted, workflows need to be reliable and ensure correctness of the process. If

they are not fault-tolerant, the consequences could be disastrous: just imagine a financial

transaction badly completed in the financial field, the consequences can be catastrophic.

Furthermore, systems become bigger, go across organisation boundaries, are run within a

distributed environment, and on top of that particular problems arise from co-ordinating

applications. Among other, this includes:

Network splits: the network can be partitioned due to hardware faults for instance.
Machine failures: machines can crash, users can reboot them unexpectedly, hardware
faults can occur.

Machine removal: machines can be removed from the set of resources available for
the workflow. This is becoming more and more an issue with the emerging technology
of mobile computing.

Services may be withdrawn: one of the best examples of this problem can be
encountered on the Internet. When you make a query on resources using a search tool,
it is common to retrieve a lot of links on web resources that have vanished since their
registration.

Services may be moved: in order to optimise the access or to provide a better quality
of service, services may be moved elsewhere. For instance, as technology evolves, new
machines with better performance may be introduced and services moved on them.
Tasks may fail: there are a lot of reasons why tasks may fail including bad
programming (bug-free applications and complex applications do not go well

together). The resources that are needed by those tasks may not be available.

The system proposed must aim at being able to cope with these problems as automatically

as possible. The automation of business processes should indeed increase the quality of service.

Introduction 8

The way to recover for the workflow often has to be based on compensation as unrecoverable
actions may have taken place. For instance in the electronic commerce field, you may send a
bill corresponding to the goods ordered. Once this activity has been completed, it 1s impossible
to “erase” it. You can only compensate it by sending a message invalidating the previous one.
Dynamic reconfiguration
As was stated earlier, the applications considered are likely to be long-lived. As a result,
they are likely to find out during their execution that the environment in which they are
executing has changed or the user requirements may change. As a result they have to evolve to
cope with those changes. It is an accepted fact that it’s not viable to abort them and that some
kind of support for run-time reconfiguration should be provided to cope with those changes.
Our model should allow some additions and removals of component applications and
dependencies during run-time without having to stop the application.
Scalability
Workflow technology aims at the integration of applications. As a result, scalability
becomes a real issue as the applications modelled grow in size. A scalable Workflow System
will be a Workflow that keeps the communication between participants as small as possible and
do no rely on any centralised services. Indeed if we were to rely upon such a service, it would
introduce some bottlenecks which would not be scalable. A fully distributed system
architecture should be adopted. It seems that the distributed Object-Oriented transaction
systems can be a good way to cope with this requirement as well as with those of
heterogeneity, distribution and flexibility.
Modularity
The specification of the application should be modular. Indeed, changing the specification of
a task should have as little impact on the rest of the application as possible. The changes
involved should only be made where the task is actually defined. Moreover it should also be
possible to provide a way to compose an application out of other applications similarly
constructed. The language presented in this thesis achieves this by hiding from the
“downstream” tasks the “upstream” ones, or in other words, the tasks supposed to be executed
at a certain time have no knowledge what so ever of the tasks depending on them and

executing later.

Introduction 2

Openness
Nowadays, systems have to be as open as possible and not rely on proprietary components.
As a result, the system adopted should deal with component application in the same way
irrespectively of the language in which they have been written. The construction of the
applications should be made in a uniform manner. This has been achieved in the model

presented by using CORBA (see figure 1.3).

User Workflow Workflow Workflow User
Interface Administration | Repository Execution Workflow
Tasks Service Service Tasks

Object Transaction Service
(OTS)

CORBA
ORB

Figure 1.3: Software structure of the toolkit

It should also be possible to use the system regardless of the host from which you are
connecting. This has been achieved by using Java to implement the Graphic User Interface
(GUI) for the system. It provides remote access to the system from wherever a web browser
supporting Java is available.

The software structure of the toolkit is depicted on figure 1.3. The toolkit is divided into
five components: the Java user interface, the workflow administration tasks, the workflow
repository service, the workflow execution service and the User Workflow Tasks. The User
Interface was implemented as a Java applet and provides some tools to specify a workflow,
including a graphical editor, some consistency check tools, some animator and simulation tools
for build time. It also provides some monitoring and analysing tools for run-time as well as
some tools allowing the dynamic reconfiguration of the workflow specification or schema.
Once specified, the workflow schema is stored in the workflow repository. Using the GUI, a
workflow schema can be instantiated and the workflow execution service is used to support
the execution of the application. The tasks are mapped to user workflow tasks just before
being executed. Dynamic reconfiguration can then be achieved by using administration tasks.
Most of the service components within the toolkit are provided via Common Object Request

Broker Architecture (CORBA) interfaces defined using the CORBA Interface Definition

Introduction 10

Language. The components using those services are CORBA clients, which allow
interoperability. The underlying transactional system is the CORBA-compliant object
transaction service of Arjuna [55]. The design and implementation of the toolkit have been a
team effort. The author is responsible for the work on the co-ordination language and the
shaded components in figure 1.3, which form the main part of the thesis.

The usual way of constructing a complex application using the system is to specify the
application using the build-time tools provided or by writing it directly in the workflow
language described in this thesis. Then the specification is exported to the repository service.
Once it has been exported, it can be started and an equivalent specification is created in the
execution service. The execution of the application can then be monitored and analysed during

its execution and corrective actions can be taken to react to changes.

1.3- Thesis Overview

This work first looks at what needs to be addressed to support the specification, execution
and monitoring of reliable workflow applications constructed out of other applications in a
heterogeneous, distributed environment, before proposing a language and a toolkit to support
these requirements. A new architecture combining the advantages of different existing
solutions and aiming at providing a flexible reliable model supporting the new workflow
technology will also be presented. The language presented in this thesis is novel in that it
provides a simple yet flexible way to specify the temporal structure of complex applications
created out of other applications while being ideally suited to incorporate dynamic changes at
run-time. It also provides a novel and uniform way to provide support for fault-tolerance to
these applications.

The thesis is structured as follows. In chapter 2, we present and discuss the state of the art
of the different fields considered by our system, and define the requirements associated to
those fields that our language has to fulfil. The architecture of the overall workflow system and
its implementation are then presented in chapter 3. The system has been implemented as a set
of CORBA services and the execution environment is built using a transactional workflow
management system. In chapter 4, we specify our language and present the equivalent
graphical notation. Then in chapter 5, we show using examples how workflow applications can
be modelled using our system. Finally, in chapters 6 and 7, we describe a toolkit that supports

the specification, the execution and the monitoring of workflows as well as describe how to

Introduction 11

generate some equivalent specifications based on Petri-nets. External tools for consistency
checking can use these specifications. The thesis then finishes with some conclusions and

references.

In this thesis, we will adopt the following lexicographical conventions. Whenever a code
sample is given, we indicate the language keywords by using bold letters. These examples are
written in Courier font. Bold in conjunction with double quotes is used to denotate language
keywords, whenever they are included in “normal” text. Important words are emphasised using

italic, while names of languages and products are written as upper case words.

Related work 12

Chapter 2

Related work

In this chapter, we will present the state of the art for Workflow Management Systems.
Keeping in mind the description of the components of a workflow management system as
depicted in figure 1.2, we will start with the presentation of two architectures proposed as
models to build workflow management systems. Then, we will present in turn the build-time
and the run-time part of the workflow management systems. The build-time part will be first
presented including different approaches taken to specify workflow applications, as well as the
tools provided to help design the application specification. The main focus for the build time
part will be on the languages chosen, as the features supported by the workflow management
systems depend mainly on the expressive power of these languages. We will then turn our
attention towards the run-time environment with a special focus on what has been done in the

transactional workflow field.

2.1- Architectures
In this part, we will introduce major architectures that have been proposed for workflow
management systems. We will first describe the proposal of the Workflow Management
Coalition, and then we will carry on with a different approach based on flexible transactions

proposed by ANSA.

2.1.1 The Workflow management Coalition Architecture
Created in 1993, and consisting of more than 200 members, the Coalition has proposed a
framework for the establishment of workflow standards. This framework includes five
interfaces for interoperability and standardisation of communication. The aim is to have a

common set of interfaces that will allow multiple workflow products to coexist and inter-

Related work 13

operate within a user's environment. In [78], the reader will be able to find some further
information on the technical details. Three levels of compatibility (levels A, B and C) with the
framework presented have been defined to provide some flexibility to the workflow product
manufacturers. For instance, for the read/write interface of workflow process definition [80]
(API1 between the workflow engine and the process definition program), the specification is in
fact a set of interfaces and the number of interfaces supported gives the level of compatibility
with the overall specification. It has to be noticed that a level of compatibility C implies a level
of compatibility A, as we have a relation of inclusion between subsequent level of
compatibility. In other words, features supported for level A included in features that have
been to be supported to get compatibility level B themselves included in what is needed for
level C

All workflow systems contain a number of generic components, which interact in a variety
of ways. To achieve interoperability between workflow products a standardised set of
interfaces and data interchange formats is necessary [79]. Then these interfaces can be used as
references when building interoperability scenarios. For instance processes expected to be
shared by several users from potentially different organisations using different workflow engine
can be specified using a tool of one workflow system and exported afterwards to the others
users regardless of the workflow system that they are using. Similarly workflow client
applications should be able to receive tasks generated by other workflow systems providing
that they follow the standards. The major components and interfaces identified by this model
are listed below, and depicted on figure 2.1:

e Reference Model (core component) - Specify a framework for workflow systems,

identifying their characteristics, functions and interfaces.

e Process Definition Tools Interface (1) - Define a standard interface between the process

definition tools and the workflow engine(s).

e Workflow Client Application Interface (2) - Define standards for the workflow engine to

maintain work items which the workflow client presents to the user.

e Invoked Application Interface (3) - A standard interface to allow the workflow engine to

invoke a variety of applications. This interface has still to be specified.

e Workflow Interoperability Interface (4) - Definition of a variety of interoperability

models and the standards applicable to each

¢ Administration & Monitoring Tools Interface (5) - Definition of monitoring and control

Related work 14

functions.

Process
Definition Tools

=

Interface 1

I Workflow API and Interchange formats I

n n

t t

Administration e Workflow € Workflow
and ;. Engine(s) ;, Engine(s) |
Monitoring Tools o

g Workflow Enactment Service g Other Workflow

5 4 Enactmant Service(s)
Interface 2 Interface 3

Workflow Invoked
Client Applications Applications

Figure 2.1: Components and interfaces of the WfMC model.

We will now consider in turn the major components in the following sections.

Core component- Workflow Enactment Service

The workflow enactment service provides the run-time environment in which one or more
workflow processes are executed. This may involve more than one actual workflow engine.
The enactment service is distinct from the application and end-user tools, which are used to
process items of work. A wide range of industry standard or application specific tools can
therefore be integrated with the workflow enactment service to provide a complete workflow
management system. This integration takes two forms:

e The invoked application interface, which enables the workflow engine directly to activate

a specific application to undertake a particular activity. This would typically be server-based

and require no user action, for example to invoke an email application or passing data to a

mainframe system.

e The workflow client application interface through which the workflow engine interacts

with a separate workflow client application and responsible for organising work on behalf of

a particular user.

Related work 15

API1- Process Definition Tools

A variety of tools may be used to analyse, model, and describe a business process. The
workflow model is not concerned with the particular nature of such tools, and currently each
of them is in a form tailored for the particular workflow management software for which it was
designed. One of the interfaces proposed by the Coalition enables more flexibility in this area.
This interface is termed the process definition import/export interface and is aiming at
providing a common interchange format for the following types of information:

e Process start and termination conditions

e Identification of activities within the process, including associated applications and

workflow relevant data.

e Identification of data types and access paths

¢ Definition of transition conditions and flow rules

¢ Information for resource allocation decisions

All workflow management tools should provide their workflow definition schema, that is
given to the workflow engine which can afterwards modify, delete or add some new

definitions.

API2- Workflow Client Applications

The workflow client application is the software entity presenting the end user with his or
her work items, and that may invoke application tools, which present to the user the task and
the data relating to it. It also allows the user to take actions before passing the case back to the
workflow enactment service. The workflow client application may be supplied as part of a
workflow management system, may be a third party product (such as an email product) or
written specially for a given application. There is thus the need for flexible means of
communication between a workflow enactment service and the workflow client application,
which would provide a series of functions for connecting to the service as well as obtaining and

processing items of work.

API3- Invoked Applications (not yet fully specified)
There is a requirement for workflow systems to deal with a range of invoked applications;

for example, to invoke an email service, a fax service, document management services or

Related work 16

existing user applications. The Coalition sees value in the development of standards for the
invocation of such applications by building "tool agents” which will provide the interface to
invoke applications. In addition it is believed that it may be possible to develop a set of APIs
which will allow other developers to build "workflow enabled" applications which can be
invoked directly from the workflow engine. The specification of this API is expected to be

merge soon with the API2 specification.

API4- Workflow Interoperability

A key objective of the Coalition is to define standards that will allow workflow systems
produced by different vendors to pass work items between one another. Workflow products
are diverse in nature ranging from those used for ad-hoc routing of tasks or data to those
aimed at highly regularised production processes, each product having its own particular
strengths. In its drive for interoperability standards the Coalition is determined not to force
workflow product vendors to choose between providing a strong product focused on the needs
of its customers and giving up those strengths just to provide interoperability. Interoperability
can work at a number of levels from simple task passing through to workflow management
systems with complete interchange of process definitions, workflow relevant data and a
common look and feel. The greatest level of integration is unlikely to be available generally as
it relies on a commonality of approach by a wide range of developers deep in their products
where it is likely that innovation is rife. The following interoperability approaches have been
identified and are being investigated:

e Level 1 - Coexistence: ability for a number of workflow systems to reside on the same

hardware and software base

o Level 2 - Unique Gateways: developed to allow specific workflow systerrfs to move

work between themselves

e Level 2A - Common Gateway API: an enhancement of Unique Gateways

¢ Level 3 - Limited Common API: a subset of workflow product functionality is reduced

to an open API; for example: connect, request task, and completion of task function calls

o Level 4 - Complete Workflow API: all aspects of workflow system behaviour are

embodied via an open API

e Level 5 - Shared Definition Format: each workflow product can use the same process

definitions at run time

Related work 17

e Level 6 - Protocol Compatibility: all APIs including transmission of definitions, work
items, and recovery is standard
e Level 7 - Common Look and Feel: workflow product components appearance and

method of operation are very similar

API5- Administration & Monitoring Tools

A common interface standard, which will allow one vendor's status monitoring application
to work with one or more vendor's workflow enactment service engines. Firstly it will allow a
complete view of the status of work flowing through the organisation regardless of which
system it is in, and secondly this will allow the customer to choose the best monitoring tool for

their purposes.

Action Technologies Inc., DST Systems, IBM, ICL, Plexus, SAP AG, Staffware and
InConcert Inc. have demonstrated working prototypes based on the WIMC standards, IBM

being the only one validating all specified interfaces (November 97).

The main problem with the WfMC architecture is a client-server architecture where the
workflow server is responsible for process execution, auditing, management of the
organisational directory and distribution of activities to appropriate participants. It also
manages and hosts the work lists of the participants. Centralising all these functions in a single
logical entity results in a monolithic system architecture, that is neither flexible nor scalable.
For instance, it’s the workflow server and not the service provider that decides the task
implementation (cf. interface 4). A side effect is that binding tasks to implementation is made

rather early. A critical view of the WfMC architecture can be found in [64] and [65].

2.1.2 The ANSA framework
In [76], ANSA presents a flexible transaction framework for dependable workflows. In
order to succeed, workflow will need to operate with the ability to cope with system failures
and provide dependable services. Atomic transactions are good for encapsulating short-lived
interactions, but they don’t scale to long-lived activities. Flexible transactions are an answer to
that problem. Each of these flexible transactions are formed by a collection of ACID

transactions with a set of execution dependencies between them and a set of rules describing

Related work 18

the flow of resources. This proposal adopts the operational features of atomic transactions.
The resulting workflow is as a result a dependable flexible transaction with built-in mechanisms
for failure detection and automatic error recovery. In this model, a workflow is seen as a
collection of steps, each of which being modelled as an application specific flexible transaction.
These steps are organised to carry out a business process. A scheduler is in charge of
controlling the order of the execution of those steps, as well as the control flow between the
steps and the synchronisation. The rules used to control the execution are described using
some scripting co-ordination language.

Workflow Script

Workflow Delegation Dependency
Steps Rules Rules

Scheduler I;lcxible Transaction Run-Time
Components r amev\./ork Support Construction Tools
Environment
Workflow
Scheduler
I 1
1 I
Application Specific Flexible Transaction
Flexible Transactions | | Manager
Delegation Dependency
Manager Manager

Figure 2.2: Architectural model
The architectural model is depicted in figure 2.2 and will be now described. There are
several components: the workflow script, the scheduler, the delegation and dependency
managers and the flexible transaction framework support environment.
The workflow script itself sub-divided in three parts:
e The workflow steps each of them describing an instance of a particular application-
specific flexible transaction

. The dependency rules for the control of the order and synchronisation of the steps

Related work 19

o The delegation rules describing how the object resources are shared between steps.

Using this script the flexible transaction framework support environment interacting with
some run-time building tools and some scheduler components (libraries), generates a workflow
scheduler, which is the run-time equivalent of the script specification. This scheduler is itself a
flexible transaction interacting with a delegation and a dependency manager to control the
execution of the workflow application as a set of flexible transaction steps. The scheduler,
delegation and dependency managers are the workflow enactment service of the WfMC model.
The Workflow Script and the rest of the components of this architecture are process definition
tools in the WIMC model.

The delegation manager is the component in charge of the specification and implementation
of delegation of object resources. Its interface consists of the following six operations:

e Create (Name:DelegateSet): create a named empty set of object resources used

afterwards to transfer objects

e Delete(Name:DelegateSet): delete a set

o Insert(Name:ObjectResource, NameDelegateSet): add an object to a particular set

o Remove(Name:ObjectResource, Name:DelegateSet): remove an object from a set

o Delegate(Ti, Tj, Name:DelegateSet): transfer the ownership of the object resource set

from transaction Ti to transaction Tj

o Acquire(Tj, Ti, Name:DelegateSet): accept the transfer of ownership of the object

resource set from Ti to Tj

The dependency manager is the component of charge of the definition and implementation of
the inter-transaction dependencies. It has as interface the following operations:
o DefineDependencyType(TypeSpecification): define a new type of dependency
e CreateDependency(Ti, Tj, Name:DependencyType, [perpetual]): create a named
dependency of the specified type between the transactions Ti and Tj with an optional
perpetual trigger
¢ DeleteDependency(Ti, Tj, Name:DependencyType): delete the specified dependency
between Ti and Tj
e EnableDependency(Ti, Tj, Name:DependencyType): enable the specified dependency
between Ti and Tj
¢ DisableDependency(Ti, Tj, Name:DependencyType): disable the specified dependency
between Ti and Tj

Related work 20

Each scheduler can be used as a global scheduler acting as commit co-ordinator for its

controlled steps. In this case, the scheduler interacts with the steps on their abort, prepare and

commit intentions.

This project was the starting point of our research. The idea of using transactions to build a
workflow management system was found interesting. Having two managers one for the
delegations and one for the dependencies was not found to be necessary as dependencies can

be considered as particular types of delegations.

2.2- Build time environment

We are now going to discuss about the process definition tools and the API1 of the WIMC
model. Composing applications out of existing applications is not a new idea, script languages
have been used in order to do that for quite a long time. Varieties of languages have been
developed for specifying different aspects of software systems. Most notables, the Architecture
Description Languages (ADLs) specify the software structure, whereas scripting languages
specify the behaviour. The subject of describing the composition of reliable distributed
applications is a relatively new field of computing science research. Here the transactional
workflow community represents the state of the art. In the following sections, we review a
representative set of languages as well as the associated tools provided to help creating
specifications in these languages. We will start with general purpose scripting language then

workflow languages. Finally, we will present some ADLs as we used their modularity for our

own language.

2.2.1 Building environment based on general purpose scripting languages
Lots of scripting languages have been developed to aid the building of applications out of
existing applications. Following the success of Unix shell scripting languages (sh, csh, ksh...),
several general purpose scripting languages such as Tcl or Perl have been developed to glue
applications. They typically provide enough programmability (variables, control flow,
procedures) to let users build complex scripts that assemble existing programs into a new
application. The reader will find a discussion of scripting languages versus system

programming languages in [53].

Related work 21

2.2.1.1 Tool Common Language (TCL)
This language [52] is fully interpreted and allows dynamic modification of the script. It is

however based on strings, and provides very little structure. It’s easy to connect strings
together but it can become really hard to manage large complex scripts. Tcl is an action-
oriented language rather than an object-oriented language as there is one command for each
action that can be taken on an object and the command takes the object as an argument.

It is a glue language as a Tcl application can include many different packages, each of them
providing an interesting set of Tcl commands. It can run external shell programs using the
command exec and as a result is used as a job control language. It is also quite good as a
communication mechanism allowing different applications to work together. For instance, any
Tk application (i.e. windowing application written using the Tk package) can send a Tcl script
to any other Tk application to be executed there. It provide constructs for major control
structures: “if then else”, “switch”, “for’”” (with “break” and “continue’), ‘foreach”,
procedures, as well as “eval’”. “Eval” is a general-purpose building block to create and execute
Tel script. It adds a level of parsing. It is possible to create your own control structures by
using the command “uplevel”’. These control structures are defined as Tcl procedures.

Tcl was written with the thought that it should be easy to extend. As a result, a lot of
extension packages are available (such as GroupKit is a package that makes it easier to
develop GroupWare application to support run-time distance-separated collaborative work
between two or more people). We will briefly describe two of them that are more relevant to
our study: expect, and Tcl-DP

Expect is a Tcl program that can talk to interactive programs. It knows what output can be
expected for a program as well as what the correct answers should be. It is usually used to
control automatic programs such as telnet, ftp, fsck, and rlogin. It also allows the user to take
control and interact directly with the program whenever needed.

Tcl-DP was developed by the University of Berkeley and stands for Tcl Distributed
Programming. It’s built on top of the Tcl’s built-in socket command for its low-level
networking. Creating a Client/Server application becomes really simple with this package. A

dummy example would be:

set id 0

proc GetId {} {
global id;

ncr id;

return $id;

}

Related work 22

MakeRPCServer 4000
This code creates a server listening on port 4000. This dummy server just provides a

method “Getld” that adds one to a global variable (id) each time that it is called and returned
its value to the client. If needed, two security checks can be provided as optional arguments,
the first one to add a check on the login process (checkHost) and the second one on the
commands that can be executed cmdCheck (specified as a procedure). The command becomes
MakeRPCServer 4000 checkHost checkCmd.

The RPC client is even simpler:

set server [makeRPCclient host.ncl.ac.uk 4000]
RPC S$server GetId

The first line opens a connection to the RPC server previously created (assuming that it was
created on host.ncl.ac.uk) and save an identifier to later have a reference to that connection.
Then the RPC command on the second line just forwards the script given as argument to the
server.

Tcl also provides some exception support (catch, error), object replication as well as an
asynchronous RPC mechanism aimed at getting results from long-lived programs. Using a
Tcl/Tk plug-ins, it is also possible to run Tcl/Tk programs as applets using the construct
<embed src=script.tcl width=wsize height=hsize>.

One of the main problems of Tcl was that it was not found to be adaptive enough to model

object-oriented problems (Incr Tcl is an object-oriented extension to Tcl).

2.2.1.2 Practical Extraction and Report Language (PERL)

This language [75], [67] was optimised to scan arbitrary text files and extract information
from them. It however is generic enough to be considered as a general-purpose language. It is
semi-compiled; the script is first parsed, then it is turned into a syntax tree that is optimised in a
final step. It’s based on some pattern matching and is a good language for many system
management tasks. It has the usual control structures “if elsif else’’, “while”, “until”, “for”,
“foreach”, with the loop control “last” (break) and “next” (continue). It has also procedures
and socket support and can execute other programs using “exec”. It allows object-oriented
programming and some support for CORBA is available (id12perl working with Omniorb and

Orbix among others has been developed).

Both of these scripting languages are good at gluing simple programs together, they assume

that there already exists a collection of useful components written in other languages and plug

Related work 23

them together. Unix shell scripts are used to assemble filter programs into pipelines, Tcl is
mainly intended to arrange collections of user interface controls on the screen, Perl is good at
extracting information from textual results and reporting about them or use them to trigger
something else. Python [77] and JavaScript [44] are some other general purpose scripting
language, the first having a strong model of object-oriented programming and the latter being
specifically designed for the Internet. Most of the general-purpose scripting languages are
typeless, and as a result the detection of errors is done very late. Similarly most of those
languages do have an extension for object oriented programming, which allows encapsulation

and interface inheritance that increase even more reusability.

2.2.2 Workflow specific build time environments

In this part, we will focus on the related work in the fields of workflow management. All
research projects we are aware of do have their own specific languages. All provide a graphical
specification language and many also provide a textual specification language. Similarly to our
scripting language, all those languages are higher-level than standard programming languages
such as C, C++ and Java. They support the specification of the task structure (control flow) as
well as of the information exchange between tasks (data flow). They also usually provide some
support for exception handling as well as some support for temporal dependencies.

Several techniques from other fields of computing science have been used as basis to specify
task collaboration: for instance event-condition-action have been used to specify the rules upon
which a task should be triggered in some rule-based workflows. The METEOR project [13]
developed by the University of Georgia is a typical example of this class of languages. Some
other projects have chosen to base their work on an extension of Petri nets, which enable them
to model the control flow using tokens. Some other projects from the database community use

built-in SQL statements.

2.2.2.1 METEOR
In this project [13], they have decided to divide the definition of a workflow between the

TSL (Task Specification Language) and the WFSL (WorkFlow Specification Language) that
can be both compiled or interpreted. The TSL briefly described in section 4.6 is used to specify
the basic tasks and is both a programming language and an embedding language (e.g. it can

provide a wrapper for legacy applications). The WFSL specified the dependencies between

Related work 24

tasks and can be used to create complex tasks by composing them out of existing tasks.

The requirements taken into account while designing these languages were the following
ones:

¢ Inter-task dependencies.

¢ Data management including filters to translate different formats.

¢ Modularity of the Workflow definition, and separation of conceptual model (WFDL) and

of details of tasks, interfaces... (TSL)
e Error management (fault tolerance)
e Dynamic workflows

e Controller co-ordinating the tasks according to the constraints (dependencies...)

Workflow Specification Language
The WFSL is a rule-based language and can be either generated via a GUI or directly
coded. The designer has to define the class (task structure type + set of inputs and outputs) of
the tasks he wants to use.
The WFSL is divided in several parts:
o Type definitions and variable declarations, similar to the C syntax.
o Task type definitions
e Task class and filter definitions
¢ WF definition
e task instantiations
e rules
¢ WF instantiation

We will now describe these components one by one:

Task type definition:
This allows the description of the transition and states of a task class.

typeName {SIMPLE_TRANSACTIONAL | SIMPLE_NON_TRANSACTIONAL |
TRANSACTIONAL_OPEN2PC, COUNPOUND_NON_TRANSACTIONAL }

{

{CONTROLLABLE | NOT_CONTROLLABLE)} transitionName(initialState,

finalState) [input | output];

3]

The CONTROLLABLE or NOT specifies whether or not the transition can be enabled by

Related work 25

the workflow controller. The input, output specifies whether or not the transition can receive
inputs and produce outputs.

Example.

newType SIMPLE_TRANSACTIONAL

{
CONTROLLABLE start({initial, executing) input;
NOT CONTROLLABLE abort (executing, aborted) output;
NOT_CONTROLLABLE commit(executing, committed) output;

}
In this example a new task type called newType was declared a simple transactional task

with three transitions, one of them start letting the task go from the state initial to the state

executing, controllable and receiving an input, and the two other non controllable and

generating some outputs.

Task classes definition:
In order to define a task class, you have to associate a type of task as well as declare what

input/outputs are visible externally. The syntax is given below:

typeName className {SIMPLE_TRANSACTIONAL | SIMPLE_NON_TRANSACTIONAL |
TRANSACTIONAL_OPEN2PC, COUNPOUND_NON TRANSACTIONAL}
(input@®{stateName} type name, output@{stateName} type name};

As an example, we can define a task class of type newType that is transactional and
received as input for the initial state inputl and returns as output for the commit state the
output outputl. Both of inputl and outputl being themselves of type typel. Notice that the

output is only visible for the commit state and not for the abort state.
newType newClass SIMPLE_TRANSACTIONAL (input@{initial} typel inputl,
output@{commited} typel outputl);

Once instantiated, the tasks can be linked between each other via some rules. A rule is

divided in two parts: a control part and an optional data transfer part.

Workflow definition:
I’s just a task of type COMPOUND_NON_TRANSACTIONAL with some task

instantiations and a set of rules.

TaskClassName WorkflowClassName COMPOUND_NON_TRANSACTIONAL
(input@{initial} TYPE inputl, output@{done, failed)} TYPE outputl)
{

task instanciations;

variables declaration;

rules;

Related work 26

The instantiation is identical to the instantiation of the simple tasks:

WorkflowName WFinstanceName;
typeName SimpleTaskinstanceName;

We can instantiate a simple task called T1 of task type newType by adding in the script:

newType T1;

Then we have to specify the rules that the workflow has to follow, the syntax to specify a

rule is:

<left hand side> EVALUATOR <right hand side>
ENABLES is a predefined evaluator that enables a transition.

For instance, we can specify a rule that enables the transaction start of the task L2 with as
input for inputl of T2 the output outputl of T1 filtered using the filter fl. If we want as
preconditions to trigger this rule that the task L1 is in the state done, that the global variable
outval4 is greater than 5 and that L1 has terminated with its outputl valid. The validity of
outputl is determined using the function success that decides whether the task L1 has

succeeded with its output “outputl” valid

[L1, done] & (success(Ll.outputl) = TRUB) & (outvallL4d > 5)
ENABLES [L2, start] % f1(Ll.outputl) =-> L2.inputl;

Some useful instructions to quantify element in a set have been added to the script language.
They can be used for instance for a fork, a join where only a percentage of tasks must succeed

before it can proceed.

forall i in a..b ([(condition]
exists i in a..b [condition]

These two instructions have their usual meaning.

2.2.2.2. Webflow and the Co-ordination Language Facility (CLF)

Webflow [21] is an environment supporting distributed co-ordination services on the web
and is typically used to describe applications such as distributed document workspaces,
enterprise workflow and electronic commerce. It is using the CLF middleware environment [4]
for distributed co-ordination, which provides a basic set of library tools for building co-
ordinators and resource managers. We will now describe the CLF and then briefly describe the
tools available for build time.

CLF is a process-oriented extension of object-oriented programming, aiming at providing

Related work 27

support for the co-ordination of heterogeneous, possibly distributed, active objects within
larger units implementing work processes. It has two types of objects:
. The co-ordinators requesting performance of actions, whose course has to be
negotiated among the multiple participants, ensuring that there are no conflict between the
ways of enacting the actions chosen by the participants and declaratively implemented as
rules,
. The participants that instantiate an interface specifying the negotiation dialogue

invoked at run-time by co-ordinators.

The rules are proactive, e.g. the co-ordinator actively looks for participants that can fulfil

the rules by querying them and trying to find agreements among the participants.

A CLF program includes four sections: implementation, signature, interface and rules.

) The implementation section links the resource bank names to external object and is
implementation specific.

o The signature section distinguishes the parameters of the rule tokens between input

and output parameters, it has the following syntax:

TokenNamel(ParameterListl): InputParameterListl ->
outputParameterListl
TokenNameZ2(ParameterList2): InputParameterList2 ->

outputParameterList2
For instance:

book_seat(client, flightId, seatNb) : client, flightId -> seatNb
declares that an inquiry for the token book_seat given a value for client and flightId return a

value for seatNb
o The interface section: allows programmers to use multiple signatures for a resource

bank. The syntax to associate a resource bank to a signature is:

TokenNamel BankNamel
TokenName?2 BankName2

Each signature must have an associated resource bank. The following statement then does

declare that the token book_seat uses the resource bank travel_agent:

book_seat = travel_agent
. The rules section: specifies the behaviour of the co-ordinator and consists of a set of

rules consisting of two multi-sets of tokens (separated by @). The two sets are called left-
and right-hand side of the rules. The tokens in the left-hand side are removed when the rule

is triggered while the right-hand side tokens are inserted in the list of tokens to be fulfilled.

Related work 28

Rules appear on different lines. Two special tokens were introduced: #b meaning that there
is nothing to insert and #t meaning that the co-ordinator should terminate. Both tokens can

only be used on the right-hand side of the rule. The syntax to specify one rule is as follows:

Token; @ token; @ ... @ token ; <>- token ;.1 @ .. @token ,
For instance:

flight_reservation{client, flightId) @& book_seat{client, flightId,
seatNb) <>- printTicket(client, flightId, seatNb)

Some build time tools are provided to help with building these applications. The main
component is the co-operative process editor that allows the definition of processes as flows of
activities, assignment of roles, as well as temporal and document scoping. The resulting
specifications are called process maps and are translated into a set of CLF rules needed to co-
ordinate the distributed execution of the process. The collaboration environment used to
support the co-editing of the process map is the BSCW system [7]. This system allows to share

documents (process maps) across workspaces and supports versioning.

2.2.2.3 Workflow on Intelligent and Distributed database Environments (WIDE)

This project [12] uses a GUI language to specify workflows, however a Workflow Textual
Definition Language (WTDL) is also available and will be described thereafter.

The WTDL can be divided in several parts: The initial part is the definition of the flow (or
workflow for us) introduced by the keyword WF. This definition can itself be subdivided into
two:

e The flow definition, where you can find the type definitions and variable declarations,

databases used and kind of access granted on those databases.

e The flow structure specifying the start, total and partial joins and forks.

Then the component tasks are described. There are two different types of tasks in their
model. The super tasks (equivalent to the compound tasks) and the task (simple or replicated
simple tasks). A super task is sub-divided into three parts: the task definition where the type
definitions and declarations, functions used (code), SQL queries can be found, the task control
including the preconditions (wait), conditions (tests SQL, or functions), error handling (On...
Do) are specified and the flow structure. There are two sorts of simple tasks: the simple tasks

and the replicated simple tasks (called multi tasks) which on top of what a simple task specifies

Related work 29

also has to specify the number of replica and the quorum required to decide of the outcome.
The specification of a simple task is divided in 3 parts: task definition, task control and task
actions with can be: insert, delete, update, select-one SQL queries or functions. Below, an
example illustrating how a workflow is specified using the language is given. The workflow is
quite simple, after being started, it runs taskl and task2 and then using the function myFct
makes a query to check the result and depending on the result of that query it either runs
Accept or Reject. Taskl waits for a SQL query to succeed and then tests whether another
query is successful or not, if it was then the whole workflow is ended. Task2 is a multitask
(replicated): three instances are started, out of which two are needed as quorum. Task2 deletes
some records from the database. Task2 also sends a notification after 60 days if it has not yet

completed by then so that somebody can have a look at what is happening.

WF myWF {
stxuct myStruct {...}:
int myvar;
uses myDB(Key, fieldl, field2);
grant select, insert, delete on myDB;
int myFct ()
{
/* code including SQL code */
}
start {
taskl;
task?2;
if (myVar == myFct{)) {
Accept;
} else Reject;
}
}
task taskl
{
wait exists(select ...);
get record;
on exists (select * from myDB where condl) do endwF;
}
multitask task2
{
NumberOfInstance=3;
Quorum = 2;
int myvVar2 = myFct();
delete from myDB where {(myDB.fieldl=myVar2);
on Elapsed (60 days) do NOTIFY(“Deadline!”);
}
task Reject
{
update myDB set ... where ...;
delete from myDB ...;
}
task Accept
{
ingert. . .;
}

Related work 30

Specific ideas developed

Partial join and fork using the multitask construct and quorum

Loops available: while, do... while...

Replication via specialised task

exclIf cond instructions [exclIf...] else instructions : exclusive if (mutual exclusion)

Reactions to errors : NOTIFY (send a message to the responsible), END (end as done),

cancel (end as not done), REFUSE (the agent supposed to process the task refuses the

job), endWF (force the end of the whole workflow), SQLaction

The notations used by the GUI are described in figure 2.7 and will be now briefly presented:

(D)
(@'
WorkTask SuperTask Start/Stop MultiTask
Total Conditional ~Conditional fork Non deterministic ieractive
fork/join fork with mutual ~ fork / partial join g
exclusion

Figure 2.3: Notations for GUI in WIDE

The different tasks are represented by rectangles. For replicated tasks (multi tasks), two

ovals with as associated value j as number of replicated tasks to be started and k as quorum are

added to the rectangle representing the work task or the super task. The routing tasks are

represented by circles and diamond-shaped forms. The non-deterministic fork, iterative fork

and partial join tasks do have a value k associated to them. Tasks are connected using

unidirectional arrows.

Some tools for editing and compiling WF schema written in WFDL are expected to be

provided as well as some administration tools for agent management and monitoring (history

report).

Related work 31

2.2.2.4 The CBORD system: a script based on tasks and transactions

This model [46] is based on communication via messages. It has two kinds of tasks, some
simple transactional tasks (called transaction) and some compound tasks (called tasks)

A valid event (basic message) is one of the following instructions followed by “to”” and the
name of an agent:

o get(...)

o enter(...)

e assign(...)

e extract(...)

Transaction modelling

Transaction name
agents : list_of_agents
agentl can send :
list_of_valid_events
Constraints:
eventl UNTIL event2 OR event2
ALWAYS(eventl => NEXT (constraint))
end Transaction

Four temporal operators (UNTIL, ALWAYS, SOMETIME, NEXT) are provided to
describe the dependencies between events and messages in a communication process. A
constraint is either an eventl UNTIL event2 (e.g. you have to wait that the event2 happens
before eventl). An ALWAYS (something) which means that it’s looping. SOMETIME
conveys the obligation to honour the events in future states and NEXT is the equivalent of a

trigger in active databases.

Task modelling

Task: name_of_task
Constraints:
taskl SUCCEED task2 SUCCEED task3
transactionl BEFORE transaction2
Goal = THRESHOLD(100%, taskl)
Exit = OR(THRESHOLD(...), CANCEL(taskl))
Alternative = XOR(..., (THRESHOLD(..., ...) BEFORE ...))
Commitment = ALWAYS(task2)
end Task

A task is specified using a similar structure as transactions, i.. name, communicating

Related work 32

agents, messages exchanged between tasks and tasks constraints. Some extra information has
to be provided:

e A goal (what makes the task succeed),

e An exit (what makes the task fail or abort),

Some alternatives (what other tasks can be executed instead of the task),

¢ Authorisations (what constraints specified in the transactions can be overwritten in case
of conflict),
¢ Commitment (what the task is obliged to do regarding the workflow)
The following operators are available: AND(..., ...), OR(..., ...), XOR(..., ...), XOR(..., skip)
for non vital tasks
The following task dependencies are available:
e (T1 SUCCEED T2) when T1 is successful, T2 starts
e (T1 BEFORE T2) T1 must occurs before T2
e (T1 OVERLAP T2) both tasks can occur simultaneously
o CANCEL(TI)
e SOMETIME(T1)T1 will be executed in the future
o ALWAYS(TI1) T1 will be repeatedly executed
Numerical constraint can also be specified:
e THRESHOLD(number, T1) if the goal of Tl can be measured numerically, T1 will

need to fulfil its goal over this number.

2.2.3 Commercial Workflows

All the commercial workflow management tools have a process definition tool via GUI
available. Only half of them have a textual process definition tool. Notes (Lotus) and FloWare
(Plexis) do not have a script language, InConcert [28] (Xerox) has one, but just for
administrative functions. ActionWorkflow {37] (Action Technology) and Staffware have a
scripting language. Hundreds of products are nowadays claiming to support workflow,
ObjectFlow (DEC), SAP Business Workflow (SAP AG), WorkFlo [16] (FileNet),
WorkManager (HP), FlowMark [27] (IBM)... Usually commercial workflows provide some
support for dynamism, some weak testing or analysis tools, and have no support for fault

tolerance, FlowMark excepted.

Related work 33

2.2.4 Architecture Description languages (ADL)

Current ADLs focus on the structure of the components of a software system and their
inter-relationships [36]. ADLs were proposed as an answer to the need for formal modelling
notations, analysis and development tools that operate on architectural specifications to
support architecture-based development. ADL-based specifications model the application as a
set of components communicating through connectors. Typically, an application is composed
out of a group of other components, where a component provides services to other
components through ports. The interaction between ports can be done using various methods,
for instance buffered message passing. An ADL can be either an in-line configuration language
or an explicit configuration language that models both components and connectors separately
from configurations. Then they can be also divided between the implementation independent
languages and the implementation constraining languages (i.e. those that do and those that do
not assume a particular relationship between an architectural description and an
implementation).

Some of the well known ADL languages are Aesop [18], ArTek [72], C2 [38], Darwin
[35], Lileanna [73], MetaH [23], Olan [6], Polylith [58], Rapide [33], SADL [42], UniCon
[69] and Wright [1]. We will now present two of those languages: Darwin and Olan. A

classification and comparison framework for ADLs can be found in [39].

2.2.4.1 Darwin

In Darwin [35], a component is defined as the basic element from which systems are
constructed. Complex components are constructed by composing them from more elementary
components. The overall architecture of a software system is then specified as a hierarchical
composition of primitive components that have a behaviour specification.

Darwin sees components in term of the services provided to other components and services
required from other components. Each service is further elaborated with an interaction
mechanism that implements the service (for instance, outputs are done via ports, command
accept entry calls and trace services are implemented with events). The textual and graphical

specifications of a component interface in Darwin will typically be:

component myComponent (
provide myoOutput<type_of_service>;
require myInput<type_of_service>;

Related work 34

myComponent

C) mylnput myOutput ‘

Figure 2.4: A component in Darwin

In this example, the component called myComponent provides one service called myOutput
and requires another one called myInput. The type of a service is specified in angle brackets.
An example of type would be <port, int> for a service accepting messages of type int or
<stream char> for a service implemented by a stream as communication mechanism, with as
communicating datatype char. Had it required two services, the specification would be done by

separating them using a comma.
require myInputl<type_of_service>, myInput2<type_of_service>;

It has to be noticed that a component does not need to know the global name of the services

or where they can be found in the distributed environment, the names are local to the

component type specification.

In order to create a composite component out of existing component, the “bind” and
“ingt” constructs are provided. The “inst” construct is used to declare the instances of
components that it consists of, while the “bind” construct associate required services to
provided services of compatible types. It has to be noticed that the language imposes as
restriction that a particular requirement can only be bound to a single provision.

component myCompositeComponent {

provide myOutput;

require myInput;

inst F: myComponent;

inst G: myComponent;

bind
F.myInput -- myInput;
G.myInput - F.myOutput;
myOutput - G.myOutput;

myCompositeComponent

F G

myInput(‘ . myQOutput

Figure 2.5: Composite component in Darwin.

A component can also take some parameters, (€.g. component myComponent(int i, string

s)). A component type can also be defined as a partial evaluation of another one, (e.g.

Related work 35

myComponentHello = myComponent (, “hello”))

Portal declarations define a set of component portals that can be bound internally to be
encapsulated sub-component portals or externally to the portal of peer components. There are
five categories of portals:

. Portal declarations declaring a component portal,

. Provide declarations specifying portals that are being provided by the defining

component to other encapsulating components,

. Export declarations declare portal that are being provided by the defining component

to an external trader/name server,

J Require declarations for portals being provided by other encapsulating or external
components
. Import declarations to introduce portals provided by an external trader/name server.

A support for dynamic reconfiguration is also provided using the dym construct. These
dynamic changes have to be known a priori. Bindings made to dyn components cause a new
anonymous instance of the component type to be instanced each time the component in
invoked by a bound portal. In the example below, invoking the service myDynlInput creates a
new myDynComponent instance and passes it a single integer parameter. The bindings are
made with the type rather than the instances. Darwin only support unidirectional
communication with these components as the services provided by such components can only
be accessed by passing service references in messages to form bindings dynamically. The

Darwin program can not capture these bindings, because the dynamic instances are

anonymous.

component myCompositeComponent {

provide myOutput<port smsg>;

require myDynInput<dyn int>;

inst C: myComponent;

bind
C.myOutput -- myOutput;
myDynComponent .myOutput - C.myInput;
myDynInput - dyn myDynComponent;

Related work 36

myDynInput
()

\|/ myCompositeComponent

myComponent
myDynComponent Tn ntput myOQOutput

myOutplit myOutput

Figure 2.6: Dynamic reconfiguration in Darwin

Darwin also provides what is called a lazy instantiation in which the component providing a
service is not instantiated until a user of that service attempts to access the service. The
combination of lazy instantiation with recursion allows the description of potentially
unbounded structures and can be useful for alternative actions. Such a component is
introduced using the dyn construct

myLazyComponent : dyn myComponent;

Several control flow commands have been provided:

e forall k = 0 to n-1 where k is a loop variable and n the number of iterations,

® when condition instruction. This adds a guard in front of an instruction that is only

executed when the condition is true.

Arrays can also be used, the instruction below introduce (but does not instance) an array of

n filters.

array F[(n]:filter;
Afterwards component types can be instanced by the instruction:

inst F[k];
The user may also want to run each instance on a different machine for replication purposes

for instance. Adding a tag @k+1 to the previous instruction does this. Tags are introduced by
the construct @ and are a mechanism to attach non-structural information (e.g. constraints,
resources specifications...) to a Darwin specification.

External definitions are introduced using the construct spec external_language_id
{code} to allow externally written definitions (for instance IDL, LTS definitions). Generic
types can also be used as some kind of templates and are introduced between angle brackets
e.g. <T>. The asset construct allows integrity checks during elaboration, in case of failure, an

error is produced and the elaboration is aborted.

Related work 37

2.2.4.2 Olan

Olan [6] is a language and a run time support intended to facilitate the design, configuration
and evolution of distributed applications made of distributed applications made up of
heterogeneous software components. It claims to provide a single unified description of those
applications, adequate for construction, management and evolution. The overall description is
implementation independent so that the configuration process does not depend on the
programming process.

Like in Darwin, applications are viewed as a hierarchy of components linked by some
connectors. Each level of the hierarchy is a separate description derived from a component
class encapsulating components in the next level. The leaves are primitive components deriving
from a primitive component class encapsulating real pieces of software such as a C++ object or
a C module. Components are described by their interfaces, which contains services,
notifications and attributes. The services can be either provided or required and correspond to
the Darwin services. Notifications are events that are broadcast and can trigger on the
receiving components a piece of code sequence called reaction. Notifications can be ignored
and reactions are not necessarily triggered on reception of a notification. Attributes are typed
variables whose values can be imported from the implementation or set outside the component.
Connectors are the units mediating the interactions between components. They establish the
rules driving the component interactions such as the conformity rules (parameter type
checking, homogeneity of connections...), the protocol used as well as the behaviour
specification, and the constraints (Quality of service...). A connector description defines its
kind (interconnection, mapping to an implementation), the allowed sources and destinations of
communication, as well as the specification of the expected behaviour, constraints and
protocol. Currently these connectors are built-in in the OLAN language.

We now describe how a component is specified:

component class myComponent {

interface
require myOperation(in operation);
provide myService(in operation);

implementation
C = inst myComponent;

D = inst myOtherComponent;

// Mapping using connector
myService => to C.myService;
C.myOperation => myOperation;

// Interaction
C.Init => D.Init;

Related work 38

C.myOperation => D.myService;
D.myOperation => C.myService;

myComponent

Init Init

myOperation C)_ myOperation myOpcration

myService ‘- myService myService

myOperation

myService

Figure 2.7: A component in OLAN

The lazy instantiation of Darwin has an equivalent introduced by the construct dyn inst. A

construct named collection was also introduced to gather multiple components of the same

class

myComponentSet = collection[l..n] of myComponent;
Two services, called create and delete, have been provided to use collections as way to

dynamically create instances of a component. In addition a special connector can operate as a
creator of a new component of a collection before accessing the specified service. This is

llustrated below.

C.Init
=> myCollectionSet.Init
using createInCollection;

Attributes are used to distinguish the elements of a collection which otherwise would be
anonymous as are the arrays in Darwin. In order to specify a connection with a specific

element, the following connector is used:

C.myRemoteOperation(operation, remoteApplId)
=> myComponentCollection.myService (operation)
where myCollectionSet.ApplId = remoteApplId
using methodCal;

In this case C sends its operation to the element whose applld attributes fits the identity of

the target application remote Applld.

2.2.5 Discussion
This section was about how you can model a process as a workflow. Different approaches
have been tested, including Petri nets, SQL, transactions... Workflow systems provide a set of
specification tools (GUI and script languages) allowing the specification of processes at a high
level. The GUI usually represent the processes as a directed graph with the nodes representing
the processes and the arrows representing both the data flow and dependencies between them.

The script languages can be quite different and there is no standardisation despite some efforts.

Related work 39

Usually at least two types of tasks are provided: compound tasks (workflow) and basic tasks
(steps, units of work). Sometimes some new types of tasks are added, such as replicated tasks,
alternative tasks... These tasks have dependencies between them, such as data flow
dependencies (object delegations) or temporal dependencies (notifications). Several
approaches have been chosen to specify them. The main difference being them are whether you
let the user create some complex dependencies including basic or complex computations (Task
i terminated in state commit and value of its output is worth four) or whether you restrict the
dependencies to a boolean tree of tasks reaching certain outcomes (task j reached state success
or task k reached state failed).

In the comparison matrix below, we sum up how the different build time environments
presented deal with fault tolerance, dynamism, locality of modification, composition,

specification of the temporal structure of the applications as well as which tools are provided

to help building your application.

Language [Model Fault tolerance Dynamism Locality of Composition |Temporal. Tools
Exceptions modifications

Tcl Generic Using error and catch [Interpreted so can be [Script None None Interpreter
programming fconstructs modified at run time
facilities

Perl Generic None None Script (None None Pre-compiler 7interpreter
programming
facilities

Darwin Components None 1T known a pniort, via- [Componenls Composife [None Text/Graphicalédifor,
communicating dyn construct, arrays construct compiler, simulator,
via connectors parser, code generator

Olan Components None It known a prion, via [Components Composile one Visual programming
communicating dyn inst construct, construct environment, compiler,
via connectors collections admin tool

Meteor Simple and Using error states, ITknown a priorl, via |[Compound tasks [Compound |ECA Rules Text/graphical editor,
compound tasks |associated rules Foreach/exists task interpreter, compiler,
linked by rules |specifying action constaIcts, arrays si

CLF Proactive co- [None Addition/removal of [Script None Prolog-like Process graphical editor,
ordinators with coordinators rules versioning, translator
participants process 1o rules

WIDE Work task . Replication using None Super tasks Super tasks |Join/fork, Text/graphical editor
super tasks ; quorum (multi tasks), serialisation
SQL-based on exception do. ..

CBORD |Transactions and |Alternative actions None Transaction Task Transaction | Text editor
tasks, message- constructs |and task
based dependencies

Newcastle [Basic,compound |Alternative inputs and |Addition/removal of |Tasks Compound |Notification |TextUgraphical editor,
tasks linked by |outputs tasks/dependencies tasks and datatlow [simulator, consistency
dependencies dependencies |check

Figure 2.8: Comparison of the built time features associated to the languages considered
The models adopted by the different projects are quite different and impact on the features
supported by the languages. Generic scripting languages are not really adapted to support
dynamism in the specification, as they have to be stopped if changes are requested. There is no
special provision for run-time dynamism to specify the changes in the relationship between

activities. Interpreted scripts such as Tcl can however be changed at run-time, Perl scripts

Related work 40

being semi-compiled can’t... No special composition mechanisms are provided, nor workflow
specific tools.

Script languages using ECA rules usually list the rules at the compound task level and as a
result are not that modular. CLF does not address fault tolerance and has a flat structure in the
definition that imposes modifications at script level. WIDE and CBORD do not address
dynamic modification and but have some support of fault tolerance. ADLs are not adapted to
the specification of the temporal structure. The issue of fault-tolerance was not really
addressed in the two languages chosen. ADLs are interesting because of their modularity that
allows locality of modifications. They also provide some support for dynamic reconfiguration
when modifications are known a priori, and have some interesting tools available. Our
language on the other hand tries to use the best parts of the previous languages. It takes an
object-oriented approach by following the ADL approach of modelling the tasks as
components that can be gather in compound tasks. The dependencies are kept at the most
relevant level therefore providing locality of modification. The fault tolerance is provided by
alternative input and output sets. This provides a natural way to provide user-level fault
tolerance. Our model however lacks some of the ADL features that allow the specification of
the software structure of the workflow. It may also gain from the addition of more control
structures to ease the specification. The task implementation is also described in a distinct
specification in the ADLs, Meteor, CBORD and in our language.

The duality of Fault-Tolerant structures between a model incorporating objects and actions
as the entities for program construction and another model based on communicating processes
and conversations has been established in [71]. Our System Structure is following the first
model as the area targeted (e.commerce, office automation) are typically following the first

model..

2.3- Run time environment for workflows management systems
A workflow system is aimed at co-ordinating tasks. Workflow Management Systems do
provide an execution environment where the instances of the workflow are run, the steps are
controlled in that environment and activities are mapped to real resources. The components in
charge of the co-ordination, usually called the schedulers, are usually based on Event
Condition Actions interpreters or on finite-state automata. Then some monitoring tools are

also available to trace what happened and what is happening. When the systems are dealing

Related work 41

with human participants (i.e. some tasks are performed by humans), they also provide some
work lists (inboxes for human participants to let them know which activities were assigned to
them).

We will now describe some run time environments for workflow management systems and
see how they provide reliability. First we will describe some transactional workflow systems
starting with what could be regarded as the ancestors of the transactional workflow systems,
the Saga and ConTract models. We will then present the ORBWork project from the
University of Georgia, notable for the tools for the analysis and design of flexible transactions.

We will then describe the IBM solutions Exotica/FMQM and RainMan.

2.3.1 Sagas

Work on Saga [17] represents an early attempt to develop a model of long running transaction.
A Saga consists of a set of ACID sub-transactions with a predefined order of execution. Each of
those sub-transactions T; does have its compensating sub-transaction T; '. A Saga completes
successfully if all its components have committed. Otherwise committed sub-transactions are
undone by executing their compensating sub-transactions. It also allows backward/forward
recovery when system or application save points are available. In this case, the transactions
started after the save point are aborted or compensated and the execution is restarted from the
saved point. Pure forward recovery can also be supported if save points are automatically taken at
the beginning of each transaction. This allows the execution of long-lived transactions. Sagas
relax the isolation property of the traditional ACID transactions as well as increase inter-tasks
concurrency. Some extensions have been made such as the nested sagas allowing the nesting of
sagas.

The main problem of Saga is that it can only model applications composed as a serie of
sequential tasks that also need to be transactional. As a result it could only be used to represent a

small subset of workflow applications.

2.3.2 ConTract
The ConTract project [74] is aiming at providing a way of grouping transactions together
into a multi-transactional activity. It sits on top of a Database Management System, which acts
as a resource manager. A ConTract consists in a sets of steps (predefined actions with ACID

properties) and a script describing how to execute these activities. Control flow between steps

Related work 42

can be modelled by using the usual elements: sequence, branch (IF THEN ELSE), loop and
some parallel (PAR_FOREACH) constructors. Steps can be grouped as an ACID transaction
using the construct TRANSACTIONS ... END_TRANSACTIONS. Dependencies can be
specified based on the outcome of a step for instance if T1 aborts then T2 should begin will be
described by the construct DEPENDENCY(T! abort -> begin T2). Some synchronisation
invariants (before starting and after completion the step) and conflict resolution rules can also
be specified. Fault tolerance is provided by forward recovery using compensating actions using
as arguments those used for the execution of the step they are supposed to compensate
(semantical undo). The compensating actions are declared with the construct
COMPENSATIONS C1: compensating_action(...)... END_COMPENSATIONS. Each step
has to have its compensating action specified. In case of failure, the state of the ConTract is
restored and the execution can continue. Contract provide both relaxed isolation and atomicity
(so that a ConTract can be interrupted and re-instantiated). At run-time nested transactions are
used to structure the system’s work during the execution of the ConTract. The execution of a
step is divided into several sub-transactions that can include for instance the execution of the
code, the evaluation of the pre and post execution invariants... APRICOTS [68] is a prototype
implementation of the Contract project.

Contract is for its time a good example of how to model workflows. It however has no
support for dynamism and is quite restricted by only allowing two outputs depending on the
validity of the post execution invariants: success output or failure output that triggers the

execution of the associated compensating actions.

2.3.3 ORBWork
ORBWork [13] is a CORBA-based enactment system for the METEOR2 Workflow

Management System developed at the University of Georgia, and now a commercial product
of Infocosm. It is fully distributed and supports scalability, multi-database access as well as
some fault tolerance in the form of an error detection and recovery framework using
transactional concepts.

METEOR?2 consists of a designer and two workflow enactment systems, ORBWork
(CORBA-based) and WEBWork (Web-based). The designer is a GUI used to specify the
workflow, the data objects manipulated, as well as the component tasks. It assumes nothing

about the run-time. The specified design is stored in Workflow Intermediate Language for

Related work 43

subsequent code generation. The specification is kept in the workflow model repository. The
designer has two different modes: the process modeller and the workflow builder, the latter
allowing the user to refined the specification created by the first one by knowing the design of
the run-time system. There are three components: the map designer, the data designer and the
task designer which respectively allow to express the dependencies between tasks, data object
manipulated and their flow, and finally the details of the individual tasks.

At run-time a code generator associated to the enactment system is used to create the
workflow application, including the task managers, their scheduling components, and some
recovery mechanism. The run-time system consists of the various task managers and associated
tasks, the user interfaces, the distributed recovery mechanism and scheduler as well as the
monitoring components. The task managers are responsible for the controller and the
scheduler, while the tasks are just the executable. Different task models have been provided for
the tasks (transactional, non-transactional, two-phase commit...), each of them having an
associated type of task controller supporting different features (recovery...) and specified via
an IDL. The task managers are automatically generated by the code generator from the MIL
specification and are aware of their successors. It is itself started by its predecessors via the
Activate method. When the pre-conditions (specified as an AND-OR tree) associated to the
task it’s controlling are fulfilled and all the input data are available, this task is started. Once
completed, a post activation part is used to decide what to do and which (if any) successors to
activate. The task managers are responsible for the consistency of the data that they are using.
They saved the state of the data objects used by calling the save method or using the persistent
object services of CORBA. The system gets a pre and post image of the data object, which
allow audit.

The recovery system is based on a hierarchical error model and includes mechanisms for
persistence, monitoring and recovery. The errors have been categorised in three main types:
task errors, task manager errors and workflow errors. For the task errors, ORBWork allows
the users to define errors and specify their handlers. If no handler is provided, the error results
in erroneous conditions in the task manager. At the task manager level, the unhandled errors as
well as the errors resulting from abnormal behaviour of the execution of the task manager
(preparation of the inputs failing...) are considered. If the error can not be treated (by retrying
to run the task for instance or running an alternative task), it becomes a workflow error.

Another type of workflow error is the failure of enforcing the inter-task dependencies. It can

Related work 44

be due to communication failure. The system tries to deal with the error by for instance
moving/replicating a faulty task manager on another node. If it can not be solved the error is
reported to a human via a workflow monitor. Local Recovery managers, polling the critical
CORBA components on their node are used to detect potential errors, while a Global
Recovery Manager is used to check the Local Recovery Manager. The components to be
monitored register (respectively deregister) when they need to be monitor (respectively when
they stop needed this service). On detection of a failed component, this component is restarted

using the factory associated to the recovery manager.

2.3.4 Exotica or FlowMark on Message Queue Manager

FlowMark [27] is using a layered client/server architecture, compliant with the WIMC
standards. The built and run-time clients are linked to a FlowMark server itself client of a
centralised database (ObjectStore) where both build and run-time information are kept. At
built-time the built-time client interacts directly with the database and the FlowMark server
remains passive. The run time architecture is depicted on figure 2.9. OSS and DB acting as the
storage server represent the ObjectStore database on the figure. The navigation server (the
FMS component) is a client of this database since most steps involve getting information in and
out of the database. FlowMark Servers can also be connected among themselves. The rest of
the components are connected to these servers. Usually the application and user interface

(RTC) are kept on the same host to keep accesses as local as possible

OSS - ObjectStore Server PEC 4—APP
FMS - FlowMark Server * PEC @—APP
RTC - Runtime Client

PEC - Program Execution Client RTC-¥ [:] [:]

APP - Application Program RTC-¥

0SS 47 FMS
—p

FMS

DB

PEC 4—APP
\ J

R]

Figure 2.9: Run time architecture of FlowMark

Related work 45

FlowMark allows forward recovery and plans have been made to also support backward
recovery using Spheres of Joint Compensations [32] in the future.

Exotica [40] is a distributed workflow system based on FlowMark. There is no dynamic
modification, as changes to a schema (specification) do not affect the instances already started.
Each activity has a start condition (a boolean expression) used to know when the activity can
start and an exit condition determines when the activity was successfully completed. Control
connectors and data connectors connect activities. The start condition is evaluated when all
control connectors have their origin activity terminated and can be as a result evaluated to true
or false. The data connectors link input and output data containers (one of each per activity).
Clients are not persistent and there is no provision for crash recovery at the client level. IBM
also defined an API standard for message passing called Message Queue Interface (MQI) [26].
MQSeries [41] is an IBM set of products supporting MQI.

Distribution in Exotica is carried out using message-oriented middleware based on
MQSeries. The messages exchanged are persistent, which eliminates the need for the
centralised database. This allows a set of autonomous nodes to co-operate to carry out the
execution of a process. Exotica supports the mapping of Sagas and flexible transactions into
FlowMark process schema with the restriction that it can not make changes to resource
manager. In practice that excludes interesting models such as nested transactions or split
transactions [57].

In FlowMark, the specification is done via a GUI by creating a process diagram showing the
activities and their sequence, or it can also be done using the FlowMark Definition Language
(FDL) [25]. The FDL is quite complex and could be more modular as all the dependencies
within a compound task are listed as part of the compound task and not delegated to the task
concerned. Figure 2.10 depicts such a process diagram. The dotted arrows represent control
connectors (flow of control between two activities) while the plain ones represent data
connectors (flow of data between two activities). The green circular wheels represent some
program activities, while the one in the square represents a block, which is a set of activities

that can be repeated until an exit condition is met.

Related work 46

‘{'3 ,‘ ‘,\{:} S{"“’e 3 :{“‘}
'y 28 Bonpts i
B g b atan **‘rw S :) :»:«,p:.: % Bt ,:»:r'w £ % m:: -
‘_r it sl PRI ¥ 2 % 5 =
g i
fisonghiny v) R S R
O
A
Bt
Figure 2.10: Process diagram in FlowMark
47] Organizations - Tree EhelTh
Organizations Seleded Edit View
__wmunws Help
i
ﬁ ﬁ FlowMark f
RPN osonition Gatescannah - senings = SR
et ‘ﬁtﬁ - Manager i
‘ User I fsm1 Find... | G‘*’""'f’!
] People
C Lfst Diwoa . Sans Organizations
Members i g
- SM1 Gans)
cc? Melcher i
- CC3 Jones ;
&8 cca Chet
cch Maier i
;vé
3

Apply | | Reset | Cancel | ' Help |

Figure 2.11: Specification of an organisation
An editor to model your organisation is also provided (figure 2.11). It also allows the
definition of staff (figure 2.12) and the assignment of roles to them. In FlowMark, a role is a
function or ability that a person or a group of persons have. In figure 2.11, information on an
organisation is being edited. The option shown is the list of persons, member of this
organisation (sale control). Organisations are hierarchically organised as a tree. A similar editor
allows the administrator to assign persons to a role such as sales person, secretary, etc. There

is a many-to-many relationship between roles and persons.

Related work

47

£3] People - lcons C
People Selected Edit View Windows Help

User ID o |
@ Password | General
CC3{Jon Verify |) R;oles
Person ID [#a99912% Organization
@ First name [Peter : 'Autvndrizatior’l 1
- Middle name | - Autharization 2
FMOIST - ¥ v
Last name Efichnelder §ubstl|ute
@ {6541 . Description
2nd Phone [07731- 776 6542 i

383(0&1‘& 4

v
’ Absent

MEZ(Baus
objects

OK | Apply | Reset | Cancel | Heip

Figure 2.12: Specification of a person

& Flwdlack - Bob's Weak Lid - Wk finms [=io]«]
_/-J:J (&RMM‘ ;.taHaul &wi th' !w.w,f nmml $tsramvwl wmal

mekeres ot oo

: Dezciiption < Status 3 Nawas

I.J Hacirag Fokew for ety Chasnholdain Faacky Chock and ¢ sierta U hicdiy
P2t Ruckscha tor Denise Gross Raady Chack and Carpits Osider
3 BaypWheol for Fmrer Millee Faoady Fuepsme Corfimatian

Figure 2.13: Worklists in FlowMark

In figure 2.12, the substitute option allows the administrator to specify another person who

can substitute the person whose record is edited.

It can distribute tasks by people, roles, levels or organisations. The association of roles,

levels and organisation to people is resolved dynamically. Imagine that a task has to be done by

a certain type of person, the task does appear in their worklists as depicted in figure 2.13 and

as soon as one person from that group accept it, it disappears from the others worklists.

Related work 48

Worklists can be consulted from Lotus Note. FlowMark is also responsible to invoke the right
application to be used to carry out a task.

Using the GUI, the administrator of the workflow can simulate its application, as well as use
the audit trail to debug its specification. When simulating the application, he has to take action
on behalf of the program or persons responsible. The specification has to be debugged
manually. He can also monitor the progress of its application. He can also check the status of
the tasks, including who (if any) is dealing with it. In the example depicted in figure 2.14, the
activity “prepare and deliver is active” and somebody has just accepted to take care of it. This
is shown on the picture by having one of the group members with a different colour from the

rest of the group.

Check Teck, Fi Propose Send Reply
Slternative

Figure 2.14: Monitoring of a FlowMark workflow

2.3.5 RainMan

This IBM project [63] aims at supporting decentralised workflow execution, as well as
interoperability and dynamic modification. RainMan is a distributed workflow system for the
internet implemented in Java. It is based on the RainMaker generic framework that defines a
core of abstract interfaces for workflow components. RainMaker has four main abstractions:
the workflow instances (sources, service requestors), activities (service requested), the
performers (human, applications... in charge of executing the activities), and finally tasks that
are the units of work managed by the performers and implements the activities. Tasks are sent
to performers independently of their implementation for interoperability reasons.

The RainMan system itself is a collection of lightweight services implemented using Java

RMI (Remote Method Invocation). The services implemented are a builder tool, a directory

Related work 49

service, a repository service, a work list service, a work list client and an administrator tool.
The builder tool allows users to specify a workflow as a directed, acychic graph, and then to
monitor it. Performers are assigned to the activities specified by querying the RainMan
directory service. These specifications are stored and retrieved from a repository service of the
system. The builder is also a graph interpreter that generates the sources. As a result, the
specification (the graph) can be modified at run-time allowing dynamic reconfiguration. A
specification language based on directed acyclic graphs is also provided. The work list client is
provided for an easy access of a human work list (implemented as a persistent FIFO queue),
the client can connect to the (distributed) work list service to view a work list and select some
task to do locally and disconnected. The client just has to reconnect to let the work list to
return the activity results. The directory service is both a naming service and a trading service
and contains information on the different performers.

The application level fault tolerance is addressed with forward recovery using compensation
activities. Performers are expected to provide support for compensation for the activities that

they handle.

2.3.6 TOWE, Transaction-Oriented Workflow Environment

This project [54] provides facilities for the construction and coding of long-lived
concurrent, nested, multi-threaded activities. The idea behind this work is to provide a
software development environment for workflow management system. The environment is
based on flexible transaction models (usually data-centred) extended to support process-
centred activities, by unifying the notions of class and process. The programming of these
applications is based on library modules representing abstractions of system aspects and
functionality of long-lived activities in a concurrent object-oriented environment. These
libraries are built from a small set of fundamental concepts that are extensions and refinements
of open nested transaction constructs. A prototype of TOWE has been developed on top of
two database management systems: Oracle and the object-oriented prototype OBST. The

overall architecture of TOWE is depicted in figure 2.15.

Related work 50

Application Application

! !

Transaction Oricnted Worktlow Environment (TOWE)

Sather Class Library

Parallel Virtual Machine (PVM) interface

Oracle OBST Oracle Oracle

0 0 08 C

Figure 2.15: The TOWE system architecture

A workflow in TOWE is a long-lived activity co-ordinating the execution of multiple
process-oriented tasks with transactional properties, which are related by data and control flow
dependencies. A long-lived activity in TOWE is divided into some work units nested to
multiple levels, and executing sequentially or concurrently. Leaf level work units of the activity
tree are called actions while intermediate nodes are referred as intermediate activities or
compound actions. The actions are atomic unit of work mapped to flat ACID transactions.
They can be vital or non-vital, a vital action aborting forcing its parent to abort. A scheduler
process manages the flows of control and data between work units. Four types of scheduler
processes are provided: serial (begin on commit dependencies), parallel, serial-alternative and
parallel alternative scheduler. The latest two types are processes attempting actions
sequentially or in parallel until one of the alternative succeeds. The actions of a serial scheduler
may have data object (the target action is awaiting for an entire data object) dependencies
while the actions of a parallel scheduler can have value (the target action is awaiting for a value
to be sent from the source action) or commit (the target actions can only commit once the
source action has committed) dependencies. Schedulers can also have conditional actions as
well as replicated ones.

The programming language is the object-oriented language Sather [S1] interfaced with
PVM (Parallel Virtual Machine) [19]. PVM brings some support for distributed programming
and message passing. TOWE provides a library of classes that can be extended and specialised

and provides some support for the specification of temporal, value and data object

Related work 51

dependencies among activities, exception handling mechanisms, commit dependencies among
actions, compensating actions, contingency actions, as well as ordinary and express message
(not queued). This is shown in figure 2.16. The system distinguishes five groups of classes:
distributed system and communication support, transaction primitive, atomic transaction,
scheduling and application program classes. The relationships between these classes are

described on the figure below.

Message Passing
Distributed

System &
Communication
Support Sather_PVM
I”";‘ ~~~~~~~~~
___----..-__----____-__...__.._____..__’_’aﬁ____v________.._:‘_‘__.,,.’ ____________
o el Cancel Unsafe_Commit
Primitives L
_______________________ R At e
Atomic A \ /
Transactions Action Compensable Action
R SNt
\ \\~\ ‘——’ ------------------------
. Ay “
Scheduling \\ Scheduler
\\
\
_______________________ IO
4
Application Layer Application Program

....... P inheritance
containment

Figure 2.16: Library classes of the TOWE

After instantiation, the process object (instance inheriting from a scheduling class) executes
its work routine (piece of code between the keywords “work is” and the keyword “end”)
which describes the sequence of actions it runs during its lifetime. The work statement
describes the behavioural part of a process object, which provides the means to create other
processes, actions and objects at remote sites; and to request asynchronous execution of their
features and to communicate with them. Calling an action would typically be done using the

following code:

action.name(“name of action”).arg(List of arguments)

Proxies are used at run-time to perform remote calls. Mutually exclusive access to shared

data object is provided. Due to the usage of shared objects, intermediate results do become

Related work 52

visible leading to the introduction of the unsafe commit notion. Unsafe commitment of an
action requires logging enough information to undo it before actually committing and releasing
the locks held. Several versions of the data items are kept in a stack in case of cancellation of
an action involved in modifying the item.

Scripts are used to specify the workflow application. A Web GUI is being developed using

CGI scripts and forms.

2.4- Discussion

Workflow Management Systems have been implemented using a lot of different
infrastructures such as Lotus Notes [61], TP-monitors [83], the web [10], CORBA [70], DCE
[66], Customised Transaction Management [20], however a certain number of features are

common to these systems.

System Model Fault tolerance Dynamism Interoperability
Sagas Serialised transactions|Save points & None Homogeneous
with associated compensations
compensating actions
ConTract [Group of transactions JCompensations, None Homogeneous

Steps seen as
transactions

ORBWork |CORBA workflow Recovery managers Some CORBA
system using persistent storage Web
& application level
Exotica Message based Persistent messages, {None Proprietary
workflow atomicity of changes
management not guaranteed
RainMan |Sources co-ordinating {Persistent worklists, Dynamic updates of |Written in Java,
performers executing |long-run conversations jworkflow graph heterogeneous
the process being considered. environment
TOWE Transactional Basic units of work are [None Homogeneous

Workflow system ACID. Open-nested
transactions.

Newcastle |Transactional Both system and Full dynamic updates [CORBA.
CORBA workflow application level of specification heterogeneous
system (alternative), persistent environment

storage

Figure 2.17: Comparison of the features supported by the different systems considered

The usual weakness of workflow systems are the limited support for heterogeneous and
distributed environments, the lack of interoperability, and of support for reliability, as well as
the lack of dynamic reconfiguration. Our system intends to propose a solution to these
problems. It can deal transactional and non-transactional tasks contrary to TOWE that has
ACID basic tasks. It also uses persistent storage. It provides support for changes at run-time,

which a lot of systems don’t provide. Our alternative inputs and outputs also bring some more

Related work 53

flexibility for exception handling, by allowing an homogeneous specification of the handlers for

faults.

Architecture 54

Chapter 3

Architecture

In this chapter, we will present the architecture of our workflow system [59], [60]. First the
requirements for our workflow system will be listed as well as the approaches adopted to deal
with them. Then the overall software architecture will be described before ending up by

describing the components of the architecture as well as the execution environment [82].

3.1- Requirements
The workflow management system that is described in this thesis addresses the requirements
that were listed in the introduction. The main requirements are modularity, scalability,
interoperability, dependability and dynamic reconfiguration. In the following sections, we will

describe the requirements as well as the approaches adopted to fulfil them.

3.1.1 Modularity

The specification of a workflow application should be modular. Indeed, it should be
possible to decrease the complexity of the workflow application being described by using
several modules dealing with simpler part of the application. The system deals with modularity
by providing the notion of compound task. A compound task consists of a set of workflow
tasks gathered together. The reasons to gather tasks together can be multiple: you may want to
show a set of tasks as a single task thereby hiding the details of these tasks (for instance in a
student registration workflow, the task adding a new student to the system is likely to include a
task creating of a login account. The task creation of a login account can be itself sub-divided
into creation of the new user system identity, adding the new user to a group of users, sending

the user a welcoming message...). Another reason is that you may just want to make a task

Architecture 55

fault tolerant (for instance grouping a task and its alternative(s) in a single task to hide the
details of fault tolerance handling). A compound task can be composed out of other compound
tasks hence allowing arbitrary nesting. This provides a way to add some levels of abstraction in
the specification of your application. The tasks included in the same compound task will be

referred thereafter as peer tasks, and the compound task embedding them as their parent task.

3.1.2 Scalability

As business processes becomes more and more automated, it is likely that workflow
applications will increase both in size, complexity, and will span across administration
boundaries. As a result the workflow management system has to be able to cope with an
increasingly large degree of distribution, as the resources required by a workflow could be
located at arbitrary places.

In order to cope with scalability, the Workflow System has first to avoid reliance on any
centralised service as it is likely to add performance bottlenecks to the workflow application
and add a central point of failure. Our system addresses scalability issues by only sending the
minimal number of messages needed to support the application proper execution. It does that
by only sending some messages of notification of events to the task controllers that have
registered their interest in the event. We have opted for a model where each unit of work
(task) has attached to it a manager (referred to as task controller in the rest of the thesis) that is
taking care of the co-ordination of the task. In particular we have avoided to use a global
(centralised) co-ordinator that decides how to schedule the steps of the workflow given the
history of event. Each controller is responsible for starting its associated task once a set of
preconditions (input dependencies) is satisfied and for delivering the outputs of the task to
other tasks as specified in the workflow specification.

Furthermore to cope with potential problems of performance and to allow more flexibility, it
would be a nice feature to be able to control the location of the task controllers of an
application on request to optimise the communications between task controllers by a trade off
task controller located on same node as associated task versus grouping of task controllers that
are highly dependant of each other. In figure 3.1, we present different policies used to place the
task controller. Tasks are represented by a grey rectangle, and are linked to their controllers
represented by black circles. These tasks are distributed across three nodes. A centralised co-

ordination approach would be to gather all of the controllers on a single node while a

Architecture 56

distributed approach would be to have them on the node where their associated tasks are
running. Ideally we would like to have a workflow management system allowing the users to
be able to choose their location policy depending on what they are aiming at. It is likely that a
real application will not be fully distributed nor fully centralised but just partly distributed. Our
system aims at providing different levels of distribution of the control of the tasks to be able to

cope with the different policies that users may want.

Distributed co-ordination Centralised co-ordination

Figure 3.1: Distributed and centralised co-ordinations

3.1.3 Interoperability
The workflow management system has been structured as a set of CORBA services running
on top of a CORBA compliant ORB. CORBA described in section 3.2.1 brings the support for

interoperability needed.

3.1.4 Dependability

The fault model that our system assumes is the possibility of crash failures of nodes, as well
as network partitions. Failing nodes can eventually recover, and network partitions eventually
heal.

The system provides both system and application level support for dependability. The
system level support has been achieved by using persistent storage for recording inter-task
dependencies and transactions for the delivery of task outputs to their destinations. As a result
the destination tasks receive references to their input objects despite presence of failure such as
temporary network partitions or temporary node crashes. Finite number of retries of affected

transactions achieves this. This is the system level fault tolerance measure used to ensure

Architecture 57

forward progress of applications.

Support for application level fault tolerance is provided by the task model that provides
alternative input sets and output sets as well as multiple sources for inputs of all tasks and
outputs of compound tasks (see section 3.3). These facilities provide powerful underlying
application level exception handling capabilities to cope with the errors not handled by the
underlying system such as for instance a task that despite a finite number of retries does not
start. A task can terminate in a “normal state” or in one of “exceptional state”. Exception
handling could include starting an alternative task, compensating tasks..., as part of the
workflow specification. In order to deal with failure of up-stream tasks, alternative input
sources can also be specified. This allows for instance to start a task in a degenerate state using

these alternative input sources.

To sum up, the system provides a task model that is useful in the fight against faults ;
however it is the responsibility of the application programmer to use this model to incorporate
application-level fault tolerance. Alternative input sets are seen as a way to let the programmer
carry on despite failure of up stream tasks. Output sets as a way to deal with unhandled
exceptions, by only allowing one output as a “normal” state, while the other correspond to
“exceptional” states. By adding extra compensating tasks to try to cope with these exceptions,
the programmer can add ‘forward recovery’ in the application. Chapters 4 and 5 describe these

aspects in detail.

3.1.5 Dynamic reconfiguration

In an environment where application requirements are likely to change during run-time, a
workflow management system needs some capability for reconfiguring the structure of the
application. Mechanisms are needed to allow forward progress of the workflow despite
changes to the environment calling for a modification of the specification. For instance,
imagine that a service of document translation that was used by the workflow application
disappears while the workflow is executing, and that it is possible to create an equivalent
service by using two translation services in sequence. Then you would like to be able to replace
the task that no longer exists by say a compound task composed out of these two services in
sequence. Of course, all these modifications should be done without having to abort the
workflow application. As a result, there is a need of being able to modify the composition of

the workflow application at run-time. In our system, addition and removal of tasks composing

Architecture S8

the workflow and dependencies between the composing tasks are carried out by using
transactions. This ensures that the modifications of the specifications are done atomically.
Changes of the instantiation criteria associated to a task are also supported. Details of how the

toolkit allows you to perform dynamic reconfigurations of your application can be found in

chapter 6.

3.2- Software structure
The system has been designed to support specification, execution, monitoring and control of
workflow applications. The implementation consists of a set of CORBA services and
applications. These services and applications are grouped to form the five main software
components of the workflow system. The software structure of the workflow management

system is depicted in figure 3.2.

User Workflow Workflow Workflow User
Interface Administration | Repository | Execution Workflow
Tasks Service Service Tasks

Object Transaction Service
(OTS)

CORBA
ORB

Figure 3.2: Software structure of the toolkit

To allow interoperability with future system and applications the workflow system can
make use of existing CORBA service such as the transaction, the security or the naming
services. At present only the naming and object transaction service have been integrated into
the workflow system. The Object Transaction Service has been provided by the Arjuna
distributed transaction system [55], which has been adapted to be OTS compliant and capable
of running on a given ORB.

The relationships between the software components of the workflow system are depicted in
figure 3.3. In the rest of this section we will describe, in more detail, the components of the

workflow system.

Architecture 59

specify, monitor and
User g administer workflow Graphic User Administration
Interface Workflow Tasks

save/load

export
P specity administer
Script Repository Execution
Server Service P Service
File System Object Stores

Figure 3.3: Relationship between the different components

3.2.1 Common Object Request Broker Architecture (CORBA)

CORBA is the core of the Object Management Architecture (OMA) [47] proposed by the
Object Management Group (OMG). The OMA was designed for distributed object systems,
and is a set of services organised around a software bus called an Object Request Broker
(ORB). The architecture and specification of this ORB can be found in the CORBA
specification [48]. CORBA is structured to allow integration of a wide variety of object
systems. The ORB is responsible for providing some virtual homogeneity regardless of the
programming language, operating systems, tools and networks used to realise and support
components specified using the OMG Interface Definition Language (IDL) which is described
below.

The reference model (the OMA) depicted in the figure below, consists of four components:

J Object Request Broker responsible for transparent sending and receiving requests and

responses by objects in a distributed environment. This is the basis for the creation of

distributed applications and for inter-operability between such applications in an
homogeneous or heterogeneous environment.

o Object Services [49], a set of fundamental services providing basic features for using

and implementing objects. These services are supposed to be modular so that clients can use

as many or as few as needed. These include the Object Transaction Service (OTS), the

Trading Service, the Naming Service, the Life Cycle Service, the Event Service...

Architecture 60

] Common Facilities [50]: a set of facilities that can be shared by applications. These
services are not as fundamental as the object services. The Workflow Management and the
Business Object Management Facilities are relevant to our work and are under discussion
[45][30].

. Application Objects: the uppermost layer of the Reference model, in fact some

products developed by vendors... compliant to the OMG specifications.

Application Objects Common Facilities

p e SRR
s
Object Request Broker
+r 1
¢ & m

Object Services

Figure 3.4: Object Management Architecture

The structure of an ORB is depicted in figure 3.5. The client (the object invoking an
operation) sends a request to an object implementation (code and data implementing the
object). The ORB is responsible for the mechanisms needed to find the correct object
implementation for the request, to prepare it to receive the request and to communicate the
data making up the request. The interface that the client sees is totally independent of the
location of the object, of the programming language in which the object was implemented...
To make the request the client can either use the dynamic invocation interface (the same
interface independent of the target’s object interface) or an OMG IDL stub (dependent on the
interface of the interface of the target object). The client can also interact directly with the
ORB for some functions.

The Object Implementation receives the requests as an up-call via the OMG IDL generated
skeleton or via a dynamic skeleton. Skeletons are specific to the interface and object adapter.
During the processing of the request, the object implementation may request some service
from the object adapter or the ORB. Object adapters are the primary ways that an object
implementation can access services provided by the ORB such as the generation and
interpretation of object references, method invocations, object and implementation activation

and deactivation... It is also possible at other times. When the request is completed, control

Architecture 61

and output values are returned to the client.

L Client] [Object Implementation

Dynamic IDL ORB Static IDL Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapters

ORB Core

ORB-dependent interface l Normal call interface
Interface identical for all ORB implementations

Some stubs and a skeleton per object type

T Up-call interface
[] Interface identical for all ORB implementations

Figure 3.5: Structure of an Object Request Broker

The OMG provides an Interface Definition Language (IDL) to enable the description of the
interface to a CORBA object. The interface to objects can be defined either by using the OMG
IDL or by being added to an interface repository service that provides persistent objects to
represent the IDL information under a run-time form. IDL is a neutral language (programming
language independent) using the same lexical rules as C++ to which some new keywords have
been added to support distribution concepts. IDL specifications can then be translated to
several programming languages using the OMG standard language mappings. The IDL
interface of an object describe the interface that the object implementation provides, or in fact
which operations client objects can invoke. This provides the information that clients need to
be able to use operations on a CORBA object independently of its implementation. Figure 3.6
shows how interfaces and implementation information are made available to clients and object
implementations. The definition is used to generate the client stubs and object implementation
skeletons.

The implementation repository contains information allowing the ORB to locate and

activate implementations of objects.

Architecture 62

ORB interoperability specifies a flexible approach to support networks of objects located
and managed by multiple heterogeneous CORBA compliant ORBs. CORBA specification
describes a General inter-ORBs Protocol (GIOP) from which the Internet Inter-ORBs Protocol
(IIOP) is derived. It also provides support for inter-ORB bridge support. The GIOP specifies a
standard transfer syntax as well as a set of message formats for communications between
ORBs, which only requires an underlying connection-oriented transport protocol fulfilling a
minimal set of assumptions. The IIOP specifies how GIOP messages are exchanged using
TCP/IP connections. The Inter-ORB bridge support is useful in the case of direct
communications between ORBs in different domains (such as security domain or type domain).
The bridge ensures that content and semantics of the invocation information leaving a domain

is correctly mapped to the form appropriate to the new ORB.

IDL Implementation
Definitions Installation

Interface Stubs l I Skeletons Implementation
Repository] Repository |

r Client Object Implementation

\. J

Figure 3.6: From IDL specification to implementation and use.

3.2.2 Object Transaction Service (OTS)

The OTS is one of the services defined by the OMG and specified in the OMA. The
architecture of the OTS is depicted in figure 3.7.

The Transaction Service provides transaction management services and transaction
propagation protocol through well-defined interfaces. The ORB provides communication
support for transparently invoking operations on objects and receiving the results. The
transaction originator is the client creating the transaction and invoking operations. A
recoverable object is a transactional object defined as an object whose data is affected by the
commitment or the rollback of a transaction. Such an object must participate in the Transaction

Service protocols. This is achieved by registering an object called resource with the transaction

Architecture 63

service. The Transaction Service drives the commit protocol by issuing requests to the
resources registered for a transaction. A recoverable server consists of one application object
or more and one resource object or more registered with the Transaction Service. It issues
requests to these registered resource objects to drive the commit protocol. Several objects can
take part in a transaction. They shared a transaction context, which defines the scope of the
transaction. To simplify coding, most applications use the current pseudo object, which
provides access to an implicit per-thread transaction context. The recoverable server can also
register a resource called subtransactionAwareResource to keep track of the completion of

sub-transactions.

Transaction Recoverable
Originator Server
A A
ORB
Current, Current, Resource,
Factory Control Subtransaction
Control Coordinator Aware
Terminator Recovery Resource
Coordinator Coordinator
\ 4 4

ransaction
Context

Transaction Service

Figure 3.7: OMG OTS architecture
A transaction is executed as depicted in figure 3.8 and can be divided in five steps:
1. Aclient invokes a transaction service via the factory or the current interface to start a
transaction. The transaction service creates a transaction context and a globally unique
transaction identifier.
2. The client invokes the server including the transaction propagation context as
parameter (implicit or explicit) which contains the transaction unique identifier as well as the
transaction service object reference.

3. On reception of an object request the server registers its resource objects with the

Architecture 64

transaction service via the co-ordinator interface.

4. The client terminates the transaction (commit or rollback) by using the terminator
interface of the transaction service.

5. The transaction service propagates the completion decision by using two-phase

commit requests to the registered resources via resource interfaces.

(2) Invoke Service Server

Begin Transaction{{) Propagation

End Transaction (3)Registration

Transaction Service

Figure 3.8: OMG OTS execution flows

Interoperability between heterogeneous transaction services as well as co-operation
between multiple transaction services is also provided by the OTS specification (feature known

as interposition).

3.2.3 Graphical User Interface

This component allows users to interact with the rest of the workflow system. It allows
users to graphically specify workflow applications, start them and monitor their behaviour. The
Graphical User Interface (GUI) also enables users to load existing workflow scripts that could
have been written off-line. This specification can then be checked for consistency. Simulations
of the workflow application specified can also be carried out to try to find out potential
problems. Once exported to the repository service, the workflow application can be
instantiated. The execution of this instance of the workflow application is then controlled by
the execution service and can be monitored using the GUI. During the execution dynamic

modifications can be initiated from the GUI.

3.2.4 Workflow Repository Service

This component is responsible for maintaining the specifications of workflow applications in

Architecture 65

a form that can be used by other workflow applications. This way of storing workflow
application is equivalent to a script specification. This service provides operations to create,
modify, delete and inspect specifications. A workflow specification kept in the repository

service is called workflow schema.

3.2.5 Workflow Execution Service
This component is responsible for co-ordinating the execution the basic units of work
(referred as basic tasks in the rest of the thesis) that form the workflow application being run.
This service has to be reliable to be able to cope with temporary network failures, node

crashes... In order to do that, it records inter-task dependencies in shared persistent atomic

objects.

3.2.6 Workflow Administration Tasks
These tasks are designed to manage other workflow applications. Provision has to be made
to provide some tasks starting workflow applications, terminating tasks that no longer need to
be run as their outcomes are no longer needed, or dynamically modify the specification of
workflow applications. Dynamic modifications include the addition, removal of tasks or

dependencies, modification of the code mapped to a basic task...

3.2.7 User Workflow Tasks

These tasks are applications that have been built by users. They are built as a set of basic
tasks linked between each other by dependencies. These tasks can be implemented in any

language. A wrapper is then added to map them to the basic tasks of our system.

3.2.8 Script Servers

They are used to store the textual (ASCII) specification of workflow applications. The main
reason for their existence is to give more flexibility to the users by allowing them to store some
uncompleted specifications enabling the storage of workflow specifications being built.

They allow users to store or retrieve directly textual specifications that can then be loaded
into the specification service if correct. It allows off-line specification of workflow

applications.

Architecture 66

3.3- Task model
In this section, the structure of a workflow task as well as the different types of tasks will be
described. As previously stated in section 1.1, workflows can usually be divided into smaller
units of work (called tasks) carried out by participants. Participants have to collaborate to
reach a common aim, the achievement of the global process. This collaboration is usually
carried out by exchanging data and by ensuring that the dependencies between units of work

are respected.

3.3.1 Structure of a task

ﬂQQ 1
H\«%?

Figure 3.9: Representation of a task

A task is represented in the system by its interface. The only visible parts of a task are its
inputs and its outputs. The internals of a task are hidden except when this task is itself
composed out of other workflow tasks. In this case, the dependencies among these tasks as
well as the mapping between the inputs and outputs of the embedding task and its components
are described. The structure of a task is depicted in figure 3.9. At run time, a task will typically
gets some inputs and then terminates producing some outputs. To add some flexibility,
alternative sets of both inputs and outputs can be specified.

The inputs and output sets are represented by rectangle boxes, the input and output objects
by ovals, the data flow dependencies by arrows and the notification dependencies by dotted
arrows. The direction in which the arrow leads shows whether it is a dependency with this task
as source or as destination. The overall specification can be represented as an acyclic graph. In
the rest of the thesis the tasks that are having dependencies on a task will be referred to as
down-stream tasks, while the tasks on which this task depends will be referred as up-stream
tasks. The domain of a task specification or in other words, what is described in the
specification of a task is depicted in figure 3.10. The grey box delimits the part of workflow

specification associated to the task.

Architecture 67

It has to be noticed that our system has as particular feature that the task is only aware of
the dependencies it has on up stream tasks. It has no knowledge whatsoever on which down-
stream tasks are using it as source of dependency. This make is possible to address the issue of
locality of modification: if a user wants to modify a task dependency this is done locally at the
level of the concerned task.

Up-stream
tasks

Down-stream
tasks

Figure 3.10: Domain of a task specification
Inputs

A workflow task has the possibility to have one or more input sets (represented in figure

3.11 by the boxes in light grey).

—10/{0 0}
HOO} Ko}

Figure 3.11: Inputs of a task
These sets are alternative and have some input objects associated to them. In figure 3.11,
these input objects are represented by dark grey ovals. The first input set has two associated
input objects and the second input set has just one input object. Each of these input objects has
a list of references on other input/output objects that can be used as alternative input sources.
In order to start, a task needs to have the totality of the input objects of one of its input set
available. An input object becomes available when one of its input alternatives is available. In

the event that several input sets become available, the first one listed is chosen.

Outputs

A workflow task has the possibility to have one or more output sets (represented in figure
3.12 by the boxes in light grey). These sets also referred as output states or outcomes are

alternative and have some output objects associated to them.

Architecture 68

10100

|

Figure 3.12: Outputs of a task

There are four different types of output sets:

. Final outcome: the normal output for a task.

o Abort outcome: a final outcome for atomic tasks, it only allows output objects of type
error corresponding to some error codes.

. Repeat outcome: a special output for loop tasks allowing the outputs to be fed as
inputs for the next iteration of the loop.

® Mark outcome: a special output for non-atomic tasks allowing publishing partial
results. This is an intermediate outcome, and a task does not terminate whenever it reaches

such an outcome.

In figure 3.12, these output objects are represented by dark grey ovals. The first output set
has one associated output object, the second one none and the third output set has two output
objects. Once started, a task has to end up in one of its output sets and the output objects
associated to the chose output set become available to all tasks having some data flow
dependencies involving them as source. In the event that several outcomes of a compound task

become available, the first one listed is chosen.

Dependencies

There are two types of dependencies considered: data-flow dependencies and temporal
dependencies. Data flow dependencies are dependencies where an input/output object
reference on an object from task A (called source object) is given as alternative to an
input/output object of another task B (called destination object). The meaning of a data flow
dependency is that the destination object is allowed to use the source object as alternative. In
other words, the destination object becomes available as soon as the source object is itself

available.

Architecture 69

There are seven types of possible couples of source-destination objects depicted in figure
3.13. In this figure, we have chosen as naming convention to call the object source S and the
object destination D.

. (a) The obvious data flow dependency is a dependency between two peer tasks A and

B (Peer tasks were defined in section 3.1.1). S is in this case an output object of task A, and

D is an input object of task B. This shows that task B needs to use some of the results of

task A.

] (b) Another form of data-flow dependency between two peer tasks A and B is

depicted in figure 3.13 b. S is in this case an input object of task A, while D is an input

object of task B. This can be used when a task (B) needs to use the same input object as the

input object from another task (A).

. (c) This time task B is task A’s parent, the object source is an input object of task A,

and the D is an output object of task B. It has to be noticed that task B has to be a

compound task in this case. This is used to transmit some results back to the parent task.

. (d) This type of dependency is similar to the previous one, but this time the object

source is an output object of task A. It has to be noticed that task B has to be a compound

task in this case. This is used to transmit some results back to the parent task.

o (e) A data flow dependency can also be between task B and its parent task A (as

defined in section 3.1.1). In this case B is a task embedded in the compound task A, S is an

input object of task A and D is an input object of task B. This is used to transmit some
object references received by the parent task.

. (f) In this case A and B are again referring to the same task. In this case, it has to be a

compound task, which has D as one of its output object and C as one of its input object.

This can be used for instance to return an input object as output object in the event of an

abnormal execution of the task.

. (g) A data flow dependency can also involve only one task (tasks A and B refers to

the same task). In this case, the task needs to have a repeat outcome that can be used as

source object. D is in this case an input object of the task. This is used to simulate loops.

Architecture 70

(@) (b)

© ‘ (d

(e) ()

(2

Figure 3.13: Types of data-flow dependencies

There are also seven different types of notification dependencies, depicted in figure 3.14.
Similar conventions are used as the one used for data dependencies. A is the task with the
source set and B the task with the destination set. The sets were named.respectively S and D.

. (a) The notification dependency with as source an output set belonging to task A that

is a peer of task B. D is a destination input set. This could be used for instance to enforce

that task B will only start after completion of task A in a certain state.

o (b) A notification dependency can also use as source an input set from task A and as

destination an input set from peer task B. This could be used to specify that B can only start

Architecture 71

after A starts in a certain state.

[A IS D | |

-—-- B

O O O O O O O

(a) (b)
e — B
J'._..S [A 1 ‘‘‘‘‘ ‘D | A IS ______ >D

(© (d)

(e) (H

(2)

Figure 3.14: Types of notification dependencies
® (c) A notification dependency can use as source an input set of task A and as
destination an output set of its parent task B. This could be used for instance to state that if
task A starts with an “abnormal” input set, then its parent task B should reach a certain
outcome.
® (d) A notification dependency can use as source an output set of task A and as
destination an output set of its parent task B. This could be used for instance to state that if
task A aborts then its parent task B should reach a certain outcome.
. (e) A notification dependency can use as source an input set of a compound task A

and as destination object an input set of one of the tasks embedded in A. This can be used

Architecture 72

to enforce that a task is only started if its parent task A was started with the particular input
set S,

. (f) This notification dependency is only for compound tasks and describes a
dependency between an input set (S) and an output set (D) of the same task. This can be
useful to specify that a certain output set D can only be reached if the input set chosen to
start the task was S.

. (g) A notification dependency can also use as source an output set of a task and as
destination an input set of the same task. This can be used to have a loop without needing

to feed back a dummy object.

3.3.2 Types of task

This workflow management system distinguishes low level and high level tasks. High level
tasks (user level tasks) are used for the high level specification of the workflow application and
are used by the specification service, while low-level tasks are used to represent the tasks in the
execution service. High level tasks are automatically mapped to low-level tasks by the toolkit.
Tasks can be atomic or non-atomic. Having an output set of type abort makes a task atomic. In
this case, the final outcomes are in fact commit outcomes.

High level tasks can be of two main types. Their graphical representation can be seen on
figure 3.15:

. Compound tasks: this type of task is used to build tasks out of other tasks. There are
several possible reasons for using compound tasks. For instance, a compound task can be
used as a way to hide the fault tolerance associated to a task. Indeed, compound task could
be used as a black box to specify a task and an alternative or a task and a compensating
task. It can also be used as a way to specify different levels of details. For instance, using an
e.commerce example, a company director can model a business process as two tasks, the
first one providing a service and the second one billing for this service. The department or
person in charge of completing this task can then further describe the tasks that he has
identified. For instance the finance department will describe how the billing of the service is
done by decomposing the billing task as a set of tasks responsible for simpler activities. This
allows having a good support for modularity.

o Basic tasks: this type of task is the basic unit of work of the system. It can no longer

be divided in a set of workflow tasks. This type of tasks has associated to it a code that

Architecture 73

performs the actions that the workflow task represents.

These two main types can be specialised as:

o Loop tasks: this type of tasks allows to introduce repetition in the specification, it is
equivalent to a while with as condition that the output state feeding back the inputs is
reached after completion of the body of the task.

. Genesis tasks: this is just a late instantiation of the task

There are three low-level types of task:

° Basic tasks: these low-level tasks correspond to the high level basic tasks, and is how
the execution service represents basic tasks. In the rest of the thesis, both low and high level
basic tasks will be referred to as basic tasks.

J Compound tasks: these tasks correspond to the high level compound tasks and is how
the execution service represents compound tasks. In the rest of the thesis, both low and high
level compound tasks will be referred to as compound tasks.

. Genesis tasks: these tasks are the main way to introduce dynamism in the system.
They are in fact a particular Kind of tasks that hold a task structure represented by a task
schema (workflow script). A genesis task is a task with lazy instantiation. By lazy
instantiation, we mean that they are only instantiated on demand and at the last moment. As
a result they are really useful for large workflow applications as they provide an efficient
way to manage these workflows by only instantiating the constituent tasks of the workflow
application really needed. They are used to specify at low-level the loop tasks. A loop task
is in fact modelled by a genesis task, which has a task structure that includes itself as
component task (cf. chapter 6, section 7.2). High level tasks that have been requested to be
only lazily instantiated are also represented at the low level by a genesis task, with them as

task structure.

Basic Tasks and Compound tasks are represented on figure 3.15 a) and b) as rectangles with
respectively single line and double line borders. Task specialised as Genesis will be rounded
(figure 3.15 c for a Basic task specialised as Genesis), while loop task will have a feedback

arrow (figure 3.15 d for a compound task specialised as Loop).

Architecture 74

i B
:

a) Basic Task b) Compound Task
¢) Basic Genesis Task d) Compound Loop Task

Figure 3.15: Graphical representation of Workflow Tasks.

3.4- Run time environment

Once the workflow application specification has been stored in the repository service, it is

possible to instantiate the corresponding workflow schema. This is carried out by the execution

service that is responsible for the proper execution of the following steps:
. Creation of the task controllers: each task of the schema has an associated task
controller who is responsible for maintaining and managing the dependencies of this task.
The placement of the task controller dependent on the type of control you want to
implement (cf. section 3.1.2) and on some constraints set by the user.
. Creation of the tasks: each task of the schema will have an object of type task created
to represent it in the run-time environment. It is at this level that the code is mapped to the
task.
o Assignation of the task to its task controller: task controllers need to know which task
they are responsible for, hence a reference to a previously created task is passed to each of
the task controller.
. Setting up the inter-task dependencies: Each task controller registers its interest in the
events that are important for its execution. It does it by contacting all task controllers
associated with tasks involved as source in one of its dependency. For instance, imagine that
a task (E) has a temporal dependency on an outcome of a task B. In this case, the task
controller associated with task E registers its interest in the outcome reached by task B with
the task controller associated to B. This allows the task controller managing task E to

receive a notification of the outcome reached by B whenever it occurs. This notification is

Architecture 75

sent by the task controller associated to task B, using a transaction. It has to be noticed that
a task controller only registers with task controllers associated to its up stream tasks. The
task controller maintains a persistent atomic object (called TaskControl) that is responsible
for recording the inter-task dependencies involving this task as destination. Task controllers

are represented in the system as processes containing an object of type TaskControl.

Workflow A

O ask

-

ask ask D

Figure 3.16: Specification of a workflow application

At the end of this instantiation the workflow schema depicted in figure 3.16 has been
translated into a set of interacting task controllers managing the tasks. The event notification
requests sent during the phase setting-up the inter-task dependencies are shown in figure 3.17.

In the workflow application pictured in figure 3.16, the dependencies between the workflow
application and its component tasks are described. It has to be noticed that the task
representations were simplified by not showing the input and output objects associated to these
tasks. The input object of the workflow is using as input object, by both tasks A and B. Task B
also has a data flow dependency on task A. Task D is an alternative task for task C. The output
of task C or alternatively of task D if task C fails, is used by task E. If both tasks C and D
failed then the workflow fails else it succeed with as output the output of task E.

The run-time representation (figure 3.17) shows the interactions between the different task
controllers (one per task). Issuing the event notification requests shown on this figure has set
up the dependencies shown in the previous picture.

Once instantiated, the workflow application has to be started. This is carried out by an
administration task responsible for starting workflow applications by providing the initial
input(s) to the task controller associated to the workflow application instances.

Once the initial inputs become available, the workflow application starts executing.
Typically a workflow application is composed out of simpler tasks themselves potentially

compound tasks, and its inputs becoming available trigger the starting of several of its

Architecture 16

component tasks. The way this is done is that the task controllers of the tasks having
dependencies on the reception of the workflow application are notified of the fact that their
have become available and those having all their dependencies fulfilled start the execution of
their associated task. For instance, in the previous example, when the workflow inputs become
available, the task controllers associated to task A and B receive a notification of the
availability of the inputs of the workflow applications. All the dependencies kept by the task
controller of task A being fulfilled, it can start the execution of task A. On completion, task A
reaches an output triggering the notification to the task controller of task B that can then be

started.

(Workflow A

Task E

Task C Task D
O Task controller # Event-notification request

Figure 3.17: Run-time representation of a workflow application

The high level task state diagram is described in figure 3.18: As long as the workflow
application has not been started the task is been built and in the state building, then it enters a
state set up where the inter-task dependencies related to the task are set up. Once this has been
done, the task enters the state waiting till it gets one of its input sets fulfilled (all object
references available). At that point, it goes in the state executing. After completion of the task,
it enters the state completed. It has to be noticed that the state of a high level task is given by
the state of its associated task controller when it is no longer in its building state. In other
words, the task controller state diagram is depicted on figure 3.18; if you remove the building

state form the task diagram.

Architecture 77

Building —® Sct Up Set Outputs

v 1 v 1

Waiting [Executing] Completed

Figure 3.18: Task state diagram

As stated earlier, there is a need to be able to change the specifications at run-time due to
some potential changes of the run time environment. Dynamic reconfiguration has been
provided to cope with these changes. As long as the task controller is still in its waiting state, it
is possible to modify the interface, implementation criteria as well as its associated
dependencies of the task it is managing. This is achieved by bringing it back in its set-up state,
where the changes can be done. Once the execution has started, it is still possible to modify the
outputs of a compound task as well as to add some component tasks or delete some other
component tasks as long as their task controllers haven’t reached their completed state. It is
also possible to modify the dependencies involving the outputs of the compound task. This is
achieved by setting the state of the state of the task controller associated to this compound
task to set outputs while it is being modified. To sum up, the changes that can be made are
listed below:

1. The implementation bound to a basic task can be changed as long as it is in a wait

state

2. Tasks can be added or removed from workflow instances

3. The constituent tasks of a compound task can be changed

4. Input alternatives can be added or removed from a task, and their priority can be

changed as long as the tasks is not in its state executing or completed

5. Output alternative can be added or removed from a task, and their priority can also be

changed as long as the task has not completed

Figure 3.19: Event notifications

Architecture 78

The system uses atomic actions to propagate co-ordination information to ensure that tasks
are run according to the specification. The system also has a flexible way to ensure that the
task controller sends event notifications as an atomic action: the task body as well as some (or
all) of its associated notifications can be guaranteed to be performed atomically. This is
achieved by enclosing both the execution of the task and its event notifications in an atomic
action. Users can specify which tasks do not need atomic notifications by labelling them as
non-vital. Usually monitoring tasks are non-vital tasks. Figure 3.19 shows how atomic and
non-atomic notifications are propagated. There are four sets of event notifications labelled on
the figure as A, B, C and D. Event notifications of type A and B correspond to some event
notifications of inputs available while event notifications C and D are for outputs becoming
available. Event notifications B and C are to be delivered atomically with the execution of the
task and as a result are embedded in a transaction. A and D are just event notifications that are

not vital and will be referred thereafter as eventual event notifications.

To sum up, we have presented in this chapter the architecture of our system. What is now
needed is a way to specify the workflow applications that are to be executed in the workflow

system. In the next chapter, a language will be introduced to serve this purpose.

Language 79

Chapter 4

Language

In this chapter, the reader will find the specification of our textual language as well as the
graphical notation that has been adopted to represent workflow applications within the GUI of

our toolkit to be presented in chapter 6. This is also presented in [60].

4.1- Overview

The aim of the workflow language is allow the specification of workflow applications. As
was seen in the previous chapters, a workflow application in our system consists of a set of
workflow tasks linked by dependencies. A workflow task uses some inputs to perform some
work and generates some outputs. In chapter 3, the architecture of the system was described as
well as the task model chosen to support the requirements of the system. The notations
presented in this chapter allow the specification of the high level tasks of the system.

A workflow specification in our system consists of a list of object classes, a list of task
classes and a workflow application. As a result, the language used to describe a workflow is
divided into three parts:

e Object class definitions part to specify the type of input/output objects used,
e Task Class definitions part to specify the task interfaces used,
e Task instances part to specify the workflow tasks used.

Let’s imagine that we have a task that adds two numbers together opl and op2 of type

integer, and returns the object res of type integer. It would be specified using the textual

notation as:

// object class definitions
objectclass integer;
// task class definitions

taskclass Operation {

Language 80

inputs { input main { opl of class integer; op2 of class integer } };
outputs { outcome done { res of class integer }}

}
// Task instances. It has to be noticed that the addition workflow

application is a compound task as it is composed out of other tasks. The
details of these component tasks has been removed here for simplicity
compoundtask addition of taskclass addition (

inputs { input main { inputobject op2 {}; inputobject op2 (} } };

outputs { outcome done { outputobject res {..} } }
}
The three parts of the description can be easily identified on this basic example.

And using the graphical notation, it can be represented by picture 4.1.
I ~ addition |
ainj done

opl |O : @ |res
op2 @ piiss

Figure 4.1: Basic example

In the next sections, the extracts of the grammar relevant will be given each time that a
component of the specification is discussed.

On the extract relevant to the specification of a workflow application, it has to be noticed
that the list of object classes is optional as we could have a workflow application with no data
flow dependencies at all, but not the list of task classes as a workflow application has by nature
an interface that has to be defined. It also has to be noticed that there is an order in the

specification: first the object classes then the task classes and finally the workflow application.

<specification> ::= <objectclass_definitions> <taskclass_definitions> ;

<workflow_application>
| <taskclass_definitions> “;” <workflow_application>

In the next sections, these different components of the language will be described in details.
For each component, the relevant extract of the grammar for the language will be given as well

as some examples of how to specify such a component.

4.2- Object Classes
4.2.1. Overview
The goal of the object classes is to introduce some type checking in the specification. Each
object resource in the system has an associated object class. Workflow applications need to

specify the type (object class) of object resources that they want to use. An object class is fully

Language 81

defined by its name. This system supports multiple inheritance to allow more flexible

specifications.

4.2.2 Grammar
The declaration of an object class is introduced by the keyword objectclass. The character

‘.” denotes multiple inheritance. Object classes inherited are separated using a coma

<objectclass_definitions> ::= <objectclass_definition>

| <objectclass_definition> “;” <objectclass_definitions>
<objectclass_definition> ::= “objectclass” <idf>

| “objectclass” <idf> “:" <objectclass_inheritances>
<objectclass_inheritances> ::= <idf>

| <idf> “,” <objectclass_inheritances>

A valid name for an object class is a letter followed by alphanumeric characters (called idf in

the grammar). The object classes inherited also have to be defined.

4.2.3 Examples

Let’s imagine that our application uses some objects of type person and employee, the latter

inheriting from the former. In this case, the declaration of the object classes will just be:

objectclass person;
objectclass employee : person;

Shall employee also inherited from another object class such as bankAccount, the

declaration would become:

objectclass person;
objectclass bankAccount;
objectclass employee : person, bankAccount;

4.3- Task Classes
G outcomeNamel
inputSetName| taskClassName outputObjectNamel
inputObjectNamel | iy r=2-+ outcomeName2
inputObjectName2 j :_Q ! outputObjectName2
inputObjectName3 | iy outcomeName3
, | @D outputObjectName3
inputSetName2 ; tputOb;j
igputObjectName4 @ 2 O SR calanes
outcomeName4
outputObjectName4

Figure 4.2: Graphical notation for a task class

Language 82

4.3.1 Overview

The goal of a task class is to allow specifying a type of interface for a workflow task. A task
class can be used for creating many tasks with the same interface. It is fully defined by its
name, inputs and outputs.

On figure 4.2, inputs have names starting with “input” and the names of the outputs start
with “output”.

The inputs of a task class consist of one or more named input sets. The input sets act as
recipient for alternative starting conditions for the task. An input set consists of a set of (input)
objects, each of them associated to a particular object class.

Symmetrically, the outputs of a task class consist of one or more named sets of (output)
objects. These sets are also called outcomes. There are four different types of output sets as
specified in chapter 3:

. Mark outcome: it is an outcome that provides outputs while the task is running.

However using mark outcomes breaks the isolation property of the atomic actions hence the

tasks with such outcome are not transactional. This type of outcome is usually used to

publish partial results (output objects) of a compound task before its completion. The

graphical notation for mark outcome is a rectangle with dotted lines. In figure 4.2,

outcomeName?2 appears as a mark outcome.

. Repeat outcome: it is an outcome whose output objects are being used as input

objects by the same task. This type of outcome is used to implement loops. The graphical

notation for repeat outcomes is depicted in figure 4.2 (outcomeNamel).

. Final outcome: it is an outcome that is only reached whenever a task does complete.

They are represented by rectangles with plain borderlines as depicted in figure 4.2 for

outcomeName3.

. Abort outcome: a special type of final outcome reached whenever the associated task

is transactional and has aborted. In this case the final outcome are in effect some commit

outcomes. They are represented graphically by a rectangle with double-lines borders

(outcomeName4 in figure 4.2).

4.3.2 Grammar
The declaration of a task class is introduced by the keyword “taskclass” followed by the

name of the task class. Then the specification is divided between the inputs and the outputs

Language 83

specifications.
<taskclass_definitions> = <taskclass_definition>
| <taskclass_definition> “;” <taskclass_definitions>
<taskclass_definition> ::= “taskclass* <idf>
“{* <taskclass_inputs “;" <taskclass_outputs> “}”

The specification of the inputs of a task class is introduced by the construct “inputs”, and
then the input sets are introduced by the construct “input” followed by the name of the input
set. The specification of the input sets corresponds to the specification of the white boxes of
figure 4.3a. Then the input objects, represented by white ovals in figure 4.3b, are described

using taskclass_object_list.

<taskclass_inputs>

“inputs” “{* <taskclass_input_list> “}"
<taskclass_input_list>

<taskclass_input>
| <taskclass_input> “;" <taskclass_input_list>

<taskclass_input>

“input” <idf> “{“ <taskclass_obiject_list> “}”

o ity S| fo}
d i@ OfF =)
T B BB

a) input sets of a TaskClass b) input objects of a TaskClass

Figure 4.3: Inputs of a task class
The specification of the outputs of a task class is similarly introduced by the construct
“outputs”, then the output sets are introduced one by one using, to specify their type, one of
the following keywords: “mark”, “repeat”, “outcome” or “outcome abort”, followed by the
name of the output set. The specification of the output sets corresponds to the specification of
the white boxes of figure 4.4a. Then the output objects, represented by white ovals in figure

4.4b, are described using taskclass_object_list.

Language 84

<taskclass_outputs> = “outputs” “{“ <taskclass_output_list> “}”
<taskclass_output_list> ::= <taskclass_output>

| <taskclass_output> “;” <taskclass_output_list>
<taskclass_output> .= <taskclass_outcome_type> <idf> “{* <taskclass_object_list> “}”

<taskclass_outcome_type> ::= “mark” | “repeat” | “outcome” | “outcome” “abort”

10,
o0}

01000
0
0}{000
0

[0]
Hokoo

c) output sets of a TaskClass d) output objects of a TaskClass

Figure 4.4: Outputs of a taskclass

The object lists used for both the lists of input and output objects just list an object used as

a couple name, object class separated by the keyword “of class”.

<taskclass_object_list> =6
| <taskclass_object>
| <taskclass_object> “;" <taskclass_object_list>

<taskclass_object> = <idf> “of” “class” <idf>

The object classes used here have to have been present in the object classes definitions. The
names for the task class as well as its input and output sets follow the same rules as for the
object class names. A task class also has to have at least one input and one output set. Each

input or output set is associated to zero or more objects,

4.3.3 Examples
The following script extract describes how a company could automate the selling process
presented afterwards. Usually a customer identifies a car he would like to buy and negotiate
with the person in charge of selling this car. There are two possible final outcomes: either the
deal is made and a contract is signed after having checked the customer references, or the deal
is off. The company also needs to know as early as possible that the deal is done to withdraw
the car from the offer and know the price of the sale. The negotiation process can also iterate

with a new vehicle.

Language 85

To model this application, we need an interface named for instance BuyACar. It has two
alternative input sets:

° A set named main with three associated input objects (customer of class person, staff

of class employee and vehicle of class car) for a customer who wants to deal with a specific

person in the company selling the car,

° A set named alternate with only two input objects (customer of class person and

vehicle of class car) for customers that do not know who they want to deal with.

There are also multiple output sets:

. Two of them are final outcomes: success with as associated output objects staff of

type employee, customer of class person, bill of class bill and vehicle of class car, and failure

without output object.

. The intermediate result is modelled with a mark outcome with as associated output

objects vehicle of class car, and cost of type integer.

. There is a retry outcome to model the loop with three associated output objects: staff

of class employee, newvehicle of class car and customer of class person.

The textual specification is listed below:

taskclass BuyACar
{
inputs
{
input main
{
customer of class person;
staff of class employee;
vehicle of class car
}i
input alternate
{
customer of class person;
vehicle of class car
}
};
outputs
{
repeat renegociate
{
customer of class person;
staff of class employee;
newvehicle of class car
3
mark deal
{

vehicle of class car;

Language 86

cost of class integer

};

outcome success

{
customer of class person;
staff of class employee;
vehicle of class car;
bill of class bill

}:

outcome failure

(
}

4.4- Task instances

4.4.1 Overview

The overall aim is to specify the tasks and their dependencies that make up a workflow

application. Each task has to belong to a task class.

--j‘ basicTask --3&

a) For a basic task b) For a compound task

Figure 4.5: Specification of responsibilities for a task

The information from the associated task class is then used to find out the inputs of the task
and to specify the mapping between these inputs and the rest of the application. The
information needing to be specified is different for a basic task and a compound task. On figure
4.5a, the information that a basic task needs to specify is shown. The dotted arrows represent
the notification dependencies associated to the input sets of the task while the plain arrows
represent the data dependencies that input objects have (e.g. a list of alternative objects that
they can be mapped to). Similarly, figure 4.5b shows what compound tasks have to specify. On
top of what a basic task has to specify, they also need to specify their constituent tasks (dark
grey rectangles) as well as the mapping of their outputs with them in terms of both notification
and data-flow dependencies. Notice that a compound task is only responsible for the

dependencies having it as target. In particular, each component task is responsible for its own

Language 87

dependencies. This allows locality of modification as well as modularity.

Information on the details of the implementation of a task also need to be provided, these
information can include the priority of the task, the resources needed, the type of node on
which the task is to be run, etc. This information is provided has a set of couples of keyword-
value that are used afterwards at creation time of the task. With the current system, this set of
couples is sent to a task factory to give it some details on the task instance to be created.

We are now going to present in detail how our language allows the specification of task

instances.

4.4.2 Grammar
A workflow application can be simply a compound task or a compound task with a set of

task templates associated to it.

<workflow_application> = <task_compound>

| <task_template_def_list> “;” <task_compound>

The construct “tasktemplate” enables parameterisation of task definitions. It specifies the
parameters expected using the construct “parameters” and follows the same specification
rules as the rules for constructing basic and compound tasks. In fact, it is using the same

headers and bodies as they are using.

<task_template_def_list> = <task_template_def>
| <task_template_def> “;” <task_template_def_list>
<task_template_def> .= “tasktemplate” <task_basic_header>
“{* <task_template_parameters> “;" <task_basic_body> “}"
| “tasktemplate” <task_compound_header>
“{“ <task_template_parameters> “;" <task_compound_body> “}"
<task_template_parameters> ::= “parameters” “{" <task_template_parameter_list> “}”
<task_template_parameter_list = <idf>

| «<idl> “;" <task_template_parameter_list>

The name of a task template follows the same rules as those for the names of an object class

or of a task class.

Tasks are then divided into three categories. Two of them: basic and compound tasks being
the building stones for the third one, the instantiation of a task template. The difference

between these two types of tasks is that a basic task is a basic unit of work for the process that

Language 88

we are modelling, while a compound task gathers other tasks that may be themselves basic or
compound. As a result, basic tasks will be seen as indivisible. The third type of task is the task
template that is just an instance of a task template specification; itself parameterised version of

the two previous task types.

<task_list> = <task>

| <task> “;" <task_list>
<task> = <task_basic>

I <task_compound>

| <task_template>

The keywords “task” and “compoundtask” respectively introduce basic and compound
tasks. Both of them have their associated task class introduced by the keywords “of taskclass”.
The first part of the body of the compound task definition is identical to the specification of
a basic task. First it defines some implementation information. Both types of tasks carry on
with the description of the mapping of the inputs. A compound task then requires its

component tasks to be specifying before specifying the mapping of its outputs.

<task_basic> :i= <task_basic_header>“{" <task_basic_body> "}"
<task_basic_headers> = “task” <idf> “of” “taskclass” <idf>
<task_basic_body> 1= <task_inputs>

[}

| <task_implementation> “;" <task_inputs>

<task_compound> i:= <task_compound_header> “{* <task_compound_body> "}"
<task_compound_header> = “compoundtask” <idf> “of” “taskclass” <idf>
<task_compound_body> .= <task_implementation> “;" <tasks_inputs> ‘" <task_list> %"

<task_outputs>
| <tasks_inputs> “;" <task_list> “;” <task_outputs>

Once against the same rules are used for the specification of the names.

A task template is the instantiation of one of the task template definitions. The only thing
needed there is the mapping of the arguments to the parameters requested by the definition.
The name of the task template that it is instantiating is introduced by the keywords “of

tasktemplate”. Arguments are given between brackets and separated by comas.

<task_template> = <idf> “of” “tasktemplate” <idf> “(* <task_template_argument_list>)"
<task_template_argument_list> ::= <idf>

| <idf>“” <task_template_argument_list>

The task template specification instantiated has to have been specified earlier on.

Language 89

Implementation information is introduced by the construct “implementation” as a list of
couple “keyword is value”. The implementation criteria are used to specify the task controller
factory to be used, the placement of a task at run time, as well as information on its
implementation. It can also be used to specify the priority and deadlines associated to a task.

The GUI also used them to store the task co-ordinates.

<task_implementation> == “implementation” “{” <task_implementation_criteria> “}"
<task_implementation_criteria> ::= <task_implementation_criterium>

| <task_implementation_criterium> “;” <task_implementation_criteria>

<task_implementation_criterium> ::= “\"" <idf_crit> "\"" “is” “\""" <idf_crit> ‘A"

Both keywords and values are enclosed between double quotes and can have whatever
value is needed, with as restriction that the double quote is an invalid symbol that can not be

used.

Tasks input mappings are introduced by the keyword “inputs”. Then each input set is listed
in turn and includes both some notification dependencies introduced by the keywords

“notification from” and some mapping information for their associated input objects

introduced by the construct “inputobject” “from”.
<task_inputs> = “inputs {* <task_input_list> “}"
<task_input_list> = <task_input>

| <task_input> “;" <task_input_list>
<task_input> = “input “ <idf> “{* <task_input_dependency_list> “}"
<task_input_dependency_list> = £

I <task_input_dependency>

| <task_input_dependency> “;” <task_input_dependency_list>
<task_input_dependency> = “notification” “from” “{” <task_notification_list> “}"

| “inputobject” <idf> "from” “{" <task_delegation_list> “}"

It has to be noticed that at least one input set has to be declared. They potentially have no
dependencies attached to them as some dependencies could be created during run-time.

Similarly, input objects can have no delegation dependencies on them for the same reasons.

The outputs are similarly specified with as only difference the use of the construct “output”

where “input” was previously found.

Language 90

<task_outputs> == “outputs” “{" <task_output_list> “}"
<task_output_list> ::= <task_output>
| <task_output> “” <task_output_list>
<task_output> 1= “output “ <idf> “{* <task_output_dependency_list> “}”
<task_output_dependency_list> ::= £
| <task_output_dependency>
| <task_output_dependency> “;" <task_output_dependency_list>

<task_output_dependency> := “notification” “from {” <task_notification_list> “}"

| “outputobject” <idf> "from” “{" <task_delegation_list> “}"

It has to be noticed that at least one output set has to be declared. They potentially have no
dependencies attached to them as some dependencies could be created during run-time.
Similarly, output objects can have no delegation dependencies on them for the same reasons.
The input and output names used here have to exist in the task class associated to the task
being instantiated. There is one and only one such description per input and output sets, as well
as per input and output objects defined in the task class. To be valid, all the inputs and outputs

defined in the task class and only them have to be found in these declarations.

The notification dependencies are specified as a list of notifications. The notifications are of
the form “task myTask if input mylnputSet” and “task myTask if output myOutputSet”
which should respectively be read as this task requests a notification that task myTask has

started with as input set mylnputSet and that task myTask has reached the output set

myOutputSet
<task_notification_list> ;= <task_notification>
| <task_notification> “;" <task_notification_list>
<task_notification> o= “task” <idf> “if” “input “ <idf>
I “task” <idf> “if" “output” <idf>

The sets referenced in a task specification have to exist; e.g. both the task and the set with
the names requested have to exist within the specification. A discussion on the different valid
types of notifications for inputs can be found in chapter 3, section 3.1 with a graphical

description on figure 3.14.

The delegation dependencies are specified as a list of delegations. The delegations are of the
form “myObject of task myTask if input mylnputSet” and “myObject of task myTask if
output myOutputSet”. The first form should be read as this task requests a delegation of the

object myObject of task myTask if this task has started with as input set mylnputSet. The

Language 9]

second one should be read as this task requests a delegation of the object myObject of task

myTask if this task has reached the output set myOutputSet.

<task_delegation_list> n=€

I <task_delegation>

| <task_delegation> “;” <task_delegation_list>
<task_delegation> n= <idf> “ of” “task” <idf> “if” “input “ <idf>

| <idf> “of” “task” <idf> “if” “output” <idf>

The objects referenced in a delegation dependency have to exist, e.g. both the task, the set
and its associated object with the names requested have to exist within the specification. A
discussion on the different types of notifications valid can be found in chapter 3, section3.1

with a graphical description on figure 3.13.

4.4.3 Examples
Let’s use as example two tasks with the same task class BuyACar defined previously. The

first task will be a basic task, and the second a compound task.

task buyMyCar of taskclass BuyACar

{
implementation
{
wTaskImpl” is “buyMyCar.exe”;
}i
inputs
{
input main
{
inputobject customer from
{
john of task getCustomer if output success;
boss of task getCorporateCustomer if output success;
customer of task buyMyCar if output renegociate
};
inputobject staff from
{
carl of task getCustomerAdviser if output success;
staff of task buyMyCar if output renegociate
};
inputobject vehicle f£rom
{
myCar of task getCar if output success;
newvehicle of task buyMyCar if output renegociate
}
| ¥
input alternate
{

notification from
{

task getCustomerAdviser if output failure
};:

Language 92

inputobject customer from

{

john of task getCustomer if output success;

boss of task getCorporateCustomer if output success
};
inputobject vehicle from

{

myCar of task getCar if output success

}

}
This example assumes the existence of three tasks, namely getCustomer,

getCorporateCustomer and getCustomerAdviser. The input set named alternate is used
whenever the task getCustomerAdviser reaches its output failure, and allows the task to start
in a degenerated state (no staff associated to the deal). Internally the task needs to be able to
handle both of these starting conditions. In this example, several other features can be seen: the
use of the couple TaskImpl, buyMyCar.exe as implementation criterium allows the underlying
system to chose the right code to execute. The feedback from the output objects of the repeat
outcome is also apparent. The alternative mapping of objects is also shown in this example: the
customer can come from three different sources: from the output objects named john and boss
from respectively tasks getCustomer and getCorporateCustomer if they reach the outcome

success or from itself if it loops.

If now the same task is instantiated using a compound task, the beginning of the task
description will be identical to the previous task, except of course for the implementation
information about the code. Then the component tasks have to be specified as well as the
mapping of the mapping of the outputs of the compound task. The components that can be
mapped to an outcome are the input sets of the task as well as any of the input or output sets
of the component tasks. For the output objects, the same applies but with the associated
objects this time. Let us assume that the task is in fact the result of the composition of two
basic tasks that are respectively called dealMade and contractSigned. The script describing this

task is listed below.

compoundtask buyMyCar of taskclass BuyACar
{
inputs
{
// identical to previous example, removed
};
task dealMade of taskclass makeADeal
{

Language

93

// specification removed
}:
task contractSigned of taskclass contractSignature
{
// specification removed
};
outputs
{
repeat renegociate
{
outputobject staff from
{
staff of task dealMade if output newchoice
}:
outputobject vehicle from
{
vehicle of task dealMade if output newchoice
};
outputobject customer from

{
customer of task buyMyCar if output main;

customer of task buyMyCar if output alternate

};
mark deal
{
outputobject cost from
{
cost of task dealMade if output success
};
outputobject vehicle from

{
vehicle of task dealMade Lf output success

};
outcome success
{
outputobject staff from
{
staff of task contractSigned if output success
};
outputobject vehicle from
{
vehicle of task contractSigned if output success
};
outputobject bill from
{
bill of task contractSigned if output success
};
outputobject customer from
{
customer of task contractSigned if output success
}
};
outcome failure
{
notification from
{

Language 94

task dealMade if output failure;
task contractSigned if output failure

}
}
In this example, the structure of the specification of a compound task is shown. In

particular, its component tasks are embedded in its own specification. The use of notification
dependencies to reach the final outcome failure can also to be noticed. The task fails if either
the task dealMade or the task contractSigned reach themselves their outcome labelled failure.
Had the designer wanted to reach the outcome failure only in the event of both tasks reaching
their outcome failure, then the specification of the mapping of the outcome failure would have

been:

outcome failure

{
notification from

{
task dealMade if output failure

}i
notification from

{
task contractSigned if output failure

}

4.5- Extended transaction models and workflows

The structuring mechanisms available within 'standard’ transaction systems are for sequential
and concurrent composition of (sub-) transactions within a top-level transaction. These
mechanisms are sufficient if the overall application function can be represented as a single top-
level transaction. Frequently this is not the case. Top-level transactions are most suitably
viewed as "short-lived" entities, performing stable state changes to the system [22]; they are
less well suited for structuring "long-lived" applications of the type considered in this thesis.
Long-lived top-level transactions may reduce the concurrency in the system to an unacceptable
level by holding on to resources (e.g., locks) for a long time; further, if such a transaction
aborts, much valuable work already performed could be undone. If an application is composed
as a collection of transactions, then during run time, the entire activity representing the
application in execution is frequently required to possess some or all of the ACID properties of
the individual transactions. Much of the research on structuring transactional applications has
been influenced by the ideas of spheres of control [14}].

In chapter 2, we discussed two such extended transaction models: Saga and Contract. Our

Language 95

workflow language provides a very flexible way of constructing extended transaction models.
For instance, Sagas (presented in chapter 2, section 2.3.1) can be easily modelled as a
workflow. Let’s imagine a saga T composed out of transactions T,, T,, ... T, with their
corresponding compensating transactions Cy, ... C,. The guarantees provided by the system are
that either T, T-...T, is executed or T,...T,C;...C, is executed for some i between O and n. For

n =3 an equivalent workflow application is shown on figure 4.6.

Figure 4.6: Saga modelled as a workflow

In figure 4.6, the workflow has two outputs: commit if the saga was successfully executed
and compensated otherwise. Each sub transaction can either commit or abort. This is
represented by the two output sets (grey boxes), the upper one being commit. The
compensating transactions are (as usual for sagas) supposed to always execute successfully.
The dependencies (dotted/dashed lines) are OR-ed (e.g. only one activated dependency is
needed to trigger the execution of a task).

Use of workflows for implementing extended transaction models is also discussed in [2].
Our alternative output sets provide a way to specify in which state the activity modelled ended
up. Alternative inputs sets and sources for input objects also allow adding some fault tolerance.
Compensating tasks, alternative tasks... can be used to model these extended transaction

models.

4.6- Comparison with METEOR

In chapter 2, we reviewed a number of languages. In this section, we are going to compare
our language with METEOR (introduced in chapter 2, section 2.2.2.1.) as it comes closest to
our language in term of functionalities provided and is the best known workflow language in

the workflow community. They have two languages: the WorkFlow Specification Language

Language 96

(WFSL) and the Task Specification Language (TSL).
As stated in chapter 2, the WFSL is divided in several parts:

1. Type definitions and variable declarations, similar to the C syntax.
2 Task type definitions

3. Task class and filter definitions

4 WEF definition

e task instantiations
e rules

5. WF instantiation

Part 1 corresponds to the declaration of our object classes, however METEOR allows you
to define some new types similarly to what can be done in C, while our language only allows
you to declare the valid object classes known by the underlying system.

Part 2 and 3 correspond to our task class definitions, the major differences being that they
only allow one input set and they specify the internal states and transitions between these
states. Our mark outcomes would correspond to their non-initial and non-terminal states,
however we have made no provision whatsoever to try to capture the internal transitions
between states. Both languages have typed input and output objects. METEOR also introduces
the notion of filter, which converts objects of a type to another type. We did not feel that there
was a need for a specific entity to filter data and are confident that simple tasks are a good way
to handle data filtering.

Part 4 corresponds to our task instances specification. Both languages support simple and
compound tasks. The way they deal with dependencies however is quite different. While in the
WEFSL, they have a rule section localised in their compound tasks; we keep the dependencies
with the task that is the destination of the dependency. We do believe that it is a better solution
as it provides better modularity and allows a better management of dynamic reconfiguration as
described latter in this section. In particular, our tasks have no knowledge whatsoever on
which downstream tasks are using them as source of dependency (cf. section 3.3.1). METEOR
allows complex rules with some “control dependencies” (preconditions) that can involve some
computations.

The following rule for instance would be read as: if task L1 reaches state done and the

function success applied to task L1 and its output (object) output! is evaluated to TRUE and

Language 97

the variable outvallL4 is greater than 5 then task L2 should enter state start using output2 from

task L1 as input for inputl.

[L1, done] & (success(Ll, outputl) = TRUE) & (outvallL4 > 5) ENABLES [L2,
start] % Ll.outputl -> L2.inputl;

With our language, we would have a special output set for L1 which fulfils the listed
conditions, and a dependency between outputl of task L1 and inputl of input set start of task
L2.

As far as part 5 is concerned, we do not allow specification of the initial objects to be used
to start the workflow in the script. A CORBA interface to start the specification from the
outside world has however been provided.

As far as application fault tolerance is concerned, METEOR creates an extra state per
controllable transition. This error state called “transition name”_err is reached in case of
failure. They have also proposed a single default common error state. On the other hand, we
consider that we have a normal execution output state and that all the others are exception
handling output sets. The binding is made at the task implementation level and is not seen at
the Workflow specification level.

As far as dynamic reconfiguration is concerned, METEOR tackles the issue by using two
different techniques. The first one is to use arrays of tasks whose size is set up at run-time and
whose dependencies are specified based on the index of the task in the array. This allows them
to create an arbitrary number of tasks at run-time. The other technique used is to use a task of
class controlClass that is allowed to rewrite the specification at run-time. This task needs to
know about the whole current workflow application, as the specification is fully re-interpreted.
We have two ways to handle dynamic reconfiguration: the first one is to use genesis task (lazy
instantiation) which allows you to instantiate the genesis task only if it is needed. The second
way to handle dynamic reconfiguration is for a task to interact directly with the task controller
which does not require to know about the whole workflow applications and does not have the
overload of needing to be re-interpreted.

As far as specifying the internals of a simple task is concerned, we did not create yet another
programming language for it, as we did not see the need for one, we only specify a task factory
to be used and some implementation criteria. The toolkit has an option to create some Java
code skeletons that deal with all the interaction with the task controller. METEOR on the
other hand created the Task Specification Language. The main aim of the TSL is to avoid

rewriting some legacy applications. The TSL enables the developer to specify the interfaces

Language 98

and the specific reactions to this entity’s behaviour (error handlers...), it also enables to
perform specific actions to be performed such as SQL queries... It also includes some
statements to let the WF manager knows the current state of the task (TASK_EXECUTING(),
TASK_ABORTED(), TASK_COMMITTED(object), TASK_DONE()...). All these
statements can be seen as a set of macros that can be embedded in the host language such as c,
C++. In the case of legacy applications, the TSL program consists in:

e acall to a macro indicating that the task is about to execute

e acall to an interface that submits or calls the legacy application

e acall to a macro when the application complete its execution

The TSL deals with task level failure recovery and error handing and error handling specific
to the interface or processing entity used.

To sum up, we do believe that our language is simpler than METEOR WFSL yet powerful
enough to specify the applications that WFSL can specify. It can also be seen that our language
provides better fault tolerance and dynamic reconfiguration features thanks to our multiple

input sets and local dependency specifications.

In this chapter, our language was presented as well as its associated graphical notation for the
GUL In the next chapter, we will validate our design by showing how it can be used to specify a

series of workflow applications.

Examples 99

Chapter 5

Examples

In this chapter, the reader will find some examples illustrating the main features of our
language as well as its suitability for specifying dependable workflow applications. Other
examples are presented in [60]. The first example is a process-ordering example showing how
a complete (yet simple) workflow application can be specified. The next example is a travel
reservation application illustrating how to add application level fault tolerance to workflow
applications. The third example is a network fault management example provided by Northern
Telecommunication that shows how to model loops as well as dynamic addition of tasks.

The screen dumps used as support in this chapter were generated using the toolkit
presented in the next chapter. For readability, only extracts of the scripts are given in this

chapter. However the reader can refer to appendix A for the complete specifications.

5.1- Example I: Customer order processing

This example will illustrate how task classes are specified and how an application can be
composed out of other tasks and compound tasks.

The workflow application considered here is doing some customer order processing. A
customer order some items such as some softwares, which triggers two activities that can be
executed in parallel: an activity checking whether the item ordered is in stock or not and an
activity checking the credential of the customer. Once both of these activities have been carried
out, two activities can then start: an activity capturing the payment, and an activity dispatching
the item. All these activities can reach two outputs success or failed, with the exception of the
capture of the payment that is always successful. We also want that the dispatch activity be

atomic.

The workflow application will fail if one of the tasks it is composed of fails. It will succeed

Examples 100

if the item is delivered and after that the payment is captured. We do not claim that this is a
realistic process, in reality the company may want to wait for the payment to be capture before
dispatching the item for instance, and it is likely that some of these tasks will themselves be
some compound tasks. A screen dump of the process is presented in figure 5.1. It has to be
noted that we have been using a compact representation of the task components on (i.e. neither
the input nor output sets nor their associated objects are shown) this figure. The User Manual

in appendix 7 has several screen dumps from non-compact representations.

processOnie m pplic ation

success

Figure 5.1: Overall process ordering application

In order to specify an application, the first thing to do is to identify the object classes. In this
example, we will be dealing with three types of object: objects of type Order, objects of type
Goods and objects of type Bill.

As a result, we declare these three object classes in the script:

objectclass Bill;
objectclass Goods;
objectclass Order;

Now, we need to specify the task classes that we are going to use. Let us for instance
specify the task class needed for the workflow application. A taskclass is used to specify the
interface of the task, namely its inputs and outputs, and is independent of the implementation
of this application. The workflow application takes an object of type Order as input and returns
an object of type Goods if the process is successful, nothing if it fails. These two outputs
(success and failed) are just final outcomes. The resulting taskclass named ProcessOrder is

fully specified using the following code:

taskclass ProcessOrder

Examples 101

{
inputs
{
input main
{
order of class Order
}
};
outputs
{
outcome failed
{
Y
outcome success
{
items of class Goods
}
}

}i
The other task class that is interesting is the one for the task dispatch, as we want a task

class for an atomic task. The way to do that is to use an outcome abort instead of just
outcome. Let also assume that the dispatch task has only one input set (main) and two output
sets (success and aborted). The set main and success having an object of type Goods

associated to them. The resulting task class specification is:

taskclass Dispatch

{
inputs
{
input main
{
items of class Goods
}
}:
outputs
{
outcome abort aborted
{
}:
outcome success
{
items of class Goods
}

Let’s now instantiate the workflow application. We have to declare a compound task with

as interface the one describe in the task class ProcessOrder.

compoundtask processOrderApplication of taskclass ProcessOrder

Then we need to specify implementation criteria allowing to specify some placement

information and other information needed at run-time. The two criteria starting with GUI are

Examples 102

automatically generated by the GUI to keep the co-ordinates (GUI_X, GUL_Y) of the task on
the GUI. “Node” is used to specify that you want the task controller running on the host

kellah.

implementation

{
"GUI_X" is "235";
"GUI_Y" is "100";
"Node" is "kellah"

};

The next stage is to map the inputs. As this particular task is the entire workflow application
being modelled, its inputs are not mapped (as they are coming from «outside»). The mapping
will be done at run-time with some object provided by an administration task. It has to be

noticed that the inputs specified here are those declared in the associated task class.

inputs
{
input main
{
inputObject order from
{
}
}

b

Then we have to specify the component tasks, for simplicity, we have just considered the
specification of one of them, dispatch. Similarly to what we did for processOrder, we first
specify the task class and then the implementation criteria. The criteria with keys
“TaskCtrlFactory” and “TaskImpl” are used by the workflow engine to choose a task
control factory for the controller of this task as well as a task factory to map the task to an
instantiation. Notice the use of the construct task instead of compoundtask as this is a primitive
task (i.e. its implementation details can not described as a (sub) workflow). Having done that,
we have to specify the dependencies. In this example, we only have one input set (main) with
one associated object items. There are two dependencies specified:

o A temporal dependency (notification from) stating that before starting this task with

the input set main, the task paymentAuthorisation has to have reached its success output.

. A data-flow dependency (inputobject from) stating that the input items should be

mapped to the object items of the output set success of task checkStock.

The resulting specification for this task is:

Examples

103

task dispatch of taskclass Dispatch

{

implementation

{

"GUI_X" is "477";

"GUI_Y" is "184";
"TaskCtrlFactory" is "Order";
“TaskImpl" is "Dispatch";
"“Node" is "kellah"

};
inputs
{
input main
{
notification from
{
task paymentAuthorisation if output success
};
inputObject items from
{
items of task checkStock if output success
}
}
}

Having described the task components as well as the dependencies involving them as

targets, we now need to specify the mapping of the outputs of the workflow application. The

outputs are described similarly to the inputs. In this case, the application was failing (outcome

failed) if any its constituents failed. This is specified by the first notification from. Any of the

three alternatives triggers the decision of reaching this output. The second output success can

only be reached if its object is available (object items from dispatch if it reaches its success

output) and the task paymentCapture reached its output success.

outputs

{

outcome failed

{

};

notification from

{

}

task checkStock if output failed;
task dispatch if output aborted;
task paymentAuthorisation if output failed

outcome success

{

notification from

{

}

task paymentCapture 1f£ output done
H

outputObject items from

{

Examples 104

items of task dispatch if output success

Given this specification, each task can be viewed as an interface and a set of incoming and

outgoing dependencies.

§ S S LSO P
|

—

s G chec kS toc K faile d
’ g < dispate haborte d >

chechS toc knninconde r nnl:; e ——
= - = iy i niA iehorisation fidled
2

ay nE ntA uthorisation.nain.onde r

@\\ ’ T paywe ntCapiure done o
x] \C'-v dispaate hs e ¢ e ss e ns >

Figure 5.2: Dependencies involving the processOrderApplication compound task

In figure 5.2, the processOrder application is shown with its internal dependencies (e.g.
dependencies involving its children and itself). All the dependencies on its input sets are
outgoing, as at specification time, we don’t know what can be fed to them. Similarly all the
output sets have incoming dependencies on them (we don’t know yet what will be using the
result of the workflow. This is specific to this task as it represents the entire workflow
application and its inputs are coming from the “outside” and similarly the «outside» uses its
outputs.

Figures 5.3, 5.4, 5.5 and 5.6, show the resulting dependencies on the component tasks of
the workflow application.

In order to specify a more detailed description of one of these components, you just need to
replace it by a compound task with the same interface (task class) and to specify internally the
components of the new task as well as their inter-dependencies. It has to be noticed that the
only place where modifications need to be done is within the specification of the task being

modified. This locality of the modification is an important feature of our model.

Examples 105

II <T_pmc essOrder pplic ation fadle d l

’1 pay ne nt(anﬂuﬂ_ﬂ__)}

<__pmcessOnle rA pplic aton.nmin.onler

Figure 5.3: Dependencies involving the checkStock task

[clieckStocksuccess _DJ-
@r ntAuthorisation.success.

T@" Onle oA pplic ations uccess >]

< process Owle oA pplic ation.nsiin.orde r 3]

[=—__pmcessOnier\ pplic ationsoied >
process Onle i pplic atiousuccessdiems >

Figure 5.6: Dependencies involving the dispatch task

Examples 106

5.2- Example IlI: A travel agency

This example will show how to use a compound task to hide some details of an activity as
well as how compensating and alternative tasks can be specified to provide some extra
application level fault-tolerance.

Let us consider a travel agent selling some combined travel reservations flight plus hotel.
First the travel agent gathers some information on the date of the trip, etc. Then he tries to find
a combination of a flight and a hotel for its customer (he may have to cancel the reservations
made and iterate its search if he can’t book both the flight and a hotel) till he finds a match.
Then, when the travel arrangements have been made, he prints the tickets. This workflow is

represented in figure 5.7.

Flight
Cancellation
Data Flight Hotel Print
Start ——®| Acquisiion ——®{ Reservation [— Reservation — Tickets Completed

> Precedence dependency

Figure 5.7:Travel reservation workflow

We assume that printing the tickets can fail (toner not available, out of paper, etc.) and that
a requirement of the process is to terminate the application even in this case but in a different
outcome (reserved in our figures). This could be used by another workflow application to deal
with the fault (by calling a technician for help for instance). We would also like to be able to
know as soon as the reservations were carried out the total bill to speed up the payment of the
order. This application is depicted on figure 5.8. The iteration process of trying to reserve a
plane ticket and the hotel nights is represented by the repeat outcome that makes the

travelReservation task iterate when this repeat outcome is reached.

Examples 107

tmyel

l

Figure 5.8: Overview of the travel task

e ;
tmuelResenvation ’__‘,::;::-5 ,’
S BT
7
Success
custony
;
e) T
q\“ﬂ i'/ e hotel
hote [Hese rvation S
i
.
TR

Figure 5.9: Overview of the travelReservation task

Finding the hotel and flight consists in gathering the data such as date, destination... from
the customer, then trying to find a flight and a hotel if a flight was available. If a flight was
reserved but a hotel could not be booked, a special compensating task must be run to undo the
flight reservation. A graphic version of these requirements is shown in figure 5.9. Notice that
the compensating task is provided as a normal task part of the workflow. Typically we will
have two types of compensating tasks: one doing some forward error recovery and one doing
some backward error recovery. In this example, as the task compensateFlightReservation
undoes the effects of the task flightReservation, it is a backward error recovery task. Instead of
having a compensate task for the flightReservation, we could also have had a forward recovery

task for hotelReservation that would for instance try to book an hostel and whose success

Examples 108

would trigger the outcome success of its parent task.

tmve lReservation

nuin —— @
\;\\1 conpe nsate l"lkhlknrnmlhn}' -
dataA c quisition === ~
- = —“\E““b\q‘_ N / N_.‘\\\ _
\ / .
\\.
el — = |ars
\\\-\
~—
Z 1§ &
{]
Figure 5.10: Overview of the travelReservation task, using alternative tasks.
s] 3l
hote lRe se vation
nuin //’ Jadled
end sl bookilate ourb 0 fice .~ :
|
\ s \
— 15 .

- — it -
\ success

hotel

000

starnt ul booldloteﬂ‘nmrrr =

Figure 5.11: Details of the reliable hotelReservation task.

Let’s now imagine that this travel agency has some special offers from a particular chain of
hotels. As a result the agent has to check first whether he can book a room in that hotel and if
it is not possible contact the tourist information centre database to book another hotel. In this
case, we just have to replace the hotelReservation task by a compound task with the same
interface consisting of the old basic task (renamed as bookHotelTouristOffice) as alternative of
a new task trying to book a room with the hotel partner of the agency (named
bookHotelPartner). The modified task travelReservation appears in figure 5.10 while the

details of the new task are shown in figure 5.11.

Examples 109

hotelRe se vation.nsin.e nd
hote lRe s¢ rvation.nninplac ¢
lote [Re se vation.nnins tant

< bookllote louis O ffice.omin___——> |
hote [Rese vation.success.hotel

Figure 5.12: Dependencies involving the bookHotelPartner task
On figure 5.11, we can see two temporal dependencies. The first temporal dependency is
between bookHotelPartner and bookHotelTouristOffice indicating that the latter task is started
when the former task fails. The second dependency is between the alternative task and the
parent’s output, and states that if the booking was not carried out by the alternative task, we
give up and enter the failed output of this compound task. Figures 5.12 and 5.13 show the

detail of the relationships involving the task and its alternative.

Ji 5 |

= a i : L1

- I

I < booktote Partye r.fiuile d > I-\

hote IRe senvation.nsibie nd

[hote Resevationfaled > I

hote lRe se reation.nsin.plac e 23

hote lRe se nvation.nmin.s tart

Figure 5.13: Dependencies involving the bookHotelTouristOffice task

The differences between the specifications with and without the alternative hotelReservation
tasks are now discussed. First of all, there are no differences between the two specifications
outside the specification of the task affected. The code’ relative to the specification of task
hotelReservation is given below, with the differences underlined by a grey background. There
are three differences. The first one is that the task is declared as a compound task and no

longer as a basic task. The second difference is that it loses the implementation criteria related

to the run-time mapping of the task instance.

Examples

110

task hotelReservation of taskclass HotelReservation

{

implementation
{
"GUI_X" is "382";
"GUI_Y"™ is "192";
"Host" is "kellah";
*TaskCtrlFactory" is "Travel";
"TaskImpl" is "hotelReservation"
}i;
inputs
{
input main
{
notification from
{
task flightReservation if output success
};
inputObject end from
{
end of task dataAcquisition if output success
};
inputObject place from
{
place of task dataAcquisition if output success
};
inputObject start from
{

start of task dataAcquisition if output success

The last difference is the specification of the component tasks (bookHotelPartner and

bookHotelTouristOffice) as well as the mapping of the outputs to the objects and sets of its

constituent tasks.

compoundtask hotelReservation of taskclass HotelReservation

{

implementation

{
"GUI_X" is "382";
"GUI_Y" is "192";
"Host" is "kellah"

}i
inputs
{
input main
{
notification from
{
task flightReservation if output success
};
inputObject end from
{

end of task dataAcquisition if output success

Examples 111

};
inputObject place from
{
place of task dataAcquisition if output success
};
inputObject start from

{
start of task dataAcquisition if output success

}
¥
task bookHotelPartner of taskclass HotelReservation

{
implementation
{
"GUI_X" is "414°";
*GUI Y" is "208";
"Host" is "www.hilton.com";
"TaskCtrlFactory" is "Travel";
*TaskImpl" is "hotelReservation"
))
inputs
{
input main
{
inputObject end from
{
end of task hotelReservation if input main
}i
inputObject place f£rom
{
place of task hotelReservation if input main
};:
inputObject start from
{
start of task hotelReservation if input main
}
}
}
}i
task bookHotelTouristOffice of taskclass HotelReservation
{
implementation
{

"GUI_X" is "584";
"GUI_Y" is "120";
"Host" is "www.travel-reservation.com";
v"TaskCtrlFactory" is "Travel';
*TaskImpl" is "hotelReservation"
};
inputs
{
input main
{
notification from
{
task bookHotelPartner if output failed
};

http://www.travel-reservation.com

Examples 112

inputObject end from

{
end of task hotelReservation if input main
3
inputObject place from
{
place of task hotelReservation if input main
};
inputObject start from
{
start of task hotelReservation if input main
}
}
}
};
outputs
{
outcome failed
(
notification from
{
task bookHotelTouristOffice if output failed
}
};
outcome success
{
outputObject hotel from
{
hotel of task bookHotelPartner if output success;
hotel of task bookHotelTouristOffice if output success
)
}
}

Notice that the mapping of the output object hotel associated to the compound task
hotelReservation can be done to two objects: either to the output object hotel associated to the
outcome success of bookHotelPartner or to the corresponding object of the task
bookHotelTouristOffice. Order of the alternative is significant, as the first in the list will be
given preference over the second one and so on. Similarly the order of the input and output
sets are important, in the event of several of them being able to be triggered, the one chosen is
the highest in the list. In this particular case, this feature is not that important as anyhow the

two objects will never be available at the same time.

5.3- Example lll: Network fault management

In this example, we consider the modelling of a process dealing with network faults and

resulting re-negotiation of the services provided if needed. A network is subject to some

Examples 113

possible faults, which trigger alarms. The Alarm Correlation Bridge (AC Bridge) receives such
alarms (for instance unspared ATM, etc.) and forwards them to the Service Impact Analysis
Agent (SIA). In turn this agent finds out the activities impacted by the alarms as well as their
costs (loss of revenue, penalties, etc.). These activities are sent to a Service Impact Resolution
Agent (SIR) that proposes several possible solutions to address the problem. This is done via a
Service Level Agreement (SLA) negotiation that will for instance negotiate to decrease the
quality of a video, reschedule a service, re-route a service, abandon as service, etc. The system

then takes corrective actions. We assume that on reception of an alarm the AC bridge starts a

workflow dealing with the treatment of the fault.

alamle solution

siaAnalyse <<

S A A S 3 8 R 5 S X S8 A A ST g it 3
IR Ve TS Y LA SRS R AR e N A o e g B OF i

Figure 5.15: Overview of the Service Impact Analysis task
The process can be seen on figure 5.14: on reception of the alarm, it is passed to the SIA
that can either fails, decides that there is no follow up and trigger the output success of the
workflow, or generate a list of impacted services. This list is then passed to the SIR that has

the same choices, but generates a list of possible resolutions. This list is itself used by the SLA

Examples 114

that deals with it and on completion trigger the completion of the workflow.

The overview and details of the SIA (and SIR) are now presented. The overview of SIA is
depicted on figure 5.15 and the details of SIR are shown on figure 5.16. Both of these two
processes are identical except for the type of data they are supposed to be dealing with.
Initially the siaAnalysis (respectively sirAnalysis task) creates the list of impacted services
(respectively resolutions) if there were some. If this list is not empty, it is then presented to a
human responsible for validating or invalidating the software decision. It has in particular no
way to change the list he is presented with. Changing that would just require to change the
task class so that it return the potentially modified list and use that list as impacted list (output
object impacts). This validation by a user is represented by a task (respectively siaValidation

and sirValidation) that is called whenever a list is generated and that forces the output of the

embedding task using two temporal dependencies (sir.validate.ok and sir.validate.refuse in

figure 5.16)

YL T ——
i

e T T —
S T e 7 T —

Saly i T sieAnalyse.noResolution —>|

] “\ < sV alidation.re fuse e ’
{ alarmite solution.swcess :>] i
il
&

B A i s 0 b e L S e s e L R S s e s

Figure 5.16: Details of the dependencies involving the Service Impact Resolution task
An interesting feature of our system is used in the SLA. As we want to start one negotiation
per resolution, and that this list is generated at run time by the SIR we have no real way to
model that statically as a workflow. As a result, we introduce the createNegociateResolution
task that receives as input the list of resolutions and is responsible for dynamically generate the

workflow presented in figure 5.17.

Examples 115

sia l
msolved

nxin

\"'l rmatex\!egothlelfesobdbn]r ------------------------------ o

Figure 5.17: Overview of the Service Level Agreement task

It has to be noticed that the mapping of the SLA outputs is not fully specified. As a result
some warnings will be generated when the specification is checked to let the user know of a
potential problem in its specification. The mapping will be done with the dynamically created
task. It is the responsibility of the task createNegotiateResolution to set up properly the
dependencies between the task it generates and the outputs of the compound task SLA.

The tasks to be generated by the createNegociateResolution can be themselves modelled as
a workflow. This workflow is represented in figure 5.18. Given a resolution, the task
initResolution is started and generates an initial bid for the producer (telecommunication
provider). The negotiation between the consumer and the producer iterates until an agreement
is found (i.e. one of them accepts the other’s bid) or refused (i.e. one of them refuse to bid).
This iteration is modelled by a repeat output that is feeding back the modified objects after the

round. The details of the negotiation process are shown in figure 5.19.

Examples 116

negociate Resohition

negociated

I bid

A T S

|
negotiationRound accepted
nmin %
bid consunmerp~z----- S i

5 nextround

resolution producer)

0o

Figure 5.19: Overview of a round of negotiation of the SLA
In figure 5.19, you can also notice that the resolution object of the input set is directly used
by the output set nextround. This is due to the fact that the resolution is not modified during
the negotiation round. This ability of our system to forward inputs to its outputs can be used to
implement some routing tasks. The repeat output sends back both bid and resolution. The code
associated with that is now presented, the lines related to the loop are underlined by a grey
background:

taskclass SLAbid
{
inputs
{
input main

{
bid of class Bid;

Examples

117

resolution of class Resolution

};
outputs
{
outcome accepted
{
bid of class Bid
};
outcome refused
{
};
repeat nextround
{
bid of class Bid;
resolution of class Resolution

}
};
compoundtask negotiationRound of taskclass SLAbid
{
implementation
{
"GUI_X" is "448";
"GUI. Y dsht105%:
"Host" is "kellah"
};
inputs
{
input main
(
inputObject bid from
{
bid of gask“initNegotiation if output start;
bid of task negotiationRound if output nextround
};
inputObject resolution from
{
rggqlutipn of task)negociateResolution if input main;
resolution of task negotiationRound if output nextround

}
};
task consumer of taskclass SLAbidRound

{
//body suppressed

}i
task producer of taskclass SLAbidRound

{
// body suppressed

}i
outputs
{
outcome accepted
{
outputObject bid from
{

bid of task consumer if output accepted;

Examples 118

bid of task producer if output accepted

}
};
outcome refused

{

notification from
{
task consumer if output refused;
task producer if output refused
}
};
repeat nextround

{
outputObject bid from

{
bid of task producer if output nextround

}:
outputObject resolution £rom

{
resolution of task negotiationRound if input main

}

}
}i
As can be seen from this example, in order to use a loop, an output of type repeat outcome

has to be declared in the task class used. Then its associated objects can be fed as input
objects, it itself can be used as source of a temporal dependency having as target an input set

of the same task. The mapping of this output is similar to the other types of outputs.

In this chapter, the main features of our language were presented, using examples. This is
not an extensive presentation of the possibilities of our language. For instance, input time-out
tasks can also be used. This is particularly useful to model deadlines. A deadline will be
modelled as an input time-out task that when it completes provides some alternative inputs to
the task concerned with the deadline. In this case, alternative input sets are also useful as they
allow starting the task in a degenerated state (e.g. without all its inputs) and still being able to
carry on.

In the next chapter the toolkit implemented to support the system will be presented. The
screen dumps used as support in this chapter were generated using the toolkit. Using the
toolkit also allows users to ignore the textual language and use a graphical notation to specify

their application.

Toolkit

119

Chapter 6

Toolkit

The main aim of the Workflow Management Toolkit (WfMT) is to provide high level easy

to use facilities to users to enable them to compose workflow applications, and then execute

and monitor them. In this chapter, the reader will find a detailed description of the toolkit.

After giving an overview of the toolkit as a whole, the notion of class of users for the toolkit

will be first introduced, and then the workflow script servers will be described including the

protocol used to communicate with it. Then we will present in turn how the toolkit allows you

to specify, simulate, execute and monitor a workflow application. Further information is

available in the OpenFlow documentation [81] and in the Toolkit User Manual in appendix B.

J NTERNET
A
M GUL v
T A

= ¥ —
12 11OP
U/ R >
E | Bj
E
R load
S

e = —

Server(s)

+ +

w® O

Execution
Service

Repository |
Service

Workflow Engine

Figure 6.1: Graphical representation of the workflow system

Toolkit 120

6.1- Overview
Components

Keeping in mind the software structure of the system as well as the relationship between its
different components described in chapter 3, and depicted in figures 3.2 and 3.3, a graphical
representation of the system with the communication between its components is given in figure
6.1.

The WIMT is composed of three main components: the Graphic user Interface (WfGui), a
script server (WfSS) and a workflow engine (W{E). Typically users will only interact directly
with the WfGui.

In order to provide greater flexibility by allowing incorrect/incomplete script specifications,
workflow scripts servers were added to store specifications being created. Users wishing to
use the textual language (described in chapter 4) to specify a workflow application can also
directly export it to a workflow script server. Then they can load it into the toolkit using the
WfGui. Later on, they can also get it back as a script, modify it and export it back to a
workflow script server.

A GUI is provided in order to facilitate the specification, execution and monitoring of the
workflows. As one of the requirements was to be able to use the workflow management
system from an heterogeneous set of machines and possibly from remote hosts, it was decided
to implement the front-end of the workflow system as a Java Applet. As a result the GUI is
platform independent and can be used remotely with as only requirement to be able to use a
Java-enabled browser. Being an applet it can also run directly on the user’s machine. It acts as
a front end to the Workflow Engine itself specified as a CORBA service. The Repository
Service is responsible for storing the low level (run-time) representation of the tasks. The
Execution Service consists of Task and Task Controller factories that are used to instance a
specification from the Repository Service. Typically a user will create a workflow specification
either using the GUI high level tasks or the workflow language presented in chapter 4, then
will export it to the Repository Service and finally will execute it thanks to the Execution
Service and monitor its progress.

The main features that the toolkit provides are:

1. Creation of new workflows either by loading a script from a WSS or by using the

graphical notation presented in the previous chapter.

2. Extending, modifying existing specifications

Toolkit 121

3. Checking workflow applications for loops, and other errors
4. Simulating workflow applications

5. Instantiating and monitoring workflow applications

6.2- Classes of Users
In order to use the Toolkit, you need to login to the GUI by providing a user name and a
password. The Toolkit checks these data against a list of registered users and if it finds a
match, it also affect to the user a class of connection and an initial name context from the
Name Service where all user related servers and workflow objects are kept.
Three different classes of users have been created:
® Maintainers: this is the equivalent of the UNIX supervisors. They have all the options
available to them. They can create new users on-line as well as change their class of
connection or path used for the name server using the form depicted in figure 6.3.
e Designers: they can create their own specifications, but can not modify directly the
specifications stored in the repository service.
e Users: they can only monitor what is happening in the workflow. In particular they can

not create or modify specifications.

It has to be noticed that maintainers get a super-set of the features given to designers and

themselves getting a super set of the features given to users.

6.3- Workflow model using the WfGui
The W{Gui uses the three main objects of our system:
e Object Class
e Task Class
e Task

In the next paragraphs, the models of these objects will be introduced.

6.3.1 ObjectClass model
It is represented as an object with as data a String to keep its name and a list of the

TaskClassObjects of this class.

Toolkit

122

TaskClassInputSet

——-D String label

ObjecctClass

String label
TaskClassObjectList ol

1
0.*

TaskClassObject

String label
ObjectClass ol
boolean valid

0.*

|

TaskClassObjectSet

TaskClassObjectList ol
boolean valid

TaskClassOutputSct

TaskClass

String label
TaskClassInputSetList inputs
TaskClassOutputSetList outputs
boolean valid

Figure 6.2: UML class diagram (excluding task components)

6.3.2 TaskClass model

A TaskClass is represented by an object with as data a String to keep its name and a list of

Task of this class. It also includes a list of TaskClassInputSets and of TaskClassOutputSets.

TaskClassInputSets (respectively TaskClassOutputSets) are represented by objects with as

data a String to keep their name as well as a list of TaskClassObjects. A TaskClassObject itself

is represented by objects with as data a String to keep its name as well as a reference to its

ObjectClass. Each of these objects also has a boolean stating whether it is valid or not. The

UML class diagram for the TaskClass model is given in figure 6.2. It has to be noticed that the

methods associated to these classes do not appear on the diagram.

Toolkit

TasklInputObject

TaskObjectSetList

TaskObject

TaskObjectList objUsed

_{> TaskObjectList objUsing

L..]

0.*
| 0.*

¥ TaskOutputObject

TaskObjectSet

TaskInputSet

TaskObjectList tol

TaskObjectSetListList setsUsed
TaskObjectSetList sctsUsingMe

[...]

L.* | - TaskOutputSet

] *

1.*

Task

TaskMetalnfo

String myKey
String myValue

String label

TaskClass taskClass
TaskInputSetList inputs
TaskOutputSetList outputs
TaskMetalnfoList meta
boolean valid

" llo.,* ?

CompoundTask

TaskList tl

Figure 6.3: UML-like class diagram (excluding TaskClass components)

6.3.3 Basic task and compound task models

A basic Task is modelled by an object of class Task with as data a String for the name of the

task, a reference to an object of class TaskClass (its associated TaskClass), a list to objects of

class TaskMetalnfo that are used at instantiation time by the Task factory. An object of class

TaskMetalnfo represents an instantiation criterium used to choose the best binding at run time

for a task. It is modelled by a couple key-value. In the current implementation, the value is of

Toolkit 124

type String. .

A Task object also contains a list of TaskInputSets as well as a list of TaskOutputSets. An
object of task TaskInputSet (respectively TaskOutputSet) contains a list of TaskInputObjects
objects (respectively TaskOutputObijects objects), as well as a list of lists of TaskObjectSets
(either TaskInputSets or TaskOutputSets) which represents the alternative sets of temporal
dependencies on that TaskObjectSet. It also includes a list of the TaskObjectSets that are using
it as source of dependencies. It also contains two strings, a Task object and a
TaskClassObjectSet object. The two first Strings are used while loading a workflow script
from the WfSS and if the TaskObjectSet is invalid, while the last two are used when the
TaskObjectSet has been registered or if it was created using the WfGui (with a valid
TaskObjectSet).

A TaskInputObject (respectively TaskOutputObject) contains two lists of TaskObjects
(either TaskInputObject or TaskOutputObject). One list contains the data delegations
associated to this TaskObject and the other contains a list of other TaskObjects using this
TaskObject as source of data delegations. Similarly to TaskObjectSets, TaskObjects also keep
their names in two ways:

o As three strings and an integer, to store the names of their parent Task, parent
TaskObjectSet, their own name and their type (TaskInputObject/TaskOutputObject)
while a script is being loaded,
o As a Task, a TaskObjectSet and a TaskClassObject when it becomes valid.

A compoundTask also keep a list of Tasks to represent its components.

This is represented in figure 6.3.

6.4- Workflow File System (WfSS)
This service is similar to FTP in that it is used to transmit some script specifications from a
normal file system (such as UNIX) to the workflow toolkit and reverse. The script server was
implemented as a Java application and can be run on all platforms supporting Java. It is a

multi-threaded server supported multiple clients connecting simultaneously.

6.4.1 Connecting to a workflow script server
As a user, the first thing that you probably want to do is change the default script server to

be used. For security reasons, the Toolkit can only use servers located on a couple of machines

Toolkit 125

of the domain ncl.ac.uk. This is due to the fact that in order to bypass the security managers of
the browsers such as Netscape, we have used a proxy for the WESS. This proxy implemented
as a CGI has been coded to only forward requests if they are aimed at this subset of machines,
due to security restrictions imposed by the webmaster where it was run.

Once a valid WISS has been declared, you can load or save your specification as a script
using the script server. The aim of the script servers is to enable the user to save its work as a

workflow script wherever wanted.

6.4.2 Protocol
We will now describe the protocol used to communicate with the workflow script server.
The protocol can be divided into three phases, first a hand shaking, then some work being

performed and then closing the session. The protocol is depicted on figure 6.4.

< HELP Sending help

HELP. Sending hel
CD director -
hanging
director

GET fileldirectory
Sending listing

COMMAND
—>

C D e

Figure 6.4: State transitions on server side of the WfSS

QUIT

READ filename
Reading

FILTER filter

etting filter

Command issued

When the server is contacted, its reaction is to start a new thread to deal with it. This new
thread exchanges messages with its associated client. There are eleven types of messages:
connected, error, get file, get directory, open succeeded, open failed, close, quit, comment,
success and data. Each type of message is associated with an operation code that is send back

before its content.

Toolkit 126

Once created, the thread starts sending a message of type comment to the client. The aim of
this message is to let the client know the version of the server. At this stage, the client can
issue three commands:

o QUIT to close the session. The success of the command is acknowledged by a

message of type quit,

o HELP to get a list of command supported,

° USER name to give its name to the server.

On reception of a message “user name”, the server sends back a message of type connected
back to the client and that’s the end of the first phase.

Once the protocol is in its second phase, the client can get some work done. The server
supports eight commands:

. HELP to list the commands available and sending them back as messages of type

comment,

° QUIT to close the session. The success of the command is acknowledged by a

message of type quit,

. GET [fileldirectory] to send back the list of files or directories in the current directory

respectively as messages of type get file and get directory,

. CD directory either to get the path of the current directory or to move in the directory

tree. The path of the current directory following the keyword CWD is send as comment if

the new directory is the same as the old one, otherwise the new path following the keyword

PWD is send as a message of type success,

° WRITE filename to start writing in the file filename whatever is sent by the client till

reception of a CLOSE command. The CLOSE command is acknowledged by a message of

type close. If it fails, a message of type error is sent,

. READ filename to get the content of the file named filename from the current

directory. The server first acknowledges the success of opening the file for reading by

sending a message of type open succeeded. It then proceeds with sending the content as a

set of messages of type data. If it fails, a message of type error is sent.

. CLOSE this command is only accepted when a file is being written. It closes the file

being accessed,

. FILTER filter to set a filter on the list of files to be sent back using GET file. This

result in a message of type comment if the filter was set or of type error otherwise.

Toolkit 127

If a command is not recognised, a message of type error is sent back to the client.

CGI program

As browsers were raising some security exceptions and in order to be able to cope with the
old browsers not supporting signed applet, a CGI (Common Gateway Interface) program was
added to let the toolkit interact with the workflow script servers. It is only used for servers
located on different machines from the one where the applet was loaded.

When users want to communicate with the workflow server the W{Gui first checks whether
the WISS to be used is running on the same host as the applet. If it's the case then the
communication is direct; otherwise the request is posted to the CGI program with some extra
information letting it know where to forward that request. On reception of this query, the CGI
program sends it as if it was the source and receives an answer that it gives back to the WfGui.
The way it was implemented is that the CGI program first gets the host and port of the server
to be contacted. It then tests whether it is allowed to send to this host (Departmental security
restriction to some hosts part of the ncl.ac.uk domain) and if it is the case forward the rest of

the query to this port and host. On reception of the answer, it is sent back to the WfGui as

answer to the initial query.

6.4.3 Loading a script
Using the READ operation previously described, it is possible for the WfGui to retrieve a

script from a WfSS. The specification will then be pre-processed letting you know whether you
have some errors in your script and their location. If the errors were bad enough for the
interpreter to fail to load the specification, they are listed and the user can try to fix then
directly. This verification of the syntax is weak as it was thought that designers might want to
load a non-correct specification and then use the tools provided with the GUI to correct it.

Loading a script can typically be divided into three different stages: the interpretation stage,
the referencing stage and the registration stage. These stages will be now described one after
another, starting with the interpretation stage.

While being interpreted, the textual specification is converted into a graphical
representation. The missing ObjectClasses are created as ObjectClasses specific to the user and
are afterwards available to the user. The TaskClasses are also created directly while reading

them. Input object and output objects are registered with their ObjectClass to make it easier to

Toolkit 128

map the invalid ones later on. The interesting problem is to load the task. First the associated
TaskClass is read. If it was an unknown TaskClass, then an error is generated and the
interpreter stops trying to load the specification. Otherwise the task is generated with its
associated TaskInputSets, TaskInputObjects, TaskOutputSets and TaskOutputObjects. The
task is also registered with the TaskClass so that the Toolkit prevents the deletion of
referenced TaskClasses later on. The specification of the task is then carried out with the
generation of the data and temporal dependencies associated to the TaskInputSets and
TaskOutputSets as well as on their respective associated TaskObjects. It has to be noticed that
an error is generated if the script tries to specify the dependency on a TaskObjectSet or and
TaskObject not part of the associated TaskClass. This error triggers the end of the
interpretation of the specification. Each data and temporal dependencies is translated as a
reference on dummy TaskinputSets, TaskInputObjects, TaskOutputSets and
TaskOutputObjects as appropriate. There is no check at this stage of the validity of these
dependencies.

Once the interpretation stage has been successfully completed, the referencing stage starts.
During this stage, the dummy TaskObjectSets and TaskObjects are compared to the valid ones
within the context of the task for which they are used as source of the dependency. When a
match is found the dummy object is replaced with a reference on the real object. The valid
objects for each possible type of target objects of a dependency will now be described. We
assume that the target object belongs to task A:

o TaskInputSet: The TaskInputSets of the parent task of A, as well as both

TaskInputSets and TaskOutputSets of the peer tasks of A (The definitions of peer and

parent tasks can be found in section 3.1.1) as well as A’s TaskOutputSets of type repeat.

o TaskInputObject: The TaskInputSets of the parent task of A as well as both

TaskInputSets and TaskOutputSets of the peer tasks of A (The definitions of peer and

parent tasks can be found in section 3.1.1) as well as the TaskOutputObjects associated to

A’s TaskOutputSets of type repeat.

. TaskOutputSet: The TaskInputSets of A, as well as the TaskInputSets and

TaskOutputSets of the tasks composing A. This is only for a compoundTask,

TaskOutputSets of a basic Task are not target of dependencies.

. TaskOutputObject: The TaskInputObjects of A, as well as the TaskInputObjects and

TaskOutputObjects of the tasks composing A. This is only for a compoundTask,

Toolkit 129

TaskOutputSets of a basic Task are not target of dependencies.

After completion of the referencing stage, the registration stage starts. This stage consists in
going through these dependencies and register the interest of the object involved as target,

with their sources. This is useful afterwards when removing tasks.

6.5- Composing a specification using the WfGui
There are three different ways that can be used to specify a workflow using our toolkit. The
first one is to write directly a script using the textual language and to put it in the workflow
script repository managed by one of our file servers. The second way to specify a workflow is
to use the GUI and its graphical notations. The third way is to import it from the Specification

Service.

6.5.1 Overview

Once a new specification has been loaded into the W{Gui, you can then modify it. The
graphical environment allows you to deal with the three main objects of our system:

e Object Class

e Task Class

e Task

6.5.2 Object classes

When the WfGui applet is started, it first contact a naming server to get the Specification

Service and then recover from a list of ObjectClasses known by the system.

Adding an ObjectClass
At the time being, it was chosen not to allow users of class designer to modify the list of
object classes known by the system. Only users of class maintainer can modify this list. Using a
form it is possible to specify the name of a new object. The specification server is contacted
and asked to add this new Object Class to its list of valid ObjectClasses. The WfGui also
updates its local copy of this list.
In the current version of the Toolkit, it is not possible to remove ObjectClasses once they

have been added. This choice was made as some users may be using some of these

Toolkit 130

ObjectClasses without the Specification Server knowledge.

Mapping of an invalid ObjectClass
As the interpreter of workflow script is weak, it is still possible for designers to introduce
some invalid ObjectClasses into the WfGui. As a result it is possible to map invalid
ObjectClasses to valid ones using a form. When an invalid ObjectClass is mapped to a valid
ObjectClass, all TaskClassObjects (and as a result TaskObjects) using the invalid ObjectClass
get updated with the new chosen ObjectClass. Once this is completed, the invalid ObjectClass

is no longer referenced and is removed from the system.

6.5.3 Task classes
It is possible to add, delete or edit TaskClasses using the W{Gui or merge two TaskClasses
together.
Adding a TaskClass
The addition of a TaskClass is done via a form where you specify the name of the new
TaskClass, as well as the alternative inputs and outputs needed. They are provided as
TaskClassInputSets, TaskClassOutputSets and associated TaskClassInputObjects and
TaskClassOutputObjects. TaskClassInputSets and TaskClassOutputSets are fully defined by
their name while their associated objects are fully defined by their name and class.
When specifying a task class the following errors can occur:
. Invalid name or name already used for another TaskClass.
L No TaskInputSet or no TaskOutputSet

. Outcomes of type mark and abort both present

Deleting a TaskClass
It is possible to delete TaskClass that are not referenced by any Task. To delete a TaskClass

in use, you need to remove or re-map the tasks referring to it.

Editing a TaskClass
Editing a TaskClass consists in taking a copy of an existing TaskClass, and uses it as
starting point to create a new TaskClass. This copy of the TaskClass is used to let users undo

their modifications if they wish to do so.

Toolkit 131

Mapping a task class
You can also merge two task classes together by mapping or deleting the

TaskClassInputSets and Objects (respectively TaskClassOutputSets and Objects) of the task

class being mapped to the task class it is being mapped to.

Each task registered with this mapped TaskClass get notified of the changes and updates its
specification by creating some new TaskInputSets, TaskInputObjects, TaskOutputSets and

TaskOutputObjects that are substituted to the old ones.

6.5.4 Tasks
Tasks can be added, deleted, edited using the WfGui. A Task’s TaskClass can also be

mapped to another TaskClass. The graphical notation is the same as the one introduced in
figure 3.15.

In our model, a task is fully defined by its name, its TaskClass and its dependencies on the
other tasks involving its inputs as target. In the case of a compound task (sub-workflow), you
also have to specify the dependencies that its own outputs have on the constituent tasks. The
temporal dependencies are shown on the picture above as dotted lines while the data flow
dependencies are shown as plain lines.

In order to help the designer specifying its applications, commands have been provided to

navigate in the tasks and visualise them.

Adding a task

In order to add a task to the specification, users just have to a creation form where they can
specify the task name, choose the TaskClass associated to the task being created as well as its
type (compound task or basic task). Users can also add some instantiation criteria.

Once this is done, you can start adding some dependencies and delegations on up-stream
tasks involving the TaskInputObjects and TaskInputSets.

If you are creating a compound task, you can also add some dependencies and delegations
between inputs and outputs of your task. You can also change the priority of the delegations
and dependency sets. Decreasing the priority of the item selected does this. It has to be noticed
that an item with the lowest priority seeing its priority decrease will actually gets the highest

priority. This allows increasing the priority of an element.

Toolkit 132

Deleting a task
You just need to click on the icon of the task that they want to delete, This task get

removed as well as all dependencies where in which involved.

Editing a task
It is a melting pot of the two previous features. You select the task to be edited by clicking
its icon and then you edit it using the same form as for the creation but with as default the
values of the task edited. When editing the task, a copy of the task is used to let users undo

their modifications if they wish to do so.

Mapping the Task Class of a task
Same technique as the one used for merging two task classes, but this time only the task

class of the task concerned is changed; the other tasks sharing the old task class are not

affected.

Navigating into a Workflow application Specification.

A navigation system is also available that let the users zoom in and out of your specification.
Zooming in a compound task let you see its component tasks, while zooming in a simple task
display its task class as well as all the dependencies it is involved in. The zoom-out is the
reverse action: zooming out let you see the embedding workflow. When you are lost in the
depth of your specification, you can always come back at the highest level by requesting the
overview. The interface is of type drag & drop, which means that users can click on task icons
and move them around the desk to get a better visualisation of the workflow application.

Clicking twige on the icon on a task gives you the task’s view of the world (e.g. mappings
to its inputs and outputs), while zooming into a compound task give you a graphical view of
the body of the workflow (e.g. its component tasks as well as the links between them and with
it). This view can be compact (component task are represented by a rectangle) or full
(component tasks are fully described and the dependencies clearly show which sets or objects

are concerned).

Toolkit 133

6.6- Simulation
Using the simulation tool, you can start a simulation, do a step-by-step execution, stop or
reset the simulation. There you also have two options: the first option is a random simulation
where the computer randomly chooses an output state (outcome) when a basic task is
executing. The second option lets the user decides on the outcome of the task execution.
Simulation
A colour scheme let users see which dependencies and tasks are being triggered as well as
the state of the tasks. This provides a quick way to check that the workflow is executing as
forecasted.
The default colour scheme chosen to represent the states of a Task (cf. section 3.4 and
figure 3.17) is:
e Waiting (green): the task has some dependencies on it, but may be executed later on
o Set-up (yellow): the task is being modified
e Active (orange): the task is executing
e Completed (red): the task has been executed
e Discarded (grey): the task has been discarded, as some dependencies could not be
fulfilled. This state has been added to what is presented in section 3.4, as it allows

forecasting the future more easily.

The relevant sub-set (waiting, set-up, completed and discarded) of this colour scheme is
used for the TaskObjects.
The tasks can be in several states with the temporal and data flow dependencies depicted on

figure 6.5.

Toolkit 134

processOnlde A pplic ation

SUCCess

Figure 6.5: Simulation of the execution of a workflow application

In the example depicted in figure 6.5, the user has zoomed into a compound task while it
was executing (the rectangle showing the compound Task boundary is orange). This task had a
single TaskInputSet with one associated TaskInputObject. Both of them appear in red meaning
that they have been used. The two tasks PaymentAuthorisation and CheckStock appear in
orange, meaning that they are executing. This is consistent with the specification as they both
only have a data flow dependency and it is on the TaskInputObject of their parent task. As they
haven’t completed yet, they were coloured in orange. The other tasks appear in green as they
are still waiting for their inputs. Dependencies that have been used appear in red in the detailed

view of a task.

Implementation

Each task and each dependency have a run-time status indicating their current situation.
When the simulation is started, the workflow application gets one of its input sources fulfilled.
The way to decide which one depends on the simulation options. If it is automatic, a random
value is generated by an object of class Toolkit.Gui.Randomize (using the formula
Math.abs(generator.nextInt()) % number), where generator 1S an object of class
java.util.Random, and number is the number of input set minus one). The result gives the
TaskInputSet that is supposed to be activated.

Afterwards, the system goes one step at the time. Each task still waiting checks whether one
of its input sets requirements has been fulfilled. Each TaskInputSet checks in turn which

dependencies have been fulfilled. If all its TaskInputObjects have been marked as fulfilled

Toolkit 135

(marked as executed), the corresponding TaskInputSet checks its temporal dependencies and if
they are all fulfilled, this TaskInputSet is itself fulfilled (marked as executed). If the task finds
an input set marked as executing (available), then it is chosen and marked as completed
(chosen), while the other input sets (if any) are discarded.

If a basic task is in the state executing, then a TaskOutputSet is chosen randomly or by the
user depending of the options. Once it is done the chosen TaskOutputSet as well as its
associated TaskOutputObject are marked as chosen (executing). At the next step, the
TaskOutputSet and its associated TaskOutputObjects are marked as completed, while all the
other TaskOutputSets and TaskOutputObjects are marked as discarded.

If it is a compound task, then it checks its TaskOutputObjects. When they are all fulfilled
and there are no temporal dependencies on their associated TaskOutputSet, this
TaskOutputSet is set as fulfilled. When the task next steps, it will find out about the fulfilled
dependencies and set the TaskOutputSet and associated TaskOutputObjects as chosen

(completed) while setting their alternatives to discarded.

6.7- Execution
Before being able to start executing a specification, it has to be sent to the Repository
Service. The pre-requisite for storage in the repository service being that the specification
needs to be correct, some checking tools of the different components of the workflow
application have been provided. They will be first presented before describing what needs to be

done to transfer a WfGui specification into the Repository Service and run it.

6.7.1 Checking the specification
When the specification is over, you can check that it was correctly written. This process has

been divided into three sub processes: Checking the ObjectClasses, the TaskClasses and the
Tasks.

Checking the ObjectClasses
This makes sure that all ObjectClasses are known by the system. A list of the ObjectClasses
used in the specification appears and let the designers see which ones are not recognised.
If some new ObjectClasses were found, designers have the opportunity to map them to

existing ObjectClasses, while maintainers can also add them as System ObjectClasses. The way

Toolkit 136

to do it has already been presented in section 6.5.2.

Checking the TaskClasses
A task will be tagged as incorrect if:
. Once or more of its TaskClassObject has an invalid ObjectClass.
° It doesn’t have at least one TaskClassInputSet and one TaskClassOutputSet
. There is both a mark and an abort TaskClassOutputSet.

. A repeat outcome is used by a task different from its own task

Check Task for Loop

Is it a basic task ?

Yes Check Basic Task Loop

\3/

No
@eck Compound Task @

Return Loop flag

End

Figure 6.6: Design for ’Check task for Loop’’ process
Checking the Tasks
A task is tagged incorrect if:
. Its TaskClass is incorrect,
J Some of the dependencies with this task as target are on non-existent objects.
J Some data-flow dependencies with this task as target are involving two TaskObjects
of different classes.
° Some of its components share their names with it.
e It is a compound task including an unwelcome loop (unwelcome loops are discovered

by creating a dependency graph of the component tasks)

Toolkit

137

While the four first checks are trivial, the check for unwelcome loop is interesting and will

be described in the next paragraph.

Check Compound Task Loop

—{ While has Components]

— Get component

Set component Loop
flag to Unchecked

~~

ﬁeck Basic Task Loop for

Is Result Task Looping

=0

—*

éﬁo—(Whilc has Components J

Get component

_@eck Task Loop for compon

Is Result Component Looping

Yes

Set Loop flag to
Looping

Is Loop Flag set to Unchecked

éﬁs—@cck Basic Task Lo@

Return Loop flag

End

Figure 6.7: Design for ’Check compound task for Loop’’ process

Checking for unwelcome loops

The first thing to realise is that finding unwelcome loops in a workflow application (e.g.

loops that are not introduced by repeat outcomes) is equivalent to finding unwelcome loops

between the component tasks of a compound task. Indeed, there are no dependencies between

Toolkit 138

tasks embedded in a compound task and the peer tasks of their parent. As a result, loops can
only involve peer tasks.

In order to find out the dependencies, we have proposed the following design: We start the
check for loop by a Check task for Loop for the “root” workflow task. The design notation has

been used to describe this operation in figure 6.6, 6.7 and 6.8.

Check Basic Task Loop

Is Loop flag set to Unchecked ?

Yes -
Set Loop flag to Checking

—[While has dependencics]

7 — Get dependency
— Is it a dependency using this task as
source ?
No X
Is it using the embedding
task as source ?
Yes
Is dependency on the outputs ?
No Yes -
t Sct Loop flag to Looping
L~ Check Task Loop for
source of dependency
U L s Result Looping or Checking ?

Yes | St Loop flag to Looping

4 Is Result Looping or Checking ?

éNL Set Loop flag to Checked

Return Loop flag

End

Figure 6.8: Design for ’Check basic task for Loop” process

Figure 6.6 just describe the test on the type of task (basic or compound task) the task to be

checked is and then do the proper treatment.

Toolkit 139

The idea behind this approach is that if there is no loops, you can always find a task with as
only dependencies involving as target some dependencies with the compound task. If it doesn’t
exist, it’s obvious to prove that there is a loop, as you always can choose an outcome that has
a target dependency on a peer task. After having set up a sequence with n+1 elements where n
is the number of children, then there is at least a duplicated task as there are only n tasks).
Having chosen this task without outgoing dependencies on peer tasks, you can safely remove it
from the set of children without changing the result of the check. Indeed this task will never be
checked again as it has no outgoing dependency on its peers and having one will be the only
way to find out that it is involved in a loop. You then iterate on the remaining n-1 tasks.
Checking one by one the tasks allows to be sure that the result returned is correct (none of

them is involved in a loop or at least one is involved in a loop).

The algorithm terminates as each task is checked only once. There is a maximum of n-1 + n-
2 + ... +1 ((n*n-1)/2) requests of checks in the worst case (no loops and each task has some
dependencies involving all its possible up stream tasks. The i task depends on the outcomes of

the i-1 previous tasks.)

6.7.2 Storing in the Repository Service

Once the specification has passed the consistency tests, it can be exported to the repository
service. The main difference between the specification model of the WfGui and the repository
service are the outcomes of type mark that are not yet supported as well as those of type abort
and repeat that are not directly understood. As a result, the repeat loops have to be converted
into a different representation at run time using genesis tasks. On figure 6.9a, the high level
representation of a repeat task is given. The representation of the same task at run-time is
given on figure 6.9b. It is modelled as a compound task embedding a task similar to myTask
and a genesis task. The main difference between myTask and myTask2 is that the input
alternatives that were coming from the repeat outcome disappear. The dependencies that were
using a repeat outcome as source are now dependencies on a genesis task with the same inputs
as myTask had. This genesis task uses as associated task the compound task that gathers

myTask2 and the genesis task.

Toolkit 140

Q g\dyTuskZ 1 V@@
© |

T L T

a) High level representation b) Low level representation

Figure 6.9: Run time representation of loop tasks
Similarly the tasks with an abort outcome (e.g. atomic with its transactional meaning) have to be

translated before being sent to the low level

myTask

©

QOO

a) High level representation b) Low level representation

Figure 6.10: Run-time representation of abort outcomes

In figure 6.10 a), we can see the high level representation of a task with an abort outcome.
Assuming that it is not embedded in another task with an abort outcome, it is translated as the
task represented on figure 6.10 b). The first (left) additional task could be called “generation
task” as it is a task whose only purpose is to create an object of class “Transactional Context”
which is then added as parameter for the input sets of the task as well as the output sets of the
task. The additional task on the right that could be named “commitment task™ has two inputs sets
abort and commit each with one associated object of class “Transactional Context”, and have two
outcomes aborted and committed. The references to the Transactional Context object from the
abort outcomes are OR-ed on the abort input set of the additional task, while the Transactional
Context objects from the other output sets are mapped to the commit input sets. The outputs sets
of the additional task are then used as temporal dependencies on the embedding task output sets,
the abort output set being used by the output sets of the embedding task that are linked to former
abort output sets from myTask.

If myTask is itself embedded in another task with abort output sets, then the outermost

Toolkit 141

embedding task with abort outcomes is dealt with as described in the previous paragraph. The
transactional context object is then fed to all its children without having to add any extra
generation task or commitment task. This provides a way to model nested transactions. For basic
task, the implementation must comply with this interface (e.g. the Transactional Context object on

top of the expected object) and it is the programmer responsibility to ensure that it does.

6.7.3 Starting an application

Once the low-level specification has been created (e.g. the specification is stored in the
Repository Service), it is possible to start an application. The way it was done is to let the user
select the initial input set as well as its associated resources to be used as initial inputs for its
workflow application. The list of resources available is retrieved from the naming contexts and
“InitialContext/Resource/” from the Name Service. It has to be noticed that these resources are
stored by object class, i.e. they are stored in sub naming context on a per class basis. Once the
inputs were chosen, the task controllers associated to the task instances of the specification are
created and notification requests are issues. On completion, the resources are fed as inputs to

the workflow and the workflow application starts.

6.7.4 Dynamic modifications

The low-level dynamic reconfiguration is achieved by changing the status of the task
controller in charge of the task to set up. Once the task controller is in this status
modifications can be carried out on the task it is dealing with. The following modifications
(listed in chapter3, section 4) can be carried out on a single task, one at the time in a

sequential order :

1. The implementation bound to a basic task can be changed as long as it is in a wait
state

2. Tasks can be added or removed from workflow instances

3. The constituent tasks of a compound task can be changed

4. Input alternatives can be added or removed from a task, and their priority can be
changed as long as the tasks is not in its state executing or completed

5. Output alternative can be added or removed from a task, and their priority can also be

changed as long as the task has not completed

Toolkit 142

It has to be noticed that there is no provision for making atomic a set of modifications involving
different tasks or just a single task. Using the toolkit, you can carry out the following

modifications, providing that the task controller of the task involved is still in its wait status:
I-modification of a single task, including changes of every details of the specification, including:
a- modification of the incoming dependencies and object delegations involving this task

b- changes of the meta information associated to this task and in particular the task factory

to be used for simple tasks.

c- mapping of the task class of the task to another task class (outgoing dependencies are
then automatically transferred to the mapped tasks, or deleted shall the outcomes or their

associated objects be removed.

d- change of the type of the task (For instance, a simple task can be transformed into a

compound task)

2- setting manually the status of the associated task controller to set up. In this case, you will

have to set it back to waiting manually.

Limitations:

If you want to carry out a set of modifications involving a set of tasks atomically, you will have to
make sure manually that they have all been frozen (e.g. setting the task controllers status to set
up). To do that, you will have to change each task controller of the tasks involved to set up.
Notice that setting the status of the task controller of a common ancestor (if possible) will achieve
the same result. In a typical example of dynamic reconfiguration involving a big number of tasks,
it is likely that you would identify some sets of tasks that can be “frozen” by freezing their parent

and would freeze their parent instead of freezing them one by one.

6.8- Monitoring
Once started, a workflow application can be monitored. This is made possible thanks to the
task controllers that provide information on the state of the tasks that they are managing.
The monitoring process itself can use pull or push technology. Choosing the pull technology

obliges the user to take some manual snapshots to see the current state of the workflow

Toolkit 143

application. In this case the Task Controllers associated to the specified tasks are requested to
provide to the WfGui the status of the task they are controlling as well as which inputs and
outputs were chosen. If the push technology is chosen, the WfGui registers its interest in
everything happening in the application and update the view as soon as it is notified of

changes.

The W{Gui displays the application being monitored similarly to simulated applications.

1] NTERNET Execution
A c Service
e \Y +
GUI
T I A i+

/ %i':”' 10P
B
. Repository
Service

Specification Service

\ A J

{Hoo¥
AA

nwxmwc

Workflow Engine

Figure 6.11: Graphical representation of the workflow system with Specification Service
As stated earlier on, specifications stored in the Repository Service lose their high level
names. This makes it difficult for other persons to monitor the workflow. As a result, a
Specification Service that will keep a high level view of the tasks an in particular keep the
names associated is being built on top of the Repository Service as depicted on figure 6.11. It
is basically a copy of part of the GUI implementation with a CORBA interface in front of it.
This will make it possible to have several observers monitoring the progress of the same

workflow.

In this chapter the toolkit was presented. It was shown that the specification needed to be
checked before starting to execute it. Some external tools can be used to check specifications.
In the next chapter some analysis that can be done on our language are presented as well as
some external toolkits that could be used to provide further consistency checks of our

workflow specifications.

Analysis 144

Chapter 7

Analysis

In this chapter, the reader will find information on tools to analysis specifications written
using our language. We have chosen to describe the meaning of our language by making use of
formal systems based on Petri nets [56] and Finite States Processes in turn. In both cases, we
first give an overview of the languages used to describe the semantics of our language. We
then present the semantics of our language using these languages.

Having done that, we describe how workflow applications can be modelled using both Petri
nets and Finite States Processes. Finally, we describe the main features supported by the
toolkits associated to these two notations, as well as their relevance to our system (e.g.

checking for absence of deadlocks).

7.1- Analysis using Petri-nets
The benefit of providing a Petri net semantics for our language is that we can translate one
of our specifications into a Petri net. This provides a way to use existing Petri net tools on the
workflow specifications to try to find potential problems in the workflow specifications. In this
section, the reader will find explanation on how our specification can be translated into a Basic
Petri Net Programming Notation (also known as B(PN)?) specification and afterwards using a
toolkit such as the Programming Environment based on Petri Net (PEP)[8], what it can be

used for.

7.1.1 Overview of B(PN)2
B(PN)? [9] is a Petri net based programming notation that has been designed to have a
clearly expressed and compositional Petri net semantics, allowing the application of Petri net

proof methods to complement other techniques. It aims at providing some flexibility to

Analysis 145

smoothly integrate a variety of process interaction techniques. There are five types of
commands: iterations using “do ... od”, sequential and concurrent compositions, atomic
execution of an expression or block. Expressions can be of several types, variable identifiers,
true, false, Z (integer type), operation between two expressions or on just one, expression
between parentheses, channels (FIFO buffers) or stacks identificrs. The operations supported
are the usual arithmetic operations. The syntax is describes below:

e Variables are introduced by the construct var. You need to state the valid values of a
variable. For instance var v : {0 , 1} init 1; declares a variable v that can only
takes as value O and 1 and initialises it to |, while var j : z; declare a variable j of
type integer. The value of the variable v before and after execution of a command is
respectively known as ‘v and v’.

¢ Non deterministic choice using the construct "[]”,

e <expr> denotes the atomic execution of the expression expr

e blocks using begin scope end, where scope can be a command precede or not by a list of
declarations of constants or variables,

¢ Sequential composition using the construct *;”,

¢ Concurrent composition using “II”,

e [teration using “do command enter alternatives od” oOr just “do alternatives

od”, where the alternatives can be *command ; repeat;” or ‘‘command ; exit;”’ or a non

deterministic choice of two alternatives”. The exit alternative corresponds to an exit of the
loop, while the repeat alternative just restarts the iteration. Both of these two types of
alternatives are preceded by a command acting as a kind of guard. This command needs to
be fulfilled before an alternative can be used

For instance, the extract of code below should be read as follows. First the variable v is
set to two, then we enter the loop. If the variable v is positive, then we decrement it by one
and leave the loop do; otherwise if it is less than four, it is incremented by one and we

iterate. The choice between these two alternatives is non-deterministic.

do <v’ =2> enter

<v > 1>; <v’ = ‘v -1>; exit;
(]

<v < 4>; <v’ = ‘v +1>; repeat;
od

Procedures are supported in the extended notation that we are using. They are introduced

by the construct proc, followed by the name of the procedure and the list of parameters

Analysis 146

between brackets. Keywords ref and const indicates reference and constant parameters. The
valid values for the arguments have also to be specified. The body of the procedure is a block

(embedded between the begin and the end keywords).

7.1.2 Modelling a workflow application
The modelling of a workflow application can be divided into several sub-problems: how to
model the mapping of the inputs of a task, and the mapping of the outputs of a basic and a
compound task. Once this has been solved, modelling a workflow task using B(PN)* becomes
simpler.

Modelling the mapping of the inputs of the tasks

oocl
ool

O
Ol
=

ooc2
003

(a) (b)

Figure 7.1: Modelling the task inputs

There are several things that need to be modelled. First we need to be able to model a task,
its inputs and outputs. The easy way to do that is to create a variable per component based on
the task class. A component in this case will be the state of a task, its task input and output sets
as well as their associated object inputs and outputs. There is also a need to model the
notification dependencies associated to a set. Creating one dummy object per alternative set of
notifications does this. This is represented on figure 7.1. An arc leading from one oval to
another directly has to be interpreted as an OR-component for the triggering of that task, while
an arrow leading to a vertical bar has to be interpreted as an AND-component for the
triggering of the ovals receiving an arrow leaving that bar. An OR is simply modelled by the
choice construct while an AND is modelled by the sequential composition.

To have no naming problems, the underscore can be used to separate levels of abstractions.

For example, the following naming scheme could be used. A workflow named wf will be

Analysis 147

renamed wf___, its input set ios] will be renamed wit_iosl__, its associated input object iol
will be named wf_ iosl_iol_ and the virtual input object created will be named
wf_iosl_notifl _, wf_iosl_notif2_ and so on. The component tasks of wf will have the prefix
wf___ as prefix for their name. This scheme ensures uniqueness of the names while retaining
enough information for an easy translation back to the initial names of the workflow
specification. Usage of the scoping feature could also be used to simplify our naming scheme

as compound tasks also provide some kind of scoping.

Modelling the mapping of the outputs of a basic task

Our main problem was initially to find a way to choose a random output once the task had

been started.
The solution adopted is to use the expression <output’ = 1 v output’ = 2>,
The choice of the value of output is non-deterministic and the chosen value can be used to

decide on an output. The resulting model is depicted on figure 7.2.

inputSet1 | Task| outcomet

OutputObit <output'=1 v output'=2>

OutputObj2

< output==1> < output==2>

inplutSet2 outcclnme2
outputOb

outcomel outputObj1 outputObj2 outcome2 outputObj3

a) b)

Figure 7.2: Modelling of the reaching of an output for a basic task.

Modelling the mapping of the outputs of a compound task

This is exactly the same model as the one used for the inputs.

Modelling the workflow application

In order to keep track of the state of a task, it is modelled as having a value that can only

have three different values: O if the task is waiting to be started, 1 if it is executing and 2 if it

Analysis 148

has completed. The inputs (sets and objects) as well as the outputs will be represented as
having a value of O if they are waiting to be used or one if they have been used.

Assuming that we have a workflow application with one input set labelled main with an
input object associated startObject and two output sets done and failed with no associated

output object, the workflow script would be:

objectclass myClass;
taskclass myTaskClass
{
inputs (
input main {
startObject of class myClass
}
};:
outputs {
outcome done (};
outcome failed ({}

}
}
compoundtask wf of taskclass myTaskClass
{

. // body suppressed for clarity
}

The equivalent B(PN)2 script would be:

begin

proc TASK_WF (ref t: {0, 1, 2}, ref inputSetl : {0, 1}, ref inputObjectl
: {0,1), ref outputSetl : {0, 1), ref outputSet2: {0, 1})

begin

<t’ = 1>

end;

var wf : {0, 1, 2} init 0;

var wf_main__: {0, 1) init 0;

var wf_main_startObject_ : (0,1} init 1;

var wf_failed s {0, 1) init 0;
var wf_done__ ¢ {0, 1) init 0;

do

<'wf_main_startObject_ = 1> 3 <wf_main__ ’ = 1> ; exit

od

parallel

do

<'wf_main__ = 1> : <'wf___ = 0> : TASK_WF(wf____, wf_main__,
wf_main_startObject_, wf_done_ , wf_failed__) ; exit

od

end

The specification of a workflow application can be divided in three parts. An initial part

Analysis 149

listing procedures that describes the workflow application, its component tasks as well as their
inter-dependencies, then a part declaring a set of variables able to take either as value 0, 1, 2
(for the tasks) or 0, 1 (for the sets and objects) and initialising their value. The variables are the
state of the workflow application, its component tasks, as well as the states of their inputs and
outputs. Then a final part where two processes are run in parallel, the first one waiting for
startObject to become available (value 1) to set input set main available (value 1). The second
process waits for an input set to become available and if the task hasn’t yet started, runs it via a
call to the procedure declared in the first part. It has to be noticed that all variables associated
to the workflow application are used as arguments as they may be used for the execution of the
workflow application. The second process can be read as if the input set (<’wf_main__ = 1>)
is available and the task is waiting (<’wf___ = 0>) then start the execution of the task
(TASK_WEF(...)). Had this workflow application had more than a single input set then we

‘tl”

would have had all these inputs separated by “I” in the first term between brackets.

The first process establishes the conditions that have to be fulfilled before that the input set
main can become available (startObject available in this case is the only condition)

Let us now expand further the initial part. Let us assume that this workflow application
consists of two basic tasks with as dependencies the dependencies seen on figure 7.3. We

assume that all input and output objects were named item.

main
failed

Figure 7.3: Example of workflow application
In the code below, the first procedure corresponds to the random choice of an output set

for a basic task. Here there are only two alternatives.

proc TASK_A (ref t: (0, 1, 2}, ref inputSetl : (0, 1}, ref inputObjectl :
{0,1}), ref outputSetl : (0, 1), ref outputSet2: {0, 1})

begin

var randomchoice : {1, 2)};

<t’ = 1>;

do <randomchoice’ = 1 | randomchoice’ = 2> enter

<’randomchoice = 1> ; <’outputSetl = 1> ; exit

[1

Analysis 150

<’randomchoice = 2> ; <’outputSet2 = 1> ; exit

od

end;

proc TASK_WF (ref t: {0, 1, 2}, ref inputSetl : {0, 1}, ref inputObjectl
: {0,1), ref outputSetl : (0, 1)}, ref outputSet2: {0, 1})

begin

var wt notifl_ : {0, 1} init 0;
var wf notif2_ : {0, 1} init 0;
var wf notif3_ : {0, 1) init 0;
var wf__a_ : (0, 1,2} init 0;
var wf___b_ s {0, 1,2} init 0;
var wf___a main__ : {0, 1) init O;

var wf b_main__ : {0, 1} init 0;
var wf a_main_item_ : {0, 1} init O;
var wf b _main_item_ : {0, 1) init O;

var wf___a_done__ : (0, 1) init 0;
var wf___b done__ : {0, 1} init 0;
var wf___a_failed_ : {0, 1} init 0;
var wf__b failed_ : {0, 1} init 0;
<t’ =1>;

do <’inputObjectl = 1> ; <wf a_main_item_’ =1> ; exit od
|| do <'wf a_main_item_»> ; <wf a_ main__ ' = 1> ; exit od

|| @ <'wf__amain__ = 1> ; <'wf__a___ = 0> ; TASK A(wf__a_ ,
wf___a main__, wf___a _main_item_, wf___a_done__, wf___a_failed__); exit od

|| do <'wf___a_failed_ = 1> ; <wf notifl * = 1> ; exit od

|| do <’inputObjectl = 1> ; <’'wf notifl = 1> ; <wf__ b _main_item_’
=1>; exit od

|| do <’wf__b main_item_> ; <wf_b_main__’ = 1> ; exit od

|] do <’wf__b main__ = 1> ; <'wf__b___ = 0> ; TASK A(wE_b
wf___ b main__, wf__b main_item_, wf__b_done__, wf___b_failed_); exit od

|| do <'wf___b_failed _ = 1>; <wf notif3_’ =1> ; exit od

|| do <’wf__a_done__ = 1> ; <wf notif2_’ = 1> ; exit od

|| do <’wf__b_done__ = 1> ; <wf notif2 ¢ = 1> ; exit od

|| do <’'wt notif2_ = 1> ; <outputSetl’ = 1> ; exit od

|| do <’wf notif3_ = 1> ; <outputSet2’ = 1> ; exit od

|| do <’outputSetl = 1> ; <t’ = 2> ; exit od

|| do <’outputSet2 = 1> ; <t’ = 2> ; exit od

end;

In this last procedure, the variables used are first specified, then the state of the task is set to
1 (executing). Afterwards the different dependencies are described, before specifying the
mapping of the outputs (last seven lines). Notice the use of some extra variables to model the

notification dependencies.

7.1.3 Usefulness for our system
Once the B(PN)? specification has been created, the PEP toolkit first expands the
procedures and then can be used to generate Petri nets, check them as well as simulate their
behaviour. Specifically talking about the PEP toolkit, it has a provision of analysis tools that

allow the user to check whether the equivalent low level Petri net is:

Analysis 151

¢ Free choice e.g. if a place is an input to several transitions (potential conflicts), then it’s
the only input for all of these transitions. Hence either all of these conflicting transitions
are simultaneously enabled or none of them are. This allows the choice (conflict
resolution) as to which transition is to fire to be made freely; the presence of other
tokens in other places is not involved in the choice as to which transition fires.

¢ A bounded system e.g. if there exists an integer k such that the number of tokens in any
place cannot exceed k.

e Safe e.g. the number of tokens in any place cannot exceed one.

® Reachability of markings e.g. whether a marking is reachable from an initial marking. It
has to be noticed that this is not available for non-bounded nets.

e Deadlocks: Low level nets that have been found to be safe can then be tested to find out
whether they include some deadlocks. A deadlock is defined as a set of places such that
every transition, whose outputs to one of the places in the deadlock also inputs from
one of these places. An interesting result is that once all the places of a deadlock
become unmarked, the entire set of places will always be unmarked. This is useful for

identifying some unwanted cycles.

As far as our workflow specifications are concerned, the Petri net of a correct specification
is k-bounded, as we have a finite number of tasks having a bounded number of outputs.

As a result, the PEP toolkkit can be used to identify the following problems: objects that are
never available, tasks that will never be reached, whether or not you have a deadlock in your
application... It can also be used to check that our application can be executed in a certain way
given some initial conditions. For instance, for a running application, the user might want to
know whether it is still possible that a certain set of tasks will be run before completion of the

application. This is done using the reachability feature of the toolkit given an initial marking.

7.2- Analysis using Finite State Processes
The Finite State Process (FSP) process algebra notation has been designed for an easy
description of component behaviour. In this section, the reader will find explanation on how
our specification can be translated into a Labelled Transition System using the Finite State
Process process algebra notation {34] (also known as FSP). Then we will explain how the

resulting translation of our workflow application can be checked using a tool such as the

Analysis 152

Labelled Transaction System Analyser (LTSA) [31].

7.2.1 Overview of FSP
Using FSP, each component of the system is modelled as a finite state machine. As a result
the whole system becomes a set of interacting state machines. FSP distinguishes primitive and
composite processes. Primitive processes are defined using action prefix, choice and recursion,
while composite processes use parallelism, label re-assignation and hiding. The separation of
the constructs between primitive and composite processes ensures that only finite system can
be generated. A special process named STOP terminating is predefined

The main constructs of FSP are:

® The action prefix “->”, used by FSP to specify a process. It specifies an initial action to
carry out as well as a process describing the behaviour of rest of the process.

e The choice construct “I” can be used to describe alternative behaviours. For instance, the
following process @ = (a -> P | b ->R). is initially either starting action a or action
b. In the event of a being chosen, the Q will then behave as P, otherwise it will behave
like R. The choice is non-deterministic.

e A feature called action sets is also provided to group together the processes that shared
the same behaviour after carrying out different initial actions.

e Conditional “if expr then process [else process].”, where expr is an integer
expression such as x > 3

¢ Guards transitions “when B a -> P” are also available For instance, if you want to only
have action a available when x > 0, you will use (Q = (when x>0 a -> P)..

e The construct “II” or parallel composition between two processes. The resulting LTS
allows all interleaving of the actions of the two processes. Actions with the same name
are shared and have to be synchronised. The actions can be used to synchronise parallel
processes. The specification of a composite process ICOMP composing processes A
and B, which sharing the action *“synchronise” is now described. A notation convention

is to use Il to prefix the name of the composite process:

A = (a -> synchronise => A).
B = (b ->» synchronise =-> B).
|jcomp = (a || B).

e The forall construct is available for process replication.

¢ Re-labelling is also available. They are applied to processes and change the names of the

Analysis 153

actions. The general form of re-labelling is /{new_label/old_label}
¢ Hiding remove action names from the alphabet of the process, which hides these actions.
The syntax for hiding action names is: /{ set of labels to be hidden}. It is also possible to
specify the action labels that are not hidden. This is done using @{ set of labels not
hidden }.
Parameterisation of processes is also supported. It has to be noted that a default value is
required for the parameter. For instance INPUT(N=0) = inputobject[N].available ->
available -> sTop) . parameterises the process INPUT. Given N =0,

inputobject[N].available will generate the action labelled inputobject.0.available.

7.2.2 Modelling a workflow application
Modelling the mapping of the inputs of the tasks

What need to be done here is to specify the transitions between states. But first what is the
relationship between input sets and objects: in order for an input set to become available all its
associated input objects need to be available. For a task to become available, one of the
alternative sets needs to be available. The added dependencies (notifications and delegations)
are just extra similar transitions. An input object becomes available when one of the object
sources mapped to it becomes available. Notifications can just be seen as a particular type of
delegation if you add a dummy input object per set of alternative dependencies. Adding such a
dummy object is straightforward and is just an extra transition linking the availability of the

dummy input object to the input set concerned.

Modelling the mapping of the outputs of the tasks

As far as the outputs of a basic task are concerned, the availability of an output set implies
the availability of all its associated objects. As a result the choice of the outcome to activate is
just a set of transitions from task available to one of these outcomes linked between themselves
using “or”. This is provided by the “I” operator.

The outputs of compound tasks are dealt similarly to its inputs: first the output objects need

to become available and only then can the output sets they are associated to become available.

Analysis 154

Modelling of the workflow application

FSP is interesting as it provides some support for process labelling by using the construct
“:”. This allows to make good use of another feature of the language called *“forall” which
allows replication of processes, or instantiation of parameterised parameters using the same
template. In order to model the workflow application, we use the run-time version (e.g.
without mark). The repeat outcomes being incompatible with finding cycles in the specification
have also been removed.

Considering the example given in figure 7.3, the FTS specification would be:

// khkhkhkkhkhkhkhkhkhhkrkhkhkhdhkkhkhhhkkhkhkithkihkk

/] **x* workflow independent *x*
// * ok kkkhk ok khhkkokokkhkhkkhk ok okhk ok ok ok okk ok ok kkkok

// get input

INPUT(N=0) = (inputobject(N].available -> available -> STOP).
| | INPUTS(N=1) = (forall[i:0..N-1] INPUT(i)).

| | TASKCLASS_GETINPUTS(N=1) = (if (N > 0) them (INPUTS(N))).

// Basic task, output release.

BTOUTPUT(N=1) = (available -> outputobject([N].available -> STOP).

| | BTOUTPUTS(N=1) = ((if (N > 0) then (forall [i:0..N-1] OUTPUT(i))).
// Compound task, output mapping.

CTOUTPUT(N=1) = (outputobject[N].available-> available -> STOP).
| JCTOUTPUTS(N=1) = (if (N>0) then (forall (i:0..N-1] CTOUTPUT(i))).

This first part is independent of the specification and is always present in the LTS
specification. It describes how our input and output objects are related to their parent set. The
processes starting with BT are for basic tasks while those starting with CT are for compound

tasks. These declarations are parameterised.

// (A RS RS ERE AR SR RRE SRR EREELE SRRl RESRREEREERSR]

/] *X** instantiation of the workflow: ol
// SRR RS R RS R EEEERERERRRREERERE R RS R ERERERERERSRZE,]

INIT = (inputset[0].inputobject[0]).available -> STOP).

This provides the initial input object to the workflow application that can then start.

// (A RS AR EEEEERRERERRERSRREREESRRRRRRRSlERERERXRS]

/] **x* specification of the workflow: * ok ok
// (B A SRS EEREEEER SRR R RE SRR R Rl R RRRERERRE]

| |[WF = (wf:INIT || wf:TASK_INSTO).

| | TASKO_RESULT = (NOTIFICATION1 [NOTIFICATION2 I
outputset [0] :CTOUTPUTS (0) || outputset[1l]:CTOUTPUTS(0)).

| |TASKO_GETINPUT = (inputset (0] :TASKCLASS_GETINPUTS(1l) || TASK_START).

TASKO_START = (inputset[0].available -> active -> STOP).

Analysis 155

| | TASKO_EXEC = (TASK_INST1 || TASK_INST2).

| | TASK_INSTO = (TASKO_GETINPUT || TASKO_EXEC || TASKO_RESULT) .

| ITASK_INST1 = (taskl:TASK1l || DATADEPENDENCYO).

| | TASK_INST2 = (task2:TASK2 || DATADEPENDENCY1 || NOTIFICATIONO).

// Dataflow Dependencies

DATADEPENDENCYO = (inputset[0].inputobject[0].available ->
taskl.inputset{0].inputobject[0].available -> STOP).

DATADEPENDENCY1 = (inputset[0].inputobject (0] .available ->
task2.inputset[0].inputobject (0] .available -> STOP).

NOTIFICATIONO = (taskl.outputset[0].available ->
task2.inputset[0] .available -> STOP).

NOTIFICATION]1l = (task2.outputset[0].available -> outputset[0].available -
> STOP) .

// Temporal Dependencies (notifications)

NOTIFICATION2 = {taskl.outputset([l].available -> outputset(l).available -
> STOP | task2.outputset(l].available) -> outputset(l}.available ->
STOP) .

| | TASK1_GETINPUT = (TASK1_START).

TASK1_START = (inputset([0].available -> active -> STOP).

TASK1_EXEC = (active -> outputset[0].available -> STOP).

| | TASK1_RESULT = (outputset (0] : BTOUTPUTS (0) [

outputset (1] :BTOUTPUTS(0)) .
| |TASK1 = (TASK1_GETINPUT || TASK1_EXEC ||TASK1_RESULT).

| | TASK2_GETINPUT = (inputset(0]:TASKCLASS_GETINPUTS(1) || TASK2_START).
TASK2_START = (inputset[0].available -> active -> STOP).

TASK2_EXEC = (active -> outputset[0].available -> STOP}.

| | TASK2_RESULT = (outputset [0] : BTOUTPUTS (0) |

outputset (1] :BTOUTPUTS(0)) .
| | TASK2 = (TASK2_GETINPUT || TASK2_EXEC ||TASK2_RESULT).

Had we had more than one input set then they would be listed in
TASKCLASS_GETINPUT as well as in TASK_START as a choice (“I"). Basic tasks with
several output sets would list them in TASK_RESULT as well as in TASK_EXEC as choices
by using the constructor “|”.

It has to be noticed that an alternative to using the choice constructor is to use the range

feature of the language. For instance, given a taskclass with I input sets and J output sets, a

basic task with that task class could be defined as:

TC(I=1, J =1) = (inputset[0..I-1):available => ACTIVE),
ACTIVE = (outputset[0..J-1):available -> 8STOP).
This just states that we need one inputset available and that then one outputset non-

deterministically chosen is made available. TC has to be started as a parallel process for the
task and labelled with the name of the task.

It is also possible to simplify this script by using the re-labelling feature of the language. It
has to be noticed that we did not hide the names of the components embedded in a compound

task as anyhow the names are unique.

Analysis 156

7.2.3 Usefulness for our system

The Labelled Transaction System Analyser is a tool for the verification of concurrent
systems. It provides some methods to check safety and properties of a FSP specification. The
state interacting machines composing the system can be animated by the tool or used to check
that the properties expected are satisfied after compiling the FSP specification. LTSA performs
compositional reachability analysis to exhaustively search for violations of the desired
properties. It can also perform a breadth first search on the target LTS. If a property violation
or deadlock is found, the shortest trace of actions that would lead to the property violation or
deadlock is displayed in the output window. It also computes the connected components for
the target LTS. Traces are produced for cycles that cause liveness property violations.

As far as our workflow specifications are concerned, it allows testing for cycles, as well as
reachability. Deadlocks can be discovered if you instead of finishing the workflow by a STOP,
you use another terminating state. For instance, in our example, the workflow terminates either
in the done or in the failed outcome of the workflow (outputset[0] and outputset[1]), we

should then have

FINISH = ({wf:outputset[0], wf:outputset[l]} =-> END),
END = (end -> END).
Running the workflow now requires running this new FINISH process in parallel. Checking

whether the «end» action has been used can now test termination.

In this chapter, it was demonstrated that our language could be easily mapped to some other
languages hence allowing usage of the toolkits available for these languages. We have
described how our system maps its workflow specifications to Petri nets and FTS
specifications that can then be used to test whether different properties are verified. This is
mainly useful to test for reachability as well as for potential cycles and deadlocks. The main
problem with such toolkits is that they tend to be implemented as closed systems making it
difficult to integrate them with other toolkits, such as the workflow toolkit presented in the
previous chapter. Ideally, the users of the workflow toolkit should be able to make use of tools
such as the LTSA transparently to check relevant properties without having to learn FSP

specifications. This is left as a future work item

Conclusions and future work 157

Chapter 8

Conclusions and future work

This thesis describes the design and implementation of a toolkit allowing users to specity,
execute and monitor dependable distributed workflow applications. This work started from the
observation that more and more applications are being built by composing them out of other
existing applications. Moreover many applications are also likely to be modified dynamically
because of the changes of the environment in which they are executing. Underlying mechanisms
are therefore needed to support dynamic modifications of the application in a dependable way. As
a result, an application building framework is needed to provide users with an easy way to specify,
compose, execute and monitor such applications.

In this chapter, we sum up the contributions of this thesis, and list possible directions for future

work

Thesis contributions

Most currently available workflow systems possess monolithic structure, so do not provide
distributed execution environments. Further, they offer little support for building fault-tolerant
applications, nor can they inter-operate, as they make use of proprietary platforms and protocols.
Even the reference architecture of the workflow management coalition (WfMC) (presented in
section 2.1.1) has a monolithic structure and does not meet all the requirements of distributed
workflow execution as it centralises a lot of functions including many service provider domains in
a single logical entity (the workflow server). They do not separate the responsibilities between
workflow domains and service provider domains as it is the workflow server that decides the task
implementation rather than the service provider. Scalability is also an issue as for instance
workflow clients must know a priori where work is going to come from and they use a pull model

that does not scale when work comes from many servers. A detailed discussion of the drawbacks

Conclusions and future work 158

of the WIMC model can be found in [63][64]

We have therefore built a transactional workflow system whose architecture is decentralised
and open: it has been designed and implemented as a set of CORBA services to run on top of a
given ORB. Furthermore, the system has been structured to provide fault tolerance at application
level and system level. Support for application level fault tolerance has been provided through
flexible task composition facilities that enable an application builder to incorporate alternative
tasks, compensating tasks, replacement tasks etc., within an application to deal with a variety of
exceptional situations. The language presented in chapter 4 has been specially designed to allow
an easy specification of application fault tolerance. Support for system level fault tolerance has
been provided by recording inter-task dependencies in (CORBA) transactional shared objects and
by using transactions to implement the delivery of task outputs such that destination tasks receive
their inputs despite a finite number of intervening machine crashes and temporary network related
failures; this also provides a durable audit trail of task interactions. Thus our system naturally
provides a fault-tolerant ‘job scheduling’ environment. Using task factories allows us to let the

service provider decide the task implementation as late as possible.

To sum up, the main contributions of the work described in this thesis are:
. A new co-ordination language (scripting language) allowing easy specification of the
composition of workflow applications in terms of tasks and their data-flow or temporal
dependencies.
. Simple uniform model for specification, execution and monitoring of the workflow
applications, allowing a flexible construction of the applications out of other applications.
o Support for dynamic reconfiguration of workflow. The toolkit provides a support for
run-time modification of the workflow, with late binding of the task implementation. The
dynamic reconfiguration being carried out using transactions at the low level, the system
also maintains the workflow integrity.
. Our work is novel in that we do take into account the fault tolerance aspects of the
workflow applications. Indeed, the system provides some support for fault tolerance both at
the system and at the application level, allowing the construction of dependable distributed
applications. The programmer explicitly models the application fault tolerance as part of the
workflow specification, with the possibility to use compound task to hide the possible

complexity of the failure handling tasks.

Conclusions and future work

159

. Implementation of a toolkit allowing the specification, execution and monitoring of

dependable distributed applications. The toolkit is user friendly as it provides graphical tools

that map an easy-to-understand high level specification on to the various CORBA services

of the underlying system (task control and task factories...). In addition, it provides a

number of consistency checking tools.

o Fully open and interoperable system by using CORBA and Java middleware

technologies.

The figure below summarises the differences between the major workflow systems that are

around and the Newcastle workflow system.

System Maodel Fault tolerance Dynamism Interoperability

Sagas Serialised transactions|Save points & None Homogeneous
with associated compensations
compensating actions

ConTract |Group of transactions {Compensations, None Homogeneous

Steps seen as
transactions

ORBWork |CORBA workflow Recovery managers Some CORBA
system using persistent storage Web

& application level

Exotica Message based Persistent messages, [None Proprietary
workflow atomicity of changes
management not guaranteed

RainMan |Sources co-ordinating |Persistent worklists, |Dynamic updates of |Written in Java,
performers executing |long-run conversations Jworkflow graph heterogeneous
the process being considered. environment

TOWE Transactional Basic units of work are |None Homuogencous
Workflow system ACID. Open-nested

transactions.

Newcastle |Transactional Both system and Full dynamic updates [CORBA,
CORBA workflow application level of specification heterogencous
system (alternative), persistent environment

storage

The toolkit presented in this thesis is intended to provide a fault-tolerant execution

environment for long running distributed applications that represent business processes in fields

such as telecommunication, electronic commerce and banking.

We have described the design and implementation of a toolkit supporting the specification,

execution and monitoring of such applications. It indeed enables executing workflow applications

composed of inter-related tasks, in a dependable manner. The transactional workflow approach

chosen to provide the underlying support environment for co-ordinating task execution provides

system level fault tolerance, while the language allows the specification of application level fault

tolerance in a uniform manner. Further applications can be co-ordinated in a centralised or

decentralised manner (the task controllers can be started wherever needed). The system also

Conclusions and future work 160

meets the requirements of interoperability by using middleware technologies such as CORBA and
Java to provide an interoperable, open system. Our task model allows flexible task composition.
As far as dynamic reconfiguration is concerned, task specifications can be fully modified till they
are started and afterwards, the composition and possible outcomes of compound tasks can still be
modified as long as they have not completed. Use of transactions allows any changes to be carried

out atomically.

Directions for future work
The implementation of this toolkit is only a first step towards providing a comprehensive
framework for building complex dependable workflow applications. It allows users to specify a
complex business process as a set of tasks linked by dependencies. Several aspects need to be
developed:
. One is to add more pre-defined types of tasks for high level specification. Right now,
we have “repeat tasks” that are expanded as low level tasks using genesis tasks. The
question is which kind of pre-defined tasks are needed? It may be interesting for instance to
consider adding support for replicated tasks, quorum tasks (e.g. starting several identical
tasks and reach an outcome when a certain number of these tasks agree on the outcome),
alternative tasks (as in the flight and hotel reservation example of chapter 5, section 2).
Toolkit support for template tasks (as defined in the language) is also required.
o We should also integrate a model checking toolkit such as LTSA with the Graphic
User Interface Specification tools to allow users to check properties of their application
before actually running them as right now the toolkit is not providing a full check of the
specification.
J If a requested task factory is not available, there is no real handling of the situation as
it was assumed that it was part of the responsibility of the programmer to make sure that the
factories he plans using are available.
. When a user starts a Workflow application, he is presented with a list of potential
objects to choose from based on their class. Right now all objects of that class are registered
as possible choices. This is not realistic as there might be occurrences where there are
thousands of them. A solution would be to use a Directory Service to only register what is
potentially useful.

. Another is to provide better support for the instantiation of a workflow schema based

Conclusions and future work 161

on an organisation’s needs that takes into account variety of criteria, such as placement of
task controllers (centralised control versus distributed control), security requirements,
resource usage, roles (with associated responsibilities), etc. Currently, we are using some
implementation criteria (specified as part of the meta information associated to the tasks) to
choose the task/task control factory to be used to create our task and tasks controllers. We
need to create a number of task factories each customised for a class of application (e.g. a
factory for electronic commerce, another for telecommunication...). A possible
improvement of the current model could be a two-stage workflow instantiation process
where the factories are chosen depending on a role that they are to fulfil. Task definitions
would have two attribute-value items: role name and task type. This information is passed
to a first (initial) task factory by invoking its create operation. This factory queries an
organisation model held in a database. The database could contain, for every role in that
organisation, the name of the role’s task factory. A role’s task factory is capable of creating
all types of task objects that role is responsible for. The initial task factory would then
invoke the create operation of the specific task factory associated with the role, passing the
task type. The role’s task factory would then create the specific task, obtaining all the
location specific information from the database.

° There is also considerable room for trying to combine software-architecture-based
development environments, and software agents with our approach using transactional
workflow management systems. On one hand, agents are software entities that perform
operations on behalf of a user or another software entity. As a result, agents could be
mapped to our tasks at run time, by creating some agent task factories. Similarly, agents
could have some of the services that they are proposing modelled as a workflow. On the
other hand, software architecture specifications expressed via Architecture Description
Languages (cf. chapter 2 for examples of ADLs) allow the specification of the configuration
of the software components and capture the non-behavioural aspects of system structure
that our system does not express. We are currently investigating the integration of these
three technologies in a research project called C3DS [11].

o In chapter 5, a number of examples were used to illustrate the suitability of our
language for specifying workflow applications. As part of the future work, real applications
should be developed, executed and monitored using our toolkit, hence validating the use in

the real world of the workflow management system. We are planning to do this in an

Conclusions and future work 162

industry led ESPRIT project, MULTIPLECX [43], on business to business electronic

commerce.

Appendix A 163

Appendixes

Appendix A

Scripts

A.1 Script for the process ordering application described in chapter 5.1.

/
This script was generated for root by the Workflow Management Tool vl1.20a
Copyright (C) 1996, 1997, 1998

Department of Computing Science,
University of Newcastle upon Tyne,
Newcastle upon Tyne,

UK.

/

LIS . 2 A e

objectclass Bill;
objectclass Goods;
objectclass Order;
taskclass CheckStock
{
inputs
{
input main
{
order of class Order
}
};
outputs
{
outcome failed
{
Y
outcome success

{

Appendix A

items of class Goods

}
}s
taskclass Digpatch
{
inputs
{
input main
{
items of class Goods
}
Y
outputs
{
outcome abort aborted
{
Y
outcome success
{
items of class Goods
}
}
}:
taskclass PaymentAuthorisation
{
inputs
{
input main
{
order of class Order

}

}:

outputs

{
outcome failed
{
};
outcome success
{

bill of class Bill

}

}

}i
taskclass PaymentCapture
{
inputs
{
input main

{
bill of class Bill
}
}i
outputs
{
outcome done
{
}
}

}i
taskclass ProcessOrder
{

inputs

164

Appendix A

165

}s
compoundtask processOrderApplication of taskclass ProcessOrder

{

input main
{
order of class Order
}
Y
outputs
{
outcome failed
{
Y
outcome success
{
items of class Goods
}
}

implementation
{
"GUI_X" is "235";
"GUI_Y" is "100";
"Node" is "kellah*
};
inputs
{
input main
{
inputObject order from
{
}
}
}i
task checkStock of taskclass CheckStock
{
implementation
{
"GUI_X" is "164";
"GUI_Y" is "180";
"TaskCtrlFactory" is "Order";
"TaskImpl" is "CheckStock.wf";
"Node" is "kellah"
}i
inputs
{
input main
{
inputObject order from
{

order of task processOrderApplication if input main

}

}
};
task dispatch of taskclass Dispatch
{
implementation
{
"GUI_X" is "477";
"GUI_Y" is "184";
"TaskCtrlFactory" is "Order";
TaskImpl" is "Dispatch;

Appendix A

166

"Node" is "kellah"
Y
inputs
{
input main
{
notification from
{
task paymentAuthorisation if output success
Y
inputObject items from
{
items of task checkStock if output success

}

}
Y
task paymentAuthorisation of taskclass PaymentAuthorisation
{
implementation
{
"GUI_X" is "186";
"GUI_Y" is "119";
"TaskCtrlFactory" is "Order";
"TaskImpl" is "PaymentAuthorisation.wf";
"Node" is "kellah"
Y
inputs
{
input main
{
inputObject order from
{
order of task processOrderApplication if input main

}

}
Y
task paymentCapture of taskclass PaymentCapture
{
implementation
{
"GUI_X" is "439";
“GUI_Y" is 1167u;
"TaskCtrlFactory" is "Order";
"TaskImpl" is "PaymentCapture";
"Node" is "kellah"
Y
inputs
{
input main
{
notification from
{
task checkStock if output success
Y
inputObject bill from
{
bill of task paymentAuthorisation if output success

}

Appendix A

167

outputs
{
outcome failed
{
notification from
{
task checkStock if output failed;
task dispatch if output aborted;
task paymentAuthorisation if output failed
}
}i
outcome success
{
notification from
{
task paymentCapture if output done
Y
outputObject items from
{

items of task dispatch if output success

}

A.2 Script for the travel agent application described in chapter 5.2.

/
This script was generated for root by the Workflow Management Tool vl
Copyright (C) 1996, 1997, 1998

Department of Computing Science,
University of Newcastle upon Tyne,
Newcastle upon Tyne,

UK.

* % d * F X A A *

~

objectclass CustomerInfo;
objectclass Date;
objectclass Flight;
objectclass Hotel;
objectclass Location;
objectclass User;
objectclass integer;
taskclass CompensateFlightReservation
{
inputs
{
input main
{
plane of class Flight
}
Y
outputs
{
outcome failed
{
}i
outcome success
{

.20a

Appendix A

168

}
Y
taskclass DataAcquisition
{
inputs
{
input main
{
user of class User
}
Y
outputs
{
outcome failed
{
Y
outcome success
{

customer of class CustomerInfo;

end of class Date;
maxCost of class integer;
place of class Location;
start of class Date

}
}i
taskclass FlightReservation
{
inputs
{
input main
{
end of class Date;
maxCost of class integer;
place of class Location;
start of class Date

};
outputs
{
outcome failed
{
}i
outcome success
{
cost of class integer;
plane of class Flight

}
};
taskclass HotelReservation
{
inputs
{
input main
{
end of class Date;
place of class Location;
start of class Date
}
}i

outputs

Appendix A 169

outcome failed
{
Y
outcome success
{
hotel of class Hotel
}
}
Y
taskclass PrintTickets
{
inputs
{
input main

{
customer of class CustomerInfo;
hotel of class Hotel;
plane of class Flight
}
Y
outputs

{
outcome failed
{
Y
outcome success
{
}
}
Y
taskclass Travel
{
inputs
{
input main

{

}
}s
outputs
{

user of class User

outcome failed
{
Y
outcome reserved
{
Y
outcome success
{
Y
mark toPay
{
cost of class integer
}
}
}i
taskclass TravelReservation
{
inputs
{
input main

{

Appendix A 170

user of class User
}
}i:
outputs
{
outcome abort aborted
{
Y
repeat retry
{
Y
outcome success
{
cost of class integer;
customer of class CustomerInfo;
hotel of class Hotel;
plane of class Flight

}
Y
compoundtask travel of taskclass Travel
{
implementation
{
"GUI_X" is "408";
"GUI_Y" is "167";
"Host" is "kellah"
};
inputs
{
input main
{
inputObject user from
{
}
}
}i
task printTickets of taskclass PrintTickets
{
implementation
{
"GUI_X" is "498";
*GUI_Y" is "158";
"Host" 1is "kellah";
"TaskCtrlFactory" is "Travel";
*TaskImpl" is "PrintTickets"
}:
inputs
{
input main
{
inputObject customer from
{
customer of task travelReservation if output success
};
inputObject hotel from
{
hotel of task travelReservation if output success
Y
inputObject plane from
{

plane of task travelReservation if output success

}

Appendix A

171

}
};

compoundtask travelReservation of taskclass TravelReservation

{
implementation
{
"GUI_X" is "197";
"GUI_Y" is "149";
"Host" 1is "kellah"
Y
inputs
{
input main
{
inputObject user from
{
user of task travel if input main
}
}
}i
task compensateFlightReservation of taskclass
CompensateFlightReservation
{
implementation
{
"GUI_X" is "552";
"GUI_Y" is "139";
"Host" is *“kellah";
"TaskCtrlFactory" is "Travel";
"TaskImpl" is "CompensateFlightreservation®

Yi
inputs
{
input main
{
notification from
{
task hotelReservation if output
}:
inputObject plane from
{
plane of task flightReservation
}
}
}
}i
task dataAcquisition of taskclass DataAcquisition
{
implementation
{
"GUI_X" is "116";
"GUI_Y* is "153";
"Host" is "kellah";
"TaskCtrlFactory" is "Travel":
"TaskImpl" is "DataAcquisition"
}i
inputs

{
input main
{
inputObject user from
{

failed

if output success

Appendix A

Y

}

user of task travelReservation 1f input main

task flightReservation of taskclass FlightReservation

{

Y

implementation

{

};

"GUI_X" 1is "240";

"GUI_Y" is "96";

"Host" is "www.itn.net”;
*TaskCtrlFactory" is "Travel";
*TaskImpl" is "FlightReservation"

inputs

{

}

input main

{ inputObject end from
{ end of task dataAcquisition if output success
iéputobject maxCost from
{ maxCost of task dataAcquisition if output success
i;putobject place from
(place of task dataAcquisition if output success
i;putobject start from
{ start of task dataAcquisition if output success

}

task hotelReservation of taskclass HotelReservation

{

implementation

{

}:

"GUI_X" is "382%;

"GUI_Y" is "192*";

"Host" is "kellah";
"TaskCtrlFactory" is "Travel”;
"TaskImpl® is "hotelReservation"

inputs

{

input main

{ notification from
(task flightReservation if output success
i;putobject end from
{ end of task dataAcquisition if output success
iéputObject place from
{

place of task dataAcquisition if output success

Appendix A 173

Y
inputObject start from
{

start of task dataAcquisition if output success

}

Y
outputs
{
outcome abort aborted
{
notification from
{
task dataAcquisition if output failed;
task flightReservation if output failed;
task compensateFlightReservation if output failed
}
}i
repeat retry
{
notification from
{
task compensateFlightReservation if output success
}
}:
outcome success
{
notification from
{
task flightReservation if output success
)i
outputObject cost from
{
cost of task flightReservation if output success
}i
outputObject customer from
{
customer of task dataAcquisition if output success
};
outputObject hotel from
{
hotel of task hotelReservation if output success
}i
outputObject plane from
{
plane of task flightReservation if output success
}

}
}:
outputs
{
outcome failed
{
notification from
{
task travelReservation if output aborted
}
};
outcome reserved

{
notification from

Appendix A

174

Y

task travelReservation if output success;
task printTickets if output failed
}

outcome success

{

Y

notification from

{
task travelReservation if output success;
task printTickets if output success

}

mark toPay

{

outputObject cost from
{
cost of task travelReservation if output success

}

New taskHotelReservation with alternative:
compoundtask hotelReservation of taskclass HotelReservation

{

implementation
{
"GUI_X" is "382";
"GUI_Y" is "192";
"Host" is "kellah"
}:
inputs
{
input main
{
notification from
{
task flightReservation if output success
}:
inputObject end from
{

end of task dataAcquisition if output success

}:
inputObject place from

{

place of task dataAcquisition if output success

Y
inputObject start from
{

start of task dataAcquisition if output success

}
}
}:
task bookHotelPartner of taskclass HotelReservation
{
implementation
{
GUI_X" is "414;
"GUI_Y" is "208";
"Host" is "www.hilton.com";
"TaskCtrlFactory" is "Travel*;
"TaskImpl" is “"hotelReservation"

Appendix A 175

}i
inputs
{

input main

inputObject end from

{ end of task hotelReservation if input main
i;putobject place from

(place of task hotelReservation if input main
i;putobject start from

{ start of task hotelReservation if input main

}

}
}:
task bookHotelTouristOffice of taskclass HotelReservation

{
implementation
{
"GUI_X" is "584";
"GUI_Y" is "120";
"Host" is "www.travel-reservation.com";
»paskCtrlFactory" is "Travel";
"TaskImpl" is "hotelReservation"
Y
inputs
{
input main
{
notification from
{
task bookHotelPartner if output failed
}:
inputObject end from
{
end of task hotelReservation if input main
}:
inputObject place from
{
place of task hotelReservation if input main
Y
inputObject start from
{
start of task hotelReservation if input main
}
}
}
}:
outputs

(outcome failed
{ notification from
{ task bookHotelTouristOffice if output failed
}i :
outcome success

http://www.travel-reservation.com

Appendix A

176

outputObject hotel from

{

hotel of task bookHotelTouristOffice if output

success;

hotel of task bookHotelPartner if output success

}:

A.3 Scripts for the telecommunication application described in chapter 5.3.

/

* % A ok F o % A Ak

This script was generated for fred by the Workflow

Copyright (C) 1996, 1997, 1998

Department of Computing Science,
University of Newcastle upon Tyne,
Newcastle upon Tyne,

UK.

/

objectclass Alarm;
objectclass ImpactList;
objectclass ResclutionList;
taskclass AlarmResolution

{

) .

’

inputs

{

}i

input main
{
alarm of class Alarm

}

outputs

{

}

outcome success
{
}i
outcome failed
{
}

taskclass SIA

{

inputs

{

Y

input main
{
alarm of class Alarm

}

outputs

{

outcome analysed
{
impacts of class ImpactList
}:
outcome failed
{

Management Tool vl1.20a

Appendix A 177

Y
outcome nolImpact
{
}
}
Y
taskclass SIAACKN
{
inputs
{
input main
{
list of class ImpactList
}
Y
outputs
{
outcome ok
{
Y
outcome refuse
{
}
}
Y
taskclass SIR
{
inputs
{
input main
{
impacts of class Impactlist
}
}i
outputs
{
outcome resolved
{
resolutions of class ResolutionList
Y
outcome failed
{
Y
outcome noResolution
{
}
}
}s
taskclass SIRACKN
{
inputs
{
input main
{
list of class ResolutionList
}
};
outputs
{
outcome ok
{
};

outcome refuse

Appendix A 178

}
}i
taskclass SLA
{

inputs

{

input main

{
resolutions of class ResolutionList
}
Y
outputs

{
outcome resolved
{
resolutions of class ResolutionList
Y
outcome failed
{
Y
outcome noResolution
{
}
}
Y
taskclass SLAdynCreatNegociation
{
inputs
{
input main
{
resolutions of class Resolutionlist
}
Y
outputs
{
outcome completed
{
Y
outcome failed
{
}
}
Y
compoundtask alarmResolution of taskclass AlarmResolution
{
implementation
{
*GUI_X" is "190";
"GUI_Y" is "77";
"Host" is "kellah"
Y
inputs
{
input main
{
inputObject alarm from
{
}

Appendix A

179

compoundtask sia of taskclass SIA
{
implementation
{
"GUI_X" is "168";
"GUI_Y" is "119";
“Host" is "kellah"
}i
inputs
{
input main
{
inputObject alarm from

{

alarm of task alarmResolution if input main

}
}
};
task siaAnalyse of taskclass SIA
{
implementation
{
"GUI_X" is "227";
"GUI_Y" is "137";
"TaskCtrlFactory" is "Telecom";
"TaskImpl® is "SIA";
"Host" is "kellah"
Y
inputs
{
input main
{
inputObject alarm from
{
alarm of task sia if input main
}

}
}i
task siavalidation of taskclass SIAACKN
{
implementation
{
"GUI_X" is "417";
"GUI_Y" is "109";
»TaskCtrlFactory" is “Telecom";
*TaskImpl" is "SIAGUI";
"Host" is "kellah"®
}i
inputs
{
input main
{
inputObject list from
{

impacts of task siaAnalyse if output

}

}
Y:
outputs
{

outcome analysed

analysed

Appendix A 180

notification from
{
task siaValidation if output ok
}:
outputObject impacts from
{
impacts of task siaAnalyse if output analysed
}
};
outcome failed
{
notification from
{
task siaAnalyse if output failed
}
}i
outcome noImpact
{
notification from
{
task siaAnalyse if output nolImpact;
task siavalidation if output refuse

}
}:
compoundtask sir of taskclass SIR
{
implementation
{
"GUI_X" is "275";
"GUI_Y" is "147";
"Host" is "kellah"
};
inputs
{
input main
{
inputObject impacts from
{
impacts of task sia if output analysed

}
}
}:
task sirAnalyse of taskclass SIR
{
implementation
{

"GUI_X" is "227*;
"GUI_Y" is "137";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SIR";
"Host" is "kellah"
};
inputs
{
input main
{
inputObject impacts from
{
impacts of task sir if input main

}

Appendix A 181

}
}:
task sirvValidation of taskclass SIRACKN
{
implementation
{
"GUI_X" is "417";
"GUI_Y" is "109";
"TaskCtrlFactory" is "Telecom";
"TaskImpl” is "SIRGUI“;
"Host" is "kellah"
Y
inputs
{
input main
{
inputObject list from
{
resolutions of task sirAnalyse if output resolved

}

}
}:
outputs
{
outcome resolved
{
notification from
{
task sirvValidation if output ok
Y
outputObject resolutions from
{
resolutions of task sirAnalyse if output resolved
}
};:
outcome failed
{
notification from
{
task sirAnalyse if output failed
}
}i
outcome noResolution
{
notification from
{
task sirAnalyse if output noResolution;
task sirvalidation if output refuse

}
}i
compoundtask sla of taskclass SLA
{
implementation
{
"GUI_X" is "447";
"GUI_Y" is "183";
"Host" is "kellah"
}i

inputs

Appendix A 182

input main
{
inputObject resolutions from
{
resolutions of task sir if output resolved
}
}
Yi
task createNegotiateResolution of taskclass SLAdynCreatNegociation
{
implementation
{
"GUI_X" is "184";
"GUI_Y" is "132";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLAdyn";
"Host" is "kellah"
}:
inputs
{
input main
{
inputObject resolutions from
{
resolutions of task sla if input main

}

}
Y
outputs
{
outcome resolved
{
outputObject resolutions from
{
}
}i
outcome failed
{
notification from
{
task createNegotiateResolution if output failed
}
}:
outcome noResolution
{
}
}
Yi
outputs
{
outcome success
{
notification from
{
task sia if output nolImpact;
task sir if output noResolution;
task sla if output noResolution;
task sla if output resolved
}
}i

outcome failed

Appendix A 1%3

notification from

{
task sia if output failed;
task sir if output failed;
task sla if output failed

Workflow dynamically created:

~
*

This script was generated for fred by the Workflow Management Tool vl1.20a
Copyright (C)} 1996, 1997, 1998

Department of Computing Science,
University of Newcastle upon Tyne,
Newcastle upon Tyne,

UK.

/

* % % %k X A A *

objectclass Bid;
objectclass Resolution;
taskclass SLAbiqd
{
inputs
{
input main
{
bid of class Bid;
resolution of class Resolution
}
}:
outputs
{
outcome accepted
{
bid of class Bid
Y
outcome refused
{
};
repeat nextround
{
bid of class Bid;
resolution of class Resoclution

}
}s
taskclass SLAbidInit
{
inputs
{
input main
{
resolution of class Resolution
}
}i
outputs
{

Appendix A 184

outcome start
{
bid of class Bid
}
}
}:
taskclass SLAbidRound
{
inputs
{
input main
{
bid of class Bid;
resolution of class Resolution
}
Y
outputs
{
outcome accepted
{
bid of class Bid
};
outcome refused
{
Y
outcome nextround
{
bid of class Bid
}
3
Y
taskclass SLAnegotiation
{
inputs
{
input main

{
}

resolution of class Resolution

Y
outputs
{
outcome negociated
{
bid of class Bid
Y
outcome failed
{
}
}
Y
compoundtask negociateResolution of taskclass SLAnegotiation
{
implementation
{
"GUI_X" is "240";
"GUI_Y" is "1l06";
"Host" is "kellah"
Y
inputs
{
input main
{

Appendix A

185

inputObject resolution from
{
}
}
Y
task initNegotiation of taskclass SLAbidInit
{
implementation
{
"GUI_X" is "242";
"GUI_Y" is "149";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLABRidInit";
"Host" 1is "kellah"

Yi
inputs
{
input main
{
inputObject resolution from
{
resolution of task negociateResolution if input main
}
}
}

}i
compoundtask negotiationRound of taskclass SLAbid
{
implementation
{
"GUI_X" is "448";
“GUI_Y" is "105*;
"Host" is "kellah"
}i
inputs
{
input main
{
inputObject bid from
{
bid of task initNegotiation if output start;
bid of task negotiationRound if output nextround
}:
inputObject resolution from
{
resolution of task negociateResolution if input main;
resolution of task negotiationRound if output nextround

}
}:
task consumer of taskclass SLAbidRound
{
implementation
{
"GUI_X" 1is "279*;
"GUI_Y" is "117";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLAclient";
"Host" is "kellah"
}:
inputs
{

input main

Appendix A 186

inputObject bid from

{ bid of task negotiationRound if input main
i;putobject resolution from

(resolution of task negotiationRound if input main

}

}
};
task producer of taskclass SLAbidRound
{
implementation
{
"GUI_X" is "451";
"GUI_Y" is "171";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLAprovider";
"Host" is "kellah"
Y
inputs
{
input main
{
inputObject bid from
{
bid of task consumer if output nextround
}s;
inputObject resolution from
{
resolution of task negotiationRound if input main

}

}
Y
outputs
{
outcome accepted
{
outputObject bid from
{
bid of task consumer if output accepted;

bid of task producer if output accepted
}

i;tcome refused
{ notification from
{ task consumer if output refused;
task producer if output refused
}i }
repeat nextround
(outputObject bid from
{ bid of task producer if output nextround
éatputobject resolution from

{

Appendix A 187

resolution of task negotiationRound if input main

}
Y
outputs
{
outcome negociated
{
outputObject bid from
{
bid of task negotiationRound if output accepted
}
Yi
outcome failed
{
notification from

{

task negotiationRound if output refused

}

Appendix B 188

Appendix B

OpenFlow Toolkit user manual

3ooN ybuidoy F4

3N'OB’|oU @ OUURYH"OUSPaI4 :[lew-2
2ee8 22z 161 (0) yy+ xeq |
6228 ¢ze 161 (0) v+ 18l

N ”

JeaM pue auk) |

8uA)] uodn sjiseaman [

Bunndwo) jo uswyedaq ﬁ

auk| uodn ajiseomap jo Alisisaiun
ouuey ouapal4

uoneuwrioyu) 3oe3U0Y

(Mar 10)) Wvd Bapy 2e

(uoisian
1a1dde) uni si 81eMIOS 818YM SUIYOBW UO SSADJB UIG-DD) YIM JOAISS GO

voddns di/doL e
UOISIaA J8Je| 10 eJaq 2°| (Y Juswdojanaq eaer) yar e
spuswanbay

‘pabpapounoe syewspes) ||y
sylewapel |

"pansasai siybu |y
6661 1ybuAdop

syBuAdoy ¥

aal MOUNIdO

n
s9p pue suly
aufy uodn appseamay

SISEIMIN 0 Ay1ss3A1UN)

0°L°0 UOISIap

jenueyy 13sn
Juswuosinug yJuawdojanrag pajyeisbajuj

CNIdO

Sjuajuo0 jo ajqer

0S ss|dwex3 0L
P . fedsig 6
iR Buyoyuow JoSn-unw 6
“BuLoguoN ysng €6
... BuuoiuoN g 26
Qo et et en s r e bean osuondo 16
8Y Buuoliuo mopom 6
~-dnbues;) 69
... fedsig b9
G suoneoypoW IWRUAG €9
G :Q.cmo.:QQN MO[PLIOM B 0] mSQE [eniut ay) m:ﬁmon\ 28
VV QC\QCW gO\Eog ®C~ °~ COQNOQ—Q@QW QS mtst&km FQ
124 uonndaxXgz Moplio '8
G poEnwIS S e £
L ettt e st b a s a R s b e fedsig z2
. ereereeesenneeines suoido 17
184 uoljejnwig mojpiop . °L
mm. ... m&mﬁ.ﬁ ms QE—XUQCQ mm
I sassED yse1 oyl Bunooy) 29
R e sassElD 106190 o4 Bunayy 19
8¢ uoneaipoads snohk Bupjosyy ‘9
sigjowered 26
- - opew suodwnssy J'g
1> uonessuab apoy g
9 ¥se) & 0 ssej) yse ay) buiddey ey
9 yserebugpy g€y
9 yseyebugsieg Zey
e ysejebuppy 1€V
I A . sisel £
£¢ ssg0 ysel e Buiddey v b
e ssej) ysel ebuipy €z¥
2 ssejo ysel e bugajeg ZZv
1€ ssejg ysey ebuppy 1Ty

MOYNILO

€ Um0 Jo ajqey

Bl B i sossepysel Z¥

0 $582 10910 pijeul ue jo buiddeyy Z'1'p

62 sseiD oslqo ue buppy 'ty

QN vrevnan SesssndreisseiataseerrerresnensroanranEes tesscsnseese mmmma@\nu&g\ﬁo NV

6¢ uoneoyoads moyiom v

NN ~.=m°\ gowvtg mmn:g(mm-

22 Syse] Sisausn) punodwoy EvE

92 MBI\ UORORIBU| SYSBL ZHE

sz MIIA SfewBUI SYsBL LbE

P vt sserossas st seneen sMansysel e

VN COQNUSQWQW CO:NOQQQN \sotvtog e O&E 0:.&&@.3&2 Mm.

74 iduos e buipeo] £7¢€

£z 100 8y) Bin juswebeueyy Z2Z€

2Z JBMIES ajy moyuom B 0} Bugosuuoy LZE

NN ... kQEQW ~Q=0m m £§ m::gmkmﬁn: Nm

12 yseyjosadhy Zeue

9 yserejoanmons 1eLE

sl sjopow ¥se| €€

[} [opow ssejy ysel Z'LE

[} [apow sse1198/q0 1'LE

R —.- DS 9pOLL MOYYIOM 8L JO MBINGAD 1€

18 salljesudy g

hh .. %:0&8:80 kQ WQWWN\Q .:\QOM N.N

1 saowisg suibu3 moppoM 2€°17

I Joniag Jdudg mojpiopm LE°ET

i saomesal) £4¢

o1 aomeg sweN 21e

ot saiiadosd moyuado ‘HIVdSSYTO Lle

Qh .. uC@E:Q.:}:Q QCN QB QCC&QW FN

(]! payels bumeny -z
TMBIMBAD L)

8 uonadnpolju ‘g

sjuazuo) jo a|qey

MOYN3IdO

sainbig jo ajqey 9 S SIUIJU0Y JO dqe)L

8y Buoyuow ay) 1o} suondQ :}°6 ainbi4
9t aWaYoS 10{00 UMO 1Nk Buisooy) :g°g aInbiy
Sy uonedyddy mopyiopm e o) sindul [equl Buipead :z'g ainbiy
04 syse) oo} jo uopeuasaidal awg uny ;g anbig
A2 uonesidde moppjiom e Jo uognoaxa ayl jo uonejnus 1|z anbiy
oY yse] e jo Aipijea ay) Bunjoay :¢'g ainbiy
6¢ $955€|0 358 |) Jo Mupirea syl Buniosy) Z'9 ainbi4
8¢ sasse(0 103lq0 au jo Aupyen ey Bunoay 119 ainbiy
9€ fKouapuadap moyejep e ppe o} wio4 :| |4 ainbi4
S B1BJIO UOWBRUEISUI € PPE 0} Wiod 0} ¥ 3inbi4
G %SE] B JO UONEBaID 8y} 10} W0 :6Y amnbiy
£ pabiaw aJe SasSEd YSB} OM] Y} BJaym L0 gy aInbi4
g pabiaw aq o) sasse}n yse| ay) bugosjas wio4 2y ainbig

paiipa 8q 0} SSB|D YSB Y} 950049 0} w0 ‘gt ainbiry
uopajap SSBY) ¥k 1o} wiod Gy ainbi4
sse|0) yse] € 0}103lq0 SSe|D YSe] € Jo UOHIPpE Joj Wi 'y aInbiy
UOIPPE SSB|Y) %Se] J0f ulod gy ainbiy
sse|) 198lqQ peaur ue jo buiddeyy ;2 ainbi4
SSB|D) 1991qQ Ue ppe 0} W04 | ainbiy
"sjunoooe Jasn abeuew o} wio4 :g|°g ainbiq
pHom 3yl jo maia s ysey payiduns :zy ¢ ainbiy
INDIM 3 £q umoys ase sajpuapuadap yoiym Buunbiyuos :| 1 ¢ ainbiy
PHOM 3U3 JO MaiA S)iSB] 0L °C ainbiy
¥se} punodwod e ojut Bunwooz :g'¢ ainbiy
S4IM oY wioy 1duos e peoj 0} pasn wio4 :g'g ainbiy
"POSN JAAISS Bl MOYYIOM 3L JO UORESO| Y} 135 0} pasn w04 ;g ainbiy
sajpuapuadap uogeoynou Jo sedA| :9'g ainbig
saiouapuadap moy-erep jo sadA] :g'g ainbi4
%se} e jo sinding g 8anbi4
)se) & Jo sindu) :g'g a.nbiy
uoneayoads ysey e jo utewoq :z'¢ nbi4
yse} e Jo uorejussaiday ;1 g ainbiy
SiBUIBUIBWL JO} USBIOS ey :Z'Z @inbi4
usai0s uibo 12 anbiy
wiajshs moyiom ayy Jo uoneuasaidas [eaydein ;| | aunbiy

SJUJUOY) JO X3pU|
uoyeoiddy mopuom oyl bueis ZzZ04

uoyeoydde 10ueH jo s1emoj auy Buyepo 1204

- ""IOUEH Jo S18M0L ¢ 0}
syuswastnbas swy-uny €'1°04

moppiom Buisn Buipoy Z'1°04

uonealdde ayj jo MeiniBAD 'L 0L
emmtﬁmmuo.i J8pio ..Q\QENXQ paseq-uuo4 10}

sainbi4 jo a|qe

aaq MOPNIdO aa MOUN3dO

uoponposnul 8 Y3 sasnbig jo ajqey

WaISAS MOIPHOM BU) JO PUa-1UOl) 3yl tuatuaidwil 0] PapIoap Sem It ‘SISOY ajowal
woyy Ajqissod pue saulyoew jo jas snosuaboialay ue wolj welsAs Juswabeuew
MOIPUOM BY) 9SN 0} 3jqe aq O} SBM Sluaialinbas ay) JO SUO SY "SMOIPUOM BY) JO

Buuonuow pue UoNNIBXa ‘uoledyioads ey} aleioe; 0} JOPI0 Ul papiacid st IND vV

- abenbuey fenixa] : MOYNILO, Ul puno} aq ued abenbuej ay)

40 uonduosap (N ¥ "19AI8S 1dUIOS MOJPUOM € O] Xoeq il Hodxa pue)i Ajpows ‘|duos
e se yoeq)i 196 os[e ued Aay) ‘uo 191e7 INOIM au) Buisn 1jjoo} ay) ojul i peoy
ues Asy} uayl "1oAl9s Jduos mojpiom e 0} i Wodxe ApoaJip osje ued uoneddde
mojppom e Apoads o) abenbue| lenixal ay; asn o} Buiysm siasn ‘pajesso

Buaq suonesoads ai0js 0) pappe ai1am SIDAISS 3|l} MOIPHOM ‘suoiedyads
1duos ajajdwosulosssooul Bumojie Aq Aljiqixay 101eai6 epincid o) 4apio uj

wiaisAs moppyom ay) jo uonejuasaidal eoydess) 1| aunbiy

amduzg woyvon

INDIM 343 Y Aposuip joesaiul Auo im siasn AjeoidA| -(Bu3ym) suibus moipuom
© pue (S4JM) 19ns8s 1duds e ‘(INOIM) 2oepaly| 1asn olydelrn) ay) isjusuodwod
urew ea1y) Jo pasodwod s Juswuosaug Juswdoeasq pajesbaju] mMOYNILO UL

MIIAIDAQD LL

‘uoijesydde moppuom €

10}IUOW pue 8jnNJexe ‘aleinuis ‘Apoads o} NoA smojie 3| auyl Moy winy Uy Juasaid
{iwm am uay] - pauels Bumsy, uonoas syl ul 3y oY) dn 18S 0} MOY UO UONBULIOJUY
QWOS pulj [18pEa) B} ‘Sjoym B SB J() 8Y1 JO malnaao ue Buiaib sayy

"3QI 8y} Jo uoNdUISAD PSP B PUl) (W JBPES] BU} JUSWINIOP SIL} U) "Wy
JojuUOW pue 8inNdexe usy) pue ‘suoieoydde moppuom 8sodwod o) wey) 8jqeus o}

s10sn 0} saloe} asn 0} Asea [aas} Ybiy apiroid o} s1 Juawuonaug yuawdojaasq [NS Bunoyuop 20in0say 10ueH j0 siemo] <701 anbiy
pajeiBaju| MOINTJO 8Ul JO wie utew ayj “wajsAs MOYNIJO dUi yim papiaoad ¥ MOIIOM € SE pajapow $sa00:d 10UBH J0 S1em0) 290} ainbig
S1 yoIym Juawuosaug Juawdojaaa(paleibaluj ay) saquasep [enuew Siy| eg Jepioastoying, ysey oiseq ay) bunusweidiul wio4 150} ainbiy

G e L 2010AujAuedwonanaoal, ¥SE) punodwiod ay Jo sprejep fewlaiy) :y'ol ainbiy

% Jepigidagaleai), ¥sel punodwiod aug Jo siiejep [ewsajul :¢'0} ainbiy

:Q-\Nu:ﬁokh :\ lh 15 MOYPHOM B Se pajepow $s820.d BunepiQ :z'01 ainbig

0s 1aplo feluawibieda(10§ wiod 110} anbiy

AN 80IA19G UONBIYIOBAS thim WalSAS MOIHOM 8L JO uonejuasssdal feaydels) :z'g ainbig

aal MOUN3dO 3al MOUN3dO

papels buimen

(uonnquisip ¥Ar eus jo ued s ussaweul)
2008 HOodIenu|gHO— Meseweul
PUBLIWIOD
BUMO|[0} 21 BNSS! 0} paau i NoA ‘GHO Mar ayi Buluuns ase noA j .

YOl 8y 1o} Aua ay) ajy seiuedoid -moyuado noA u) ppe Ued Uay) NOA
2008 UodyO- — Jeneg BuleNs0) 200" wod eAef
puewwod

Buwmoljo} 8y} anssi o} pasu [m noA * snoegyQ, Buiuuns are noA .

‘2008 Hod UO 801/u8S aWEN Ui ury o} Juem noA ey} Buiwnssy
IJINIDG IUUEN

‘noA 40} dn 1 19 A|jeONELIOINE || BIEMIOS BY) JO SUORNGUISIP BWOS

"MONIHO 10} uohetuiojul
uoneinByuoo awos sepnjoul 3y siY] "XINN Jo do uo moyNIJO Buisn ase
nok y Aojoauip swoy INoA ul iy saiedoid'moyuado ay} Adod o) pasu osje NOA

JelMOYNIJO/AN(INOH~ MOTINIJO)$ epnjout isnl ‘Jasi mOINILO 104
papnioul ApesJe ase sassepd ay) ‘g Mar eyl Suisn ae nok .

‘@40 8y} Joj Jef BuweNgO/qI/(IWOH SNOVEHO)$
pue ‘el go/q(INOH SNOVAHO)$
PpE O] pasu [M NOA ‘snaegy(JO ased ay} u| .

"821042 INOK J0 GHO BUl SE |9M Se MOYNTJO
85N 0} paP88aU SBSSEIO B} APN{OUL 0} HIVJSSY 1O 4nok abueyd 0} peau noA

sauadosd-moyuado ‘HIVISSVTI

"S9OIAISS 9100 [RIOADS SE ||om Se 8d1AIas Bujureu e uni o) paau |w NoA
UsY) "H1V 4SSV SigeueA JuswuoAue JNOA 8bueyo o) pasu jiw noA jie 4o isiiy

JuswiuolInud ayy dn buip3os

pojieys burpo9

(1] 2

4 4

| N 4

X4

(4

MOBNIdO

6 uoponposu|
suonesydde moppom Buuoyuow pue Bunenueisu) .
suolneoidde mojppom Bunejinuig .
(-o1@ ‘sdooy) s10148 10§ Suonedtoads moppom Bupposyd .
suonesyioads Bunsixa Bukjpow ‘Buipualx3 .

‘IND auyy Aq pasn uonetou [eoiydeid sy Buisn
£Q 10 S43M & woyy 1duos e Buipeo] Aq JoUYLS SMOPHOM MU JO uonesI) N

:aJe sepiroid 3Q| oYl eyl sainjes;) urew eyl

-ss2160.d S)i JOJUOW PUE 80IAIBS UOIINDBXT SY) O} SHUEBLY I 3]N0aX3 (| Ajjeuy
pue asneg Aoysoday ayy 01 i Lodxa (Iw uay) ‘abenbuel mojppom ayl Jo syse)
joAa} ybiY |NS oyl Buisn Jayna uoieoyoads MOIPHOM € ajeaso [iw Jasn e AjjeoidA |

Jenuepy eousiajay aoepejul YaHOD 8INPON MOIPHOM * MOJNIJO, PIjlluL
JUSWNoOP 3y} Ul PUNO} 84 Ued S3OJAIAS 8s8y) JO uoliduosep pajielap v "8diAeg
Kioysoday ay) woiy uonesioads e soueisUl 0} PESh aJe Jey) selojoe) J9JI0AU0D
ySe] pue 3SE] JO SISISUCD BI1AISS UOHINOaXT 8y "S$)SE} 8y Jo uoyejuasaidal
(ewn-un) |9A8| mof ay) Buuols 10} e|qisuodsal s 8dueg Aloysodey eyt

*80IM8S YEHO) € Se payoads gasy auibug mopppom eyl o}
pUS JUOJ; B SE SIO)| "8UIYOBW PIJqeUd-BABS € 35N 0} 8|qe aq o} Juswainbai Auo
se sey pue juspusdapul wiopeld s1 {ND 8y} Yinsal k Sy ‘uolediidde eAer e se

paue)s bunyag

u@a10s uibo :1'g ainbiy4

’ I
‘poIeys jorddy
| * - worROIYddy 3 Wy

evsns | :pIoasse,

wguw ouRy I98p

aNJY

8667 Aoy ‘®Qr 7 wOTSZ94
#22845 JuSuALEURY AT RO

Ts,

TR = {7
eunly :piomssed swes ay} 8AeY |je A8y “19sn Se.JojuoW pue
Joubisep se owap ‘1aurejurew se Joos :pauyap aid usaq aaey uibol Bumojjoy ayL

"suonjeayoads Ajpow Jo ajessd jou ued Asyy Jejnoiued
u| ‘mojppom ayy ul Butuaddey si yeym soyuow Auo ued Asy) :siasn .

‘@o1nIes Aioysodal ay) ul paiols suoneoioads ay) Apoalip
Ajpow Jou ued Inq ‘suoiedlioads UMO Jiay) ajeald ued Aey) :sseubiseg .

‘g1 ainby u pajoidep wuoy ay) Buisn

Janas aweu ay) Aq pasn yyed 10 UOIOBUU0D JO SSE|D A1y} 8bueyo se |[am

SE 8UI|-UO SIBSN MU 3}eald ued Aay] "way) 0} 8|jqe|ieAe sainjes) ay} e
aney Aay] "siojensiuiwpy walsAs ay) jo jusjeainbs ay si siy) :ssaurejuBl .

:pajealo usaq SABY S19SN JO SASSE|D JusIBYIP 931y L

‘Wa)SAS MOIPHOM
ay) asn o} pJjomssed e pue sweu Jasn e o} noA Jdwoid |m pue seadde uay)

(42

MOUBN3dO

133 pape}s bunyag

M |z ainby uo pajuasaidas usalos ayj " INI00 | MOj4uadQ eAel, puewwod ay}
Buiuuni Aq uoneoydde ay) Lels ued NOA ‘S80IAIBS 3100 By} PaLElS aAneY noA 8ouQ

SUOI}I3UUOD JO SISSE[D ‘UIBOT

‘pE)S 0} SBJIAIBS BIXD
jeuondo 4o 1SI| © 10} |W}Y SBJON-9SES|aH/SI0P 10 IX}' SBION-8sedjeY 8l U} %99UD

‘Jdwjaainiaguoiesyoads eunlie wod enel

pUBWIWOD
Bumojjo} 8y} anssi 0} pasu (M NoA ‘gHO MAr 8y Buiuuni ase noA § .
ERIIVEISEIT =]
801M8SgHO— Sienag |dwijaoinaguonesyoads eunlie' wod eael
‘pUBWIWOD
Bumoy|0} 8y} @nssi 0} paau |jim nok ‘ snoegyO, Buluuni ase noA j| .

“WNI00} BY} yum papinoid ajdwexs
paseq-wioy-160 ay) Aq pepasau Seu0joe) BU) SE ||9M SB SBDIAISS UO)NISXa pue
Kioysodas ay) Aq pepaau sau0joe} SNoUeA 8y} sepnjout) “weiboid enel a|buis

e ul paiayjeb uaaq aney auibus mojpuo M Y Aq papasu saolAISs Jiseq By}
IV "S@21A8s asay) Lels ued nok a1ojeq Buiuuni pue dn aq isnw 82IAJ8S 8WeN
3y} 1By} SUBBW YoIym 821AI8S SWEN By} Yum palsisibal are sadlnes asayl

S92IAIDS dUIBUT MONIOM

Jonies
1duog/suondo, uondo nuaw ay) buisn § Aoads ued nok ‘uoledo| aAleuss)e
ue asn 0} yswm noA |reys ‘1808 Hod Isoy|eo| st uoneoo| Jaaeg 1duds Jnejep syl

/S1duds 1808 SAIM SIMINIo0L enel
* puewwod Buimojjo} 8y} anss! o} paau jim noA
¢/s1duos Aioysodas 1duos se Buisn | gog uod uo 1aA18s 1duds 8y} asn 0} Juem nok)
J9AIDE 3AIIDS MOJNIOM
“3IOM },UOM SB81Njea} 8y} JO SWOS ‘WaY} JO BUO UElS AJuo NOA J| oM juom
3@ 28U} ‘Way} Jo Jayya Ue}s J,uop NoA J "sedlAIes uoiinoaxe pue Aiosodas ayy

asn 0} JueM NOA Jl peapaau Sa2IAISS JO 18S YgHOD SWi-uni e pue JaAas jduds ay)
10} 90IAI8S UOBOYIOBdS € :papIA0Id BIe Jey) S8IAISS 2109 JO SI9S OM} 81k 818y]

S99IN138 9409

(A1030841p UIQ BY} UI) SUOINQUISIP 1SOW Ul PapIA0Ld 8Je S8Jy yojeq awos

cc

T4 0 4

rere

o 4

MOBN3dO

papeys bunjag

(191dde ue Buisn papels sem
1N 8y} ji Ajuo) djay aujj-uo ay) 0} sHulj Bwos ssepiroid nusw djay ay|

-asmuayjo piomssed siy abueyd 10
Jaurejuiew e si 8y Jl JUNOJJE UB PpEe Jasn ay} S18| NUsW 8JuBUSjUlRW BY |

vi

MOINIdO

€

*)SE) B JOHUOLW JO UEJS O} JaSN 3y} SMO||e Os|e)i ‘9dIAI8s
Aioysodai ay) 0} uoieoyoads e Hodxe Se ||om S SHSE) ‘SaSSe| %SE}
‘sasse|o 108(qo 8y} Jo AlpieA 8yl 308yo 0} J8SN 8y} SMOj|e Nuaw uni ay|

‘uoneoidde mojpom B JO uolenuwis
ay) Jasal ‘dajs e axew ‘dojs ‘Yels 0} JaSn 8y} SMO|[e NUdW uoneNwWIs syl

***pasn Juoj ay}
10 8ZIS 8y} ‘98s 0} Juem NOA SHse} 3y} Jo Ued Jeym 8sooyo 0} uondo ‘asn
0] JOAIS B]ij MOJPHOM BY)} JO UOIED0| 8y} Se yans suondo uoneinbyuod
ay) 0} ssa20e aul| uo 18b 0} Jasn ay} smojie nuaw suondo ay|

‘syse} 8y} Jo INo

pue u BuIL00Z AQ MOJPHOM B} Ul [SABI) O} JBSN B} SMOJ[E NUSW MBIA BYL
"S)S€) pue Sasse|d Yyse) ‘sasse|d 198(qo

ay) Ajpow pue 8jajep ‘ajeald 0} Spuewwod ay) sisyjeb nuaw ype ayl
“(IND 8 apIy Ajuo) asop pue (IND 8y Aonisap)

1IXe SPUBLLWIOD [BNSN 3y} SE ||8M S S43M a1 Buisn uoneoiyioads e Buires
10 Buipeo) ‘Buyesld o) pejejas SpuewIWOD 3y} |l s1ayied nuaw a)y ayL

paueys Bunjag

-djoH pue soueUBlUlel\ ‘Uny ‘uoieiNWIS ‘uoldQ ‘MBIA ‘Up3 ‘el :sauobajes urew
1y6ia ojuI papIAIp usaq aAeY |NDIM 38Ul BIA paNss| 8q Ued jey} SPUBLIWOD 8y |

‘nUaW 8y} JO 18sgns e 0} ssadJe 186 |m sassejo

1810 JO S18sNn 3jIym ‘Z'Z ainby ui pajoidap |ND 8yl 98S Uy} |IIM Jaurejurew
SSEJD JO J8SN Y |NDIM 8Y} 0} Ssao0e aAIb pue Jasn ay Jo suibugsm aus

10} yied pue UolIBUUOD JO SSBJO B} SIBA0J8 OS|e }| 8j)} pIOMssed By} Ul pao}s
SI Jeym yiwm piomssed pue sweu Jasn sy Buuedwoo Aq paisisibes sisesn ay)
ey} SH03YO 1|00} 8y} ‘piomssed pue sweu 1asn sy papiaoid sey Jasn ay) 3duQ

sIaUIRUIRW 10} UBBJDS [emu) :Z'2 ainbiy

MOBN3dO

uonebianeN 9k

uoneoyoads yse) e jo urewo(q :g2'¢ ainbiy4

sysel
weans-umo(

sysel
weans-dn

")SE)} pauwIadu0d
8y} Jo |oA8] 8y} e A||edoj auop s siy) Aouspuadap yse) e Ajpow o} sjuem

18SN € JI :uonesyIpow Jo AJIieo0] Jo anss! ay) ssaippe o} a|qissod st aew siy|
-Kouspuadap j0 80in0s se }i Buisn aie sySe)] Wealls-umop YaIym Uo JBAS0SIeYM
sbpapmouy ou sey }| "syse) wealls dn uo sey) salouspuadap 8y} Jo aseme

Ajuo si yse) ay) Jey) ainjes} Jendiued se sey walsAs Jno Jey) padljou aq o} sey }

")se} 8y} 0} Pajeoosse uoiedldads Moppom Jo Led ayl spwiep xoq

K816 ay] "z'e @inBy ul pajoidep sijse) € Jo uonedoads ay) ul paquUOSap St jeym
‘SPJOM JBYJI0 Ul 10 UoNeolyi0ads ¥Se) B JO UIBWOP aY| 'SYSe] weaJjs-dn se paliajal
aq |Im spuadap Xse) SIU} YOIYm UO SHSE} BU} 8|IUM ‘SYSE] Wea.js-umop se o}
paiiayal aq ||m Xse) e uo sapuapuadap Buiaey ale jey) s)se) sy} Juswnoop Siyl
40 1sa1 8y} uj "ydeib o1194oe uE Se pajuasaidal 8q ued uoneoyoads |[elaA0 8yl
‘UOIBUIISaP SE 10 821N0S SE XSE) SIY) Yyum Aouapuadep e si il Jayleym smoys spes|
MOLIE 8} YDIYM Ul UONDBJIP 8Y] "SMoLe pajop Aq salouspuadap uoneaiou

8y} pue smoure Aq saiouspuadap Moy erep 8y} ‘sjeno Aq sjosiqo indino

pue Indul ay) ‘saxoq a|buejos. Aq pajuasaidal ale sias indino pue sindui ay |

‘paiyoads aq ued syndino pue sindui Yloq Jo sies

aAnjeusaye ‘Aiigixaly swos ppe o] ‘sindino awos Bupnpoid ssjeulwss) usy) pue
sindui swos s}ab AjjeaidA} |m yse) e ‘awl uni 3y “|°¢ ainby ul pajoidap si Yse) e Jo
ainjoniis 8yl "paquosap ale sjusuodwod si pue yse) buippaquwae ay) jo sindino
pue sindu 8y} usamiaq Buiddew ay) se |jom se sxyse} asay) Buowe saouspuadap
8y} ‘8SBO SIY} U] "SHSE} MOJPHIOM JBYJ0 JO N0 pasodwiod J|asil SI XSe) Siy)

uaym 1daoxa uapply aJe ¥se)} e Jo sjeussjul ay] “sindino sy pue sindul sy aJe yse}
e Jo sued a|qisia Ajuo ay] “adepajul s Aq walsAs ay) ul pajuasaidal si yse}

ySe} e jo uonejuasaiday :|°g ainbi4

+—O

—

)
s e,
[

v

yse} e Jo ainoni3s L'ELE

‘pajoedsal a1e }Jom Jo sHun uaamiaq salouspuadep syl Jeyl Buunsue Aq
pue ejep BuilBueyoxa AqQ Ino paused Ajlensn s| uoneIoge||od siy | ‘ssa20id [eqo|b

aal MOIN3dO

S DT IETTEY)

3y} JO JUBLISABIYO. BU} ‘Wi UOWWOD B Yoeal 0} 8)eloqe||od o} aAey sjuediued
-sjuedioiped Aq N0 paused (SHSE] Pa||ed) HI0M JO SHUN JBj[ews Ojul PapIAIp 8q
Aj/ensn UBD SMOJLOM ‘| " | UOBDSS Ul pajels Ajsnoinaid Sy "Paquosap 8q |IiM Syse}
40 sadA} Juaiayip 8y} SE ||oM SE XSE} MO|PHOM B JO 3INJONIIS 8y} ‘UORISS SIy} U|

s/opow ysel £b°E

*s10418 uoneoidde pajpuey-un JO S1018

wayshs 10} paniasal Ajjensn Buiaq auo isaje| ay) ‘uondadxa o} Buipuodsaii09
sindino se uaas Ajlensn ase s}as Indino Jaylo 8y "wajqoid Inoyum

S8JNJ9X3 %Sk} 3y} Ji PAYOEal BWOIN0 8y} 8 ||IM 1S INdINO 1sil BU) SIYM ‘SSBJO
SIY} JO %SE} By} Lels 0} pasn Ajjensn Jas indul ay) 89 |iw 18s Indul 1s1y 8y} AjreaidA L

'sigjaweled
se uaas aq pjnod yaiym (s}oalgossel) yse]) $821n0sal 199lqo Pajeloosse Jo 18s
e aney (s19S IndinQ sse|) yse) Ajeandadsal) sias induj ssejo dseL ‘pauoddns

(s1es IndinQ sse|D ysel) sies indno sanewsalje pue (s1aS Indu| ssej %sel) sies
ndui aAijeusa)je 8y} saynads J| HSe) e Jo aoep8lul 8Y) S8quUISap Sse|) Ysel v

/opoui SSe[] YSel C°}°E

"suoneaiyoads ay) ¥0ayd-adA) o} smojje §|
‘SySE} MOPHOM By} AQ pasn saainosal 108lqo ay) adAj 0} pasn ale sasse|d 108Iq0

[9powi sse[d 323[qo L°LE

‘paonpojul 8q |IM S108lqo asay) Jo sjepous 8y} ‘sydesbered 1xau ayj uj
ysel .

SSE|D jsel .

sse|Q 9lq0 .

:s109[qo urew @81y} Sasn [NOIM YL

posn Jopoul MOJJHIOA DY) JO MBIAISAD L°C

sanyeiIouas =

3ail MOBN3dO

uonebiaen 8L

"yse)} Jualed ay) Aq paAIadal seouals)al 198(qo awos pwsuel)

0} pasn si siy] "g yse} Jo 198(qo ndui ue s| g pue Y %se} Jo 10alqo indut ue si

S 'y ¥sel punodwod 8y} ul Pappaqua 3se) e sI g ased siy} uj “(ysel Buippaquia)
V Jsel Jualed sji pue g)sej} usamjaq aq osje ued Aouspuadap moj} ejep v (3)

"yse} juased

8y} 0} Y0BQ S}NSaJ 8WOS JWSUEI)} O} Pasn si Siy| "8sed siy) ul ¥se} punodwod

B 8Q 0} Sey g XSE) Jey} padijou 8q 0} sey }| "y %sel jo 109(qo indino ue st 801n0s
108lgo ay) awi siy} Ing ‘auo snoiaaid ay} o) Jejiwis st Aouspuadap jo adAj siyl (p)

yse) uated ay)

0} ¥0BQ S)NSa1 8WOS JWsuUel} 0} PAsN SI SIY| "9SeI Sy} ul yse} punodwod e aq
0} sey g)se} Jey) paoRou aq o} Sey ¥ "g sk} Jo 1al(qo indino ue si g sy) pue 'y
yse) Jo 108/qo Indul ue si 821n0os }93[qo 8y} ‘Juaied s,y YSE) S g jse] awi siy] (9)

‘() yse) Jayjoue wouy }asiqo ndui ay) se 1oalqo indul

awes ay) asn O} Spaau (g) }SEe} B uaym pasn aq ued siy| ‘g ¥sel jo 10alqo indul
ue si @ aliym ‘y 3sel Jo 108lqo Indur ue 8sed sy} Ul st S °q §'¢ inby ul pajoidep
S1 g pue y syse)} 1aad om} usamiaq Aouspuadap mojj-ejep Jo Wwioy Jayiouy (q)

'Y)SE} JO S}NSal 8y} JO dWOsS 8sn 0} spasu

g SE} Jey) smoys siy] ‘g ¥sel Jo 108(qo indul ue si g pue ‘y %se} Jo 1a8lqo indino
ue 8SBI SIY} Ul SI S "(XSe} swes ay) ul pappaquia YSe)} aJe SySe)} Jaad) g pue y
syse) 1aad om) usamjaq Aouspuadap e si Aouspuadap Mojj ejep snoingo ay] (e)

*@ uoneunsap }08lqo ay) pue § 821n0s 103[qo
8y} |led 0} uonuaAuod Buiweu se uasoyd aney am ‘ainbiy siy) uj "g'g ainby ul
pajoidap s}o0alqo uoneunsap-a21nos Jo s8|dnod a|qissod jo sadA} uanas ale aiay)

*3|gejieAe J|as) si 103[qo 82In0s 3y} Se Uoos Se 3|ge|jieAe Sawodaq 1203lqo
uoneullSap ay} ‘SPIOM JaYJ0 U] "8Aljeuls)e Se }08lqo 821n0s 8y} asn 0} pamojje
s1}08[qo uoneunsap ay} jey) si Aouspuadap Moy} ejep e jo Buiueaw ay] “(oalgo
uoneussep pajjed) g ysel Jayjoue Jo 19s8(qo indinoandul ue 0} sAneuss)e se uaAlb
s1 (joalqo 82inos pajed) Y sk} wolj }98(qo ue uo aduaiayal 1o8lqo iIndinoandul
ue a1aym sajouspuadap ase salouspuadsp moy ejeq “salouapuadap jeiodws)
pue sapuapuadap mojj-elep :palapisuod saouapuadap Jo sadA) om) ale a1ay|

sorouapuadaqg

‘uasoyo SI pPajsl| BUO }s1l} 8y} ‘S|gejieAe
3awWo02aq }se} punodwod B JO S8WO0IIN0 |BISASS Jey) JUSAS 8y} U] "82IN0s

se way) Buiajoaul saouapuadap moj} ejep awos Buiaey sysey ||e 0} a|qejieAe
aWo2aq 18s Indino asoyod ay) 0} pajeloosse s30alqo Indino ay} pue sjas indino

S}l J0 8uo ul dn pua 0} Sey ¥%Se} e ‘pape]ls aduQ "sjoalqo yndino om) sey 1es indino
PJIY} Y} pUB BUOU BUO PUOIAS 8y} ‘198[qo Indino pajeroasse auo sey }as Indino
1sd1 ay] “sjeao Aaib xyiep Aq pejussaidel ase sjoalqo yndino esay) ‘¢°g ainby uj

(waisAs Bukpapun

ay) Aq pauoddns jou) "awoolNo ue Yons saydeal i JOASUSYM djeululs)}

JOU S80p ¥Se} e pue ‘aWwooiNo ajeipawalul ue si siyj “synsai jeiued
Buiysiignd Bumojje sysej} oiwoje-uou 104 Indino [e1oads e :Bwoojno ey .

aal MOUN3dO

L1 sanIeIaudn

-doo| 8y} JO uoneIa)l 1xau ay) Jo} sindul se pay
aq 03 sindjno ay) Bumoyje syse} dooj 1o} Indino [e1oads e :awooino jeadsy .

(waysAs Buikpapun ay) Aq pauoddns
194 10u) S8p02 Joud awos 0} Bupuodsanod Jousa adAj Jo s1o8lqo
INdino smojje Ajuo }i ‘SySe} JIWOJe J0j SWONO [BUl B :BWO}NO LOqy .

*)se} e 10} Indino [euuou ay) :BwWwoajno [eul .
:sj@s Indino jo sadAj} Juaiayp Inoj are aisy L

yse) e jo sindinQ ' @inbi4

O

®)

(@)
© =

‘wiay) 0} pajelsosse s198(qo INdiNo aWos aABRY PUB SABUIS) e 38 SBWO0JINO JO
sajels Indino se pauiajal osfe sies asay] (ka6 ybi ul sexoq ayy Aq g ainby ul
pajuasaidal) sjas Indino aiow Jo auo aAey 0} Aljiqissod 8y Sey }Se] MOJBIoM Y

spndinQ

"UaSOYD SI PaJSI| BUO ISIl BU} ‘S|qe|IeA’ 8W028q SIS INdul [B18A8S Jey) JudAs ay)
U] "3|qe|ieAe si saAlewa)e ndul S)i JO U0 UBYM B|gejleA. SBW02aq J0alqo indul
uy "a|gejieae Jas indui sy Jo auo jo s}osl(qo Indui ay) Jo Ajelo) sy} 8Aey 0} spasu
»Se) € ‘Uels 0} 19pI0 U] 'S821nos jndul SAleuUld)je Se pasn 8q ued Jey) s}oalqo
indinoandul J18yj0 uo saouaIsyal JO ISy B sey sjoalqo Indul 8say) jo yoe3 alqo
indui auo isnf sey jas ndul puodas ay) pue s}oalqo indul pajeloosse om) sey Jas
indui isaiy 8y "sjeno Aaib spep Aq pajuasaidal ale s1o9(qo indul esay) ‘g¢ 8inby
U] “way} 0} pajeloosse s}08(qo Indul wos aAeYy pue dAleuls)|e ale S}as asay|

yse) e jo sinduj :g'¢ ainbiq

S @
O
(]
)
|

@)

*(Ka1b Wby U1 sexoq ay) Aq ¢’ ainby
ul pajuasaidal) sjas Indui aiow 10 auo aaey 0} Ayjiqissod ay) Sey Se} MOJPLIoM Y

spnduy

3al MOYN3dO

uonebiaeN

0} ©0UBJSUI 1O} PASN 8q PIN0D Siy| ‘g skl Juased sy Jo 1as jndino ue uoneunsap
se pue Yy %se} Jo 18s Indul ue 821nos se asn ued Aouspuadap uoneayou Y ()

"9)e}S Urenad e ul SUels Y Jaye uejs Ajuo ued g eyl
Apoads 0} pasn aq pinod siy| ‘g sel Jead wouy 18s indul ue uoyeulsep se pue
V Ysel wouy }as Indu; ue 82inos se asn osfe ued Aouspuadap uoneayou v (q)

‘alels

urepad e ul y se} Jo uone|dwod Jelye Uels Ajuo [m g Se) Jey) 9010jud O} SouejSUl
103 pasn aq p|noo siy| '18s indur uoieunsap e st g "g %sey} Jo Jaad e si jey)

Vv se) 0} Buibuojaq jes indino ue aainos se yum Asuspuadap uoneaiyiou ay) (e)

' pue S AjgAnoadsal paweu aiam

S}as 8y] ‘189S uoneunsap ayl YIM Xse} 8y} g pue }8s 32JN0S 8y} YIM XSe)] ay] St
"salouspuadap ejep 10} pasn auo 3y} Se Pasn ale SUORUSAUOD JejlwiS ‘9'¢ ainby
u| pajoidap ‘saouapuadap uoneoyiou Jo sadA] Juaiayip UsAss Osje ale 818y

selouspuadap uoneoyiou jo sadA] :9'g ainbi4

3

v

@ (e)
9.6l 8.00.0.6.0

||||||||||||||||| J

oz

MOIN3IdO

6L sanIeIdudn

salouspuadap moy-ejep jo sadA | :g'g ainbi4

3

*sdoo| ajenwis o} pasn

S1 SIY] yse} a8y} Jo 108lqo ndu; ue ased siy) ul i g "193lqo 82inos se pasn 8q

ueo Jey) awodlno Jeadal e aAeY 0} SPaau YSe)} 8y} ‘ased sy} u| “(dse) swes ay) 0}
siajal g pue Y SYSE}) jSE} 8uo AJuUo 8AjoAul Os|e ued Aouepuadep moy) ejep Y (6)

")Se} 8y} JO UOIINJaXa [euLIouqge Ue JO JUdAe ay} ul 193(qo

indino se 108lqo Indul ue uin}al 0} SUE)SUI 10} Pasn aq ued siy] “1oalqo Indul

S| JO BuUO sk 9 pue 103(qo Indino s Jo auo se g Sey Yoiym “yse} punodwod e aq
0} sey)l ‘ased siy} U] »yse} awes ay) o} buuisjal urebe ase g pue y aseo siyl uj (§)

MOBN3dO

uonebineN

*SauIyoBW JO }3sqns SIy} Je pawie
aJe Aay) Jl sisanbai premuo} Ajuo 0} papod usaq sey eyl Aemajeb |99 ay) 0} anp
si siy] "19|dde ue eIA pasn uaym ¥N‘Oe’|ou Ulewop 8y} Wolj saulydew jo ajdnod e
pue }S0Y[ed0| 8y} U0 Pajeso] S43M asn Ajuo ued I4|00] ay) ‘suoseal Ajunoass 104
"(1808 “Nn-or’jourye||ay) e a|qejieAe si JaAlas e yons Ajuaung ‘Buiuuni s janias
|y pauiajaid 1noA asaym uod pue aulydew ay) Ajoads ued noA pue sieadde
uay} 2'g ainby ul pajoidap wuoy ay] * Janss aji4/suondQ, uondo nusw ayj Buisn
18AJ8s 8|1y 8y} Jo uonedo| ay) Buibueyo Aq paasiyde si siy] ‘pPasn aq 0} JOAISS

3|y ynejap ay) abueyod s op 0} juem Ajqeqoid noA jeys Buiyl 1siy sy} ‘18sn e sy

19MI3S 3fIf MOj)iom ke 0} burzoauuo)

-Aisnoaueynwis Bunoauuod sjualo ajdynw papoddns tanies

papealyi-iinw e st }| “eaer buipoddns swuogield |je uo uni aq ued pue uoneoldde
BAR[B Se pajuawa|dwi SEm JOAISS 3l 8| "9SI9A8] PUE }X|00) MOJPIOM By}

0} (XINN se yons) wajsAs |l jeuuou e wolj suoneayoads jduds awos Jwsuel) o}
pasn si }i Jey} Ul 414 O} Jejiwis si 821A8s B SI (S44M) 19/u8s 1duos MOPHOM BY L

19A43s 3dLIos e ypm buryoeiadjuy

*(11 mouy| Jou saop wajsAs sy} Inq
JIWOJe 8q UBD uoienuelsul yse) a|dwis e) uonesijenads siyy uoddns joA
10U seop wajsAs Buipapun ay] “}Xajuod [euoioesuel) JO 8sn ay} O} anp

JIWO}e SI UOHNDBXS JIBY] "S8WOINO0 HOGe YUM SHSE) BY] : ¥SB IO}y o
"syse)
dooj| |spow 0} pesn ussq Sey PUe UOISINJBI SMOJ[e }| sk} juased Jiay}
J0 uoneoytoads ay} ApPoq Se YIm SHSE) SISBUBY) HSE SISIUSY) BAISINO8Y .
‘pepeau Ji pajenuelsul Ajuo S| Jey) %se} e Si Siy] YSe/ SIsauan .
ise} syl

J0 Apoq 3y} jo uonejdwod seye payoeas si sindul ay) yoeq buipas) siels
Indino ay) eyl UOKIPUOD Se YIM 3IUM B 0} JudjeAinba si)i ‘uoneoyoads
ay} ul uonadal 8onpoujul 0} smojje syse} Jo adAj siy) vyse; dooT .

:syse} Jo sadA} om} asay) 0} uowwod suonesijerdads a|qissod [ei1anas aJe a1ay|

‘syussaidai
3SE} MOIJ3OM 3y} Jey) suoijoe ay) swiopad Jey) apod e}l 0} pajeloosse

(44

c€

MOIN3dO

12 sanIeIaudn

sey syse} Jo adAj Siy] "SHSB} MOIPHOM JO }8S & Ul PapIAIp 84 18buoj ou
ued)| “wajsAs 8y} JO XJOM JO Jun JISeq ay) si ysel Jo adAl swy) :sysej Jiseg .

-Auejnpow 10y uoddns poob e
Buirey smojje siy] “saniAloe 1ajdwis 10} a|qisuodsal S$)Se) JO 19S B Se Yse)
Buiyiq ay) Buisodwooap Aq auop si 831A18s ay) Jo Buyg ayy moy aquossp
JIMm Juswypedap aoueul 3y} 8dUBISUI 104 ‘Payiuap! sey 3y ey} sysel
8y} 8quosep Jayuny uay} ued 3se} siy} Bunejdwood jo ebreyo ul uosiad
10 Juswyedsp ay| "821AI8s SIY} 1o} Bulljiq auo puodas a8yl pue adIAeS B
Buipinoid auo isiyy By} ‘syse) om) Se ssadoid SSaulsnq e [pow UeD J0jo3lIp
Auedwoo e ‘sjdwexs ad1awwod'd ue Buisn ‘@ouejsul 104 "s|ielep Jo
sjoAs| Jualayip Apoads o} Aem e se pasn aq osje ued)| yse) bunesuadwod
B pue %SE] B 10 8AljeuId)je UB pue yse) e Aj1oads 0} xoq yoe|q
e se pasn aq pinod %se} punodwod ‘paspu| }SE} B 0} PSJeIO0SSE 80ueIS|0}
JIne} 8y} apiy 0} Aem e se pasn aq ued yse} punodwod e ‘aouejsul
104 "syse} punodwod Buisn 10j suoseal 8|qissod [e1oAaS e 818y

*S)SEB} J8Y10 JO JN0 SHySE} pjing O} pasn si yse} Jo odA} siy) :syse; punodwo) .

:sadA) ajqissod om] JO 8q ued Syse) [aAs)] ybiH

*SOLUOD)N0 HWILWOD 0B} Ul BB SSWO0IINO [eul 8y}
‘ased sIy} U] "JIWOoje yse) e sayew poge adAj jo 1es indino ue Buirey "dwoje-uou
10 JIWOJE 3q UBD SHSB] W00} 8y} AQ Syse} [9Asl-moj| 0) paddew Ajjednewoine are
S)SE) |9A9] YBIH "921AI8S UOIINOaXa 8y} Ul Syse) ay) Juasaldal 0} pasn ale S)se)
|9AB]-MO] 3jiym ‘@o1AI8S UOKRIIIDadS 8y} AQ pasn ale pue uoljedldde mojppiom

ay) Jo uoneoynads [ans| ybiy ay) 10} pasn ale (SXSe) |9AS] Jasn) Sysel [9A8) YbiH
‘syse} 19Aa] ybiy pue [aAa] moj saysinBusip waisAs Juawabeuew mojpuom siy|

yse} jo sadAy

"108lqo Awwnp e oeq pasj o} Buipsau Inoyim
doo| e aABY 0] pasn aq ued siy| ¥Sel swes ay} Jo 18s indul ue uoneunsap se
pue se] e Jo 13s Indjno ue @21nos se asn osje ued Aouspuadaep uoneoyiou v (6)

'S SBM)SE)} 8y} Uejs 0} uasoyd Jes indul

sy} §i peyoeal aq Ajuo ued jes Indino urepad e Jey) Ajoads o} jnjasn aq ued siy|
"yse)} awes ay} Jo () 18s indino ue pue () 18s Indul ue uaamjaq Aouapuadap

e saquosap pue syse} punodwod 1o} Ajuo si Aouspuadap uonesyiou siyl (§)

‘S 19s indui Jejnoied a8y} yum

paue)s sem Y ysej juared syl Ji pape)s Ajuo si yse} e Jey) 8210jud 0} pasn aq ued
SIYl 'V Ul pappaquwa SjSe)} 8y} Jo auo Jo }8s indul ue 108(qo uoneunssp se pue y
yse} punodwod e Jo }as Indul ue 821nos se asn ued Aouaspuadep uonedyiiou v ()

"3W02JN0 UIead e yoeal pinoys g)se) jualed s} uay} SHoqge Y 3se) Ji jey) ajels
0} 92UBJSUI 10} PASN g P|NO2 SIY] "g Yse) Juased sy Jo }8s ndino ue uoneunsap
SEe pue Y)Se} 40 18s Jndino ue a2inos Se asn ued Aouapuadap uonedyliou v (p)

*aWOo}N0 URUad € yoeal pjnoys
g se} juased sy usy) Jes Indul Jewsouqe, ue UM SUE]S Y %SE) Ji Jey) ajels

ZELE

MOBN3dO

uonebiaeN

s) selouapuadap 8y} ||e Se ||am Se Sse| yse) s Aejdsip yse) ajdwis e ul Bulwooz
ajiym ‘syse} Jusuodwoo sy @as noA 13] 3sel punodwod e ul buiwooz “uoneoyioads
noA JO INO pue Ul WOOZ S18SN 8y} 19] 1ey) s|qejieAe osfe st walsAs uonebireu v

‘uonpeairdads
uonesidde moyyiopm e ojur bunebineny

"Pa323yo SI S} 8Y} UBYM S810U8}SISUOIUI
se Jeadde ||m pue pajeald aq ued sauapuadap bulbueq ‘selouspuadep
asauy] Jo Aupiiea ay) jo abels siyl 1e %98yd ou si a1ay] “sreudoidde
se s)09lqQ IndinQ Ysel pue sies IndinQ yse] ‘sialqQ Induj yse] ‘sies
induj yse) Awwnp uo 9ous1ajal B S paje|suel) S| sauapuadap [eiodws)
pue ejep yoe3 ‘uoneoyoads ay) Jo uonelaidiajul sy} Jo pus ay) s1ab6uy
10118 SIy] "Sse|D YSel pajeloosse ay) Jo ued jou 10slqQ Ysel pue 1o 18S
199[q0 skl e uo Aouapuadap ay) Ajoads 0} sauy 1duds ay) i pajesausb si
10113 UR Jey) padijou aq 0} sey | 's}oslqQ ¥se) pajeldosse aAoadsal isyy
uo se [|am se s}ag sindinQ yse| pue sjag Indu| yse] ay) 0} pajeloosse
saouapuadap |eiodwa) pue ejep ayj Jo uoiesauab ay) YIm Ino paused
uay} s ¥se} ay} Jo uoneoyoads ay| "uo Jaje| S8SSe|) YSe] paousiayel
4O uonajap ayj sjuanaid IYj00] BY) Jey} OS SSe|D %Se] 8y} yim paisisibas
os|e sI ¥se} ay] "spslqo IndinQ ysel pue s}ag IndinQ yse] ‘speslqo indu|
yse] ‘sias Indu| yse| pajeloosse sj yum pajessuab siysel syl aswuayio
-uoneoyoads ay) peoj o} buiky sdoys Jajaidiajul ay) pue pajessusb
S1 10418 U UBY} ‘SSB|D)SB] UMOUNUN UE SeM }i }| ‘peal S SSe|D YSeL
pajeloosse ay) }sii4 “Suoiiuyap %se) 8y} peo| o} si wae|qoid Bunsaisiul ey B

‘Uo Joje| SaUo pifeAul ay; dew o} Jaises
1 @4ew o} sse|D 193IqO vyl yum paisajsibal ase sjoalqo indino pue 10alqo

nduj “way) Buipeas ajiym Ajloallp pajeald osje ale Sasse| Ysel syl .
*19SN 8y} 0} d|qejieAe spJemidlje aje pue Jasn

sy} 0} aoads sasse|) 108lqO Se pajeald ase sasse|) 10alqo Buissiw ay | .

‘uonejuasaidal

jeoiyde.b e ojui pauaAuod si uoeoyioads [enixa} ay) ‘pejeidiaiul Buieq sjiym

"} 1081100 0} |ND U} Yum papiaoid
$]00} Y} 8SN UBY} pue uoReodyIads 1091100-Uou B peoj 0} juem Jybiw siaubisep
ey} 1ybnoy) sem Ji Se yeam si XejuAs ayj Jo uoneayuaA siy| “Ajosiip uay}

x1j 0} A} ueD Jasn ay) pue pais]| ale Asy) ‘uonealioads ay) peo) o} |ej o} Jejaidiaiul
3y} 10} ybnoua peq a1am s10ua ay) §| "uonedo| 8y} pue 1duds JNoA ul s1ous

awos aAey noA Jayleym mouy nok Bume| passeooid-aid aq uay) | uonedyoads
ay] “Jonsas 1duos MOIPHUOAN © wouy jduos e aAsulal 0} [NDIM 3y} 104 9jqissod st §)

Jduos e buipeoy

ve

g€

£CTE

MOUN3IdO

€2 saneiaudn

‘palols
ag PiNOYS }l 8J3YM UOIJEO0| BY} JO |[9M SE umou 8q pjnoys 1duos pajeasd Amau
ay) aweu yoiym Jepun Apoads ueo Jasn ay; pue sieadde g'¢ ainby ui auo ayl
0} Jejiuis Wioj i "Pasn si 'Sy 8AeSg/ajid, uoiido 8yl ‘S44M 8Ul Ul 8]y B dAES O

‘papaau si 1duos J8A3leym peo| 0} S00YD UBD 18sn 8y} pue sieadde
g'¢ ainbiy u pajoidep wuoj 8y} * peo/ajid, ‘uondo nusw ay) Bunosjes Jayy

J1Y]00 3y} BIA Judwabeuep

"PSJUBM JBABIBYM JUIS MO|IOM B SE }IOM S}l BABS
0} JosN 8y} 8|qeua O} SI SIB/IBS BjY U} JO wie ay] “Janes 3y ay} Buisn yduos e
se uoijeoynads JNoA aAes 10 peo| ued NoA ‘paiejoep usaq Sey S3jM PleA B 80uUQ

S4JM 8u} woyy }duds e peoj 0} pasn uuo4 :g°g ainbi4

S s s R Ry

gcTE

MOUBN3dO

uonebiaeN

INDIM aUi Aq umoys aJe salouapuadap yoiym Buunbyuo) ;| | °¢ ainbi4

*1 L' ainby uo pajoidap wioy ,suondQ seiouspuadag maip/suondo,
ay) el sapuapuadap Bujobino pue Huiwoour moys/apiy suondo ayy Buisn
UappIy 8q PNOYS Jeym pue aas 0} Juem nok Jeym apioap ued noA ‘isurebe ala

PHOM 8Uj} JO MaIA S)se] :0}'E ainbi4

T T —
e P =]

7y

e peme

106 s1asn |rejop yonw moy ainbiyuod o) papiroid usaq sey |00}
B ‘)nsal e sy "xa|dwod aynb aq ued uonejuasaidai [eaydesb ayy ‘0| g 81nby uo
U88s 8q UED SY "SUOIJOBISJUI S,%SE) B JO MBIA B NOA saAlb g|°'g pue 0 }'g sainbiy

M3IN uoI3ORISIUY S, SBL

9z

cre

MOINIdO

sz saneIdudn

yse} punodwod e ojul Buiwooz ;6 ainbi4

(¥'04 ‘€04 '2°0}
sainby) uonoas ajdwexa ayj Ul pesn aie SM3IA [eulO “saiouapuadap ay) Aq
pasn Buiaq aie yse} punodwod siy} o sjuauodwod ay} Jo sias indinoandul yoiym
MBIA SIU} Ul 935 Jou Op am ‘rejnaiped u| "uasoyd uaaq sey saouspuadapisiul
/SS®l 8y} JO S|Ieldp By} SapPIY SIUL “pajiuwl O} Jos usaq sey (L }'e

ainBy) .suondo sarouapuadag maipn/suondo, wuoj 8y} Jo syse| punodwo) 1o}
s|rejap 40 [9Aa7, uondo ay} 81aym MaIA JoBdWOD € S| MBIA SIY| "SS82014ssaulsng
MO3IOM 38U} JO uoISOdWooap [eulalul Y} JO MBIA e yum noA sapiaoid ‘6'g ainbiy

MIIA S|euIdjul s,)sel

*salouspuadap

-13)Ul JI3Y} pue MOHIOM 38U} JO Jusuodwod yse} 8y} jJo malA ediydesd

e noA anib yse) punodwod e ojul Huiooz ajiym ‘pUOM [BUIBIX3 BY) YIM YSE)}
8y} JO suoneIBIUI 3y} JO MAIA B NOA SaAIb yse) e uo uodl ayj uo aamy bupl)

SM3IA syse]

‘uoyeoidde
MO[J3IOM 3U} JO uoNeSsIeNnsIA Jalaq e 1ab 0} %Sap ay) punoJe Wayl 8A0W pue suodl
3SEJ U0 32119 UBD S18sN Jey) sueaw yaiym ‘dosp ¢ Beip adAj jo si adepajul ay

"Jeq NUaW 8y} Ul M3l JOPUN ([dJe SPUBWIWOD 8say] "Mojiom Buippaquwa
ay} @as noA }9| N0 BUIWIOOZ :UOHOR B8SIBABI BY) SI INO-WO0Z BY] “Ul POAJOAUI

Lre

MOBN3IdO

uonebiaeN 8z 12 saneiIdudd

1noA ui pasn si Jey) xiyaid aweu ay) 0} Jos aq sAemje pjnoys asn 0}
yied ay} ‘suoisian uonesisuowap u| “g} ¢ 8inby uo pajoidep wuo} ayl Buisn siasn
104100} MOIPHOM 10} suibo] aeald o} Ajjiqe ay) aAey SiauIBUIB| SSEJD JO SI3SN

"sjunoooe Jasn abeurw 0} uuo4 g1 g a1nbi4

R b o e e 8 R o S R 0
axsu/om ‘o0 [YRTTN/IFA w towrul !cﬂﬁ.ﬂ osn Sioaa ,

urboy moyyiom e buippy G°¢

‘(siqeyrene

aW099q MaIA S[eusajul syise) ay) "6'a) syse) punodwod yum uonebiaeu o}
|eanuapi si uoiebireu ay) pue papuedxa are Aay) uay) ‘pajeAnde usaq aAey / ase
Aay) se uoos sy ‘Bunnosxs jou ase Aay) se Buoj se syse) diseq ul uonebireu ay)
0} Jejiwis si syse} sisauab punodwod ul uonebireu sy eyl padlou 8q o} sey J

sysey sisaua9 punodwo) ere

PHOM 3y} JO MaIA S,is€)} payidwis :z1'e anbig

LJUN0o2e. Ue ppy/aoueusaiuiep, *21°€ 21nbBy uo umoys si JNsal ay}
uondo nuaw sy} Buisn pajeasd si wuoy 8y] “ajy sauadoisd-moyuado pue payidwis si | |"g ainby ‘ssiouspuadap [erodws} 8y} apiy 0} ussoyo BuineH

aail MOBNIdO aail MOBN3dO

uoieII2ads MOPNIOM

‘1ayjabo) sasse|D yse|
om} abiaw 10 |NDIM 2y} Buisn sasse|) yse] 1pas 1o 818jep ‘ppe 0} a|qissod si)

sasse[d ysey

-wa)sAs 8y} WOl PAAOWAI S| pue paouaiael Jabuol

ou sI sse|D 103[qO pifeAul ay} ‘pale|dwod si iy} 80uQ "sse|D 103lgo uasoyo

Mmau ay) 196 sse|) 199Iqo pireAul 8y} Buisn (s1alqQ ysel ynsai e se pue) s8lqo
sse|D ysel ||e ‘sse|D 103lqQ pieA e o) paddew si ssejQ 108(qQ pijeAul ue usym

* $S€J0 108Iq0 plieaul ue dep Aip3, uondo nuaw ay) Buisooyo Aq payoeas

aq ueo }| "g'y a1nbBy uo pajoidap wioy ay) Buisn Aq sauo pijea o) sasse|D 108lq0
pieAur dew o) 8jqissod s1 } “INDIAA BU3 Ojul SasSEe}D 108[qO PIleAUl BWOS 8dNPoIul
0} s18ubisap 10} a|qissod [|is S}l ‘Yeam si 1dLos MOjPUOM Jo Jsjaidialul By} SY

sse|D 109[qO pifeaur ue jo Buiddep :z' einbiy4

sseys 323lqo preaur ue jo buiddeyy

-abpajmouy JaA18g uonesoadsg ay) INOYIM sassel) 199lqO asayl Jo awos
Buisn aq Aew S1asn SWOS Se apeuw Sem 321040 SIY| "Pappe uaaq aAey Aayl souo
sasse|) 103lqQ aAowal 0} 8|qissod Jou Si)i ‘IM|00] 8y} JO UOISIBA JUSLIND 8y} U|

sse|D 108lqo ue ppe 0} wio4 ;| ainbi4

i

Pruraswozsng |

:(a0uds STYA ou) SSRTIIVEQE AT H} FO Sy

T —————

§

ot

cv

gLy

MOUNIdO

62 uonesy123dg MOIMIOM

Js1| sy} jo Adoo

[eoo sy sayepdn os[e |NDIM BUL "S8sSe| 192(g0 PIeA JO Is)| Si 0} SSBID 198190
MBU SIU} ppe 0} Payse pue pPajoejuod s JaAIas UoHedioads ay) ‘)0, Uounqg

8y} U SHOD J18sN By} 30UQ "} 2inby uo pajoidep wuo} ay) Jo uonuedde ay)
s19661) siy| °.Ssep 108lqo ue ppy/p3, uondo nuaw ay) Buisn Aq ‘s siy) Aypow
ued Jaurejulew ssejo o s1asn AjuQ "walsAs ay} Aq umouy| sasse 1021q0 Jo 1s]|
sy} Aypow o) Jeubisap Sse Jo SI8SN MOj[e O} 10U USSOYD Sem i ‘Butag awn sy} Iy

ssey 3o2/qo ue buippy

‘woyshs
ay} Aq umouy| sasse|D 193IqQ JO isi| B WOol) J8A0I3] UBY)} PUE 8JIAI8S uoneaiyads
ay) 196 0} Jenies Buiweu e joBjU0D 1Siy)l ‘paue)s st 1gjdde |NDIM Yl Usym

sasseo 323lq0

yse| .
SSe|D jsel .
sse|D 10alqo .
:wayshs

1N0 O S198Iq0 UreW 831y} Y} Yum [eap O} NOA SMojle JuswuoiiAus [edydelb au| ¥
Aypow uay} ued nok ‘|NOJM U} OJul PapeO| Usaq Sey UOHEedYIoads Mau e 8dUQ

‘90IAI8S uoneoyoads ay) woly i wodwi 0} St Aem pay) 8yl .
‘suonejou
reaiydesb sy pue |ND 8y} 8sn o} St mojppom e Apoads 0} Aem puodas sy .
“1aAJ8S Sa1} 1no Jo auo Aq pabeuew Aioysodal 1duos mojppom ay) ul i ind
o} pue abenbue| jenixa} ay) Buisn 1duos e Apoalip 8jum O} i BUO Js1Y BY | .
W00}

ino Buisn mojppom e Ajoads 0} pasn 8q ued jey) sAem Juaisyip 8a1y) ae a1ay|

uorngeoyI2ades moyjxiom

Y

| 4

v

MOBN3dO

uoneay1d3dsg MOPPHOM

%990 0} UopNq eixa ue sjab osfe }j "uasoyd isnl ssej) 3SeL 8yl Jo IMPNAS syl
aJnjonys [emul se ypm Jeadde gy ainby jo wuoy sy} 186 |m noA ‘syse} ay} Jo suo
Bunoajes Ag °.ssejo ysel e 1p3ap3, uoido nuaw ay) 108|8s noA y teadde m 9'p
a1nBly JO WO} UOIDBISS 8Y "SSE|D %SBL Mau B 8jeald 0} wuiod Buipels se y sasn

pue ‘sse|D yse Bunsixe ue jo Adoo e Bunje) ul SisiSu0O SSe|D YseL Bup3

sse[9 ysel e bunipz

uons|ap sse|) Yse] 10} uuod g ainbiy4

7 T

239790

IPIISLIP 9 OL SSTIJ ASEL

203 WOTIDTOG SERID ASEL

1o}
Buuiajas syse) 8y} dew-a1 Jo SA0WSI O} pedu NOA ‘esn ul SSej) XseL B 31918p oL

‘paje|ap s SSe|Q %SseL 8yl pue 8i8ied,

pajeqe] uolng 8y} Uo YI|0 PUB PaAOWS) 8q 0} SSB|D XSBL 8} 103|8S 0} pasau
1snl noA “1eadde |m ' 8inby uo pajuasaidal uuoj ay) ul sieadde pajs|ep aq
UBD Jey) SBSSE|D YSBL 8} |[e JO IS!| B ‘ SSejo ¥se] e a19|8a/p3, uondo nuaw ay}
Bunosjes Ag "syse] Aq pasuaiajel jou aie Jey) sse|) jse] 8i8jep O} ajqissod s1)

sse[o ysel e bunaaqg

Juasaid yjoq Hoge pue xew adA} Jo s8wooINO .
188 IndinQ yse] ou Jo 185 Induj ¥se| ON .
'sse|D yse] Jayloue 10} pasn Apealje sWweu JO sweu pieAu] .

:pajjn} SI SUOKIPUOD BUIMO]|0} 8Y) JO Buo) abessaw
10118 ue ajeiauab M }|) 81eald 0) seu) walsAs ay) pue 8jeal), palleqe|
uoRNg 8y} UO o1j0 0} pesu isnl Jasn ay) ‘sse|D %sel JNoA a1eald o} Japio u|

Bunsixa ajajop pue ppe o} NoA smojje walsAs sy} pue ‘y uo

awi) puooas B 3210 0} paau isnl noA ‘}8g 108[qQ SSE|D YSeL B 103|9sap OL ‘[9A3)|
auibua ayj e pajeald Jou ale yew adAj} Jo SBWODINO Sy} BJEMOS 8} JO SUOISIBA
awos ul a|qejieAe Buieq ajdsap aremagq 189S INdINQ SSE|D XSeL € S Il Jl dwodno
jo adA} ay} 8s00Yd O} payse pue sweu e 10} paydwoud aq |jm noA 18S 10810
Sse|D yse] e ppe o} Usim NoA J| "sselD 108lq0 pue aweu si yiogq Ayoads jsnw nok
“03lqQ sselD dsel e buippe uaym v’y 21nby ul umoys st urew 39S Induj ssej
yse] 0}199(qQ Indu| sse|D XSe] e ppe 0} 8deusjul jeaiydelb ay; jo sjdwexe uy

(4%

£cy

ccy

MOUN3dO

1€ uonesy12ads MOIOM

Sse|D y¥sel € 0} }08IqQ SSe|D ¥SEL € jO UONPPE 10} Wi0S ¥y ainbi4

1 Ta0u=y “ apezy A 230029 e
i) Jnday asousy | 300fqo nduy ppv |

BuTIzs SSPTD JO NENIMOFSRD !

i

pa3oores 398 andno &4 Lutraps SSID JO MRRIMOISTD i

Pr0SIYIMOF SRIDFRII) W . issep) YvRL W FO
. wrwers SRLI YL

3

‘wey) ajejep Jo ppe 0} 8|qissod si § pue sieadde

$1081qO JO 11| PIEIDOSSE 8Y | "Sweu S| Uo XJI|0 O} pasu 1snl noA “}8s 108Iq0
sse|D yse) B 109|9s 0} JapIo uj 's1es 108(qQ sse|) YSeL 813|8p pue ppe ued noA
‘pa}oajes 10U S}l UBYA "JOU JO Pajosjes aie S}as 1990 SSejO JSEL 8y} Jayiaym
jo0 Ajbuipioooe ebueyd op SuolNnq au} 4O s|aqe| 8y} ‘e'y ainbyy uo uass aq ued sy

‘papaau st

JaAaleYM 8A0Wa) JO ppe 0} 3|qissod s)] ‘s108[qQ INdinQO SSe|D YSeL pue sp8lqo
Induj sse|D ¥se| pajeloosse pue sjes IndinQ ssej) %sel ‘sies indu| ssen

y)Se] SWOS 8jeald SE ||9M S ‘SSe|D YSBL MU 8y} JO SWEeU 8y} 8S00Yd usyl ued
1asn ay] °,SSe %se)} e ppy/ap3, uondo nusw sy} Buisooyd Aq pajjes aq ued wuo}
siy| ‘g @1nby ul pajuasaidal Wio} 8y} BIA BUOP S| SSB|D YSEL B JO UoHPpe YL

sse|9 ysel e buippy

rcy

MOUN3dO

uonedIy1Iads MONIOM

‘6" 81nby

ul pajuasaidal wuoy ay; jo uonuedde ay) sidwoid siy] "pajesld aq o} § 8l pjnom
A8y} 819ym UOIBOO| 8U} UO SBAUBD 3U} Ul ¥1|9 UsUY) pue)se) e ppy/AIp3, uondo
nusw ay) }oa|as 0} aAey }snl siasn ‘uoneaiyoads ayj O} 3Se} B ppe 0} J8p.o y|

ysej e buippy

-saul urejd se umoys aJe salouapuadap Mmojelep aul 8|Iym saull paliop

se aAoqe ainjoid a8y} uo umoys ase salouapuadap [ejodwa) 8Y] “SHSE)} JUsNNSU0D
ay) uo aAey sindino umo sy Jey) sauapuadap sy Ajoads o) aaey osje nok
‘(mojppom-qns) yse} punodwiod e Jo 8Sed 3y} U “SHSE) Jaylo 8y} uo saouspuadep
S)I pue Sse|) yse] si ‘aweu sy Aq pauyap Ajnj si 3se) € ‘[8pow Ino uj

sabpa papunol yum seadde syse) sisauax) ‘sisauab se
Apoads ued nok uay) ‘(papaau st 1l ji pajeald Ajuo si yse) ayl eyl "a'1) uonenuelisul
ale| e 8ARY 0} UYSIM NOA J "s1apioq aul| 8|gnop pue auy 8|buis Ajaanoadsal

yim ss|buejoal se anoqge ainjoid ay) uo pajuasaidal are Aoy “SMO|PLOM

-gns Se uaas aq Os|e Ued Jey} SySe} punodwod pue SHSE} MO|PIOM 19||ews

Ul PapPIAIP-gNS 8 Jou UEeD Jey) SHse) Jiseq :syse) Jo sadA) juaiayip om} a1e aiay

"SSe|D yse] Jayjoue o} peddew aq osje
ueD SSEID YSBL SMSBL V INDIM 8ul Buisn payips ‘paisjsp ‘pappe aq ueo sysel

sysey

*SaUO p|o 8y} 0} painsqgns ale Jey) s1alqo INdinQ yseL
pue sjas IndinQ yse] ‘s1oalqo Induj yse] ‘sjes Induj j¥Se) Mau awos sejeald
pue sabueyo ay} Jo payiou 16 ssej) yse| paddew siyy yum pasaisibal yse} yoeg

*(papnjoul sjbuejoal [[ews Jayjoue pue [3ge| e yum ajbuejoas e
Aq a1moid ay) ul pajuasaidal adi0y) e se sieadde Aeyy) yim Buibisw si) yse) sy
40 s108IqO INdINQ sk pue s}as IndinQ ¥se] 8y} pue ‘sjoslqQ Indu| yse] ‘sjes

LY

2 4

MON3IdO

€€ uonedy12ads MOPUOM

1ndu ysel ay) Ajaaioadsas o) paddew (smoue ayj Jo Ya| 8y} uo sjeqe| any ayy Aq
w0y 8y} ui pajuasaidal) spalg INdInQ xseL pue s}es INdinQ xsel (smoue ay}
10 1yBu 8y} uo sjeqe] om ay) Aq wioy ayy ul pajuasaidal) ‘sjoslqQ Indul yseL ‘i8S
induj yse] sy Ajlpagoadsal sey paddew Buleq ssej) 3seL ayi ‘uloj siy} Buisn
pabiaw ale S3SSE|D %SBl OM] B} 218UyM W04 8 ainbi4
! . reowm i - dew

«> 2800

pabiaw aq o} sesse|) yse] ay) bunosjes wio4 ;2 ainbi4

‘sreadde g a1nby uo pajuasaidal uuoj ay) pue depy

pajjeqe| uoling ayj uo oI NoA usy | "pabiaw aq 0} SBSSE|D HSEL OM) 8Y} 8S00Yd
noA pue ‘sieadde /-4 8inBiy u pajuasaidas uuoy sy} Ajjennu “1eyjebo) sassely
yse] om) Buibiaw smojje (. SSejo ¥se) pieaul ue depAip3,) uondo nusw siy|

ssejo ysey} e buiddeyy

B SR “

*0S Op 0} ysim Aay} ji suoedyIpow JI8Y} opun S18sn 19| O} ‘pasn s sse|)
sse] ay) jo Adoo e ‘sse|) yse] e bunipe usyp “uoneoyoads ay) jo Alpijea ayy

rey

MOBN3dO

uonesyI1d3Idsg MOPHIOM 9¢

-Jeadde swioj 9S8y} pue ‘Pauladu0d %Sk} 3y} UO XdIjo pue

_Sse|D ysel syse] abueyDmp3, uondo nusw ay} 8S00YD O} dARY S18SN ‘SSBID
ysey syse} e dew o) ‘urebe aouQ (8'v Pue 9'p saInby) sasse|) yseL oml abiaw
0} puE Sse|D) sel € 109]9s 0} Buipinoid usaq aaey Jey) suuoj buisn-ai urebe si)

ysej} e jo sseyd ysel ay3 burddeyy | & 4

*0S Op 0} ysim Aay} ji suonesyipow

1184} OpUN S1sN 18] O} Pasn si yse} ay) Jo Adoo e ‘yse} sy} Bunpa usym "isel 1eyl
10 ""selouspuadap ‘suoiyebajep Jusind ay) yum pasieniul sieadde 6 21nby jo
3UO By} O} JejiWIS ULIO} Y "Wpe O} Juem Aay) }se)} 8y} Uo OI|0 pue)se} B Ip3/IP3,
uondo nuaw 8y} 8SO0YD SIAS(“SaJnjes} snoiraid om} ay} Jo 1od Bunjsw e st}

ysej e bupipz €€V

*PaA|OAUL

SEM JI UDIUM Ul S310uapuadap |[e se |jam se panowsal 1ab ysel siyL ‘elsjep
0} Juem ABY) JeY) %SE} 8y} JO UOII B} UO YOI PUE Sl 818|8a/Mp3, uondo nuaw
ay} asooyo o) aAey isnl s1esn ‘INDIM 8u) Buisn yse} e a1s|ap 0} Asea Ajeas s1)

ysej e bupapg@ €Y

‘Juswsale ue o Aloud ay) Buiseasoul

smoje siy] “Auoud 1seybiy auy s3ab Ajjenjoe |m sseaidsp Ajuoud sy Buieas
Aoud 1S8MO| 8Y} UiM Wall UE Jey) padliou 8q 0} Sey }| “Siy} Seop pajod|es way
oy} jo Auoud ey} Buisearoa("sies Aouspuadep pue suonebajep ay Jo Awoud
ay} abueyd os|e ued NoA ")sel JnoA Jo sindino pue sindul usamiaq suonebajap
pue selouapuadep awos ppe osfe ued NoA ‘yse} punodwod e Bunesso are noA

Kouspuadap mojejep € ppe 0} uuo4 :} " ainbig

 emmes

aal MOBN3IdO

S€ uonesy12ads MOMIOM

‘(uonebajaep e ppe 0} | ' ainby uo pajoidap uuoy
sy Buisn) sjeg Induj yse) pue salgo Indu| xsel a3yl BuinjoAul syse) weal)s-dn
uo suonebajap pue saiouapuadap awos Buippe Lels ued NoA ‘suop Si Siyl SO

BLISILO UOHENUEISUI € PPE 0} Wi (0} ' 84nbid

(.s1s8U89), ‘,2dA1,) Yum uonounfuod Ui pasn
2 0} SBY SIY] ISE)} SISBUSY) SAISINOSY € Sojeald)i usy) ‘sweu s uased sy
Sl J| "PASN 8 O} UOHIUYSP XSE L BY} JO BWeU ay} aNjeA Se Ui Jagsisauan .

(pepaau Ajjeas si } usym isnl uonenuelsul Aze| ‘9°1) ysel
sisausb e se pajenuelsul aq 0} %Se} B 8010} O} SIS3UID SN[BA SE Im adA) .

Buisn aq pinoys A10j0e} yse} ay) 2dA) %sel yolum Ayoads o) [dwpise L .
Syse} 8jeald 0} pasn aq o} si A10joe} >SE)} Yoiym Apoads o} Aioyoeisel .
:sapnjoul shay |njbulueapy

‘01" @4nby ul pajuasaidal

w0y ay) Buisn eusiuo uoleRUEISUI BWOS PPE OS|e UBD S1as() *(xse} oiseq

10 yse} punodwod) adA} sy se |jlom se pajesid Bulaq se) ayl O} psjeloosse sse|)
%SE] 8y} 85000 0} dABY NOA UBY| "8WeU Xse] 8y} 18s ued noA ‘wuoy sy Buisn

¥Se) B JO uoneaId 8y} Jo} Wiod 6’ 8inbiy

aal MOPN3dO

uoneIdUI9 3poH

sasse|D 108lq0 8y} jo Aupijea ay) bunoay) :1°9 ainbiy

sossero Surzsixe 03sesSeId 309Lq0 Lyruey sy dew weygoad oy xIF OI
3292200 sT 2aBouT -
3092200 ST 298] &
2092200uT $T UDTFEIOT
3992200uT ST I0H »
309220007 $T DI =
3092200UT ST 3% .
2992300 ST OFUTIMMOYSNG -

'sasse|) 19alq0
walsAg se way) ppe os|e Ued siaurejurew ajiym ‘sasse|) 10alqQ Bunsixa o} wayy
dew o0} Ayunuoddo ay) aAeYy siaubisap ‘punoy aiem sasse|) 18lqQ mau awios §|

*$8U0 pifeaul ay} jo ped Jabuoj ou si ynsas e se
pue sasse|) 199Iq0 wajsAs ay) 0} Jaurejurew e Aq pappe uaaq Sey ojujIaWwoIsny
Jey} PeSION "BWEU 118y} JO JUO Ul ,, B SABY UOHEWIOUI J081100Ul 8} Jey) padiiou
2q 01 sey) “ "9 ainbBy uo uass aq ued Jnsal ay| "pasiubooal Jou ale S8Uo YoIym

aos siaubisap ay) 19| pue sieadde uoneayoads ay) ul pasn sasse|) 108[qo ay)
40 181 v "wa)sAs ay) Aq umouy asam sasse|D 19a(qO ayl |[e Jey) ains sayew siy|

sasse[9 323lqo ay3 buryo9y9

'S)Se] 8y} pue sasse|) }se] ay} ‘sasse|D 108lqo
ay) Bunjoay) "sull-uo uonesyoads noA Ajuan o} papiroid aiem suondo urew
921y "usluM A[}081100 SEM }I Jey) 3082 ued NoA ‘JaA0 Si uoealioads ay) usym

uonesyIoads 1noA buiyoay)

8t

9

9

MOBN3IdO

LE uonesy1d2adg anok Bunydayy

‘aq pjnoys aweu abexoed
ay) Jeym pue pejeisuab aq pinoys apoo ay} aieym asoyd Ajuo ued noA mou jybiy

sJajauieied

-suondeoxe wajsAs jo aseo u|
pasn s s}es INdINo ISe| 8y} Jey) SBWINSSE OS[e }| ‘Sig|puey uoldaoxa aJe Jaylo ay}
le Jey} pue auo Jjneyep 8y} St 18s INAINO ISl Y} Jey} SSWNSSE UOISIAA JusLInd ay|

apew suonyduinssy

“UOIBIRNS
apo9 ajelausny/aji4, uondo nuaw ay) Buisn Aq uoneadde JnoA ul pasn sassejo
»se) ay} 0} Buipuodsa1100 uoiajE)s 8p02 8y} ajesausb 0} NOA smoj(e |00} 3YL

uonpesausab apoH

cs

LS

K7

MOBN3IdO

uoeIdUIY 3P0

(alao

Induj SSB|D ¥SEe] PIlRAUI UB O} Paxul| SI }l SB) JaUlau pIfeA Jou si urew J8s indul

8y} Jo |ig 108lqo Indul 8y} yey) pue pijeA jou si ainjdeDiuswAhed sse|) ysey si
1ey) saleaipul ydiym pal ul sieadde ssej) yse) ay) ieyy ainby siyl uo 88s ued I\
"paxoayd Buiag sjiym sreadde aindeniuawAed yse} syl moy sequosap g9 ainbiy

sse e 4o Aupiea ay) Bunay) :€°g ainbiy

(syse) yauodwoos ayy jo ydeib Aouspuadap e 6uneaid Aq paierocosip

ase sdooj swoojamun) dooj swodjamun ue Buipnjoul yse} punodwod e si j| .
J|9S) wouy Jualayp ysel e Aq pasn s| awodino jeadas .
yse} Joad e 10 Juased s} se sweu swes ay) sey } .
*S9SSE|0 JuaIaIp JO S1P3lqO dsel
om} Buinjoaul ale Jabie) se yse) siyl yum saiouspusdap Moj-elep awos .
‘sj08(qo
Jualsixa-uou uo ase }abie} se yse} siy) yum ssiouspuadap 8yl jo 8wos .
'}081100Ul S| SSe|D Yse] Si| .

‘1 108.u00ul pabbe) si yse} y

‘paiypow Buiaq yse)} 8y} JO SSBUJ081I00 8Y) %08Yd-a1 0} awil

Aue Je pasn aq ued pue ‘syse} ay} JIpa O} Pasn 8.e Jey} SuLoj ay} uo papiaoid
os|e S| uojng ¥o8yo 8y "dooj SWOdjaMUN UE SUIBJUOD PauIaduod yse} punodwod
ay) jey) sueaw ,doo, piom ay) Aq pemoj|o} Jejs \ ‘aweu sy Jo ol ul (,,,)

MOIN3IdO

6¢€ uoneosydads anok Bunpdayy

Jejs e aARY |Im 10au0oul se pabbe) Jusuodwod ay] “pal ul sieadde 1as sjoym aul
a)ew saouapuadap JO 18S B UIYIW UONBLLIOJUI J091100Ul UE JBY) padlou 3q o} sey
)| "uaa1b Ul SBUO 1081100 By} pue pas ul bed 1021100ul By} Yum sieadde (spow siy}

8|660) 0} Buipe ajiym ¥28y0d UOHNG UO 1) %28Yd Spow ul paypa Buiaq ysel v

‘pajesauab aq
$)S€} 1081100l JO ISI| B PUE %SE} JNOA JO SSBUJ081I00 Y} %08yd ued noA Apepung

syse] ay3 buiyoayo

sesse|D y¥sel 8y} jo Aupiena ay) Bunjosyg 129 anbiy

T o ‘ o . B SN e S S Ry S
: o= { por | ey}
[205 wnding asowey | 395 yudno ppv | 30elqo yudug ssowsy | 300iq0 kT POV

‘sse|D 10alqo waishg

© Se paulap Jou sem |iig SSe|D 1930 aul se ‘19a1100ul se pabibel si g ssejo Jo
g, 98[O Induj ssejD ¥sel au) ‘2’9 a1nby uj "SULI0) UOHIPS dY)} U0 4I8YD, UOKNQ
ay) Buissaid Aq ssejo yse} Inok JO SSaUIDaLI0D BY) ¥98Yo 0} sjqissod sheme st)

“Jog IndinQO SSe|D sk LOJe Ue pue yiew B yjoq si aiayl .

18S Indinp
SSEe|D YSe]| auo pue 183 Indu| SSe|D Yse] duo jses| Je aAey J,usaop §| .
'sse|D 109[qO pifeAul ue sey JoalgOsse|D %seL Si Jo aiow 1o duQ .

:ji }oau0oul se pabbe) 8q |m SSejO YSe) Y

‘awieu JIay} JO Juol} Ul ,, B BABY UOIEWLIOJUI }081100Ul 8Y) Jey) Padijou a4 0} sey
) "usaib ul pake|dsip aq |IIM SBUO 081102 By} B)Iym ‘pai ul pakejdsip Apuanbasgns
UOIBULIOJUI }081100Ul B} 83 NOA 13] [|IIM SBSSEJD YSEB 108.1100Ul 8Y} JO UOHIPD

ay) uay| ‘pafedsip aq [(1°9 inby ui pajuasaid isl| 8y} O} Jejiis) Sassefo

¥S€]} 1081100Ul JO S| € *,S8SSE|D YSe)} Yoay/uny,, uoido nusw ay) Buisooyo s8yy

sasse|) ysey ay3 buiyoayd

£9

c9

MOBN3dO

uoREINUIS MOLMIOM

Se paxiew aJe 108qQ INdinQ YSe L Paleloosse s Se ||9m se 185 INdinQ sel
uasoyo ay) auop si i 8uQ “suondo ay} jo buipuadap Jasn sy} Aq 10 Ajwopue:
uasoyo si 1ag IndinQ se_ e uay) ‘Bunnoaxa ajels ay) ul s Xse)} JISEq B |

‘papieosip ase (Aue) sias indul JaYI0 Y} 3jIym ‘(uasoyd)

pale|dwos Se payJew pue uasoyd si Il uay) ‘(ajgelreae) Bunnosxe se paxiew

18s Indul ue spuly 3se} ay) J| *(PeINoexe se paxiew) pajiyiny Jjask i 1es induy|

yse] siyl ‘palyiny |le are Aayy i pue sapuapuadap [eiodwsa) sy s308Y9 188 Induy|
yse] Buipuodseliod ay} (painoaxa se paxiew) paj|yin} Se paxiew usaq aAey
spalqoindu) ysel SH | § “PaIIIN} Usaq aAeY S81oUBPUSdaP YIIYM WiN) Ul $H03YD
189S Induj ¥se] yoe3 ‘pa|jynj usaq sey sjuswainbai sjas jndul sy JO BUO JBYIBYM
syoayd Buniem |ns ysel yoe3 ‘awn ay) Je deis auo saob wa)sAs ay) ‘spremsayy

‘pajeAloe st jey) 195 Indu| yseL
auy) salealpul ynsal 8y "payesauab si anjeA Wopuel e ‘olewoine si) §j ‘suondo
uone|NWIS 3y} Uo spuadap U0 YdIym apioap o) Aem ay] “paj|yiny s80inos indul

S) 40 80 $}86 uoneoldde MOIOM By} ‘PSUIEIS SI UOIEINWIS BY} UBYAN “UONEN)S
Juauno ey} buiedlpul snjejs awi-uni e aaey Aouspuadep yoes pue ysej yoeg

pajejnuis sy Jeym

")S€} B JO M8IA pajiejep 8y} ul pas ul Jeadde pasn ussq

aney jey) seouapuadaq ‘sindui J1ays 104 Buiem |jus ase ey se usaib ui Jeadde
syse} Jayjo ay] "abuelo ul painojod a1em Aay) ‘194 paje|dwiod juaney Aay)

sy "ysej} ared ey} jo 10alqoindu) ysel ayy uo si) pue Aouspuadap mojjerep e
aney Ajuo yjoq Asy) se uonealy1oads sy} Yum Jualsisuod si siy “Bunnosxe are Aayy
Jey) Buiuesw ‘abuelo ul Jeadde 3001S¥98YD PUE UOKESUOYINYIUBWAER S)SE) OM)
ay] ‘pesn usaq aAey Aay) yey buiueaw pai ul teadde way) jo yiog 108lqoinduj
yse] pajeloosse auo yum 18s Indu| ysey a|buls e pey yse) siy| “(abueso

s1 Arepunoq yse] punodwod ay) Bumoys ajbueiosl ayy) Buinosxa sem)i ajium
yse) punodwod e ojul pawooz sey Jasn ay} ‘|°2 8inby ui pajoidap ajdwexs ay u|

uoneoidde MOJPHIOM B JO UOINOBX3 3y} JO uoneinwIS 1"/ ainbiy

wanw g yaop (s 2 soud

v

£4

MOHN3IdO

134 uoneNWIS MOPMIOM

‘mojeq ainby ayy uo pajoidep
saouapuadap mojyerep pue [eiodwa) 8y} Yim SBBIS [eIOASS Ul 8q UBD SHSE) YL

*s108lqO %SeL 8yl 10} pasn si swayds
1n0J02 Siy} Jo (papuedsip pue pajajdwod ‘dn-jas ‘Buirem) 19s-qns JUBAS|a1 8YL

“paliyn 8q Jou pNod

seouapuadap swWos Se ‘papiedsip useq sey Yse} ayj :(£a16) pepiedsig .
painoexa uaaq sey yse)} ay) :(pal) peje|dwo) .

Bunnoaxa si yse} ay) :(abuelo) aAndY .

paiypow Buiaq si yse) ay) :(moji8h) dn-1eg .

Uo J8Je| PaINJaxe
aq Aew Inq 'y uo salUapuadap swos sey ysel 3y} :(usaib) Burepy .

'S1)SEe) B JO Saje)s oy} Juasaidal 0} UBSOYO BWAYIS INOJOd BY|

‘pelsea.o} se Gunnoaxe si MOoPHOM
ay) 1eyl %93y o} Aem »oinb e sapinoid siy| "SHSE} BY} JO 8lelS By SE ||9m Se
paiabbu) Buieq ase syse) pue selouapuadep YIIYM 93s SIBSN 18] BWSYDS JNOJ0d Y

Aeydsiqg

- suondo uonejnwis/suondQ, uondo NUsW By} BIA B|ISSBIJE SI SIYL

*uonNOaXa
»SE) 8U) JO SWOOIN0 BY} UO SBPIBP JasN 8y} s} uondo puodss sy} .

-Bunnoaxa i ¥se) oiseq © uaym (awoano) ajels Indino ue sesooyd
Awopuel Jaindwoo 8y} 818ym UOHEINWIS WOPUE € St uoldo isiy ay) .

:suondo om) aney osfe noA asay)
suondop

‘uone|nwis ay) jasal 1o dojs ‘uonnosxe
dejs-Ag-dajs e op ‘uonejnwis e pejs ued noA ‘seinjes) uone|nwis ay) buisn

uonzeInuiIsS Mojxiom

cl

| 4

P4

MOBN3dO

uoIINIIXT MOYNIOM

syse} dooj jo uonejuasaidal awi uny : |'g ainbiy4

uoneuasaido (A3 Mo (4

uoneiuasadas [949] Y1y (¢

"yse) sisauab ay) pue

2iselAw si1ayjeb jey) yse} punodwod ayj YSe) pajeloosse Se sasn)Se) sisauab
siyl "pey yselAw se syndul swes ay) Yim yse) sisauab e uo saiouapuadap

MOU 3Je 82IN0S Se 8wodno jeadal e Buisn a1em Jey) saiouspuadap

ay] “seaddesip awoono jeadal e wolj Buiwod aiam Jey} seajeuss)e

Indui 8y} Jey; st selAw pue yse|Aw aoualayip utew ay| “yse) sisauab

B pue yse]Aw 0} Jejwis yse} e buippaquwa yse) punodwod e se pajjepow St j|
"qeg'g ainbyy uo uaAIb sI dwil-unu Je yse) swes ay} Jo uonejuasaidal ay| "usAib si
yse) Jeadal e Jo uonejuasaldal |9As] ybiy ay) ‘e g ainby uQ "syse) sisauab buisn
awl} unJ Je uonejuasaidal Juaiayip e Ojul paUaAUOD 3q 0} aaey sdooj Jeadal

ay) ‘ynsal e sy "poojsiapun Ajjoalip Jou ale yey) Jeadas adA) Jo asoy) Se ||am se
pauoddns ja4 jou aie Jey) yiew adA} Jo sawooInNo ay) ase adnes Aioyisodas auyy
PUE |NDIAM 81 JO [9pOW uonedyioads ay) usamiaq adualaylp urew ay| 9dIAI8s
AKioysodai ayy si)i ‘s)sa) Aous)sisuod ay) passed sey uoneaydads syl 8o2uQ

‘papodxa buiaq

910j8q Pa)daYd }nsal e Se S| uoneaydads ay] 1981109 8q 0} Spaau uonedydads
ay) ey Buiaq aainuas Aioysodas ayy ul abelols 1o} aysinbai-aid ay) "papodxa
u9aq Jou Sey Jey) uojeoiyoads e els NoA Ji Ajjesijewolne Jno paLued si iyl

ouIbuz moysxiom
ayj o3 uonesyrdads ayjy buipiodxy

‘80188 Auoysoday
ay) 0} Juas aq 0} sey } ‘uonesyoads e Buynoaxa uejs 0} a|qe Buieq aojeg

uoIIN23X3g MOJJ¥I0M

L8

e

MOUN3IdO

4 4 uoneINWIS MOPHUOM

‘PepJessip

0} saneusa)e 18y} Bumas ajym (paje|dwoa) uasoyd se s3aalqo INdinQ yseL
pajelnosse pue Jos IndinQ Yse] 8y} }8s pue saouapuadap pa|iyiny 8y iInoge no
puy |Im)t ‘sdajs Ixau yse} 8y} usyM "Paj|yiny Se 1S s }8g INdINQ YseL Siyl 18g
IndinQ se] pajeloosse Jiay} uo sauapuadap [eiodwa) ou 318y} pue pajuiny

Ile a1e Ay} usyp "s10alqQ IndinQ yseL sk $308Yd)} uay) se} punodwod e si |l §|

"papJeosip Se paysew ale sjalqo IndinQ ysel pue
s}as IndinQ Yse] Jaylo 8y} jje ajiym ‘pajejdwod se paxysew ale s}oaigQ inding
)Se] pajelnosse s) pue }as IndinQ ysel ay) ‘da)s 1xau ayy 1y “(Bunnoaxa) ussoyd

MOUN3IdO

uoIINIIXI MOHUOM 14

's108lqo asay)

s19)si6a19p Os|e }| "uoiinoaxa ay) Buunp pajeasd usaq aAey jey) Syse) sIsauay
ay} J0 uoisuedxa pue SUOHIUOP YSE) ‘SIB]|0U0D 4SE} BU} JO pu 186 sainjes; siyy
Buisn "palinbai 1abuo| ou s! Jeym Jo uoKd||0d obequeb awos op 0} papiroid usaq
sey ,S90eJ} UOIINJBX JO PU 19H/uUNY, paweu uoido nusw y 93113 sweN ay}
ywm pasasibal pue pajeald ale s}08(qo JO Jo| B paindaxa s uoneoldde ue uaymp

dn buiueajd S8

awayds 1009 umo 1noA Buisooy) :g'g ainbi4

m:oz.,uo 1003 8| ~uny 188 131

‘(pay1oads ussq sey
ey J0j02 ay} o} arels uaaib e o} Buipuodsa.i00 aul| 8y} JO punoibyoeq ayj Jo 10|00
ay) abueyD ,S10]00 UBSOYD MOYS, Pajeqe| uoling ayj uo Buissaid) apod goY 8yl

UO paseq SI0j00 UMO INoA 8sooyd noA 18| pue sieadde uay) £'8 ainbiy uo wuoy
8y -, awayds Jojog/suondQ, uondo nuaw ay) Buisn pabueyd aq ued swayas
10j02 Ynejep 8y "10|03 pPajeloosse ue sey sajels siy) Jo yoe3 *,papiedsip,

10 pajeidwod, ‘ aAnoe, ‘ Bulem, ‘ dnjes, isejels aAl Ul 8q ued jse} Y

Aeidsig p'8

(ysej uo
uoljeoIpOW dWweuAp pUIAPI H{Sel Uo SuoiedyIPOW diweuAp LelSAIP3) Ysel
e Jo ajeis ay) abueyo Ajioldxe noA 18| 0} papiaoid uaaq aney suondo nuaw

aal MOINIdO

sy uoiINIIX3 MOPHOM

om] “Buniem o} 3oeq Jojsadue ay} Jo snjejs ay} sbueyo Aondxa 0} aaey |Im

NoA ‘peje|dwiod aJe SUOHEDIPOW SSOY} 8OUQ "SUOHEIYIPOW B} JO UOREIND

sy} Joj Luazouy, Aejs abueyo o} juem nok jey) uoneoyoads jo ued ay) ey}

os dnjas 0} _I0jS8ouB, UOWWOD E JO sniels ay) abueyd Ajnoydxa o} aney noA
‘Syse] Juasayip BUIAJOAUI SUOIEIIPOW JO 185 € AJ[ediwoje, 8Yew O} Juem noAky e

-a1eys Bunem sy
Ul S1SE] SIY} Jey) papIAcid ‘awn-piing Je 8Uop S! JEUM O} [eORUBPI SI %S} B O}
pajeloosse sauapuadep Buiwooul JO 18s B 10 YSe} e Bunsjep/buippe/bunip3 e

‘aje)s Bunrem e ul |us a1e Jey) (seouspuadep Buiwooul sidy} Buipnjour) sxse}
Appow Ajuo ued noA “Bunndexa si Il BjIyMm uonedIdadS By} Ajpow o) e|qissod s!)|

suonesIpow a1uueulq

‘jinu o} paddew aJye $a21N0sal

ay1 le ynejep Ag 108lqo indul sejnoiped Aue o} peddew aq ueo paiinbas ssep
8y se sse|o 109lqo Swes a8y} JO S82UN0SaI SE SIIAISS SWEN Y} Yum paiajsibal
saa1nosal AluQ 's19lqo indui pajeroosse sk Aq pasn aq pINoys s8aInosal

[elliul YDIUM SE [|9M SEB MO|POM B} UElS 0} pasn 8q pjnoys }as indur yoiym 108j8s
18sn ay) S}8] WOy siy| "g'8 8inbly uo pake|dsip BUO By} O} JB|ILUIS ULIO} B S8]edl0 J|
- uoneoiddy MOHOM HelS/uny, uoido nuaw 8y} 8sn O} S| BUOp Sem Il Aem ay)

uonedddy Mo|pHOM € 0} sindul [eul Buipsad (2’8 ainbi4

bt £ =

‘,:ow.ﬁw:wgcm :o.awu:n.mm mopjiom ay) Bunieis S1IM -

‘payioads uonedldde MOjUOM 8y} JO SOUB)SUI UE JO UOINO8Xe
ay) uels o) a|qissod si i ‘(av1n8s Aioysoday ay) ul palo)s s uoneoyoads
ay) ‘6a) pajesalo A|Inyssadons usaq sey uoneayioads [9A3|-MO| 8y} 32UQ

uornyeaydde mojpyjiom
e o} spnduy jeniul dy3 buipaad

£

ce

MOBN3dO

Buuojiuo MOLPHIOM 14

"3IEM]JOS 8y} JO SUOISIBA BWOS Ul a|qe|ieAe Ajuo si uondo siy) “sebueyo jo paijou
SI)l Se uoos Se pajepdn SI MaIA 8Y | '|ND Y} SBA|aSWAY] JOBJUOD J9||0AU0D %SEeL
ay) 1020 Aay) se payepdn ase ajels jo sabueyo ay) ‘uasoyo s uondo ysnd aui i

buuojiuop ysngd £°6

‘uonjediidde Mo|pHIoM Y} JO S)elS JUSLIND 8y} 83S 0} Sjuem 8y uaym Joysdeug
aye] /uny, uondo ay} asn 0} Jasn ay sabijqo buuoyuow jind sy} Buisooyd

buuojiuow jiInd 26

-ABojouyos) pauajaid sy 1oy Jasn ay) Bundwoud sreadde |6 ainby ul pajoidap
wuoy ay] *ssuondo Buuoyuop/suondQ, buisn Aq ABojouyos) passyaid siy 8sooyd
ued Jasn ay] ‘ABojouydal ysnd 1o |ind asn ued Jjasy ssad0id Buuoyuow ay|

Buuoyuow ay) 10j suondQ :1°6 ainbiy

. M =
~ (sr0ysdews) TIg F9dA3 Buriojmuow @z jo sotoyy|

R

s e

e

suondo L6

‘Buibeuew aie Aay) Jeyy
$)Se) By} JO 8JelS Y} U0 uoneuLojul 8pIAoid Jey) S19]|013U0D YSE)} Y} O} Sxuey)
a|qissod apew si Siy] ‘pPaiojuow 8q ued uoledljdde MOjHIOM € ‘pauels 8duQ

Buriojiuoyy mojsyiopm ‘6

3al MOBN3IdO

sajdwex3y

‘uonezuoyine
10} 0}l J8pIO By} jo Jabeuew dnoib ay) o) paiwgns 8q 0} sey

wuo} siyl uay] “1°0L 81nbiy uo pajoidap wioy ayl ul iy O} St dals is1y By | .

: sdajs |eljuanbas 1noj ul papiAIp

aq ueo pue juswdinba 1apI0 0} SPaaU APOgqaWOos Usym payels si sseooid siyL

LVA gy yw b i

uonesydde ayy jo MIINIDAO

18pJo [ejuswpedaq J0) wio4 10} ainbi4

ARRINGSN IV
SO0 INTAL ASOIMIA ROUMM #O1 INILYES Ay gy
AVEIEI0 NANED A LS S MY WOTES NION,
ey
s £ pacotyd SO e T e i
e e 2 soMpoy g 5By 20 01, bl = e e s s st s
e % T gy ey

* 10 e zasddy

PR N 08 L P oy 01 Bunmag) 31

:.!Il..... T auy g o) - (] adpag)

oo e (a1 Mg WAL

TR TR 8D T2 k0wl 2 %m0
“Rutmog) 4i Dot AEIU W SUIPS w0y |

sappy (imdantde 5z pu)

v sl 30 BN
Wy Pps weT,|
NS NHIRO - ARDIVEOGY 1 INTINAKOD

ON WA SREWCE AN OISSTIOUL

aRBRog T spedipu RNINOGEY Bg
g 2y

(e sdockly se A4

VOUVESHNAMS GANLVLI/AAS INAUAY

) PO sty

Juswyeda 8y} uiyim asn ul ssadoid Buuapio ay) ajdwexa siy) 40}
aseq se pasn aAeY 8\ 'SS8201d 21440 ue Jo a|dwexa mojpom [eaidA) e si siyl

Buissaooiy 19pio :9jdwiexs paseq-uliod

"MolN3dO Buisn

paoads aq ued jJeym Jo eapi ue noA anIb o} pajuasaid aq |m sajdwexa om|

s9jdwexy

0s

L0

L0}

0}

MONIdO

6v

Buuiojiuo| MOUOM

‘suonedidde

pajenwis o} Apepwis pasoyuow Bureq uoneaydde ay) shejdsip INOIM 8yl

Aeidsig 66

"MojppHoM swes ay} jo ssaiboid ay) Buuojuow

SI9AIBSQO [B19ASS BARY 0} Bjqissod y eyew siy] g'6 8inby uo pajoidap

se ao1n19g Aioysoday ay Jo doy uo ying Buieq si pajelcosse saweu ay) dasy
JejnonJed ui pue Syse)} 8y} Jo MalA [9A3] ybiy e daay ||Iim Jeuy) 8dIMeg uoneoyoads
B ‘)nsal e SY ‘MOJPHIOM BU} JOHUOW 0} SU0SIad JBYJ0 JO) JNOuIp | Sexew siy|
‘saweu [9A8| ybiy 118y} 8so| 8d1ueg Aiousoday 8y ul paiols suoneoyoads sy

ELIIVETS
uoneaipoads yum wajshs mojpuom sy Jo uonejuasaidal [eaydesn :z'6 ainbi4

(s)yaniag
auiduzg mopom g

4ol

LANUALN]

*J0}lUOW 0} Juem noA uoneoldde

yoIym Joajas o} ey isnf uay) NoA “sieadde paiojuow aq ued jey) suonesldde
MOPHOM 8} JO Is1] B ,uonealidde mojpiom Jojuojy/uny, uondo nusw ayy Buisn

Buuojiuow 13sn-pny 6

MOUN3dO

s9jdwex3y

‘') @inby ul pajussaid si ¥se)} JopiQasuoyine ay) jo dwnp usalds e sduelsul
104 "SWIO TWLH pepuess ase suoneoydde mojpuom ay) Aq pajesausb suuoj eyl

,9910AUjAuBdWONBAIB081, 3Se) punoduwiod ay) JO S|ielep [ewadiuy| :y0 L ainbig

330aujAued wodesaualb

e
ﬂ uiepw

‘paAIgoal aiem spoob

ay) pue pajesauab sem 8210Aul 8y} §i s818]dwod Ajinyssadons Ajuo ysel punodwod
ay} 1ey) aojou o) Bunsasajul s)| "walsAs ay} ul a10Aul Auedwod e 1sjus o}

pasn si Jey} Loy e si ad10AujAuedwo)alesauab, ay| (Japio 8yj |9oued 0} sjuem
ay J pasn aq ose pinod) “18p10 Auedwod ay) Buljaoue yse) e pappe Ag) spoon
3y} PaAIadal SeY 8y USUM Ul Pa|ll} MOJHI0M By JO Jojeniul 8y} Jey} Wioj e se
pajuswsajdwi si Jey} ,SPooHanIadal, (|gjlesed ul Buiuuns s)se} gns om} ul papiAip
aq ued (y'0} @inby) o10AulAuedwo)aniadal, yse} punodwod sy Apejwig

'SUWUO TALH
se pajuswa|dwi usaq aAeY pue JISe] dJe SHSe} OM] 8s8y] * Jepioasuoyiny,
pue J3pIONWQns, :Syse} om} Jo aouanbas e isnl s) :(g0} ainby) pesodwoo
SI Jl MOY 88s ued am ‘ JapiQidagaless), %se) punodwod 8y} Ojul WOOZ am §|

Jepioidegaieal), sel punodwod ayj Jo sjrelsp [ewsiu| :g 0} ainbig

Japiopaniwgns)

pasnjay
s &

1apio J3pipasuoyIne

paieas) Ja3pipirdagaieasd

(4]

MOINIdO

1 2]

“Jas Jndino pajied, 8y} ul pua |im uojedydde

MOIHOM 3y} UaY) ‘way) yum adoo Jou ued waysAs Burkpapun au) j 1ey) awnsse
1snl uonesioads ay) ‘ainjiey wajsAs jo ased u) *(**'spoob sy} JBAISP 10U S30P U §i
uasoyd aq pjnod Auedwod SAleUIS)|E UB 8OUBISUI JO4) SBLIOJINO [Bulouqe asoy}
yum Buieap syse) eijxa awos 8anposul 0} 8|qissod 8q PINOM }] ajdwexe siy}

ul mojppiom Buippaquia 8y} jo sias Indino swos o) paddew Apoaup ase (pasnjal
uonezuUOyINe Se Yons) sjes Indino sAneussle ay| ‘pred pue pasAlap ‘pazuoyine
BUIyAISAS) MOJPHOM BY} JO JOIABYS] [BULIOU By} S| payiuep! sdajs unoj ay)

j0 Buluaddey jenuanbas ay) z'0} ainby uo umoys s! uoneoyinads MOIPUOM 8YL

MOIPHOM © Se pajepow ssadoid BuuapiQ :2'0t @inbi4

/' spsoragaean

sapighurd wonaeass

227G WHOSL MOURoM

(yneyap Aq owap/1SOYed0)/43 M Ul 8 PINOYS Isaidjul Jo

ISIPHOM BU] ‘SISIPHOM 3y} SS820E 0} [T Xapul/SI9S)/MO|3uad(~/ASOU[ed0)//-dny)
“Mojpom 8y} Buiuuni s; oym Jasn ayj o) paubisse aie syse) e ‘uonensuowap
siy} Jo asodind ay} 104 “IsIpom Jasn ay) ul seadde suuoy JNLH ‘PaUElS

ale $H)SE} SY "Way} 8|Npayds pue SuoioeIsul JIBy} [SPOLW O} [SPOL MOIPHIOM

e asn pue syse} diseq ay) Juswajdwi 0} SwIo} JALLH 8SN 0} UBSOYD 8ARY 3

moypyiom buisn buiapoyy

‘pazuoyine aq 0} sey Os|e 8dI0Aul
lewsayui siy) “spoob ay) Juas sey Jey) Auedwod ay) Aed o} way) Bunise

22140 @oueul AJISISAIUN BY} O} 8DI0AUI [eUIBJUI UB puas O} si dajs ise| 8yl .
‘Auedwod ay) wouy ad10Aul pue spoob sy aAl@d81 0} s dajs Ixau a8y | .
-Auedwo) ay} o} Juas Buiaq aiojeq Jebeuew dnoib ay) Aq
pazuoyine pue pajesausb aq o} sey Japio Auedwod e ‘dals puodes ayl u| .
3al

sajdwex3y

k04

MOPN3dO

sa9jdwexy

£°01 2inBy uo pajaidap st ND SIYL
*(r-Buinow aJe SYSIP 8y} 8I8UM SIOHUOW SPIOM JBUI0 Ul 10) SI8MO] pue sysiq Jo
suwua) ul Buluaddey si yeym 10)uow 0} NOA MOJ[e Jey} NS © SUelS JBAISS ISil} 8y |

*JaAI9S)Se | I0URHJOSISMO | 'SOWBMONI 4O eunlie wod .
pue 1aA18G921N0SaYIOUBHJOSIOMO | "SOWaMONIJO eunlie wod .

1S9JIAI8S OM} PB3U ||IM NOA
uoneasiiddy moypiop ay; burpiezs

MOIPHIOM B Se pajepow ssa201d I0UBH JO S18mo] :9'0} ai1nbi4

———_ |}
Anguenos

duagiamey

S e S |

|
pcontunsagiama

e T
b sunosiamcy |
e

uen

uornyesydde rouep jo siomoy ayjz buyapoy

‘|njasn aue syse) sisauab aAIsiNoal a1aym a|dwexa ue
Bumoys pue mojppom 10} pajdepe sjdwexs Buiwweiboid sjunoAe} ejwapese ay |

1ouepy Jo siomoy

ccos

L1204

co}

MOUN3dO

€S

Jnejap Aq pauejs ae ajdwexs Siy} J0j SaL0joe) 32IN0S3I pue Sk} 8yl
poddns }duos-162 743 d YIM JaAIas GO M .

: Juawalinbas e sppe ajdwexa siy} jo uoiejuawsajdwi Jua.und ay]
spuawainbas awiy-uny

‘paAiyose/pajuud aq Ajlenjuana pinod }j "pazuoyine aAey nok
1eym jo dwnp € Se ||om Se WLoj 8u} Jwgns NoA uaym pauinias skemje si payipow
10 pajeald si jey) 13Iqo J9pIO, YEHOD 8yl Jo aouaiajes ay) ‘suoseas 6uibbo) jo4

Japipasuoyine, yse) aiseq ay} bujuaswajdwi wiod G0} 8inbi4

g

e soypen ey - (sIpupnss

o) pafeng wapmissmy

(0 25 W/153 T igaks smagg) sume
ﬁ - Duanoner g 21opbes sreoyd smrpay segst

syaskqamaey

AIAINDIY TAV STO0O ISTHL ISONUND HITHM ¥0d
ONILVIS MOTIE NIALD IX ISAN STIVIIA ISIOTW

s&1T0:wa
pa13 :hypaswpdiapag.

10043007 :pes sadpay oy padewp aq oL
LVA 1% 0008 431 1902 spweapnasddy

64 98 WeI WBZT ZHINOOE [11 W g ¥0oon
1y o wondotag

pstmy
poosa
napyy
w3 mnduo) casnddas o e
W01y BPRI0 asestd

NAOJ YICAO - AYOLVIOEVT ONLLAAWNOD

zes0/

i e

uopesuoEnyY - W4 1apiQ diceloge Bugndwo) edeasian

£°1°0)

MOUN3IdO

xapuj

8'SIM
g'buzm

M

ch'siesn

n

1 Z%se) Jo sadA |
91 ‘syse} weans-dn
81 'SySel Jgsd
91'syse) weals-umoq
sysey
GI'Sse|Q jseL
Si™seL

v

Ly"iSe] e jo SalelS
22 '1119N8gG 1dudg

s

6'a0uag Aoyisodey
GE ‘Z2"{SBL SISausy) BAISINdaY

y

8y'BuuouoW ysnd
8v'6uuoluoN Iind
Z1'pIomssed

d

0} 'saipadoid -moyyuado
Gl 'sse|) 109l40

o

01'80IAI8G BWEN

N

GZ'MBIA
gp'1oysdeus axe|
Gp'uonealdde mojppom yels
6p'uoijealjdde mojpuom JoJIuoW
gp'S30BJ} UOINIBXA JO PU 199
uny
92 ‘sz'suoido saiouapuadap MaIA
1 p'suondo uonenwig
11 '1enas Jdudg
gy'suondo Buuonuow
9p'aWayos 10j0)
suondo
§2'Un0dJe Ue ppy
a0uBUBJUIRI
/£'U0J3|3YS BP0 BJeIBUSY)
a4

9S

9pHisel
uo suoneayipow diweufp uelg
££'SSE[D %SE) pifeAul ue depy
0€'SSef 108lqo pifeaul ue depy
9v"se)
Uo suonealipow diweukp pu3
2e'ssep ysel e 1ip3
9£'%se) B up3
9£'%sel 81818
26'SSED %SE) B 3J8jeQ
9g'ssep y%se) syse) sbueyn
62'ssepo 12alqo ue ppy
1€'SSey0 ¥Se} & ppy
E%SE) B ppY
wp3
nuap
2\ 'sieurelurey

w

2zyse) doo]

7
ge'adAL
Ge'[dwpiseL
ge'hiopeyse]
S¢'jeQsisausn
GE'BUBJU UOBNUEISU|
L1's18s Indu|
L1'spalqo induj

22hisel sisausn
6'80IM8S UOINJBX3

2\ 'siaubisaq

Q W O <

1 }'S0IAIRS 8100
12'syse) punodwo)
O}'HLYdSSY10
21's18SN JO SBSSEe|)

Q

12%se) aIseg

2eyseL ooy

4

SjuauoH Jo xapuy

MOUN3IdO

SS s3ajdwex3y

*OM} JOU}0 BU} I SISMO)}
dwa) pue uoneunsap ayj ‘|ND 21nosal ay} uo Jeadde Ajleniul sySIP |8 aiaym
3U0 8y} SI JaM0)} 821N0S 8y | “WYBL 8y} 0} 8] BY} WO PaIBqINU BJE SIBMO]

ay] “Jaquinu [euy }saybiy ay} YIm XsIp 8y} st uasoyd aq o} ysiqg ay] sieadde g'g
2.nBy WoJy wioy 8y} ‘uoiedljdde MOJPLIOM JOUEH JO SISMO], 8y} Bunuels uaym

1ND Buuoyuopy 821n0say loueH jo s1emo] :2'0} ainbig

18A1aS 32iN0SaY JOURH O SIBMO|

3al MOBN3dO

LS

xapuj

8'INOIM

MOUN3dO

References 189

References

[1]

(2]

[3]
[4]

(5]
[6]

[7]

8]

[9]

[10]

[11]

R. Allen and G. Garlan, “Formalizing Architectural Connection”, Proceedings of the
16th International Conference on Software Engineering, pp 71-80, Sorrento, Italy, May
1994.

G. Alonso, D. Agrawal, M. Kamath, R. Gunthor, C. Mohan,, “Advanced Transaction
Models in Workflow Contexts”, 12" International Conference on Data Engineering
New Orleans, February 1996.

Amazon.com, http://www.amazon.com/

Jean Marc Andreoli, Steve Freeman and Remo Pareschi, “The Coordination Language
Facility: Coordination of Distributed Objects”, Theory and Practice of Object Systems,
vol 2(2) pp 77-94, 1996.

Barclays, http://www.barclaysquare.co.uk/

Luc Bellisard, Michel Riveil, “Distributed Application Configuration”, Proceedings of
the 16™ IEEE International Conference on Distributed Computing Systems, Hong-Kong,
May 1996.

R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and G.
Woetzel, “Basic Support for Cooperative Work on the World Wide Web”, International
Journal of Human Computer Studies, 1997.

Eike Best, Dipl. Inform. Bernd Grahlmann, “PEP: Programming Environment based on
Petri Nets, Documentation and User Guide”, version 1.4, Institut fiir Informatik,
University Hildesheim, November 1995.

Eike Best and Richard Pinder Hopkins. “B(PN)’ - a Basic Petri Net Programming
Notation”, Proceedings of PARLE’93, volume 694 of Lecture Notes in Computing
Science, pp 379-390, A. Bode, M. Reeve and G. Wolf editors, Springer-Verlag, 1993.
Gregory Alan Bolcer and Richard N. Taylor, “Endeavors: A Process System Integration
Infrastructure”, Information and Computer Science, University of California, Irvine

C3DS, “Control and Coordination of Complex Distributed Services, Project

http://www.amazon.com!
http://www.barclaysquare.co.uk!

References 190

[12]

[13]

[14]

(15]

[16]
(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

Programme”, ESPRIT Long Term Research Project 24962

F. Casati, S. Ceri, B. Pernici, G. Pozzi, “Conceptual Modeling of Workflows”,
OOER’95, Gold Coast, Australia, December 12-15, 1995.

S. Das, K. Kochut, J. Miller, A. Sheth, D. Worah, “ORBWork: a Reliable Distributed
CORBA-based Workflow Enactment System for METEOR?2”, LSDIS, The University
of Georgia.

C. T. Davies, "Data processing spheres of control", IBM Systems Journal, Vol.17, No.
2, 1978, pp. 179-198.

Digital Equipment Corporation, “TeamRoute Programming Guide“, AA-PM6FA-TE,
DEC, Maynard, MA, June 1992.

FloWare, http://www.plx.com/html/floware_scalable_workflow.html

H. Garcia-Molina and K. Salem, “Sagas”, Proceedings. 1987 SIGMOD International
Conference on the Management of Data, Pp. 249-259, May 1987.

D. Garlan, R. Allen and J. Ockerbloom, “Exploiting Style in Architectural Design
environments”, Proceedings of SIGSOFT’94, USA, December 1994

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck and V. Sunderam, “PVM3
User’s Guide and Reference Manual”, Technical Report ORNL/TM-12187, Oak Ridge
National Laboratory, September 1994.

D. Georgakopoulos, M. Hornick and A. Sheth, “An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure”,
Distributed and Parallel Databases, 3(2) pp 119-154, April 1995

Antonietta Grasso, Jean-Luc Meunier, Daniele Pagani and Remo Pareschi, “Distributed
Coordination and Workflow on the World Wide Web”, Rank Xerox Research Center,
Grenoble, Computer Supported Cooperative Work: The Journal of Collaborative
Computing Volume 6, pp 175-200, 1997.

J. N. Gray, "The transaction concept: virtues and limitations”, Proceedings of the 7th
VLDB Conference, September 1981, pp. 144-154.

Honeywell, “MetaH Programmer’s Manual Version 1.09”, Technical report, Honeywell
Technology Center, April 1996.

M. Hsu, “Special Issue on Workflow and Extended Transaction Systems”, Bulletin of
the Technical Committee on Data Engineering, IEEE, 16(2), June 1993

The IBM Corporation, “IBM FlowMark Modeling Workflow”, SH19-8241-02, October

http://www.plx.comlhtrnlltloware_scalable_worktlow.htrnl

References 191

[26]

(27}

(28]

(29]

[30]

[31]

[32]

[33]

[34)]

[35]

[36]

[37]

[38]

1996.

The IBM Corporation, “Message Queue Interface”, Technical Reference, April 1993,
Document SC33-0850-01

The IBM Corporation, “IBM FlowMark Managing Your Workflow”, SH19-8243-02,
October 1996, http://www.software.ibm.com/ad/flowmark/

D. Mc Carthy and S. Sarin, “Workflow and Transactions in InConcert”, Bulletin of the
Technical Committee on Data Engineering, IEEE Computer Society Vol 16, no 2, June
1993.

Stefan Jablonski, Christoph Bussler, “Workflow Management”, Thomson Computer
Press.

jFlow, “OMG Business Object Domain Task Force, BODTF-RFP 2 Submission,
Workflow Management Facility”, bom/98-03-04

J. Kramer,] Magee, “Analysing Dynamic Change in Software Architecture”, pp 91-100,
Proceedings of the 4th International Conference on Configurable Distributed Systems,
IEEE Computer Society, May 4-6, 1998

F. Leymann, “Supporting Business Transactions Via Partial Backward Recovery in
Workflow Management Systems”, GI-Fachtagung datenbanken in Buro Technik und
Wissenschaft, BTW’935, Dresden, Germany, Springer Verlag, March 1995.

D.C. Luckman et al, “Specification and Analysis of Software Architecture using Rapide”,
IEEE Transactions on Software Engineering, pp 336-355, April 1995.

Jeff Magee. “LTSA: Labelled Transition System Analyser”,
http://www-dse.doc.ic.ac.uk/~jnm/LTSdocumentation/User-manual. html

Jeff Magee, N. Dulay, Susan Einsenbach and Jeff Kramer, “Specifying Distributed
Software Architectures”, Proceedings of the 5" European Software Engineering
Conference, Barcelona, September 1995

Jeff Magee and Jeff Kramer, “Dynamic Structure in Software Architecture”, SIGOFT
96, ACM Software Engineering Notes, Vol. 21, No 6, November 1996.

R. Medina-Mora, T. Winograd and R. Flores, “The ActionWorkflow Approach to
Workflow Management”, Proceedings of the 4™ Conference on Computer-Supported
Cooperative Work, June 1992

N. Medvidovic and R. N. Taylor, “Reusing off-the-shelf Components to Develop a
Family of Applications in the C2 Architectural Style”, Proceedings of the International

http://www.software.ibm.com/ad/tlowmarkJ
http://www-dse.doc.ic.ac.ukJ-jnmIL

References 192

(39]

[40]

[41]

(421

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

(51]

[52]

[53]

Workshop on Development and evolution of software architectures for product families,
Las Navas del Marques, Avila, Spain, November 1996.

Neno Medvidovic, “A Classification and Comparison Framework for Software
Architecture Description Languages”, Technical Report UCI-ICS-97-02, Department of
Information and Computer Science, University of California, Irvine, USA, February 1996
C. Mohan, D. Agrawal, G. Alonso et al., “Exotica: a Project on Advanced Transaction
Management and Workflow Systems”, IBM Almaden, ACM SIGOIS bulletin, August
95, vol. 16 no 1 (http://www.almaden.ibm.com/cs/exotica/exotica_papers.html)

C. Mohan and R. Dievendorff, “Recent Work on Distributed Commit Protocols, and
Recoverable Messaging and Queuing”, Bulletin of the Technical Committee on Data
Engineering, Volume 17, no 1 pp 22-28, March 1994, IEEE Computer Society.

M Moriconi, X. Qian and R.A. Riemenschneider, “Correct Architecture Refinement.”,
IEEE Transactions on Software Engineering, page 356-372, April 1995.
MULTIPLECX, “Multi-party Processes for Large-scale Electronic Commerce
Transactions, Project Programme”, European 4™ Framework Programme IT RTD,
ESPRIT, Project no. 26810.

Netscape Incorporation, “JavaScript Guide”,
http://developer.netscape.com/docs/manuals/communicator/jsguide4/

Nortel & the university of Newcastle, “Workflow Management Facility Specification”,
OMG, BOM/98-03

Anne H.H Ngu, Toncan Duong, Uma Srinivasan, “Modeling Workflow using Tasks and
Transactions”, University of South Wales, NFS workshop, USA, April 1996.

OMG, “Object Management Architecture Guide”, http://www.omg.org/

OMG, “The Common Object Request Broker: Architecture and Specification”, revision
2.0, July 1995, http://www.omg.org/.

OMG, “The Common Object Service Specification”, http://www.omg.org/

OMG, “Common Facilities”, 1995, http://www.omg.org/

S. Omohundro and C. Lim, “The Sather Language and Libraries”, Technical Report TR-
92-017, International Computer Science Institute, Berkeley, March 1992,

John K. Qusterhout, “Tcl and the Tk Toolkit”, Addison Wesley Professional Computing
Series.

John K. Ousterhout, “Scripting: Higher Level Programming for the 21* Century”, IEEE

http://developer.netscape.comldocs/manuals/communicator/jsguide41
http://www.omg.org/
http://www.omg.org/.
http://www.omg.org/
http://www.omg.org/

References 193

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

(63]

(64]

[65]

Computer magazine, March 1998.

M. Papazoglou, A. Delis and A. Bouguettaya, “Class Library Support for Workflow
Environments and Applications”, IEEE transactions on computers, volume 46, no 6,
June 1997.

G. D. Parington, S. K. Shrivastava, S. M. Wheater and M. Little, “The Design and
Implementation of Arjuna”, USENIX, Comp. Systems Journal, December 1996.

James L Peterson, "Petri net theory and the modelling of systems”, Prentice-Hall, Inc.

C. Pu, G. E. Kaiser and N. Hutchinson, “Split transactions for Open-Ended Activities”,
Proceedings of the 14" Conference on Very Large Data Bases (VLDB), pp 26-37, Los
Angeles, California, 1988

J. M. Purtilo, “The Polylith Software Bus”, ACM TOPLAS, Vol. 16 no.1, pp 151-174,
Pittsburgh, March 1994.

F. Ranno, S. Wheater, and S. K. Shrivastava, “A System for Specifying and
Coordinating the Execution of Reliable Distributed Applications”, Proceedings of the
International Conference on Distributed Applications and Interoperable Systems
(DAIS’97), Cottbus, Germany, October 1997

F. Ranno, S. Wheater, and S. K. Shrivastava, “A language for Specifying the
Composition of reliable Distributed Applications”, The 18™ International Conference on
Distributed Computing Systems (ICDCS’98), IEEE, Amsterdam, the Netherlands, May
1998.

B. Reinwald and C. Mohan, “Structured Workflow Management with Lotus Notes
release 4”, Proceedings of the 41th IEEE Computer Society International Conference, pp
451-457, Santa Clara, California, February 1996

Jane Rickard, “E.commerce, big business or fad?”, Micromart, pp 116-117, 23" October
1997, based on a survey by CommerNet and Nielsen Media Research.

Paul Santanu, Edwin Park and Jarir Chaar, “RainMan: a Workflow System for the
Internet”, IBM Watcom, USENIX Symposium on Internet Technologies & Systems,
1997.

Paul Santanu, Edwin Park, Jarir Chaar, “Extending the WfMC Standard to the
Distributed World”, Workflow Management Coalition Meeting, London, October 20-22,
1997.

Paul Santanu, Edwin Park, Jarir Chaar, “Essential requirements for a workflow

References 194

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
(78]

[79]
[80]

standard”, OOPSLA’97, Business Object Workshop III, Atlanta

Alexander Schill and Christian Mittasch, “Workflow Management Systems on Top of
OSF DCE and OMG CORBA?”, Distributed Systems Engineering Journal, vol 3, pp 251-
262, December 1996

Randall Schwartz and Tom Christiansen, “Learning Perl”, O’Reilly editions

F. Schwenkreis, “APRICOTS - A Workflow Prgramming Environment”, 6" High
Performance Transaction System workshop, Asilomar, Pacifi Grove, California,
September 1995

M. Shaw, R. DeLine and G. Zelesnik, “Abstractions and Implementations for
Architectural Connections”, Proceedings of the third International Conference on
Configurable Distributed Systems, May 1996.

A. Sheth et al., “Supporting State-wide Immunisation Tracking using Multi-paradigm
Workflow Technology”, Proceedings of the 22™ International Conference on Very Large
Databases, Bombay, India, September 1996

S.K. Shrivastava, L. V. Mancini and B. Randell, “The duality of Fault-Tolerant System
Structure”, Technical Report Series n. 305, February 1990

Teknowledge, “The ARDEC/Teknowledge Architecture Description Language (ArTek),
version 4.0”, technical report, Teknowledge Federal Systems, Inc. and US Army
Armement Research, Development and Engineering Center, July 1995.

W. Tracz, “Parameterized Programming in LILEANNA”, Proceedings of ACM
symposium on Applied Computing (SAC’93), February 1993.

H. Wichter and A. Reuter “The ConTract model” in “Transaction Models for advanced
Database applications”, (editor A. Elmagarmid), Chapter 7, pp. 220-262, Morgan-
Kaufman, February 1992.

Larry Wall, Tom Christiansen, Randall Schwartz, “Programming Perl”, O’Reilly editions
John Warne, “Flexible transaction framework for dependable systems”, ANSA report No
1217, 1995

Aaron Watters & al, “Internet programming with Python”

WIMC, “The Workflow Reference Model” version 1.1, November 1994, WIMC-TC-
1103, http://www.wfmc.org/

WIMC, “Process Definition Interchange”, WIMC TC-1016, http://www.wfmc.org/
WIMC, “Workflow Process definition Read/Write Interface”, WfMC-WGOI-1000,

http://www.wfmc.org/
http://www.wfmc.org/

References 195

http://www.wfmc.org/

[81] S. Wheater, “OPENflow Workflow Module CORBA Interface Reference Manual”,
version 0.6.1, Arjuna Solutions, Ltd, Newcastle upon Tyne.

[82] S. Wheater, S.K. Shrivastava and F. Ranno, “A CORBA Compliant Transactional
Workflow System for Internet Applications”, Proceedings of IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing
(MIDDLEWARE’98), The Lake District, England, September 15-18, 1998.

[83] D. Wodtke et al., “The Mentor Project: Steps towards Enterprise-wide Workflow
management”, Proceedings of the 12" IEEE International Conference on Data

Engineering, New Orleans, LA, February 1996

http://www.wfmc.org/

