
A Language and Toolkit for the

Specification, Execution and Monitoring of

Dependable Distributed Applications

Ph.D. Thesis

by Frederic Ranno

The University of Newcastle upon Tyne

Department of Computing Science

1998

BEST COpy

AVAILABLE

Variable print quality

Abstract

This thesis addresses the problem of specifying the composition of distributed applications

out of existing applications, possibly legacy ones. With the automation of business processes

on the increase, more and more applications of this kind are being constructed. The resulting

applications can be quite complex, usually long-lived and are executed in a heterogeneous

environment. In a distributed environment, long-lived activities need support for fault tolerance

and dynamic reconfiguration. Indeed, it is likely that the environment where they are run will

change (nodes may fail, services may be moved elsewhere or withdrawn) during their

execution and the specification will have to be modified. There is also a need for modularity,

scalability and openness. However, most of the existing systems only consider part of these

requirements. A new area of research, called workflow management has been trying to address

these issues.

This work first looks at what needs to be addressed to support the specification and

execution of these new applications in a heterogeneous, distributed environment. A co-

ordination language (scripting language) is developed that fulfils the requirements of specifying

the composition and inter-dependencies of distributed applications with the properties of

dynamic reconfiguration, fault tolerance, modularity, scalability and openness. The architecture

of the overall workflow system and its implementation are then presented. The system has been

implemented as a set of CORBA services and the execution environment is built using a

transactional workflow management system. Next, the thesis describes the design of a toolkit

to specify, execute and monitor distributed applications. The design of the co-ordination

language and the toolkit represents the main contribution of the thesis.

Acknowledgements

I am very grateful for all the support and encouragement that I have received during my

research. I would like in particular to thank Prof. Santosh Shrivastava for helping me to decide

which research topic to pursue, to proof-read this thesis and other papers, for his supervision,

help and suggestions regarding this project. I also would like to thank Dr. Stuart Wheater for

his help and suggestions as well as for the development of the Workflow Engine for which this

toolkit has been designed.

Many thanks also to the other members of the Arjuna group for building the platform that

was used to develop and validate this project, especially to Dr. Mark Little who has developed

the OTS version of Arjuna. I would also like to address some special thanks to Ms Shirley

Craig our departmental librarian, as well as to the staff of the Robinson Library.

I am grateful to Nortel Telecom and in particular to John Warne, Harold Toze, Samantha

Merrion, Dave Stringer and A. 1. Tunnic1iffe to provide us with a real example of a workflow

application as well as their ORB.

I would also like to address some special thanks to my family and Sarah for their support

during my Ph.D.

My research has been jointly funded by the UK Engineering and Physical Sciences Research

Council (EPSRC award 94315028) and by CaberNet, the ESPRIT network of excellence in

distributed computing systems architectures (European HCM Research Fellowship contract

ERBCHBGCT93). Northern Telecom (Nortel) and the European LTR project C3DS (project

no. 24962) also sponsor the workflow project.

Contents

Abstract i

Acknowledgemen ts ii

Contents iii

List of figures viii

Introduction 1

1.1- Motivation 1

1.2- Objectives 6

Co-ordination 6

Dependability 7

Dynamic reconfiguration 8

Scalability 8

Modularity 8

Openness 9

1.3- Thesis Overview 10

Related work 12

2.1- Architectures 12

2.1.1 The Workflow management Coalition Architecture

2.1.2 The ANSA framework

12

17

2.2- Build time environment 20

2.2.1 Building environment based on general purpose scripting languages 20

2.2.2 Workflow specific build time environments 23

2.2.3 Commercial Workflows 32

2.2.4 Architecture Description languages (ADL) 33

iii

2.2.5 Discussion 38

2.3- Run time environment for workflows management systems .40

2.3.1 Sagas 41

2.3.2 ConTract 41

42

44

48

49

2.3.3 ORBWork

2.3.4 Exotica or FlowMark on Message Queue Manager

2.3.5 RainMan

2.3.6 TOWE, Transaction-Oriented Workflow Environment

2.4- Discussion 52

Architecture 54

3.1- Requirements 54

3.1.1 Modularity 54

3.1.2 Scalability

3.1.3 Interoperability

3.1.4 Dependability

55

56

56

573.1.5 Dynamic reconfiguration

3.2- Software structure 58

3.2.1 Common Object Request Broker Architecture (CORBA) 59

3.2.2 Object Transaction Service (OTS)

3.2.3 Graphical User Interface

3.2.4 Workflow Repository Service

3.2.5 Workflow Execution Service

62

64

64

65

65

65

65

3.2.6 Workflow Administration Tasks

3.2.7 User Workflow Tasks

3.2.8 Script Servers

3.3- Task model 66

iv

3.3.1 Structure of a task 66

723.3.2 Types of task

3.4- Run time environment 74

Language 79

4.1- Overview 79

4.2- Object Classes 80

4.2.1. Overview 80

4.2.2 (}rammar

4.2.3 Examples

81

81

4.3- Task Classes 81

4.3.2 (}rammar

82

82

84

4.3.1 Overview

4.3.3 Examples

4.4- Task instances 86

4.4.1 Overview 86

87

91

4.4.2 (}rammar

4.4.3 Examples

4.5- Extended transaction models and workflows 94

4.6- Comparison with METEOR 95

Examples 99

5.1- Example I: Customer order processing 99

5.2- Example II: A travel agency 106

5.3- Example III: Network fault management 112

Toolkit 119

6.1- Overview 120

6.2- Classes ofUsers 121

6.3- Workflow model using the WfCiui 121

6.3.1 Object Class model 121

v

6.3.2 TaskClass model 122

6.3.3 Basic task and compound task models 123

6.4- Workflow File System (WfSS) 124

6.4.1 Connecting to a workflow script server 124

6.4.3 Loading a script 127

6.5- Composing a specification using the WfGui 129

6.5.1 Overview 129

6.5.2 Object classes 129

6.5.3 Task classes 130

6.5.4 Tasks 131

6.6- Simulation 133

6.7- Execution 135

6.7.1 Checking the specification 135

6.7.2 Storing in the Repository Service 139

6.7.3 Starting an application 141

6.7.4 Dynamic modifications 141

6.8- Monitoring 142

Analysis 144

7.1- Analysis using Petri-nets 144

7.1.1 Overview of B(PN)2 144

7.1.2 Modelling a workflow application 146

7.1.3 Usefulness for our system 150

7.2- Analysis using Finite State Processes 151

7.2.1 Overview of FSP 152

7.2.2 Modelling a workflow application 153

7.2.3 Usefulness for our system 156

vi

Conclusions and future work 157

Appendixes 163

Scripts 163

A.l Script for the process ordering application described in chapter 5.1. 163

A.2 Script for the travel agent application described in chapter 5.2. 167

A.3 Scripts for the telecommunication application described in chapter 5.3. 176

OpenFlow Toolkit user manual. 188

References 189

vii

List of figures

Figure 1.1: Example of a workflow application 3

Figure 1.2: The components of a workflow management system 5

Figure 1.3: Software structure of the toolkit 9

Figure 2.1: Components and interfaces of the WfMC model. 14

Figure 2.2: Architectural model 18

Figure 2.3: Notations for GUI inWIDE 30

Figure 2.4: A component in Darwin 34

Figure 2.5: Composite component in Darwin 34

Figure 2.6: Dynamic reconfiguration in Darwin 36

Figure 2.7: A component in OLAN 38

Figure 2.8: Comparison of the built time features associated to the languages considered 39

Figure 2.9: Run time architecture of FlowMark .44

Figure 2.10: Process diagram in FlowMark .46

Figure 2.11: Specification of an organisation 46

Figure 2.12: Specification of a person .47

Figure 2.13: Worklists in FlowMark 47

Figure 2.14: Monitoring of a FlowMark workflow .48

Figure 2.15: The TOWE system architecture 50

Figure 2.16: Library classes of the TOWE 51

Figure 2.17: Comparison of the features supported by the different systems considered 52

viii

Figure 3.1: Distributed and centralised co-ordinations 56

Figure 3.2: Software structure of the toolkit 58

Figure 3.3: Relationship between the different components 59

Figure 3.4: Object Management Architecture 60

Figure 3.5: Structure of an Object Request Broker 61

Figure 3.6: From IDL specification to implementation and use 62

Figure 3.7: OMG OTS architecture 63

Figure 3.8: OMG OTS execution flows 64

Figure 3.9: Representation of a task 66

Figure 3.10: Domain of a task specification 67

Figure 3.11: Inputs of a task 67

Figure 3.12: Outputs ofa task 68

Figure 3.13: Types of data-flow dependencies 70

Figure 3.14: Types of notification dependencies 71

Figure 3.15: Graphical representation of Workflow Tasks 74

Figure 3.16: Specification of a workflow application 75

Figure 3.17: Run-time representation of a workflow application 76

Figure 3.18: Task state diagram 77

Figure 3.19: Event notifications 77

Figure 4.1: Basic example 80

Figure 4.2: Graphical notation for a task class 81

Figure 4.3: Inputs of a task class 83

Figure 4.4: Outputs of a taskclass 84

Figure 4.5: Specification of responsibilities for a task 86

ix

Figure 4.6: Saga modelled as a workflow 95

Figure 5.1: Overall process ordering application 100

Figure 5.2: Dependencies involving the processOrderApplication compound task 104

Figure 5.3: Dependencies involving the checkStock task 105

Figure 5.4: Dependencies involving the paymentCapture task 105

Figure 5.5: Dependencies involving the paymentAuthorisation task 105

Figure 5.6: Dependencies involving the dispatch task 105

Figure 5.7 :Travel reservation workflow 106

Figure 5.8: Overview of the travel task 107

Figure 5.9: Overview of the travelReservation task 107

Figure 5.10: Overview of the travelReservation task, using alternative tasks 108

Figure 5.11: Details of the reliable hotelReservation task 108

Figure 5.12: Dependencies involving the bookHotelPartner task 109

Figure 5.13: Dependencies involving the bookHotelTouristOffice task 109

Figure 5.14: Overview of the alarmResolution task 113

Figure 5.15: Overview of the Service Impact Analysis task 113

Figure 5.16: Details of the dependencies involving the Service Impact Resolution task 114

Figure 5.17: Overview 0f the Service Level Agreement task 115

Figure 5.18: Overview of the Negotiation Resolution task l16

Figure 5.19: Overview of a round of negotiation of the SLA 116

Figure 6.1: Graphical representation of the workflow system 119

Figure 6.2: UML class diagram (excluding task components) 122

Figure 6.3: UML-like class diagram (excluding TaskClass components) 123

Figure 6.4: State transitions on server side of the WfSS 125

x

Figure 6.5: Simulation of the execution of a workflow application 134

Figure 6.6: Design for "Check task for Loop" process 136

Figure 6.7: Design for "Check compound task for Loop" process 137

Figure 6.8: Design for "Check basic task for Loop" process 138

Figure 6.9: Run time representation of loop tasks 140

Figure 6.10: Run-time representation of abort outcomes 140

Figure 6.11: Graphical representation of the workflow system with Specification Service 143

Figure 7.1: Modelling the task inputs 146

Figure 7.2: Modelling of the reaching of an output for a basic task 147

Figure 7.3: Example ofworktlow application 149

xi

Introduction

Chapter 1

Introduction

1.1- Motivation
In a competitive market driven environment, enterprises must improve their productivity

and efficiency. Automation of business processes is therefore considered important. In this

thesis, a business process is defined as a set of organised activities aiming at reaching a

common business goal (for example, the activities needing to be performed by

"MyOwnComputers Ltd" to. build a new computer given its parts form a business process).

More and more such processes are being automated. By automating their business processes,

companies try to gain efficiency and effectiveness.

In the last few years, global networks, such as the Internet, have grown considerably in

scale mainly due to the advances in telecommunication, and this has made it possible to access

information within seconds. More and more business processes are growing in complexity, and

are also becoming distributed. Automating the processes can also speed up access to the

information. For instance, you can keep the details of your products and their availability in a

database and have an instantaneous idea of the state of your stock.

Moreover, the information access has become worldwide and as a result processes are now

usually crossing enterprise-level boundaries. A typical example of such a process is ticket

bookings via a travel agency: the travel agent starts a booking process that involves his

company as well as some air-lines, railways companies, ferry companies, bus companies ...

Most travel agencies now directly buy the tickets via computers from their providers. Their

system acts as a client that contacts some servers where they can check what is available, when

and at what price. If the customer is happy with what was found, then the proposed travel

arrangements can be booked.

Introduction 2

Other examples of applications being automated can be found in the field of electronic

commerce. Electronic commerce is a relatively new concept that deals with buying and selling

goods on the net. Typically that involves browsing an electronic catalogue, put the articles you

want to buy in an electronic basket, get the bill, pay it and then wait for the delivery. The most

famous example of a company trading by electronic commerce is amazon. com [3], the

"electronic" bookstore, from which you can order books at American prices from all over the

world by using your computer connected to the Internet. Another example is the emergence of

virtual shopping malls, such as the Barc1aySquare [5] created by Barc1ays, where customers

can buy from companies such as Argos, Interflora or Thomas Cook. The customer selects the

goods that he wants to buy and then clicks on a retailer's cash register to pay for the chosen

items. The payment is then carried out thanks to electronic money stored in an electronic

wallet linked to a BarclayCard account. The area of electronic commerce is growing fast, and

is estimated to be worth already up to $15 billion and is expected to reach $200 billion in the

year 2000 [62].

A variety of computer systems for automating the task of scheduling and executing

applications have been developed. These systems are known as workflow management systems

and the applications are called workflows. As we can see from the previous examples,

workflows can usually be divided into smaller units of work carried out by participants that can

be among others human beings, their agents (programs acting on their behalf) or even

computer programs. The participants have to collaborate to reach a COmmon aim, the

achievement of the global process. This collaboration is usually carried out by exchanging data

and by ensuring that the dependencies between units of work are respected. Such dependencies

can usually be divided in two different types: temporal dependencies (e.g. a unit of work has to

be executed before another one) and data-flow dependencies (e.g. a unit of work needs some

data coming from another unit of work before starting). Similarly an increasing number of

applications are being built as a set of existing applications collaborating among them. The

resulting applications are usually rather complex and have a lot of dependencies between their

constituents. Another problem inherent to this new kind of applications is that the execution of

such applications may span long periods of time. Indeed, it may include long periods of

inactivity, usually due to component tasks requiring interactions with human users.

Furthermore, these applications are not only long-lived; they are also usually executed in a

heterogeneous environment, across company-level boundaries.

Introduction 3

~
L.::_J

Check Bank
References

Dispatch
Order

Payment
Order

Check
Stock

Figure 1.1: Example of a workflow application

In figure 1.1, an example of workflow application in the area of commerce is shown. It

depicts the process of ordering, dispatching and paying an order. Initially, customer orders

some items (unit of work get order), then the stock as well as the bank references of this

customer are checked in parallel (units of work check stock and check bank reference). If both

checks are successful, the order is then dispatched (unit of work dispatch order), which

triggers the payment for the order (unit of work payment order).

In a distributed environment, long-lived activities do need support for fault tolerance and

dynamic reconfiguration. On one hand, the risk of encountering faults obviously increases

proportionally to the duration of the application. On the other hand, it is likely that the

environment in which they are run will change (nodes may fail, services may be moved

elsewhere or withdrawn) during their execution and the specification will have to be modified.

As a result, it is inevitable that workflows will need some support for fault tolerance and

dynamic reconfiguration. Furthermore, to be trusted workflow need to be reliable and ensure

correctness of the process.

As a result, an important problem for companies looking to automate their business

processes is to have a system to help them to specify, execute and monitor the resulting

application in an efficient manner. Moreover, this system should incorporate some tools for the

management of these processes, including monitoring, configuration and consistency checking

tools.

A lot of systems have been proposed in an effort to meet these requirements. The solutions

have ranged from email based system to extended database systems. In an email-based system

[15], some extra information is added to the email to specify the routing of the message. This

kind of system can be quite useful in an office environment where a form has to go through a

particular route (corresponding to a sequence of processing steps) to be accepted. Such a

system is however quite limited in scope as it only provides routing information. In particular

Introduction 4

there is no real support for inter-tasks dependencies. In database systems, different extensions

have been proposed to extend their capabilities. The first of these extensions was to add some

Event-Condition-Actions rules as objects in the database, and managed by the database

management system. When an event occurs (such as an object becoming available or the

completion of an activity), its associated condition is evaluated and if true, the associated

action is scheduled for execution. The resulting systems are known as active database

management systems. They allow the creation of multi-steps applications, where each step is a

transaction, and where access to data and synchronisation among transactions are managed by

the system. Another interesting approach is represented by the transactional workflow systems

that are closely related to work on extending transaction models. The idea behind extended

transaction models is to relax part of the ACID (Atomicity, Consistency, Isolation and

Durability) properties of conventional transactions. ACID transactions are well suited to

provide fault tolerance and consistency for short-lived interactions with shared objects; in

contrast, extended transactions are intended to provide similar functionality for long-lived

applications. A transactional workflow system provides facilities to define an application as a

set of co-ordinated transactions. By developing an underlying system for supporting flexible

transaction facilities, an efficient, reliable workflow management system can be developed.

Such a model is described in [76]. This system could be based on one of the extended

transactions model based on the relaxation of the Isolation property of the Atomic Transaction.

Workflow management Systems have been defmed by the Workflow Management Coalition

• as "a system which provides procedural automation of a business process by management of

the sequence of work activities and the invocation of appropriate human andlor IT resources

associated with the various activity steps" [78]. Often seen as "collections of tasks organised to

accomplish some business processes" [24], workflows are intended to enable quick acquisition

of services and resources. Workflow management systems are good management tools as they

can co-ordinate and control business processes.

A workflow management system can be divided in several components [29] as depicted in

figure 1.2. The main division is between the build-time and the run-time components. The build

time components allow you to specify the workflow. They can usually be divided into two sets:

• Workflow Management Coalition: industrial consortium set up to create an industry standard for Workflow

Management Systems.

Introduction 5

the conceptual model and the tools provided to facilitate the construction of workflow

specifications. The conceptual model itself is based on a workflow language, specified by its

syntax and semantics. The Workflow community [13] has been working on languages to

specify workflow applications, while the Software Design community [39] [35] [6] has been

working on Architecture Description languages. The other build time components, the build

time tools allow to check your specifications, simulate the execution of these specifications and

animate them.

Workflow Management System

Build Time

Workflow Model Build Time Tools

Editor
Browser
Compiler
Simulator
Animator
Debugger
Administrator

Implementation Model Implementation

i t
Architecture

Ap ication F mats &
P gram P tocols
In rface

Implementation Run Time Tools

Work List
End User Tools
Monitor
Analyzer
Administrator
Configura tor

Workflow Language Functional

Figure 1.2: The components of a workflow management system

The run-time part of a workflow management system is itself sub-divided into four

components: the implementation model, the implementation architecture, the implementation

and the run-time tools. The implementation model is the conceptual basis for the run-time part

of the workflow system. It defines the functional components (tasks ...) and the protocols

between them by specifying the application program interfaces and the formats and protocols.

The implementation architecture is the enactment of the functional components or in other

words how the functional components are mapped to active elements of the underlying system.

The implementation is the instantiation of this architecture. In order to support this

implementation, some run-time tools have to be provided. For instance, monitoring tools are

needed to fmd out what is going on and control the progress of the workflow. Analysis tools

can be provided to find out the history of a workflow execution. Work lists can also be

provided when you have human participants to let them know what they have to do. Given that

the requirements can change during the execution, some administration and configuration tools

have to be provided to handle those changes.

Introduction 6

1.2- Objectives
There is no real consensus on what a workflow is or on what kind of features a workflow

management system has to provide. A lot of different definitions [20] have been proposed for

workflows ranging from a business process, a software automating such a process, its

specification or a software that supports the co-ordination of people implementing such a

process. In this thesis, we define a workflow as a set oj tasks arranged to Jonn (complex)

organisational Junctions, where a task is defined as an application specific unit oj work. A

workflow management system is defined as the software system that can be used to specify

and co-ordinate the execution and monitor oj organisation Junctions.

The aim of this thesis is to provide an efficient build and run-time environment to specify,

execute and monitor reliable workflow applications constructed out of other existing

applications and workflows. It should allow the co-ordination of inter-dependent distributed

applications with the properties of fault tolerance, dynamic reconfiguration, modularity,

scalability and openness. Each of these requirements will now be further described starting

with co-ordination.

Co-ordination

Several types of approaches have been presented to specify the interactions between

component tasks. An active field of research has been on rule-based approaches, where the co-

ordination is expressed by Event-Condition-Action rules. In this model, the specified actions

are triggered by some events under certain conditions. For instance, in the electronic

commerce field, it is likely that the company selling the goods will want to be paid before

delivering the goods that a customer has ordered. This would be modelled by specifying that

the task "delivering goods" can only begin when the task "pay for goods ordered" has been

successfully completed. Approaches based on Petri-nets, extended SQL queries or email-based

have also been proposed. Another important approach is the Architecture Description

Language (ADL) based specifications which allow the description of the structure of the

components of a software system. These components communicate through connectors, and

are providing services for the other components. Those services are provided and obtained via

ports. However current ADLs do not capture the computation structure (run-time behaviour)

of an application. Our goal is to provide a way to capture this computational structure. The

language presented in this thesis does that by describing the application as a set of tasks (units

of work) that are linked among them by temporal dependencies. These dependencies are of

Introduction 7

two different types, notification dependencies specifying the temporal constraints among tasks

and input dependencies (data-flow dependencies) specifying the mapping of the inputs and

outputs of a task with the data available in the system.

Dependability

Organisations that are automating their processes using workflows must be able to rely

upon the workflow management system. Indeed when automating processes, the human

responsibility for these processes can be partly discharged to the corresponding workflows. Of

course, to be trusted, workflows need to be reliable and ensure correctness of the process. If

they are not fault-tolerant, the consequences could be disastrous: just imagine a financial

transaction badly completed in the financial field, the consequences can be catastrophic.

Furthermore, systems become bigger, go across organisation boundaries, are run within a

distributed environment, and on top of that particular problems arise from co-ordinating

applications. Among other, this includes:

• Network splits: the network can be partitioned due to hardware faults for instance.

• Machine failures: machines can crash, users can reboot them unexpectedly, hardware

faults can occur.

• Machine removal: machines can be removed from the set of resources available for

the workflow. This is becoming more and more an issue with the emerging technology

of mobile computing.

• Services may be withdrawn: one of the best examples of this problem can be

encountered on the Internet. When you make a query on resources using a search tool,

it is common to retrieve a lot of links on web resources that have vanished since their

registration.

• Services may be moved: in order to optimise the access or to provide a better quality

of service, services may be moved elsewhere. For instance, as technology evolves, new

machines with better performance may be introduced and services moved on them.

• Tasks may fail: there are a lot of reasons why tasks may fail including bad

programming (bug-free applications and complex applications do not go well

together). The resources that are needed by those tasks may not be available.

The system proposed must aim at being able to cope with these problems as automatically

as possible. The automation of business processes should indeed increase the quality of service.

Introduction 8

The way to recover for the workflow often has to be based on compensation as unrecoverable

actions may have taken place. For instance in the electronic commerce field, you may send a

bill corresponding to the goods ordered. Once this activity has been completed, it is impossible

to "erase" it. You can only compensate it by sending a message invalidating the previous one.

Dynamic reconfiguration

As was stated earlier, the applications considered are likely to be long-lived. As a result,

they are likely to find out during their execution that the environment in which they are

executing has changed or the user requirements may change. As a result they have to evolve to

cope with those changes. It is an accepted fact that it's not viable to abort them and that some

kind of support for run-time reconfiguration should be provided to cope with those changes.

Our model should allow some additions and removals of component applications and

dependencies during run-time without having to stop the application.

Scalability

Workflow technology alms at the integration of applications. As a result, scalability

becomes a real issue as the applications modelled grow in size. A scalable Workflow System

will be a Workflow that keeps the communication between participants as small as possible and

do no rely on any centralised services. Indeed if we were to rely upon such a service, it would

introduce some bottlenecks which would not be scalable. A fully distributed system

architecture should be adopted. It seems that the distributed Object-Oriented transaction

systems can be a good way to cope with this requirement as well as with those of

heterogeneity, distribution and flexibility.

Modularity

The specification of the application should be modular. Indeed, changing the specification of

a task should have as little impact on the rest of the application as possible. The changes

involved should only be made where the task is actually defmed. Moreover it should also be

possible to provide a way to compose an application out of other applications similarly

constructed. The language presented in this thesis achieves this by hiding from the

"downstream" tasks the "upstream" ones, or in other words, the tasks supposed to be executed

at a certain time have no knowledge what so ever of the tasks depending on them and

executing later.

Introduction 9

Openness

Nowadays, systems have to be as open as possible and not rely on proprietary components.

As a result, the system adopted should deal with component application in the same way

irrespectively of the language in which they have been written. The construction of the

applications should be made in a uniform manner. This has been achieved in the model

presented by using CORBA (see figure 1.3).

User Workflow Workflow Workflow User
Interface Administration Repository Execution Workflow

Tasks Service Service Tasks

Object Transaction Service
(OTS)

CORBA
ORB

Figure 103: Software structure of the toolkit

It should also be possible to use the system regardless of the host from which you are

connecting. This has been achieved by using Java to implement the Graphic User Interface

(GUI) for the system. It provides remote access to the system from wherever a web browser

supporting Java is available.

The software structure of the toolkit is depicted on figure 1.3. The toolkit is divided into

five components: the Java user interface, the workflow administration tasks, the workflow

repository service, the workflow execution service and the User Workflow Tasks. The User

Interface was implemented as a Java applet and provides some tools to specify a workflow,

including a graphical editor, some consistency check tools, some animator and simulation tools

for build time. It also provides some monitoring and analysing tools for run-time as well as

some tools allowing the dynamic reconfiguration of the workflow specification or schema.

Once specified, the workflow schema is stored in the workflow repository. Using the GUI, a

workflow schema can be instantiated and the workflow execution service is used to support

the execution of the application. The tasks are mapped to user workflow tasks just before

being executed. Dynamic reconfiguration can then be achieved by using administration tasks.

Most of the service components within the toolkit are provided via Common Object Request

Broker Architecture (CORBA) interfaces defined using the CORBA Interface Definition

Introduction 10

Language. The components usmg those services are CORBA clients, which allow

interoperability. The underlying transactional system is the CORBA-compliant object

transaction service of Arjuna [55]. The design and implementation of the toolkit have been a

team effort. The author is responsible for the work on the co-ordination language and the

shaded components in figure 1.3, which form the main part of the thesis.

The usual way of constructing a complex application using the system is to specify the

application using the build-time tools provided or by writing it directly in the workflow

language described in this thesis. Then the specification is exported to the repository service.

Once it has been exported, it can be started and an equivalent specification is created in the

execution service. The execution of the application can then be monitored and analysed during

its execution and corrective actions can be taken to react to changes.

1.3- Thesis Overview

This work first looks at what needs to be addressed to support the specification, execution

and monitoring of reliable workflow applications constructed out of other applications in a

heterogeneous, distributed environment, before proposing a language and a toolkit to support

these requirements. A new architecture combining the advantages of different existing

solutions and aiming at providing a flexible reliable model supporting the new workflow

technology will also be presented. The language presented in this thesis is novel in that it

provides a simple yet flexible way to specify the temporal structure of complex applications

created out of other applications while being ideally suited to incorporate dynamic changes at

run-time. It also provides a novel and uniform way to provide support for fault-tolerance to

these applications.

The thesis is structured as follows. In chapter 2, we present and discuss the state of the art

of the different fields considered by our system, and defme the requirements associated to

those fields that our language has to fulfil. The architecture of the overall workflow system and

its implementation are then presented in chapter 3. The system has been implemented as a set

of CORBA services and the execution environment is built using a transactional workflow

management system. In chapter 4, we specify our language and present the equivalent

graphical notation. Then in chapter 5, we show using examples how workflow applications can

be modelled using our system. Finally, in chapters 6 and 7, we describe a toolkit that supports

the specification, the execution and the monitoring of workflows as well as describe how to

Introduction 11

generate some equivalent specifications based on Petri-nets. External tools for consistency

checking can use these specifications. The thesis then finishes with some conclusions and

references.

In this thesis, we will adopt the following lexicographical conventions. Whenever a code

sample is given, we indicate the language keywords by using bold letters. These examples are

written in Courier font. Bold in conjunction with double quotes is used to denotate language

keywords, whenever they are included in "normal" text. Important words are emphasised using

italic, while names of languages and products are written as upper case words.

Related work 12

Chapter 2

Related work

In this chapter, we will present the state of the art for Workflow Management Systems.

Keeping in mind the description of the components of a workflow management system as

depicted in figure 1.2, we will start with the presentation of two architectures proposed as

models to build workflow management systems. Then, we will present in turn the build-time

and the run-time part of the workflow management systems. The build-time part will be first

presented including different approaches taken to specify workflow applications, as well as the

tools provided to help design the application specification. The main focus for the build time

part will be on the languages chosen, as the features supported by the workflow management

systems depend mainly on the expressive power of these languages. We will then turn our

attention towards the run-time environment with a special focus on what has been done in the

transactional workflow field.

2.1- Architectures

In this part, we will introduce major architectures that have been proposed for workflow

management systems. We will first describe the proposal of the Workflow Management

Coalition, and then we will carryon with a different approach based on flexible transactions

proposed by ANSA.

2.1.1 The Workflow management Coalition Architecture

Created in 1993, and consisting of more than 200 members, the Coalition has proposed a

framework for the establishment of workflow standards. This framework includes five

interfaces for interoperability and standardisation of communication. The aim is to have a

common set of interfaces that will allow multiple workflow products to coexist and inter-

Related work 13

operate within a user's environment. In [78], the reader will be able to find some further

information on the technical details. Three levels of compatibility (levels A, Band C) with the

framework presented have been defined to provide some flexibility to the workflow product

manufacturers. For instance, for the read/write interface of workflow process definition [80]

(API I between the workflow engine and the process definition program), the specification is in

fact a set of interfaces and the number of interfaces supported gives the level of compatibility

with the overall specification. It has to be noticed that a level of compatibility C implies a level

of compatibility A, as we have a relation of inclusion between subsequent level of

compatibility. In other words, features supported for level A included in features that have

been to be supported to get compatibility level B themselves included in what is needed for

level C

All workflow systems contain a number of generic components, which interact in a variety

of ways. To achieve interoperability between workflow products a standardised set of

interfaces and data interchange formats is necessary [79]. Then these interfaces can be used as

references when building interoperability scenarios. For instance processes expected to be

shared by several users from potentially different organisations using different workflow engine

can be specified using a tool of one workflow system and exported afterwards to the others

users regardless of the workflow system that they are using. Similarly workflow client

applications should be able to receive tasks generated by other workflow systems providing

that they follow the standards. The major components and interfaces identified by this model

are listed below, and depicted on figure 2.1;

• Reference Model (core component) - Specify a framework for workflow systems,

identifying their characteristics, functions and interfaces.

• Process Defmition Tools Interface (1) - Defme a standard interface between the process

defmition tools and the workflow engine(s).

• Workflow Client Application Interface (2) - Define standards for the workflow engine to

maintain work items which the workflow client presents to the user.

• Invoked Application Interface (3) - A standard interface to allow the workflow engine to

invoke a variety of applications. This interface has still to be specified.

• Workflow Interoperability Interface (4) - Definition of a variety of interoperability

models and the standards applicable to each

• Administration & Monitoring Tools Interface (5) - Defmition of monitoring and control

Related work 14

functions.

Process
Definition Tools

I Workflow API and Interchange formats I

Administration
and

Monitoring Tools

e
5

Workflow Enactment Service Other Workflow
Enactmant Service(s)

Interface 3

~/
Interface 2

Workflow
Client Applications

Invoked
Applications

Figure 2.1: Components and interfaces of the WfMC model.

We will now consider in turn the major components in the following sections.

Core component- Workflow Enactment Service

The workflow enactment service provides the run-time environment in which one or more

workflow processes are executed. This may involve more than one actual workflow engine.

The enactment service is distinct from the application and end-user tools, which are used to

process items of work. A wide range of industry standard or application specific tools can

therefore be integrated with the workflow enactment service to provide a complete workflow

management system. This integration takes two forms:

• The invoked application interface, which enables the workflow engine directly to activate

a specific application to undertake a particular activity. This would typically be server-based

and require no user action, for example to invoke an email application or passing data to a

mainframe system.

• The workflow client application interface through which the workflow engine interacts

with a separate workflow client application and responsible for organising work on behalf of

a particular user.

Related work 15

APIl· Process Definition Tools

A variety of tools may be used to analyse, model, and describe a business process. The

workflow model is not concerned with the particular nature of such tools, and currently each

of them is in a form tailored for the particular workflow management software for which it was

designed. One of the interfaces proposed by the Coalition enables more flexibility in this area.

This interface is termed the process definition import/export interface and is aiming at

providing a common interchange format for the following types of information:

• Process start and termination conditions

• Identification of activities within the process, including associated applications and

workflow relevant data.

• Identification of data types and access paths

• Definition of transition conditions and flow rules

• Information for resource allocation decisions

All workflow management tools should provide their workflow definition schema, that is

given to the workflow engine which can afterwards modify, delete or add some new

definitions.

API2· Workflow Client Applications

The workflow client application is the software entity presenting the end user with his or

her work items, and that may invoke application tools, which present to the user the task and

the data relating to it. It also allows the user to take actions before passing the case back to the

workflow enactment service. The workflow client application may be supplied as part of a

workflow management system, may be a third party product (such as an email product) or

written specially for a given application. There is thus the need for flexible means of

communication between a workflow enactment service and the workflow client application,

which would provide a series of functions for connecting to the service as well as obtaining and

processing items of work.

API3· Invoked Applications (not yet fully specified)

There is a requirement for workflow systems to deal with a range of invoked applications;

for example, to invoke an email service, a fax service, document management services or

Related work 16

existing user applications. The Coalition sees value in the development of standards for the

invocation of such applications by building "tool agents" which will provide the interface to

invoke applications. In addition it is believed that it may be possible to develop a set of APIs

which will allow other developers to build "workflow enabled" applications which can be

invoked directly from the workflow engine. The specification of this API is expected to be

merge soon with the API2 specification.

API4- Workflow Interoperability

A key objective of the Coalition is to define standards that will allow workflow systems

produced by different vendors to pass work items between one another. Workflow products

are diverse in nature ranging from those used for ad-hoc routing of tasks or data to those

aimed at highly regularised production processes, each product having its own particular

strengths. In its drive for interoperability standards the Coalition is determined not to force

workflow product vendors to choose between providing a strong product focused on the needs

of its customers and giving up those strengths just to provide interoperability. Interoperability

can work at a number of levels from simple task passing through to workflow management

systems with complete interchange of process defmitions, workflow relevant data and a

common look and feel. The greatest level of integration is unlikely to be available generally as

it relies on a commonality of approach by a wide range of developers deep in their products

where it is likely that innovation is rife. The following interoperability approaches have been

identified and are being investigated:

• Level 1 - Coexistence: ability for a number of workflow systems to reside on the same

hardware and software base
•• Level 2 - Unique Gateways: developed to allow specific workflow systems to move

work between themselves

• Level 2A - Common Gateway API: an enhancement of Unique Gateways

• Level 3 - Limited Common API: a subset of workflow product functionality is reduced

to an open API; for example: connect, request task, and completion of task function calls

• Level 4 - Complete Workflow API: all aspects of workflow system behaviour are

embodied via an open API

• Level 5 - Shared Defmition Format: each workflow product can use the same process

defmitions at run time

Related work 17

• Level 6 - Protocol Compatibility: all APIs including transmission of definitions, work

items, and recovery is standard

• Level 7 - Common Look and Feel: workflow product components appearance and

method of operation are very similar

API5- Administration & Monitoring Tools

A common interface standard, which will allow one vendor's status monitoring application

to work with one or more vendor's workflow enactment service engines. Firstly it will allow a

complete view of the status of work flowing through the organisation regardless of which

system it is in, and secondly this will allow the customer to choose the best monitoring tool for

their purposes.

Action Technologies Inc., DST Systems, IBM, ICL, Plexus, SAP AG, Staffware and

InConcert Inc. have demonstrated working prototypes based on the WtMC standards, IBM

being the only one validating all specified interfaces (November 97).

The main problem with the WtMC architecture is a client-server architecture where the

workflow server is responsible for process execution, auditing, management of the

organisational directory and distribution of activities to appropriate participants. It also

manages and hosts the work lists of the participants. Centralising all these functions in a single

logical entity results in a monolithic system architecture, that is neither flexible nor scalable.

For instance, it's the workflow server and not the service provider that decides the task

implementation (cf. interface 4). A side effect is that binding tasks to implementation is made

rather early. A critical view of the WtMC architecture can be found in [64] and [65].

2.1.2 The ANSA framework

In [76], ANSA presents a flexible transaction framework for dependable workflows. In

order to succeed, workflow will need to operate with the ability to cope with system failures

and provide dependable services. Atomic transactions are good for encapsulating short-lived

interactions, but they don't scale to long-lived activities. Flexible transactions are an answer to

that problem. Each of these flexible transactions are formed by a collection of ACID

transactions with a set of execution dependencies between them and a set of rules describing

Related work 18

the flow of resources. This proposal adopts the operational features of atomic transactions.

The resulting workflow is as a result a dependable flexible transaction with built-in mechanisms

for failure detection and automatic error recovery. In this model, a workflow is seen as a

collection of steps, each of which being modelled as an application specific flexible transaction.

These steps are organised to carry out a business process. A scheduler is in charge of

controlling the order of the execution of those steps, as well as the control flow between the

steps and the synchronisation. The rules used to control the execution are described using

some scripting co-ordination language.

Workflow Script

Workflow Delegation Dependency
Steps Rules Rules

! !
Scheduler Flexible Transaction Run-Time

Components ~ Framework Support ~ Construction Tools
Environment

~

Workflow
Scheduler

Application Specific Flexible Transaction
Flexible Transactions Manager----Delegation Dependency

Manager Manager

Figure 2.2: Architectural model

The architectural model is depicted in figure 2.2 and will be now described. There are

several components: the workflow script, the scheduler, the delegation and dependency

managers and the flexible transaction framework support environment.

The workflow script itself sub-divided in three parts:

• The workflow steps each of them describing an instance of a particular application-

specific flexible transaction

• The dependency rules for the control of the order and synchronisation of the steps

Related work 19

• The delegation rules describing how the object resources are shared between steps.

Using this script the flexible transaction framework support environment interacting with

some run-time building tools and some scheduler components (libraries), generates a workflow

scheduler, which is the run-time equivalent of the script specification. This scheduler is itself a

flexible transaction interacting with a delegation and a dependency manager to control the

execution of the workflow application as a set of flexible transaction steps. The scheduler,

delegation and dependency managers are the workflow enactment service of the WfMC model.

The Workflow Script and the rest of the components of this architecture are process definition

tools in the WfMC model.

The delegation manager is the component in charge of the specification and implementation

of delegation of object resources. Its interface consists of the following six operations:

• Create (Name: DelegateSet): create a named empty set of object resources used

afterwards to transfer objects

• Delete(Name:DelegateSet): delete a set

• Insert(Name:ObjectResource, NameDelegateSet): add an object to a particular set

• Remove(Name:ObjectResource, Name:DelegateSet): remove an object from a set

• Delegate(Ti, Tj, Name:DelegateSet): transfer the ownership of the object resource set

from transaction Ti to transaction Tj

• Acquire(Tj, Ti, Name:DelegateSet): accept the transfer of ownership of the object

resource set from Ti to Tj

The dependency manager is the component of charge of the definition and implementation of

the inter-transaction dependencies. It has as interface the following operations:

• DefineDependencyType(TypeSpecification): define a new type of dependency

• CreateDependency(Ti, Tj, Name:DependencyType, [perpetual]): create a named

dependency of the specified type between the transactions Ti and Tj with an optional

perpetual trigger

• DeleteDependency(Ti, Tj, Name: DependencyType): delete the specified dependency

between Ti and Tj

• EnableDependency(Ti, Tj, Name:DependencyType): enable the specified dependency

between Ti and Tj

• DisableDependency(Ti, Tj, Name:DependencyType): disable the specified dependency

between Ti and Tj

Related work 20

Each scheduler can be used as a global scheduler acting as commit co-ordinator for its

controlled steps. In this case, the scheduler interacts with the steps on their abort, prepare and

commit intentions.

This project was the starting point of our research. The idea of using transactions to build a

workflow management system was found interesting. Having two managers one for the

delegations and one for the dependencies was not found to be necessary as dependencies can

be considered as particular types of delegations.

2.2- Build time environment
We are now going to discuss about the process definition tools and the API! of the WtMC

model. Composing applications out of existing applications is not a new idea, script languages

have been used in order to do that for quite a long time. Varieties of languages have been

developed for specifying different aspects of software systems. Most notables, the Architecture

Description Languages (ADLs) specify the software structure, whereas scripting languages

specify the behaviour. The subject of describing the composition of reliable distributed

applications is a relatively new field of computing science research. Here the transactional

workflow community represents the state of the art. In the following sections, we review a

representative set of languages as well as the associated tools provided to help creating

specifications in these languages. We will start with general purpose scripting language then

workflow languages. Finally, we will present some ADLs as we used their modularity for our

own language.

2.2.1 Building environment based on general purpose scripting languages

Lots of scripting languages have been developed to aid the building of applications out of

existing applications. Following the success of Unix shell scripting languages (sh, csh, ksh ...),

several general purpose scripting languages such as Tel or Perl have been developed to glue

applications. They typically provide enough programmability (variables, control flow,

procedures) to let users build complex scripts that assemble existing programs into a new

application. The reader will fmd a discussion of scripting languages versus system

programming languages in [53].

Related work 21

2.2.1.1 Tool Common Language (TCL)

This language [52] is fully interpreted and allows dynamic modification of the script. It is

however based on strings, and provides very little structure. It's easy to connect strings

together but it can become really hard to manage large complex scripts. Tel is an action-

oriented language rather than an object-oriented language as there is one command for each

action that can be taken on an object and the command takes the object as an argument.

It is a glue language as a Tel application can include many different packages, each of them

providing an interesting set of Tel commands. It can run external shell programs using the

command exec and as a result is used as a job control language. It is also quite good as a

communication mechanism allowing different applications to work together. For instance, any

Tk application (Le. windowing application written using the Tk package) can send a Tel script

to any other Tk application to be executed there. It provide constructs for major control

structures: "if then else", "switch", "for" (with "break" and "continue"), "foreach",

procedures, as well as "eval". "Eval" is a general-purpose building block to create and execute

Tel script. It adds a level of parsing. It is possible to create your own control structures by

using the command "uplevel". These control structures are defined as Tel procedures.

Tel was written with the thought that it should be easy to extend. As a result, a lot of

extension packages are available (such as GroupKit is a package that makes it easier to

develop GroupWare application to support run-time distance-separated collaborative work

between two or more people). We will briefly describe two of them that are more relevant to

our study: expect, and Tcl-DP

Expect is a Tel program that can talk to interactive programs. It knows what output can be

expected for a program as well as what the correct answers should be. It is usually used to

control automatic programs such as telnet, ftp, fsck, and rlogin. It also allows the user to take

control and interact directly with the program whenever needed.

TcI-DP was developed by the University of Berkeley and stands for Tel Distributed

Programming. It's built on top of the Tel's built-in socket command for its low-level

networking. Creating a Client/Server application becomes really simple with this package. A

dummy example would be:

set id 0
proc GetId {}
global id;
ncr id;
return Sid;
}

Related work 22

MakeRPCServer 4000
This code creates a server listening on port 4000. This dummy server just provides a

method "Getld" that adds one to a global variable (id) each time that it is called and returned

its value to the client. If needed, two security checks can be provided as optional arguments,

the first one to add a check on the login process (checkHost) and the second one on the

commands that can be executed cmdCheck (specified as a procedure). The command becomes

MakeRPCServer 4000 checkHost checkCmd.

The RPC client is even simpler:
set server [makeRPCclient host.ncl.ac.uk 4000]
RPC $server Getld

The first line opens a connection to the RPC server previously created (assuming that it was

created on host.ncLac.uk) and save an identifier to later have a reference to that connection.

Then the RPC command on the second line just forwards the script given as argument to the

server.

Tel also provides some exception support (catch, error), object replication as well as an

asynchronous RPC mechanism aimed at getting results from long-lived programs. Using a

Tcl/Tk plug-ins, it is also possible to run Tcl/Tk programs as applets using the construct

<embed srcescript.tcl widthewsize height=hsize>.

One of the main problems of Tel was that it was not found to be adaptive enough to model

object-oriented problems (lncr Tel is an object-oriented extension to Tel).

2.2.1.2 Practical Extraction and Report Language (PERL)

This language [75], [67] was optimised to scan arbitrary text files and extract information

from them. It however is generic enough to be considered as a general-purpose language. It is

semi-compiled; the script is first parsed, then it is turned into a syntax tree that is optimised in a

final step. It's based on some pattern matching and is a good language for many system

management tasks. It has the usual control structures "if elsif else", "while", "until", "for",

"foreach", with the loop control "last" (break) and "next" (continue). It has also procedures

and socket support and can execute other programs using "exec". It allows object-oriented

programming and some support for CORBA is available (idl2perl working with Ornniorb and

Orbix among others has been developed).

Both of these scripting languages are good at gluing simple programs together, they assume

that there already exists a collection of useful components written in other languages and plug

Related work 23

them together. Unix shell scripts are used to assemble filter program s into pipelines, Tel is

mainly intended to arrange collections of user interface controls on the screen, Perl is good at

extracting information from textual results and reporting about them or use them to trigger

something else. Python [77] and JavaScript [44] are some other general purpose scripting

language, the first having a strong model of object-oriented programming and the latter being

specifically designed for the Internet. Most of the general-purpose scripting languages are

typeless, and as a result the detection of errors is done very late. Similarly most of those

languages do have an extension for object oriented programming, which allows encapsulation

and interface inheritance that increase even more reusability.

2.2.2 Workflow specific build time environments

In this part, we will focus on the related work in the fields of workflow management. All

research projects we are aware of do have their own specific languages. All provide a graphical

specification language and many also provide a textual specification language. Similarly to our

scripting language, all those languages are higher-level than standard programming languages

such as C, C++ and Java. They support the specification of the task structure (control flow) as

well as of the information exchange between tasks (data flow). They also usually provide some

support for exception handling as well as some support for temporal dependencies.

Several techniques from other fields of computing science have been used as basis to specify

task collaboration: for instance event-condition-action have been used to specify the rules upon

which a task should be triggered in some rule-based workflows. The METEOR project [13]

developed by the University of Georgia is a typical example of this class of languages. Some

other projects have chosen to base their work on an extension of Petri nets, which enable them

to model the control flow using tokens. Some other projects from the database community use

built-in SQL statements.

2.2.2.1 METEOR

In this project [13], they have decided to divide the defmition of a workflow between the

TSL (Task Specification Language) and the WFSL (WorkFlow Specification Language) that

can be both compiled or interpreted. The TSL briefly described in section 4.6 is used to specify

the basic tasks and is both a programming language and an embedding language (e.g. it can

provide a wrapper for legacy applications). The WFSL specified the dependencies between

Related work 24

tasks and can be used to create complex tasks by composing them out of existing tasks.

The requirements taken into account while designing these languages were the following

ones:

• Inter-task dependencies.

• Data management including filters to translate different formats.

• Modularity of the Workflow definition, and separation of conceptual model (WFDL) and

of details of tasks, interfaces ... (TSL)

• Error management (fault tolerance)

• Dynamic workflows

• Controller co-ordinating the tasks according to the constraints (dependencies ...)

Workflow Specification Language

The WFSL is a rule-based language and can be either generated via a GUI or directly

coded. The designer has to defme the class (task structure type + set of inputs and outputs) of

the tasks he wants to use.

The WFSL is divided in several parts:

• Type defmitions and variable declarations, similar to the C syntax.

• Task type definitions

• Task class and filter defmitions

• WF definition

• task instantiations

• rules

• WF instantiation

We will now describe these components one by one:

Task type definition:

This allows the description of the transition and states of a task class.

typeName {SIMPLE_TRANSACTIONAL SIMPLE_NON_TRANSACTIONAL
TRANSACTIONAL_OPEN2PC, COONPOUND_NON_TRANSACTIONAL)

{
{CONTROLLABLE NOT_CONTROLLABLE) transitionName(initialState,

finalState) [input I output];
)]

The CONTROLLABLE or NOT specifies whether or not the transition can be enabled by

Related work 25

the workflow controller. The input, output specifies whether or not the transition can receive

inputs and produce outputs.

Example:

newType SIMPLE_TRANSACTIONAL
(

CONTROLLABLE start(initial, executing) input;
NOT_CONTROLLABLE abort (executing, aborted) output;
NOT_CONTROLLABLE commit (executing, committed) output;

}

In this example a new task type called newType was declared a simple transactional task

with three transitions, one of them start letting the task go from the state initial to the state

executing, controllable and receiving an input, and the two other non controllable and

generating some outputs.

Task classes definition:

In order to define a task class, you have to associate a type of task as well as declare what

input/outputs are visible externally. The syntax is given below:

typeName className (SIMPLE_TRANSACTIONAL I SIMPLE_NON_TRANSACTIONAL
TRANSACTIONAL_OPEN2PC, COUNPOUND_NON_TRANSACTIONAL)

(input@{stateName} type name, output@{stateName} type name};

As an example, we can define a task class of type newType that is transactional and

received as input for the initial state input 1 and returns as output for the commit state the

output output 1. Both of input 1 and output I being themselves of type type 1. Notice that the

output is only visible for the commit state and not for the abort state.

newType newClass SIMPLE_TRANSACTIONAL (input@{initial} typel inputl,
output@{commited} typel outputl);

Once instantiated, the tasks can be linked between each other via some rules. A rule is

divided in two parts: a control part and an optional data transfer part.

Workflow definition:

It's just a task of type COMPOUND_NaN_TRANSACTIONAL with some task

instantiations and a set of rules.

TaskClassName WorkflowClassName COMPOUND_NON_TRANSACTIONAL
(input@(initial) TYPE inputl, output@{done, failed} TYPE outputl)
(

task instanciations;
variables declaration;
rules;

)

Related work 26

The instantiation is identical to the instantiation of the simple tasks:

WorkflowName WFinstanceName;
typeName SimpleTaskinstanceName;

We can instantiate a simple task called Tl of task type newType by adding in the script:

newType Tl;

Then we have to specify the rules that the workflow has to follow, the syntax to specify a

rule is:
<left hand side> EVALUATOR <right hand side>

ENABLES is a predefmed evaluator that enables a transition.

For instance, we can specify a rule that enables the transaction start of the task L2 with as

input for input 1 of T2 the output output 1 of T 1 filtered using the filter fl. If we want as

preconditions to trigger this rule that the task L 1 is in the state done, that the global variable

outval4 is greater than 5 and that Ll has terminated with its output 1 valid. The validity of

output 1 is determined using the function success that decides whether the task L 1 has

succeeded with its output "output 1" valid

[Ll, done] & (success(Ll.outputl) = TRUE) & (outvalL4 > 5)
ENABLES [L2, start] % fl(Ll.outputl) -> L2.inputl;

Some useful instructions to quantify element in a set have been added to the script language.

They can be used for instance for a fork, a join where only a percentage of tasks must succeed

before it can proceed.

forall i in a ..b [condition)
exists i in a ..b [condition)

These two instructions have their usual meaning.

2.2.2.2. Webflow and the Co-ordination Language Facility (CLF)

Webflow [21] is an environment supporting distributed co-ordination services on the web

and is typically used to describe applications such as distributed document workspaces,

enterprise workflow and electronic commerce. It is using the eLF middleware environment [4]

for distributed co-ordination, which provides a basic set of library tools for building co-

ordinators and resource managers. We will now describe the eLF and then briefly describe the

tools available for build time.

eLF is a process-oriented extension of object-oriented programming, aiming at providing

Related work 27

support for the co-ordination of heterogeneous, possibly distributed, active objects within

larger units implementing work processes. It has two types of objects:

• The co-ordinators requesting performance of actions, whose course has to be

negotiated among the multiple participants, ensuring that there are no conflict between the

ways of enacting the actions chosen by the participants and declaratively implemented as

rules,

• The participants that instantiate an interface specifying the negotiation dialogue

invoked at run-time by co-ordinators.

The rules are proactive, e.g. the co-ordinator actively looks for participants that can fulfil

the rules by querying them and trying to fmd agreements among the participants.

A eLF program includes four sections: implementation, signature, interface and rules.

• The implementation section links the resource bank names to external object and is

implementation specific.

• The signature section distinguishes the parameters of the rule tokens between input

and output parameters, it has the following syntax:

TokenNamel(ParameterListl):
outputParameterListl

TokenName2(ParameterList2):
outputParameterList2

For instance:

InputParameterListl ->

InputParameterList2 ->

book_seat (client, flightld, seatNb) : client, flightld -> seatNb
declares that an inquiry for the token book_seat given a value for client and flightId return a

value for seatNb

• The interface section: allows programmers to use multiple signatures for a resource

bank. The syntax to associate a resource bank to a signature is:

TokenNamel = BankNamel
TokenName2 = BankName2

Each signature must have an associated resource bank. The following statement then does

declare that the token book_seat uses the resource bank travel_agent:

book_seat = travel_agent
• The rules section: specifies the behaviour of the co-ordinator and consists of a set of

rules consisting of two multi-sets of tokens (separated by s). The two sets are called left-

and right-hand side of the rules. The tokens in the left-hand side are removed when the rule

is triggered while the right-hand side tokens are inserted in the list of tokens to be fulfilled.

Related work

Rules appear on different lines. Two special tokens were introduced: #b meaning that there

is nothing to insert and # t meaning that the co-ordinator should terminate. Both tokens can

only be used on the right -hand side of the rule. The syntax to specify one rule is as follows:

'I'okerr,@ t.oken, @ ...@ token 1 <>- token 1+1 @ ...@token n

For instance:

flight_reservation(client, flightId) @ book_seat(client, flightId,
seatNb) <>- printTicket(client, flightId, seatNb)

Some build time tools are provided to help with building these applications. The mam

component is the co-operative process editor that allows the definition of processes as flows of

activities, assignment of roles, as well as temporal and document scoping. The resulting

specifications are called process maps and are translated into a set of CLF rules needed to co-

ordinate the distributed execution of the process. The collaboration environment used to

support the co-editing of the process map is the BSCW system [7]. This system allows to share

documents (process maps) across workspaces and supports versioning.

2.2.2.3 Workflow on Intelligent and Distributed database Environments (WIDE)

This project [12] uses a GUI language to specify workflows, however a Workflow Textual

Definition Language (WTDL) is also available and will be described thereafter.

The WTDL can be divided in several parts: The initial part is the definition of the flow (or

workflow for us) introduced by the keyword WF. This definition can itself be subdivided into

two:

• The flow definition, where you can fmd the type defmitions and variable declarations,

databases used and kind of access granted on those databases.

• The flow structure specifying the start, total and partial joins and forks.

Then the component tasks are described. There are two different types of tasks in their

model. The super tasks (equivalent to the compound tasks) and the task (simple or replicated

simple tasks). A super task is sub-divided into three parts: the task defmition where the type

definitions and declarations, functions used (code), SQL queries can be found, the task control

including the preconditions (wait), conditions (tests SQL, or functions), error handling (On ...

Do) are specified and the flow structure. There are two sorts of simple tasks: the simple tasks

and the replicated simple tasks (called multi tasks) which on top of what a simple task specifies

Related work 29

also has to specify the number of replica and the quorum required to decide of the outcome.

The specification of a simple task is divided in 3 parts: task definition, task control and task

actions with can be: insert, delete, update, select-one SQL queries or functions. Below, an

example illustrating how a workflow is specified using the language is given. The workflow is

quite simple, after being started, it runs task 1 and task2 and then using the function myFct

makes a query to check the result and depending on the result of that query it either runs

Accept or Reject. Task I waits for a SQL query to succeed and then tests whether another

query is successful or not, if it was then the whole workflow is ended. Task2 is a multitask

(replicated): three instances are started, out of which two are needed as quorum. Task2 deletes

some records from the database. Task2 also sends a notification after 60 days if it has not yet

completed by then so that somebody can have a look at what is happening.
Wi' myWF {

struct myStruct {...};
int myVar;
uses myDB(Key, fieldl, field2);
grant select, insert, delete on myDB;
int myFct ()
{

/* code including SQL code */

start
taskl;
task2;
if (myVar == myFct())

Accept;
} else Reject;

task taskl
{

wait exists(select ...);
get record;
on exists (select * from myDB where condl) do endWi';

multi task task2
{

NwmberOfInstance=3;
Quorum = 2;
int myVar2 = myFct();
delete from myDB where (myDB.fieldl=myVar2);
on Elapsed (60 days) do NOTIFY ("Deadline! ");

task Reject
{

update myDB set where
delete from myDB ,

task Accept
{

insert ...;

Related work 30

Specific ideas developed

• Partial join and fork using the multitask construct and quorum

• Loops available: while, do ... while ...

• Replication via specialised task

• exclIf cond instructions [exclIf. ..] else instructions: exclusive if (mutual exclusion)

• Reactions to errors: NOTIFY (send a message to the responsible), END (end as done),

cancel (end as not done), REFUSE (the agent supposed to process the task refuses the

job), endWF (force the end of the whole workflow), SQLaction

The notations used by the GU! are described in figure 2.7 and will be now briefly presented:

DO o
WorkTask SuperTask Start/Stop MultiTask

o
Total

fork/join
Conditional

fork
Conditional fork Non deterministic

with mutual fork / partial join
exclusion

Iteractive
fork

Figure 2.3: Notations for GUI in WIDE

The different tasks are represented by rectangles. For replicated tasks (multi tasks), two

ovals with as associated value j as number of replicated tasks to be started and k as quorum are

added to the rectangle representing the work task or the super task. The routing tasks are

represented by circles and diamond-shaped forms. The non-deterministic fork, iterative fork

and partial join tasks do have a value k associated to them. Tasks are connected using

unidirectional arrows.

Some tools for editing and compiling WF schema written in WFDL are expected to be

provided as well as some administration tools for agent management and monitoring (history

report).

Related work 31

2.2.2.4 The CBORD system: a script based on tasks and transactions

This model [46] is based on communication via messages. It has two kinds of tasks, some

simple transactional tasks (called transaction) and some compound tasks (called tasks)

A valid event (basic message) is one of the following instructions followed by "to" and the

name of an agent:

• get(...)

• enter()

• assign()

• extract()

Transaction modelling

Transaction name
agents : list_of_agents
agentl can send :

list_of_valid_events
Constraints:

eventl UNTIL event2 OR event2
ALWAYS(eventl => NEXT (constraint))

end Transaction

Four temporal operators (UNTIL, ALWAYS, SOMETIME, NEXT) are provided to

describe the dependencies between events and messages in a communication process. A

constraint is either an event 1 UNTIL event2 (e.g. you have to wait that the event2 happens

before eventl). An ALWAYS (something) which means that it's looping. SOMETIME

conveys the obligation to honour the events in future states and NEXT is the equivalent of a

trigger in active databases.

Task modelling

Task: name_of_task
Constraints:

taskl SUCCEED task2 SUCCEED task3
transactionl BEFORE transaction2

Goal = THRESHOLD(lOO%, taskl)
Exit = OR(THRESHOLD(), CANCEL(taskl»
Alternative = XOR(, (THRESHOLD(..., ...) BEFORE ...»
Commitment = ALWAYS(task2)

end Task

A task is specified using a similar structure as transactions, i.e. name, communicating

Related work 32

agents, messages exchanged between tasks and tasks constraints. Some extra information has

to be provided:

• A goal (what makes the task succeed),

• An exit (what makes the task fail or abort),

• Some alternatives (what other tasks can be executed instead of the task),

• Authorisations (what constraints specified in the transactions can be overwritten in case

of conflict),

• Commitment (what the task is obliged to do regarding the workflow)

The following operators are available: AND(... , ...), OR(... , ...), XOR(... , ...), XOR(..., skip)

for non vital tasks

The following task dependencies are available:

• (TI SUCCEED T2) when Tl is successful, T2 starts

• (Tl BEFORE T2) Tl must occurs before T2

• (Tl OVERLAP T2) both tasks can occur simultaneously

• CANCEL(Tl)

• SOMETIME(T 1)T 1will be executed in the future

• ALWAYS(T l) T 1will be repeatedly executed

Numerical constraint can also be specified:

• THRESHOLD(number, Tl) if the goal of TI can be measured numerically, Tl will

need to fulfil its goal over this number.

2.2.3 Commercial Workflows

All the commercial workflow management tools have a process definition tool via GUI

available. Only half of them have a textual process definition tool. Notes (Lotus) and FloWare

(Plexis) do not have a script language, InConcert [28] (Xerox) has one, but just for

administrative functions. ActionWorkflow [37] (Action Technology) and Staffware have a

scripting language. Hundreds of products are nowadays claiming to support workflow,

ObjectFlow (DEC), SAP Business Workflow (SAP AG), WorkFlo [16] (FileNet),

WorkManager (HP), FlowMark [27] (IBM) ... Usually commercial workflows provide some

support for dynamism, some weak testing or analysis tools, and have no support for fault

tolerance, FlowMark excepted.

Related work 33

2.2.4 Architecture Description languages (ADL)

Current ADLs focus on the structure of the components of a software system and their

inter-relationships [36]. ADLs were proposed as an answer to the need for formal modelling

notations, analysis and development tools that operate on architectural specifications to

support architecture-based development. ADL-based specifications model the application as a

set of components communicating through connectors. Typically, an application is composed

out of a group of other components, where a component provides services to other

components through ports. The interaction between ports can be done using various methods,

for instance buffered message passing. An ADL can be either an in-line configuration language

or an explicit configuration language that models both components and connectors separately

from configurations. Then they can be also divided between the implementation independent

languages and the implementation constraining languages (i.e. those that do and those that do

not assume a particular relationship between an architectural description and an

implementation).

Some of the well known ADL languages are Aesop [18], ArTek [72], C2 [38], Darwin

[35], Lileanna [73], MetaH [23], DIan [6], Polylith [58], Rapide [33], SADL [42], UniCon

[69] and Wright [1]. We will now present two of those languages: Darwin and Olano A

classification and comparison framework for ADLs can be found in [39].

2.2.4.1 Darwin

In Darwin [35], a component is defined as the basic element from which systems are

constructed. Complex components are constructed by composing them from more elementary

components. The overall architecture of a software system is then specified as a hierarchical

composition of primitive components that have a behaviour specification.

Darwin sees components in term of the services provided to other components and services

required from other components. Each service is further elaborated with an interaction

mechanism that implements the service (for instance, outputs are done via ports, command

accept entry calls and trace services are implemented with events). The textual and graphical

specifications of a component interface in Darwin will typically be:

component myComponent {
provide myOutput<type_of_service>;
require myInput<type_of_service>;

}

Related work 34

myComponcnt

myInput myOutput

Figure 2.4: A component in Darwin

In this example, the component called myComponent provides one service called myOutput

and requires another one called myInput. The type of a service is specified in angle brackets.

An example of type would be <port, int> for a service accepting messages of type int or

<stream char> for a service implemented by a stream as communication mechanism, with as

communicating datatype char. Had it required two services, the specification would be done by

separating them using a comma.

require mylnputl<type_of_service>, mylnput2<type_of_service>;
It has to be noticed that a component does not need to know the global name of the services

or where they can be found in the distributed environment, the names are local to the

component type specification.

In order to create a composite component out of existing component, the ''bind''and

"inst" constructs are provided. The "inst" construct is used to declare the instances of

components that it consists of, while the ''bind''construct associate required services to

provided services of compatible types. It has to be noticed that the language imposes as

restriction that a particular requirement can only be bound to a single provision.

component myCompositeComponent {
provide myOutputi
require myInpu t: i
inst F: myComponenti
inst G: myComponenti
bind

F.mylnput -- mylnputi
G.mylnput - F.myOutputi
myOutput - G.myOutputi

}

myCompositeComponent

myInput myOutput

Figure 2.5: Composite component in Darwin.

A component can also take some parameters, (e.g. component myComponent(int i, string

sj). A component type can also be defmed as a partial evaluation of another one, (e.g.

Related work 35

myComponentHello = myComponent (. "hello"»

Portal declarations define a set of component portals that can be bound internally to be

encapsulated sub-component portals or externally to the portal of peer components. There are

five categories of portals:

• Portal declarations declaring a component portal,

• Provide declarations specifying portals that are being provided by the defining

component to other encapsulating components,

• Export declarations declare portal that are being provided by the defining component

to an external trader/name server,

• Require declarations for portals being provided by other encapsulating or external

components

• Import declarations to introduce portals provided by an external trader/name server.

A support for dynamic reconfiguration is also provided using the dyn construct. These

dynamic changes have to be known a priori. Bindings made to dyn components cause a new

anonymous instance of the component type to be instanced each time the component in

invoked by a bound portal. In the example below, invoking the service myDynInput creates a

new myDynComponent instance and passes it a single integer parameter. The bindings are

made with the type rather than the instances. Darwin only support unidirectional

communication with these components as the services provided by such components can only

be accessed by passing service references in messages to form bindings dynamically. The

Darwin program can not capture these bindings, because the dynamic instances are

anonymous.

component myCompositeComponent {
provide myOutput<port smsg>;
require myDynInput<dyn int>;
inst c: myComponent;
bind

C.myOutput -- myOutput;
myDynComponent.myOutput - C.mylnput;
myDynlnput - dyn myDynComponent;

}

Related work 36

myDynInput

myDynComponent
myComponent

myOutput

myCompositeComponent

myOutput

Figure 2.6: Dynamic reconfiguration in Darwin

Darwin also provides what is called a lazy instantiation in which the component providing a

service is not instantiated until a user of that service attempts to access the service. The

combination of lazy instantiation with recursion allows the description of potentially

unbounded structures and can be useful for alternative actions. Such a component is

introduced using the dyn construct

myLazyComponent: dyn myComponent;

Several control flow commands have been provided:

• forall k = 0 to n-l where k is a loop variable and n the number of iterations,

• when condition instruction. This adds a guard in front of an instruction that is only

executed when the condition is true.

Arrays can also be used, the instruction below introduce (but does not instance) an array of

n filters.

array F[n) :filter;
Afterwards component types can be instanced by the instruction:

inst F [k) ;

The user may also want to run each instance on a different machine for replication purposes

for instance. Adding a tag @k+l to the previous instruction does this. Tags are introduced by

the construct @ and are a mechanism to attach non-structural information (e.g. constraints,

resources specifications ...) to a Darwin specification.

External definitions are introduced using the construct spec external_language_id

{code} to allow externally written definitions (for instance IDL, LTS definitions). Generic

types can also be used as some kind of templates and are introduced between angle brackets

e.g. <T>. The asset construct allows integrity checks during elaboration, in case of failure, an

error is produced and the elaboration is aborted.

Related work 37

2.2.4.2 Olan

Olan [6] is a language and a run time support intended to facilitate the design, configuration

and evolution of distributed applications made of distributed applications made up of

heterogeneous software components. It claims to provide a single unified description of those

applications, adequate for construction, management and evolution. The overall description is

implementation independent so that the configuration process does not depend on the

programming process.

Like in Darwin, applications are viewed as a hierarchy of components linked by some

connectors. Each level of the hierarchy is a separate description derived from a component

class encapsulating components in the next level. The leaves are primitive components deriving

from a primitive component class encapsulating real pieces of software such as a C++ object or

a C module. Components are described by their interfaces, which contains services,

notifications and attributes. The services can be either provided or required and correspond to

the Darwin services. Notifications are events that are broadcast and can trigger on the

receiving components a piece of code sequence called reaction. Notifications can be ignored

and reactions are not necessarily triggered on reception of a notification. Attributes are typed

variables whose values can be imported from the implementation or set outside the component.

Connectors are the units mediating the interactions between components. They establish the

rules driving the component interactions such as the conformity rules (parameter type

checking, homogeneity of connections ...), the protocol used as well as the behaviour

specification, and the constraints (Quality of service ...). A connector description defines its

kind (interconnection, mapping to an implementation), the allowed sources and destinations of

communication, as well as the specification of the expected behaviour, constraints and

protocol. Currently these connectors are built-in in the OLAN language.

We now describe how a component is specified:

component class myComponent (
interface

require myOperation(in operation);
provide myService(in operation);

implementation
C = inst myComponent;
D = inst myOtherComponent;

II Mapping using connector
myService => to C.myService;
C.myOperation => myOperation;

II Interaction
C.Init => D.Init;

Related work

C.myOperation => D.myService;
D.myOperation => C.myService;

} ;

c . 0
Init

myComponcnt

Init

myService

myOpcration myOpcration myOpcration

myService myService myScrvicc

Figure 2.7: A component in OLAN

The lazy instantiation of Darwin has an equivalent introduced by the construct dyn inst. A

construct named collection was also introduced to gather multiple components of the same

class
myComponentSet = collection[l ..n] of myComponent;

Two services, called create and delete, have been provided to use collections as way to

dynamically create instances of a component. In addition a special connector can operate as a

creator of a new component of a collection before accessing the specified service. This is

illustrated below.
C. Init

=> myCollectionSet.Init
using createInCollection;

Attributes are used to distinguish the elements of a collection which otherwise would be

anonymous as are the arrays in Darwin. In order to specify a connection with a specific

element, the following connector is used:
C.myRemoteOperation(operation, remoteApplId)

=> myComponentCollection.myService(operation)
where myCollectionSet.ApplId = remoteApplId
using methodCal;

In this case C sends its operation to the element whose applId attributes fits the identity of

the target application remoteApplId.

2.2.5 Discussion

This section was about how you can model a process as a workflow. Different approaches

have been tested, including Petri nets, SQL, transactions ... Workflow systems provide a set of

specification tools (GUI and script languages) allowing the specification of processes at a high

level. The GUI usually represent the processes as a directed graph with the nodes representing

the processes and the arrows representing both the data flow and dependencies between them.

The script languages can be quite different and there is no standardisation despite some efforts.

Related work 39

Usually at least two types of tasks are provided: compound tasks (workflow) and basic tasks

(steps, units of work). Sometimes some new types of tasks are added, such as replicated tasks,

alternative tasks... These tasks have dependencies between them, such as data flow

dependencies (object delegations) or temporal dependencies (notifications). Several

approaches have been chosen to specify them. The main difference being them are whether you

let the user create some complex dependencies including basic or complex computations (Task

i terminated in state commit and value of its output is worth four) or whether you restrict the

dependencies to a boolean tree of tasks reaching certain outcomes (task j reached state success

or task k reached state failed).

In the comparison matrix below, we sum up how the different build time environments

presented deal with fault tolerance, dynamism, locality of modification, composition,

specification of the temporal structure of the applications as well as which tools are provided

to help building your application.

language Model Fault tolerance Dynamism locality of Composition Temporal. Tools
Exceptions mod ifieatio ns

Tel Generic Using error and catch Interpreted so can be Script None None Interpreter
programming constructs modified at run time
facilities

:Perl IGenenc INane None Script None INane re-cornpuer I Interpreter
programming
facilities

uarwm Components None II Known a pnon, vra Components Icomposlte None IIexuurapmcal eunor.
communicatmg dyn construct. arrays construct compiler. simulator.
via connectors parser. code generator

Ulan Componenrs None IIKnown a pnon, vu Icomponents ILomposlte None IVIsual programming
communicating dyn inst construct. construct environment. compiler.
via connectors collections admin tool

Meteor SImple and [Using error states. II Known a pnon, Via ICompound tasks [Compound IoCA Kules [Text/graphical editor,
compound tasks associated rules Foreachlexists task interpreter. compiler.
inked bv rules m. ";fv;no action -onetrnr-tc """V, simulator

ClF Proactive co- None Addition/removal of Script None Prolog-like Process graphical editor.
ordinators with coordinators rules versioning. translator
narticinants 'nrocess to rules

WIDE Work task. Replication using None Super tasks Super tasks Join/fork, Text/graphical editor
super tasks: quorum (multi tasks). serialisation
SQl-based on exception do ...

CBORD Transactions and Alternative actions None Transaction Task Transaction Text editor
tasks, message- constructs and task
based dependencies

Newcastle Basic.compound Alternative inputs and Addition/removal of Tasks Compound Notification Text/graphical editor.
tasks linked by outputs tasks/dependencies tasks and dataflow simulator. consistency
dependencies dependencies check

Figure 2.8: Comparison of the built time features associated to the languages considered

The models adopted by the different projects are quite different and impact on the features

supported by the languages. Generic scripting languages are not really adapted to support

dynamism in the specification, as they have to be stopped if changes are requested. There is no

special provision for run-time dynamism to specify the changes in the relationship between

activities. Interpreted scripts such as Tel can however be changed at run-time, Perl scripts

Related work 40

being semi-compiled can't ... No special composition mechanisms are provided, nor workflow

specific tools.

Script languages using ECA rules usually list the rules at the compound task level and as a

result are not that modular. CLF does not address fault tolerance and has a flat structure in the

definition that imposes modifications at script level. WIDE and CBORD do not address

dynamic modification and but have some support of fault tolerance. ADLs are not adapted to

the specification of the temporal structure. The issue of fault-tolerance was not really

addressed in the two languages chosen. ADLs are interesting because of their modularity that

allows locality of modifications. They also provide some support for dynamic reconfiguration

when modifications are known a priori, and have some interesting tools available. Our

language on the other hand tries to use the best parts of the previous languages. It takes an

object-oriented approach by following the ADL approach of modelling the tasks as

components that can be gather in compound tasks. The dependencies are kept at the most

relevant level therefore providing locality of modification. The fault tolerance is provided by

alternative input and output sets. This provides a natural way to provide user-level fault

tolerance. Our model however lacks some of the ADL features that allow the specification of

the software structure of the workflow. It may also gain from the addition of more control

structures to ease the specification. The task implementation is also described in a distinct

specification in the ADLs, Meteor, CBORD and in our language.

The duality of Fault-Tolerant structures between a model incorporating objects and actions

as the entities for program construction and another model based on communicating processes

and conversations has been established in [71]. Our System Structure is following the first

model as the area targeted (e.commerce, office automation) are typically following the first

model..

2.3- Run time environment for workflows management systems

A workflow system is aimed at co-ordinating tasks. Workflow Management Systems do

provide an execution environment where the instances of the workflow are run, the steps are

controlled in that environment and activities are mapped to real resources. The components in

charge of the co-ordination, usually called the schedulers, are usually based on Event

Condition Actions interpreters or on finite-state automata. Then some monitoring tools are

also available to trace what happened and what is happening. When the systems are dealing

Related work 41

with human participants (i.e. some tasks are performed by humans), they also provide some

work lists (inboxes for human participants to let them know which activities were assigned to

them).

We will now describe some run time environments for workflow management systems and

see how they provide reliability. First we will describe some transactional workflow systems

starting with what could be regarded as the ancestors of the transactional workflow system s,

the Saga and ConTract models. We will then present the ORBWork project from the

University of Georgia, notable for the tools for the analysis and design of flexible transactions.

We will then describe the IBM solutions ExoticalFMQM and RainMan.

2.3.1 Sagas

Work on Saga [17] represents an early attempt to develop a model of long running transaction.

A Saga consists of a set of ACID sub-transactions with a predefined order of execution. Each of

those sub-transactions T, does have its compensating sub-transaction T, -I. A Saga completes

successfully if all its components have committed. Otherwise committed sub-transactions are

undone by executing their compensating sub-transactions. It also allows backward/forward

recovery when system or application save points are available. In this case, the transactions

started after the save point are aborted or compensated and the execution is restarted from the

saved point. Pure forward recovery can also be supported if save points are automatically taken at

the beginning of each transaction. This allows the execution of long-lived transactions. Sagas

relax the isolation property of the traditional ACID transactions as well as increase inter-tasks

concurrency. Some extensions have been made such as the nested sagas allowing the nesting of

sagas.

The main problem of Saga is that it can only model applications composed as a serie of

sequential tasks that also need to be transactional. As a result it could only be used to represent a

small subset of workflow applications.

2.3.2 ConTract

The ConTract project [74] is aiming at providing a way of grouping transactions together

into a multi-transactional activity. It sits on top of a Database Management System, which acts

as a resource manager. A ConTract consists in a sets of steps (predefmed actions with ACID

properties) and a script describing how to execute these activities. Control flow between steps

Related work 42

can be modelled by using the usual elements: sequence, branch (IF THEN ELSE), loop and

some parallel (PAR_FOREACH) constructors. Steps can be grouped as an ACID transaction

using the construct TRANSACTIONS ... END_TRANSACTIONS. Dependencies can be

specified based on the outcome of a step for instance if T 1 aborts then T2 should begin will be

described by the construct DEPENDENCY(T 1 abort -> begin T2). Some synchronisation

invariants (before starting and after completion the step) and conflict resolution rules can also

be specified. Fault tolerance is provided by forward recovery using compensating actions using

as arguments those used for the execution of the step they are supposed to compensate

(semantical undo). The compensating actions are declared with the construct

COMPENSATIONS Cl: compensating_action(...) ... END_COMPENSATIONS. Each step

has to have its compensating action specified. In case of failure, the state of the ConTract is

restored and the execution can continue. Contract provide both relaxed isolation and atomicity

(so that a ConTract can be interrupted and re-instantiated). At run-time nested transactions are

used to structure the system's work during the execution of the ConTract. The execution of a

step is divided into several sub-transactions that can include for instance the execution of the

code, the evaluation of the pre and post execution invariants ... APRICOTS [68] is a prototype

implementation of the Contract project.

Contract is for its time a good example of how to model workflows. It however has no

support for dynamism and is quite restricted by only allowing two outputs depending on the

validity of the post execution invariants: success output or failure output that triggers the

execution of the associated compensating actions.

2.3.3 ORBWork

ORBWork [13] is a CORBA-based enactment system for the METEOR2 Workflow

Management System developed at the University of Georgia, and now a commercial product

of Infocosm. It is fully distributed and supports scalability, multi-database access as well as

some fault tolerance in the form of an error detection and recovery framework using

transactional concepts.

METEOR2 consists of a designer and two workflow enactment systems, ORBWork

(CORBA-based) and WEBWork (Web-based). The designer is a GUI used to specify the

workflow, the data objects manipulated, as well as the component tasks. It assumes nothing

about the run-time. The specified design is stored in Workflow Intermediate Language for

Related work 43

subsequent code generation. The specification is kept in the workflow model repository. The

designer has two different modes: the process modeller and the workflow builder, the latter

allowing the user to refined the specification created by the first one by knowing the design of

the run-time system. There are three components: the map designer, the data designer and the

task designer which respectively allow to express the dependencies between tasks, data object

manipulated and their flow, and finally the details of the individual tasks.

At run-time a code generator associated to the enactment system is used to create the

workflow application, including the task managers, their scheduling components, and some

recovery mechanism. The run-time system consists of the various task managers and associated

tasks, the user interfaces, the distributed recovery mechanism and scheduler as well as the

monitoring components. The task managers are responsible for the controller and the

scheduler, while the tasks are just the executable. Different task models have been provided for

the tasks (transactional, non-transactional, two-phase commit. ..), each of them having an

associated type of task controller supporting different features (recovery ...) and specified via

an IDL. The task managers are automatically generated by the code generator from the MIL

specification and are aware of their successors. It is itself started by its predecessors via the

Activate method. When the pre-conditions (specified as an AND-OR tree) associated to the

task it's controlling are fulfilled and all the input data are available, this task is started. Once

completed, a post activation part is used to decide what to do and which (if any) successors to

activate. The task managers are responsible for the consistency of the data that they are using.

They saved the state of the data objects used by calling the save method or using the persistent

object services of CORBA. The system gets a pre and post image of the data object, which

allow audit.

The recovery system is based on a hierarchical error model and includes mechanisms for

persistence, monitoring and recovery. The errors have been categorised in three main types:

task errors, task manager errors and workflow errors. For the task errors, ORBWork allows

the users to defme errors and specify their handlers. If no handler is provided, the error results

in erroneous conditions in the task manager. At the task manager level, the unhandled errors as

well as the errors resulting from abnormal behaviour of the execution of the task manager

(preparation of the inputs failing ...) are considered. If the error can not be treated (by retrying

to run the task for instance or running an alternative task), it becomes a workflow error.

Another type of workflow error is the failure of enforcing the inter-task dependencies. It can

Related work 44

be due to communication failure. The system tries to deal with the error by for instance

moving/replicating a faulty task manager on another node. If it can not be solved the error is

reported to a human via a workflow monitor. Local Recovery managers, polling the critical

CORBA components on their node are used to detect potential errors, while a Global

Recovery Manager is used to check the Local Recovery Manager. The components to be

monitored register (respectively deregister) when they need to be monitor (respectively when

they stop needed this service). On detection of a failed component, this component is restarted

using the factory associated to the recovery manager.

2.3.4 Exotica or FlowMark on Message Queue Manager

FlowMark [27] is using a layered client/server architecture, compliant with the WtMC

standards. The built and run-time clients are linked to a FlowMark server itself client of a

centralised database (ObjectStore) where both build and run-time information are kept. At

built-time the built-time client interacts directly with the database and the FlowMark server

remains passive. The run time architecture is depicted on figure 2.9. OSS and DB acting as the

storage server represent the ObjectStore database on the figure. The navigation server (the

FMS component) is a client of this database since most steps involve getting information in and

out of the database. FlowMark Servers can also be connected among themselves. The rest of

the components are connected to these servers. Usually the application and user interface

(RTC) are kept on the same host to keep accesses as local as possible

OSS - ObjectStore Server
FMS - FlowMark Server
RTC - Runtime Client
PEC - Program Execution Client
APP - Application Program

PEC ~PP

Figure 2.9: Run time architecture of FlowMark

Related work 45

FlowMark allows forward recovery and plans have been made to also support backward

recovery using Spheres of Joint Compensations [32] in the future.

Exotica [40] is a distributed workflow system based on FlowMark. There is no dynamic

modification, as changes to a schema (specification) do not affect the instances already started.

Each activity has a start condition (a boolean expression) used to know when the activity can

start and an exit condition determines when the activity was successfully completed. Control

connectors and data connectors connect activities. The start condition is evaluated when all

control connectors have their origin activity terminated and can be as a result evaluated to true

or false. The data connectors link input and output data containers (one of each per activity).

Clients are not persistent and there is no provision for crash recovery at the client level. IBM

also defmed an API standard for message passing called Message Queue Interface (MQI) [26].

MQSeries [41] is an IBM set of products supporting MQI.

Distribution in Exotica is carried out using message-oriented rniddleware based on

MQSeries. The messages exchanged are persistent, which eliminates the need for the

centralised database. This allows a set of autonomous nodes to co-operate to carry out the

execution of a process. Exotica supports the mapping of Sagas and flexible transactions into

FlowMark process schema with the restriction that it can not make changes to resource

manager. In practice that excludes interesting models such as nested transactions or split

transactions [57].

In FlowMark, the specification is done via a GUI by creating a process diagram showing the

activities and their sequence, or it can also be done using the FlowMark Definition Language

(FDL) [25]. The FDL is quite complex and could be more modular as all the dependencies

within a compound task are listed as part of the compound task and not delegated to the task

concerned. Figure 2.10 depicts such a process diagram. The dotted arrows represent control

connectors (flow of control between two activities) while the plain ones represent data

connectors (flow of data between two activities). The green circular wheels represent some

program activities, while the one in the square represents a block, which is a set of activities

that can be repeated until an exit condition is met.

Related work 46

Figure 2.10: Process diagram in FlowMark

Organizations· Tree
.:~el.erted {~it Yiew

Figure 2.11: Specification of an organisation

An editor to model your organisation is also provided (figure 2.11). It also allows the

definition of staff (figure 2.12) and the assignment of roles to them. In FlowMark, a role is a

function or ability that a person or a group of persons have. In figure 2.11, information on an

organisation is being edited. The option shown is the list of persons, member of this

organisation (sale control). Organisations are hierarchically organised as a tree. A similar editor

allows the administrator to assign persons to a role such as sales person, secretary, etc. There

is a many-to-many relationship between roles and persons.

Related work 47

People· Icons
feopJe ~e.tected ~dlt ~iew ~indows ... !;:!elp

t t
t

"l'UMI (HQ t) • Sl!ltifNl"

CC3(Joni

t
User to 1"01;..._-----PnsswOfd

Verify

PersQnl!) 18'l9'l<lIl:~-~_:_---
First m"ne iPettt~r

;..._-----

:::~L
C;etl\~(itl

;~oles
;.Or.ganizalioh .
;",,'uthGilz3tion I;
':"Allt'wrilaliQ~2
",;SubSlli~tc
,!,C~~~c'f.IPU();l·

MP2(Bau

obTec~$

t
FMCUS"T

t

Figure 2.12: Specification of a person

Figure 2.13: Worklists in FlowMark

In figure 2.12, the substitute option allows the administrator to specify another person who

can substitute the person whose record is edited.

It can distribute tasks by people, roles, levels or organisations. The association of roles,

levels and organisation to people is resolved dynamically. Imagine that a task has to be done by

a certain type of person, the task does appear in their worklists as depicted in figure 2.13 and

as soon as one person from that group accept it, it disappears from the others worklists.

Related work 48

Worklists can be consulted from Lotus Note. FlowMark is also responsible to invoke the right

application to be used to carry out a task.

Using the GUI, the administrator of the workflow can simulate its application" as well as use

the audit trail to debug its specification. When simulating the application, he has to take action

on behalf of the program or persons responsible. The specification has to be debugged

manually. He can also monitor the progress of its application. He can also check the status of

the tasks, including who (if any) is dealing with it. In the example depicted in figure 2.14, the

activity "prepare and deliver is active" and somebody has just accepted to take care of it. This

is shown on the picture by having one of the group members with a different colour from the

rest of the group.

Prepare
&Dellirer

PmIl{Ise
Alternative

Send Reply

Figure 2.14: Monitoring of a FlowMark workflow

2.3.5 RainMan

This IBM project [63] aims at supporting decentralised workflow execution, as well as

interoperability and dynamic modification. RainMan is a distributed workflow system for the

internet implemented in Java. It is based on the RainMaker generic framework that defmes a

core of abstract interfaces for workflow components. RainMaker has four main abstractions:

the workflow instances (sources, service requestors), activities (service requested), the

performers (human, applications ... in charge of executing the activities), and fmally tasks that

are the units of work managed by the performers and implements the activities. Tasks are sent

to performers independently of their implementation for interoperability reasons.

The RainMan system itself is a collection of lightweight services implemented using Java

RMI (Remote Method Invocation). The services implemented are a builder tool, a directory

Related work 49

service, a repository service, a work list service, a work list client and an administrator tool.

The builder tool allows users to specify a workflow as a directed, acyclic graph, and then to

monitor it. Performers are assigned to the activities specified by querying the RainMan

directory service. These specifications are stored and retrieved from a repository service of the

system. The builder is also a graph interpreter that generates the sources. As a result, the

specification (the graph) can be modified at run-time allowing dynamic reconfiguration. A

specification language based on directed acyclic graphs is also provided. The work list client is

provided for an easy access of a human work list (implemented as a persistent FIFO queue),

the client can connect to the (distributed) work list service to view a work list and select some

task to do locally and disconnected. The client just has to reconnect to let the work list to

return the activity results. The directory service is both a naming service and a trading service

and contains information on the different performers.

The application level fault tolerance is addressed with forward recovery using compensation

activities. Performers are expected to provide support for compensation for the activities that

they handle.

2.3.6 TOWE, Transaction-Oriented Workflow Environment

This project [54] provides facilities for the construction and coding of long-lived

concurrent, nested, multi-threaded activities. The idea behind this work is to provide a

software development environment for workflow management system. The environment is

based on flexible transaction models (usually data-centred) extended to support process-

centred activities, by unifying the notions of class and process. The programming of these

applications is based on library modules representing abstractions of system aspects and

functionality of long-lived activities in a concurrent object-oriented environment. These

libraries are built from a small set of fundamental concepts that are extensions and refmements

of open nested transaction constructs. A prototype of TOWE has been developed on top of

two database management systems: Oracle and the object-oriented prototype OBST. The

overall architecture of TOWE is depicted in figure 2.15.

Related work 50

Application Application

: !
Transaction Oriented Worktlow Environment (TOWEl

Sather Class Library

Parallel Virtual Machine (PVM) interface

,~ ! ,~ !~ ~r
Oracle OBST

B
Oracle Oracle

Figure 2.15: The TOWE system architecture

A workflow in TOWE is a long-lived activity co-ordinating the execution of multiple

process-oriented tasks with transactional properties, which are related by data and control flow

dependencies. A long-lived activity in TOWE is divided into some work units nested to

multiple levels, and executing sequentially or concurrently. Leaf level work units of the activity

tree are called actions while intermediate nodes are referred as intermediate activities or

compound actions. The actions are atomic unit of work mapped to flat ACID transactions.

They can be vital or non-vital, a vital action aborting forcing its parent to abort. A scheduler

process manages the flows of control and data between work units. Four types of scheduler

processes are provided: serial (begin on commit dependencies), parallel, serial-alternative and

parallel alternative scheduler. The latest two types are processes attempting actions

sequentially or in parallel until one of the alternative succeeds. The actions of a serial scheduler

may have data object (the target action is awaiting for an entire data object) dependencies

while the actions of a parallel scheduler can have value (the target action is awaiting for a value

to be sent from the source action) or commit (the target actions can only commit once the

source action has committed) dependencies. Schedulers can also have conditional actions as

well as replicated ones.

The programming language is the object-oriented language Sather [51] interfaced with

PVM (Parallel Virtual Machine) [19]. PVM brings some support for distributed programming

and message passing. TOWE provides a library of classes that can be extended and specialised

and provides some support for the specification of temporal, value and data object

Related work 51

dependencies among activities, exception handling mechanisms, commit dependencies among

actions, compensating actions, contingency actions, as well as ordinary and express message

(not queued). This is shown in figure 2.16. The system distinguishes five groups of classes:

distributed system and communication support, transaction primitive, atomic transaction,

scheduling and application program classes. The relationships between these classes are

described on the figure below.

Distributed
System &

Communication
Support

__________________________________,4~: =~~~::::~~~___
Primitives """"'" .-----"I~-----,

-----------------------7L----------------- ----------
Atomic ~

Transactions ~ Compensable Action

--------------------~-::==.-.---------~.-~~::------------------------_.\ --_ --
Scheduling \ ,,

\'----.,... --'-----------------------~------- -------------------------------------
Application Layer

-------~ inheritance
containment

Figure 2.16: Library classes of the TOWE

After instantiation, the process object (instance inheriting from a scheduling class) executes

its work routine (piece of code between the keywords "work is" and the keyword "end")

which describes the sequence of actions it runs during its lifetime. The work statement

describes the behavioural part of a process object, which provides the means to create other

processes, actions and objects at remote sites; and to request asynchronous execution of their

features and to communicate with them. Calling an action would typically be done using the

following code:
action.name("name of action") .arg(List of arguments)
Proxies are used at run-time to perform remote calls. Mutually exclusive access to shared

data object is provided. Due to the usage of shared objects, intermediate results do become

Related work 52

visible leading to the introduction of the unsafe commit notion. Unsafe commitment of an

action requires logging enough information to undo it before actually committing and releasing

the locks held. Several versions of the data items are kept in a stack in case of cancellation of

an action involved in modifying the item.

Scripts are used to specify the workflow application. A Web OUI is being developed using

COl scripts and forms.

2.4- Discussion
Workflow Management Systems have been implemented usmg a lot of different

infrastructures such as Lotus Notes [61], TP-monitors [83], the web [10], CORBA [70], DCE

[66], Customised Transaction Management [20], however a certain number of features are

common to these systems.

System Model Fault tolerance Dynamism lnteroperability

Sagas Serialised transactions Save points & None Homogeneous
with associated compensations
compensating actions

ConTract Group of transactions Compensations. None Homogeneous
Steps seen as
transactions

ORBWork CORBA workflow Recovery managers Some CORBA
system using persistent storage Web

& application level
Exotica Message based Persistent messages, None Proprietary

workflow atomicity of changes
management not guaranteed

RainMan Sources co-ordinating Persistent worklists, Dynamic updates of Written in Java.
performers executing long-run conversations workflow graph heterogeneous
the process being considered. environment

TOWE Transactional Basic units of work are None Homogeneous
Worktlow system ACID. Open-nested

transactions.
Newcastle Transactional Both system and Full dynamic updates CORBA.

CORBA worktlow application level of specification heterogeneous
system (alternative). persistent environment

storage

Figure 2.17: Comparison of the features supported by the different systems considered

The usual weakness of workflow systems are the limited support for heterogeneous and

distributed environments, the lack of interoperability, and of support for reliability, as well as

the lack of dynamic reconfiguration. Our system intends to propose a solution to these

problems. It can deal transactional and non-transactional tasks contrary to TOWE that has

ACID basic tasks. It also uses persistent storage. It provides support for changes at run-time,

which a lot of systems don't provide. Our alternative inputs and outputs also bring some more

Related work 53

flexibility for exception handling, by allowing an homogeneous specification of the handlers for

faults.

Architecture 54

Chapter 3

Architecture

In this chapter, we will present the architecture of our workflow system [59], [60]. First the

requirements for our workflow system will be listed as well as the approaches adopted to deal

with them. Then the overall software architecture will be described before ending up by

describing the components of the architecture as well as the execution environment [82].

3.1- Requirements

The workflow management system that is described in this thesis addresses the requirements

that were listed in the introduction. The main requirements are modularity, scalability,

interoperability, dependability and dynamic reconfiguration. In the following sections, we will

describe the requirements as well as the approaches adopted to fulfil them.

3.1.1 Modularity

The specification of a workflow application should be modular. Indeed, it should be

possible to decrease the complexity of the workflow application being described by using

several modules dealing with simpler part of the application. The system deals with modularity

by providing the notion of compound task. A compound task consists of a set of workflow

tasks gathered together. The reasons to gather tasks together can be multiple: you may want to

show a set of tasks as a single task thereby hiding the details of these tasks (for instance in a

student registration workflow, the task adding a new student to the system is likely to include a

task creating of a login account. The task creation of a login account can be itself sub-divided

into creation of the new user system identity, adding the new user to a group of users, sending

the user a welcoming message ...). Another reason is that you may just want to make a task

Architecture 55

fault tolerant (for instance grouping a task and its alternative(s) in a single task to hide the

details of fault tolerance handling). A compound task can be composed out of other compound

tasks hence allowing arbitrary nesting. This provides a way to add some levels of abstraction in

the specification of your application. The tasks included in the same compound task will be

referred thereafter as peer tasks, and the compound task embedding them as their parent task.

3.1.2 Scalability

As business processes becomes more and more automated, it is likely that workflow

applications will increase both in size, complexity, and will span across administration

boundaries. As a result the workflow management system has to be able to cope with an

increasingly large degree of distribution, as the resources required by a workflow could be

located at arbitrary places.

In order to cope with scalability, the Workflow System has first to avoid reliance on any

centralised service as it is likely to add performance bottlenecks to the workflow application

and add a central point of failure. Our system addresses scalability issues by only sending the

minimal number of messages needed to support the application proper execution. It does that

by only sending some messages of notification of events to the task controllers that have

registered their interest in the event. We have opted for a model where each unit of work

(task) has attached to it a manager (referred to as task controller in the rest of the thesis) that is

taking care of the co-ordination of the task. In particular we have avoided to use a global

(centralised) co-ordinator that decides how to schedule the steps of the workflow given the

history of event. Each controller is responsible for starting its associated task once a set of

preconditions (input dependencies) is satisfied and for delivering the outputs of the task to

other tasks as specified in the workflow specification.

Furthermore to cope with potential problems of performance and to allow more flexibility, it

would be a nice feature to be able to control the location of the task controllers of an

application on request to optimise the communications between task controllers by a trade off

task controller located on same node as associated task versus grouping of task controllers that

are highly dependant of each other. In figure 3.1, we present different policies used to place the

task controller. Tasks are represented by a grey rectangle, and are linked to their controllers

represented by black circles. These tasks are distributed across three nodes. A centralised co-

ordination approach would be to gather all of the controllers on a single node while a

Architecture 56

distributed approach would be to have them on the node where their associated tasks are

running. Ideally we would like to have a workflow management system allowing the users to

be able to choose their location policy depending on what they are aiming at. It is likely that a

real application will not be fully distributed nor fully centralised but just partly distributed. Our

system aims at providing different levels of distribution of the control of the tasks to be able to

cope with the different policies that users may want.

Distributed co-ordination Centralised co-ordination

Figure 3.1: Distributed and centralised co-ordinations

3.1.3Interoperability

The workflow management system has been structured as a set of CORBA services running

on top of a CORBA compliant ORB. CORBA described in section 3.2.1 brings the support for

interoperability needed.

3.1.4 Dependability

The fault model that our system assumes is the possibility of crash failures of nodes, as well

as network partitions. Failing nodes can eventually recover, and network partitions eventually

heal.

The system provides both system and application level support for dependability. The

system level support has been achieved by using persistent storage for recording inter-task

dependencies and transactions for the delivery of task outputs to their destinations. As a result

the destination tasks receive references to their input objects despite presence of failure such as

temporary network partitions or temporary node crashes. Finite number of retries of affected

transactions achieves this. This is the system level fault tolerance measure used to ensure

Architecture 57

forward progress of applications.

Support for application level fault tolerance is provided by the task model that provides

alternative input sets and output sets as well as multiple sources for inputs of all tasks and

outputs of compound tasks (see section 3.3). These facilities provide powerful underlying

application level exception handling capabilities to cope with the errors not handled by the

underlying system such as for instance a task that despite a finite number of retries does not

start. A task can terminate in a "normal state" or in one of "exceptional state". Exception

handling could include starting an alternative task, compensating tasks ... , as part of the

workflow specification. In order to deal with failure of up-stream tasks, alternative input

sources can also be specified. This allows for instance to start a task in a degenerate state using

these alternative input sources.

To sum up, the system provides a task model that is useful in the fight against faults ;

however it is the responsibility of the application programmer to use this model to incorporate

application-level fault tolerance. Alternative input sets are seen as a way to let the programmer

carryon despite failure of up stream tasks. Output sets as a way to deal with unhandled

exceptions, by only allowing one output as a "normal" state, while the other correspond to

"exceptional" states. By adding extra compensating tasks to try to cope with these exceptions,

the programmer can add 'forward recovery' in the application. Chapters 4 and 5 describe these

aspects in detail.

3.1.5 Dynamic reconfiguration

In an environment where application requirements are likely to change during run-time, a

workflow management system needs some capability for reconfiguring the structure of the

application. Mechanisms are needed to allow forward progress of the workflow despite

changes to the environment calling for a modification of the specification. For instance,

imagine that a service of document translation that was used by the workflow application

disappears while the workflow is executing, and that it is possible to create an equivalent

service by using two translation services in sequence. Then you would like to be able to replace

the task that no longer exists by say a compound task composed out of these two services in

sequence. Of course, all these modifications should be done without having to abort the

workflow application. As a result, there is a need of being able to modify the composition of

the workflow application at run-time. In our system, addition and removal of tasks composing

Architecture 5X

the workflow and dependencies between the composmg tasks are carried out by usmg

transactions. This ensures that the modifications of the specifications are done atomically.

Changes of the instantiation criteria associated to a task are also supported. Details of how the

toolkit allows you to perform dynamic reconfigurations of your application can be found in

chapter 6.

3.2- Software structure

The system has been designed to support specification, execution, monitoring and control of

workflow applications. The implementation consists of a set of CORBA services and

applications. These services and applications are grouped to form the five main software

components of the workflow system. The software structure of the workflow management

system is depicted in figure 3.2.

User Workflow Workflow Workflow User
Interface Administration Repository Execution Workflow

Tasks Service Service Tasks

Object Transaction Service
(OTS)

CORBA
ORB

Figure 3.2: Software structure of the toolkit

To allow interoperability with future system and applications the workflow system can

make use of existing CORBA service such as the transaction, the security or the naming

services. At present only the naming and object transaction service have been integrated into

the workflow system. The Object Transaction Service has been provided by the Arjuna

distributed transaction system [55], which has been adapted to be OTS compliant and capable

of running on a given ORB.

The relationships between the software components of the workflow system are depicted in

figure 3.3. In the rest of this section we will describe, in more detail, the components of the

workflow system.

Architecture 59

User

specify, monitor and
administer workflow Administration

Worktlow Tasks

export

Graphic User
Interface

administer

Server

Object StoresFile System

Figure 3.3: Relationship between the different components

3.2.1 Common Object Request Broker Architecture (CORBA)

CORBA is the core of the Object Management Architecture (OMA) [47] proposed by the

Object Management Group (OMG). The OMA was designed for distributed object system s,

and is a set of services organised around a software bus called an Object Request Broker

(ORB). The architecture and specification of this ORB can be found in the CORBA

specification [48]. CORBA is structured to allow integration of a wide variety of object

systems. The ORB is responsible for providing some virtual homogeneity regardless of the

programming language, operating systems, tools and networks used to realise and support

components specified using the OMG Interface Definition Language (IDL) which is described

below.

The reference model (the OMA) depicted in the figure below, consists of four components:

• Object Request Broker responsible for transparent sending and receiving requests and

responses by objects in a distributed environment. This is the basis for the creation of

distributed applications and for inter-operability between such applications in an

homogeneous or heterogeneous environment.

• Object Services [49], a set of fundamental services providing basic features for using

and implementing objects. These services are supposed to be modular so that clients can use

as many or as few as needed. These include the Object Transaction Service (OTS), the

Trading Service, the Naming Service, the Life Cycle Service, the Event Service ...

Architecture 60

• Common Facilities [50]: a set of facilities that can be shared by applications. These

services are not as fundamental as the object services. The Workflow Management and the

Business Object Management Facilities are relevant to our work and are under discussion

[45][30].

• Application Objects: the uppermost layer of the Reference model, III fact some

products developed by vendors ... compliant to the OMG specifications.

Object Request Broker

Application Objects Common Facilities

Object Services

Figure 3.4: Object Management Architecture

The structure of an ORB is depicted in figure 3.5. The client (the object invoking an

operation) sends a request to an object implementation (code and data implementing the

object). The ORB is responsible for the mechanisms needed to find the correct object

implementation for the request, to prepare it to receive the request and to communicate the

data making up the request. The interface that the client sees is totally independent of the

location of the object, of the programming language in which the object was implemented ...

To make the request the client can either use the dynamic invocation interface (the same

interface independent of the target's object interface) or an OMG IDL stub (dependent on the

interface of the interface of the target object). The client can also interact directly with the

ORB for some functions.

The Object Implementation receives the requests as an up-call via the OMG IDL generated

skeleton or via a dynamic skeleton. Skeletons are specific to the interface and object adapter.

During the processing of the request, the object implementation may request some service

from the object adapter or the ORB. Object adapters are the primary ways that an object

implementation can access services provided by the ORB such as the generation and

interpretation of object references, method invocations, object and implementation activation

and deactivation ... It is also possible at other times. When the request is completed, control

Architecture 61

and output values are returned to the client.

Object ImplementationClient

IDL
Stubs

Dynamic
Invocation

ORB
Interface

Object
Adapters

Static IDL
Skeleton

Dynamic
Skeleton

ORB Core

ORB-dependent interface ~ Normal call interface

Interface identical for all ORB implementations

Some stubs and a skeleton per object type t Up-call interface
Interface identical for all ORB implementations

Figure 3.5: Structure of an Object Request Broker

The OMG provides an Interface Definition Language (lDL) to enable the description of the

interface to a CORBA object. The interface to objects can be defined either by using the OMG

IOL or by being added to an interface repository service that provides persistent objects to

represent the IOL information under a run-time form. IOL is a neutral language (programming

language independent) using the same lexical rules as C++ to which some new keywords have

been added to support distribution concepts. IOL specifications can then be translated to

several programming languages using the OMG standard language mappings. The IOL

interface of an object describe the interface that the object implementation provides, or in fact

which operations client objects can invoke. This provides the information that clients need to

be able to use operations on a CORBA object independently of its implementation. Figure 3.6

shows how interfaces and implementation information are made available to clients and object

implementations. The definition is used to generate the client stubs and object implementation

skeletons.

The implementation repository contains information allowing the ORB to locate and

activate implementations of objects.

Architecture 62

ORB interoperability specifies a flexible approach to support networks of objects located

and managed by multiple heterogeneous CORBA compliant ORBs. CORBA specification

describes a General inter-ORBs Protocol (GlOP) from which the Internet Inter-ORBs Protocol

(I/OP) is derived. It also provides support for inter-ORB bridge support. The GlOP specifies a

standard transfer syntax as well as a set of message formats for communications between

ORBs, which only requires an underlying connection-oriented transport protocol fulfilling a

minimal set of assumptions. The IIOP specifies how GlOP messages are exchanged using

TCP/IP connections. The Inter-ORB bridge support is useful in the case of direct

communications between ORBs in different domains (such as security domain or type domain).

The bridge ensures that content and semantics of the invocation information leaving a domain

is correctly mapped to the form appropriate to the new ORB.

IDL
Definitions

Implementation
Installation

Client Object Implementation

Figure 3.6: From IDL specification to implementation and use.

3.2.2 Object Transaction Service (OTS)

The OTS is one of the services defined by the OMG and specified in the OMA. The

architecture of the OTS is depicted in figure 3.7.

The Transaction Service provides transaction management services and transaction

propagation protocol through well-defmed interfaces. The ORB provides communication

support for transparently invoking operations on objects and receiving the results. The

transaction originator is the client creating the transaction and invoking operations. A

recoverable object is a transactional object defmed as an object whose data is affected by the

commitment or the rollback of a transaction. Such an object must participate in the Transaction

Service protocols. This is achieved by registering an object called resource with the transaction

Architecture 63

service. The Transaction Service drives the commit protocol by issuing requests to the

resources registered for a transaction. A recoverable server consists of one application object

or more and one resource object or more registered with the Transaction Service. It issues

requests to these registered resource objects to drive the commit protocol. Several objects can

take part in a transaction. They shared a transaction context, which defines the scope of the

transaction. To simplify coding, most applications use the current pseudo object, which

provides access to an implicit per-thread transaction context. The recoverable server can also

register a resource called subtransactionAwareResource to keep track of the completion of

sub-transactions.

Transaction Recoverable
Originator Server~. ~~

ORB

Current, Current, Reso
Factory Control Subtr
Control Coordi nator Awar
Terminator Recovery Reso
Coordinator Coordinator

~, "
ransaction
Context

Transaction Service

urce,
ansaction
e
urce

Figure 3.7: OMG OTS architecture

A transaction is executed as depicted in figure 3.8 and can be divided in five steps:

1. A client invokes a transaction service via the factory or the current interface to start a

transaction. The transaction service creates a transaction context and a globally unique

transaction identifier.

2. The client invokes the server including the transaction propagation context as

parameter (implicit or explicit) which contains the transaction unique identifier as well as the

transaction service object reference.

3. On reception of an object request the server registers its resource objects with the

Architecture 64

transaction service via the co-ordinator interface.

4. The client terminates the transaction (commit or rollback) by using the terminator

interface of the transaction service.

S. The transaction service propagates the completion decision by usmg two-phase

commit requests to the registered resources via resource interfaces.

Client (2) Invoke Service Server

Transaction Service

Figure 3.8: OMG OTS execution flows

Interoperability between heterogeneous transaction services as well as co-operation

between multiple transaction services is also provided by the OTS specification (feature known

as interposition).

3.2.3 Graphical User Interface

This component allows users to interact with the rest of the workflow system. It allows

users to graphically specify workflow applications, start them and monitor their behaviour. The

Graphical User Interface (GUI) also enables users to load existing workflow scripts that could

have been written off-line. This specification can then be checked for consistency. Simulations

of the workflow application specified can also be carried out to try to find out potential

problems. Once exported to the repository service, the workflow application can be

instantiated. The execution of this instance of the workflow application is then controlled by

the execution service and can be monitored using the GUI. During the execution dynamic

modifications can be initiated from the GUI.

3.2.4 Workflow Repository Service

This component is responsible for maintaining the specifications of workflow applications in

Architecture 65

a form that can be used by other workflow applications. This way of storing workflow

application is equivalent to a script specification. This service provides operations to create,

modify, delete and inspect specifications. A workflow specification kept in the repository

service is called workflow schema.

3.2.5 Workflow Execution Service

This component is responsible for co-ordinating the execution the basic units of work

(referred as basic tasks in the rest of the thesis) that form the workflow application being run.

This service has to be reliable to be able to cope with temporary network failures, node

crashes ... In order to do that, it records inter-task dependencies in shared persistent atomic

objects.

3.2.6 Workflow Administration Tasks

These tasks are designed to manage other workflow applications. Provision has to be made

to provide some tasks starting workflow applications, terminating tasks that no longer need to

be run as their outcomes are no longer needed, or dynamically modify the specification of

workflow applications. Dynamic modifications include the addition, removal of tasks or

dependencies, modification of the code mapped to a basic task ...

3.2.7 User Workflow Tasks

These tasks are applications that have been built by users. They are built as a set of basic

tasks linked between each other by dependencies. These tasks can be implemented in any

language. A wrapper is then added to map them to the basic tasks of our system.

3.2.8 Script Servers

They are used to store the textual (ASCII) specification of workflow applications. The main

reason for their existence is to give more flexibility to the users by allowing them to store some

uncompleted specifications enabling the storage of workflow specifications being built.

They allow users to store or retrieve directly textual specifications that can then be loaded

into the specification service if correct. It allows off-line specification of workflow

applications.

Architecture 66

3.3- Task model

In this section, the structure of a workflow task as well as the different types of tasks will be

described. As previously stated in section 1.1, workflows can usually be divided into smaller

units of work (called tasks) carried out by participants. Participants have to collaborate to

reach a common aim, the achievement of the global process. This collaboration is usually

carried out by exchanging data and by ensuring that the dependencies between units of work

are respected.

3.3.1 Structure of a task

Figure 3.9: Representation of a task

A task is represented in the system by its interface. The only visible parts of a task are its

inputs and its outputs. The internals of a task are hidden except when this task is itself

composed out of other workflow tasks. In this case, the dependencies among these tasks as

well as the mapping between the inputs and outputs of the embedding task and its components

are described. The structure of a task is depicted in figure 3.9. At run time, a task will typically

gets some inputs and then terminates producing some outputs. To add some flexibility,

alternative sets of both inputs and outputs can be specified.

The inputs and output sets are represented by rectangle boxes, the input and output objects

by ovals, the data flow dependencies by arrows and the notification dependencies by dotted

arrows. The direction in which the arrow leads shows whether it is a dependency with this task

as source or as destination. The overall specification can be represented as an acyclic graph. In

the rest of the thesis the tasks that are having dependencies on a task will be referred to as

down-stream tasks, while the tasks on which this task depends will be referred as up-stream

tasks. The domain of a task specification or in other words, what is described in the

specification of a task is depicted in figure 3.10. The grey box delimits the part of workflow

specification associated to the task.

Architecture 67

It has to be noticed that our system has as particular feature that the task is only aware of

the dependencies it has on up stream tasks. It has no knowledge whatsoever on which down-

stream tasks are using it as source of dependency. This make is possible to address the issue of

locality of modification: if a user wants to modify a task dependency this is done locally at the

level of the concerned task.

Up-stream
tasks

I().II-----_. Down-stream
----------. tasks

Figure 3.10: Domain of a task specification

Inputs

A workflow task has the possibility to have one or more input sets (represented in figure

3.11 by the boxes in light grey).

Figure 3.11: Inputs of a task

These sets are alternative and have some input objects associated to them. In figure 3.11,

these input objects are represented by dark grey ovals. The first input set has two associated

input objects and the second input set has just one input object. Each of these input objects has

a list of references on other input/output objects that can be used as alternative input sources.

In order to start, a task needs to have the totality of the input objects of one of its input set

available. An input object becomes available when one of its input alternatives is available. In

the event that several input sets become available, the first one listed is chosen.

Outputs

A workflow task has the possibility to have one or more output sets (represented in figure

3.12 by the boxes in light grey). These sets also referred as output states or outcomes are

alternative and have some output objects associated to them.

Architecture 68

Figure 3.12: Outputs of a task

There are four different types of output sets:

• Final outcome: the normal output for a task.

• Abort outcome: a fmal outcome for atomic tasks, it only allows output objects of type

error corresponding to some error codes.

• Repeat outcome: a special output for loop tasks allowing the outputs to be fed as

inputs for the next iteration of the loop.

• Mark outcome: a special output for non-atomic tasks allowing publishing partial

results. This is an intermediate outcome, and a task does not terminate whenever it reaches

such an outcome.

In figure 3.12, these output objects are represented by dark grey ovals. The first output set

has one associated output object, the second one none and the third output set has two output

objects. Once started, a task has to end up in one of its output sets and the output objects

associated to the chose output set become available to all tasks having some data flow

dependencies involving them as source. In the event that several outcomes of a compound task

become available, the first one listed is chosen.

Dependencies

There are two types of dependencies considered: data-flow dependencies and temporal

dependencies. Data flow dependencies are dependencies where an input/output object

reference on an object from task A (called source object) is given as alternative to an

input/output object of another task B (called destination object). The meaning of a data flow

dependency is that the destination object is allowed to use the source object as alternative. In

other words, the destination object becomes available as soon as the source object is itself

available.

Architecture 69

There are seven types of possible couples of source-destination objects depicted in figure

3.13. In this figure, we have chosen as naming convention to call the object source S and the

object destination D.

• (a) The obvious data flow dependency is a dependency between two peer tasks A and

B (Peer tasks were defined in section 3.1.1). S is in this case an output object of task A, and

D is an input object of task B. This shows that task B needs to use some of the results of

task A.

• (b) Another form of data-flow dependency between two peer tasks A and B is

depicted in figure 3.13 b. S is in this case an input object of task A, while D is an input

object of task B. This can be used when a task (B) needs to use the same input object as the

input object from another task (A).

• (c) This time task B is task A's parent, the object source is an input object of task A,

and the D is an output object of task B. It has to be noticed that task B has to be a

compound task in this case. This is used to transmit some results back to the parent task.

• (d) This type of dependency is similar to the previous one, but this time the object

source is an output object of task A. It has to be noticed that task B has to be a compound

task in this case. This is used to transmit some results back to the parent task.

• (e) A data flow dependency can also be between task B and its parent task A (as

defined in section 3.1.1). In this case B is a task embedded in the compound task A, S is an

input object of task A and D is an input object of task B. This is used to transmit some

object references received by the parent task.

• (f) In this case A and B are again referring to the same task. In this case, it has to be a

compound task, which has D as one of its output object and C as one of its input object.

This can be used for instance to return an input object as output object in the event of an

abnormal execution of the task.

• (g) A data flow dependency can also involve only one task (tasks A and B refers to

the same task). In this case, the task needs to have a repeat outcome that can be used as

source object. D is in this case an input object of the task. This is used to simulate loops.

Architecture 70

(a)

(c)

(e)

(b)

(d)

(f)

(g)

Figure 3.13: Types of data-flow dependencies

There are also seven different types of notification dependencies, depicted in figure 3.14.

Similar conventions are used as the one used for data dependencies. A is the task with the

source set and B the task with the destination set. The sets were named, respectively Sand D.

• (a) The notification dependency with as source an output set belonging to task A that

is a peer of task B. D is a destination input set. This could be used for instance to enforce

that task B will only start after completion of task A in a certain state.

• (b) A notification dependency can also use as source an input set from task A and as

destination an input set from peer task B. This could be used to specify that B can only start

Architecture 71

after A starts in a certain state.

(a)

(c)

A

(e)

.-----------------',
I "I ,

l '~....._,

(b)

(d)

(t)

----------------------,I I
I I

L~ A ~(

(g)

Figure 3.14: Types of notification dependencies

• (c) A notification dependency can use as source an input set of task A and as

destination an output set of its parent task B. This could be used for instance to state that if

task A starts with an "abnormal" input set, then its parent task B should reach a certain

outcome.

• (d) A notification dependency can use as source an output set of task A and as

destination an output set of its parent task B. This could be used for instance to state that if

task A aborts then its parent task B should reach a certain outcome.

• (e) A notification dependency can use as source an input set of a compound task A

and as destination object an input set of one of the tasks embedded in A. This can be used

Architecture 72

to enforce that a task is only started if its parent task A was started with the particular input

set S,

• (f) This notification dependency is only for compound tasks and describes a

dependency between an input set (S) and an output set (D) of the same task. This can be

useful to specify that a certain output set D can only be reached if the input set chosen to

start the task was S.

• (g) A notification dependency can also use as source an output set of a task and as

destination an input set of the same task. This can be used to have a loop without needing

to feed back a dummy object.

3.3.2 Types of task

This workflow management system distinguishes low level and high level tasks. High level

tasks (user level tasks) are used for the high level specification of the workflow application and

are used by the specification service, while low-level tasks are used to represent the tasks in the

execution service. High level tasks are automatically mapped to low-level tasks by the toolkit.

Tasks can be atomic or non-atomic. Having an output set of type abort makes a task atomic. In

this case, the final outcomes are in fact commit outcomes.

High level tasks can be of two main types. Their graphical representation can be seen on

figure 3.15:

• Compound tasks: this type of task is used to build tasks out of other tasks. There are

several possible reasons for using compound tasks. For instance, a compound task can be

used as a way to hide the fault tolerance associated to a task. Indeed, compound task could

be used as a black box to specify a task and an alternative or a task and a compensating

task. It can also be used as a way to specify different levels of details. For instance, using an

e.commerce example, a company director can model a business process as two tasks, the

first one providing a service and the second one billing for this service. The department or

person in charge of completing this task can then further describe the tasks that he has

identified. For instance the fmance department will describe how the billing of the service is

done by decomposing the billing task as a set of tasks responsible for simpler activities. This

allows having a good support for modularity.

• Basic tasks: this type of task is the basic unit of work of the system. It can no longer

be divided in a set of workflow tasks. This type of tasks has associated to it a code that

Architecture

performs the actions that the workflow task represents.

These two main types can be specialised as:

• Loop tasks: this type of tasks allows to introduce repetition in the specification, it is

equivalent to a while with as condition that the output state feeding back the inputs is

reached after completion of the body of the task.

• Genesis tasks: this is just a late instantiation of the task

There are three low-level types of task:

• Basic tasks: these low-level tasks correspond to the high level basic tasks, and is how

the execution service represents basic tasks. In the rest of the thesis, both low and high level

basic tasks will be referred to as basic tasks.

• Compound tasks: these tasks correspond to the high level compound tasks and is how

the execution service represents compound tasks. In the rest of the thesis, both low and high

level compound tasks will be referred to as compound tasks.

• Genesis tasks: these tasks are the main way to introduce dynamism in the system.

They are in fact a particular kind of tasks that hold a task structure represented by a task

schema (workflow script). A genesis task is a task with lazy instantiation. By lazy

instantiation, we mean that they are only instantiated on demand and at the last moment. As

a result they are really useful for large workflow applications as they provide an efficient

way to manage these workflows by only instantiating the constituent tasks of the workflow

application really needed. They are used to specify at low-level the loop tasks. A loop task

is in fact modelled by a genesis task, which has a task structure that includes itself as

component task (cf. chapter 6, section 7.2). High level tasks that have been requested to be

only lazily instantiated are also represented at the low level by a genesis task, with them as

task structure.

Basic Tasks and Compound tasks are represented on figure 3.15 a) and b) as rectangles with

respectively single line and double line borders. Task specialised as Genesis will be rounded

(figure 3.15 c for a Basic task specialised as Genesis), while loop task will have a feedback

arrow (figure 3.15 d for a compound task specialised as Loop).

Architecture 74

a) Basic Task b) Compound Task

c) Basic Genesis Task d) Compound Loop Task

Figure 3.15: Graphical representation of Workflow Tasks.

3.4- Run time environment

Once the workflow application specification has been stored in the repository service, it is

possible to instantiate the corresponding workflow schema. This is carried out by the execution

service that is responsible for the proper execution of the following steps:

• Creation of the task controllers: each task of the schema has an associated task

controller who is responsible for maintaining and managing the dependencies of this task.

The placement of the task controller dependent on the type of control you want to

implement (cf. section 3.1.2) and on some constraints set by the user.

• Creation of the tasks: each task of the schema will have an object of type task created

to represent it in the run-time environment. It is at this level that the code is mapped to the

task.

• Assignation of the task to its task controller: task controllers need to know which task

they are responsible for, hence a reference to a previously created task is passed to each of

the task controller.

• Setting up the inter-task dependencies: Each task controller registers its interest in the

events that are important for its execution. It does it by contacting all task controllers

associated with tasks involved as source in one of its dependency. For instance, imagine that

a task (E) has a temporal dependency on an outcome of a task B. In this case, the task

controller associated with task E registers its interest in the outcome reached by task B with

the task controller associated to B. This allows the task controller managing task E to

receive a notification of the outcome reached by B whenever it occurs. This notification is

Architecture 75

sent by the task controller associated to task B, using a transaction. It has to be noticed that

a task controller only registers with task controllers associated to its up stream tasks. The

task controller maintains a persistent atomic object (called TaskControl) that is responsible

for recording the inter-task dependencies involving this task as destination. Task controllers

are represented in the system as processes containing an object of type TaskControl.

Workflow A

Figure 3.16: Specification of a workflow application

At the end of this instantiation the workflow schema depicted in figure 3.16 has been

translated into a set of interacting task controllers managing the tasks. The event notification

requests sent during the phase setting-up the inter-task dependencies are shown in figure 3.17.

In the workflow application pictured in figure 3.16, the dependencies between the workflow

application and its component tasks are described. It has to be noticed that the task

representations were simplified by not showing the input and output objects associated to these

tasks. The input object of the workflow is using as input object, by both tasks A and B. Task B

also has a data flow dependency on task A. Task D is an alternative task for task C. The output

of task C or alternatively of task D if task C fails, is used by task E. If both tasks C and D

failed then the workflow fails else it succeed with as output the output of task E.

The run-time representation (figure 3.17) shows the interactions between the different task

controllers (one per task). Issuing the event notification requests shown on this figure has set

up the dependencies shown in the previous picture.

Once instantiated, the workflow application has to be started. This is carried out by an

administration task responsible for starting workflow applications by providing the initial

input(s) to the task controller associated to the workflow application instances.

Once the initial inputs become available, the workflow application starts executing.

Typically a workflow application is composed out of simpler tasks themselves potentially

compound tasks, and its inputs becoming available trigger the starting of several of its

Architecture 76

component tasks. The way this is done is that the task controllers of the tasks having

dependencies on the reception of the workflow application are notified of the fact that their

have become available and those having all their dependencies fulfilled start the execution of

their associated task. For instance, in the previous example, when the workflow inputs become

available, the task controllers associated to task A and B receive a notification of the

availability of the inputs of the workflow applications. All the dependencies kept by the task

controller of task A being fulfilled, it can start the execution of task A. On completion, task A

reaches an output triggering the notification to the task controller of task B that can then be

started.

o Task controller ==I~.Event-notification request

Figure 3.17: Run-time representation of a workflow application

The high level task state diagram is described in figure 3.18: As long as the workflow

application has not been started the task is been built and in the state building, then it enters a

state set up where the inter-task dependencies related to the task are set up. Once this has been

done, the task enters the state waiting till it gets one of its input sets fulfilled (all object

references available). At that point, it goes in the state executing. After completion of the task,

it enters the state completed. It has to be noticed that the state of a high level task is given by

the state of its associated task controller when it is no longer in its building state. In other

words, the task controller state diagram is depicted on figure 3.18; if you remove the building

state form the task diagram.

Architecture 77

Completed

Figure 3.18: Task state diagram

As stated earlier, there is a need to be able to change the specifications at run-time due to

some potential changes of the run time environment. Dynamic reconfiguration has been

provided to cope with these changes. As long as the task controller is still in its waiting state, it

is possible to modify the interface, implementation criteria as well as its associated

dependencies of the task it is managing. This is achieved by bringing it back in its set-up state,

where the changes can be done. Once the execution has started, it is still possible to modify the

outputs of a compound task as well as to add some component tasks or delete some other

component tasks as long as their task controllers haven't reached their completed state. It is

also possible to modify the dependencies involving the outputs of the compound task. This is

achieved by setting the state of the state of the task controller associated to this compound

task to set outputs while it is being modified. To sum up, the changes that can be made are

listed below:

1. The implementation bound to a basic task can be changed as long as it is in a wait

state

2. Tasks can be added or removed from workflow instances

3. The constituent tasks of a compound task can be changed

4. Input alternatives can be added or removed from a task, and their priority can be

changed as long as the tasks is not in its state executing or completed

5. Output alternative can be added or removed from a task, and their priority can also be

changed as long as the task has not completed

Figure 3.19: Event notifications

Architecture 7H

The system uses atomic actions to propagate co-ordination information to ensure that tasks

are run according to the specification. The system also has a flexible way to ensure that the

task controller sends event notifications as an atomic action: the task body as well as some (or

all) of its associated notifications can be guaranteed to be performed atomically. This is

achieved by enclosing both the execution of the task and its event notifications in an atomic

action. Users can specify which tasks do not need atomic notifications by labelling them as

non-vital. Usually monitoring tasks are non-vital tasks. Figure 3.19 shows how atomic and

non-atomic notifications are propagated. There are four sets of event notifications labelled on

the figure as A, B, C and D. Event notifications of type A and B correspond to some event

notifications of inputs available while event notifications C and D are for outputs becoming

available. Event notifications Band C are to be delivered atomically with the execution of the

task and as a result are embedded in a transaction. A and D are just event notifications that are

not vital and will be referred thereafter as eventual event notifications.

To sum up, we have presented in this chapter the architecture of our system. What is now

needed is a way to specify the workflow applications that are to be executed in the workflow

system. In the next chapter, a language will be introduced to serve this purpose.

Language 79

Chapter 4

Language

In this chapter, the reader will find the specification of our textual language as well as the

graphical notation that has been adopted to represent workflow applications within the GUI of

our toolkit to be presented in chapter 6. This is also presented in [60].

4.1- Overview

The aim of the workflow language is allow the specification of workflow applications. As

was seen in the previous chapters, a workflow application in our system consists of a set of

workflow tasks linked by dependencies. A workflow task uses some inputs to perform some

work and generates some outputs. In chapter 3, the architecture of the system was described as

well as the task model chosen to support the requirements of the system. The notations

presented in this chapter allow the specification of the high level tasks of the system.

A workflow specification in our system consists of a list of object classes, a list of task

classes and a workflow application. As a result, the language used to describe a workflow is

divided into three parts:

• Object class definitions part to specify the type of input/output objects used,

• Task Class definitions part to specify the task interfaces used,

• Task instances part to specify the workflow tasks used.

Let's imagine that we have a task that adds two numbers together opl and op2 of type

integer, and returns the object res of type integer. It would be specified using the textual

notation as:

II object class definitions
objectclass integer;
II task class definitions
taskclass operation {

Language 80

inputs { input main { opl of class integer; op2 of class integer} };
outputs { outcome done { res of class integer }}

}

// Task instances. It has to be noticed that the addition workflow
application is a compound task as it is composed out of other tasks. The
details of these component tasks has been removed here for simplicity
compoundtask addition of taskclass addition {

inputs { input main { inputobject op2 {}; inputobject op2 {} } };

outputs { outcome done { outputobject res {...} } }

The three parts of the description can be easily identified on this basic example.

And using the graphical notation, it can be represented by picture 4.1.

Figure 4.1: Basic example

In the next sections, the extracts of the grammar relevant will be given each time that a

component of the specification is discussed.

On the extract relevant to the specification of a workflow application, it has to be noticed

that the list of object classes is optional as we could have a workflow application with no data

flow dependencies at all, but not the list of task classes as a workflow application has by nature

an interface that has to be defined. It also has to be noticed that there is an order in the

specification: first the object classes then the task classes and finally the workflow application.

<specification>

<workflow_application>

::= <objectclass_definitions> ".". <taskclass_definitions> "."•

<taskclass_definitions> M;" <workflow_application>

In the next sections, these different components of the language will be described in details.

For each component, the relevant extract of the grammar for the language will be given as well

as some examples of how to specify such a component.

4.2- Object Classes
4.2.1. Overview

The goal of the object classes is to introduce some type checking in the specification. Each

object resource in the system has an associated object class. Workflow applications need to

specify the type (object class) of object resources that they want to use. An object class is fully

Language 81

defined by its name. This system supports multiple inheritance to allow more flexible

specifications.

4.2.2 Grammar

The declaration of an object class is introduced by the keyword objectclass. The character

':' denotes multiple inheritance. Object classes inherited are separated using a coma

I <idt> "," -cobjectclass jnheritancess

::= -eobiectclass jfeflnition»

-cobjectctass jfetlnition» ";" <objectclass_detinitions>

::= "objectclass" <idf>

"objectclass" <idf> ":" <objectclass_inheritances>

-eobjectclass jnheritances» ::= <idf>

-eobjectclass _detin ltlon»

<objectclass_detinitions>

A valid name for an object class is a letter followed by alphanumeric characters (called id! in

the grammar). The object classes inherited also have to be defmed.

4.2.3 Examples

Let's imagine that our application uses some objects of type person and employee, the latter

inheriting from the former. In this case, the declaration of the object classes will just be:

objectclass person;
objectclass employee : person;

Shall employee also inherited from another object class such as bankAccount, the

declaration would become:

objectclass person;
objectclass bankAccount;
objectclass employee : person, bankAccount;

4.3- Task Classes

inputSetName I
inputObjectName 1
inputObjectName2
inputObjectName3

inputSetName2
inputObjectName4

outcomeName 1
outputObjectName I

outcomeName2
outputObjectName2

outcomeName3
outputObjectName3
outputObjectName3

outcomeName4
outputObjectName4

Figure 4.2: Graphical notation for a task class

Language X2

4.3.1 Overview

The goal of a task class is to allow specifying a type of interface for a workflow task. A task

class can be used for creating many tasks with the same interface. It is fully defined by its

name, inputs and outputs.

On figure 4.2, inputs have names starting with "input" and the names of the outputs start

with "output".

The inputs of a task class consist of one or more named input sets. The input sets act as

recipient for alternative starting conditions for the task. An input set consists of a set of (input)

objects, each of them associated to a particular object class.

Symmetrically, the outputs of a task class consist of one or more named sets of (output)

objects. These sets are also called outcomes. There are four different types of output sets as

specified in chapter 3:

• Mark outcome: it is an outcome that provides outputs while the task is runrung.

However using mark outcomes breaks the isolation property of the atomic actions hence the

tasks with such outcome are not transactional. This type of outcome is usually used to

publish partial results (output objects) of a compound task before its completion. The

graphical notation for mark outcome is a rectangle with dotted lines. In figure 4.2,

outcomeName2 appears as a mark outcome.

• Repeat outcome: it is an outcome whose output objects are being used as input

objects by the same task. This type of outcome is used to implement loops. The graphical

notation for repeat outcomes is depicted in figure 4.2 (outcomeNamel).

• Final outcome: it is an outcome that is only reached whenever a task does complete.

They are represented by rectangles with plain borderlines as depicted in figure 4.2 for

outcomeName3.

• Abort outcome: a special type of final outcome reached whenever the associated task

is transactional and has aborted. In this case the final outcome are in effect some commit

outcomes. They are represented graphically by a rectangle with double-lines borders

(outcomeName4 in figure 4.2).

4.3.2 Grammar

The declaration of a task class is introduced by the keyword "taskclass" followed by the

name of the task class. Then the specification is divided between the inputs and the outputs

Language 83

specifications.

-ctaskclasa detinitions» ::: <taskclass_definition>

<taskclass_definition> ":" <taskclass jdefinitions»

::: "taskclass" <idf><taskclass_definition>

"{" <taskclass_inputs ";" -ctaskctassjoutputs» "}"

The specification of the inputs of a task class is introduced by the construct "inputs", and

then the input sets are introduced by the construct "input" followed by the name of the input

set. The specification of the input sets corresponds to the specification of the white boxes of

figure 4.3a. Then the input objects, represented by white ovals in figure 4.3b, are described

using taskclass_object_list.

-etaskclass jnputs»

<taskclass_input_list>

::: "inputs" "{" etaskclass jnput jist» "I'
::: -etaskclass jnput»

-ctaskclass jnputs ":" <taskclass_input_list>

::: "input" <idf> "{" <taskclass_object_list> "l"<taskclass_input>

a) input sets of a TaskClass b) input objects of a TaskClass

Figure 4.3: Inputs of a task class

The specification of the outputs of a task class is similarly introduced by the construct

"outputs", then the output sets are introduced one by one using, to specify their type, one of

the following keywords: "mark", "repeat", "outcome" or "outcome abort", followed by the

name of the output set. The specification of the output sets corresponds to the specification of

the white boxes of figure 4.4a. Then the output objects, represented by white ovals in figure

4.4b, are described using taskclass_object_list.

Language 84

::= "outputs" "{" <taskclass_output_list> "I"
::= <taskclass_output>

<taskclass_output> ";" <taskclass_output_list>

-ctaskclassoutput» ::= <taskclass_outcome_type> <idf> "f' -ctaskclass jobject jist» "}"

-etaskclass outputs»

-etaskclass _output_list>

-ctaskclasa outcome jype» ::= "mark" I "repeat" I "outcome" I "outcome" "abort"

c) output sets of a TaskClass d) output objects of a TaskClass

Figure 4.4: Outputs of a taskclass

The object lists used for both the lists of input and output objects just list an object used as

a couple name, object class separated by the keyword "of class".

<taskclass_object_list> ::= £

<taskclass_object>

<taskclass_object> ";" <taskclass_object_list>

::= <idf> "of' "class" <idf><laskclass_object>

The object classes used here have to have been present in the object classes definitions. The

names for the task class as well as its input and output sets follow the same rules as for the

object class names. A task class also has to have at least one input and one output set. Each

input or output set is associated to zero or more objects,

4.3.3 Examples

The following script extract describes how a company could automate the selling process

presented afterwards. Usually a customer identifies a car he would like to buy and negotiate

with the person in charge of selling this car. There are two possible fmal outcomes: either the

deal is made and a contract is signed after having checked the customer references, or the deal

is off. The company also needs to know as early as possible that the deal is done to withdraw

the car from the offer and know the price of the sale. The negotiation process can also iterate

with a new vehicle.

Language

To model this application, we need an interface named for instance BuyACar. It has two

alternative input sets:

• A set named main with three associated input objects (customer of class person, staff

of class employee and vehicle of class car) for a customer who wants to deal with a specific

person in the company selling the car,

• A set named alternate with only two input objects (customer of class person and

vehicle of class car) for customers that do not know who they want to deal with.

There are also multiple output sets:

• Two of them are final outcomes: success with as associated output objects staff of

type employee, customer of class person, bill of class bill and vehicle of class car, and failure

without output object.

• The intermediate result is modelled with a mark outcome with as associated output

objects vehicle of class car, and cost of type integer.

• There is a retry outcome to model the loop with three associated output objects: staff

of class employee, newvehicle of class car and customer of class person.

The textual specification is listed below:

taskclass BuyACar
(

inputs
{

input main
(

customer of class person;
staff of class employee;
vehicle of class car

);
input alternate
(

customer of class person;
vehicle of class car

)
} ;
outputs
{

repeat renegociate
(

customer of class person;
staff of class employee;
newvehicle of class car

);
mark deal
(

vehicle of class car;

Language 86

cost of class integer
};
outcome success
{

customer of class person;
staff of class employee;
vehicle of class car;
bill of class bill

};
outcome failure
{
}

}
}

4.4- Task instances
4.4.1 Overview

The overall aim is to specify the tasks and their dependencies that make up a workflow

application. Each task has to belong to a task class.

basicTask

a) For a basic task b) For a compound task

Figure 4.5: Specification of responsibilities for a task

The information from the associated task class is then used to fmd out the inputs of the task

and to specify the mapping between these inputs and the rest of the application. The

information needing to be specified is different for a basic task and a compound task. On figure

4.5a, the information that a basic task needs to specify is shown. The dotted arrows represent

the notification dependencies associated to the input sets of the task while the plain arrows

represent the data dependencies that input objects have (e.g. a list of alternative objects that

they can be mapped to). Similarly, figure 4.5b shows what compound tasks have to specify. On

top of what a basic task has to specify, they also need to specify their constituent tasks (dark

grey rectangles) as well as the mapping of their outputs with them in terms of both notification

and data-flow dependencies. Notice that a compound task is only responsible for the

dependencies having it as target. In particular, each component task is responsible for its own

Language H7

dependencies. This allows locality of modification as well as modularity.

Information on the details of the implementation of a task also need to be provided, these

information can include the priority of the task, the resources needed, the type of node on

which the task is to be run, etc. This information is provided has a set of couples of keyword-

value that are used afterwards at creation time of the task. With the current system, this set of

couples is sent to a task factory to give it some details on the task instance to be created.

We are now going to present in detail how our language allows the specification of task

instances.

4.4.2 Grammar

A workflow application can be simply a compound task or a compound task with a set of

task templates associated to it.

-cworktlowappfcatlon» ::= <task_compound>

<task_template_def_list> ":" <task_compound>

The construct "tasktemplate" enables parameterisation of task definitions. It specifies the

parameters expected using the construct "parameters" and follows the same specification

rules as the rules for constructing basic and compound tasks. In fact, it is using the same

headers and bodies as they are using.

::= <task_template_def>

<task_template_def> ";" <task_template_def_list>

::= "tasktemplate" <task_basic_header>

"{" <task_template_parameters> ";" etaskbaslcbody» "}"

"tasktemplate" <task_compound_header>

"{" <task_template_parameters> ";" <task_compound_body> "}"

<task_template_parameters> ::= "parameters" "{" <task_template_parameter_list> "}"

<task_template_parameter_list ..- <idf>

<task_template_def_list>

<task_template_def>

<idb- ";" <task_template_para meter_list>

The name of a task template follows the same rules as those for the names of an object class

or of a task class.

Tasks are then divided into three categories. Two of them: basic and compound tasks being

the building stones for the third one, the instantiation of a task template. The difference

between these two types of tasks is that a basic task is a basic unit of work for the process that

Language

we are modelling, while a compound task gathers other tasks that may be themselves basic or

compound. As a result, basic tasks will be seen as indivisible. The third type of task is the task

template that is just an instance of a task template specification; itself parameterised version of

the two previous task types.

«task jst» ::= <task>

I <task> ";" «task jst»

::= «taskbasic»

-etaskcompounds

-etaskjemplatec-

<task>

The keywords "task" and "compound task" respectively introduce basic and compound

tasks. Both of them have their associated task class introduced by the keywords "of taskclass".

The first part of the body of the compound task definition is identical to the specification of

a basic task. First it defines some implementation information. Both types of tasks carryon

with the description of the mapping of the inputs. A compound task then requires its

component tasks to be specifying before specifying the mapping of its outputs.

::= <task_basic_header>"{" <task_basic_body> "}"etask.bask»

etaskbaslc jieaders»

etask basic body»

::= "task" <idf> "of" "taskclass" <idf>

::= -etaskjnputs»

<task_implementation> ";" -etaskjnputs»

-etask compound» ::= <task_compound_header> "{" <task_compound_body> "}"

<task_compound_header> ::= "compoundtask" <idf> "of" "taskclass" <idf>

::= <task_implementation> ".", -ctasksjnputs»<task_compound_body>

etask.outouts»

<task_list>

etasksjnputs» ";" etaskjst» ":"«task outputs»

Once against the same rules are used for the specification of the names.

A task template is the instantiation of one of the task template definitions. The only thing

needed there is the mapping of the arguments to the parameters requested by the definition.

The name of the task template that it is instantiating is introduced by the keywords "of

tasktemplate". Arguments are given between brackets and separated by comas.

etasktemplates ::= <idf> "of' "tasktemplate" <idf> "(" <task_template_argument_list> ")"

<task_template_argument_list> ::= <idf>

<idf> "," <task_template_argument_list>

The task template specification instantiated has to have been specified earlier on.

Language 89

Implementation information is introduced by the construct "implementation" as a list of

couple "keyword is value". The implementation criteria are used to specify the task controller

factory to be used, the placement of a task at run time, as well as information on its

implementation. It can also be used to specify the priority and deadlines associated to a task.

The GUI also used them to store the task co-ordinates.

<task_implementation> ::= "implementation" "{" <task_implementation_criteria> "I"
<task_implementation_criteria> ::= <task_implementation_criterium>

I <task_implementation_criterium> ":" <task_implementation_criteria>

<task_implementation_criterium> ::= ''\'''' <idf_crit> ''\'''' "is" ''\'''' <idf_crit> ''\''''

Both keywords and values are enclosed between double quotes and can have whatever

value is needed, with as restriction that the double quote is an invalid symbol that can not be

used.

Tasks input mappings are introduced by the keyword "inputs". Then each input set is listed

in turn and includes both some notification dependencies introduced by the keywords

"notification from" and some mapping information for their associated input objects

introduced by the construct "inputobject" "from".

ctaskjnputs»

ctaskjnput jist»

::= "inputs {" <task_input_list> "}"

::= <task_input>

-etaskjnput» ";" <task_input_list>

::= "input" <idf> "{" <task_input_dependency_list> "}"-ctaskjnputs

<task_input_dependency _list> .._..- E

<task_input_dependency>

<task_input_dependency> ";" <task_input_dependency _list>

<task_input_dependency> ::= "notification" "from" "{" <task_notification_list>"}"

I "inputobject" <idf> "from" "{" <task_delegation_list> "}"

It has to be noticed that at least one input set has to be declared. They potentially have no

dependencies attached to them as some dependencies could be created during run-time.

Similarly, input objects can have no delegation dependencies on them for the same reasons.

The outputs are similarly specified with as only difference the use of the construct "output"

where "input" was previously found.

Language 90

-etaskoutputss

-etask outputjist»

::= "outputs" "{" <task_output_list> "}"

::= <task_output>

-ctaskoutput» ":" <task_output_list>

-etask output» ::= "output" <idf> "{" <task_output_dependency_list> "}"

<task_output_dependency_list> .. E

<task_output_dependency>

<task_output_dependency> ";" <task_output_dependency _list>

<task_output_dependency> ::= "notification" "from {" <task_notification_list> "}"

I "outputobject" <idf> "from" "I" <task_delegation_list> "l"

It has to be noticed that at least one output set has to be declared. They potentially have no

dependencies attached to them as some dependencies could be created during run-time.

Similarly, output objects can have no delegation dependencies on them for the same reasons.

The input and output names used here have to exist in the task class associated to the task

being instantiated. There is one and only one such description per input and output sets, as well

as per input and output objects defined in the task class. To be valid, all the inputs and outputs

defined in the task class and only them have to be found in these declarations.

The notification dependencies are specified as a list of notifications. The notifications are of

the form "task myTask if input myInputSet" and "task myTask if output myOutputSet"

which should respectively be read as this task requests a notification that task myTask has

started with as input set mylnputSet and that task myTask has reached the output set

myOutputSet

<task_notification_list> ::= <task_notification>

<task_notification> ":" <task_notification_list>

::= "task" <idf> "if' "input" <idf>

"task" <idf> "if" "output" <idf>

-etaskjrotltlcatior»-

The sets referenced in a task specification have to exist; e.g. both the task and the set with

the names requested have to exist within the specification. A discussion on the different valid

types of notifications for inputs can be found in chapter 3, section 3.1 with a graphical

description on figure 3.14.

The delegation dependencies are specified as a list of delegations. The delegations are of the

form "myObject of task myTask if input mylnputSet" and "myObject of task myTask if

output myOutputSet". The first form should be read as this task requests a delegation of the

object myObject of task myTask if this task has started with as input set mylnputSet. The

Language 91

second one should be read as this task requests a delegation of the object myObject of task

myTask if this task has reached the output set myOutputSet.

<idf> "of" "task" <idf> "if" "output" <idf>

<task_delegation_list> ::= £

<task_delegation>

<task_delegation> ";" <task_delegation_list>

<taskdeleqation» ::= <idf> " of" "task" <idf> "if" "input" <idf>

The objects referenced in a delegation dependency have to exist, e.g. both the task, the set

and its associated object with the names requested have to exist within the specification. A

discussion on the different types of notifications valid can be found in chapter 3, section3.1

with a graphical description on figure 3.13.

4.4.3 Examples

Let's use as example two tasks with the same task class BuyACar defined previously. The

first task will be a basic task, and the second a compound task.

task buyMyCar of taskclass BuyACar
(

implementation
(

"Tasklmpl" is "buyMyCar.exe";
);
inputs
(

input main
{

inputobject customer from
(

john of task getCustomer if output success;
boss of task getCorporateCustomer if output success;
customer of task buyMyCar if output renegociate

);
inputobject staff from
{

carl of task getCustomerAdviser if output success;
staff of task buyMyCar if output renegociate

};
inputobject vehicle from
{

myCar of task getCar if output success;
newvehicle of task buyMyCar if output renegociate

}
};
input alternate
{

notification from
{

task getCustomerAdviser if output failure
};

Language 92

inputobject customer from
{

john of task getCustomer if output success;
boss of task getCorporateCustomer if output success

} ;
inputobject vehicle from
{

myCar of task getCar if output success
}

}
}

}

This example assumes the existence of three tasks, namely getCustomer,

getCorporateCustomer and getCustomer Adviser. The input set named alternate is used

whenever the task getCustomer Adviser reaches its output failure, and allows the task to start

in a degenerated state (no staff associated to the deal). Internally the task needs to be able to

handle both of these starting conditions. In this example, several other features can be seen: the

use of the couple TaskImpJ, buyMyCar.exe as implementation criterium allows the underlying

system to chose the right code to execute. The feedback from the output objects of the repeat

outcome is also apparent. The alternative mapping of objects is also shown in this example: the

customer can come from three different sources: from the output objects named john and boss

from respectively tasks getCustomer and getCorporateCustomer if they reach the outcome

success or from itself if it loops.

If now the same task is instantiated using a compound task, the beginning of the task

description will be identical to the previous task, except of course for the implementation

information about the code. Then the component tasks have to be specified as well as the

mapping of the mapping of the outputs of the compound task. The components that can be

mapped to an outcome are the input sets of the task as well as any of the input or output sets

of the component tasks. For the output objects, the same applies but with the associated

objects this time. Let us assume that the task is in fact the result of the composition of two

basic tasks that are respectively called dealMade and contractSigned. The script describing this

task is listed below.

compoundtask buyMyCar of taskclas. BuyACar
{

inputs
{

II identical to previous example, removed
};
ta.k dealMade of taskcla.s makeADeal
{

Language 93

II specification removed
};
task contractSigned of taskclass contract Signature
{

II specification removed
} ;
outputs
{

repeat renegociate
{

outputobject staff from
{

staff of task dealMade if output newchoice
};

outputobject vehicle from
{

vehicle of task dealMade if output newchoice
};

outputobject customer from
{

customer of task buyMyCar if output main;
customer of task buyMyCar if output alternate

}

};
mark deal
{

outputobject cost from
{

cost of task dealMade if output success
};
outputobject vehicle from
{

vehicle of task dealMade if output success
}

} ;
outcome success
{

outputobject staff from
{

staff of task contractSigned if output success
};

outputobject vehicle from
{

vehicle of task contractSigned if output success
};
outputobject bill from
{

bill of task contractSigned if output success
};
outputobject customer from
{

customer of task contractSigned if output success
}

} ;
outcome failure
{

notification from
{

Language 94

task dealMade if output failure;
task contractSigned if output failure

}

}
}

}

In this example, the structure of the specification of a compound task is shown. In

particular, its component tasks are embedded in its own specification. The use of notification

dependencies to reach the fmal outcome failure can also to be noticed. The task fails if either

the task dealMade or the task contractSigned reach themselves their outcome labelled failure.

Had the designer wanted to reach the outcome failure only in the event of both tasks reaching

their outcome failure, then the specification of the mapping of the outcome failure would have

been:

outcome failure
{

notification from
{

task dealMade if output failure
};
notification from
{

task contractSigned if output failure
}

}

4.5- Extended transaction models and workflows

The structuring mechanisms available within 'standard' transaction system s are for sequential

and concurrent composition of (sub-) transactions within a top-level transaction. These

mechanisms are sufficient if the overall application function can be represented as a single top-

level transaction. Frequently this is not the case. Top-level transactions are most suitably

viewed as "short-lived" entities, performing stable state changes to the system [22]; they are

less well suited for structuring "long-lived" applications of the type considered in this thesis.

Long-lived top-level transactions may reduce the concurrency in the system to an unacceptable

level by holding on to resources (e.g., locks) for a long time; further, if such a transaction

aborts, much valuable work already performed could be undone. If an application is composed

as a collection of transactions, then during run time, the entire activity representing the

application in execution is frequently required to possess some or all of the ACID properties of

the individual transactions. Much of the research on structuring transactional applications has

been influenced by the ideas of spheres of control [14].

In chapter 2, we discussed two such extended transaction models: Saga and Contract. Our

Language 95

workflow language provides a very flexible way of constructing extended transaction models.

For instance, Sagas (presented in chapter 2, section 2.3.1) can be easily modelled as a

workflow. Let's imagine a saga T composed out of transactions T" T2, ... T, with their

corresponding compensating transactions Cl, C,. The guarantees provided by the system are

that either T,T2 ..• Tn is executed or T, ... TiC C, is executed for some i between 0 and n. For

n =3 an equivalent workflow application is shown on figure 4.6.

~-------------------------~.~; ------------------- ..
~----------------:~--~-~::::-\"".---,-------- -

~¢JC3 51"
Figure 4.6: Saga modelled as a workflow

In figure 4.6, the workflow has two outputs: commit if the saga was successfully executed

and compensated otherwise. Each sub transaction can either commit or ahort. This is

represented by the two output sets (grey boxes), the upper one being commit. The

compensating transactions are (as usual for sagas) supposed to always execute successfully.

The dependencies (dotted/dashed lines) are OR-ed (e.g. only one activated dependency is

needed to trigger the execution of a task).

Use of workflows for implementing extended transaction models is also discussed in [2].

Our alternative output sets provide a way to specify in which state the activity modelled ended

up. Alternative inputs sets and sources for input objects also allow adding some fault tolerance.

Compensating tasks, alternative tasks... can be used to model these extended transaction

models.

4.6- Comparison with METEOR

In chapter 2, we reviewed a number of languages. In this section, we are going to compare

our language with METEOR (introduced in chapter 2, section 2.2.2.1.) as it comes closest to

our language in term of functionalities provided and is the best known workflow language in

the workflow community. They have two languages: the WorkFlow Specification Language

Language 96

(WFSL) and the Task Specification Language (TSL).

As stated in chapter 2, the WFSL is divided in several parts:

1. Type definitions and variable declarations, similar to the C syntax.

2. Task type definitions

3. Task class and filter definitions

4. WF definition

• task instantiations

• rules

5. WF instantiation

Part I corresponds to the declaration of our object classes, however METEOR allows you

to define some new types similarly to what can be done in C, while our language only allows

you to declare the valid object classes known by the underlying system.

Part 2 and 3 correspond to our task class definitions, the major differences being that they

only allow one input set and they specify the internal states and transitions between these

states. Our mark outcomes would correspond to their non-initial and non-terminal states,

however we have made no provision whatsoever to try to capture the internal transitions

between states. Both languages have typed input and output objects. METEOR also introduces

the notion of filter, which converts objects of a type to another type. We did not feel that there

was a need for a specific entity to filter data and are confident that simple tasks are a good way

to handle data filtering.

Part 4 corresponds to our task instances specification. Both languages support simple and

compound tasks. The way they deal with dependencies however is quite different. While in the

WFSL, they have a rule section localised in their compound tasks; we keep the dependencies

with the task that is the destination of the dependency. We do believe that it is a better solution

as it provides better modularity and allows a better management of dynamic reconfiguration as

described latter in this section. In particular, our tasks have no knowledge whatsoever on

which downstream tasks are using them as source of dependency (cf. section 3.3.1). METEOR

allows complex rules with some "control dependencies" (preconditions) that can involve some

computations.

The following rule for instance would be read as: if task LI reaches state done and the

function success applied to task LI and its output (object) output I is evaluated to TRUE and

Language 97

the variable outvalL4 is greater than 5 then task L2 should enter state start using output2 from

task L I as input for input 1.
[Ll, done] & (success(Ll, outputl) = TRUE) & (outvalL4 > 5) ENABLES [L2,

start] % Ll.outputl -> L2.inputl;

With our language, we would have a special output set for L I which fulfils the listed

conditions, and a dependency between output Iof task L I and input I of input set start of task

L2.

As far as part 5 is concerned, we do not allow specification of the initial objects to be used

to start the workflow in the script. A CORBA interface to start the specification from the

outside world has however been provided.

As far as application fault tolerance is concerned, METEOR creates an extra state per

controllable transition. This error state called "transition name"_err is reached in case of

failure. They have also proposed a single default common error state. On the other hand, we

consider that we have a normal execution output state and that all the others are exception

handling output sets. The binding is made at the task implementation level and is not seen at

the Workflow specification level.

As far as dynamic reconfiguration is concerned, METEOR tackles the issue by using two

different techniques. The first one is to use arrays of tasks whose size is set up at run-time and

whose dependencies are specified based on the index of the task in the array. This allows them

to create an arbitrary number of tasks at run-time. The other technique used is to use a task of

class controlClass that is allowed to rewrite the specification at run-time. This task needs to

know about the whole current workflow application, as the specification is fully re-interpreted.

We have two ways to handle dynamic reconfiguration: the first one is to use genesis task (lazy

instantiation) which allows you to instantiate the genesis task only if it is needed. The second

way to handle dynamic reconfiguration is for a task to interact directly with the task controller

which does not require to know about the whole workflow applications and does not have the

overload of needing to be re-interpreted.

As far as specifying the internals of a simple task is concerned, we did not create yet another

programming language for it, as we did not see the need for one, we only specify a task factory

to be used and some implementation criteria. The toolkit has an option to create some Java

code skeletons that deal with all the interaction with the task controller. METEOR on the

other hand created the Task Specification Language. The main aim of the TSL is to avoid

rewriting some legacy applications. The TSL enables the developer to specify the interfaces

Language 9X

and the specific reactions to this entity's behaviour (error handlers ...), it also enables to

perform specific actions to be performed such as SQL queries ... It also includes some

statements to let the WF manager knows the current state of the task (TASK_EXECUTINGO,

TASK_ABORTEDO, TASK_COMMITTED(object), TASK_DONEO ...). All these

statements can be seen as a set of macros that can be embedded in the host language such as c,

C++. In the case of legacy applications, the TSL program consists in:

• a call to a macro indicating that the task is about to execute

• a call to an interface that submits or calls the legacy application

• a call to a macro when the application complete its execution

The TSL deals with task level failure recovery and error handing and error handling specific

to the interface or processing entity used.

To sum up, we do believe that our language is simpler than METEOR WFSL yet powerful

enough to specify the applications that WFSL can specify. It can also be seen that our language

provides better fault tolerance and dynamic reconfiguration features thanks to our multiple

input sets and local dependency specifications.

In this chapter, our language was presented as well as its associated graphical notation for the

GUI. In the next chapter, we will validate our design by showing how it can be used to specify a

series of workflow applications.

Examples 99

Chapter 5

Examples

In this chapter, the reader will find some examples illustrating the main features of our

language as well as its suitability for specifying dependable workflow applications. Other

examples are presented in [60]. The first example is a process-ordering example showing how

a complete (yet simple) workflow application can be specified. The next example is a travel

reservation application illustrating how to add application level fault tolerance to workflow

applications. The third example is a network fault management example provided by Northern

Telecommunication that shows how to model loops as well as dynamic addition of tasks.

The screen dumps used as support in this chapter were generated using the toolkit

presented in the next chapter. For readability, only extracts of the scripts are given in this

chapter. However the reader can refer to appendix A for the complete specifications.

5.1- Example I: Customer order processing
This example will illustrate how task classes are specified and how an application can be

composed out of other tasks and compound tasks.

The workflow application considered here is doing some customer order processing. A

customer order some items such as some softwares, which triggers two activities that can be

executed in parallel: an activity checking whether the item ordered is in stock or not and an

activity checking the credential of the customer. Once both of these activities have been carried

out, two activities can then start: an activity capturing the payment, and an activity dispatching

the item. All these activities can reach two outputs success or failed, with the exception of the

capture of the payment that is always successful. We also want that the dispatch activity be

atomic.

The workflow application will fail if one of the tasks it is composed of fails. It will succeed

Examples 100

if the item is delivered and after that the payment is captured. We do not claim that this is a

realistic process, in reality the company may want to wait for the payment to be capture before

dispatching the item for instance, and it is likely that some of these tasks will themselves be

some compound tasks. A screen dump of the process is presented in figure 5.1. It has to be

noted that we have been using a compact representation of the task components on (i.e. neither

the input nor output sets nor their associated objects are shown) this figure. The User Manual

in appendix 7 has several screen dumps from non-compact representations.

Figure 5.1: Overall process ordering application

In order to specify an application, the first thing to do is to identify the object classes. In this

example, we will be dealing with three types of object: objects of type Order, objects of type

Goods and objects of type Bill.

As a result, we declare these three object classes in the script:

objectclass Bill;
objectclass Goods;
objectclass Order;

Now, we need to specify the task classes that we are going to use. Let us for instance

specify the task class needed for the workflow application. A taskclass is used to specify the

interface of the task, namely its inputs and outputs, and is independent of the implementation

of this application. The workflow application takes an object of type Order as input and returns

an object of type Goods if the process is successful, nothing if it fails. These two outputs

(success and failed) are just [mal outcomes. The resulting taskclass named ProcessOrder is

fully specified using the following code:

taskclass ProcessOrder

Exam les 101

{

inputs
{

input main
{

order of class Order
}

};
outputs
{

outcome failed
{

} ;
outcome success
{

items of class Goods
}

}
};

The other task class that is interesting is the one for the task dispatch, as we want a task

class for an atomic task. The way to do that is to use an outcome abort instead of just

outcome. Let also assume that the dispatch task has only one input set (main) and two output

sets (success and aborted). The set main and success having an object of type Goods

associated to them. The resulting task class specification is:

taskclass Dispatch
{

inputs
{

input main
{

items of class Goods
}

};
outputs
{

outcome abort aborted
{

} ;
outcome success
{

items of class Goods
}

}

};

Let's now instantiate the workflow application. We have to declare a compound task with

as interface the one describe in the task class ProcessOrder.

compoundtask processOrderApplication of taskclass ProcessOrder

Then we need to specify implementation criteria allowing to specify some placement

information and other information needed at run-time. The two criteria starting with GUI are

Examples 102

automatically generated by the GUI to keep the co-ordinates (GUI_X, GUI_ Y) of the task on

the GUr. "Node" is used to specify that you want the task controller running on the host

kellah.

implementation
{

"GUI_X" is "235";
"GUI_Y" is "100";
"Node" is "kellah"

};

The next stage is to map the inputs. As this particular task is the entire workflow application

being modelled, its inputs are not mapped (as they are coming from «outside»). The mapping

will be done at run-time with some object provided by an administration task. It has to be

noticed that the inputs specified here are those declared in the associated task class.

inputs
{

input main
{

inputObject order from
{

}

}

};

Then we have to specify the component tasks, for simplicity, we have just considered the

specification of one of them, dispatch. Similarly to what we did for processOrder, we first

specify the task class and then the implementation criteria. The criteria with keys

"TaskCtrIFactory" and "Tasklmpl" are used by the workflow engine to choose a task

control factory for the controller of this task as well as a task factory to map the task to an

instantiation. Notice the use of the construct task instead of compoundtask as this is a primitive

task (i.e. its implementation details can not described as a (sub) workflow). Having done that,

we have to specify the dependencies. In this example, we only have one input set (main) with

one associated object items. There are two dependencies specified:

• A temporal dependency (notification from) stating that before starting this task with

the input set main, the task paymentAuthorisation has to have reached its success output.

• A data-flow dependency (inputobject from) stating that the input items should be

mapped to the object items of the output set success of task checkStock.

The resulting specification for this task is:

Examples ID}

task dispatch of taskclass Dispatch
{

implementation
{

"GUI_X" is "477";
"GUI_Y" is "184";
"TaskCtrlFactory" is "Order";
"TaskImpl" is "Dispatch";
"Node" is "kellah"

};
inputs
{

input main
{

notification from
{

task payrnentAuthorisation if output success
};
inputObject items from
{

items of task checkStock if output success
}

}
}

};

Having described the task components as well as the dependencies involving them as

targets, we now need to specify the mapping of the outputs of the workflow application. The

outputs are described similarly to the inputs. In this case, the application was failing (outcome

failed) if any its constituents failed. This is specified by the first notification from. Any of the

three alternatives triggers the decision of reaching this output. The second output success can

only be reached if its object is available (object items from dispatch if it reaches its success

output) and the task payment Capture reached its output success.

outputs
{

outcome failed
{

notification from
{

task checkStock if output failed;
task dispatch if output aborted;
task payrnentAuthorisation if output failed

}

};
outcome success
{

notification from
{

task payrnentCapture if output done
} ;
outputObject items from
{

Exam les 104

items of task dispatch if output success
}

}

}

}

Given this specification, each task can be viewed as an interface and a set of incoming and

outgoing dependencies.

Figure 5.2: Dependencies involving the processOrderApplication compound task

In figure 5.2, the processOrder application is shown with its internal dependencies (e.g.

dependencies involving its children and itself). All the dependencies on its input sets are

outgoing, as at specification time, we don't know what can be fed to them. Similarly all the

output sets have incoming dependencies on them (we don't know yet what will be using the

result of the workflow. This is specific to this task as it represents the entire workflow

application and its inputs are coming from the "outside" and similarly the «outside» uses its

outputs.

Figures 5.3, 5.4, 5.5 and 5.6, show the resulting dependencies on the component tasks of

the workflow application.

In order to specify a more detailed description of one of these components, you just need to

replace it by a compound task with the same interface (task class) and to specify internally the

components of the new task as well as their inter-dependencies. It has to be noticed that the

only place where modifications need to be done is within the specification of the task being

modified. This locality of the modification is an important feature of our model.

Exam les 105

-'I ~}mt'l·Hnlrl('17·1J'pIJrnt;mI.Jrik·lt ~ I
"'::""~_j

Figure 5.3: Dependencies involving the checkStock task

Figure 5.4: Dependencies involving the paymentCapture task

Figure 5.5: Dependencies involving the paymentAuthorisation task

I c::::: pOJ'nl!"l.iInJaoriHJlJon.S'''f'e~. ::=:::> I

Figure 5.6: Dependencies involving the dispatch task

Examples 106

5.2- Example II: A travel agency

This example will show how to use a compound task to hide some details of an activity as

well as how compensating and alternative tasks can be specified to provide some extra

application level fault-tolerance.

Let us consider a travel agent selling some combined travel reservations flight plus hotel.

First the travel agent gathers some information on the date of the trip, etc. Then he tries to find

a combination of a flight and a hotel for its customer (he may have to cancel the reservations

made and iterate its search if he can't book both the flight and a hotel) till he finds a match.

Then, when the travel arrangements have been made, he prints the tickets. This workflow is

represented in figure 5.7.

Flight
Cancellation

Data Flight Hotel Print

I Acquisition .. Reservation ~ Reservation ~ Til.:kcts Completed IStart I ~
"I

_____. Precedence dependency

Figure 5.7:Travel reservation workflow

We assume that printing the tickets can fail (toner not available, out of paper, etc.) and that

a requirement of the process is to terminate the application even in this case but in a different

outcome (reserved in our figures). This could be used by another workflow application to deal

with the fault (by calling a technician for help for instance). We would also like to be able to

know as soon as the reservations were carried out the total bill to speed up the payment of the

order. This application is depicted on figure 5.8. The iteration process of trying to reserve a

plane ticket and the hotel nights is represented by the repeat outcome that makes the

travelReservation task iterate when this repeat outcome is reached.

Exam les 107

-"",---_ .. -- - -....-....--:;;.-

Figure 5.8: Overview of the travel task

f"'---'-"------'\ ~-=---- "
~~\~ ~:-1I'O""'nsQI'I'/.f{hlH"S,.lIInllt"'f'

\ I

tlnlnA ('quill ilial'

Figure 5.9: Overview of the travelReservation task

Finding the hotel and flight consists in gathering the data such as date, destination ... from

the customer, then trying to find a flight and a hotel if a flight was available. If a flight was

reserved but a hotel could not be booked, a special compensating task must be run to undo the

flight reservation. A graphic version of these requirements is shown in figure 5.9. Notice that

the compensating task is provided as a normal task part of the workflow. Typically we will

have two types of compensating tasks: one doing some forward error recovery and one doing

some backward error recovery. In this example, as the task compensateFlightReservation

undoes the effects of the task flightReservation, it is a backward error recovery task. Instead of

having a compensate task for the flightReservation, we could also have had a forward recovery

task for hotelReservation that would for instance try to book an hostel and whose success

Exam les 108

would trigger the outcome success of its parent task.

ootaAcquisition _____ \ I

---_____', /
----... \ I

llllUt em"sf'lI,ntliJ'~I'

Figure 5.10: Overview of the travelReservation task, using alternative tasks.

'JOoklln~IPtut""

Figure 5.11: Details of the reliable hotelReservation task.

Let's now imagine that this travel agency has some special offers from a particular chain of

hotels. As a result the agent has to check first whether he can book a room in that hotel and if

it is not possible contact the tourist information centre database to book another hotel. In this

case, we just have to replace the hotelReservation task by a compound task with the same

interface consisting of the old basic task (renamed as bookHotelTouristOffice) as alternative of

a new task trying to book a room with the hotel partner of the agency (named

bookHoteIPartner). The modified task travelReservation appears in figure 5.10 while the

details of the new task are shown in figure 5.11.

Exam les 109

JHWi-J '01 e f!'un,." '0.flie,' .11.. ;',

Figure 5.12: Dependencies involving the bookHotelPartner task

On figure 5.11, we can see two temporal dependencies. The first temporal dependency is

between bookHotelPartner and bookHotelTouristOffice indicating that the latter task is started

when the former task fails. The second dependency is between the alternative task and the

parent's output, and states that if the booking was not carried out by the alternative task, we

give up and enter the failed output of this compound task. Figures 5.12 and 5.13 show the

detail of the relationships involving the task and its alternative.

Figure 5.13: Dependencies involving the bookHotelTouristOffice task

The differences between the specifications with and without the alternative hotelReservation

tasks are now discussed. First of all, there are no differences between the two specifications
•

outside the specification of the task affected. The code relative to the specification of task

hotelReservation is given below, with the differences underlined by a grey background. There

are three differences. The first one is that the task is declared as a compound task and no

longer as a basic task. The second difference is that it loses the implementation criteria related

to the run-time mapping of the task instance.

Exam les 110

task hotelReservation of taskclass HotelReservation
{

implementation
{

"GUI_X" is "382";
"GUI_Y" is "192";
"Host" is "kellah";
~'I'ciskCtrlFactory"is "Travel";
~.TaskImpl"·.is "hotelReservation"

};

inputs
{

input main
{

notification from
{

task flightReservation if output success
} ;
inputObject end from
{

end of task dataAcquisition if output success
} ;
inputObject place from
{

place of task dataAcquisition if output success
} ;
inputObject start from
{

start of task dataAcquisition if output success
}

}

}
} ;

The last difference is the specification of the component tasks (bookHotelPartner and

bookHotelTouristOffice) as well as the mapping of the outputs to the objects and sets of its

constituent tasks.

5#~~"'~!!~ hotelReservation of taskclass HotelReservation
{

implementation
{

"GUI_X" is "382";
"GUI_Y" is "192";
"Host" is "kellah"

} ;
inputs
{

input main
{

notification from
{

task flightReservation if output success
} ;
inputObject end from
{

end of task dataAcquisition if output success

Exam les III

} ;
inputObject place from
{

place of task dataAcquisition if output success
};
inputObject start from
{

start of task dataAcquisition if output success
}

}

};
task bookHotelPartner of ta.kalass HotelReservation
{

implementation
(

;'~Gui2X"is "414";
IIGUI .;Y II is "208.";
."HoE!t ill..."www.hilton.com" ;
"Ta~kc:trlFactory" is "Travel";
"irp.s]cImpl,;~i. "hotelReservation"

};
inpu,ts
(

iiiP'l1t.main
(

inputQbject end from
(1

end of task hotelReservation if input main
>i
i~putObj4!llctplace from
(

place of task hotelReservation if input main
);
inputObject start from
(

start of task hote~Reservation if input main

)

t".kbobkHo'tei'ro·uristOffice of taskclas. HotelReservation
J iDrp:lementation

,(;
;''-GtfI~X;'3'is. 0; 584" ;'
:',GUI.;;;;y"./is "120" i
~'Host~..isllwww.travel-reservation.com "i,
,"TaskCtrlFactory-" is' "Travel" ;
:".Ta}3l<.I~pl,~·1. "potelReserva t.Lon"

II
i11P\1~.
J

~()tifica1::LoD'~fred
:;(' "''''N~'''''''''''''~ «, ~A«'4''''''''''', ~'>M,,," ~t".k. bobkHotelPartner if outpUt· failed

.<."".., .. ,'" ",' ;;."">~',~.""..,*""~,, """'" - .-- ~ '" \ ..

.) ""

http://www.travel-reservation.com

Exam les 112

inputObject end from
{

end of task hotelReservation if input main
};
inputObject place from
{

place of task hotelReservation if input main
};
inputObject start from
{

start of task hotelReservation if input main
}

}
}

};
outP~ts
{

OutcOme· failed
(

notification frOID
{

task bookHotelTouristOffice if output failed
}

ou~cc:maesuccess
{

outputObject ho.!:elfrom
{

hotel of tasJt~bookHotelPartner if output success;
hotel oftasJtbookHotelTouristOffice if output success

};
}

)
};

Notice that the mappmg of the output object hotel associated to the compound task

hotelReservation can be done to two objects: either to the output object hotel associated to the

outcome success of bookHotelPartner or to the corresponding object of the task

bookHotelTouristOffice. Order of the alternative is significant, as the first in the list will be

given preference over the second one and so on. Similarly the order of the input and output

sets are important, in the event of several of them being able to be triggered, the one chosen is

the highest in the list. In this particular case, this feature is not that important as anyhow the

two objects will never be available at the same time.

5.3- Example III: Network fault management
In this example, we consider the modelling of a process dealing with network faults and

resulting re-negotiation of the services provided if needed. A network is subject to some

Examples 113

possible faults, which trigger alarms. The Alarm Correlation Bridge (AC Bridge) receives such

alarms (for instance unspared ATM, etc.) and forwards them to the Service Impact Analysis

Agent (SIA). In turn this agent fmds out the activities impacted by the alarms as well as their

costs (loss of revenue, penalties, etc.). These activities are sent to a Service Impact Resolution

Agent (SIR) that proposes several possible solutions to address the problem. This is done via a

Service Level Agreement (SLA) negotiation that will for instance negotiate to decrease the

quality of a video, reschedule a service, re-route a service, abandon as service, etc. The system

then takes corrective actions. We assume that on reception of an alarm the AC bridge starts a

workflow dealing with the treatment of the fault.

Figure 5.14: Overview of the alarmResolution task

~~---- --- - - - - -- ---- -_- ----..-...-,-..~,-:::::::- - - -- - - - - - - - ---'-~~-~- ... _- ... - ... _ - ..~- ... ---- ... _- _ --- ... _- _ ... _

Figure 5.15: Overview of the Service Impact Analysis task

The process can be seen on figure 5.14: on reception of the alarm, it is passed to the SIA

that can either fails, decides that there is no follow up and trigger the output success of the

workflow, or generate a list of impacted services. This list is then passed to the SIR that has

the same choices, but generates a list of possible resolutions. This list is itself used by the SLA

Examples 114

that deals with it and on completion trigger the completion of the workflow.

The overview and details of the SIA (and SIR) are now presented. The overview of SIA is

depicted on figure 5.15 and the details of SIR are shown on figure 5.16. Both of these two

processes are identical except for the type of data they are supposed to be dealing with.

Initially the siaAnalysis (respectively sirAnalysis task) creates the list of impacted services

(respectively resolutions) if there were some. If this list is not empty, it is then presented to a

human responsible for validating or invalidating the software decision. It has in particular no

way to change the list he is presented with. Changing that would just require to change the

task class so that it return the potentially modified list and use that list as impacted list (output

object impacts). This validation by a user is represented by a task (respectively siaValidation

and sirValidation) that is called whenever a list is generated and that forces the output of the

embedding task using two temporal dependencies (sir.validate.ok and sir.validate.refuse in

figure 5.16)

Figure 5.16: Details of the dependencies involving the Service Impact Resolution task

An interesting feature of our system is used in the SLA. As we want to start one negotiation

per resolution, and that this list is generated at run time by the SIR we have no real way to

model that statically as a workflow. As a result, we introduce the createNegociateResolution

task that receives as input the list of resolutions and is responsible for dynamically generate the

workflow presented in figure 5.17.

Exam les I IS

cmateNegotialrHesoilllio1l.

Figure 5.17: Overview of the Service Level Agreement task

It has to be noticed that the mapping of the SLA outputs is not fully specified. As a result

some warnings will be generated when the specification is checked to let the user know of a

potential problem in its specification. The mapping will be done with the dynamically created

task. It is the responsibility of the task createNegotiateResolution to set up properly the

dependencies between the task it generates and the outputs of the compound task SLA.

The tasks to be generated by the createNegociateResolution can be themselves modelled as

a workflow. This workflow is represented in figure 5.18. Given a resolution, the task

initResolution is started and generates an initial bid for the producer (telecommunication

provider). The negotiation between the consumer and the producer iterates until an agreement

is found (i.e. one of them accepts the other's bid) or refused (i.e. one of them refuse to bid).

This iteration is modelled by a repeat output that is feeding back the modified objects after the

round. The details of the negotiation process are shown in figure 5.19.

Examples 116

negoc kue He 50111(;011

nego«wed

I,Jegoiili."iRruU!4 __IIIa;1I

--

Figure 5.18: Overview of the Negotiation Resolution task

,wgoiltltlo,rRoUlId

linin

Figure 5.19: Overview of a round of negotiation of the SLA

In figure 5.19, you can also notice that the resolution object of the input set is directly used

by the output set nextround. This is due to the fact that the resolution is not modified during

the negotiation round. This ability of our system to forward inputs to its outputs can be used to

implement some routing tasks. The repeat output sends back both bid and resolution. The code

associated with that is now presented, the lines related to the loop are underlined by a grey

background:

taskclass SLAbid
{

inputs
{

input main
{

bid of class Bid;

Examples 117

resolution of class Resolution
}

};
outputs
{

outcome accepted
{

bid of class Bid
};
outcome refused
{

} ;
~ltW(h""U",_,.}t;-~'·~·~·W*W-;>0:V"" 5"'?'tP':::"*<f'·"·:~·'~'-'

~ep'!~~~:g.M~,~t::li:2l!!lg
~

}
};
compoundtask negotiationRound of taskclass SLAbid
{

implementation
{

"GUI_X" is "448";
"GUI_Y" is "105";
"Host" is "kellah"

};
inputs
{

input main
{

inputObject bid from
{

};
inputObject resolution from
{

}
}

};
task consumer of taskclass SLAbidRound
{

Ilbody suppressed
};
task producer of taskclas. SLAbidRound
{

II body suppressed
};
outputs
{

outcome accepted
{

outputObject bid from
{

bid of task consumer if output accepted;

Examples 118

bid of task producer if output accepted
}

} ;

outcome refused
{

notification from
{

task consumer if output refused;
task producer if output refused

}

nex.~rounq

}
};

As can be seen from this example, in order to use a loop, an output of type repeat outcome

has to be declared in the task class used. Then its associated objects can be fed as input

objects, it itself can be used as source of a temporal dependency having as target an input set

of the same task. The mapping of this output is similar to the other types of outputs.

In this chapter, the main features of our language were presented, using examples. This is

not an extensive presentation of the possibilities of our language. For instance, input time-out

tasks can also be used. This is particularly useful to model deadlines. A deadline will be

modelled as an input time-out task that when it completes provides some alternative inputs to

the task concerned with the deadline. In this case, alternative input sets are also useful as they

allow starting the task in a degenerated state (e.g. without all its inputs) and still being able to

carryon.

In the next chapter the toolkit implemented to support the system will be presented. The

screen dumps used as support in this chapter were generated using the toolkit. Using the

toolkit also allows users to ignore the textual language and use a graphical notation to specify

their application.

Toolkit 119

Chapter 6

Toolkit

The main aim of the Workflow Management Toolkit (WtMT) is to provide high level easy

to use facilities to users to enable them to compose workflow applications, and then execute

and monitor them. In this chapter, the reader will find a detailed description of the toolkit.

After giving an overview of the toolkit as a whole, the notion of class of users for the toolkit

will be first introduced, and then the workflow script servers will be described including the

protocol used to communicate with it. Then we will present in turn how the toolkit allows you

to specify, simulate, execute and monitor a workflow application. Further information is

available in the OpenFlow documentation [81] and in the Toolkit User Manual in appendix B.

Workflow Engine

Figure 6.1: Graphical representation of the workflow system

Toolkit 120

6.1- Overview

Components

Keeping in mind the software structure of the system as well as the relationship between its

different components described in chapter 3, and depicted in figures 3.2 and 3.3, a graphical

representation of the system with the communication between its components is given in figure

6.1.

The WfMT is composed of three main components: the Graphic user Interface (WfGui), a

script server (WfSS) and a workflow engine (WtE). Typically users will only interact directly

with the WfGui.

In order to provide greater flexibility by allowing incorrect/incomplete script specifications,

workflow scripts servers were added to store specifications being created. Users wishing to

use the textual language (described in chapter 4) to specify a workflow application can also

directly export it to a workflow script server. Then they can load it into the toolkit using the

WfGui. Later on, they can also get it back as a script, modify it and export it back to a

workflow script server.

A GUI is provided in order to facilitate the specification, execution and monitoring of the

workflows. As one of the requirements was to be able to use the workflow management

system from an heterogeneous set of machines and possibly from remote hosts, it was decided

to implement the front-end of the workflow system as a Java Applet. As a result the GUI is

platform independent and can be used remotely with as only requirement to be able to use a

Java-enabled browser. Being an applet it can also run directly on the user's machine. It acts as

a front end to the Workflow Engine itself specified as a CORBA service. The Repository

Service is responsible for storing the low level (run-time) representation of the tasks. The

Execution Service consists of Task and Task Controller factories that are used to instance a

specification from the Repository Service. Typically a user will create a workflow specification

either using the GUI high level tasks or the workflow language presented in chapter 4, then

will export it to the Repository Service and finally will execute it thanks to the Execution

Service and monitor its progress.

The main features that the toolkit provides are:

1. Creation of new workflows either by loading a script from a WfSS or by using the

graphical notation presented in the previous chapter.

2. Extending, modifying existing specifications

Toolkit 121

3.

4.

5.

Checking workflow applications for loops, and other errors

Simulating workflow applications

Instantiating and monitoring workflow applications

6.2- Classes of Users

In order to use the Toolkit, you need to login to the GU! by providing a user name and a

password. The Toolkit checks these data against a list of registered users and if it finds a

match, it also affect to the user a class of connection and an initial name context from the

Name Service where all user related servers and workflow objects are kept.

Three different classes of users have been created:

• Maintainers: this is the equivalent of the UNIX supervisors. They have all the options

available to them. They can create new users on-line as well as change their class of

connection or path used for the name server using the form depicted in figure 6.3.

• Designers: they can create their own specifications, but can not modify directly the

specifications stored in the repository service.

• Users: they can only monitor what is happening in the workflow. In particular they can

not create or modify specifications.

It has to be noticed that maintainers get a super-set of the features given to designers and

themselves getting a super set of the features given to users.

6.3- Workflow model using the WfGui

The WfGui uses the three main objects of our system:

• Object Class

• Task Class

• Task

In the next paragraphs, the models of these objects will be introduced.

6.3.1 Object Class model

It is represented as an object with as data a String to keep its name and a list of the

TaskClassObjects of this class.

Toolkit 122

ObjcctClass

String label
TaskClassObjectList 01

1
0..*

TaskClassObject

String label
ObjectClass 01
boolean valid

0..*

1 ~ ~
TaslcClasslnput'Set TaskClassObjectSet TaskClassOutputSct

{> String label kl
TaskClassObjectList 01
boolean valid

I..* 1.. *

TaskClass
I :....,.1....

String label
TaskClassInputSetList inputs
TaskClassOutputSelList outputs
boolean valid

Figure 6.2: UML class diagram (excluding task components)

6.3.2 TaskClass model

A TaskClass is represented by an object with as data a String to keep its name and a list of

Task of this class. It also includes a list of TaskClasslnputSets and of TaskClassOutputSets.

TaskClassInputSets (respectively TaskClassOutputSets) are represented by objects with as

data a String to keep their name as well as a list of TaskClassObjects. A TaskClassObject itself

is represented by objects with as data a String to keep its name as well as a reference to its

ObjectClass. Each of these objects also has a boolean stating whether it is valid or not. The

UML class diagram for the TaskClass model is given in figure 6.2. It has to be noticed that the

methods associated to these classes do not appear on the diagram.

Toolkit 123

0..* I
Ta<;kObjcct

f--
TaskInputObject I..* TaskOutputOhjectTaskObjcctList ohjUscd

l-t> Task Objcctl.ist objUsing f:]-[...)

0..*
II~~ 0..*

TaskObjcctSetList
0..* TaskObjectSet -

I.. * I..* .TaskOutputSct
TaskObjectList tal

<}-TaskInputSet TaskObjectSetListList sets Used

1---[> TaskObjectSetList setsUsingMe
[... J

I.. *
I..*

Task
11....

String label
TaskClass taskClass
TaskInputSetList inputs

TaskMetaInfo
TaskOutputSetList outputs
TaskMetaInfoList meta

I...... boolean valid
String myKey 0..* [.. J
String myValue

~0..*

'0
CompoundTask

TaskList tl

Figure 6.3: UML-like class diagram (excluding TaskClass components)

6.3.3 Basic task and compound task models

A basic Task is modelled by an object of class Task with as data a String for the name of the

task, a reference to an object of class TaskClass (its associated TaskClass), a list to objects of

class TaskMetaInfo that are used at instantiation time by the Task factory. An object of class

TaskMetaInfo represents an instantiation criterium used to choose the best binding at run time

for a task. It is modelled by a couple key-value. In the current implementation, the value is of

Toolkit 124

type String ..

A Task object also contains a list of TaskInputSets as well as a list of TaskOutputSets. An

object of task TaskInputSet (respectively TaskOutputSet) contains a list of TasklnputObjects

objects (respectively TaskOutputObjects objects), as well as a list of lists of TaskObjectSets

(either TaskInputSets or TaskOutputSets) which represents the alternative sets of temporal

dependencies on that TaskObjectSet. It also includes a list of the TaskObjectSets that are using

it as source of dependencies. It also contains two strings, a Task object and a

TaskClassObjectSet object. The two first Strings are used while loading a workflow script

from the WfSS and if the TaskObjectSet is invalid, while the last two are used when the

TaskObjectSet has been registered or if it was created using the WtGui (with a valid

TaskObjectSet).

A TaskInputObject (respectively TaskOutputObject) contains two lists of TaskObjects

(either TaskInputObject or TaskOutputObject). One list contains the data delegations

associated to this TaskObject and the other contains a list of other TaskObjects using this

TaskObject as source of data delegations. Similarly to TaskObjectSets, TaskObjects also keep

their names in two ways:

• As three strings and an integer, to store the names of their parent Task, parent

TaskObjectSet, their own name and their type (TasklnputObjectffaskOutputObject)

while a script is being loaded,

• As a Task, a TaskObjectSet and a TaskClassObject when it becomes valid.

A compoundTask also keep a list of Tasks to represent its components.

This is represented in figure 6.3.

6.4- Workflow File System (WfSS)
This service is similar to FrP in that it is used to transmit some script specifications from a

normal me system (such as UNIX) to the workflow toolkit and reverse. The script server was

implemented as a Java application and can be run on all platform" supporting Java. It is a

multi-threaded server supported multiple clients connecting simultaneously.

6.4.1 Connecting to a workflow script server

As a user, the first thing that you probably want to do is change the default script server to

be used. For security reasons, the Toolkit can only use servers located on a couple of machines

Toolkit 125

of the domain ncl.ac.uk. This is due to the fact that in order to bypass the security managers of

the browsers such as Netscape, we have used a proxy for the WFSS. This proxy implemented

as a CGI has been coded to only forward requests if they are aimed at this subset of machines,

due to security restrictions imposed by the webmaster where it was run.

Once a valid WfSS has been declared, you can load or save your specification as a script

using the script server. The aim of the script servers is to enable the user to save its work as a

workflow script wherever wanted.

6.4.2 Protocol

We will now describe the protocol used to communicate with the workflow script server.

The protocol can be divided into three phases. first a hand shaking. then some work being

performed and then closing the session. The protocol is depicted on figure 6.4.

HELP

HELP

state

COMMAND

• Command issued

Figure 6.4: State transitions on server side of the WfSS

When the server is contacted, its reaction is to start a new thread to deal with it. This new

thread exchanges messages with its associated client. There are eleven types of messages:

connected, error, get file, get directory, open succeeded, open failed. close, quit, comment,

success and data. Each type of message is associated with an operation code that is send back

before its content.

Toolkit 126

Once created, the thread starts sending a message of type comment to the client. The aim of

this message is to let the client know the version of the server. At this stage, the client can

issue three commands:

• QUIT to close the session. The success of the command IS acknowledged by a

message of type quit,

• HELP to get a list of command supported,

• USER name to give its name to the server.

On reception of a message "user name", the server sends back a message of type connected

back to the client and that's the end of the first phase.

Once the protocol is in its second phase, the client can get some work done. The server

supports eight commands:

• HELP to list the commands available and sending them back as messages of type

comment,

• QUIT to close the session. The success of the command IS acknowledged by a

message of type quit,

• GET [fileidirectory J to send back the list of files or directories in the current directory

respectively as messages of type get file and get directory,

• CD directory either to get the path of the current directory or to move in the directory

tree. The path of the current directory following the keyword CWD is send as comment if

the new directory is the same as the old one, otherwise the new path following the keyword

PWD is send as a message of type success,

• WRITE filename to start writing in the file filename whatever is sent by the client till

reception of a CLOSE command. The CLOSE command is acknowledged by a message of

type close. If it fails, a message of type error is sent,

• READ filename to get the content of the file named filename from the current

directory. The server first acknowledges the success of opening the file for reading by

sending a message of type open succeeded. It then proceeds with sending the content as a

set of messages of type data. If it fails, a message of type error is sent.

• CLOSE this command is only accepted when a file is being written. It closes the file

being accessed,

• FILTER filter to set a flIter on the list of files to be sent back using GET file. This

result in a message of type comment if the filter was set or of type error otherwise.

Toolkit 127

If a command is not recognised, a message of type error is sent back to the client.

CGI program

As browsers were raising some security exceptions and in order to be able to cope with the

old browsers not supporting signed applet, a CGI (Common Gateway Interface) program was

added to let the toolkit interact with the workflow script servers. It is only used for servers

located on different machines from the one where the applet was loaded.

When users want to communicate with the workflow server the WfGui first checks whether

the WfSS to be used is running on the same host as the applet. If it's the case then the

communication is direct; otherwise the request is posted to the CGr program with some extra

information letting it know where to forward that request. On reception of this query. the CGI

program sends it as if it was the source and receives an answer that it gives back to the WfGui.

The way it was implemented is that the CGI program first gets the host and port of the server

to be contacted. It then tests whether it is allowed to send to this host (Departmental security

restriction to some hosts part of the ncLac.uk domain) and if it is the case forward the rest of

the query to this port and host. On reception of the answer, it is sent back to the WfGui as

answer to the initial query.

6.4.3 Loading a script

Using the READ operation previously described. it is possible for the WfGui to retrieve a

script from a WfSS. The specification will then be pre-processed letting you know whether you

have some errors in your script and their location. If the errors were bad enough for the

interpreter to fail to load the specification, they are listed and the user can try to fix then

directly. This verification of the syntax is weak as it was thought that designers might want to

load a non-correct specification and then use the tools provided with the GUI to correct it.

Loading a script can typically be divided into three different stages: the interpretation stage,

the referencing stage and the registration stage. These stages will be now described one after

another, starting with the interpretation stage.

While being interpreted, the textual specification IS converted into a graphical

representation. The missing ObjectClasses are created as ObjectClasses specific to the user and

are afterwards available to the user. The TaskClasses are also created directly while reading

them. Input object and output objects are registered with their ObjectClass to make it easier to

Toolkit 12K

map the invalid ones later on. The interesting problem is to load the task. First the associated

TaskClass is read. If it was an unknown TaskClass, then an error is generated and the

interpreter stops trying to load the specification. Otherwise the task is generated with its

associated TaskInputSets, TaskInputObjects, TaskOutputSets and TaskOutputObjects. The

task is also registered with the TaskClass so that the Toolkit prevents the deletion of

referenced TaskClasses later on. The specification of the task is then carried out with the

generation of the data and temporal dependencies associated to the TaskInputSets and

TaskOutputSets as well as on their respective associated TaskObjects. It has to be noticed that

an error is generated if the script tries to specify the dependency on a TaskObjectSet or and

TaskObject not part of the associated TaskClass. This error triggers the end of the

interpretation of the specification. Each data and temporal dependencies is translated as a

reference on dummy TaskInputSets, TaskInputObjects, TaskOutputSets and

TaskOutputObjects as appropriate. There is no check at this stage of the validity of these

dependencies.

Once the interpretation stage has been successfully completed, the referencing stage starts.

During this stage, the dummy TaskObjectSets and TaskObjects are compared to the valid ones

within the context of the task for which they are used as source of the dependency. When a

match is found the dummy object is replaced with a reference on the real object. The valid

objects for each possible type of target objects of a dependency will now be described. We

assume that the target object belongs to task A:

• TasklnputSet: The TasklnputSets of the parent task of A, as well as both

TaskInputSets and TaskOutputSets of the peer tasks of A (The definitions of peer and

parent tasks can be found in section 3.1.1) as well as A's TaskOutputSets of type repeat.

• TasklnputObject: The TasklnputSets of the parent task of A as well as both

TasklnputSets and TaskOutputSets of the peer tasks of A (The definitions of peer and

parent tasks can be found in section 3.1.1) as well as the TaskOutputObjects associated to

A's TaskOutputSets of type repeat.

• TaskOutputSet: The TasklnputSets of A, as well as the TaskInputSets and

TaskOutputSets of the tasks composing A. This is only for a compoundTask,

TaskOutputSets of a basic Task are not target of dependencies.

• TaskOutputObject: The TasklnputObjects of A, as well as the TasklnputObjects and

TaskOutputObjects of the tasks composing A. This is only for a compoundTask,

Toolkit 129

TaskOutputSets of a basic Task are not target of dependencies.

After completion of the referencing stage, the registration stage starts. This stage consists in

going through these dependencies and register the interest of the object involved as target,

with their sources. This is useful afterwards when removing tasks.

6.5- Composing a specification using the WfGui
There are three different ways that can be used to specify a workflow using our toolkit. The

first one is to write directly a script using the textual language and to put it in the workflow

script repository managed by one of our flle servers. The second way to specify a workflow is

to use the GUI and its graphical notations. The third way is to import it from the Specification

Service.

6.5.1 Overview

Once a new specification has been loaded into the WfGui, you can then modify it. The

graphical environment allows you to deal with the three main objects of our system:

• Object Class

• Task Class

• Task

6.5.2 Object classes

When the WfGui applet is started, it first contact a naming server to get the Specification

Service and then recover from a list of ObjectClasses known by the system.

Adding an Object Class

At the time being, it was chosen not to allow users of class designer to modify the list of

object classes known by the system. Only users of class maintainer can modify this list. Using a

form it is possible to specify the name of a new object. The specification server is contacted

and asked to add this new Object Class to its list of valid ObjectClasses. The WfGui also

updates its local copy of this list.

In the current version of the Toolkit, it is not possible to remove ObjectClasses once they

have been added. This choice was made as some users may be using some of these

Toolkit 130

ObjectClasses without the Specification Server knowledge.

Mapping of an invalid Object Class

As the interpreter of workflow script is weak, it is still possible for designers to introduce

some invalid ObjectClasses into the WfGui. As a result it is possible to map invalid

ObjectClasses to valid ones using a form. When an invalid ObjectClass is mapped to a valid

ObjectClass, all TaskClassObjects (and as a result TaskObjects) using the invalid ObjectClass

get updated with the new chosen Object Class. Once this is completed, the invalid Object Class

is no longer referenced and is removed from the system.

6.5.3 Task classes

It is possible to add, delete or edit TaskClasses using the WfGui or merge two TaskClasses

together.

Adding a TaskClass

The addition of a TaskClass is done via a form where you specify the name of the new

TaskClass, as well as the alternative inputs and outputs needed. They are provided as

TaskClasslnputSets, TaskClassOutputSets and associated TaskClasslnputObjects and

TaskClassOutputObjects. TaskClasslnputSets and TaskClassOutputSets are fully defined by

their name while their associated objects are fully defined by their name and class.

When specifying a task class the following errors can occur:

• Invalid name or name already used for another TaskClass.

• No TasklnputSet or no TaskOutputSet

• Outcomes of type mark and abort both present

Deleting a TaskClass

It is possible to delete TaskClass that are not referenced by any Task. To delete a TaskClass

in use, you need to remove or re-map the tasks referring to it.

Editing a TaskClass

Editing a TaskClass consists in taking a copy of an existing TaskClass, and uses it as

starting point to create a new TaskClass. This copy of the TaskClass is used to let users undo

their modifications if they wish to do so.

Toolkit 131

Mapping a task class

You can also merge two task classes together by mapping or deleting the

TaskClassInputSets and Objects (respectively TaskClassOutputSets and Objects) of the task

class being mapped to the task class it is being mapped to.

Each task registered with this mapped TaskClass get notified of the changes and updates its

specification by creating some new TaskInputSets, TasklnputObjects, TaskOutputSets and

TaskOutputObjects that are substituted to the old ones.

6.5.4 Tasks

Tasks can be added, deleted, edited using the WfGui. A Task's TaskClass can also be

mapped to another TaskClass. The graphical notation is the same as the one introduced in

figure 3.15.

In our model, a task is fully defmed by its name, its TaskClass and its dependencies on the

other tasks involving its inputs as target. In the case of a compound task (sub-workflow), you

also have to specify the dependencies that its own outputs have on the constituent tasks. The

temporal dependencies are shown on the picture above as dotted lines while the data flow

dependencies are shown as plain lines.

In order to help the designer specifying its applications, commands have been provided to

navigate in the tasks and visualise them.

Adding a task

In order to add a task to the specification, users just have to a creation form where they can

specify the task name, choose the TaskClass associated to the task being created as well as its

type (compound task or basic task). Users can also add some instantiation criteria.

Once this is done, you can start adding some dependencies and delegations on up-stream

tasks involving the TaskInputObjects and TaskInputSets.

If you are creating a compound task, you can also add some dependencies and delegations

between inputs and outputs of your task. You can also change the priority of the delegations

and dependency sets. Decreasing the priority of the item selected does this. It has to be noticed

that an item with the lowest priority seeing its priority decrease will actually gets the highest

priority. This allows increasing the priority of an element.

Toolkit 132

Deleting a task

You just need to click on the icon of the task that they want to delete, This task get

removed as well as all dependencies where in which involved.

Editing a task

It is a melting pot of the two previous features. You select the task to be edited by clicking

its icon and then you edit it using the same form as for the creation but with as default the

values of the task edited. When editing the task, a copy of the task is used to let users undo

their modifications if they wish to do so.

Mapping the Task Class of a task

Same technique as the one used for merging two task classes, but this time only the task

class of the task concerned is changed; the other tasks sharing the old task class are not

affected.

Navigating into a Workflow application Specification.

A navigation system is also available that let the users zoom in and out of your specification.

Zooming in a compound task let you see its component tasks, while zooming in a simple task

display its task class as well as all the dependencies it is involved in. The zoom-out is the

reverse action: zooming out let you see the embedding workflow. When you are lost in the

depth of your specification, you can always corne back at the highest level by requesting the

overview. The interface is of type drag & drop, which means that users can click on task icons

and move them around the desk to get a better visualisation of the workflow application.

Clicking twice on the icon on a task gives you the task's view of the world (e.g. mappings

to its inputs and outputs), while zooming into a compound task give you a graphical view of

the body of the workflow (e.g. its component tasks as well as the links between them and with

it). This view can be compact (component task are represented by a rectangle) or full

(component tasks are fully described and the dependencies clearly show which sets or objects

are concerned).

Toolkit 133

6.6- Simulation

Using the simulation tool, you can start a simulation, do a step-by-step execution, stop or

reset the simulation. There you also have two options: the first option is a random simulation

where the computer randomly chooses an output state (outcome) when a basic task IS

executing. The second option lets the user decides on the outcome of the task execution.

Simulation

A colour scheme let users see which dependencies and tasks are being triggered as well as

the state of the tasks. This provides a quick way to check that the workflow is executing as

forecasted.

The default colour scheme chosen to represent the states of a Task (cf. section 3.4 and

figure 3.17) is:

• Waiting (green): the task has some dependencies on it, but may be executed later on

• Set-up (yellow): the task is being modified

• Active (orange): the task is executing

• Completed (red): the task has been executed

• Discarded (grey): the task has been discarded, as some dependencies could not be

fulfilled. This state has been added to what is presented in section 3.4, as it allows

forecasting the future more easily.

The relevant sub-set (waiting, set-up, completed and discarded) of this colour scheme is

used for the TaskObjects.

The tasks can be in several states with the temporal and data flow dependencies depicted on

figure 6.5.

Toolkit 134

'---'"7'"_j- .

.~~~~~~~~----------------------~I~
--_j

/JIf)C (. S S 0nil' n1/11}1ie arion

-.-~-~~~-

_-"

Figure 6.5: Simulation of the execution of a workflow application

In the example depicted in figure 6.5, the user has zoomed into a compound task while it

was executing (the rectangle showing the compound Task boundary is orange). This task had a

single TaskInputSet with one associated TasklnputObject. Both of them appear in red meaning

that they have been used. The two tasks PaymentAuthorisation and CheckStock appear in

orange, meaning that they are executing. This is consistent with the specification as they both

only have a data flow dependency and it is on the TasklnputObject of their parent task. As they

haven't completed yet, they were coloured in orange. The other tasks appear in green as they

are still waiting for their inputs. Dependencies that have been used appear in red in the detailed

view of a task.

Implementation

Each task and each dependency have a run-time status indicating their current situation.

When the simulation is started, the workflow application gets one of its input sources fulfilled.

The way to decide which one depends on the simulation options. If it is automatic, a random

value is generated by an object of class Toolkit.Gui.Randornize (using the formula

Math.abs(generator.nextIntO) % number), where generator is an object of class

java.utiI.Random, and number is the number of input set minus one). The result gives the

TaskInputSet that is supposed to be activated.

Afterwards, the system goes one step at the time. Each task still waiting checks whether one

of its input sets requirements has been fulfilled. Each TasklnputSet checks in turn which

dependencies have been fulfilled. If all its TaskInputObjects have been marked as fulfilled

Toolkit 135

(marked as executed), the corresponding TaskInputSet checks its temporal dependencies and if

they are all fulfilled, this TaskInputSet is itself fulfilled (marked as executed). If the task finds

an input set marked as executing (available), then it is chosen and marked as completed

(chosen), while the other input sets (if any) are discarded.

If a basic task is in the state executing, then a TaskOutputSet is chosen randomly or by the

user depending of the options. Once it is done the chosen TaskOutputSet as well as its

associated TaskOutputObject are marked as chosen (executing). At the next step, the

TaskOutputSet and its associated TaskOutputObjects are marked as completed, while all the

other TaskOutputSets and TaskOutputObjects are marked as discarded.

If it is a compound task, then it checks its TaskOutputObjects. When they are all fulfilled

and there are no temporal dependencies on their associated TaskOutputSet, this

TaskOutputSet is set as fulfilled. When the task next steps, it will find out about the fulfilled

dependencies and set the TaskOutputSet and associated TaskOutputObjects as chosen

(completed) while setting their alternatives to discarded.

6.7- Execution
Before being able to start executing a specification, it has to be sent to the Repository

Service. The pre-requisite for storage in the repository service being that the specification

needs to be correct, some checking tools of the different components of the workflow

application have been provided. They will be first presented before describing what needs to be

done to transfer a WfGui specification into the Repository Service and run it.

6.7.1 Checking the specification

When the specification is over, you can check t~at it was correctly written. This process has

been divided into three sub processes: Checking the ObjectClasses, the TaskClasses and the

Tasks.

Checking the ObjectClasses

This makes sure that all ObjectClasses are known by the system. A list of the ObjectClasses

used in the specification appears and let the designers see which ones are not recognised.

If some new ObjectClasses were found, designers have the opportunity to map them to

existing ObjectClasses, while rnaintainers can also add them as System ObjectClasses. The way

Toolkit 136

to do it has already been presented in section 6.5.2.

Checking the TaskClasses

A task will be tagged as incorrect if:

• Once or more of its TaskClassObject has an invalid ObjectClass.

• It doesn't have at least one TaskClasslnputSet and one TaskClassOutputSet

• There is both a mark and an abort TaskClassOutputSet.

• A repeat outcome is used by a task different from its own task

Return Loop flag

Figure 6.6: Design for "Check task for Loop" process

Checking the Tasks

A task is tagged incorrect if:

• Its TaskClass is incorrect,

• Some of the dependencies with this task as target are on non-existent objects.

• Some data-flow dependencies with this task as target are involving two TaskObjects

of different classes.

• Some of its components share their names with it.

• It is a compound task including an unwelcome loop (unwelcome loops are discovered

by creating a dependency graph of the component tasks)

Toolkit 137

While the four first checks are trivial, the check for unwelcome loop is interesting and will

be described in the next paragraph.

Set component Loop
flag to Unchecked

Get component

Check Task Loop for component

Yes Set Loop flag to
Looping

Figure 6.7: Design for "Check compound task for Loop" process

Checking for unwelcome loops

The first thing to realise is that fmding unwelcome loops in a workflow application (e.g.

loops that are not introduced by repeat outcomes) is equivalent to finding unwelcome loops

between the component tasks of a compound task. Indeed, there are no dependencies between

Toolkit

tasks embedded in a compound task and the peer tasks of their parent. As a result, loops can

only involve peer tasks.

In order to find out the dependencies, we have proposed the following design: We start the

check for loop by a Check task for Loop for the "root" workflow task. The design notation has

been used to describe this operation in figure 6.6, 6.7 and 6.8.

Is Loop flag set to Unchecked ?

Set Loop flag to Checking

Get dependency

Is it a dependency using this task as
source?

Is it using the embedding
task as source ?

Set Loop flag to Looping

Set Loop flag to Looping

Set Loop flag to Checked

Figure 6.8: Design for "Check basic task for Loop" process

Figure 6.6 just describe the test on the type of task (basic or compound task) the task to be

checked is and then do the proper treatment.

Toolkit 139

The idea behind this approach is that if there is no loops, you can always find a task with as

only dependencies involving as target some dependencies with the compound task. If it doesn't

exist, it's obvious to prove that there is a loop, as you always can choose an outcome that has

a target dependency on a peer task. After having set up a sequence with n+ I elements where n

is the number of children, then there is at least a duplicated task as there are only n tasks).

Having chosen this task without outgoing dependencies on peer tasks, you can safely remove it

from the set of children without changing the result of the check. Indeed this task will never be

checked again as it has no outgoing dependency on its peers and having one will be the only

way to find out that it is involved in a loop. You then iterate on the remaining n-I tasks.

Checking one by one the tasks allows to be sure that the result returned is correct (none of

them is involved in a loop or at least one is involved in a loop).

The algorithm terminates as each task is checked only once. There is a maximum of n-I + n-

2 + ... +1 «n*n-l)/2) requests of checks in the worst case (no loops and each task has some

dependencies involving all its possible up stream tasks. The i1h task depends on the outcomes of

the i-I previous tasks.)

6.7.2 Storing in the Repository Service

Once the specification has passed the consistency tests, it can be exported to the repository

service. The main difference between the specification model of the WfGui and the repository

service are the outcomes of type mark that are not yet supported as well as those of type abort

and repeat that are not directly understood. As a result, the repeat loops have to be converted

into a different representation at run time using genesis tasks. On figure 6.9a, the high level

representation of a repeat task is given. The representation of the same task at run-time is

given on figure 6.9b. It is modelled as a compound task embedding a task similar to myTask

and a genesis task. The main difference between myTask and myTask2 is that the input

alternatives that were coming from the repeat outcome disappear. The dependencies that were

using a repeat outcome as source are now dependencies on a genesis task with the same inputs

as myTask had. This genesis task uses as associated task the compound task that gathers

myTask2 and the genesis task.

Toolkit 140

a) High level representation b) Low level representation

Figure 6.9: Run time representation of loop tasks

Similarly the tasks with an abort outcome (e.g. atomic with its transactional meaning) have to be

translated before being sent to the low level

a) High level representation b) Low level representation

Figure 6.10: Run-time representation of abort outcomes

In figure 6.10 a), we can see the high level representation of a task with an abort outcome.

Assuming that it is not embedded in another task with an abort outcome, it is translated as the

task represented on figure 6.10 b). The first (left) additional task could be called "generation

task" as it is a task whose only purpose is to create an object of class "Transactional Context"

which is then added as parameter for the input sets of the task as well as the output sets of the

task. The additional task on the right that could be named "commitment task" has two inputs sets

abort and commit each with one associated object of class "Transactional Context", and have two

outcomes aborted and committed. The references to the Transactional Context object from the

abort outcomes are OR-ed on the abort input set of the additional task, while the Transactional

Context objects from the other output sets are mapped to the commit input sets. The outputs sets

of the additional task are then used as temporal dependencies on the embedding task output sets,

the abort output set being used by the output sets of the embedding task that are linked to former

abort output sets from myTask.

If myTask is itself embedded in another task with abort output sets, then the outermost

Toolkit 141

embedding task with abort outcomes is dealt with as described in the previous paragraph. The

transactional context object is then fed to all its children without having to add any extra

generation task or commitment task. This provides a way to model nested transactions. For basic

task, the implementation must comply with this interface (e.g. the Transactional Context object on

top of the expected object) and it is the programmer responsibility to ensure that it does.

6.7.3 Starting an application

Once the low-level specification has been created (e.g. the specification is stored in the

Repository Service), it is possible to start an application. The way it was done is to let the user

select the initial input set as well as its associated resources to be used as initial inputs for its

workflow application. The list of resources available is retrieved from the naming contexts and

"InitiaIContext/Resource/" from the Name Service. It has to be noticed that these resources are

stored by object class, i.e. they are stored in sub naming context on a per class basis. Once the

inputs were chosen, the task controllers associated to the task instances of the specification are

created and notification requests are issues. On completion, the resources are fed as inputs to

the workflow and the workflow application starts.

6.7.4 Dynamic modifications

The low-level dynamic reconfiguration is achieved by changing the status of the task

controller in charge of the task to set up. Once the task controller is in this status

modifications can be carried out on the task it is dealing with. The following modifications

(listed in chapter3, section 4) can be carried out on a single task, one at the time in a

sequential order:

1. The implementation bound to a basic task can be changed as long as it is in a wait

state

2. Tasks can be added or removed from workflow instances

3. The constituent tasks of a compound task can be changed

4. Input alternatives can be added or removed from a task, and their priority can be

changed as long as the tasks is not in its state executing or completed

5. Output alternative can be added or removed from a task, and their priority can also be

changed as long as the task has not completed

Toolkit 142

It has to be noticed that there is no provision for making atomic a set of modifications involving

different tasks or just a single task. Using the toolkit, you can carry out the following

modifications, providing that the task controller of the task involved is still in its wait status:

I-modification of a single task, including changes of every details of the specification, including:

a- modification of the incoming dependencies and object delegations involving this task

b- changes of the meta information associated to this task and in particular the task factory

to be used for simple tasks.

c- mapping of the task class of the task to another task class (outgoing dependencies are

then automatically transferred to the mapped tasks, or deleted shall the outcomes or their

associated objects be removed.

d- change of the type of the task (For instance, a simple task can be transformed into a

compound task)

2- setting manually the status of the associated task controller to set up. In this case, you will

have to set it back to waiting manually.

Limitations:

If you want to carry out a set of modifications involving a set of tasks atomically, you will have to

make sure manually that they have all been frozen (e.g. setting the task controllers status to set

up). To do that, you will have to change each task controller of the tasks involved to set up.

Notice that setting the status of the task controller of a common ancestor (if possible) will achieve

the same result. In a typical example of dynamic reconfiguration involving a big number of tasks,

it is likely that you would identify some sets of tasks that can be "frozen" by freezing their parent

and would freeze their parent instead of freezing them one by one.

6.8- Monitoring

Once started, a workflow application can be monitored. This is made possible thanks to the

task controllers that provide information on the state of the tasks that they are managing.

The monitoring process itself can use pull or push technology. Choosing the pull technology

obliges the user to take some manual snapshots to see the current state of the workflow

Toolkit 143

application. In this case the Task Controllers associated to the specified tasks are requested to

provide to the WfGui the status of the task they are controlling as well as which inputs and

outputs were chosen. If the push technology is chosen, the WfGui registers its interest in

everything happening in the application and update the view as soon as it is notified of

changes.

The WfGui displays the application being monitored similarly to simulated applications.

Workflow Engine

Specification Service

Script
Server(s)

Figure 6.11: Graphical representation of the workflow system with Specification Service

As stated earlier on, specifications stored in the Repository Service lose their high level

names. This makes it difficult for other persons to monitor the workflow. As a result, a

Specification Service that will keep a high level view of the tasks an in particular keep the

names associated is being built on top of the Repository Service as depicted on figure 6. 11. It

is basically a copy of part of the GUI implementation with a CORBA interface in front of it.

This will make it possible to have several observers monitoring the progress of the same

workflow.

In this chapter the toolkit was presented. It was shown that the specification needed to be

checked before starting to execute it. Some external tools can be used to check specifications.

In the next chapter some analysis that can be done on our language are presented as well as

some external toolkits that could be used to provide further consistency checks of our

workflow specifications.

Anal SIS 144

Chapter 7

Analysis

In this chapter, the reader will find information on tools to analysis specifications written

using our language. We have chosen to describe the meaning of our language by making use of

formal systems based on Petri nets [56] and Finite States Processes in turn. In both cases, we

first give an overview of the languages used to describe the semantics of our language. We

then present the semantics of our language using these languages.

Having done that, we describe how workflow applications can be modelled using both Petri

nets and Finite States Processes. Finally, we describe the main features supported by the

toolkits associated to these two notations, as well as their relevance to our system (e.g.

checking for absence of deadlocks).

7.1- Analysis using Petri-nets

The benefit of providing a Petri net semantics for our language is that we can translate one

of our specifications into a Petri net. This provides a way to use existing Petri net tools on the

workflow specifications to try to find potential problems in the workflow specifications. In this

section, the reader will find explanation on how our specification can be translated into a Basic

Petri Net Programming Notation (also known as B(PN)2) specification and afterwards using a

toolkit such as the Programming Environment based on Petri Net (PEP)[8], what it can be

used for.

7.1.1 Overview ofB(PN)2

B(PN)2 [9] is a Petri net based programming notation that has been designed to have a

clearly expressed and compositional Petri net semantics, allowing the application of Petri net

proof methods to complement other techniques. It aims at providing some flexibility to

Anal sis 145

smoothly integrate a variety of process interaction techniques. There are five types of

commands: iterations using "do ... od", sequential and concurrent compositions, atomic

execution of an expression or block. Expressions can be of several types, variable identifiers,

true, false, Z (integer type), operation between two expressions or on just one, expression

between parentheses, channels (FIFO buffers) or stacks identifiers. The operations supported

are the usual arithmetic operations. The syntax is describes below:

• Variables are introduced by the construct var. You need to state the valid values of a

variable. For instance var v : {O I 1} init 1; declares a variable v that can only

takes as value 0 and I and initialises it to I, while var j : Z; declare a variable j of

type integer. The value of the variable v before and after execution of a command is

respectively known as 'v and v'.

• Non deterministic choice using the construct "[r,

• -cexpr» denotes the atomic execution of the expression expr

• blocks using begin scope end, where scope can be a command precede or not by a list of

declarations of constants or variables,

• Sequential composition using the construct ";",

• Concurrent composition using "II",

• Iteration using "do command enter alternatives od" or just "do alternatives

ed", where the alternatives can be "command 1 repeat 1" or "command 1 exitl" or a non

deterministic choice of two alternatives". The exit alternative corresponds to an exit of the

loop, while the repeat alternative just restarts the iteration. Both of these two types of

alternatives are preceded by a command acting as a kind of guard. This command needs to

be fulfilled before an alternative can be used

For instance, the extract of code below should be read as follows. First the variable v is

set to two, then we enter the loop. If the variable v is positive, then we decrement it by one

and leave the loop do; otherwise if it is less than four, it is incremented by one and we

iterate. The choice between these two alternatives is non-deterministic.

do <v' =2> enter
<v > 1>; <v' 'v -1>1 exit 1
[)
<v < 4>; <V' 'V +1>; repeat,
od

Procedures are supported in the extended notation that we are using. They are introduced

by the construct proc, followed by the name of the procedure and the list of parameters

Anal sis 146

between brackets. Keywords ref and const indicates reference and constant parameters. The

valid values for the arguments have also to be specified. The body of the procedure is a block

(embedded between the begin and the end keywords).

7.1.2 Modelling a workflow application

The modelling of a workflow application can be divided into several sub-problems: how to

model the mapping of the inputs of a task, and the mapping of the outputs of a basic and a

compound task. Once this has been solved, modelling a workflow task using B(PN)2 becomes

simpler.

Modelling the mapping of the inputs of the tasks

(a) (h)

Figure 7.1: Modelling the task inputs

There are several things that need to be modelled. First we need to be able to model a task,

its inputs and outputs. The easy way to do that is to create a variable per component based on

the task class. A component in this case will be the state of a task, its task input and output sets

as well as their associated object inputs and outputs. There is also a need to model the

notification dependencies associated to a set. Creating one dummy object per alternative set of

notifications does this. This is represented on figure 7.1. An arc leading from one oval to

another directly has to be interpreted as an OR-component for the triggering of that task, while

an arrow leading to a vertical bar has to be interpreted as an AND-component for the

triggering of the ovals receiving an arrow leaving that bar. An OR is simply modelled by the

choice construct while an AND is modelled by the sequential composition.

To have no naming problems, the underscore can be used to separate levels of abstractions.

For example, the following naming scheme could be used. A workflow named wf will be

Anal sis 147

renamed wf_, its input set ios I will be renamed wfjos 1_, its associated input object io I

will be named wCiosl_io l_ and the virtual input object created will be named

wCiosl_notifl_, wCiosl_notif2_ and so on. The component tasks of wf will have the prefix

wf_ as prefix for their name. This scheme ensures uniqueness of the names while retaining

enough information for an easy translation back to the initial names of the workflow

specification. Usage of the scoping feature could also be used to simplify our naming scheme

as compound tasks also provide some kind of scoping.

Modelling the mapping of the outputs of a basic task

Our main problem was initially to find a way to choose a random output once the task had

been started.

The solution adopted is to use the expression <ou tpu t I = 1 v ou tpu t I = 2>.

The choice of the value of ou tpu t is non-deterministic and the chosen value can be used to

decide on an output. The resulting model is depicted on figure 7.2.

inputSet1 Task outcome1

outcome2

~

a)

< output==2>

outcome1 outputObj1 outputObj2 outcome2 outputObj3

b)

Figure 7.2: Modelling of the reaching of an output for a basic task.

Modelling the mapping of the outputs of a compound task

This is exactly the same model as the one used for the inputs.

Modelling the workflow application

In order to keep track of the state of a task, it is modelled as having a value that can only

have three different values: 0 if the task is waiting to be started, 1 if it is executing and 2 if it

Anal sis 14X

has completed. The inputs (sets and objects) as well as the outputs will be represented as

having a value of 0 if they are waiting to be used or one if they have been used.

Assuming that we have a workflow application with one input set labelled main with an

input object associated startObject and two output sets done and failed with no associated

output object, the workflow script would be:

objectclass myClass;
taskclass myTaskClass
{

inputs {
input main {

startObject of class myClass
}

} ;

outputs {
outcome done {};
outcome failed {}

}

}

compoundtask wf of taskclass myTaskClass
{

...// body suppressed for clarity
}

The equivalent B(PN)2 script would be:

begin

proc TASK_WF (ref t: to, 1, 2}, ref inputSet1 : to, 1), ref inputObjectl
(O,l), ref outputSetl : to, 1), ref outputSet2: to, 1»
begin
<t' = 1>

end;

var wf__ : to, 1, 2) init 0,
var wf_main_: to, 1) init 0;
var wf_main_startObject_ : (0,1) init 1;
var wf failed_ . to, 1) init 0,.
var wf_done_ : to, 1) init 0;

do
<'wf_main_startObject_ = 1> , <wf_main_' • 1> , exit
od
parallel
do
<'wf_main_ • 1> <'wf__ = 0> ;

wf_main_startObject_, wf_done_, wf_failed_l
od

TASK_WF(wf_,
exit

wf_main_,

end

The specification of a workflow application can be divided in three parts. An initial part

Anal SIS 14l)

listing procedures that describes the workflow application, its component tasks as well as their

inter-dependencies, then a part declaring a set of variables able to take either as value 0, I, 2

(for the tasks) or 0, I (for the sets and objects) and initialising their value. The variables are the

state of the workflow application, its component tasks, as well as the states of their inputs and

outputs. Then a final part where two processes are run in parallel, the first one waiting for

start Object to become available (value I) to set input set main available (value I). The second

process waits for an input set to become available and if the task hasn't yet started, runs it via a

call to the procedure declared in the first part. It has to be noticed that all variables associated

to the workflow application are used as arguments as they may be used for the execution of the

workflow application. The second process can be read as if the input set «' wf_main_ = 1»

is available and the task is waiting «'wf_ = 0» then start the execution of the task

(TASK_WF(... ». Had this workflow application had more than a single input set then we

would have had all these inputs separated by "I" in the first term between brackets.

The first process establishes the conditions that have to be fulfilled before that the input set

main can become available (startObject available in this case is the only condition)

Let us now expand further the initial part. Let us assume that this workflow application

consists of two basic tasks with as dependencies the dependencies seen on figure 7.3. We

assume that all input and output objects were named item.

Figure 7.3: Example of workflow application

In the code below, the first procedure corresponds to the random choice of an output set

for a basic task. Here there are only two alternatives.

proc TASK_A (ref t: {O, 1, 2), ref inputSet1 I (O, 1), ref inputObject1 I

(O,l), ref outputSet1 : {O, 1), ref outputSet2: {O, 1»
begin
var randomchoice : {1, 2);
<t' = 1>;
do <randomchoice' • 1 I randomchoice' • 2> enter
<'randomchoice = 1> I <'outputSet1 • 1> I exit
[]

Anal sis 150

<'randomchoice
od
end;
proc TASK_WF (ref t:
{0,1}, ref outputSet1
begin

2> <'outputSet2 1> ; exit

{O, 1, 2}, ref inputSet1 : {O, 1}, ref inputObject1
{O, I}, ref outputSet2: (O, 1})

var wf__ notif1 {O, 1} init 0;
var wf__ notif2 {O, 1} init 0;
var wf__ notif3 {O, 1} init 0;
var wf __ a__ : {O, 1,2} init 0;
var wf _b_ : {O, 1,2} init 0;
var wf __ a_main (0, 1} init 0;
var wf __ b_main_ (0, 1} init 0;
var wf __ a_main _item _ (0, 1} init 0;
var wf _b_main_ item _ {O , 1} init 0;
var wf _a _done_ {O, 1} init 0;
var wf __ b_done {O, 1} init 0;
var wf __ a_ failed_ {O, 1} init 0;
var wf _b_ failed_ : {O, 1} init 0;
<t' =1>;
do <'inputObject1 = 1> ; <wf__ a_main_item_' =1> ; exit od
I I do <'wf __ a_main_item_> ; <wf__ a_main_' = 1> ; exit od
II do <'wf__ a_main_ = 1> ; < 'wf_a__ = 0> ; TASK_A (wf_a __ ,

wf__ a_main_, wf__ a_main_item_, wf__ a_done_, wf_a_fai1ed_); exit od

I I do <'wf __ a_failed_ = 1> ; <wf__ notif1_' = 1>
II do <'inputObject1 = 1> ; <'wf__ notifl_ = 1>

=1>; exit od
I I do <'wf __ b_main_item_> ; <wf b_main __ ' • 1> ; exit od
II do <'wf b main .. 1> ; < 'wf_b___ = 0> ; TASK_A (wf_b_,

wf b_main __ , wf b_main_item_, wf__ b_done_, wf_b_failed_); exit od
I I do <'wf __ b_failed __ .. 1>; <wf notif3_' -I> ; exit od
I I do <'wf a_done __ = 1> ; <wf notif2_' • 1> 1 exit od
I I do <'wf b_done __ = 1> ; <wf notif2_' = 1> 1 exit od

"II
II
II

exit od
<wf_b_main item_'

do <'wf __ notif2 = 1> 1 <outputSet1'
do <'wf notif3 • 1> ; <outputSet2'
do <'outputSet1 • 1> ; <t' = 2> ; exit
do <'outputSet2 • 1> 1 <t' • 2> I exit

• 1>
• 1>
od
od

; exit od
; exit od

end;

In this last procedure, the variables used are first specified, then the state of the task is set to

(executing). Afterwards the different dependencies are described, before specifying the

mapping of the outputs (last seven lines). Notice the use of some extra variables to model the

notification dependencies.

7.1.3 Usefulness for our system

Once the B(PN)2 specification has been created, the PEP toolkit first expands the

procedures and then can be used to generate Petri nets, check them as well as simulate their

behaviour. Specifically talking about the PEP toolkit, it has a provision of analysis tools that

allow the user to check whether the equivalent low level Petri net is:

Anal sis 151

• Free choice e.g. if a place is an input to several transitions (potential conflicts), then it's

the only input for all of these transitions. Hence either all of these cont1icting transitions

are simultaneously enabled or none of them are. This allows the choice (conflict

resolution) as to which transition is to fire to be made freely; the presence of other

tokens in other places is not involved in the choice as to which transition tires.

• A bounded system e.g. if there exists an integer k such that the number of tokens in any

place cannot exceed k.

• Safe e.g. the number of tokens in any place cannot exceed one.

• Reachability of markings e.g. whether a marking is reachable from an initial marking. It

has to be noticed that this is not available for non-bounded nets.

• Deadlocks: Low level nets that have been found to be safe can then be tested to find out

whether they include some deadlocks. A deadlock is defined as a set of places such that

every transition, whose outputs to one of the places in the deadlock also inputs from

one of these places. An interesting result is that once all the places of a deadlock

become unmarked, the entire set of places will always be unmarked. This is useful for

identifying some unwanted cycles.

As far as our workflow specifications are concerned, the Petri net of a correct specification

is k-bounded, as we have a finite number of tasks having a bounded number of outputs.

As a result, the PEP toolkit can be used to identify the following problem 'I: objects that are

never available, tasks that will never be reached, whether or not you have a deadlock in your

application ... It can also be used to check that our application can be executed in a certain way

given some initial conditions. For instance, for a running application, the user might want to

know whether it is still possible that a certain set of tasks will be run before completion of the

application. This is done using the reachability feature of the toolkit given an initial marking.

7.2- Analysis using Finite State Processes
The Finite State Process (FSP) process algebra notation has been designed for an easy

description of component behaviour. In this section, the reader will find explanation on how

our specification can be translated into a Labelled Transition System using the Finite State

Process process algebra notation [34] (also known as FSP). Then we will explain how the

resulting translation of our workflow application can be checked using a tool such as the

Anal sis 152

Labelled Transaction System Analyser (LTSA) [31].

7.2.1 Overview of FSP

Using FSP, each component of the system is modelled as a finite state machine. As a result

the whole system becomes a set of interacting state machines. FSP distinguishes primitive and

composite processes. Primitive processes are defined using action prefix, choice and recursion,

while composite processes use parallelism, label re-assignation and hiding. The separation of

the constructs between primitive and composite processes ensures that only finite system can

be generated. A special process named STOP terminating is predefined

The main constructs of FSP are:

• The action prefix ".>", used by FSP to specify a process. It specifies an initial action to

carry out as well as a process describing the behaviour of rest of the process.

• The choice construct "I" can be used to describe alternative behaviours. For instance, the

following process Q = (a -> P I b ->R). is initially either starting action a or action

b. In the event of a being chosen, the Q will then behave as P, otherwise it will behave

like R. The choice is non-deterministic.

• A feature called action sets is also provided to group together the processes that shared

the same behaviour after carrying out different initial actions.

• Conditional "if expr then process [e1.e process 1... , where expr is an integer

expression such as x > 3

• Guards transitions "when B a -> p" are also available For instance, if you want to only

have action a available when x> 0, you will use (Q = (when xe-O a -> P) •.

• The construct "II" or parallel composition between two processes. The resulting LTS

allows all interleaving of the actions of the two processes. Actions with the same name

are shared and have to be synchronised. The actions can be used to synchronise parallel

processes. The specification of a composite process IICOMP composing processes A

and B, which sharing the action "synchronise" is now described. A notation convention

is to use IIto prefix the name of the composite process:

A = (a -> synchronise -> A).
B = (b -> synchronise -> B).
I ICOMP = (A I I B).

• The forall construct is available for process replication.

• Re-labelling is also available. They are applied to processes and change the names of the

Anal SlS 153

actions. The general form of re-labelling is / {new_labeVold_label}

• Hiding remove action names from the alphabet of the process, which hides these actions.

The syntax for hiding action names is: I{ set of labels to be hidden}. It is also possible to

specify the action labels that are not hidden. This is done using @{ set of labels not

hidden }.

Parameterisation of processes is also supported. It has to be noted that a default value is

required for the parameter. For instance INPUT (N=Q) = inputobject [N) . available ->

available -> STOP) . parameterises the process INPUT. Given N =0,

inputobject[N].available will generate the action labelled inputobject.O.available.

7.2.2 Modelling a workflow application

Modelling the mapping of the inputs of the tasks

What need to be done here is to specify the transitions between states. But first what is the

relationship between input sets and objects: in order for an input set to become available all its

associated input objects need to be available. For a task to become available, one of the

alternative sets needs to be available. The added dependencies (notifications and delegations)

are just extra similar transitions. An input object becomes available when one of the object

sources mapped to it becomes available. Notifications can just be seen as a particular type of

delegation if you add a dummy input object per set of alternative dependencies. Adding such a

dummy object is straightforward and is just an extra transition linking the availability of the

dummy input object to the input set concerned.

Modelling the mapping of the outputs of the tasks

As far as the outputs of a basic task are concerned, the availability of an output set implies

the availability of all its associated objects. As a result the choice of the outcome to activate is

just a set of transitions from task available to one of these outcomes linked between themselves

using "or". This is provided by the "I" operator.

The outputs of compound tasks are dealt similarly to its inputs: first the output objects need

to become available and only then can the output sets they are associated to become available.

Anal SIS 154

Modelling of the workflow application

FSP is interesting as it provides some support for process labelling by using the construct

":". This allows to make good use of another feature of the language called "forall" which

allows replication of processes, or instantiation of parameterised parameters using the same

template. In order to model the workflow application, we use the run-time version (e.g.

without mark). The repeat outcomes being incompatible with finding cycles in the specification

have also been removed.

Considering the example given in figure 7.3, the FTS specification would be:

II ********************************
1/
1/

*** workflow independent ***

// get input
INPUT(N=O) = (inputobject[N] .available -> available -> STOP).
IIINPUTS(N=l) = (forall[i:O ••N-l] INPUT(i».
IITASKCLASS_GETINPUTS(N=l) • (if (N > 0) then (INPUTS(N»).

// Basic task, output release.
BTOUTPUT(N=l) = (available -> outputobject[N] .available -> STOP).
IIBTOUTPUTS(N=l) • «1f (N > 0) then (forall [i:O ..N-l] OUTPUT(i»).

// Compound task, output mapping.
CTOUTPUT(N=l) • (outputobject[N] .available-> available -> STOP).
IlcTOUTPUTS(N=l) = (1f (N)O) then (forall [i:D ••N-I] CTOUTPUT(i»).

This first part is independent of the specification and is always present in the LTS

specification. It describes how our input and output objects are related to their parent set. The

processes starting with BT are for basic tasks while those starting with CT are for compound

tasks. These declarations are parameterised.

// ***
// *** instantiation of the workflow: ***
1/ ***

INIT = (inputset[O] .inputobject[O] .available -> STOP).

This provides the initial input object to the workflow application that can then start.

// ***
//
//

*** specification of the workflow: ***

IIWF = (wf:INIT II wf: TASK_INSTO) .

IITASKO_RESULT (NOTIFICATIONl II NOTIFICATION2 II
outputset[O] :CTOUTPUTS(O) II outputset[l] :CTOUTPUTS(D».
IITASKO_GETINPUT = (inputset[O] :TASKCLASS_GETINPUTS(l) II TASK_START).
TASKO_START = (inputset[O] .available -> active -> STOP).

Anal sis 155

I ITASKO_EXEC
I ITASK_INSTO
I ITASK_INSTl
I ITASK_INST2

(TASK_INSTl I I TASK_INST2).
(TASKO GET INPUT II TASKO_EXEC II TASKO_RESULT).

(taskl:TASKl I I DATADEPENDENCYO).
(task2:TASK2 I I DATADEPENDENCYl I I NOTIFICATIONO).

/1 Dataflow Dependencies
DATADEPENDENCYO (inputset[O] .inputobject[O] .available ->
taskl.inputset[O] .inputobject[O] .available -> STOP).
DATADEPENDENCYl (inputset[O] .inputobject[O) .available ->
task2.inputset[O] .inputobject[O] .available -> STOP).

NOTIFICATIONO (taskl.outputset[O] .available ->
task2.inputset[O] .available -> STOP).
NOTIFICATIONl = (task2.outputset[O] .available -> outputset[O) .available -
> STOP).

// Temporal Dependencies (notifications)
NOTIFICATION2 = (taskl.outputset[l) .available -> outputset[l) .available -
> STOP I task2.outputset[l) .available) -> outputset[l) .available ->
STOP) .

IITASK1_GETINPUT = (TASK1_START).
TASK1_START = (inputset[O] .available -> active -> STOP).
TASK1_EXEC = (active -> outputset[O] .available -> STOP).
IITASK1_RESULT (outputset [0] :BTOUTPUTS (0) II
outputset[l] :BTOUTPUTS(O)).
IITASKl = (TASK1_GETINPUT II TASK1_EXEC IITASK1_RESULT).

IITASK2_GETINPUT = (inputset [0]:TASKCLASS_GETINPUTS (1) II TASK2_.START).
TASK2_START = (inputset[O] .available -> active -> STOP).
TASK2_EXEC = (active -> outputset[O) .available -> STOP).
IITASK2_RESULT (outputset [0]:BTOUTPUTS (0) II
outputset[l] :BTOUTPUTS(O)).
IITASK2 = (TASK2_GETINPUT II TASK2_EXEC IITASK2_RESULT).

Had we had more than one input set then they would be listed in

TASKCLASS_GETINPUT as well as in TASK_ST ART as a choice ("I"). Basic tasks with

several output sets would list them in TASK_RESULT as well as in TASK_EXEC as choices

by using the constructor "I".

It has to be noticed that an alternative to using the choice constructor is to use the range

feature of the language. For instance, given a taskclass with I input sets and J output sets, a

basic task with that task class could be defined as:

TC(I=l, J =1) = (inputset[O ••I-l):available -> ACTIVE),
ACTIVE = (outputset[O ••J-l):available -> STOP).
This just states that we need one input set available and that then one outputset non-

deterministically chosen is made available. TC has to be started as a parallel process for the

task and labelled with the name of the task.

It is also possible to simplify this script by using the re-labelling feature of the language. It

has to be noticed that we did not hide the names of the components embedded in a compound

task as anyhow the names are unique.

Anal SIS 156

7.2.3 Usefulness for our system

The Labelled Transaction System Analyser is a tool for the verification of concurrent

systems. It provides some methods to check safety and properties of a FSP specification. The

state interacting machines composing the system can be animated by the tool or used to check

that the properties expected are satisfied after compiling the FSP specification. LTSA performs

compositional reachability analysis to exhaustively search for violations of the desired

properties. It can also perform a breadth first search on the target LTS. If a property violation

or deadlock is found, the shortest trace of actions that would lead to the property violation or

deadlock is displayed in the output window. It also computes the connected components for

the target LTS. Traces are produced for cycles that cause liveness property violations.

As far as our workflow specifications are concerned, it allows testing for cycles, as well as

reachability. Deadlocks can be discovered if you instead of finishing the workflow by a STOP,

you use another terminating state. For instance, in our example, the workflow terminates either

in the done or in the failed outcome of the workflow (outputset[O] and outputset[I]), we

should then have

FINISH = «wf:outputset[O], wf:outputset[l]} -> END),
END = (end -> END).
Running the workflow now requires running this new FINISH process in parallel. Checking

whether the «end» action has been used can now test termination.

In this chapter, it was demonstrated that our language could be easily mapped to some other

languages hence allowing usage of the toolkits available for these languages. We have

described how our system maps its workflow specifications to Petri nets and FTS

specifications that can then be used to test whether different properties are verified. This is

mainly useful to test for reachability as well as for potential cycles and deadlocks. The main

problem with such toolkits is that they tend to be implemented as closed system" making it

difficult to integrate them with other toolkits, such as the workflow toolkit presented in the

previous chapter. Ideally, the users of the workflow toolkit should be able to make use of tools

such as the LTSA transparently to check relevant properties without having to learn FSP

specifications. This is left as a future work item

Conclusions and future work 157

Chapter 8

Conclusions and future work

This thesis describes the design and implementation of a toolkit allowing users to specify,

execute and monitor dependable distributed workflow applications. This work started from the

observation that more and more applications are being built by composing them out of other

existing applications. Moreover many applications are also likely to be moditied dynamically

because of the changes of the environment in which they are executing. Underlying mechanism s

are therefore needed to support dynamic modifications of the application in a dependable way. As

a result, an application building framework is needed to provide users with an easy way to specify,

compose, execute and monitor such applications.

In this chapter, we sum up the contributions of this thesis, and list possible directions for future

work

Thesis contributions

Most currently available workflow system s possess monolithic structure, so do not provide

distributed execution environments. Further, they offer little support for building fault-tolerant

applications, nor can they inter-operate, as they make use of proprietary platforms and protocols.

Even the reference architecture of the workflow management coalition (WfMC) (presented in

section 2.1.1) has a monolithic structure and does not meet all the requirements of distributed

workflow execution as it centralises a lot of functions including many service provider domains in

a single logical entity (the workflow server). They do not separate the responsibilities between

workflow domains and service provider domains as it is the workflow server that decides the task

implementation rather than the service provider. Scalability is also an issue as for instance

workflow clients must know a priori where work is going to come from and they use a pull model

that does not scale when work comes from many servers. A detailed discussion of the drawbacks

Conclusions and future work ISH

of the WtMC model can be found in [63][64]

We have therefore built a transactional workflow system whose architecture is decentralised

and open: it has been designed and implemented as a set of CORBA services to run on top of a

given ORB. Furthermore, the system has been structured to provide fault tolerance at application

level and system level. Support for application level fault tolerance has been provided through

flexible task composition facilities that enable an application builder to incorporate alternative

tasks, compensating tasks, replacement tasks etc., within an application to deal with a variety of

exceptional situations. The language presented in chapter 4 has been specially designed to allow

an easy specification of application fault tolerance. Support for system level fault tolerance has

been provided by recording inter-task dependencies in (CORBA) transactional shared objects and

by using transactions to implement the delivery of task outputs such that destination tasks receive

their inputs despite a finite number of intervening machine crashes and temporary network related

failures; this also provides a durable audit trail of task interactions. Thus our system naturally

provides a fault-tolerant 'job scheduling' environment. Using task factories allows us to let the

service provider decide the task implementation as late as possible.

To sum up, the main contributions of the work described in this thesis arc:

• A new co-ordination language (scripting language) allowing easy specification of the

composition of workflow applications in terms of tasks and their data-flow or temporal

dependencies.

• Simple uniform model for specification, execution and monitoring of the workflow

applications, allowing a flexible construction of the applications out of other applications.

• Support for dynamic reconfiguration of workflow. The toolkit provides a support for

run-time modification of the workflow, with late binding of the task implementation. The

dynamic reconfiguration being carried out using transactions at the low level, the system

also maintains the workflow integrity.

• Our work is novel in that we do take into account the fault tolerance aspects of the

workflow applications. Indeed, the system provides some support for fault tolerance both at

the system and at the application level, allowing the construction of dependable distributed

applications. The programmer explicitly models the application fault tolerance as part of the

workflow specification, with the possibility to use compound task to hide the possible

complexity of the failure handling tasks.

Conclusions and future work 159

• Implementation of a toolkit allowing the specification, execution and monitoring of

dependable distributed applications. The toolkit is user friendly as it provides graphical tools

that map an easy-to-understand high level specification on to the various CORBA services

of the underlying system (task control and task factories ...). In addition, it provides a

number of consistency checking tools.

• Fully open and interoperable system by usmg CORBA and Java middleware

technologies.

The figure below summarises the differences between the major workflow systems that are

around and the Newcastle workflow system.

System Model Fault tolerance Dynamism lrueroperability

Sagas Serialised transactions Save points & None Homogeneous
with associated compensations
compensaung actions

ConTracl Group of transactions Compensations. None Homogeneous
Steps Seen as
transactions

ORBWork CORBA workflow Recovery managers Some CORBA
system using persistent storage Web

& applicalion level
Exotica Message based Persistent messages. None Proprietary

workflow atomicity of changes
management nOl guaranleed

RainMan Sources co-ordinating Persistent worklists, Dynamic updates of Written In Java.
performers executing long-run conversations worktlow graph heterogeneous
the process being considered. environment

TOWE Transactional Basic units of work are None Homogeneous
Workflow system ACID. Open-nested

transactions,
Newcastle Transactional Both system and Full dynamic updates CORBA.

CORBA workflow application level of specificuuon heterogeneous
system (alternative), persistent environment

storage

The toolkit presented in this thesis is intended to provide a fault-tolerant execution

environment for long running distributed applications that represent business processes in fields

such as telecommunication, electronic commerce and banking.

We have described the design and implementation of a toolkit supporting the specification,

execution and monitoring of such applications. It indeed enables executing workflow applications

composed of inter-related tasks, in a dependable manner. The transactional workflow approach

chosen to provide the underlying support environment for co-ordinating task execution provides

system level fault tolerance, while the language allows the specification of application level fault

tolerance in a uniform manner. Further applications can be co-ordinated in a centralised or

decentralised manner (the task controllers can be started wherever needed). The system also

Conclusions and future work reo

meets the requirements of interoperability by using middleware technologies such as CORBA and

Java to provide an interoperable, open system. Our task model allows flexible task composition.

As far as dynamic reconfiguration is concerned, task specifications can be fully modified till they

are started and afterwards, the composition and possible outcomes of compound tasks can still be

modified as long as they have not completed. Use of transactions allows any changes to be carried

out atomically.

Directions for future work

The implementation of this toolkit is only a first step towards providing a comprehensive

framework for building complex dependable workflow applications. It allows users to specify a

complex business process as a set of tasks linked by dependencies. Several aspects need to be

developed:

• One is to add more pre-defined types of tasks for high level specification. Right now,

we have "repeat tasks" that are expanded as low level tasks using genesis tasks. The

question is which kind of pre-defined tasks are needed? It may be interesting for instance to

consider adding support for replicated tasks, quorum tasks (e.g. starting several identical

tasks and reach an outcome when a certain number of these tasks agree on the outcome),

alternative tasks (as in the flight and hotel reservation example of chapter 5, section 2).

Toolkit support for template tasks (as defined in the language) is also required.

• We should also integrate a model checking toolkit such as LTSA with the Graphic

User Interface Specification tools to allow users to check properties of their application

before actually running them as right now the toolkit is not providing a full check of the

specification.

• If a requested task factory is not available, there is no real handling of the situation as

it was assumed that it was part of the responsibility of the programmer to make sure that the

factories he plans using are available.

• When a user starts a Workflow application, he is presented with a list of potential

objects to choose from based on their class. Right now all objects of that class are registered

as possible choices. This is not realistic as there might be occurrences where there are

thousands of them. A solution would be to use a Directory Service to only register what is

potentially useful.

• Another is to provide better support for the instantiation of a workflow schema based

Conclusions and future work 161

on an organisation's needs that takes into account variety of criteria, such as placement of

task controllers (centralised control versus distributed control), security requirements,

resource usage, roles (with associated responsibilities), etc. Currently, we are using some

implementation criteria (specified as part of the meta information associated to the tasks) to

choose the task/task control factory to be used to create our task and tasks controllers. We

need to create a number of task factories each customised for a class of application (e.g. a

factory for electronic commerce, another for telecommunication ...). A possible

improvement of the current model could be a two-stage workflow instantiation process

where the factories are chosen depending on a role that they are to fulfil, Task definitions

would have two attribute-value items: role name and task type. This information is passed

to a first (initial) task factory by invoking its create operation. This factory queries an

organisation model held in a database. The database could contain, for every role in that

organisation, the name of the role's task factory. A role's task factory is capable of creating

all types of task objects that role is responsible for. The initial task factory would then

invoke the create operation of the specific task factory associated with the role, passing the

task type. The role's task factory would then create the specific task, obtaining all the

location specific information from the database.

• There is also considerable room for trying to combine software-architecture-based

development environments, and software agents with our approach using transactional

workflow management system s. On one hand, agents are software entities that perform

operations on behalf of a user or another software entity. As a result, agents could be

mapped to our tasks at run time, by creating some agent task factories. Similarly, agents

could have some of the services that they are proposing modelled as a workflow. On the

other hand, software architecture specifications expressed via Architecture Description

Languages (cf. chapter 2 for examples of ADLs) allow the specification of the configuration

of the software components and capture the non-behavioural aspects of system structure

that our system does not express. We are currently investigating the integration of these

three technologies in a research project called C3DS [11].

• In chapter 5, a number of examples were used to illustrate the suitability of our

language for specifying workflow applications. As part of the future work, real applications

should be developed, executed and monitored using our toolkit, hence validating the use in

the real world of the workflow management system. We are planning to do this in an

Conclusions and future work 162

industry led ESPRIT project, MULTIPLECX [43], on business to business electronic

commerce.

Appendix A 163

Appendixes

Appendix A

Scripts

A.I Script for the process ordering application described in chapter 5.1.

/*
* This script was generated for root by the Workflow Management Tool v1.20a
* Copyright (Cl 1996, 1997, 1998
*
* Department of Computing Science,
* University of Newcastle upon Tyne,
* Newcastle upon Tyne,
* UK.
*/

objectclass Bill;
objectclass Goods;
objectclass Order;
taskclass CheckS tack
{

inputs
{

input main
{

order of class Order

} ;
outputs
{

outcome failed
{
} ;
outcome success
{

Appendix A 164

items of class Goods

} ;
taskclass Dispatch
{

inputs
{

input main
{

items of class Goods

} ;
outputs
{

outcome abort aborted
{
} ;
outcome success

items of class Goods

} ;
taskclass PaymentAuthorisation
{

inputs
{

input main
{

order of class Order

} ;
outputs
{

outcome failed
{
} ;
outcome success
{

bill of class Bill

} ;
taskclass Payment Capture
{

inputs
{

input main
{

bill of class Bill
} ;
outputs
{

outcome done
{
}

} ;
taskclass ProcessOrder
{

inputs

Appendix A 165

input main
{

order of class Order

} ;
outputs
{

outcome failed

} ;
outcome success
{

items of class Goods

} ;
compoundtask processOrderApplication of taskclass ProcessOrder
{

implementation
{

"GUl_X" is "235";
"GUl_Y" is "100";
"Node" is "kellah"

} ;
inputs
{

input main
{

inputObject order from
{
}

} ;
task checkStock of taskclass CheckStock
{

implementation
{

"GUl_X" is "164";
"GUl_Y" is "180";
"TaskCtrlFactory" is "Order";
"Tasklmpl" is "CheckStock.wf";
"Node" is "kellah"

} ;
inputs
{

input main
{

inputObject order from
{

order of task processOrderApplication if input main

} ;
task dispatch of taskclass Dispatch
{

implementation
{

"GUl_X" is "477";
"GUl_Y" is "184";
"TaskCtrlFactory" is "Order";
"Tasklmpl" is "Dispatch";

Appendix A Ititi

"Node" is "kellah"
} ;
inputs
{

input main
{

notification from
{

task paymentAuthorisation if output success
} ;
inputObject items from
{

items of task checkStock if output success

} ;
task paymentAuthorisation of taskclass PaymentAuthorisation
{

implementation
{

"GUI_X" is "186";
"GUI_Y" is "119";
"TaskCtrlFactory" is "Order";
"TaskImpl" is "PaymentAuthorisation.wf";
"Node" is "kellah"

} ;
inputs
{

input main
{

inputObject order from
{

order of task processOrderApplication if input main

} ;
task paymentCapture of taskclass PaymentCapture
{

implementation
{

"GUI_X" is "439";
"GUI_Y" is "67";
"TaskCtrlFactory" is "Order";
"Tasklmpl" is "PaymentCapture";
"Node" is "kellah"

} ;
inputs
{

input main
{

notification from
{

task checkStock if output success
} ;
inputObject bill from
{

bill of task paymentAuthorisation if output success

}
} ;

Appendix A)()7

outputs
{

outcome failed
{

notification from
{

task checkStock if output failed;
task dispatch if output aborted;
task paymentAuthorisation if output failed

} ;
outcome success
{

notification from
{

task paymentCapture if output done
} ;
outputObject items from
{

items of task dispatch if output success

A.2 Script for the travel agent application described in chapter 5.2.

/*
* This script was generated for root by the Workflow Management Tool v1.20a
* Copyright (Cl 1996, 1997, 1998
*
* Department of Computing Science,
* University of Newcastle upon Tyne,
* Newcastle upon Tyne,
* UK.
*/

objectclass CustomerInfo;
objectclass Date;
objectclass Flight;
objectclass Hotel;
objectclass Location;
objectclass User;
objectclass integer;
taskclass CompensateFlightReservation
{

inputs
{

input main
{

plane of class Flight

} ;
outputs
{

outcome failed
{
} ;
outcome success
{

Appendix A 16X

} ;
taskclass DataAcquisition
{

inputs
{

input main
{

user of class User

} ;
outputs
{

outcome failed
{
} ;

outcome success
{

customer of class CustomerInfo;
end of class Date;
maxCost of class integer;
place of class Location;
start of class Date

} ;

taskclass FlightReservation
{

inputs
{

input main
{

end of class Date;
maxCost of class integer;
place of class Location;
start of class Date

} ;
outputs
{

outcome failed
{
} ;
outcome success

cost of class integer;
plane of class Flight

} ;
taskclass HotelReservation
{

inputs
{

input main
{

end of class Date;
place of class Location;
start of class Date

} ;
outputs

Appendix A lot)

outcome failed
{
} ;
outcome success

hotel of class Hotel

} ;
taskclass PrintTickets
{

inputs
{

input main
{

customer of class CustomerInfo;
hotel of class Hotel;
plane of class Flight

} ;
outputs
{

outcome failed
{
} ;
outcome success

} ;
taskclass Travel
{

inputs
{

input main
{

user of class User

} ;
outputs
{

outcome failed
{
} ;
outcome reserved
{
} ;
outcome success
{
} ;
mark tOPay
{

cost of class integer

} ;
taskclass TravelReservation
{

inputs
{

input main
{

Appendix A 170

user of class User

} ;
outputs
{

outcome abort aborted
{
} ;
repeat retry
{
} ;
outcome success

cost of class integer;
customer of class Customerlnfo;
hotel of class Hotel;
plane of class Flight

} ;
compoundtask travel of taskclass Travel
{

implementation
{

"GUI_X" is "408";
"GUI_Y" is "167";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject user from
{
}

} ;
task printTickets of taskclass PrintTickets
{

implementation
{

"GUI_X" is "498";
"GUI_Y" is "158";
"Host" is "kellah";
"TaskCtrlFactory" is "Travel";
"TaskImpl" is "PrintTickets"

} ;
inputs
{

input main
{

inputObject customer from
{

customer of task travelReservation if output success
} ;
inputObject hotel from
{

hotel of task travelReservation if output success
} ;
inputObject plane from
{

plane of task travelReservation if output success

Appendix A 171

} ;
compoundtask travelReservation of taskclass TravelReservation
{

implementation
{

"GUI_X" is "197";
"GUI_Y" is "149";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject user from
{

user of task travel if input main

} ;
task compensateFlightReservation of taskclass

CompensateFlightReservation
{

implementation
{

"GUI_X" is "552";
"GUI_Y" is "139";
"Host" is "kellah";
"TaskCtrlFactory" is "Travel";
"TaskImpl" is "CompensateFlightreservation"

} ;
inputs
(

input main
(

notification from
{

task hotelReservation if output failed
} ;
inputObject plane from
{

plane of task flightReservation if output success

} ;
task dataAcquisition of taskclass DataAcquisition
{

implementation
(

"GUI_X" is "116";
"GUI_Y" is "153";
"Host" is "kellah";
"TaskCtrlFactory" is "Travel";
"TaskImpl" is "DataAcquisition"

} ;
inputs
{

input main
(

inputObject user from
{

Appendix A 172

user of task travelReservation if input main

};
task flightReservation of taskclass FlightReservation
{

implementation
{

"GUI_X" is "240";
"GUI_Y" is "96";
"Host" is "www.itn.net" ;
"TaskCtrlFactory" is "Travel";
"Tasklmpl" is "FlightReservation"

} ;
inputs
{

input main
{

inputObject end from
{

end of task dataAcquisition if output success
} ;
inputObject maxCost from
{

maxCost of task dataAcquisition if output success
} ;
inputobject place from
{

place of task dataAcquisition if output success
} ;
inputObject start from
{

start of task dataAcquisition if output success

} ;
task hotelReservation of taskclass HotelReservation
{

implementation
{

"GUI_X" is "382";
"GUI_Y" is "192";
"Host" is "kellah";
"TaskCtrlFactory" is "Travel";
"Tasklmpl" is "hotelReservation"

} ;
inputs
{

input main
{

notification from
{

task flightReservation if output success
} ;
inputobject end from
{

end of task dataAcquisition if output success
} ;
inputobject place from
{

place of task dataAcquisition if output success

Appendix A In

} ;
inputObject start from
{

start of task dataAcquisition if output success

} ;
outputs
{

outcome abort aborted
{

notification from
{

task dataAcquisition if output failed;
task flightReservation if output failed;
task compensateFlightReservation if output failed

} ;
repeat retry
{

notification from

task compensateFlightReservation if output success

} ;
outcome success
{

notification from

task flightReservation if output success
} ;
outputObject cost from
{

cost of task flightReservation if output success
} ;
outputObject customer from
{

customer of task dataAcquisition if output success
} ;
outputObject hotel from
{

hotel of task hotelReservation if output success
} ;
outputObject plane from
{

plane of task flightReservation if output success

} ;
outputs
{

outcome failed
{

notification from
{

task travelReservation if output aborted

} ;
outcome reserved
{

notification from

Appendix A 174

task travelReservation if output success;
task printTickets if output failed

} ;
outcome success

notification from
{

task travelReservation if output success;
task printTickets if output success

} ;
mark tOPay
{

outputObject cost from
{

cost of task travelReservation if output success

New taskHotelReservation with alternative:
compoundtask hotelReservation of taskclass HotelReservation
{

implementation
{

"GUI_X" is "382";
"GUI_Y" is "192";
"Host" is "kellah"

} ;
inputs
{

input main
{

notification from
{

task flightReservation if output success
} ;
inputObject end from
{

end of task dataAcquisition if output success
} ;
inputObject place from
{

place of task dataAcquisition if output success
} ;
inputObject start from
{

start of task dataAcquisition if output success

} ;
task bookHotelPartner of taskclass HotelReservation
{

implementation
{

"GUI_X" is "414";
"GUI_Y" is "208";
"Host" is "www.hilton.com";
"TaskCtrlFactory" is "Travel";
"TaskImpl" is "hotelReservation"

Appendix A 175

l :
inputs
{

input main
{

inputObject end from
{

end of task hotelReservation if input maln
} ;
inputObject place from
{

place of task hotelReservation if input main
} ;
inputObject start from
{

start of task hotelReservation if input main

} ;
task bookHotelTouristOffice of taskclass HotelReservation
{

implementation
{

"GUI X" is" 584";
"GUI_Y" is "120";
"Host" is ..www.travel-reservation.com ..;
"TaskCtrlFactory" is "Travel";
"Tasklmpl" is "hotelReservation"

} ;
inputs
{

input main
{

notification from
{

task bookHotelPartner if output failed
} ;
inputObject end from
{

end of task hotelReservation if input main
} ;
inputObject place from
{

place of task hotelReservation if input main
} ;
inputObject start from
{

start of task hotelReservation if input main

} ;
outputs
{

outcome failed
{

notification from
{

task bookHotelTouristOffice if output failed

} ;
outcome success

http://www.travel-reservation.com

Appendix A 176

outputObject hotel from
{

hotel of task bookHotelTouristOffice if output
success;

hotel of task bookHotelPartner if output success

} ;

A.3 Scripts for the telecommunication application described in chapter 5.3.

/*
* This script was generated for fred by the Workflow Management Tool vl.20a
* Copyright (C) 1996, 1997, 1998
*
* Department of Computing Science,
* University of Newcastle upon Tyne,
* Newcastle upon Tyne,
* UK.
*/

objectclass Alarm;
objectclass ImpactList;
objectclass ResolutionList;
taskclass AlarmResolution
{

inputs
{

input main
{

alarm of class Alarm

} i
outputs
{

outcome success
{
} ;
outcome failed

} ;
taskclass SIA
{

inputs
{

input main
{

alarm of class Alarm

} ;
outputs
{

outcome analysed
{

impacts of class ImpactList
} ;
outcome failed
{

Appendix A 177

} ;
outcome noImpact

} ;

taskclass SIAACKN
{

inputs
{

input main
{

list of class ImpactList

} ;
outputs
{

outcome ok
{
} ;
outcome refuse
{
}

} ;
taskclass SIR
{

inputs
{

input main
{

impacts of class ImpactList

} ;
outputs
{

outcome resolved
{

resolutions of class ResolutionList
} ;
outcome failed
{
} ;
outcome noResolution
{
}

} ;
taskclass SIRACKN
{

inputs
{

input main
{

list of class ResolutionList

} ;
outputs
{

outcome ok
{
} ;
outcome refuse

Appendix A In

} ;
taskclass SLA
{

inputs
{

input main
{

resolutions of class ResolutionList

} ;
outputs
{

outcome resolved

resolutions of class ResolutionList
} i

outcome failed
{
} ;
outcome nOResolution
{
}

} ;
taskclass SLAdynCreatNegociation
{

inputs
{

input main
{

resolutions of class ResolutionList

} ;
outputs
{

outcome completed
{
} ;
outcome failed
{
}

} ;
compoundtask alarmResolution of taskclass AlarmResolution
{

implementation
{

"GUI_X" is "190";
"GUI_Y" is "77";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject alarm from
{
}

} ;

Appendix A IN

compoundtask sia of taskclass SlA
{

implementation
{

"GUl_X" is "168";
"GUl_Y" is "119";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject alarm from
{

alarm of task alarmResolution if input main

} ;
task siaAnalyse of taskclass SlA
{

implementation
{

"GUI_X" is "227";
"GUl_Y" is "137";
"TaskCtrlFactory" is "Telecom";
"Tasklmpl" is "SlA";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject alarm from
{

alarm of task sia if input main

} ;
task siaVa1idation of taskc1ass SlAACKN
{

implementation
{

"GUI_X" is "417";
"GUl_Y" is "109";
"TaskCtr1Factory" is "Telecom";
"TaskImpl" is "SIAGUI";
"Host" is "ke11ah"

} ;
inputs
{

input main
{

inputObject list from
{

impacts of task siaAnalyse if output analysed

} ;
outputs
{

outcome analysed

Appendix A I HO

notification from
{

task siaValidation if output ok
} ;

outputObject impacts from
{

impacts of task siaAnalyse if output analysed

} ;
outcome failed

notification from
{

task siaAnalyse if output failed

} ;
outcome noImpact
{

notification from
{

task siaAnalyse if output nolmpact;
task siaValidation if output refuse

} ;

compoundtask sir of taskclass SIR
{

implementation
{

"GUI_X" is "275";
"GUI_Y" is "147";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject impacts from
{

impacts of task sia if output analysed

} ;

task sirAnalyse of taskclass SIR
{

implementation
{

"GUI_X" is "227";
"GUI_Y" is "137";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SIR";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject impacts from
{

impacts of task sir if input main

Appendix A I X I

} ;

task sirValidation of taskclass SIRACKN
{

implementation
{

"GUI_X" is "417";
"GUI_Y" is "109";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SIRGUI";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject list from
{

resolutions of task sirAnalyse if output resolved

} ;

outputs
{

outcome resolved

notification from
{

task sirValidation if output ok
} ;
outputObject resolutions from
{

resolutions of task sirAnalyse if output resolved

} ;
outcome failed

notification from
{

task sirAnalyse if output failed

} ;
outcome nOResolution

notification from
{

task sirAnalyse if output nOResolution;
task sirValidation if output refuse

} ;

compoundtask sla of taskclass SLA
{

implementation
{

"GUI_X" is "447";
"GUI_Y" is "183";
"Host" is "kellah"

} ;
inputs

Appendix A IX2

input main
{

inputObject resolutions from
{

resolutions of task sir if output resolved

} ;
task createNegotiateResolution of taskclass SLAdynCreatNegociation
{

implementation
{

"GUI_X" is "184";
"GUI_Y" is "132";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLAdyn";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject resolutions from
{

resolutions of task sla if input main

} ;
outputs
{

outcome resolved

outputObject resolutions from
{
}

} ;
outcome failed
{

notification from
{

task createNegotiateResolution if output failed

} ;
outcome nOResolution
{
}

} ;
outputs
{

outcome success
{

notification from
{

task sia if output noImpact;
task sir if output noResolution;
task sla if output noResolution;
task sla if output resolved

} ;
outcome failed

Appendix A IX1

notification from

task sia if output failed;
task sir if output failed;
task sla if output failed

Workflow dynamically created:
/*
* This script was generated for fred by the Workflow Management Tool vl.20a
* Copyright (C) 1996, 1997, 1998
*
* Department of Computing Science,
* University of Newcastle upon Tyne,
* Newcastle upon Tyne,
* UK.
*/

objectclass Bid;
objectclass Resolution;
taskclass SLAbid
{

inputs
{

input main
{

bid of class Bid;
resolution of class Resolution

} ;
outputs
{

outcome accepted
{

bid of class Bid
} ;
outcome refused
{
} ;
repeat next round
{

bid of class Bid;
resolution of class Resolution

} ;
taskclass SLAbidlnit
{

inputs
{

input main
{

resolution of class Resolution

} ;
outputs
{

Appendix A IX4

outcome start

bid of class Bid

} ;
taskclass SLAbidRound
{

inputs
{

input main
{

bid of class Bid;
resolution of class Resolution

} ;
outputs
{

outcome accepted
{

bid of class Bid
} ;
outcome refused
{

} ;
outcome next round
{

bid of class Bid

} ;
taskclass SLAnegotiation
{

inputs
{

input main
{

resolution of class Resolution

} ;
outputs
{

outcome negociated
{

bid of class Bid
} ;
outcome failed
{
}

} ;
compoundtask negociateResolution of taskclass SLAnegotiation
{

implementation
{

"GUI_X" is "240";
"GUI_Y" is "106";
"Host" is "kellah"

} ;
inputs
{

input main
{

Appendix A IX5

inputObject resolution from
{
}

} ;
task initNegotiation of taskclass SLAbidlnit
{

implementation
{

"GUI_X" is "242";
"GUI_Y" is "149";
"TaskCtrlFactory" is "Telecom";
"Taskrmpl" is "SLABidInit";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject resolution from
{

resolution of task negociateResolution if input main

} ;
compoundtask negotiationRound of taskclass SLAbid
{

implementation
{

"GUI_X" is "448";
"GUI_Y" is "105";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject bid from
{

bid of task initNegotiation if output start;
bid of task negotiationRound if output next round

} ;
inputObject resolution from
{

resolution of task negociateResolution if input main;
resolution of task negotiationRound if output nextround

} ;
task consumer of taskclass SLAbidRound
{

implementation
{

"Gur_x" is "279";
"GUr_y" is "117";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLAclient";
"Host" is "kellah"

} ;
inputs
{

input main

Appendix A IH6

inputObject bid from
{

bid of task negotiationRound if input main
} ;
inputObject resolution from
{

resolution of task negotiationRound if input main

} ;
task producer of taskclass SLAbidRound
{

implementation
{

"GUI_X" is "451";
"GUI_Y" is "171";
"TaskCtrlFactory" is "Telecom";
"TaskImpl" is "SLAprovider";
"Host" is "kellah"

} ;
inputs
{

input main
{

inputObject bid from
{

bid of task consumer if output nextround
} ;
inputObject resolution from
{

resolution of task negotiationRound if input main

} ;
outputs
{

outcome accepted
{

outputObject bid from
{

bid of task consumer if output accepted;
bid of task producer if output accepted

} ;
outcome refused

notification from
{

task consumer if output refused;
task producer if output refused

} ;
repeat next round
{

outputObject bid from
{

bid of task producer if output next round
} ;
outputObject resolution from
{

Appendix A IX7

resolution of task negotiationRound if input main

} ;
outputs
{

outcome negociated

outputObject bid from
{

bid of task negotiationRound if output accepted

} ;
outcome failed
{

notification from
{

task negotiationRound if output refused

Appendix B IXX

Appendix B

OpenFlow Toolkit user manual

IIIa-

<1l
>

:!
<1l
:2-

~ ~
0e -,

.t •
::i

I

c
.Q
e
Q)
>
(j;
~
15
"<t

s
Q)
.0
N

Q)
0.c.
~
c
2
.!11
~

i
III

~
Q)

j
Q)
.!;
s:
U
<1l
E
co

iii
::::!:-ce er:Q)~

III C 0>
.0 .Q Q)
Q) (!? ::::!:
3: ~ N

(')

•

.,
~oz
1:
.~
Goo
U

N

IU ~ 9 ~ 1<0 r-- r-, r-, co gs 0) 0) T"" (\j ~ "f- co l.t') <0 <0 co co co co 0) 0) 0 tls M C') C') M C') C') ~ "f- "f- "f- ~ "f- "f- "f- "f- "f- ~ "f- "f- "f- "f- "f- it) c:
!c:
0u
'S
II

Cb

~
;;

.~ III

&i ~
~

3:: 8:0

~
ra

...!
3::

~
0

<I)

~.l!!
<II Cb

~Cs :S
<I) c l{l .9 ra
<I) l{l .9

<I) l:l <Ii ::j ..!!! 0 l:l ~<I) ..!!! <I) <..> ;: ..!!:! l:l ~..!!! <..> ..!!! ..!!! ->c ca <.) ..!!:! ra ..;
o <..> u <I) U .g .~ s .~->c ->c ~ ~ <.)
->c '" "t!i ~ .~ ~<I) ~ '" ->c <I) ->c {g ~ l -== en
~ ~ .l!! '" .l!! '" Q) .(3

~
C "t:I C .~ .9

<II <II .l!! <II .l!! :E ra Cl) .5' ~ 0 .l!! 0 ~ c 0.
<II 0> <II 0) <II 0> <II 0) E a.. 0 ;: ..!!:! ;: .s ~

·C 0) .~ .§
~:.§ Cl).S ~:iS 0).5 C ~ m Cb Cb Cb ca ~ :::::I Cb g- O .~
._ Cl) ~ a: ._ ..!I! .<: a: 0 ~ .. :S -si -si "S .§ u -si Cb E := ..g .9 E
:gQ)'t:l~ :gCl)'§<II ;: ~ .l!! :::::I

.~ i 0) E Cl) ~ -si c j ...
Cl)

.~
0 Cb

oq;OlU oq;OlQ::e e ~ Cb 0 .s US ~ ~ .~ >< 0) .~ §
~

c:
~~ Cl) E >-

~ ~ w t::
~

!ij :::E ~ i~ ~ cs..
~

§. ..c:: m
C\I c-., Cl) C\I <') c l:l e:! en Cb ~ ~ ~

c:o. ~ ~ = !g
~

Cl)
C\j C\j

~ ~ ~
co; co; co; co; Cl)

~ c <S <S <S 0 8- .~ 0 ~
.~ 0 8- ~ is"" "" "" "" "" "" en "« :i2 :tj Cl :e UJ Cl Cl G :e 0.. Q..

Cl) u E
"'Cl Cl) .. ca0 0 0

C') 0 (\j .c (\j C')

==
(\j C')

==
(\j C') "f- l.t')

==
(\j C') "f- l.t') ><

"'<f (.) 10 10 (.) ~ ~ ~ " " " cO cO cO cO cO 0) 0) 0) 0) 0) w

lI'i cD ...: c:O a; c:i....
~
0
II:
Z
IU
Go
Q •

- --- --IUe C:OQ;)~~~~

'"~
~'" ~.~ ..;
~ JjJl c:

~ 0 - ~ .£2
~ 'E l~i
~ § <I) ~~ 8
·s iE .~ ~ ~ ~ u53 ~ ~ .~ ~ ~ '0

... ~ Cl) Cl)

~~~~M~~
§-~rao..:..:ra

'-' :::: <..> <\i <\i "0
~ -
~~~~ .......~
-J C\j C\j C\j

T""

'" ~ ~ ~

~
~ ~

~ ~.!!J
.~ <: :fl _.~
.!II ~ ~ S
~~(!)3::;:
.s.s-g~ !'I!
·5 .s ~ ~ ;i:
~ ~ ~ ~ -u
~~8 ra 8.

~0
C\jc-.,'S~

~ ~"O 0
co; ro; ro; "'(:e

~ ~ "'<f

1&1 '" CO) <0 <0 r- ~ en e CO) CO) It) <0 <0 r-, r- e e

~
~ '" CO) CO) CO) It) It) <D , en e '" It) <0 eo III

5! l l ~ '1 l1 'l l~ 11 ~ e
::I=ii:
OS..
:ai
ftI

-g ...
Ul :5
:l Q Ul

Ii; Ul

==
.!!!~ '" <..> c:

'" = ~ ~Ul Ul
E ~ >- as

.0 -g <.>
.$ "" I- a c:
Ul ~ c: as

~
0

~ -ci !::' 0- ..."
>- 0 _g Ul as as
'" .,: 0 .~ '" 5l .,; .!.l~ i!: en .s:

~ E '" ~
u, '" "C E Ul '" 0 is.

0 0 '" '"
Ul

~ ~ 3: ~ :0 ~ .0 ~ () .!!! Ul "" Ul ~as <..> .!!! i!: _,.,
0 Ul '" '" Ul :g Ul 0 _g as .!!! c:

tl <..> 0 Ul ~
~ Ul .~ = = '" .l!i Ul Ul _g Ul Ul Ii; '" _,., ~ j!!

~ '".91 15 .>i ·0 ~ as Ul '" '" '" ·E
"C '" '" co 0- E

'" c: E c: (3 .!!! Ul
_,., c: :0 _,.,

c: u Ul c: Ul l:l u '" ca ~ '"= c: '" c: 0 :l c: <..> c: .!!! Ul Ul 0 I- Ul 15 ..c;
0 j!! '" '" l:l as 0- ~15 ~ ..." '" "C 0 -= "C = 0 u .Q 0 as ~ I- c: '" ~ u

l:l "C c: ..., a "C e: ~ .!!! '" .t
_,., ..." <..> (3 0 '" '" '" c: 15 Ul Cl)

e: ~ _S ~
:c Ul co ..., = = 0

e: e: _,.,
'" '5 c: ~ 15 co <..> "C as ~ _,., _,., _,., as ~ co c: co

~
.E

.~ ~ Ul "" '" :l 0 "C I- '" Ul Ul 15 ..., :l
·0 0- ~ Ii; ca Ul 0 0 0 0 0 _g (;

j!! ~ '" Ul 8. ~ '" !:2 co os "C I- os j!! e: "" <.> ..."

m
~ '" "C .91 Ul Ul Ul l- e: j!! .~ .~ .~ '" j!! J!l .<=

·Ri as c: as E :l ~ 15 '" 0 0
~

)(c: e:
e: E Ul ~ 0 = '" ..c; > Ul Ul '" .! Ul :2 :2 :2 '" c: :l ~'" 15 _,., .>i 5l

"C 0 = .!.l _Ul '" co c: as = = ca .E '" 0- ~VJ

'" .,;. Ul 0 l:l ~ u
15

..c; """
Cl) .E (3 ..g (3 5l '" ~ "Ri "Ri "Ri '" Ul c:

IS. ,_g c: j!! s i as ~ Ul co c: c: Cl) = > > > = IS.
.- :; '"s 0 Ul !j§ c: as _,., _,., c: u "Ric: c: j!! _g _g _g ~ '" j!! as as Ul '6 Ul 8 "C "C '" '" ~ 15 0 =l!! ~ ~ j!! ... ca 0 .!Il .§ E ~ ~ '" ~

...,
~ '" "C '" = = ~ :e >-

15 as 15 c: ~ ~ .E ~ 15c; ~ = ... os c: .E l2
~

c:
15 '"

> :l _g ...
'"

u ..c; _g _g Cl) '" '" 0 '" '"~ '" Ul Ul = l2 '" S c: c: c: '" c:.!' :ll Ul .E 0 J!l 0 c: :: '" _g c: ,_g ,_g _g ~ E VJ
:l :l ... '5.

~
Ul E ~

:.i1 :.i1 :.i1 .!!!

~
·en c:

.s:: ~ co J!l :l Ul VJ ·E .5. ...,
0- .E "Ri '" '" E E VJ c: E § E § E § E § E lrl lrl lrl '" 8 0

e 0- E :l ~ 0- 0-
~

as 0 0- (; E c: ..."

Ii; .3 :e '" 0 0- >- ~ 0 (; I- <..> U5 LL as 0 0 0 0 u. U. .s:: ..c; ..c; :l .s:: 0-

C!l .E a: Cl .E 0 I- u. u. .::; N ,:.; u. ~ U. LL U. U. U. LL U. $? <..> <..> <..> U5 a: u. <..> 0

"'": - C\j - C\j M .;,.: .n cD ~ ciO Oi - C\j M ;q: .n cij r-.: cici Cri '" M - C\j M

~
N '" .,.; CO) .,.; CO) .,.; .,.; CO) .,.; CO) .,.; .,.; .,.; .,.; ~ ..,. ~ ~ ~ ..,. ~ ..,. ~ ~ ~ <0 <0 <0 ,..: cr:i ex:> cr:i ai

~ ~
'" :l '" :l :l :l :l :l :l :l :l

.2' .2' .2' .2'~ .2' .2'~ .2'~ .2' .2'~ .2' .2'~ ~ .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2' .2'
LL u. U. u. u. u. u. u. u. u. u. U. LL LL U. U. LL LL U. U. LL LL U. U. LL U. LL LL LL

:. -S!0
II: iz
1&1
A. .-:0

1&1 ~ ~ ~ ,.... III

5! U')

co,g
~ ~.~ ~ c:,g
~

·0 .13c::: c:
0..: ._g ~ i.... :t .
Q) ~t~ C5
"E ~ :t
0 ~ ~ ~ ~ t~ Cl> t» .~ ~ ~~ o£ .s 5-

C5 Cl>

~ !g e .~ o£ Cl>
:t r! 0,0£

Q) .~ .s 0>

"i
~ I~ J: {l~

~
'Cs ~~~ en-g ~ C') ~ C\j C....:: C\j

~ s~ ~ ~ ~ ~ ~ c
0

C\I 0
c::; c::; '0- - I>C

Cl)

" S
.5 i

:. u
0 OS
II:
Z ..
1&1 :is
A. •0 ...

1&1
'"0 f?g 5 '0 0> E c:

Cl ~ B c: 0
'iii mO lii m c ,2 ~ 0 E ;I

Ol Ol c ~'§ E,,- 0-Q) uco '" 0 ' Olc:3 0> U '",Q ''''~;''U;,-::JEW _.f: ~C'Ila :::I
c: E Ol m Ol c:o->- 'a

,!!l g'g"Q OlOl" '--.e '§- ~ ~ l! tl '5 ~~~~ e.c'CcnCQ) E':: c:
.ecn- E ~U).Q~~~,~- Ol m.s= -u...s= "Ol"'o ..

o ,m o~ '~
Ol Ol §:g Ol,,,," c:£: 8.- .!

j~~S15 "" GI
U; mGl"~,,- -g,:,.2"' >-]l~~1'=a;3c~~~§ "Ol::J '" s s s ~.§t::~ UJQ)'O s 0. 0 . 0-

OlW Ol x ,- 9 x 8.~!!! E;ECOQ3o<,' '3.9 :ill!Ea.",Gle. ~ '" Ol
.Q 8lil~~~~~

§0~5j'5
E Ol'- ~ o Q) C -

0> - 0"''' ,S !il- ~ '" c: ~ <IS
~ :c ._-

.=CDcU) Gi .~ !! 00.. ts ~ UOl!il-e.~~6,
Olco13°

>.r:.>.-Q) ,,=lll .~ '5 e -Glm"
C-(I)"'C"C m Ol ::J Ol ~.9.9·5~a~ s s s s
Womc:" !!! S!' .5 'EUJ.9:! £:_ OlCOOl Olm.s o Cl) en CD 'C - -.;::o-~

5j.S Qi ui~ Ol c: '" E~.i!:- '0 gB8,~£u(ij m-Oc:
.s=0 - 0(1)-0

Em>c:a; -:'tl~ c: - c: ,- coo _"';:' ;E~Ol'-
0:::J 0 c g>al 5,~ § ~ -s 'u en ~0. c: .9l .Q " .9lOlijl ,: 0- 0

.Q 'iii s: N m ~ '~"c:~'--~ Ol(/)"'.s=
0"'0. >-~ o._::J_

~ E ,21= " jOl'" .TI~'" 'E o ~lll 2~', en c 0 _

GI Ol.e 0. c: 'iij2!(ijmji~ Ol GI Ol c:
(\1=.9 -Ol'- Ol .s=EC:Ol

o ,:: Ol 0. "" '"",.S ::J 5il;l~ 2! >-Ol~g-'mC;:: -GlOlE
" :2CO~ ~.= g.9!. > ~ m W g, E't: ::J 0. .o~cD, .. :::JO:2:
SEeo,- ~~-t::O-UJ ns ::l 0.

~g~ o.cD.i!:- !!! :l:: CT2 E
f!120.:g~ .Q'E"B

= cD -",Q..
<ii ;e ~ £ ~3 ~ 9 '0 ~ Q) ._

& f ~,~~m Q;£g CD ::: ._ .~ J9Q).cg
~cD5!; ~OlcDcDcD c:

£ a. as .c q::(f)r.n~=.t::.- o£:liialo~~ 0.
Q)..QE5:!~ _::JW f!1

.... Q):::J-cn "C '::OE"O
'!!III! 0_0 al,~ a cD~o~c:15c:.c-Q)O- ~cD- 0 ~ Ol 0 '(3,... -ZEo.,: Ol"'cD ' _.cc: m ~ ;'.: .~ a- 5 c:: '- Ol

~

:ilWc:EC: '2: .9 £: §
m o.w --:Qc:"C - 00-'0

:@&.g8~ ~
c,e O>~:c o:!;i ~ ~ c: '" E '"Ol~~"" cD03 Cl) fl)cn- .- « cDm

~l!i:g§ i)_g_gg ~Q)-; 2! ~ 'i - 0 c: c: al . ~ ~
'ti .S! ::J :2 moco~

:2 ~ '" ''':cD_ W E c:c:eo. ~ £:.S i) -l!!~;'"
".s=-cD"

0>
mO::J1ij- 0"0> II 5.~ ~ £:~&

>o-U)e __ c en

t q::.!!!c o ~ c: -m '~ cD.s=.- O>c:-~ '- cD'"E E;£ Zc:cD o,g:::J§o"8m 0. EO.5.2,50 wOl~ ':rl '",,'EE5, cnicD.s=~al g-:c.s 's, iii 'E ~ a.c:~,...
08. ~;EAl.~;;.:lii

,- 0> cD

.s :2Qi:gE '- E GI 0 ~ ScDm'O
.!!l i) ai cDcD ~.E:fl~ a ~§~ o III Sl i5. ~ '~Q; o£:liiE

~ 0.0.9 = «.5 5. m .s!il-t3!i.Qlil£ <'OE!!!

I
II:
Z ""-1&1.. ,.: ,.:
0 GO

1&1e

~o
II:
Z
1&1..o

I
Lt>

1&1e
Q)
til
::::l

sa
a3
a3
Q)
c:
(/)
Q)
(/)

.!2o
Q)

-=~
::::l
13 .
.S .~
00-.r:.

~~a. 0
en?:enO«ID
...Ja;Uo
~ Q)

~£
~gj
c:=
~~o (/)
o CIS- ~
"tl 0m;;:
c:Z
g~>0

e..

IIIe

~
II:
Z
III
Lo

• ••••

w
Cl

~
II:
Z
W
II.o

Cl
£
Clo
:J

.Q
"E
~oo
<IS
0.
<IS
"0c:
<tI
Cl
E
<ISc:
Q;
sn
:J
<tI~
.2
:Jg,
15.
Ee
0.

'il: '
"0 Ec: Cl
<lSCii
~ >.
<tiC/)

Cl ==1io
<tI"i2c: ~
Cl 0
£S:

c:
Cl
Cl
t3
°c:'0>
o
...J

N
0)
:;
Cl
u::

N...

w
Cl-

~o
II:
Z
W
II.e

s
§
~
U
c:
is
0)

£
g
oc:
,2
:5
.0
't:

Cii
U
Ciio
E
,!:
"0
0)
"0
'se
0.

~
<tI

°Ql~
s:o
C;;
.0
0)

Eo
C/)

~
eo
0"0eo t:
t:: <tIo E
o.E
c: 0o o
0) g'
~ 'il:
0) 0
0=
- 00._
'~ Ql0£
0) Cl)
s: :J
- 0
Q) .!a
~£
Bal
'E 0)
CO c

~~o :J
>'0
:::>.

Cl
t:
';:
}2

:E
0)

£

Clc:
'il:
.2
:9
0)

£
0)
:J

°,!!l
.Q
"0
Ql
0)
c:

0)
:J
Cl)

,!!l
.Q

0)
U
'~

0)
Cl)
CD
a:
er

• •

o
B
<Ii
2oz
~t
~~
~B
0)'"= 0)
- U
O)'~
£0)

"" '"~ ~.cx
() 0)

......

w "Q Q) GI
c S

1:
'(0 ftI
E o ..
'(0 m til

E £;
Clc::

«l "= ;
.!!l >- ..
m C GI

s: .s. e
"= e.
C (jj
:l s:
0 moo .S;
«l ~c
«l 0

U m
u £;
«l .8Q)

'"'" ai .><:l
'" ~~ .~ m- m E~"'.c 0-

]10 ",.s!",e.
:l"E me.c
~ 'O«lm 's c:E '" 0 «lm '" ~Ol

o «l e.c:
c e.

~ 'Cij«l '"c:.- m :lm.c Eal- m.so> e.t:
«l c -«l
E «l

m_
s: .r;",

m o m '"~ <5 ~ ~

it
0
II:
Z
W
II. •Q ~

W
Q-

ito
II:
Z
W
II.e

cl.
_Ql.cI
.!2''om c
o «l
.'§ s
'oC:
m«l'oC:.- m
~.5
~~
m -.oc:
~ci
«l -.cC:
s·BQ~
~ .!;
mCfJ£c
.!!l·B>e.
'00m _
~ ~
.!!l>
m _
D.t::c:'o~w_
- m~il:;0
'O.:g
!ijg,
E m
!5~
~.s;
~ ~ • • •

m
£;
Qi
'"~
ci.m
1ii
«l

~
III
E
ci.o
1ii
t
«l
1ii
.8
Q) .

~ .gm III.cU;:a
~ ~
~~
~~m ~E ~c: «l
0_
.;:::0
.!l! c
:l 0E .;:::
'iii .!l!

~ .~

•

M~

1&1
Q

~
I;:
Z
IIIca.
Q

"0c
I1l
I1l
iii .
"0"0
O)Q)
eti
'Cl ~
~ ~J:: ._

~ ~
Q) I1l

~~_ 0

::J ;;:
0_
"00
.~ .~._ e
~ ::J
>.e= Q)I1l Q)
::J ;;:

"'-::J Q)
",.0._ '"
.§ .~
- e(!! Q)
0"0
.0 e
I1l Q)= 0-o Q)
U"O
.2:! Q)

~-£
·iii
"'.c"'-Q) 0)
U ee 'C:::
a.::J

- '"I1l e
.0 Q)
.2>.
0).0

co
i=.~
z

co
~
U~
U
Q)
a.

'"..l<
'"s
I1l

15
c
·iii
Eoo
N

'"~
::J
Clu::

1&1e

~o
I;:
Z
1&1
ca.
Q

It)....

-0
Q)
U
::J
"0e
.~
Q)
.0

~
~
Eo
Q)

'"Q)-£
15
'"Qi
"0o
E
Q).s
vis:
a.
(!!
0)
(!!
I1l
a.

><
Q)
e
Q)

-£
.£

iii
ti
Q)

Eo
c
·iii
E
Q)

~
-£
'"Q)
'"::J

II)- ;;:
lil.2
E(ij
0",

w
Cl-

~re:zw
D.c

c
Cl

~en.~
Z

CD,..

w
Cl

~
Cl
IE:
Z
W
D.e

'"~ ~"5 Q)
o '""5a.

'S
o

"5a.
"5o
"iii
E

'"0Q) c

~ £c
~Q)
:t:
"C
:;
.2

•

,©
, e[0: ..:

i ooC)
'--_ ...

~o;:
Z
IU
Cl.o

0,0
!

.~ s

r-o:.,Q.·· ; .! -e ..
!O,'~! ~
:----.!.

'"OJ·13
c
OJ
"0
C
Ql
a.
Ql
"0
co

]
.t;
c
a
'"Ql

~
.:0
C'i
OJ
5
Clu::

"';III u
"0 C
C III
1Il(jj
« .s_,., ~
'" 01Il~
-"0
o~Q) :J

'" OJ-.05.32
C :J
.- 0
C u
III '"

~~
BcD"'_,.,
'" <fl1Il~

~c
:J OJ
C iii
lila.
U <fl
>. .t:u~
c: 0
Ql-
"0 OJ
c: <fl
OJ_
a.:J
Ql a."O"S
c: 0

:~~
~~
C ~
«'Vi
~~

c
o;:
la
In';
la
Z

Q
N

IU
Cl-

~e
;:
Z
IU
Cl.
o

s
<fl
OJ·13
C
Q)
"0c
Q)
a.
Q)
"0
;;:

~
~
"0

a
<fl

!
10
C'i
~
:J
Cl
iI

III
Cl

~
(/)

El
?;
o:g
s
Cl)
:;
<0:;
(/)
c
o
i3
(1l
Cl)
:;
(/)

E.g
Cl)
c.
<0:;
Cl)
'0o
U
(1l

Cl)
(/)
Cl)
:;
s

(/)
c
.Q
<0
.!!!
Cii
'(3
Cl)
c.
(/)

Cl)

:0
'00
(/)

oc.
~
Cl)
>
Cl)
(/)

e
(1l

."!:

~o
Q:
Z
III
CLo

c:o
:0:
1'1
Cl';
1'1
Z

N
N

III
S

~o
Q:
Z
III
CL
o

,..
N

w
2

~=z
W
Doo

co
;I~
Cl!.~
Z

W
Q

Vl
nl

~oc:z
W
Do
Q

eo
C'i
~~ .
0>'0
:.;::: Q)

.~ al
'0 Ol
Ol c:u .!Q
"0.. -
Ol .g.
'0 oE ~o Ol
- >Ol Ol
£iii
b~
nl'Oo nl
...JO~o~;

• VlC 0o 0.~ s:
a.<..>
o c:
~ nlC ()
Ol iiiE Vl
Ol ~
.cOl
~£
.s '0

~ ~
Ci)t!?
(/) nl

Q5 a
~~

M
N

w
S

c:c
:0:
III.~
>
"z

-"
'"s
"0
C
::J

8.
Eoo
'"s
.£
0>
.s
Eo
~
Cri
M

III
Cl

c:
.Q
15.
o
:J
c:
Q)

E
Q)

-£
0>
c:
'iii
:::>
"0

*~o
.!!l

E
0"-
- c:Q) :::>

~8
<1i ~
~c:
(J) ItS

~:g
Q)<I:e~c.C:
~ ~o Q)
'E .£
Q) ItS
g.~

~;:
Z
III
D.o

c
o;:
III
at';
III
Z

CICI
N

III
Cl- "0c

ItS
"0
Q)~
C.
E
'iii
.!!l

~;:
Z
III
D.o

1&1e

:to;:
Z
1&1
L
o

1&1
2

:toc
Z
1&1
Lo

01
N

III
2

Ql

:5
c.
III
E
~

c
.Q
]i
Ql
"0
Cl)
Cl)

.!llo
"'"Cl)
~
.9

o
Ql
>o
E~

:co
G:
Z
III
A.o

N
C')

III
Q

~
Z
III
la.o

Cl)

~
(3

"'"Cl)
~
III

.8
t5
Ql
ZSo
Cl)
Cl)

III
(3

"'"Cl)
~
III

15
c
.Q

~
.9

IU
E

~;:
Z
1&1
la.o

c
nlo
III
III
nl
t5
.::c.
III

~
(/)

:><
III

~
«
5
Q:s:
a>::;
Cl
c

"Ci.i •
:::l ::l
"0 nl
..m t5
"0..1<a> (/)
- nl

"01-
a> ~
j~
~o_ C
"0 nl~£
al]
a> c.
.oc.
c nl
nl E
U Ql
1Il.o
~ ~nl_
I- «l

IU
E

~
Cl
;:
Zau
la.o

t:
Cl

i
u
le
u
II
ca.en
~
~
I

~;:
Z
1&1
II.o

1&1
Cl-

~o
II:
Z
1&1
II.
o

'"'iii
Q)
c
Q)
Cl
<IS

• •

c: Q)
o£
"'Clc: c:.,g 'Ci)
<IS ::J
Cl~

~!2
Q)Q)
"OCIl

IIIe

~
II:
Z
III
A-o

'"Ol

'"'"nl
U
ti
Ol
']5'
o
Ol

-5
'0
..f;'
:Q
(ij
>
Ol
£
01c
~s:o

CIO
M

III 'ilia; Ol r-
e -5 M

~ Ol iii '"",-0 s: :::l iiim 0 - '" ~-0 -0 .-
Ol Ol e '"
£(6 mm -0

Ol '"
eo ~ nl

- Ol c-
Ole o :::l -0

0. Ole Ol :f::! -.- <!:l :::l :::l '§-0_ nl 0e 0> Q;U; 0>
0':: c
o.u... -0 nl Ol
",= Ol"Q; 010> e~ 0 =f; 0>0:';::; .0
o 0. ·!!liii -0e 0 -.r:: :;Ol-o :::l '" '"

0_ e
s:~O> ~E '"~E Ol

'" Ol - :::l -0
Ol.r:: 5 ~ 0

& -0- Ui nl 0
o 01 Ol
o .!:; .:: ~ ~ £
Cl> '"

Ol- ~'!'III .r:: :::l s: nl,... - >-

~

-= 0>
0>.0 COu; ~e ~ s .r:: ~

-Ol 0>Ol '';::; ~'Cui '"e nl
~

0> 0 ~ 5 ~.g 0
01:: .r:: .

.9~ & r!
o 0>

=
",co. >-.0

:::l nl "'00> --0
nl '';::;~ e_ t:o ~ a o ::l

>-5 ~ e 0. Ol e 0 0

a, ~ ~
~

.2 ~ E ~-£5
;:

t!?)(Q) Cb "o .- 0>0>- :::l Q) U

~
=-0 >~~ E: o E !Enl 0> C nl'" >-nl U
~ ~ ~~ ::a ~ ~'O l! ;;:e II

o '" 0

=
~ 0> o Cl> Do

~
o Cl> - :::l .r:: Ol e 01 III
-UJ~ u-'"

~
.E~

Ol '" Cl>
Onl ..

~nl~ ~
Q) Ol 0 010 :a
~£.!:; .- <IILien 0:0. 0

>-
~ at
0 I:

II: :;
Z "" C'I U
III It)

II
A- li) lI) -=
C U

we

~zw~o

o
(/)

"iii
'E
a>
u;
·x
a>
C:oc
eo
l!?
lIS
Qj
m
!!i
~
.;t!
(/)

.!!l
(/)

:£
s:
.~
(/)

....: .!lI
~ g
o a>u -0
.E s

0-
a>
-0
a>:;
°uia>13

~~
(/)0

.!!!

E,g
'Ee
a>
!t:
-0
.;t!
(/)s
lIS
>-
.0
-0
a>
(/)

::J

.!!!
a>
Eo
~o
iii
a>
C-
l!?
«

'E
a>eoc.
Eoc

~~
.2-
a>e
E.c
OC.
u lIS

~o,
e >-
::J g
e Q)
1IS"tl
me
.E a
-0 Q)
::J-O
U lIS
.E Cl
.;t! een .~
lIS lIS
- a>-g t
::J >-
0.0

E~
8 ~
lIS 0
.!!! ~~:.c

we

~o=Zw~o

(/)

ti (/)
a> lIS
EOo .;t!
(/) (/)

~ ~o a>eo

•

t::o
.0
lIS
e
lIS

IIIe

~
le
Z
~o

,,,,
,,,,, ,,,

, ', '
"I'
i
:\

,
,

IIIs

~
IC
Z
III
la.o

,
,,,, ,

.",

c
.Qao
co
.~
"S
E

~c
.2a
9
co
'E-
o
::J
C
Q)

E

Q)

Eo
lJ
'So
Ol

oS

....
Ol
Ul
::J

iiico0"5.
o

Q)

oS

C Olo oSa III
o 's
"'0 . Q)
C C ::0
8·g "(i)
Ol::J '"
'" lJ ~£ ~ ~

•

Q)
.0
>-
III
E
'S
.0

.~ .-ei

'"Ol-;;;
iii
Ol

oS

Co
'".!!!
lJ
C
Ol
"'0
C

2i
Ol
"0

Ol
Eo
'"

Cl
.£
'S

Cl <.l
C ~
] Ol

.!!1

"0
Ol

~o
E

al
'So
Ol
)(

Ol
C
Ol
Ol
.0

'"IIIs:~
Ul

.l!!
.!!1

'"Ol
'u
C
Ol
"'0
C
Ol
0.
Ol
"'0
Ol
E
o
Ul
Ul
III
-0
Ol

"E
III
~
i5
C
Ol
Q)

.0
Ul
IIIs:
.x:
Uls

5~
8
'":£
'0
'0
Ol

"E
IIIo
'"i5
"'0
C
III
"'0
$
Ol
0.
E
8
ci<liz~
5l:O.0
Cl~
.f; en'i~
~Ol
_.s:::
Ol-er 0
.0-
::J"'O
'" Ol- '"C ::J
~ .!!1
Ol OlQ)E.... Ol
Ol.s:::
~~

,.
"

III
S

Q)

£

III.x:
III

!
a.o
.2
15
c
o
.~
C
Q)
IIIea.
~
Q)

.§
C
::J
II:

.2
c:
Q)
Cl)

Q)
.0

.2
Cl)CIls:

co
iio
:toQ)
a.
Cl)

CO
Cl
C
'§
alxQ)
t::CO
iii
.9 Q)Q) U

::Ci"2:CIlQ)
Clen
.s e
.8.2
Q)'c;;s8.Q) Q)
CD II:

III ~ C"l

S Cl) Iij "0 •~ Cl) Q) "O.<!l
"0 a; ~ - C ca .2~ ::l't= '0.<!len :-,.&= 0 Cl)CIl- Q) ::J .;: Cl) Q)
.- ::JUa. £O."!::: ~.~0_ C ~ '"0 CIlCl) ::J
~O Q)CU(/)CC

CI)~ ~r-g-CIl2
.'!:::: ~ .aliiiQiIij"Or- (/) - X Cl) .=c Oi t5 .~ Q) '5 Q)CIl .~ g Ca.£:_ .cQ)- .0(1)":'::::;0)enO O~~O.~Q)::;.e - - ==a. - . 5..= OJ ~ <l>
-="0 ~£=~:::J CIlQ)OQ)"O o C C =
~=~ ~O~~~
~~.!!l ~.l!l ~ 1ii:g
Q)-g~ cng-o(/)_
£a;CIl .1:: Q) j1 "0 j1

CI)"O~C~

ciCial ~c"SCIlEQ)E~ ~Q)-(/)O

Ciiom s: g- ~ .~ ~
XU E U"O c cQ) Cl)

.1:: _ Qi Q) Q)
c CIl~ C~(/)"'C(/)
Q)"O co ~ g_.!!l s s
£~$ -EQia.u
-CIlu ~.<!len~~~E~ !0::;1l$
Cl~O "0 c: .9-= ~§CIl::; §~6!§:OB ~ So 8.£ ~ -;v ~~.~6 §-g~~.§.-o c~8~ 0U CIlIII ::J ::J Q) :;:c-CIl CO"O:E.80"E ca~ 5. r- .5!2~:'~~~ ';0-"0 E.e::Jc .~ ~ Q) ~ CO .~uO CIl "".2enor-"O iii

~ ~I)

II: 0

2: ~III
0. 0
Q I

1&1s

~o
I;:
Z
1&1
Lo

Ql

E
Qls:
U

'"._o
(5
o
§
o
sg,
Clc
·iii
oos:o
cry
cri
e
:::J
Cl
IT:

c:o:;::
:::I
U
ell
)(
UI

~o
I;:
of!e
J

1&1e

~e
I;:
Z
UI
Lo

c:o:;::
:::I
U
ell
)(
UI

~
~
I

IIIe

~=:z
III
IlLo

ce
ID :;£1.)
'" CIlID.r.
Ol-
0.= ID
.0 CIlo Vl
010C-
.§ ~
.~ ~g ~E CIl_.r.
"3 c
O-Ql

~j- ,
.5~
II) Vlo 0-o IIIs: C
()CJ)

enc
'Co..
'C
o
::Iii
~o
io
~

IIIe

~
le
Z
1&1a.
Q

"0
Ol

~
Ol
0.

'"Ol
.0
c
ello
'lil
~
'0
ell
Ol
:g
c
ell
:Js
Ol
>
"0,

.9
"0
Ol
C
Ol
Cl)

~
0.
Ol
.0

'§ .:
ID2cm
Eo..~o
Ole>o c;;: "iii
I- :J

Ol

'"ell.0
'"ell
"0
Ol
"'-:J C
Ol Ol

~~
L: ell
Olo.

3:~
<Ii Ol
"'L:Ol-
o Ce:.c
~~
:E~o :J

c "5
ell '"o~
Ol <..l
a.E!
E 0.
elle>
x cQ) ';::

~~
~~
~£
(ii.9l
<..lo.
"0. ~
Z='x
ell Ol

.5Q :E
"'-~.E

j
."

t
ID
"E
o
(ii
C
Ol
E
t::
ell
Cl.
Olo~
.E
Eo
u,

Ol
.0
c
ello
"0
C
ell

E
Ol
E
0.
"5
0"
Ol
Q;
"E
o
.9

'""0Ol
Ol
c
>-
"8
.0
Ol

§
Cl) ~

c Ol
Ol-

~~
"O"~~ s
ell :Ju;g
Cl) Cl)

.~ ~
Cl) 0
Ol-
o ce:o
o.Ol

"!!l~'::'0

III
GI
a.
E
III
le
III

o
III

IIIe

~o
le
Z
1&1a.
Q

co
.~
~
al
0.
C/)

L:
"~

E
Ol

~
Cl)

~
~
~
Ol Ol
L:<..l= "2:o Ol
cC/)

"Q
§
c
Ol
Cl)

~
Cl.

~

Cl!
C
'Co=co
:IE

~
~
~

III
Q

~
C
IE:
Z
III
CL.o

III
ell
Q.
Eca
le
III

N
In

IIIe

~
C
IE:
Z
III
CL.
o

•

..
In

WI
ell
Q.
Eca
le
III

11.1 Ol 411

e c (/l Cl.~ E: i.
0 OJ en Es: - e(/l "0 .~ 's ~
"0 ~ c: 010 le
c «l 11.1
«l r: 0 ID

e E
~ :g 'c Q)·2 c: OJ ~
0 0 o.nl:g :s: Q) ai 0.",

t'a
en «l.><

~ «l
Q) e s: '".~ '"
!2 OJ .~~~ .:::: «l :> en - Q).E 0 .>< nl.!:a: "0 r: (/l (/l

"0 OJ .2 OJ nl "§~OJ Qi a: t=a-5 t'a "0 '0 0 ~ Q).... .~ "§_g'd; 0 t'a e eE nl «l
«l ~

~
(/l .~ I I o (/l

OJ Q) (/l 0 0 E 0
"E..(ij Q) ...

~
o

~
(/l e 0""

E '" ID
_ e

e Q) :> 0«l.>< 0. ~ ~ o E
x '"

~ ~ 0 r=- >.'"OJ nl '0 I-Ol- c ~ vi vi ~"O
C .~ «l o ~.... .- '" ~ I

0 0 -0"E OJ

~
E E (ij ~ .

0 E e '0 OJ OJ _~o
«l OJ

~
0 0 «lQ)~

t:: ~ Ol I!? ~ ~ ~ -'=.!:OJ

~

0lQ) OJ 0 .Q ='0:;e .~
~

~
~

u; ~ Z :::leo>
o.~ r=- Q) Cl .- ;;:::
OJ :>

o W W «l 0 e

~
'"E ~ Cl! cD .~ Cl. Cl. ~;~:> ~

~
ci Cb OJ 0 0

~ e ~ '" <Ii <Ii ~ ~ .~~
e e

~
~ OJ ~ :> :> ~oo.
.!!l~ ~ :> 'co 'co Ol I- Ol.S Ol '" "0 nl «l c:-o"OE Ol IT: .5: Ol E E; OJ Ol e (/l
Ol- e 0 0 (/lnl=
"00.
«l E ~ t: ~

u u (;j~:J
U nl .s ;.~ CJ

~
nl x

~
OJ 0 .!!lOl Q) :>

,= c: Cl) ~ • • ,='O~
nl

~ ~0
~

....= c'4 ~z cS11.1 c::) cSla.
0 "" ,..

11.1e

~o=Z
11.1
la.
o

Ol. ~
."
GI
i.
E
la
le
1&1

1&1
Q

Icc
Z
1&1
A-
o

c:
"a:

1&1e

I
II:
Z
1&1
II.
o

'"M
m niU)U'>

~ "! ~ 'C::M~

t{fo (1] N ,__ Q.J -=- ~ I.t')

N $.,...-~~
.;';; N '59~~U) ~

N ~.;C N :::~ ~.~
N '" ";1'- gj

V>
(f) '" c: 'iii co E C") l!?

~ "llf I!? c;Qt!6 ~ ~ ~ ~ ~ """ '"~ 55 § ~ '" 0 '"
V) .s '6

.!,> l!! c; ~ .'" ~:2'~~~~t- l!! l!!
.!,> ~~ ~~ .'2> '" "UJ

E u §- .s c

'" V> ~ c; ~l~.9 ee ~.....JOO ~ '" '" '"« CO OO<.:lO UJ (!) -.J :Is
:::;;::;;

~ CQ U Q 1&.1 C:l

III
III

III
CII
Q.
E

=1&1

w
Cl-

....
11'1

~o
II:
Z
W
la.
o

References 189

References

[1] R. Allen and G. Garlan, "Formalizing Architectural Connection", Proceedings of the

16th International Conference on Software Engineering, pp 71-80, Sorrento, Italy, May

1994.

[2] G. Alonso, D. Agrawal, M. Kamath, R. Gunthor, C. Mohan" "Advanced Transaction

Models in Workflow Contexts", 1th International Conference on Data Engineering

New Orleans, February 1996.

[3] Amazon.com, http://www.amazon.com!

[4] Jean Marc Andreoli, Steve Freeman and Remo Pareschi, "The Coordination Language

Facility: Coordination of Distributed Objects", Theory and Practice of Object Systems,

voI2(2) pp 77-94, 1996.

[5] Barclays, http://www.barclaysquare.co.uk!

[6] Luc Bellisard, Michel Riveil, "Distributed Application Configuration", Proceedings of

the 16thIEEE International Conference on Distributed Computing Systems, Hong-Kong,

May 1996.

[7] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and G.

Woetze1, "Basic Support for Cooperative Work on the World Wide Web", International

Journal of Human Computer Studies, 1997.

[8] Eike Best, Dipl. Inform. Bernd Grahlmann, "PEP: Programming Environment based on

Petri Nets, Documentation and User Guide", version 1.4, Institut fur Informatik,

University Hildesheim, November 1995.

[9] Eike Best and Richard Pinder Hopkins. "B(PN)2 - a Basic Petri Net Programming

Notation", Proceedings ofPARLE'93, volume 694 of Lecture Notes in Computing

Science, pp 379-390, A. Bode, M. Reeve and G. Wolfeditors, Springer-Verlag, 1993.

[10] Gregory Alan Bolcer and Richard N. Taylor, "Endeavors: A Process System Integration

Infrastructure", Information and Computer Science, University of California, Irvine

[11] C3DS, "Control and Coordination of Complex Distributed Services, Project

http://www.amazon.com!
http://www.barclaysquare.co.uk!

References 190

Programme", ESPRIT Long Term Research Project 24962

[12] F. Casati, S. Ceri, B. Pernici, G. Pozzi, "Conceptual Modeling of Worktlows",

OOER'95, Gold Coast, Australia, December 12-15, 1995.

[13] S. Das, K. Kochut, J. Miller, A. Sheth, D. Worah, "ORBWork: a Reliable Distributed

CORBA-based Worktlow Enactment System for METEOR2", LSDIS, The University

of Georgia.

[14] C. T. Davies, "Data processing spheres of control", IBM Systems Journal, VoLl7, No.

2, 1978, pp. 179-198.

[15] Digital Equipment Corporation, "TeamRoute Programming Guide", AA-PM6FA-TE,

DEC, Maynard, MA, June 1992.

[16] FloWare, http://www.plx.comlhtrnlltloware_scalable_worktlow.htrnl

[17] H. Garcia-Molina and K. Salem, "Sagas", Proceedings. 1987 SIGMOD International

Conference on the Management of Data, Pp. 249-259, May 1987.

[18] D. Garlan, R. Allen and J. Ockerbloom, "Exploiting Style in Architectural Design

environments", Proceedings of SIGSOFT'94, USA, December 1994

[19] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck and V. Sunderam, "PVM3

User's Guide and Reference Manual", Technical Report ORNUfM-12187, Oak Ridge

National Laboratory, September 1994.

[20] D. Georgakopoulos, M. Hornick and A. Sheth, "An Overview of Worktlow

Management: From Process Modeling to Worktlow Automation Infrastructure",

Distributed and Parallel Databases, 3(2) pp 119-154, April 1995

[21] Antonietta Grasso, Jean-Luc Meunier, Daniele Pagani and Remo Pareschi, "Distributed

Coordination and Workflow on the World Wide Web", Rank Xerox Research Center,

Grenoble, Computer Supported Cooperative Work: The Journal of Collaborative

Computing Volume 6, pp 175-200,1997.

[22] 1. N. Gray, "The transaction concept: virtues and limitations", Proceedings of the 7th

VLDB Conference, September 1981, pp. 144-154.

[23] Honeywell, "MetaH Programmer's Manual Version 1.09", Technical report, Honeywell

Technology Center, April 1996.

[24] M. Hsu, "Special Issue on Workflow and Extended Transaction Systems", Bulletin of

the Technical Committee on Data Engineering, IEEE, 16(2), June 1993

[25] The IBM Corporation, "IBM FlowMark Modeling Workflow", SH19-8241-02, October

http://www.plx.comlhtrnlltloware_scalable_worktlow.htrnl

References 191

1996.

[26] The IBM Corporation, "Message Queue Interface", Technical Reference, April 1993,

Document SC33-0850-0 1

[27] The IBM Corporation, "IBM FlowMark Managing Your Workflow", SHI9-8243-02,

October 1996, http://www.software.ibm.com/ad/tlowmarkJ

[28] D. Me Carthy and S. Sarin, "Workflow and Transactions in InConcert", Bulletin of the

Technical Committee on Data Engineering, IEEE Computer Society Vol 16, no 2, June

1993.

[29] Stefan Jablonski, Christoph Bussler, "Workflow Management", Thomson Computer

Press.

[30] jFlow, "OMG Business Object Domain Task Force, BODTF-RFP 2 Submission,

Workflow Management Facility", bom/98-03-04

[31] J. Kramer, J Magee, "Analysing Dynamic Change in Software Architecture", pp 91-100,

Proceedings of the 4th International Conference on Configurable Distributed Systems,

IEEE Computer Society, May 4-6, 1998

[32] F. Leymann, "Supporting Business Transactions Via Partial Backward Recovery in

Workflow Management Systems", GI-Fachtagung datenbanken in Buro Technik und

Wissenschaft, BTW'95, Dresden, Germany, Springer Verlag, March 1995.

[33] D.C. Luckman et al, "Specification and Analysis of Software Architecture using Rapide",

IEEE Transactions on Software Engineering, pp 336-355, April 1995.

[34] Jeff Magee. "LTSA: Labelled Transition System Analyser",

http://www-dse.doc.ic.ac.ukJ-jnmIL TSdocumentationlUser-manual.html

[35] Jeff Magee, N. Dulay, Susan Einsenbach and Jeff Kramer, "Specifying Distributed

Software Architectures", Proceedings of the 51h European Software Engineering

Conference, Barcelona, September 1995

[36] Jeff Magee and Jeff Kramer, "Dynamic Structure in Software Architecture", SIaOFT

96, ACM Software Engineering Notes, Vol. 21, No 6, November 1996.

[37] R. Medina-Mora, T. Winograd and R. Flores, "The ActionWorkflow Approach to

Workflow Management", Proceedings of the 41hConference on Computer-Supported

Cooperative Work, June 1992

[38] N. Medvidovic and R. N. Taylor, "Reusing off-the-shelf Components to Develop a

Family of Applications in the C2 Architectural Style", Proceedings of the International

http://www.software.ibm.com/ad/tlowmarkJ
http://www-dse.doc.ic.ac.ukJ-jnmIL

References 192

Workshop on Development and evolution of software architectures for product families,

Las Navas del Marques, Avila, Spain, November 1996.

[39] Neno Medvidovic, "A Classification and Comparison Framework for Software

Architecture Description Languages", Technical Report UCI-ICS-97-02, Department of

Information and Computer Science, University of California, Irvine, USA, February 1996

[40] C. Mohan, D. Agrawal, G. Alonso et al., "Exotica: a Project on Advanced Transaction

Management and Workflow Systems", IBM Almaden, ACM SIGOIS bulletin, August

95, vol. 16 no 1 (http://www.almaden.ibm.com/cs/exotica/exotica_papers.htrnl)

[41] C. Mohan and R. Dievendorff, "Recent Work on Distributed Commit Protocols, and

Recoverable Messaging and Queuing", Bulletin of the Technical Committee on Data

Engineering, Volume 17, no 1 pp 22-28, March 1994, IEEE Computer Society.

[42] M Moriconi, X. Qian and R.A. Riemenschneider, "Correct Architecture Refinement.",

IEEE Transactions on Software Engineering, page 356-372, April 1995.

[43] MULTIPLECX, "Multi-party Processes for Large-scale Electronic Commerce

Transactions, Project Programme", European 4th Framework Programme IT RTD,

ESPRIT, Project no. 26810.

[44] Netscape Incorporation, "JavaScript Guide",

http://developer.netscape.comldocs/manuals/communicator/jsguide41

[45] Nortel & the university of Newcastle, "Workflow Management Facility Specification",

OMG, BOM/98-03

[46] Anne H.H Ngu, Toncan Duong, Urna Srinivasan, "Modeling Workflow using Tasks and

Transactions", University of South Wales, NFS workshop, USA, April 1996.

[47] OMG, "Object Management Architecture Guide", http://www.omg.org/

[48] OMG, "The Common Object Request Broker: Architecture and Specification", revision

2.0, July 1995, http://www.omg.org/.

[49] OMG, ''The Common Object Service Specification", http://www.omg.org/

[50] OMG, "Common Facilities", 1995, http://www.omg.org/

[51] S. Omohundro and C. Lim, ''The Sather Language and Libraries", Technical Report TR-

92-017, International Computer Science Institute, Berkeley, March 1992.

[52] John K. Ousterhout, ''Tel and the Tk Toolkit", Addison Wesley Professional Computing

Series.

[53] John K. Ousterhout, "Scripting: Higher Level Programming for the 21st Century", IEEE

http://developer.netscape.comldocs/manuals/communicator/jsguide41
http://www.omg.org/
http://www.omg.org/.
http://www.omg.org/
http://www.omg.org/

References 193

Computer magazine, March 1998.

[54] M. Papazoglou, A. Delis and A. Bouguettaya, "Class Library Support for Workflow

Environments and Applications", IEEE transactions on computers, volume 46, no 6,

June 1997.

[55] G. D. Parington, S. K. Shrivastava, S. M. Wheater and M. Little, "The Design and

Implementation of Arjuna", USENIX, Compo Systems Journal, December 1996.

[56] James L Peterson, "Petri net theory and the modelling of systems", Prentice-Hall, Inc.

[57] C. Pu, G. E. Kaiser and N. Hutchinson, "Split transactions for Open-Ended Activities",

Proceedings of the 14thConference on Very Large Data Bases (VLDB), pp 26-37, Los

Angeles, California, 1988

[58] J. M. Purtilo, "The Polylith Software Bus", ACM TOPLAS, Vol. 16 no.l, pp 151-174,

Pittsburgh, March 1994.

[59] F. Ranno, S. Wheater, and S. K. Shrivastava, "A System for Specifying and

Coordinating the Execution of Reliable Distributed Applications", Proceedings of the

International Conference on Distributed Applications and Interoperable System"

(DAIS'97), Cottbus, Germany, October 1997

[60] F. Ranno, S. Wheater, and S. K. Shrivastava, "A language for Specifying the

Composition of reliable Distributed Applications", The 18th International Conference on

Distributed Computing Systems (ICDCS'98), IEEE, Amsterdam, the Netherlands, May

1998.

[61] B. Reinwald and C. Mohan, "Structured Workflow Management with Lotus Notes

release 4", Proceedings of the 41th IEEE Computer Society International Conference, pp

451-457, Santa Clara, California, February 1996

[62] Jane Rickard, "E.commerce, big business or fad?", Micromart, pp 116-117, 23rd October

1997, based on a survey by CommerNet and Nielsen Media Research.

[63] Paul Santanu, Edwin Park and Jarir Chaar, "RainMan: a Workflow System for the

Internet", IBM Watcom, USENIX Symposium on Internet Technologies & Systems,

1997.

[64] Paul Santanu, Edwin Park, Jarir Chaar, "Extending the WtMC Standard to the

Distributed World", Workflow Management Coalition Meeting, London, October 20-22,

1997.

[65] Paul Santanu, Edwin Park, Jarir Chaar, "Essential requirements for a workflow

References 194

standard", OOPSLA'97, Business Object Workshop III, Atlanta

[66] Alexander Schill and Christian Mittasch, "Workflow Management Systems on Top of

OSF DCE and OMG CORBA", Distributed Systems Engineering Journal, vol 3, pp 251-

262, December 1996

[67] Randall Schwartz and Tom Christiansen, "Learning Perl", O'Reilly editions

[68] F. Schwenkreis, "APRICOTS - A Workflow Prgramming Environment", 6lh High

Performance Transaction System workshop, Asilomar, Pacifi Grove, California,

September 1995

[69] M. Shaw, R. DeLine and G. Zelesnik, "Abstractions and Implementations for

Architectural Connections", Proceedings of the third International Conference on

Configurable Distributed Systems, May 1996.

[70] A. Sheth et al., "Supporting State-wide Immunisation Tracking using Multi-paradigm

Workflow Technology", Proceedings of the 22nd International Conference on Very Large

Databases, Bombay, India, September 1996

[71] S.K. Shrivastava, L. V. Mancini and B. Randell, ''The duality of Fault-Tolerant System

Structure", Technical Report Series n. 305, February 1990

[72] Teknowledge, "The ARDECffeknowledge Architecture Description Language (ArTek),

version 4.0", technical report, Teknowledge Federal Systems, Inc. and US Army

Armement Research, Development and Engineering Center, July 1995.

[73] W. Tracz, "Parameterized Programming in LILEANNA", Proceedings of ACM

symposium on Applied Computing (SAC'93), February 1993.

[74] H. Wachter and A. Reuter "The ConTract model" in ''Transaction Models for advanced

Database applications", (editor A. Elmagarrnid), Chapter 7, pp. 220-262, Morgan-

Kaufman, February 1992.

[75] Larry Wall, Tom Christiansen, Randall Schwartz, "Programming Perl", O'Reilly editions

[76] John Warne, "Flexible transaction framework for dependable systems", ANSA report No

1217, 1995

[77] Aaron Watters & al, "Internet programming with Python"

[78] WfMC, ''The Workflow Reference Model" version 1.1, November 1994, WfMC- TC-

1103, http://www.wfmc.org/

[79] WfMC, "Process Defmition Interchange", WtMC TC-I 0 16, http://www.wfmc.org/

[80] WtMC, "Workflow Process defmition ReadlWrite Interface", WfMC-WOO1-1000,

http://www.wfmc.org/
http://www.wfmc.org/

References 195

[81]

http://www.wfmc.org/

S. Wheater, "OPEN flow Workflow Module CORBA Interface Reference Manual" ,

version 0.6.1, Arjuna Solutions, Ltd, Newcastle upon Tyne.

S. Wheater, S.K. Shrivastava and F. Ranno, "A CORBA Compliant Transactional

Workflow System for Internet Applications", Proceedings of IFIP International

Conference on Distributed Systems Platforms and Open Distributed Processing

(MIDDLEWARE'98), The Lake District, England, September 15-18, 1998.

[83] D. Wodtke et al., "The Mentor Project: Steps towards Enterprise-wide Workflow

[82]

management", Proceedings of the Ith IEEE International Conference on Data

Engineering, New Orleans, LA, February 1996

http://www.wfmc.org/

